
HAL Id: tel-00726510
https://theses.hal.science/tel-00726510

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Common Aspect Languages Interpreter
Ali Assaf

To cite this version:
Ali Assaf. A Common Aspect Languages Interpreter. Software Engineering [cs.SE]. Université de
Nantes, 2011. English. �NNT : �. �tel-00726510�

https://theses.hal.science/tel-00726510
https://hal.archives-ouvertes.fr

Année

École Centrale de Nantes Université de Nantes École des Mines de Nantes

ÉCOLE DOCTORALE STIM

« SCIENCES ETTECHNOLOGIES DE L’I NFORMATION ET

MATHÉMATIQUES »

No attribué par la bibliothèque

Un interpréteur extensible pour le
prototypage des langages d’aspects

THÈSE DEDOCTORAT

Discipline: INFORMATIQUE

Spécialité : INFORMATIQUE

Présentée
et soutenue publiquement par

Ali A SSAF

le 21 octobre 2011, à l’École des Mines de Nantes,
devant le jury ci-dessousPrésident : Frédéri Benhamou, Professeur Université de NantesRapporteurs : Roland Duournau, Professeur Université de Montpellier 2Christian Perebois, Professeur Université de Toulouse 3Examinateurs : Lionel Seinturier, Professeur Université de Lille 1Frédéri Benhamou, Professeur Université de NantesPierre Cointe, Professeur Eole des Mines de NantesJaques Noyé, Maître-Assistant Eole des Mines de Nantes

Équipe d’accueil :ASCOLA - INRIA /EMN, LINA UMR CNRS

Laboratoire :DÉPARTEMENT INFORMATIQUE DE L’ ÉCOLE DES MINES DE NANTES
, rue Alfred Kastler,BP – Nantes, CEDEX . No ED 0366-XXX

favet neptunus eunti

Un interpréteur extensible pour le prototypagedes langages d'aspetsA Common Aspet Languages Interpreter
Ali Assaf

⊲⊳

Université de Nantes

Ali AssafUn interpréteur extensible pour le prototypage des langages d'aspets222+iv p.

This doument was edited with these-LINA v. 2.7 LATEX2e lass of the �As-soiation of Young Researhers on Computer Siene (LoGIN)� from theUniversity of Nantes (available at : http://login.irin.sienes.univ-nantes.fr/).This LATEX2e lass is under the reommendations of the Natio-nal Eduation Ministry of Undergraduate and Graduate Studies(irulaire no 05-094 du Marh) of the University of Nantes and theDotoral Shool of � Tehnologies de l'Information et des Matériaux(ed-stim)Print : thesis.tex � 05/07/2012 � 10:18.Last lass review: these-LINA.ls,v 2.7 2006/09/12 17:18:53 manheron Exp

http://login.irin.sciences.univ-nantes.fr/
http://www.sup.adc.education.fr/bib/Acti/These/circulaire.rtf
http://www.univ-nantes.fr/
http://edstim.univ-nantes.fr/

A Common Aspect Languages Interpreter

The value of using different (possibly domain-specific) aspect languages to deal with a variety
of crosscutting concerns in the development of complex software systems is well recognized. One
should be able to use several of these languages together in a single program. However, on the
one hand, developing a new Domain-Specific Aspect Language (DSAL) in order to capture all
common programming patterns of the domain takes a lot of time, and on the other hand, the
designer of a new language should manage the interactions with the other languages when they
are used together.

In this thesis, we introduce support for rapid prototyping and composing aspect languages based
on interpreters. We start from a base interpreter of a subset of Java and we analyze and present
a solution for its modular extension to support AOP based on a common semantics aspect base
defined once and for all. The extension, called the aspect interpreter, implements a common aspect
mechanism and leaves holes to be defined when developing concrete languages. The power of this
approach is that the aspect languages are directly implemented from their operational semantics.
This is illustrated by implementing a lightweight version of AspectJ. To apply the same approach
and the same architecture to full Java without changing its interpreter (JVM), we reuse AspectJ to
perform a first step of static weaving, which we complement by a second step of dynamic weaving,
implemented through a thin interpretation layer. This can be seen as an interesting example of
reconciling interpreters and compilers. We validate our approach by describing prototypes for
AspectJ, EAOP, COOL and a couple of other DSALs and demonstrating the openness of our
AspectJ implementation with two extensions, one dealing with dynamic scheduling of aspects and
another with alternative pointcut semantics. Different aspect languages implemented with our
framework can be easily composed. Moreover, we provide support for customizing this composition.
Keywords Aspect-Oriented Programming (AOP), interpreter, semantics, prototyping, compo-
sition, Domain-Specific Aspect Language (DSAL)

Un interpréteur extensible pour le prototypage des
langages d’aspects

L’intérêt de l’utilisation de différents langages d’aspects pour faire face à une variété de
préoccupations transverses dans le développement de systèmes logiciels complexes est reconnu.
Il faudrait être capable d’utiliser plusieurs de ces langages dans un seul logiciel donné. Cependant,
d’une part la phase de développement d’un nouveau langage dédié capturant tous les patrons de
programmation du domaine prend beaucoup de temps et, d’autre part, le concepteur doit gérer
les interactions avec les autres langages quand ils sont utilisés simultanément.

Dans cette thèse, nous introduisons un support pour le prototypage rapide et la composition des
langages d’aspects, basé sur des interpréteurs. Nous partons d’un interpréteur d’un sous-ensemble
de Java en étudiant et en définissant son extension modulaire afin de supporter la programmation
par aspects en se basant sur une sémantique d’aspects partagée. Dans l’interpréteur d’aspects,
nous avons implémenté des mécanismes communs aux langages d’aspects en laissant des trous
à définir pour implémenter des langages d’aspects concrets. La puissance de cette approche est
de permettre d’implémenter directement les langages à partir de leur sémantique. L’approche est
validée par l’implémentation d’une version légère d’AspectJ.

Pour appliquer la même approche et la même architecture à Java sans modifier son interpréteur
(JVM), nous réutilisons AspectJ pour effectuer une première étape de tissage statique, qui est
complétée par une deuxième étape de tissage dynamique, implémentée par une mince couche
d’interprétation. C’est un exemple montrant l’intérêt qu’il peut y avoir à concilier interprétation
et compilation. Des prototypes pour AspectJ, EAOP, COOL et des langages dédiés simples, va-
lident notre approche. Nous montrons le caractère ouvert de notre implémentation d’AspectJ
en décrivant deux extensions: la première permet l’ordonnancement dynamique des aspects, la
deuxième propose des sémantiques alternatives pour les points de coupe. Les langages d’aspects
implémentés avec notre approche peuvent être facilement composés. En outre, cette composition
peut être personnalisée.
Mots-clés Programmation Par Aspects (PPA), interpréteur, sémantique, prototypage, compo-
sition, langage d’aspects dédié

Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor, Jacques Noyé. Since
i have done my master and during the thesis, i have learnt enormously by interacting with you,
on topics as vast as critical mind, self questioning, research attitude, scientific writing and ethics.
Thank you for all these years of discussion and advice.

I also profoundly thank Pierre Cointe, the head of laboratory, Mario Südholt, the head of the
research team and Narendia Jussien, the head of the Computer Science departement in Ecole des
Mines de Nantes (EMN) for providing financial support in various opportunities and events, in
particular to participate to conferences.

I also thank each member of the Computer Sciences Departement in EMN and each person in
EMN for the friendliness that made this PhD work possible.

I would like to express my gratitude to all the members of the jury for reviewing and commen-
ting on this work.

I want to greet a great person, who wrote the One Thousand and One Nights book in sacrifice
and altruism, who had the biggest merit in my scientific and life career, My Mother Shehrazad.

I would like to thank a real jewel, which was my encouragement and my guardian angel for
life and work. Who gives my life the color of her eyes, who gives taste to my days, she is my love
Diana.

From the bottom of my heart, I want to thank my family, my sisters, my brothers, and friends,
for support and care during my years of study.

This thesis was financially supported by the Minister of National Education in France.

i

ii

Contents

1 Introduction 15
1.1 Separation of Concerns . 15
1.2 Aspect-Oriented Programming . 16
1.3 Motivating Problems . 17
1.4 Thesis . 17
1.5 Structure of the Dissertation . 19

I The State of the Art 21

2 Aspect-Oriented Languages 25
2.1 Definition and Implementation of Programming Languages 25

2.1.1 Definition of Programming Languages . 25
2.1.2 Implementation of Programming Languages: Interpretation vs Compilation 26

2.2 Aspect-Oriented Programming Languages . 29
2.2.1 Aspect-Oriented Programming . 29
2.2.2 An Overview of AspectJ . 33
2.2.3 An Overview of Event-Based AOP . 37
2.2.4 An Overview of COOL . 40
2.2.5 Join-Point Models . 42
2.2.6 Aspect Mechanisms . 42
2.2.7 Approaches for Implementing AOPLs . 45
2.2.8 Approaches for Prototyping and Composing AOPLs 46

2.3 Summary . 47

3 Prototyping and Composing Aspect Languages 49
3.1 Prototyping and Composing AOPLs . 49

3.1.1 Design Space for AOPLs . 50
3.1.2 Combining AOPLs . 50

3.2 Reflex . 51
3.3 XAspects . 55
3.4 Metaspin . 58

3.4.1 Execution Semantics . 59
3.4.2 Woven Execution of Program . 60
3.4.3 Evaluation of Advised Instruction . 61
3.4.4 Dealing with Aspect Interactions . 62

3.5 Pluggable AOP . 63
3.6 Summary . 65

1

2 CONTENTS

4 Evaluation 67
4.1 Classification of Existing Work . 67

4.1.1 Prototyping and Composing AOPLs . 69
4.2 Simplicity of Prototyping . 69
4.3 Preserving Aspect Behavior . 69
4.4 Aspect Interactions . 72

4.4.1 Co-advising . 73
4.4.2 Foreign advising . 73
4.4.3 Composition of AspectJ and COOL . 76
4.4.4 Discussion . 77
4.4.5 Requirements . 77

4.5 Contribution . 77

II Contributions 79

5 Modifying an Existing Java Interpreter: MetaJ 83
5.1 Modifying MetaJ to support AOP . 83

5.1.1 Interpreter-based two-step weaving . 84
5.1.2 Implementation . 84
5.1.3 Join-Point Model . 85
5.1.4 Processes of Aspect Interpreter . 89
5.1.5 Implementing an Abstract Aspect-Oriented Language 90

5.2 Aspect instances . 93
5.2.1 Link between aspect instances and aspect definition 93
5.2.2 Static Deployment . 94
5.2.3 Dynamic Deployment . 94
5.2.4 Collaboration between subprocesses . 96

5.3 Generalization . 97
5.3.1 Separation between base and aspect interpreter 97
5.3.2 Separation between what is common and what is specific in the aspect in-

terpreter . 99
5.3.3 Prototyping and composition AOPLs . 99

5.4 Lightweight AspectJ . 99
5.4.1 Pointcut designators . 99
5.4.2 Inter-type declarations . 101
5.4.3 Parsing . 101

5.5 Conclusion . 105

6 CALI: Common Aspect Language Interpreter 107
6.1 Compiler-based two-step weaving . 107
6.2 Semantics of CALI . 108
6.3 Architecture of CALI . 109

6.3.1 Proceed stack management . 112
6.4 Abstract Aspect-Oriented language . 113

6.4.1 Join-point selector . 113
6.4.2 Advice . 113
6.4.3 Proceed . 114
6.4.4 Selector/Advice Binding . 115
6.4.5 Aspect . 115
6.4.6 Reflective access to the join point . 115

6.5 Principles of matching a join point by Join-point Selectors 116
6.6 Implementing a concrete AOPL with CALI . 116

CONTENTS 3

7 AspectJ plugin on top of CALI 117

7.1 AspectJ on top of CALI . 117

7.2 Example . 119

7.3 Pointcut Designators as Join-Point Selectors . 120

7.3.1 Background . 121

7.3.2 Method-related pointcuts . 121

7.3.3 Field-related pointcuts . 126

7.3.4 Advice execution-related pointcuts . 127

7.3.5 State-based pointcuts . 128

7.3.6 Expression-based pointcuts . 130

7.4 Aspects . 130

7.4.1 Aspect declaration . 130

7.4.2 Aspect instantiation . 131

7.4.3 Aspect extension . 132

7.5 Advice precedence . 132

7.6 Transformation of AspectJ syntax to CALI representation 132

7.6.1 Implementation . 132

7.7 Conclusion . 132

8 AspectJ Variants with CALI 135

8.1 Dynamic Aspect Scheduling . 135

8.1.1 The Decorator Example . 135

8.1.2 The Virus-Checker Example . 138

8.1.3 Scheduling in AspectJ . 139

8.1.4 Scheduling in Dynamic AspectJ . 139

8.1.5 Dealing with Aspect Groups . 140

8.1.6 Revisiting the Motivating Examples . 141

8.2 Alternative semantics for AspectJ pointcuts . 142

8.2.1 Discussion . 142

8.2.2 Implementation of Alternative Semantics 144

8.3 Conclusion . 145

9 EAOP and DSLs plugins 147

9.1 EAOP . 147

9.1.1 EAOP model . 147

9.1.2 Basis of EAOP implementation . 149

9.1.3 Implementation using Dynamic AspectJ . 149

9.1.4 Dedicated EAOP implementation . 149

9.2 Decorator . 155

9.2.1 A DSAL to enforce the decorator pattern 155

9.2.2 Implementation of the DSAL on top of CALI 158

9.3 Memoization DSAL . 160

9.3.1 Example . 160

9.3.2 Implementation of Memoization DSAL on Top of CALI 160

9.3.3 The example revisited . 161

9.3.4 Translation . 161

9.4 COOL . 161

9.4.1 The example revisited . 166

9.5 Conclusion . 168

4 CONTENTS

10 Composition of AOP languages 169
10.1 From composing multiple aspects to composing multiple AOPLs 169
10.2 Scaling composition . 169

10.2.1 Interaction . 170
10.2.2 Interactions resolutions in CALI . 170

10.3 AspectJ and COOL . 172
10.3.1 Problem . 172
10.3.2 Specification of the composition . 172
10.3.3 Composition configuration . 172

10.4 Conclusion . 173

III Perspectives 175

11 Performance 179
11.1 TPTP Eclipse plugin . 179
11.2 Running application . 180
11.3 Results . 180
11.4 Discussion . 181

11.4.1 Without Aspects . 181
11.4.2 With Aspects . 181
11.4.3 Conclusion . 182

12 Related Work 183
12.1 JAMI . 183

12.1.1 Features and Benefits . 183
12.1.2 Limitations . 184

12.2 AWESOME . 184
12.2.1 Features and Benefits . 184
12.2.2 Limitations . 184

12.3 The Art of the Meta-Aspect Protocol . 185
12.4 Composing aspects with aspects . 185

13 Conclusion 187
13.1 Prototyping and Open implementations . 188
13.2 Composition . 188

14 Future Work 191
14.1 Dynamic AspectJ Plugin . 191
14.2 Context-Aware Application . 191
14.3 Debugging Aspect-Oriented Programs . 192

Appendices 193

Résumé 195
1 Introduction . 195

1.1 Programmation par Aspects . 195
1.2 Problématique . 196
1.3 Thèse . 197
1.4 Validation . 198
1.5 Structure de la thèse . 198

2 Etat de l’art . 198
2.1 Langages d’aspects . 199
2.2 Prototypage et composition . 200

3 Évaluation et Contributions . 201

CONTENTS 5

4 Un interpréteur extensible pour les langages d’aspects 202
4.1 CALI . 203
4.2 Conclusion . 204

5 Implémentation d’AspectJ . 204
5.1 Implémentation des coupes . 205
5.2 Résumé . 206

6 Extensions d’AspectJ . 206
6.1 Planification dynamique des aspects . 206
6.2 Sémantique alternative des coupes d’AspectJ 208

7 EAOP et langages dédiés avec CALI . 208
7.1 EAOP . 208
7.2 Decorator . 208
7.3 Memoization . 209
7.4 COOL . 209

8 Composition des langages d’aspects . 209
9 Perspectives . 210

9.1 Travaux connexes . 210
9.2 Perspectives . 210
9.3 Conclusion . 211
9.4 Prototypage . 212
9.5 Implémentation ouverte . 212
9.6 Composition . 212

6 CONTENTS

List of Figures

2.1 The MetaJ architecture . 28
2.2 Class diagram of the bank application . 30
2.3 Simplified version of FSP with nested choices and action prefixes 39
2.4 Extending FSP grammar in order to support EAOP 39
2.5 Sequential instrumentation . 46
2.6 Common target transformation . 48

3.1 The architecture of the Reflex kernel [92]. 51
3.2 Behavioral links and correspondence to AOP concepts according to [93] 52
3.3 The architecture of XAspects. 57
3.4 The join point metamodel as described by Metaspin [26]. 58
3.5 Discrete evaluation through join-point stepping [26]. 60
3.6 Interleaved evaluation of programs. 60
3.7 Evaluation of Advised Instruction. 61
3.8 X takes priority on Y. 62
3.9 Execution of pieces of advice at a shared join point. 63
3.10 The interpreter composition in Pluggable AOP [62] 64

4.1 The architecture of AspectJ plugin on top of Reflex 71

5.1 The class diagram representing the abstract aspect language 90
5.2 The description of the link between instances and definitions (aspects and classes) 93
5.3 A general architecture of the base and the aspect interpreter 98
5.4 The decomposition of the aspect interpreter in two parts 99
5.5 (a) General architecture (b) Implementation and composition of different aspect-

oriented languages . 100

6.1 The architecture of CALI . 110
6.2 The class diagram of expressions used in CALI . 110

7.1 AspectJ pointcuts on top of CALI . 118
7.2 The architecture of the AspectJ plugin . 133

8.1 Class diagram of the coffee ordering system. 136

9.1 Comparison between the 2 models: a) Initial conceptual model, b) Modified model 148
9.2 Class diagram of WordProcessor . 157
9.3 Decorator pattern example . 157

10.1 Composing two aspects from different languages 171

7

8 LIST OF FIGURES

List of Tables

4.1 Classification of existing works . 69

11.1 Summary of profiling results . 181

9

10 LIST OF TABLES

Listings

2.1 Launching the evaluation of a program in MetaJ 27
2.2 The ExpId class . 28
2.3 The ExpId class . 28
2.4 The ExpAssign class . 29
2.5 An example of a program in MetaJ . 30
2.6 The implementation of the bank application . 31
2.7 Logging the bank application . 31
2.8 The AOP implementation of the logging concern using AspectJ 32
2.9 Adding an evalWithAspect to Exp . 33
2.10 The class Server . 38
2.11 The AspectJ implementation of the EAOP aspect 40
2.12 A base class implementing an unbounded stack . 41
2.13 An example of COOL . 41
2.14 The weaving mechanism. 43
2.15 The AspectJ weaving mechanism. 43
3.1 An example of a class selector . 51
3.2 A part of a Reflex configuration class . 52
3.3 An AspectJ Logging aspect . 53
3.4 The translation of the aspect in Listing 3.3 in a configuration class of Reflex 54
3.5 The class AspectPlugin provided by XAspects . 55
3.6 An aspect written in Traversal DSAL . 56
3.7 The Traversal implementation using XAspects . 57
3.8 The AspectJ implementation using XAspects . 58
4.1 An AspectJ logging aspect. 70
4.2 The Reflex representation of the logging aspect. 72
4.3 A non-synchronized stack . 74
4.4 A coordinator in COOL . 74
4.5 A translated COOL coordinator class . 75
4.6 A synchronized bounded stack . 76
5.1 The aspect interpreter as an aspect Platform . 85
5.2 The representation of a method call in MetaJ . 86
5.3 The representation of a method in MetaJ . 87
5.4 The modified class ExpMethod . 88
5.5 The intermediate representation of a method call 88
5.6 The JoinPointSelector class . 90
5.7 The class Advice implementing an advice . 91
5.8 The implementation of the expression proceed . 91
5.9 The Phi class . 92
5.10 The SelectorAdviceBinding class . 92

11

12 LISTINGS

5.11 The Aspect interface . 93
5.12 The abstract class Aspect . 94
5.13 The AspectInstance class . 94
5.14 Platform with static deployment . 95
5.15 An example dynamic aspect deployment . 96
5.16 Platform with dynamic deployment . 96
5.17 The deployment expression ExpDeploy . 97
5.18 The implementation of a lightweight AspectJ aspect 100
5.19 Lightweight AspectJ - implementation of the selectors Call and Execution 102
5.20 Lightweight AspectJ - implementation of the selectors This and Target 103
5.21 The ExpClass implementation . 104
6.1 The aspect Platform . 111
6.2 The proceed stack manager . 112
6.3 The class JoinPointSelector . 113
6.4 Generic part of the implementation of a piece of advice in CALI 113
6.5 The implementation of selector/advice bindings . 115
6.6 The class Aspect . 115
7.1 The AspectJ aspect representation . 118
7.2 A base program . 119
7.3 MyAspect aspect written in AspectJ . 119
7.4 The traduction of MyAspect into CALI . 120
7.5 An example used to analyse call and execution semantics. 121
7.6 Another example to analyse call and execution semantics. 122
7.7 The Call selector . 124
7.8 Example. 125
7.9 The execution selector . 125
7.10 The get selector . 126
7.12 The this selector implementation . 128
7.13 The target selector implementation . 129
7.14 The args selector implementation . 129
7.15 The if selector implementation . 130
8.1 The class AspectGroup . 140
8.2 The aspect MochaAvailability . 141
8.3 The aspect SecureCompression . 142
8.4 The dynamic Call selector . 144
9.1 Implementing the state Server using Dynamic AspectJ 150
9.2 Implementing the state Session using Dynamic AspectJ 151
9.3 The class AdviceState . 152
9.4 The interface State . 152
9.5 The class StateImpl . 153
9.6 The EAOPAspect implementation . 154
9.7 The EAOPPhi class . 154
9.8 The Consistency EAOP aspect . 155
9.9 The implementation of the state Session of EAOP aspect 156
9.10 The WordProcessor class . 156
9.11 Enforce the decorator pattern on the class Document 158
9.12 The decorator aspect . 158
9.13 The class MyDecorator . 159
9.14 An example in Memoization DSAL. 160
9.15 A translated memoization aspect . 161
9.16 Selector/advice binding to associate an aspect instance to a target document . . . 162
9.17 Selector/advice binding to cache the value returned by proceed 162
9.18 Selector/advice binding to invalidate cached value when assigning content 163
9.19 Selector/advice binding to invalidate cached value when calling addLine 163

LISTINGS 13

9.20 The implementation of SelfexAdvice . 164
9.21 The implementation of MutexAdvice . 164
9.22 The implementation of CoordinatorAdvice . 165
9.23 The implementation of Coordinator with CALI 165
9.24 The translated coordinator . 166
9.25 The selfex part of the translated coordinator . 166
9.26 The mutex part of the translated coordinator . 167
9.27 The statement part of the translated coordinator 167
11.1 The Fibonacci class . 180
11.2 The FibonacciSaverAspect AspectJ aspect . 181
11.3 The FibonacciSaverAspect aspect with CALI-AspectJ plugin 182

14 LISTINGS

Chapter 1
Introduction

Contents
1.1 Separation of Concerns . 15

1.2 Aspect-Oriented Programming . 16

1.3 Motivating Problems . 17

1.4 Thesis . 17

1.5 Structure of the Dissertation . 19

1.1 Separation of Concerns

It has been quite some time since I left Lebanon to come to France where I did a master’s
degree in Software Engineering. Many things have changed for me and especially food. I thought
that there was a big difference between the two cuisines and I found myself poorly adapted to the
way of cooking in France.

It is common in Lebanese cuisine, as in all the Mediterranean ones, to mix a variety of fresh
vegetarian recipes, salads and stews with a flavorsome combination of herbs and spices then to
cook them. This leads to a delicious meal that we eat directly without adding new ingredients.
However, this manner has caused problems in our house: a person that did not like one of the
ingredient could not eat the prepared meal. The solution was that my mother cooked another meal
with an alternative main ingredient. The Mgadara, prepared by cooking together lentils, onions
and either rice or bulgur, causes problems if we choose to use rice while a person does not like it.
We need to cook another time the same ingredients (except the rice) with the bulgur.

In France, I noticed that each ingredient is cooked separately. There is a base ingredient (like
meat) and several added ingredients like potato, rice, etc. For example, if French people want to
cook Mgadara, they cook lentils, bulgur and rice separately and choose what to mix in their plates.
I found that the French manner of cooking can help when they are several versions of the same
meal using alternative ingredients as we see for the Mgadara, when rice, bulgur and lentils are
separately cooked.

Now let us leave delicious cuisine and go to work. This comparison has helped me to understand
the Separation of Concerns [34] proposed by Dijkstra in the early 1970’s. Cooking is equivalent to
programming and cooking ingredients separately is equivalent to developing several modules, each
module deals with one concern. These modules will be composed together in order to elaborate
the final product. Separation of concerns is at the core of Software Engineering. When we want to
develop a solution of a problem as software, considering this problem as an atomic block makes
the elaboration of its solution complex. Separation of concerns in Software Engineering consists
of breaking the problem into loosely-coupled subproblems to reduce software complexity and to

15

16 CHAPTER 1. INTRODUCTION

improve comprehensibility. The subsolutions of these subproblems can then be composed to yield
a solution to the original problem. When developing a software system, the Separation of Concerns
enables us to focus our attention upon some subprograms from one point of view without caring
too much about other irrelevant aspects.

The organization of programs into modules is one of the key issues tackled by programming lan-
guages. The research history in the domain of programming languages can be seen as a perpetual
quest for ideal modularization. Existing programming paradigms like Object-Oriented Program-
ming (OOP) and Component-Oriented Programming (COP) are useful to modularize most func-
tional concerns (belonging to the base application) of the system but they fail to provide support
for the modularization of a type of concerns, called crosscutting concerns, which are aspects of the
system which affect (crosscut) other concerns like logging, synchronization or security. Often, these
concerns cannot be cleanly decomposed from the rest of the system, and their corresponding code
is scattered across the program and tangled with other concerns. For example, logging is typically
scattered in different places in the code. Some functional concerns (for instance, billing) may also
be hard to properly modularize. Some programming techniques like Meta-Object Protocols [58]
and Reflection [30] have tried to solve this problem but they are very complex and do not provide
language support for modularization.

Aspect-Oriented Programming (AOP) [47] has been proposed to attack the problem of cross-
cutting concerns by providing language support to modularize them. It realizes this by letting
the user define the behavior of a crosscutting concern and then declaratively describe where this
concern has to crosscut the other modules. It is the responsibility of the language infrastructure
to elaborate the final program. The next section overviews AOP and motivates the use of several
Aspect-Oriented languages to express the different types of crosscutting concerns that co-crosscut
the system.

1.2 Aspect-Oriented Programming

In Software Engineering, Aspect-Oriented Programming [47] (AOP) attempts to aid program-
mers in the Separation of Concerns, specifically crosscutting concerns, as an advance in modular-
ization. AOP does so primarily using language changes and extensions. AOP allows programmers
to modularize crosscutting concerns as aspects while widely spread programming languages and
techniques such as OOP and design patterns do not elegantly modularize them. Separating cross-
cutting concerns using AOP improves the quality of modules as they are loosely-coupled from the
other modules and thus can be easily maintained and reused for other purposes. Currently, AOP
is mostly realized as an extension of OOP (in particular, several extensions of Java), and imple-
mented by using program-transformation technologies applied to a program in order to statically
compose aspects into this program. Several Aspect-Oriented Programming Languages (AOPLs)
were proposed in order to make it possible to express crosscutting concerns. The where concept
in the aspect composition technique is captured with the notion of a join point [57]. Join points
are conceptual points in a software artifact that are of interest to the composition of multiple con-
cerns. Join points are the essential elements through which two or more concerns can be composed.
The understanding of the implementation of a join point in different artifacts of the software de-
velopment life-cycle is important. To determine the set of join points which one is interested in,
the majority of AOPLs provide a sublanguage, called the pointcut language. Pointcut expressions
determine the set of join points needed to be captured by the aspect. A pointcut is associated
with a statement that will be executed when the pointcut matches a join point. This statement is
commonly called advice. This type of AOPL is said to follow the Pointcut-Advice model.

There are proposals for both General-Purpose and Domain-Specific Aspect Languages (GPALs
and DSALs, respectively). Domain specificity presents many benefits: declarative representation,
simpler analysis and reasoning, domain-level error checking, and optimizations [32]. The DSAL
approach follows the language-oriented programming approach [102], which is a style of computer
programming via meta-programming in which, rather than solving problems in general-purpose
programming languages, the programmer creates first one or more domain-specific programming

1.3. MOTIVATING PROBLEMS 17

languages for the problem, and solves the problem in these languages. Several domain-specific as-
pect languages were indeed linked to the birth of AOP (COOL and RIDL at Xerox Parc [68]), and,
after a focus on general-purpose aspect languages (AspectJ in the same group [57]), the interest
in DSALs has been revived [28, 100, 92]. A DSAL provides a means to simplify the develop-
ment of one concern like concurrency, distribution, serialization, etc. But the development of large
distributed applications involves the integration of multiple concerns, with multiple stakeholders
manipulating the system via multiple different viewpoints. When several aspects are handled in
the same piece of software, it is attractive to be able to combine several AO approaches, various
DSALs [86, 92] or a GPAL with one or several DSALs, for instance AspectJ and COOL.

1.3 Motivating Problems

The domain of AOSD lacks design spaces of AOPLs (DSALs and GPALs), which could enhance
the quality of AOPLs in terms of understandability, reusability and maintainability. Also, the
complexity of implementation techniques used for AOPLs makes it difficult to define and test new
features and alternative semantics while the diversity of these techniques makes the composition
of AOPLs even more difficult. These motivating problems can be decomposed into three parts:

1. The implementation of a DSAL can be tricky. The first step in the process of designing a
DSAL is to consider common programming patterns in the area of a concern. The second
step is to define the basis of the syntax and the semantics. Note that all the language features
are progressively captured by testing the language in real situations. Given this fact, the need
to develop a prototype of this language becomes very important to help us test the proposed
language features. The resulting prototype must be scalable and maintainable in order to
add new features to the language as more common patterns from the domain are captured.

2. Experimenting with various alternative semantics and exploring the design space of AOPLs
(DSALs and GPALs) is common in AOSD research. Let us consider the extension of As-
pectJ pointcut semantics that have undergone changes since the first version (i.e. execution
pointcut with respect to inheritance [18]). Unfortunately, this is not easy since most exist-
ing compilers may not have been designed with extensiblity as one of the main goals (ajc:
AspectJ Compiler [2]). Even if this the case with abc, The AspectBench Compiler for As-
pectJ [15], working with this tool requires the knowledge of all the machinery of abc like
Polyglot (extensible front end for Java), Soot (optimization framework for Java programs),
Jimple (intermediate representation of Java programs defined within Soot), etc. and it is eas-
ier to propose alternative pointcut semantics than to modify complex semantics like aspect
scheduling.

3. Working with large applications imposes to deal with different concerns, and specially cross-
cutting concern like synchronization, concurrency, etc. The use of DSALs for each concern
(domain) calls for composing the different used DSALs together. However, the diversity of
languages implementation techniques makes it almost impossible. To clarify the problem,
let us consider two AOPLs, AspectJ and COOL. For each of these two languages, there is
a compiler that weaves the corresponding aspects. The compiler takes a base application
and makes a specific representation of it then matches the places where crosscutting con-
cerns have to be added and weaves the advice. When making the specific representation,
each compiler adds, in the transformed program, some implementation specific code, which
can be considered as normal code by the second weaver (assuming weaving takes place in
sequence). This leads to unexpected behavior as described in [70].

1.4 Thesis

The overall objective of this thesis is to facilitate the prototyping and the composition of
AOPLs.

Approach The general approach is to use interpreters instead of compilers (weavers) because:

18 CHAPTER 1. INTRODUCTION

1. Interpreters help us to directly implement the semantics of aspect languages when
prototyping them and to easily manage the languages interactions when composing
them.

2. Interpreters are open and more extensible than compilers.

3. It is easier to compose interpreters than weavers in order to compose AOPLs.

To facilitate the prototyping of AOPLs, our approach consists of defining a common inter-
preter for AOPLs, which can be extended to build a concrete interpreter for a specific AOPL,
whereas the extensions can be composed in order to compose AOPLs. We start from two
existing points:

1. The Common Aspect Semantics framework (CASB) [36] as the basis to express the
semantics of our interpreter.

2. A metamodel of AOPLs [26] where the common language concepts of aspect languages
are represented.

The common interpreter implements the common semantics of AOPLs based on the CASB.
As an example of common semantics, let us mention the interactions of between the base
interpreter and the aspect interpreters, matching aspects, scheduling aspects, executing pieces
of advice, proceed. The common interpreter keeps the semantics of a concrete language, like
its pointcut semantics, abstract. This semantics is provided by a plugin for the language.
The common interpreter is designed to be open and flexible so that even the common se-
mantics can be configured. As an example, let us mention the notion of scheduling aspects,
where it is important to have different types of scheduling strategies, dynamic or static.
The prototyping of concrete aspect languages is reduced to the specification of the abstract
features in the interpreter. Regarding the composition of aspect languages, independently
developed aspect languages (extending the common interpreter) can be easily assembled.
The composition of aspect languages is reduced to the composition of aspects because the
aspects of all the languages have to extend the abstract aspect notion and similarly interact
with the interpreter. The framework provides default configuration of aspect composition
and supports the configuration of this composition.

Prototypes The semantics of the CASB assumes that there is a base interpreter which imple-
ments the semantics of the base language and the common interpreter must manage their
interactions. According to the base interpreter that we consider and following our proposi-
tions, we build two prototypes:

1. Extended MetaJ: Dealing with a base interpreter like the Java Virtual Machine (JVM) is
very complex. We rather start from a source-level interpreter, MetaJ, a Java interpreter
for a subset of Java, and extend it with a common aspect interpreter.

2. CALI: To apply the same architecture to Java without making changes in the JVM,
we use AspectJ to implement join points and forward them to a thin interpretation
layer responsible for aspect-specific management. This can be seen as an interesting
example of reconciling interpreters and compilers, the dynamic and the static world.
The resulting framework is called CALI, for Common Aspect Language Interpreter.

Validation As a validation of our work, we present a prototype of AspectJ implemented using
CALI. The extensibility of this AspectJ implementation is validated by two AspectJ variants,
one dealing with dynamic aspect scheduling, another with alternative selector semantics.
CALI is also used to prototype very different AOPLs like Event-Based AOP (EAOP) [37]
and the COOrdination Language (COOL) [68].

The CALI-based implementations can be easily composed because they are all based on the
same abstract language. Moreover, CALI supports the configuration of AOPL composition
and the resolution of aspect interactions at different levels (language and aspect). Being
implemented with CALI, the composition of AspectJ and COOL prototypes is directly sup-
ported.

Contributions Here are some of our achievements during our work on this thesis. We have:

1.5. STRUCTURE OF THE DISSERTATION 19

– Presented the shortcomings of the translation approach for prototyping AOPLs.
– Used the CASB as an intermediate level of abstraction between the conceptual model and

the implementation level of AOPLs.
– Extended the CASB in order to introduce a notion of aspect group, which is used for

dynamic scheduling of aspects.
– Designed and implemented an aspect interpreter completely separated from the base one.
– Extended AspectJ in order to introduce dynamic scheduling by using the variable thisAspectGroup.
– Implemented a flexible prototype of AspectJ and presented how it is simple to extend it in

order to implement two variants of AspectJ: one with dynamic scheduling, another with
alternative semantics for pointcuts.

– Presented the configuration of AOPLs composition at aspect level while other frameworks
provide a configuration at language level.

1.5 Structure of the Dissertation

After this introduction, we present the thesis as three parts: The first (from Chapter 2 to
Chapter 4) is about the state of the art, the second (from Chapter 5 to Chapter 10) is about our
contributions and the third is the conclusion.

State of the Art Chapter 2 presents the main features of AOPLs and their different implemen-
tation techniques. Chapter 3 overviews the existing approaches for prototyping and composing
AOPLs and present the shortcomings of such approaches. The analysis of the existing approaches
lead us to explicit the requirements necessary to fulfill our goals in Chapter 4.

Contributions According to the requirements discussed in the previous chapter, Chapter 5
presents the modular extension of a Java interpreter (MetaJ) and infers a general architecture
linking the aspect and base interpreters. A lightweight AspectJ version is implemented by extend-
ing the aspect interpreter.

Chapter 6 applies the architecture of Chapter 5 to Java without modifying the JVM. The aspect
interpreter is built to be extensible and the resulting framework is called CALI for Common
Aspect Language Interpreter. In Chapter 7 and Chapter 8, we describe the implementation of
AspectJ and two variants of its semantics with this approach. The first variant introduces dynamic
aspect scheduling and the second introduces an alternative semantics of the pointcut expressions
associated to method calls and executions.

Chapter 9 shows the implementation of a number of AOPLs on top of CALI.
Chapter 10 shows how AOPLs implemented using CALI can be composed.

Conclusion Chapter 11 evaluates the interpreter performance. We discuss some related work
in Chapter 12. We conclude in Chapter 13 by summarizing our contributions and discussing
limitations of this thesis before giving some perspectives in Chapter 14.

20 CHAPTER 1. INTRODUCTION

Part I

The State of the Art

21

Table of Contents

2 Aspect-Oriented Languages 25

2.1 Definition and Implementation of Programming Languages 25

2.2 Aspect-Oriented Programming Languages . 29

2.3 Summary . 47

3 Prototyping and Composing Aspect Languages 49

3.1 Prototyping and Composing AOPLs . 49

3.2 Reflex . 51

3.3 XAspects . 55

3.4 Metaspin . 58

3.5 Pluggable AOP . 63

3.6 Summary . 65

4 Evaluation 67

4.1 Classification of Existing Work . 67

4.2 Simplicity of Prototyping . 69

4.3 Preserving Aspect Behavior . 69

4.4 Aspect Interactions . 72

4.5 Contribution . 77

24 TABLE OF CONTENTS

Chapter 2
Aspect-Oriented Languages

Contents
2.1 Definition and Implementation of Programming Languages 25

2.2 Aspect-Oriented Programming Languages 29

2.3 Summary . 47

In this chapter, we give background information on programming languages and their imple-
mentation techniques that will be useful in the following chapters. We show why in some cases it
is more useful to construct an interpreter than to construct a compiler. Additionaly, we discuss
the relation between operational semantics and interpeters by describing MetaJ, an interpreter for
a subset of Java written in Java.

After that, we turn to discuss the features of AOPLs as programming languages. We describe
three representative approaches: AspectJ (standard approach), EAOP (sequence-based join-point
matching) and COOL (domain-specific AOPL). We present the existing aspect-weaving mech-
anisms used in the implementations of AOPLs and we show how the semantics of an aspect
extension can be formally described by extending the operational semantics of the base language.
This means that an AOPL implementation could be realized by extending the interpreter of the
base language. This idea is going to be the starting point of our contribution.

2.1 Definition and Implementation of Programming Lan-
guages

In this section, we very quickly present the elements that define a programming language and
discuss interpretation vs compilation.

2.1.1 Definition of Programming Languages

A program written in a given programming language is a composition of syntactic constructs
whose execution perform the desired computations. Designing a programming language consists
of defining the syntax and the semantics of the language. The syntax defines the form of a valid
program whereas the semantics defines the meaning of the program, that is, its computations.

2.1.1.1 Syntax

Most programming languages are purely textual; they use sequences of tokens including words,
numbers, and punctuation, much like written natural languages. These sequences can be composed

25

26 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

into syntactic constructs defined by the grammar of this language, typically a context-free grammar
described in Backus-Naur Form (BNF) [9].

2.1.1.2 Semantics

The semantics of a language describes the computations performed by any program written in
the given language. Ideally, this semantics is represented by (see for instance [81]) a mathematical
model called formal semantics of the language. The model can take different forms:

Denotational semantics associates each syntactic construct with a function describing the effect
of executing this construct.

Operational semantics associates each syntactic construct with a function that describes how
the state of an underlying abstract machine is modified when executing this construct. In
practice, the operational semantics of a language can also be described by an interpreter (see
below).

In the rest of this thesis, we will be interested in operational semantics.
As we said, the operational semantics of a language describes how a program written in this

language is executed.
Here we describe an example, found in [36], of the basic elements of an operational semantics:
A program C is a sequence (there are no compound instructions) of basic instructions i termi-

nated by the empty instruction ε:

C ::= i : C|ε

i : C denotes the prefixing of a program C with an instruction i.
The state of the program is represented by Σ. Σ contains an environment, a stack, a heap, etc.,

depending on the precise semantics of the considered language. An execution of an instructions is
described by a change in this state, which is captured by reduction rules of the form:

(i : C,Σ)→ (C ′,Σ′)

This means that the execution of the instruction i in the state Σ takes the program state to Σ′,
and proceeds with the execution of the program C ′.

2.1.2 Implementation of Programming Languages: Interpretation vs Com-
pilation

Once we have defined (when using an interpreter to define the operational semantics of a
language, the definition of the semantics also provides a first implementation of the language) the
syntax and the semantics of a programming language, we can start to implement it. We have to
choose between an interpretation or a compilation of our language. In the following, an X-program
is a program written in the programming language X. For the sake of simplicity, we suppose that
the programs are without parameters.

Interpreter An interpreter intI(S) is an I-program that executes S-programs. I is the defining
or implementation language, while S is the defined or source language. The result of the
execution of int with an S-program pS as input, is: output = intI(pS).

Compiler A compiler comp is an I-program that takes an S-program pS as input and returns a
T-program pT : pT = compI(pS). As above, S is the defined or source language and T is the
target language.

2.1.2.1 Why using interpreters

When developing new programming language, there are several reasons to make an interpreter
for it (see, for instance [17]):

2.1. DEFINITION AND IMPLEMENTATION OF PROGRAMMING LANGUAGES 27�
public class Main {

2 public static Environment globalE;

public static void main(String [] args) {

4 // global environment for user classes

Main.globalE = new Environment(null , null , null);

6 // user input file parsing

Exp prog = Parser.File2Exp(args [0]);

8 // main entry point: Main.main()

prog = new ExpS(prog , new ExpMethodClass("Main", "main", new

ExpList(null , null)));

10 prog.eval(null);

}

12 }
� �
Listing 2.1: Launching the evaluation of a program in MetaJ

1. An interpreter is normally written in a high-level language and will therefore run on most
machine types, whereas generated object code will only run on machines of the target type:
in other words, portability is increased.

2. As we said before, an interpreter written in a sufficiently abstract, concise, and high-level
language, can serve as a language definition: an operational semantics for the interpreted
language (defined language) and it directly implements the operational semantics.

3. Writing an interpreter back-end is much less work than writing a compiler back-end. One
reason is that the implementer thinks only of one time (the execution time), whereas a
compiler must perform actions to generate code to achieve a desired effect at runtime. This
is an advantage when rapidly prototyping, testing and extending the defined language.

4. Performing the actions straight from the semantic representation allows better error checking
and reporting to be done. This is not fundamentally so, but is a consequence of the fact that
compilers (front-end/back-end combinations) are expected to generate efficient code. As a
result, most back-ends throw away any information that is not essential to the program
execution in order to gain speed; this includes much information that could have been useful
in giving good diagnostics, for example source code line numbers.

5. Increased security can be achieved by interpreters; this effect has played an important role in
Java’s rise to fame. Again, this increased security is not fundamental since there is no reason
why compiled code could not do the same checks an interpreter can. Yet it is considerably
easier to convince oneself that an interpreter does not play dirty tricks than that there are
no booby traps hidden in binary executable code.

2.1.2.2 MetaJ: A Java interpreter

As an example of interpreter, we choose MetaJ [39, 40], a Java interpreter (for a subset of
Java comprising all essential object-oriented and imperative features, such as classes, objects,
fields, methods, local variables, assignment statements, etc.) written in Java. When we say Java
interpreter, this means that it takes a Java program and performs the corresponding computations
according to the Java language semantics [50].

The purpose of introducing MetaJ is that we will use it as our base interpreter in Chapter 5.
We will instrument MetaJ in order to generate join points and to communicate them to an aspect
interpreter. The challenge will be how to instrument the base interpreter in a modular way and
with as few changes as possible.

The architecture of MetaJ is presented in Figure 2.1. Listing 2.1 shows the main class, which
takes as parameter an .mjava file (see Listing 2.5) and evaluates it. The grammar of the subset
of Java is defined as an LL(k) grammar in parser.jjt. JavaCC [6], which is a parser generator,

28 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

Figure 2.1: The MetaJ architecture�
public abstract class Exp {

2 abstract Data eval(Environment localE);

}
� �
Listing 2.2: The ExpId class

takes the grammar definition and generates a Parser.java file and a list of Java files representing
the concrete syntax nodes defined by the grammar. The parser takes a MetaJ program written
in an .mjava file and creates a concrete syntax tree for it. The root of this tree is visited by
Java2ExpVisitor to an abstract syntax tree of the program that is ready to be evaluated. The
result of visiting the tree is an instance of a concrete subclass of the class Exp (see Listing 2.2).
The interpretation of the program is launched by invoking the method eval on the instance. The
structure of MetaJ is object-oriented with the modular property that a new class may be easily
added without modifications to the existing code. For example, a variable and an assignment are
encoded by the classes ExpId (Listing 2.3) and ExpAssign (Listing 2.4), respectively.

Adding a new operation, however, involves modifying every single data class to implement
the data specific behavior of the new operation. Each of these classes provides a method Data

eval(Environment localE) that takes the value of local variables in localE and returns the

�
1 public class ExpId extends Exp {

private String id;

3 ExpId(String id) { this.id = id; }

Data eval(Environment localE) {

5 return localE.lookup(this.id);

}

7 }
� �
Listing 2.3: The ExpId class

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 29�
1 public class ExpAssign extends Exp {

private Exp lhs;

3 private Exp rhs;

ExpAssign(Exp lhs , Exp rhs) { this.lhs = lhs; this.rhs = rhs; }

5 public Data eval(Environment localE) {

// eval right -hand side first

7 Data d1 = this.rhs.eval(localE);

// eval left -hand side

9 Data d2 = this.lhs.eval(localE);

// assign right -hand side to left hand side

11 d2.write(d1.read());

// return left -hand side

13 return d2;

}

15 }
� �
Listing 2.4: The ExpAssign class

value of the expression. For example, the class ExpId (Listing 2.3) holds the name of a variable
and the evaluation method.

2.2 Aspect-Oriented Programming Languages

2.2.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [57] is a technology that aims to improve the separation
of crosscutting concerns, concerns that would otherwise be tangled and scattered across other
concerns. This separation was very difficult with past technologies like OOP and COP (using
Reflection and Meta-Object Protocols [58]).

2.2.1.1 Crosscutting concerns

As we have mentioned in Chapter 1, separation of concerns consists of a divide and conquer
strategy for problem solving by breaking a complex problem into subproblems instead of tackling
it at once, solving each subproblem independently then composing the solutions to get a solution
to the overall problem.

As developing software is a complex task, such an approach is useful at many levels. At the
first levels of the development life cycle, it is usual to reason in terms of concerns that have to be
addressed by the design of the application. To clarify the notion of concerns, let us consider an
application of bank management. We call concerns terms such as deposit or withdrawal, as well as
logging, transaction handling and security management.

The design of the concerns deposit and withdrawal is described by the class diagram in Fig-
ure 2.2, and the skeleton of its implementation is given in Listing 2.6.

Assembling the full application consists simply of putting the different concerns together. Well,
this is not so simple actually because the different parts must interact, which means that there
should be proper interfaces.

Let us consider the logging concern. Using the Logging Java API (java.util.logging) [7], we
can implement (see Listing 2.7) the logging concern in our application by creating a logger with
an associated file using the logging API. Then logging can take place by calling the entering and
exiting methods of the class Logger on the logger.

The logging concern interacts with almost all the other concerns because one would have the
log of all the operations executed inside the application. We can see this interaction in the code

30 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

�
1 class Pair {

public String fst;

3 public String snd;

Pair(String fst , String snd) { this.fst = fst; this.snd = snd; }

5 public void swap() {

String tmp = this.fst;

7 this.fst = this.snd;

this.snd = tmp;

9 }

}

11 class Main {

void main() {

13 Pair pair = new Pair("1", "2");

pair.swap();

15 pair.fst = "3";

pair.swap();

17 }

}
� �
Listing 2.5: An example of a program in MetaJ

Operation

+ execute(int) : void

Withdrawal Deposit

Account Client

Bank

+ performOperation(Operation, Client) : void

Figure 2.2: Class diagram of the bank application

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 31

�
package BankManagement;

2 public class Bank {

public Client client;

4 public Bank(){ .. }

public void performOperation(Client client , Operation op){ .. }

6 }

8 public class Operation {

public Account account;

10 public Operation (){ .. }

public void execute(int amount){ .. }

12 }
� �
Listing 2.6: The implementation of the bank application

�
package BankManagement;

2 public class Bank {

protected static Logger logger =

4 Logger.getLogger("BankManagement.Bank");

public Client client;

6

public Bank(){

8 Handler fh = new FileHandler("myLog.log");

logger.addHandler(fh);

10 }

12 public void performOperation(Client client , Operation op){

Object [] objs = new Object [2];

14 objs [0]= client;

objs [1]=op;

16 logger.entering(this.getClass ().getName (),"performOperation",

objs);

// ..

18 logger.exiting(this.getClass ().getName (),"performOperation",

objs);

}

20 }

22 public class Operation {

protected static Logger logger =

24 Logger.getLogger("BankManagement.Operation");

public Account account;

26 public void execute(int amount){

logger.entering(this.getClass ().getName (),"execute",amount);

28 // ..

logger.exiting(this.getClass ().getName (),"execute",amount);

30 }

}
� �
Listing 2.7: Logging the bank application

32 CHAPTER 2. ASPECT-ORIENTED LANGUAGES�
1 aspect Logging{

pointcut log(): call(* Bank.performOperation (..)) ||

3 call(* Operation.execute (..));

around (): log(){

5 logger.entering(thisJoinPoint.getTarget ().getClass ().getName (),

thisJoinPoint.getSignature ().getName (),

7 thisJoinPoint.getArgs ()[0]);

proceed ();

9 logger.exiting(thisJoinPoint.getTarget ().getClass ().getName (),

thisJoinPoint.getSignature ().getName (),

11 thisJoinPoint.getArgs ()[0]);

out.close();

13 }

}
� �
Listing 2.8: The AOP implementation of the logging concern using AspectJ

where the logging code is tangled across different classes as we see in the Bank and Operation

classes.
A crosscutting concern is a concern that affects several classes or modules, a concern that is

not well localized and modularized.
Symptoms of a crosscutting concern are:
– Code tangling when a module or code section is managing several concerns simultaneously.
– Code scattering when a concern is spread over many modules and is not well localized and

modularized.
These symptoms affect software in various ways; they make it harder to maintain and reuse
software.

2.2.1.2 Separation of concerns with AOP

Aspect-Oriented Programming solves the problem of crosscutting concerns by adding an extra
dimension to the design space of software; concerns that were spread over many modules are written
in independent modules called aspects, which are automatically associated (woven) according
to rules declaratively defined by the user to precise where they crosscuts other concerns. The
points where two concerns crosscut are called join points. Structural join points are locations
in the program text whereas behavioral join points are points in the program execution control
flow, such as invocations of a method, accesses to a field, etc. AspectJ is the most popular AOP
language [57, 94, 59, 66]. It extends Java with aspects, which contain the definition of pointcuts
and advices in addition to standard Java members like fields and methods. A pointcut selects the
points of the so-called base program where extra code (the advice) has to be executed.

Listing 2.8 uses AspectJ as an AOPL to implement the bank application, logging is encapsu-
lated in a Logging aspect.

In Listing 2.8, we say that we want to intercept the calls to the two methods performOperation
of class Bank and execute of class Operation in a pointcut named log. Then, we declare in the
around clause what to execute when the pointcut log selects a join point. AspectJ offers a reflective
way to access the information that we need here to write in the log file. For example, we can call
thisJoinPoint.getTarget() to get the target of the message. The expression proceed() makes
it possible to execute the selected join point, here a call.

The difference between the use of the logging API and AspectJ is that in the first approach,
the code of logging is tangled across the two classes. If we want to change the log policy, we must
change code in different places while in the second solution using AspectJ, the logging code is well
modularized in the Logging aspect, which is better for the understandability and the maintenance
of the application.

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 33

2.2.1.3 Structural and Behavioral AOP

Structural AOP is the weaving of modifications into the static structure (classes, interfaces,
etc.) of the program. For crosscutting concerns that do operate over the static structure of
type hierarchies, AspectJ provides inter-type declarations [94]. AspectJ aspects can declare
inter-type members (fields, methods, and constructors) to be owned by other types. They
can also declare that other types implement new interfaces or extend a new class. Consider
the problem of expressing a capability shared by some existing classes that are already part
of a class hierarchy, i.e. they already extend a class. In Java, one creates an interface that
captures this new capability, and then adds to each affected class a method that implements
this interface.

AspectJ can express the concern in one place, by using inter-type declarations. The aspect
declares the methods and fields that are necessary to implement the new capability, and
associates the methods and fields to the existing classes.�
public Data Exp.evalWithAspect(Environment env ,

2 Environment aspenv){

return eval(env);

4 }
� �
Listing 2.9: Adding an evalWithAspect to Exp

An example of inter-type declaration of AspectJ is shown in Listing 2.9 where we add a
new method having the signature Data evalWithAspect(Environment env, Environment

aspenv), to the class Exp.

Behavioral AOP is the weaving of new behavior into the execution of a program. It augments
or even replaces the program execution flow in a way that crosses modules boundaries, thus
modifying the system behavior. AspectJ provides the notion of pointcut to pick out certain
join points in the program flow. For example, the pointcut:

call (* Bank.performOperation(..))

picks out each join point that is a call to any method called performOperation in the class
Bank.

2.2.1.4 General-Purpose and Domain-Specific AOPLs

A current trend in AOP is to take a programming language like Java or C++, then integrate
a certain aspect extension providing support for expressing crosscutting concerns. This extension
could be general purpose or domain specific hence the distinction between a general-purpose aspect
language (GPAL) and a domain-specific aspect language (DSAL).

GPALs are designed to be used for every kind of crosscutting concerns. They usually have the
same level of abstraction as the base language and also the same set of constructs, as it must be
possible to express arbitrary code in the pieces of advice. AspectJ is an example of a GPAL.

A DSAL is a custom language that allows special forms of crosscutting concerns to be de-
composed into different modules using constructs that provide an appropriate expressivity and
abstraction with respect to the domain. Seminal examples of DSALs include languages for dealing
with coordination concerns like COOL, for controlling thread synchronization over the execution
of the components; and RIDL, for programming interactions between remote components and
class graph traversal concerns [68].

In the following, we are going to describe three typical languages: two GPALs, AspectJ and
EAOP, and a DSAL, COOL.

2.2.2 An Overview of AspectJ

AspectJ is an AOPL that extends the Java programming language. This means that all valid
Java programs are also valid AspectJ programs. AspectJ allows programmers to separate cross-

34 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

cutting concerns in a unit called aspect. In addition to normal members such as instance variables
and methods, an aspect additionally encapsulates three other kinds of members:

Inter-type declarations allow a programmer to add methods, fields, or interfaces to existing
classes from within the aspect. This example adds an acceptVisitor method (see visitor
pattern in [49]) to the Point class:

aspect VisitAspect {

void Point.acceptVisitor(Visitor v) {

v.visit(this);

}

}

Pointcuts allow an aspect programmer to specify join-point selection. At this stage, it is important
to say that base programmer is oblivious of aspect system [45]. All pointcuts are expressions
that determine whether a given join point matches: these expressions are able to quantify
over join points. For example, this pointcut matches the execution of any instance method
in an object of type Point whose name begins with set:

pointcut set() : execution(* set*(..)) && this(Point);

For reuse purposes, pointcuts can be named and parametrized. Pointcuts are built using log-
ical connectors, in-scope named pointcuts, and built-in pointcut descriptors, in the example
execution, which refers to the callee-side entry point of a method, and this, which refers
to the object emitting the join point.

Advice allows a programmer to specify an action to run at a join point selected by a pointcut. An
advice binds a pointcut and its associated action, or advice body : a Java block of statements.
The actions can be performed before, after, or around the specified join point. In the body of
an around advice, the special instruction proceed specifies where the execution of the join
point should take place. If there is no proceed, the execution of the join point is replaced by
the execution of the advice body. A before (after) action can be implemented by an around
advice with a construct proceed inserted at the end (beginning) of the advice.

In the following, we briefly review the principles of join point matching as well as the handling of
aspects (extension, instantiation, and composition) in AspectJ, based on the AspectJ Programming
Guide [94] (Appendix B, Language semantics). For the sake of simplicity, we do not deal with
exceptions and control flows (see [94] for details), which are not central to our work.

2.2.2.1 AspectJ pointcuts

Method-related pointcuts AspectJ provides two primitive pointcut designators designed to
capture method-call and execution join points.
– call(MethodPattern)
– execution(MethodPattern)
where MethodPattern is a pattern on method signatures mainly based on types and string
patterns on method names. The pointcut call refers to the caller side and execution to
the callee side. The way types are handled is further discussed in Section 7.3.

Field-related pointcuts AspectJ provides two primitive pointcut designators designed to cap-
ture field reference and assignment join points:
– get(FieldPattern)
– set(FieldPattern)
where FieldPattern is a pattern on field signatures mainly based on types and string patterns
on field names.

Object creation-related pointcuts AspectJ provides primitive pointcut designators to select
various join points related to object instantiation:
– call(ConstructorPattern)
– execution(ConstructorPattern)

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 35

– initialization(ConstructorPattern)
– preinitialization(ConstructorPattern)
where ConstructorPattern is similar to a method pattern with the keyword new used instead
of a method name.

Advice execution-related pointcuts AspectJ provides one primitive pointcut designator to
capture execution of advice:
– adviceexecution()

State-based pointcuts These designators make it possible to select join points based on infor-
mation captured by the join point about the context of the execution or expose part of this
information (for further selection or use in advice). The descriptor this refers to the object
within which the join point is executed, the descriptor target to the target of the joint point
and the descriptor args to its arguments. The exact meaning of target (mainly useful with
respect to method calls) and args depends on the join-point kind. When used for selection,
the descriptors take a dynamic type as a parameter, otherwise they take a formal parameter,
which is bound to the value taken by the referenced information at runtime.

– this(Type | Id)
– target(Type | Id)
– args(Type | Id or "..", ...)

Program text-based pointcuts While many concerns cut across the runtime structure of the
program, some must deal with its lexical structure. AspectJ allows aspects to select join
points based on where their associated code is defined (within classes or interfaces, methods,
or constructors):
– within(TypePattern)
– withincode(MethodPattern)
– withincode(ConstructorPattern)

Expression-based pointcuts The pointcut if select join points based on a dynamic property
expressed as a boolean expression:
– if(BooleanExpression)

2.2.2.2 Signature of a join point

In AspectJ, a very important property of a join point is its signature, which is used by many of
AspectJ’s pointcut designators to select particular join points. The selection is based on comparing
what is called the qualifying type of the join point and the declaring type given in the pointcut. The
general rule is that the qualifying type should be a subtype of the declaring type. The following
defines the qualifying type depending on the type of the join point. Note that AspectJ computes
the qualifying type statically (this is linked to a global strategy which aims at reducing the number
of join points emitted at runtime). The notions of declaring type and qualifying type are the key
of our work on alternative semantics of AspectJ pointcuts in Chapter 8. Here we are going to
describe the signature of different types of AspectJ join points associated with methods, fields,
etc.

Methods Method-call and method-execution join points typically have method signatures con-
sisting of a method name, parameter types, return type, receiver type. At a method call join
point, the signature is a method signature whose qualifying type is the static type used to
access the method. This means that the signature for the join point created from the call
((Integer)i).toString() is different than that for the call ((Object)i).toString(),
even if i is the same variable. In the former case, the qualifying type is Integer whereas in
the latter case, it is Object. At a method execution join point, the signature is a method
signature whose qualifying type is the declaring type of the method.

Fields Field-set join points typically have field signatures consisting of a field name and a field
type. A field reference join point has such a signature, and no parameters. A field set join
point has such a signature, but has a single parameter whose type is the same as the field
type.

36 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

Constructors Constructor-call join points typically have constructor signatures consisting of a
parameter type, receiver type, and the declaring type. At a constructor call join point, the
signature is the constructor signature of the called constructor.

At a constructor execution join point, the signature is the constructor signature of the
currently executing constructor.

At object initialization and pre-initialization join points, the signature is the constructor
signature for the constructor that started this initialization: the first constructor entered
during this type’s initialization of this object.

Others At a handler execution join point, the signature is composed of the exception type that
the handler handles.

At an advice execution join point, the signature is composed of the aspect type, the parameter
types of the advice, the return type (void for all but around advice) and the types of the
declared (checked) exceptions.

2.2.2.3 The reference thisJoinPoint

In the AspectJ Programming Guide [94], the special reference variable thisJoinPoint is ex-
plained as the container of the reflective information about the current join point for the advice
to use. The thisJoinPoint variable can only be used in the context of advice, just like this can
only be used in the context of non-static methods and variable initializers. This variable gives
information about the join point kind, signature, etc. For example, thisJoinPoint.getKind()
returns a string representing the kind of the current join point.

2.2.2.4 Aspect Extension

In AspectJ, aspects can be extended in the same way as classes with some restrictions:

Classes may not extend aspects

Aspects extending aspects Aspects may extend other aspects, in which case not only are fields
and methods inherited but so are pointcuts. However, aspects may only extend abstract
aspects. It is an error for a concrete aspect to extend another concrete aspect.

Aspects may extend classes and implement interfaces An aspect, abstract or concrete,
may extend a class and may implement a set of interfaces. Extending a class does not
provide the ability to instantiate the aspect with new.

2.2.2.5 Aspect Instantiation

Aspects are not explicitly instantiated as classes but they are automatically created at runtime.
All methods and advice within an aspect run in the context of one aspect instance. A program can
get a reference to an aspect instance using the static method aspectOf. There are several policies
for aspects instantiation in AspectJ:

Singleton An aspect has exactly one instance that potentially cuts across the entire program.

Per-object – aspect Id perthis(Pointcut) ...

– aspect Id pertarget(Pointcut) ...

The perthis(Pointcut) instantiation policy creates an aspect instance for each unique object
bound to this at join points matched by Pointcut. In other word all join points having the
same executing object and selected by the Pointcut will be run in the same aspect instance.

Similarly, the pertarget(Pointcut) instantiation policy creates an aspect instance for every
object that is the target object of the join points selected by Pointcut.

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 37

2.2.2.6 Aspects Composition

Aspect ordering AspectJ uses precedence decralations to determine the order of advice execu-
tion at a shared join point. Note that a piece of around advice controls whether advice of
lower precedence will run by calling proceed. Also, a piece of before advice can prevent
advice of lower precedence from running by throwing an exception.

Aspect of aspects In AspectJ, an aspect can select join points that occur within the control
flow of any piece of advice in the same way it selects base join point.

2.2.3 An Overview of Event-Based AOP

The Event-Based AOP (EAOP) approach, introduced in [38, 37, 41], is based on the observation
of execution events (another name for join points) and the insertion of instructions according to
execution states.

Douence et al. [38] present a formal model for EAOP. The primitive constituents of the aspect
language are basic rules C . I where C is a crosscut and I an insert (not essentially different from
pointcut and advice). Crosscuts are patterns matching join points whereas inserts are templates.
The intuition behind a basic rule is that when the crosscut matches the current join point, it
yields a substitution which is applied to the insert before executing it. As in AspectJ, a proceed
instruction can be used in a crosscut to execute the join point.

Aspects match sequences of join points and they evolve according to the join points they match.
Aspects are defined using the following grammar:

A ::= µa.A
| C . I;A
| C . I; a
| A2A

An aspect is either:
– A recursive definition of an aspect denoted by the variable a which may be reused in A.
– A sequence formed using the prefix operation C.I;X, where X is an aspect or a variable. The

matching of a crosscut C against a join point j produces a substitution φ which associates
values to the variables of C: C j = φ. The variables are replaced by their value and X
becomes the aspect to be woven. Otherwise, we say that the crosscut does not match the
join point and we write C j = fail.

– A choice construct A2A, which chooses the first aspect that matches a join point (the other
is thrown away). If both match the same join point, the first is chosen.

An alternative way to represent the grammar of EAOP is to use the syntax of Finite State Processes
syntax (FSP). FSP is explained in [72]. It is a process-calculus with a CSP-like syntax but a CCS
semantics. FSP specifications generate finite Labelled Transition Systems. Processes are defined
using action prefix, choice and recursion. Figure 2.3 shows a simplified grammar of FSP where all
action prefixes and “real” choices are parenthesized.

In order to model EAOP, action prefixes are simply extended as shown in figure 2.4.

2.2.3.1 Example

The example [82] consists of an e-commerce application, where clients can login to identify
themselves, then they can browse an on-line catalog or logout to end the session. In addition, the
application administrator can update the application by publishing a working copy. The example
is implemented by a class Server (Listing 2.10) having the methods login, browse and logout.

38 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

�
public class Server {

2 private State outOfSession = new OutOfSession ();

private State inSession = new InSession ();

4 private State state = outOfSession;

6 public void login (){ state.login(); }

public void logout (){ state.logout (); }

8 public void update (){ state.update (); }

public void browse (){ state.browse (); }

10

private abstract class State {

12 abstract void login ();

abstract void logout ();

14 abstract void update ();

abstract void browse ();

16 }

private class OutOfSession extends State{

18 void login (){

state = inSession;

20 System.out.println("server in session");

}

22 void logout (){

System.out.println("logout ignored");

24 }

void update (){

26 System.out.println("updating");

}

28 void browse (){

System.out.println("browsing ignored");

30 }

}

32 private class InSession extends State{

void login (){

34 System.out.println("login ignored");

}

36 void logout (){

state = outOfSession;

38 System.out.println("server out of session");

}

40 void update (){

System.out.println("updating");

42 }

void browse (){

44 System.out.println("browsing");

}

46 }

}
� �
Listing 2.10: The class Server

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 39

Program ::= ProcessDefinition
Program ::= ProcessDefinition Program

ProcessDefinition ::= SubProcessDefinition.
ProcessDefinition ::= SubProcessDefinition, ProcessDefinition

SubProcessDefinition ::= ProcessId = Body

Body ::= ProcessId
Body ::= Choice

Choice ::= ActionPrefix
Choice ::= (ActionPrefix | Choice)

ActionPrefix ::= (ActionId -> Body)

Figure 2.3: Simplified version of FSP with nested choices and action prefixes

ActionPrefix ::= (Action -> Body)

Action ::= ActionId
Action ::= ActionId > Advice

Advice ::= ActionId
Advice ::= ActionId , Advice

Figure 2.4: Extending FSP grammar in order to support EAOP

The example uses the State Design Pattern [49]. The State Pattern is implemented by the abstract
class State and two concrete subclasses OutOfSession and InSession.

Updating this application during a session may cause erroneous pricing results to the client.
For this reason, an aspect could be added to solve this problem. This aspect is called Consistency

and its role is to cancel updates during sessions.

Implementation with AspectJ The consistency concern can be realized using the AspectJ
aspect Consistency 2.11. The crosscutting code for state transitions is modularized in the aspect
using after advices. The idea behind using after advice is to ensure that the state transition is
done after the join point execution.

Implementation with EAOP Instead of programmatically managing the state machine, EAOP
provides language support to manage the aspect state evolution. A prototype for EAOP for Java
is available at [5]. For instance, the example can be written in EAOP as:

µa.(login . proceed;µb.(update . skip; log; b)2logout . proceed; a)

Using the Extended FSP grammar, the example is rewritten as:

Server =

(login > proceed -> Session),

Session =

(update > skip -> Session

| logout > proceed -> Server).

40 CHAPTER 2. ASPECT-ORIENTED LANGUAGES�
1 public aspect Consistency {

static boolean inSession = false;

3 pointcut login ():

call(void Server.login()) && if(inSession == false);

5 pointcut logout ():

call(void Server.logout ()) && if(inSession == true);

7 pointcut update ():

call(void Server.update ()) && if(inSession == true);

9

after(): login() {

11 inSession = true;

}

13 after(): logout () {

inSession = false;

15 }

void around (): update (){}

17 }
� �
Listing 2.11: The AspectJ implementation of the EAOP aspect

2.2.4 An Overview of COOL

COOL is a DSAL defined as part of the language framework D [68]. COOL provides means for
dealing with mutual exclusion of threads, synchronization state, guarded suspension and notifica-
tion. An aspect written in COOL is called a coordinator. We further describe COOL features by
giving a standard example of using a coordinator.

2.2.4.1 Example

Consider the unbounded stack of Listing 2.12. The stack methods are not synchronized. This
means that these methods can be called simultaneously. Two threads calling push may lead to a
wrong stack index. This also means that they may execute in an invalid context. Calling pop when
the stack is empty raises an exception.

COOL relieves the implementor of Stack from dealing with multi-threading. A separate co-
ordinator Stack (see Listing 2.13) imposes the synchronization logic over the methods push and
pop of the class Stack in an aspect-oriented manner. The use of the name Stack implies that
it applies to the class Stack that could be called the coordinator target. In the presence of the
coordinator Stack, the stack object operates correctly even when multiple client threads execute
methods simultaneously. The synchronization policy is expressed using declarations (selfex for
self exclusion, mutex for mutual exclusion, condition), expressions (requires), and statements
(on exit, on entry). The selfex declaration specifies that if a thread is executing either push,
any other threads are prohibited to execute push.

The mutex declaration prevents the concurrent execution of push and pop. In other words,
only one method in a mutex declaration may be executed at any given time. The requires

expressions further guard push and pop executions. If the guard is false, a thread suspends, even
if the mutex and selfex conditions are satisfied. The execution resumes when the guard becomes
true. full and empty are condition boolean variables. The on entry and on exit blocks update
the aspect state immediately before and immediately after the execution of an advised method
body, respectively. In Listing 2.13, their role is to track the number of elements in the stack and
to update the condition variables full and empty.

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 41

�
1 public class Stack {

public Object [] buf;

3 public int ind;

public Stack(int capacity) {

5 buf = new Object[capacity];

}

7 public void push(Object obj) {

buf[ind] = obj;

9 ind++;

}

11 public Object pop() {

Object top = buf[ind - 1];

13 buf[--ind] = null;

return top;

15 }

}
� �
Listing 2.12: A base class implementing an unbounded stack

�
coordinator Stack {

2 selfex {push , pop};

mutex {push , pop};

4 int len=0;

condition full=false ,empty=true;

6 push: requires !full;

on_exit {

8 empty=false;

len ++;

10 if(len==buf.length) full=true;

}

12 pop: requires !empty;

on_entry {len --;}

14 on_exit {

full=false;

16 if(len ==0) empty=true;

}

18 }
� �
Listing 2.13: An example of COOL

42 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

2.2.5 Join-Point Models

The join point model is a critical element in the design of any AOPL. The ability of a such
language to support crosscutting lies in its Join Point Model (JPM). A JPM is defined by:

– The set of supported join points.
– A means of identifying join points.
– A means of modifying the execution at join points.

2.2.5.1 Pointcut-Advice Model

The Pointcut-Advice (PA) is the general model used for AspectJ. PA model is defined in [57, 77]
by defining the three properties of a join point model.

The state of the art shows that there are two types of PA models, depending on the exact
definition of a join point:

region-in-time This is the join point model in AspectJ-like languages, where a join point covers
the region in time covering the whole execution of an instruction. In case of a call, this
includes the whole execution until the call returns. In such model, a piece of advice is able
to replace the execution of the instruction. Within the piece of advice, the instruction can
alternatively be executed through the use of an instruction typically called proceed.

point-in-time This is a join point model proposed by Masuhara [76] where a join point represents
a point-in-time (or an instant of program execution) such as the beginning of a method call
or the termination of a method call rather than a region-in-time (or an interval). Whereas
the region-in-time model associates an instruction to a single join point, the point-in-time
model associates an instruction to two join points, one before the instruction and one after.

2.2.6 Aspect Mechanisms

In order to highlight the intricacies of weaving, basically what are the main issues with join
point matching, aspect composition, we will give a short description of the AspectJ compilte-time
weaving mechanism.

The AspectJ compiler accepts both AspectJ bytecode and source code and produces pure
Java bytecode as a result in two stages. The weaving mechanism starts at the first stage where
the front-end produces annotated bytecode (the goal of annotation is to handle non pure Java
information as advices and pointcuts). At the end of this stage, aspects are available as annotated
Java classes and their advices as Java method. The front-end extracts all the aspects informations
and make them available at the next stage. The weaving mechanism continue at the second stage
where the back-end of the AspectJ compiler instruments the bytecode by inserting calls to the
precompiled advice method. It does this by considering that certain principled places in bytecode
represent possible join points. These are called static shadows of those join points. The weaving
mechanism at the back-end stage applied to every such static shadow checks each piece of advice
in the system and determines if the advice’s pointcut could match that static shadow. If it is the
case, a call the advice’s implementation method is inserted at the shadow. When several aspect
match the same shadow, the back-end uses the information precedence construct for ordering

It is worth mentioning that the semantics of AspectJ has evolves since the first version ([18] for
call and execution semantics). This shows that the implementation were based on target practical
efforts rather than theoretical underpinnings while a well-understood model of the weaving process
can guide us to better understand AOP and allows the implementation and the extension of new
aspect mechanisms. There are two approaches to model aspect mechanisms [60]: conceptual and
formal.

Conceptual models present a conceptual abstraction of the aspect mechanisms. Masuhara and
Kiczales [77] model each aspect mechanism as a weaver that combines an aspect program
and a base program at runtime. Kojarski et al. [63, 65] describe an abstract weaving process
(Listing 2.14) for weaving that comprises four subprocesses: reify, match, order, and
mix. These (sub)processes are found in all reactive aspect mechanisms [63]. MetaSpin [26],

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 43�
public void weaveClass(ClassFile cf) {

2 Shadow [] shadows = reify(cf);

for(Shadow shadow:shadows) {

4 Advice [] advs = order(shadow , match(shadow));

mix(shadow , advs);

6 }

}
� �
Listing 2.14: The weaving mechanism.

�
1 applyIntroductions(cf);

weaveClass(cf);
� �
Listing 2.15: The AspectJ weaving mechanism.

a metamodel that summarizes the common language concepts of AOPLs has been conceived
accrding the survey and taxonomy of AOPLs and their execution models [25]. The metamodel
describes the abstract grammar of AOPL while their execution semantics is expressed with
an interpreter.

Formal models present formal semantic descriptions of aspect mechanisms. Lämmel [67] ex-
plains an aspect mechanism name Method-Call Interception (MCI). Wand et al. [101] give
a denotational semantics for a minilanguage that embodies the key features of dynamic
join points, pointcut designators, and advice. Djoko Djoko et al. [36] present the CASB, for
Common Aspect Semantics Base, as a formal semantic descriptions of aspect mechanism.

In the rest of this section, we detail the abstract aspect weaving presented in [63, 65] and the
CASB presented in [36].

2.2.6.1 Abstract aspect mechanisms

The abstract weaving process for weaving comprises four subprocesses: reify, match, order,
and mix.

The reify process prepares the class file cf to the next steps by constructing a reified version of
this class. In the case of AspectJ (ajc weaver), the weaver represents a class as a set of computation
shadows and identifies all the shadows that can possibly be advised. Each shadow references a list
of instructions embedded in one of cf’s methods (the body of the shadow), and provides static
and lexical descriptions of these instructions (to be used by the match process).

The match process associates elements of the reified version (shadows) with pieces of advice.
In AspectJ, the weaver selects the set of advice pieces by matching the description of the shadow
(avaible after the reify process) against the static part of the advice pointcuts.

The order process sorts and orders all pieces of advice that match the same shadow into a
correct application order according to the semantics of the AOPL. The ajc weaver orders the
pieces of advice according to the rules defined by the AspectJ language semantics (using default
ordering rules or declare precedence statements).

The mix process transforms a shadow by introducing calls to advices that match this shadow.
The AspectJ weaver transforms the shadow by sequentially introducing calls to the advice methods
before, after, or instead of the original code. If several pieces of advice match this shadow, they
are woven in by sequentially transforming the body of the shadow.

Listing 2.14 shows the execution of the 4 subprocesses in the case of AspectJ.
The four processes provide a high-level description of the advice weaving semantics. A concrete

weaver may also realize other kinds of transformations. For example, the ajc weaver implements
intertype declarations and advice weaving in two separate steps 2.15. First, the weaver extends

44 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

and transforms the class cf by applying the intertype declarations. Once the declarations are
applied, the weaver calls weaveClass method, which implements the advice weaving behavior. The
additional transformations are normally static in nature, and do not interfere with the dynamic
advice weaving behavior.

2.2.6.2 CASB

The CASB model starts from a simple model of a base language, and then considers the
necessary extensions for supporting aspects. The simple model of the base language is based on
a reduction semantics, where each reduction step maps a configuration consisting of a sequence
of instructions and an interpreter state, to a new sequence of instructions and a new interpreter
state. The aspect language is derived from this, but extends the base configuration and the base
language reduction rules in order to handle aspects. A base program C is modeled as a list of base
instructions i terminated by the empty instruction ε:

C ::= i : C|ε

A configuration is a tuple (C,Σ) where Σ represents the state of the interpreter. Σ contains
an environment, a stack, a heap, etc., depending on the semantics of the considered language and
the details of its implementation. The semantics of the base language is then defined by a relation
→b on configurations, which defines single reduction steps of the form (the second reduction rule
defines the semantics of blocks):

(i : C,Σ)→b (C ′,Σ′)
({i1, ..., in} : C,Σ)→b (i1 : ... : in : C ′,Σ′)

In the presence of aspects, the semantics of a program is captured by a new relation→ on extended
configurations (C,Σ, P), where P , the proceed stack, is used to deal with around advices 1.

The issue is then to explain this new relation→ in terms of the base relation→b. This requires
modeling aspects and introducing new reduction rules for “weaving” these aspects to the base
program.

Aspects are modeled by the functions ψ and φ. The function ψ captures both static weaving
and the execution of the woven code. It determines, based on static information (that is, syntactic
information, present in the program text) which aspects statically match at each instruction. These
statically matching aspects are modeled by the functions φ. Executing a function φ consists of
checking whether the aspect dynamically matches, in which case the advice is executed. In the
CASB, a function φ must be passed as a parameter to an instruction test in order to be executed.
In order to simplify the presentation, we will rather assume that statically matching aspects are
directly returned as executable instructions. In the following, φ will therefore be an instruction
rather than a function.

Let us see what happens when a base instruction i is executed. When no aspect statically
matches, ψ(i) returns an empty list of statically matching aspects and the woven program simply
behaves as the base program:

ψ(i) = ε (i : C,Σ)→b (C ′,Σ′)
NoAdvice

(i : C,Σ, P)→ (C ′,Σ′, P)

Otherwise, ψ returns a non-empty list of instructions φ denoted by φ : Φ:

ψ(i) = φ : Φ
Around

(i : C,Σ, P)→ (φ : pop : C,Σ, (Φ : [i]) : P)

1. As before and after advices can be explained in terms of around advices, whose handling is anyway more
complex, we only consider around advices.

2.2. ASPECT-ORIENTED PROGRAMMING LANGUAGES 45

φ(Σ) = a
Advice

(φ : C,Σ, P)→ (a : C,Σ, P)

The instruction i is pushed on the top of the proceed stack so that it can be possibly executed
by a proceed. The proceed stack is organized as a stack of instructions. The execution of φ is
followed by an instruction pop. When φ is the current instruction, the rule ADVICE applies φ it
to the current state Σ in order to insert the corresponding advice.

The instruction pop simply trims the stack:

Pop
(pop : C,Σ,Φ : P)→ (C,Σ, P)

This means that, in the absence of an instruction proceed in an advice, the remaining aspects
together with the join point itself will never be executed.

Let us now see what happens when an instruction proceed occurs in an advice:

Proceed
(proceed : C,Σ, φ : Φ : P)→ (φ : push φ : C,Σ,Φ : P)

An instruction push follows the execution of the instruction φ. This instruction does not put
a new element on top of the proceed stack but rather adds an instruction at the beginning of the
stack:

Push
(push φ : C,Σ,Φ : P)→ (C,Σ, (φ : Φ) : P)

The instruction push is used to rebuild the initial aspect set in order to cater for multiple
instructions proceed in the same advice.

2.2.7 Approaches for Implementing AOPLs

From the programmer’s viewpoint, an AOPL makes it possible to write different modules
encapsulating different concerns. From the language designer’s viewpoint, some of these modules,
the aspects, crosscut other modules and have to be mixed with them at the appropriate point.
This can be done at two different times: at compile time or at execution time. As a result, there
are two basic ways to implement AOPLs:

1. A combined base program is produced, from the base program and the aspect program.

2. The interpreter are updated to understand and implement AOP features.

Let us formally describe the difference between these two approaches. Suppose that we have a
language B, with a defining interpreter for B intB . We want to study the semantics of an AOPL
that integrates a certain aspect extension, A, with the base language, B. This semantics will
explains how pB , a program in B, is executed in the presence of pA, a program written in the
aspect extensions A. The association between these two programs is represented as : pB ⇐ pA, or
pA is weaved into pB .

In the following, we assume that input data is included in the program (think about a Java
main method).

Transformation Approach The first approach uses a transformation approach to introduce
the semantics of AOPL. The result is a program in the base language:

pB ⇐ pA = TA(pB , pA) = p′B (2.1)

and the resulting program is executed by intB :

output = intB(pB ⇐ pA) = intB(p′B) = intB(TA(pB , pA)) (2.2)

The semantics of the considered AOPL is defined by the function TA where the index of TA
symbolizes the aspect extension A. Note that each AOPL must provide a semantics for composing
several aspects (aspects written in this AOPL) to explain the order in which the transformation
has to be applied.

46 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

Figure 2.5: Sequential instrumentation

Interpretation Approach The second approach consists of changing the interpreter of the
base language according to the semantics of the AOPL:

output = intB(pB ⇐ pA) = intB(T (pB , pA)) = (T ′
A(intB))(pB , pA) (2.3)

and this can be written as:

output = intB(pB ⇐ pA) = intB⇐A(pB , pA) (2.4)

where

intB⇐A = T ′
A(intB) (2.5)

T ′
A is a transformation depending on the semantics of the AOPL which, applied on intB returns
intB⇐A, an interpreter of the extended language.

The interpreter can also be defined as follows:

intB(pB ⇐ pA) = intB⇐A(pB , pA) = intB(pB)⇐ intA(pA) (2.6)

The operator ⇐ applied on intB(pB) and intA(pA) is meaningful because it describes the inter-
actions between the base interpreter and the aspect interpreter. This issue will be considered in
Chapter 5.

To summarize, each time we want to extend an existing base language with AOP features, the
transformation functions T or T ′, depending on which approach we use, have to be defined.

2.2.8 Approaches for Prototyping and Composing AOPLs

Now let us see what happens when several aspect extensions have to be composed. There are
two approaches to composing aspect languages: Sequential instrumentation and Translation [60].

Sequential transformation (See Figure 2.5) We have two aspect languages: A1 and A2. Suppose
that A1 and A2 were independently developed, then we have the following equations for A1

and A2 respectively:

output1 = intB(pB ⇐ pA1
) (2.7)

2.3. SUMMARY 47

output2 = intB(pB ⇐ pA2
) (2.8)

When composing the two extensions with B, we get:

output = intB(pB ⇐ (pA1 , pA2)) (2.9)

Let us assume that weaving can be linearized:

pB ⇐ (pA1
, pA2

) = (pB ⇐ pA1
)⇐ pA2

(2.10)

(pB ⇐ pA1
)⇐ pA2

= TA1
(pB , pA1

)⇐ pA2
(2.11)

TA1(pB , pA1)⇐ pA2 = TA2(TA1(pB , pA1), pA2) (2.12)

TA2(TA1(pB , pA1), pA2) = TA2 ◦ TA1(pB , pA1 , pA2) (2.13)

Alternatively:
(pB ⇐ (pA1

, pA2
)) = ((pB ⇐ (pA2

))⇐ (pA1
)) (2.14)

((pB ⇐ (pA2
))⇐ (pA1

)) = (TA1
(pB , pA2

)⇐ (pA2
)) (2.15)

(TA1(pB , pA2)⇐ (pA2)) = TA2((TA1(pB , pA1), pA2)) (2.16)

TA2((TA1(pB , pA1), pA2)) = ((TA1) ◦ (TA2))(pB , pA1 , pA2) (2.17)

Here we see that multiple independent aspect extensions can be trivially composed by passing
the output of one transformation as the input to another transformation. But this compo-
sition leads to several confusions as it was demonstrated by Kojarski et al. [70] where a
transformation could be erroneously applied into a code introduced by a previous transfor-
mation. This problem will be described in Chapter 4. The confusion means also that weaving
order matter and let us write that TA1

◦ TA2
6= TA2

◦ TA1
.

Translation (See Figure 2.6) Translation approach means that aspect programs in different as-
pect extensions (T1 and T2) can be translated to a common target aspect extension (T3).
The composition of the two aspects from T1 and T2, respectively, is simplified into the com-
position of two aspects in T3, where the semantics of the composition of two aspects should
be defined.

2.3 Summary

In this chapter we have exposed what is required about AOPLs for our work in the coming
chapters. After presenting elements that define programming languages and their implementations,
we have switched to the description of three concrete approaches then we have described the aspects
mechanisms, mechanisms that differentiate a standard programming language from an AOPL. We
have given a short formal description of these mechanisms. We have shown the gap between the
formal model, the conceptual model and the implementation of an AOPL, which makes it difficult
to extend, prototype and compose AOPLs. We have also shown how we can provide a generalized
mechanism in order to define frameworks for prototyping and composing AOPLs, which are the
subject of the next chapter where we examine the state of the art of such systems.

48 CHAPTER 2. ASPECT-ORIENTED LANGUAGES

Figure 2.6: Common target transformation

Chapter 3
Prototyping and Composing Aspect
Languages

Contents
3.1 Prototyping and Composing AOPLs 49

3.2 Reflex . 51

3.3 XAspects . 55

3.4 Metaspin . 58

3.5 Pluggable AOP . 63

3.6 Summary . 65

As we saw in the previous chapter, the two functions T and T ′ are the core of the semantics
of AOPLs. Every time an AOPL is implemented, these functions must be defined, even implic-
itly. This is a tedious and time consuming job, especially when prototyping a new AOPL from
scratch. Once an AOPL is implemented, it is difficult to combine it with other AOPLs, whereas
such a combination would be useful, for instance when working with multiple DSALs. A good
example of such a combination is when we work with multiple DSALs. To summarize, there are
two requirements when developing AOPLs:

– Support for designing and rapid prototyping of an AOPL.
– Support for customized composition of AOPLs.

In this chapter, we are going to explore the state of the art of existing systems for prototyping and
composing AOPLs. For each system, we separate the study into two sections, one for discussing
prototyping and one for discussing composition. For each framework, we specify whether the
implementation technique is based on transformation or interpretation.

3.1 Prototyping and Composing AOPLs

A framework for prototyping AOPLs must provide a convenient refinement of one of the func-
tions T and T ′. Today, there are few frameworks for prototyping and composing AOPLs. The
majority of these frameworks use a type of general transformation mechanism. The implemen-
tation of a new AOPL consists of translating aspects using the general transformation provided
by the framework. For example, implementing a new AOPL with Reflex consists of transforming
aspect programs into a configuration class of Reflex. The transformation mechanism of Reflex
is based on partial behavioral reflection [92]. XAspects consists of translating aspects written in
DSALs into AspectJ itself. XAspects uses the transformation mechanism of AspectJ. In general, a
framework for prototyping AOPLs provides support for composing different AOPLs implemented

49

50 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES

with this framework by composing different modules written in the same intermediate represen-
tation provided by the framework.

3.1.1 Design Space for AOPLs

Defining a programming language, in general, requires to define the language syntax (concrete
and abstract) as well as its semantics. Defining an aspect language is in no way different. As far
as syntax is concerned, a current practice [25] is to extend the grammar of the base language. To
introduce the semantics of aspects, there are two possible approaches:

– Rewriting the base application with respect to the aspects [2, 15]. The rewriting can be done
using different techniques like program transformation [2, 15], reflection [20, 61, 92], etc. The
result is a program in the base language and its interpretation is performed by the standard
interpreter.

– Modifying the mechanisms of the base interpreter [46, 26] to support aspect mechanisms.
Weaving is performed dynamically and the aspect is a runtime entity in the interpreter.
Steamloom [19] is the first VM implementation to natively support dynamic aspects.

The second approach has the advantage to provide an easy access to language semantics,
in spite of lower performance. In this respect, a study of the state of the art [25] shows that
each aspect language uses specific interpreter modifications. Understanding and extending aspect
mechanisms remains difficult. There is a lack of a good design space representation which would
provide a common framework for understanding and evaluating existing mechanisms. A well-
defined model of the weaving process would guide the designer of new aspect mechanisms. Several
papers have focused on the modeling of aspect mechanisms [97, 63, 79, 78, 77]. Most of them do
not attack the problem from a language design point of view and remain at a very abstract level.
Metaspin [26, 24] is a first attempt at defining a design space for prototyping and testing aspect
languages in a common framework and a source of inspiration for this work.

3.1.2 Combining AOPLs

The use of GPALs is now quite common in software development. However, when using as-
pects to implement different concerns like concurrency, logging, security, etc., DSALs have many
advantages over GPALs as discussed in [62, 92].

Different concerns crosscut in a program. Each concern should be expressed using a different
DSAL. The aspects written in different languages are composed and woven into the base program.
The problem of composing aspect languages results in an aspect mechanism composition prob-
lem [62]. Consider two new aspect languages L1 and L2 merged with Java as the base language.
Each of L1 and L2 have their own aspect mechanisms. The meaning of composing a base program
base and an aspect aspect1 written in L1 is well defined. This is also true of the composition
of base with a second aspect aspect2 written in L2. However, the semantics of composing base,
aspect1, and aspect2 is undefined.

Unfortunately, there is no methodology and support for the integration of distinct aspect
mechanisms. For each AOPL, there is an infrastructure that is constructed in an ad hoc manner,
aspect mechanisms are differently represented and implemented and as a result, it is difficult to
integrate them.

As we will see, the diversity of aspect mechanisms affect the ability to compose AOPLs. The
combination of different AOPLs can be facilitated by using the same methodology and design
space.

In the following, we look at four representative approaches: Reflex, XAspects, Metaspin and
Pluggable AOP by exploring their ability to support the prototyping and the composition of
AOPLs as well as the resolution of interactions when multiple AOPLs are used.

3.2. REFLEX 51

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

Figure 3.1: The architecture of the Reflex kernel [92].�
ClassSelector cut = new ClassSelector () {

2 boolean accept(RClass aClass) {

return aClass.getName ().equals("A");

4 }

};
� �
Listing 3.1: An example of a class selector

3.2 Reflex

Reflex [93, 42, 92] is a Java framework that extends Java with structural and behavioral
reflective abilities. The generality of Reflex abilities makes it possible to use it as a suitable
backend for implementing several AOP frameworks and languages: it provides, in the context of
Java, building blocks for facilitating the implementation of different AOPLs so that it is easier to
experiment with new AOP concepts and languages, and also possible to compose aspects written in
different AOP languages. It is built around a flexible intermediate model, derived from reflection,
of (point)cuts, links, and metaobjects, to be used as an intermediate target for the implementation
of AOPLs.

Architecture The architecture of Reflex (Figure 3.1) is as follows:

The transformation layer is based on a reflective core [93], which extends Java with
behavioral and structural reflective facilities. At load-time, this layer takes the base
program and, according to a configuration class, injects hooks into the base program in
order to support behavioral reflection. To do this, Reflex relies on Javassist [8] for byte-
code manipulation. At runtime, the injected hooks send reifed execution information to
metaobjects that are executed in order to modify (aspectize) the program execution.

The composition layer ensures automatic detection of aspect interactions at injection,
and provides expressive means for their explicit resolution [87].

The language layer consists of translating aspects into the upper interface of the transfor-
mation layer [88]. The semantics of an AOPL is expressed by means of this translation.

Links and metaobjects The transformation layer of Reflex relies on the notion of an explicit
link binding a cut to an action, similar to PA model. This makes it possible to define aspects
as modular units comprising more than one pair cut-action. There are two types of links:
structural and behavioral. A structural link binds a structural cut to some action, either
structural such as adding a new interface, or behavioral, such as an additional computation
before a method call. In Reflex, a structural cut is a class set, defined intentionally by a class
selector.

52 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES

activation
condition

hookset

metaobject advice

pointcut

shadow

residue

Reflex AOP concepts

Figure 3.2: Behavioral links and correspondence to AOP concepts according to [93]�
1 Hookset theHookset = new PrimitiveHookset(

//We want to hook field accesses ...

3 FieldAccess.class ,

// ...on all classes ...

5 AllCS.getInstance (),

//... but only for field writes , excluding field

read

7 FieldWriteOS.getInstance ());

9 // Create and add the link to the config

BLink theLink = addBLink(theHookset ,

11 new MODefinition.MOClass(MO_CLASSNAME));
� �
Listing 3.2: A part of a Reflex configuration class

As an example of cuts, the class selector cut in Listing 3.1 defines a cut that selects the class
A only. An instance of the class RClass is the reflective representation of a class in Reflex.

A behavioral link binds an element of the execution control flow, such as a method call, to
an action (see Figure 3.2). For the majority of the execution points, there is a corresponding
program point (shadow) in the source code. Additional code at the source level introduces
additional behavioral at runtime. The model of Reflex is based on a standard model of be-
havioral reflection, where hooks are inserted in a program to delegate control to a metaobject
(for the additional code) at appropriate places (shadows). A set of hooks can be grouped
into a hookset. A hookset corresponds to a set of program points, and the metaobject corre-
sponds to the action to be performed at these program points. The link is characterized by
several attributes like an activation condition, which may be attached to the link in order to
avoid reification when a dynamically-evaluated condition is false. Listing 3.2 shows a part of
a Reflex configuration class. A simple AspectJ aspect, consisting of a single piece of advice
associated to a simple pointcut, is straightforwardly implemented in Reflex with a metaob-
ject, a hookset and a link. However, most practical AOP languages, like AspectJ, make it
possible to define aspects as modular units comprising more than one cut-action pair. In
Reflex this corresponds to different links, with one action bound to each cut. Furthermore,
AspectJ supports higher-order pointcut designators, like cflow. In Reflex, the implementa-
tion of such an aspect requires an extra link to expose the control flow information. There is
therefore an abstraction gap between aspects and links: a single aspect may be implemented
by several links.

An interaction occurs in Reflex when several hooks have to be inserted at the same program
point. Reflex supports:
– automatic detection of aspect interactions limiting spurious conflicts;

3.2. REFLEX 53�
1 public aspect Logging {

pointcut p(): call (* *.*(..));

3

before (): p(){

5 System.out.println("method -call of "+

thisJoinPoint.getSignature ().getName ());

7 }

}
� �
Listing 3.3: An AspectJ Logging aspect

– aspect dependencies, such as implicit cut and mutual exclusion;
– extensible composition operators for ordering and nesting of aspects;
– control over the visibility of structural changes made by aspects;
– aspects of aspects.

Prototyping AOPL Prototyping an AOPL using Reflex means defining a plugin within the
language layer on top of the two other layers. It consists of defining the translation of as-
pects from this AOPL to Reflex representation (hooksets, links and metaobjects). Hence,
Reflex uses a translation approach to translate aspects from different languages. The prim-
itive means to configure Reflex are configuration classes. To raise the level of abstraction,
plugins can be implemented: a plugin supports an AOPL, and is in charge of generating
the appropriate Reflex configuration. Before talking about the translation, let us see the
implementation of an AspectJ aspect using a Reflex configuration class.

Consider the AspectJ Logging aspect as shown in Listing 3.3, which logs all the method
calls then print the name of the called method. In Reflex, this can be implemented using a
LoggingConfig configuration class and a Logger metaclass:

According to this correspondence between hooksets and pointcuts, metaobject and advice,
aspects and links, etc. a plugin implementing a subset of AspectJ was developed [84, 88]. A
new version of the plugin uses Metaborg [23, 22, 43, 95] in the language layer by defining
the language grammar in SDF and uses Stratego to transform AspectJ aspects into Reflex
configuration classes. This approach is called ReflexBorg and it is based on:

– SDF (Syntax Definition Formalism) is an extensible and modular language for defining
syntax [98]. Definitions (derivations, lexical restrictions, terminals, keywords, etc.) are
done in modules that can be extended and reused.

– Stratego and XT [99] represents a powerful machinery for program transformation. Strat-
ego is a declarative language for transforming trees through the application of rewrite
rules, composed by means of rewriting strategies for modular transformation and fine-
grained control over their application. Rewrite rules can use the concrete syntax of the
host language in their definitions.
Finally, XT is a toolset which offers a collection of extensible and reusable transformation
tools such as the SGLR parser used in conjunction with SDF.

Reflex was also used to implement KALA, a DSAL for managing transactions [43, 44],
Sequential-Object Monitoring [28] and was extended to support distribution [96].

Composing AOPLs When composing several AOPLs implemented using Reflex (a plugin for
each language), aspects from all AOPLs have the same representation (hookset, metaobject,
links) and the problem of composing AOPLs is simply turned into a problem of composing
Reflex aspects. A designer of multi-AOPLs composition uses Reflex composition rules to
resolve the interactions between the translated aspects. Let us explore the rules of composing
aspects in Reflex.

Aspect dependencies, actually link dependencies can be of two kinds: implicit cut (apply l1
whenever l2 applies) and mutual exclusion (never apply l1 if l2 applies).

54 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES

�
public class LoggingConfig extends ReflexConfig

2 {

public void initReflex () {

4 // Create a hookset

Hookset theHookset = new PrimitiveHookset(

6 MsgSend.class ,// ... method -call

AllCS.getInstance (), // ...on all classes

8 new DeclaredInOS("*"));// ...all the method

// Create dynamic link

10 BLink theLink = addBLink(theHookset ,

new Logged ());// instantiating a metaobject

12 // Further configure the link:

// There should be one system -wide instance of the metaobject

...

14 theLink.setScope(Scope.GLOBAL);

// ... which should be called before the operation occurs

16 theLink.setControl(Control.BEFORE);

// Define the MOP: the metaobject should have its log method

18 // called with no arguments.

theLink.setMOCall(Control.BEFORE ,

20 new CallDescriptor(MO_CLASSNAME ,

"log", new Parameter [0]));

22 }

}

24

public class Logger extends MODefinition {

26 public void log() {

System.out.println("method -call");

28 }

}
� �
Listing 3.4: The translation of the aspect in Listing 3.3 in a configuration class of Reflex

3.3. XASPECTS 55�
1 public AspectPlugin(CompilationEnvironment ce);

abstract void recieveBody(AspectInfo ai, String aspectID , String

body);

3 abstract File[] generateExternalInterfaces ();

abstract File[] generateCode(File[] classfiles);

5 abstract void cleanUp ();

}
� �
Listing 3.5: The class AspectPlugin provided by XAspects

An implicit cut is obtained by sharing the cut specification between two aspects like when
two aspects in AspectJ share the same definition of a pointcut. In the following example,
theLink and anotherLink share their hookset because anotherLink is instantiated with
the hookset of theLink (by calling theLink.getHookset()):

BLink anotherLink = Links.get(theLink.getHookset(), <mo>);

Mutual exclusion between two aspects is obtained by declaring that a link should not apply if
another one does. The following statement makes theLink and newLink mutually exclusive:

BLink newLink = Links.get(new Hookset(), <mo>);

Rules.declareMutex(theLink, newLink);

If links are mutually exclusive, specifying their ordering is not necessary. Otherwise, ordering
must be specified. Consider the general case of around advice. In Reflex, the composition is
done by a set of operators: seq and wrap. The rule seq(l1, l2) (l1 and l2 are ordered) uses
the seq operator to state that l1 must be applied before l2. The rule wrap(l1, l2) (l1 and l2
are nested) means that l2 must be applied within l1.

3.3 XAspects

XAspects [86, 85] is a plugin mechanism for DSALs, where aspects are translated at compile
time, into general AspectJ source code, which serves as a base language from which other AOPLs
can be defined. Developing a new AOPL consists of specifying the translation between aspects
from this language to aspects in AspectJ. This is similar to what is done in Reflex where plugins
translate aspects to Reflex configuration classes.

Differently to Reflex, XAspects does not provide a transformation layer but instead, it uses
AspectJ compiler. XAspects modifies the grammar and the compiler (front-end) of AspectJ in
order to forward some compilation phases into XAspects plugins. The interaction between the
plugins and the XAspects compiler (xajc) is displayed as a 6-phase-compilation process (see Figure
3.3): Source Code Identification, Generation of External Interfaces, Initial Bytecode Generation,
Crosscutting Analysis, Generation of Semantics, Final Bytecode Generation.

The grammar extension consists of adding this new rule to the grammar of AspectJ:

<Aspect> ::= ["privileged"] [<Modifiers>]

"aspect" "(" <Type> ")" <Id>

["extends" <Type>] ["implements" <TypeList>]

"{" [<BalancedCurlies>] "}"

The Type token corresponds to the name of the aspect extension. Each aspect extension must be
implemented as an extension of the class AspectPlugin (see Listing 3.5) provided by XAspects
API. Note that each extension must provide its own grammar and parser, which is used by each
plugin.

The parser modification consists of performing the following operations when detecting the
above rule:

56 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES�
aspect(Traversal) FileSystemTraversals {

2 declare strategy: eachFile: "intersect(from CompoundFile to

File , down)";

declare traversal: void listAll (): eachFile (FileLister);

4 declare strategy: down: "from * bypassing -> *,parent ,* to *";

declare strategy: up: "from * bypassing -> *,contents ,* to *";

6 }
� �
Listing 3.6: An aspect written in Traversal DSAL

– Finding the class specified by the matched Type in the XAspects package (phase of Source
Code Identification). As we say, this class corresponds to the aspect extension and it is called
the plugin class.

– Instantiating the plugin class with an instance of the class CompilationEnvironment. Note
that all plugin classes implement the Singleton pattern in order to have only one instance
during compilation.

– Invoking the method receiveBody on the plugin instance by providing the string represen-
tation of the rule BalancedCurlies, which represents the body of the aspect and belongs to
the grammar of the aspect extension.

The parser applies the above operations on each plugin before sequentially calling the method
generateExternalInterfaces of each plugin (phase of Generation of External Interfaces). This
method returns a list of source files into a temporary disk location. All new aspects, classes,
methods or fields that the plugin introduces for external use are specified during this phase. This
method shows that XAspects follows the translation approach described in Chapter 2. The As-
pectJ compiler performs an initial bytecode generation by compiling the base program in addition
to the generated files and returns an array of classes (phase of Initial Bytecode Generation). The
drawbacks of XAspects are that, during this last phase, plugin-specific code could be erroneously
matched by the AspectJ aspects generated by other plugins. This problem is discussed in Chap-
ter 4. For each plugin, the method generateCode performs, if needed, behavioral changes to the
generated program and returns a list of generated AspectJ source files (phase of Generation of Se-
mantics). These files are compiled in order to generate the final bytecode (phase of Final Bytecode
Generation).

Prototyping AOPL Prototyping a new AOPL with XAspects consists of providing an extension
of the class AspectPlugin (see Listing 3.5) as well as an extension of the AspectJ grammar.
Note that any extension of the class AspectPlugin must implement the three main methods:
receiveBody, generateExternalInterfaces and generateCode. To clarify the extension
mechanism, we describe two plugins for Traversal and AspectJ, respectively.

Listing 3.6 shows an example from the web site of XAspects [85], where an aspect is defined
in the Traversal plugin. The aspect defines different strategies to traverse a graph of classes.

The implementation of the Traversal extension is based on the class Traversal (see List-
ing 3.7) and reuse DAJ [3] (Demeter in AspectJ). DAJ is accessible via the variable DAJ. The
class Traversal extends the abstract class AspectPlugin and implement its main methods.
For instance, receiveBody does not perform any processing in the incoming source code
but stores the received code in a .trv file with the corresponding aspectID as the filename.
The method generateExternalInterfaces calls the method DAJ.generateStubs(List,

File) and generates Traversal Stubs. The method generateCode is responsible of apply-
ing bytecode transformation. It takes the bytecode files and generates Traversals using the
method DAJ.generateTraversals(List, File, boolean, File). The method cleanup

deletes temporary files created for storing redirected outputs.

The AspectJ plugin is included for completeness purpose and it is simpler than any other
plugin. Listing 3.8 shows the AspectJ plugin. The helper method generatedFiles scans the
working Directory for all .java files, collects them in an array of File objects are returns

3.3. XASPECTS 57

Figure 3.3: The architecture of XAspects.

�
public class Traversal extends AspectPlugin{

2 public Traversal (){ }

public void init (CompilationEnvironment ce){ .. }

4 public void receiveBody(AspectInfo aspectInfo , String aspectID ,

String body){ .. }

public File[] generateExternalInterfaces (){ .. }

6 public File[] generateCode(File[] classFiles){ .. }

public void cleanup (){ .. }

8 private void partialCleanup (){ .. }

private void printErrors (){ .. }

10 private void printErrors2 (){ .. }

private void redirectOutputs () throws FileNotFoundException{ ..

}

12 private void restoreOutputs (){ .. }

private File[] generatedFiles (){ .. }

14 private void copyFiles(File[] source , File dest){ .. }

}
� �
Listing 3.7: The Traversal implementation using XAspects

58 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES�
1 public class AspectJ extends AspectPlugin{

public AspectJ (){ }

3 public void init (CompilationEnvironment ce){ }

public void receiveBody(String aspectID , String body){ }

5 public File[] generateExternalInterfaces (){ }

public File[] generateCode(File[] classFiles){ }

7 public void cleanup (){ }

private File[] generatedFiles (){ }

9 }
� �
Listing 3.8: The AspectJ implementation using XAspects

Figure 3.4: The join point metamodel as described by Metaspin [26].

the array. The method receiveBody stores all the received code in a .java file without
any checking. The two methods generateExternalInterfaces and generateCode simply
return the list returned by the method generatedFiles.

Composing AOPL Because XAspects plugins translate DSAL to AspectJ, a composition of
DSALs is turned into a composition of different AspectJ aspects. The composition is done
during the phases of Crosscutting Analysis and Generation of Semantics. There is no support
for the configuration of the composition to control aspect weaving. An aspect generated by
plugin X can erroneously match join points in the body of an aspect generated by another
plugin Y and this can lead to several problems. These problems are described in the section
about aspect interaction in Chapter 4.

3.4 Metaspin

Following the survey and taxonomy of AOPLs and and their execution models performed within
the AOSD European Network of Excellence [25], a metamodel that summarizes the common
language concepts of AOPLs has been conceived. While the metamodel describes the abstract
grammar, an interpreter defines operationally the semantics of the metamodel. The Metaspin
interpreter is an implementation of the semantics of the metamodel in Smalltalk [26].

3.4. METASPIN 59

– The metamodel has been conceived as an open and extensible framework that makes it
possible to describe and represent the essential aspect language features and their relations. It
is composed of 4 sub metamodels: join point, pointcut, aspect binding and advice metamodels.
It can be seen as an abstract grammar of a core aspect language.
– Join-Point Metamodel: The metamodel represents the concept of a join point in the

aspect language. It typically depends on the base programming language in which the
aspect language is integrated. As an illustration, this model is shown in Figure 3.4.

– Pointcut Language Metamodel: This metamodel describes the concept of a pointcut
as a Join Point Selector that applies a Predicate to the join point.

– Advice Binding Metamodel: This metamodel describes the instantiation, scoping, and
modularization of aspects, as well as the binding of advices to pointcuts.

– Advice Metamodel: The actions that can be triggered by aspects at particular join
points are described using the advice metamodel. The advice metamodel is also closely
related to the choice of a particular language for the advice.

– The interpreter describes the semantics of the core language. It implements the operational
semantics of all language concepts. As a result, it can interpret programs that are described
using these concepts. This means that the interpreter can interpret aspect-oriented programs
whose implementations have been mapped onto implementations in terms of the concepts
in the metamodel. The interpreter seemed the most convenient, easiest and quickest way to
get working implementations of a semantics, thus making it all a bit more concrete, which
facilitates experimenting with prototype languages.

3.4.1 Execution Semantics

3.4.1.1 Base and Metalevel Aspect Interpreter

In Metaspin, the evaluation of all program entities that are expressed using the base language
are executed by the base interpreter. Similarly, all program entities called metalevel instructions
and expressed using aspect-oriented language concepts are executed by the metalevel aspect in-
terpreter. More specifically, the metalevel aspect interpreter evaluates aspect programs that are
expressed using concepts of the metamodel. As a consequence, the semantics of the aspect-oriented
language concepts are localized in the definition and the implementation of the metalevel aspect
interpreter. The metalevel aspect interpreter is both an observer and a controller of the base
language interpreter.

3.4.1.2 Interaction between the two interpreters

The mechanism of interaction between the two interpreters consists of communicating join
points to the metalevel aspect interpreter at every discrete evaluation step. The discrete steps
correspond to the evaluation of each atomic base program expression. Atomic expressions are
the basic expressions evaluated by the base interpreter, they are not defined in terms of other
expressions.

At each evaluation step, the base language interpreter stops the execution of the program at
hand, creates a join point that represents the current execution state and passes control to the
metalevel aspect interpreter. The evaluation of a base instruction expB gives rise to two join
points, one before and another after the evaluation of this instruction. The aspect interpreter can
then decide to invoke an aspect at this join point or to let the base interpreter continue its normal
evaluation (with the base language semantics). The evaluation of pieces of advice is performed by
the base interpreter because they (mostly) contain base instructions.

Consider the following base program where “:” is a right associative operator constructing a
program from an expression and another program and ε is the empty program:

B = exp1 : exp2 : exp3 : ε

The program consists of 3 atomic expressions. This program is evaluated by the base interpreter.
Figure 3.5 displays 4 join points, each one appears in-between join points. Each execution point

60 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES

Figure 3.5: Discrete evaluation through join-point stepping [26].

Figure 3.6: Interleaved evaluation of programs.

corresponds to a join point and an entity representing this moment of evaluation must be com-
municated to the metalevel aspect interpreter.

3.4.2 Woven Execution of Program

Now let us consider a base program B and two pieces of advice: X and Y (in all figures, X
and Y are named Advice1 and Advice2, respectively). Let us see the coordination of the execution
between these entities.

B = expB1 : expB2 : ε
X = expX1 : ε
Y = expY 1 : ε

We suppose that X and Y do not match the same join points. Figure 3.6 shows the flow of execution
between the three entities: B, X and Y. The plain arrows represent normal evaluation steps by
the base interpreter. The dotted arrows represent the switch of the evaluation to the metalevel
aspect interpreter. Program B is the base program and consists of two atomic expressions expB1
and expB2. During its evaluation, the base interpreter creates join points JP1, JP2, etc. At join

3.4. METASPIN 61

Figure 3.7: Evaluation of Advised Instruction.

point JP1 (before the execution of expB1), the metalevel aspect interpreter halts the execution
of program B and starts the evaluation of program X. This happened because join point JP1
is matched by a join point selector in the aspect program and, therefore, the metalevel aspect
interpreter schedules the execution of the corresponding advice (program X) in the base interpreter
after saving the current state of the computation as a continuation pushed on a continuation
stack maintained by the metalevel aspect interpreter. The base interpreter thus starts evaluating
program X that consists of expression expX1. The execution of expX1 generates the join point
JP2 (before the execution) and JP3 (after the execution), which are not matched by any aspect.
When finishing the evaluation of expX1, the base interpreter restarts the halted program B (which
was stored as a continuation) by generating a join point before expX2 is evaluated by restoring
the continuation from the top of the continuation stack.

The instruction associated to the join point JP1 is never executed and the execution of program
B continues. The execution of program Y happens in exactly the same way as the execution of
program X. The only difference is that it is triggered by the join point JP5, which occurs after
executing expB2. X is an around advice, which replaces expB1, whereas Y is an after advice.

3.4.3 Evaluation of Advised Instruction

In the example of Figure 3.6, expB1 is never executed. This is because there is no metalevel
instructions in the X program to say that expB1 needs to be executed. Similarly to proceed in
AspectJ, the metalevel instruction EvalJoinPointIns can be used within (in Figure 3.7) advice
code to execute the advised instruction. The execution of EvalJoinPointIns is performed at the
join point before the instruction. The instruction is then skipped by the base interpreter (since it
does not understand it). Instead, the metalevel interpreter creates a new continuation that contains
only the instructions of the join point (visualized as program JP1) and activates it. After this,
the normal execution of continuations proceeds. EvalJoinPointInst basically works as proceed.
If there is no such instruction, the advised instruction is replaced and not further aspect applies.
Otherwise, the advised instruction is potentially executed, which may trigger a new advice.

In order to avoid matching JP4, which corresponds to the already matched join point JP1
(the join point before the execution of exp1), Metaspin has a mechanism for saving the history of

62 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES

Figure 3.8: X takes priority on Y.

matched join points and recognizing already matched join points. Using this mechanism, JP4 is
not matched by X.

3.4.4 Dealing with Aspect Interactions

In the examples of Figures 3.6 and 3.7, the aspects do not have any common join point; their
selectors do not have intersections. When aspects match the same join point, the corresponding
pieces of advice must be scheduled. In fact, the Advice Binding Metamodel defines the notion
of BindingSelector which represents the composition of advices when multiple aspects and/or
advices share the same join point. This selector defines the method select(JP,Advices), which
should be implemented in a way to choose the suitable advice at a shared join point.

3.4.4.1 Interacting Advices at a Join Point without EvalJoinPointInst

Let us consider the example of Figures 3.8 and suppose that X and Y both match the join point
JP1. Each (piece of) advice has only one instruction, expX1 for X and expY 1 for Y . The program
X is chosen to execute first based on a precedence relation. After the execution of program X, the
join point JP3 is created. This means that program Y is no longer considered. This represents
exactly the semantics that the activation of program X replaces the execution of expression exp1.
As a result, if X does not schedule the execution of the join point instruction exp1, all other advices
are discarded together with the expression exp1.

3.4.4.2 Interacting Advices at a Join Point with EvalJoinPointInst

In Figure 3.9, X contains the metalevel instuction EvalJoinPointIns after the expression
expX1. This leads to execute the second advice (Y) just after the first (X). In fact, after executing
expX1, the execution of expB1 is scheduled. A new join point is created at this moment. However,
this join point exactly corresponds to the join point JP2, which has been matched by X and
therefore, the new join point is recognized by the history mechanism. As a result, the method
select of BindingSelector returns the second advice Y in order to start its execution. After

3.5. PLUGGABLE AOP 63

Figure 3.9: Execution of pieces of advice at a shared join point.

executing expY 1, no advice is returned by the method select BindingSelector. Therefore, if Y
contains EvalJoinPointIns, exp1 will be executed, otherwise, the execution of exp1 is skipped.

3.5 Pluggable AOP

Pluggable AOP [62] addresses the problem of integrating and using a base language with
a set of third-party 1 aspect extensions for that language. It provides a semantical framework
to compose, independently developed, dynamic aspect mechanisms. It does not provide support
for prototyping AOPL but it defines an architecture for integrating different AOPLs. The base
semantics is expressed as an interpreter evaluating expressions. A new AOPL is implemented as
expression evaluation transformers. Each mechanism collaborates by delegating or exposing the
evaluation of expressions. The base mechanism serves as a terminator and does not delegate the
evaluation further.

This framework addresses the problem of integrating and using a base language with a set
of third-party extensions. It consists of a framework in which independently developed, dynamic
aspect mechanisms can be subject to third party composition and work collaboratively. A base
mechanism denotes an implementation of the base language semantics, an aspect mechanism
denotes an implementation of an aspect extension semantics. The contribution of this work is a
general method for implementing the base mechanism and the aspect mechanisms in a way that
multiple aspect mechanisms can be subject to third-party composition. This method consists of
defining the base mechanism as an expression interpreter. A new aspect mechanism, which is an
extension of the base mechanism, is implemented as a mixin [21, 27], which extends the base
mechanism. The following code implements the mechanisms described in Figure 3.10:

public class BMechanism extends Mechanism {

public void self_eval(){

// do some thing for the base evaluation

this.self_eval();

1. Third-party extensions means extensions that have been independently developed but have the possibility to
be composed together with the base system.

64 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES

Figure 3.10: The interpreter composition in Pluggable AOP [62]

3.6. SUMMARY 65

}

}

public class A1Mechanism extends BMechanism {

public void self_eval(){

// do some thing for the aspectual evaluation

delegate_eval();

}

public void delegate_eval(){

super.self_eval();

}

}

3.6 Summary

This chapter has shown four representative approaches for prototyping and composing AOPLs.
For each approach, we have described the provided supports for prototyping and composing AOPLs
and we have also identified the provided support for resolving interactions between the composed
AOPLs.

In the next chapter, we describe the important criteria for evaluating existing approaches:
Simplicity of use, preserving aspect behavior and aspect interactions. We evaluate each of the
four approaches against the above criteria and then we study the difference between the use of a
transformation or an interpretation approach and the effect on the interactions between composed
AOPLs.

66 CHAPTER 3. PROTOTYPING AND COMPOSING ASPECT LANGUAGES

Chapter 4
Evaluation

Contents
4.1 Classification of Existing Work . 67

4.2 Simplicity of Prototyping . 69

4.3 Preserving Aspect Behavior . 69

4.4 Aspect Interactions . 72

4.5 Contribution . 77

In this chapter, we evaluate the ability of the four representative proposals described in the
previous chapter to prototype and to compose AOPLs. Our evaluation consists of three principal
criteria: the first is the simplicity of the prototyping, the second is preserving the aspect behavior
when prototyping an AOPL and the third is the support for resolving interactions when composing
AOPLs.

In Section 4.1, we classify whether the aspect mechanisms used in each of the reviewed proposals
are implemented using a transformation or an interpretation approach. Then we classify whether
the prototyping approach is a translation or sequential. Section 4.2 describes the effect of using
these two approaches on the facility and the flexibility of prototyping. Section 4.3 shows how
the translation approach can lead to unexpected behavior while Section 4.4 studies the ability of
resolving aspect interactions like co-advising and foreign advising. Section 4.5 specify the problems
that we attack and describe our approach.

4.1 Classification of Existing Work

Let us return to the ideas discussed in 2.2.7. A framework for prototyping AOPL using a
transormation approach (define a function T to transform the code), must provide a generic
transformation function T that can be specified each time we want to prototype an AOPL. In
order to clarify this idea, let us consider, two AspectJ compilers, ajc and abc then show how
abc facilitates the task of defining a new generic transformation in order to make AspectJ more
extensible.

ajc The AspectJ compiler ajc has a front-end and a back-end. The front-end translates aspects
written in AspectJ (.java and .aj files) to annotated classes in Java bytecode. An aspect is
translated to a Java class with the same name; an advice declaration is transformed into a
method declaration with the same body. The compiled advice method is also annotated with
attributes that store its aspect-specific data (e.g., pointcut declarations). The annotations
distinguish aspect classes from other Java classes, and provide pointcut designators for advice
methods.

67

68 CHAPTER 4. EVALUATION

The back-end implements the semantics of the aspect extension (knowing that AspectJ
extends Java). It is based on a transformation approach. It takes the classes generated by the
frontend, and transform the byte code by including call to the aspects in the corresponding
places.

abc The AspectBench Compiler for AspectJ abc [15] is another complete implementation of As-
pectJ. It has beed designed to make it easy to implement both extensions and optimisations
of the core language. Its font-end in the first versions has been built on the Polyglot frame-
work for extensible Java compilation (new version of the front-end is based on the JastAddJ
extensible Java compiler). Its backend is built on the Soot framework for code generation,
analysis and optimisation.

The AspectJ grammar developed for abc is specified as an extension of the Java grammar, and
the grammars for extensions are in turn specified as modifications to the AspectJ grammar.
The front-end takes .class and .java (the aspect have .java extension) and generate
Java AST and an aspect information structure called AspectInfo. The weaving in abc is
performed on the Jimple intermediate representation of Soot. A join point is defined as a
single Jimple statement. The backend takes the AspectInfo and weave aspects at the level
of Jimple representation. A final phase of analyses and optimizations is performed before
the bytecode generation. The extension of the AspectJ syntax is based on the feature of
Polyglot that allows a new grammar to be specified as a collection of modifications to an
existing grammar, where these modifications are given in a separate specification file, not in
the original grammar file. AspectJ semantics is extended by introducing new transformation
rules supported by Soot. New join point can be added by defining a new factory class that
can recognise the relevant statements, and registering it with the global list of join point
types.

There are two reasons that make abc more extensible than ajc:

1. ajc performs its transformation at the level of the bytecode and generate optimized bytecode
to be executed on the JVM while abc performs its transformation at the Jimple level, giving
more abstraction to the transformation and making it more extensible than ajc.

2. Soot tools for writing new analyses and transformations, such as control flow graph builders,
definition/use chains, a fixed-point flow analysis framework, and a method inliner, are useful
for implementing extensions such as pointcuts describing specific points in the control flow
graph.

We can say that abc is characterized by its generic transformation which can be specified in order
to extend AspectJ. Using abc to extend AspectJ requires the knowledge of all the machinery of abc
like Polyglot, Soot, Jimple, etc. while a lightweight extensible implementation of AspectJ suffices,
allowing rapid prototyping. In addition, abc was not designed to allow the composition of AspectJ
with other AOPLs.

Like abc, Reflex and XAspects use a transformation approach to implement their aspect mech-
anisms. Instead of having a generic transformation, Both Reflex and XAspects define an interme-
diate transformation. Each time a new AOPL has to be defined using Reflex, a mapping from the
semantics of the AOPL to the configuration and metaobjects classes, which are the parameter of
the code transformation performed by Reflex. XAspects maps AOPL aspects to AspectJ aspects
where the transformation is done by an AspectJ weaver.

Pluggable AOP, in contrast to other reviewed proposals, does not use a transformation ap-
proach. It represents a semantical framework in which independently developed, dynamic aspect
mechanisms can be subject to third-party composition and work collaboratively. Aspect mecha-
nisms are defined as expression evaluation transformers. The mechanisms can be composed like
mixin layers in a pipe-and-filter architecture with delegation semantics. Each mechanism collab-
orates by delegating or exposing the evaluation of expressions. The base mechanism serves as a
terminator and does not delegate the evaluation further. In Pluggable AOP, an AOP interpreter
involves the base and aspect semantics, and each new aspect mechanism is a wrapper of this in-
terpreter. Pluggable AOP permits the independent development of aspect mechanisms and their

4.2. SIMPLICITY OF PROTOTYPING 69

Transformation Interpretation
Prototyping Reflex, XAspects
Composing Reflex Pluggable AOP

Table 4.1: Classification of existing works

composition but the evaluation order of aspect mechanisms is imposed statically by the application
sequence of plugins.

4.1.1 Prototyping and Composing AOPLs

Table 4.1 classifies the existing proposals into transformation or interpretation approaches.
When a framework for prototyping and composing AOPLs uses a transformation for its aspect
mechanism, two alternatives for prototyping and composing AOPLs exist: translation and sequen-
tial instrumentation.

Translation In this approach, aspect programs in different aspect extensions are translated to a
common target aspect extensions. Both Reflex and XAspects are using this approach. The
impact of this approach is described in the rest of the chapter.

Sequential Instrumentation Different independent mechanisms can be composed sequentially
while the output of one mechanism is considered as the input of the next one. This approach
is not common because it leads to unexpected result because each mechanism introduces
synthetic join points which will be erroneously advised by other mechanisms.

4.2 Simplicity of Prototyping

The main purpose of a framework for prototyping AOPLs is to allow the experimentation
of new AOP features in a simple way. The framework must use a general aspect mechanism in
order to simplify the mapping of AOPLs into this mechanism. For example, the aspect mechanism
in Reflex is represented as the supported model of partial behavioral reflection while the aspect
mechanism used in XAspects is the one of AspectJ. The translation approaches suffer of two
problems:

1. The abstraction gap between the semantics of the implemented AOPL and the aspect mech-
anism of the prototyping framework complicates the construction and the extension of the
prototype.

2. Relying on the aspect mechanism of the framework makes it difficult to implement several
alternative semantics of the implemented AOPL. For example, the AspectJ Reflex plugin rep-
resents call designator as a MsgSend instance which has, in Reflex, a well-defined semantics
and it is difficult to propose alternative for call as it was proposed in [18].

These problems existing with the translation approach let us think about designing an ex-
tensible aspect mechanism and build AOPLs by extending this mechanism instead of translating
different AOPL to an existing one.

4.3 Preserving Aspect Behavior

In the previous section, we described some problems when we rely on a translation approach.
This section completes the list of drawbacks by exploring the problems of aspect interactions.
We start by showing how the existing work, like Reflex and XAspects, cannot correctly translate
aspects from an AOPL to their own representation.

Let us see how Reflex does not properly translate AspectJ aspect to a Reflex configuration
class and metaobjects.

70 CHAPTER 4. EVALUATION�
1 public class A {

public void foo () {

3 System.out.println("foo");

}

5 }

public aspect Logging {

7 pointcut p(): call (* *.*());

void around (): p() {

9 log(thisJoinPoint.getSignature ().getName ());

proceed ();

11 }

void log(String methodName){

13 System.out.println("call of "+methodName);

}

15 }

public class Main {

17 public static void main(String args []){

new A().foo();

19 }

}
� �
Listing 4.1: An AspectJ logging aspect.

Directly using AspectJ, the result of the execution of Main in Listings 4.1 is the following:

call of foo

foo

The aspect of Listing 4.1 is transformed, using the AspectJ plugin of Reflex [95], to a configuration
class and a metaobject class shown in Listing 4.2.

The Reflex core takes the two plugin outputs with the base class (A).
Now using the generated class, the result of the execution of Main is the following:

call of foo

call of foo

foo

We see that the result of the execution is different from the AspectJ one, which is a problem. The
root of the problem is that in Reflex an aspect advises another aspect in the same manner as it
advises a base class. In the example, the hooks are inserted in Logging as well as in A. In Reflex,
any class can be instantiated as a metaobject, associated with a hookset, while choosing one of its
methods as the advice. In some cases, this causes an infiniteloop.

To generalize the problem, we can say that the translation introduces implementation-specific
code into the resulting aspects. The implementation-specific code which is not explicit in the source
aspect becomes a part of the resulting aspect and represents unexpected join points. Because the
aspect mechanism of the implementation framework cannot distinguish between the synthetic
(unexpected) from the genuine (expected) join points, it can erroneously advise the synthetic
points and lead to incorrect behavior of the program.

The solution in this case is the quantification of the aspect code, where we could differentiate
between the advice code and the specific implementation code as we have seen with the AspectJ
plugin. In the ajc compiler, the quantification is done using annotations: an aspect is translated
by the front-end into an annotated Java class (bytecode), and the back-end (weaver) can dis-
tinguish, using the annotations, between different parts of code in the aspect to make the right
transformation of the byte code. So we can generalize this point to make the first requirement on

4.3. PRESERVING ASPECT BEHAVIOR 71

Figure 4.1: The architecture of AspectJ plugin on top of Reflex

72 CHAPTER 4. EVALUATION�
public class Logging extends MODefinition{

2 public void aroundMethod {

log();

4 proceed ();

}

6 public void log() {

System.out.println("call of ..");

8 }

}

10 public void Config extends ReflexConfig {

public void initReflex () {

12 Hookset p = new PrimitiveHookset(MsgSend.class ,

AllCS.getInstance (),

14 AllOP.getInstance ());

BLink theLink = addBLink(theHookset , new Logging ());

16 theLink.setCall(new CallDescriptor(

Logging.class.getName (), "aroundMethod", Parameter.CLOSURE)

18);

}

20 }
� �
Listing 4.2: The Reflex representation of the logging aspect.

the framework to prototype AOPL:

The aspect representation must provide a categorization to identify the implementation-specific
code from the code that can be advised

4.4 Aspect Interactions

In our work, we study the design of a framework helping us in prototyping and composing AO-
PLs. When composing AOPLs, aspect interactions appear as interactions between foreign aspects,
i.e., aspects written in different AOPLs. We rely on the work of Kojarski et al. [69, 65, 70] to
identify the different types of interactions and how to resolve them. This study is very important
when we design our framework and, as we will see, there is a strong relationship between these
interactions and the representation of aspects. There are two types of aspect interactions:

Co-advising means coordinating pieces of advice selected from aspects in the various AOPLs
applying to the same join point.

Foreign advising means the control of the matching join points that occur in foreign aspects
(aspects written in different AOPLs).

When composing AOPLs, these interactions must be resolved. We distinguish between two levels
of resolution:

Language level requires the language designer to specify the semantics of how aspects in each
AOPL interacts with aspects in all the other AOPLs.

Program level requires the aspect programmer to resolve how a concrete set of aspects interact.

We start by explaining both co-advising and foreign advising because a good understanding of the
problem that occurs when composing AOPLs is central to the design of our framework.

4.4. ASPECT INTERACTIONS 73

4.4.1 Co-advising

Co-advising appears when several aspects match the same join point. Generally, co-advising
can be resolved in any conceivable way or even arbitrarily because the ordering of aspects does
not matter. Practically, however, co-advising is usually an advice scheduling problem that requires
the various AOPLs to coordinate the execution of advice code at the same join point.

Let us consider two AOPLs, A1 and A2, where we use a transformation approach for each
language. The weaver must be scheduled to run one after the other sequentially (sequential instru-
mentation) advice that is applied later will always wrap around a piece of advice that is applied
earlier. This would result in a very restrictive behavior that does not support the flexible ordering
needed in general for resolving co-advising.

4.4.1.1 Discussion

In a framework for composing different AOPLs, co-advising interactions should be controlled
at both the program and the language levels [70]. A framework should specify default co-advising
rules at the language level, and provide means for overriding the default behavior at the program
level. For example, the framework could define default advice ordering rules that correspond to
the order of the aspects definition.

4.4.2 Foreign advising

In AspectJ, an aspect aspect1 can advise join point in the execution flow of an advice in
other aspects, but when composing AOPLs, an aspect advises not only base language classes and,
possibily, aspects written in the same AOPLs, but also foreign aspects that are written in other
AOPLs. The resolution of foreign advising interactions controls how aspects advise foreign aspects.
In a composition of COOL and AspectJ, foreign advising controls the weaving of AspectJ advice
into COOL coordinators, and the weaving of COOL advice into AspectJ aspects. To understand
the problem, let us describe both the AspectJ compiler and COOL compiler.

The AspectJ compiler ajc has a front-end and a backend. The front-end translates aspects
written in AspectJ (.java and .aj files) to annotated classes in Java (bytecode). An aspect is
translated to a Java class with the same name; an advice declaration is transformed into a method
declaration with the same body. The compiled advice method is also annotated with attributes
that store its aspect-specific data (e.g., pointcut declarations). The annotations distinguish aspect
classes from other Java classes, and provide pointcut designators for advice methods.

The back-end implements the semantics of the aspect extension. The semantics define the
meaning of advice weaving in terms of computations. It take the classes generated by the frontend,
and transform the byte code by including call to the aspects in the corresponding places.

As we see, the front-end introduces implementation specific points into the bytecode. The
semantic of the backend takes in consideration these points when weave aspects. Now, let us
describe the COOL compiler [64].

The Stack class of Listing 4.3 defines two public methods: push and pop. An attempt to pop
objects off an empty stack or push objects onto a full stack throws an exception. A coordinator
in COOL (see Listing 4.4) imposes synchronization over push and pop methods. The synchro-
nization policy is expressed in COOL using declarations (mutex, selfex, condition), expressions
(requires), and statements (on exit, on entry). The selfex declaration specifies that neither
push nor pop may be executed by more than one thread at a time. The mutex declaration prohibits
push and pop from being executed concurrently. full and empty are condition boolean variables.
The requires expressions further guard push and pop executions. If the guard is false, a thread
suspends, even if the mutex and selfex conditions are satisfied. The execution resumes when
the guard becomes true. The on entry and on exit blocks update the aspect state immediately
before and immediately after the execution of an advised method body, respectively.

The front-end of COOL translates the coordinator to a Java class (see Listing 4.5), StackCoord,
which implements the synchronization logic via special synchronized methods and instance vari-
ables. The class provides a pair of lock and unlock methods and an instance variable for every

74 CHAPTER 4. EVALUATION

�
public class Stack {

2 private Object [] buf;

private int ind = 0;

4 public Stack(int capacity) {

buf = new Object[capacity];

6 }

public void push(Object obj){

8 buf[ind] = obj;

ind++;

10 }

public Object pop() {

12 Object top = buf[ind -1];

buf[--ind] = null;

14 return top;

}

16

}
� �
Listing 4.3: A non-synchronized stack

�
1 coordinator Stack {

selfex {push , pop};

3 mutex {push , pop};

int len=0;

5 condition full=false ,empty=true;

push: requires !full;

7 on_exit {

empty=false;

9 len++;

if(len==buf.length) full=true;

11 }

pop: requires !empty;

13 on_entry {len --;}

on_exit {

15 full=false;

if(len ==0) empty=true;

17 }

}
� �
Listing 4.4: A coordinator in COOL

4.4. ASPECT INTERACTIONS 75

�
public class StackCoord {

2 private boolean empty = true , full= false;

private List pushState = new Vector (), popState = new Vector ();

4 private int len = 0;

public synchronized void lock_push(Stack target) {

6 while (!(! full) ||

isRunByOthers(pushState) ||

8 isRunByOthers(popState))

try { wait(); }

10 catch (InterruptedException e) {}

pushState.add(Thread.currentThread ());

12 }

public synchronized void unlock_push(Stack target) {

14 pushState.remove(

Thread.currentThread ());

16 empty = false;

len++;

18 if (len == target._buf().length)

full = true;

20 notifyAll ();

}

22 public synchronized void lock_pop(Stack target) { .. }

public synchronized void unlock_pop(Stack target) { .. }

24 private synchronized boolean isRunByOthers(List methState) {

return (methState.size() > 0 &&

26 !methState.contains(Thread.currentThread ()));

}

28

}
� �
Listing 4.5: A translated COOL coordinator class

76 CHAPTER 4. EVALUATION�
1 public class Stack {

public Object [] _buf() {return buf;}

3 private Object [] buf;

private int ind = 0;

5 private StackCoord _coord;

public Stack(int capacity) {

7 buf = new Object[capacity];

_coord = new StackCoord ();

9 }

public void push(Object obj) {

11 _coord.lock_push(this);

try{

13 buf[ind] = obj;

ind++;

15 } finally {_coord.unlock_push(this);}

}

17 public Object pop()

}
� �
Listing 4.6: A synchronized bounded stack

method that is advised by the coordinator. Specifically, the synchronization for the Stack.push

method is realized by lock push and unlock push. Similarly, the synchronization logic for
Stack.pop is realized by lock pop and unlock pop. At any point of the execution, the pushState

(popState) instance variable stores all threads that are currently executing the push (pop) method
on the coordinated object. The coordinator class also includes all fields of its coordinator. The
lock methods implement the semantics for mutex, selfex, and requires, and run on entry

blocks. A while loop suspends the execution of the current thread if a guard condition is violated.
The backend transforms the coordinated methods by introducing calls to the coordinator’s

lock and unlock methods before and after the original body. To ensure invocation of the unlock
method, the weaver also introduces a try finally block around the original body. The result of
the transformed Stack can be seen in Listing 4.6.

4.4.2.1 Discussion

We see that both the AspectJ and COOL compilers introduce in the aspect representation
(Java class generated by the front-ends) implementation specific code like lock and unlock

methods for the coordinator.The problem is that this code can be further erroneously advised by
anotheraspect written in another language. This is more explained in 4.4.3.

4.4.3 Composition of AspectJ and COOL

Let us see what will happen if we want to compose an AspectJ aspect with the stack coordi-
nator. Consider the aspect of Listings 4.1: Logging logs all join points in a program execution,
including join points within executions of the stack coordinator like lock and unlock methods
and other implementation specific code, where we found the problem.

Foreign advising is not solvable by merely using a weaver for COOL (AspectJ) to weave the
foreign aspects (coordinators), because one language does not recognize the syntax or semantics
of the other. Even though the weavers for COOL and AspectJ may both use Java classes as their
intermediate representation, applying the COOL (AspectJ) weaver to the Java representation
of foreign aspects (coordinators) will not do the job either. This is because the classes embed
synthetic code that is generated during the translation to the intermediate representations, e.g.,
calls to wait and notifyAll in the coordinator class StackCoord of Listing 4.5.

4.5. CONTRIBUTION 77

4.4.4 Discussion

Let us discuss co-advising and foreign advising by reasoning in terms of abstract mechanisms
described in Chapter 3. An abstract weaving mechanism consists of four subprocesses: reify,
match, order and mix.

1. Co-advising: requires a proper specifying the meta behavior that coordinates the match,
order and mix processes of the individual weavers.

2. Foreign advising: requires a proper representation of foreign aspects correctly, which is the
responsibility of the integrated reify process.

4.4.5 Requirements

We summarize what we have seen by concluding with some requirements for a good framework
for composing AOPLs.

1. The aspect representation must provide a categorization to differentiate implementation
specific code from advice code. This categorization should be used by the reify process.

2. The framework must provide support for aspect scheduling of each implemented language
and support for generic aspect scheduling.

4.5 Contribution

According to the evaluation of existing proposals discussed in this chapter, we deduce that
is very difficult to deal with source transformation to implement AOPLs because it requires the
deal with a large set of all the machinery related to the compiler world. Studying the foundations
of aspect languages can be done by considering what changes have to be made to conventional
language interpreters (base interpreters) to introduce aspect semantics [46]. In general, writing
an interpreter is much less work than writing a back-end. Also it helps for rapidly prototyping,
testing and extending the language.

Our approach consists of making an hierarchy for the abstraction levels of aspect mechanisms
and describing relations between these levels: conceptual model, semantical model until the im-
plementation level as an interpreter. These relations make it easy the understanding of AOPLs
semantics, their prototyping and composition.

We consider the model defined in [63] as our conceptual model. The four subprocesses discribed
in this model are at the top of the hierarchy. The second level is the semantical model defined by
the CASB [36]. For each subprocess, we describe the semantics according to the CASB.

We reuse the metamodel of AOPL defined in [26] as an Abstract Syntax Tree (AST) while the
semantics is implemented according to the conceptual and the semantical models. The concepts
that are modeled in the metamodel represent the essential aspect language features and their
relations. We obtain a general AOPL that can be the subject of extension and specialization in
order to model concrete AOPL. Any aspect language should be defined as a mapping of its own
language features to the concepts in the metamodel.

We study the extension of MetaJ according to our approach. MetaJ plays the role of the
base interpreter and interacts with the aspect interpreter implementing the AOPL semantics. We
achieve a clear separation between the base and the aspect interpreter, while defining the interac-
tion between the two interpreters. The aspect interpreter explicitly shows the separation between
the four subprocesses. Each subprocess is implemented according to the goal of facilitating the
understanding and the extension of the interpreter. This separation facilitates the understand-
ing and the extension of the interpreter and is also a step towards third-party composition of
AOPLs. Third-party composition means that different AOPLs, which were independently imple-
mented, can be assembled without modifying the individual implementation. In such a framework
approach, the concrete language features of particular aspect languages can be partially described
as specializations of the concepts described in the common metamodel. The framework approach
also guarantees that all aspect languages are described with respect to the framework. As proof of

78 CHAPTER 4. EVALUATION

concepts, we realize a prototype of lightweight version of AspectJ by implementing several pointcut
designator as an extension of an essential part of the metamodel, JoinPointSelector.

After implementing the framework for a part of Java, we apply the same design but for the
whole of Java by reusing a mechanism called two-step weaving which simplifies the construction
of our framework on top of the whole of Java without dealing with problems of efficiency and
performance but focusing on the design and the extensibility of the interpreter. We name this
framework CALI for Common Aspect Language Interpreter.

Part II

Contributions

79

Table of Contents

5 Modifying an Existing Java Interpreter: MetaJ 83

5.1 Modifying MetaJ to support AOP . 83

5.2 Aspect instances . 93

5.3 Generalization . 97

5.4 Lightweight AspectJ . 99

5.5 Conclusion . 105

6 CALI: Common Aspect Language Interpreter 107

6.1 Compiler-based two-step weaving . 107

6.2 Semantics of CALI . 108

6.3 Architecture of CALI . 109

6.4 Abstract Aspect-Oriented language . 113

6.5 Principles of matching a join point by Join-point Selectors 116

6.6 Implementing a concrete AOPL with CALI . 116

7 AspectJ plugin on top of CALI 117

7.1 AspectJ on top of CALI . 117

7.2 Example . 119

7.3 Pointcut Designators as Join-Point Selectors . 120

7.4 Aspects . 130

7.5 Advice precedence . 132

7.6 Transformation of AspectJ syntax to CALI representation 132

7.7 Conclusion . 132

8 AspectJ Variants with CALI 135

8.1 Dynamic Aspect Scheduling . 135

8.2 Alternative semantics for AspectJ pointcuts . 142

8.3 Conclusion . 145

9 EAOP and DSLs plugins 147

9.1 EAOP . 147

9.2 Decorator . 155

9.3 Memoization DSAL . 160

9.4 COOL . 161

9.5 Conclusion . 168

82 TABLE OF CONTENTS

10 Composition of AOP languages 169

10.1 From composing multiple aspects to composing multiple AOPLs 169

10.2 Scaling composition . 169

10.3 AspectJ and COOL . 172

10.4 Conclusion . 173

Chapter 5
Modifying an Existing Java
Interpreter: MetaJ

Contents
5.1 Modifying MetaJ to support AOP . 83

5.2 Aspect instances . 93

5.3 Generalization . 97

5.4 Lightweight AspectJ . 99

5.5 Conclusion . 105

A good way of understanding the foundations of AOPLs on top of Java is to take a Java
interpreter and consider what changes we need to make to add/introduce aspects. In this chapter,
we describe our experience with MetaJ, a Java interpreter written in Java [39, 40], as our base
interpreter. We show the modifications (instrumentation and extension) to get an interpreter for
AOPLs. We will keep these changes modular as much as possible by separating the base and the
aspect interpreter. The aspect interpreter will, in turn, be split into two parts: one called Platform,
for the common features and another for features specific to a given AOPL. The specific part should
provide an interface to be called from the common one. The structure of this chapter is as follows:

Section 5.1 shows the modifications that we made on MetaJ itself to support an AOP extension
then displays how the AOP extension is performed as an independent component. Section 5.2
presents the aspect instantiation mechanism as an extension of the class instantiation mechanism
of MetaJ. Section 5.3 reviews the previous section in order to define how to implement a concrete
AOPL by extending the aspect interpreter. Section 5.4 instantiates our approach and describes an
implementation of a lightweight version of AspectJ. Section 5.5 concludes the chapter.

5.1 Modifying MetaJ to support AOP

In this section, we consider the modifications that we need to make on MetaJ in order to support
AOP. The modifications are done according to the semantics of the CASB (see Section 2.2.6.2).
In the CASB, the base interpretation is described by the following rule:

(i : C,Σ)→b (C ′,Σ′)

In a Java setting we will talk about expressions, instances of the class Exp, instead of instructions.
The reduction rule is then implemented by a method void eval(Environment) of Exp, where the
class Environment explicitly implements a part of Σ and the other part is implicitly implemented
in the runtime of the interpreter.

83

84 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

The challenge now is to find how to represent the function ψ of the CASB, which should take
an Exp object as a parameter. In the CASB, aspects are introduced by complementing the base
rule with a number of additional rules:

ψ(i) = ε (i : C,Σ)→b (C ′,Σ′)
NoAdvice

(i : C,Σ, P)→ (C ′,Σ′, P)

ψ(i) = φ : Φ
Around

(i : C,Σ, P)→ (φ : pop : C,Σ, (Φ : [i]) : P)

φ(Σ) = a
Advice

(φ : C,Σ, P)→ (a : C,Σ, P)

The introduction of the AOP semantics consists of applying ψ to each instruction before perform-
ing the base evaluation. When ψ(i) = ε, the base rule is applied and the instruction is normally
evaluated. Otherwise, the interpreter has to evaluate, according to the rules, the first φ correspond-
ing to the aspects that statically matched the instruction. A direct implementation of these rules
consists of applying a functionPsi on each instance of the class Exp before executing the method
eval. The method functionPsi must determine the list of aspects that statically match the cur-
rent expression. The word statically signifies that the matching is based on the static information
attached to the instance of Exp like method name, static type, etc. and not on the information
given in the instance of Environment. We can deduce that the representation of an aspect must
provide a staticTest method which is invoked by functionPsi in order to determine if the as-
pect statically matches the current expression. The return type of the method staticTest should
provide a method that perform an additional (dynamic) test on the current context (corresponds
to φ(Σ) = a) in order to return the corresponding advice a. This idea is reviewed in the body of
this chapter.

Requirement 1 For any AOPL implementation, the aspect interface must contain a staticTest

method, which should be invoked by the function functionPsi of the aspect interpreter.

5.1.1 Interpreter-based two-step weaving

As we said in the state of the art, in AspectJ, weaving is static. The weaver implements the
semantics statically by transforming the base and aspect classes. Another possibility would be
to write an interpreter from scratch. Our approach is different. We start from an existing Java
interpreter and weave aspects in two steps instead of one:

1. The first step consists of reifying the evaluation of an expression within a given environment,
using AspectJ. A join point is then a pair (expression, environment).

2. The second step consists of applying the implementation of the CASB functions on the reifed
expression.

The introduction of these two steps is done by instrumenting the base interpreter int(p, d) (where
p and d represents program and data respectively), which becomes inti(p, d).

5.1.2 Implementation

We see that the aspect interpreter can be considered also as an aspect that is applied on the
base interpreter in order to add AOP capabilities. This aspect contains a pointcut that matches
the execution of all the types of expression and an around advice, which will proceed if there is no
aspect statically matching the instruction or start the evaluation of a testφ instruction otherwise.
The evaluation of this instruction performs an additional dynamic test which, if successes, launches
the evaluation of the piece of advice. The aspect interpreter must have a proceedStack in order
to represent the proceed stack P of the CASB. Implementing the AOP semantics using an aspect
keeps the modifications on the base interpreter modular.

5.1. MODIFYING METAJ TO SUPPORT AOP 85�
public aspect Platform {

2 pointcut reify(Environment env , Exp exp) :

execution(Data (!(aop ..*)).eval (..))

4 && args(env)

&& this(exp);

6 Data around(Environment env , Exp exp) : reify(env ,exp) { .. }

public static List <Phi > match (Exp exp){ .. }

8 public static List <Phi > order (Exp exp){ .. }

public static List <Phi > mix (Exp exp , Environment env , Phi phi){

.. }

10 }
� �
Listing 5.1: The aspect interpreter as an aspect Platform

Requirement 2 The implementation of the aspect interpreter must be modular (separated from
the base interpreter) to increase the understanding of AOP foundations as well as the extensibility
of AOP implementation.

The aspect interpreter is then represented by the aspect Platform (see Listing 5.1). Proposi-
tion 3 states the condition of the advice return-type:

Requirement 3 Since the return type of the expression evaluation by the base interpreter is Data,
the advice of Platform must return the same type (see Listing 5.1).

5.1.3 Join-Point Model

We consider that the execution of the method eval(Environment) of any subclass of the class
Exp is a join point. The static part of this join point is the instance of Exp and the dynamic part is
the instance of Environment given as the parameter. The pointcut of the aspect Platform should
test these two parts to decide to match or not the join point. An intuitive question naturally arises
here:

Is the list of expressions Exp provided by MetaJ sufficient to express at least the known join
points?

To answer this question, we must study how to support method-call and method-execution join
points. Below, we review how MetaJ implements call and execution of methods then we discuss
how it is possible to represent the corresponding join points.

5.1.3.1 Original MetaJ

Listing 5.2 shows the class ExpMethod which is the implementation of a method-call in MetaJ.
An instance of this class represents the AST of a method-call. It has three attributes: exp is the
receiver expression on which we call the method methodId with the list of arguments args. This
is a static view of a method call in the source code. The evaluation of an instance of ExpMethod

(execution of its eval method) consists of:
– Evaluating the receiver expression,
– Evaluating the list of arguments and creating an argE environment,
– Looking up the method methodId and getting the corresponding Method object,
– Finally calling apply of the proper method with, as parameters, the proper environment and

receiver.
Listing 5.3 shows the class Method which is the representation of a method in MetaJ. It has an

instance variable of type Exp to represent the body of the method and an instance variable of type
StringList to represent the formal parameter names. The execution of apply(Environment,

Instance) associates the names of the parameters (in addition to this object which is associated

86 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

�
public class ExpMethod extends Exp {

2 private Exp exp;

private String methodId;

4 private ExpList args;

6 ExpMethod(Exp exp , String methodId , ExpList args) {

this.exp = exp;

8 this.methodId = methodId;

this.args = args;

10 }

12 Data eval(Environment localE) {

// evaluate the lhs (receiver)

14 Instance i = (Instance) this.exp.eval(localE).read();

// evaluate the arguments to get a new local environment

16 Environment argsE = new Environment(null , null , null);

this.args.eval(localE , argsE);

18 // lookup and apply method

Method m = i.lookupMethod(this.methodId);

20 return m.apply(argsE , i);

}

22

public String toString () {

24 return "(" + this.exp.toString () + ")." + this.methodId

+ "(" + this.args.toString () + ")";

26 }

}
� �
Listing 5.2: The representation of a method call in MetaJ

5.1. MODIFYING METAJ TO SUPPORT AOP 87�
1 public class Method {

private StringList args;

3 private Exp body;

5 Method(StringList args , Exp body) {

this.args = args;

7 this.body = body;

}

9

Data apply(Environment argsE , Instance o) {

11 // name each argument

argsE.zipWith(this.args);

13 // add the first implicit argument

argsE.add("this", new Data(o));

15 // eval the body definition of the method

return this.body.eval(argsE);

17 }

19 public String toString () {

return "(" + this.args.toString () + ") {\n\t\t"

21 + this.body.toString () + "; \n\t}";

}

23 }
� �
Listing 5.3: The representation of a method in MetaJ

with the name “this”) with the argument list then evaluates the expression of the method (body)
with this association list.

5.1.3.2 Discussion

When capturing a method-call join point, the receiver object should have been evaluated and
exist in the environment. It is not the case in MetaJ, because when evaluating an instance of
ExpMethod, the receiver expression has not yet been evaluated and is not yet in the environment.
For this reason, an intermediate evaluation step has to be inserted between the evaluation of the
ExpMethod instance and the lookup of the method.

Capturing a method-execution join point consists of capturing the evaluation of the method
body. This could be done by capturing the call of the method Method.apply within the class
ExpMethod or capturing the call of the method Exp.eval within the body of Method.apply. The
first choice is not conform to what we have mentionned at the head of this section about supporting
the CASB semantics by capturing the call of the method Exp.eval. The second choice does not
allow the differentiation between the expression of the method body from another expression type
(see Listing 5.1).

5.1.3.3 Modification on MetaJ

Method call The modification on MetaJ consists of adding an intermediate evaluation step be-
tween the ExpMethod evaluation and the method lookup. Listings 5.4 and 5.5 show the modification
on ExpMethod and the new expression type ExpMethodCall. The method eval(Environment) of
ExpMethod is modified by adding a target variable in the arguments environment (argsE) then
creating an instance of ExpMethodCall and evaluating it with the new argsE containing the
target instance. The two variables exp and args of the class ExpMethod is also passed to the

88 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

�
1 public class ExpMethod extends Exp {

...

3 Data eval(Environment localE) {

// evaluate the lhs (receiver)

5 Instance i = (Instance) this.exp.eval(localE).read();

// evaluate the arguments to get a new local environment

7 Environment argsE = new Environment(null , null , null);

this.args.eval(localE , argsE);

9 // add the receiver to the environment

argsE.add("target", new Data(i));

11 // create an instance of ExpMethodCall

ExpMethodCall methodCall = new ExpMethodCall(exp , methodId ,

args);

13 // evaluate the instance of ExpMethodCall

return methodCall.eval(argsE);

15 }

}
� �
Listing 5.4: The modified class ExpMethod

�
public class ExpMethodCall extends Exp {

2 private Exp exp;

private String methodId;

4 private ExpList args;

6 ExpMethodCall(Exp exp , String methodId , ExpList args) {

this.exp = exp;

8 this.methodId = methodId;

this.args = args;

10 }

12 Data eval(Environment localE) {

// lookup for the receiver instance

14 Instance thisObj = ((Instance)localE.lookup("target").value);

// lookup and apply method

16 Method m = thisObj.lookupMethod(this.methodId);

return m.apply(localE , thisObj);

18 }

}
� �
Listing 5.5: The intermediate representation of a method call

5.1. MODIFYING METAJ TO SUPPORT AOP 89

instance of ExpMethodCall in order to be used when matching method-call join points (call of
ExpMethodCall.eval).

Method execution In order to identify the method-execution join point, we just create a new
type of expression called ExpBodyMethod. In the apply method, we create an instance of this class
to encapsulate the body of the method then we evaluate it besides evaluating the body of the
method.

5.1.3.4 Possible join points

After making the above changes on the base interpreter, we can capture, using the pointcut
of Listing 5.1, the execution of all expression types of interest and decide to match or not the
corresponding join point depending on the existing aspects. This leads to a very rich join-point
model. For example, the instantiation join point is captured when testing if the expression being
evaluated is of type ExpNew. Also a if-then-else join point can be captured by matching the
evaluation of ExpIfThenElse instances. This is the role of a pointcut to test the current expression
(by the pointcut of Listing 5.1) and the corresponding Environment and decide to match or not
the join point. The main possible join point are:

– method call: ExpMethodCall
– method execution: ExpMethod
– field set: ExpAssign
– field get: ExpData

More details about pointcuts will be explained later in this chapter.

5.1.4 Processes of Aspect Interpreter

Now, we are going to identify the mechanisms that must be in the aspect interpreter sketched
in Listing 5.1 and to make the collaboration between the mechanisms existing in a weaver (see
Section 2.2). This work help us to properly identify what is common and what is specific between
different aspect interpreters.

In Section 2.2, the reify process was explained in terms of a compile-time weaver. Within
a runtime weaver, the reify process does not produce a list of shadows, which correspond to
program points, but directly produces join points. It is implemented by the pointcut pointcut

reify(Environment env, Exp exp): execution(Data (!(aop..*)).eval(..)), where the as-
pect interpreter accesses the expression being evaluated exp in the environment env. This mech-
anism should be common to all aspect interpreters.

The match process of a weaver takes a shadow, looks for all the aspects that match this
shadow, and returns a list of residues. For the interpreter, it is very similar: the match process
takes the expression captured by the pointcut and returns a list of Phi expressions. The match
process of the interpreter implements the application of the function ψ, which returns a list of
functions φ. This process should also be common between different aspect interpreters while the
semantics of matching an expression by an aspect and the returned list of expressions Phi are
specific to each language.

In terms of the CASB, the order process order the functions φ, which are implemented as
residues in a compile-time weaver and here as Phi expressions.

The mix process transforms the shadows in the weaver while it launches the interpretation of
the first Phi resulting from the order process in the aspect interpreter.

The identification of the 4 subprocesses in the aspect interpreter leads us to define what should
be common between different aspect interpreters and what should be specific.

Requirement 4 An aspect interpreter contains two parts: one is shared with other aspect inter-
preters and one is specific to each implemented AOPL. The mechanisms of matching an expression
is specific to each aspect interpreter.

90 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

SelectorAdviceBinding Aspect

Advice JoinPointSelector

PrimitiveSelector ComposedSelector

*

Figure 5.1: The class diagram representing the abstract aspect language

�
1 public abstract class JoinPointSelector {

public abstract boolean staticTest(Exp exp);

3

public abstract boolean dynamicTest(Environment env);

5 }
� �
Listing 5.6: The JoinPointSelector class

5.1.5 Implementing an Abstract Aspect-Oriented Language

The metamodel of AOPLs represents an abstract AOPL (see Figure 5.1). In this part, we are
going to give the semantics of this abstract language by implementing it as an interpreter by
respecting the specification given in Propositions 1, 2 and 4. This abstract language should be
used to implement concrete AOPLs. The common semantics will be implemented as a part of this
interpreter while the specific semantics will be implemented when implementing concrete AOPLs.

5.1.5.1 Join-Point Selector

The role of a join-point selector is to select or not a join point. As we mentioned before, a join
point always has both a static part and a dynamic part. The join-point model of AspectJ conforms
to this notion [55].

For these reasons, we implement the notion of join-point selector as a class JoinPointSelector
(see Listing 5.6). This class has two methods: staticTest(Exp) for matching the static part of
a join point and dynamicTest(Exp) for matching its dynamic part. Figure 5.1 shows the class

5.1. MODIFYING METAJ TO SUPPORT AOP 91�
1 public class Advice extends ExpS { }
� �

Listing 5.7: The class Advice implementing an advice

�
1 public class ExpProceed extends Exp {

public Data eval(Environment localE) {

3 Exp exp = (Exp)ProceedStack.pop();

Data data = exp.eval(localE);

5 ProceedStack.push(exp);

return data;

7 }
� �
Listing 5.8: The implementation of the expression proceed

diagram representing the join-point selectors in the abstract AOPL. A JoinPointSelector can be
either primitive or composed according to the Composite design pattern [49]. Composed selectors
are combined via the usual boolean operators.

5.1.5.2 Advice

An advice possesses a statement (advice body) to be executed when matching a join point. In
the general case, it is not necessary that this statement be a statement of the base language. In
AspectJ, an advice body is a Java statement except that it may contain the specific expression
proceed and a reference to the current join point (thisJoinPoint) but we suppose that the
advice is more general. Listing 5.7 shows the class Advice, which inherits from ExpS. This last
class represents a statement in MetaJ.

5.1.5.3 Proceed

The specific expression proceed is implemented as an expression class ExpProceed (see List-
ing 5.8). The evaluation of this expression implements the Proceed rule described in Section 5.1.
The execution of the method eval access a proceed stack implemented by the class ProceedStack,
pops the expression at the top of the stack and returns result of its evaluation. The expression
is re-pushed again in the stack, according to the rule Proceed, in order to be reused by the
incoming aspects matching the current join point and containing the expression proceed.

5.1.5.4 The class Phi

An instance of the class Phi (Listing 5.9) represents a function φ in the CASB. According
to the semantics described above, the evaluation of this instance must return the advice if the
evaluation of the dynamic test is positive (the residue matches the environment) and proceed if
the result is negative. For this reason, an instance Phi encapsulates an object, a selector/advice
binding, which contains the dynamic test and the advice.

5.1.5.5 Selector/Advice Binding

A selector/advice binding associates a join-point selector and an advice. Listing 5.10 shows the
implementation of selector/advice bindings by the class SelectorAdviceBinding.

Again, the methods staticTest and dynamicTest correspond to the two phases of matching.
The test itself is the responsibility of the join-point selector. During the second phase, in case the
join point is selected, the advice is returned.

92 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

�
1 public class Phi extends Exp {

SelectorAdviceBinding sadb;

3

public Phi(SelectorAdviceBinding sadb) {

5 this.sadb = sadb;

}

7

public Data eval(Environment localE) {

9 Advice result = sadb.dynamicTest(localE);

if (result == null)

11 return new ExpProceed ().eval(localE);

else

13 return result.eval(localE);

}

15 }
� �
Listing 5.9: The Phi class

�
1 public class SelectorAdviceBinding {

protected Advice advice;

3 protected JoinPointSelector jps;

5 public boolean staticTest(Exp exp) {

return this.jps.staticTest(exp);

7 }

9 public Advice dynamicTest(Environment env) {

if (jps.dynamicTest(env)) {

11 return this.advice;

} else

13 return null;

}

15 }
� �
Listing 5.10: The SelectorAdviceBinding class

5.2. ASPECT INSTANCES 93�
1 public interface Aspect {

public List <Phi > staticTest(Exp exp);

3 }
� �
Listing 5.11: The Aspect interface

Figure 5.2: The description of the link between instances and definitions (aspects and classes)

5.1.5.6 Aspect

According to Proposition 1, the aspect must provide, in its interface, the method staticTest.
Listing 5.11 shows the representation of an aspect as an interface containing the method
staticTest(Exp). This method should return a list of instances of Phi. In addition, the as-
pect should have a list of selector/advice bindings. The mechanism implementing how the aspect
calculates the list of instances of Phi using its bindings is specific to each AOPL.

5.2 Aspect instances

5.2.1 Link between aspect instances and aspect definition

In MetaJ, an instance of the class Class represents the definition of a class while an instance
of the class Instance represents an instance of the class and is linked to the corresponding Class

instance (see Figure 5.2). The aspect instances and definitions should be linked in the same manner.
In addition, an aspect could define methods and variables in the same manner than a normal class
(this is for example the case of AspectJ). For this reason, we change the implementation of an
aspect from the interface Aspect to the abstract class Aspect, which inherits from the class Class
of MetaJ and defines the method staticTest. Listing 5.12 shows this new implementation.

Similarly to the pattern Aspect/Class, we define the class AspectInstance (see Listing 5.13)
as a subclass of Instance.

94 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ�
1 public abstract class Aspect extends Class {

public abstract List <Phi > staticTest(Exp exp);

3 }
� �
Listing 5.12: The abstract class Aspect

�
1 public class AspectInstance extends Instance {

AspectInstance(Aspect instanceLink , DataList dataList) {

3 super(instanceLink ,dataList);

}

5 }
� �
Listing 5.13: The AspectInstance class

The class AspectInstance inherits the field instanceLink, which is used to link its instances
to the corresponding aspect definitions. The access to an aspect definition from an aspect instance
is done by this dynamic link (see Figure 5.2).

An aspect deployment mechanism defines when an aspect is instantiated and used in the
program. There are two types of aspect deployment mechanisms: static and dynamic deployment.
However, when an aspect is instantiated and deployed, its scope must be precisely specified. In
the following, we describe these two deployments types as well as their possible scoping strategies.

5.2.2 Static Deployment

In this type of deployment, the parts of the program that are affected by the aspect are
always affected, from the start to the end of the execution [89]. The possible scopes found for
this type of deployment are issingleton (the default strategy in AspectJ), perthis, pertarget
and percflow. For the sake of simplicity, we only consider the first one (issingleton) where a
single aspect instance has to be deployed in a specific environment. In Listing 5.14, the attribute
aspectEnv is used to store the aspect instances.

5.2.3 Dynamic Deployment

In this type of deployment, the aspect is applied or not depending on the program being in a
certain scope. To support a dynamic deployment, the language must provide two expressions for
explicit (un)deployment.

Let us consider the example of Listing 5.15. The aspect MyAspect contains a pointcut matching
the call of foo. The role of the instruction deploy is to instantiate and deploy the aspect MyAspect.
But with this type of deployment, we can imagine different types of aspect scope (and then different
semantics of deploy) like having a lexical scope over a specific statement, a dynamic scope or a
global scope [90].

Global scope The implementation of global scope with dynamic deployement is very similar to
the implementation of static deployment. When an aspect is instantiated and deployed, it
should be added to the aspect environment which can be the one described in Listing 5.14.
The semantics of deploy consists of simply adding the aspect instance to the attribute
aspEnv of the aspect Platform.

Lexical scope An example of lexical scoping is program text-based pointcuts of AspectJ such
as within and withincode. Since the lexical deployment cannot be done dynamically [90],
this strategy is not supported here.

Dynamic scope This imposes to take care about the aspect instances and their location (envi-
ronment).

5.2. ASPECT INSTANCES 95

�
1 public aspect Platform {

Environment aspectEnv;

3 static List <AspectInstance > getAspects () {

return ..;

5 }

7 static List <Phi > functionPsi(Environment env , Exp exp) {

List <Phi > list = new ArrayList <Phi >();

9 for (AspectInstance anAspect : getAspects ()) {

list.addAll (((Aspect)anAspect.getInstanceLink ()).staticTest(

exp));

11 }

return list;

13 }

15 pointcut reify(Environment env , Exp exp) :

execution(Data (!(aop ..*)).eval (..))

17 && args(env)

&& this(exp);

19

Data around(Environment env , Exp exp) : reify(env ,exp) {

21 // match subprocess

List <Phi > phiList= match(env , exp);

23 if (phiList.size() == 0)

return proceed(env , exp);

25 else {

// order subprocess

27 order(phiList);

// mix subprocess

29 return mix(exp , env , phiList);

}

31 }

33 public static List <Phi > match(Environment env , Exp exp) {

return functionPsi(env , exp);

35 }

37 public static void order(List <Phi > list) { .. }

39 public static Data mix(Exp exp , Environment env , List <Phi >

phiList) {

// prepare the proceed stack

41 Proceed.proceedstack.push(exp);

for (Phi phi: phiList) {

43 Proceed.proceedstack.push(phi);

}

45 return phiList.get (0).eval(env);

}

47 }
� �
Listing 5.14: Platform with static deployment

96 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ�
1 MyClass c = new MyClass ();

deploy(MyAspect)

3 {

c.foo();

5 }

c.foo();
� �
Listing 5.15: An example dynamic aspect deployment

�
public aspect Platform {

2 ..

static List <Phi > functionPsi(Environment env , Exp exp) {

4 List <Phi > list = new ArrayList <Phi >();

for (AspectInstance anAspect : getAspects(env)) {

6 list.addAll (((Aspect)anAspect.getInstanceLink ()).staticTest

(exp));

}

8 return list;

}

10 }
� �
Listing 5.16: Platform with dynamic deployment

Supporting this type of scoping strategy consists of two parts. The first one is the modification
of the method getAspects in the aspect Platform in order to return the aspect instances
existing in the environment in which the captured expression is evaluated (parameter of
the method eval). Listing 5.16 shows these changes. The second is the implemenation of
deploy as an expression class ExpDeploy. This class contains two variables: statement and
aspectExp (see Listing 5.17). This class represents a deployment of aspectExp over the
statement represented by statement. Evaluating an expression of type ExpDeploy consists
of (see Listing 5.17):

– Creating the aspect instance relative to aspectExp.
– Adding this instance to the environment in which this expression is evaluated (line 8).
– Launching the evaluation of the statement (line 9). Because the environment will be used

to evaluate all statement sub-expressions, the aspect instance is propagated and will be
available during the evaluation of all these sub-expressions hence the scope is dynamic.

– Removing the aspect instance from the environment once the evaluation of the statement
is finished (line 11).

5.2.4 Collaboration between subprocesses

Listing 5.14 details the interpretation of a join point (exp, env). The flow of interpretation and
the collaboration between the 4 subprocesses are the following:

– The reify pointcut captures the execution of an expression exp in an environmentenv.
– The advice takes the expression and the environment and launches the execution of the

subprocesses match, order and mix.
– The match subprocess (represented by the static method match) takes the expression and

returns a list of instances of Phi corresponding to the aspects that statically match the
expression.

– The order subprocess (represented by the static method order) orders the result of the
match subprocess. The ordering depends on the semantics of the desired aspect-oriented
language. For example, when implementing AspectJ, we can imagine that this method takes

5.3. GENERALIZATION 97�
public class ExpDeploy extends Exp {

2 protected ExpS statement;

protected Exp aspectExp;

4 public Data eval(Environment localE){

// create an aspect instance

6 AspectInstance asp = (AspectInstance) aspectExp.eval(localE).

read();

// put the aspect instance in the aspects environment

8 localE.add("MyAspect", new Data(asp));

Data data = statement.eval(localE);

10 // remove the aspect from the aspect environment

localE.remove("MyAspect");

12 return data;

}

14 }
� �
Listing 5.17: The deployment expression ExpDeploy

the declare precedence statements into account to order the aspects (the corresponding
instances of Phi).

– The mix subprocess initializes the proceed stack according to the CASB semantics then
starts the execution of the first instance of Phi.

5.3 Generalization

In this section, we overview what we did in this chapter in order to define the methodology for
implementing concrete AOPLs using our approach.

5.3.1 Separation between base and aspect interpreter

The separation between the base and the aspect interpreter is very effective in order to improve
the understanding and the extensibility of each interpreter. The general architecture shown in
Figure 5.3 displays each interpreter as an independent component and displays the interaction
between the two interpreters. The interaction between the two components consists of two types
of messages:

– A join point emitted by the base interpreter at each step of expression evaluation.
– Data resulting from the evaluation of the join point by the aspect interpreter with the existing

aspects.

Advice of the Aspect-Oriented language can be written or not in part in the base language. The
aspect language can be an extension of the base language or not. As an architecture, there are
three possibilities:

1. The aspect interpreter is a full extension of the base interpreter and the advice actions are
interpreted in the aspect interpreter. The two interpreters share the object heap.

2. The aspect interpreter delegates the evaluation of the base expressions (in the advice) to the
base one. This case is only an optimization of the first one.

3. The aspect interpreter has nothing to do with the base interpreter. This is the case where
the aspect language is independent from the base one (the advice body does not contains
any base level expression).

98 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

Figure 5.3: A general architecture of the base and the aspect interpreter

5.4. LIGHTWEIGHT ASPECTJ 99

Figure 5.4: The decomposition of the aspect interpreter in two parts

5.3.2 Separation between what is common and what is specific in the
aspect interpreter

After separating the base and the aspect interpreter, we have to explore the aspect interpreter
in order to ensure its extensibility to concrete aspect-oriented languages. Figure 5.4 shows that the
aspect interpreter is decomposed into two parts, one consists of the aspect Platform and another
contains the core semantics of the abstract aspect language. The aspect Platform implements
the four subprocesses defined in Listing 5.1.4 while the abstract language interpreter consists of
the implementation of the Abstract Syntax Tree with its associated semantics as described above
(Section 5.1).

5.3.3 Prototyping and composition AOPLs

Figure 5.5 shows how the abstract AOPL can be extended in order to prototype a concrete one.
The aspect Platform is not modified but the abstract aspect language interpreter is extended.
As an example, Section 5.4 discusses the prototyping/implementation of a lightweight version of
AspectJ. Once we have several languages implemented in the above way (extending the abstract
aspect-oriented language), they can be composed as we compose several aspects in the abstract
language.

5.4 Lightweight AspectJ

Lightweight AspectJ is an AOP extension of MetaJ. It consists of implementing several AspectJ-
like pointcut designators as well as intertype declaration. Since the semantics of AspectJ pointcuts
is deeply described in the following chapters, the prototype of Lightweight AspectJ is a proof of
concept and hence the semantics of pointcut designators might be slightly different from the As-
pectJ one.

5.4.1 Pointcut designators

With the methods staticTest and dynamicTest, a join-point selector deals with static match-
ing (as performed in the semantics by the function ψ) as well as dynamic matching (as performed
by the function φ). It does so by aggregating the results coming from its constituent primitive
selectors, instances of the class PrimitiveSelector, which implements the notion of pointcut des-
ignators of AspectJ. Each pointcut designator is implemented as a subclass of PrimitiveSelector
with an appropriate definition of the methods staticTest and dynamicTest, as specified by the
semantics of AspectJ (see [94]). While the method staticTest returns true if the pointcut matches
the static information contained in the join point: method name, static type, field name, etc., the

100 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

Figure 5.5: (a) General architecture (b) Implementation and composition of different aspect-
oriented languages

�
public class AspectJImpl extends Aspect {

2 List <SelectorAdviceBinding > bindings;

public AspectJImpl(List <SelectorAdviceBinding > bindings) {

4 this.bindings = bindings;

}

6 public List <Phi > staticTest(Exp exp) {

ArrayList <Phi > phis = new ArrayList <Phi >();

8 for (SelectorAdviceBinding binding: bindings) {

if (binding.staticTest(exp)) phis.add(new Phi(binding));

10 }

return phis;

12 }

}
� �
Listing 5.18: The implementation of a lightweight AspectJ aspect

5.4. LIGHTWEIGHT ASPECTJ 101

method dynamicTest deals with the runtime information contained in the join point: dynamic
type, receiver type, etc.

5.4.1.1 Call

The static information of the join point is sufficient for the designator call to select a join
point. Listing 5.19 gives the implementation of the corresponding primitive selector subclass Call.
The method staticTest tests the type of expression to choose: ExpMethodCall (Line 11). This
type was added to the AST of MetaJ because the class ExpMethod is not sufficient to capture the
method-call join point as explained before. To perform the matching, we compare the static type
(e.getStaticType()) of the evaluated expression and the className attribute (Line 13), the
method name of the ExpMethodCall (e.method) and the methodName attribute (Line 14) while
the method dynamicTest always returns true.

5.4.1.2 Execution

The static information of the join point is also sufficient for the designator execution to
select or not a join point. Listing 5.19 gives the implementation of the corresponding primi-
tive selector subclass Execution. The method staticTest tests the type of expression to choose
ExpMethodBody (Line 34). This type was also added to the AST of MetaJ to capture the method-
execution join point. To perform the matching, we compare the static type (e.getStaticType())
of the evaluated expression and the className attribute (Line 36), the method name of the
ExpMethodBody (e.method) and the methodName attribute (Line 37) while the method dynamicTest

always returns true.

5.4.1.3 This

The designator This (see Listing 5.20) tests whether the current object (this) at the current
join point is of a specified type. The method staticTest of the corresponding primitive selec-
tor subclass always returns true whereas the type this is determined at runtime by the method
dynamicTest. This method looks the environment up for the value having the name "this" then
checks whether the type of the resulting instance is from the type given in the designator or a
subclass of it.

5.4.1.4 Target

The implementation of the designator Target is very similar to the implementation of the
designator This (see Listing 5.20) except that we look for the variable "target" instead of "this".

5.4.2 Inter-type declarations

Whereas pointcuts and advice make it possible to alter the behavior of the program, inter-type
declarations make it possible to alter its structure (see Chapter 2). Let us sketch how we can
implement this feature in our lightweight version of AspectJ. The creation of a class in MetaJ is
the result of evaluating an instance of ExpClass (see Listing 5.21). If we capture the evaluation of
this type of expression, inter-type declaration can be implemented as (behavioral) aspects applied
to the base interpreter. This consists of adding a new instance of Exp to expMethodList (Line 5
in Listing 5.21) to add a new method or adding a new instance of Exp to expDataList (Line 4 in
Listing 5.21) to add a new field.

5.4.3 Parsing

The LL(k) grammar of Java used in MetaJ is extended to support the extension. While the
extension of the MetaJ interpreter to support AOP was modular, unfortunately the extension

102 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

�
1 public class Call extends PrimitiveSelector {

String className;

3 String methodName;

5 public Call(String classname , String methodname) {

this.className = classname;

7 this.methodName = methodname;

}

9

public boolean staticTest(Exp exp) {

11 if (exp.getClass ().getName ().equals("ast.ExpMethodCall")) {

ExpMethodCall e = (ExpMethodCall) exp;

13 return e.getStaticType ().equals(this.className)

&& e.method.equals(this.methodName);

15 } else

return false;

17 }

19 public boolean dynamicTest(Environment env) {

return true;

21 }

}

23

public class Execution extends PrimitiveSelector {

25 String className;

String methodName;

27

public Execution(String classname , String methodname) {

29 this.className = classname;

this.methodName = methodname;

31 }

33 public boolean staticTest(Exp exp) {

if (exp.getClass ().getName ().equals("ast.ExpMethodBody")) {

35 ExpMethodBody e = (ExpMethodBody) exp;

return e.getStaticType ().equals(this.className)

37 && e.method.equals(this.methodName);

} else

39 return false;

}

41

public boolean dynamicTest(Environment env) {

43 return true;

}

45 }
� �
Listing 5.19: Lightweight AspectJ - implementation of the selectors Call and Execution

5.4. LIGHTWEIGHT ASPECTJ 103

�
1 public class This extends PrimitiveSelector {

String classname;

3

public This(String classname) {

5 this.classname = classname;

}

7

public boolean staticTest(Exp exp) {

9 return true;

}

11

public boolean dynamicTest(Environment env) {

13 try {

Instance ins = (Instance) env.lookup("this").value;

15 ast.Class cls = (ast.Class) Main.globalE.lookup(this.

classname).value;

return ins.instanceLink.equals(cls)

17 || ins.instanceLink.isSubClassOf(this.classname);

19 } catch (NullPointerException nullpointer) {

return false;

21 }

}

23 }

25 public class Target extends PrimitiveSelector {

String classname;

27

public Target(String classname) {

29 this.classname = classname;

}

31

public boolean staticTest(Exp exp) {

33 return true;

}

35

public boolean dynamicTest(Environment env) {

37 try {

Instance ins = (Instance) env.lookup("target").value;

39 ast.Class cls = (ast.Class) Main.globalE.lookup(this.

classname).value;

return ins.instanceLink.equals(cls)

41 || ins.instanceLink.isSubClassOf(this.classname);

43 } catch (NullPointerException nullpointer) {

return false;

45 }

}

47 }
� �
Listing 5.20: Lightweight AspectJ - implementation of the selectors This and Target

104 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

�
1 public class ExpClass extends Exp {

private String name;

3 private String upId;

private Exp expDataList;

5 private Exp expMethodList;

7 ExpClass(String upId , String name ,

Exp expDataList , Exp expMethodList) {

9 this.upId = upId;

this.name = name;

11 this.expDataList = expDataList;

this.expMethodList = expMethodList;

13 }

15 public Data eval(Environment localE) {

// get father class

17 Class c1;

if (this.upId != null)

19 c1 = (Class)(Main.globalE.lookup(this.upId).read());

else

21 c1 = null;

// create a new data list

23 DataList dataList = (DataList)this.expDataList.eval(localE).

read();

// create a new method list

25 MethodList methodList = (MethodList)this.expMethodList.eval(

localE).read();

// create a new class

27 Class c2 = new Class(c1 , dataList , methodList);

// add the class to the global environment

29 Main.globalE.add(this.name , new Data(c2));

// dummy return value

31 return null;

}

33

public String toString () {

35 return "class " + this.name

+ " extends " + this.upId + " {\n"

37 + this.expDataList.toString ()

+ this.expMethodList.toString () + "}\n";

39 }

}
� �
Listing 5.21: The ExpClass implementation

5.5. CONCLUSION 105

is not modular for the parser (due to some limitations of JavaCC: it does not permit the ref-
erence of a grammar file from another one). The Java2ExpVisitor is also extended to visit
the AspectJ nodes and generate the corresponding runtime entities. For example, when it visits
ASTAspectDeclaration, it returns an instance of AspectJImpl and adds it to the list of aspect
instances in the platform (with default scope).

5.5 Conclusion

In this chapter, we have defined an aspect interpreter for an abstract aspect-oriented language.
The aspect interpreter is also split into two parts, one is general and it will be found in different
aspect-oriented languages, the other is specific to each aspect-oriented language. The implementa-
tion of a concrete aspect language consists of extending the abstract interpreter without changing
the common part. We have presented a general architecture for the modular composition of the
aspect and the base interpreter.

We have also described a framework that can be used to prototype aspect-oriented languages
but on top of an interpreted subset of Java. One way of generalizing this work to Java needs access
to the JVM and to modify it, which is a complex task with portability issues. The next chapter
shows how the implementation of the framework for Java can be realized, without changing the
JVM, with a compiler-based two-step weaving mechanism that instruments the program instead
of instrumenting the interpreter.

106 CHAPTER 5. MODIFYING AN EXISTING JAVA INTERPRETER: METAJ

Chapter 6
CALI: Common Aspect Language
Interpreter

Contents
6.1 Compiler-based two-step weaving . 107

6.2 Semantics of CALI . 108

6.3 Architecture of CALI . 109

6.4 Abstract Aspect-Oriented language 113

6.5 Principles of matching a join point by Join-point Selectors 116

6.6 Implementing a concrete AOPL with CALI 116

In the previous chapter, we have seen how we can construct aspect languages on top of an
incomplete version of Java by extending MetaJ, the interpreter of this Java version written in
Java itself. Implementing an effective framework imposes the use of the whole of Java as base
language. Implementing the approach of the previous chapter with a full Java interpreter (or a
JVM) is complex and far from our goals which are: implementing a framework for easy prototyping,
composing and testing of AOPLs.

In this chapter, we use a compiler-based two-step weaving mechanism which facilitates the
construction of our framework on top of the whole of Java. Note that we do not need to care about
performance because it is not our objective but we will focus on the design and the extensibility
of the interpreter. We name this framework CALI for (Common Aspect Language Interpreter).

CALI reuses AspectJ to perform a first step of static weaving, which we complement by a
second step of dynamic weaving, implemented through a thin interpretation layer. This can be
seen as an interesting example of reconciling interpreters and compilers, the dynamic and the
static world.

This chapter is organized as follows: Section 6.1 describes the compiler two-step weaving mech-
anism. Section 6.2 explains the semantics of join point interpretation using the CASB. Section 6.3
overviews the architecture of CALI and describes its implementation as an (AspectJ) aspect
Platform. The abstract language interpreted by Platform is described in Section 6.4. Finally,
Section 6.6 describes how to use CALI to implement concrete aspect languages.

6.1 Compiler-based two-step weaving

In the previous chapter, we have seen the interpreter-based two step weaving approach. In this
chapter, the approach is slightly different: instead of instrumenting the interpreter, the program
itself is instrumented. We call this a compiler-based two-step weaving approach. The first step takes

107

108 CHAPTER 6. CALI: COMMON ASPECT LANGUAGE INTERPRETER

place at compile time, the second step in CALI at runtime. At compile time, we weave a generic
aspect, as in the previous chapter, called Platform into the base-level class code to introduce an
indirection to our interpreter. Each generated join point is evaluated by the interpreter in the
context of existing aspects in order to determine which aspects match it.

In fact, a Java interpreter can be represented by int : pJava×d where int is a program that takes
a program p (static information) and some data d (dynamic information). Using this notation, the
relation between a compiler-based two-step weaving and an interpreter-based two-step weaving can
be explained as follows:

1. Partially evaluating int with pJava returns a program equivalent to pJava in the implemen-
tation language of the interpreter int.

2. Interpreter-based two-step weaving consists of instrumenting int in order to introduce AOP
semantics.

3. Partially evaluating the instrumented int with p is equivalent to partially evaluate int with
an instrumented version of p.

Instead of weaving the aspect Platform into the base interpreter as in Chapter 5, it is wo-
ven into the base program. The pointcut of the aspect Platform implements the reify process
described in [63] (first step of weaving). At runtime, the advice of the aspect Platform evaluates
the current join point with aspects, selects the set of aspects that match this join point, orders
and executes them (second step of weaving). AspectJ is used to capture join points then, the
framework makes it possible to:

– Proceed with these join points. This issue is detailed in 6.4.3.
– Access to the information reified by AspectJ. This issue is detailed in 6.4.6.
The difference between a weaver and our interpreter is that, when using a weaver, the four

subprocesses (reify, match, order and mix) are executed at compile time while in our approach
the reify process is still executed at compile time but the three others are executed at runtime.

6.2 Semantics of CALI

We base the semantics of CALI (see Section 2.2.6.2) on a modified version of CASB to introduce
the notion of aspect group.

Let us reconsider what happens when a base instruction i is executed. When no aspect statically
matches, ψ(i) returns an empty list of statically matching aspects and the woven program simply
behaves as the base program:

ψ(i) = ε (i : C,Σ)→b (C ′,Σ′)
NoAdvice

(i : C,Σ, P)→ (C ′,Σ′, P)

Otherwise, ψ returns a list of instructions φ, which is denoted by Φ:

ψ(i) = Φ α(Φ,Σ) = (φ,Φ′)
Around

(i : C,Σ, P)→ (φ : pop : C,Σ, (Φ′ :: [i]) : P)

The rules that we show here are actually a slightly generalized version of the rules that have
been presented in the state of the art, thanks to the introduction of the function α. We could
consider that Φ is a set but, in the case of AspectJ, it is important to consider Φ as a list.
This corresponds to the fact that some static scheduling takes place. This ordering will not be
questioned by the other rules, although it could by appropriately defining the function α. We have
introduced this function, not present in the initial CASB rules, to show that there would be the
possibility here to perform dynamic scheduling that can be needed in some AOPLs implemented
on top of CALI. Indeed, in our extended rules the function α chooses, possibly based on Σ, the
first instruction φ to consider as well as the instructions Φ′ to consider if the aspect proceeds.

6.3. ARCHITECTURE OF CALI 109

For example, this choice is static in AspectJ: α simply returns the head φ and tail Φ′ of Φ.
The instruction φ replaces the advised instruction/join point i and the list Φ′, with the tagged
instruction i, i, added at its end, is pushed on the proceed stack.

In the initial CASB rules, the proceed stack is organized as a stack of instructions, we have
chosen a different organization here: the proceed stack is a stack of aspect groups, where an aspect
group is a list of instructions for statically matching aspects terminated by the corresponding
advised instruction. All along the execution, the current aspect group, at the top of the proceed
stack, holds the current join point together with the pending aspects.

The execution of φ is followed by an instruction pop, the corresponding rule Pop is not modified:

Pop
(pop : C,Σ,Φ : P)→ (C,Σ, P)

Let us now see what happens when an instruction proceed occurs in a piece of advice:

α(Φ,Σ) = (φ,Φ′)
Proceed

(proceed : C,Σ,Φ : P)→ (φ : push φ : C,Σ,Φ′ : P)

The current aspect group is retrieved on top of the proceed stack. The same scheduling function
α as in the Around rule is used. A new instruction φ (a statically matching aspect or the join
point) replaces proceed and the current aspect group is updated. An instruction push follows the
execution of the instruction φ. This instruction does not put a new element on top of the proceed
stack but rather adds an instruction at the beginning of the current aspect group:

Push
(push φ : C,Σ,Φ : P)→ (C,Σ, (φ : Φ) : P)

The instruction push is used to rebuild the initial aspect group in order to cater for multiple
instructions proceed in the same advice.

These rules will be used in the next sections in order to build our framework for prototyping
and composing AOPLs.

6.3 Architecture of CALI

CALI represents a good example of mixing together compilation and interpretation. The base
program runs as a normal Java program on a standard JVM while aspects are partially interpreted.
All the aspects (from any language implemented with CALI) must be translated, using a parser,
to a specific structure (in Java) defined by the abstract aspect language, and they are represented
at runtime by Java objects conforming to this specific structure. As we said, two-step weaving [33]
is used to weave the interpreted aspects into the compiled Java code:

1. The first step takes place in AspectJ at compile time, through an aspect called Platform

(see Listing 6.1), which results in the instrumentation by AspectJ of all possible join points
in the base program by defining a pointcut call(* *.*(..))|| execution(* *.*(..))||

set(* *)...;

2. The second step takes place at runtime, when the advice of the aspect Platform, which
behaves as an interpretation layer, evaluates the current AspectJ join point (accessed through
thisJoinPoint) by looking for matching aspects before executing them. The “base” Java
parts of the selected advices are then again executed as plain Java code.

The reify process is here implemented as a pointcut which, at runtime, produces all possible
join points in the base program (pointcut reifyBase) which should be associated with another
pointcut (pointcut reifyAdvice) in the case of a language that allows the reifying of its advices.
The rest of the process is very similar to static weaving, except that we are dealing with runtime
entities. The around advice of Platform directly implements the rule Around of the semantics,
where the combination of the calls to match and order implements the function Ψ.

110 CHAPTER 6. CALI: COMMON ASPECT LANGUAGE INTERPRETER

Figure 6.1: The architecture of CALI

Exp

+ eval(JoinPoint) : Object

Phi

+ eval(JoinPoint) : Object

Execute

+ eval(JoinPoint) : Object

Figure 6.2: The class diagram of expressions used in CALI

6.3. ARCHITECTURE OF CALI 111

�
public aspect Platform {

2 ...

pointcut reifyBase ():

4 (call(* *.*(..)) || execution (* *.*(..)) || set(* *) ...)

&& !within(java ..*)

6 && !within(org.aspectj ..*)

&& !within(aspectj ..*);

8 pointcut reifyAdvice (): ...

pointcut reify (): reifyBase () || reifyAdvice ();

10 Object around (): reify () {

List <Phi > phis = match(thisJoinPoint);

12 if (phis == null)

return proceed ();

14 else {

phis = order(thisJoinPoint , phis);

16 Execute jp = new Execute () {

public Object execute () {

18 return proceed ();

}

20 };

AspectGroup aspectGroup = new AspectGroup(phis , jp);

22 return mix(thisJoinPoint , aspectGroup);

}

24 }

26 public static List <Phi > match(JoinPoint jp) { ... }

public static List <Phi > order(JoinPoint jp , List <Phi > phis) {

28 List <Phi > pseudoAspectGroup = aspectJOrder(phis);

return pseudoAspectGroup;

30 }

public static Object mix(JoinPoint jp ,

32 AspectGroup aspectGroup) {

Phi phi = aspectGroup.remove (0);

34 ProceedStackManager.push(aspectGroup);

Object o = phi.eval(jp);

36 ProceedStackManager.pop();

return o;

38 }

}� �
Listing 6.1: The aspect Platform

112 CHAPTER 6. CALI: COMMON ASPECT LANGUAGE INTERPRETER�
public class ProceedStackManager {

2 public static HashMap <Thread , Stack <AspectGroup >> map = new

HashMap <Thread , Stack <AspectGroup >>();

public synchronized static void push(AspectGroup group) {

4 Stack <AspectGroup > s = map.get(Thread.currentThread ());

try {

6 s.push(group);

} catch (NullPointerException e) {

8 map.put(Thread.currentThread (), new Stack <AspectGroup >());

s = map.get(Thread.currentThread ());

10 s.push(group);

}

12 }

public synchronized static void pop() {

14 map.get(Thread.currentThread ()).pop();

}

16 public synchronized static AspectGroup peek() {

return map.get(Thread.currentThread ()).peek();

18 }

}
� �
Listing 6.2: The proceed stack manager

The method match takes the current join point as a parameter and returns a list of Phi

instances. This list is built by calling the method staticTest on each available aspect instance
and by creating a Phi instance for each matching aspect. The class Phi is a subclass of a general
class of expressions Exp (see Figure 6.2).

The method order orders the list according to the semantics of aspect precedence in AspectJ
and adds the join point at the end of the ordered list, as an instance of a subclass of Phi.

The method mix pushes the aspect group onto the proceed stack and evaluates the first aspect.
As a first step, this evaluation will call the method dynamicTest of the aspect. The proceed stack
is then trimmed and the result of the evaluation returned. Each instance of Phi is basically a pair
dynamic test/advice, as seen in Chapter 5. except the last one, which is the join point wrapped as
an instance of Phi. The wrapping is done inside the constructor of the class AspectGroup, which
takes as parameters the list of instances of Phi and an instance of the class Execute representing
the advised join point. This class will be detailed later when we explain how to proceed with the
advised join point. The evaluation starts then with the first instance of Phi. The dynamic test
is performed. In the case of a positive result, the corresponding advice is executed, otherwise a
special aspect-level instruction, proceed, is executed and the execution proceeds with the next
instance of Phi.

Figure 6.1 shows the architecture of CALI. Due to the compiler two-step weaving, the join
points are directly communicated from the instrumented base program instead of the base inter-
preter as we have seen with the interpreter two-step weaving in Chapter 5.

6.3.1 Proceed stack management

The ProceedStackManager class (Listings 6.2) implements the proceed stack of CALI. Its
interface contains three methods: push, pop and peek.

In a concurrent context, each proceed stack corresponds to a thread. For this reason, our
proceed-stack manager is thread-aware. We define a stack for each thread. This is implemented by
the HashMap<Thread, Stack<Exp>> map attribute. This attribute links the thread to its stack.
Each time one of the methods push, pop and peek is called, we must get the current thread in

6.4. ABSTRACT ASPECT-ORIENTED LANGUAGE 113�
abstract class JoinPointSelector {

2 abstract boolean staticTest(JoinPoint jp);

abstract boolean dynamicTest(JoinPoint jp);

4 }� �
Listing 6.3: The class JoinPointSelector

�
public abstract class Advice <G> extends Exp {

2 public JoinPoint thisJoinPoint;

public Object eval(JoinPoint jp) {

4 thisJoinPoint = jp;

return this.adviceexecution ();

6 }

public G proceed () throws java.util.EmptyStackException {

8 Exp exp = ((AspectGroup)ProceedStackManager.peek()).pop();

G result = (G) exp.eval(thisJoinPoint);

10 ((AspectGroup)ProceedStackManager.peek()).push(exp);

return result;

12 }

public abstract G adviceexecution ();

14 public void deploy(Aspect anAspect){ .. }

public void undeploy(Aspect anAspect){ .. }

16 }
� �
Listing 6.4: Generic part of the implementation of a piece of advice in CALI

order to retrieve the proper stack.

6.4 Abstract Aspect-Oriented language

Similarly to the approach described in Chapter 5, each aspect is represented by an in-
stance of a class Aspect, which encapsulates a list of selector/advice bindings, instances of
SelectorAdviceBinding. Each selector/advice binding contains a join-point selector, instance
of a class JoinPointSelector, and an advice, instance of a class Advice. Even the structure is
the same than the one used in the previous chapter, the implementation of some classes is slightly
different as we will see in the following.

6.4.1 Join-point selector

As we said before, the join point selector selects a join point in two steps, a static and a dynamic
step, implemented through the methods staticTest and dynamicTest (see Listing 6.3). The
difference between the class JoinPointSelector in this chapter and the one in Chapter 5 is
due to the representation of a join point as an instance of JoinPoint instead of as a pair (Exp,
Environment).

6.4.2 Advice

A piece of advice in CALI is represented using Java closures in the form of anonymous in-
ner classes. Each advice is an instance of the generic class Advice (see Listing 6.4). The type
G defines the return type of the advice. The class Advice contains an abstract method called
adviceexecution(), which must be implemented when defining a concrete subclass. This method

114 CHAPTER 6. CALI: COMMON ASPECT LANGUAGE INTERPRETER

defines the advice body. The return type of this method is the generic type given to the class
Advice. For example, the following AspectJ piece of advice:

MyClass around(): p(){

System.out.println(thisJoinPoint.getSourceLocation());

return proceed();

}

is translated as follows:

new Advice<MyClass>(){

public MyClass adviceexecution(){

System.out.println(thisJoinPoint.getSourceLocation());

return proceed();

}

}

Here we define a piece of advice which returns an instance of MyClass. As a result, the return
type of adviceexecution() is MyClass. The body of this method encapsulates the code of the
AspectJ advice. The execution of this method will generate an adviceexecution join point which
will be captured by an adviceexecution pointcut, a primitive AspectJ pointcut, when imple-
menting AspectJ on top of CALI in the next chapter. The matching will be done by verifying that
the join point is of type: an execution join point of Advice.adviceexection().

The method proceed of the class Advice, which should be called within adviceexecution,
implements the rule Proceed in the semantics. It retrieves the expression to be executed from
the proceed stack (ProceedStackManager.peek().pop()), and launches the evaluation (see List-
ing 6.4 - note that the casts to AspectGroup are only used for documentation purposes). The
expression could be an instance of Phi or Execute which will be detailed in Section 6.4.3.

The class Advice also has deploy and undeploy methods in order to be called within
adviceexecution to deploy or undeploy the corresponding aspect. This will be detailed later
in the chapter.

6.4.3 Proceed

We say that all our aspects are of type around because an around aspect can be used to
implement the two other types of aspect (before and after). When an aspect proceeds, the next
aspect that matches the join point will be executed or the captured join point will be executed
when there are no more aspects. Let us explain how our framework supports this feature.

Calling proceed within the advice of the aspect Platform is a simple way to execute the
matched join point. However, according to the semantics of CALI, it is up to the mix process to
perform this execution. The main key that we use to execute the advised join point is that we
instanciate the class Execute (see Figure 6.2) in the advice of Platform as a Java closure (in
the form of anonymous inner classes). A closure is a function that captures the bindings of free
variables in its lexical context. Consider the following code which is an excerpt from Platform

advice:

new Execute() {

public Object execute() {

return proceed();

}

}

The method execute (constituting the closure) is dynamically defined and refers to proceeding
with the join point. Calling the method execute will execute the advised join point. In CALI, when
a join point is captured, all the returned instances of Phi (except the first one which is directly

6.4. ABSTRACT ASPECT-ORIENTED LANGUAGE 115�
public class SelectorAdviceBinding {

2 JoinPointSelector jps;

Advice advice;

4 public SelectorAdviceBinding(JoinPointSelector jps ,

Advice advice) {

6 this.jps = jps;

this.advice = advice;

8 }

public boolean staticTest(JoinPoint jp) {

10 return jps.staticTest(jp);

}

12 public Advice dynamicTest(JoinPoint jp) {

return (jps.dynamicTest(jp))? advice : null;

14 }

}
� �
Listing 6.5: The implementation of selector/advice bindings

�
1 public abstract class Aspect {

public abstract List <Phi > staticTest(JoinPoint jp);

3 public void deploy () { .. }

public void undeploy () { .. }

5 }
� �
Listing 6.6: The class Aspect

executed) are encapsulated within an instance of AspectGroup and pushed on the proceed stack
(this is done in the arround advice of Platform). In addition, the instance of Execute is added
(according to the CASB to represent the captured join point). When the last aspect proceeds, the
framework pops the instance of Execute and calls its method execute() (as all the instances of
Phi).

6.4.4 Selector/Advice Binding

The class SelectorAdviceBinding (See Listing 6.5) implements the selector/advice binding
notion of the abstract language. This is similar to the class SelectorAdviceBinding of Chapter 5
except it uses, as mentioned before, a different join point representation.

6.4.5 Aspect

The interface of an aspect (Listing 6.6) provides the method staticTest(JoinPoint) which
returns a list of Phi instances. As we said when extending MetaJ, the mechanism implementing
how the aspect calculates the list of Phi instances using their selector/advice bindings will be
implemented for each concrete AOPL.

In order to allow dynamic deployement, the interface of an aspect also provides two other
methods: deploy and undeploy. When calling the method deploy (undeploy resp.) on an instance
of Aspect, the instance will be added (removed resp.) to the aspect environment.

6.4.6 Reflective access to the join point

As the thisJoinPoint field of the class Advice contains the reference to the advised join point,
access to this field within the advice body (i.e. from the body of Advice.adviceexecution())

116 CHAPTER 6. CALI: COMMON ASPECT LANGUAGE INTERPRETER

gives access to the advised join point, as a result, gives access to all the reflective information of
the join point provided by AspectJ itself.

6.5 Principles of matching a join point by Join-point Selec-
tors

Each join point encapsulates the corresponding signature (defined by the AspectJ weaver)
in addition to corresponding dynamic information (all the associated information, signature and
dynamic, is accessible at runtime using thisJoinPoint). At runtime, the advice Platform takes
the current join point and send it to be evaluated by all the join-point selectors of the existing
aspect instance. The role of join-point selectors will be to compare the signature of the join point
with the signature specified in each join-point selector.

Requirement 5 The principle of matching in any Aspect-Oriented language implemented using
CALI is based on the join-point selector comparing the information associated with the join point
captured by Platform with the signature specified in the join-point selector.

This feature will be clarified in Chapter 7 where the pointcut designators of AspectJ are imple-
mented as join-point selectors.

6.6 Implementing a concrete AOPL with CALI

In this section, we describe how to use CALI for implementing concrete AOPL. The language
designer must provide:

– The implementation of aspects as a class that implements the aspect interface, in particular
the method staticTest(JoinPoint).

– The implementation of selectors that inherit from JoinPointSelector. Each selec-
tor must implement the two methods boolean staticTest(Joinpoint) and boolean

dynamicTest(Joinpoint). The first one defines whether the selector should match the static
part of the join point, this means the parts that can be determined at compile time even if
this matching of the join point is done by interpretation at runtime because the instance of
JoinPoint contains several pieces of static information (accessible by the getStaticPart()

provided by the interface of the class JoinPoint). The second one defines whether the selec-
tor should match the dynamic part of the join point by accessing the runtime information
using methods like getThis(), getTarget(), etc. provided by the JoinPoint interface.

– The implementation of advice. There are two cases: the first is that the advice language is
also Java, the designer can use advice as predefined in CALI. The second is that the advice
language is not Java, the designer implements the method adviceexecution as an evaluator
of the advice-language expression.

The implementation of selectors as modular and independent entities improves their reusability. We
will see in the next chapters how EAOP (for Java) and AspectJ aspects share the same selectors and
advice but differ in the method staticTest(JoinPoint) of the aspects. For AspectJ, this method
matches all the selector/advice bindings that statically match the join point. For EAOP, it matches
a single selector/advice binding depending on the aspect state. Still, the two languages share the
selectors call, execution, this, target, etc. Once AspectJ is implemented, the implementation
of EAOP is straightforward.

Chapter 7
AspectJ plugin on top of CALI

Contents
7.1 AspectJ on top of CALI . 117

7.2 Example . 119

7.3 Pointcut Designators as Join-Point Selectors 120

7.4 Aspects . 130

7.5 Advice precedence . 132

7.6 Transformation of AspectJ syntax to CALI representation 132

7.7 Conclusion . 132

This chapter describes an implementation of a significant subset of AspectJ as a proof of con-
cept, taking into account some non trivial features of AspectJ, like the use of static types in the
call and execution pointcuts. In Section 7.1, we overview the different elements of this implemen-
tation. Section 7.2 presents by an example how an aspect is represented in this implementation
before explicitly describing the different elements in the following sections. Section 6.5 reviews the
principle of matching a join point in AspectJ. Section 7.3 presents an in-depth analysis of AspectJ
pointcut semantics before describing their implementation with CALI as join-point selectors. The
aspect representation in detailed in Section 7.4. Section 7.5 discusses the implementation of the
advice precedence feature. Section 7.6 shows how concrete AspectJ syntax is translated to the
prototype representation. Section 7.7 concludes this chapter.

7.1 AspectJ on top of CALI

Following Section 6.6, the implementation of AspectJ on top of our interpreter consists of:

1. Defining the class AspectJ (see Listing 7.1) that inherits from the class Aspect of
CALI. The class AspectJ contains a selector/advice binding (instance of the class
SelectorAdviceBinding) and defines the method staticTest. The staticTest method
forwards the call to the staticTest method of its selector/advice bindings.

2. Defining the different pointcut designators (call, execution, etc.) as join-point selectors
implemented as classes that inherit from the class JoinPointSelector defined in CALI.

3. Using the class Advice defined in CALI to implement a piece of advice. This is because
AspectJ uses Java to define the pieces of advice. Advice execution will be reified because,
in AspectJ, there is a special join point corresponding to advice execution, which can be
matched by the pointcut designator adviceexecution. This pointcut is usually used in
order to exclude, using the not operator (! in concrete syntax), join points that are a result
of advice execution. We also need to reify all types of join points within the AspectJ aspect

117

118 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI

SelectorAdviceBinding Aspect

Advice JoinPointSelector

PrimitiveSelector ComposedSelector

AspectJ

Call Execution TargetThis

*

Figure 7.1: AspectJ pointcuts on top of CALI

�
1 public class AspectJ extends Aspect {

List <SelectorAdviceBinding > bindings;

3 public AspectJ(List <SelectorAdviceBinding > bindings) {

this.bindings = bindings;

5 }

public List <Phi > staticTest(JoinPoint jp) {

7 ArrayList <Phi > phis = new ArrayList <Phi >();

for (SelectorAdviceBinding binding : bindings) {

9 if (binding.staticTest(jp))

phis.add(new Phi(binding));

11 }

return phis;

13 }

public void addSelectorAdviceBinding(SelectorAdviceBinding

binding)

15 {

bindings.add(binding);

17 }

}
� �
Listing 7.1: The AspectJ aspect representation

7.2. EXAMPLE 119�
public class A {

2 public String f(String s){

System.out.println(s+" in A");

4 return s;

}

6 public void g(){

System.out.println("g in A");

8 }

10 public static void main(String [] args){

A a = new A();

12 a.f("");

}

14 }
� �
Listing 7.2: A base program

�
public aspect MyAspect {

2 pointcut p(): call(String A.f(String));

String around (): p(){

4 System.out.println("Hello");

return proceed ();

6 }

}
� �
Listing 7.3: MyAspect aspect written in AspectJ

except the join points generated by the implementation level code: the method staticTest

and the field list. To clarify this feature, let us consider the following piece of code:

pointcut reifyAspectJ():

(

!call(AspectJ.staticTest) &&

!execution(AspectJ.staticTest) &&

!set(AspectJ.list) &&

!get(AspectJ.list) &&

) &&

within(AspectJ) &&

cflow(execution(* AspectJAdvice.adviceexecution(..)));

This pointcut will intercept the execution of AspectJAdvice.adviceexecution in addition
to every join point in the aspect except the implementation-level ones. In order to be able
to match AspectJ advice-related join points, the reify pointcut in the platform becomes:

pointcut reify(): reifyBase() || reifyAspectJ();

7.2 Example

Before proceeding with the implementation of AspectJ features, let us consider an example of
AspectJ and see how it is implemented using the CALI AspectJ plugin. Listing 7.2 shows a class A
with two methods String f(String s) and void g(). In Listing 7.3, we see an aspect MyAspect
with a pointcut that intercepts calls to A.f(String) where an around piece of advice should be
executed.

120 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI�
1 public class MyAspect extends AspectJ {

public MyAspect () {

3 Class[] l = { String.class };

addSelectorAdviceBinding(new SelectorAdviceBinding(

5 new Call(A.class , "f", String.class , new Class[] {

String }),

new Advice <String >() {

7 public String adviceexecution () {

System.out.println("Hello");

9 return proceed ();

}

11 }

));

13 }

}
� �
Listing 7.4: The traduction of MyAspect into CALI

Listing 7.4 shows the result of a translation of AspectJ aspects to the AspectJ prototype: each
pair pointcut, advice is translated into an instance of SelectorAdviceBinding. The pointcut
is translated to an instance of a subclass of JoinPointSelector. In the example, the pointcut
expression:

pointcut p(): call(String A.f(String))

is translated into:

new Call(A.class, "f", String.class, new Class[] { String })

and the advice:

String around(): p() {

return proceed(‘‘MyAspect’’);

}

is translated into:

new Advice<String>() {

public String adviceexecution() {

return proceed(‘‘MyAspect’’);

}

}

7.3 Pointcut Designators as Join-Point Selectors

The role of join-point selectors is to compare the signature of the join point with the signa-
ture specified in each join-point selector. It does so by aggregating the results coming from its
constituent primitive selectors, instances of the class PrimitiveSelector, which implements the
notion of pointcut designators of AspectJ. Here, each pointcut designator is implemented as a
subclass of PrimitiveSelector with an appropriate definition of the methods staticTest and
dynamicTest. While the method staticTest returns true if the pointcut matches the static in-
formation contained in the join point: method name, static type, field name, etc., the method
dynamicTest deals with the runtime information contained in the join point: dynamic type, re-
ceiver type, etc.

7.3. POINTCUT DESIGNATORS AS JOIN-POINT SELECTORS 121�
public class Super {

2 public void f(){ }

}

4 public class Middle extends Super {

}

6 public class Sub extends Middle {

public void g(){ }

8 }� �
Listing 7.5: An example used to analyse call and execution semantics.

In the following, we start by giving a background about the signature of the join point generated
by the platform in order to use these information in the implementation of the methods staticTest
and dynamicTest of each pointcut designators. We analyse the semantics of method-related point-
cuts designators (call and execution) with respect to inheritance [12, 16, 18]. For each of (call
and execution), we give an implementation of the methods staticTest and dynamicTest ac-
cording to this analysis. After that, we proceed to the other pointcut designator types.

7.3.1 Background

Before starting to explain the implementation of AspectJ pointcuts with CALI, we show a set
of important features used in the rest of the chapter. Note that the semantics of some AspectJ
pointcuts is not straightforward and needs to be looked at.

As mentionned before, AspectJ provides a special reference variable, thisJoinPoint, accessible
from the body of any advice, that contains reflective information about the current join point.
The advice of the Platform aspect passes this information to all the reified aspect selectors, which
can then access this information for matching. In the following, we will use:

– String JoinPoint.getKind() returns a string representing the kind of the join point. In
particular, it returns method-call and method-execution for method-call and method ex-
ecution join point, respectively;

– Signature JoinPoint.getSignature() returns the signature of the join point. For method-
call join points, it returns the signature of the method existing in the static type. For method-
execution join points, it returns the signature of the method being executed.

The principle of matching a join point in CALI needs to access information contained within
this join point. For this reason, we will use the reflection API of Java, in particular:

– Class Class.asSubClass(Class c) tests whether this is a subclass of c. It returns this

if this is the case and throws an exception otherwise.
– boolean Class.isAssignableFrom(Class<?> cls) is the inverse of the previous method

and it can be used as an alternative. It determines if the class represented by this Class
object is either the same as, or is a superclass of, the class or interface given as parameter.

– Method Class.getMethod(String name, Class[] parameterTypes) returns the instance
of Method (inherited or defined) in this with the name and parameter types given as pa-
rameters. An exception NoSuchMethodException is thrown if no such method is found,
an exception NullPointerException if the value of name is null, and an exception
SecurityException in case of a security exception in the presence of a security manager.

7.3.2 Method-related pointcuts

AspectJ offers two ways to intercept method invocation: one for intercepting the invocation at
the caller side with call(T P.m(A)), and another for intercepting the execution of the method
body, at the callee side, with execution(T P.m(A)), where T is the return type of the method
of interest, P its declaring type, and A the types of its arguments.

122 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI�
class Service implements Runnable {

2 public void run() { ... }

public static void main(String [] args) {

4 ((Runnable) new Service ()).run();

}

6 }� �
Listing 7.6: Another example to analyse call and execution semantics.

A first issue is to understand what is exactly meant by declaring type. A first clue is given by
considering Listing 7.5 together with:

– the calls new Sub().f() and new Sub().g();
– the pointcuts call(void Middle.f()) and call(void Middle.g()).
With the current version of AspectJ (1.6), the only selected join point is the call new Sub().f().

The only difference between the calls is that the method g is initially defined in a subclass of
Middle. We cannot just expect call(void Middle.g()) to select calls to g with receivers of type
Middle (which is actually impossible) or Sub, a subtype of Middle, the method has also to exist
in the declaring type Middle. Another clue that there is no straightforward choice of semantics
is that in earlier versions of AspectJ, the call to f was not selected either: the method had to be
defined in the declaring type given in the pointcut.

A second issue is to understand against which qualifying type, on the join point side, the
declaring type is matched. It is simple in the previous example because the static and dynamic
types of the receivers are the same, but it is not always the case. We shall also see that the story
is different on the caller side and on the callee side with the counter-intuitive result that, in the
presence of the pointcuts call(void Middle.f()) and execution(void Middle.f()), a call to
Middle.f() will be captured by the pointcut call but the execution of the method f will not be
captured by the pointcut execution. Of course, with respect to a given call, a call join point and
an execution join point are different join points: with respect to a given call, the call join point
occurs within the context of the caller object, whereas the execution join point occurs within the
context of the receiver. Still, the intuition is that two pointcuts call and execution using the
same declaring type should select both [18, 16].

In the following, we revisit the semantics of the pointcuts call and execution in the current
version of AspectJ (1.6).

7.3.2.1 Call

Semantics According to the AspectJ Programming Guide (Appendix B, Semantics) [94], when
matching method-call join points, the declaring type is the static type used to access the method.

This leads to the common pitfall, signalled in the AspectJ Programming Guide, that the
pointcut call(void Service.run()) does not capture the call to the method run of Listing 7.6.
As explained in the AspectJ Programming Guide on this very simple example, this is because the
declaring type Service given in the pointcut is a subtype of the qualifying type Runnable of the
join-point signature. In case of call join point, this qualifying type is the static type used to access
the method.

But what is exactly the static type used to access the method? Let us consider the call ((Middle)
new Sub()).f() in the context of Listing 7.5. Is the qualifying type of the join point Middle, the
static type of the receiver expression, or Super, the type where the method f of the class Middle is
defined? Experimenting with AspectJ shows that the qualifying type of the join point is actually
the static type of the receiver expression.

Let us go back to Listing 7.6. Of course, the pointcut call(void Runnable.run()) would
capture the call to run because the declaring type of the pointcut and the qualifying type of the
join point are then the same. But this is hardly enough to understand the semantics of the pointcut
call. Some more analysis is necessary.

7.3. POINTCUT DESIGNATORS AS JOIN-POINT SELECTORS 123

It is also interesting to consider what happens if there is no cast. In that case, the call join point
for new Service().run() is captured by both pointcuts. If we consider the pointcut call(void

Runnable.run()), we can see that the join-point qualifying type Service is a subtype of the
pointcut declaring type Runnable. Getting a different result may come as a surprise as this variant
base program is not semantically different.

A second experiment consists of replacing the method run by a method myrun in both the
class Service and the pointcuts. In that case, the call join point new Service().myrun() is
captured by the pointcut call(void Service.myrun()) but not by the pointcut call(void

Runnable.myrun()), even though the join-point qualifying type (Service) is a subtype of the
pointcut declaring type (Runnable). At first sight, it may look like it is because, unlike in the
initial case, the method myrun is not defined in Runnable. Further experiments would show that
the problem is more precisely that the method myrun does not exist in Runnable, i.e., it is neither
defined in Runnable nor in any of its supertypes.

To summarize, there are two conditions for a pointcut call(P.m()) to capture a call join
point e.m(), where J is the qualifying type of the join point (the static type of e):

– J <: P (J is a subtype of P);
– m exists in P .

Implementation Listing 7.7 gives the implementation of call selectors, as a subclass of
PrimitiveSelector.

All the information necessary to a call selector in order to determine whether a join point
matches or not is actually static (it can be obtained from the join point shadow). As a result,
the conditions for matching are implemented in its staticTest method, whereas its dynamicTest
method always returns true.

The implementation makes use of two boolean variables: exists and basicMatch.
– The boolean variable exists is set to true if the method exists in the pointcut declaring

class pointcutClass. This directly corresponds to the condition m exists in P in the seman-
tics. The value of exists is computed once and for all in the constructor. When statically
matching a join point, exists is tested first. If it is false, the selector directly returns false.
Another possibility would be not to capture the NoMethodException in the constructor but
rather throw an exception at the level of the constructor. In that case 1, it would not be pos-
sible to create a call selector for which the method would not exist in the pointcut declaring
type: the boolean variable exists is not necessary.

– The boolean variable basicMatch is set to true if the join point is indeed a method-call
join point for the method specified in the pointcut. This requires to compare the name and
parameter types specified in the pointcut and the ones obtained from the join point.

If both exists and basicMatch are true, the last step consists of checking, using
the method asSubClass of the Java reflection API, that the declaring type of the join
point, jp.getSignature().getDeclaringType(), is a subclass of the pointcut declaring class
pointcutClass. This directly corresponds to the condition J ⊆ P in the semantics.

7.3.2.2 Execution

Semantics According again to the AspectJ Programming Guide, when matching method-
execution join points, if the execution pointcut method signature specifies a declaring type, the
pointcut will only match methods declared in that type, or methods that override methods declared
in or inherited by that type.

This is illustrated, in the AspectJ Programming Guide, by the application of the pointcut
execution(public void Middle.*()) to the example of Listing 7.8, a variant of Listing 7.5,
which is said to capture any method-execution join point for Sub.m(). Indeed, the method m in
Sub overrides the definition of m inherited by the pointcut declaring type Middle.

1. When using the AspectJ Eclipse plugin, a warning is emitted when the method does not exist, but this is not
considered as an error.

124 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI

�
public class Call extends PrimitiveSelector {

2 public Class pointcutClass;

public String methodName;

4 public Class [] parameterTypes;

public boolean exists;

6

public Call(Class pointcutClass , String methodName ,

8 Class [] parameterTypes)

throws NullPointerException , SecurityException {

10

try {

12 pointcutClass.getMethod(methodName , parameterTypes);

exists = true;

14 } catch (NoSuchMethodException) {

exists = false;

16 }

}

18

public boolean staticTest(JoinPoint jp) {

20 boolean basicMatch;

if (exists) {

22 boolean basicMatch =

jp.getKind ().equals("method -call")

24 && jp.getSignature ().getName ().equals(methodName)

&& Arrays.equals (((MethodSignature)jp.getSignature ()).

getParameterTypes (), parameterTypes);

26 if (basicMatch) {

try {

28 jp.getSignature ().getDeclaringType ().asSubclass(

pointcutClass);

return true;

30 } catch (Exception e) {

return false;

32 }

} else

34 return false

} else

36 return false;

}

38 public boolean dynamicTest(JoinPoint jp) {

return true;

40 }

}
� �
Listing 7.7: The Call selector

7.3. POINTCUT DESIGNATORS AS JOIN-POINT SELECTORS 125�
1 class Super {

protected void m() { ... }

3 }

class Middle extends Super {

5 }

class Sub extends Middle {

7 public void m() { ... }

}� �
Listing 7.8: Example.

�
public class Execution extends PrimitiveSelector {

2 ...

basicMatch = jp.getKind ().equals("method -execution");

4 ...

}
� �
Listing 7.9: The execution selector

It is actually interesting to be systematic on this example and check what happens when
running new Sub().m(), new Middle().m(), and new Super().m(). As we have just said, the
pointcut execution(public void Middle.*()) captures a join point in the first case. It does
not in the second case because, although the method m is inherited by Middle, it is not overridden
in Middle. It does not in the third case either because the method m of Super cannot be inherited
from Middle. The second case may look surprising if we consider that there is a (virtual) copy
of the method m in Middle. It is less surprising if we look at the execution in terms of dynamic
lookup. There is indeed no definition of the method m in Middle and it is the definition of the
method m in the superclass that is executed.

To summarize, there are three conditions for a pointcut execution(P.m()) to capture a
method-execution join point m!()!, where this is of dynamic type D:

– D <: P ;
– m exists in P ;
– m is (re)defined in J such that D <: J <: P and not redefined between D and J .

Here, the qualifying type of the join point J is the declaring type of the method m. As D <: J
these conditions can then be reformulated as follows:

– J <: P , where J is the join-point qualifying type;
– m exists in P .

We then get the same conditions as with the pointcut call but with a specific definition of
the join-point qualifying type.

Implementation The implementation of the execution selector is exactly the same as the
implementation of the call selector with the difference that we test if the join point kind is
"method-execution" (see Listing 7.9). This similarity directly follows from the fact that the
semantics of the corresponding pointcuts are exactly same, modulo the definition of the join-point
declaring types, and from the fact that we use AspectJ join points.

When calling getSignature.getDeclaringType(), we get the static type of the receiver object
for method calls and the type which defines the executed method for method executions.

126 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI�
1 public class Get extends JoinPointSelector {

public Class fieldType;

3 public Class fieldClass;

public String fieldName;

5 public Get(Class fieldType , Class fieldClass , String fieldName) {

this.fieldType = fieldType;

7 this.fieldClass = fieldClass;

this.fieldName = fieldName;

9 }

public boolean staticTest(JoinPoint jp) {

11 if (jp.getKind ().equals("field -get")) {

boolean fn , ft , fdt;

13 Signature sig = jp.getSignature ();

fn = sig.getName ().equals(fieldName)

15 || sig.getName ().equals("*");

fdt = sig.getDeclaringType ().equals(fieldClass);

17 ft = ((FieldSignature) sig).getFieldType ().equals(fieldType);

return fn && fdt && ft;

19 } else

return false;

21 }

public boolean dynamicTest(JoinPoint jp) {

23 return true;

}

25 }
� �
Listing 7.10: The get selector

7.3.3 Field-related pointcuts

7.3.3.1 Get

Semantics The get(FieldPattern) primitive pointcut intercepts each join point associated
with the access to a field that conforms to the pattern given in the pointcut.

Implementation Listing 7.10 presents the implementation of the get selector as a Get class.
An instance of this class defines three attributes: fieldName for the name of the field of interest,
fieldType for the field type and a fieldClass for the defining class of the field. The staticTest

method test if the join point is of type "field-get" then, using reflection determines if the field
name, field type and defining class of the current join point match the attributes of the Get

instance. The dynamicTest method always returns true.

7.3.3.2 Set

Semantics The set(FieldPattern) primitive pointcut intercepts each join point associated
with the change of a field that conforms to the pattern given in the pointcut.

Implementation The implementation is similar to the implementation of get except that we
test if the current join point is of type "field-set".

7.3. POINTCUT DESIGNATORS AS JOIN-POINT SELECTORS 127�
4 public boolean staticTest(JoinPoint jp) {

boolean type = jp.getKind ().equals("method -execution");

6 boolean className = jp.getSignature ().getDeclaringType ().equals

(AspectJAdvice.class);

boolean methodName = jp.getSignature ().getName ().equals("

adviceexecution");

8 return type && className && methodName;

}

10

public boolean dynamicTest(JoinPoint jp) {

12 return true;

}

14 }
� �
Listing 7.11: The adviceexecution selector

7.3.4 Advice execution-related pointcuts

7.3.4.1 Advice execution

Semantics AspectJ provides the primitive pointcut designator adviceexecution to capture
advice execution. An example of using this follows.

class A {

public void foo (){

}

}

aspect MyAspect {

pointcut p(): execution(* *(..));

before(): p() {

new A().foo();

}

}

aspect YourAspect {

pointcut myAdvice(): adviceexecution() && within(MyAspect);

before(): call(* *(..)) && !cflow(myAdvice) {

// do something

}

}

The advice of YourAspect will be executed at every method-call join point except if it is in
the control flow of the advice execution of MyAspect. For example, new A().foo() will not be
intercepted.

Implementation To implement the pointcut designator adviceexecution, we create a class
AdviceExecution (Listing 7.11), which inherits from PrimitiveSelector and we redefine the
staticTest and dynamicTest methods. To intercept the execution of an advice, we must capture
the execution of the method adviceexecution of Advice. The staticTest method returns true
if the the join point is of kind "method-execution" of Advice.adviceexecution().

128 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI�
public class This extends PrimitiveSelector {

2 Class pointcutClass;

public This(Class pointcutClass) {

4 this.pointcutClass = pointcutClass;

}

6 public boolean staticTest(JoinPoint jp) {

return true;

8 }

public boolean dynamicTest(JoinPoint jp) {

10 return pointcutClass.isAssignableFrom(jp.getThis ().getClass ());

}

12 }
� �
Listing 7.12: The this selector implementation

7.3.5 State-based pointcuts

7.3.5.1 This

Semantics In AspectJ, the pointcut designator this takes the form of this(Type). It matches
all join points with a this object of the specified type. In other words, if this(Type) will match
the join points where the declaring type of the pointcut is the same or a super class of the
qualifying type of the join point. According to this semantics, we implement this as a This class
(see Listing 7.12), which inherits from PrimitiveSelector.

Implementation The join point selector This (see Listing 7.12) determines if the class repre-
sented by pointcutClass is either the same as, or is a superclass of, the class of this at the current
join point. It is very simple because we use the capability provided by the AspectJ join points
to access the this object and to compare its type with the pointcut declaring class. Note that
the designator this, with the current semantics of AspectJ, deals only with dynamic information
(this type). For this reason, the method staticTest always returns true.

7.3.5.2 Target

Semantics The designator target pointcut is similar to the designator this, but uses the target
of the join point instead of its this object.

Implementation The implementation of the designator target (see Listing 7.13) is very similar
to the implementation of the designator this where the only difference is that the method getThis

is replaced by the method getTarget to access the target object.

7.3.5.3 Args

Semantics The args(Type1, Type2, ..., TypeN) designator picks out each join point having
N arguments of types Type1, Type2, . . . , TypeN, respectively.

Implementation The implementation of the args pointcut consists of a class Args (see List-
ing 7.14), which inherits from PrimitiveSelector. The method staticTest always returns true.
The method dynamicTest, in turn, determines if each class defined in the array pointcutClsTab

is either the same as, or is a superclass of, the class of the join point parameters at the same index.

7.3. POINTCUT DESIGNATORS AS JOIN-POINT SELECTORS 129

�
public class Target extends PrimitiveSelector {

2 Class pointcutClass;

public Target(Class pointcutClass) {

4 this.pointcutClass = pointcutClass;

}

6 public boolean staticTest(JoinPoint jp) {

return true;

8 }

public boolean dynamicTest(JoinPoint jp) {

10 return pointcutClass.isAssignableFrom(jp.getTarget ().getClass ()

);

}

12 }
� �
Listing 7.13: The target selector implementation

�
public class Args extends PrimitiveSelector {

2 Class[] pointcutClsTab;

public Args(Class [] pointcutClsTab) {

4 this.pointcutClsTab = pointcutClsTab;

}

6 public boolean staticTest(JoinPoint jp) {

return true;

8 }

public boolean dynamicTest(JoinPoint jp) {

10 return areSubclasses(pointcutClsTab ,typesOfArgs(jp.getArgs ()));

}

12 public Class [] typesOfArgs(Object [] objTab) {

Class[] jpClsTab = new Class[objTab.length];

14 for(int i=0; i < objTab.length; i++){

jpClsTab[i] = objTab.getClass ();

16 }

return jpClsTab;

18 }

public boolean areSubclasses(Class[] pointcutClsTab , Class[]

jpClsTab) {

20 boolean result = true;

for(int i=0; i < pointcutClsTab.length; i++){

22 result = result && pointcutClsTab[i]. isAssignableFrom(

jpClsTab[i]);

}

24 }

}
� �
Listing 7.14: The args selector implementation

130 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI�
1 public abstract class If extends PrimitiveSelector {

public abstract boolean booleanExpression(JoinPoint jp);

3 public boolean staticTest(JoinPoint jp) {

return true;

5 }

public boolean dynamicTest(JoinPoint jp) {

7 return booleanExpression(jp);

}

9 }
� �
Listing 7.15: The if selector implementation

7.3.6 Expression-based pointcuts

7.3.6.1 If

Semantics The pointcut expression if(BooleanExpression) picks out join points based on a
boolean expression BooleanExpression which is dynamically evaluated. Within this expression,
the thisJoinPoint object is available. So one (extremely inefficient) way of picking out any join
points would be to use this pointcut with true as expression (if(true)).

Implementation The implementation of the if pointcut designator consists of implementing
an abstract method booleanExpression(JoinPoint) in the class If (see Listing 7.15). A con-
crete implementation of the method booleanExpression is provided for each conditional pointcut
expression. For example,

if(thisJoinPoint.getKind().equals("call"))

is translated into:

new If(){

public boolean booleanExpression(JoinPoint jp) {

return jp.getKind().equals("call");

}

}

The method staticTest always returns true and the method dynamicTest returns the result of
the evaluation of its method booleanExpression.

7.4 Aspects

In AspectJ, aspects are not instantiated with new expressions and aspect instances are auto-
matically created to cut across programs.

7.4.1 Aspect declaration

As we saw in the example of Section 7.2, an aspect has to be into a class that inherits from
the class AspectJ. In the default constructor of the aspect instance, we create the instances
of SelectorAdviceBinding and we add them to the list bindings of the aspect by calling the
method addSelectorAdviceBinding, which adds the instance of SelectorAdviceBinding given
as a parameter.

Each class (inheriting from AspectJ) can possess methods and fields that are accessible from
advice defined in the default constructor as an AspectJ piece of advice can access fields and
methods defined in the aspect.

7.4. ASPECTS 131

7.4.2 Aspect instantiation

AspectJ has different types of instantiation policies. We describe the semantics of each policy
then we show how we implement it for the AspectJ plugin.

Singleton aspects This policy is the default one. It is implemented directly by having one in-
stance of the class representing the aspect in the AspectLoader.

Per-object aspects – perthis(pointcut) instantiation:
Let us consider an aspect A defined with perthis(pointcut). We use two aspects to imple-
ment this policy for the aspect A. The first aspect is represented as:
public class A extends AspectJ {

public Object thisObject;

..

}

The second aspect PerthisAFactory is used to manage the instanciation of the aspect A:
public class PerthisAFactory extends AspectJ {

List<Object> boundedObjects = new List<Object>();

..

}
The class PerthisAFactory contains the selector/advice binding constructed by the se-
lector corresponding to pointcut associated with the following advice:
Advice advice1 = new Advice() {

public Object adviceexecution() {

Object thisObject = jp.getThis();

if(!boundedObjects.Contains(thisObject)) {

A aspect = new A();

aspect.thisObject = thisObject;

aspect.deploy();

boundedObjects.add(thisObject);

return proceed();

}

}

};
This advice binds an instance of the aspect A to the current object of the join point
(matched by pointcut) then deploys this aspect instance. The current object is then added
to the boundedObjects list.
The following if selector will select the join point where the current object is bound to
the aspect:
If instantiationTest = new If() {

public boolean booleanExpression(JoinPoint jp) {

return thisObject==jp.getThis();

}

};

The selector instantiationTest will be associated to every selector in the aspect A. In
case an aspect includes several pointcuts, several composed selectors are introduced, one
for each pointcut with the instantiationTest:
ComposedSelector p1 = new ComposedSelector(new And(),

selector1, instantiationTest);

ComposedSelector p2 = new ComposedSelector(new And(),

selector2, instantiationTest);

– pertarget(pointcut) instantiation:
To implement pertarget, we proceed as for perthis with the difference that we replace
thisObject by targetObject and getThis() by getTarget()

132 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI

7.4.3 Aspect extension

The possibility for an aspect to extend a class (or implement an interface) or to be abstract
aspect are straightforwardly implemented by applying these extension and implementation rela-
tionships to the translation of the aspects.

7.5 Advice precedence

AspectJ uses the statement declare precedence: Aspect1, Aspect2,.. to define the order
of advice execution at shared join points. This statement defines the order at the aspect level.
This means that all the pieces of advice of Aspect1 will be executed before the pieces of advice of
Aspect2. This feature is implemented by giving this order to the platform which will use it when
the order process to order all the SelectorAdviceBinding returned by the static test of aspects.

7.6 Transformation of AspectJ syntax to CALI representa-
tion

To transform and AspectJ aspect to the aspect representation in our AspectJ prototype, we
reuse AspectJ-front of ReflexBorg (see Section 3.2). Instead of transforming aspect code in Reflex,
the back-end of our approach transforms aspect code to CALI respresentation.

7.6.1 Implementation

Let us describe how we apply this approach:

AspectJ-front The application of AspectJ-front provides:
– Modular syntax definition for AspectJ 5.0 in SDF. The AspectJ syntax definition is an

extension of the modular syntax definition of Java provided by Java-front.
– Hand-crafted pretty-printer for AspectJ. The pretty-printer is an extension of the pretty-

printer for Java provided by Java-front.
AspectJ-front can be used to parse AspectJ programs and pretty-print the abstract syntax
tree back to an AspectJ source file. The parse result is in the ATerm format (see Figure 7.2a).

Assimilation Now, using Stratego, we write the transformation rules which take the ATerms and
produce Java files. These files contain the classes representing the aspects in the AspectJ
CALI plugin (Figure 7.2b).

7.7 Conclusion

The AspectJ plugin has the following properties:

Direct extension of CALI The implementation of the AspectJ plugin conform to the method-
ology for defining AOPLs on top of CALI discussed in the previous chapter.

Syntax extensibility The use of SDF for defining the parser of AspectJ (we will use SDF for
other implemented languages) improves the extensibility of implemented languages.

Semantics extensibiliy Our AspectJ plugin makes it easy to play with variants of the AspectJ
semantics. For instance, small changes in the implementation give us a variant semantics for
some pointcut designators, for aspects scheduling and for deployment. These features are
the subject of Chapter 8.

7.7. CONCLUSION 133

Figure 7.2: The architecture of the AspectJ plugin

134 CHAPTER 7. ASPECTJ PLUGIN ON TOP OF CALI

Chapter 8
AspectJ Variants with CALI

Contents
8.1 Dynamic Aspect Scheduling . 135

8.2 Alternative semantics for AspectJ pointcuts 142

8.3 Conclusion . 145

There are often some details in the specification of a programming language that were not
well specified and later need to be gradually evolved and extended. It is difficult to get all the
details of the specifications of a programming language right from the start. The language has
to be tested on real examples. In order to do so, a light and flexible prototype implementation,
able to evolve with the specifications, is required. This chapter shows the ability of CALI and
its plugins to support such requirements with respect to AOPLs by presenting two extensions of
AspectJ. Section 8.1 presents an extension of AspectJ, called Dynamic AspectJ that supports the
dynamic scheduling of aspects. Section 8.2 presents an alternative semantics for AspectJ pointcuts
(call and execution) and shows that with a few changes in the pointcut implementations we can
implement the alternative semantics.

8.1 Dynamic Aspect Scheduling

This contribution was the subject of our paper [14], where it was used to provide a new version
of AspectJ, called Dynamic AspectJ. It makes it possible to dynamically schedule aspect execution
at a shared join point, including the possibility of canceling aspects. In this chapter, we reconsider
the semantics of AspectJ and show how a minor modification of the semantics, giving access to
the current aspect group, that is, the pending aspects at the current join point, makes it possible
to introduce dynamic scheduling. Section 8.1.1 and Section 8.1.2 present two examples illustrating
the benefits of dynamic scheduling. The first example, based on the decorator pattern, presents a
case that calls for dynamic deployement and canceling of aspects, whereas the second one, a virus
checker, asks for reordering aspects at runtime.

8.1.1 The Decorator Example

The decorator (or wrapper) pattern is described in [49] as a way to dynamically add (and
remove) responsibilities to an object. Its use is illustrated in [48] with a coffee ordering system
that takes various types of coffee into account and makes it possible to complement each cup of
coffee with various condiments.

135

136 CHAPTER 8. ASPECTJ VARIANTS WITH CALI

Beverage

- description: string

+ cost() : double
+ getDescription() : string

CondimentDecorator

- beverage: Beverage

Espresso

+ cost() : double

DarkRoast

+ cost() : double

Decaf

+ cost() : double

HouseBlend

+ cost() : double

Whip

+ cost() : double

Mocha

+ cost() : double

Milk

+ cost() : double

Figure 8.1: Class diagram of the coffee ordering system.

8.1.1.1 Implementation with the Decorator Pattern

A class diagram of the implementation described in [48] is shown in Figure 8.1. The participants
of the decorator pattern are a component abstract class, Beverage, with its concrete subclasses,
one per coffee type, and a decorator abstract class, CondimentDecorator, with its concrete sub-
classes, one per condiment type. As part of the decorator pattern, the decorator inherits from the
component, which means that condiment decorators can be seen as beverages. Concrete decorators
also include a reference to the component they decorate. It is then possible to wrap beverages in
multiple layers, and build, for instance, an order for a double mocha dark roast coffee topped off
with whipped milk:

Beverage beverage = new DarkRoast();

beverage = new Mocha(beverage);

beverage = new Mocha(beverage);

beverage = new Whip(beverage);

In general, decorators can add new state and new methods to the objects they decorate. Here,
the decorators just add behavior in order to update the order price and description. For instance,
the definition of the method cost of the class Mocha looks as follows 1:

public double cost() {

return .20 + beverage.cost();

}

Such decorators are very similar to proxys. As decorators are transparent to the components
they decorate, it is very easy to update the individual prices and evolve the system by adding new
beverages and condiments.

1. It could have made sense to add an instance variable cost in CondimentDecorator together with a generic
implementation of the method cost.

8.1. DYNAMIC ASPECT SCHEDULING 137

8.1.1.2 Implementation with AspectJ

Adding new state and methods can be done through intertype declarations. Here, we just need
to use the pointcut/advice model of AspectJ to add behavior. Instead of using an abstract class
CondimentDecorator, we can now use an abstract aspect, which defines where in the base classes
(the concrete component classes) the behavior has to be added:

public abstract aspect CondimentDecorator {

pointcut cost():

call (* Beverage.cost());

pointcut getDescription():

call (* Beverage.getDescription());

}

Concrete aspects can then be used to associate a specific piece of advice to each concrete
decorator. For instance, an aspect Mocha can be implemented as follows:

public aspect Mocha extends CondimentDecorator {

double around():

if (Order.hasMocha) && cost() {

return 0.20 + proceed();

}

String around():

if (Order.hasMocha) && getDescription() {

return proceed() + ", Mocha";

}

}

Whereas constructors were previously used to build an order, we assume here that the details
of the order are available through boolean variables like Order.hasMocha. These variables can
then be dynamically used by the aspect pointcuts to test whether a condiment must be included
or not. A simple (but not so elegant) extension consists of using integers rather than booleans to
iterate condiment orders.

Let us now consider the possibility that condiments may run out. If a condiment is not available
any longer, the corresponding aspect should not apply. It is of course possible to add to each
pointcut of a condiment aspect a condition testing the stock, but this is reintroducing concern
tangling at the level of the aspect pointcuts. Using aspect inheritance is not an option as concrete
aspects cannot be extended and turning the condiment aspects into abstract aspects does not
really help because neither pointcuts nor advices can be directly extended. Implementing advice
bodies as method calls and extending these methods does not work either. The point is that it is
necessary to decide on whether to proceed or not with the join point but using proceed is not
allowed outside of advice bodies. A last possibility is to use an aspect of aspect. Here is a (naive)
attempt at implementing this idea:

public aspect MochaCanceling {

pointcut mochaCanceling():

adviceexecution()

&& this(Mocha) && if (!Stock.hasMocha);

Object around(): mochaCanceling() {

return null;

}

}

We want to execute the piece of advice when there is no mocha in stock (if we do not execute
the advice, the aspect will anyway have no effect). But what shall the piece of advice do? It should

138 CHAPTER 8. ASPECTJ VARIANTS WITH CALI

not proceed, but if it does not then the advised advice in Mocha does not either. This means that,
as we shall see in rest of this section, all the remaining pieces of advice, selected when calling the
methods cost and getDescription but not yet executed, will be dropped. As soon as Mocha is
not the last aspect, the order is incomplete.

8.1.1.3 Discussion

In [51], Hannemann and Kiczales mention that, with aspects, some patterns disappear because
they are not needed any longer. It may seem that the decorator is such a pattern but this is not
really the case. This has even actually led to fairly complex schemes, such as the one proposed
by Monteiro and Fernandes [80], which relies on registering the decorated objects and making the
advice check the target object. Additional code is needed for registering and unregistering deco-
rators and a complication is that some pieces of code (Decorator.aspectof()) are not accessible
outside of the aspect. Another way of looking at the problem is to rather consider that the issue
is that it is not possible to dynamically deploy and possibly cancel the decorators that should not
apply.

8.1.2 The Virus-Checker Example

Let us consider the scenario presented in [73]. A company has developed a client-server appli-
cation for file hosting. Customers upload files via the method send. On the server side, a virus
checker, called via the method virusCheck, checks that the received files are virus-free. The issue is
then to upgrade the application in a modular way by adding two features, each being implemented
as an aspect:

public aspect CompressUpload {

before(File f):

call(* Client.send(..)) && args(f) {

zip(f);

}

before(File f):

call(* Server.virusCheck(..)) && args(f) {

unzip(f);

}

}

public aspect SecureUpload {

before(File f):

call(* Client.send(..)) && args(f){

encrypt(f);

}

before(File f):

call(* Server.virusCheck(..)) && args(f) {

decrypt(f);

}

}

The first feature improves performance by compressing the file on the client side before sending
it. On the server side, the virus checker has to decompress the file to analyze it. The second feature
improves security by encrypting the file on the client side before sending it. On the server side,
the file is decrypted before being analyzed by the virus checker.

The two join points corresponding to the calls to the methods send and virusCheck are shared
between the two aspects. The composition order of the aspect has then a fundamental influence
on the semantics of the application.

8.1. DYNAMIC ASPECT SCHEDULING 139

8.1.2.1 AspectJ Implementation

Let us see how to fulfill the requirements set by this scenario with AspectJ. A declare

precedence statement has to be used in order to make aspect ordering explicit. Let us assume
that SecureUpload is applied first:

declare precedence: SecureUpload, CompressUpload;

This declaration is statically applied at each shared join point shadow so that the pieces of
advice of SecureUpload always precede those of CompressUpload. On the client side, files are
encrypted, zipped, and finally sent.

– declare precedence: CompressUpload, SecureUpload

zip→ encrypt→ send.
– declare precedence: SecureUpload, CompressUpload

encrypt→ zip→ send.
The client can upload different type of files like images, text, etc. The goal of the class

CompressUpload is to improve the performance of file transfer, as a result it makes sense to
use different compression algorithms depending on the type of the file compression. For instance,
an image compression algorithm is better than a regular compression algorithm to decrease the
size of an image file. We suppose that the method zip(File f) applies the right algorithm for
each file type. For a non-image type, compression works better if the file is encrypted first be-
cause encrypted files exhibit certain patterns that can be exploited by compression techniques.
The desired behavior is to have a different order depending on the type of the file:

– For image files: zip→ encrypt→ send.
– For other formats: encrypt→ zip→ send.

8.1.2.2 Discussion

This example makes clear the interest of ordering the execution of aspects at runtime. An
interesting alternative solution, not resorting to dynamic scheduling, has been suggested in [73, 74].
It consists of a domain-specific declarative aspect composition language for composing aspects but
it deviates from the standard structure of AspectJ aspects.

8.1.3 Scheduling in AspectJ

In Section 6.2, we have discussed a modified version of the CASB to be used as the semantics
of CALI. Now we are going to present an extension of this semantics in order to add dynamic
scheduling to AspectJ. In AspectJ, the statically matching aspects are statically ordered. It is then
only possible, either to skip a given aspect through dynamic matching, or to skip all the aspects
and the join point by not executing proceed in an advice.

8.1.4 Scheduling in Dynamic AspectJ

As previously discussed, one possibility to give more control to the user would be to give
her/him support for building her/his own α function. But, although we think that it is an inter-
esting path to pursue, we consider here a more direct approach, suggested by the rules described
in Section 6.2. In AspectJ, there is already an explicit aspect-level instruction, proceed that can
be used within a piece of advice to manipulate, in a controlled way, the current aspect group. Why
not add some new instructions making it possible to skip and order aspects as required by our
motivating examples? The candidate instructions are skipall, skip n, skipfirst (a simple alias
for skip 1) and setfirst n. The semantics of these instructions is described by these new rules:

SkipAll
(skipall : C,Σ, (Φ :: [i]) : P)→ (C,Σ, [i] : P)

140 CHAPTER 8. ASPECTJ VARIANTS WITH CALI

Φ′ = Φ− {φn}
Skip

(skip n : C,Σ,Φ : P)→ (C,Σ,Φ′ : P)

Φ′ = Φ− {φn}
SetFirst

(setfirst n : C,Σ,Φ : P)→ (C,Σ, (φn : Φ′) : P)

The instruction skipall removes all the aspects from the current aspect group. As the current
join point is kept in the aspect group, a following execution of the instruction proceed will skip
these aspects but still execute the join point. This has to be compared with the execution of a
piece of advice that does not proceed: all the aspects are skipped, together with the join point.

The instruction skip n removes the nth aspect from the current group (with skipfirst re-
moving the first aspect).

The instruction setfirst promotes the nth aspect from the current aspect group as the first.
Note that our proposal is fairly conservative in that it does not make it possible to introduce

new aspects. Our intuition is that, without this restriction, mastering the complexity of aspect
programs may become very difficult.

8.1.5 Dealing with Aspect Groups�
1 public class AspectGroup {

List <Phi > phis;

3 public void skipAll (){ ... }

public boolean skip(String name){ ... }

5 public void skipFirst (){ ... }

public boolean setFirst(String name){ ... }

7 public boolean member(String name){ ... }

}
� �
Listing 8.1: The class AspectGroup

In Chapter 6, aspect groups could not be explicitly manipulated. In the following, we show how
they can be reifed as instance of a class AspectGroup (see Listing 8.1) implementing as methods
the instructions previously defined. On the first occurrence of a join point and before executing
the first aspect, the remaining aspects, together with the join point, are now packaged into an
instance of a class AspectGroup as a list of Phi instances.

Note that removing an aspect from an aspect group, for instance, with the method skip is
different from undeploying this aspect. It will affect the behavior at the current join point but will
not affect any other join point.

Within an advice, the current aspect group can be accessed through the instance variable
thisAspectGroup. This is similar to the use of the instance variable thisJoinPoint to access the
current join point. It is then possible to write an aspect such as:

public aspect SkipAllAtCalls {

Object around(): call(* *.*){

thisAspectGroup.skipAllAspects();

System.out.println("all aspects skipped");

proceed();

}

}

As soon as the aspect is scheduled, all the remaining aspects at the call join point are skipped
and the current join point is executed.

8.1. DYNAMIC ASPECT SCHEDULING 141

8.1.6 Revisiting the Motivating Examples

This section revisits our motivating examples and shows how they can be elegantly implemented
using Dynamic AspectJ.

8.1.6.1 The Decorator Example

Thanks to a combination of dynamic deployment and dynamic scheduling, we can now imple-
ment each condiment straightforwardly:

public aspect Mocha extends CondimentDecorator{

double around(): cost() {

return 0.20 + proceed();

}

String around(): getDescription() {

return proceed() + ", Mocha";

}

}

Dealing with the stock concern can also be implemented in a modular way by scheduling the
aspect MochaAvailability shown in plain AspectJ syntax in Listing 8.2.�
public aspect MochaAvailability {

2 Object around (): cost() {

if (! Store.contains("Mocha"))

4 thisAspectGroup.skipAspect("Mocha");

else

6 return proceed ();

}

8 }
� �
Listing 8.2: The aspect MochaAvailability

8.1.6.2 The Virus-Checker Example

The composition of the two aspects CompressUpload and SecureUpload can be addressed by
the aspect shown in Listing 8.3, again in plain AspectJ syntax.

The use of dynamic (re)scheduling allowed by aspect groups makes it possible to contextually
schedule first either the aspect CompressUpload or SecureUpload depending on the file type.

142 CHAPTER 8. ASPECTJ VARIANTS WITH CALI�
public aspect SecureCompression {

2 before(File f):

call(* Client.send (..)) && args(f) {

4 if(f.getType ().isImage ())

thisAspectGroup.setFirst("CompressUpload");

6 else

thisAspectGroup.setFirst("SecureUpload");

8 }

before(File f):

10 call(* Server.virusCheck (..)) && args(f) {

if(f.getType ().isImage ())

12 thisAspectGroup.setFirst("SecureUpload");

else

14 thisAspectGroup.setFirst("CompressUpload");

}

16 }
� �
Listing 8.3: The aspect SecureCompression

8.2 Alternative semantics for AspectJ pointcuts

In Chapter 7, we have described the semantics of the pointcuts call and execution in the
current AspectJ version (1.6) in terms of relation between the declaring type of the pointcut and
the qualifying type of the join point. In the following, we are going to discuss this semantics and to
describe alternative semantics for call and execution and how this could be implemented using
small changes in the implementations of these pointcuts described in the previous chapter. This
contribution was the subject of our paper [13].

8.2.1 Discussion

8.2.1.1 Relating the semantics of the pointcuts call and execution

With a proper definition of the qualifying type of the method signatures of the join points, we
get syntactically homogeneous definitions of the pointcuts call and execution. Still, the definition
of the qualifying type of an execution join point, though in line with dynamic lookup, is tricky
and leads to the source of surprise mentioned before, originally discussed by [18], in the context
of an earlier semantics, and rediscovered by [16] while precisely defining the semantics of static
pointcuts in AspectJ as datalog queries. Basically, two pointcuts call and execution using the
same declaring type do not always capture both the call join point and its related execution join
point.

Indeed, if we consider, in the context of Listing 7.8, the pointcut call(public void

Middle.*()), a join point is captured for both new Sub().m() and new Middle().m(). As a
result, in the presence of an aspect comprising both the pointcuts call and execution, a call join
point followed by an execution join point is captured in the first case whereas, in the second case,
only a call join point is captured.

Such a discrepancy does not occur in the alternative semantics proposed in [18]. These seman-
tics were proposed as a reaction to the earlier semantics of AspectJ 1.1.1. The difference with
the current semantics (AspectJ 1.6) was that the method of interest had to be (re)defined in the
declaring type of both the pointcuts call and execution, and the qualifying type of an execution
join point was simply the dynamic type of the current object (the receiver of the call).

Basically, the proposal of [18] consists of:

– always considering that the method of interest exists in the pointcut declaring type and

8.2. ALTERNATIVE SEMANTICS FOR ASPECTJ POINTCUTS 143

– defining the qualifying type of the call join points as either the static type of the receiver
or its dynamic type, the qualifying type of the execution join points remaining the dynamic
type of the receiver.

The first point fixes the surprise that the pointcut call(void Middle.f()) did not capture
the call new Sub().f() in Listing 7.5. The second point defines two semantics, a static semantics
or a dynamic semantics depending on the definition of the qualifying type of the call join points.

The static semantics corresponds to the current semantics of AspectJ with respect to method
calls, but method executions are still handled differently.

8.2.1.2 Semantics of the pointcut call

An argument against using the dynamic semantics, which has the advantage of being simpler
to explain and reason about as only dynamic types have to be considered in the join points, is
that it is less efficient and that using another primitive pointcut, target, makes it possible to
get this semantics anyway. The efficiency issue comes from the fact that in the case of the static
semantics, the matching condition J <: P ∧m exists in P can be fully evaluated statically as J
is a static type. There is no need for a residue. As for using the pointcut target, the idea is that
this pointcut makes it possible to select call join points based on the dynamic type of the callee.
For instance, in our previous example (Listing 7.6), it is still possible to capture the call to the
method run using call(void Runnable.run()) && target(Service).

The authors of [18] note that the static semantics of call(P .m()) && target(P) is slightly
different from the dynamic semantics of call(P .m()). Indeed, if D is the dynamic type of the
join point and S its static type, we have, in the first case, the condition S <: P ∧D <: P , where
the first conjunct comes from the pointcut call and the second from the pointcut target. As by
definition D <: S, this amounts to S <: P . This has to be compared with the condition required
by the dynamic semantics: D <: P . Conversely, if the dynamic semantics were chosen, it could
make sense to change the semantics of the pointcut target so that it deals with static types.

8.2.1.3 Semantics of the pointcut execution

We have seen that a pointcut execution(P.m()) does not capture a method-execution join
point m(), where the receiver is of dynamic type J , if m is not (re)defined in the hierarchy between
P and J . This may look surprising but actually corresponds to the lookup semantics. In practice,
if m is only defined in a superclass of P , there is no bytecode that can be instrumented in order to
implement the pointcut and transfer control to the advice if necessary apart from the bytecode in
the superclass. But this would then slow down the execution of the method with some additional
tests on the type of this to distinguish the cases when the pointcut should apply and when it
should not. An alternative would be to add bytecode for the missing methods at weave time.
For instance, let us consider the example in Listing 7.8. If we redefine m in Middle: protected
void m() super.m(), then execution(public void Middle.*()) captures a join point when
executing new Middle().m(). Such a redefinition could be done at weave time at the bytecode
level. One would then get the semantics of [18].

8.2.1.4 Existence of the method in the declaring type

At first sight, the necessity of the condition m exists in P is also arguable. As we have previously
seen in Chapter 7 when considering Listing 7.5, without this condition, the pointcut call(void

Middle.g()) would then select a call new Sub().g(). This has the drawback that the semantics
of the pointcut call is not purely static any longer (which is of course not an issue in the context
of the dynamic semantics of [18]). But the main point is that this semantics can anyway be already
obtained by using, instead of a type P , the subtype pattern P+, which stands for P or any of its
subtype.

144 CHAPTER 8. ASPECTJ VARIANTS WITH CALI�
public boolean staticTest(JoinPoint jp) {

2 boolean basicMatch;

if (exists) {

4 ...

return basicMatch;

6 } else

return false;

8 }

public boolean dynamicTest(JoinPoint jp) {

10 try {

jp.getTarget ().getClass ().asSubclass(pointcutClass);

12 return true;

} catch (Exception e) {

14 return false;

}

16 }� �
Listing 8.4: The dynamic Call selector

8.2.1.5 Summary

The semantics of the pointcuts call and execution is not easy to grasp. Matching uses the
static type of the caller in the pointcuts call and the dynamic type of the callee in the pointcuts
execution. Understanding the semantics of the pointcuts execution requires to reason about the
behavior of dynamic lookup and is counter-intuitive when a pointcut execution(P.m()) does
not capture an execution join point whereas the corresponding call join point is captured by the
pointcut call(P.m()).

Alternative semantics that seem easier to grasp have been proposed. In particular, the dynamic
semantics of [18] looks attractive. Matching is always based on dynamic types and the simple
condition that the method of interest should exist in the type of interest is used for both the
pointcuts call and execution.

Switching to such a semantics may however require a lot of work in the current compiler-based
implementations of AspectJ and result in some performance overhead, whereas the exact benefits
have not yet been fully assessed. It looks interesting but does it really help in practice? Therefore,
it may be worth experimenting with this approach in a more agile environment. In the following
sections, we show how we can, by switching to an interpreter-based approach, easily implement
the current semantics of the pointcuts call and execution, and then switch to the static and
dynamic semantics of [18] with minimal changes.

8.2.2 Implementation of Alternative Semantics

In the following, we show the minor changes that are necessary to the previous implementation
in order to get the dynamic semantics of Barzilay et al. [18].

8.2.2.1 Call with dynamic semantics

The conditions are the same as with the static semantics except that we need
to replace the declaring type of the join point by its dynamic type, that is
jp.getSignature().getDeclaringType() by jp.getTarget().getClass(). We use again the
facilities provided by the AspectJ join points.

Also, as the dynamic type is, as its name indicates, not static, related computations should be
moved from the method staticTest to the method dynamicTest.

Starting from Listing 7.7 and applying these changes, we get Listing 8.4.

8.3. CONCLUSION 145

8.2.2.2 Execution with dynamic semantics

The principles are the same as before. The differences are that, when computing basicMatch

"method-call" should be replaced by "method-execution", and that the dynamic type of the
join point is accessed through jp.getThis() instead of jp.getTarget().

8.3 Conclusion

In this chapter, we have discussed the ability of CALI to provide flexible AOPL prototypes.
We have considered the AspectJ plugin as running example and we have shown how it is simple
to provide two extensions, the first for scheduling aspects at runtime, the second presents an
alternative semantics for AspectJ pointcuts (call and execution). Regarding dynamic scheduling,
we have described the static scheduling semantics of AspectJ and extended it with the concept
of aspect group, the aspects scheduled for the current join point, with the opportunity to access
them from the advice body. We have then given all the elements needed to control this group
during runtime. Regarding the alternative semantics, we have formally discussed a more dynamic
semantics for call and execution designators and we have shown how this semantics can be easily
implemented with few changes in the implementation of AspectJ plugin.

146 CHAPTER 8. ASPECTJ VARIANTS WITH CALI

Chapter 9
EAOP and DSLs plugins

Contents
9.1 EAOP . 147

9.2 Decorator . 155

9.3 Memoization DSAL . 160

9.4 COOL . 161

9.5 Conclusion . 168

The goal of CALI is to facilitate prototyping and composing AOPLs. In Chapters 7 and 8,
we have seen how to use CALI to prototype AspectJ and variants. However, we need to im-
plement more AOPLs with CALI in order to, on the one hand, further validate our prototype
with mechanisms different from the AspectJ ones and, on the other hand, have in hand several
AOPL implementations when exploring the CALI composition feature in the next chapter. Sec-
tion 9.1 presents the implementation of Event-based AOP (EAOP) for Java, where aspects relate
sequences of events. Section 9.2 presents a Domain-Specific Aspect Language to implement the
decorator pattern. Section 9.3 prototypes an experimental language to memoize method return
values. Section 9.4 presents the implementation of COOL, a Domain-Specific Aspect Language for
modularizing thread synchronization aspects.

9.1 EAOP

The implementation of EAOP on top of CALI consists of starting from the EAOP conceptual
model described in Chapter 2 and deducing a concrete model that can be (easily) implemented
by using the API provided by CALI and by reusing the implementation of AspectJ pointcuts
described in Chapter 7.

9.1.1 EAOP model

Let us reconsider the EAOP aspect used in Chapter 2:

µa.(login . proceed;µb.(update . skip; b)2logout . proceed; a)

We have seen that this EAOP aspect can be directly represented using Extended FSP as a state
machine where C .I is attached to each transition. Figure 9.1a represents this aspect according to
this conceptual model. This aspect starts in a state (Server) waiting for login join points. The
detection of a login join point and the execution of the corresponding advice transfers the aspect
to the second state (Session). The second state corresponds to a choice between two crosscuts.

147

148 CHAPTER 9. EAOP AND DSLS PLUGINS

Figure 9.1: Comparison between the 2 models: a) Initial conceptual model, b) Modified model

9.1. EAOP 149

The occurrence of a logout join point returns the aspect state to the first one while an update join
point is canceled without changing the aspect state.

We propose an alternative model of the conceptual one but before starting to describe it,
we should note that the state of the aspect evolves to the next state after the execution of the
advice and not just after join point matching. In addition, the aspect should have access to the
all crosscuts corresponding to each state in order to iterate the evaluation of the current join
point over them. For this reason, in the modified model, we attach all the informations about the
continuation of the aspect to the state. This means that the simple C .I or the choice between the
list of C . I that have to intercept the join point will be attached to the state instead of attaching
a C .I to each transition. The transition between states is represented by the event corresponding
to the end of advice execution. Figure 9.1b) shows the representation of the consistency aspect
with the modified model.

9.1.2 Basis of EAOP implementation

The basic rule C . I can be straightforwardly implemented by a selector/advice binding: a
crosscut is implemented as a selector and an insert as an advice. A powerful benefits of our
approach is that we can reuse the pointcuts of AspectJ implemented in Chapter 7. A key point in
the implementation of EAOP is the representation of the aspect state. Each state should contain
the list of selector/advice bindings corresponding to the list of crosscuts that are attached to the
choice operator.

9.1.3 Implementation using Dynamic AspectJ

According to the alternative EAOP model, each state contains a list of selector/advice bindings
and could be straightforwardly represented by an AspectJ aspect. The general translation scheme
starts from the labelled transition system corresponding to the Extended FSP version of the EAOP
aspect (edges are labelled with inserts). Each state of the system corresponds to an AspectJ-like
”atomic” aspect singleton instance with as many pairs (selector, advice) as they are outgoing
edges/inserts C . I. The selector implements the crosscut C and the piece of advice, the insert
I. Once the insert has been executed, the piece of advice is also responsible for implementing,
unless the state does not change, the transition from the source state to the destination state
by undeploying the current aspect instance, corresponding to the source state of the edge, and
deploying the aspect instance corresponding to its destination state. The execution is initialized
by deploying the aspect instance associated to the start state of the system.

Listings 9.1 and 9.2 shows two aspects implemented using Dynamic AspectJ.
ConsistencyOutOfSession represents the first state of the aspect Consistency. It contains
one selector/advice binding. The selector matches any call of the method login while the
corresponding advice proceeds, undeploys the aspect ConsistencyOutOfSession and deploys
ConsistencyInSession, which corresponds to the second state. ConsistencyInSession contains
two selector/advice bindings: the first one is responsible of canceling the call of the method update,
the second one changes the aspect state by undeploying the aspect ConsistencyInSession and
redeploying the aspect ConsistencyOutOfSession.

9.1.4 Dedicated EAOP implementation

The representation of the aspect states as Dynamic AspectJ aspects may cause problems. Let
us consider the case of composing EAOP with AspectJ. We would have a general composition
configuration, which consists of executing EAOP aspect before all AspectJ ones. The (state)
aspects could interacts with other (normal) Dynamic AspectJ aspects existing in the environment.
For example, the method order of the platform may schedule one of the state aspects at the end
of the proceed stack. For this reason, we present here another EAOP implementation, where the
aspect state is reified.

150 CHAPTER 9. EAOP AND DSLS PLUGINS�
class ConsistencyOutOfSession extends AspectJ {

2 static ConsistencyOutOfSession aspect = new

ConsistencyOutOfSession ();

ConsistencyOutOfSession (){

4 Class[] parameterTypes = {};

JoinPointSelector login =

6 new Call(Server.class ,"login", void.class ,

parameterTypes);

Advice <Object > loginAdvice =

8 new Advice <Object >(){

public Object adviceexecution (){

10 System.out.println("=> out -of -session login

detected");

Object result = proceed (); // dummy returned object

12 aspect.undeploy ();

ConsistencyInSession.aspect.deploy ();

14 return result;

}

16 };

addSelectorAdviceBinding(new SelectorAdviceBinding(login ,

loginAdvice));

18 }

}
� �
Listing 9.1: Implementing the state Server using Dynamic AspectJ

According to the API provided by CALI, an EAOP aspect must implement the interface Aspect
and must define the method staticTest. The method staticTest in EAOP should return an
instance of the class Phi. In fact, this instance is returned by one of the selector/advice bindings
of the current state of aspect. The implementation of a state is described below.

Requirement 6 An EAOP aspect evolves to the next state after the execution of the piece of
advice. For this reason, we create the notion of advice-state which associates an advice with a
state (the next state of the aspect). This feature is implemented using the class AdviceState (see
Listing 9.3).

We can see that at a specific moment, the state of the aspect can be associated to a list of
crosscuts with a choice between them. This leads us to Proposition 7.

Requirement 7 Each state is associated with a list of selector/advice bindings. When evaluating
a state with a join point, the state iterates the evaluation of this join point over its selector/advice
bindings. The advice of the first selector/advice binding matching the join point will be executed.

Note that the matching of a join point will be done in two steps. When testing the static part
of the join point, the state creates a list of selector/advice bindings that statically match the join
point. The state is returned to the Platform encapsulated within an instance of EAOPPhi (see
Listing 9.7). This instance is pushed onto the proceed stack then evaluated in the same way an
Phi instances returned by an AspectJ aspect. The interface State (Listing 9.4) possesses two main
methods: staticTest and dynamicTest. The method staticTest is called to determine the list of
selector/advice bindings that statically match the join point by adding them to a list used during
the dynamic test. The method dynamicTest is called when evaluating the instance of EAOPPhi

in the Platform. The execution of the method dynamicTest evaluates the advice corresponding
to the first selector/advice binding that dynamically matches the current join point. The class
StateImpl 9.5 provides an implementation of the interface State.

9.1. EAOP 151

�
1 class ConsistencyInSession extends AspectJ {

static ConsistencyInSession aspect = new ConsistencyInSession ();

3 ConsistencyInSession (){

Class[] parameterTypes = {};

5 JoinPointSelector update =

new Call(Server.class ,"update", void.class ,

parameterTypes);

7 JoinPointSelector logout =

new Call(Server.class ,"logout", void.class ,

parameterTypes);

9 Advice <Object > updateAdvice =

new Advice <Object >(){

11 public Object adviceexecution (){

System.out.println(" =>in -session update

13 detected");

return null;

15 }

};

17 Advice <Object > logoutAdvice =

new Advice <Object >(){

19 public Object adviceexecution (){

System.out.println("=> in -session logout detected")

;

21 Object result = proceed (); // dummy returned object

ConsistencyOutOfSession.aspect.deploy ();

23 aspect.undeploy ();

return result;

25 }

};

27

addSelectorAdviceBinding(new SelectorAdviceBinding(update ,

updateAdvice));

29 addSelectorAdviceBinding(new SelectorAdviceBinding(logout ,

logoutAdvice));

}

31 }
� �
Listing 9.2: Implementing the state Session using Dynamic AspectJ

152 CHAPTER 9. EAOP AND DSLS PLUGINS�
1 public class AdviceState extends Advice {

private State nextState;

3 private Advice advice;

EAOPAspect aspect;

5 public State getNextState () {

return nextState;

7 }

public AdviceState(Advice advice , State nextState) {

9 this.nextState = nextState;

this.advice = advice;

11 }

public Object eval(JoinPoint jp) {

13 Object result = advice.eval(jp);

aspect.setCurrentState(nextState);

15 return result;

}

17 }
� �
Listing 9.3: The class AdviceState

�
1 public interface State {

boolean staticTest(JoinPoint jp);

3 AdviceState dynamicTest(JoinPoint jp);

List <SelectorAdviceBinding > getBinds ();

5 }
� �
Listing 9.4: The interface State

Requirement 8 The implementation of an EAOP aspect on top of CALI consists of defining a
class that implements the interface Aspect and contains a current state. The state transition takes
place after the execution of the piece of advice.

According to Propositions 7,8, we implement the class EAOPAspect (Listing 9.6) where the
basic constituents are the attribute currentState and the method staticTest.

When the platform calls this method, the method staticTest of the current state is called.
As we said before, a list of selector/advice bindings that statically match the current join point is
prepared in the state, to be used when the join point is dynamically tested.

At each state, the aspect should not intercept any join points until the end of the advice
execution. This behavior is implemented using the variable available to block the matching of
join point during aspect execution. This is done by setting as false the value of this variable
when matching a join point and as true once the execution of the piece of advice is finished.

The method staticTest of EAOPAspect (Listing 9.7) returns an instance of EAOPPhi which
inherits from Phi to represents the φ returned by an aspect. An EAOPAspect returns a list that con-
tains one instance of EAOPPhi. The evaluation of EAOPPhi (dynamic test) consists of dynamically
evaluating the current state associated with this instance of EAOPPhi. The dynamic evaluation con-
sists of calling the method dynamicTest of StateImpl. The method StateImpl.dynamicTest tests
if one of the SelectorAdviceBindig that statically match the join point, dynamically matches
it. The result is an instance of AdviceState which being evaluated. When the advice terminates
its execution, it must inform the aspect to change the state to the next state referenced by the
AdviceState instance. It is done by calling the method setCurrentState of the class EAOPAspect.

9.1. EAOP 153

�
1 public class StateImpl implements State {

List <SelectorAdviceBinding > bindings;

3 List <SelectorAdviceBinding > statictestlist;

String name;

5

public StateImpl(String name , List <SelectorAdviceBinding >

bindings){

7 this.name = name;

this.bindings=bindings;

9 }

public void addBindings(List <SelectorAdviceBinding > bindings){

11 this.bindings.addAll(bindings);

}

13 public boolean staticTest(JoinPoint jp){

statictestlist = new ArrayList <SelectorAdviceBinding >();

15 for(SelectorAdviceBinding o :bindings){

if(o.staticTest(jp)) statictestlist.add(o);

17 }

return !statictestlist.isEmpty ();

19 }

public AdviceState dynamicTest(JoinPoint jp){

21 int i=0;

AdviceState adv = null;

23 do {

adv=(AdviceState)statictestlist.get(i).dynamicTest(jp);

25 i++;

} while(i<statictestlist.size() && adv==null);

27 return adv;

}

29 public String getName () {

return name;

31 }

public void addBinding(SelectorAdviceBinding binding) {

33 bindings.add(binding);

}

35 public List <SelectorAdviceBinding > getBindings () {

return bindings;

37 }

}
� �
Listing 9.5: The class StateImpl

154 CHAPTER 9. EAOP AND DSLS PLUGINS

�
public class EAOPAspect extends Aspect {

2 public State currentState;

public State nextState;

4 boolean available = true;

6 public void setCurrentState(State state) {

currentState = state;

8 }

public State getCurrentState () {

10 return currentState;

}

12 public List <Phi > staticTest(JoinPoint jp) {

List <Phi > list = new ArrayList <Phi >();

14 if (available && this.currentState.staticTest(jp)) {

list.add(new EAOPPhi(this , currentState));

16 }

return list;

18 }

}
� �
Listing 9.6: The EAOPAspect implementation

�
1 public class EAOPPhi extends Phi {

State currentState;

3 EAOPAspect aspect;

public EAOPPhi(EAOPAspect aspect , State state) {

5 this.aspect= aspect;

this.currentState = state;

7 }

public Object eval(JoinPoint jp) {

9 AdviceState obj = currentState.dynamicTest(jp);

if (obj != null) {

11 obj.aspect = aspect;

}

13 return obj.eval(jp);

}

15 }
� �
Listing 9.7: The EAOPPhi class

9.2. DECORATOR 155�
1 class Consistency extends EAOPAspect {

Call login = new Call(Server.class , "login", void.class , new

Class [0]);

3 Call update = new Call(Server.class , "update", void.class , new

Class [0]);

Call logout = new Call(Server.class , "logout", void.class , new

Class [0]);

5 State Server = new StateImpl("Server");

State Session = new StateImpl("Session");

7 Consistency () {

// Server

9 {..}

// Session

11 {..}

currentState = Server;

13 }

}
� �
Listing 9.8: The Consistency EAOP aspect

9.1.4.1 The example revisited

Listing 9.9 shows the translation of the consistency aspect into our implementation. It is
represented by the class Consistency that inherits from EAOPAspect. It contains three Call

selectors to implement the three pointcuts login, update and logout. Listing 9.9 shows the part
of the constructor that defines the state Session.

9.2 Decorator

In this section, we present a domain specific aspect language optimized for enforcing the dec-
orator pattern. This language is described in [53]. We first introduce a running example that we
will use to demonstrate how this language is implemented using CALI.

9.2.1 A DSAL to enforce the decorator pattern

The application consists of a simple word processor application. This example is also described
in [53]. Figure 9.2 shows the class diagram of this application where a class Document defines
some methods to modify a document (addLine() and setContent()), a method to obtain the
document content (getContent()), as well as a method that counts the current number of words
in the document (wordCount()).

In order to add autosave behavior to the word processing application, the decorator pat-
tern [49] can be used by defining a class AutoSaveDocument. According to the decorator pattern,
this class must implement the same methods as the class Document (Figure 9.3) but adds the be-
havior to save any changes made to the document, before forwarding method calls to the original
document object. Listing 9.10 shows how we could wrongly use this decorator class. The class
AutoSaveDocument (decorator) is instantiated with an instance of the class Document (decarotee).
The method addLine of AutoSaveDocument executes the behavior related to the autosaving after
calling the method addLine on its decoratee.

Indeed, this code uncovers two issues:

1. The decorated object (decoratee) doc is still accessible and the behavior of the decorator
could not be invoked.

156 CHAPTER 9. EAOP AND DSLS PLUGINS

�
..

2 Class[] parameterTypes = {};

JoinPointSelector update =

4 new Call(Server.class ,"update", void.class ,

parameterTypes);

JoinPointSelector logout =

6 new Call(Server.class ,"logout", void.class ,

parameterTypes);

Advice <Object > updateAdvice =

8 new Advice <Object >(){

public Object adviceexecution (){

10 System.out.println(" =>in -session update

detected");

12 return null;

}

14 };

AdviceState updateTransition = new AdviceState (updateAdvice ,

Session);

16 Advice <Object > logoutAdvice =

new Advice <Object >(){

18 public Object adviceexecution (){

System.out.println("=> in -session logout detected")

;

20 Object result = proceed (); // dummy returned object

ConsistencyOutOfSession.aspect.deploy ();

22 aspect.undeploy ();

return result;

24 }

};

26 AdviceState logoutTransition = new AdviceState (logoutAdvice ,

Server);

addSelectorAdviceBinding(new SelectorAdviceBinding(update ,

updateTransition));

28 addSelectorAdviceBinding(new SelectorAdviceBinding(logout ,

logoutTransition));
� �
Listing 9.9: The implementation of the state Session of EAOP aspect

�
public class WordProcessor {

2 Document doc;

AutoSaveDocument autoSaveDoc;

4 public void testAutoSave () {

doc = new Document ();

6 autoSaveDoc = new AutoSaveDocument(doc);

autoSaveDoc.addLine("AutoSaved"); // autosaving takes place

8 doc.addLine("Not AutoSaved"); // autosaving does not takes

place

}

10 }
� �
Listing 9.10: The WordProcessor class

9.2. DECORATOR 157

WordProcessor

+ doc: Document

Document

+ content: List<String>

+ addLine(String) : void
+ getContent() : List<String>
+ setContent(List<String>) : void
+ wordCount() : long

Figure 9.2: Class diagram of WordProcessor

WordProcessor

+ doc: Document

Document

+ content: List<String>

+ addLine(String) : void
+ getContent() : List<String>
+ setContent(List<String>) : void
+ wordCount() : long

AutoSaveDocument

- decoratee: Document

+ addLine(String) : void

Figure 9.3: Decorator pattern example

158 CHAPTER 9. EAOP AND DSLS PLUGINS�
decorate: Document -> AutoSaveDocument
� �

Listing 9.11: Enforce the decorator pattern on the class Document

�
1 public class Decorator extends AspectJ {

public Decorator(List <SelectorAdviceBinding > list) {

3 list = new ArrayList <SelectorAdviceBinding >();

this.list = list;

5 }

}
� �
Listing 9.12: The decorator aspect

2. Part of the code dealing with the decorator pattern is visible in the client (class
WordProcessor in this example). It is not fully modularized because we had to add a new
field (autoSaveDoc of type AutoSaveDocument).

To enforce the decorator pattern, once a decorator is associated with a decoratee, all subsequent
calls should be made to the decorator. Havinga et al. [53] propose a new DSAL to enforce the
decorator pattern and to fully separate the code dealing with the decorator pattern.

The grammar of the language is defined as follows:

Aspect ::= decorate: ClassIdentifier -> ClassIdentifier

An aspect declaration starts by the keyword decorate followed by two identifiers ClassIden-
tifier. The first identifier represents the decoratee class and the second identifier represents the
decorator class. Listing 9.11 shows an example of a program written in the DSAL that contains
one declaration to enforce that AutoSaveDocument decorate Document.

9.2.2 Implementation of the DSAL on top of CALI

Listing 9.12 shows the implementation of the decorator aspect. The class Decorator must
extend the class AspectJ because the implementation is very similar to the implementation of
AspectJ. A decorator is translated using a translation layer (also using Stratego+SDF) to a class
that inherits from the class Decorator. The constructor of the resulting class must implement the
semantics of the decorator.

For example, Listing 9.13 shows the translation of the DSAL aspect of Listing 9.11. The list
of bindings of the aspect contains two selector/advice bindings. The aspect has two additional
references, one to a decoratee and another for decorator instances. When starting the example, we
deploy an instance of the class MyDecorator by calling new MyDecorator().deploy().

When capturing a join point, the Platform call the method staticTest of the instance of
MyDecorator. If the join point is a call to a method of a Document instance, the aspect re-
turns two instances of Phi wrapping two selector/advice bindings. If the decoratee field is not
yet bound (decoratee==null), the method dynamicTest of the first selector/advice binding re-
turns true and the corresponding advice will be executed. The execution of the advice will bind
the decoratee field, create a decorator (new AutoSaveDocument()) and bind the corresponding
decoratee to it (see Line 21). If the method dynamicTest of the first Phi returns false then
the method dynamicTest of the second Phi returns true (the assignment was performed before)
and the corresponding advice will be executed. The advice uses reflection to execute the called
method (thisJoinPoint.getSignature().getName()) by getting a Method instance (Line 40)
and invoking it with the decorator and the corresponding parameter (the same parameters as the
join point).

9.2. DECORATOR 159�
public class MyDecorator extends Decorator {

2 Document decoratee;

AutoSaveDocument decorator;

4 static ArrayList <Document > list = new ArrayList <Document >();

public MyDecorator () {

6 Class[] l = { String.class };

Call call = new Call(Document.class , "*", void.class ,

8 new Class[] { Wildcards.

class });

ArrayList <SelectorAdviceBinding > choice = new ArrayList <

SelectorAdviceBinding >();

10 // if the decoratee has not been yet decorated

If anIf = new If() {

12 public boolean condition(JoinPoint jp) {

return !list.contains(jp.getTarget ());

14 }

};

16 ComposedSelector event =

new ComposedSelector(new And(), call , anIf);

18 Advice advice = new Advice () {

public Object adviceexecution () {

20 decoratee = (Document) thisJoinPoint.getTarget ();

decorator = new AutoSaveDocument(decoratee);

22 list.add(decoratee);

new MyDecorator ().deploy ();

24 return proceed ();

}

26 };

addSelectorAdviceBinding(event , advice);

28

// if the decoratee has been decorated

30 If anIf = new If() {

public boolean condition(JoinPoint jp) {

32 return jp.getTarget () == decoratee;

}

34 };

ComposedSelector event =

36 new ComposedSelector(new And(), login , anIf);

Advice advice = new Advice () {

38 public Object adviceexecution () {

Method m = Document.class.getMethod(

40 thisJoinPoint.

getSignature ().

getName (),

getClasses(

thisJoinPoint.

getArgs ()));

42 m.invoke(decorator , thisJoinPoint.getArgs ());

}

44 };

addSelectorAdviceBinding(event , advice);

46 }

}
� �
Listing 9.13: The class MyDecorator

160 CHAPTER 9. EAOP AND DSLS PLUGINS�
1 cache Document object {

memoize wordCount ,

3 invalidated by assigning content

or calling addLine(java.lang.String);

5 }
� �
Listing 9.14: An example in Memoization DSAL.

9.3 Memoization DSAL

Memoization is a technique used to improve the speed of program execution. This mechanism
consists of returning from a cache the values for previously-processed inputs that have already
been calculated, rather than recomputing them each time.

An experimental language that introduces a modular way to specify caching of method return
values has been described in [53]. Its syntax follows:

Aspect ::= cache ClassIdentifier object { Exp }
Exp ::= memoize: MethodIdentifier (invalidated by InvalidExps)?
InvalidExps ::= SimpleInvalidExp | ComplexInvalidExp
ComplexInvalidExp ::= SimpleInvalidExp or ComplexInvalidExp
SimpleInvalidExp ::= assigning FieldIdentifier | calling Signature

The class of the method to memoize is specified after the keyword cache and its name after
the keyword memoize. The aspect contains a declaration Exp which specifies the method to be
cached after the keyword memoize. The declaration contains also invalidation expressions which
invalidate the cached values and impose their recomputation. The invalidation can be done after
assigning a field or calling a method.

9.3.1 Example

Let us reconsider the word processor example of Section 9.2. The method wordCount is a
good candidate for memoization, as repeatedly calculating the number of words - even when the
document has not changed - can become quite time consuming on large documents. The example
of Listing 9.14 means the following: apply a caching aspect on each Document object (Line 1). This
caching aspect will memoize the return value of method wordCount (Line 2). The cache will be
invalidated when a new value is assigned to the instance variable content within the corresponding
Document object (Line 3), or when the method addline is called on a Document object (Line 4).

9.3.2 Implementation of Memoization DSAL on Top of CALI

The implementation of Memoization DSAL on top of CALI consists of:
– Creating a MemoizeAdvice class.
– For each memoize declaration, we create a variable to cache the return value of the memoized

method.
– For each memoized method, we create a binding using a Call selector and MemoizeAdvice.

The Call selector intercepts calls to that method, and the associated advice returns the
cached value (if one is stored) or caches the value returned by proceed (if there is no
corresponding value in the cache).

– Finally, a pointcut is needed for each cache invalidation specification, coupled with
an advice that invalidates the cache. For an assigning declaration, we create a
SelectorAdviceBinding that binds a Get selector and a MemoizeAdvice instance and for
a calling declaration, we create a SelectorAdviceBinding that binds a Call selector and
a MemoizeAdvice instance.

9.4. COOL 161�
1 public class CachingWordCount {

Document doc;

3 Object [] args;

static ArrayList <Document > list = new ArrayList <Document >();

5 static ArrayList <Object[]> listargs = new ArrayList <Object []>();

Call wordCount = new Call(Document.class , "wordCount",

7 long.class , new Class [0]);

Get getContent = new Get(Document.class , "content");

9 Call addLine = new Call(Document.class , "addLine", void.class ,

new Class []{ String.class});

long memoizedWordCount;

11

CachingWordCount () {

13 ...

}

15 }
� �
Listing 9.15: A translated memoization aspect

9.3.3 The example revisited

In Listings 9.15, we present the translation of the memoization aspect presented before (List-
ing 9.14) into CALI (Listings 9.16, 9.17, 9.18 and 9.19 are parts of the construction of the class
CachingWordCount):

– The variable memoizedWordCount (Listing 9.15, Line 10) is used to cache the return value
of wordCount. As the returned value of a method depends on the target object and the
inputs, an instance of the aspect must be created for a different target or different inputs.
The variables doc and args are used to store the target and the input values.

– The call selector wordCount (Listing 9.15, Line 6) is used to select the call to the memoized
method wordCount.

– The advice of Listing 9.17, Line 9 is associated to the call selector to store the return value
if it was invalidated (Listing 9.17, Line 11) or to return the memoized value (Listing 9.17,
Line 15).

– The selector (Listing 9.18, Line 8) selects the get join point of Document.content and the
associated advice of (Listing 9.18, Line 8) invalidates the memoized value.

– The selector (Line 9) selects a call to the method addLine of Document and the associated
advice of (Listing 9.19, Line 8) invalidates the memoized value.

9.3.4 Translation

The translation from the concrete syntax of the DSL to the CALI representation can be simply
achieved with Stratego/SDF.

9.4 COOL

Consider the following piece of code:

Advice advice = new Advice() {

public Object adviceexecution() {

synchronized (this) {

return proceed();

}

162 CHAPTER 9. EAOP AND DSLS PLUGINS

�
1 If anIf = new If() {

public boolean condition(JoinPoint jp) {

3 return !list.contains(jp.getTarget ())

|| !listargs.contains(jp.getArgs (),args);

5 }

};

7 ComposedSelector event =

new ComposedSelector(new And(), wordCount , anIf);

9 MemoizeAdvice advice = new MemoizeAdvice () {

public Object adviceexecution () {

11 doc = (Document) thisJoinPoint.getTarget ();

args = thisJoinPoint.getArgs ();

13 list.add(doc);

new CachingWordCount ().deploy ();

15 return proceed ();

}

17 };

binding.add(new SelectorAdviceBinding(event , advice));
� �
Listing 9.16: Selector/advice binding to associate an aspect instance to a target document

�
If anIf = new If() {

2 public boolean condition(JoinPoint jp) {

return (Array.equals(jp.getArgs (),args))

4 && (jp.getTarget ()==doc);

}

6 };

ComposedSelector event =

8 new ComposedSelector(new And(), wordCount , anIf);

MemoizeAdvice advice = new MemoizeAdvice () {

10 public Object adviceexecution () {

if(memoizedWordCount == 0l) {

12 long l = proceed ();

memoizedWordCount = l;

14 }

return memoizedWordCount;

16 }

};

18 binding.add(new SelectorAdviceBinding(event , advice));
� �
Listing 9.17: Selector/advice binding to cache the value returned by proceed

9.4. COOL 163

�
If anIf = new If() {

2 public boolean condition(JoinPoint jp) {

return list.contains(jp.getTarget ());

4 }

};

6 ComposedSelector event =

new ComposedSelector(new And(), getContent , anIf);

8 MemoizeAdvice advice = new MemoizeAdvice () {

public Object adviceexecution () {

10 memoizedWordCount == 0l;

}

12 };

binding.add(new SelectorAdviceBinding(event , advice));
� �
Listing 9.18: Selector/advice binding to invalidate cached value when assigning content

�
1 If anIf = new If() {

public boolean condition(JoinPoint jp) {

3 return list.contains(jp.getTarget ());

}

5 };

ComposedSelector event =

7 new ComposedSelector(new And(), addLine , anIf);

MemoizeAdvice advice = new MemoizeAdvice () {

9 public Object adviceexecution () {

memoizedWordCount == null;

11 }

};

13 binding.add(new SelectorAdviceBinding(event , advice));
� �
Listing 9.19: Selector/advice binding to invalidate cached value when calling addLine

164 CHAPTER 9. EAOP AND DSLS PLUGINS�
1 public class SelfexAdvice extends Advice <G> {

public synchronized G adviceexecution () {

3 return proceed ();

}

5 }
� �
Listing 9.20: The implementation of SelfexAdvice

�
1 public class MutexAdvice extends Advice <G> {

List <String > exclusionSet;

3 private String name;

public MutexAdvice(List <String > exclusionSet) {

5 this.exclusionSet = exclusionSet;

}

7 public G adviceexecution () {

if (! thisJoinPoint.getSignature ().getName ().equals(name)) {

9 synchronized (this) {

name = thisJoinPoint.getSignature ().getName ();

11 return proceed ();

}

13 } else

return proceed ();

15 }

}
� �
Listing 9.21: The implementation of MutexAdvice

}

};

It represents an advice instance whose role is simply to proceed in a synchronized way (in the
adviceexecution() method). Now let us associate this piece of advice with a selector/advice
binding, for example a Call selector. The resulting selector/advice binding will prohibit the con-
current execution of the method given in the Call selector. This is the base idea of our im-
plementation. Each selfex declaration is specified by a selector/advice binding. The selector is
implemented as a Call selector. We add a special class for selfex advice, called SelfexAdvice

(Listing 9.20). The synchronized declaration of the method adviceexecution guarantees that
the piece of advice is executed by only one thread at a time. Similarly, each mutex is implemented
as a selector/advice binding. The piece of advice, implemented as an instance of MutexAdvice

(see Listing 9.21) manages the synchronization while the selector routes all the methods in
the exclusion set to the piece of advice. The method adviceexecution of the MutexAdvice

guarantees that one of the exclusion-set methods is executed at a time. The mutex declara-
tion does not prohibit the concurrent execution of the same method by several threads. For
this reason, we add a variable name to register the method name being executed and we eval-
uate the condition thisJoinPoint.getSignature().getName().equals(name), before entering
in the synchronized statement.

For this instance, we implement mutex and selfex declarations. For statements, expressions
and condition, we add a class CoordinatorAdvice (see Listing 9.22). The methods requires,
on entry and on exit are declared as abstract and will be implemented when the class is instan-
tiated. Their definitions is directly extracted from the definitions of the corresponding statements.
The method adviceexecution combines the three methods.

9.4. COOL 165

�
public abstract class CoordinatorAdvice extends Advice <G> {

2 public G adviceexecution () {

while(! requires ()) {

4 try {

wait();

6 }

catch(Exception e) {}

8 }

notify ();

10 on_entry ();

G result = proceed ();

12 on_exit ();

return result;

14 }

public abstract boolean requires ();

16 public abstract void on_entry ();

public abstract void on_exit ();

18 }
� �
Listing 9.22: The implementation of CoordinatorAdvice

�
public class Coordinator implements Aspect {

2 private ArrayList <SelectorAdviceBinding > binding;

public List <Phi > staticTest(JoinPoint jp) {

4 ArrayList <Phi > list = new ArrayList <Phi >();

for(SelectorAdviceBinding b:binding){

6 if(b.staticTest(jp)) {list.add(new Phi(b));};

}

8 return list;

}

10 public void addSelectorAdviceBinding(SelectorAdviceBinding sadb){

binding.add(sadb);

12 }

}
� �
Listing 9.23: The implementation of Coordinator with CALI

166 CHAPTER 9. EAOP AND DSLS PLUGINS�
1 public class StackCoord extends Coordinator {

Stack stack;

3 boolean full = false;

boolean empty = true;

5 int len = 0;

Class[] args = { Object.class };

7 Call push = new Call(Stack.class , "push", void.class , args);

Call pop = new Call(Stack.class , "pop", Object.class , new Class

[0]);

9 public StackCoord () {

// selfex part

11 // mutex part

// statements

13 }

}
� �
Listing 9.24: The translated coordinator

�
{// selfex{push}

2 SelfexAdvice <Void > advice = new SelfexAdvice <Void >();

addSelectorAdviceBinding(new SelectorAdviceBinding(push ,

advice));

4 }

{// selfex(pop)

6 SelfexAdvice <Object > advice = new SelfexAdvice <Object >();

addSelectorAdviceBinding(new SelectorAdviceBinding(pop ,

advice));

8 }
� �
Listing 9.25: The selfex part of the translated coordinator

Listing 9.23 shows the implementation of the whole coordinator as a class Coordinator which
contains a list of selector/advice bindings. The method staticTest returns a list of Phi corre-
sponding to the bindings that match the current join point.

9.4.1 The example revisited

The class StackCoord in Listing 9.24 represents the translation of the coordinator of List-
ing 2.13.

Listing 9.25 shows the representation of the two selfex declarations. The implementation
consists of a selector/advice binding per declaration. The two bindings are added to the binding

list of the coordinator. Listing 9.26 shows the representation of mutex{push,pop} as a binding
between an instance of ComposedSelector and an instance of MutexAdvice. The selector matches
push or pop calls and the advice implements the synchronization policy as described before.

Listing 9.27 shows the implementation of the statement of the coordinator Stack. As we de-
scribed before, the methods requires, on entry and on exit are implemented with the instanti-
ation of CoordinatorAdvice directly using the definitions of the corresponding statements with
the members of the coordinator target (here buf) properly prefixed.

9.4. COOL 167

�
{ // mutex{push , pop}

2 ComposedSelector event =

new ComposedSelector(new Or(), pop , push);

4 ArrayList <String > list = new ArrayList <String >();

list.add("push");

6 list.add("pop");

MutexAdvice <Object > advice = new MutexAdvice <Object >(list);

8 addSelectorAdviceBinding(new SelectorAdviceBinding(event ,

advice));

}
� �
Listing 9.26: The mutex part of the translated coordinator

�
1 {

CoordinatorAdvice <Object > advice = new CoordinatorAdvice <

Object >() {

3 public void on_exit () {

empty = false;

5 len++;

if (len == stack.buf.length) {

7 full = true;

}

9 }

public void on_entry () {}

11 public boolean requires () { return !full; } };

addSelectorAdviceBinding(new SelectorAdviceBinding(push ,

advice));

13 }

{

15 CoordinatorAdvice <Object > advice = new CoordinatorAdvice <

Object >() {

public void on_entry () {

17 len --;

}

19 public void on_exit () {

full = false;

21 if (len == 0) {

empty = true;

23 }

}

25 public boolean requires () { return !empty; } };

addSelectorAdviceBinding(new SelectorAdviceBinding(pop ,

advice));

27 }
� �
Listing 9.27: The statement part of the translated coordinator

168 CHAPTER 9. EAOP AND DSLS PLUGINS

9.5 Conclusion

In this chapter, we have presented the CALI implementation of aspect mechanisms that are
different from the AspectJ one. This chapter is a proof of the methodology presented in Chapter 6
because it have been used for implementing heterogeneous aspect mechanisms. The homogeneity
of the different implementation makes it simple to compose aspects mechanisms as we will see in
the next chapter.

Chapter 10
Composition of AOP languages

Contents
10.1 From composing multiple aspects to composing multiple AOPLs . . 169

10.2 Scaling composition . 169

10.3 AspectJ and COOL . 172

10.4 Conclusion . 173

Once the different concerns are expressed with DSALs, we must have the possibility of com-
posing them in a single application. Implementing this composition is not straightforward. Even
if this is feasible (for example by sequentially running the different DSAL weavers), running the
combined application may lead to unexpected and/or undesired results as it was shown in the
state of the art (see Chapter 4). In this chapter, we first describe the ability to compose AOPLs
and to make it possible to deal with much larger problems and configure this composition in
CALI. Section 10.1 describes technically how aspect composition is feasible. Section 10.2 shows
the possible interactions that lead to undesired behavior when composing AOPLs and what CALI
provides in order to configure the composition. Section 10.3 presents an example of composing
the AspectJ and COOL prototypes in CALI. This example is typical of problems that occur when
composing aspects written using different languages.

10.1 From composing multiple aspects to composing mul-
tiple AOPLs

In the previous chapters, we have seen the semantics of composing several aspects written in the
same language (implemented with CALI). The platform communicates with the aspect instances
through their interface staticTest. Each aspect instance returns a list of instances of the class
Phi to the platform, which will complete the evaluation of this list with the current join point.

The key of composing AOPLs in CALI is that all the aspect implementations implements the
interface staticTest that returns a list of Phi, which is uniformly treated by the platform. With
this common interface, aspects from different AOPLs can co-exist in the same application and
communicate in the same way with the platform.

10.2 Scaling composition

Composing aspects in CALI is natural and direct. The join points occurring within the base
program are determined by the platform while each individual prototype decides the additional set
of join points that have to be generated within the implementation. For example, advice execution

169

170 CHAPTER 10. COMPOSITION OF AOP LANGUAGES

of AspectJ was reified. Unlike transformation approaches, the approach of CALI allows full control
about the generated join points and prevents the generation of implementation-level join points.

Now let us consider two prototypes of two AOPLs implemented with CALI. The first language
has not reifed its pieces of advice (genereting join point during the execution of each piece of
advice) while the second one has. Scaling the composition of these two AOPLs could be described
as follows:

– An aspect from the second language must match join points occurring within advice of the
first language.

– An aspect from the first language must not handle join points occurring within advice of the
second language.

In the rest of this section, we present the different types of aspect interactions, their level of
resolution as well as the CALI features allowing composition scaling.

10.2.1 Interaction

Let us recall some important properties of aspect interactions (see Chapter 4).

Categories of Interaction Kojarski and Lorenz [63, 65] characterize two chief categories of
aspect interactions whose resolution is key to support multiple AOPLs composition:

Co-advising happens when several aspects from differents aspect extensions need to be super-
imposed on the same join point. This is usually an advice scheduling problem where the
resolution consists of defining what is the order of execution of the various pieces of advice.

Foreign advising happens when an aspect of an aspect extension matches a join point within the
execution flow of a piece of advice of another extension. Resolving this type of interaction
consists of defining what is the part of a piece of advice that can be matched by foreign
aspects.

Level of resolutions There are two levels [65] at which interactions are typically resolved:

Language level requires the language designer to specify the semantics for interactions between
aspects in each Aspect-Oriented language and aspects in all the other languages.

Program level requires the aspect programmer to resolve how a concrete set of aspects interact.

10.2.2 Interactions resolutions in CALI

Co-advising CALI represents an approach for resolving co-advising at both the language level
and the program level. Let us return to the order subprocess in the aspect Platform. This
process is configurable to order aspects according to the aspect language (language level)
or by reading a specification written by the programmer (program level). The syntax of the
specification language (DSL), in which the specification of ordering aspects, is future.

Foreign advising In CALI, the platform is only responsible for reifying the join points of the
base program. It is up to each extension to reify the join points that occur in its own aspects.
In the case of AspectJ (Section 7.1), we have added the following pointcut

pointcut reifyAspectJ():

(

!call(AspectJ.staticTest) &&

!execution(AspectJ.staticTest) &&

!set(AspectJ.list) &&

!get(AspectJ.list) &&

) &&

within(AspectJ) &&

cflow(execution(* AspectJAdvice.adviceexecution(..)));

10.2. SCALING COMPOSITION 171

Figure 10.1: Composing two aspects from different languages

172 CHAPTER 10. COMPOSITION OF AOP LANGUAGES

to the pointcut reifyBase of the platform in order to implement the semantics of AspectJ
where it is possible to match join points within pieces of advice as well as the specific join
point adviceexecution. CALI resolves foreign advising at the language level by controlling
the scope of aspect of L1 over join point generated from advice of L2 and by controlling the
generation of join points resulting from the execution of synthetic code of L2. Let us consider
the composition between two AOPLs, L1 and L2. We suppose that the specification of the
composition consists of preventing L1 aspects from matching join points generated within
L2 aspects. Figure 10.1 shows that the aspect1 is prevented from matching a join point
generated by the execution of aspect2 piece of advice using an aspect Configuration. When
composing AOPLs implemented with CALI, we need to define an aspect Configuration

to specify if a foreign join point has to be matched by an aspect. An example of such a
configuration is described in 10.3.

10.3 AspectJ and COOL

10.3.1 Problem

As we mentioned in Chapter 3, when composing COOL and AspectJ, resolving foreign advising
consists of controlling the weaving of AspectJ advice into COOL coordinators, and the weaving of
COOL advice into AspectJ aspects. According to what we have said in the head of Section 10.2,
AspectJ aspects are reified by reifyAspectJ and COOL aspects are reified by reifyCOOL.

10.3.2 Specification of the composition

In the composition of AspectJ and COOL, an aspect is woven into classes and aspects (AspectJ
aspects) according to the weaving semantics of AspectJ. Similarly, a coordinator is woven into
classes according to the weaving semantics of COOL. The specification must include the behavior
of aspects and coordinator when dealing with with foreign advising and co-advising. We rely on
the specification defined in [64]:

Foreign advising The specification permits coordinators to advise methods that are declared
within aspects in the same way as methods within classes. The specification restricts coor-
dinators and aspects from advising any synthetic code introduced by the foreign aspects:
coordinators do not advise advice methods in aspect classes, and aspects do not advise
methods of the coordinator classes by the COOL implementation.

Co-advising The specification imposes that:
– The lock (unlock) advice of COOL is executed before (after) the before, around, and after

advice of AspectJ.
– From the perspective of AspectJ aspects, COOL advice executes in the control flow of the

method execution join point it advises.

The specification of [64] is defined in the context of static weaving in order to precise the behavior
of AspectJ and COOL weavers.

The specification is restated as follows in CALI: Coordinators advise methods that are declared
within aspects except the method staticTest. COOL aspects are applied before AspectJ ones.

10.3.3 Composition configuration

When implementing AspectJ on top of CALI, we have introduced two methods: staticTest
and addSelectorAdviceBinding (see Listings 7.1). These methods are not reifed by the imple-
mentation of AspectJ to prevent the fault interception of the corresponding join points. This
guarantees that coordinators will never advise these implementation-level methods while coordi-
nators can match other methods. The same reasoning is valid for coordinators: by construction,
there are no join points generated within coordinator in the prototype of COOL, and therefore,
AspectJ aspects will not apply.

10.4. CONCLUSION 173

10.4 Conclusion

In this chapter, we have shown that our framework supports applications composed of aspects
written in several AOPLs. In addition, we have discussed how CALI interactions that may occur
when combining multiple AOPLs, and demonstrated that the aspect mechanisms implemented
using CALI decrease synthetic code, and therefore aspect interactions.

174 CHAPTER 10. COMPOSITION OF AOP LANGUAGES

Part III

Perspectives

175

Table of Contents

11 Performance 179

11.1 TPTP Eclipse plugin . 179

11.2 Running application . 180

11.3 Results . 180

11.4 Discussion . 181

12 Related Work 183

12.1 JAMI . 183

12.2 AWESOME . 184

12.3 The Art of the Meta-Aspect Protocol . 185

12.4 Composing aspects with aspects . 185

13 Conclusion 187

13.1 Prototyping and Open implementations . 188

13.2 Composition . 188

14 Future Work 191

14.1 Dynamic AspectJ Plugin . 191

14.2 Context-Aware Application . 191

14.3 Debugging Aspect-Oriented Programs . 192

Appendices 193

Résumé 195

1 Introduction . 195

2 Etat de l’art . 198

3 Évaluation et Contributions . 201

4 Un interpréteur extensible pour les langages d’aspects 202

5 Implémentation d’AspectJ . 204

6 Extensions d’AspectJ . 206

7 EAOP et langages dédiés avec CALI . 208

8 Composition des langages d’aspects . 209

9 Perspectives . 210

178 TABLE OF CONTENTS

Chapter 11
Performance

Contents
11.1 TPTP Eclipse plugin . 179

11.2 Running application . 180

11.3 Results . 180

11.4 Discussion . 181

In the previous chapters, we have demonstrates the flexibility and expressiveness of CALI as a
framework for prototyping AOPLs. In order to evaluate the overhead of using CALI mechanisms,
we use a profiling tool and compare the execution of a simple application with plain AspectJ and
with the AspectJ prototype using CALI described in Chapter 7 to analyze application execution
and identify performance problems, such as execution bottlenecks, object leaks, and system re-
source limitations. Section 11.1 introduces the profiling platform TPTP Eclipse plugin. Section 11.2
presents a running example consisting of a class Fibonacci that computes the Fibonacci series.
This class is profiled after adding an AspectJ caching aspect. The aspect is implemented with
AspectJ and CALI AspectJ prototype. The results of profiling are exposed in Section 11.3. They
are discussed in Section 11.4.

11.1 TPTP Eclipse plugin

The Eclipse Test and Performance Tools Platform (TPTP) Project [4] offers a profiling tool
for identifying and isolating performance problems such as performance bottlenecks, object leaks
and system resource limits. The tool targets applications of all levels of complexity, from simple
standalone Java applications to Eclipse plugins or complex enterprise applications running on
multiple machines and on different platforms. The Profiling and Logging perspective provides
resources for starting a profiling session as well as obtaining comprehensive information on the
performance of the monitored application. This is done by collecting four types of information
about the execution of each method of the application:

Base Time The amount of time of the method execution not including the execution time of any
other methods called from this method.

Average base time The average base time of the method execution.

Cumulative base time Unlike base time, this time includes the execution time of any other
methods called from this method.

Calls The number of times this method was invoked.

Regarding the whole application, TPTP calculates the sum of the above values for all the methods.

179

180 CHAPTER 11. PERFORMANCE�
1 public class Fibonacci {

public long fibonacci(int n) {

3 if (n == 0 || n == 1)

return (long) n;

5 else

return fibonacci(n - 1) + fibonacci(n - 2);

7 }

public static void main(String [] args) {

9 if (args.length == 0)

System.out.println("Specify which fibonacci number should be

calculated.");

11 else {

int n = Integer.parseInt(args [0]);

13 long theFibonacciNumber = new Fibonacci ().fibonacci(n);

}

15 }
� �
Listing 11.1: The Fibonacci class

11.2 Running application

The parameter of the method fibonacci of the class Fibonacci 11.1 specifies how many num-
bers in the series it should compute. The program is implemented using recursion. The execution
time of the method is exponential. The machine used in the experiments of this chapter has one
1.86 GHz intel processor and 1 GB of RAM. The AspectJ version is 5 running with JRE 1.6.0 01.

In order to decrease the computation time, we add a memoization aspect,
FibonacciSaverAspect, based on the concept of memoization discussed in the previous
chapter to cache values that will be needed in the future. Its implementation in AspectJ is given
in Listing 11.2 and in CALI in Listing 11.3. In our example, in order to compute fibonacci(n)

for some n, we also need the values of fibonacci(n-1) and fibonacci(n-2). And since we need
to compute these values recursively, we end up having to use all values of fibonacci(m), where
1 ≤ m ≤ n. The regular solution to the problem (which is presented in the class Fibonacci) is
to compute each of these values over and over again, resulting in exponential execution time.
With memoization, we will only compute the value of fibonacci(m) for any m exactly once. As
soon as the value is computed the first time, it is stored for future reference. From the next time
on, the value is simply looked up from this table, and not computed. As a result, the execution
time becomes linear. In order to do this, the FibonacciSaverAspect include a private data
member called fibValues, an array of long, that stores the computed fibonacci values. The
aspect also includes an around advice to intercept any call to fibonacci(n). The advice checks
the fibValues array to check if the requested fibonacci value has already been computed, and if
so, the value is directly returned from the cache instead of recursively invoking fibonacci.

11.3 Results

In this section, we present the profiling results when writing the aspect using AspectJ and
AspectJ-CALI. We proceed in two stages: the first without the aspect and the second with the
aspect. The results are given in Table 11.1, lines”AspectJ without aspect” and ”AspectJ with
aspect”, respectively.

When profiling the application with CALI, some performance overhead is expected due to the
reifying mechanism even in the absence of aspects. For this reason, it is important to profile the
application in the absence and the presence of the aspect. Listing 11.3 shows the implementation
of the caching aspect using our AspectJ prototype. The results are also given in Table 11.1, lines

11.4. DISCUSSION 181�
1 public aspect FibonacciSaverAspect {

long[] fibValues = new long [100];

3 pointcut p(int n):

call(long Fibonacci.fibonacci(int)) && args(n);

5 long around(int n):p(n){

if (fibValues[n] == 0) {

7 long l = proceed(n);

fibValues[n] = l;

9 return l;

} else

11 return fibValues[n];

}

13 }
� �
Listing 11.2: The FibonacciSaverAspect AspectJ aspect

framework Base Time Average Base Time Cumulative Time Calls
AspectJ without aspect 11.316547 0.000197 11.316547 57315
AspectJ with aspect 0.309567 0.001420 0.309567 218
CALI without aspect 86.466075 0.000216 86.466075 401227
CALI with aspect 0.948928 0.00487 0.898928 306

Table 11.1: Summary of profiling results

“CALI without aspect” and “CALI with aspect”, respectively.

11.4 Discussion

Table 11.1 presents a summary of all the results. In order to interpret these results and evaluate
the overhead on performance, we must start by reconsidering the interception mechanism of CALI.
The AspectJ weaver transforms all join point shadows defined by the pointcut reifyBase and
inserts additional code that calls the advice of the aspect Platform. The pointcut reifyBase is
based on call, execution, set, etc. The matching of all these designators are based on static
information in the current version of AspectJ as we have shown in Chapter 7 and Chapter 8, and
therefore there is no dynamic test needed for join point matching.

11.4.1 Without Aspects

In AspectJ, the weaver does not change the base program because there is no aspects and
therefore, no overhead on performance related to the additional code. However, without memoiza-
tion, all the calls to the method fibonacci are executed. In AspectJ-CALI, after intercepting a
join point, the platform verifies that there is no aspects and executes the method proceed. This
mechanism is repeated for all the join points defined by reifyBase, which adds a considerable
overhead (8 times) in addition to the absence of memoization.

11.4.2 With Aspects

In AspectJ, the weaver inserts additional code to call the advice performing memoization
but this code is a forward call only and does not cause overhead on performance. In addition,
the memoization of the method fibonacci decreases the number of executions and therefore,
the overall performance is improved. In AspectJ-CALI, the performance is better with aspect

182 CHAPTER 11. PERFORMANCE�
1 public class FibonacciSaverAspect extends AspectJ {

long[] fibValues = new long [100];

3 public FibonacciSaverAspect () {

Class[] l = { int.class };

5 addSelectorAdviceBinding(new SelectorAdviceBinding(

new Call(Fibonacci.class , "fibonacci", long.class , l),

7 new Advice <Long >() {

public Long adviceexecution () {

9 int n = (Integer) thisJoinPoint.getArgs ()[0];

if (fibValues[n] == 0) {

11 long l = proceed ();

fibValues[n] = l;

13 return l;

} else

15 return fibValues[n];

}}));

17 }

}
� �
Listing 11.3: The FibonacciSaverAspect aspect with CALI-AspectJ plugin

than without aspect. The number of execution of fibonacci is decreased but the overhead of
interpretation still impacts the overall performance. This explains why the performance of AspectJ
is better than the performance of AspectJ-CALI. Neither the execution of the advice nor the
execution of the matched join point significantly impact performance but some major overhead is
due, first, to the reification of join points which are not associated to any aspect and, second, to
the evaluation of a join point by join point selectors. In fact, the piece of advice is not interpreted
in CALI but it is executed as normal Java code because pieces of advice are defined as inner
classes. The execution of the current join point is optimized using a closure as we have described
in Chapter 6. An evolution of CALI would consist of statically generating the reifyBase according
to the existing aspects to avoid the reification of unnecessary join points. This means that in our
example, the pointcut reifyBase would match only the calls to the method fibonacci, not its
executions.

11.4.3 Conclusion

The profiling results show that even though we have an overhead on performance with CALI
mechanisms, this still acceptable and allows the use of CALI with large applications, where different
concerns can be modularized as aspects and implemented using the different AOPL prototypes
based on CALI.

Chapter 12
Related Work

Contents
12.1 JAMI . 183

12.2 AWESOME . 184

12.3 The Art of the Meta-Aspect Protocol 185

12.4 Composing aspects with aspects . 185

12.1 JAMI

JAMI (Java Aspect MetaModel Interpreter) [53, 54, 52] is a framework to prototype and
compose domain-specific aspect languages.

12.1.1 Features and Benefits

JAMI shares with CALI these points:
– It finds its origin in Metaspin. Both JAMI and CALI implement the basic concepts of join

point, pointcut/join point selector, advice and binding.
– It relies on two-step weaving with AspectJ to generate join points and interpret the corre-

sponding pieces of advice.
– The aspects are completely dynamically evaluated. This makes it easy to experiment with

pointcuts that express complex selection criteria over the runtime state. In addition, their
support for aspect state using variables that each may have different instantiation policies
provides a flexible way to implement aspect language features, while requiring relatively little
effort.

The implementation of memoization in JAMI and CALI is not essentially different: a set of
selector/advice bindings is used to retrieve and cache values and another set is used to invalidate
cached values.

The implemention of Decorator using CALI benefits from the implementation of AspectJ
by reusing different elements while the implementation using JAMI needs the creation of
new specific building blocks like AssociateDecoratorAdvice, BindObjectToVariableAction,
SkipOriginalCallAction, etc.

The implementation of join-point selectors in JAMI consists of subclassing the
class JoinPointSelector and implementing the abstract method evaluate(JoinPoint jp,

InterpreterContext context). This shows that there is no separation between static and dy-
namic information of join point matching while CALI clearly separates it between two methods
staticTest and dynamicTest and makes it possible to partially evaluate selectors at compile
time.

183

184 CHAPTER 12. RELATED WORK

JAMI also provides a set of dedicated selectors like SelectByAssociatedVariable (to compare
target or this objects of the join point with a variable of the aspect specified with its name),
SelectByFieldContainingType (to verify the class of the field in a field-access join point), that
can be composed into complex selectors useful for implementing DSALs. But CALI could use the
generic selector If composed with other selectors to get the same effect.

12.1.2 Limitations

The lack of a formal semantics for JAMI makes it difficult to understand the interpretation
flow and the supported mechanisms and notions. Also it relies on a simplified join-point model
without around advice and proceed, and has not been designed with the objective of supporting
a general-purpose language such as AspectJ.

12.2 AWESOME

AWESOME [60, 64] is a composition framework for the construction and the composition of
aspect extensions weavers as plugins on top of the framework. The starting point is the conceptual
model of a weaver that enables the construction of an aspect weaver on top of a basic platform.
Once a weaver is built with AWESOME, it can be composed, as third-party composition, with
other weavers that were also built on top of AWESOME.

12.2.1 Features and Benefits

The conceptual model used in CALI (the four sub-processes) is based on the model proposed
by AWESOME. Also resolving aspect interactions in CALI is very close to the AWESOME’s
one but applied in a different context. The two frameworks use configuration aspects to resolve
foreign-advising but in CALI, this is done at runtime rather than at weave time as in AWESOME.
AWESOME has a component and aspect oriented architecture. The framework is based on three
notions:

1. Platform: The class Platform implements the 4 basic subprocesses: reify, match, or-
der and mix. The word basic means that they are independent from any aspect language.
Platform has a list of mechanisms, each one corresponds to an aspect language. This feature
allows AWESOME to compose different aspect extensions by having different mechanisms
in this list.

2. Mechanism: It is an abstract notion to express what a new aspect extension built with
AWESOME adds to each subprocesses implemented in the class Platform. When impe-
menting a class Mechanism, a plugin designer must implement the corresponding match
and order subprocesses, which will affect the global match and order subprocesses of the
platform. This feature is implemented as an aspect that intercepts join points in the platform
to add behavior to the default match and order subprocesses.

3. Config: The class Platform provides a default composition behavior but this can be cus-
tomized using a configuration aspect Config which is implemented as an aspect that inter-
cepts join points in the platform and each mechanism (see item 2) to control the interactions
between languages (foreign and co-advising).

The AWESOME framework provides plugin composability. The plugins that were independently
developed using AWESOME can be composed as third-party components by implementing a
subclass of Mechanism and adding an instance of it to the list of mechanisms in the platform.

12.2.2 Limitations

– AWESOME is more dedicated to managing interaction of AOPLs composition than to easy
prototyping. In fact, it does not propose features like our Abstract AOPL in order to facilitate
the prototyping of AOPLs.

12.3. THE ART OF THE META-ASPECT PROTOCOL 185

– AWESOME supports the configurability of resolving aspect interactions at the language
level, but does not allow the programmer to resolve these interactions among a set of aspects
(written in different languages). For example, the composition of AspectJ and COOL, called
COOLAJ, imposes that the AspectJ aspects or the COOL aspects have to be executed first
at a shared join point. There is no possibility for the programmer to define a scheduling of
aspects execution by choosing which aspects have to be executed first (based on the aspect
name and not the aspect language).

– AWESOME resolves feature interactions at compile time and this makes it unable to resolve
the foreign advising interactions that depend on run-time information.

12.3 The Art of the Meta-Aspect Protocol

Dinkelaker et al. [35] propose an architecture for AOPL with an explicit interface to language
semantics inspired by meta-object protocols. Using, the meta-aspect protocol, AOP developers
can then tailor language semantics in an application-specific manner. Among the applications of
the meta-aspect protocol, let us mention the resolving of the aspect interactions that depend on
the dynamic program context and dynamic deployment.

The meta-aspect manager is responsible for loading aspects. Specializing the meta-aspect man-
ager (especially overriding interactionAtJoinPoint) and replacing it at runtime allows dynamic
advice ordering.

The architecture of the Meta-Aspect Protocol is very similar to our extension of MetaJ and
provides the same abilities such as dynamic reordering and dynamic deployment. The dynamic
access to the proceed stack in Dynamic AspectJ is similar to accessing the meta-aspect manager
and replacing it at runtime.

12.4 Composing aspects with aspects

Marot et al. [75] share with us the idea of composing aspects using aspects. They propose an
extension of AspectJ, called Oarta, to empower aspects to express aspect composition similarly
to what is done in Dynamic AspectJ where an advice can access the list of aspects matching the
same join point. Oarta extends existing join point models that focus on the relations of aspects
with the base program in order to obtain a join-point model that focuses on the relations between
aspects. This guarantees the separation of composition-specfic code from the composed aspects.

186 CHAPTER 12. RELATED WORK

Chapter 13
Conclusion

Contents
13.1 Prototyping and Open implementations 188

13.2 Composition . 188

Aspect-Oriented Programming has celebrated its first decade of research, development and
industry adoption. There are many AOPL tools, languages, and frameworks.

To promote more mature use of AOP, new features are continually being proposed. These
features should be an extension of existing features or new ones. The realization of these features
imposes the extensibility of the existing implementations and the existing of tools providing utilities
for facilitating these implementations.

Extensible compilers, like abc, allow only fine-grained extension to the already implemented
AOPLs (for instance, AspectJ for abc). Moreover, some simple extensions, like adding a new type
of pointcut or changing the semantics of existing pointcuts (alternative semantics for call and
execution) do not require all the machinery of a full fledged compiler like abc. When initially
experimenting with such extensions, a lightweight extensible implementation of AspectJ suffices,
allowing rapid prototyping. At this stage, performance considerations are not necessarily an is-
sue. When the extension matures and optimizations are considered, turning to a full compiler
infrastructure makes sense.

Alternative approaches have been proposed to realize new features like AOP kernels (Reflex,
XAspects) that introduce primitives for expressing various weaving operations. Their principle
consists of translating AOPL programs to a shared intermediate representation. Unfortunately,
this way of implementing AOP features still requires a big effort to bridge the gap between the
semantics of the aspect language and the semantics of the intermediate representation. Moreover, it
is often impossible to safely use a kernel-based implementation with another one because each one
of these implementations introduce implementation-specific code in the translated representation
which can be considered as normal code for the other implementations.

Providing support for prototyping and composing independent aspect languages is a worthwhile
challenge, it gives the ability to accelerate the evolution of aspect mechanisms by bridging the gap
between the design and the test of new aspect mechanisms because the easy experimentation of
new features makes the validation or the correction of the novel approaches possible.

This dissertation contributes to both axes: the prototyping and the composition of AOP lan-
guages. It gives means to:

– Guide the design and the implementation of individual aspect languages as extensions of the
abstract aspect language interpreter.

– Implement the composition of different aspect languages as a natural result of implementing
these languages using the same framework.

187

188 CHAPTER 13. CONCLUSION

– Support the resolution and the configuration of aspect interactions when composing aspect
languages (at program level and language level).

13.1 Prototyping and Open implementations

We contribute to the prototyping axis with a practical framework, based on interpreters to
easily prototype AOP languages. The approach consists of providing an interpreter that imple-
ments the common aspect semantics base of an aspect language and keeps the specific mechanisms
abstract. The prototyping of a concrete aspect language consists of specifying the abstract notions
in the interpreter.

Tho key points of our approach are:

1. An existing definition of the semantics of aspect languages, the Common Aspect Semantics
Base (CASB).

2. A representation of the common notions in aspect languages, the metamodel of aspect lan-
guages, MetaSpin.

Chapter 5 has shown how to build an interpreter for the abstract aspect language, represented by
the metamodel, based on the semantics of the CASB, by considering the evolution of an existing
base interpreter for a subset of Java. The properties of the aspect interpreter are the following:

– It is cleanly separated from the base one.
– It directly implements the CASB semantics.
– Its architecture facilitates its extension to implement concrete aspect languages.

We have validated the above approach by extending the interpreter and implementing a light
version of AspectJ. We have shown how the specification and the extension of the abstract parts
in the interpreter is easy due to the architecture of the aspect interpreter.

To apply the same approach and the same architecture to the whole Java without changing
its interpreter (JVM), we reuse AspectJ to generate join points and forward them to a thin
interpretation layer. Chapter 6 has described the resulting framework which is called CALI.

Chapter 7 has validated the approach by describing an implementation of AspectJ while Chap-
ter 8 has shown how this implementation is easily extensible with two variants of AspectJ, one [14]
dealing with the dynamic scheduling of aspects like dynamic reordering and dynamic canceling
and another [29] dealing with alternative semantics for call and execution. We have also vali-
dated our approach by describing prototypes for EAOP, COOL and a couple of other DSALs in
Chapter 9. The prototype of EAOP was used, in the context of the European project AMPLE [1],
to prototype ECaesarJ [83], an extension of CaesarJ [11].

From the point of view of open implementations, we can say the language implementation with
CALI provides a high level of extensibility and reutilisability.

The AspectJ implementation is very flexible. The implementation of pointcut in an interpreted
way, as a direct implementation of their semantics, gives us the possibility to directly reflect the
changes to the semantics in the implementations. We have applied this to the call and execution

pointcuts, and have shown that variant semantics could be easily implemented.
The version of dynamic reordering has also been implemented with few changes in the basic

implementation by inserting methods in the advice implementation to give access to the proceed
stack.

Finally, we have reused the pointcuts implementations of AspectJ in EAOP and other DSALs
without reinventing the wheel every time.

13.2 Composition

The second axis of this dissertation is the ability to compose aspect languages. In fact, CALI
supports, in its core, the composition of several aspects. Each implemented language extends the
notion of aspect existing in the abstract aspect language. The interaction between the core and
each aspect instance is the same for all the implemented languages. The result is that the common

13.2. COMPOSITION 189

interpreter can compose the aspects of different languages as abstract aspects while they extend
the same abstract notion (Aspect) of the abstract language and have the same interface with the
core.

We can say that the implemented languages can naturally coexist but the designer must control
the conflicts between the residents. The two expected conflicts are the co-advising and the foreign
advising conflicts.

We give the possibility to resolve the co-advising conflicts at two levels:

Language level By configuring the order method in the Platform aspect to define the aspect
execution order depending on their languages.

Program level CALI is the only framework that supports the resolution of co-advising at the
program level by configuring the order method. This is done by reading a specification
defining the aspect execution depending on the aspects and not their languages. An addi-
tional type of configuration is the dynamic scheduling of aspects, implemented not only in
the advice of Dynamic AspectJ but as a feature in the advice notion of CALI.

We give the possibility to resolve the foreign advising conflicts at the language level by using the
Config aspect. This aspect controls the scope of join points of the considered language to prevent
the matching of these join points by an advice of another language (foreign advice).

190 CHAPTER 13. CONCLUSION

Chapter 14
Future Work

Contents
14.1 Dynamic AspectJ Plugin . 191

14.2 Context-Aware Application . 191

14.3 Debugging Aspect-Oriented Programs 192

Directions for future work include improving the existing prototypes and apply them to different
domains like context-aware application and debugging aspect programs.

14.1 Dynamic AspectJ Plugin

An important enhancement would be the implementation of Dynamic AspectJ as an Eclipse
plugin for Dynamic AspectJ and the improvement of the reifying mechanism to generate join points
only where needed. This would increase the performance of Dynamic AspectJ while conserving all
its features except the possibility of defining new aspects. This consists of parsing all the aspect
declarations, capturing their pointcuts and generating a Platform aspect containing a reify

pointcut that is the union of all the pointcuts.

14.2 Context-Aware Application

Context awareness originated as a term which sought to deal with linking changes in the en-
vironment with systems, which are otherwise static. The idea is that programs can change their
behavior, and react based on their environment. Software systems must adapt to changing con-
texts over time, even while they are running. Unfortunately mainstream programming languages
and development environments do not support this kind of dynamic change very well, leading
developers to implement complex designs to anticipate various dimensions of variability.

The notion of Context-oriented Programming (COP) [31, 56] directly supports variability de-
pending on a large range of dynamic attributes. In effect, it should be possible to dispatch runtime
behavior on any properties of the execution context. According to [31], the main notions in COP
are:

Behavioral variations Variations typically consist of new or modified behavior, but may also
comprise removed behavior. They can be expressed as partial definitions of modules in the
underlying programming model such as procedures or classes, with complete definitions
representing just a special case.

Layers Layers group related context-dependent behavioral variations.

191

192 CHAPTER 14. FUTURE WORK

Activation Layers aggregating context-dependent behavioral variations can be activated and
deactivated dynamically at runtime. Code can decide to enable or disable layers of aggregate
behavioral variations based on the current context.

Context Any information which is computationally accessible may form part of the context.

Scoping The scope within which layers are activated or deactivated can be controlled explicitly.
The same variations may be simultaneously active or not within different scopes of the same
running application.

The link between AOP (specially Dynamic Aspect-Oriented Programming) and COP is deep as
both paradigms help with separation of concerns and system adaptation.

Our proposition is to use our prototype of Dynamic AspectJ for Context-Oriented Program-
ming. We can introduce the notion of layer to Dynamic AspectJ as a set of aspects that are related
context-dependent behavioral variations. A layer can be activated by the activation of its aspects.
An additional feature provided by Dynamic AspectJ is that the order of layer execution can be
modified depending on runtime information (dynamic scheduling of aspects) whereas this feature
does not exist in the languages supporting COP like ContextL [31].

Another perspective for future work is also the notion of context-aware aspect [91] which is
an aspect whose behavior depends on the context. CALI could be used to define new types of
pointcuts to control the scope of aspects depending on the context.

14.3 Debugging Aspect-Oriented Programs

Debugging means the ability to diagnose faults in a software system, and to improve compre-
hension of a system, by monitoring the execution of the system.

The ability to debug programs composed using AOP techniques is critical to the adoption of
AOP. Nevertheless, many AOP systems lack adequate support for debugging, making it difficult
to diagnose faults and understand the composition and control flow of the program. For example,
when using the AspectJ compiler during AspectJ software evolution, when regression tests fail, it
may be tedious for programmers to find out the failures.

Being an interpreted framework, CALI could provide support for debugging. Aspects in CALI
are not translated and we have control to correctly debug aspect programs to resolve the interaction
of aspects with the system. A new feature of CALI can serve when debugging aspect programs: it is
the access to the proceed stack because some failures come not only from the interactions between
aspects and base but also from the interactions between the aspects themselves. These feature
are also applicable when debugging several aspect languages implemented with CALI because
the different implementation source code abstractions are visible (able to represent the executing
software system in terms of the pro- gramming language abstractions) and traceable (abile to trace
a specific executing behavior back to its source code segment) [10].

Appendices

193

Résumé

Cette thèse introduit une approche basée sur l’usage des interpréteurs pour le prototypage
rapide et la composition des langages d’aspects. Nous avons construit notre infrastructure en créant
un cadre dédié à la définition de la sémantique opérationnelle concrète des langages d’aspects.
L’interprétation joue un rôle intermédiaire dans la définition des langages d’aspects entre un
niveau plus abstrait qui est la sémantique et un niveau plus bas qui est le tissage. Des extensions
et des modifications sur la sémantique peuvent être facilement supportées dans un interpréteur ce
qui permet d’explorer l’espace de conception des langages d’aspects et d’expérimenter avec diverses
variantes de sémantiques des langages existants. Partant d’un prototype d’AspectJ implémenté
selon notre approche, nous montrons comment des sémantiques alternatives d’AspectJ concernant
les coupes et la planification dynamique des aspects peuvent être facilement implémentées avec
peu de changements dans le prototype. La thèse montre aussi comment un langage d’aspects dédié
peut être facilement implémenté.

1 Introduction

Les langages de programmation sont au cœur du génie logiciel. L’histoire de la recherche
dans ce domaine peut être considérée comme une quête perpétuelle pour la modularisation idéale
des préoccupations dans un système. Les paradigmes de programmation existants comme la pro-
grammation par objets et la programmation par composants sont utiles pour modulariser les
préoccupations de base du système (calculs et données); par contre ces paradigmes ne fournissent
pas un support pour la modularisation d’un type de préoccupations, appelé préoccupations trans-
versales, représentant des aspects du système qui affectent (coupent transversalement) d’autres
préoccupations comme le logging, la synchronisation et la sécurité.
Souvent, ces préoccupations ne peuvent pas être proprement découplées à partir du reste du
système, et le code de chaque préoccupation est dispersé à travers le programme et emmêlé avec
d’autres préoccupations. Certaines techniques de programmation comme les protocoles à méta-
objets [58] et la réflexion [30] ont tenté de résoudre ce problème. Ces techniques sont complexes et
ne fournissent pas de support linguistique pour la modularisation de préoccupations transversales.

La programmation par aspects (PPA) [47] a été proposée pour répondre aux problèmes des
préoccupations transversales en fournissant un support linguistique pour les modulariser. Ceci
est réalisé en laissant l’utilisateur définir le comportement d’une préoccupation transversale, puis
décrire d’une manière déclarative où cette préoccupation doit recouper les autres modules. Il est
de la responsabilité de l’infrastructure du langage d’élaborer le programme final. La prochaine
section résume les principes de la PPA et motive l’utilisation de plusieurs langages d’aspects pour
exprimer différents types de préoccupations transversales qui peuvent affecter simultanément le
système.

1.1 Programmation par Aspects

La PPA [47] tente d’aider les programmeurs dans la séparation des préoccupations transversales
en proposant des extensions des langages existants; ces préoccupations transversales sont elles
même modularisées comme des aspects.

195

196 RÉSUMÉ

La séparation des préoccupations transversales avec la PPA améliore la qualité des modules
en diminuant leur couplage avec d’autres modules et donc en améliorant leur maintenabilité et
leur réutilisabilité. Actuellement, la PPA est principalement réalisée en tant qu’extension de la
programmation par objets (en particulier, plusieurs extensions de Java ont été proposées dont le
langage standard de PPA AspectJ [57]), et implémentée à l’aide de technologies de transformation
de programme afin de composer statiquement (weaving) des aspects.

En PPA, le point où deux préoccupations se coupent est appelé point de jonction (join
point) [57]. Pour déterminer l’ensemble des points de jonction intervenant dans une composi-
tion, la majorité des langages fournissent un sous-langage, appelé le langage de coupe (pointcut).
Les expressions du langage de coupe déterminent l’ensemble des points de jonction qui doit être
capturé par l’aspect. Une coupe est liée à une déclaration qui sera exécutée lors de l’occurrence
d’un point de jonction. Cette liaison est appelée greffon (advice). Ce type de langage d’aspects est
dit conforme au modèle coupe-action qui sera décrit dans la suite.

Un langage d’aspect peut être générique ou dédié à un domaine. L’utilisation d’un langage d’as-
pects dédié à un domaine présente de nombreux avantages : représentation déclarative, analyse et
raisonnement simplifié, vérification des erreurs au niveau du domaine et optimisation [32]. Cette
approche suit celle de la programmation orientée langage [102]. C’est un style de programma-
tion passant par la méta-programmation qui, plutôt de résoudre un problème dans des langages
de programmation génériques, consiste à créer un ou plusieurs langages dédiés au domaine du
problème, et de le résoudre en utilisant ces langages. Plusieurs langages d’aspects dédiés ont été
en effet proposés au début de l’apparition de la PPA (COOL et RIDL à Xerox Parc [68]), puis
après une période de concentration sur les langages d’aspects génériques (AspectJ à Xerox Parc
aussi), l’intérêt des langages dédiés a été ravivé [28, 100, 92]. Un langage d’aspects dédié fournit un
moyen de simplifier le développement d’une préoccupation, comme la concurrence, la distribution,
la sérialisation, etc. Le développement des grandes applications distribuées implique l’intégration
de préoccupations multiples, avec de multiples parties prenantes manipulant le système par le
biais de points de vues différents. Quand plusieurs aspects sont traités dans le même module d’un
logiciel, il est intéressant d’être en mesure de combiner plusieurs approches de la PPA, plusieurs
langages d’aspects dédiés [86, 92] ou un langage générique avec plusieurs langages d’aspects dédiés
comme le cas d’AspectJ avec COOL.

1.2 Problématique

Dans le domaine du développement des logiciels par aspects, on trouve peu d’espaces de
conception des langages d’aspect, ce qui pourrait améliorer leur qualité en termes d’intelligibi-
lité, de réutilisation et de maintenabilité. En outre, la complexité des techniques utilisées pour
implémenter les langages d’aspects rend difficile la définition et le test de nouvelles fonctionnalités
et de sémantiques alternatives tandis que la diversité de ces techniques rend difficile la composition
de ces langages. Le problème peut être décomposé en trois parties :

1. Le développement d’un langage d’aspects dédié peut être délicat. La première étape du
processus de conception de ce type de langage est de considérer les schémas (de conception
et de programmation) communs au domaine de la préoccupation traité par le langage. Cette
étape risque de prendre beaucoup de temps. Compte tenu de ce fait, la mise à disposition
d’un prototype de ce langage est très utile pour tester les fonctionnalités proposées. Le
prototype doit être évolutif et maintenable dans le but d’ajouter de nouvelles fonctionnalités
au langage capturé.

2. L’expérimentation avec diverses variantes de sémantiques et l’exploration de l’espace de
conception des langages d’aspects sont communes dans le domaine de recherche des langages
d’aspects. Ainsi, la sémantique des coupes en AspectJ a subi des évolutions depuis la première
version (par exemple la coupe execution vis-à-vis de l’héritage [18]). Malheureusement,
l’exploration de ces variantes n’est pas facile car la plupart des compilateurs existants (par
exemple, le compilateur d’AspectJ, ajc [2]) n’ont pas été conçus avec l’extensibilité comme
objectif. Même si c’est le cas de abc, AspectBench Compiler for AspectJ [15]. Travailler avec

1. INTRODUCTION 197

cet outil nécessite la maitrise de tous les composants de abc comme Polyglot, Soot, Jimple,
etc. En plus, il est plus facile de proposer des variantes de la sémantique des coupes que de
modifier le mécanisme de l’ordonnancement des aspects.

3. Lors du travail avec des grosses applications, il faut considérer des préoccupations différentes
et spécialement des préoccupations transversales telles que la synchronisation, la concurrence,
etc. L’utilisation de plusieurs langages dédiés (un langage par domaine) nous amène à compo-
ser les différents langages utilisés ensemble. La diversité des techniques d’implémentation de
ces langages rend presque impossible leur composition. Pour clarifier le problème, considérons
les deux langages d’aspects, AspectJ et COOL. Pour chacun de ces deux langages, il y
a un compilateur qui tisse les aspects correspondants. Le compilateur prend une appli-
cation de base et génère une représentation spécifique de celle-ci puis cherche les lieux
où les préoccupations transversales doivent être ajoutées. Lors de la construction de la
représentation spécifique, chaque compilateur ajoute, dans le programme transformé, cer-
taines instructions spécifiques à l’implémentation, qui peuvent être considérées comme des
instructions de base pour le second tisseur (puisque le tissage est séquentiel). Cela conduit à
un comportement inattendu comme décrit dans [70]. Une infrastructure de composition doit
prendre en charge à la fois la gestion des interactions entre les aspects et le paramétrage de
la composition des différents langages.

1.3 Thèse

L’objectif général de cette thèse est de proposer une infrastructure pour faciliter le prototypage
et la composition des langages d’aspects.

Propositions L’approche générale consiste à recourir à des interpréteurs au lieu de compilateurs
(tisseurs) parce que :

1. Un interpréteur peut nous aider à mettre directement en œuvre la sémantique du lan-
gage d’aspects lors de son prototypage et à gérer facilement les interactions entre les
langages lors de leur composition.

2. Un interpréteur est plus ouvert et plus extensible qu’un compilateur.

3. Il est plus facile de composer des interpréteurs que des compilateurs (tisseurs) pour
composer les langages.

Notre approche consiste à définir un interpréteur commun pour les langages à aspects, in-
terpréteur qui peut être étendu pour construire un interpréteur concret pour un langage
spécifique, tandis que les extensions peuvent être assemblées afin de composer différents
langages.

Nous partons de deux points existants:

1. La CASB [36], un cadre pour la définition de la sémantique des langages d’aspects
comme base pour exprimer la sémantique de notre interpréteur.

2. Un métamodèle des langages d’aspects [26] qui représente les notions communes des
langages d’aspects.

L’interpréteur commun met en œuvre la sémantique commune aux langages d’aspects basée
sur la CASB. Comme exemple de sémantique commune, citons l’interaction entre un in-
terpréteur de base et un interpréteur d’aspects, la sélection des aspects, l’ordonnancement
des aspects, l’exécution des actions, la possibilité, au sein d’une action de redonner le contrôle
au programme de base (instruction proceed). L’interpréteur fait abstraction de la sémantique
spécifique comme la sémantique des coupe qui doit être spécifiée lors de l’implémentation
d’un langage concret en étendant l’interpréteur. L’interpréteur commun est conçu pour être
ouvert et flexible de sorte que même la sémantique commune peut être configurée.

À titre d’exemple, nous citerons la notion de l’ordonnancement des aspects, pour laquelle
il est important d’avoir différents types de stratégies d’ordonnancement, dynamiques ou
statiques. Le prototypage des langages d’aspects concrets est réduit à la spécification des

198 RÉSUMÉ

traits abstraits dans l’interpréteur. En ce qui concerne la composition des langages d’aspects,
les langages développés indépendamment par extension de l’interpréteur commun peuvent
être facilement assemblés. La composition des langages d’aspects est réduite à la composition
des aspects, car les aspects de tous les langages héritent de la notion d’aspect abstrait et
interagissent de la même façon avec l’interpréteur. Le cadre offre une configuration par défaut
de la composition des aspects et un support pour la configuration de cette composition.

Prototypes La sémantique de la CASB suppose qu’un interpréteur de base met en œuvre la
sémantique du langage de base et la partie commune de l’interpréteur doit gérer les in-
teractions entre les deux interpréteurs (interpréteur de base et interpréteur des aspects).
Selon l’interpréteur de base que nous considérons et en suivant nos propositions, nous avons
construit deux prototypes :

1. MetaJ [40] étendu. Utiliser un interpréteur de base comme la JVM est très complexe.
Notre point de départ pour construire l’interpréteur est de prendre MetaJ, un in-
terpréteur écrit en Java pour un sous-ensemble de Java, et de l’étendre avec un in-
terpréteur d’aspects.

2. CALI. Pour appliquer la même architecture à l’ensemble de Java, sans faire de chan-
gements dans la JVM, nous utilisons AspectJ pour mettre en œuvre les points de
jonction et les transmettre à une mince couche d’interprétation responsable de la ges-
tion spécifique des aspects. Cela peut être considéré comme un exemple intéressant
d’intégration des interpréteurs et des compilateurs, des mondes dynamique et statique.
Le cadre qui en résulte est appelée CALI, pour Common Aspect Language Interpreter.

1.4 Validation

Pour valider notre travail, nous présentons un prototype d’un sous-ensemble significatif d’As-
pectJ implémenté en utilisant CALI. L’extensibilité de cette implémentation d’AspectJ est validée
par deux variantes de ce langage, l’une traite l’ordonnancement dynamique des aspects [14] et
l’autre une sémantique dynamique des coupes prédéfinies sélectionnant les appels et les exécutions
de méthodes [13]. CALI est également utilisé pour prototyper des langages d’aspects dédiés très
différents comme EAOP et COOL. CALI a été utilisée au sein du projet AMPLE [1] pour proto-
typer ECaesarJ [11], que l’on peut voir comme une intégration du modèle EAOP et de CaesarJ.

Les implémentations reposant sur CALI peuvent être facilement composées parce qu’elles sont
toutes basées sur le mêmes langage abstrait. En outre, CALI prend en charge la configuration de
la composition et la résolution des interactions entre aspects à différents niveaux (conception et
programmation).

1.5 Structure de la thèse

La section 2 décrit des techniques d’implémentation des langages de programmation en général
et spécifiquement langages d’aspects ainsi que les approches existantes pour prototyper et composer
des langages d’aspects. La section 4 décrit l’interpréteur commun pour les langages d’aspects,
appelé CALI. La section 5 montre comment une grande partie d’AspectJ est implémentée avec
CALI. Dans la section 6 nous montrons comment des petites modifications dans le prototype
d’AspectJ nous permet d’implémenter facilement deux variantes de ce langage. La section 7 montre
l’implémentation des langages autres qu’AspectJ avec CALI comme EAOP, COOL. La section 9
traite des travaux connexes et des perspectives de nos travaux puis conclut.

2 Etat de l’art

Cette section décrit ce qu’est un langage d’aspects, comment il est défini et quelles sont les
principales techniques utilisées pour sa mise en œuvre.

2. ETAT DE L’ART 199

2.1 Langages d’aspects

2.1.1 Types de PPA

La PPA consiste à modulariser le code dispersé et mélangé dans le code du logiciel puis laisser
l’infrastracture du langage s’occuper de tisser les aspects. Selon la nature du code dispersé, on
peut distinguer deux types de PPA:

Structurelle signifie le tissage des modifications dans la structure statique (classes, interfaces,
etc.) du programme. En AspectJ, ce type est appelé Inter-type declarations [94]. Les aspects
d’AspectJ peuvent déclarer des membres (des champs, des méthodes et des constructeurs)
pour qu’ils soient détenus par d’autres types. Ils peuvent également déclarer que d’autres
types implémentent de nouvelles interfaces ou étendent une nouvelle classe.

Considérons un example qui consiste à ajouter une fonctionnalité partagée par certaines
classes existantes qui font déjà partie d’une hiérarchie de classes, c’est à dire qu’elles ont
déjà hérité d’une classe. Dans Java, on crée une interface qui prend compte de cette nouvelle
capacité, puis ajoute pour chaque classe concernée une méthode qui implémente cette inter-
face. AspectJ peut exprimer la préoccupation en un seul endroit, en utilisant des déclarations
inter-type. L’aspect déclare les méthodes et les champs qui sont nécessaires pour mettre en
œuvre la nouvelle fonctionnalité, et associe les méthodes et les champs aux classes existantes.

Comportementale signifie le tissage de nouveaux comportements dans l’exécution d’un pro-
gramme. Il augmente ou même remplace le flux de l’exécution du programme d’une manière
qui franchit les limites des modules, ce qui modifie le comportement du système. AspectJ
fournit la notion de pointcut pour définir les points concernés dans le flux d’exécution du
programme.

2.1.2 Technique d’implémentation

Un langage d’aspects est normalement une extension d’un langage de programmation existant,
appelé langage de base, avec lequel sont exprimées les préoccupations de base du programme.
L’extension du langage existant est à la fois:

Syntaxique Pour ajouter les expressions nécessaires à la déclaration des coupes et des greffons.
Cependant chaque langage définit sa propre syntaxe. Dans AspectJ, une coupe est définie
avec un langage de patterns qui permet d’indiquer où l’aspect doit être intégré dans l’ap-
plication en utilisant des quantificateurs (call, execution, etc.), des opérateurs booléens
et des caractères joker ou wildcards (comme le caractère *). Les langages d’aspects dédiés
ajoutent des instructions plus spécifiques au domaine auquel ils s’intéressent. Par exemple,
COOL [68] utilise les mots clés: selfex et mutex pour la coordination des méthodes.

Sémantique Pour exprimer comment le programme de base se réagit en présence des aspects
ainsi que d’autres spécifications comme l’interaction entre les aspects et l’ordonnancement
de l’exécution des aspects.

Du point de vue utilisateur, différents modules de préoccupations indépendantes sont écrits.
Du point de vue du concepteur du langage, certains de ces modules recoupent d’autres modules
et doivent être tissés avec eux aux endroits appropriés. Il existe deux façons différentes pour
implémenter les langages d’aspects:

1. Un programme combiné écrit avec le langage de base est produit à partir du programme de
base et les aspects. Le code aspect est tissé dans le code base et les aspects n’existent plus
à l’exécution et ne sont pas considérés comme des entités de première classe.

2. L’interpréteur et l’environnement du langage de base sont mis à jour pour supporter et
implémenter des fonctionnalités de la PPA. Dans cette approche, les aspects sont des entités
de première classe.

200 RÉSUMÉ

2.2 Prototypage et composition

Comme déjà mentionné, il peut être avantageux d’utiliser plusieurs langages d’aspects, surtout
dédiés au sein de la même application. Il y a deux approches de la composition des langages
d’aspects: transformation par étapes et la transformation directe.

Transformation par étapes Cette approche consiste à tisser les aspects d’un langage avec le
tisseur correspondant puis à faire circuler le programme résultant vers le tisseur d’un autre
langage et ainsi de suite.

Transformation directe Cette approche consiste à traduire les programmes d’aspects dans les
différents langages (T1 et T2 vers un langage commun T3). Dans ce cas, la composition de
deux aspects, respectivement de T1 et T2, se reduit à la composition de deux aspects dans
T3, où la sémantique de la composition de deux aspects devraient être définie.

Un framework de prototypage des langages d’aspects doit fournir une abstraction commode
pour implémenter un nouveau langage d’aspects. Aujourd’hui, il n’existe que quelques frameworks
pour le prototypage et la composition des langages d’aspects. La plupart d’entre eux utilisent un
mécanisme de transformation générale. Le prototypage d’un nouveau langage consiste à traduire les
aspects en terme de transformation générale prévue par le framework. Par exemple, implémenter
un nouveau langage avec Reflex [92] consiste à transformer les programmes en des classes de
configuration de Reflex. XAspects consiste à transformer les aspects décrits avec des langages
dédiés en AspectJ. En général, un framework pour le prototypage des langages d’aspects fournit
un support pour composer des langages d’aspects différents implémentés avec ce framework en
composant différents modules traduits dans la même représentation intermédiaire.

2.2.1 Classification des approches existantes

ajc Le compilateur AspectJ ajc a un front-end et back-end. Le front-end traduit les aspects décrits
en AspectJ .java et .aj en classes annotées (bytecode). Un aspect est traduit en une classe
de même nom et une action en une méthode de cette classe. Cette méthode compilée est
également annotée avec des attributs stockant les données spécifiques à l’aspect (par exemple,
les déclarations des coupes). Les annotations distinguent les classes � aspects �des classes
Java et servent au back-end pour tisser le code des actions dans le code des classes Java.

Le back-end implémente la sémantique de l’extension aspect. Il est basé sur une approche
de transformation. Il prend les classes générées par le front-end, et instrumente le bytecode
en injectant au niveau des points de programmes correspondants à des points de jonctions
possibles, calculés par le front end, des appels aux actions (des méthodes des classes générées
à partir des aspects).

abc Le compilateur abc est une autre implémentation complète d’AspectJ. Il a été conçu pour
faciliter l’extension et l’optimisation du langage AspectJ.

La grammaire AspectJ développée pour abc est spécifiée comme une extension de la gram-
maire de Java et les grammaires des extensions sont conçues comme des modifications de la
grammaire d’AspectJ.

Le front-end génère un arbre de syntaxe abstraite et une structure appelée AspectInfo conte-
nant les informations liées aux aspects à partir des fichiers source.

Il y deux raisons pour dire que abc est plus extensible que ajc :

1. ajc effectue sa transformation au niveau du bytecode et génère du bytecode optimisé
pour être exécuté sur la JVM alors que abc effectue sa transformation au niveau du
code Jimple qui est une représentation intermédiaire de plus haut niveau que le pseudo-
codedonnant encore plus d’abstraction à la transformation ce qu’il le rend plus exten-
sible que ajc.

2. L’outil Soot utilisé dans abc est utile pour l’implémentation des extensions telles que
les coupes décrivant des points précis dans le graphe de flot de contrôle.

3. ÉVALUATION ET CONTRIBUTIONS 201

On peut dire que abc se caractérise par une transformation décrite à un assez bon niveau
d’abstraction qui peut être modifiée à l’aide d’outils génériques en vue d’étendre AspectJ.
Toutefois, l’utilisation de abc pour étendre AspectJ nécessite la connaissance et la mâıtrise
de tous les outils utilisés dans abc comme Polyglot, Soot, Jimple, etc. alors qu’un lun frame-
work extensible léger permettant le prototypage rapide suffit pour prototyper AspectJ. En
outre, abc n’a pas été conçu pour permettre la composition de AspectJ avec autres langages
d’aspects.

Reflex et XAspects Comme abc, Reflex et XAspects utilisent une approche de transformation
pour implémenter leurs mécanismes aspect. Au lieu d’avoir une transformation générique,
Reflex et XAspects définissent une transformation intermédiaire. Chaque fois qu’un nouveau
langage doit être défini en utilisant Reflex, une transformation de la sémantique du langage
aux classes de configuration et aux classes de metaobjects, qui sont les paramètres du trans-
formation effectuée par Reflex sur le bytecode en utilisant l’outil Javassist [8]. XAspects
traduit les aspects des différents langages aux aspects AspectJ où la transformation peut se
faire en utilisant n’importe quel tisseur AspectJ.

Pluggable AOP À la différence d’autres propositions examinées, n’utilise pas une démarche de
transformation. Pluggable AOP propose un cadre pour définir les langages d’aspects sous
la forme d’interpréteurs composables. Un langage unique est constitué d’un interpréteur
du langage de base et d’un interpréteur des aspects. La composition de plusieurs langages
se résume à la composition des interpréteurs des aspects qui sont composés en couche. Le
problème de cette composition est qu’elle impose un ordre unique d’évaluation qui n’est pas
souhaitable en général.

3 Évaluation et Contributions

Le but principal d’un framework de prototypage des langages d’aspects est de permettre aux
concepteurs de tester de nouvelles fonctionnalités d’une façon simple. L’origine de cette simplicité
doit être la généralité du mécanisme d’aspects utilisé dans ce framework afin d’autoriser la pro-
jection des langages d’aspect vers ce mécanisme. Par exemple, le mécanisme d’aspects de Reflex
repose sur la réflexion partielle du comportement alors que le mécanisme utilisé dans XAspects
aspect est celui d’AspectJ. Les approches de transformation souffrent de deux problèmes:

1. Le saut en abstraction entre la sémantique du langage et les mécanismes d’implémentation
des frameworks de prototypage complique la construction et l’extension du prototype.

2. En se basant sur le mécanisme d’aspects supporté par le framework, il est difficile de mettre
en œuvre plusieurs alternatives de sémantique du langage. Par exemple, le plugin AspectJ
de Reflex représente un point de jonction de type call comme une instance de la classe
MsgSend qui, dans Reflex, a une sémantique bien définie ce qui rend difficile la proposition
d’alternatives pour la coupe call similaires à celles de [18].

Ces problèmes dûs à l’approche de transformation de code nous conduisent à concevoir un
mécanisme d’aspect extensible et de construire des langages d’aspects en étendant ce mécanisme
au lieu de traduire différents langages vers une même représentation. L’étude des fondements des
langages aspect peut se faire en considérant les changements à apporter aux interpréteurs classiques
des langages (interpréteurs de base) pour introduire les aspects [46]. En général, l’écriture d’un
interpréteur nécessite beaucoup moins de travail que l’écriture d’un back-end. En outre, il permet
de prototyper, tester et étendre rapidement le langage.

Notre approche consiste à hiérarchiser les niveaux d’abstraction des mécanismes d’aspects en
décrivant les relations entre ces niveaux : des modèles conceptuel et sémantique jusqu’au niveau
de l’implémentation sous la forme d’un interpréteur. Ces relations nous fournissent une traçabilité
qui permet de faciliter la compréhension de la sémantique des langages d’aspects, leur prototypage
et leur composition.

Nous considérons le modèle défini dans [63] comme notre modèle conceptuel. Les quatre sous-
processus décrits dans ce modèle sont au sommet de la hiérarchie. Le deuxième niveau est le

202 RÉSUMÉ

modèle sémantique définie par la CASB (la base de sémantique des langages d’aspects) [36]. Pour
chaque sous-processus, nous décrivons sa sémantique selon la CASB.

Nous réutilisons le métamodèle des langages d’aspects défini dans [26] sous forme d’une gram-
maire abstraite produisant des arbres de syntaxe abstraite tandis que la sémantique est implémentée
en fonction du modèle conception et du modèle sémantique. La grammaire est abstraite parce
qu’elle parle de syntaxe abstraite mais aussi puisqu’elle est incomplète et elle doit être complétée
lors de l’implémentation d’un langage d’aspects concret. Les concepts sont modélisés dans le
métamodèle qui représente les caractéristiques essentielles des langages d’aspects et leurs relations.
Nous obtenons un langage d’aspects abstrait qui peut être étendu et spécifié, afin de modéliser
un langage d’aspect concret. Chaque langage d’aspect doit être défini par une projection de ses
fonctionnalités vers les concepts du métamodèle.

Nous appliquons notre approche à l’interpréteur de Java MetaJ [40]. MetaJ joue le rôle de
l’interpréteur de base et interagit avec l’interpréteur d’aspects implémentant la sémantique du
langage d’aspects. Nous obtenons une séparation claire entre la base et l’interpréteur aspect en
définissant et en clarifiant les bornes et les interactions entre les deux interpréteurs. L’interpréteur
d’aspects montre explicitement la séparation entre les quatre sous-processus. La séparation entre
l’interpréteur de base et l’interpréteur d’aspects ainsi que notre mise en œuvre de chaque sous-
processus facilitent la compréhension et l’extension de l’interpréteur d’aspects et forment aussi un
pas vers une composition modulaire des langages d’aspects. Ceci signifie que des langages d’aspects
différents, qui ont été mis en œuvre indépendamment, peuvent être assemblés sans modifier chacune
des implémentations (third-party composition).

Les fonctionnalités spécifiques des langage d’aspects concrets peuvent être partiellement décrites
comme des spécialisations des concepts décrits dans le métamodèle commun. L’approche du fra-
mework garantit également que tous les langages d’aspects seront issus du même métamodèle. En
guise de validation, nous avons réalisé un prototype d’une version allégée d’AspectJ par la mise en
œuvre de plusieurs coupes étendant une partie essentielle du métamodèle, les sélecteurs de points
de jonction.

Après la mise en œuvre du framework pour une partie de Java, nous avons appliqué les mêmes
principes à de Java en réutilisant un mécanisme appelé tissage en deux étapes, qui simplifie la
construction de notre framework sur l’ensemble de Java sans avoir besoin de traiter des problèmes
d’efficacité et de performance, mais en se concentrant sur la conception et l’extensibilité de l’in-
terpréteur. Nous avons nommé ce framework CALI pour Common Aspect Language Interpreter.

4 Un interpréteur extensible pour les langages d’aspects

Une bonne façon de comprendre les principes des langages d’aspects basés sur un langage de
base est de prendre un interpréteur de ce langage puis étudier quels sont les modifications à y
apporter pour ajouter/introduire la notion des aspects. Nous considérons MetaJ, un interpréteur
de Java écrit en Java [39, 40], comme notre interpréteur de base. Nous montrons les modifications
(instrumentation et extension) pour obtenir un interpréteur pour les langages d’aspects. Nous
gardons ces changements modulaire autant que possible en séparant entre l’interpréteur de base
et l’interpréteur d’aspects. L’interpréteur d’aspects sera à son tour divisé en deux parties : l’une
appelée Plateforme pour les traits communs aux langages d’aspects et l’autre pour les traits
spécifiques à chaque langage. La partie spécifique doit fournir une interface pour pouvoir être
appelée à partir de la partie commune. La séparation entre la base et l’interpréteur d’aspects
améliore la compréhension et l’extensibilité de chaque interpréteur. L’architecture générale montre
(Figure 5.3) chaque interpréteur en tant qu’un composant indépendant et affiche les interactions
entre les deux interpréteurs. Les interactions entre les deux éléments se composent de deux types
de message :

– Un point de jonction émis par l’interpréteur de base à chaque étape de l’évaluation des
expressions.

– Les données résultant de l’évaluation du point de jonction dans l’interpréteur d’aspects par
les aspects existants.

4. UN INTERPRÉTEUR EXTENSIBLE POUR LES LANGAGES D’ASPECTS 203

Les actions du langage d’aspects peuvent être écrites ou non en partie dans le langage de base. Le
langage d’aspects peut être une extension du langage de base ou non. Comme architecture, il y a
trois possibilités :

(a) L’interpréteur d’aspects est une extension complète de l’interpréteur de base et les actions
sont interprétées dans l’interpréteur d’aspects. Les deux interpréteurs partagent l’objet heap.

(b) L’interpréteur d’aspects délègue l’évaluation des expressions de base (des actions) à l’in-
terpréteur de base. Ce cas n’est qu’une optimisation du premier.

(c) L’interpréteur d’aspects est indépendant de l’interpréteur de base. C’est le cas où le langage
d’aspects est indépendant de celui de base (l’action du greffon ne contient aucune expression
du langage de base).

En utilisant cet approche, nous avons réalisé une version légère d’AspectJ par l’extension de
l’interpréteur d’aspect. L’implémentation des coupes consiste à évaluer le point de jonction généré
par l’interpréteur de base.

4.1 CALI

Pour appliquer la même architecture sur l’ensemble de Java, CALI réutilise AspectJ pour effec-
tuer une première étape de tissage statique, que nous complétons par une seconde étape de tissage
dynamique, implémenté à travers d’une couche d’interprétation. Ceci peut être considéré comme
un exemple intéressant de concilier les interpréteurs et les compilateurs. Le modèle conceptuel
de CALI est toujours celui de 4 sous-processus alors que le modèle sémantique est basé sur une
version modifiée de la CASB.

4.1.1 Sémantique

Nous nous sommes basés sur la CASB comme framework de définition de la sémantique pour
définir les mécanismes d’interprétation des points de jonction dans CALI. Le core de la CASB était
étendu pour introduire la notion de groupe d’aspects qui est utilisé afin de modifier le mécanisme
standard de planification des aspects dans AspectJ.

ψ(i) = Φ α(Φ,Σ) = (φ,Φ′)
Around

(i : C,Σ, P)→ (φ : pop : C,Σ, (Φ′ :: [i]) : P)

Nous avons introduit la fonction α, non présente dans les règles de la CASB, pour montrer qu’il
y aurait la possibilité d’effectuer un ordonnancement dynamique qui pourra être nécessaire dans
certains langages d’aspects implémenté au dessus de CALI. En effet, dans nos règles étendues,
la fonction α, choisit éventuellement, en se basant sur Σ, la première instruction φ ainsi que les
instructions Φ′ afin d’examiner si l’aspect procède.

4.1.2 Architecture

CALI représente un bon exemple qui mélange la compilation et l’interprétation. Le programme
de base fonctionne comme un programme Java normal sur une JVM standard tandis que les aspects
sont partiellement interprété. Tous les aspects (de n’importe quel langage implémenté avec CALI)
doivent être traduits, en utilisant un parseur, vers une structure spécifique (en Java) définie par
l’interpréteur, et seront représentés à l’exécution par des objets Java conformes à la présente
structure spécifique. Les deux étapes de tissage sont les suivantes :

1. La première étape a lieu dans AspectJ lors de la compilation, à travers d’un aspect appelé
Platform, et dont le résultat est l’instrumentation par AspectJ de tous les points de jonction
possibles dans le programme de base;

2. La deuxième étape a lieu à l’exécution, lorsque le greffon de l’aspect Platform, qui se com-
porte comme une couche d’interprétation, évalue le point de jonction courant (accessible par
thisJoinPoint) en cherchant des aspects qui séléctionne le point de jonction courant puis
les exécute. Le code des greffons écrits en Java sont exécuté comme du code Java normal.

204 RÉSUMÉ

L’aspect Platform implémente les 4 processus de tissage. Le processus reify est implémenté
comme une coupe qui génère tous les points de jonction possible. Les processus match, order et
mix sont implémentés comme des méthodes et sont appelées dans le greffon de Platform.

4.1.3 Langage d’aspects abstrait

CALI fournit une API qui doit être utilisée par les différents langages d’aspects utilisant
CALI. L’API est un langage d’aspects abstrait basé sur le métamodède des langages d’aspects
MetaSpin [26]. Les principaux éléments (classes et interfaces) sont : Aspect, JoinPointSelector,
Advice et SelectorAdvicebinding.

Aspect Une interface qui doit être implémenté par les classes qui représente un aspect dans
les différents langages. Elle permet à Platform de communiquer les points de jonction aux
aspects.

JoinPointSelector Une classe qui représente un évaluateur des points de jonction pour décider
la sélection ou non du point de jonction courant.

Advice Une classe contenant la méthode adviceexecution qui sera appelée lors de l’évaluation
du test dynamique.

SelectorAdviceBinding Une classe permettant de relier le sélecteur (instance de la classe
JoinPointSelector) à l’action correspondant (instance de la classe Advice).

4.2 Conclusion

Dans cette section, nous décrivons comment le prototypage des langages d’aspects se fait en
utilisant CALI. Le concepteur de langage doit fournir :

– L’implémentation d’un aspect comme une classe implémentant l’interface Aspect, en parti-
culier la méthode staticTest (Joinpoint).

– La mise en œuvre des sélecteurs qui héritent de la classe JoinPointSelector. Chaque
sélecteur doit implémenter les deux méthodes boolean staticTest (Joinpoint) et
boolean dynamicTest (Joinpoint). La première vérifie si le sélecteur identifie la partie
statique du point de jonction. Cela correspond aux pièces qui peuvent être déterminées au
moment de la compilation, même si ce rapprochement des points de jonction se fait par
interprétation lors de l’exécution, car l’instance de Joinpoint contient plusieurs éléments
d’information statique (accessible par getStaticPart()). Le deuxième définit si le sélecteur
identifie la partie dynamique en accédant à des informations d’exécution en utilisant des
méthodes comme getThis(), getTarget(), etc. fournies par l’interface Joinpoint.

– La mise en œuvre des actions. Il y a deux cas : dans le premier, le langage des actions est
aussi Java, le concepteur peut utiliser l’implémentation des actions prédéfinis dans CALI
alors que dans le deuxième, le langage des actions n’est plus Java, le concepteur implémente
la méthode adviceexecution à titre d’évaluateur des expressions du langage des actions du
nouveau langage.

L’implémentation des sélecteurs comme des entités indépendantes et modulaire améliore leur
réutilisation. Ceci apparâıt bien avec nos versions de EAOP (pour Java) et AspectJ où nous
avons réussi à réutiliser les mêmes sélecteurs et greffons, mais avec une implémentation diffèrente
de la méthode staticTest (Joinpoint) des aspects. Pour AspectJ, cette méthode retourne une
liste des SelectorAdviceBinding qui, statiquement sélectionne le point de jonction. Pour EAOP,
elle retourne un seul SelectorAdviceBinding en fonction de l’état d’aspect. Pourtant, les deux
langages partagent les sélecteurs Call, Execution, This, Target, etc. Une fois que AspectJ est
implémenté, la mise en œuvre de EAOP ne nécessite que la gestion de l’état de l’aspect.

5 Implémentation d’AspectJ

Après avoir défini la manière de conception des langages d’aspects sur CALI dans la section
précédente, celle-ci présente une implémentation d’AspectJ à l’aide CALI. L’implémentation com-

5. IMPLÉMENTATION D’ASPECTJ 205

prends la plupart des caractéristiques d’AspectJ . Le couple (shadow, residue) est le principe de
sélectionner un point de jonction dans AspectJ. Cela se traduit par une sélection avec les deux
méthodes staticTest et dynamicTest, où un sélecteur de point jonction traite la sélection statique
(telle que pratiquée dans la sémantique par la fonction Ψ) ainsi que dynamique correspondant (telle
que pratiquée par les instructions Φ). Cette sélection se fait en additionnant les résultats issus de ses
composantes qui sont des sélecteurs primitives, instances de la classe JoinPointSelector. Chaque
coupe est implémentée comme une sous-classe de JoinPointSelector avec une définition appro-
priée des méthodes staticTest et dynamicTest, conformément à la spécification de la sémantique
d’AspectJ [12, 16, 18].

La méthode staticTest retourne true si l’information statique (nom de la méthode, type
statique, le nom du champs, etc.) contenue dans le point de jonction, est identifiée par la coupe
alors que la méthode dynamicTest traite les information de l’exécution contenues dans le point
de jonction comme : type dynamique (type de l’objet this), type de récepteur (receiver), etc.

Pour mettre en œuvre les sélecteurs, nous nous sommes basés sur la variable de référence
spécifique, thisJoinPoint fournit par AspectJ et accessible à partir du corps du greffon. Elle
contient des informations réflectives sur le point de jonction courant. Le greffon de l’aspect
Platform passe cette information réifiée à tous les sélecteurs d’aspects, qui peuvent alors accéder
à toutes les informations nécessaires pour la sélection des points de jonction.

5.1 Implémentation des coupes

5.1.1 Call

Toutes les informations nécessaires à un sélecteur Call, afin de déterminer si un point de
jonction doit être sélectionné ou non, sont statiques (peuvent être obtenues à partir du shadow de
point de jonction). En effet, il y a deux conditions pour qu’un sélecteur call(P.m()) sélectionne
un point de jonction e.m() où J est le type de qualification du point de jonction (type statique
de e) :

– J <: P (J est un sous classe de P);
– m existe dans P .

En conséquence, les conditions de sélection sont implémentées dans la méthode staticTest,
alors que la méthode dynamicTest toujours retourne true :

public boolean staticTest(JoinPoint jp) {

boolean basicMatch;

if (exists) {

boolean basicMatch =

jp.getKind().equals("method-call")

&& jp.getSignature().getName().equals(methodName)

&& Arrays.equals(((MethodSignature)jp.getSignature())

.getParameterTypes(), parameterTypes);

if (basicMatch) {

try {

jp.getSignature().getDeclaringType().asSubclass(pointcutClass);

return true;

} catch (Exception e) {

return false;

}

} else

return false

} else

return false;

}

206 RÉSUMÉ

En utilisant l’API de réflexion de Java, la méthode staticTest implémente la sémantique de
Call. La variable booléenne exist a la valeur true si la méthode existe dans la classe définie dans
la coupe. La variable booléenne basicMatch est vrai lorsque le point de jonction est en effet un
point de jonction de type appel de la méthode décrite dans la coupe. Cela nécessite de comparer
le nom et les types de paramètres spécifiés dans la coupe et celles obtenues à partir du point de
jonction.

Si les deux variables exist et basicMatch sont à true, la dernière étape consiste à vérifier,
en utilisant la méthode asSubClass de l’API de réflexion de Java, que le type de déclaration
du point de jonction jp.getSignature().getDeclaringType() est une sous-classe de la classe
pointcutClass déclarée dans la coupe. Cela correspond directement à la condition J ⊆ P dans
la sémantique.

5.1.2 Execution

En analysant la sémantique de execution, on obtient les mêmes conditions que la coupe
call, mais avec une définition spécifique de type de qualification. L’implémentation du sélecteur
Execution diffère de celui par le fait de tester si le type du point de jonction est “method-
execution”.

5.1.3 This

La coupe this(Type) sélectionne les points de jonction où l’expression this instanceof Type
retourne true. La sélection des points de jonction est donc basée sur des informations dynamique
dans le contexte de l’exécution. Ceci veut dire que la méthode staticTest toujours retourne true

alors que la méthode dynamicTest est implémentée de la façon suivante :

public boolean dynamicTest(JoinPoint jp) {

return pointcutClass.isAssignableFrom(jp.getThis().getClass());

}

5.1.4 Target

L’implémentation de cette coupe est similaire à celui de this avec la différence que c’est la
méthode getTarget() qui est appelée sur le point de jonction au lieu de getThis() :

public boolean dynamicTest(JoinPoint jp) {

return pointcutClass.isAssignableFrom(jp.geTarget().getClass());

}

5.2 Résumé

L’implémentation d’AspectJ avec CALI possède les propriétés suivantes :

Extension directe de CALI elle est conforme à la méthodologie discutée dans la section
précédente.

Extensibilité de la sémantique elle permet facilement de tester des sémantiques alternative
d’AspectJ surtout la sémantique des coupes et des planification des aspects.

6 Extensions d’AspectJ

6.1 Planification dynamique des aspects

Cette contribution a fait l’objet de notre papier [14]. Il s’agit d’une nouvelle version d’AspectJ,
appelé Dynamic AspectJ [14]. Elle permet de planifier l’exécution dynamique des aspects à un
point de jonction partagé, y compris la possibilité d’annuler des aspects.

6. EXTENSIONS D’ASPECTJ 207

6.1.1 Exemples

Nous présentons deux exemples illustrants les avantages de la planification dynamique des as-
pects. Le premier exemple présente un cas qui necessite un déploiement dynamique et l’annulation
des aspects, tandis que le deuxième demande une réorganisation des aspects à l’exécution.

Annulation des aspects Dans [51], Hannemann et Kiczales mentionnent qu’avec des aspects,
certaines patrons de conception [49] disparaissent parce qu’ils ne sont pas plus nécessaires. Il peut
sembler que c’est le cas du patron décorateur, mais ce n’est pas vraiment le cas. Cela a même
conduit à des régimes assez complexes, comme ceux proposés dans [80], qui reposent sur l’enre-
gistrement des objets décorés et de laisser les greffons vérifier l’objet cible. Du code additionnel
est nécessaire pour l’enregistrement et l’annulation de l’inscription décorateurs et la complication
ici est que certains morceaux de code comme Decorator.aspectof()) ne sont pas accessibles en
dehors de l’aspect. Une autre façon de regarder le problème est plutôt à considérer que la question
est qu’il n’est pas possible de déployer dynamiquement et éventuellement d’annuler la décorateurs
qui ne devrait pas s’appliquer.

Réorganisation des aspects Le deuxième exemple consiste à une application client-serveur
développée par une entreprise pour l’hébergement de fichiers. Les clients téléchargent des fichiers
via la méthode Send. Du côté serveur, un anti-virus, appelé par l’intermédiaire du méthode
virusCheck, vérifie que les fichiers reçus ne contient pas de virus. La question est alors de
mettre à jour l’application d’une manière modulaire en ajoutant deux préoccupations, chacun
étant implémenté comme un aspect :

public aspect CompressUpload {

before(File f):

call(* Client.send(..)) && args(f) {

zip(f);

}

before(File f):

call(* Server.virusCheck(..)) && args(f) {

unzip(f);

}

}

public aspect SecureUpload {

before(File f):

call(* Client.send(..)) && args(f){

encrypt(f);

}

before(File f):

call(* Server.virusCheck(..)) && args(f) {

decrypt(f);

}

}

La première fonctionnalité améliore la performance en compressant le fichier chez le client
avant de l’envoyer. Du côté serveur, l’anti-virus doit décompresser le fichier pour l’analyser. La
deuxième caractéristique améliore la sécurité grâce au chiffrement de fichiers côté client avant de
l’envoyer. Du côté serveur, le fichier est décrypté avant d’être analysé par le virus-checker.

Le client peut télécharger différents types de fichiers comme des images, texte, etc. Le but
de la compression est d’améliorer les performances de transfert de fichiers, par conséquent, il est
préférable d’utiliser des algorithmes de compression différents selon le type de fichier. Par exemple,
un algorithme de compression d’images est meilleure qu’un algorithme de compression régulière

208 RÉSUMÉ

pour diminuer la taille d’un fichier image. Nous supposons que la méthode zip(file f) applique
l’algorithme correspondant à chaque type de fichier :

– Pour les fichiers images : zip→ encrypt→ send.
– Pour les autres formats : encrypt→ zip→ send.

6.2 Sémantique alternative des coupes d’AspectJ

Des sémantiques alternatives pour les coupes call et execution, semblant plus faciles à saisir
ont été proposées. En particulier, la sémantique dynamique de Barzilay et al. apparait attractive.
La correspondance est toujours fondée sur le type dynamique et la simple condition que la méthode
doit exister dans le type déclaré est utilisé pour les coupes call et execution.

6.2.1 Sémantique dynamique pour Call

Les conditions sont identiques à ceux de la sémantique statique, sauf que nous avons
besoin de remplacer le type de déclaration du coupe par son dynamique type, c-à-d
jp.getSignature().getDeclaringType() par jp.getTarget().getClass(). En outre, on doit
mettre cette partie de l’évaluation dans la méthode dynamicTest puisque elle prend en
considération des informations qui dépendent du contexte de l’exécution.

6.2.2 Sémantique dynamique pour Execution

Les principes sont les mêmes que précédemment en remplaçant le type “method-call” par
“method-execution”.

7 EAOP et langages dédiés avec CALI

7.1 EAOP

A première vue, le modèle conceptuel de EAOP consiste à modéliser un aspect EAOP comme
une machine à états où une déclaration C.I est associé à chaque transition. Figure 9.1 a) représente
un modèle conceptuel. Cet aspect commence dans un état d’attente pour les points de jonction.
La détection d’un point de jonction et l’exécution des actions correspondant de l’aspect mènent
l’aspect à l’autre État. Cet état plus tard, conduit à un choix entre deux C . I. L’état de l’aspect
évolue en fonction du point de jonction apparaissant en premier, logout ou query.

Un point clé dans la mise en œuvre de EAOP est la représentation de l’aspect État. Il convient
de noter que l’état de l’aspect évolue à l’étape suivante après l’exécution de l’avis, et pas seulement
après la jointure correspondant à point. En outre, l’aspect doit avoir accès à C . I correspondant
à chaque état. Pour cette raison, nous décidons de joindre toutes les informations sur la poursuite
de l’aspect de l’état. Cela signifie que le choix entre la liste des C .I qui ont pour but d’intercepter
le point de jonction sero jointe à l’état. Au lieu de fixer un C . I à chaque transition, la transition
entre les états est représentée par l’évènement correspondant à la fin de l’exécution des greffons.
Figure 9.1 b) montre la représentation de l’aspect exploitation forestière avec le modèle modifié.

La règle de base C . I peut être aisément mise en œuvre par un selecteur/greffon : une coupe
transversale est implémenté comme un sélecteur et une action en tant que greffon. Avec notre
approche, il est possible de réutiliser les coupes de AspectJ implémenté avec CALI. Chaque état
devrait contenir les liste des sélecteur/greffon correspondant à la liste des C . Is qui s’attache à
l’opérateur de choix.

7.2 Decorator

Havinga et al. proposent un langage d’aspects dédié qui permet d’appliquer le modèle
décorateur tout en séparant le code portant sur le pattern Décorateur. L’implémenation de ce
langage avec CALI consisté à réutiliser les sélecteurs définis dans l’implemenatation d’AspectJ et

8. COMPOSITION DES LANGAGES D’ASPECTS 209

de détecter chaque association d’un decorator à un decoratee pour rediriger tous les appels vers le
décorateur correspondant.

7.3 Memoization

Memoization est une technique utilisée pour améliorer la vitesse d’exécution du programme.
Ce mécanisme consiste à retourner d’un cache la valeur précédemment traitée et déjà calculée,
plutôt que de la recalculer à chaque fois.

La déclartion de l’aspect de memoization commence par mettre le nom de classe de la méthode
qui doit être mise en cache après le mot-clé cache. L’aspect contient une déclaration Exp qui
spécifie la méthode après la mot-clé memoize. La déclaration contient également des expressions
d’invalidation qui invalident les valeurs mises en cache et imposent qu’elles seront recalculées.
L’invalidation peut être effectuée après l’attribution d’un champ ou d’appeler une méthode.

L’implémentation de ce langage avec CALI consiste à créer :
– Une classe MemoizeAdvice.
– Une variable pour chaque déclaration memoize pour mettre en cache la valeur de retour de

la méthode concernée.
– Un greffon pour chaque méthode concernée, en utilisant un sélecteur de type Call et un
MemoizeAdvice. Le sélecteur intercepte les appels de cette méthode, et les greffons associés
renvoie la la valeur mise en cache (si une est déjà stockée) ou des caches de la valeur retournée
par proceed (s’il n’ya pas de valeur correspondante dans le cache).

– Un greffon pour chaque spécification d’invalidation qui contient une action qui invalide le
cache.

7.4 COOL

COOL est un langage d’aspects dédié défini dans le cadre du framework D [68]. COOL fournit
des moyens pour traiter l’exclusion mutuelle des threads, l’état de synchronisation et pour surveiller
la suspension et la notification. Un aspect écrit en COOL est appelé Coordinator.

Chaque déclaration selfex est implémenté par un greffon qui lie un sélecteur de type Call avec
une action spéciale pour les greffons selfex, appelé SelfexAdvice (Exemple 9.20). La déclaration
synchronized de la méthode adviceexecution garantie que ce type d’actions est exécuté par un
seul thread à la fois.

De même, chaque mutex est implémenté comme un greffon, où l’action est implémentée comme
une instance de MutexAdvice qui gère la synchronisation tandis que le sélecteur achemine toutes
les méthodes dans l’exclusion prévue au greffon.

8 Composition des langages d’aspects

Le clé de la composition des langages d’aspects construits avec CALI est l’interface commune
staticTest qui retourne une liste de Phi, qui est uniformément traitée par la plate-forme. Grâce
à cette interface commune, des aspects de langages différents peuvent co-exister dans la même
application et communiquer de la même manière avec la plate-forme.

Nous pouvons décrire la spécification de la composition comme suit :
– Un aspect du premier langage ne doit pas avoir l’accès aux points de jonction se produisant

au sein des actions du seconde langage.
– Un aspect du seconde langage seconde peut s’interesser à des points de jonction se produisant

au sein des actions du premier langage.
Dans CALI, nous choisissons de ne pas réifier le point de jonction de l’aspect dans la plateforme

mais nous laisser cette tâche à chaque définition de langage.

Co-advising CALI représente une approche pour résoudre ce problème à la fois au niveau du
langage et au niveau du programme. Le processus order du plateforme est configurable pour
les aspects selon le type d’aspect (niveau langage) ou par la lecture d’une spécification écrite

210 RÉSUMÉ

par le programmeur (niveau programme). La syntaxe du langage de spécification, dans lequel
le spécification de l’ordre des aspects, sera l’un de nos perspectives.

Foreign advising CALI résout ce problème au niveau langage en contrôlant l’application de
l’aspect de L1 sur les points de jonction générés à partir des actions de L2. Lors de la
composition des langages d’aspects implémentés avec CALI, il faut définir un fichier de
configuration pour spécifier si un point de jonction d’un autre langage doit être sélectionné
par un aspect.

9 Perspectives

9.1 Travaux connexes

9.1.1 JAMI

JAMI (Java Aspect MetaModel Interpreter) [53, 54, 52] et CALI ont quelques propriétés com-
munes comme leur origine commun qui est MetaSpin, le mécanisme de tissage en deux pas et
l’évaluation dynamique des aspects.

L’absence d’une sémantique formelle pour JAMI rend difficile de comprendre les flux et les
mécanismes de l’interprétation utilisée. En outre, il s’appuie sur un modèle simplifié de point de
jonction sans proceed, et n’a pas été conçu avec l’objectif de soutenir un langage générique comme
AspectJ.

9.1.2 AWESOME

AWESOME [60, 64] est un framework pour la construction et la composition des extensions
aspect sous forme de plugins par dessus du framework. Le point de départ réside dans son ar-
chitecture qui permet la construction des tisseurs d’aspect au sommet d’une Plateforme de base.
Une fois un tisseur est construit avec AWESOME, il peut être composé, comme la composition de
tiers, avec d’autres tisseurs qui ont été construits aussi au-dessus de AWESOME.

AWESOME soutient la configurabilité de résoudre les interactions des aspects au niveau du
langage, mais ne permet pas au programmeur de résoudre ces interactions entre un ensemble
d’aspects. Par exemple, la composition de AspectJ et COOL, appelée COOLAJ, impose que les
aspects AspectJ ou les aspects COOL doivent être exécutés en premier. Il n’y a pas de possibilité
de définir (par le programmeur), une planification d’exécution des aspects en choisissant quels
aspects doivent être exécutés en premier (basé sur le nom aspect par exemple et non pas sur le
langage de l’aspect).

Dans AWESOME, les interactions sont gérées au moment de la compilation, ce qui lui rend
incapable de résoudre les interactions dépendant des informations de l’exécution.

9.1.3 The Art of the Meta-Aspect Protocol

Dinkelaker et al. [35] proposent une architecture pour les langages d’aspects avec une interface
explicite de la sémantique inspirée des protocoles à métaobjets afin de permettre l’adapter la
sémantique du langage dynamiquement dans l’applications. Parmi les applications du protocole
de métaaspect, nous pouvons citer la résolution des interactions entre les aspects qui dépendent
du contexte du programme dynamique ainsi le déploiement dynamique.

L’architecture du protocole à métaaspects est très similaire à notre extension de MetaJ et
fournit les mêmes capacités telles que la réorganisation dynamique et le déploiement dynamique.
L’accès dynamique au pile des aspects dans AspectJ est similaire à l’accès à MetaAspectManager.

9.2 Perspectives

Une amélioration importante consiste à implémentater un plugin Eclipse pour Dynamic As-
pectJ et à améliorer le mécanisme de la réification en limitant le nombre de points de jonction

9. PERSPECTIVES 211

générés. Cela permettrait d’améliorer la performance, tout en conservant toutes les fonctionnalités
(sauf la possibilité de définir de nouveaux aspects). Ceci consiste à analyser toutes les déclarations
d’aspects et de générer un aspect Platforme contenant une coupe reify qui est l’union de tous
les coupes des aspects.

Nous proposons aussi d’utiliser Dynamic AspectJ pour la programmation contextuelle. Nous
pouvions introduire la notion de couche (layer) dans Dynamic AspectJ comme un ensemble d’as-
pects qui sont liés en fonction du contexte. Une couche peut être activée par l’activation de ses
aspects. Une caractéristique supplémentaire fournie par Dynamic AspectJ est que cette couche
peut être modifié en fonction des informations du runtime (planification dynamique des aspects),
alors que cette fonction n’existe pas dans les langages qui supportent ce type de programmation
comme ContextL [31].

Une autre perspective pour les travaux futurs est également la notion de context-aware as-
pect [91] qui est un aspect dont le comportement dépend du contexte. CALI pourrait être utilisé
pour définir un nouveau type de coupe pour contrôler la portée des aspects selon le contexte
d’exécution.

CALI peut aussi aider à mettre en place un plugin pour le débogage. L’utilisation de PPA
pour le débogage est bien connue. Le code pour le débogage comprend souvent des préoccupations
transversales, tels que la production de messages de trace.

9.3 Conclusion

La PPA célèbre sa première décennie de recherche, de développement et d’adoption par l’in-
dustrie. Il existe de nombreux outils, des langages, et des frameworks pour la PPA.

Pour promouvoir une utilisation plus mature de PPA, de nouvelles fonctionnalités sont conti-
nuellement proposées. Ces fonctionnalités devraient être une extension des fonctionnalités exis-
tantes ou totalement nouvelles. Le réalisation de ces caractéristiques impose l’extensibilité des
implémentations existantes et la fourniture d’outils pour faciliter leur implémentation.

Les compilateurs extensibles (comme abc) ne permettent que l’extension à grain fin à leur
langage (AspectJ pour abc). En outre, certaines extensions simples, comme l’ajout un nouveau
type de coupe ou de changer la sémantique des points de coupure existante (sémantique alternative
pour call et execution ne nécessitent pas toutes les machines d’un compilateur plein Couverture
comme abc. Lors de la première expérimentation de ces extensions, une version léger d’AspectJ a
été implémenté. A ce stade, les facteurs de performance ne sont pas nécessairement un problème.

Des approches alternatives ont été proposées pour réaliser de nouvelles fonctionnalités comme
des noyaux de la PPA (Reflex, XAspects) qui introduisent des primitives pour exprimer les di-
verses opérations de tissage. Leur principe consiste à traduire les programmes à un représentation
intermédiaire commune. Malheureusement, cette façon d’implémenter les langages d’aspects
nécessite encore un gros effort pour combler le fossé entre la sémantique du langage d’aspect
et de la sémantique de la représentation intermédiaire. En outre, il est souvent impossible d’uti-
liser en toute sécurité une implémentation basée sur le noyau avec une autre. Chacune de ces
implémentations introduit un code spécifique à l’implémentation et peut être considéré comme un
code normal pour la d’autres implémentations.

Fournir un support pour le prototypage et la composition des langages d’aspects indépendant
est un défi de taille, il donne la capacité d’accélérer l’évolution de l’aspect mécanismes par la
réduction de la conception et l’essai des mécanismes nouvel aspect, car l’expérimentation de nou-
velles fonctionnalités faciles fait de la validation ou l’ correction du roman approches possibles.

La thèse contribue à deux axes : le prototypage et la composition des langages d’aspects. Elle
consiste à :

– Guider la conception et la mise en œuvre des langages comme des extensions de l’interpréteur
de langage d’aspects abstrait.

– Implémenter la composition des différents langages comme un résultat naturel de leur
implémentation en utilisant le même framework.

– Supporter la résolution et la configuration des interactions entre les langages d’aspects au
niveau du programme et au niveau du langage.

212 RÉSUMÉ

9.4 Prototypage

Nous contribuons à l’axe de prototypage d’un cadre pratique, fondé sur les interpréteurs. La
démarche consiste à fournir un interpréteur qui implémente la sémantique d’un langage d’aspects
abstrait. Le prototypage d’un langage d’aspects concret consiste à spécifier les notions abstraites
de l’interpréteur.

Pour concevoir ce cadre, nous nous sommes basés sur :

1. Un framework pour la définition de la sémantique des langages d’aspects, Common Aspect
Semantics Base (CASB).

2. Une représentation des notions courantes dans les langages d’aspects, le métamodèle des
langages d’aspects, MetaSpin.

Chapitre 5 a montré comment construire un interpréteur pour le résumé langage d’aspect,
représentée par le métamodèle, basée sur la sémantique de la CASB, en tenant compte de
l’évolution d’un interpréteur de base actuel pour un sous-ensemble de Java. Les propriétés de
l’interpréteur d’aspects sont les suivantes :

– Il est proprement séparé de l’interpréteur de base.
– Il implémente directement la sémantique du CASB.
– Son architecture facilite son extension pour implementer des langages d’aspects concrète.

Nous avons validé cette approche par l’extension de l’interpréteur et mettre en œuvre d’une version
allégée de AspectJ.

Pour appliquer la même approche et la même architecture à l’ensemble de Java sans changer son
interpréteur (JVM), nous réutilisons AspectJ pour générer les points de jonction et les transmettre
à un couche d’interprétation. Chapitre 6 a décrit le framework résultant qui est appelé CALI.

Chapitre 7 a validé la démarche en décrivant une mise en œuvre d’AspectJ tandis que le
Chapitre 8 a montré comment cette implémentation est facilement extensible avec deux variantes,
une traite la planification dynamique des aspects [14] comme la réorganisation et l’annulation
dynamique des aspects et l’autre [29] traite des sémantiques alternatives pour call et execution.
Nous avons également validé notre approche en décrivant des prototypes pour EAOP, COOL et
quelques langages dédiés dans le Chapitre 9. Le prototype de EAOP a été utilisé, dans le cadre du
projet européen AMPLE [1], dans le prototype de ECaesarJ [83], une extension de CaesarJ [11].

9.5 Implémentation ouverte

Du point de vue de l’implémentation ouverte, on peut dire que les langages implémentés avec
CALI offrent un haut niveau d’extensibilité et de reutilisabilité.

L’implémentation d’AspectJ avec CALI est très flexible. La mise en œuvre de coupe comme une
implémentation directe de leur sémantique, nous donne la possibilité de répercuter directement sur
les modifications apportées à la sémantique dans les implémentations. Nous avons appliqué ceci
aux coupes call et execution, et on a montré que la sémantique variante pourrait être facilement
implémentée.

La version de la planification dynamique a été également implémentée avec peu de changements
dans l’implémentation pour donner accès au pile des aspects.

Enfin, nous avons réutilisé les implémentations des coupes d’AspectJ dans EAOP et les langages
dédiés sans avoir à réinventer la roue à chaque fois.

9.6 Composition

Le deuxième axe de cette thèse est la possibilité de composer les langages d’aspects. En effet,
CALI soutient, dans son noyau, la composition de plusieurs aspects. Chaque langage étend la
notion d’aspect existante dans le langage d’aspect abstrait. L’interaction entre le noyau et chaque
instance d’aspect est la même pour tous les langages appliqués. Le résultat est que l’interpréteur
commune peut composer les aspects de différents langages.

9. PERSPECTIVES 213

Nous pouvons considérer que les langages implémentés ne peuvent naturellement coexister,
mais le designer doit contrôler les conflits. Les deux types de conflits attendus sont co-advising et
foreign-advising.

Nous donnons la possibilité de résoudre les conflits co-advising à deux niveaux :

Niveau langage En configurant la méthode order dans l’aspect Platform pour définir l’ordre
d’exécution en fonction de leur aspect langages.

Niveau programme CALI est le seul cadre qui prend en charge la résolution des co-advising au
niveau du programme par la configuration de la méthode order. Cela se fait par la lecture
d’un cahier des charges définissant l’exécution aspect en fonction des aspects et non pas de
leur langage. Un autre type de configuration est la planification dynamique des aspects en
mettant en œuvre cette fonctionnalité, non seulement dans Dynamic AspectJ, mais comme
une caractéristique de la notion de greffon de CALI.

Nous donnons la possibilité de résoudre les problèmes de foreign-advising au niveau langage en
utilisant des aspects de configuration. Chaque aspect de ce type contrôle le champ d’application
de points de jonction du langage considéré pour prévenir la sélection de ces points de jonction par
un greffon d’un autre langage.

214 RÉSUMÉ

Bibliographie

[1] AMPLE project. http://ample-project.net/.

[2] AspectJ compiler. http://www.eclipse.org/aspectj/.

[3] Demeter in AspectJ . http://daj.sourceforge.net/.

[4] Eclipse Test & Performance Tools Platform Project.

[5] Event-based AOP (EAOP). http://www.emn.fr/z-info/eaop/.

[6] Java Compiler Compiler. https://javacc.dev.java.net/.

[7] Java Logging. http://download.oracle.com/javase/1.4.2/docs/guide/util/logging/
overview.html.

[8] Javassist: Java programming assistant. http://www.jboss.org/javassist.

[9] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Wiley, 2006.

[10] Yoav Apter, David H. Lorenz, and Oren Mishali. Toward debugging programs written in
multiple domain specific aspect languages. In Proceedings of the sixth annual workshop on
Domain-specific aspect languages, DSAL ’11, pages 5–8, New York, NY, USA, 2011. ACM.

[11] Ivica Aracic, Vaidas Gasiūnas, Mira Mezini, and Klaus Ostermann. An overview of caesarj.
In Awais Rashid and Mehmet Aksit, editors, T. Aspect-Oriented Software Development I,
volume 3880 of Lecture Notes in Computer Science, pages 135–173. Springer-Verlag, 2006.

[12] The AspectJ website. http://www.eclipse.org/aspectj.

[13] Ali Assaf and Jacques Noyé. Flexible pointcut implementation: An interpreted approach.
In Carré [29], pages 45–60.

[14] Ali Assaf and Jacques Noyé. Dynamic AspectJ. In Johan Brichau, editor, DLS ’08: Pro-
ceedings of the 2008 symposium on Dynamic languages, pages 1–12, New York, NY, USA,
2008. ACM.

[15] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták,
Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. abc:
an extensible AspectJ compiler. In Mira Mezini and Peri L. Tarr, editors, Proceedings of the
4th International Conference on Aspect-Oriented Software Development, AOSD 2005, pages
87–98. ACM, March 2005.

[16] Pavel Avgustinov, Elnar Hajiyev, Neil Ongkingco, Oege de Moor, Damien Sereni, Julian
Tibble, and Mathieu Verbaere. Semantics of Static Pointcuts in AspectJ. In Martin Hof-
mann and Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, pages 11–23. ACM, Ja-
nuary 2007.

[17] Henri E. Bal and Dick Grune. Programming Language Essentials. Addison-Wesley, 1994.

215

http://ample-project.net/
http://www.eclipse.org/aspectj/
http://daj.sourceforge.net/
http://www.emn.fr/z-info/eaop/
https://javacc.dev.java.net/
http://download.oracle.com/javase/1.4.2/docs/guide/util/logging/overview.html
http://download.oracle.com/javase/1.4.2/docs/guide/util/logging/overview.html
http://www.jboss.org/javassist
http://www.eclipse.org/aspectj

216 BIBLIOGRAPHIE

[18] Ohad Barzilay, Yishai A. Feldman, Shmuel Tyszberowicz, and Amiram Yehudai. Call and
execution semantics in AspectJ. In Gary T. Leavens, Curtis Clifton, and Ralf Lämmel,
editors, FOAL 2004 Proceedings - Foundations of Aspect-Oriented Languages - Workshop at
AOSD 2004. Department of Computer Science, Iowa State University, March 2004.

[19] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann. Virtual machine
support for dynamic join points. In Karl Lieberherr, editor, Proceedings of the 3rd Inter-
national Conference on Aspect-Oriented Software Development ,AOSD 2004, pages 83–92,
Lancaster, UK, March 2004. ACM.

[20] Noury Bouraqadi and Thomas Ledoux. Supporting AOP using reflection. In Filman et al.
[47], pages 261–282.

[21] Gilad Bracha and William Cook. Mixin-based inheritance. SIGPLAN Not., 25:303–311,
September 1990.

[22] Martin Bravenboer, Éric Tanter, and Eelco Visser. Declarative, formal, and extensible syntax
definition for AspectJ. In Peri L. Tarr and William R. Cook, editors, Proceedings of the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2006, pages 209–228, New York, NY, USA, October 2006. ACM.

[23] martin Bravenboer and Eelco Visser. Concrete syntax for objects: domain-specific language
embedding and assimilation without restrictions. In John M. Vlissides and Douglas C.
Schmidt, editors, Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2004, pages 365–
383, New York, NY, USA, October 2004. ACM.

[24] Johan Brichau. Metaspin homepage. http://www.squeaksource.com/Metaspin.

[25] Johan Brichau, Michael Haupt, Nicholas Leidenfrost, Awais Rashid, Lodewijk Bergmans,
Tom Staijen, Istvan Anis Charfi, Christoph Bockisch, Ivica Aracic, Vaidas Gasiunas, Klaus
Ostermann, Lionel Seinturier, Renaud Pawlak, Mario Südholt, Jacques Noyé, Davy Suvee,
Maja D’Hondt, Peter Ebraert, Wim Vanderperren, Monica Pinto, Shiu Lun Tsang, Lidia
Fuentes, Eddy Truyen, Adriaan Moors, Maarten Bynens, Wouter Joosen, Shmuel Katz,
Adrian Coyler, Helen Hawkins, Andy Clement, and Olaf Spinczyk. Survey of aspect-oriented
languages and execution models. Deliverable D12, AOSD-Europe, May 2005.

[26] Johan Brichau, Mira Mezini, Jacques Noyé, Wilke Havinga, Lodewijk Bergmans, Vaidas
Gasiunas, Christoph Bockisch, Theo D’Hondt, and Johan Fabry. An initial metamodel for
aspect-oriented programming languages. Deliverable D39, AOSD-Europe, February 2006.

[27] Richard Cardone and Calvin Lin. Using mixin technology to improve modularity. In Filman
et al. [47], pages 219–241.

[28] Denis Caromel, Luis Mateu, and Éric Tanter. Sequential object monitors. In Martin
Odersky, editor, Proceedings of the 18th European Conference in Object-Oriented Program-
ming, ECOOP 2004, volume 3086 of Lecture Notes in Computer Science, pages 316–340.
Springer-Verlag, June 2004.

[29] Bernard Carré, editor. Actes des journées Langages et Modèles à Objets, Nancy, France,
March 2009. Cépaduès-Editions.

[30] Pierre Cointe, editor. Proceedings of 2nd International Conference on the Meta-Level Archi-
tectures and Reflection, Reflection’99, volume 1616 of Lecture Notes in Computer Science.
Springer, July 1999.

[31] Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented program-
ming: an overview of contextl. In Roel Wuyts, editor, DLS ’05: Proceedings of the 2005
symposium on Dynamic languages, pages 1–10, New York, NY, USA, 2005. ACM.

[32] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[33] Pierre-Charles David, Thomas Ledoux, and Noury M. Bouraqadi-Saâdani. Two-step wea-
ving with reflection using aspectj. In OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, 2001.

http://www.squeaksource.com/Metaspin

BIBLIOGRAPHIE 217

[34] E. W. Dijkstra. On the role of scientific thought. Selected Writings on Computing: A
Personal Perspective, pages 60–66, 1974.

[35] Tom Dinkelader, Mira Mezini, and Christoph Bockisch. The art of the meta-aspect protocol.
In Proceedings of the 8th International Conference on Aspect-Oriented Software Develop-
ment, AOSD 2009, pages 51–62, Charlottesville, VA, USA, March 2009. ACM.

[36] Simplice Djoko Djoko, Rémi Douence, Pascal Fradet, and Didier Le Botlan. CASB: Common
Aspect Semantics Base. Deliverable D54, AOSD-Europe, August 2006.

[37] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection and re-
solution of aspect interactions. In Don S. Batory, Charles Consel, and Walid Taha, editors,
Proceedings of the Generative Programming and Component Engineering, ACM SIGPLAN/-
SIGSOFT Conference, GPCE 2002, volume 2487 of Lecture Notes in Computer Science,
pages 173–188. Springer, October 2002.

[38] Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of crosscuts. In
Proceedings of the Third International Conference on Metalevel Architectures and Separation
of Crosscutting Concerns, REFLECTION 01, pages 170–186, London, UK, 2001. Springer-
Verlag.

[39] Rémi Douence and Mario Südholt. Une technique générique de réification pour les langages
à objets. In 6th Maghrebian Conference on Information Technologies, MCSEAI 00, Fes
,Maroc, November 2000.

[40] Rémi Douence and Mario Südholt. A generic reification technique for object-oriented reflec-
tive languages. Higher Order Symbol. Comput., 14(1):7–34, 2001.

[41] Rémi Douence and Mario Südholt. A model and a tool for Event-based Aspect-Oriented
Programming (EAOP). Technical Report 02/11/INFO, Ecole des Mines de Nantes, 2002.

[42] Éric Tanter. From Metaobject Protocols to Versatile Kernels for Aspect-Oriented Program-
ming. PhD thesis, Université de Nantes and Universidad de Chile, 2004.

[43] Johan Fabry, Éric Tanter, and Theo D’Hondt. ReLAx: Implementing KALA over the Reflex
AOP kernel. In Proceedings of the 2nd Workshop on Domain-Specific Aspect Languages
(DSAL 2007), 2007.

[44] Johan Fabry, Éric Tanter, and Theo D’Hondt. KALA: Kernel aspect language for advanced
transactions. Science of Computer Programming, 71(3):165–180, May 2008.

[45] Daniel P. Filman, Robert E. Friedman. Aspect-oriented programming is quantification and
obliviousness. In Peri Tarr, Lodewijk Bergmans, Martin Griss, and Harold Ossher, editors,
Workshop on Advanced Separation of Concerns at OOPSLA’00. Department of Computer
Science, University of Twente, The Netherlands, October 2000.

[46] Robert E. Filman. Understanding AOP through the study of interpreters, March 2003.

[47] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors. Aspect-Oriented
Software Development. Addison-Wesley, Boston, 2005.

[48] Eric Freeman, Elisabeth Freeman, Kathy Sierra, and Bert Bates. Head First Design Patterns.
O’Reilly, October 2004.

[49] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[50] James Gosling, Bill Joy, Guy Lewis Steele Jr., and Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley Longman, Amsterdam, 3 edition, June 2005.

[51] Jan Hannemann and Gregor Kiczales. Design Pattern implementation in Java and AspectJ.
In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2002, pages 161–173. ACM, November 2002.

[52] Wilke Havinga. JAMI homepage. http://jami.sourceforge.net/.

http://jami.sourceforge.net/

218 BIBLIOGRAPHIE

[53] Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit. Prototyping and Composing Aspect
Languages. In Jan Vitek, editor, Proceedings of the 22nd European Conference in Object-
Oriented Programming, ECOOP 2008, volume 5142 of Lecture Notes in Computer Science,
pages 180–206. Springer, 2008.

[54] Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit. Prototyping and composing aspect
languages using an aspect interpreter framework. In Proceedings of the 3rd Domain-Specific
Aspect Languages Workshop (DSAL), AOSD, April 2008.

[55] Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In Karl Lieberherr, editor,
Proceedings of the 3rd International Conference on Aspect-Oriented Software Development
(AOSD 2004), pages 26–35, Lancaster, UK, March 2004. ACM.

[56] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An introduction to context-oriented
programming with contexts. In Ralf Lämmel, Joost Visser, and João Saraiva, editors,
GTTSE, volume 5235 of Lecture Notes in Computer Science, pages 396–407. Springer, 2007.

[57] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G. Griswold. An over-
view of AspectJ. In Jørgen Lindskov Knudsen, editor, Proceedings of the 15th European
Conference in Object-Oriented Programming, ECOOP 2001, number 2072 in Lecture Notes
in Computer Science, pages 327–353. Springer-Verlag, June 2001.

[58] Gregor Kiczales, Jim d. Rivières, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, 1991.

[59] Ivan Kisely. Aspect-Oriented Programming with AspectJ. Sams, 2002.

[60] Sergei Kojarski. Third-Party Composition of AOP Mechanisms. PhD thesis, Northeastern
University, 2008.

[61] Sergei Kojarski, Karl Lieberherr, David H. Lorenz, and Robert Hirschfeld. Aspectual reflec-
tion. In Workshop on Software-engineering Properties of Languages for Aspect Technologies,
AOSD 2003, Boston, Massachusetts, mar 2003.

[62] Sergei Kojarski and David H. Lorenz. Pluggable AOP: designing aspect mechanisms for
third-party composition. In Ralph Johnson and Richard P. Gabriel, editors, OOPSLA,
pages 247–263. ACM, 2005.

[63] Sergei Kojarski and David H. Lorenz. Modeling aspect mechanisms: a top-down approach.
In Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors, Proceeddings of the
28th International Conference on Software Engineering ,ICSE 2006, pages 212–221. ACM,
May 2006.

[64] Sergei Kojarski and David H. Lorenz. AWESOME: an aspect co-weaving system for com-
posing multiple aspect-oriented extensions. In Richard P. Gabriel, David F. Bacon, Cris-
tina Videira Lopes, and Guy Lewis Steele, Jr, editors, Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2007, pages 515–534. ACM, October 2007.

[65] Sergei Kojarski and David H. Lorenz. Identifying feature interactions in multi-language
aspect-oriented frameworks. In Proceedings of the 29th International Conference on Software
Engineering ,ICSE 2007, pages 147–157. IEEE Computer Society, May 2007.

[66] Ramnivas Laddad. AspectJ IN ACTION. Manning, 2003.

[67] Ralf Lämmel. A semantical approach to method-call interception. In Gregor Kiczales, editor,
Proceedings of the 1st International Conference on Aspect-Oriented Software Development,
AOSD 2002, pages 41–55. ACM, April 2002.

[68] Cristina Videira Lopes. D: A Language Framework For Distributed Programming. PhD
thesis, College of Computer Science of Northeastern University, 1997.

[69] David H. Lorenz and Sergei Kojarski. Feature interaction in aspectj 5. In Workshop on
Software-engineering Properties of Languages for Aspect Technologies, AOSD 2006, Bonn,
Germany, March 2006.

BIBLIOGRAPHIE 219

[70] David H. Lorenz and Sergei Kojarski. Understanding aspect interactions, co-advising and
foreign advising. In Proceedings of ADI 2007 - Workshop on Aspects, Dependencies, and
Interactions at ECOOP 2007, 2007.

[71] Welf Löwe and Mario Südholt, editors. Proceedings of the 5th International Symposium
on Software Composition (SC 2006), volume 4089 of Lecture Notes in Computer Science,
Vienna, Austria, March 2006. Springer-Verlag.

[72] Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. Wiley, 1999.

[73] Antoine Marot and Roel Wuyts. Composability of aspects. In Proceedings of the 6th Work-
shop on Software-engineering Properties of Languages and Aspect Technologies (SPLAT
2008), March 2008.

[74] Antoine Marot and Roel Wuyts. A DSL to declare aspect execution order. In Proceedings
of the 3rd Domain-Specific Aspect Languages Workshop (DSAL08), 2008.

[75] Antoine Marot and Roel Wuyts. Composing aspects with aspects. In Jean-Marc Jézéquel
and Mario Südholt, editors, AOSD, pages 157–168. ACM, 2010.

[76] Hidehiko Masuhara, Yusuke Endoh, and Akinori Yonezawa. A fine-grained join point model
for more reusable aspects. In Naoki Kobayashi, editor, Proceedings of 4th Asian Symposium
in Programming Languages and Systems, APLAS 2006, volume 4279 of Lecture Notes in
Computer Science, pages 131–147. Springer, nov 2006.

[77] Hidehiko Masuhara and Gregor Kiczales. Modeling Crosscutting in Aspect-Oriented Me-
chanisms. In Luca Cardelli, editor, Proceedings of the 17th European Conference in Object-
Oriented Programming, ECOOP 2003, volume 2743 of Lecture Notes in Computer Science,
pages 2–28. Springer-Verlag, July 2003.

[78] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. Compilation semantics of aspect-
oriented programs. In Gary T. Leavens and Ron Cytron, editors, FOAL 2002 Proceedings -
Foundations of Aspect-Oriented Languages - Workshop at AOSD 2002, volume TR#02-06,
pages 17–26. Department of Computer Science, Iowa State University, April 2002.

[79] Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A Compilation and Opti-
mization Model for Aspect-Oriented Programs. In Görel Hedin, editor, Proceedings of the
12th International Conference in Compiler Construction, CC 2003, volume 2622 of Lecture
Notes in Computer Science, pages 46–60. Springer-Verlag, 2003.

[80] Miguel Pessoa Monteiro and João Miguel Fernandes. Pitfalls of AspectJ Implementations
of Some of the Gang-of-Four Design Patterns. In Proceedings of the Desarrollo de Software
Orientado a Aspectos (DSOA’2004) workshop, November 2004.

[81] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications, a Formal Intro-
duction. Wiley, 1999.

[82] Angel Núñez and Jacques Noyé. A Domain-Specific Language for Coordinating Concurrent
Aspects in Java. In Troisième journée Francophone sur le Développement de Logiciels par
Aspects (JFDLPA 2007), Toulouse, France, mar 2007.

[83] Angel Núñez, Jacques Noyé, and Vaidas Gasiūnas. Declarative definition of contexts with po-
lymorphic events. In COP ’09: International Workshop on Context-Oriented Programming,
pages 1–6, New York, NY, USA, 2009. ACM.

[84] Leonardo Rodŕıguez, Éric Tanter, and Jacques Noyé. Supporting dynamic crosscutting
with partial behavioral reflection: a case study. In Proceedings of the XXIV International
Conference of the Chilean Computer Science Society (SCCC 2004), pages 48–58, Arica,
Chile, November 2004. IEEE Computer Society Press.

[85] Ankit Shah and Macneil Shonle. The XAspects Guide. Northeastern University’s College.
http://www.ccs.neu.edu/research/demeter/XAspects/.

[86] Macneil Shonle, Karl J. Lieberherr, and Ankit Shah. Xaspects: an extensible system for
domain-specific aspect languages. In Ron Crocker and Guy L. Steele Jr., editors, Companion
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2003, pages 28–37. ACM, October 2003.

220 BIBLIOGRAPHIE

[87] Éric Tanter. Aspects of composition in the Reflex AOP kernel. In Löwe and Südholt [71],
pages 98–113.

[88] Éric Tanter. An extensible kernel language for AOP. In Proceedings of AOSD Workshop on
Open and Dynamic Aspect Languages, Bonn, Germany, 2006.

[89] Éric Tanter. On dynamically-scoped crosscutting mechanisms. SIGPLAN Not., 42(2):27–33,
2007.

[90] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In Theo D’Hondt, editor,
Proceedings of the 7th International Conference on Aspect-Oriented Software Development,
AOSD 2008, pages 168–179. ACM Press, April 2008.

[91] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel. Context-aware aspects. In
Löwe and Südholt [71], pages 227–242.

[92] Éric Tanter and Jacques Noyé. A Versatile Kernel for Multi-language AOP. In Robert
Glück and Michael R. Lowry, editors, Proceedings of the 4th International Conference in
Generative Programming and Component Engineering, GPCE 2005, volume 3676 of Lecture
Notes in Computer Science, pages 173–188. Springer-Verlag, oct 2005.

[93] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral reflection:
spatial and temporal selection of reification. In Ron Crocker and Guy L. Steele Jr., edi-
tors, Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2003, pages 27–46. ACM, October 2003.

[94] The AspectJ Team. The AspectJ Programming Guide. Xerox Corporation and Palo Alto
Research Center. http://www.eclipse.org/aspectj/doc/released/progguide.

[95] Rodolfo Toledo and Éric Tanter. A lightweight and extensible AspectJ implementation.
Journal of Universal Computer Science, 14(21):3517–3533, 2008.

[96] Rodolfo Toledo, Éric Tanter, José Piquer, Denis Caromel, and Mario Leyton. Using ReflexD
for a Grid solution to the n-queens problem. In Proceedings of the CoreGRID Integration
Workshop, pages 37–48, Cracow, Poland, October 2006.

[97] Naoyasu Ubayashi, Genki Moriyama, Hidehiko Masuhara, and Tetsuo Tamai. A parame-
terized interpreter for modeling different AOP mechanisms. In David F. Redmiles, Tho-
mas Ellman, and Andrea Zisman, editors, Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering ,ASE 2005, pages 194–203. ACM, November
2005.

[98] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Am-
sterdam, 1997.

[99] Eelco Visser. Program transformation with stratego/xt: Rules, strategies, tools, and systems
in stratego/xt 0.9. In Christian Lengauer, Don S. Batory, Charles Consel, and Martin
Odersky, editors, Domain-Specific Program Generation, volume 3016 of Lecture Notes in
Computer Science, pages 216–238. Springer-Verlag, March 2003.

[100] Mitchell Wand. Understanding aspects: extended abstract. In Colin Runciman and Olin
Shivers, editors, Proceedings of the Eighth ACM SIGPLAN International Conference on
Functional Programming, ICFP 2003, pages 299–300. ACM, August 2003.

[101] Mitchell Wand, Gregor Kiczales, and Chris Dutchyn. A semantics for advice and dynamic
join points in aspectoriented programming. ACM Trans. Program. Lang. Syst., 26(5):890–
910, 2004.

[102] Martin P. Ward. Language-oriented programming. Software - Concepts and Tools, 15(4):147–
161, 1994.

A Common Aspect Languages Interpreter

The value of using different (possibly domain-specific) aspect languages to deal with a variety
of crosscutting concerns in the development of complex software systems is well recognized. One
should be able to use several of these languages together in a single program. However, on the
one hand, developing a new Domain-Specific Aspect Language (DSAL) in order to capture all
common programming patterns of the domain takes a lot of time, and on the other hand, the
designer of a new language should manage the interactions with the other languages when they
are used together.

In this thesis, we introduce support for rapid prototyping and composing aspect languages based
on interpreters. We start from a base interpreter of a subset of Java and we analyze and present
a solution for its modular extension to support AOP based on a common semantics aspect base
defined once and for all. The extension, called the aspect interpreter, implements a common aspect
mechanism and leaves holes to be defined when developing concrete languages. The power of this
approach is that the aspect languages are directly implemented from their operational semantics.
This is illustrated by implementing a lightweight version of AspectJ. To apply the same approach
and the same architecture to full Java without changing its interpreter (JVM), we reuse AspectJ to
perform a first step of static weaving, which we complement by a second step of dynamic weaving,
implemented through a thin interpretation layer. This can be seen as an interesting example of
reconciling interpreters and compilers. We validate our approach by describing prototypes for
AspectJ, EAOP, COOL and a couple of other DSALs and demonstrating the openness of our
AspectJ implementation with two extensions, one dealing with dynamic scheduling of aspects and
another with alternative pointcut semantics. Different aspect languages implemented with our
framework can be easily composed. Moreover, we provide support for customizing this composition.
Keywords Aspect-Oriented Programming (AOP), interpreter, semantics, prototyping, compo-
sition, Domain-Specific Aspect Language (DSAL)

Un interpréteur extensible pour le prototypage des
langages d’aspects

L’intérêt de l’utilisation de différents langages d’aspects pour faire face à une variété de
préoccupations transverses dans le développement de systèmes logiciels complexes est reconnu.
Il faudrait être capable d’utiliser plusieurs de ces langages dans un seul logiciel donné. Cependant,
d’une part la phase de développement d’un nouveau langage dédié capturant tous les patrons de
programmation du domaine prend beaucoup de temps et, d’autre part, le concepteur doit gérer
les interactions avec les autres langages quand ils sont utilisés simultanément.

Dans cette thèse, nous introduisons un support pour le prototypage rapide et la composition des
langages d’aspects, basé sur des interpréteurs. Nous partons d’un interpréteur d’un sous-ensemble
de Java en étudiant et en définissant son extension modulaire afin de supporter la programmation
par aspects en se basant sur une sémantique d’aspects partagée. Dans l’interpréteur d’aspects,
nous avons implémenté des mécanismes communs aux langages d’aspects en laissant des trous
à définir pour implémenter des langages d’aspects concrets. La puissance de cette approche est
de permettre d’implémenter directement les langages à partir de leur sémantique. L’approche est
validée par l’implémentation d’une version légère d’AspectJ.

Pour appliquer la même approche et la même architecture à Java sans modifier son interpréteur
(JVM), nous réutilisons AspectJ pour effectuer une première étape de tissage statique, qui est
complétée par une deuxième étape de tissage dynamique, implémentée par une mince couche
d’interprétation. C’est un exemple montrant l’intérêt qu’il peut y avoir à concilier interprétation
et compilation. Des prototypes pour AspectJ, EAOP, COOL et des langages dédiés simples, va-
lident notre approche. Nous montrons le caractère ouvert de notre implémentation d’AspectJ
en décrivant deux extensions: la première permet l’ordonnancement dynamique des aspects, la
deuxième propose des sémantiques alternatives pour les points de coupe. Les langages d’aspects
implémentés avec notre approche peuvent être facilement composés. En outre, cette composition
peut être personnalisée.
Mots-clés Programmation Par Aspects (PPA), interpréteur, sémantique, prototypage, compo-
sition, langage d’aspects dédié

	Introduction
	Separation of Concerns
	Aspect-Oriented Programming
	Motivating Problems
	Thesis
	Structure of the Dissertation

	I The State of the Art
	Aspect-Oriented Languages
	Definition and Implementation of Programming Languages
	Definition of Programming Languages
	Implementation of Programming Languages: Interpretation vs Compilation

	Aspect-Oriented Programming Languages
	Aspect-Oriented Programming
	An Overview of AspectJ
	An Overview of Event-Based AOP
	An Overview of COOL
	Join-Point Models
	Aspect Mechanisms
	Approaches for Implementing AOPLs
	Approaches for Prototyping and Composing AOPLs

	Summary

	Prototyping and Composing Aspect Languages
	Prototyping and Composing AOPLs
	Design Space for AOPLs
	Combining AOPLs

	Reflex
	XAspects
	Metaspin
	Execution Semantics
	Woven Execution of Program
	Evaluation of Advised Instruction
	Dealing with Aspect Interactions

	Pluggable AOP
	Summary

	Evaluation
	Classification of Existing Work
	Prototyping and Composing AOPLs

	Simplicity of Prototyping
	Preserving Aspect Behavior
	Aspect Interactions
	Co-advising
	Foreign advising
	Composition of AspectJ and COOL
	Discussion
	Requirements

	Contribution

	II Contributions
	Modifying an Existing Java Interpreter: MetaJ
	Modifying MetaJ to support AOP
	Interpreter-based two-step weaving
	Implementation
	Join-Point Model
	Processes of Aspect Interpreter
	Implementing an Abstract Aspect-Oriented Language

	Aspect instances
	Link between aspect instances and aspect definition
	Static Deployment
	Dynamic Deployment
	Collaboration between subprocesses

	Generalization
	Separation between base and aspect interpreter
	Separation between what is common and what is specific in the aspect interpreter
	Prototyping and composition AOPLs

	Lightweight AspectJ
	Pointcut designators
	Inter-type declarations
	Parsing

	Conclusion

	CALI: Common Aspect Language Interpreter
	Compiler-based two-step weaving
	Semantics of CALI
	Architecture of CALI
	Proceed stack management

	Abstract Aspect-Oriented language
	Join-point selector
	Advice
	Proceed
	Selector/Advice Binding
	Aspect
	Reflective access to the join point

	Principles of matching a join point by Join-point Selectors
	Implementing a concrete AOPL with CALI

	AspectJ plugin on top of CALI
	AspectJ on top of CALI
	Example
	Pointcut Designators as Join-Point Selectors
	Background
	Method-related pointcuts
	Field-related pointcuts
	Advice execution-related pointcuts
	State-based pointcuts
	Expression-based pointcuts

	Aspects
	Aspect declaration
	Aspect instantiation
	Aspect extension

	Advice precedence
	Transformation of AspectJ syntax to CALI representation
	Implementation

	Conclusion

	AspectJ Variants with CALI
	Dynamic Aspect Scheduling
	The Decorator Example
	The Virus-Checker Example
	Scheduling in AspectJ
	Scheduling in Dynamic AspectJ
	Dealing with Aspect Groups
	Revisiting the Motivating Examples

	Alternative semantics for AspectJ pointcuts
	Discussion
	Implementation of Alternative Semantics

	Conclusion

	EAOP and DSLs plugins
	EAOP
	EAOP model
	Basis of EAOP implementation
	Implementation using Dynamic AspectJ
	Dedicated EAOP implementation

	Decorator
	A DSAL to enforce the decorator pattern
	Implementation of the DSAL on top of CALI

	Memoization DSAL
	Example
	Implementation of Memoization DSAL on Top of CALI
	The example revisited
	Translation

	COOL
	The example revisited

	Conclusion

	Composition of AOP languages
	From composing multiple aspects to composing multiple AOPLs
	Scaling composition
	Interaction
	Interactions resolutions in CALI

	AspectJ and COOL
	Problem
	Specification of the composition
	Composition configuration

	Conclusion

	III Perspectives
	Performance
	TPTP Eclipse plugin
	Running application
	Results
	Discussion
	Without Aspects
	With Aspects
	Conclusion

	Related Work
	JAMI
	Features and Benefits
	Limitations

	AWESOME
	Features and Benefits
	Limitations

	The Art of the Meta-Aspect Protocol
	Composing aspects with aspects

	Conclusion
	Prototyping and Open implementations
	Composition

	Future Work
	Dynamic AspectJ Plugin
	Context-Aware Application
	Debugging Aspect-Oriented Programs

	Appendices
	Résumé
	Introduction
	Programmation par Aspects
	Problématique
	Thèse
	Validation
	Structure de la thèse

	Etat de l'art
	Langages d'aspects
	Prototypage et composition

	Évaluation et Contributions
	Un interpréteur extensible pour les langages d'aspects
	CALI
	Conclusion

	Implémentation d'AspectJ
	Implémentation des coupes
	Résumé

	Extensions d'AspectJ
	Planification dynamique des aspects
	Sémantique alternative des coupes d'AspectJ

	EAOP et langages dédiés avec CALI
	EAOP
	Decorator
	Memoization
	COOL

	Composition des langages d'aspects
	Perspectives
	Travaux connexes
	Perspectives
	Conclusion
	Prototypage
	Implémentation ouverte
	Composition

