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M. DEÜ J.-F. Cnam, France Main supervisor





Acknowledgements

The work presented in this thesis has been carried out within the “Structural Mechanics
and Coupled Systems Laboratory” (LMSSC) at Cnam for the first part, and within the
“Marcus Wallenberg Laboratory for Sound and Vibration Research” (MWL) at KTH for
the last two years. It has been partially supported by a Ph.D. fellowship from the French
Ministry of Higher Education and Research, as well as Early Stage Researcher fellowships
from the EU Marie-Curie projects Smart-Structures (www.smart-structures.eu) and Mid-
Frequency (www.midfrequency.org). The financial support together with the flexibility
offered to produce research works in areas of personal interest are gratefully acknowledged.

I would first like to thank the people who have made this joint PhD possible: Roger
Ohayon for welcoming me at the LMSSC lab, and for the nice morning discussions during
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Abstract

Abstract: In the context of interior noise reduction, the present work aims at propos-

ing Finite Element (FE) solution strategies for interior structural-acoustic applications

including 3D modelling of homogeneous and isotropic poroelastic materials, under time-

harmonic excitations, and in the low frequency range. A model based on the Biot-Allard

theory is used for the poroelastic materials, which is known to be very costly in terms of

computational resources. Reduced models offer the possibility to enhance the resolution

of such complex problems. However, their applicability to porous materials remained to

be demonstrated.

First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using

modal-based approaches both for the acoustic and porous domains. The original modal

approach proposed for porous media, together with a dedicated mode selection and trun-

cation procedure, are validated on 1D to 3D applications.

In a second part, modal-reduced models are combined with a Padé approximants re-

construction scheme in order to further improve the efficiency.

A concluding chapter presents a comparison and a combination of the proposed meth-

ods on a 3D academic application, showing promising performances. Conclusions are then

drawn to provide indications for future research and tests to be conducted in order to

further enhance the methodologies proposed in this thesis.

Keywords: Noise reduction, Poroelastic materials, Reduced model, Component mode

synthesis, Padé approximants, Structural-acoustics, Finite element method, Fluid-structure

interaction.

iii





Résumé

Résumé Dans le contexte de lutte contre les nuisances sonores, cette thèse porte sur le

développement de méthodes de résolution efficaces par éléments finis, pour des problèmes

de vibroacoustique interne avec interfaces dissipatives, dans le domaine des basses fréquences.

L’étude se limite à l’utilisation de solutions passives telles que l’intégration de matériaux

poreux homogènes et isotropes, modélisés par une approche fondée sur la théorie de Biot-

Allard. Ces modèles étant coûteux en terme de résolution, un des objectifs de cette thèse

est de proposer une approche modale pour la réduction du problème poroélastique, bien

que l’adéquation d’une telle approche avec le comportement dynamique des matériaux

poreux soit à démontrer.

Dans un premier temps, la résolution de problèmes couplés elasto-poro-acoustiques par

sous-structuration dynamique des domaines acoustiques et poreux est établie. L’approche

modale originale proposée pour les milieux poroélastiques, ainsi qu’une procédure de

sélection des modes significatifs, sont validées sur des exemples 1D à 3D.

Une deuxième partie présente une méthode combinant l’utilisation des modèles réduits

précédemment établis avec une procédure d’approximation de solution par approximants

de Padé. Il est montré qu’une telle combinaison offre la possibilité d’accrôıtre les perfor-

mances de la résolution (allocation mémoire et ressources en temps de calcul).

Un chapitre dédié aux applications permet d’évaluer et comparer les approches sur un

problème académique 3D, mettant en valeur leurs performances encourageantes. Afin

d’améliorer les méthodes établies dans cette thèse, des perspectives à ces travaux de

recherche sont apportées en conclusion.

Mots clés: Matériaux poroélastiques, Modèles réduits, Sous-structuration dynamique,

Approximants de Padé, Vibroacoustique interne, Éléments finis, Interaction fluid-structure.
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A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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broacoustique amortis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.4 Chapitre 3: Approche modale pour les matériaux poreux . . . . . . . . . . . 185
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et fluide (bas). Maillage et champ de déplacement. . . . . . . . . . . . . . . 189
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Introduction

The present work aims at proposing solution strategies for interior structural-acoustic

applications including 3D modelling of homogeneous and isotropic poroelastic materials,

under time-harmonic excitations, and in the low frequency range. The systems studied are

limited to simple test applications, consisting of enclosed acoustic fluid cavities, coupled

to a flexible structure and/or a porous sound absorbing material domain.

In this introduction, the scientific context of the present work is first given, presenting

the background as well as the objectives, followed by a description of the practical orga-

nization of the thesis in the context of a cotutelle agreement between the Conservatoire

National des Arts et Métiers (Cnam), Paris and the Royal Institute of Technology (KTH),

Stockholm. The last two sections will introduce the structure of the manuscript, as well

as the main contributions achieved during this thesis.

Scientific context. In the transport industry (automotive, aerospace, rail, ...), there is

an increasing challenge to satisfy customer’s comfort, e.g. considering noise and vibra-

tion levels, together with constraints in terms of safety, cost, fuel efficiency, environmental

requirements, ... Among the existing solutions to control the interior noise and vibra-

tion levels, passive solutions, closely linked to the structural design, have been extensively

used. Their popularity lies in their ease of use, range of possible designs and combina-

tions, and in the fact that no external source of energy is required. To mention a few,

viscoelastic sandwich configurations are used to reduce the level of structural vibrations,

while poroelastic materials have been widely introduced in the design of sound packages

to reduce both structure- and air-borne noise. These latter are appreciated for their high

noise-reduction-efficiency-to-weight ratio. On the other hand, efforts are done to propose

active control solutions, particularly in the range where they perform better than passive

solutions (e.g. in the low frequency range [1]), or for some specific applications such as

the vibration control of rotating blades in aeronautics.

The wide range of possible solutions together with conflicting constraints imply trade-

offs in the design, which have to be taken into account in an integrated way during the
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early steps of the process. Furthermore, the existing possibilities are usually combined to

take full advantage of their complementary properties, thus offering increasingly complex

assemblies. From a design perspective, an early integration of such combinations of mate-

rials, e.g. metallic, viscoelastic, poroelastic, composite, requires various degrees of detailed

multiphysics computational approaches. Therefore, tools capable of a fine modelling of the

physics in an efficient way are of the utmost importance to satisfy the design requirements

under industrial constraints.

Among these tools, the Finite Element Method (FEM) has been widely used, due to its

suitability and performance in a wide range of situations. However, modelling industrial

structural-acoustic problems using the FEM can lead to very large models, which may be

prohibitively costly in terms of computational resources (time and memory). There are

several potential reasons driving the computational costs:

• the geometrical dimension of the problem, if complete systems are modelled at once,

• the multiphysics nature of the problem including different materials, involving refined

meshes in regions with shorter wavelengths (e.g. poroelastic materials),

• the frequency range of interest, as extending the models towards medium-frequencies

also implies refined meshes,

• the need to capture local geometrical complexities.

Furthermore, the need for cost-efficient simulation tools is very important not only in

the scope of very large models, but also in areas where repeated analyses are required.

For instance, optimization procedures, such as topology optimization, involve the analysis

of several problems of comparable size. Therefore, any small improvement can make a

substantial difference over the cumulated analyses. Similarly, deterministic approaches

for the analysis of propagation of uncertainties (increasingly important when reaching the

medium-frequency range) respond to the same need of efficiency due to repeated simula-

tions. This is even emphasized if multi-frequency direct solutions are performed, such as

for the examples considered in this thesis. Finally, inverse estimations of parameters for

sophisticated material models, such as for poroelastic materials, is another area involving

multiple analyses, benefiting from efficient solution strategies.

In the low frequency range, the use of modal synthesis together with substructuring

strategies has been widely used for conservative systems. In fact, it allows an overall

reduction of the size of the problem to solve, which is mostly beneficial for repeated cal-

culations. Furthermore, it is compatible with a segmented concurrent approach between

several teams of engineers, working on the design of different areas of a mechanical sys-

tem. However, it is reputed as rather inappropriate for dissipative systems including
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non-proportional damping, such as sound absorbing porous materials. Recent works have

nonetheless questioned the possibility to use such an approach in the case of poroelastic

materials, and it is one of the objectives of the present thesis to explore such a possibility

in more depth.

Work environment and description. The work for this thesis has been performed

in the context of a joint supervision (“cotutelle” agreement) between the ‘Structural Me-

chanics and Coupled Systems Laboratory’ at Cnam, Paris, and the ‘Marcus Wallenberg

Laboratory for Sound and Vibration Research’ at KTH, Stockholm. It can be decomposed

into two parts which approximately correspond to the periods of time spent first at Cnam,

and then at KTH.

The first half of the thesis mostly consisted in the implementation of FE tools in an

existing Fortran code, FEAP, a general purpose finite element analysis program devel-

oped by Prof. R.L. Taylor at the University of California, Berkeley, USA. It is very well

suited for the implementation of user elements, which I performed at the beginning of

the thesis. As such, the following isoparametric elements were implemented, or adapted

for further use in coupled structural-acoustic problems in the frequency domain: 8-node

acoustic brick element, 8-node equivalent fluid poroelastic element, 8-node displacement

(us,uf) poroelastic element, adaptation of a quad shell element accounting for hysteretic

damping, as well as the 4-node quad coupling elements between structure and acoustic

elements, acoustic and poroelastic elements. Of course, as for any implementation, de-

pending on your personal starting point, many challenging surprises come along the way.

One example is the retrieval of the efficient mapping of local-to-global degrees of freedom

(dofs), as acoustic pressure, solid displacement and poroelastic displacements variables are

simultaneously used in a coupled problem. Other features such as the implementation of

global indicators (mean quadratic pressure in a cavity, mean quadratic velocity on a plate)

had to be integrated. Once the elementary tools implemented for the analysis of porous

damped structural-acoustic problems, two objectives arose: (i) to test the performances of

a standard Component Mode Synthesis (CMS) applied only to the conservative part of such

a coupled problem, and (ii) to estimate the influence of sound absorbing boundary condi-

tions. This led to the implementation, at global FE level (working on the assembled global

matrices), of a restrained-interface substructuring approach for the modal-based reduction

of acoustic subdomains. Although being a more engineering-related than research-oriented

part of the thesis, this was the first step towards an extension to the modal-based reduc-

tion of poroelastic materials. While rather interesting, implementation-wise, it turned out

to be a very time-consuming step, from which I extracted a few personal conclusions: (i)

it is rather complicated to get involved into someone else’s code (especially in parts not
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specifically documented for user implementation), particularly if most of the needed infor-

mation are to be retrieved form the code itself, (ii) the evaluation of a model reduction has

to account both for its performance, and its potential ease of implementation in existing

codes.

Following this first half, started a period entirely dedicated to the testing of potential

efficient solution approaches for poroelastic materials. This was mostly performed over

the second half of the thesis, taking place in the host laboratory, MWL, in Stockholm.

Considering the impracticalities of implementations at a global level in FEAP for mere

testing, it was dropped and replaced by simple Matlab models (following works initiated

at Cnam), well suited for quicker implementation and testing. Among these tests, the

conclusive trials are summarized in the present work.

Structure of the document. The present document is organized into 6 chapters. In

chapter 1, a presentation of the scientific areas, related to the present work, is presented.

It includes a literature review of the existing models for sound absorbing porous materials,

together with comments on the numerical methods used for structural-acoustic problems.

Following this presentation, the choices made for the thesis in terms of models and nu-

merical methods are introduced. Chapter 2 presents a restrained-interface component

mode synthesis approach for the acoustic domain of a coupled structural-poro-acoustic

problem. It is implemented in a Fortran code, and the analysis draws conclusions about

the performance and limitations of the approach. In chapter 3, the poroelastic equations

for the classical displacement formulation are rearranged, in order to be suitable for a

modal-based analysis. Consequently, a modal-approach is proposed, based on a standard

eigenvalue problem for the coupled poroelastic equations. It is enhanced in chapter 4

where a sorting and selection procedure of the calculated modes is proposed, leading to

a further reduced problem. Chapter 5 presents a reconstruction strategy based on Padé

approximants, suited for the efficient calculation of frequency responses. It is applied to

poro-acoustic applications formulated after the propositions made in chapters 3 and 4.

Thus its combination to reduced models is tested, and the complementarity between the

two approaches is illustrated. Furthermore, a simple scheme for the automatic selection

of main frequencies is proposed, thus allowing an efficient adaptive frequency sweep. Con-

clusive remarks together with perspectives for future works are given in chapter 6.

Overview of the main contributions. The main contributions included in the present

thesis are summarized as follows:

• The performance analysis of a restrained-interface CMS technique for acoustic sub-

domains is presented for coupled elasto-poro-acoustic problems. The implementation
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is entirely done in an existing FE code, in Fortran (chapter 2 ).

• An FE approach for 3D modelling of poroelastic materials is proposed, suitable for

standard modal analysis of the coupled equations (chapter 3 ).

• A modal-based reduction of a poroelastic domain included in a poro-acoustic appli-

cation is proposed. Its ease of implementation and performance in simple 1D to 3D

configurations are demonstrated (chapter 3 ).

• A sorting and selection procedure for poroelastic modes is presented and tested on 2D

and 3D poro-acoustic simple configurations. It is shown to enhance the performances

of the proposed modal approach (chapter 4 ).

• A reconstruction scheme based on Padé approximants is applied to a poro-acoustic

problem. It is tested on both the non-reduced and porous-reduced forms of the

problems, as proposed in the previous chapters (chapter 5 ).

• An adaptive scheme for the choice of main frequencies in the Padé-based approach is

proposed. It enables an efficient automatic calculation and reconstruction of entire

frequency responses (chapter 5 ).
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Chapter 1

An introduction to 3D modelling
of sound absorbing porous
materials in structural-acoustic
applications

Abstract: This chapter introduces the scientific fields related to the thesis. A

literature review of the existing models for sound absorbing porous materials

is presented, together with an overview of suitable numerical techniques devel-

oped for the modelling of damped structural-acoustic problems. Conclusions are

drawn in terms of objectives and choices made for the works included in this

thesis.
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1.1. INTRODUCTION

1.1 Introduction

In this chapter, an overview of the scientific areas related to this thesis are presented.

It includes the presentation of sound absorbing porous materials and structural-acoustic

models together with their dedicated numerical techniques. The aim is to position the

present work in its scientific context, and to draw conclusions in terms of assumptions

and objectives. The chapter is organized around four parts. The first part is entirely

dedicated to the review of related works in the literature. It includes a definition of

sound absorbing porous materials as assumed in this work, a historical background of

the corresponding models, and a presentation of the models and numerical techniques

used both for poroelastic materials and more generally structural-acoustic applications.

The second part illustrates the benefits of using complex 3D models for porous materials.

An overview of the most commonly used formulations for poroelastic materials is then

presented in a third section. Finally, modal-based reduced models are presented, in the

scope of their applicability to damped structural-acoustic applications.

1.2 Modelling of porous materials in structural-acoustic ap-

plications

What is a porous material? In the context of this work, porous materials refer to

heterogeneous materials made of an elastic solid frame saturated by a fluid. It thus con-

sists of two phases interacting with each other, namely a solid phase defining the skeleton

of the material, and a fluid phase which occupies the remaining space, or the pores. There

are two types of pores, as illustrated in Fig. 1.1, those corresponding to cavities enclosed

in the skeleton, and those interconnected, which are referred to as open pores (open cells

is also commonly found in the literature). The former type can be considered, from a

mechanical viewpoint, as part of the skeleton, modifying its local material properties [2].

The second type, due to significant fluid-structure interaction triggered by dynamic dis-

turbances, induces dissipation processes which can be put to advantage in acoustics for

noise reduction purposes. In addition, porous dissipating materials may be separated into

two categories: geomaterials (studied in the context of oil prospection for instance), and

sound absorbing materials. The latter are considered in the scope of the present work.

Sound absorbing porous materials, whose pores are filled with a compressible fluid such

as air, exhibit interesting dissipative properties which make them a popular solution for

passive noise reduction. Three types of mechanisms contribute to the energy dissipation:

(i) damping due to irreversible losses in the frame (structural damping), (ii) thermal losses

due to thermal transfer between solid and fluid phases, and (iii) viscous losses due to small
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Figure 1.1: A porous material: Top, 2D illustration; Bottom, picture (Courtesy of KU Leu-
ven Laboratory of Acoustics and Thermal Physics).

dimensions of the pores compared to wavelength, possibly implying significant boundary

layer effects in which viscous interactions (viscous drag) between the solid and fluid phases

lead to inertial coupling and viscous dissipation.

The multiphysics nature of sound absorbing porous media together with their complex

phenomenology have been given extensive attention over the past 60 years, giving rise to

the theory of sound absorbing porous materials. It provides a description of the mechanical

behaviour of porous materials for accurate modelling, thus offering the possibility to refine

tailored design for industrial applications. The main developments leading to the models

used in the present work, which are based on the Biot-Allard theory for sound absorbing

porous materials, are presented in the next section.

A review of the theory for modelling porous sound absorbing materials. The

work by Zwikker and Kösten [3], in 1949, is considered as a consistent early contribution to

porous materials modelling. Strong assumptions limited the generality of their approach:
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solid and fluid phases were treated separately, the solid phase was partially treated as

motionless, and the pores were considered cylindrical, of circular section, and having the

same direction. However, it included several contributions, further developed since then,

leading to the present version of the theory, introducing: (i) a decoupling frequency above

which acoustic waves propagating in the fluid do not involve motion of the solid phase,

(ii) viscous interactions via an equivalent fluid density, complex and frequency-dependent,

and (iii) thermal interactions via an equivalent bulk modulus, complex and frequency-

dependent. Thus, viscous effects associated with inertial phenomena, as well as thermal

effects included into the constitutive behavior, are two contributions that have remained

in the present theories for modelling sound absorbing porous materials.

Among enhancements following the work by Zwikker and Kösten, Attenborough pro-

posed, in 1983 [4], a modified formulation accounting for more complex geometries of the

pores. In parallel, Delany and Bazley provided a significant simplified approach for fibrous

materials, in 1970 [5], based on two material parameters only: the flow resistivity and the

density. Given its simplicity, it is still used today although with some improvements.

However, the major novelty in the history of sound propagation modelling in fluid-

saturated porous media was introduced by Biot from 1956 [2, 6, 7]. He proposed a con-

tinuum mechanics approach for modelling porous materials as an equivalent homogeneous

material. His idea was to consider a time and space superposition of the two continua

at the macroscopic scale, typically large compared to heterogeneous characteristic length

(size of the pores). Thus, at a macroscopic scale, he assumed the existence of a Represen-

tative Elementary Volume (REV), sufficiently small with respect to the wavelength of the

phenomena, for which a homogenized description of the superposed solid and fluid coupled

phases could be derived. This presented a significant step, leading to the modelling of a

heterogeneous material with an homogeneous description. Biot further established the idea

of three propagating waves within the media: two compressional waves, a slow and fast

wave, respectively propagating out of phase and in phase in the solid and fluid domains,

as well as a shear wave. Initially developed for geomechanics, the theory proposed by Biot

is today the basis for most commonly accepted formulations in acoustics of poroelastic

media, with refinements made to better account for dissipative processes.

Among the significant refinements made to the Biot theory, Johnson et al. [8] proposed

an improved description of the viscous effects. They introduced a viscous characteristic

length Λ, accounting for the frequency-dependence of viscous effects. Similarly to the

contribution made for viscous effects, Champoux and Allard [9] introduced a thermal

characteristic length Λ′, accounting for the frequency-dependence of thermal effects.

To that point of the theoretical refinements, Allard published a synthesis of the latest

advances in a book considered as a standard reference [10] in the field. Even though
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further improvements have been proposed since then, the so-called Johnson-Champoux-

Allard model of the Biot theory is the most commonly used today. It is fully documented

in the reference book by Allard [10, 11], outlining the refinements made to the Biot theory,

often referred to as the Biot-Allard theory.

Recent contributions to the theory include those by Lafarge et al. [12], who introduced

an additional parameter, the static thermal permeability k′0, to better account for the

frequency-dependent thermal effects, particularly in the low frequency range.

Furthermore, following the introduction of anisotropic modelling by Biot [7], recent

developments have been added in this area [13–17]. They have been partly encouraged by

the increased capabilities of computational resources. However, developments regarding

the modelling of inhomogeneous porous materials or the modelling of non-linear behavior,

are beyond the scope of the present work.

Numerical techniques for modelling of poroelastic materials. Refinements of the

Biot theory have been paralleled with the development of numerical methods. Over the

past 20 years, the improved theory has been included in increasingly advanced numerical

models, leading to a wide range of proposed methods. Analytical solutions put aside (as

limited to very simple configurations), numerical techniques used to solve complex con-

figurations can be separated into two categories: the semi-analytical methods which take

partly advantage of analytical solutions under suitable assumptions, and the discretization

methods which apply for more general cases.

Semi-analytical methods: Under strong assumptions, impedance boundary condi-

tions can be used to account for poroelastic materials. For instance, in the context of the

finite element method, it is very tempting to use such an approach when applicable, as it

implies a costless change of boundary conditions [18–24]. However, it is valid exclusively

under the assumption of a locally reacting surface to a normal or set oblique incidence,

backed with either a rigid wall or another type of semi-infinite layer. The normal inci-

dence acoustic impedance can be easily determined experimentally using the Kundt’s tube

apparatus. If a poroelastic material has been characterized according to the Biot theory,

both analytical and numerical 1D solutions can be used to establish the relation between

pressure and normal velocity at the surface of the sample. This step is actually often used

as an early validation test for the implementation of numerical formulations. Even though

not always applicable, it has been used extensively both in academic and industrial appli-

cations. Its ease of implementation and its computational efficiency make it an attractive

tool for early estimations in the design process.

In an extended approach for bidimensional configurations, the Transfer Matrix Method

(TMM) was developed [25, 10, 11]. It establishes a layer-wise relation between stresses
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and velocities on each side of the layer. Its convenience lies in the low computational cost,

and its efficient handling of multilayer sound packages, for which an equivalent transfer

matrix results from a simple multiplication of transfer matrices established for each layer.

It is however limited to infinite bidimensional plane setups. Even if corrections have been

proposed to account for finite size conditions [26, 27], the rather strong assumptions make

it difficult to adapt to complex situations. It is nonetheless very well suited for qualitative

testing of multilayer sound packages.

Increasing the geometrical complexity of the problems that can be handled, the Wave

Based Method (WBM) [28], which has proved its efficiency for structural-acoustic applica-

tions [29–33], has recently been applied to poroelastic materials [34, 35]. It is a numerical

technique, which, rather than being based on an element discretization, applies globally

defined wave functions satisfying the governing dynamic equations. The response at a

given frequency is thus expressed as a summation of wave function contributions, which

result from an integral formulation of the problem boundary conditions. Its main limita-

tions lie in the admissible geometrical complexity of the problems to deal with. In fact, it

was shown [28] that a sufficient condition for its convergence is to have convex geometries.

Problems not satisfying this condition imply a need for decomposition in subdomains or

coupling to element discretization methods. Furthermore, the applicability of the method

to 3D modelling of poroelastic materials is still under development.

Element discretization techniques: Due to their suitability for dynamic analysis

of arbitrarily shaped systems, the element based methods have been given extensive at-

tention in order to propose accurate 3D modelling of sound absorbing porous materials in

structural-acoustic applications. In addition, due to their ability to accurately represent

well a large range of problems, they are widely used in the industry for structural-acoustic

applications when 3D modelling of porous media is not considered. Thus, it was a natural

extension to include such formulations in the existing tools.

Among the element discretization methods, the Finite Element Method (FEM) and

the Boundary Element Method (BEM) have been mostly used for vibro-acoustic purposes.

The main difference between these two approaches is the fact that a volume discretization

is required for the FEM, while using a fundamental solution in the formulation for BEM

leads to an approximation made on the boundaries, thus involving a surface discretization.

The direct consequence is a reduced size of problems to solve, with for practical purposes

the disadvantage associated with loss of matrix symmetries and the fully populated nature

of the matrices. While the BEM can be particularly advantageous for problems with high

volume-to-surface ratios, which makes it well suited for problems involving large cavities

or external acoustics [36, 37], most of the contributions regarding porous media have been

made using the FEM [11].
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The main issue raised with the use of FEM for 3D modelling of porous materials

is the high computational cost involved. Two reasons explain this limitation: (i) the

formulations proposed in line with the original Biot theory naturally implied 6 degrees of

freedom per node, associated with the displacement fields of the solid and fluid phases, and

(ii) the physics of sound propagation in porous materials involves short wavelengths when

compared to other media, which consequently implies a need for refined discretization.

Thus, the increased complexity of the problem cones with the expense of the computational

cost. In the case of porous materials, it remains prohibitive for large problems, despite

the progress made in terms of computational resources.

To improve this issue, several formulations have been proposed in order to increase

the computational efficiency, or to propose simplified models, suitable under appropriate

assumptions (see details of some selected formulations in Section 1.4). With this objective,

equivalent fluid formulations were introduced, as early as 1978, when Craggs proposed an

eight-node isoparametric finite element to represent a rigid porous absorbing material [38].

The idea is to describe the porous material with the Helmholtz equation, using a modified

complex and frequency-dependent speed of sound. It is practically done using complex

and frequency-dependent equivalent expressions of the density and the bulk modulus.

The advantage of such formulations is the fact that they involve pressure fluctuation

as a primary variable, which makes them most efficient as they involve one degree of

freedom per node. Other equivalent fluid formulations, suitable under the assumption

of a porous materials with a rigid frame, can be found in the literature [39, 10, 40, 41].

Alternatively, for a limp porous material, a simplified symmetric formulation was proposed

by Göransson [42]. The frame material is in this case supposed to be of negligible stiffness,

but accounted for its flexibility through an inertial correction.

A much heavier computational burden is involved if the full description of porous me-

dia is done using a model based on the Biot-Allard theory. The first formulation, using

displacement primary variables both for the solid and fluid phases (denoted (us,uf) in this

manuscript), was introduced by Kang and Bolton in 1995, for a 2D case [43]. It was later

extended to 3D applications [44, 45]. At the same time, other works proposed displace-

ment formulations involving solid phase displacement and the displacement of the fluid

relative to the solid as primary variables (denoted (us,w) in this manuscript) [46, 47].

In an attempt to reduce the size of the problems to deal with, formulations have then

been proposed using a scalar field for the fluid phase. Thus, under the assumption of an

irrotational fluid, the fluid displacement potential was introduced by Göransson in order

to propose a 5-dof formulation involving the solid phase displacement and the fluid phase

pressure fluctuation (denoted (us, pf,Ψ)) [48]. It however suffered from an overestimation

of the coupling between the fluid and the frame structure undergoing rotational deforma-

13



1.2. MODELLING OF POROUS MATERIALS IN STRUCTURAL-ACOUSTIC
APPLICATIONS

tion. The attempt to further downsize the formulations led to mixed formulations using the

solid frame displacement and the pressure fluctuation in the fluid phase (denoted (us, pf)).

A simplified 1-D approach was proposed by Göransson in 1995 [49], neglecting the strain

couplings between the fluid and solid phases. Then, a 3-D formulation was introduced

by Atalla et al. in 1998 [50], with the commonly-used assumption in acoustics that the

bulk modulus of the saturating fluid and of the in vacuo porous material are negligible

compared to the bulk modulus of the frame material. It was later enhanced [51] and made

equivalent to the original displacement formulation assuming a time-harmonic excitation,

and simplifying the coupling to elastic and poroelastic media. Further formulations have

recently been developed (see Section 1.4.4), but due to its reduced number of unknowns,

the (us, pf) formulation by Atalla et al. is today considered as the most efficient.

In order to increase the efficiency, hierarchical implementation of these formulations has

been done over the past ten years [52–55]. It presents the advantage of limiting the number

of elements needed for discretization while offering the additional possibility to model

thiner poroelastic layers than possible with standard linear elements. Moreover, their

good convergence properties make it a well suited method for the modelling of multilayer

poroelastic assemblies. There is nevertheless a trade-off to be found between the order

of polynomial interpolation and the extra-cost involved by the increase of matrix density.

They are, furthermore, not standard in commercial FE software implementations, and are

limited by the difficulty to model efficiently complex geometries, in situations where the

mesh refinement is dictated by the geometry.

Questions arising from the use of poroelastic materials in the scope of structural-

acoustic applications. Including 3D modelling of porous materials in structural-acoustic

applications raises the questions that have been discussed among the vibroacoustics com-

munity: i.e. the choice of discretization method, and the choice of formulation in terms of

primary variables [56].

Regarding the choice of numerical method, focusing primarily on the low frequency

range, BEM and FEM are the two main methods used today in an industrial context, as

introduced in the previous section. While FEM is widely appreciated for its suitability

for complex problems (complex geometry, multiphysics coupled problems, ...) at the ex-

pense of high computational cost (very dependent on the ability to produce size-optimized

meshes), BEM can prove convenient and offer substantial computational efficiency im-

provements (simplified meshing procedure, simplified modelling of external acoustics, ...).

Recently, the development of the WBM offers further increased computational efficiency,

performing well over an extended frequency range. It is however still a maturing method,

presenting some limitations, such as the geometrical complexity of the problems to solve.
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The solutions involve either a problem decomposition into subdomains, thus somehow

hampering the efficiency, or coupling to element methods, thus adding a difficulty at the

interface.

In the present work, the FEM is chosen as tool for numerical modelling of structural-

acoustic applications including sound absorbing materials, for the following reasons:

1. Most of the recent developments made for modelling sound absorbing porous mate-

rials using the Biot theory have been made using the FEM. Thus, this work being

in the continuation of these developments (see also contributions presented in Sec-

tion 1.5, [57–60]), the FEM comes as a natural practical tool for dealing with such

fully coupled applications;

2. Methods such as modal-based reduction can be used to improve the computational

efficiency, especially considering that the low frequency range is of prime interest;

3. It is the most widely used method, and it is an objective of the present work to

explore solutions (among other existing solutions) improving its weakest point, i.e.

its computational efficiency, particularly when involving 3D modelling of poroelastic

materials;

4. The FEM is in the core of the culture of both laboratories in which the present work

was performed.

Once the choice of a numerical method is established, the question of the set of primary

variables is discussed. This has been given careful attention in the literature [56, 61–64]. In

the context of vibroacoustics, in the absence of porous media, where the fluid is considered

perfect, a natural set of variables traditionally used includes the pressure-fluctuation scalar

field for the fluid, and the displacement vector field for the structure. However, such a

formulation leads to non-symmetric coupled matrices after discretization [65–67]. This has

two consequences. First, practically speaking, the implementation has to account for an

efficient non-symmetric storage of the assembled matrices. It is mentioned here, that for a

solution with time-harmonic excitations, the system can be mathematically symmetrized

in the limit of dynamic solution, which is another practical issue to account for. Secondly,

in the scope of modal analysis for the coupled system, a non-symmetric eigenvalue problem

prevents the use of the most efficient solvers at hand, and thus tends to be computationally

demanding. Furthermore, it was shown in [56], that it suffers from an undetermined

solution in the static case, for which a constraint has to be added. This point has its

importance when a modal solution based on the fluid and structure decoupled normal

modes is considered for the coupled problem. In this case, accounting for the static acoustic

mode in the fluid truncated basis is shown to help for the convergence [68, 56]. There
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are several ways to include the acoustic static response: either by explicitly expressing

the static pressure in the formulation [68], or by including the static pressure in the

basis [69, 70], or by taking into account the impact of the static pressure on the structure

via elastic modes [71].

To overcome the non-symmetric nature of the problem, several formulations have been

proposed to establish symmetric global matrices. Among them, introducing the fluid

velocity potential [72, 73] symmetrizes the problem by transferring the coupling terms to a

pseudo-damping matrix, thus not improving the situation regarding the coupled eigenvalue

problem. Using the displacement vector field has also been proposed [74, 75], with the

major drawback related to the increase in the dimension of the problems to be solved,

together with the need to impose the irrotationality of the fluid. Ohayon proposed a

symmetrized version by adding a displacement potential unknown for the fluid [68, 56].

The drawback to this approach is the doubled size of the fluid partition due to the added

unknown. This point can be partly overcome by a rigorous condensation of the added

unknowns using the procedure described in [56] for undamped elastoacoustic problems and

used in [20] for a case with dissipative interface. This approach results in proper symmetric

coupled matrices at the expense of additional operations in the assembly process [62] and

a loss of sparsity.

The recent developments of these solutions have led to a general implementation of for-

mulations using the Eulerian approach in commercial FE softwares (ANSYS, MSC/Nastran,

ABAQUS, SYSNOISE), using the pressure fluctuation as primary variable in the fluid do-

main. In the context of the present work, where time-harmonic excitations are considered,

the solution of problems using formulations based on the acoustic pressure fluctuation can

be easily made symmetric (the static case is excluded). Furthermore, the coupled prob-

lems treated are decomposed into components according to their nature (fluid, structure

or poroelastic material). Thus, only decoupled eigenvalue problems are considered for

each component, while the continuity is enforced via attachment functions. In this case,

the constraint corresponding to the static case [56] is naturally satisfied. Consequently,

the widely used formulation introducing the acoustic pressure fluctuation for the fluid is

used in the present work. Extension to other existing formulations in the literature is a

straightforward perspective to the present work.

1.3 On the cost and benefits of 3D modelling for sound ab-
sorbing materials

In this section, an introductory comparison is made between the use of a normal

acoustic impedance boundary condition, as widely used in the industry, and the use of
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a 3D model for the poroelastic material (Biot’s theory). It is illustrated on a simple

poro-acoustic problem, later considered for validation purposes in the present work (see

Fig. 1.2). It consists of a hexahedral acoustic cavity with acoustically rigid boundary

conditions, except on one wall where absorbing boundary conditions are defined. The

absorbing region corresponds to a single porous layer backed by an impervious rigid wall. It

is excited by a corner time-harmonic acoustic excitation, and the mean quadratic pressure

is measured in the cavity. The theoretical details, not being of interest in this section, are

1

2 3

Lza

Lzp

Lxa

Lya

Corner excitation

Figure 1.2: Typical poro-acoustic geometry used for comparison between acoustic
impedance and 3D poroelastic modelling

given along with the validation cases in this thesis (e.g. in Chapter 2 or 3). This example

is of general interest, as it corresponds to conditions for which the use of a normal acoustic

impedance should perform best:

• Locally reacting surface is assumed for the poroelastic layer [76];

• The assumption of close to normal incidence is justified by a larger dimension of the

cavity along the normal direction with respect to the layer, thus somehow acting as

a wave guide. Furthermore, the analysis is limited to the low frequency range;

• The layer is backed by a rigid impervious wall, which corresponds exactly to the

boundary conditions for which the normal acoustic impedance is determined.

A 1D finite element model is used to determine numerically the normal acoustic

impedance for the poroelastic layer, which was validated against the analytical solution.

Including the appropriate boundary condition for the impedance in the 3D finite element

model, gives the results presented in Figs. 1.3. They are given for two slightly different

geometries of the cavity. It can be observed that, as expected [77, 78], the normal acoustic

impedance boundary condition gives a fairly good approximation of the full 3D problem.
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Figure 1.3: Comparison of the mean quadratic pressure in the cavity using a 3D
model or normal impedance boundary condition, Lzp = 0.05 m: (a) (Lxa, Lya, Lza) =
(0.28, 0.4, 0.5) m; (b) (Lxa, Lya, Lza) = (0.3, 0.4, 0.5) m.

However, in this very favorable situation, an overall underestimation of the damping can

be observed, particularly noticeable at the damped resonances. Furthermore, in the range

[500 − 600] Hz, the dynamic response of the system is not properly approximated by the

simplified model. In fact, two resonances of the coupled problem are not well represented

using the acoustic impedance boundary condition, due to the lack of in-plane spatial cou-

pling within the layer. The resulting error introduced in the acoustic field within the

cavity, is illustrated in Figs. 1.4, where the pressure amplitude in the cavity is plotted, at

593 Hz, i.e. at the second peak of resonance in Fig. 1.3b. A major issue arising from this

(a) (b)

Figure 1.4: Amplitude of the pressure field in the cavity (Lxa, Lya, Lza) = (0.3, 0.4, 0.5) m,
Lzp = 0.05 m, at 593 Hz: (a) 3D modelling of porous layer; (b) Normal acoustic impedance
boundary condition.

observation, is that using such a simplified approach offers no possibility to detect a poste-

riori the modelling errors introduced. It remains very attractive and widely used because
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there is very little added cost for the solution of the problem: no degree of freedom is

added. The only extra cost involved when compared to the conservative problem solution

is to solve a complex-valued system of equations. Of course, more sophisticated approaches

exist going beyond the extremely restrictive locally reacting surface approach. Still, this

simple example illustrates the need for refined models when more than a rough estimation

is required. However, as the extra cost is a drawback under industrial constraints, a set of

efficient solution strategies have to be considered.

1.4 Biot model for sound absorbing porous materials

This section recalls a few formulations for the porous materials, that have been widely

used in the literature: an equivalent fluid model (pf), the standard (us,uf) displacement

Biot-Allard model, and Atalla’s mixed (us, pf) model. Even though detailed more thor-

oughly in the chapters when needed, together with the derivation of the variational for-

mulation, an overview is given here, introducing the governing equations as well as the

possible boundary conditions.

It is worth clarifying, at this point, some notations used along the thesis. In fact,

the problems included in the present work involve acoustic, poroelastic and structural

domains. To refer to these physical domains, the following subscripts will be used when

needed: ‘F’ for the acoustic fluid, ‘s’ and ‘f’ for the solid and fluid phases of the poroelastic

medium, and ‘S’, for the structural domain. The numeral indexes ‘1’ and ‘2’, classically

used in the literature for the solid and fluid phases of the poroelastic material, are saved

to refer to Dirichlet and Neumann boundary condition domains.

1.4.1 Equivalent fluid model (pf)

1.4.1.1 Governing equations

The propagation of sound in a porous material, modeled by an equivalent fluid material,

is governed by a modified version of the Helmholtz equation for a time-harmonic excitation.

It includes complex (denoted by ˜ in the thesis) and frequency-dependent parameters,

accounting for viscosity effects as well as thermal exchanges with the connecting frame.

∆pf +
ω2

c̃(ω)2
pf = 0 (1.1)

The equivalent speed of sound is calculated with an equivalent bulk modulus and density:

c̃(ω) =

√
K̃(ω)

ρ̃(ω)
(1.2)
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Several models have been proposed for the expressions of K̃(ω) and ρ̃(ω), increasing in

complexity in order to refine the captured physics [8, 9, 12]. Further details about the sum-

mary presented in this section can be found in [11], Chap. 5. The models presented in this

section, as well as in the following, are based on the so-called Johnson-Champoux-Allard

model, whose material parameters (solid, fluid and porous parameters) are presented in

Table 1.1. Among those parameters, the 5 porous parameters, dependent on the geometry

Table 1.1: List of material parameters

Notation Description

ρs Density of the material constituting the frame
(λ; µ) Lamé parameters for the solid frame
ηs Structural damping in the frame

ρf Ambient fluid density
η Ambient fluid viscosity
P0 Ambient fluid standard pressure
γ Heat capacity ratio for the ambient fluid
Pr Prandtl number for the ambient fluid

φ Porosity
α∞ Tortuosity
σ Static flow resistivity
Λ Viscous characteristic length
Λ′ Thermal characteristic length

of the frame, are:

• the porosity φ, defined as the ratio between the air volume in the open pores and

the total volume,

• the tortuosity α∞, relating the actual distance the sound has to propagate to pass

through a layer, to the thickness of the layer,

• the static flow resistivity σ (Ns/m4), introducing viscous losses for the sound prop-

agation in the porous material,

• the viscous characteristic length Λ (m), introduced by Johnson et al. [8] as a charac-

teristic length providing a correction for the viscous effects, particularly for a better

frequency-dependent representation,

• the thermal characteristic length Λ′ (m), introduced by Champoux and Allard [9]

by analogy to the viscous characteristic length, in order to better account for the

thermal effects.
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The effective density can be introduced in a general form as

ρ̃(ω) = ρf α(ω), (1.3)

where α(ω), the dynamic tortuosity, accounting for the frequency-dependence of thermal

and viscous effects, was given by Johnson et al. [8],

α(ω) = α∞ρf

[
1 +

σφ

iωρfα∞

GJ(ω)

]
, (1.4)

with

GJ (ω) =

[
1 +

4iωα2
∞
ηρf

σ
2Λ2φ2

]1
2

. (1.5)

By analogy to the dynamic tortuosity, similar functions can be defined for the description

of the thermal exchanges and the incompressibility. Such a general function, α′(ω), was

used by Lafarge et al. [12] as homologue to α(ω) and related to the fluid bulk modulus

by

K̃f(ω) =
γ P0

γ − (γ − 1) [α′(ω)]−1 . (1.6)

It followed the idea of Champoux and Allard [9], who showed that the effective density and

the equivalent bulk modulus were controlled by different aspects of the pores geometry.

Thus, they should be described by different shape factors, and they introduced the thermal

characteristic length in their expression corresponding to α′(ω),

α′(ω) = 1 +
8η

iωPrΛ′2ρf

(
1 +

iωPrΛ′2ρf
16η

) 1
2

. (1.7)

More advanced expressions, not explicitly presented in this work, exist for α′(ω) [12, 11].

It can however be mentioned that the expression of Eq. (1.7) can be found from the

approach proposed in [12], assuming the thermal dynamic permeability of a porous medium

with circular cylindrical pores of radius r = Λ′. The corresponding thermal dynamic

permeability is q′0 = φΛ′2/8. It was then shown that such an arbitrary choice can lead to a

large error in the localization of the transition frequency, for which the imaginary part of

the bulk modulus reaches its maximum. This does not necessarily lead to a large error in

the evaluation of a surface impedance because the damping is mainly due to the viscosity

via the effective density [12], (see section 5.6 in [11]).

Other equivalent fluid models exist (e.g. limp frame), but are not developed in this

section as they are not further investigated in the present work.

1.4.1.2 Coupling conditions

Both normal stress continuity as well as normal displacement continuity have to be

fulfilled when a porous material, modeled as an equivalent fluid, is in contact with a
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structure or a fluid. The frame being considered rigid, the boundary conditions need to

account for the volume displacement continuity for the porous materials, thus involving

the porosity.

The different possibilities for boundary conditions of a porous material are given below,

in contact with:

• an acoustic fluid. The normal fluid stress continuity is then expressed as

p = pf, (1.8)

where pf and p denote the acoustic pressure fluctuation in the equivalent fluid and

the acoustic fluid respectively. The normal displacement continuity is given by

uF · nf = φuf · nf, (1.9)

where uf and uF denote the fluid displacement in the equivalent fluid and the acoustic

fluid respectively. The normal at the interface, nf, is pointing outward from the

equivalent fluid porous material.

• a flexible structure. The continuity between the bonded equivalent fluid and the

flexible structure cannot be fulfilled due to the assumption made of a rigid frame. It

is therefore assumed that there is an air gap between the structure and the porous

material, and that the normal displacement continuity is satisfied at the boundary

between the air gap and the structure (uF ·n = uS ·n, uS denoting the displacement

field of the structure and n the normal pointing outward from the acoustic fluid

domain). Thus, the normal displacement continuity writes

uS · nf = φuf · nf. (1.10)

The normal stress continuity is given by

σS nf + pf nf = 0, (1.11)

where σS is the Cauchy stress tensor for the structure.

1.4.2 Classical displacement formulation (us,uf) for a dissipative porous
medium

This formulation is the one used in the present work due to its suitability to investi-

gate a modal-based approach for the fluid-structure coupled porous material. The details

leading to the establishment of the governing equations can be found in [10, 11], and the

main results are recalled and commented in this section.
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1.4.2.1 Governing equations

The dynamics of elastic porous materials is described by the Biot elastodynamic cou-

pled equations, which are written in two different forms in this work, mainly for numerical

implementation purposes. Assuming a time-harmonic dependence of the form eiωt, they

can be written first with the frequency-dependence explicitly detailed, separating viscous

and inertial coupling,

divσs − iω b̃(ω)(us − uf) + ω2 [((1 − φ) ρs + ρa)us − ρauf] = 0, (1.12a)

divσf − iω b̃(ω)(uf − us) + ω2 [−ρaus + (φρf + ρa)uf] = 0. (1.12b)

The complex and frequency-dependent viscous drag b̃(ω) accounts for viscous body forces

interacting between the solid and fluid phases, proportional to the relative velocity. It is a

manifestation of the flow resistivity for the air particles in the pores and can be expressed,

introducing GJ (ω) (Eq. (1.5)) established by Johnson et al., as

b̃(ω) = σφ2GJ (ω) = σφ2

[
1 +

4iωα2
∞
ηρf

σ
2Λ2φ2

] 1
2

. (1.13)

Furthermore, the tortuosity implies inertial interactions between the vibrating solid and

fluid phases, which can be modeled as an added mass to the solid partition. Similarly, the

motion of the fluid particles vibrating around the structural frame can be modeled as an

increase in the fluid density. Thus the inertial coupling term, related to the tortuosity, is

given by

ρa = φρf (α∞ − 1). (1.14)

The elastodynamic coupled equations can be expressed in a condensed form if viscous and

inertial effects are included into equivalent density expressions, complex and frequency-

dependent,

ρ̃s(ω) = (1− φ) ρs − ρ̃sf(ω), (1.15a)

ρ̃f(ω) = φρf − ρ̃sf(ω), (1.15b)

ρ̃sf(ω) = −ρa + i
b̃(ω)

ω
. (1.15c)

Rewriting Eqs. (1.12) using the equivalent densities expressions (1.15) yields

divσs + ω2(ρ̃sus + ρ̃sfuf) = 0, (1.16a)

divσf + ω2(ρ̃sfus + ρ̃fuf) = 0. (1.16b)
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σs and σf are the averaged stress tensors for the solid and fluid phases respectively.

They satisfy the Lagrangian stress-strain relations developed by Biot:

σs = 2Ñ ε(us) +
(
Ã tr [ε(us)] + Q̃ tr [ε(uf)]

)
I, (1.17a)

σf = −φp I =
(
Q̃ tr [ε(us)] + R̃ tr [ε(uf)]

)
I, (1.17b)

where Ã, R̃, Ñ , and Q̃ correspond to the four elasticity coefficients introduced by Biot.

They are however complex (and frequency-dependent) in order to take into account the

thermal effects as well as the structural damping in the skeleton. These equations, cor-

responding to the constitutive laws for the solid and fluid phases, are coupled due to a

dilatational coupling: the frame stress depends on the frame strain in a similar way to the

behavior of an elastic solid, and is also affected by the dilatation of the fluid. Similarly,

the pressure variation in the air is affected by the frame dilatation. Ã is understood as

the Lamé parameter at zero fluid dilatation, and can be written as

Ã = λ̃+
Q̃2

R̃
, (1.18)

where it may be shown that λ̃ is the Lamé coefficient at zero fluid dilatation. Similarly, Ñ

is the shear modulus of the frame, and can thus be written as Ñ = µ̃. Both λ̃ and µ̃ may

be defined complex and possibly frequency-dependent to account for structural damping

in the frame [79, 80]. A simple model usually adopted in the literature to account for

structural damping in the frame, is to use a hysteretic proportional damping model:

λ̃ = (1 + iηs)λ, (1.19a)

µ̃ = (1 + iηs)µ. (1.19b)

R̃ is interpreted as the fluid phase bulk stiffness at zero frame dilatation. Finally, the

dilatational coupling factor Q̃ accounts for the contributions of the air dilatation to the

stress in the frame, and of the frame dilatation to the pressure variation in the air in the

porous material.

These four elasticity coefficients can be evaluated with the “gedanken experiments”

suggested by Biot. They can thus be expressed as functions of the bulk modulus of the

elastic material from which the frame is made, Ks, the in vacuo bulk modulus of the

frame, Kb, and the equivalent bulk modulus of the fluid in the pores, Kf [10]. Due

to the increased heat conduction caused by the porous frame, regulating the temperature

variation during compression and extension in the acoustic wave, the latter is complex and

frequency-dependent. The expression by Champoux and Allard follows from Eqs. (1.6)

and (1.7),

K̃f(ω) =
γP0

γ − (γ − 1)

[
1 + 8η

iωPrΛ′2ρf

(
1 + iωPrΛ′2ρf

16η

) 1
2

]−1 . (1.20)
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Furthermore, for porous materials with large values for the bulk modulus of the porous

frame material compared to those of the frame and the fluid, which is typically the case

in acoustic applications, Q̃ and R̃ (as well as Ã) can be assumed as functions of the fluid

equivalent bulk modulus K̃f(ω) alone,

R̃ = φK̃f(ω), (1.21a)

Q̃ = (1− φ)K̃f(ω), (1.21b)

Ã = λ̃+
(1− φ)2

φ
K̃f(ω). (1.21c)

Thus, the coupled constitutive laws of the porous material can be rewritten as functions

of λ̃, µ̃, and K̃f(ω) only.

1.4.2.2 Coupling conditions

The different possibilities for boundary conditions of an elastic porous material are

given below, when in contact with:

• an acoustic fluid. The normal stress continuity conditions are given by

σs n+ (1− φ) p n = 0, (1.22a)

σf n+ φ p n = 0. (1.22b)

The normal displacement continuity at interface is expressed as

uF · n− (1− φ)us · n− φuf · n = 0. (1.23)

These coupling conditions, for the (us,uf) formulation, are taken into account in the

variational formulation, leading to surface integrals similar to the classical structural-

acoustic coupling terms.

• a flexible structure. Two types of boundary conditions can be prescribed, as the

porous material can be considered either as sliding or bonded to the structure.

A bonded porous layer on a flexible structure implies continuity of the displacement

field for the solid phase and of the normal displacement component for the fluid

phase,

us = uS, (1.24a)

uf · nP = uS · nP. (1.24b)

where nP is the unit normal vector pointing outward from the porous domain, and

uS the solid displacement vector field.
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A sliding porous layer on a flexible structure implies continuity of the normal com-

ponents of the displacement fields for the solid and the fluid phases with the normal

component of the structure displacement field,

us · nP = uS · nP, (1.25a)

uf · nP = uS · nP. (1.25b)

For both these conditions, the continuity of the total normal stresses at interface

have to be imposed,

(σs + σf) nP = σS nP. (1.26)

While the normal stress continuity is naturally taken into account, the displacement

continuity conditions Eqs. (1.24) and (1.25) have to be explicitly accounted for in

the variational formulation. Practically speaking, for bonded coupling conditions,

the solid phase displacement continuity with the structural displacement field can

be fulfilled in the assembly procedure.

• another poroelastic domain. Considering the case of two porous domains, supposed

in a configuration where the pores of the two media are aligned at the interface,

continuity of the solid-phase displacement vector fields as well as the relative mass

flux across the interface have to be imposed,

u(1)
s = u(2)

s , (1.27a)

φ(1)
(
u
(1)
f − u(1)

s

)
· nP = φ(2)

(
u
(2)
f − u(2)

s

)
· nP. (1.27b)

Furthermore, the continuity of the total normal stresses is given by,
(
σ(1)
s + σ

(1)
f

)
nP =

(
σ(2)
s + σ

(2)
f

)
nP. (1.28)

Similarly to coupling conditions with a flexible structure, normal stress continuity

is naturally satisfied while the displacement continuities have to be taken into ac-

count via surface integral terms in the variational formulation or enforced during the

assembly procedure (solid phase displacement continuity).

1.4.3 Mixed formulation (us,pf)

The mixed displacement-pressure formulation for poroelastic materials was developed

in an effort to reduce the computational burden, using the pressure fluctuation in the pores,

pf, a scalar field, rather than the displacement of the fluid phase uf, a vector field. The

main steps leading to the governing equations are presented, together with the boundary

conditions to take into account for coupling with other media.
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1.4.3.1 Governing equations

The changes made with respect to the displacement formulation previously presented

can be introduced in the expressions of the stress tensors, rewritten depending on the fluid

pressure field rather than the fluid displacement. Thus, multiplying the fluid constitutive

equation Eq. (1.17b) by Q̃

R̃
, and substituting in Eq. (1.17a) for elimination of the terms

in tr [ε(uf)], yields the following expressions of the stress tensors,

σs = 2µ̃ ε(us) + λ̃ tr [ε(us)] I− φ
Q̃

R̃
p I = σ̂s − φ

Q̃

R̃
p I, (1.29a)

σf = −φp I, (1.29b)

where σ̂s is the stress tensor of the frame in vacuo. The updated version of the elastody-

namic Eqs. (1.16) thus yields

div σ̂s − φ
Q̃

R̃
gradp+ ω2(ρ̃sus + ρ̃sfuf) = 0, (1.30a)

− φgradp+ ω2(ρ̃sfus + ρ̃fuf) = 0. (1.30b)

Further, the fluid phase equation Eq. (1.30b) is used to substitute for the fluid displace-

ment vector uf in the solid phase equation, Eq. (1.30a), given

uf =
φ

ρ̃f ω2
gradp−

ρ̃sf
ρ̃f

us, (1.31)

leading to the solid phase elastodynamic equation

div σ̂s + ω2ρ̃us + γ̃ gradp = 0, (1.32)

with

ρ̃ = ρ̃s −
ρ̃sf

2

ρ̃f
, (1.33a)

γ̃ = φ

(
ρ̃sf
ρ̃f

−
Q̃

R̃

)
. (1.33b)

Finally, noticing that the fluid phase constitutive equation Eq. (1.17b) implies

− φp = Q̃ divus + R̃ divuf, (1.34)

to be combined with the divergence of the fluid phase equation Eq. (1.30b),

∆p− ω2 ρ̃f
φ
divuf − ω2 ρ̃sf

φ
divus = 0, (1.35)
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for elimination of the fluid displacement vector uf, the fluid phase elastodynamic equation

reads

∆p+ ω2 ρ̃f

R̃
p− ω2 ρ̃f

φ2
γ̃ divus = 0. (1.36)

Therefore, the governing equations for the (us,pf) formulation are the elastodynamic

equations (1.32) and (1.36) for the solid and fluid phases respectively, together with the

constitutive equation for the in vacuo solid frame included in Eq. (1.29a), and the expres-

sions of ρ̃ and γ̃ given in Eqs. (1.33).

1.4.3.2 Enhanced coupling conditions [51]

Essentially, the coupling conditions of a porous medium described with the (us,pf) for-

mulation are very close to the previously described conditions for the (us,uf) formulation.

However, slight differences arise in the way they are accounted for in a finite element ap-

proach, which are mentioned in the following. Thus, considering a porous material coupled

to:

• an acoustic fluid. A pressure continuity condition is added to Eqs. (1.22) and (1.23),

between the fluid pore pressure and the acoustic pressure in the acoustic fluid domain,

p = pf. (1.37)

Thus, standard structural-acoustic coupling conditions arise in the variational for-

mulation for the solid phase of the porous medium, while the pressure continuity can

directly be imposed in the assembly procedure.

• a flexible structure. It was shown that coupling a porous material described with

the (us,pf) formulation leads to simplified coupling with the flexible structure, as

only the solid displacement continuity (Eq. (1.24a) or (1.25a)) has to be explicitly

enforced. Furthermore, in the case of a bonded porous layer (Eq. (1.24a), it can be

imposed during the assembly procedure.

• another poroelastic domain. Similarly to the coupling conditions with an acoustic

domain, the pressure continuity in the pores between two connected porous media

has to be enforced, adding

p
(1)
f = p

(2)
f , (1.38)

to the coupling conditions expressed in Eqs. (1.27) and (1.28). Again, it was shown

that the coupling conditions for the (us,pf) formulation are easier to take into ac-

count. In fact, only the solid phase displacement and the fluid phase pressure conti-

nuity need to be explicitly accounted for, which can be done directly in the assembly

procedure.
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1.4.4 Other formulations, and choice made for the thesis

The summary of the two main formulations for modelling poroelastic materials, the

(us,uf) and (us,pf), presented in the previous section, highlighted the reasons for the recent

success for the (us,pf) formulation: despite an intricate physical interpretation [81] and

some conditioning issues, the numerical advantage due to the reduction to 4 dofs per node

in an FE code, as well as the simplified handling of coupling conditions have made it

most popular. In the objective of a simplification of the displacement-based formulation,

a strain-decoupled formulation (us,uw) [82] has been proposed, thus proposing simpler

expressions of the different parameters of Biot’s model. Following the idea of simplifying

the displacement-based formulations, a solid phase and total displacement formulation

(us,ut) was recently derived [59] exhibiting a diagonal by block stiffness matrix together

with natural coupling conditions with an acoustic fluid domain or another porous medium.

In addition, an efficient modal-based solution strategy was proposed. It uses real-valued

decoupled modes from two different eigenvalue problems, and was shown to be promising

for future extensions to 3D and more complex applications.

The present work is oriented towards the same objectives. However, after reviewing

works done in the context of modal-based reduction, it appeared that, even though being

challenging for non-proportional damping, use of coupled modes would exhibit some ad-

vantages (See Section 1.5). For this reason, the original (us,uf) formulation will be used

for most of the present work, with the aim to propose more efficient solution approaches.

1.5 Modal-based reduction methods

Modal-based reduced models in structural-acoustics. The modal-based approach

for reduced models consists in a change of basis from nodal coordinates to modal coor-

dinates. Thus, a projection is done on a truncated basis composed of normal modes cal-

culated from a conservative eigenvalue problem. The outcome for conservative problems

is a reduction in the number of unknowns corresponding to a set of linearly independent

equations, thus resulting in a very efficient solution. Furthermore, it is a well-known result

of modal-based reduction techniques, that the convergence can be improved by complet-

ing the modal basis with a static response of the system as a correction for the truncated

higher order normal modes.

For coupled problems such as structural-acoustic applications, the starting point is

generally the use of decoupled modal bases, i.e. calculated from the eigenvalue problems

of the structure in vacuo and the acoustic cavity with interfaces made rigid. It is however

recalled that a choice of appropriate variables could give the option of calculating coupled
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modes. Projecting the structural and acoustic domains on their modal basis results in

a reduced coupled problem in terms of modal coordinates, with modal coupling at inter-

face. However, this approach suffers from some difficulties in terms of convergence [83, 84],

which can be partly explained by the use of an acoustic pressure field leading to displace-

ment incompatibilities at the interface with the structural domain. In the literature, the

convergence has been improved by enriching the acoustic basis by vectors accounting for

the coupled nature of the problem. Such improvements have been proposed by Ohayon,

using formulations suitable for the static response of coupled structural-acoustic problems,

and enriching the acoustic fluid basis with its response under structural static deforma-

tion [56, 71]. Further improvements have been proposed enriching the bases with residual

responses, thus involving an iterative scheme, controlled using an error estimator [70, 63].

Another way to account for the coupling compatibility is to consider a component

approach. Several methods, have been proposed, mostly in the scope of purely struc-

tural applications, grouped under the so-called Component Mode Synthesis (CMS) tech-

nique [85–100]. It consists in decomposing the problem into several components, which can

be independently reduced using normal modes not satisfying the coupling conditions, and

enforcing the coupling between components by a set of attachment functions. The different

methods differ from each other depending on the combination of normal modes (real-valued

or possibly complex-valued) used, i.e. restrained-interface modes, free-interface modes,

hybrid-interface modes, together with the type of attachment function which can be based

on the primal or dual variables. Few studies have extended this approach to structural-

acoustic coupled problems. The classical restrained-interface method attributed to Craig

and Bampton [85] has been adapted to fluid domains [101], showing promising perfor-

mance for fluid-structure interaction problems. It can be argued that the standard modal

approach, using only the decoupled structural and acoustic modal bases for the change of

coordinates, is a particular type of component mode synthesis. It would correspond to a

so-called free-interface normal modes technique, with attachment functions consisting of

the coupling conditions expressed in the modal coordinates.

Both approaches exhibit advantages depending on the specific applications. In the

context of FEM, reducing the number of interface functions (projected coupling conditions

in the case of modal synthesis) is of prime importance as it leads to a loss of sparsity

in the global matrices. Thus, despite a reduction in the number of dofs, it is partly

hampered by the loss in efficiency for a solution using sparse solvers. In the modal synthesis

approach, these densely populated submatrices depend on the number of modes retained

for each domain, as well as the nature of the problem. In fact, for a problem with weak

coupling, some modal coupling terms may be neglected. On the contrary, for a problem

with strong coupling (e.g. with heavy fluid), this assumption is not valid, and the modal
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bases themselves need to account for the strong coupling to improve the convergence.

With a component approach, the increased density of the matrices is triggered by the

choice of the attachment functions. Thus, in the classical restrained-interface CMS, it is

controlled by the number of interface degrees of freedom, which implies some constraints

in the choice of subdomains. This point can however be partly overcome with further

reduction of interface dofs [102–104], or by the choice of specific interface functions [86].

While still requiring some attention in the context of non-damped coupled problems,

the applicability of these methods for dissipative problems demands even greater consid-

eration, as they are often depicted as not suited for such applications.

Dealing with damped problems, and perspectives for poroelastic materials.

Excluding the case of proportional damping, modal methods for damped problems are

sometimes erroneously deemed as inappropriate. While this may be true to a certain ex-

tent, the convergence being by nature harder to achieve, the same basic questions remain

as for the reduction models using decoupled bases for coupled problem. Either spend com-

putational efforts directly building an appropriate basis, possibly in some non-conventional

way, e.g. based on coupled modes for structural-acoustic applications, or find an approx-

imate basis enriched by some correction vectors. For non-damped problems, this last

approach has been the most investigated in the literature. For damped problems, this

has also been the case, considering for instance the use of viscoelastic damping in struc-

tural applications [105–108]. Recently, such methods have been successfully extended

to structural-acoustic applications with dissipative interfaces [70, 63]. These works are a

source of inspiration to propose efficient modal approaches for poroelastic materials, which

however combine several difficulties: strong coupling, dissipative properties, and “volume”

coupling as opposed to surface interface coupling.

On this topic, Dazel has recently proposed and initiated several works. First, in [57, 58],

the approach could be considered, similarly to the use of coupled modes for non-damped

structural-acoustics, as the expensive a priori search of an optimal basis with limited correc-

tions. Convergence for simple applications was demonstrated, although major drawbacks

in terms of the complex and expensive generation of the modal basis, indicated difficulties

for further efficient use of the method. In 2006, Davidsson [109] proposed the construc-

tion of a basis in two steps: first involving the calculation of decoupled modes in order

to establish several interface-dependent Lanczos vectors for each mode, and then using

these modes to calculate coupled modes. The method was shown accurate and promis-

ing in terms of dofs reduction, but the computational efficiency of the approach was not

presented, being a key aspect of the procedure considering the operations involved in the

reduction process. More recently, an approach based on decoupled bases was presented by
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Dazel [59, 60]. It was either suitable under the assumption of neglected shear in the porous

material [59], or demonstrated on 1D applications, thus not involving shear waves [60],

but showing promising performances for extension to more complex problems.

However, it seems, from the present literature review, that an approach based on

decoupled modes for such strongly coupled problems, might imply difficulties in the choice

of decoupled modes to include in the basis. Furthermore, due to the fully coupled nature of

the equations (in the sense of “volume” coupling), a reduction based on decoupled normal

modes will result in a fully coupled reduced set of equations, i.e. fully populated coupling

submatrices. This, added to the coupling that has to be done with other physical domains,

may strongly hamper the potential efficiency of such methods.

For these reasons, the approach attempted in the present work, is to propose an approx-

imate modal basis based on the fully coupled poroelastic problem, which, upon necessity,

could be corrected with methods proposed in the literature (static-like responses, residual

responses, ...).

1.6 Conclusion

In this introductory chapter, a selective overview of the scientific topics related to the

thesis was presented. Following the analysis, two main choices have been exposed regarding

the modelling of coupled poro-elasto-acoustic problems, as included in the present work:

• The widely used displacement-pressure set of variables (uS-p) is chosen to describe

the acoustic fluid and the structure in coupled structural-acoustic problems. In a

direct solution scheme for time-harmonic excitations, the FE problem is artificially

symmetrized, excluding the static case;

• The (us,uf) displacement formulation based on the Biot-Allard theory will be used to

model poroelastic materials, in order to propose a modal approach. Although a priori

less efficient than the mixed formulation, this choice exhibits further advantages

discussed in the manuscript. These arise from a number of choices made in this

work for the implementation.

The following chapter introduces the implementation of these classical formulations, inte-

grated into a Component Mode Synthesis approach for the acoustic domain.
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Chapter 2

Restrained-interface CMS for
damped structural-acoustic
applications

Abstract: This chapter presents a CMS technique for the reduction of acous-

tic components in structural-acoustic problems with poroelastic interfaces. Its

implementation into a general purpose Fortran FE code allows a consistent

analysis in terms of performances and limitations of the method.
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2.1. INTRODUCTION

2.1 Introduction

In this chapter, the efficiency of a restrained-interface modal-based reduction technique

is discussed, in the scope of structural-acoustic problems with dissipative interfaces. Al-

though this reduction technique is relatively common in the literature of CMS, particularly

in structural mechanics, few studies have explored the limitations of such an approach in

the context of damped structural-acoustics. An elasto-poro-acoustic problem is proposed,

involving a classic displacement-pressure description of the structural-acoustic domain,

while the porous medium is described using a 3D model based on the (us,uf) formulation

of the Biot-Allard theory [2, 6, 7, 10]. The solution of the forced time-harmonic problem

is done using a direct approach at each excitation frequency. Considering the substantial

proportion of acoustic fluid in the considered applications, its reduction to interface de-

grees of freedom is evaluated on a large range of academic problems. The evaluation of

the efficiency, as well as the limitations of the technique is sought. For this purpose, the

solution strategy presented in this chapter has been fully implemented in a general FE

Fortran code [110], according to the steps detailed in the presentation of the method, thus

giving consistent data regarding the computational cost estimations reported.

The chapter is composed of three main sections. In the first part, the general elasto-

poro-acoustic problem is presented, along with the associated FE formulation derived in

response to a time-harmonic excitation. In the scope of a direct solution, it is shown that

the problem can be solved as a symmetric problem. The following section presents the

restrained-interface CMS applied to the acoustic domain of the chosen applications. A

general computationally oriented description of the method is detailed, making it directly

applicable to other conservative media (e.g. structure). In this section, the described

reduction method is applied to acoustic, structural-acoustic, and poro-acoustic academic

applications from which conclusions are drawn regarding its limitations in accuracy. In

addition, an iterative test is presented in order to clarify the use of truncation criteria

based on the eigenfrequencies in the scope of fixed-interface CMS. The last part presents

the model reduction of a larger scale elasto-poro-acoustic application. The computational

efficiency of the method is quantified, and two limitations in accuracy are identified: i) the

restrained-interface CMS shows some precision issues at frequencies close to the eigenfre-

quencies of the structural domain acting as a source of excitation, and ii) these difficulties

are emphasized when the concerned acoustic component is treated with damping proper-

ties such as using a porous material.
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2.2 Finite element formulation for the elasto-poro-acoustic

problem

A fluid-structure interaction problem with dissipative porous media at the acoustic

boundary is considered, whose description and notations are presented in Fig. 2.1. The

acoustic fluid, the structure and the porous medium, occupy the domains ΩF, ΩS, and

ΩP respectively. The compressible fluid domain is described using pressure (p) as primary

variable (Subsection 2.2.1.1), while displacement (uS) is used for the structural part (Sub-

section 2.2.1.2). As for the porous medium introduced in Subsection 2.2.1.3, fluid and

solid phases homogenized displacements (us,uf) are retained as primary variables. Their

boundaries are separated into contours of:

• imposed Dirichlet boundary conditions denoted ∂1ΩF, ∂1ΩS and ∂1ΩP,

• prescribed Neumann boundary conditions denoted ∂2ΩF, ∂2ΩS and ∂2ΩP,

• coupling interfaces between the acoustic fluid and the structure (ΓFS), and between

the acoustic fluid and the porous medium (ΓFP).

The finite element formulation is presented for a steady state time-harmonic response

at angular frequency ω.
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[ΩP ; (us,uf)]

nS
rigid wall

[ΩF ; p]

fSb
nP

∂2ΩS

∂1ΩS

nF = n

ΓFS

ΓFP

∂1ΩP

∂2ΩF

[ΩS ; uS]

fluid acoustic cavity

flexible structure

porous media

source

Figure 2.1: Description and notations of the elasto-poro-acoustic interaction problem

2.2.1 Dynamic equations and constitutive laws

2.2.1.1 Compressible fluid (p)

The internal fluid within the cavities is assumed to be compressible and inviscid, sat-

isfying the classical Helmholtz equation derived from the equations of motion, continuity,
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and state,

∆p+
ω2

c20
p = 0 in ΩF, (2.1)

where c0 is the constant sound speed in the fluid, and p the pressure fluctuation scalar

field. The limit case where ω = 0 is not given by equation (2.1). For this matter, the

solution is given by the static solution of the coupled fluid-structure problem, as described

in [56]. Henceforth, in the scope of the present work, it will be assumed that ω 6= 0.

2.2.1.2 Structure (uS)

The structural domain is assumed satisfying the elastodynamic linearized equation at

angular frequency ω,

divσS + ω2ρSuS = 0 in ΩS, (2.2)

where ρS is the constant density per unit volume, σS the Cauchy stress tensor, given by

σS = DS ε(uS) in ΩS. (2.3)

DS is the classical Hooke’s linear elasticity tensor, and ε(uS) the strain tensor associated

with the displacement vector field uS, defined as

ε(v) =
1

2

(
gradv+ gradTv

)
. (2.4)

This definition of ε as a function of v is used later in the description of the Biot theory

for modelling of porous materials.

2.2.1.3 Porous media Biot theory (us,uf)

Considering the fact that sound propagation in a porous medium occurs both in the

air inside the pores and in the flexible frame, the Biot-Allard theory ([2, 6, 10]) is used for

the air-saturated porous medium. It describes the fluid and the structural partitions as

well as their coupling, using the homogenized equations of linear continuum mechanics.

Following the presentation of the equations made in Section 1.4.2 for the (us,uf) for-

mulation, the main equations are briefly recalled to establish the variational formulation.

The list of material parameters is given in Table 1.1. The poroelastic medium satisfies the

following elastodynamic linearized equations at angular frequency ω, taking into account

inertia and viscous coupling effects between the solid and the fluid phases,

divσs + ω2(ρ̃sus + ρ̃sfuf) = 0 in ΩP, (2.5a)

divσf + ω2(ρ̃sfus + ρ̃fuf) = 0 in ΩP, (2.5b)
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where us and uf are the solid phase and fluid phase averaged displacements in the sense

of Biot theory, respectively. In addition, ρ̃s, ρ̃f and ρ̃sf are equivalent complex densities

per unit volume taking into account viscous effects as well as inertial coupling term (See

Eqs. (1.15)).

σs and σf are the averaged stress tensors for the solid and fluid phases respectively.

They satisfy the Lagrangian stress-strain relations developed by Biot, Eqs. (1.17), which

can be written using the Voigt notation,

σs = D̃s ε(us) + D̃sf ε(uf), (2.6a)

σf = D̃T
sf ε(us) + D̃f ε(uf), (2.6b)

where ε(us) and ε(uf) are the strain tensors associated with the averaged displacements

us and uf, as defined in Eq. (2.4). D̃s, D̃f and D̃sf are complex and frequency-dependent

elasticity tensors of the solid phase, the fluid phase, and the coupling between both phases

respectively. Their developed expressions include the materials parameters Ã, Q̃, R̃ given

by Eqs. (1.21) and the shear modulus of the frame µ̃,




σs
11

σs
22

σs
33

σs
12

σs
13

σs
23



=




Ã∗ Ã Ã 0 0 0

Ã Ã∗ Ã 0 0 0

Ã Ã Ã∗ 0 0 0
0 0 0 µ̃ 0 0
0 0 0 0 µ̃ 0
0 0 0 0 0 µ̃







ǫs11
ǫs22
ǫs33
2ǫs12
2ǫs13
2ǫs23



+




Q̃ Q̃ Q̃ 0 0 0

Q̃ Q̃ Q̃ 0 0 0

Q̃ Q̃ Q̃ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







ǫf11
ǫf22
ǫf33
2ǫf12
2ǫf13
2ǫf23




, (2.7a)




σf
11

σf
22

σf
33

σf
12

σf
13

σf
23




=




Q̃ Q̃ Q̃ 0 0 0

Q̃ Q̃ Q̃ 0 0 0

Q̃ Q̃ Q̃ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







ǫs11
ǫs22
ǫs33
2ǫs12
2ǫs13
2ǫs23



+




R̃ R̃ R̃ 0 0 0

R̃ R̃ R̃ 0 0 0

R̃ R̃ R̃ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







ǫf11
ǫf22
ǫf33
2ǫf12
2ǫf13
2ǫf23




, (2.7b)

with

Ã∗ = Ã+ 2µ̃. (2.8)

2.2.2 Fluid-structure interaction problem

In this subsection, boundary and coupling conditions are recalled for the elasto-poro-

acoustic coupled problem presented in Fig. 2.1, in order to establish the complete basis

for the discretized finite element problem.
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2.2.2.1 Elasto-poro-acoustic coupling and boundary conditions (uS−p−(us,uf))

Prescribed displacements and forces are imposed on the external structural boundaries

∂1ΩS and ∂2ΩS respectively,

uS = 0 on ∂1ΩS, (2.9)

σS nS = fSb on ∂2ΩS, (2.10)

where nS is the unit normal vector pointing outward from ΩS.

At the interface between the structural domain and the acoustic fluid, normal stress

and normal displacement continuity conditions are given by

σS n+ p n = 0 on ΓFS, (2.11)

(uF − uS) · n = 0 on ΓFS, (2.12)

where n is the unit normal vector pointing outward from the fluid domain. uF is the fluid

displacement vector, which can be related to the pressure field using the linearized Euler

equation expressed for a harmonic solution at angular frequency ω,

grad p · n = ω2ρF uF · n. (2.13)

At an external boundary of the acoustic fluid domain, rigid impervious cavity condi-

tions correspond to a free pressure field. A time-harmonic excitation is prescribed via an

acoustic source,

uF · n = uFb on ∂2ΩF, (2.14)

where uFb is set to zero except for the location of the acoustic source included in ∂2ΩF.

Coupling at an interface ΓFP is given by normal stress and normal displacement conti-

nuity conditions between the acoustic fluid and both the fluid and the solid phases of the

porous medium (see Section 1.4.2.2),

σs n+ (1− φ) p n = 0 on ΓFP, (2.15a)

σf n+ φ p n = 0 on ΓFP, (2.15b)

uF · n− (1− φ)us · n− φuf · n = 0 on ΓFP, (2.16)

where φ is the porosity of the porous material, i.e. the volume fraction of fluid.

No external force is applied to the outer boundary of the porous medium beside at

interface ΓFP. Therefore, ∂2ΩP = ∅ in the considered problem. Finally, at an external

boundary ∂1ΩP, two types of boundary conditions can be prescribed, the porous material

being considered either as sliding or bonded to a rigid wall:
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For a bonded porous layer on a rigid wall, the following conditions arise – fixed displacement

of the solid phase and normal displacement of the fluid phase – and have to be satisfied,

us = 0 on ∂1ΩP, (2.17a)

uf · nP = 0 on ∂1ΩP; (2.17b)

For a sliding porous layer on a rigid wall the following conditions arise – fixed normal

displacement of the solid phase and fluid phase – and have to be satisfied,

us · nP = 0 on ∂1ΩP, (2.18a)

uf · nP = 0 on ∂1ΩP, (2.18b)

where nP is the unit normal vector pointing outward from ΩP.

2.2.2.2 Finite element discretized problem

The test-function method is used to derive the variational formulation of the coupled

problem. For this purpose, the spaces of sufficiently smooth functions CuS
, Cp, Cus and

Cuf
are introduced, associated with the field variables uS, p, us and uf respectively.

• Let δuS be the frequency-independent test function, associated with uS, belonging to

the admissible space C∗

uS
= {δuS ∈ CuS

|δuS = 0 on ∂1ΩS}. Multiplying Eq. (2.2)

combined with Eq. (2.3) by δuS ∈ C∗

uS
, applying a Green’s formula and taking

Eqs. (2.10) and (2.11) into account leads to

∫

ΩS

tr [DS ε(uS) ε(δuS)] dV − ω2

∫

ΩS

ρSuS · δuS dV −

∫

ΓFS

pn · δuS dΣ

=

∫

∂2ΩS

fSb · δuS dΣ.

(2.19)

• Let δp be the frequency-independent test function, associated with p, belonging to

the admissible space Cp. Multiplying Eq. (2.1) by δp ∈ Cp, applying a Green’s

formula and taking Eqs. (2.12), (2.14) and (2.16) into account leads to

∫

ΩF

gradp · gradδp dV −
ω2

c20

∫

ΩF

p δp dV − ω2ρF(1− φ)

∫

ΓFP

us · n δp dΣ

−ω2ρFφ

∫

ΓFP

uf · n δp dΣ− ω2ρF

∫

ΓFS

uS · n δp dΣ = ω2ρF

∫

∂2ΩF

uFb δp dΣ.

(2.20)

• Let δus be the frequency-independent test function, associated with us, belonging

to the admissible space C∗

us
= {δus ∈ Cus |δus = 0 or δus · nP = 0 on ∂1ΩP}.
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Multiplying Eq. (2.5a) combined with Eq. (2.6a) by δus ∈ C∗

us
, applying a Green’s

formula and taking Eq. (2.15a) into account leads to
∫

ΩP

tr
[
D̃s ε(us) ε(δus)

]
dV +

∫

ΩP

tr
[
D̃sf ε(uf) ε(δus)

]
dV

− ω2

∫

ΩP

ρ̃sus · δus dV − ω2

∫

ΩP

ρ̃sfuf · δus dV

− (1− φ)

∫

ΓFP

pn · δus dΣ = 0.

(2.21)

• Let δuf be the frequency-independent test function, associated with uf, belonging

to the admissible space C∗

uf
= {δuf ∈ Cuf

|δuf · nP = 0 on ∂1ΩP}. Multiplying

Eq. (2.5b) combined with Eq. (2.6b) by δuf ∈ C∗

uf
, applying a Green’s formula and

taking Eq. (2.15b) into account leads to
∫

ΩP

tr
[
D̃f ε(uf) ε(δuf)

]
dV +

∫

ΩP

tr
[
D̃sf ε(us) ε(δuf)

]
dV

− ω2

∫

ΩP

ρ̃suf · δuf dV − ω2

∫

ΩP

ρ̃sfus · δuf dV

− φ

∫

ΓFP

pn · δuf dΣ = 0.

(2.22)

After discretization of the various terms in Eqs. (2.19)-(2.22) using the finite element

method and dividing Eq. (2.20) by ρF, the following matrix equation for the coupled

problem is obtained,







KS −CT
FS 0 0

0 KF 0 0

0 −(1− φ)CT
Fs K̃ss K̃sf

0 −φCT
Ff K̃fs K̃ff




−ω2




MS 0 0 0
CFS MF (1− φ)CFs φCFf

0 0 M̃ss M̃sf

0 0 M̃fs M̃ff










US

P
Us

Uf


 =




FSb

ω2UFb

0
0


 .

(2.23)

This non-symmetric formulation can be symmetrized for a solution in the frequency

domain by dividing the acoustic equation (second line) by ω2 (ω 6= 0).

2.3 Restrained-interface reduction method for the conser-
vative acoustic subdomains

In the following, a reduction method is applied to the conservative acoustic domain,

which is decomposed into several subdomains. A restrained-interface component mode
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synthesis method is chosen in order to condense the acoustic subdomains to their interfaces

adjacent to other subdomains.

2.3.1 Presentation of the proposed substructuring strategy

The proposed substructuring and modal reduction of the elasto-poro-acoustic problem

introduced in Section 2.2 is presented in Fig. 2.2.
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Figure 2.2: Problem description of the substructuring strategy

The subdomain decomposition can be driven either by different physical domains, or

by the need to subdivide them into smaller components for computational reasons. Each

component’s degrees of freedom (dofs) are separated into interface and internal ones, that

is into kept and condensed dofs respectively. The kept dofs, denoted by the subscript I,

include:

• those connected to another acoustic component,

• those connected to another physical domain (structure or porous media in the present

case),

• those for which an external load is applied (e.g. acoustic source),

• in some cases, those presenting an interest for the response evaluation, i.e., outputs

in terms of physical quantities of the problem.

The remaining dofs, which are to be condensed, are denoted by the subscript Ī. Consid-

ering this separation of dofs for the complete acoustic domain, the FE problem presented
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in eq. (2.23) can be written as




KS − ω2MS −CT
IS 0 0 0

−ω2CIS KII − ω2MII KIĪ − ω2MIĪ −ω2(1− φ)CIs −ω2φCIf

0 KĪI − ω2MĪI KĪ Ī − ω2MĪ Ī 0 0

0 −(1− φ)CT
Is 0 K̃ss − ω2M̃ss K̃sf − ω2M̃sf

0 −φCT
If 0 K̃fs − ω2M̃fs K̃ff − ω2M̃ff




×




US

PI

PĪ

Us

Uf



=




FSb

ω2UIb

0
0
0



,

(2.24)

and can be symmetrized by dividing the acoustic equations (lines 2 and 3) by ω2 (ω 6= 0).

2.3.2 Restrained-interface component mode synthesis for an acoustic
fluid

The acoustic components are indexed by j, varying from 1 to the overall number of

subdomains n. The dofs of component j are separated into interface (subscript J) and

internal (subscript J̄) ones, as illustrated in Fig. 2.3 which represents a specific component

of Fig. 2.2. They can be formally linked to the previous description of dofs for the complete

acoustic domain by the boolean localization matrices β
(j)
JI and β

(j)

J̄ Ī
which satisfy

PJ = β
(j)
JIPI , (2.25a)

PJ̄ = β
(j)

J̄ Ī
PĪ . (2.25b)

interface dofs J

internal dofs J̄

Figure 2.3: DOFs separation within a component

The partitioned acoustic finite element problem for subdomain j is then accordingly

written as ([
KJJ KJ̄J

T

KJ̄J KJ̄J̄

]
− ω2

[
MJJ MJ̄J

T

MJ̄J MJ̄ J̄

])[
PJ

PJ̄

]
=

[
fJ
0

]
. (2.26)
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Similarly to what is classically used in structural mechanics [85], an acoustic reduction

basis is built using a truncated low frequency modal basis, completed by attachment

modes taking into account mobility of the interface as well as contribution of higher order

modes to the response. Normal modes are computed with pressure degrees of freedom

“restrained” at interface, that is for imposed null pressure (PJ = 0), and are solution of

the following eigenvalue problem,

(
KJ̄ J̄ − ω2MJ̄ J̄

)
φ = 0. (2.27)

In most cases, use of restrained-interface reduction methods removes zero-frequency

modes, as constraints applied to interface dofs suppress singularities from the stiffness

matrix. A suitable criterion for the truncation of the modal basis is, in addition, a key

aspect of modal reduction techniques, and is discussed further in Subsection 2.3.5. The

m retained acoustic normal modes, for each acoustic component j, form the modal basis

matrix denoted ΦJ̄m for subdomain j. They are normalized with respect to matrix MJ̄ J̄ ,

so that

ΦJ̄m
T MJ̄ J̄ΦJ̄m = 1m, (2.28a)

ΦJ̄m
T KJ̄J̄ΦJ̄m = Ωm, (2.28b)

where 1m is a unit matrix of dimension m, and Ωm a diagonal matrix of same size, with

the m lowest eigenvalues of (2.27) on its diagonal.

The attachment modes, classically called static modes in structural mechanics, are

computed as successive responses of the subdomain to unit prescribed Dirichlet boundary

conditions at each interface DOF, while others are kept restrained (see Figure 2.4),

[
KJ̄J KJ̄J̄

] [ 1J
ΨJ̄J

]
=
[
0
]
⇒ ΨJ̄J = −K−1

J̄J̄
KJ̄J . (2.29)

PJ =



0
1
0


 PJ =



0
0
1


PJ =



1
0
0




interface dofs J

internal dofs J̄

Figure 2.4: Attachment modes

It is assumed that KJ̄J̄ is nonsingular considering the Dirichlet boundary conditions

prescribed at interface DOFs. If this assumption is not satisfied, a shift on the stiffness

matrix can be introduced. As a result, the restrained-interface change of basis is defined
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as (the ̂ symbol on solution vectors refers to an approximate solution)

[
P̂J

P̂J̄

]
=

[
1J 0
ΨJ̄J ΦJ̄m

] [
P̂J

α̂m

]
, (2.30)

where α̂m is the modal coordinates vector associated with the selected normal modes of the

considered restrained-interface subdomain. Due to the truncation of the modal basis, the

modal coordinates vector is usually much smaller in size than the corresponding physical

dofs vector. Applying change of basis (2.30) to (2.26) leads to the following reduced set of

equations,

([
K̂JJ 0
0 Ωm

]
−ω2

[[
M̂JJ +ΨJ̄J

TM̂J̄J

] [
ΦJ̄m

TM̂J̄J

]T

ΦJ̄m
TM̂J̄J 1m

])[
P̂J

α̂m

]
=

[
fJ
0

]
, (2.31)

with

K̂JJ = KJJ +KJ̄J
TΨJ̄J , (2.32a)

M̂JJ = MJJ +MJ̄J
TΨJ̄J , (2.32b)

M̂J̄J = MJ̄J +MJ̄ J̄ΨJ̄J . (2.32c)

The interest of the modal reduction lies in the mass- and stiffness-orthogonality of

the computed normal modes, which allows the modal coordinates to be condensed and

removed from the problem to be solved. The subset of equations described in the second

line of (2.31) is then used to express the modal coordinates vector as a function of the

interface unknowns,

α̂m = ω2
(
Ωm − ω2 1m

)
−1 [

ΦJ̄m
TM̂J̄J

]
P̂J , (2.33)

where the inversion of
(
Ωm − ω2 1m

)
is trivial at each frequency step. The substitution

of the modal coordinates expression (2.33) in the set of equations (2.31) then leads to

a reduced problem to be solved, downsized to the dimension of its interface degrees of

freedom,

[
K̂JJ − ω2

[
M̂JJ +ΨJ̄J

TM̂J̄J

]

−ω4
[
ΦJ̄m

T M̂J̄J

]T (
Ωm − ω2 1m

)
−1 [

ΦJ̄m
TM̂J̄J

]]
P̂J = fJ . (2.34)

The solution at the condensed degrees of freedom is obtained, if needed, in a post processing

step using Eq. (2.33) into Eq. (2.30),

P̂J̄ =
[
ΨJ̄J + ω2ΦJ̄m

(
Ωm − ω2 1m

)
−1 [

ΦJ̄m
TM̂J̄J

]]
P̂J . (2.35)
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Finally, the dynamic condensation of the complete problem (2.23) gives the following

reduced system,




KS − ω2MS −CT
IS 0 0

−ω2CIS K⋆
II − ω2M⋆

II − ω4M◦

II(ω) −ω2(1− φ)CIs −ω2φCIf

0 −(1− φ)CT
Is K̃ss − ω2M̃ss K̃sf − ω2M̃sf

0 −φCT
If K̃fs − ω2M̃fs K̃ff − ω2M̃ff




×




ÛS

P̂I

Ûs

Ûf


 =




FSb

ω2UIb

0
0


 ,

(2.36)

where K⋆
II , M

⋆
II and M◦

II(ω) are obtained by an assembly procedure on the n acoustic

components,

K⋆
II =

n∑

j=1

β
(j)
JI

T
K̂JJβ

(j)
JI , (2.37a)

M⋆
II =

n∑

j=1

β
(j)
JI

T [
M̂JJ +ΨJ̄J

TM̂J̄J

]
β
(j)
JI , (2.37b)

M◦

II(ω) =

n∑

j=1

β
(j)
JI

T
[[

ΦT
J̄m

M̂J̄J

]T (
Ωm − ω2 1m

)
−1
[
ΦT

J̄m
M̂J̄J

]]
β
(j)
JI . (2.37c)

Since the two matrices K⋆
II and M⋆

II are non frequency-dependent, they are computed

once in a preliminary step before the frequency loop. Although the matrix M◦

II(ω) has to

be recomputed at each frequency increment, it only involves matrix multiplication and a

trivial inverse operation.

While not justified in the present structural-acoustic application, extension to reduction

of the structural domain is a straight forward procedure. Structural dofs simply have

to be seperated similarly to the acoustic dofs in Eq. (2.23), and dynamically condensed

following the previous procedure. This is commonly referred to as the Craig-Bampton

CMS procedure when applied to structural mechanics.

2.3.3 Application to a conservative structural-acoustic problem

The limitations in accuracy of the reduction applied to a conservative system can be

identified on a small structural-acoustic problem, for which the modal basis can be en-

riched extensively while keeping the computational time reasonable. For this purpose, the

following conservative model is built (see Fig. 2.5), consisting of two identical rigid acoustic

cavities, of dimensions 0.4 × 0.6 × 0.75 m3, linked by a 4 mm-thick flexible plate of area

0.4×0.6 m2. The cavities are meshed with 12×18×12 hexahedral acoustic elements while
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the plate is discretized by a 12×18 quadrilateral shell mesh. In the applications considered,

an existing implementation of a quadrilateral shell element is used, including deep shell

curvature corrections to the discrete Kirchhoff quadrilateral plate bending element [111].

It is a 6-dof shell element including normal drilling [112], of which only the displacement

dofs are coupled to other domains (see coupling in Subsection 2.2.2.1). One of the cavities

(referred to as the excited cavity) is excited via a corner harmonic excitation (unit volume

velocity source), and mean quadratic pressure (Lp) in each cavity is used as sound level

indicator, expressed in dB, and computed according to the following definition,

Lp = 10 log




∫

ΩF

P 2dV

Pref
2

∫

ΩF

dV


 , (2.38)

where Pref = 20 µPa is the reference sound pressure in the air.

Figure 2.5: Finite element model: two acoustic rigid cavities separated by a 4mm thick
plate

The convergence and the accuracy of the reduction method on a small problem, as

discussed here, can then be easily checked by increasing the number of normal modes

included in the basis up to its maximum, i.e. the number of internal dofs for each subdo-

main. The convergence on mean quadratic pressure with the associated error is shown in

Fig. 2.6 (a)-(b) for the excited cavity, and in Fig. 2.7 (a)-(b) for the receiving cavity.

The only source of dissipation being a structural damping in the plate (1%), the am-

plitude of the error at the resonance frequencies is not significant. Instead, bandwidth

of the error should be taken into consideration, as revealing a shift in the frequency re-

sponse. The eigenfrequencies of the uncoupled components of the problem are presented

in Table 2.1, in order to complete the interpretation of Fig. 2.6 and 2.7.
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Figure 2.6: Convergence of reduction in excited cavity: (a) Mean quadratic pressure in
dB versus frequency (b) dB difference to unreduced problem
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Figure 2.7: Convergence or reduction in receiving cavity: (a) Mean quadratic pressure in
dB versus frequency (b) dB difference to unreduced problem

Table 2.1 shows that the resonances which can be observed in the receiving cavity are

either driven by acoustic modes, or plate modes. Comparing this fact with the conver-

gence in the receiving cavity (Fig. 2.7), it appears that enriching the modal basis leads to

converged results, except on resonances driven by plate modes. This failure can be well

observed at the following frequencies: 93 Hz, 176 Hz, 320 Hz, 368 Hz and 608 Hz, while

marginally obvious at 507 Hz and 520 Hz. This result should be taken into consideration

for the accuracy study of the reduction when applied to larger problems, such as the one

presented in Section 2.4.
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Cavities (Hz) Plate (Hz) Coupled problem (Hz)

- 93 93
- 179 176

286 286 286
- 321 320
- 369 368

430 - 430
463 - 463
- 507 507

517 - 517
- 520 518

544 - 544
575 - 575
- 608 608

632 - 632

Table 2.1: Computed eigenfrequencies of both cavities (identical), plate, and resonance
frequencies of coupled problem extracted from FRF

2.3.4 Application to a dissipative poro-acoustic problem

2.3.4.1 Presentation and reference solution of the poro-acoustic problem

The implemented algorithm is further tested on a dissipative poro-acoustic example

such as the cavity initially proposed in [109]. It consists of a 3D hexahedral acoustic

cavity of dimensions 0.4× 0.6× 0.75 m3 (see Fig. 2.8), with rigid walls, and filled with air.

One wall is covered with a 5 cm-thick layer of porous foam. The low frequency behavior

is tested applying a harmonic volume velocity source (see Eq. (2.14)) at a corner of the

cavity opposite to the porous layer.

Frame Fluid Porous

c0 = 343 m/s φ = 0.9
λ = 1144 kPa γ = 1.4 σ = 25 kNs/m4

µ = 286 kPa Pr = 0.71 α∞ = 7.8
(1− φ) ρs = 30 kg/m3 ρf = 1.21 kg/m3 Λ = 226 µm

η = 1.84 · 10−5 Ns/m2 Λ′ = 226 µm

Table 2.2: Air and porous material parameters

The cavity is discretized by an 8 × 12 × 15 mesh of 8-node hexahedral elements with

pressure as the single degree of freedom per node. The porous material, described by the

Biot-Allard theory, is discretized by an 8×12×4 mesh of 8-node hexahedral elements (see

Fig. 2.8), with 6 dofs per node corresponding to the fluid and solid phase displacements

(Subsection 2.2.1.3). Its material parameters are given in Table 2.2 (see Table 1.1 for the

notations). The choice of parameters doesn’t reflect the trend for porous materials mostly

used in the literature (usually lower tortuosity and thermal characteristic length larger
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than the viscous characteristic length in the literature), but can be compared to partially

reticulated polyurethane foams such as those used in [43, 113].

1

2 3

Porous layer

Acoustic cavity

0.75m

0.4m

0.6m

Acoustic
corner excitation

Figure 2.8: Acoustic cavity mesh and dimensions

Dirichlet boundary conditions are applied to the outer boundaries of the porous foam

(see Subsection 2.2.2.1):

• sticking conditions are prescribed on the face in contact with the covered wall (see

Eqs. (3.14));

• sliding conditions are prescribed on the side faces (see Eqs. (3.15)).

This leads to a finite element model with 1872 acoustic dofs, and 2648 porous dofs, i.e.

4520 dofs for the coupled problem. Fig. 2.9 presents the mean quadratic pressure frequency

responses in the cavity, with and without the added porous layer, clearly illustrating the

damping effect induced by the porous medium.

2.3.4.2 Reduction with no porous layer

First, the reduction is applied to the conservative problem consisting of the rigid acous-

tic cavity alone. It is being decomposed into two slightly different acoustic subdomains,

as illustrated in Fig. 2.10, thus leading to a problem to solve of 118 kept dofs. The con-

vergence is shown in Fig. 2.11 for two different truncation limits. Both truncations lead

to a fairly good approximation of the original frequency response (Fig. 2.11 (a)). Plot-

ting the error, as the point to point difference in dB between the unreduced and reduced

frequency responses (Fig. 2.11 (b)), shows the expected improvement induced by adding

normal modes into the basis. Again, due to the conservative property of the problem,

errors at resonance frequencies are less significant.
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Figure 2.10: Rigid acoustic cavity decomposition into two components
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Figure 2.11: Decomposition into two subdomains of the conservative problem: (a) FRF
with 20 and 50 modes per component, (b) dB difference to unreduced problem
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2.3.4.3 Reduced problem with porous layer

The next application includes the reduction of the acoustic part of the coupled poro-

acoustic problem presented in Fig. 2.8. It is first decomposed into one acoustic component

dynamically condensed to its interface with the porous medium, and then as two acoustic

components defined similarly to the conservative problem shown in Fig. 2.10, involving

problems to solve of respectively 2766 and 2883 kept dofs. The convergence of the single

component reduction is plotted in Fig. 2.12 with truncations set at 10, 20 and 50 modes,

i.e. 625 Hz, 887 Hz and 1250 Hz respectively. It shows, for this application, a good ability

to approximate the original problem, with a dB difference kept lower than 0.7 dB (see

Fig. 2.12 (b)) if selecting normal modes up to approximately twice the highest frequency

of interest. For instance, the dB difference is lower than 0.7 dB up to 320 Hz with 10

modes included in the reduction basis, lower than 0.6 dB up to 460 Hz with 20 modes,

and lower than 0.3 dB up to approximatively 600 Hz with 50 modes.
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Figure 2.12: Reduction of the acoustic component to its interface with porous: (a) FRF
with 10, 20 and 50 modes, (b) dB difference to unreduced problem

The effect of decomposing the acoustic cavity into two components is presented in

Fig. 2.13, as compared to the results of the decomposition into a single acoustic component

(Fig. 2.12). The results with 50 normal modes for the single component reduction are

retained, and compared with the results including 25 or 50 normal modes for each of the

two acoustic components. While plotting the mean quadratic pressure frequency response

shows a good approximation of the original problem (Fig. 2.13 (a)), a quantification of

the error in dB compared to the unreduced problem (Fig. 2.13 (b)) gives two interesting

expected conclusions: i) subdividing a component into several components, and including

the same overall number of normal modes in the reduction process – which in this case

corresponds to approximately the same truncation frequency per component – implies a
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loss in precision, and ii), subdividing a component into several components while keeping

the number of normal modes unchanged for each component – thus implying raising the

truncation frequency – leads to a more accurate approximation of the original problem. It

should however be kept in mind that subdividing components, while interesting in order

to increase the level of parallel computations in the reduction step, and deal with smaller

eigenvalue problems, however implies an increased number of kept degrees of freedom, and

thus a larger problem to solve at each frequency step. Therefore, a compromise in the

substructuring strategy should be made depending on the considered problem.
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Figure 2.13: Reduction with 2 acoustic components, and a porous layer: (a) FRF with 25
and 50 modes, (b) dB difference to unreduced problem

2.3.5 Truncation criterion for restrained-interface reduction

Truncation criteria for modal reduction methods are referred to, in the literature, as

a frequency limit below which corresponding normal modes are selected to form part of

the transformation basis. These normal modes are then completed by a set of vectors

established according to the chosen reduction method, whose aim is to correct the error

generated by truncation effects, and/or the chosen method (i.e. free-interface, restrained-

interface, hybrid methods, see [96] for an overview). In the case of restrained-interface

reduction, the question raised is to know whether the restrained-interface eigenfrequencies

can be considered for truncation or not. Free-interface eigenfrequencies, as compared to

a set frequency limit, might be a more suitable and reliable way to define a truncation

criterion, as free-interface normal modes are closer to the physics of the original problem.

Fig. 2.14 illustrates two academic problems similar to those of the previous section, used in

order to compare truncation criteria based on free- or restrained-interface eigenfrequencies.

They consist of a rigid acoustic cavity with one wall covered of a porous layer (5 cm-

thick). Two different sizes are set for the cavities, of dimensions 0.4× 0.6× 0.75 m3 , and
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0.4× 0.6 × 0.25 m3.

1

2 3

1

2 3

Acoustic cavity

0.75 m

0.4 m

0.6 m

0.25 mPorous layer

Figure 2.14: Rigid acoustic cavities used for testing the truncation limit criteria

In the next step, a restrained-interface reduction, involving a single acoustic component

dynamically condensed to its interface with the porous medium, is applied to both these

problems. The influence of these artificial boundary conditions for the eigenvalue problem

is obviously more important for the smaller cavity. In order to test the impact of using

restrained-interface eigenfrequencies for the truncation criterion, the iterative procedure

presented in Fig. 2.15 is applied. While restrained-interface normal modes are used in

the reduction basis of the previously described iterative procedure, free-interface normal

modes are also computed. For each restrained-interface eigenfrequency saved as the last

normal mode included in the transformation matrix satisfying the error criterion, the

corresponding free-interface eigenfrequency is also saved.

Application of this procedure gives the frequency limit of validity of the transformation

for each additional normal mode included in the transformation basis and for a given error

tolerance on the mean quadratic pressure. These results are plotted in Fig. 2.16 (a)-(d)

for the larger and smaller cavities, with a fixed error tolerance of 0.1 dB. Normal modes

are referred to using their restrained-interface eigenfrequency (a,c) or the corresponding

free-interface eigenfrequency (b,d).

First, the eigenfrequencies plotted with respect to the limit of validity of the applied

transformation exhibit step functions. Discontinuities are observed at resonance frequen-

cies of the coupled problem, which emphasizes the fact that precision (convergence) issues

are concentrated around these resonance frequencies. This result is in agreement with the

plots about convergence previously presented for both damped and undamped problems.

In particular, errors on the mean quadratic pressure were noted to be more important

around the resonance frequencies due to both an error on the level (c.f. damped problem)
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transformation basis

Add a fixed-interface

n = n+ 1

normal mode in

Compute solution at

Error > errormax Error 6 errormax

for FRF, f := f +△f

Go to next frequency step

frequency f of FRF

• Save eigenfrequency n

• Save f −△f , frequency

limit of validity

Figure 2.15: Iterative procedure to test influence of restrained or free interface truncation
criterion

and a shift in frequency (c.f. undamped problem). Consequently, enriching the modal ba-

sis in fact emphasizes on reducing the error around eigenfrequencies of the problem, and

is not a smooth process. However, despite the discontinuities observed in order to reach a

set precision, the overall low frequency behavior of enriching the modal basis seems to be

a linear function of the frequency limit of validity for both problems. This is in agreement

with the classically used results in the literature where truncation criteria are specified as

a multiple of the maximum frequency of interest in the problem [90]. In Figs. 2.16, these

multiplying factors correspond approximatively to the slopes of the regression lines added

to the numerical results. Moreover, it is interesting to notice that for both the larger

and smaller cavities, the slopes of the regression lines, i.e. the truncation criteria, are

the same for either free or restrained-interface eigenfrequencies. Therefore, the truncation

criterion for restrained-interface reduction methods may be based on eigenfrequencies of

its restrained-interface eigenvalue problem, in complete analogy to free-interface reduction

methods [90, 92].
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Figure 2.16: Effect of boundary conditions on truncation criterion, error tolerance of
0.1 dB: (a) Restrained-interface eigenfrequencies for largest cavity, (b) Free-interface eigen-
frequencies for largest cavity, (c) Restrained-interface eigenfrequencies for smallest cavity,
(d) Free-interface eigenfrequencies for smallest cavity

2.4 Application and results

In this section, the substructuring restrained-interface reduction is applied to a larger

vibroacoustic problem, called the concrete car, which is a model based on an experimental

set-up initially proposed by LMS International in Leuven. It consists of two rigid acoustic

cavities separated by a firewall, which allows noise generated in the first cavity – engine

cavity (EC) – to be transmitted to the second cavity, the passenger cavity (PC). The latter

is optionally treated with a porous layer on one wall, in order to lower the sound level.

The numerical model is first presented in Subsection 2.4.1, considering both cases with

and without a porous layer, and presenting reference numerical solutions for the unreduced

problem. Restrained-interface substructuring reduction strategies are then investigated in

order to evaluate the efficiency of the method on problems larger than the ones previously
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presented in Subsections 2.3.3 and 2.3.4.

2.4.1 Complete concrete car model, and effect of porous damping

As previously mentioned, the concrete car model is composed of two acoustic cavities,

separated by a 4 mm-thick firewall. Its external dimensions are given in Fig. 2.17. The

geometry is symmetric with respect to a (x,z) mirror plane.

1.1 m

0.75 m

1.27 m

1.56 m

Corner harmonic excitation

Engine cavity

Passenger cavity

3.4 m

0.525 ∗ 0.895 m2 firewall
0.8 m

5 cm-thick porous layer

(EC)(PC)
0.525 m

0.77 m

0.5 m

0.125 m

Figure 2.17: Concrete car FE model and external dimensions.

The mesh is composed of hexahedral elements for the acoustic cavities, involving 3728

elements for the EC, and 12620 elements for the PC. The firewall is meshed with 9 × 15

quadrilateral shell elements, while the porous layer is composed of 25× 13× 4 hexahedral
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2.4. APPLICATION AND RESULTS

elements. The firewall is considered clamped along its edges. Additional natural boundary

conditions are specified for the porous material, which is fixed on one face to the rigid wall

of the acoustic cavity, while sliding conditions are imposed on the four side faces of the

layer.

Mean quadratic pressure frequency responses in each cavity are computed. Therefore,

a frequency by frequency direct solution is adopted, with an excitation imposed at a lower

corner of the EC (see Fig. 2.17). Steps of 1 Hz increments in a range of 1 − 600 Hz are

processed, both with and without the porous layer, thus providing a reference FRF for

further reduction tests, as well as showing the damping effect of the porous layer in the

PC.
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Figure 2.18: Reference FRF with and without porous layer

The mean quadratic pressure FRF in both cavities is presented in Fig. 2.18. It reveals

different spectral densities in each one: while relatively low in the smaller cavity (EC), it

gets increasingly higher in the PC due to the different sizes of these cavities. Plotting the

solution at selected peaks of the FRFs (Fig. 2.19), as well as computing the eigenfrequencies

of the uncoupled components (Table 2.3) bring further information. Thus, resonances

observed in the EC are driven by its acoustic cavity modes. However, sound level peaks in

the PC are either driven by its acoustic cavity modes (e.g. 52 Hz), modes of the firewall

(e.g. 38 Hz), or acoustic modes of the EC (e.g. 315 Hz).

The partial treatment of the PC with a damping layer has no effect on the sound level

in the EC. Regarding the PC, it is a well known result that porous media have relatively
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2.4. APPLICATION AND RESULTS

low damping efficiency in the very low frequencies (see e.g. [80]), which can be observed in

at least one third of the frequency range plotted. Damping becomes more efficient above

this limit but, interestingly, all peaks are not damped with the same efficiency. Again,

plots in Fig. 2.19 reveal that identified PC acoustic modes driven peaks are the most

efficiently damped resonances, while EC or firewall modes driven peaks are mostly poorly

damped. It is especially obvious when observing resonance frequencies in the PC that

correspond to peaks of pressure in the EC.

Engine cavity (Hz) Passenger cavity (Hz) Firewall (Hz)

- - 38
- 52 -
- - 66
- 101 -
- 110 -
- - 114
- - 122
- 123 -
- 137 -
- 146 -
- - 149
- 151 -
- 157 -

158 - -
- 176 -
- - 180
- 184 -
- 192 -
- - 193

199 - -
- 200 -
- 213 -
- 220 -
- 226 -
- 230 -

233 - -
- 241 -
- 245 -
- 247 -
- 255 -
- - 256

258 - -
- 260 -
...

...
...

- 311 -
315 - -
- 322 -

Table 2.3: Uncoupled eigenfrequencies of the concrete car model

2.4.2 Performance of the substructuring method with modal reduction
of the non dissipative domains

The restrained-interface reduction method presented in Section 2.3.2 is now applied to

the concrete car model, in order to estimate the cost improvements reached as well as the
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(a)

(b)

(c)

(d)

Figure 2.19: Solution without (left) and with (right) porous layer, pressure field in the
acoustic cavities, normal displacement in the plate and porous domain. (a) f = 38 Hz,
(b) f = 52 Hz, (c) f = 151 Hz, (d) f = 247 Hz, (e) f = 315 Hz
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(e)

Figure 2.19: Solution without (left) and with (right) porous layer, pressure field in the
acoustic cavities, normal displacement in the plate and porous domain. (a) f = 38 Hz,
(b) f = 52 Hz, (c) f = 151 Hz, (d) f = 247 Hz, (e) f = 315 Hz

trade-off that has to be made between accuracy and computational time. First, the model

is decomposed into 4 acoustic subdomains of approximately the same size (3 subdomains

for the PC, and one for the EC), thus reducing the problem to be solved to the size of the

acoustic interfaces, the wireframe and the porous layer with their acoustic interfaces (see

Fig. 2.20). This leads to a problem downsized from 28500 to 10600 dofs, of which 8700

belong to the porous medium.

EC - 1 acoustic component

PC - 3 acoustic components

=⇒

Figure 2.20: Decomposition of the concrete car into 4 acoustic components, and illustration
of the reduced problem

Three different truncation limits for the modal basis are tested, based on eigenfre-

quencies of the restrained-interface modes: i) twice the highest frequency of interest, i.e.

1200 Hz, ii) 2,5 times the highest frequency of interest, i.e. 1520 Hz and iii) more than

3 times the highest frequency of interest, i.e. 1980 Hz. An incore eigensolver based on

an iterative subspace algorithm is used to compute the modes. While rather inefficient
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2.4. APPLICATION AND RESULTS

for large-sized problems, especially when numerous modes are to be computed, CPU time

spent for this step is nevertheless included in the presented results.

Fig. 2.21 (a) shows results in terms of the mean quadratic pressure in both the EC and

PC, with a truncation of the modal basis at 1200 Hz. The reference frequency response

is plotted with overlapping curves, so that the error associated with the reduction can be

visualized. In addition, the associated point to point dB difference is plotted as an error

indicator (Fig. 2.21 (b)), and in order to clarify the results, it is also represented in a

smoothed way using Bézier curves. The mean quadratic pressure FRF shows very good

accuracy of the reduction for the EC whereas some subsequent errors can be noticed for

the PC. This is confirmed by the dB difference plot, which shows insignificant error up to

around 300 Hz for the EC, and an increasing error from then. The slight frequency shift

noticeable on the mean quadratic pressure FRF (Fig. 2.21 (a)), indicates that the imposed

truncation limit is mostly responsible for the accuracy issues in the EC. Regarding the PC,

similar distinctions can be made, precision-wise, when comparing results under and above

300 Hz, but with substantially more significant error. Interestingly, when comparing to

Fig. 2.18, the best precision seems to be achieved in the PC for peaks least affected by the

porous damping effect, i.e. the EC modes driven peaks.

 60

 80

 100

 120

 140

 160

 180

 200

 0  100  200  300  400  500  600

M
e

a
n

 q
u

a
d

ra
ti
c
 p

re
s
s
u

re
 (

d
B

)

Frequency (Hz)

PC - no reduction
EC - no reduction

PC - reduction 1200 Hz
EC - reduction 1200 Hz

(a)

 0

 5

 10

 15

 20

 0  100  200  300  400  500

S
o

u
n

d
 l
e

v
e

l 
d

if
fe

re
n

c
e

 (
d

B
)

Frequency (Hz.)

PC - error 1200 Hz
PC - smoothed error

EC - error 1200 Hz
EC - smoothed error

(b)

Figure 2.21: Results with truncation at 1200 Hz: (a) FRF of mean quadratic pressure
(b) dB difference to unreduced problem

Fig. 2.22 shows the effect of increasing the frequency limit of truncation to 1500 Hz and

1980 Hz. The mean quadratic pressure FRF in both cavities, before and after reduction, is

presented in Fig. 2.22 (a), while Fig. 2.22 (b) shows the evolution of the error in a smoothed

representation. It appears that the truncation of the modal basis at 1200 Hz is optimum

for a range up to around 300 Hz. Enriching the basis helped reducing the error to under

half a decibel for the EC, and around 3 dB for the PC. The precision achieved for the

range 0− 300 Hz indicates that the remaining error is not associated with an enrichment
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of the modal basis, and the reduction applied seems therefore unable to converge to the

unreduced solution (as shown in Subsection 2.3.3).
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Figure 2.22: Results with truncation up to 1980 Hz: (a) FRF of mean quadratic pressure
(b) dB difference to unreduced problem

Fig. 2.23 presents the CPU time of the computations both with and without reduc-

tion. It clearly illustrates the benefits of the reduction over several frequency increments.

The time offset due to the modal basis computation can be seen at increment 0, and, as

previously mentioned, it is attributed to a rather inefficient subspace iterative algorithm.

Furthermore, it is interesting to notice, as expected, that the CPU time for each incre-

ment is not much affected by the size of the modal basis. This is due, as presented in

Subsection 2.3.2, to the implementation of the algorithm, in which the size of the modal

basis has an influence only during the restitution phase in postprocessing. This step could

actually be skipped if the solution at internal dofs was not needed, or only needed for a

few dofs that would then be kept as uncondensed dofs.

2.4.3 Effect of the substructuring strategy on accuracy

In order to check possible sources of convergence difficulties other than those demon-

strated in Subsection 2.3.3, the chosen decomposition strategy is here questioned. Two

additional decompositions are tested. In the first one, the EC is not reduced anymore,

while the three components defined previously in the PC are kept, thus leading to a prob-

lem to solve with three components instead of the 4 previously described. As no error is

being made in the EC, an improvement of the accuracy could be expected in the PC, even

though the error plot between 100 − 200 Hz in Fig. 2.22 (b) indicates that few improve-

ments if at all are to be expected. Then, the influence of subdividing the PC into three

artificial components is quantified by defining it as a unique large component. The EC
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Figure 2.23: CPU time comparison

being as well reduced to its interface with the firewall, this second decomposition involves

each cavity to be considered as a component. The results, presented in Fig. 2.24 for the

PC, comparing mean quadratic pressure for the three proposed decompositions, show al-

most perfect match of the results. This suggests that sub-decomposition of the PC does

not contribute significantly to the convergence difficulties observed in the PC.
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Figure 2.24: FRF in passenger cavity for different decompositions, truncation at 1200 Hz

The influence of a porous layer adjunction on the convergence issues of the method

is then checked by computing the conservative solution - without porous layer - using

the decomposition into 4 acoustic components, introduced in Subsection 2.4.2. The mean

quadratic pressure frequency response for a 1200 Hz truncation, as well as the smoothed
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dB difference for all three truncation criteria are presented in Fig. 2.25 (a) and (b). Al-

though errors should be taken with care as the problem is not damped, and the solution

at resonances is very frequency-shift sensitive, the results clearly state a good accuracy

achieved, with a solution converging faster to the unreduced problem solution. This indi-

cates that the change of boundary conditions induced by the addition of a porous layer

deteriorates the convergence property of the method. This adds to the limitations high-

lighted in Subsection 2.3.3 regarding the accuracy of the dynamic condensation, which can

be observed in the PC around 30 Hz, 110 Hz, or 180 Hz for instance.
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Figure 2.25: Results without porous layer: (a) Mean quadratic pressure, truncation at
1200 Hz, (b) dB difference to unreduced problem, truncation up to 1980 Hz

2.5 Conclusion

In this chapter, the variational formulation of a time-harmonic elasto-poro-acoustic

problem was presented, in order to test the efficiency and limitations of using a CMS

strategy to reduce its final size. The substructuring reduction was detailed and applied

to the conservative part of the included applications, i.e. the acoustic domain. The

restrained-interface eigenfrequencies were found suitable to be used a priori for an estima-

tion of truncation criteria. Regarding the performance of the CMS strategy used, although

efficient for small scale applications, as it is mostly presented in the literature, it was shown

that the computational efficiency for larger problems was gained at the expense of a loss

in accuracy for specific frequency ranges.

First, the use of attachment functions built on the acoustic stiffness matrix exhibits

convergence limitations at frequencies which correspond to the eigenfrequencies of the

surrounding structural domain, acting as a source of excitation. On this matter, the use

of similar functions as the so-called pseudo-static modes used in structural mechanics,
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which take into account the inertial contribution of each component, could improve the

convergence and be an extension of this work. It would however deteriorate the computa-

tion efficiency of the method, as these improved attachment functions introduce acoustic

stiffness coupling between the interface and the subdomains dofs in the reduced problem.

Secondly, the addition of damping, such as including a porous layer at the bound-

ary of the acoustic domains, further emphasizes these convergence issues. Again, refined

attachment functions could substantially improve the convergence of the method.

Finally, the use of costly 3D modelling of porous media being responsible for most of

the remaining computational cost, it is the objective of the following chapters to propose

similar approaches for this part of the coupled problem.

In fact, solutions have been proposed in the literature to potentially respond to the

first two points (see e.g. [84, 70]). It would thus be a natural extension to this part of

the thesis to test these solutions for improvements of the precision. However, the level

of precision achieved without further corrections is very acceptable from an engineering

perspective. Consequently, the choice made for the continuation of the work is rather to

investigate the so far unanswered question of applying similar methods to the very costly

modelling of poroelastic materials.
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Chapter 3

Modal-based reduction of porous
materials in structural-acoustic
applications

Abstract: This chapter presents a modal approach based on a standard real-

valued eigenvalue problem, aimed at the reduction of the poroelastic part of

poro-acoustic applications. It is enabled by a rearrangement in the variational

formulation of the solid and fluid phase displacements formulation (us,uf) for

the poroelastic domain. A 1D and a 3D validation cases are presented to illus-

trate the potential performance and the limitations of the proposed approach.
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3.1 Introduction

In this chapter, a modal approach based on a standard real-valued eigenvalue problem

is proposed to reduce the poroelastic part of poro-acoustic applications. It is enabled by a

rearrangement in the variational formulation of the well-established solid and fluid phase

displacements formulation (us,uf) for the poroelastic domain. The method is first tested

on a 1D validation case. Its potential performance and limitations are then illustrated

on a 3D academic application. It exhibits promising sparsity properties for the reduced

system matrix. However, excluding the case of 1D applications, the convergence is shown

to be relatively limited, thus suggesting the need for further investigations.

The Chapter is organized around four parts. The first section introduces the general

poro-acoustic problem used, as well as the corresponding FE formulation for time-harmonic

excitations. The poroelastic equations are rewritten focusing on the possibility to associate

a standard eigenvalue problem. In the following section, the proposed modal reduction

of porous media is presented, included in a substructuring decomposition strategy. The

emphasis being to establish the modal approach feasibility rather than to investigate the

chosen decomposition strategy and its performance, only the porous domain is reduced.

The method being general, it can however be easily included in all forms of classically used

decomposition strategies [86]. The third section of this work is then dedicated to numerical

applications. A unidimensional example is first investigated to establish the potential of

the proposed reduction in terms of accuracy and downsizing of dofs. Then, a 3D academic

application allows to estimate the performances in terms of precision, computational time,

size and sparsity of the reduced problem. While promising, it is shown that there is room

for further improvements to take full advantage of the reduction strategy when applied to

multidimensional applications.

3.2 Finite element formulation

Even though previously introduced in Chapters 1 or 2, the main notations and equa-

tions leading to the variational formulation are briefly repeated in the following for the

sake of self-contained readability of the chapter.

A poro-acoustic problem is considered, whose description and notations are presented

in Fig. 3.1. The acoustic fluid and the porous medium occupy the domains ΩF and ΩP

respectively. The compressible fluid is described using pressure fluctuation (p) as primary

variable (Section 3.2.1.1), while fluid and solid phases homogenized displacements (us,uf)

are retained as primary variables for the porous media (Section 3.2.1.2). The domains

boundaries are separated into contours of:
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3.2. FINITE ELEMENT FORMULATION

• imposed Dirichlet boundary conditions denoted ∂1ΩF and ∂1ΩP,

• prescribed Neumann boundary conditions denoted ∂2ΩF and ∂2ΩP,

• coupling interface between the acoustic fluid and the porous medium (ΓFP).

The FE formulation is presented for a time-harmonic response at angular frequency ω.

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

∂2ΩF

∂1ΩP

rigid wall
source

fluid acoustic cavity
[ΩF ; p]

nF = n
ΓFP

[ΩP ; (us,uf)]

porous media

nP = −n

Figure 3.1: Description and notations of the poro-acoustic interaction problem

3.2.1 Dynamic equations and constitutive laws

3.2.1.1 Compressible fluid (p)

The internal fluid within cavities is assumed compressible and inviscid, satisfying the

Helmholtz equation derived from the motion, continuity, and constitutive equations,

∆p+
ω2

c20
p = 0 in ΩF, (3.1)

where c0 is the constant speed of sound in the fluid, and p the pressure fluctuation scalar

field. As previously mentioned in Chapter 2, the limit case ω = 0 though not considered

in this work, is given by the static solution of the coupled fluid-structure problem [56, 69].

3.2.1.2 Porous media Biot theory (us,uf)

The poroelastic equations are presented, based on the standard notations for material

parameters introduced in Table 1.1 [10]. At angular frequency ω, the poroelastic medium

satisfies the elastodynamic linearized equations (Eqs. (1.12)), derived in the Biot-Allard

theory [10], taking into account inertial and viscous coupling effects between solid and

fluid phases,

divσs − iω b̃(ω)(us − uf) + ω2 [((1− φ) ρs + ρa)us − ρauf] = 0, (3.2a)

divσf − iω b̃(ω)(uf − us) + ω2 [−ρaus + (φρf + ρa)uf] = 0. (3.2b)
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3.2. FINITE ELEMENT FORMULATION

where us and uf are respectively the solid phase and fluid phase averaged displacements.

b̃(ω) (henceforth denoted b̃, where ˜ refers to a complex-valued quantity) and ρa are respec-

tively the complex frequency-dependent viscous drag and the inertia coupling parameter,

given by Eqs. (1.13) and (1.14),

b̃ = σφ2

[
1 +

4iωα2
∞
ηρf

σ
2Λ2φ2

] 1
2

, (3.3)

ρa = φρf (α∞ − 1). (3.4)

σs and σf are the averaged stress tensors for the solid and fluid phases respectively. They

satisfy the Lagrangian stress-strain relations developed by Biot. Under the assumption of

large values for the bulk modulus of the porous frame material, which is typically the case

in acoustic applications with sound absorbing materials, these stress-strain relations can

be written as functions of the complex-valued and frequency-dependent equivalent bulk

modulus K̃f(ω) (see Section 1.4.2),

σs = 2µ̃ ε(us) +

(
λ̃+

(1− φ)2

φ
K̃f(ω)

)
tr [ε(us)]1+ (1− φ) K̃f(ω) tr [ε(uf)]1, (3.5a)

σf = (1− φ) K̃f(ω) tr [ε(us)] 1+ φ K̃f(ω) tr [ε(uf)] 1, (3.5b)

where ε(us) and ε(uf) are the strain tensors associated with the averaged displacements

vector fields us and uf respectively. 1 represents a unitary matrix. Beside the standard

material parameters presented in Table 1.1, the dynamic bulk modulus K̃f(ω) (henceforth

denoted K̃f) is given in Eq. (1.20) [10]. For reasons to be presented in Section 3.3.2,

its expression is separated into its zero-frequency limit and complex frequency-dependent

behaviour:

K̃f =
γP0

γ − (γ − 1)

[
1 + 8η

iωPrΛ′2ρf

(
1 + iωPrΛ′2ρf

16η

) 1
2

]−1 = P0 +
(
K̃f − P0

)
, (3.6)

which, when introduced in Equations (3.5), leads to the following expressions of the stress-

strain relations using Voigt notation,

σs = D(1)
s ε(us) +D

(1)
sf ε(uf) +

(
K̃f − P0

)(
D(2)

s ε(us) +D
(2)
sf ε(uf)

)
, (3.7a)

σf = D
(1)
sf ε(us) +D

(1)
f ε(uf) +

(
K̃f − P0

)(
D

(2)
sf ε(us) +D

(2)
f ε(uf)

)
, (3.7b)

70



3.2. FINITE ELEMENT FORMULATION

with

D(1)
s = 2µ̃D′ +

(
λ̃+

(1− φ)2

φ
P0

)
D,

D
(1)
sf = (1− φ)P0 D,

D
(1)
f = φP0 D,

D(2)
s =

(1− φ)2

φ
D,

D
(2)
sf = (1− φ)D,

D
(2)
f = φD,

where

D′ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0
1

2
0 0

0 0 0 0
1

2
0

0 0 0 0 0
1

2




and D =




1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



.

For the sake of clarity and conciseness of the expressions derived in the upcoming

sections, the Lamé parameters for the solid frame are considered real and frequency-

independent. Thus, no structural damping is taken into account in the porous medium

behaviour. However, the method presented is equally valid and straightforward to estab-

lish when hysteretic structural damping in the solid frame is included. For a hysteretic

proportional structural damping parameter denoted ηs, the complex-valued Lamé param-

eters, given in Eqs. (1.19), write

λ̃ = (1 + iηs)λ, (3.9a)

µ̃ = (1 + iηs)µ. (3.9b)

When accounted for in the constitutive equations, Eqs. (3.7) can be rewritten as

σs = (1 + iηs)
(
D(1)

s ε(us) +D
(1)
sf ε(uf)

)
+
(
K̃f − (1 + iηs)P0

)(
D(2)

s ε(us) +D
(2)
sf ε(uf)

)
(3.10a)

σf = (1 + iηs)
(
D

(1)
sf ε(us) +D

(1)
f ε(uf)

)
+
(
K̃f − (1 + iηs)P0

)(
D

(2)
sf ε(us) +D

(2)
f ε(uf)

)
(3.10b)

The original rewriting of the constitutive equations under the forms of Eqs. (3.7) and

Eqs. (3.10) is put to advantage in the variational formulation as shown in Section 3.2.2.2.

It is the key enabling for the further development of a new modal approach.
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3.2.2 Fluid-structure interaction problem

In this section, boundary and coupling conditions are recalled for the poro-acoustic

coupled problem presented in Fig. 3.1, in order to establish the discretized FE problem.

3.2.2.1 Poro-acoustic coupling and boundary conditions

At an external boundary of the acoustic fluid domain, rigid cavity conditions are clas-

sically imposed by setting a free pressure field (∂1ΩF = ∅). A time-harmonic excitation is

prescribed via an acoustic source,

grad p · n = ω2ρF uFb on ∂2ΩF, (3.11)

where uFb is set to zero out of the acoustic source included in ∂2ΩF.

Coupling at an interface ΓFP is given by normal stress and normal displacement con-

tinuity conditions between the acoustic fluid and both the fluid and solid phases of the

porous medium,

σs n+ (1− φ) p n = 0 on ΓFP, (3.12a)

σf n+ φ p n = 0 on ΓFP, (3.12b)

uF · n− (1− φ)us · n− φuf · n = 0 on ΓFP, (3.13)

where φ is the porosity of the porous material.

No external force is applied to the outer boundary of the porous medium beside at

interface ΓFP. Therefore, ∂2ΩP = ∅ in the considered problem. Finally, at an external

boundary ∂1ΩP, two types of boundary conditions can be prescribed, the porous material

being considered either as sliding or bonded to a rigid wall:

For a bonded porous layer on a rigid wall, the following conditions arise – fixed displacement

of the solid phase and normal displacement of the fluid phase – and need to be satisfied,

us = 0 on ∂1ΩP, (3.14a)

uf · nP = 0 on ∂1ΩP; (3.14b)

For a sliding porous layer on a rigid wall, the following conditions arise – fixed normal

displacement of the solid phase and fluid phase – and need to be satisfied,

us · nP = 0 on ∂1ΩP, (3.15a)

uf · nP = 0 on ∂1ΩP, (3.15b)

where nP is the unit normal vector pointing outward from ΩP.
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3.2.2.2 Finite element discretized problem

The test-function method is used to derive the variational formulation of the coupled

problem. For this purpose, the spaces of sufficiently smooth functions Cp, Cus and Cuf

are introduced, associated with the field variables p, us and uf respectively. Let δp, δus,

δuf be the frequency-independent test functions, associated with p, us, uf respectively,

and belonging to their respective admissible spaces Cp, C
∗

us
= {δus ∈ Cus |δus = 0 or

δus · nP = 0 on ∂1ΩP}, and C∗

uf
= {δuf ∈ Cuf

|δuf · nP = 0 on ∂1ΩP}.

Equations (3.1), (3.11), and (3.13) lead to, ∀ δp ∈ Cp,

∫

ΩF

gradp · gradδp dV −
ω2

c20

∫

ΩF

p δp dV − ω2ρF(1− φ)

∫

ΓFP

us · n δp dΣ

−ω2ρFφ

∫

ΓFP

uf · n δp dΣ = ω2ρF

∫

∂2ΩF

uFb δp dΣ.

(3.16)

Equations (3.2a), (A.5a), and (3.12a) lead to, ∀ δus ∈ C∗

us
,

∫

ΩP

tr
[
D(1)

s ε(us) ε(δus)
]
dV +

∫

ΩP

tr
[
D

(1)
sf ε(uf) ε(δus)

]
dV

+
(
K̃f − P0

) [∫

ΩP

tr
[
D(2)

s ε(us) ε(δus)
]
dV +

∫

ΩP

tr
[
D

(2)
sf ε(uf) ε(δus)

]
dV

]

+ iω b̃

[∫

ΩP

us · δus dV −

∫

ΩP

uf · δus dV

]

− ω2

[∫

ΩP

((1− φ) ρs + ρa)us · δus dV −

∫

ΩP

ρauf · δus dV

]
− (1− φ)

∫

ΓFP

pn · δus dΣ = 0.

(3.17)

Equations (3.2b), (A.5b), and (3.12b) lead to, ∀ δuf ∈ C∗

uf
,

∫

ΩP

tr
[
D

(1)
f ε(uf) ε(δuf)

]
dV +

∫

ΩP

tr
[
D

(1)
sf ε(us) ε(δuf)

]
dV

+
(
K̃f − P0

)[∫

ΩP

tr
[
D

(2)
f ε(uf) ε(δuf)

]
dV +

∫

ΩP

tr
[
D

(2)
sf ε(us) ε(δuf)

]
dV

]

+ iω b̃

[∫

ΩP

uf · δuf dV −

∫

ΩP

us · δuf dV

]

− ω2

[∫

ΩP

(φρf + ρa)uf · δuf dV −

∫

ΩP

ρaus · δuf dV

]
− φ

∫

ΓFP

pn · δuf dΣ = 0.

(3.18)

After discretization of the various terms in Eqs. (3.16)-(3.18) using the FE method

and dividing Eq. (3.16) by ρF, the following matrix equation for the coupled problem is
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obtained,







KF 0 0

−(1− φ)AT
Fs K

(1)
ss K

(1)
sf

−φAT
Ff K

(1)T
sf K

(1)
ff


+

(
K̃f − P0

)


0 0 0

0 K
(2)
ss K

(2)
sf

0 K
(2)T
sf K

(2)
ff




+iω b̃



0 0 0
0 Css Csf

0 CT
sf Cff


− ω2



MF (1− φ)AFs φAFf

0 Mss Msf

0 MT
sf Mff







P
Us

Uf


 =



ω2UFb

0
0


 .

(3.19)

This non-symmetric formulation can be symmetrized for a solution in the frequency

domain by dividing the acoustic equation by ω2 (ω 6= 0). The interest of rewriting the

porous media formulation into four matrices (K
(1)
P , K

(2)
P , CP, and MP as introduced for

Eq. (3.20)) is already partly visible. In fact, it involves constant real-valued matrices

which can be assembled once, while only the complex and frequency-dependent factors

K̃f and b̃ are recomputed at each frequency increment. If hysteretic structural damping

of the solid frame is explicitly included, this statement stands, considering that damping

can be introduced as a factor of the assembled matrices K
(1)
P and K

(2)
P , as mentioned in

Section 3.2.1.2, Eqs. (3.10). In addition, the amount of memory used is the same as using

only two complex-valued and frequency-dependent matrices, considering that the sparsity

is unchanged [44]. More importantly, the main interest, underlined in this approach, is

the possibility to use such a formulation in the context of modal reduction techniques.

3.3 Modal reduction of the poroelastic media

3.3.1 Presentation of the proposed solution strategy

The proposed reduction method is applied to the dissipative porous medium of a poro-

acoustic coupled problem, which is the costly part of the problem. For validation purposes,

the case of a rigid acoustic cavity with a single porous layer on one wall is considered.

Notations used are presented in Fig. 3.2.
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��
��
��
��
��
��

Porous dofs

Acoustic interface dofs I

Acoustic internal dofs Ī

Figure 3.2: Problem description for modal reduction of porous media

The acoustic dofs are separated into internal ones (subscript Ī), and those at in-

terface with the porous medium (subscript I). These notations allow for an easy ex-

tension of the method to problems with multiple interfaces [114]. The coupled porous
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medium matrices are now considered, involving four matrices K
(1)
P , K

(2)
P , CP, and MP

corresponding to the set of unknowns UP such that, for each matrix indexed by P, i.e.

BP ∈ {K
(1)
P ,K

(2)
P ,CP,MP},

BP =

[
Bss Bsf

Bsf Bff

]
andUP =

[
Us

Uf

]
. (3.20)

Similarly, the coupling between the interface acoustic dofs (subscript I) and the porous

dofs (subscript P ) is denoted

AIP =
[
(1− φ)AIs φAIf

]
. (3.21)

Consequently, for modal reduction purposes, the matrix set of equations (3.19) can be

written as



KĪ Ī − ω2MĪ Ī KĪI − ω2MĪI 0

KIĪ − ω2MIĪ KII − ω2MII −ω2AIP

0 −AT
IP

K
(1)
P +

(
K̃f − P0

)
K

(2)
P +

iω b̃CP − ω2MP






PĪ

PI

UP


 =



ω2UĪb

0
0


 , (3.22)

and can be symmetrized by dividing the acoustic equations (lines 1 and 2) by ω2 (ω 6= 0).

3.3.2 Modal reduction

From the proposed expression of the porous medium FE problem, real-valued normal

modes can be computed associated with the conservative poroelastic eigenvalue problem,
(
K

(1)
P − ω2MP

)
φ = 0. (3.23)

It is supposed that the Dirichlet boundary conditions imposed to the porous medium

result in a nonsingular K
(1)
P matrix, therefore removing zero-frequency modes. A modal

reduction basis ΦPm is built, selecting the m lowest-eigenfrequency modes. They are

normalized with respect to the porous mass matrix MP so that

ΦT
PmMPΦPm = 1m, (3.24a)

ΦT
PmK

(1)
P ΦPm= Ωm, (3.24b)

where 1m is a unit matrix of dimension m, and Ωm a diagonal matrix of same size, with

the m lowest eigenvalues of (3.23) on its diagonal.

There are two key points that make a reduction method computationally efficient,

which are its ability to:

• converge rapidly to the expected solution when adding modes in the basis, thus

allowing a substantial reduction in the number of dofs, as well as a reasonable time

allocated to the computation of the modes,
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• preserve or improve the sparsity of the matrices after projection, and ideally produce

diagonal submatrices.

The former aspect will be examined in applications discussed in Section 3.4. Regarding the

second aspect, the sparsity of matrices K
(2)
P and CP after projection on the modal basis is

fundamental in order to take advantage of the diagonal form of projected K
(1)
P and MP.

The choices made for the discretization of porous media, among which the separation of

the “static” and “dynamic” part of the dynamic bulk modulus of the fluid (see Eq. (3.6)),

are of prime importance in order to fulfill this requirement. In fact, as will be shown

in Section 3.4.2, it results in sparse reduced matrices K
(2)
P and CP, and even exhibits

orthogonality of some modes with respect to these matrices. Therefore, after testing the

m retained modes for their orthogonal properties with respect to K
(2)
P and CP, they are

separated into o “orthogonal” (ΦPo) and n “non-orthogonal” (ΦPn) ones, such that

[
ΦPn ΦPo

]T
MP

[
ΦPn ΦPo

]
=

[
1n 0
0 1o

]
, (3.25a)

[
ΦPn ΦPo

]T
K

(1)
P

[
ΦPn ΦPo

]
=

[
Ωn 0
0 Ωo

]
, (3.25b)

[
ΦPn ΦPo

]T
K

(2)
P

[
ΦPn ΦPo

]
=

[
κn 0
0 κo

]
, (3.25c)

[
ΦPn ΦPo

]T
CP

[
ΦPn ΦPo

]
=

[
ζn 0
0 ζo

]
, (3.25d)

where 1n, Ωn and 1o, Ωo, κo, ζo are diagonal matrices of respective dimensions n and o,

while κn and ζn are non-diagonal, sparse, square matrices of dimension n.

There are several options for the choice of attachment functions participating to the

static correction for improved convergence. In this work, the single dof per node associated

with the acoustic domain is put to advantage. Attachment functions are computed as the

K
(1)
P – static responses of the poroelastic domain to unit pressure successively imposed at

each interface acoustic dof,

[
−AT

IP K
(1)
P

] [ 1I
ΨPI

]
=
[
0
]
⇒ ΨPI = K

(1)−1

P AT
IP. (3.26)

Again, assumption is made that K
(1)
P is not singular. If otherwise, a shift in frequency using

the mass matrix MP can be set instead, to define pseudo-static attachment functions, but

this is not considered in this work.

The corresponding change of basis applied to the system in Eq. (3.22), leaving acoustic
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dofs uncondensed, is then (the ̂ symbol refers to an approximate solution)



P̂Ī

P̂I

ÛP


 =



1Ī 0 0 0
0 1I 0 0
0 ΨPI ΦPn ΦPo







P̂Ī

P̂I

α̂n

α̂o


 , (3.27)

where α̂n and α̂o are the modal coordinates vectors associated with the selected “non-

orthogonal” and “orthogonal” modes respectively.

Applying a change of basis Eq. (3.27) to a symmetrized form of Eq. (3.22) and pre-

multiplying by the transpose of the transformation matrix leads to the following reduced

set of equations,







1
ω2KĪ Ī −MĪ Ī

1
ω2KĪI −MĪI 0 0

1
ω2KIĪ −MIĪ

1
ω2KII −MII 0 0

−K
(1)
PII

0 0 Ωn 0
0 0 0 Ωo



+
(
K̃f − P0

)



0 0 0 0

0 K
(2)
PII

K
(2)
PIn

K
(2)
PIo

0 K
(2)
PnI

κn 0

0 K
(2)
PoI

0 κo




+iω b̃




0 0 0 0
0 CPII

CPIn
CPIo

0 CPnI
ζn 0

0 CPoI
0 ζo


− ω2




0 0 0 0
0 MPII

MPIn
MPIo

0 MPnI
1n 0

0 MPoI
0 1o










P̂Ī

P̂I

α̂n

α̂o


 =




UFb

0
0
0


 ,

(3.28)

where for BP ∈ {K
(1)
P ,K

(2)
P ,CP,MP},

BPII
= ΨT

PIBPΨPI ,

BPIn
= ΨT

PIBPΦPn = BT
PnI

,

BPIo
= ΨT

PIBPΦPo = BT
PoI

.

This reduction is established once as an initial step before the frequency sweep. It can be

further improved using dynamic condensation of the “orthogonal” modal coordinates, as

presented in the following section.

3.3.3 Further condensation of selected modal coordinates

To take full advantage of the partly diagonal form of the reduced matrices in Eq. (3.25),

the modal coordinates corresponding to the “orthogonal” modes can be dynamically con-

densed on the interface dofs, at each frequency increment. First, the set of equations

associated with αo in Eq. (A.11) gives

α̂o = −
[
Ωo +

(
K̃f − P0

)
κo + iω b̃ ζo − ω2 1o

]
−1

K
(dyn)
PoI

P̂I , (3.29)
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where

K
(dyn)
PoI

=
(
K̃f − P0

)
K

(2)
PoI

+ iω b̃CPoI
− ω2 MPoI

. (3.30)

Then, when introducing Eq. (3.29) into Eq. (A.11), a further reduced set of equations

can be obtained at the beginning of each frequency increment. Thus, the number of dofs

is reduced without altering the sparsity of the system matrix,







1
ω2KĪ Ī −MĪ Ī

1
ω2KĪI −MĪI 0

1
ω2KIĪ −MIĪ

1
ω2KII −MII 0

−K
(1)
PII

−K
(dyn)
PII

0 0 Ωn


+

(
K̃f − P0

)


0 0 0

0 K
(2)
PII

K
(2)
PIn

0 K
(2)
PnI

κn




+iω b̃



0 0 0
0 CPII

CPIn

0 CPnI
ζn


− ω2



0 0 0
0 MPII

MPIn

0 MPnI
1n







P̂Ī

P̂I

α̂n


 =



UFb

0
0


 ,

(3.31)

where the frequency-dependent dynamic contribution to the interface dofs K
(dyn)
PII

can be

expressed as

K
(dyn)
PII

= K
(dyn)
PoI

T [
Ωo +

(
K̃f − P0

)
κo + iω b̃ ζo − ω2 1o

]
−1

K
(dyn)
PoI

. (3.32)

Since this contribution involves simple operations, i.e. matrix additions, multiplications

and a diagonal matrix inversion, it is reasonable to expect a substantially improved effi-

ciency providing a sufficient number of “orthogonal” modal coordinates is involved.

3.4 Applications and results

3.4.1 Modal reduction of the porous layer in a 1D poro-acoustic appli-
cation

3.4.1.1 Presentation and discussion of reference solution

The proposed modal-based reduction method for poroelastic sound absorbing materials

is first validated on a unidimensional poro-acoustic academic example. As presented in

Fig. 3.3, it consists of an acoustic cavity excited with a time-harmonic plane wave normally

incident on an infinite poroelastic layer. The rigid cavity is 25 cm-long and covered with

a 5 cm-thick poroelastic layer at its end. Appropriate Dirichlet boundary conditions are

applied to the poroelastic domain to achieve unidimensional behaviour, thus allowing solid

and fluid displacement in the direction normal to the layer only. In addition, it is considered

backed by a rigid impervious wall (Eq. (3.14)). Material parameters of the foam are given

in Table 3.1. The mesh consists of 20 linear elements for the acoustic domain, and 10

linear poroelastic elements in the thickness of the layer. Its convergence was checked for
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1

2 3

Porous layer

Acoustic cavity

Plane wave

0.05m

0.25m

Figure 3.3: Acoustic cavity mesh and dimensions for 1D problem

the frequency range considered. The 1D FE model thus includes 21 acoustic dofs and 20

poroelastic dofs. Its simplicity is not suited for a performance estimation, but is however a

relevant starting point to establish the potential interest of the proposed reduction method.

For this purpose, an estimation of the absorption coefficient of the porous layer is a useful

Frame Fluid Porous

c0 = 343 m/s φ = 0.96
λ = 905357 Pa γ = 1.4 σ = 32 kNs/m4

µ = 264062 Pa Pr = 0.71 α∞ = 1.7
(1− φ)ρs = 30 kg/m3 ρf = 1.21 kg/m3 Λ = 90 µm

η = 1.84 · 10−5 Ns/m2 Λ′ = 165 µm

Table 3.1: Air and porous material parameters

indicator, and is calculated for a plane wave at normal incidence as

α̃abs(ω) = 1−

∣∣∣∣∣
Z̃n(ω)− ρ0 c0

Z̃n(ω) + ρ0 c0

∣∣∣∣∣

2

, (3.33)

where Z̃n(ω) is the normal acoustic impedance given by

Z̃n(ω) =
P

iω (φuf · n+ (1− φ)us · n)
, (3.34)

with P the incident acoustic pressure, us and uf the vector displacement fields of the solid

and fluid phases at the surface of the material, and n the vector normal to the surface,

pointing outward from the fluid domain.

More generally, the mean quadratic pressure in the cavity is given as a physical quantity

output, calculated as

Lp = 10 log




∫

ΩF

P 2dV

Pref
2

∫

ΩF

dV


 , (3.35)
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and the reference solution of the problem (direct FE solution without reduction), with

and without addition of the poroelastic layer, is plotted in Figs. 3.4. For the conservative

problem, the two following configurations are considered for this 1D case: the poroelastic

is replaced by an equivalent volume of acoustic fluid or not. The former case is more suited

to a physical interpretation of the damping effect of the porous layer at the resonances.

The latter is a more realistic representation of the practical consequence of adding a porous

layer to an existing environment. Of course, for this academic validation, the difference

between the two configurations is amplified by the rather large volume of the porous layer

when compared to the dimensions of the cavity.
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Figure 3.4: Mean quadratic pressure reference FRF, 1D problem, with for rigid cavity:
(a) poroelastic volume not replaced by acoustic volume; (b) poroelastic volume replaced
by acoustic volume.

Figs. 3.4 clearly show the strong damping effect of the sound absorbing foam.

Considering first Fig. 3.4a, it can be partly interpreted in terms of change of boundary

condition for the acoustic cavity of constant volume. Thus, at the resonance frequencies,

both a reduction of the sound pressure level and a shift towards lower frequencies are

observed. This is consistent with the classical observations made for damped systems. Two

additional remarks are worth mentioning: (i) the apparent constant pressure reduction at

very low frequencies is mostly induced by the artificial volume increase of the cavity when

the porous layer is added (for large wavelengths, the particle velocity of air near boundaries

is low, and the porous layer is then inefficient (see the absorption coefficient in Fig. 3.6));

(ii) the porous layer exhibits a compressional resonance around 1000 Hz, thus reducing

the frequency shift of the higher acoustic resonances compared to the first one.

Alternatively, Fig. 3.4b may be interpreted in terms of change of boundary condition
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with apparent reduction of the acoustic cavity volume. In fact, this apparent reduction of

the acoustic cavity volume implies a global shift of resonances towards higher frequencies.

Due to the substantial change of volume involved, this overcomes the frequency shift

towards low frequencies generated by the damping boundary conditions. However, this

configuration better renders the very low-frequency reduction of acoustic pressure.

The nature of the compressional resonance of the porous layer around 1000 Hz is

detailed in Figs. 3.5. It is due to the resonant behaviour of the porous frame (quarter
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Figure 3.5: Response of the solid and fluid porous partitions at 1010 Hz: (a) Displacement
amplitude; (b) Phase.

wavelength resonance) excited at this specific frequency. This is confirmed by Fig. 3.5b, as

all points in the solid partition are moving in phase. The tortuosity and viscous couplings

between the two phases imply strong inertial and viscous interactions. Thus, at this

resonance frequency, the solid and fluid partitions move with a small phase shift and with

a slightly greater amplitude for the fluid phase. The resonant behaviour of the porous

frame would be damped if the structural damping of the frame was taken into account,

using the previously mentioned constitutive equations, Eq. (3.10). This is illustrated in

Fig. 3.6, where the absorption coefficient at normal incidence is plotted for both cases

(the structural damping parameter is then ηs = 0.1). However, whether the structural

damping is included or not has no impact on the results presented for the modal approach

proposed, and is therefore not further emphasized.

3.4.1.2 Reduced problem

The substructuring modal-based reduction method presented in Section 3.3 is applied

to reduce the poroelastic part of the 1D application. The coupled solid-fluid shapes of the
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Figure 3.6: Absorption coefficient at normal incidence, impact of the structural damping
(ηs = 0.1).

first 6 modes generated by the eigenvalue problem Eq. (3.23) are presented in Fig. 3.7.

Their corresponding eigenfrequencies are 944 Hz, 1136 Hz, 2856 Hz, 3435 Hz, 4839 Hz and

5819 Hz. It is interesting to notice that they can be paired, and that for each couple, one
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Figure 3.7: First 6 coupled mode shapes of the 1D porous layer (a) – (f), solid (top) and
fluid (bottom) phases. Mesh and displacement field.

mode exhibits a standing wave in phase in the solid and fluid partitions, while for the other

mode they are in antiphase. This is in good agreement with the expected behaviour of

waves propagating in air-filled poroelastic materials, as the relative displacement between
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the solid and fluid partitions is driven by the strong or weak coupling effects. In fact, it

is consistent with the two types of compressional waves identified by Biot, the so-called

fast and slow waves. While the fast wave is essentially a sound wave with the solid and

fluid moving almost in phase, the slow wave represents a strongly attenuated wave, with

the solid and fluid moving in antiphase.

One possible shortcoming of the generated eigenmodes could be the inability to prop-

erly render the coupling effects between the two phases. Both the constitutive coupling and

the inertial coupling are taken into account in the eigenvalue problem, but the viscous drag

is not, even though viscous and inertial effects are linked by the tortuosity dependency.

For instance, the limit case, where the tortuosity (α∞) is set to 1 (i.e. cylindrical-shaped

pores), implies no inertial coupling while viscous coupling exists. This might involve in-

accuracies in the reduced model. One possible correction is to include viscous effects in

the eigenvalue problem at the cost of a lost diagonal property of the reduced mass matrix.

Another possibility would be to generate additional vectors from the computed modes and

the viscous terms [70], to be included in the basis. However, the tests run for a wide

range of material properties and for the considered frequency range have shown no such

restriction so far.

The convergence of the reduced model towards the reference FRF is presented in

Figs. 3.8 for 1 to 4 modes included in the reduction basis. A satisfactory level of precision

is achieved in the frequency range of interest, thus downsizing the number of poroelastic

dofs from 20 to 4. Regarding the sparsity of the reduced matrices, the paired modes

observed in Fig. 3.7 also imply K
(2)
P and CP coupled contributions. Thus, although not

diagonal, the system matrix corresponding to the modal coordinates still benefits from a

considerably improved sparsity when compared to the unreduced problem. While CPU

time performance is irrelevant for this application, both the reduction in size of the problem

and the sparsity improvements suggest substantial efficiency of the proposed reduction.

The convergence rate is further tested on a more sensitive response output than the

mean quadratic pressure frequency response. Thus, Fig. 3.9 presents the convergence

of the calculated absorption coefficient with successive pairs of modes included in the

basis. The plot on a linear scale offers better insight into the quality of the solution,

which is confirmed to progressively converge towards the reference solution. It can be

noted that the successive pairs contribute in increasing frequency regions of the frequency

range, as observed in standard CMS methods for conservative problems. Furthermore,

on this refined check of the convergence, it appears that the reduced solution does not

perfectly match the reference on the upper frequency range after four pairs included in

the basis. In a situation where a refined convergence is sought, this modal truncation

effect is traditionally compensated by static corrections added to the modal basis. Such
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Figure 3.8: Mean quadratic pressure FRF; Convergence of the reduced model to the
reference solution with added modes in the basis: (a) 1 mode, (b) 2 modes, (c) 3 modes,
(d) 4 modes

an approach for this 1D case is presented in the following section.

3.4.1.3 Improved precision with the use of a static response correction

Although it may be argued that satisfactory accuracy is achieved by the proposed

method when applied as is, a further enhancement of the convergence is sought using an

interface dependent correction. The simplicity of the considered 1D application thus allows

for the demonstration of the beneficial contribution of an orthogonalized “static” response

added to the modal basis. For the 1D case, it is computed as the K
(1)
P –static response of

the poroelastic domain due to a unitary plane wave with normal incidence. Application

of the superposition principle implies that it can be directly obtained by summation of

the poroelastic responses to successive interface dofs excitation, as detailed for the general
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Figure 3.9: Absorption coefficient; Convergence of the reduced model to the reference
solution with added modes in the basis: (a) 2 modes, (b) 4 modes, (c) 6 modes, (d) 8 modes

3D attachment functions (Eq. 3.26). Thus, the K
(1)
P –static response is related to the

attachment functions,

ΨPstai = ΣjΨPI ij. (3.36)

ΨPsta is by construction orthogonal to the attachment functions. A Gram-Schmidt proce-

dure is used to orthogonalize it with respect to the selected eigenmodes and it is then MP–

normalized. The corresponding applied transformation is then



P̂Ī

P̂I

ÛP


 =



1Ī 0 0 0 0
0 1I 0 0 0
0 ΨPI ΨPsta ΦPn ΦPo







P̂Ī

P̂I

α̂sta

α̂n

α̂o



. (3.37)

The improvements in precision are shown in Fig. 3.10. The sound pressure level differ-
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Figure 3.10: Error to reference solution (dB difference) with and without orthogonalized
static response, including (a) 3 modes, (b) 4 modes, (c) 5 modes, (d) 6 modes

ence (in dB) to the reference solution is plotted for 3 to 6 normal modes included in the

modal basis (note the different scales on the quadratic pressure difference axis for each

plot). The convergence is clearly enhanced both in terms of dispersion (frequency shift),

and error level. In addition, the orthonormalized K
(1)
P –static contribution follows the spar-

sity properties of the 1D eigenmodes in the sense that it is K
(2)
P – and CP–orthogonal if

eigenmodes are included by matching pairs, and coupled to the eigenmodes included with-

out their matching pair. Notably, for the 1D application, it is K
(2)
P – and CP–orthogonal

if an even number of contiguous eigenmodes is selected for the modal basis.

Similarly to the previous section, Fig. 3.11 presents a refined estimate of the conver-

gence using the absorption coefficient. As the convergence is much improved compared to

Fig. 3.9, the plot for 4 pairs of modes included in the basis is replaced by a plot correspond-

ing to 1 mode and the static correction (Fig. 3.11a). The solution is perfectly matching
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Figure 3.11: Absorption coefficient; Convergence of the reduced model to the reference
solution with added modes in the basis and a low frequency correction vector: (a) 1 mode,
(b) 2 modes, (c) 4 modes, (d) 6 modes

up to half the frequency range of interest with only 1 pair of modes included in the basis.

The use of 2 pairs makes it suitable for the entire frequency range, and perfectly matching

if 3 pairs are included. Such performance on a 1D validation case is in agreement with

recent contributions in the literature made on this topic [59, 60], limited to configurations

where shear waves are not involved (1D problems only, porous materials for which the

shear can be neglected). Furthermore, the traditionally used truncation rule of thumb

for modal synthesis (keeping modes with eigenfrequencies lower than 1.5 to 2.5 times the

highest frequency of interest) applies on the 1D configurations tested.

The originality of the present approach lies in the fact that no assumption is made

for the projection of the porous problem on the calculated modes. Thus, it offers the

possibility to handle problems were shear effects are accounted for. The following section
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initiates a direct extension of the approach to such problems. It illustrates its potential

as well as its limitations in the present stage of development, on a 3D configuration, thus

offering perspectives for further improvements.

3.4.2 Performance and limitations associated with the 3D case

3.4.2.1 Presentation and details of the reference solution

The extension to a 3D problem and its performance estimation are tested on a dissi-

pative poro-acoustic example initially proposed in [109]. It consists of a 3D hexahedral

acoustic cavity of dimensions 0.4×0.6×0.75 m3 (see Fig. 3.12), with rigid walls, and filled

with air. One wall is covered with a 5 cm-thick porous layer. The low frequency behaviour

is tested applying a time-harmonic volume velocity source (Eq. (3.11)) at a corner of the

cavity opposite the layer.

1

2 3

Porous layer

Acoustic cavity

0.75m

0.4m

0.6m

Acoustic
corner excitation

Figure 3.12: Acoustic cavity mesh and dimensions for 3D problem

The cavity is discretized by a 8 × 12 × 15 mesh of 8-node hexahedral elements with

pressure as single degree of freedom per node. The porous material, identical to the foam

used in Section 3.4.1, is discretized by a 8 × 12 × 5 mesh of 8-node hexahedral elements

(Fig. 3.12), with 6 dofs per node corresponding to the fluid and solid phase displacements.

Sticking Dirichlet boundary conditions are applied to the porous foam face in contact

with the covered wall, and sliding conditions are prescribed on the side faces (Eqs. (3.14)

and (3.15)). This leads to an FE model with 1872 acoustic dofs, and 3070 poroelastic dofs.

The mean quadratic pressure frequency response in the acoustic cavity is given as an

output. The reference solution is plotted in Fig. 3.13 up to 1000 Hz, where the conservative

problem consists of the acoustic geometry presented in Fig. 3.12 when the porous layer

is removed (the largest dimension of the cavity is then 0.7 m). As observed for the

1D application, the damping effect of the porous layer can be clearly seen, combining

a frequency-shift of the resonances towards low frequencies (particularly obvious for the
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first three acoustic peaks), and a strong attenuation of the acoustic pressure level (some

strongly damped resonances do not even appear at all in the dissipative solution).
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Figure 3.13: Mean quadratic pressure reference FRF, 3D problem

3.4.2.2 Reduced problem

Similarly to the 1D application, the convergence is first checked, increasing the number

of modes included in the basis, for a response in the range [0− 1000] Hz. Although many

modes are needed in order to capture the dynamic behaviour of the porous medium in the

considered frequency range, the solution eventually converges towards the original solution

(Fig. 3.14).

However, the interest of the proposed method specifically lies in the fact that real-

valued modes are computed directly from the coupled poroelastic equations, leading to

good sparsity properties. As illustrated in Figs. 3.15, the 3070 poroelastic dofs are down-

sized to 800 modal unknowns, of which 414 correspond toK
(2)
P – andCP–orthogonal modes,

as introduced in Section 3.3.2. A detailed view of the submatrix sparsity associated with

the “non-orthogonal” modal coordinates is given in Fig. 3.16b.

The sparsity of the reduced system matrix is mostly affected by the use of attach-

ment functions which fully couple interface dofs to modal unknowns. Although out of the

scope of this work, reducing the number of attachment functions in the reduction pro-

cedure is therefore an important asset to enhance the performance of the method. This

is particularly true when applications with high interface-to-inner-dofs ratios are consid-

ered [96, 115]. Associating attachment functions to the acoustic dofs rather than to the
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Figure 3.14: Mean quadratic pressure FRF. Convergence of the reduced model to the
reference solution with added modes in the basis: (a) 100 modes, (b) 500 modes, (c) 800
modes.

poroelastic interface dofs, as established in this contribution, constitutes one step towards

a reduced interface dimension. From a storage perspective, the use of K
(1)
P –static responses

as attachment functions leads to uncoupled interface and modal unknowns in the reduction

of K
(1)
P (See Eq. (A.11)).

Further condensation of the modal coordinates corresponding to the K
(2)
P - and CP-

orthogonal modes (Section 3.3.3) leads to a contribution of 386 poroelastic dofs in the

final coupled problem to be solved. Considering the relatively high proportion of orthogo-

nal modes, substantial improvements can be expected applying this frequency-dependent

additional step. The sparsity of the further condensed global system matrix, as well

as a detailed view of the sparsity associated with the poroelastic part are presented in

Figs. 3.16. Presented as an important condition for the scalability of the modal approach

in Section 3.3.2, the submatrix sparsity associated with the “non-orthogonal” modal co-
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Figure 3.15: Sparsity of system matrix for (a) unreduced and (b) reduced poroelastic
domain
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Figure 3.16: (a) Sparsity of system matrix for reduced poroelastic domain with condensed
“orthogonal” modal unknowns and (b) focus on the sparsity for the “non-orthogonal”
modal unknowns

ordinates (Fig. 3.16b) can be quantified by its matrix density of 0.0187. As a comparison,

the original coupled poro-acoustic problem exhibits a matrix density of 0.0165 (Fig. 3.15a),

while its submatrix associated with the non-reduced porous equations has a matrix den-

sity of 0.0379. Thus, the reduction, only accounting for the non-orthogonal modes, even

offers a matrix density improvement by a factor 2 for the studied configuration. This is of

course hindered by the attachment functions coupling: the system matrix for the coupled

problem with the reduced porous domain and condensation of the orthogonal coordinates

(Fig. 3.16a) has a matrix density of 0.029.
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Now considering an estimation of the computational time, a reduction including 800 modes

in the basis leads to an enhancement factor of 2.6 to 3.5 for the CPU time (Fig. 3.17),

with 500 increments computed, depending whether the offset due to modes computation

is taken into account or not. Frequency-dependent condensation of part of the modal co-

ordinates to the interface dofs further improves the efficiency, with a factor 3.1 to 4.4 for

the CPU time with respect to the reference solution. However, the provided performance

estimations in terms of computational time have to be taken as qualitative rather than

quantitative considering the following aspects:

• The unreduced reference solution of the problem is computed as given in Eqs. (3.19)

or (3.22), which involves that 4 frequency-independent matrices are assembled once

initially, and combined at each frequency increment. It is likely that an industrial

implementation of the unreduced problem would involve only 2 frequency-dependent

matrices (equivalent mass and stiffness), thus involving assembly procedure at each

frequency increment,

• The efficiency measured is dependent on the programming language as well as the

quality of the implementation, especially when frequency-dependent operations such

as the dynamic condensation have to be performed at each frequency increment,

• The acoustic dofs being kept unreduced, even though reduction is straightforward

to establish [114], the given performance in terms of CPU time does not fully render

the efficiency associated with the poroelastic reduction.
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Figure 3.17: CPU time comparison for FRF computation
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Nevertheless, besides the above-mentioned points, the proposed modal-based reduction of

the poroelastic finite element discretization offers promising possibilities for the efficient

computation of frequency response functions. Still, some major aspects have to be settled

in order to make the presented method fully applicable in an industrial context: a priori

truncation criteria, selection of most relevant modes, integration in complex setups (with

other poroelastic domains, structural domain). The following general comments can be

made with respect to these points:

• A priori criteria are needed in order to estimate the truncation of the modal basis

according to the frequency range of interest. On this matter, the rule of thumb

consisting in keeping the modes whose eigenfrequencies are smaller than 1.5 to 2.5

times the highest frequency of interest [90, 114] seems to work in the considered cases,

but need to be confirmed on a larger range of applications and porous materials.

• In the extension to the 3D application, the convergence to the reference solution is

rather slow, and some modes included in the basis seem not to bring a significant

contribution. Therefore, finding a cost-efficient way to sort the modes included in

the truncated basis constitutes a further enhancement of the proposed reduction

method, which is treated in the following chapter.

• Once the purely modal reduction issues are settled, as initiated in the scope of this

chapter, the integration of the approach into more complex situations (geometry,

multiple domains) is an essential point to investigate. The difficulties are then re-

located from volume considerations (e.g. costly 3D modelling of porous layers) to

interface problems. As previously mentioned in this section, the high number of

interface dofs for poroelastic materials presents the risk of jeopardizing the efficiency

gained using a modal approach. Several contributions have been made recently on

this topic, in the scope of structural-acoustics and dynamics (reduction of interface

functions [102, 104], modal coupling using decoupled bases and correction Ritz vec-

tors [105, 70], use of Lagrange multipliers [88, 93], ...). A follow-up to the present

approach is therefore to test such methodologies in order to further extend the range

of efficient application of the method.

3.5 Conclusion

In this chapter, an original way of solving the poroelastic equations was presented,

as well as the corresponding variational formulation for poro-acoustic applications. This

approach was used to define a standard eigenvalue problem for the coupled poroelastic

equations, based on the solid phase and fluid phase displacements formulation. The gen-
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erated modes were shown to form a well suited basis for a priori reduction of the finite

element problem. The tests on a 1D poro-acoustic application, in a component mode

synthesis scheme where only the poroelastic domain was reduced, confirmed the suitabil-

ity of the proposed modal basis. The extension to a 3D application demonstrated the

potential performance in terms of problem size reduction, associated CPU time enhance-

ment, as well as sparsity of the reduced matrices, which is an important asset for use in

larger applications. Out of the 4942 dofs involved, the 3070 belonging to the poroelastic

domain were reduced to 800 modal coordinates. Among those, 414 corresponding to lin-

early independent equations, were dynamically condensed leading to a poroelastic domain

downsized from 3070 to 386 dofs. An estimation of the CPU time enhancement leads to a

factor 3.1 to 4.4, depending whether the time elapsed to build the reduction basis is taken

into account or not. A priori criteria for modal basis truncation, as well as filtering of

relevant modal components to be included in the basis, are two complements to this work

that would make it fully applicable for larger and more industrial-like applications. The

following chapter is dedicated to such improvements of the method. Furthermore, focus-

ing on enhanced attachment functions, especially in the case where multilayer poroelastic

materials are considered, would present an extension to this contribution, in order not to

lose the benefits of subdomain reductions because of large interfaces.
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Chapter 4

Enhancements of the poroelastic
modal reduction

Abstract: Following the convergence issues observed in the previous chapter,

for the proposed modal reduction of poroelastic domains, some enhancements

are presented in this chapter. First a sorting procedure of the modes in the

basis is established, according to their contribution to the response. Then, a

further truncation of the basis is introduced, in order to keep only the significant

modes. The improvements are tested on simple 2D and 3D configurations.
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4.1. INTRODUCTION

4.1 Introduction

In the previous chapter, the rewriting of the variational formulation associated with the

poroelastic domain offered the possibility to define a standard eigenvalue problem, which

has been used in a modal superposition reduction scheme. While promising in terms

of efficiency and accuracy, the slow convergence observed, leading to a large modal basis,

suggests that some possible improvements in the reduction would be needed. The approach

considered in this chapter is to estimate the contribution of each mode to the response,

in order to sort the modes, and select only the most significant ones to be retained in the

reduction basis. An a-posteriori error estimation is also introduced in order to evaluate

the accuracy achieved by the reduced model over the frequency range, without having to

compute the reference solution.

This chapter is organized around four parts. First, the a-posteriori error estimator

is introduced. An illustration of the convergence issues is then made on a simple 2D

poro-acoustic problem, from which the possible improvements are extracted. The third

part introduces the proposed sorting and truncation procedure for the modal basis. The

last section validates the approach on simple 2D and 3D configurations of the chosen

poro-acoustic problems.

4.2 A posteriori error estimation

For a given approximation of the solution using a reduced model, the error committed

with respect to the unreduced solution can be estimated from the residue associated with

the time-harmonic response. Thus, at a given angular frequency ω, the approximated

solution following the resolution of a set of equations such as Eq. (A.11) is given by

Eq. (3.27),


P̂Ī

P̂I

ÛP


 =



IĪ 0 0 0
0 II 0 0
0 ΨPI ΦPn ΦPo







P̂Ī

P̂I

α̂n

α̂o


 . (4.1)

From this approximate solution, and using the last set of equations in Eq. (3.22), a residual

force vector for the porous domain is computed,

RFP
(ω) = AT

IPP̂I −
(
K

(1)
P +

(
K̃f(ω)− P0

)
K

(2)
P + iω b̃(ω)CP − ω2MP

)
ÛP. (4.2)

Following, a K
(1)
P –residual displacement vector can be established,

RUP
(ω) = K

(1)
P

−1
RFP

(ω). (4.3)
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The error estimator used is then chosen by analogy to the strain energy error estimator

used in structural dynamics [103]. It is based on the residue, and can be computed at

selected frequencies as

ε(ω) =
RT

UP
(ω)K

(1)
P RUP

(ω)

ÛT
P K

(1)
P ÛP

=
RT

UP
(ω)RFP

(ω)

ÛT
P K

(1)
P ÛP

. (4.4)

In the examples considered in this work, where the mean quadratic pressure in the acoustic

domains is used as a response output, an error estimation lower than 0.1 has proved to be

a conservative limit achieving satisfying precision for the frequency responses.

4.3 Illustration of modal reduction limitations

The convergence issues observed on a 3D application in the previous chapter are further

illustrated on a small scale 2D application, which exhibits the same kind of difficulties as

the 3D example while being small enough to manually point out the possible improvements.

4.3.1 Presentation of the 2D test application

The adaptation of the 3D example presented in Fig. 3.12 to a 2D problem is detailed

in Fig. 4.1. It consists of an acoustic domain bounded by rigid walls, and treated with a

porous layer on one wall. The same boundary conditions as in the 3D case are set for the

poroelastic layer, i.e. sliding for the side walls and sticking for the back wall. The mesh,

consisting of 7 × 5 linear elements both in the acoustic and porous domains, is suitable

for an analysis up to 1500 Hz. The reference solution, with and without addition of the

0.15 m

Porous layer

0.2 m 0.05 m

Acoustic cavity

Acoustic source

Figure 4.1: Mesh and dimensions of small 2D application

porous layer, is given in Fig. 4.2, using the mean quadratic pressure in the acoustic domain
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Figure 4.2: Mean quadratic pressure in the acoustic domain

as a response quantity. For the solution without the porous layer, the porous domain is

replaced by an acoustic domain in order to keep the dimensions of the cavity unchanged.

For such a small problem, both in terms of dimensions and frequency content, it is

possible to get an insight into the convergence issues of the modal reduction for a more

complex case than a 1D problem, as the number of necessary modes is kept reasonable.

It enables the observation of the convergence in terms of the frequency response when the

modal shapes are manually included or excluded from the reduction basis, and thus to

draw conclusions for further performance improvements.

4.3.2 Convergence of the modal reduction

In a first step the convergence of the reduced model solution towards the reference

solution is checked, exhibiting the same difficulties as those encountered in the 3D problem.

A satisfactory level of accuracy is obtained after 26 modes are included in the modal basis,

as shown in Fig. 4.3.

As for the 3D problem of the previous chapter, the modes included exhibit uneven con-

tributions to the response accuracy. This point can be partly understood when observing

the corresponding coupled mode shapes as plotted in Fig. 4.4. In fact, some coupled

mode shapes, in the low frequency range, show localized behaviour that is more likely to

be observed at higher frequencies or for specific excitations, e.g. modes 6, 8, 10, 11, 14,

19, 20, 22, 23 when compared to modes such as 1, 2, 12, 15, 21. This can be confirmed if

the modes that seem to bring the most significant contributions to the frequency response
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Figure 4.3: Mean quadratic pressure convergence with 26 modes and error estimation

accuracy are manually extracted from the modal basis to form a reduced basis. In the

present example, these correspond to modes 1, 2, 4, 12, 15, 16, 21, 26. The correspond-

ing convergence, when these modes are successively included in the basis, is presented in

Fig. 4.5. For reasons of conciseness, the contribution of modes 4 and 16 is skipped, as

being less obvious than the ones presented.

In addition, the modes bringing an apparent significant contribution to the solution im-

provement do not seem properly ordered in the basis, meaning, e.g., that the low frequency

modes do not necessarily have an influence in the low frequency range of the response,

as can be seen in Fig. 4.5. As an example, it seems that mode 21, which appears as a

low order 1D mode when considering its shape, has a strong contribution in the low fre-

quency range, and would need to be included among the first modes selected in the basis.

Similarly, modes 2, 4 and 12 mostly contribute at frequencies above 1200 Hz, and could

therefore be repositioned accordingly. It is the aim of the following section to provide an

appropriate selection and reordering criterion to further reduce and sort the modal basis

obtained from the eigenvalue problem.
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Deformed mesh and norm of displacement.
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Figure 4.5: Convergence with modal superposition of manually selected modes:
(a) Mode 1, (b) Modes 1, 2; (c) Modes 1, 2, 4, 12; (d) Modes 1, 2, 4, 12, 15; (e) Modes 1, 2,
4, 12, 15, 16, 21; (f) Modes 1, 2, 4, 12, 15, 16, 21, 26

4.4 Efficiency improvements using modal basis filtering

Considering the localized and complex phenomenology within the poroelastic layer,

which makes it highly dependent on the excitation, the modes computed using a standard

eigenvalue solver clearly do not all have a relevant contribution to the response. A selection

based on the use of residual forces is therefore proposed in order to generate a more specific

modal basis.

4.4.1 Modal contribution criterion using a residual force

The residual forces give a very useful insight into the quality of the reduced model, as

they are directly linked to the approximation committed [103]. Therefore, in the context

of modal reduction, they have been used for different matters. Among the possibilities,

residual responses can be added, once orthogonalized, in reduction bases that are built

iteratively [116]; they can also be used to take into account additional terms not included

in the eigenvalue problem [117, 107, 63, 70], or modified parameters in an optimization

procedure [118, 117]. In fact, the residue provides a natural way to correct the reduction

basis as it includes missing components [116].
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In the present approach, where the aim is to provide a suitable basis for a set frequency

range, the residual force is used to estimate the modal contribution of the modes. By

doing so, only the main components properly describing the specific problem are kept in

a further reduced basis. The residual force is computed, at a given angular frequency

ω0, using the solution vector of a reduced model including only the very low frequency

modes, e.g. the first mode (following Eq. (A.11) without consideration of “orthogonal” and

“non-orthogonal” distinctions). Follows a poor approximate solution at ω0 after inverse

transformation, 

P̂Ī

P̂I

ÛP



ω0

=



IĪ 0 0
0 II 0
0 ΨPI ΦPLF





P̂Ī

P̂I

α̂LF




ω0

, (4.5)

where ΦPLF
consists of the lowest frequency mode computed by eigenvalue problem (3.23)

and αLF the corresponding modal coordinate. Noticing that no external load is applied

to the poroelastic domain (see Eq. (3.22)) beside the coupling terms with the acoustic

domain, a residual force vector for the porous domain can be computed directly from the

last line of Eq. (3.22) at angular frequency ω0,

RFP
(ω0) = AT

IPP̂Iω0
−
(
K

(1)
P +

(
K̃f(ω0)− P0

)
K

(2)
P + iω0 b̃(ω0)CP − ω2

0MP

)
ÛPω0

(4.6)

A K
(1)
P -residual displacement vector follows,

RUP
(ω0) = K

(1)
P

−1
RFP

(ω0) (4.7)

The following step is to compare each mode shape to the content of this residue. An

indicator such as the Modal Assurance Criterion (MAC) is an option that could be used

for comparison between a residual displacement vector and the mode shapes, but does

not carry significant physical meaning, and is likely to bring poorly conclusive results.

A concept such as the modal participation factors can bring better suited results to the

present request. Thus, the participation factor of the ith mode shape ΦPi to the real

part of the K
(1)
P -residual displacement vector corresponding to the residual force RFj

(e.g.

RFP
(ω0) associated with ΦPLF

in Eq. (4.6)), is defined as

µij =
|ΦPi

T MPK
(1)
P

−1
ℜ(RFj

)|

‖ℜ(RFj
)‖

. (4.8)

For practical implementation purposes, it can be rewritten without the need to calculate

the residual displacement vector. Using the eigenvalue problem Eq. (3.23), Eq. (4.8)

becomes

µij =
|ΦPi · ℜ(RFj

)|

ωi
2‖ℜ(RFj

)‖
, (4.9)
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where ωi
2 is the eigenvalue corresponding to the eigenvector ΦPi. A similar definition can

be given with respect to the imaginary part of RFj
. The procedure thereafter described

can also be applied to such an imaginary part participation factor, but has shown no ad-

ditional interest in the considered validation cases. It is recalled here that the eigenvector

expression ΦPi refers to a mass-normalized mode. This first approach enables a proper

sorting of the mode shapes according to their modal participation to the residual vector.

Furthermore, being independent of the residual force norm, the participation factors de-

fined as such can be used to compare the relative contributions of a mode shape to a set

of several residual force vectors computed at different frequencies. In the following, it is

supposed that for a given residual force RFj
, a set of N modes are ordered by decreasing

modal participation so that

µ1j > · · · > µij > · · · > µNj. (4.10)

In order to establish a truncation criterion based on these participation factors, they are

normalized with respect to the smallest contribution, for a given residual force,

∀ i ∈ [1..N] µ̄ij =
µij

µNj
> 1. (4.11)

In practice, these factors can differ from one another by several orders of magnitude, which

makes a logarithmic scale more appropriate for their representation than a linear scale, as

shown in Fig. 4.6. The logarithmic representation allows to easily distinguish significant
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Figure 4.6: Example of normalized modal participation factors: (a) linear scale and (b) log-
arithmic scale

contributions, either by their contribution level, or by the change of tangent slope, as

can be observed in Fig. 4.6b. Therefore, several selection criteria can be proposed, e.g.

based on a threshold value, a change in the tangent slope, a ratio of contribution. After
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testing, the latter approach is presented in this work. Thus, for a selection of the “n” most

significant modes in the truncated modal basis, the following criterion is proposed, based

on a ratio of the cumulated logarithmic contributions,

χnj =

n∑

i=1

log(µ̄ij)

N∑

i=1

log(µ̄ij)

6 χmax, (4.12)

where χmax is an empirical limit, in the interval ]0, 1], typically found to be conservatively

suitable when set to 0.4 in the presented applications.

4.4.2 Practical implementation

The mode sorting indicator presented in Eq. (4.9) together with the selection crite-

rion (A.18) are used for filtering mode shapes computed with the standard eigenvalue

problem. The quasi-orthogonality property of the modes computed allows to test them

individually for their participation to the response content. For a small problem involv-

ing the combination of a narrow frequency band and a low spectral density, one residual

vector might be sufficient to select the proper modes. However, for applications with

broader frequency content, a selection based on several residual vectors distributed in

the frequency range of interest is needed. Two approaches can be considered for a mode

selection procedure based on a set of residual vectors:

• the modes are ordered after a weighted average of their participation to the residual

vectors,

• the modes are successively selected according to their participation to the residual

vectors ordered in increasing frequency.

The first possibility imposes a weighting to be assigned to each residual vector, particularly

in the aim of ordering the modes in the modal basis according to their influence in the

frequency range. The second approach offers a natural weighting of the residual vectors,

provided each of them is best suited for a frequency band centered on its frequency of

computation. The latter method is chosen, selecting a set of modes with respect to the

first residual vector, then completed by modes successively selected among the remaining

ones, using the additional residual vectors. The corresponding procedure is detailed in

Algorithm 1.
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Algorithm 1 Procedure for selection of significant modes

1. Compute truncated modal basis (eigenvalue problem)

2. Decomposition of K
(1)
P

3. NLF low frequency modes retained for residual vectors computation
4. Choice of ωj set for Nj residual vectors
5. Compute corresponding RFj

6. Include the initial NLF low frequency modes in the basis
7. for j = 0 to Nj do
8. Compute contribution µij for modes not yet selected
9. Sort modes in descending µij contribution

10. Compute cumulated contributions χnj

11. Select modes for which χnj 6 χmax

12. Add sorted selected modes to modal basis
13. end for

4.5 Applications

4.5.1 Small 2D application in low frequency

Following the test example presented in Section 4.3.1, for which the convergence issues

are discussed in Section 4.3.2, the modal basis refinement procedure proposed is applied in

order to evaluate its performance. Starting with a modal basis including modes up to one

time the highest frequency of interest (i.e. 1500 Hz), which proved sufficient to achieve

a satisfying precision, 26 modes are to be processed for an optimal selection. In this

small application, one residual vector is retained for the mode selection procedure. This

residual vector is computed with the lowest frequency mode included in the modal basis,

and for an arbitrarily chosen low frequency of 375 Hz. The upper bound for cumulated

contributions, χmax, is set to 0.4. Thus, are selected as significant modal contributions,

the n modes satisfying

χnj 6 0.4. (4.13)

The mode selection following the sorting procedure is presented in table 4.1. The

modal contribution associated with mode 1, which is included in the modal basis for

computation of the residual vector, is given as an indication. It reflects the expected

orthogonality between the mode shape and the residual vector computed with this mode

included in the modal basis. In addition, it further confirms the established link, on which

the selection procedure is based, between the residual vectors and the content of the modal

basis. The first 8 selected and sorted mode shapes extracted from the complete modal

basis (see Fig. 4.4) are presented in Fig. 4.7.

The convergence of the solution using the further reduced modal basis is presented in
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Mode Eigenfrequency (Hz) µij χnj

1 83 (0) (1)
2 161 12.9 0.06
21 1139 12.0 0.12
15 947 11.9 0.17
4 299 11.1 0.23
12 787 10.4 0.28
26 1343 10.3 0.32
16 951 9.8 0.37
7 468 9.2 0.4

Table 4.1: Significant modal contributions selection
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Figure 4.7: Porous 2D selected and sorted mode shapes 1, 2, 21, 15, 4, 12, 26, 16: solid
(top) and fluid (bottom) phases. Deformed mesh and norm of displacement.

Fig. 4.8. The precision achieved is already satisfactory when only the first 8 selected modes

are included in the modal basis, which means that an upper bound of 0.38 for χmax was

sufficient in this case. However, even though not represented in Fig. 4.8, including the 9th

selected mode in the basis induces an error estimation lower than 0.1. Finally, it is worth

noticing that the modes manually selected in Subsection 4.3.1 are well captured by the

proposed procedure. Furthermore, when compared to the convergence of the solution with

unsorted modes in Fig. 4.5, the proposed reordering strategy exhibits a much smoother

convergence with respect to the frequency.

The computational time improvement and sparsity performance are not addressed in

the 2D case. However, it can be underlined that the unreduced porous domain consists

of 144 dofs, which are reduced to at best 26 dofs using a rule of thumb truncation of the

complete modal basis. Use of the proposed selection procedure produces a further reduced

poroelastic domain of at best 8 dofs, that is 5.5% of the original problem size, or 18 times

smaller.
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Figure 4.8: Convergence with modal superposition of selected modes for χmax =
0.4: (a) Mode 1, (b) Modes 1, 2, 21; (c) Modes 1, 2, 21, 15; (d) Modes 1, 2, 21, 15, 4;
(e) Modes 1, 2, 21, 15, 4, 12, 26; (f) Modes 1, 2, 21, 15, 4, 12, 26, 16

4.5.2 Larger 2D application and increased frequency range

The application presented in the previous section is deliberately chosen small, both in

terms of size and frequency content, in order to be able to manually control the mode fil-

tering and sorting process, and thus to estimate the potential performance of the proposed

criterion. However, due to its size, the problem tested is still rather close to a 1D problem,

which is underlined by the selection of 1D mode shapes among the first modes selected. In

this section, the established selection criterion is further tested on a larger 2D application,

involving both a larger frequency content and a proper 2D geometry. Its geometry, dimen-

sions and mesh are presented in Fig. 4.9. The mesh, consisting of 40× 13 linear elements

in the acoustic domain and 40 × 12 linear elements in the porous domain, is well suited
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Porous layer
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0.2 m 0.05 m

Acoustic source

Acoustic cavity

Figure 4.9: Mesh and dimensions of larger 2D application

for an analysis up to 2000 Hz. The same boundary conditions as the ones defined in the

previous section are applied to the porous layer, involving a problem of 574 acoustic dofs

and 1959 poroelastic dofs. The acoustic domain is excited via a time-harmonic excitation

at a corner of the acoustic cavity, opposite the porous layer. The reference solution, with

and without addition of the porous layer, is given in Fig. 4.10, using the mean quadratic

pressure in the acoustic domain as an output (the porous domain is again replaced by

acoustic elements in the conservative case).

The reduction is first applied using the complete set of modes computed from the

eigenvalue problem defined in Section 3.3.2, with a rule of thumb truncation of twice

the highest frequency of interest, i.e. for eigenfrequencies up to 4000 Hz. This involves

355 modes included in the basis. The convergence of the reduced solution is presented in

Fig. 4.11 for enriched modal basis at significant steps including 90, 130, 180, and 355 modes.

The same expected convergence difficulties are exhibited, i.e. slow convergence and uneven

contributions of the modes included in the basis. Particularly, it can be noted that the

convergence of the response around 1700 Hz is very slow, due to low modal contributions

between modes 180 and 360.

The mode sorting and selection method is applied following the procedure in Algo-

rithm 1. Considering the increased frequency content of the problem compared to the

108



4.5. APPLICATIONS

200 400 600 800 1000 1200 1400 1600 1800 2000
30

40

50

60

70

80

90

100

110

Frequency (Hz.)

M
ea

n 
qu

ad
ra

tic
 p

re
ss

ur
e 

in
 c

av
ity

 (
dB

)

 

 

Acoustic cavity
Acoustic cavity + Porous layer

Figure 4.10: Mean quadratic pressure in the acoustic domain

previous section, two residual force vectors are used. They are computed with the low-

est eigenfrequency mode included in the modal basis, and at frequencies of 450 Hz and

1450 Hz. The upper bound for cumulated contributions, χmax, is set to 0.4, as done for

the smaller 2D application. This produces a modal basis downsized from 360 modes to

88 modes, i.e. 24% of the original size of the modal basis, for which the convergence of the

solution at significant steps is presented in Fig. 4.12. Again, a much smoother convergence

is observed with respect to the frequency when the proposed enhanced modal basis is used.

The first 12 mode shapes of the original and processed modal basis are presented in

Fig. 4.13 and Fig. 4.14 respectively. It can be observed once more, from this sample, that

mode shapes such as those corresponding to 55 Hz, 84 Hz or 112 Hz are expected to be

physically significant at higher frequencies than their eigenfrequencies. Regarding the

performance of the proposed procedure, although this matter is more specifically addressed

in the following section, the original problem consisting of 1959 porous dofs is downsized

to 360 and 88 poroelastic dofs, using a truncated modal basis and a further processed

modal basis respectively. Therefore, at best, a reduction to 4.5% of the original size of the

porous domain is achieved using the proposed method.

4.5.3 Performance evaluation for a 3D example

The 3D application presented in Fig. 3.12 is used to estimate the performance of the

mode selection procedure in terms of computational time, and sparsity of the system ma-

trix. The mesh being considered best suited for frequencies up to 600 Hz, the modal basis
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Figure 4.11: Solution convergence for the reduced model: (a) 90 modes, (b) 130 modes;
(c) 180 modes; (d) 355 modes

including modes up to twice the highest frequency of interest is composed of 800 eigenvec-

tors. Among those, it is recalled that 386 are non-orthogonal modes while the remaining

414 lead to linearly independent equations. The corresponding convergence of the reduced
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Figure 4.12: Solution convergence for the processed reduced model: (a) 4 modes,
(b) 14 modes; (c) 59 modes; (d) 88 modes

problem solution was presented in Fig. 3.14, in a range of [0− 1000] Hz.

In a first approach, the mode selection procedure is applied using the previously-found
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Figure 4.13: Porous 2D mode shapes: solid (top) and fluid (bottom) phases. Deformed
mesh and norm of displacement.

conservative value of 0.4 (in the case of 2D applications) for the cumulated contributions

indicator, χmax. One mode is included in the modal basis for the computation of the

residual vectors. Furthermore, two residual vectors are computed at 150 Hz and 500 Hz

respectively. Applying the proposed sorting and filtering method results in a modal basis

of 158 eigenvectors of which 67 are orthogonal. These imply 67 modal coordinates that

can be further condensed according to Section 3.3.3. A comparison of the computational

times for this problem is given in Fig. 4.15. The outputs of both the porous-treated cavity

and the rigid acoustic cavity (real-valued problem) are given. The former one gives the

reference computation time to be improved for the considered problem, while the latter

gives an unreachable lower bound for a reduced solution. In between, the computational

times of the reduced problem using the complete set of 800 modes and the reduced set of

158 selected eigenvectors are presented. Each of these two results are completed with the
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Figure 4.14: Porous 2D selected and sorted mode shapes: solid (top) and fluid (bottom)
phases. Deformed mesh and norm of displacement.

corresponding version where orthogonal modes are further condensed at each frequency

increment.

Several points can be underlined out of the plotted computational time improvements.

First, considering the offset at the initial frequency increment for the reduced models, it

appears clearly that the selection procedure proposed is comparatively costless. This is

emphasized when compared to the time needed to compute the original modal basis. Sec-

ondly, although not showing reduction as spectacular as a 800-mode to 158-mode basis,

the time enhancement is shown to be very significant, from 348 seconds for the origi-

nal basis, to 250 seconds with the filtered basis, representing a 28% improvement. Off

course, the fact that the 1872 acoustic dofs are kept unreduced has to be considered as

a partial explanation. In addition, the reduction in the number of modes has, at some

point, relatively less impact than keeping the number of attachment functions unchanged,

113



4.5. APPLICATIONS

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

Number of frequency increments

C
P

U
 ti

m
e 

(s
)

 

 

Unreduced conservative problem (lower bound)
Unreduced complete problem
Reduced
Reduced condensed
Reduced optimized
Reduced optimized condensed

Figure 4.15: Computation time comparison for 3D problem - χmax = 0.4

considering they fully couple the interface dofs and the porous modal coordinates. This

point is well illustrated when observing the sparsity of the unreduced and reduced prob-

lems (Fig. 3.15 and 4.16). Finally, the condensation of modal coordinates corresponding

to linearly independent porous equations appears less interesting as fewer modes are in-

cluded in the basis. In fact, for smaller systems to be solved at each frequency increment,

the efficiency of the condensation becomes very dependent on the implementation of the

matrix manipulations involved at each frequency increment.

The sparsity and the convergence issues are addressed on a further reduced problem

for which the previously-found conservative value of 0.4 for χmax is not respected. Thus,

for χmax set to 0.27, the precision achieved is found identical up to 900 Hz while slightly

inferior above (it is reminded here that the original mesh is best suited for a solution up to

600 Hz). This criterion involves 83 modes included in the basis, of which 31 imply linearly

independent porous equations.

The corresponding analysis of the system matrix sparsity is presented in Fig. 4.16,

comparing the sparsity before and after applying the mode selection procedure. It clearly

shows, in this application, that the coupling involved by the 117 attachment functions at

the interface acoustic dofs has a larger contribution to the solution cost than the remaining

83 porous modal dofs. This means that use of a reduced set of attachment functions,

especially in the case of large interfaces, is an important asset in complement of the modal

reduction itself. Several contributions can be found in the literature on this topic [102, 104],

and applying interface condensation techniques is considered as an extension to this work.
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Figure 4.16: Sparsity of the system matrix before and after mode selection procedure: (a)
800 modes, (b) 83 modes

The sparsities corresponding to the porous modal coordinates submatrices are further

detailed in Fig. 4.17. These detailed views of the sparsity after modal transformation of
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Figure 4.17: Detailed sparsity corresponding to the modal dofs, before and after mode
selection procedure: (a) 800 modes, (b) 83 modes

the porous equations underline its potential in the prospect of scaling the method to larger
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problems. The further selection of significant modal contributions allows both reduction of

the computational time, but also saves a tremendous amount of memory allocated to the

system matrix. For instance, in the considered application, the storage allocated to the

porous subdomain after modes selection represents a little more than 10% of the original

reduction. It also illustrates the proportion of linearly independent equations kept in the

process, which is a key point for the efficiency at larger scales.

The combined analysis of the computational time and the sparsity of the reduced

matrices illustrate the very promising performances of the two-step reduction method

proposed. Furthermore, two aspects are emphasized in the aim to further improve the

reduction procedure: first, the number of attachment functions has to be kept small as

previously mentioned; then, the initial computation of the modal basis is a drawback for

further improvements, especially in the scope of larger applications. Regarding this sec-

ond aspect, using efficient strategies such as the Automated Multi-Level Substructuring

(AMLS) method [119], to generate approximate eigenvectors, could bring substantial im-

provements. Another possibility is to consider a more specific way of computing the needed

eigenvectors, thus reducing the initial number of modes in the basis. Load-dependent Ritz

vectors generated iteratively is one way to possibly enhance this initial step [120].

Finally, the convergence issue, which is however less critical than the precision and

efficiency assets, is addressed for this 3D example. Fig. 4.18 illustrates the reduced solution

obtained with χmax set to 0.27, compared to the reference solution, at significant numbers

of modes included in the basis. When compared to Fig. 3.14, the results confirm what

is observed for the 2D applications: the mode selection procedure improves the sorting,

and therefore the smooth convergence observed with respect to the frequency. The direct

consequence of this property is that if the selection upper bound χmax was to be chosen

too small, the consequences would affect only the higher frequency range of the considered

problem. This places the proposed modal reduction for sound absorbing porous domains

in the same context of use as traditional modal-based methods for conservative media.

4.6 Conclusion

This chapter addressed part of the limitations raised in the previous chapter, i.e.,

regarding convergence issues for the proposed modal approach to reduce poroelastic do-

mains.

For this purpose, a sorting procedure was proposed for the modes previously selected

in a truncated modal basis using a standard approximate CMS truncation criterion. This

procedure is based on the modes participation to the content of a poroelastic residual force

calculated from a poor approximate solution. Typically, this poor approximate solution is
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Figure 4.18: Convergence with modal superposition of selected modes for χmax = 0.27:
(a) 2 modes, (b) 35 modes; (c) 58 modes; (d) 71 modes; (e) 79 modes; (f) 83 modes

the outcome of a reduced model including the first, or the first few modes in the basis. An

extension to more complex problems including a broader dynamic behaviour and frequency

range was suggested. It involves a procedure based on multiple residual forces calculated

at different frequencies in the spectrum. The procedure was shown to properly sort the

modes according to their contribution in the frequency range of the response.

Furthermore, an empirical truncation criterion was introduced, thus defining a two-

step truncation procedure to establish a suitable modal basis. The first truncation ensures

that the dynamic content is included in the basis, while the second, after applying the

sorting procedure, reduces the basis to its most significant components.

A validation case, including a performance analysis on a 3D academic problem, demon-

strated the potential of the proposed approach: the procedure is costless when compared

to the calculation of the modes, and exhibits promising performances in terms of stor-
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age and computational efficiency. Furthermore, the modal basis thus established being

equivalent to the modal bases used in CMS techniques for conservative problems, it can

benefit from all the proposed modulations in the literature, among which: choice of differ-

ent combinations of normal modes and interface functions, use of corrections to improve

the convergence, use in a flexibility approach.

There are however a few points that were addressed only by perspectives to the present

work, using methods proposed in the literature. First and most importantly, the initial

step, which mostly consists in solving the eigenvalue problem, remains a drawback for

extension to larger and more complex applications. For this purpose, an iterative approach

could offer the perspective to improve the construction of the optimal basis. Secondly,

porous materials are usually included into sound packages involving multilayer setups.

Therefore, the reduction of the number of interface functions is of prime importance in

order not to lose the benefits in high surface-to-volume ratio configurations. The last

mentioned point concerns the extension to more complex cases. In fact, following the

validations made on small 2D and 3D poro-acoustic applications, the proposed approach

needs to be tested on more industrial-like problems.
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Chapter 5

Use of Padé approximants for the
fast reconstruction of frequency
responses

Abstract: In this chapter, an efficient solution strategy combining a modal-

reduced problem with a Padé-based reconstruction approach is proposed. It

thus takes advantage of the reduced-size of the model while further improving

the computational efficiency by limiting the number of frequency resolutions of

the original problem. An adaptive procedure is proposed, and the validation is

presented on the poro-acoustic examples introduced in the previous chapters.
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5.1. INTRODUCTION

5.1 Introduction

The modal-based approach proposed in the previous chapters offers a substantial re-

duction in the size of the problems to solve, even though hampering the sparsity of the

system matrix. In fact, the use of interface functions, inducing coupled sets of equations

for each subdomain, limits the computational efficiency improvements. The idea presented

in this chapter is to take advantage of the reduction achieved in the number of dofs, while

limiting the impact of the loss in sparsity. This is done by limiting the number of direct

computations, using a reconstruction strategy.

For this purpose, a reconstruction based on Padé approximants offers a possible good

complement, involving the computations of the complete solution and its derivatives at a

very restricted number of frequencies, and rebuilding it around these points. The recon-

struction then involves as many small-sized problems as the number of dofs, which has

proved efficient in the literature when applied to single field problems [121–123].

Consequently, the combination of the two complementary methods can potentially take

advantage of the best out of each of them, to offer an efficient solution scheme.

The chapter is organized around four main sections. First, a general presentation

of the Padé approximant reconstruction method is given, followed, in a second part, by

the derivations needed for its application to coupled poro-acoustic problems. In a third

section, an adaptive procedure is proposed in order to automatically handle the choice of

frequencies at which the complete solution is calculated. The last section is dedicated to

the applications of the approach to the 1D, 2D and 3D poro-acoustic problems presented

in the previous chapters.

5.2 Series expansion and Padé approximants

5.2.1 Padé approximants

All the problems studied in the present thesis, excited via time-harmonic excitations,

exhibit the following general form,

Z(ω)u(ω) = f(ω), (5.1)

where f(ω) has been made frequency-independent in the considered examples, but this

comes as a minor simplification in the upcoming developments. More importantly, the

frequency-dependence of the system matrix Z(ω) is carried by scalar functions in factor

of frequency-independent global finite element matrices. This point, which proves its im-

portance in this section, strengthens the choices made to use a displacement-displacement

formulation for the porous media in comparison to a displacement-pressure formulation.
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In a direct solution scheme, computing the full solution of Eq.(5.1) at a few frequency

points only, while reconstructing an approximated solution in between those, has proved

to be an efficient approach [122]. Thus, given a solution at angular frequency ω0, and a

sufficiently smooth function of ω, u(ω), the Taylor series expansion around ω0 gives such

an approximated solution,

u(ω0 +∆ω) ≈ AT (∆ω) =

T∑

k=0

ak(∆ω)k, (5.2)

with T being the truncation order of the series expansion. The coefficient vector ak is

given by

ak =
u(k)(ω0)

k!
, (5.3)

where u(k)(ω0) is the k
th derivative of u with respect to ω, taken at ω = ω0, and considering

that u(0)(ω0) = u(ω0). The determination of these T first derivatives of u is then required

to estimate the approximated solution around ω0.

However, in the scope of series expansion, it has been shown that, for a function

containing poles, an expansion as a ratio of two power series generally allows a better

representation (larger interval of convergence and better convergence rate) than Taylor

series, for a given truncation order [124–126]. In the following, the one-point Padé approx-

imation of u(ω) is presented, deriving the methodology to determine the corresponding

Padé approximants from the knowledge of system of equations (5.1). For this purpose,

the vector quantities in equations (5.1) to (5.3), of dimension N (number of degrees of

freedom), are now referred to as their jth scalar component (corresponding to dof j). Fur-

thermore, as there is no ambiguity on the fact that upcoming developments in this section

are degree-of-freedom dependent, this indication is dropped in the rest of this section, so

that

u → uj → u, (5.4a)

AT→ Aj
T → AT , (5.4b)

ak → ajk → ak. (5.4c)

Thus, each dof solution function, rather than being approximated by a Taylor series

expansion, can be written as

u(ω0 +∆ω) ≈
PL(∆ω)

QM (∆ω)
, (5.5)

with PL(∆ω) and QM (∆ω) being two truncated power series in the variable ∆ω, to the
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order L and M respectively, and defined as

PL(∆ω) =

L∑

k=0

pk(∆ω)k, (5.6a)

QM (∆ω)=

M∑

k=0

qk(∆ω)k. (5.6b)

Similarly to the Taylor series expansion (5.2), the approximation to u(ω0 + ∆ω) is

given by the unique determination of the coefficients pk and qk. These coefficients can

be determined in several ways [125], but a straightforward approach is to consider the

Padé approximation as a re-arrangement into a rational function of the Taylor series

expansion (5.2) to the order L + M . Follows that the pk and qk coefficients are solution

of a system of linear equations established from the constraint

AL+M (∆ω) =
PL(∆ω)

QM (∆ω)
. (5.7)

The system of equations arises from the following rewriting of the constraint,

PL(∆ω)−AL+M (∆ω)QM (∆ω) = 0, (5.8)

where the coefficients of equal order in ∆ω are extracted to form a set of (L + M + 1)

equations. In the form of Eq. (5.8), the linear system of equations allows zeros forQM (∆ω),

which makes it more suited to account for resonances in the original frequency response.

However, this underdetermined system of equations (5.8) gives only a solution of the

(L+M + 2) coefficients to within a multiplicative constant. Therefore, these are usually

normalized so that the zero-order coefficient of the denominator, q0, is set to 1 [125].

Subsequently, the following set of equations arises,

p0 = a0

p1 − a0q1 = a1
...

pL − aL−1q1 − · · · − a0qL = aL

−aLq1 − aL−1q2 − · · · − aL−M+1qM = aL+1

...

−aL+M−1q1 − aL+M−2q2 − · · · − aLqM = aL+M





, (5.9)

where {
ak = 0 if k < 0

qk = 0 if k > M
.
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5.2. SERIES EXPANSION AND PADÉ APPROXIMANTS

Following Eqs. (5.3) and (5.4), giving the expression of the coefficients ak =
u(k)(ω0)

k!
, the

system of equations (5.9) can be written explicitly involving the (L+M) first derivatives

of u(ω) at ω0,

k! pk −

(
k∑

l=1

(
k
l

)
l!u(k−l)(ω0)ql

)
= u(k)(ω0), for k = 0, . . . , L+M, (5.10)

with {
pk = 0 if k > L

ql = 0 if l > M
,

and where the binomial coefficients are given by
(
k
l

)
=

k!

l!(k − l)!
. (5.11)

This set of equations can be solved numerically in a matrix form, for each degree of

freedom j, thus involving the solution of N small problems of dimension (L+M + 1),

[A](j)




p0
...
pL
q1
...

qM




(j)

=




u(ω0)
...

u(L)(ω0)

u(L+1)(ω0)
...

u(L+M)(ω0)




(j)

, for j = 1, . . . , N. (5.12)

Based on the solution at one point, u(ω0), this method is referred to as the single-point

Padé approximation in the literature. It can be easily extended to several points, as pre-

sented for instance in [122]. The aim being to estimate the combination of such an approach

with the reduced models established in this thesis, use of multi-point Padé approximations

is considered as a natural extension to the present work.

Similarly to an approximation of the solution using Taylor series expansion, the reso-

lution of systems of equations (5.12) requires the determination of the (L+M) derivatives

of the solution vector u(ω) at ω0. This aspect is developed in the following section.

5.2.2 Successive derivatives of the solution vector

The successive (L+M) derivatives of u at angular frequency ω0 can be derived from

differentiating Eq. (5.1) with respect to ω. At the order k of differentiation, the following

expression arises,

k∑

j=0

(
k
j

)
Z(k−j)(ω0) u

(j)(ω0) = f (k)(ω0), for k = 1, . . . , (L+M), (5.13)
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where the zero-order derivatives correspond to the non differentiated functions. Extracting

the highest-order term from the summation in Eq. (5.13) leads to the following recursive

expression of the k-order derivative of u at ω0,

Z(ω0)u
(k)(ω0) = f (k)(ω0)−

(k−1)∑

j=0

(
k
j

)
Z(k−j)(ω0)u

(j)(ω0), for k = 1, . . . , (L+M). (5.14)

This implies that the successive derivatives of u required for the determination of the

Padé approximations can be efficiently computed as the solution of a system of equations

of dimension N , with multiple right-hand sides. In fact, the resolution can be performed

by direct methods using a decomposition of the system matrix. The factorization, as the

most time-consuming step of the solution, needs to be done once initially, providing very

efficient multiple solutions of the system. Regarding the multiple right-hand side vectors,

they are built from derivatives of the system matrix and lower-order-derivatives of the

solution vector. The choices made in this thesis, particularly regarding the poroelastic

formulation where frequency-dependence is borne by scalar functions, imply inexpensive

operations to establish the right-hand side vectors.

5.2.3 Procedure for frequency response reconstruction using Padé ap-
proximants

This section summarizes the steps involved in the computation of the approximate

multi-frequency solution using Padé approximation. They can be separated into two sets,

corresponding to the two previous sections taken in a reversed order:

• First, at a given angular frequency ω0, the solution as well as its successive derivatives

to the order (L +M) are computed according to Eq. (5.14). This implies, for each

frequency around which the solution is to be approximated, the resolution of (L +

M + 1) problems of dimension N in a multiple right-hand side scheme.

• Then, the solution around ω0 is reconstructed, involving the resolution of N problems

of dimension (L +M + 1) (Eq. (5.12)) to determine the Padé approximants corre-

sponding to each degree of freedom. Follows N trivial rational fraction evaluation

(Eq. (5.5)) for each ∆ω at which the approximated solution is to be evaluated.

Given a discretization of the frequency space into intervals associated with their central

angular frequency, the corresponding detailed procedure for one frequency interval is pre-

sented in Algorithm 2.

Three points can be further discussed regarding the given description of the procedure.

The first one consists in choosing the coarse frequencies at which the solution will be
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Algorithm 2 Steps for multi-frequency Padé approximation around angular frequency ω0

1. Compute system matrix decomposition of Eq. (5.1) at ω0

2. Solve Eq. (5.1) for solution u(ω0)
3. for j = 1 to L+M do
4. Solve Eq. (5.14) for solution derivative u(j)(ω0)
5. end for
6. for j = 1 to N do
7. Solve Eq. (5.12) for dof-dependent Padé approximants
8. Evaluate approximate multi-frequency solution around ω0, Eq. (5.5)
9. end for

evaluated, i.e. setting an appropriate discretization of the frequency space. Secondly,

for each coarse frequency, the order of polynomial expansions and the frequency range

of evaluation around ω0 have to be chosen accordingly, which raises the question of the

values of L and M . Thirdly, one has to estimate the conditions of efficiency of such an

approximation scheme.

Although the second and third points are thoroughly discussed by Avery et al. in [122],

for single field structural or acoustic applications, the choice of coarse frequencies has, to

the knowledge of the author, not been been given much attention in the literature. A

suggestion is made in this sense in Section 5.4 of the present work. Regarding the order of

polynomial expansions to consider for both the numerator (L) and the denominator (M)

in Eq. (5.5), the following constraint, suggested in [122], reduces the set of possibilities,

giving satisfying approximations:

M = L+ 1. (5.15)

Furthermore, there is an upper limit to the maximum order that can be set, due to the ill-

conditioned matrix that arises from system of Eqs. (5.12). In the applications considered

in this work, the upper limit was set to Lmax +Mmax + 1 = 12, thus imposing Lmax = 5,

Mmax = 6. Consequently, depending on the frequency discretization chosen for a direct

frequency sweep, the Padé-based approximation is expected to be most efficient if it is

able to converge over several frequency increments around ω0. The time allocated to solve

several different linear systems of N equations is transferred to solving (L+M+1) changing

right-hand-side linear systems of N equations (1 decomposition, and (L+M+1) solutions)

as well as N systems of (L+M + 1) equations, with (L+M + 1) ≪ N . This has proved

extremely efficient when applied to large single field structural or acoustic applications,

with an a priori set frequency discretization of the frequency space [121, 122].

In the following, two extensions to this approach are considered: application of the

method to i) a coupled problem such as the poro-acoustic example considered in the pre-

vious chapter, on which an adaptive frequency discretization scheme is tested, and ii),
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a modal-based reduced version of this system of equations, thus estimating the trade-off

between the information lost via the reduction and the precision needed to establish succes-

sive derivatives of the solution. The latter situation potentially presents an interest in the

situation where, e.g., a reduced-model would be mostly advantageous for memory alloca-

tion purposes, while the Padé-based reconstruction would allow substantial computational

time enhancements.

5.3 Application to the poro-acoustic problem

In this section, the 3D poro-acoustic application presented in Section 3.4.2 is consid-

ered. Simplified notations are introduced in order to establish the applicability of the

Padé-based reconstruction scheme both to the non-reduced and reduced set of equations.

5.3.1 Notations

The previously established sets of equations, both for the non-reduced (symmetrized

version of system (3.19)) and the reduced (Eq. (A.11)) problems, can be expressed as the

following frequency-dependent form, for ω 6= 0,

(
1

ω2
KF +K

(1)
P +

(
K̃f(ω)− P0

)
K

(2)
P + iω b̃(ω)CP − ω2MP

)
X = F, (5.16)

where KF, K
(1)
P , K

(2)
P , CP and MP are symmetric, frequency-independent and real-valued

matrices. They include the acoustic “stiffness” for KF, the acoustic “mass”, the poro-

acoustic coupling terms together with the zero-frequency porous stiffness limit for K
(1)
P ,

while K
(2)
P , CP and MP correspond to the porous matrices introduced in Chapter 3. In

the following, these global assembled matrices refer to either their non-reduced or reduced

form. According to the previous section notations, we have

Z(ω) =
1

ω2
KF +K

(1)
P +

(
K̃f(ω)− P0

)
K

(2)
P + iω b̃(ω)CP − ω2MP, (5.17)

which underlines another benefit of the choice made for the poroelastic formulation. In

fact, having the system matrix frequency-dependence borne by scalar functions simplifies

and enhances the application of the Padé approximation compared to a formulation for

which matrix derivatives would have to be considered. For instance, use of a displacement-

pressure poroelastic formulation, known to be computationally efficient, would imply solid

and fluid phase-dependent derivatives, thus involving a more complex implementation of

the reconstruction scheme.
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5.3.2 Expression of useful function derivatives

In order to apply the procedure described in Section 5.2.3, the successive derivatives

of Z (as presented in Eq. (5.17)) with respect to ω are needed to calculate the right-hand-

side vectors in Eq. (5.14). They involve derivatives of four frequency-dependent scalar

functions. Among them, K̃f(ω) and ω b̃(ω), the only non-trivial derivatives, are discussed

in this section. The former, introduced in Eq. (1.20), exhibits no compact analytic form

of its kth derivative. It is thus numerically calculated, tabulated, and referred to as K̃
(k)
f

in the following. Regarding ω b̃(ω), the viscous drag expression being given in Eq. (1.13),

it can be written in the following form,

ω b̃(ω) = Aω (1 + iBω)
1
2 , (5.18)

with

A = σφ2, (5.19a)

B =
4α2

∞
ηρf

σ
2Λ2φ2

. (5.19b)

Follow the derivatives of ω b̃(ω),
(
ω b̃(ω)

)(1)
=A (1 + iBω)

1
2 + i

ABω

2
(1 + iBω)−

1
2 , (5.20a)

(
ω b̃(ω)

)(k)
=(−i)k−3 k

4k−2

|2 (k − 3) + 1|!

|(k − 3)|!
ABk−1 (1 + iBω)−

2(k−2)+1
2 +

(−i)k−2 ω
1

4k−1

(2 (k − 2) + 1)!

(k − 2)!
ABk (1 + iBω)−

2(k−1)+1
2 for k ≥ 2 (5.20b)

Given
(
ω b̃(ω)

)(k)
from Eq. (5.20), and the tabulated expressions of K̃

(k)
f , the kth deriva-

tive of Z(ω) for the poro-acoustic problem is given by,

Z(ω)(k) =





(−1)k (k + 1)!
1

ωk+2
KF + K̃

(k)
f K

(2)
P + i

(
ω b̃(ω)

)(k)
CP − 2ωMP for k = 1

(−1)k (k + 1)!
1

ωk+2
KF + K̃

(k)
f K

(2)
P + i

(
ω b̃(ω)

)(k)
CP − 2MP for k = 2

(−1)k (k + 1)!
1

ωk+2
KF + K̃

(k)
f K

(2)
P + i

(
ω b̃(ω)

)(k)
CP for k > 2

(5.21)

5.4 Adaptive approach for decomposition into frequency in-

tervals

In order to avoid setting an a priori choice of main frequencies at which the solution

is estimated by a direct computation, a simple adaptive approach is proposed. It en-

ables a discretization of the frequency space according to the estimated capability of the

127



5.4. ADAPTIVE APPROACH FOR DECOMPOSITION INTO FREQUENCY
INTERVALS

reconstruction scheme adopted. This limits the lack of precision or the loss in computa-

tional efficiency that would be induced by a too coarse or too refined choice for the main

frequencies. The present approach is based on two aspects: (i) controlling the error of

the reconstructed solution using an error estimation, and (ii) using the frequency interval

of convergence for each main frequency to anticipate the upcoming frequency interval of

convergence.

First, the error estimation used to set a convergence criterion is similar to the one

presented in Section 4.2. Considering the same poro-acoustic test cases in this chapter as

in the previous one, the error due to the reconstruction approach is also estimated in the

poroelastic domain. Thus, it can be expressed similarly to Eq. (4.4), considering ÛP as the

approximated reconstructed solution for the poroelastic field at a given angular frequency

(ω0 + ∆ω). The residual force and displacement vectors also arise from the porous field

solution at (ω0 +∆ω), according to Eqs. (4.2) and (4.3). It is to be noted, however, that

in the case of a Padé reconstruction based on a reduced system of equations for the porous

part of Eq. (5.16), the matrices K
(1)
P , K

(2)
P , CP and MP in Eqs. (4.2)-(4.4) have to be

taken as their modal-reduced version. Again, the estimated error is compared to a given

limit εmax under which the approximated solution is considered sufficiently converged. In

agreement with Section 4.2, this limit is set to 0.1 for the poroelastic domain.

Secondly, as previously mentioned, it is assumed that the frequency interval of con-

vergence for a given central frequency gives a good a priori estimation of the interval of

convergence for the neighbor central frequency. This is of course a strong assumption,

which might be very case-dependent. However, it is reinforced by the fact that, unlike the

behavior of a Taylor series expansion out of their convergence interval, an approximation

by rational function of power series exhibits a rather smooth divergence. Consequently, an

underestimated interval of convergence hinders the computational efficiency by potentially

increasing the number of central frequencies needed, whereas an overestimated interval of

convergence implies non-contiguous converged intervals which might still render a sensi-

ble approximated solution in the gaps. Furthermore, it is also assumed that, given an

increasing modal density for increasing frequencies, the interval of convergence is expected

to decrease with increasing central frequencies. For these reasons, the adaptive recon-

struction scheme is started from the higher frequency range, and propagated to the lower

frequencies with a slight over-estimation of the intervals of convergence.

The successive steps, described in the following, are illustrated in Fig. 5.1.

(a) From the first central frequency corresponding to ω0, in the higher end of the frequency

range, the reconstruction procedure, described in Algorithm 2, is applied and combined

with an error estimation of the approximated solution both towards the lower and the

higher frequencies. When the convergence check, based on the error estimation, is not
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Figure 5.1: Adaptive frequency interval decomposition: blue: central frequency; magenta:
upper limit; green: lower limit
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satisfied anymore, the corresponding upper and lower limits ωf

0+
and ωf

0−
define the

interval of convergence ∆ωf
0 corresponding to the angular frequency ω0 (the exponent f

indicates the final version of these parameters, in contrast to the initial estimations,

denoted by exponent i, introduced a priori for upcoming intervals). In the present

approach, it is considered that the upper limit ωf

0+
either exceeds the frequency domain

of interest, or defines its upper bound.

(b) (resp. (e)) From the previously determined interval of convergence ∆ωf
0 (resp. ∆ωf

1 ),

the central angular frequency ω1 (resp. ω2) associated with the lower-frequency

contiguous interval is estimated. It is positioned half-a-convergence-interval
∆ω

f
0

2

(resp.
∆ω

f
1

2 ) lower than the lower limit ωf

0−
(resp. ωf

1−
). Doing so, the anticipa-

tion of generally increasing intervals of convergence might lead to an overlap of two

contiguous converged intervals. However, this choice is made in order to lower the risk

of non-converged gaps between intervals (see Figure 5.1 (g) and (h)), appearing due

to a locally reduced or asymmetric convergence interval.

(c) (resp. (f)) Once the main frequency is established, the upper and lower bounds for

the interval, ωi
1+ (resp. ωi

2+) and ωi
1− (resp. ωi

2−) respectively, are estimated a priori.

They are determined assuming an interval centered on ω1 (resp. ω2), and of width

(1+α)∆ωf
0 (resp. (1+α)∆ωf

1 ). The parameter α, which accounts for the anticipation of

globally increasing intervals of convergence, is arbitrarily chosen in this work, typically

smaller than 0.2. However, one could argue that α may be estimated considering the

frequency-dependence of the modal density, as it relates to the expected number of

discontinuities per convergence interval.

(d) (resp. (g)) When the upper and lower bounds are estimated, the reconstruction pro-

cedure described in Algorithm 2 is applied. Simultaneously, the error estimation check

is done starting from the lower and higher bounds rather than the central frequency.

In fact, it is expected to have less estimations to make when starting from the bounds

than from the central frequency, provided the overestimation of the interval is sensi-

ble. The actual upper and lower limits of convergence, i.e. ωf

1+
(resp. ωf

2+
) and ωf

1−

(resp. ωf

2−
) respectively, are determined when the convergence check, based on the er-

ror estimation, is satisfied. While the mostly observed situation is that of overlapping

contiguous convergence intervals (Figure 5.1(d)), a gap of non-converged reconstructed

solution can arise (Figure 5.1(g) and (h)) as mentioned in (b).

In case of such gaps in the reconstructed solution, as illustrated in Fig. 5.1(h), two situa-

tions can arise. First, from the error estimations made for frequencies in the gap, and from

the observed continuity of the solution at the upper bound of the gap, the approximated

solution may be considered acceptable. This situation is likely possible due to the smooth
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divergence of the Padé approximation out of its convergence interval, as illustrated in the

results section. Otherwise, if a non acceptable discontinuity in the solution is manifest

at the connection between the gap and the upper-frequency converged interval, an addi-

tional interval needs to be considered. The gap may still be appropriately bridged using

an interpolation based on a third-order Hermite polynomial between the two bounds. In

a more general case, the main frequency is then taken in the middle of the gap, and the

reconstruction procedure is then applied, at a lower expansion order, to estimate the solu-

tion over the entire gap. The latter situation, even though probable in case of important

overestimations of convergence intervals, is not considered in the present work where small

values of α (typically α = 0.1) have been taken into account. Furthermore, following the

appearance of a gap, the converged interval width is presumably reduced compared to the

previous established interval. This implies a reset of the overestimation to be made for

upcoming intervals, and thus introduces another form of self-adaptation in the procedure.

Successive gaps in the procedure consequently indicate that α is overestimated.

5.5 Results

The methods presented in the previous sections of this chapter are tested on simple

poro-acoustic applications, introduced in Chapter 3. First, the impact of increasing the

order of truncation is illustrated in the 1D and 2D poro-acoustic applications, together

with a comparison, for the 1D case, of the precision achieved using a Taylor expansion of

equivalent order. Furthermore, the influence of using Padé approximations on the modal-

reduced set of equations is checked on these two examples. Then, the proposed adaptive

approach is tested successively on the 2D and 3D versions of the poro-acoustic validation

case.

5.5.1 Effect of order increase and approximation of a reduced model -
1D and 2D applications

First, the 1D poro-acoustic application introduced in Section 3.4.1 is used to illustrate

the one-point Padé approximation presented in this chapter. In order to estimate the

impact of increasing the order of truncation for the power series expansions, the entire

frequency range is considered as one interval, whose main frequency is chosen as the

middle frequency. The constraint M = L + 1 is applied, and L varies between 1 and 5.

Furthermore, the procedure described in Algorithm 2 is applied both to the complete FE

model, and to a model for which the poroelastic has been reduced following Sections 3.3.2

and 3.4.1. The porous modal basis includes 4 modes which proved satisfying for the mean

quadratic pressure frequency response (Fig. 3.8). The results are presented in Fig. 5.2.
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Pade approximation on reduced model

(a) L = 1; M = 2
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Reference solution
Pade approximation on reduced model

(b) L = 2; M = 3
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Reference solution
Pade approximation on reduced model

(c) L = 3; M = 4

Figure 5.2: Impact of increasing truncation order for power series - 1D poro-acoustic
problem. Left: Padé on complete problem; Right: Padé on reduced problem.
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(d) L = 4; M = 5
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Pade approximation on reduced model

(e) L = 5; M = 6

Figure 5.2: Impact of increasing truncation order for power series - 1D poro-acoustic
problem. Left: Padé on complete problem; Right: Padé on reduced problem.

Observing the convergence by increasing the order of truncation on the non-reduced

set of equations (Fig. 5.2(a)-(e), left figures), illustrates quite well the potential of using

the Padé approximants for reconstruction of the solution. In fact, at the 11th order of

truncation (L = 5, M = 6), an interval of almost 1250 Hz of width can be reconstructed

from the solution and its derivatives at 1500 Hz. However, beside the fact that the Padé

coefficient system to solve (Eq. (5.12)) becomes rapidly ill-conditioned for orders of trunca-

tion above 8 to 10, the convergence improvements prove very significant up to expansions

(L = 3;M = 4), and slower for higher orders. This can be mostly observed at the upper-

bound of the convergence interval for which the frequency response to approximate is a

rather smooth function of the frequency (range from 2000 Hz to 2250 Hz). At that point,

it is shown in [122] that a multi-point Padé approximation approach can become more ef-

ficient than an increase in the order of truncation. It is an important aspect of the method

to notice that, as already mentioned, the divergence of the approximation immediately

out of the convergence interval is fairly slow.
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Considering the reconstruction procedure applied to the reduced set of equations

(Fig. 5.2(a)-(e), right figures), it is interesting to notice that the approximation made in

the modal-reduction step does not strongly affect the Padé-based reconstruction. In fact,

from expansions (L = 4;M = 5), the convergence interval seems to be slightly larger than

its non-reduced problem equivalent, e.g. around the resonance observed at 1000 Hz. This

trend has however not been reproduced for more complex problems such as the 2D problem

considered in this section, or the 3D example treated in Section 5.5.3. The preserved con-

vergence observed on this simple application is very promising for efficiency considerations

of the method. Thus, for a reduced set of equations, less demanding in terms of memory

allocation, the reduction in the number of sytems (5.12) to solve may partly compensate

for the extra computational cost involved to establish the reduced system.

Furthermore, the precision achieved using a Padé approach rather than Taylor series

is illustrated in Fig. 5.3 for this 1D application (without modal reduction). Orders of

truncation corresponding to those applied with the Padé approach in Fig. 5.2 are used.

The comparison clearly demonstrates the limitations in terms of interval of convergence

using Taylor series, as well as the rapid divergence of the approximation out of this interval.

Similarly to what is done on the 1D poro-acoustic application, the larger 2D poro-

acoustic application introduced in Section 4.5.2 is used to illustrate the convergence of the

approximation around one central frequency. Following the study made in Section 4.5.2,

the reduced set of equations for this 2D application is built including 355 porous modes

in a non-optimized basis: precision rather than computational time is of interest in this

section. The same procedure as for the 1D problem is applied, at a central frequency of

1000 Hz, L varying from 1 to 5. The results are presented in Fig. 5.4.

When compared to results obtained for the 1D problem, it is manifest that the in-

creased complexity of the frequency response alters the interval of convergence of the

approximation. Moreover, when considering the results obtained from the non-reduced

problem (Fig. 5.4(a)-(e), left figures), it is confirmed that there is little significance in in-

creasing the order of truncation above a certain limit to obtain substantial improvements

in the convergence. For instance, the precision is not significantly improved between

(L = 3;M = 4) (Fig. 5.4(c)) and (L = 4;M = 5) (Fig. 5.4(d)).

The observation of Fig. 5.4(c), for (L = 3;M = 4), brings attention to some limitations

inherent to an approximation in the form of a rational polynomial function. In fact,

although there is a good agreement between the reconstructed and the reference responses

between approximately 825 Hz and almost 1200 Hz, the reconstructed solution exhibits a

peak at 950 Hz. This happens for the approximated solutions from both the non-reduced

and reduced set of equations. Arguably, there is a local maximum at this point in the

original solution, corresponding to a damped resonance of the cavity. However, without
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(a) Truncation order 3
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(b) Truncation order 5
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(c) Truncation order 7
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(d) Truncation order 9
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Reference solution
Taylor expansion

(e) Truncation order 11

Figure 5.3: Approximation using Taylor expansions - 1D poro-acoustic problem

error estimation or a posteriori control of the solution, such a reconstructed function could

be physically misleading, not properly estimating the damping in the system. This is

due to the possibility of encountering poles of the rational function within the interval of

convergence. The reader is referred to the discussion found in [126] for further information
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Pade approximation on reduced model

(a) L = 1; M = 2
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Reference solution
Pade approximation on reduced model

(b) L = 2; M = 3
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Reference solution
Pade approximation on reduced model

(c) L = 3; M = 4

Figure 5.4: Impact of increasing truncation order for power series - 2D poro-acoustic
problem. Left: Padé on complete problem; Right: Padé on reduced problem.
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(d) L = 4; M = 5
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Pade approximation on reduced model

(e) L = 5; M = 6

Figure 5.4: Impact of increasing truncation order for power series - 2D poro-acoustic
problem. Left: Padé on complete problem; Right: Padé on reduced problem.

and potential solutions to this issue. However, in the context of this work, this problem

is supposedly avoided considering the highly damped nature of the tested applications,

together with the fact that an error estimation is used in the automatic procedure proposed.

Finally, in agreement with the observations made for the 1D application, using the

reduced set of equations for applying the reconstructing procedure does not hinder the

approximated solution. The slight improvement suggested on the 1D problem is however

not significant on this more complex application.

5.5.2 Adaptive Padé approximation on the 2D poro-acoustic application

The adaptive procedure presented in Fig. 5.1, to automatically define the central fre-

quencies and the associated interval bounds, is applied to the same 2D poro-acoustic

problem as in the previous section. The initial central frequency is chosen at 1900 Hz,

and the maximum error estimation due to the reconstruction procedure is set to 0.1, as
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done in Chapter 4. Following the observations made in the previous section, the order

of truncation is fixed to (L = 3;M = 4). The results, featuring the reference solution,

the reconstructed solution, the successive intervals represented by their central frequency

and their upper and lower bounds, are presented in Figs. 5.5. The solution at the central

frequencies, on which is based the reconstruction procedure, is either the one from the

complete set of equations (Fig. 5.5a), or from the reduced and optimized set of equations

(Fig. 5.5b, see Section 4.5.2), established using 88 porous modes in the basis. The reference

solution plotted is, in both cases, the one obtained using the complete set of equations.

Figures 5.6 present the same mean quadratic pressure frequency responses, for which the

reconstruction intervals have been removed for the sake of clarity. The reconstruction
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Figure 5.5: Adaptive reconstruction procedure applied to 2D problem: (a) from non-
reduced problem; (b) from optimized reduced problem.

based on the non-reduced reference solution is achieved over 11 frequency intervals. Even

though the approximated solution exhibits perfect match with the reference frequency re-

sponse, except for a non-relevant level mismatch at the peak of resonance around 600 Hz,

the error estimation underlines three gaps between contiguous intervals. The first one,

around 1000 Hz, is hardly noticeable on the error estimation plot itself, while the other

two, around 1150 Hz and 1800 Hz are sufficiently small gaps in smooth ranges of the

response to be unnoticeable on the reconstructed solution. Applying the Padé-based ap-

proximation to the reduced set of poro-acoustic equations (Fig. 5.5b) however amplifies

those errors. This is rendered by the error estimation plot, where the 3 previous gaps

138



5.5. RESULTS

are found with higher estimated error levels, and 4 additional gaps are detected. Among

the new gaps, two can be neglected (around 600 Hz and 800 Hz), one is of little width

in a smooth area of the response (around 1700 Hz), and the last one corresponds to the

upper range of the frequency range of interest not matching the upper bound of the ini-

tial interval. However, these gaps give rise to very little mismatch between the reference

solution and the reconstructed one, barely amplifying the error committed by modal re-

duction (e.g. see around 1800 Hz). Consequently to the increase in error estimation, the

adaptive decomposition into frequency intervals exhibits smaller intervals of convergence,

thus increasing their number from 11 to 16. It is further mentioned at this point, that the

results corresponding to a reduced set of equations without further downsize of the modal

basis, as introduced in Chapter 4, are not presented for the sake of conciseness. They

however give the same results as for the reduced and optimized basis. Thus, the interest

of combining the Padé-based reconstruction to a reduced model stands only if the reduced

number of times the Padé coefficients system (5.12) has to be solved compensates for the

extra operations implied by the increased number of intervals and the construction of the

reduced model itself.
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Figure 5.6: Adaptive reconstructed solution for 2D problem: (a) from non-reduced prob-
lem; (b) from optimized reduced problem.

A comparison of the CPU times needed for the computation of the direct reference so-

lution, with the Padé-reconstructed solution based on (i) the complete set of equations, (ii)
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the reduced set of equations, and (iii) the optimized-reduced set of equations, is presented

in Fig. 5.7. Its interpretation gives a manifest contribution to answer the computational
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Figure 5.7: CPU time comparison for reconstructed solution from non-reduced, reduced,
and optimzed reduced 2D problems, (L = 3;M = 4)

efficiency issue just raised. First, for a frequency-sweep with increments of 4 Hz, cor-

responding to 500 points of computation, the Padé-reconstructed solution based on the

complete set of equations is more than 9.5 times as fast as the direct solution, thus confirm-

ing the potential of this approach. Of course, such an efficiency estimation is dependent,

among other things, on the level of refinement for the frequency sweep, which is costless

to increase in the case of the reconstructed solution. Then, for the considered application,

applying the procedure to the problem with modal-based reduction (optimized or not) of

the poroelastic domain is so computationally efficient that it compensates both for the

cost of establishing the reduced model, and for the extra intervals needed to accurately

rebuild the whole solution. Thus, not only does combining the Padé-based reconstruction

with the modal reduction enable to save memory resources, but it also has the potential

to improve the computational efficiency, while keeping a satisfactory level of precision.

5.5.3 Adaptive Padé approximation on the 3D poro-acoustic application

The proposed approach is further tested on the 3D poro-acoustic application intro-

duced for modal-based reduction in Section 3.4.2, and further considered for enhanced

modal reduction purposes in Section 4.5.3. Unlike for the 2D case, the results are how-

ever presented for two different truncations of the series expansion: (L = 3;M = 4)
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and (L = 5;M = 6). In both cases, the initial central frequency is chosen at 1975 Hz,

while the error estimation limit is kept at 0.1. The results, featuring the reference solu-

tion together with the reconstructed solution and its associated intervals, are presented

in Fig. 5.8 for the (L = 3;M = 4) truncation, and in Fig. 5.9 for the (L = 5;M = 6)

truncation. Similarly to the 2D application, the Padé-based reconstruction is combined

with the non-reduced, reduced, and enhanced-reduced sets of equations. For the sake

of conciseness, only the former and latter need to be presented. The reference solution
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Figure 5.8: Adaptive reconstruction procedure applied to 3D problem with L = 3, M = 4:
(a) from non-reduced problem; (b) from optimized reduced problem.

corresponds to the solution without reduction of the poroelastic domain. The version

of the results without plotting the reconstruction intervals is given in Fig. 5.10, for the

Padé-based reconstruction combined with the enhanced-reduced set of equations, as being

potentially the least accurate of the three results. The Padé reconstruction applied to the

non-reduced set of equations is achieved over 21 frequency intervals for the (L = 3;M = 4)

truncation (Fig. 5.8a). It exhibits one gap between approximatively 615 Hz and 640 Hz,

and a solution not converged in the very upper frequency range of interest due to the choice

of initial central frequency. However, for the same reasons as for the 2D case (choice of

limit for error estimation, smooth divergence of the method out of its convergence inter-

val), the reconstructed solution accurately matches the reference solution. Again, use of

the enhanced-reduced set of equations for the solution at central frequencies leads to a

loss in precision (Fig. 5.8b). Follows an increase in the error estimation, thus achieving a
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Figure 5.9: Adaptive reconstruction procedure applied to 3D problem with L = 5, M = 6:
(a) from non-reduced problem; (b) from optimized reduced problem.
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Figure 5.10: Adaptive reconstructed solution for 3D problem from optimized reduced
problem: (a) L = 3, M = 4; (b) L = 5, M = 6.
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solution reconstructed over 24 intervals to be compared with the 21 intervals previously

needed. In addition to the upper bound, 8 gaps have appeared, of which 4 can be ne-

glected. Among the 4 remaining gaps, the one just below 600 Hz is of concern, considering

its location around a resonance frequency, which could justify adding an interval to bridge

the gap. However, its width is of approximately 10 Hz, it renders a peak in the fre-

quency response, and its upper bound matches the lower bound of the contiguous interval.

These, as confirmed by the comparison with the reference solution, very likely indicate

a good approximation of the response. Finally, the gap between 160 Hz and 200 Hz is

due to the special treatment applied to the lowest-frequency interval, not addressed in the

presentation of the procedure, and not further detailed in this work. Again, the match-

ing solution between the upper bound of the gap and the lower bound of the contiguous

interval indicates a good approximation.

A similar analysis can be conducted when analyzing the results for the procedure with

a truncation order of (L = 5;M = 6) for the series expansions (Fig. 5.9). Increasing

the order of truncation leads to reconstructed solutions over 15 and 18 intervals for the

Padé-based procedure, when applied to the non-reduced and optimized-reduced sets of

equations respectively. This is consistent with the larger interval of convergence observed

in Section 5.5.1 when increasing the order of truncation. Again, a very good agreement

can be observed between the reference solution and the reconstructed solutions. The

only mismatch observed, similarly to what can be observed for the lower truncation order

(Fig. 5.8b, 5.9b and 5.10), is the level of the 3 peaks of resonance above 900 Hz. Regarding

those, it can be argued that they do not have prime physical significance considering how

little damped these resonances are, and thus how frequency-shift-dependent their level

determination is.

The impact of increasing the order of truncation is further estimated by comparing the

CPU computational times. They are presented in Fig. 5.11, both for a truncation order

of (L = 3;M = 4) (Fig. 5.11a), and for a truncation order of (L = 5;M = 6) (Fig. 5.11b).

The computational efficiency observed for the 2D case is confirmed. Using a Padé-based

reconstruction approach leads to a frequency sweep almost 9 times as fast as for a direct

approach, considering frequency increments of 2 Hz for this 3D application. Combining

it to a modal-based reduced set of equations does not substantially improve the overall

computational time, if accounting for the time allocated to establish the reduced problem.

However, the averaged time per frequency increment is greatly improved, so that it even

compensates for the cost of building the reduced model if the optimized modal basis is used.

Regarding the impact of increasing the order of truncation, it appears, when comparing

Fig. 5.11a and Fig. 5.11b, that there is a trade-off to be found. In fact, as presented in

Section 5.5.1, there is a limit above which, increasing the order of truncation does not
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Figure 5.11: CPU time comparison for reconstructed solution from non-reduced, reduced,
and optimzed reduced 3D problems: (a) L = 3, M = 4; (b) L = 5, M = 6.

substantially increase the intervals width of convergence, implying little reduction in the

number of central frequencies at which the complete solution has to be calculated, thus

not compensating for the increased size of the Padé coefficient system to solve (Eq. (5.12))

for each dof. For the applications considered in the scope of this work, the order of

truncation (L = 3;M = 4), has proved a good compromise for computational efficiency,

while ensuring a well-conditioned Padé coefficient system matrix.

5.6 Conclusion

In this chapter, the one-point Padé-based reconstruction method for efficient frequency

sweep analysis was presented. It involves the approximation of frequency-dependent so-

lutions by a rational function of power series expansions. It was restricted, in this work,

to the general form of problems exhibiting frequency-independent global assembled matri-

ces multiplied by frequency-dependent scalar functions. The finite element formulations

established in the previous chapters, either in their non-reduced or modal-reduced form,

satisfy this property. Therefore, this proved-efficient reconstruction scheme was applied

to acoustic applications including 3D modelling of sound absorbing porous materials.

Beside tests made to choose an appropriate truncation order for the power series, an

adaptive approach was proposed in order to automatically determine the main frequencies

at which the complete direct solutions have to be computed, and around which the solu-

tion is approximated. This involves using an error estimation associated with the solution

around each main frequency, thus establishing frequency intervals of converged solution.

Such converged intervals are used to estimate a priori the frequency interval of conver-
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gence for the neighbor main frequency before some a posteriori adjustments. This simple

approach proved to produce accurate frequency responses in a very computationally ef-

ficient way for the configurations tested. Thus, the proposed method avoids an a priori

knowledge of the dynamic behaviour of the problem for the choice of main frequencies.

Furthermore, it reduces the risk of setting a too coarse or too fine a priori discretization

in frequency intervals, that would respectively hamper the solution accuracy or efficiency.

Additionally, the Padé-based reconstruction method was tested in combination with

modal-based reduced problems, as introduced in Chapters 4 and 5 for the poroelastic

domain. Such a combined approach takes advantage of the complementary properties of

these methods. First, using a modal-based reduced problem saves memory resources. The

reconstruction approach then enhances dramatically the solution time for the frequency

response over the range of interest. While very dependent on the application, and shown

particularly efficient for very large applications, improvements by an order of magnitude

were observed on the tested applications. Furthermore, the loss in precision due to the

reduction implies the need for a finer decomposition into frequency intervals for the re-

construction scheme. However, this increase in the number of main frequencies is shown

to be more than compensated by the improved efficiency of the reconstruction due to the

reduced number of dofs. For the considered examples, the computational efficiency im-

provements due to this reduced set of dofs even compensates for the initial computational

cost allocated to establish the reduced model.
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Chapter 6

Applications, perspectives and
conclusive remarks

Abstract: In this chapter, the methods proposed in Chapters 2-6 are tested

on an application larger than those used for validation purposes. It involves

structural, acoustic and porous domains, thus allowing for an estimation and

comparison of the potential of each of the approaches tested in the thesis. Con-

clusions are drawn in terms of performance, limitations and further research

to be conducted following this work.
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6.1. INTRODUCTION

6.1 Introduction

The aim of this last chapter is to test the methods proposed in the thesis on a more

complex application than those tested for validation purposes in Chapters 2-6. The mean-

ing of complexity in a dynamic problem may refer to several characteristics, e.g. its

dimensions (size, multiscale), its frequency content and range, its phenomenology (mul-

tiphysics), its geometrical complexity. The application chosen here involves structural,

acoustic and porous domains. It is close to the concrete car problem used in Chapter 2,

thus presenting an increased complexity in terms of dimensions, frequency content, and

phenomenology. This complexity is however limited both by regular geometries and the

use of porous materials in simple configurations (single layer, backed with a rigid wall).

It nevertheless enables to estimate the potential performance of the proposed methods

(previously measured using indicators such as the sparsity, bandwidth and size enhance-

ments of the problems to solve). The conclusions drawn also provide indications on further

research and tests to be conducted in order to bring the necessary enhancements leading

to a final methodology.

The chapter is organized around 3 sections. First, the poro-elasto-acoustic application

is presented. Then, the modal-based methods presented in Chapters 2-4 are tested for

their performance. The last part presents the results obtained applying a Padé-based

reconstruction strategy, both for the complete model as well as in combination with a

modal approach.

6.2 Presentation of the application

6.2.1 Validation case proposed by the Mid-Frequency project

6.2.1.1 Presentation of the problem

The validation case proposed by the “Mid-frequency” EU project [127] consists of a

rigid acoustic cavity with one flexible wall (2 mm-thick steel plate), the rigid floor being

covered with a 50 mm-thick melamine foam. The geometry and the FE model are presented

in Fig. 6.1. The mesh includes:

• 12453 linear tetrahedron acoustic elements (mean size 0.09 m), i.e. approximately

8 elements per wavelength at 500 Hz, corresponding to 22983 nodes (and acoustic

dofs),

• 16× 34 linear quad shell elements (mean size 0.05 m), i.e. approximately 1 element

per quarter structural bending wavelength at 500 Hz.
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Figure 6.1: Geometry and mesh of the finite element model.

The plate is considered clamped along its edges, and is excited by a shaker at the position

(x = 4.02 m, y = 0.2 m, z = 0.35 m). The melamine foam is modelled in the original

problem by a normal acoustic impedance boundary condition, tabulated and provided in

1 Hz increments after measurements with a Kundt’s tube (see Fig. 6.2).
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Figure 6.2: Normal acoustic impedance boundary condition.
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In order to test the modal-based approach proposed in the thesis for poroelastic materi-

als, a 5 cm-thick layer is optionally added on one wall of the acoustic cavity. It is modelled

with a 3D mesh using the displacement formulation of the Biot-Allard theory. Similarly

to the concrete car model in Chapter 2, the layer is attached to the back wall, while slid-

ing boundary conditions are set on the side faces. The mesh, consisting of 6 × 20 × 34

linear brick elements, involves 25116 poroelastic dofs. The case with 3D modelling of the

porous layer is presented in Section 6.2.2 for the reference solution, and is further tested in

Section 6.3 for the validation of the proposed modal-based reduction of the porous domain.

The reference response, without the 3D porous layer, is given at an output point in

the acoustic cavity around position (x = 0.51 m, y = 0.425 m, z = 0.5 m), as suggested

in the original model. Thus, Fig. 6.3 presents a reference solution for the sound pressure

level at position (x = 0.534 m, y = 0.403 m, z = 0.495 m), for the model without addition

of the 3D porous layer. Both the responses with and without the impedance boundary

conditions are given for comparison. The non-damped solution illustrates the evolution
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Figure 6.3: Reference sound pressure level response at output point, without 3D porous
layer.

of the modal density along the frequency range of interest, which becomes challenging for

a modal approach in its higher end. The response of the impedance-damped problem is

not to be considered below ca. 20 Hz, considering the impedance measurement provided

is irrelevant in this frequency range.

The use of a single point as an output is however not completely relevant for an analysis

beyond the very low frequency region. As illustrated in Fig. 6.4, the response becomes very

sensitive to small variations of the parameters with increasing frequencies (here illustrated
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with small variations of the measurement position). A deterministic evaluation approach is
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Figure 6.4: Spatial sensitivity of the response, 6 points in a cubic zone of 10×10×10 cm3.

thus not entirely relevant, and an averaged response over a significant volume could be more

appropriate. However, for the sake of testing the modal reduction approaches proposed,

the response at a single output point is a relevant reference to match. Nevertheless, for

this reason, the comparisons between solutions of the non-reduced and reduced problems

are sometimes completed by comparisons on the mean quadratic pressure in the acoustic

cavity.

6.2.1.2 Modal reduction of the acoustic domain

First, on the model without the 3D porous layer, a restrained-interface modal reduction

of the acoustic component is applied, according to the method discussed in Chapter 2. The

acoustic “interface” (or master) dofs include those at the interface between the acoustic

and structural domains, those at the applied impedance boundary, and the output dof.

This represents 1931 acoustic master dofs. The responses for a modal basis truncated

at 1060 Hz (ca. twice the highest frequency of interest) and 1250 Hz (2.5 times the

highest frequency of interest) are presented in Figs. 6.5. The solution with an acoustic

modal basis truncated at 1060 Hz already produces a good approximation of the solution,

hardly noticeably improved, at the plotted scale, with a truncation at 1250 Hz. In both

cases, the problem is dynamically condensed, from an initial problem of 25953 dofs to

a reduced-problem of 4901 dofs. An estimate of the computational time is presented in

Fig. 6.6, comparing the direct solution of the complete problem with its acoustic-reduced

versions. Table 6.1 further details the CPU time allocated to each step of the reduction
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Figure 6.5: Sound pressure level at output point: dynamic condensation of acoustic do-
main, (a) modal truncation at 1060 Hz; (b) modal truncation at 1250 Hz.
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Figure 6.6: Computational time comparison, reference problem without 3D porous layer
and dynamic condensation of acoustic domain.

process. These problems were run on a single processor, Intel T9500 at 2.6 GHz, with 3

GB of memory, in a Linux environment under Matlab 2006b. The dynamic condensation

of the acoustic domain enables, for this problem, a solution of the frequency response

approximatively 3 times as fast as for the initial problem. The speed-up is of a factor 4

if the initial step for the reduced model is not accounted for. Furthermore, in agreement

with the observations made in Chapter 2, the computational time for the solution step is

hardly affected by the increase in the number of modal coordinates, as they are dynamically
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Truncation 1060 Hz Truncation 1250 Hz

No reduction [N dofs] 15600 s [25953] 15600 s [25953]

Eigenvalue problem [N modes] 714 s [840] 1460 s [1253]

Attachment functions [N vectors] 222 s [1931] 221 s [1931]

FRF reduced problem [N dofs] 3775 s [4901] 3931 s [4901]

Overall CPU, reduced problem 4711 s 5612 s

Table 6.1: Details for computational time comparison, reference problem without 3D
porous layer and dynamic condensation of acoustic domain.

condensed at each frequency step.

6.2.2 Extension with addition of a porous layer

The version with addition of the porous layer modelled with 3D elements is run on a

single processor, Intel W5590 at 3.33 GHz, with 48 GB of memory, in a Linux environment

under Matlab 2010a. The 3D modelling of the porous layer using the (us,uf) formulation

involves 25116 poroelastic dofs. The same porous material as the one in Chapters 3-5

is used (see material parameters in Table 3.1). However, in this chapter, the structural

damping in the frame, ηs = 0.1, is taken into account following the description made in

Eqs. (3.10). Fig. 6.7 presents the reference solution, comparing the sound pressure level

at the output point, for the problems with and without the porous layer in the range

[0-400] Hz. Among the effects on the frequency response, a slight frequency shift towards
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Figure 6.7: Reference sound pressure level response at output point, with 3D porous layer.
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lower frequencies can be observed. The response remains close, in its dynamic content,

to the case with only the impedance boundary conditions, with some level differences at

resonances (e.g. at 150 Hz) or anti-resonances (e.g. at 175 Hz, 220 Hz, 255 Hz). The

modal-based reductions of both the acoustic and porous domains are successively tested

in the following section.

6.3 Modal approach for the acoustic and porous domains

In this section, after checking the dynamic condensation of the acoustic domain, the

proposed methodology applied to the porous domain is tested. First, the modal-based re-

duction using a rule of thumb truncation criterion (twice the highest frequency of interest)

is presented, followed by further reductions of the porous modal basis, before concluding

with the combination of both the acoustic and porous domains reduced. However, further

condensation of the coordinates corresponding to orthogonal porous modes (as presented

in Section 3.3.3) is not discussed here, even though it is expected to bring substantial

efficiency improvements considering the size of the modal bases involved. Finally, the

computational times presented are only given for qualitative estimations. Quantitative

estimations would require more attention given to the implementation, which is beyond

the scope of the present work. The objective is primarily to validate the potential of the

proposed approach on a larger scale problem.

6.3.1 Modal reduction of the acoustic domain

The dynamic condensation of the acoustic domain to its interfaces with (i) the struc-

tural domain, (ii) the impedance boundary conditions, and (iii) the porous layer is first

tested alone. Thus, the complete problem is downsized from 51069 to 30717 dofs (2631

interface, 2970 structural and 25116 poroelastic dofs). The truncation of the modal ba-

sis is chosen at 1250 Hz as previously shown converged for the case without the porous

layer. It then corresponds to a truncation at more than 3 times the highest frequency of

interest, which is considered to be a safe truncation. This is confirmed in Fig. 6.8, pre-

senting a superposition of the response at the output acoustic point for the complete and

acoustic-reduced problems. An excellent match is observed in the low frequency range,

up to 200 Hz, while presenting a few level errors above, around some anti-resonances (e.g.

220 Hz, 385 Hz). However, these small, localized convergence errors can be put into per-

spective with the spatial sensitivity plot in Fig. 6.4, and may be of very little significance

on a spatially averaged output.

The computational time improvement is presented in the synthesis Table 6.3.
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Figure 6.8: Sound pressure level at output point: dynamic condensation of acoustic do-
main, modal truncation at 1250 Hz.

6.3.2 Modal reduction of the porous domain

The modal-based reduction proposed in Chapter 3 is here applied to the porous layer.

First, the truncation of the porous modal basis is set to twice the highest frequency of

interest, 800 Hz. This leads to a large modal basis to be computed, including 4775 porous

coupled modes. The corresponding SPL frequency response at the output point is given in
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Figure 6.9: Modal reduction of porous domain, modal truncation at 800 Hz.
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Fig. 6.9, together with the reference solution. It results in a fairly good approximation of

the solution on the entire frequency range, with a few localized level errors. For instance,

slight frequency shifts towards low frequencies can be observed in the ranges [175-230] Hz

or [330-340] Hz. Thus, being very sensitive to slight frequency shifts, peaks of resonance

or anti-resonance such as ca. 80 Hz, 95 Hz, 140 Hz, 255 Hz or 330 Hz are misevaluated.

Overall, the dynamic response of the system as measured at the output point is globally

well represented, and is expected to match even better for a local spatial average evaluation

of the response. Furthermore, the slight frequency shift observed indicates the possibility

of using a correction vector in the basis, which is one previously mentioned development

to enhance the present work.

Before testing the mode selection procedure proposed in Chapter 4, a more severe

truncation of the modal basis is attempted, with modes up to 400 Hz. This involves 3000

modes included in the basis. The corresponding SPL frequency response at the output

point is presented in Fig. 6.10. For this specific problem, further truncation leads to minor
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Figure 6.10: Sound pressure level at output point: modal reduction of porous domain,
truncation at 400 Hz.

changes in the approximation made, mostly in the higher end of the frequency range.

However, a wider range of tests on different types of applications would be required in

order to modify the a priori truncation rule of thumb for poroelastic materials. This is

considered a perspective to the present work. However, an a priori overestimation of the

truncation is partly compensated by the further mode selection procedure applied in the

following section.

In order to better illustrate the satisfactory level of precision achieved by the modal re-
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duction, the mean quadratic pressure frequency response in the cavity is shown in Fig. 6.11,

both for the reference and the reduced solutions (truncation at 400 Hz). A very good agree-
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Figure 6.11: Mean quadratic pressure in cavity: reference solution and modal reduction
of porous domain, truncation at 400 Hz.

ment between the two solutions can be observed on the response in terms of this volume

averaged quantity, however still noticing a few localized minor discrepancies around some

resonances (e.g. 125 Hz, 190 Hz, 225 Hz).

6.3.3 Enhanced modal reduction of the porous domain

Assuming that a classical truncation estimation is applied, in order to select the porous

modes up to an eigenfrequency of 800 Hz (4775 modes), the mode sorting and further

truncation procedure presented in Chapter 4 is tested. Considering the much more complex

frequency content as compared to the applications previously tested, 10 residual responses

are used for the procedure described in Algorithm 1. These are calculated for a problem

where only the porous domain is reduced, including the first 15 porous modes in the modal

basis. The number of modes for these poor approximate solutions is arbitrarily set to 15,

thus at least capturing the very low frequency behaviour of the poroelastic domain. The

10 residual vectors are calculated at evenly distributed frequencies between 100 Hz and

370 Hz with increments of 30 Hz.

Fig. 6.12 illustrates the participation of each of the 4775 modes (sorted accordingly)

to the real part of the residual response at 100 Hz. The same trend is observed for

the participations to all other residual vectors, and it is to be compared with the mode
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Figure 6.12: Normalized mode participations to the real part of the first residual response
(100 Hz), logarithmic scale.

contributions estimated for the simple corner-excited cavity treated in Chapter 4, Fig. 4.6b.

In the present application, the modes participation is more evenly spread, and it therefore

indicates that a greater proportion of porous modes are excited (more complex source and

acoustic field). Consequently, further truncation of the basis cannot be as beneficial as in

the case of Chapter 4 (basis downsized to almost 10% of its original size, with a truncation

limit of χmax = 0.27).

The truncation limit, following the definition proposed in Eq. A.18, is set to χmax =

0.45. The corresponding comparison of the response, with and without further reduction

of the modal basis is presented in Fig. 6.13. The modal basis is thus downsized from

4775 to 2688 modes. A very good agreement between the two responses can be observed,

except for mainly 3 peaks: the resonance around 150 Hz, which was already misevaluated,

the anti-resonance around 255 Hz, which seems better evaluated with the further reduced

basis, and the response around 380 Hz which is not well captured by either of the two bases.

These results obtained for a more complex problem confirm the potential of the sorting

and truncation procedure proposed in Chapter 4. It has its greatest potential when such

large bases are generated, suitable for a wide range of solicitations, and need to be refined

to perform best for a specific excitation. As previously mentioned, a natural improvement

of this combination (costly generation of a large basis and problem-dependent downsize in

a second step) is to attempt the generation of a load-dependent Ritz basis.

6.3.4 Modal reduction of the porous and acoustic domains

In this section, both the reduction of the porous domain and the dynamic condensation

of the acoustic domain are combined. The truncations of the bases are chosen from the

reduction experiences presented in the previous section: the acoustic basis is composed of
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Figure 6.13: Sound pressure level at output point: response with modal truncation at
800 HZ, and further reduction with χmax = 0.45.

modes whose eigenfrequencies are lower than 1250 Hz, and for the porous basis, modes

whose eigenfrequencies are lower than 400 Hz are retained. This implies a reduction

from 51069 to 8601 dofs in the problem considered. The sound pressure level frequency

response at the output point is plotted in Fig. 6.14, and compared to the reference solution.

The pollution of approximations due to the reduction of both domains remains limited,
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Figure 6.14: Sound pressure level at output point: modal reduction of acoustic (truncation
1250 Hz) and porous (truncation 400 Hz) domains.
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thus offering a very good estimate of the frequency response. This is further emphasized

when plotting the mean quadratic pressure frequency response in the acoustic cavity, as

presented in Fig. 6.15. The dynamic content is very well represented, particularly in the
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Figure 6.15: Mean quadratic pressure in cavity: modal reduction of acoustic (truncation
1250 Hz) and porous (truncation 400 Hz) domains.

low frequency range, while the response becomes slightly underestimated in the higher end

of the frequency range.

After estimating the accuracy achieved for different combinations of modal-based re-

duced domains, the following section focuses on efficiency comparisons between these so-

lutions.

6.3.5 Computational time estimates and comparisons

It is recalled that the computational time estimates provided in this section aim primar-

ily at bringing qualitative conclusions for the different solution schemes tested. Accurate

quantitative estimates would require more attention given to the implementation for the

different methods.

Figs. 6.16 present an estimation of the computational times for the solutions made

in the previous sections: the reference direct solution, the solutions with the acoustic dy-

namic condensation (truncation at 1250 Hz), with the modal-based reduction of the porous

domain (800 Hz truncation, its further reduced version, and 400 Hz truncation), and with

both the acoustic and porous domains reduced (truncation at 1250 Hz and 400 Hz re-

spectively). For the sake of clarity, a detailed comparison between the reduced models is
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plotted in Fig. 6.16b without the reference solution. Overall computational time enhance-
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Figure 6.16: Computational time comparison: (a) comparison with reference solution, (b)
detailed comparison for acoustic and/or porous reduced domains.

ments range from almost a factor 4 (porous reduction alone with truncation at 800 Hz) to

almost a factor 10 (acoustic dynamic condensation, truncation at 1250 Hz together with

porous modal reduction, truncation at 400 Hz) for this specific application. The heavy

cost allocated to the computation of the porous modal basis (e.g. 800 Hz truncation,

4775 modes), is rapidly compensated due to the efficiency improvements. Use of further

reduction procedures, as described in Chapter 4, enables to improve the frequency sweep

in case of over estimation of the a priori truncation of the porous basis. Thus, the cost

of the initial step is at worse compensated after 20 increments of the reference solution in

the present case.

Tables 6.2 and 6.3 quantify the computational time allocated to the main steps of each

calculation, illustrated in the detailed plot in Fig. 6.16b. A few conclusion can be drawn

out of these estimates.

First, if only the porous reduction is considered, the solution effort greatly benefits

from the downsize in the number of modal coordinates. This can be partly explained

by the higher density of the porous reduced submatrices when compared, for instance,

with acoustic matrices, and mostly by the cost induced by the attachment functions,

fully coupling the interface dofs to the modal coordinates. The need for further work in

order to establish sensible truncation estimates is thus highlighted. It also underlines the

interest for the mode selection procedure proposed, in order to keep the size of the basis

as small as possible and suitable for the considered analysis. In addition, although not

tested on these examples, the identification of the modal coordinates corresponding to
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Porous (800 Hz) Porous (400 Hz)

No reduction [N dofs] 124600 s [51069] 124600 s [51069]

Eigenvalue problem [N modes] 5740 s [4775] 2745 s [3000]

Attachment functions [N vectors] 105 s [735] 105 s [735]

FRF reduced problem [N dofs] 27720 s [30728] 17050 s [28953]

Overall CPU, reduced problem 33565 s 19900 s

Further reduction procedure 236 s –

[N residual, χmax, N modes] [10, 0.45, 2688] –

Further reduced problem [N dofs] 16410 s [28641] –

Overall CPU, further reduced 22491 s –

Table 6.2: Details for computational time comparison, modal-based reduction of porous
layer.

Acoustic (1250 Hz)
Acoustic & Porous

(1250 Hz, 400 Hz)

No reduction [N dofs] 124600 s [51069] 124600 s [51069]

Eigenvalue problem [N modes] 550 s [1253] 550 + 2745 s [1253, 3000]

Attachment functions [N vectors] 370 s [2631] 370 + 105 s [2631, 735]

FRF reduced problem [N dofs] 22270 s [30717] 9470 s [8601]

Overall CPU, reduced problem 23190 s 13240 s

Table 6.3: Details for computational time comparison, modal-based reduction of acoustic
domain and porous layer.

linearly independent porous eigenvectors would enable their dynamic condensation, thus

potentially greatly improving the efficiency (as shown in Chapter 3).

Furthermore, it appears that the modal reduction of the porous layer is advantageous

in the present application due to the high inner-to-interface ratio of porous dofs. This

raises another important well-known issue to further assess as an extension to this work:

in more realistic setups where multilayer sound packages would be involved, the efficiency

of a modal approach is then very dependent on the choice of the interface modelling.

Considering the potentially large sizes of the bases, direct modal coupling from one layer

to the other may then not offer the best answer. Use of generalized interface coordinates or

Lagrange multipliers could be suitable solutions for this purpose, and remain as extensions

to the present work.

Finally, downsizing the acoustic domain, as presented in Chapter 2, offers the same

order of reduction as for the porous domain in this example. Due to a better preserved

bandwidth (fully populated interface-sized submatrix only, as the attachment coupling

submatrices are dynamically condensed), the corresponding CPU time is slightly enhanced

at equal size of problem. Combining both the reduction of the acoustic and the porous
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domains leads to a much further improved efficiency. Thus, such a reduced model is

processed almost an order of magnitude as fast as the reference solution, even though 30%

of the computational cost is associated with the initial reduction step. Put into perspective

with the highly acceptable accuracy achieved (Section 6.3.4), such a combination thus

offers an excellent cost versus accuracy tradeoff for the considered type of application.

It is therefore retained for further tests in the following section, comparing the effects of

using the Padé approximation on the complete model or its reduced version.

6.4 Padé reconstruction

In this section, the one-point Padé reconstruction procedure is applied to the refer-

ence solution of the elasto-poro-acoustic problem (Section 6.2.2), as well as to its porous-

and acoustic-reduced version (Section 6.3.4). The adaptive decomposition into frequency

intervals is not tested in this chapter. Rather, fixed frequency intervals are set a priori

in order to estimate the potential of combining a modal-based reduction with the Padé

reconstruction. In the next two sections, the performances are estimated for the recon-

struction of the entire acoustic field only, checking the accuracy obtained on the sound

pressure level frequency response at the output point.

6.4.1 Padé reconstruction of the reference solution

First, the one-point Padé reconstruction is applied to the full FE problem including

the 3D modelling of the porous layer. After preliminary tests, frequency intervals of 10 Hz

are found to be well suited for the entire frequency range, with a truncation order of

(L = 5;M = 6). Thus, 39 central frequencies, evenly distributed from 10 Hz to 390 Hz,

are defined to estimate the solution in 1 Hz increments. The entire acoustic field solution is

reconstructed (22983 dofs), while the accuracy is estimated at the output point only. For

this purpose, the sound pressure level frequency response at the output point is plotted

in Fig. 6.17. The excellent match with the reference solution, over the entire frequency

range, confirms the accuracy of the Padé approximation. It is worth mentioning that in

this case, 10 Hz intervals proved to be close to the actual average interval of convergence of

the reconstruction around each central frequency. Thus, use of the adaptive decomposition

in frequency intervals introduced in Chapter 5 would not bring substantial improvements

to the procedure. The computational time estimates and comparisons are provided in

Section 6.4.3.
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Figure 6.17: Sound pressure level at output point: Padé reconstruction on reference solu-
tion.

6.4.2 Padé reconstruction of the porous- and acoustic-reduced solution

To further estimate the potential of the Padé reconstruction applied to an approximate,

reduced version of the problem, it is tested on the porous- and acoustic-reduced model.

This problem, being the most reduced of all the tested ones in this chapter, has the

potential for substantial computational time enhancements. However, it is also the one

involving the highest level of approximations, which makes it a very good candidate to

estimate the loss of accuracy when combining the two approximations. In fact, due to this

loss in accuracy, preliminary tests suggest that frequency intervals downsized to 5 Hz are

needed to properly render the solution over the entire frequency range (truncation order of

(L = 5;M = 6)). Thus, 79 central frequencies, evenly distributed from 5 Hz to 395 Hz, are

defined for the Padé procedure. The entire acoustic field solution is reconstructed (2631

acoustic interface dofs, followed by post-processing to reconstruct the acoustic field). The

sound pressure level frequency response at the output point is plotted in Fig. 6.18 in

order to estimate the achieved accuracy. It is compared to the porous- and acoustic-

reduced solution, and the reference solution is also included as a dotted line. While very

satisfying on average, the match between the porous- and acoustic-reduced solution and

its Padé reconstructed version is not as good as the agreement observed in the previous

section. Mismatches can be observed at specific frequencies such as around 95 Hz, 150 Hz,

190 Hz, 215 Hz, 255 Hz, 385 Hz. In fact, unlike for the reference solution, the interval of

convergence for the reconstruction is very dependent on the given main frequency in this
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Figure 6.18: Sound pressure level at output point: Padé reconstruction on modal reduction
of acoustic (truncation 1250 Hz) and porous (truncation 400 Hz) domains.

case. Thus, it can vary from as small as 2-3 Hz to more than 10 Hz around the central

frequency. In this case, the adaptive procedure proposed in Chapter 5 may offer some

improvements for both the accuracy and the efficiency of the reconstruction.

The next section discusses an estimated comparison of the computational efficiency

with and without use of the Padé reconstruction.

6.4.3 Computational time estimates and comparisons

Figs. 6.19 presents a computational time comparison between the reference frequency

sweep, the Padé reconstruction procedure (fixed frequency intervals) on the complete prob-

lem, the acoustic- and porous-reduced frequency response and its Padé reconstruction. A

detailed plot excluding the complete frequency sweep is provided in Fig. 6.19b. The com-

putational efficiency of a Padé reconstruction approach is once more demonstrated, being

in this example almost as efficient as the solution with both the acoustic and porous do-

mains reduced. Put into perspective with its achieved accuracy, its possible enhancements

(e.g. a multi-point Padé approach), its ease of implementation with the constant-matrix

arrangement proposed in Chapter 3 for the porous domain, it thus appears to be a very

attractive method for the fast computation of frequency responses.

Furthermore, despite the cost of the initial reduction step for the modal approach,

the combination of both methods proves to be very efficient in the present situation.

Table 6.4 gives further insights into the time allocated to different steps of the procedure.
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Figure 6.19: Computational time comparison with Padé reconstruction: (a) comparison
with reference solution, (b) detailed comparison for acoustic and porous reduced domains.

Thus, the reduced size of the problem to be solved at each main frequency (49 for the

No reduction
Acoustic & Porous

(1250 Hz, 400 Hz)

Overall CPU, without Padé [N dofs] 124600 s [51069] 13240 s [8601]

Initial reduction step – 3770 s

FRF with Padé [N intervals] 13350 s [49] 4210 s [79]

of which [Derivatives/Coefficients] [12770 s/1080 s] [4185 s/25 s]

Overall CPU with Padé 13350 s 7980 s

Table 6.4: Details for computational time comparison using a Padé reconstruction on the
reference problem, and the acoustic- and porous-reduced problem.

reconstruction of the non-reduced problem, and 79 for the reconstruction of the reduced

problem) greatly enhances the computation of the solution vector together with its L+M+

1 = 12 derivatives. For the present application, this corresponds to a factor 3 reduction

from CPU times of 12770 s for 49 frequencies of the complete problem, to 4185 s for 79

frequencies of the reduced model.

Another advantage of using a modal-reduced problem can be extracted from the de-

tailed computational times. Being interested in the reconstruction of the acoustic field

only, Padé coefficients corresponding to 22983 dofs are involved for the complete problem,

while only the solution at interface dofs (2631 dofs) is sufficient for the modal-reduced

problem. The complete solution in the acoustic domain is rebuilt from the interface solu-

tion in a post-processing step. Consequently, the time allocated to the determination of

the Padé coefficients and the estimation of the solution is reduced from 1080 s to 25 s in
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the considered example.

In conclusion, despite the fact that the loss of accuracy required a finer frequency

discretization for the reconstruction, it is in this case more than compensated by the Padé

procedure greatly benefiting from a substantial reduction of the model to be solved. Thus,

for the present problem, combining a modal reduction of the acoustic and porous domains

with a Padé reconstruction strategy over 400 Hz leads to a solution more than 15 times

as efficient as the estimated solution with the complete FE model.

6.5 Conclusion

In this chapter, both the modal-based reduction approach and the one-point Padé

reconstruction procedure were tested on a larger elasto-poro-acoustic application as com-

pared to the validation cases used in the previous chapters. The following conclusions

can be drawn out of the results obtained in terms of accuracy and computational time

estimations:

• The dynamic condensation of the acoustic domain to its interface confirmed to be

satisfactory in terms of accuracy and computational time enhancements. In the

considered example, it is worth noticing that even though a direct modal approach

could have been more appropriate considering the dimension of acoustic interfaces,

the component approach remained computationally efficient. The a priori truncation

of the acoustic modal basis at 2.5 times the highest frequency of interest proved

satisfactory. Considering the small added cost, a truncation at 3 times the highest

frequency of interest was mostly used in order to ensure accuracy of the acoustic

response.

• The modal-based reduction of the porous media proposed in Chapter 3 proved to

be efficient and satisfyingly accurate for the reduction of a single layer backed with

a rigid wall. As expected, large porous modal bases are involved, which implies a

costly initial step in the solution procedure (both in terms of computational time and

memory management). The initial step is however shown to be well-compensated

by the computational enhancements of the frequency sweep. An a priori truncation

criterion of twice the highest frequency of interest was used. However, a truncation

at one time the highest frequency of interest proved to be well suited, which raises

the question of an appropriate a priori truncation estimate. Furthermore, while the

sparsity of the reduced problem confirmed its consequences in terms of computational

time enhancements, further condensation of the modal coordinates corresponding to

the linearly independent modes was not tested. It is however expected to bring sub-
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stantial efficiency improvements, considering the impact of a well preserved matrix

bandwidth at larger model sizes.

• In case of an overestimated truncation, the mode selection and truncation procedure

proposed in Chapter 4 was found to be appropriate for the task. In the considered

application, it enabled the downsizing of the basis truncated at twice the highest

frequency of interest to a smaller size than the one truncated at the highest frequency

of interest, without a significant loss of accuracy. This is particularly encouraging

when put into perspective with the much more evenly spread participation of the

porous modes to the response. In this context, the question of the truncation is once

more raised, and needs to be further evaluated on a wider range of applications.

• Finally, the Padé reconstruction strategy confirmed its high level of computational

performances, achieving excellent accuracy under computational time improvements

of almost an order of magnitude. The adaptive central frequency procedure proposed

in Chapter 5 was not tested, and fixed frequency intervals were set instead. It may

however prove to be most interesting when used in combination with a modal-based

reduced model together with a Padé reconstruction approach. In fact, in such a

solution scheme, the convergence of the Padé method was shown to be dependent

on the choice of the main frequencies. However, even without the use of adaptive

frequency intervals, such a combination of a reduced model (porous and acoustic

domains in this case) with a Padé reconstruction offered benefits in the tradeoff

between representation of the dynamic behavior and computational efficiency.

Following the analysis made of the results obtained, the following non-exhaustive list

of suggestions for further works can be established:

• Considering the expensive generation of the porous modal bases, a more case-related

way of generating the reduction basis, such as the generation of load-dependent Ritz

vectors, may prove more efficient;

• In order to include the proposed reduction of porous materials in more complex

configurations, the handling of interface functions has to be addressed, and the

efficiency of a modal approach in such problems remains to be proven;

• The use of proper a priori truncation estimates for the porous modes needs to be

further investigated in order to improve the initial reduction step of the modal ap-

proach;

• Proper, efficient error estimators are important tools to combine with reduced mod-

els. Therefore, refined estimators providing reliable levels are of utmost importance

in order to provide guidance in the selection of the most efficient reduced models;
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• Although not required for the levels of precision aimed for, the use of enrichment

functions (e.g. orthogonalized pseudo-static responses or residual vectors) to enhance

the achieved accuracy is a natural extension to this work.
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CONCLUSION

The objective of the present work was to propose solution strategies for interior structural-

acoustic applications including 3D modelling of homogeneous and isotropic poroelastic

materials. Solutions were sought in the frequency domain, in response to time-harmonic

excitations, and in the low frequency range. First, focus was given to the acoustic domain,

implementing and testing a dynamic condensation method in an existing FE code (For-

tran implementation). Some conclusions drawn from this preliminary study raised some

questions, which oriented the choices made for the second part of the thesis, focusing on

the porous domain. A porous modal approach, together with a solution reconstruction

strategy using rational function expansions was thus proposed, and validated on simple

poro-acoustic applications. The final part presented a synthesis of the tested methods, ap-

plied to a medium-sized academic application, comparing and demonstrating the potential

of the contributions made.

Summary of the main contributions. In Chapter 2, a CMS approach applied to the

acoustic domain of a coupled elasto-poro-acoustic problem was tested. While very popular

in structural dynamics, the investigation proposed for a medium-sized acoustic applica-

tion allowed to emphasize both the performances and limitations of such an approach in

vibroacoustics. It was implemented in a Fortran FE code (FEAP), in the aim to provide

consistent results in terms of computational efficiency. Essentially, the conclusions drawn

were (i) the computational interest of the approach for high volume-to-interface dofs ra-

tios, (ii) the well-known need to propose a reduced set of attachment functions in order

to maintain the computational efficiency of the method for large interfaces, and (iii) the

potential need to enrich the reduction basis for accuracy purposes in frequency regions of

strong interactions between coupled subdomains. This latter point was particularly taken

into account for the choices made to propose a similar modal approach for porous materi-

als. The results were presented in international conferences (ECCM 2010, WCCM 2010),

partly published in a national conference [128], and fully published in an international

peer-reviewed journal [114].

In Chapter 3, an original way of solving the poroelastic equations was presented,

using a rearrangement of the porous constitutive equation for the (us,uf) formulation.

Following the corresponding variational formulation, a modal approach was proposed for

porous subdomains. It was validated on small 1D and 3D poro-acoustic applications for

both its accuracy and computational efficiency. In addition, the potential of the method

for larger scaled applications was estimated in terms of preserved system matrix sparsity

and bandwidth. The original findings were partly published in an international confer-

ence [129], and are under revision for a contribution into an international peer-reviewed

journal.
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Chapter 4 was dedicated to some enhancements of the modal approach proposed

for the porous materials. Due to the large modal bases involved in 3D applications,

an original refinement procedure was proposed, including a sorting step followed by a

further truncation of the basis. It was tested on 1D to 3D poro-acoustic validation cases,

and showed to partly compensate for the unanswered question of an optimal a priori

truncation criterion for the modal basis. The results were presented in a porous material

dedicated international symposium (SAPEM 2011), partly published in an international

peer-reviewed conference [130], and will be fully published in an article in preparation, to

be submitted to an international peer-reviewed journal.

In Chapter 5, the original rewriting of the porous equations in Chapter 3 was put

to advantage in order to propose the combination of a modal-reduced model, together

with a Padé-based reconstruction strategy. In addition, an adaptive decomposition in

frequency intervals was proposed for the reconstruction approach. It enables to benefit

from an enhanced tradeoff between computational efficiency and accuracy. The validation

on 2D and 3D poro-acoustic test cases proved very promising for extension to larger

and more complex applications. The results will be partly published in an international

conference [131], and will be fully published in an article in preparation, to be submitted

to an international peer-reviewed journal.

Chapter 6 presented a synthesis of most of the methods used in the previous chap-

ters, both for the acoustic and porous domains. A benchmark of the different approaches

was made on an academic validation case proposed within Marie-Curie European project

“Mid-Frequency”. Although entirely implemented in Matlab, this comparison offered very

encouraging results in terms of accuracy and computational efficiency. Furthermore, it

provided further insights into the most relevant perspectives to give to the present contri-

butions.

Perspectives. Among the perspectives that have been mentioned along this work, the

following points are particularly worth mentioning:

• In situations where better accuracy is sought than in the examples presented, use

of improved attachment functions and other enrichments of the reduction basis (e.g.

orthogonalized pseudo-static responses or residual vectors) could be considered, pro-

vided they can be integrated in a computationally efficient way;

• The modal approach for porous materials, proposed in this work, needs to be further

tested in more complex situations: (i) in configurations where the solid frame of the

porous materials would be more directly excited (e.g. in contact with a flexible

structure, or with an impervious membrane), (ii) in sandwich configurations where
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the question of well-chosen interface modelling for multilayer assemblies will become

essential for the efficiency of the approach;

• Furthermore, such extensive testing could enable a refinement of the a priori trun-

cation estimate for the porous modal bases;

• The reduced models have been compared to an efficient implementation of the (us,uf)

porous formulation, and comparisons with the more efficient (us, p) porous formu-

lation will be proposed in publications of the content of this work in international

peer-reviewed journals.

• An approach based on the generation of a load-dependent Ritz basis could offer the

possibility to partly overcome the high computational cost of the initial reduction

step for the porous modal method;

• The close-to-diagonal (and diagonal-dominant) form of the modal-reduced porous

system could benefit from an iterative solution scheme, where the modal coupling

terms are handled as iterative corrections on the right-hand side vector,
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Appendix A

Résumé étendu des travaux de
thèse

A.1 Introduction

Dans le contexte de lutte contre les nuisances sonores, cette thèse porte sur le développe-

ment de méthodes de résolution efficaces par éléments finis, pour des problèmes de vi-

broacoustique interne avec interfaces dissipatives, dans le domaine des basses fréquences.

L’étude se limite à l’utilisation de solutions passives telles que l’intégration de matériaux

poreux homogènes et isotropes, modélisés par une approche fondée sur la théorie de Biot-

Allard. Ces modèles étant coûteux en terme de résolution, un des objectifs de cette thèse

est de proposer une approche modale pour la réduction du problème poroélastique, bien

que l’adéquation d’une telle approche avec le comportement dynamique des matériaux

poreux soit à démontrer.

Dans un premier temps, la résolution de problèmes couplés elasto-poro-acoustiques par

sous-structuration dynamique des domaines acoustiques et poreux est établie. L’approche

modale originale ensuite proposée pour les milieux poroélastiques, ainsi qu’une procédure

de sélection des modes significatifs, sont validées sur des exemples 1D à 3D.

Une deuxième partie présente une méthode combinant l’utilisation des modèles réduits

précédemment établis avec une procédure d’approximation de solution par approximants

de Padé. Il est montré qu’une telle combinaison offre la possibilité d’accrôıtre les perfor-

mances de la résolution (allocation mémoire et ressources en temps de calcul).

Un chapitre dédié aux applications permet d’évaluer et comparer les approches sur

un problème académique 3D, mettant en valeur leurs performances prometteuses. Afin

d’améliorer les méthodes établies dans cette thèse, des perspectives à ces travaux de

recherche sont apportées en conclusion.
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A.2. CHAPITRE 1: INTRODUCTION À LA MODÉLISATION DE MATÉRIAUX
POREUX POUR LA RÉDUCTION DE BRUIT EN VIBRO-ACOUSTIQUE
INTERNE

Ce travail a été réalisé dans le cadre d’une cotutelle de thèse entre le Conservatoire

National des Arts et Métiers (Cnam) à Paris, et le Royal Institute of Technology (KTH)

à Stockholm, co-encadré par Pr. Jean-François Deü et Pr. Peter Göransson.

A.2 Chapitre 1: Introduction à la modélisation de matériaux

poreux pour la réduction de bruit en vibro-acoustique
interne

Dans ce chapitre, les principales hypothèses délimitant la portée du travail effectué sont

énoncées, situant le contenu de la thèse dans son contexte scientifique. Les principales con-

tributions menant à la théorie de Biot-Allard sur la propagation d’ondes acoustiques en

milieux poroélastiques sont placées dans leur contexte historique. Un examen des récentes

méthodes (analytiques, semi-analytiques, numériques) développées pour la modélisation

de problèmes de vibroacoustique et de matériaux absorbants, permet de dégager les ori-

entations de recherche dans lesquelles s’inscrit la présente thèse: la nécessité d’utiliser des

modèles multiphysiques raffinés tout en offrant une efficacité de résolution industriellement

compatible.

L’intérêt de modèles physiques raffinés, telle que la théorie de Biot-Allard pour les

matériaux poreux, est illustré par une comparaison avec une modélisation par impédance

localisée. Dans une configuration très favorable à cette dernière approche, une cavité rigide

dont une face est recouverte d’un matériau poreux (Fig. A.1), est modélisée suivant ces

deux hypothèses. La cavité est excitée en un coin opposé à la surface absorbante, alors

que la pression acoustique moyenne dans la cavité est calculée comme grandeur d’intérêt.

1

2 3

Lza

Lzp

Lxa

Lya

Corner excitation

Figure A.1: Géométrie utilisée pour la comparaison entre modélisation 3D ou par
impédance localisée pour un matériau poreux.
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INTERNE

La comparaison des résultats est donnée Fig. A.2, pour deux cavités de dimensions

proches. Bien que l’approche par impédance localisée soit très attractive, compte tenu
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Figure A.2: Pression quadratique moyenne dans la cavité, modèle de Biot 3D ou
par impédance localisée, Lzp = 0.05 m: (a) (Lxa, Lya, Lza) = (0.28, 0.4, 0.5) m; (b)
(Lxa, Lya, Lza) = (0.3, 0.4, 0.5) m.

de sa simplicité et de son efficacité, elle ne permet pas, dans cette configuration pourtant

favorable, de capturer les résonances du système couplé dans la bande [500 - 600] Hz.

Cette discordance est accentuée par la représentation du champ de pression dans la cavité

(Fig.A.3), à 593 Hz, pour la configuration présentée en Fig. A.2b

(a) (b)

Figure A.3: Amplitude du champ de pression acoustique, (Lxa, Lya, Lza) =
(0.3, 0.4, 0.5) m, Lzp = 0.05 m, à 593 Hz: (a) Modèle de Biot 3D pour le matériau poreux;
(b) Condition limite d’impédance localisée.

Les principales équations dérivées dans la théorie de Biot-Allard sont ensuite présentées

pour référence dans les chapitre ultérieures. Le chapitre conclut sur une discussion synthétique

de la modélisation numérique de systèmes amortis par modèles réduits, aboutissant sur les

choix de formulation effectués pour la thèse: une formulation (uS-p) pour le problème de vi-
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broacoustique interne, ainsi que la formulation en déplacement (us,uf) pour la modélisation

de matériaux poreux. Une des raisons justifiant le choix d’une formulation en déplacement

pour le matériau poreux, par rapport à une formulation mixte [51] plus efficace, est son

potentiel à générer des modes fluides-structures couplés, pour la construction de modèles

réduits.

A.3 Chapitre 2: Décomposition par sous-structuration pour
problèmes de vibroacoustique amortis

Dans ce chapitre, une approche modale pour la partie fluide d’un problème de vibro-

acoustique interne est testée. Elle est intégrée dans un schéma de résolution par décompo-

sition en sous-domaines acoustiques, analogue à la méthode classique de sous-structuration

dynamique à interface fixe proposée par Craig et Bampton [85]. Une telle décomposition

intègre directement la base tronquée de modes acoustiques (à pression acoustique nulle

aux interfaces), ainsi qu’une correction des effets de troncature inclus dans les fonctions

d’attache. Ces fonctions d’attache sont solutions de l’équation de Laplace, en réponse à

une fluctuation de pression acoustique unitaire imposée successivement à chaque degré de

liberté d’interface, les autres restant restreints. Il est établi qu’une telle transformation

permet de limiter la résolution à celle d’un problème de la dimension des interfaces (pour

les sous domaines condensés).

Ainsi, la forme générale suivante d’un problème éléments finis élasto-poro-acoustique

est considérée,



KS − ω2MS −CT
IS 0 0 0

−ω2CIS KII − ω2MII KIĪ − ω2MIĪ −ω2(1− φ)CIs −ω2φCIf

0 KĪI − ω2MĪI KĪ Ī − ω2MĪ Ī 0 0

0 −(1− φ)CT
Is 0 K̃ss − ω2M̃ss K̃sf − ω2M̃sf

0 −φCT
If 0 K̃fs − ω2M̃fs K̃ff − ω2M̃ff




×




US

PI

PĪ

Us

Uf



=




FSb

ω2UIb

0

0

0



,

(A.1)

où le vecteur des inconnues nodales est constitué deUS, inconnues du champ de déplacement

de la structure, PI , inconnues du champ de pression acoustique situées aux interfaces, PĪ ,

inconnues du champ de pression acoustique interne, Us et Uf, inconnues des champs de

déplacement des phases solide et fluide respectivement, du matériau poreux. Après change-

ment de base et condensation des inconnues modales aux interfaces, il est établi que le
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problème A.1 se résume à la résolution du problème réduit suivant,



KS − ω2MS −CT
IS 0 0

−ω2CIS K⋆
II − ω2M⋆

II − ω4M◦

II(ω) −ω2(1− φ)CIs −ω2φCIf

0 −(1− φ)CT
Is K̃ss − ω2M̃ss K̃sf − ω2M̃sf

0 −φCT
If K̃fs − ω2M̃fs K̃ff − ω2M̃ff




×




ÛS

P̂I

Ûs

Ûf



=




FSb

ω2UIb

0

0



,

(A.2)

où PĪ , le vecteur des inconnues du champ de pression acoustique interne ne figure plus

explicitement, et avec K⋆
II , M

⋆
II et M◦

II(ω) obtenus par procédure d’assemblage sur les n

sous-domaines acoustiques,

K⋆
II =

n∑

j=1

β
(j)
JI

T
K̂JJβ

(j)
JI , (A.3a)

M⋆
II =

n∑

j=1

β
(j)
JI

T [
M̂JJ +ΨJ̄J

T M̂J̄J

]
β
(j)
JI , (A.3b)

M◦

II(ω) =
n∑

j=1

β
(j)
JI

T
[[

ΦT
J̄m

M̂J̄J

]T (
Ωm − ω2 1m

)
−1
[
ΦT

J̄m
M̂J̄J

]]
β
(j)
JI . (A.3c)

Plusieurs configurations sont ensuite testées afin d’identifier les performances et limites

de l’approche modale par décomposition en sous-domaines acoustiques. Les conclusions

ont pour intérêt de donner des orientations pour étendre l’approche à la réduction de

milieux dissipatifs tels que les matériaux poreux. Une des applications de référence utilisée

dans ce chapitre est issue d’une collaboration au sein du projet européen Marie-Curie

“Smart Structures”, donnant lieu au modèle numérique concrete car. Il s’agit, à l’origine,

d’un dispositif expérimental composé de deux cavités rigides (murs en béton), reliées par

l’intermédiaire d’un évidemment sur une des faces, pouvant être obstrué par une plaque.

Le modèle numérique associé est présenté sur la figure A.4, les grandeurs d’intérêt étant

la pression quadratique moyenne dans chacune des deux cavités: la cavité moteur, et la

cavité passager. Afin d’estimer l’impact de l’ajout d’une couche de revêtement poreux sur

une des faces de la cavité passager, deux modèles numériques sont établis, avec et sans

matériau poreux. La fonction de réponse en fréquence de référence est présentée sur la

figure A.5 pour les deux configurations, illustrant l’effet d’absorption acoustique dans la

cavité passager.

La réponse avec matériau absorbant est utilisée comme référence pour comparaison

avec des solutions calculées avec modèles réduits (Eq. A.2), pour différentes troncatures
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A.3. CHAPITRE 2: DÉCOMPOSITION PAR SOUS-STRUCTURATION POUR
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1.1 m

0.75 m

1.27 m

1.56 m

Corner harmonic excitation

Engine cavity

Passenger cavity

3.4 m

0.525 ∗ 0.895 m2 firewall
0.8 m

5 cm-thick porous layer

(EC)(PC)
0.525 m

0.77 m

0.5 m

0.125 m

Figure A.4: Modèle EF Concrete car et dimensions extérieures.

de la base modale. Les figures A.6 présentent une comparaison des fonctions de réponse en

fréquence, de référence ou avec troncature à 1980 Hz (supérieure à trois fois la fréquence

maximale d’intérêt), ainsi qu’une illustration de la convergence en fonction de la fréquence

propre de troncature. La représentation choisie de l’erreur commise est une représentation

interpolée par courbes de Bézier, de la différence point par point, entre les réponses.

Bien que discutable à plusieurs niveaux (e.g. l’erreur non significative au niveau des pics

de résonances implique une sur-évaluation de l’erreur commise), elle permet une bonne

illustration de la convergence de la réduction. Ces résultats mettent en évidence une ex-

cellente approximation de la réponse dans la cavité moteur, tandis que l’erreur commise

dans la cavité passager est plus importante. Un ensemble de cas tests permet par la suite
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Figure A.5: FRF de référence avec et sans traitement poreux.
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Figure A.6: Résultats avec troncature jusqu’à 1980 Hz: (a) FRF, pression quadratique
moyenne; (b) différence (dB) à la solution du problème non réduit.

d’identifier les sources d’erreur, ainsi que d’envisager des solutions permettant d’améliorer

la précision de la réponse approximée. Il est ainsi mis en évidence que les bandes de

fréquences où la réponse est dominée par des modes de résonance de plaque présentaient

des difficultés de convergence. Il en est de même pour les domaines fréquentiels où les con-

ditions absorbantes ont un impact important sur la réponse du système. L’utilisation de

modes d’attache raffinés (e.g. pseudo-statiques), ou d’enrichissements de la base modale

par des vecteurs de réponses ou de résidus orthogonalisés sont des extensions envisagées, ex-
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istantes dans la littérature, permettant potentiellement de répondre à cette problématique.

D’un point de vue performance en termes de temps de calcul, l’approche modale,

introduite dans le cadre d’une décomposition en sous-domaines acoustiques, est présentée

sur la figure A.7. Au-delà de la réduction en temps de calcul, le coût de l’étape initiale
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Figure A.7: Comparaison du temps de calcul, CPU.

de calcul des modes et de projection du problème est mise en évidence. De plus, la

condensation dynamique des inconnues modales permet d’observer un faible impact de

l’augmentation de la taille la base modale sur le temps de calcul par incrément de fréquence.

En termes d’orientation au regard des objectifs de la thèse (e.g. approche modale pour

les matériaux poreux), les difficultés de convergence observées, pour la réduction modale

des sous-domaines acoustiques du problème de vibroacoustique lors d’interactions fortes

entre sous-domaines, permettent d’apporter d’autres indications quant aux choix effectués.

Ainsi, pour les matériaux poreux, caractérisés par un couplage fort, volumique (en oppo-

sition à un couplage surfacique dans le cas de la sous-structuration) entre la phase fluide

et la phase solide, il apparâıt qu’une approche fondée sur des modes couplés intégrant

le couplage des phases solide et fluide permettra une meilleure prise en compte du com-

portement multiphysique des milieux poreux. En conséquence, l’extension de l’approche

modale à la réduction des milieux poroélastiques est menée en ce sens dans les chapitres

suivants, impliquant une reconsidération des équations de la formulation (us,uf) pour la

modélisation de matériaux poreux.
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A.4 Chapitre 3: Approche modale pour les matériaux poreux

Dans ce chapitre, les équations de la formulation (us,uf) sont réarrangées afin d’être

exploitables pour une approche par synthèse modale. Ainsi, les effets visqueux et inertiels,

traditionnellement intégrés dans l’expression d’une masse volumique équivalente, sont con-

sidérés séparément. Par ailleurs, la loi de comportement est séparée en une composante

basse fréquence et plus haute fréquence. Ce dernier point est établi sous l’hypothèse d’un

module de compression du matériau de la matrice très supérieur aux modules de compres-

sion de la matrice ou du fluide saturant le matériau (typiquement le cas pour les matériaux

poreux à application acoustique). Dès lors, les lois de comportement peuvent être réécrites

en fonction du module de compression équivalent de la phase fluide, K̃f(ω), complexe et

dépendant de la fréquence, pouvant s’écrire sous la forme

K̃f =
γP0

γ − (γ − 1)

[
1 + 8η

iωPrΛ′2ρf

(
1 + iωPrΛ′2ρf

16η

) 1
2

]−1 = P0 +
(
K̃f − P0

)
, (A.4)

séparant la limite à fréquence nulle, de la dépendance en fréquence (qui est à valeurs

complexes). Par conséquence, la loi de comportement, prenant en compte la séparation

précédente, peut s’écrire sous la forme

σs = D(1)
s ε(us) +D

(1)
sf ε(uf) +

(
K̃f − P0

)(
D(2)

s ε(us) +D
(2)
sf ε(uf)

)
, (A.5a)

σf = D
(1)
sf ε(us) +D

(1)
f ε(uf) +

(
K̃f − P0

)(
D

(2)
sf ε(us) +D

(2)
f ε(uf)

)
, (A.5b)

avec

D(1)
s = 2µ̃D′ +

(
λ̃+

(1− φ)2

φ
P0

)
D,

D
(1)
sf = (1− φ)P0 D,

D
(1)
f = φP0 D,

D(2)
s =

(1− φ)2

φ
D,

D
(2)
sf = (1− φ)D,

D
(2)
f = φD,
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où

D′ =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0
1

2
0 0

0 0 0 0
1

2
0

0 0 0 0 0
1

2




et D =




1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




.

Cette décomposition permet ainsi, après formulation variationnelle, d’écrire le problème

éléments finis poroélastique sous la forme de quatre matrices globales, réelles et constantes,

la dépendance en fréquence étant portée par des fonctions scalaires en facteur: deux parties

pour la matrice de rigidité, une matrice pour les effets visqueux, puis une matrice pour

les effets inertiels. Suivant les notations présentées sur la figure A.8, séparant les degrés

de liberté acoustiques d’interface et internes, le problème poro-acoustique d’intérêt pour
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��
��
��
��
��
��
��

Porous dofs

Acoustic interface dofs I

Acoustic internal dofs Ī

Figure A.8: Description du problème pour la réduction du domaine poreux.

l’approche modale s’écrit sous la forme




KĪ Ī − ω2MĪ Ī KĪI − ω2MĪI 0

KIĪ − ω2MIĪ KII − ω2MII −ω2AIP

0 −AT
IP

K
(1)
P +

(
K̃f − P0

)
K

(2)
P +

iω b̃CP − ω2MP






PĪ

PI

UP


 =



ω2UĪb

0

0


 . (A.7)

Le problème peut être symétrisé en divisant les équations acoustiques (lignes 1 et 2)

par ω2 (ω 6= 0).

Une approche modale basse fréquence peut ensuite être définie à partir du problème

aux valeurs propres (
K

(1)
P − ω2MP

)
φ = 0, (A.8)

sélectionnant les modes classés par fréquence propre ascendante, après normalisation par

rapport à la matrice de masse MP. Ces modes s’avèrent être séparables entre ceux qui

présentent la caractéristique d’être orthogonaux (o modes “orthogonaux”) au problème

poroélastique de départ, et ceux qui présentent un faible couplage constitutif ou visqueux

(n modes “non-orthogonaux”). La base modale tronquée est complétée par des modes

d’attache, définis comme la réponse du domaine poroélastique à une pression unitaire
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successivement imposée à chaque degré de liberté acoustique d’interface, les autres étant

restreints,
[
−AT

IP K
(1)
P

] [ 1I

ΨPI

]
=
[
0
]
⇒ ΨPI = K

(1)−1

P AT
IP. (A.9)

Ainsi, la transformation appliquée au problème (A.7) s’écrit



P̂Ī

P̂I

ÛP


 =



1Ī 0 0 0

0 1I 0 0

0 ΨPI ΦPn ΦPo







P̂Ī

P̂I

α̂n

α̂o



, (A.10)

avec α̂n et α̂o les coordonnées modales associées aux modes “non-orthogonaux” et “or-

thogonaux” respectivement. Le symbole ̂ fait référence à une approximation du vecteur

solution.

L’application de la transformation (A.10) au système (A.7) symétrisé donne







1
ω2KĪ Ī −MĪ Ī

1
ω2KĪI −MĪI 0 0

1
ω2KIĪ −MIĪ

1
ω2KII −MII

0 0
−K

(1)
PII

0 0 Ωn 0

0 0 0 Ωo



+
(
K̃f − P0

)



0 0 0 0

0 K
(2)
PII

K
(2)
PIn

K
(2)
PIo

0 K
(2)
PnI

κn 0

0 K
(2)
PoI

0 κo




+iω b̃




0 0 0 0

0 CPII
CPIn

CPIo

0 CPnI
ζn 0

0 CPoI
0 ζo


− ω2




0 0 0 0

0 MPII
MPIn

MPIo

0 MPnI
1n 0

0 MPoI
0 1o










P̂Ī

P̂I

α̂n

α̂o


 =




UFb

0

0

0


 ,

(A.11)

avec pour BP ∈ {K
(1)
P ,K

(2)
P ,CP,MP},

BPII
= ΨT

PIBPΨPI ,

BPIn
= ΨT

PIBPΦPn = BT
PnI

,

BPIo
= ΨT

PIBPΦPo = BT
PoI

.

La transformation est appliquée lors d’une étape initiale, permettant ensuite une résolution

par balayage en fréquence sur un problème réduit. Une condensation dynamique des co-

ordonnées modales associées aux modes orthogonaux est également présentée, permettant

d’améliorer d’avantage l’efficacité de résolution.

Une étude de convergence est ensuite menée sur une application unidimensionnelle,

présentée sur la figure A.9, dont les paramètres matériaux sont donnés dans le tableau A.1.

Pour cette exemple, il est montré qu’une convergence satisfaisante est obtenue en incluant

les 4 à 6 premiers modes dans la base modale (correspondant ainsi à une troncature à
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1

2 3

Porous layer

Acoustic cavity

Plane wave

0.05m

0.25m

Figure A.9: Maillage et dimensions pour le problème 1D.
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Figure A.10: FRF, pression quadratique moyenne: Convergence du modèle réduit vers la
solution de référence: (a) 1 mode, (b) 2 modes, (c) 3 modes, (d) 4 modes.

deux fois la fréquence maximale d’intérêt). La convergence est présentée sur la figure A.10

pour les 4 premiers modes. Un enrichissement de la base modale par une réponse basse

fréquence du système est également proposée afin d’accélérer la convergence. Les déformées
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Frame Fluid Porous

c0 = 343 m/s φ = 0.96

λ = 905357 Pa γ = 1.4 σ = 32 kNs/m4

µ = 264062 Pa Pr = 0.71 α∞ = 1.7

(1− φ)ρs = 30 kg/m3 ρf = 1.21 kg/m3 Λ = 90 µm

η = 1.84 · 10−5 Ns/m2 Λ′ = 165 µm

Table A.1: Paramètres matériaux pour l’air et le matériau poreux.

modales des 6 premiers modes sont présentées sur la figure A.11. Il apparâıt manifeste,
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Figure A.11: Six premiers modes de la couche poreuse 1D: (a) – (f), phases solide (haut)
et fluide (bas). Maillage et champ de déplacement.

tant par la convergence de la réponse que par l’observation des déformées, que les modes

fonctionnent par paires, au sein desquelles le déplacement des phases solides et fluides sont

soit en phase, soit en opposition de phase.

Une estimation du potentiel de l’approche modale en termes de performance est réalisée

sur un cas test poro-acoustique 3D, présenté sur la figure A.12. Afin d’estimer la perfor-

mance de la réduction, sont quantifiés la convergence du problème réduit, le remplissage

des matrices pour le problème réduit, ainsi qu’une estimation du temps de calcul. Tout

d’abord, une convergence satisfaisante est atteinte dans la bande de fréquence [1−1000] Hz

pour 800 modes retenus dans la base, comme illustré par la convergence sur la figure A.13.

Il apparâıt cependant que la convergence n’est pas progressive en bande de fréquence avec

l’ajout de modes dans la base. Ainsi, avec 500 modes, la convergence n’est pas satisfaisante

au delà de 200 Hz. Cette limite de l’approche est partiellement abordée dans le chapitre
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1
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Porous layer

Acoustic cavity
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Acoustic
corner excitation

Figure A.12: Maillage et dimensions de la cavité 3D.
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Figure A.13: FRF, pression quadratique moyenne. Convergence du modèle réduit vers la
solution de référence: (a) 100 modes, (b) 500 modes, (c) 800 modes.

suivant. Admettant une convergence satisfaisante dans la bande de fréquence d’intérêt,

pour 800 modes inclus dans la base modale, la transformation ainsi effectuée permet de
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réduire la partie poroélastique du problème de 3070 à 800 degrés de liberté. Le rem-

plissage des matrices éléments finis correspondantes est présenté sur la figure A.14. Ainsi,

dofs

Acoustic

(a)

Acoustic dofs

(b)

Figure A.14: Remplissage du système matriciel (a) non-réduit, (b) avec domaine
poroélastique réduit.

l’approche modale permet non seulement de réduire le nombre d’inconnues, mais également

de conserver le remplissage creux des matrices globales, élément clé de l’efficacité des

solveurs utilisés pour la méthode des éléments finis. La combinaison de ces deux critères

permet d’anticiper le potentiel d’une telle approche dans son extension à plus grande

échelle. La figure A.15 illustre la combinaison d’une réduction du nombre d’inconnues et du

remplissage creux des matrices préservé, qui se traduit naturellement par une amélioration

du temps de résolution de la réponse. Pour le problème considéré, la résolution par une

approche modale s’avère ainsi 2.6 à 3.5 fois plus rapide que la solution de référence, suivant

que l’étape initiale soit prise en compte ou non. Dans le cas ou les inconnues associées

aux modes orthogonaux sont dynamiquement condensées, le facteur d’accélération de la

résolution atteint 3.1 à 4.4 suivant que l’étape initiale soit prise en compte ou non. Ces

performances sont améliorées dans le chapitre suivant où un filtrage du contenu de la base

modale est proposé.

A.5 Chapitre 4: Classification et sélection des modes poreux
significatifs

Dans ce chapitre, la question du contenu de la base modale tronquée, générée par

la résolution du problème aux valeurs propres (A.8), est détaillée. En s’appuyant sur

des applications poro-acoustiques de moindre complexité (problèmes 2D), une approche

est proposée afin d’ordonner les modes de la base en fonction de leur influence dans la
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Figure A.15: Comparaison du temps de calcul, CPU, de fonctions de réponse en fréquence.

bande de fréquence d’intérêt, par fréquence croissante. Dans un deuxième temps, après

arrangement des modes dans la base, une seconde troncature est proposée afin de ne

conserver que les modes ayant une contribution significative pour le problème d’intérêt.

Le principe de sélection des composantes modales significatives est fondé sur leur com-

paraison avec un résidu en force, calculé à une ou plusieurs fréquences prédéterminées du

domaine d’intérêt en fonction de la complexité de la réponse. Ainsi, étant donné une pul-

sation ω0, une grossière estimation de la réponse est donnée par la solution du problème

projeté sur une base n’incluant que les quelques premiers modes de la base (base modale

basse fréquence ΦPLF
, comprenant par exemple un seul mode). La solution correspondante

est donnée par la transformation



P̂Ī

P̂I

ÛP




ω0

=



IĪ 0 0

0 II 0

0 ΨPI ΦPLF






P̂Ī

P̂I

α̂
LF




ω0

, (A.12)

où α̂LF correspond au vecteur des inconnues modales, de très petite dimension. Cette

réponse grossière est donc très efficace à calculer. Si elle ne permet pas une bonne approx-

imation de la réponse, le calcul du résidu associé fournit une excellente source d’information

sur les composantes manquantes dans la base modale. Le résidu en force correspondant,

suivant le problème (A.7), s’écrit

RFP
(ω0) = AT

IPP̂Iω0
−
(
K

(1)
P +

(
K̃f(ω0)− P0

)
K

(2)
P + iω0 b̃(ω0)CP − ω2

0MP

)
ÛPω0

(A.13)
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Le résidu en déplacement associé, fondé sur la limite à fréquence nulle de la matrice de

rigidité, K
(1)
P , s’écrit

RUP
(ω0) = K

(1)
P

−1
RFP

(ω0) (A.14)

Ce résidu en déplacement est utilisé pour comparaison aux modes, calculant ainsi la par-

ticipation modale de chacun par rapport à la partie réelle du résidu en déplacement. Ce

calcul peut être complété par une comparaison à la partie imaginaire du résidu, mais n’a

pas apporté d’information complémentaire pour les tests effectués. Ainsi, après quelques

étapes de calcul, la participation modale de chaque mode i au vecteur résiduel j est donnée

par

µij =
|ΦPi · ℜ(RFj

)|

ωi
2‖ℜ(RFj

)‖
. (A.15)

Écrit ainsi, le calcul des facteurs de participation n’exige que des opération très simples,

et ces facteurs ne sont donc pas coûteux à établir. Un ensemble de N modes d’une base

donnée est ensuite ordonné par contribution décroissante,

µ1j > · · · > µij > · · · > µNj. (A.16)

Chaque mode est affecté d’une participation modale normalisée sur la plus petite contri-

bution,

∀ i ∈ [1..N] µ̄ij =
µij

µNj
> 1. (A.17)

Les figures A.16 illustrent la différence de contribution des modes sur le problème 3D

considéré dans le chapitre précédent. Il apparâıt manifeste, compte tenu des différences
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Figure A.16: Exemple de facteurs de participation modale normalisés: (a) échelle linéaire
(b) échelle logarithmique.

observées, que les modes de faible contribution (au delà des 200 premiers modes) peu-

vent être retirés de la base sans détériorer significativement la précision de la réponse.
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Plusieurs approchent ont été testées afin de proposer un critère de troncature de la base

ainsi réordonnée, et la solution retenue consiste à établir un rapport de contributions

logarithmiques cumulées,

χnj =

n∑

i=1

log(µ̄ij)

N∑

i=1

log(µ̄ij)

6 χmax, (A.18)

avec χmax une limite empirique, dans l’intervalle ]0, 1]. Pour les applications considérées,

une limite fixée à 0.4 s’est avérée satisfaisante.

À titre d’illustration, la procédure proposée est présentée sur un exemple poro-acoustique

2D (figure A.17), dont les 26 premières déformées modales sont présentées sur la figure 4.4.

0.15 m

Porous layer

0.2 m 0.05 m

Acoustic cavity

Acoustic source

Figure A.17: Maillage et dimensions - problème 2D.

La convergence de l’approche modale telle que présentée dans le chapitre précédent est

illustrée sur la figure A.18. En accord avec les observations du chapitre 3, la convergence en

ajoutant des modes dans la base ne suit pas strictement la logique d’une fréquence limite

de convergence croissante, comme habituellement constaté pour la synthèse modale. Ainsi,

26 modes sont nécessaires pour obtenir une convergence satisfaisante dans le domaine de

fréquence [1-1500] Hz.

L’application de la procédure de sélection des contributions modales significatives per-

met d’extraire les modes présentés dans le tableau A.2, et la figure A.19. Elle est appliquée

en calculant un résidu associé à une base modale ne comportant que le premier mode, pour

une réponse à la fréquence de 375 Hz, arbitrairement choisie. χmax est fixé à 0.4.

La convergence de la solution du problème réduit, utilisant la base modale réordonnée

avec la procédure proposée, est présentée figure A.20. Ainsi, l’approche établie a permis

d’extraire les composantes modales significatives, qui se trouvent classées suivant leur

contribution dans le domaine fréquentiel considéré. Cette procédure a ainsi permis de
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Figure A.18: Convergence - superposition des modes manuellement sélectionnés:
(a) Mode 1, (b) Modes 1, 2; (c) Modes 1, 2, 4, 12; (d) Modes 1, 2, 4, 12, 15; (e) Modes 1, 2,
4, 12, 15, 16, 21; (f) Modes 1, 2, 4, 12, 15, 16, 21, 26

Mode Fréquence propre (Hz) µij χnj

1 83 (0) (1)

2 161 12.9 0.06

21 1139 12.0 0.12

15 947 11.9 0.17

4 299 11.1 0.23

12 787 10.4 0.28

26 1343 10.3 0.32

16 951 9.8 0.37

7 468 9.2 0.4

Table A.2: Sélection des contributions modales significatives.

réduire la taille de la base modale de 26 modes à 8 modes.

L’application de cette méthode au problème 3D considéré dans le chapitre 3 permet

de réduire la taille de la base modale de 800 à 83 composantes, améliorant ainsi le temps

de calcul associé à la réponse du problème réduit.
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A.5. CHAPITRE 4: CLASSIFICATION ET SÉLECTION DES MODES POREUX
SIGNIFICATIFS

 

 

0 0.01 0.02 0.03

 

0 20 40 60 80 100

(a) 83 Hz

 

 

0 0.05 0.1

 

0 50 100 150

(b) 161 Hz

 

 

0 2 4 6 8 10

 

0 20 40 60 80 100

(c) 1139 Hz

 

 

0 5 10 15 20 25

 

5 10 15 20 25 30

(d) 947 Hz

 

 

0 0.05 0.1

 

0 50 100 150

(e) 299 Hz

 

 

0 10 20 30

 

0 5 10 15

(f) 787 Hz

 

 

0 2 4 6 8

 

0 50 100

(g) 1343 Hz

 

 

0 10 20 30

 

0 5 10 15

(h) 951 Hz

Figure A.19: Déformée des modes poreux 2D sélectionnés 1, 2, 21, 15, 4, 12, 26, 16: phases
solide (haut) et fluide (bas). Maillage en configuration déformée et champ de déplacement.
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Figure A.20: Convergence - superposition des modes sélectionnés, χmax = 0.4: (a) Mode 1,
(b) Modes 1, 2, 21; (c) Modes 1, 2, 21, 15; (d) Modes 1, 2, 21, 15, 4; (e) Modes 1, 2, 21, 15,
4, 12, 26; (f) Modes 1, 2, 21, 15, 4, 12, 26, 16

196



A.6. CHAPITRE 5: RECONSTRUCTION DE FONCTIONS DE RÉPONSE EN
FRÉQUENCES PAR APPROXIMANTS DE PADÉ

A.6 Chapitre 5: Reconstruction de fonctions de réponse en

fréquences par approximants de Padé

Le chapitre 5 est consacré à une approche complémentaire de la synthèse modale, pour

la reconstruction rapide de fonctions de réponse en fréquence. La réduction précédemment

établie permet de réduire le nombre d’équations à résoudre à chaque incrément de fréquence.

Avec l’utilisation d’approximants de Padé pour la reconstruction de la solution, l’objectif

est de réduire le nombre de fréquences auxquelles la solution complète doit être calculée, et

d’interpoler la solution entre ces fréquences. Cette approche est facilitée par l’expression

de la dépendance en fréquence sous la forme de fonctions scalaires en facteur des matrices

globales, comme proposé dans cette thèse. Le problème d’intérêt est donc de la forme

Z(ω)u(ω) = F(ω), (A.19)

avec pour ω 6= 0,

Z(ω) =
1

ω2
KF +A+

(
K̃f(ω)− P0

)
K

(2)
P + iω b̃(ω)CP − ω2MP, (A.20)

où KF, A, K
(2)
P , CP et MP sont des matrices symétriques, constantes, réelles, pour le

problème couplé poro-acoustique. Sous cette forme, A comprend la matrice de “masse”

du problème acoustique, les termes de couplage poro-acoustique, ainsi que la matrice de

rigidité K
(1)
P du problème poroélastique. À partir d’une solution à ω0, U(ω0), la solution

aux alentours est cherchée sous la forme d’une fraction de développements en séries de

Taylor, pour chaque composante uj du vecteur solution,

u(ω0 +∆ω) ≈
PL(∆ω)

QM (∆ω)
. (A.21)

PL(∆ω) et QM (∆ω) sont deux séries de Taylor, tronquées à l’ordre L et M respectivement,

PL(∆ω) =

L∑

k=0

pk(∆ω)k, et QM (∆ω) =

M∑

k=0

qk(∆ω)k. (A.22)

L’approximation de u(ω0 + ∆ω) est donnée par la détermination unique des coefficients

pk et qk. Une approche efficace afin de déterminer ces coefficients est de les identifier aux

coeffcients d’un développement en série de Taylor AL+M (∆ω) à l’ordre L+M , autorisant

des pôles pour la fonction rationnelle (QM (∆ω) = 0), soit le système d’équations linéaires

suivant à résoudre,

PL(∆ω)−AL+M (∆ω)QM (∆ω) = 0, (A.23)
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A.7. CHAPITRE 6: VALIDATIONS, PERSPECTIVES ET REMARQUES
CONCLUSIVES

Ce système peut se résoudre efficacement sous forme matricielle, impliquant les dérivées

jusqu’à l’ordre L+M du vecteur solution,

[A](j)




p0
...

pL

q1
...

qM




(j)

=




u(ω0)
...

u(L)(ω0)

u(L+1)(ω0)
...

u(L+M)(ω0)




(j)

, for j = 1, . . . , N. (A.24)

Ces dérivées successives peuvent être calculées par une formule de récurrence, en-

trâınant la résolution d’un système linéaire à plusieurs second membres, ce qui est d’un

point de vue numérique très efficace (une seule décomposition de la matrice de coefficients

à effectuer),

Z(ω0)u
(k)(ω0) = f (k)(ω0)−

(k−1)∑

j=0

(
k

j

)
Z(k−j)(ω0)u

(j)(ω0), for k = 1, . . . , (L+M). (A.25)

Les détails théoriques et pratiques d’implémentation sont donnés dans la thèse, in-

cluant notamment une approche permettant la reconstruction de la réponse sur un in-

tervalle de fréquence d’intérêt par la reconstruction sur plusieurs intervalles contigus.

Ainsi, le problème poro-acoustique 3D considéré dans les chapitres précédents, dans sa

version complète ou modale, est résolu par une telle approche, comme illustré sur la fig-

ure A.21. Comme illustré sur la figure A.22, la combinaison des deux approches, modèle

réduit et interpolation de la réponse par approximants de Padé, permet d’obtenir une

estimation de la réponse extrêmement efficace, tout en conservant un excellent degré de

précision. L’approche modale devient particulièrement intéressante dans le cas de système

à plusieurs cas de charge. Dès lors, l’étape initiale ne doit être effectuée que pour la

première résolution, et seule la sélection des modes significatifs, étape peu coûteuse, est

mise à jour pour les calculs suivants.

A.7 Chapitre 6: Validations, perspectives et remarques con-

clusives

Le chapitre 6 est un chapitre de validation, consacré à la mise en oeuvre des méthodes

développées dans les chapitre précédents sur une application plus complexe, en termes

de géométrie et de comportement dynamique. L’application considérée, présentée sur

la figure A.23, est issue des cas tests de validation pour le projet européen Marie-Curie

Mid-Frequency. Le détail des calculs ainsi que leur analyse sont détaillés dans la thèse.
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Figure A.21: Procédure de reconstruction adaptative de la réponse du problème 3D, avec
L = 5, M = 6: (a) problème non réduit; (b) problème réduit.
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Figure A.22: Comparaison des temps de calcul avec reconstruction par approximants de
Padé, problèmes non réduit, réduit, et réduit optimisé: (a) L = 3, M = 4; (b) L = 5,
M = 6.

A.8 Conclusion

La présente thèse a permis de mettre en oeuvre deux approches complémentaires pour

le traitement efficace de matériaux poreux, décrits par un modèle de Biot, dans le cadre

d’applications en vibroacoustique interne. Dans un premier temps, une approche modale

originale est proposée, reposant sur des modes couplés réels poreux. Une méthode per-
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Figure A.23: Géométrie et maillage du modèle éléments finis.

mettant d’extraire les modes significatifs est détaillée afin d’améliorer les performances de

la réduction. Dans un second temps, une approche complémentaire est envisagée, dont

l’objectif est d’interpoler la solution en fréquence, afin de limiter le calcul de la solution

complète à un nombre restreint de fréquences de la bande d’intérêt. Pour cela, une inter-

polation de la fonction de réponse en fréquence par approximants de Padé est proposée.

Les méthodes et leur combinaison sont validées sur des applications simples 1D à 3D, puis

étendues à un problème académique plus complexe dans le dernier chapitre.

Parmis les perspectives de travail mentionnées dans la thèse, les suivantes peuvent être

soulignées:

• Dans une configuration où la précision de la solution approximée est essentielle,

l’utilisation de fonctions d’attache améliorées, ainsi que l’enrichissement de la base

de réduction sont des solutions envisageables, proposées dans la littérature en dy-

namique des structures. L’enjeu est d’établir un compromis entre la précision recher-

chée, et le coût additionnel engendré par une approche enrichie.

• L’approche modale pour matériaux poreux proposée dans ce travail de thèse doit

être étendue et validée dans un cadre plus complexe: (i) dans un configuration où la

matrice solide du matériau poreux serait excitée plus directement (e.g. en contact

avec une structure flexible, une membrane imperméable), (ii) dans un assemblage
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sandwich, où la question du choix du couplage entre couches devient un facteur

essentiel de l’efficacité de la méthode modale.

• Une comparaison de l’efficacité des approches proposées à une implémentation de la

formulation (us, p) serait également un complément intéressant, et sera inclue lors

de la publication de ces travaux dans des revues internationales.

• La génération d’un problème réduit spécifique à chaque bande de fréquence, en com-

binaison à la reconstruction par approximants de Padé est également une perspective

en cours d’étude.
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lieux poroélastiques. PhD thesis, University of Sherbrooke, Canada, 1996. 13

[41] M.J. Brennan and W.M. To. Acoustic properties of rigid-frame porous materials –

an engineering perspective. Applied Acoustics, 62(7):793–811, July 2001. 13

[42] P. Göransson. Acoustic finite element formulation of a flexible porous material-

a correction for inertial effects. Journal of Sound and Vibration, 185(4):559–580,

1995. 13

[43] Y. J Kang and J. S Bolton. Finite element modeling of isotropic elastic porous

materials coupled with acoustical finite elements. The Journal of the Acoustical

Society of America, 98:635, 1995. 13, 49

[44] R. Panneton and N. Atalla. An efficient finite element scheme for solving the three-

dimensional poroelasticity problem in acoustics. The Journal of the Acoustical So-

ciety of America, 101(6):3287–3298, 1997. 13, 74

[45] N. Dauchez, S. Sahraoui, and N. Atalla. Convergence of poroelastic finite elements

based on Biot displacement formulation. The Journal of the Acoustical Society of

America, 109:33–40, 2001. 13

206



BIBLIOGRAPHY

[46] J.-P. Coyette and H. Wynendaele. A finite element model for predicting the acous-

tic transmission characteristics of layered structures. In Proceedings of Inter-noise,

volume 95, pages 1279–1282, 1995. 13

[47] T.F. Johansen, J.-F. Allard, and B. Brouard. Finite element method for predicting

the acoustical properties of porous samples. Acta Acustica, 3(5):487–491, 1995. 13

[48] P. Göransson. A 3-D, symmetric, finite element formulation of the biot equations

with application to acoustic wave propagation through an elastic porous medium.

International Journal for Numerical Methods in Engineering, 41(1):167–192, 1998.

13

[49] P. Göransson. A weighted residual formulation of the acoustic wave propagation

through a flexible porous material and a comparison with a limp material model.

Journal of Sound and Vibration, 182(3):479–494, 1995. 14

[50] N. Atalla, R. Panneton, and P. Debergue. A mixed displacement-pressure formu-

lation for poroelastic materials. The Journal of the Acoustical Society of America,

104:1444–1452, 1998. 14

[51] N. Atalla, M. A. Hamdi, and R. Panneton. Enhanced weak integral formulation

for the mixed (u,p) poroelastic equations. The Journal of the Acoustical Society of

America, 109(6):3065–3068, 2001. 14, 28, 180

[52] N. E Hörlin, M. Nordström, and P. Göransson. A 3-D hierarchical FE formulation

of Biot’s equations for elasto-acoustic modelling of porous media. Journal of Sound

and Vibration, 245(4):633–652, 2001. 14

[53] S. Rigobert, N. Atalla, and F. C. Sgard. Investigation of the convergence of the mixed

displacement-pressure formulation for three-dimensional poroelastic materials using

hierarchical elements. The Journal of the Acoustical Society of America, 114:2607–

2617, 2003.

[54] S. Rigobert, F. C. Sgard, and N. Atalla. A two-field hybrid formulation for mul-

tilayers involving poroelastic, acoustic, and elastic materials. The Journal of the

Acoustical Society of America, 115(6):2786–2797, 2004.

[55] N. E Hörlin. 3D hierarchical hp-FEM applied to elasto-acoustic modelling of layered

porous media. Journal of Sound and Vibration, 285(1-2):341–363, 2005. 14

[56] H. J.-P. Morand and R. Ohayon. Fluid Structure Interaction. Wiley (Chichester and

New York and Paris), 1995. 14, 15, 16, 30, 36, 69

207



BIBLIOGRAPHY

[57] O. Dazel, F. Sgard, C. H Lamarque, and N. Atalla. An extension of complex modes

for the resolution of finite-element poroelastic problems. Journal of Sound and Vi-

bration, 253(2):421–445, 2002. 15, 31

[58] O. Dazel, F. Sgard, and C. -H. Lamarque. Application of generalized complex modes

to the calculation of the forced response of three-dimensional poroelastic materials.

Journal of Sound and Vibration, 268(3):555–580, 2003. 31

[59] O. Dazel, B. Brouard, N. Dauchez, and A. Geslain. Enhanced Biot’s finite element

displacement formulation for porous materials and original resolution methods based

on normal modes. Acta Acustica united with Acustica, 95(3):527–538, 2009. 29, 32,

87

[60] O. Dazel, B. Brouard, N. Dauchez, A. Geslain, and C. H Lamarque. A free interface

CMS technique to the resolution of coupled problem involving porous materials,

application to a monodimensional problem. Acta Acustica united with Acustica,

96(2):247–257, 2010. 15, 32, 87

[61] G. E. Sandberg, P.-A. Hansson, and M. Gustavsson. Domain decomposition in

acoustic and structure-acoustic analysis. Computer Methods in Applied Mechanics

and Engineering, 190(24-25):2979–2988, 2001. 15

[62] W. Larbi. Modélisation d’interfaces dissipatives intelligentes en interaction fluide-

structure: Application aux structures composites de révolution avec fluide interne.
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[130] R. Rumpler, J.-F. Deü, and P. Göransson. An enhanced Modal-Based reduction of

3D porous materials modelling for efficient computation of Structural-Acoustic finite

element applications. In International Symposium on the Computational Modelling

and Analysis of Vehicle Body Noise and Vibration, Brighton, England, 2012. 174
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Romain RUMPLER

Efficient Finite Element Approach for
Structural-Acoustic Applications
including 3D Modelling of Sound

Absorbing Porous Materials

Résumé :
Dans le contexte de lutte contre les nuisances sonores, cette thèse porte sur le développement de méthodes
de résolution efficaces par éléments finis, pour des problèmes de vibroacoustique interne avec interfaces
dissipatives, dans le domaine des basses fréquences. L’étude se limite à l’utilisation de solutions passives
telles que l’intégration de matériaux poreux homogènes et isotropes, modélisés par une approche fondée
sur la théorie de Biot-Allard. Ces modèles étant coûteux en terme de résolution, un des objectifs de
cette thèse est de proposer une approche modale pour la réduction du problème poroélastique, bien
que l’adéquation d’une telle approche avec le comportement dynamique des matériaux poreux soit à
démontrer.
Dans un premier temps, la résolution de problèmes couplés elasto-poro-acoustiques par sous-structuration
dynamique des domaines acoustiques et poreux est établie. L’approche modale originale proposée pour
les milieux poroélastiques, ainsi qu’une procédure de sélection des modes significatifs, sont validées sur
des exemples 1D à 3D.
Une deuxième partie présente une méthode combinant l’utilisation des modèles réduits précédemment
établis avec une procédure d’approximation de solution par approximants de Padé. Il est montré qu’une
telle combinaison offre la possibilité d’accrôıtre les performances de la résolution (allocation mémoire et
ressources en temps de calcul).
Un chapitre dédié aux applications permet d’évaluer et comparer les approches sur un problème
académique 3D, mettant en valeur leurs performances encourageantes. Afin d’améliorer les méthodes
établies dans cette thèse, des perspectives à ces travaux de recherche sont apportées en conclusion.

Mots clés :
Matériaux poroélastiques, Modèles réduits, Sous-structuration dynamique, Approximants de Padé, Vi-
broacoustique interne, Éléments finis, Interaction fluid-structure.

Abstract :
In the context of interior noise reduction, the present work aims at proposing Finite Element (FE)
solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous
and isotropic poroelastic materials, under time-harmonic excitations, and in the low frequency range.
A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be
very costly in terms of computational resources. Reduced models offer the possibility to enhance the
resolution of such complex problems. However, their applicability to porous materials remained to be
demonstrated.
First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based
approaches both for the acoustic and porous domains. The original modal approach proposed for porous
media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D
applications.
In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme
in order to further improve the efficiency.
A concluding chapter presents a comparison and a combination of the proposed methods on a 3D aca-
demic application, showing promising performances. Conclusions are then drawn to provide indications
for future research and tests to be conducted in order to further enhance the methodologies proposed in
this thesis.

Keywords :
Noise reduction, Poroelastic materials, Reduced model, Component mode synthesis, Padé approximants,
Structural-acoustics, Finite element method, Fluid-structure interaction.
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