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Abstract

The study of the Early Universe raises some of the most fundamental questions

in theoretical physics. This thesis explores three main aspects of early universe

cosmology.

The first part discusses alternatives to the Big Bang scenario which is the cur-

rent paradigm of cosmology. Namely, it discusses bouncing universe models where

the initial Big Bang singularity is replaced by a finite size universe.

After reviewing the necessary cosmology background in the introduction, we

show a specific model of a bouncing universe that contains additional “Lee-Wick

fields”, partners to the standard fields. In particular we prove that a Lee-Wick

matter bounce is unstable when one adds radiation to matter.

In the second part of this thesis, we consider particle production via parametric

resonance during preheating, at the end of cosmological inflation. Specifically, we

prove that in the case of a speed-limited inflaton, non-canonical kinetic terms used

to described any effective Lagrangian do not enhance particle production.

Finally, the last topic involves topological defects during the Quantum Chro-

modynamics phase transition. Namely, we study cosmic strings coming from pion

fields present in the Standard Model of particle physics and find a mechanism to

stabilize them. We show how a thermal bath of photons reduces the effective vac-

uum manifold to a circle and thus allows the presence of topologically stable pion

strings.
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Résumé
L’étude de l’Univers primordial adresse quelques-unes des questions les plus

fondamentales de la physique théorique. Cette thèse a pour objet l’exploration de

trois aspects principaux de la cosmologie primordiale.

Dans un premier temps, nous discutons d’une alternative au paradigme scien-

tique qu’est le modèle du Big Bang. À savoir, nous explorons un model d’univers

à rebond qui évite la singularité initiale du Big Bang. Nous commencerons dans

l’introduction par revoir les éléments de base nécessaires à la compréhension de la

cosmologie. À la suite de quoi, nous montrerons un modèle spécifique d’Univers à

rebond contenant des champs additionnels particuliers en complément des champs

présents habituellement. Ces nouveaux champs proviennent de ce qui s’appelle le

modèle “Lee-Wick” de la physique des particules. En particulier, nous prouvons

qu’un univers à rebond dans ce contexte est instable lorsque l’on ajoute une com-

posante de radiation en plus de la matière.

Dans la seconde partie, nous considérons la production de particules via un

phénomène de résonance paramétrique durant la phase de “préchauffement”, à la

fin de l’inflation cosmologique. Plus précisément, nous prouvons que dans le cas

où l’inflaton a une limite de vitesse, les termes cinétiques non-canoniques décrivant

n’importe quel Lagrangien effectif n’améliorent pas la production de particules.

Finalement, le dernier sujet abordé concerne les défauts topologiques pendant

la transition de phase de la chromodynamique quantique. À savoir, nous étudions

les cordes cosmiques provenant des champs de pions presents dans le modèle stan-

dard de la physique des particules et trouvons un méchanisme pour les stabiliser.

Nous prouvons alors qu’un bain thermique de photons en contact avec ces cordes

réduit la variété du vide à un cercle. Cela a pour effet d’autoriser la présence de

“cordes pioniques” topologiquement stables.
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Preface

Statement of Originality

Chapter 2 and 3 explore bouncing universe models containing fields coming

from the Lee-Wick standard model. It was known that these fields could give rise

to a non-singular bounce in the matter sector. We showed that this is not the case

anymore when we add up gauge fields to the system [20]. First, we derived the most

general Lagrangian for the pure radiation case only, adding up an effective coupling

with its Lee-Wick partner that was not used before. The second step was to couple

radiation and matter. This was done in [21] where we proved that the bounce is

not stable under the addition of radiation. We used the Born approximation to

decompose each field into a background part and perturbation terms of first and

second order.

Chapter 4 shows how particle production occurs during preheating in the case of

a speed-limited inflaton for a large class of effective Lagrangians with non-canonical

kinetic terms [22]. We proved that preheating with non-canonical kinetic terms

is less efficient than with canonical kinetic terms. In other words, introducing

non-canonical kinetic terms does not enhance particle production via parametric

resonance.

Chapter 5 deals with another topic : cosmic strings which are linear topological

defects. We worked with pion fields present in the Standard Model of particle

physics and found a rigorous stabilization mechanism by a thermal bath [23] for

the pion string. We used finite temperature field theory in order to compute the

effective potential of the system and the method applies to other defects contained

in the Standard Model as well.
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Chapter 1

Introduction

Fundamental relations exist between the two vast areas of physics which are

Cosmology and Particle Physics. Their similar energy scale creates a bridge, for

example, between micro-physics in particle colliders and the early universe. Assum-

ing the system of laws that governs physics at all scales is the same for cosmology

and particle physics, one may use Particle Physics models in order to better un-

derstand the early universe. This principle is a pillar of modern cosmology and

is used to probe various epochs of the Universe : From the most recent like re-

combination and cosmological nucleosynthesis, to earlier times, like the Quantum

Chromodynamics (QCD) and the Electroweak phase transitions. The very early

universe was at energy above any energy attainable in collider experiments. Thus,

understanding cosmology could provide some clues for high-energy physics and

conversely. As for now, no one can even tell if the Big Bang singularity did occur

and alternative models exist. For example, using exotic types of matter can give

rise to a Big Bounce that avoids the initial Big Bang singularity. As in standard

particle physics models, the larger the energy density of the Universe, the more

symmetry it possesses. The Universe initially had a high energy density, cooled

1
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down, losing more and more symmetries. After the Planck era, the Grand Unifica-

tion (GUT) epoch during which all the forces of matter would have been unified,

had the largest symmetry group. At energies around 1015GeV, 10−38s after the Big

Bang, the strong force decoupled.

At present, the symmetry group of the Standard Model of particle physics,

SU(3)xSU(2)xU(1) describes 3 of the 4 known fundamental interactions present

in the Universe (gravity aside) : The strong force, with SU(3) symmetry appears

on two major scales : On the one hand, as a nuclear force that binds neutrons

and protons together. On the other hand, at a much smaller scale, in quantum

chromodynamics (QCD). It is carried by gluons and creates bound states of quarks,

hadrons, like pions that will be discussed later.

Moreover, SU(2) and U(1) respectively describe the symmetry of the weak and

electromagnetic force.

At the atomic scale, the strong force is about 100 times stronger than electro-

magnetism. Electromagnetism is much stronger than the weak force that operates

only on the extremely short distance scales found in an atomic nucleus (10−18m).

The weakest of all the forces, gravity, is not included in the Standard Model of

Particle Physics but is described by General Relativity.

Understanding how all the particles of the Standard Model were created, chal-

lenges cosmologists. The current paradigm of early universe cosmology postulates

a period of almost exponential expansion of the Universe, called cosmological in-

flation, before phase transitions giving rise to known forces begin. At very early

times, this period of inflation would be followed by a period of intense reheating of

the Universe during which all the matter would be created.

One of the most important consequences of the cooling down of the Universe

and its loss of symmetry would be phase transitions. Each time a symmetry is



3

broken, a phase transition occurs in the Early Universe and as a consequence,

topological defects like cosmic strings, domain walls, or monopoles could form.

In condensed matter laboratories the creation of topological defects is widely ob-

served and by analogy, the Universe should also contain some of them. Topological

defects, if formed in the early Universe, would have some cosmological implica-

tions like, for example, gravitational wave emission from cosmic strings and could

contribute to structure formation as well [1].
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Figure 1.1: Timeline of Standard Big Bang Cosmology. The Universe went through
several epochs, starting with a Big Bang at extremely high-energy density, greater
than corresponding to EP lanck = 1019GeV . It undergoes various phase transitions
while losing more and more symmetries with time. A possible phase of inflation
happens at very early times and elementary particles are created. Much later,
growth of large structures like galaxies occurs. Figure from [2].
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1.0.1 Overview

This thesis explores various aspects of the early Universe. First, the birth of

the Universe still remains mysterious. In an attempt to find an alternative to the

standard Big Bang model which has an initial singularity, cyclic and bouncing

models appeared a long time ago. In the 1920s, even Albert Einstein considered

the possibility of a cyclic model for the Universe as an (everlasting) alternative to

the model of an expanding universe. In Chapter 2 and 3, a model of bouncing

Universe, in which instead of a big bang the Universe contracts and re-expands at

some point known as the bouncing point, is shown in detail. In order for a bouncing

Universe to exist, one requires some specific particle physics content. In the case

studied, the existence of a bounce is based on the presence of unconventional fields,

namely the Lee-Wick fields.

A second important question is how all the matter observed today has been

created. The standard lore is that a period of intense reheating, during which

fast particle production occurs, takes place after a period of inflation. Preheating,

a specific way of creating particles due to parametric resonance is derived for a

certain class of models in Chapter 4.

Last but not least, one can study the QCD phase transition and the forma-

tion of topological defects, such as cosmic strings, that may occur at that time.

In particular, the presence of a thermal bath of photons seem to stabilize these

strings. This suggests that strings could have some cosmological imprint. Chapter

5 illustrates this point.

After a short review of basic aspects of cosmology, bouncing Universes, preheat-

ing, topological defects, QCD phase transition and finite-temperature field-theory

are briefly described in sections 1.2-1.4.
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1.1 Early Universe Cosmology

The Early Universe is defined as the epoch between the Big Bang, around 14

billions years ago and the decoupling time at around 380,000 years after the Big

Bang, when photons were emitted from the last scattering surface. Current cosmo-

logical observations of the Cosmic Microwave Background (CMB) give a picture

of the sky at that time. One of the great successes of inflationary cosmology is

to have made precise predictions about CMB anisotropies. However, in spite of

this phenomenological success, inflationary cosmology is not without its concep-

tual problems. These problems motivate the search for alternative proposals for

the evolution of the early universe and for the generation of structure like galaxies.

These alternatives must be consistent with current observations, and must make

predictions distinguishable from signatures coming from inflation [3]. Roughly

speaking, the Universe can be split into three different epochs (see fig.1.2 for more

details). Close to the Big Bang time (or the bouncing point in the case of a bounc-

ing Universe), t ∼ 0s, the Universe was filled with a fluid behaving like radiation

or ultra-relativistic matter. The temperature was so high that the kinetic energy

dominated over the rest energy : T ≫ mi, where mi is the rest mass of the species

present at that time. The Universe consisted of photons, neutrinos, electrons, and

other massive particles with very high kinetic energy. After some cooling, some

massive particles decayed and others survived (protons, neutrons, electrons) whose

masses eventually dominated over the radiation components (photons, neutrinos)

when the energy density of matter and radiation became approximately equal. Dur-

ing the second phase, pressure-less matter or dust with equation of state w = 0,

contributed the most to the energy content in what was called the matter domi-

nated era. Finally, the Universe started to become dominated by dark energy and

still is in this phase today. Its acceleration is due to some constant energy density
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parametrized by the cosmological constant, Λ, present in the Einstein equations.

The value of important cosmological parameters during the three major epochs of

the Universe is summarized in Table 1.1.

Figure 1.2: The three main phases of standard cosmology : radiation dominated
era, matter dominated era and dark-energy (or cosmological constant dominated)
era. Table adapted from [4].

The spacetime deformations are encoded in the metric. For a flat, homogeneous

and isotropic Universe, one uses the Friedmann−Lemâıtre−Robertson−Walker
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(FLRW) metric :

ds2 = −dt2 + a(t)2dx2

where a(t) is the scale factor representing the way the size of the Universe increases.

The metric can conveniently be written: gµν = diag(−1, a(t)2, a(t)2, a(t)2).

The redshift, z, is commonly used as an alternative to describe cosmological

time : 1 + z = a0
a
, where a0, the scale factor observed today, is conventionally set

to 1. The conformal time, η =
∫

dt
a(t)

, conveniently simplifies the FLRW metric,

ds2 = a(η)(−dη2 + dx2).

A physical interpretation of η is the one of a clock that slows down as the Universe

expands. In cosmology, energy sources often have an equation of state of the form

p = wρ where p is the pressure density of the fluid, ρ its energy density and w is

called the equation of state parameter.

Table 1.1: Behavior of different types of fluids when one of them dominates the
total energy of the Universe.

Era Radiation Matter Vacuum, Λ

a(t) t
1
2 t

2
3 eHt

a(η) η η2 −1
η

ρ(a) a−4 a−3 constant
w 1

3
0 -1

The Hubble parameter, H = ȧ
a
, represents the rate of expansion of the Universe.

In 2010, the best fit value was H0 = 71.0±2.55 (km/s)/Mpc based on WMAP data

alone. A more recent 2011 estimate of the Hubble constant, using a new infrared

camera on the Hubble Space Telescope (HST) to measure the distance and redshift

for a collection of astronomical objects, gives H0 = 73.8± 2.4 (km/s)/Mpc [5]. In

order to factor out the expansion of the Universe, one can use co-moving coordinates

: xcom = x
a(t)

.
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In order for two regions of space to be causally connected at an early time and

solve what is called the horizon problem, the co-moving Hubble radius, (a(t)H)−1,

must have decreased in the past. A period of rapid inflation at the very beginning

of the Universe or a bouncing scenario satisfy this requirement.

Basics of General Relativity

General Relativity is the underlying theory used to derive major results in

cosmology. Its main equations, the Einstein equations are written in units where

G = c = 1 as

Gµν = 8πTµν − gµνΛ (1.1)

where Λ is the cosmological constant and is responsible for the current accelerated

expansion of the Universe. The Einstein tensor, Gµν , represents the deformation of

spacetime with respect to Minkowski spacetime while the right-hand side describes

the energy content. Tµν , the stress-energy tensor, is related to the matter action,

Sm, through

Tµν = −2
1

√

−detgµν
δSm

δgµν

Thus, a change in the field content immediately implies a change in the “shape”

of the Universe. For the simplest case of a homogeneous and isotropic Universe,

the FLRW Universe homogeneously grows with time at a rate given by the Hubble

parameter, H. In standard cosmology, one considers the energy of the Universe as

a perfect fluid. If the fluid is isotropic in some frame and the Universe is isotropic

as well in another frame, then the fluid is at rest in co-moving coordinates.

As a result the energy density takes the form,

T µ
ν = diag(−ρ, p, p, p).
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For example, in the radiation case, the trace of the stress energy tensor vanishes

and thus, −ρ+ 3p = 0 which yields w = p
ρ
= 1

3
.

Friedmann equations

As the Universe expands, the change in the energy E = a3ρ in a co-moving

volume a3 is given by dE = −pd(a3) like in standard thermodynamics. This yields

a
dρ

da
= −3(ρ+ p).

According to General Relativity, this expression derived from standard thermody-

namics remains valid, if ρ denotes the energy density, T00, instead of just the mass

density. Differentiating with time leads to ρ̇ = −3H(ρ+ p). The T00 component of

the Einstein equation (1.1) for the FLRW metric gives

Ḣ = −H2 − 4πG

3
(ρ+ 3p) or

ä

a
= −4πG

3
(ρ+ 3p) (1.2)

where G is the universal gravitational constant. Alternatively, one can use the

Planck mass defined as : MP l =
√

~c
G
. By isotropy there is only one other equation

from the µν = ij component in (1.1) which combined with (1.2) gives

H2 =
8πG

3
ρ− K

a2
(1.3)

where K is the curvature parameter (which is set to zero in the flat space and in the

following). These two equations, known as the Friedmann equations, are widely

used in cosmology.

Cosmological inflation

In standard Big Bang cosmology, inflation is a period of intense expansion of

the Universe at very early times, starting at around 10−34 seconds after the Big

Bang. The temperature during inflation would drop by a factor of at least 100

000 (fig.1.2). In order to solve the horizon problem , inflation should last at least
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60 e-folds. As a consequence, it would also flatten the Universe and solve the

flatness problem. Inflation would also inflate away any unwanted exotic relics such

as magnetic monopoles. Major cosmology problems are described at the end of

this section.

The easiest way to create a period of almost exponentially expanding universe

is to introduce a single scalar field, the inflaton, in FLRW spacetime [6].

The inflaton field slowly “rolls down“ a potential as shown in fig.1.6 in accordance

with the classical equation of motion :

ϕ̈+ 3H ϕ̇+
dV

dϕ
= 0 or for a m2φ2 potential, ϕ̈+ 3H ϕ̇+m2 ϕ = 0. (1.4)

Together with Friedmann equation in flat space, H2 = 8πG
3
ρ, the system can be

solved for the scale factor a(t).

In order for inflation to occur through slow-roll, the kinetic energy must be

much smaller than the potential energy : φ̇2 ≪ V (φ).

Moreover, the second derivative must be small enough for the inflationary process

to last long enough : φ̈ ≪ |3Hφ̇|, |V ′| where ’ denotes the derivative with respect

to φ.

These two constraints can be rewritten using the so-called slow-roll parameters

ǫ =
M2

P l

2
(
V ′

V
)2 ≪ 1 and η = M2

Pl

V′′

V
≪ 1.

For the simple m2φ2 potential, ǫ = η =
2M2

Pl

φ2 and the duration of the inflationary

phase in e-folds is :

N =

∫ tf

ti

Hdt ∼ 1

M2
P l

∫ φi

φf

V

V ′dφ ∼ φ2
i

4M2
P l

− 1

2

where index i and f respectively refers to the beginning and end of inflation.
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In order for inflation to last long enough, by 60 e-folds, φ needs to be greater

than 16MP l. At the end of inflation, the potential energy is converted into a

thermalized gas of radiation of matter during reheating. The inflaton field then

decays and fills the Universe with particles from the Standard Model.

Chapter 4 illustrates a particular way to reheat the Universe through parametric

resonance, a process called preheating.

Decoupling of species

In Cosmology, present particles are thermal relics that left equilibrium when

they decoupled from a thermal bath. As an example, today, normal matter has

decoupled from a thermal bath of photons. As the Universe expands, the number

density ni, of particles of species i, decreases. Thus, the possibility that particles

interact with each other decreases and so does the interaction rate, Γ = ni〈σv〉

where σ is the thermally averaged cross-section, v the relative velocity and 〈σv〉

is the total annihilation cross-section. Different species have different interaction

rates with the photon fluid and as a consequence decouple at different epochs [7].

This is illustrated on fig.1.3.

A higher interaction rate implies a longer period of equilibrium with the thermal

bath even when the particles becomes non-relativistic.

The expansion of the Universe (which is governed by the Hubble parameter

H) dilutes the particles and Γ decreases with time. When, Γ < H(t), particle

species decouple from a thermal bath and ”freeze-out” to the value they had at the

decoupling time. Particles observed today are thermal relics that have decoupled

from the photon fluid at earlier times.

Usually, observables in cosmology are computed using quantum field theory

at zero temperature : there is no thermal equilibrium for the fields representing

various energy components. At some point in the early Universe, including during
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Figure 1.3: Freeze-out of a massive particle species. The solid line represents
the thermal abundance and the dashed one, the actual one. The evolution of
Y (x)/Y (x = 1) versus x = m/T is shown where Y = n/s, n is the number density
and s, the total entropy density of the Universe[7].

the Quark-hadron phase transition, the Universe was filled with pions, protons and

neutrons, all in thermal equilibrium with photons. Chapter 5 shows the effects of

a photon thermal bath on out-of-equilibrium fields present in the Standard Model

of particle physics, namely the pions. Treating photons in a thermal state requires

the use of finite-temperature field theory which is briefly described in section 1.4.2.

Problems of standard cosmology

Many problem and puzzles arise in standard big bang cosmology. To give a brief

overview, some of them are listed in the following together with possible solutions.

The singularity problem

The Big Bang singularity marks the beginning of the time in conventional cosmol-

ogy. At that point, time begins, a large amount of energy is contained in a Universe

of size zero, so that energy density diverges. General Relativity breaks down at

that point and no-one knows what should replace it.
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An alternative to the big bang model like the Big Bounce discussed in chapters

2 and 3 solves this problem by avoiding the initial singularity.

The horizon problem

The Cosmological Microwave Background (CMB) shows a very homogeneous Uni-

verse whereas it is made of causally disconnected region at an earlier time. Logi-

cally, the fact that different regions have the exact same temperature means that

they were in causal contact earlier. What is the mechanism that made these regions

in causal contacts ?

The flatness problem

The Universe is currently at this peculiar time when the ratio of the actual density

to its critical value (for flat space), Ω, is very close to 1.

The critical value for the energy density corresponds to the energy density for a

flat Universe (K = 0): ρcrit = 8πG
3H2 . Thus, the ratio of the actual density to its

critical value becomes : Ω = ρ
ρcrit

= 8πG
3H2ρ. The question one can ask is, why is the

Universe so flat whereas any tiny deviation from this very specific configuration

would grow with the expansion of the Universe? In other word, why is the value

of Ω so close to 1 whereas Ω = 1 is an unstable fixed point?

The last two problems can be solved by cosmological inflation. In the context

of inflation, one can study the way particles are created at its end. This is called

reheating and will be studied in chapter 4.

The exotic relics problem

During the early universe phase transitions occurred and could give rise to topo-

logical defects, such as monopoles, strings or domain walls. However there have

not yet been any observations of such objects.

Topological defects, cosmic strings in particular, are studied in the context of

the QCD phase transition in chapter 5.
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The dark matter problem

Most of the matter in the Universe is made of unknown matter, called Dark Matter.

Particle physics models are trying to find out what is this mysterious matter.

The cosmological constant problem

The cosmological constant, Λ, is 120 orders of magnitude too small compared to

what is expected from quantum field theory, assuming that the quantum vacuum

is equivalent to the cosmological constant if you used the Planck energy as a cutoff

scale. Supersymmetry would reduce this discrepancy to 60 orders of magnitude.

1.2 Alternative to Standard Big Bang Cosmology

The above picture describes what is called “Standard Big Bang Cosmology”.

Though this is the current paradigm of cosmology, some alternatives exist. One

of the main problems with the Big Bang theory is that at the moment of the Big

Bang, there is a singularity of zero volume and infinite energy. Models avoiding

such a Big Bang singularity like the cycling Universe or the “Big Bounce” solve

this problem. In addition to resolving the Big Bang singularity, a Big Bounce can

also avoid the transplanckian problem of inflationary cosmology : perturbations

observed today were inside the Planck volume at very early times, where General

Relativity breaks down. However, in the bouncing Universe case, perturbations

are never smaller than Planck length as shown on fig.1.5.

Two conditions are required to get a non-singular matter bounce :

At the bouncing point, the Hubble parameter vanishes, H=0. The Friedmann

equation (1.3) implies that the total energy density in the Universe vanishes at

the bouncing point : Σρi = 0 where i indicates different components of the energy

density like matter or radiation for example.

The second condition requires the time derivative of the Hubble parameter to be
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Figure 1.4: Bouncing Universe. Instead of a Big Bang origin of time, the Universe
starts by contracting, reaches a minimal radius after which it starts expanding
again as is observed today.

positive :

dH

dt
> 0 → ρ+ p < 0 → w =

p

ρ
< −1. (1.5)

This violates the null-energy condition. Indeed, non-singular bounces may be

investigated using effective field theory techniques, introducing matter fields which

violate the null-energy condition and can lead to instabilities [8]. The null energy

condition stipulates that ρ + p > 0 or equivalently w > −1. In some simple cases

a connection between violation of the NEC and the presence of instabilities in the

system has already been established [9]. Ghost fields (or equivalently Phantom

fields) which have opposite sign kinetic terms, violate the NEC. NEC-violating

models, plagued by ghost instabilities, can nevertheless be used as toy models to

give rise to a non-singular bouncing Universe.
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Figure 1.5: Evolution of cosmological perturbations in the inflationary Big Bang
and in the Bounce model. Left: Space-time sketch of inflationary Big Bang sce-
nario.The solid line labeled k(t) is the physical length of a fixed co-moving mode,
k. Right: Spacetime sketch in the matter bounce scenario in conformal time, τ ,
and co-moving coordinates, Xcom = X

a(t)
. Perturbations never go below the Planck

length. The vertical line indicates the wavelength for one mode. |H| −1 denotes
the co-moving Hubble radius.

The Lee-Wick Bounce

One subset of these models, coming from a specific field theory construction is

called the Lee-Wick (LW) Standard Model [24]. It introduces a new partner-field,

the Lee-Wick field, to each field present in the initial Lagrangian. The Lee-Wick

extension consists in adding higher-derivative quadratic terms in the Lagrangian.

As a result, it contains ghosts and is non-unitary. Ghosts are scary because they

violate unitarity and create instabilities in the theory. However, unitarity can be

saved at the price of sacrificing microcausality.
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A simple model to describe the Lee-Wick extension uses a single self-interacting

scalar field, φ̂, with a higher-derivative term. The Lagrangian density is

Lhd =
1

2
∂µφ̂∂

µφ̂− 1

2M2
(∂2φ̂)2 − 1

2
m2φ̂2, (1.6)

so the propagator of φ̂ is

D̂(p) =
i

p2 − p4/M2 −m2
. (1.7)

For M ≫ m, this propagator has 2 poles at, p2 ≃ m2 and at p2 ≃M2.

In order to describe this extra degree of freedom, one can introduce an auxiliary

scalar field, φ̃. The above Lagrangian is then equivalent to

L =
1

2
∂µφ̂∂

µφ̂− 1

2
m2φ̂2 − φ̃∂2φ̂+

1

2
M2φ̃2 (1.8)

when replacing φ̃ from L with its equation of motion. Alternatively, a functional

integration over the field φ̃ gives a Gaussian integral which yields the Lagrangian

(1.6).

Defining φ = φ̂+ φ̃, the Lagrangian 1.8 becomes, after integrating by parts,

L =
1

2
∂µφ∂

µφ− 1

2
∂µφ̃∂

µφ̃+
1

2
M2φ̃2 − 1

2
m2(φ− φ̃)2 (1.9)

It is clear that there are two kinds of scalar fields: a normal scalar field φ and a new

field φ̃, called the Lee-Wick field. The sign of the quadratic term in the Lagrangian

of the Lee-Wick field is opposite to the usual sign so one may worry about stability

of the theory, even at the classical level.

For a very massive φ̃ the propagator is given by

D̃(p) =
−i

p2 −M2
. (1.10)
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The LW field is associated with a non-positive definite norm on the Hilbert space,

as indicated by the unusual sign of its propagator. Consequently, if this state were

to be stable, unitarity of the S-matrix would be violated. However, as emphasized

by Lee and Wick [11], unitarity is preserved provided that φ̃ decays. This occurs

in the theory described by 1.9 because φ̃ is heavy and can decay to two φ-particles.

The mixing term 1
2
m2(φ − φ̃)2 can be diagonalized by rotating the fields into

new fields, φ′ and φ̃′.







φ

φ̃






=







cosh θ sinh θ

sinh θ cosh θ













φ′

φ̃′






. (1.11)

This transformation diagonalizes the Lagrangian if

tanh 2θ =
−2m2/M2

1− 2m2/M2
. (1.12)

A solution for the angle θ exists provided M > 2m.

From this transformation, one can easily redefine new fields and their corresponding

new masses.

The Lagrangian describing the system becomes

L =
1

2
∂µφ

′∂µφ′ − 1

2
m′2φ′2 − 1

2
∂µφ̃

′∂µφ̃′ +
1

2
M ′2φ̃′2, (1.13)

where m′ andM ′ are linear combinations of m andM , corresponding to the masses

of the diagonalized fields.

However, for this Lagrangian, the vacuum is unstable to quantum particle produc-

tion [12] and thus this Lagrangian can only be considered as a low-energy effective

field theory.

The higher derivative Lagrangian in the gauge sector is

Lhd = −1

2
F̂µνF̂

µν +
1

M2
A

(

∂µF̂µν

)(

∂λF̂λ
ν
)

, (1.14)
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where F̂µν = ∂µÂν − ∂νÂµ. Introducing an auxiliary massive gauge bosons Ã, the

higher derivative can be eliminated in the same way as in the scalar field case.

Each gauge boson is described by the Lagrangian

L = −1

2
F̂µνF̂

µν −M2
AÃµÃ

µ + 2F̂µν ∂̂
µÃν , (1.15)

In order to diagonalize the kinetic terms, shifted fields defined by Âµ = Aµ + Ãµ

are introduced. The Lagrangian for the pure radiation sector becomes

L = −1

4
FµνF

µν +
1

4
F̃µνF̃

µν − M2
A

2
ÃµÃ

µ. (1.16)

Chapter 3 and 4 explore the possibility of a bounce in the presence of radiation

when a Lee-Wick massive gauge-field, partner of the standard photon field but with

opposite kinetic terms, is introduced.

1.3 Particle production

Reheating is the phase creating all the matter in the Universe at the end of

inflation. During slow roll inflation, the exponential growth of the Universe is due

to a scalar field, the inflaton, slowly rolling down its potential.

To model inflation and reheating it is standard to use a potential that has a

flat part and possesses a well as well:

Initially, during the inflation time, the inflaton slowly rolls down on the flat part;

At the end of inflation, the field oscillates at the bottom of the well, reheating

the Universe and creating particles by transferring energy from the inflaton φ to

an hypothetical scalar particle used to model matter in the Universe, the reheaton,

χ.

Preheating would be the first stage of reheating and an extremely efficient way

to reheat the Universe.



Particle production 21

Figure 1.6: Inflaton slowly rolling down the potential before reheating the Universe
by oscillating at the bottom of the well.

The way the field oscillates during preheating is similar to a child oscillating

on a swing. The oscillatory motion of the center of gravity of the child would

correspond to the motion of the inflaton at the bottom of the potential well. The

amplitude of motion of the swing is analogous to the amplitude of the newly created

field responsible for reheating the Universe, the reheaton.

The solution for each Fourier mode of the reheaton, χk, either diverges ex-

ponentially or has a fixed amplitude and just picks up a phase in the complex

plane. This results in the presence of instability bands where the amplitude of

the new particle grows exponentially and thus the number of χ-particles as well.

In addition, there are also stability bands where preheating does not occur. The

classical background value for χ is at the minimum of the χ effective potential,

Veff (χ) =
(

1
2
m2

χ + g2φ2
)

χ2, namely χ = 0. When expanding the quantum fluctu-

ations of χ :

χ(x, t) =

∫

d3k

(2π)3

(

akχk(t)e
−ik·x + a†kδχ

∗
k(t)e

ik·x
)

, (1.17)
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where ak, a
†
k are the creation and annihilation operators, one obtains the following

equation of motion for each reheaton mode χk :

χ̈k(t) +
(

k2 +m2
χ + g2φ(t)2

)

χk(t) = 0. (1.18)

Mathematically, this system is described by Floquet Theory and Hill’s equations,

whose simplest examples are Mathieu equations.

Floquet Theory

In order to more readily use the tools of Floquet theory, one can simplify and

rewrite the equation of motion in the standard form of Hill’s equation:

χ′′
k(τ) + [Ak(τ) + q(τ)f(τ)]χk(τ) = 0. (1.19)

f(τ) is a π-periodic function of the new time coordinate τ = t π
T
. The parameters Ak

and q are time-dependent only when one considers the expansion of the Universe.

Finally, the definitions of Ak and q impose the bound Ak ≥ q.

Floquet’s theorem (see [29]) states that solutions to (1.19) are of the form,

χk(τ) = eµkτg(τ) + e−µkτg2(τ) (1.20)

where g(τ) and g2(τ) are periodic functions with period T ; and µk, called the

Floquet exponent or characteristic exponent, is complex. Clearly, when µk has a

positive real part χk grows exponentially : this is the parametric resonance effect.

In order to find solutions of the form (1.20), g(τ) can be written as a Fourier

expansion so that (1.20) reads

χk(τ) = eµkτ

∞
∑

n=1

bn cosnτ = eµkτ

∞
∑

n=−∞
cne

inτ =
∞
∑

n=−∞
cne

(µk+in)τ . (1.21)

One can plug this Fourier series back into the equation of motion (1.19) to derive

a recursion relation for the coefficients cn in terms of µk, Ak, q.



Topological defects at finite temperature 23

The vanishing of the determinant, ∆(µk, Ak, q), defined by the system of equa-

tion of motion for each cn, defines the characteristic exponent

µk = − i

2π
cos−1 [1 + ∆(0, Ak, q)(cos(2πAk)− 1)] . (1.22)

µk = µk(Ak, q) is an implicit function Ak and q.

In non-expanding space, the evolution for the field χ for each mode k is set by

χ̈(t) + [k2 +Mχ(t)
2]χ(t) = 0

where Mχ(t) = g2φ2(t). As an example, for the standard potential V (φ) = m2φ2

one just obtains a Matthieu equation : φ(t) = Φsin(mt) where m is the mass of

the inflaton field and q = 4g2Φ
m2 .

The limit q ≪ 1 is the narrow resonance limit, so named because resonance

occurs in bands whose size are proportional to some power of q.

The opposite one is called broad resonance : q ≫ 1. There are two ways to under-

stand the resonance in the broad regime : violation of adiabaticity of the evolution

of the field χ, and mapping the problem to a quantum mechanical scattering prob-

lem. Each of them is examined in chapter 4.

1.4 Topological defects at finite temperature

1.4.1 Topological defects

Topological defects are commonly formed in laboratories and seen in condensed

matter systems during phase transition. In cosmology, these defects could play an

important role and contribute to structure formation [1]. Physically, defects can be

seen as zones of trapped energy. Point-like defects called monopoles are predicted

to have a magnetic charge but have not yet been observed. One dimensional and

2-dimensional defects respectively form cosmic strings and domain walls. There
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also exist more complicated delocalized topological defects that are unstable to

collapse called textures. Cosmologically, it is known that only strings and textures

are acceptable observationally even though none have been observed yet.

In chapter 5, the focus is on cosmic strings, more precisely on strings coming

from fields present in the Standard Model of particle physics. Strings then arise

from spontaneous symmetry breaking occurring when a scalar field, usually called

the Higgs field, takes on its vacuum expectation value.

Figure 1.7: Left: An example of a symmetry-breaking potential, the Mexican hat-
potential. Right: corresponding phase configuration in real space. The string would
be localized at the origin and would extend in the z-direction. Figure from [15].

A simple symmetry breaking potential, the Mexican-hat potential, can give

rise to strings through symmetry breaking. By looking at fig. 1.7 on the right

panel, one can see by continuity that the field value has to vanish at the origin

of the arrows: φ = 0. The potential energy is then maximized and trapped along

the z-axis and the string is extending in the z-direction. The constant quantity

corresponding to the value of the field that minimizes the potential, is called the

vacuum expectation value (VEV). The configurations minimizing the energy form

a manifold, the vacuum manifold, M. In the case of the Mexican-hat potential, M
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is just a circle : M=S1 and the VEV is 〈φ〉 = eiθv where v is the radius of the circle

and θ the angle in the complex plane. The angle θ taken by the VEV and thus

the value of the minimum will depend on the region of space. Topological defects

corresponds to boundaries between regions with different choices of minima.

In particular, there is a non-trivial winding of the phase around a string as shown

on fig.1.8.

Figure 1.8: Non-trivial winding around strings. A string will be present only when
there is a continuous winding between regions of different phases. The correlation
length, ξ, describes the distance over which phases are uncorrelated. Figure from
[15].

The Kibble mechanism

The Kibble mechanism demonstrates that the existence of defects structures

depends on the topology of the vacuum manifold, M, the space of minimum energy

density configurations (ground states). Cosmic strings arise from the symmetry

breaking from a group G(for example the group of rotations about the origin in

the complex plane, U(1)) down to a subgroup H. The space of ground states, the

vacuum manifold is such thatM=G/H. Topological defects exist provided that the

right homotopy group is non-trivial : Πn(M) 6= I with n = 0, 1, 2 for topological
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domain walls, strings and monopoles respectively. One-dimensional topological

defects are formed when M is such that the first homotopy group, Π1(M), is non

trivial [1]. This is equivalent to saying that M is not simply connected (it contains

unshrinkable loops).

The Mexican hat potential is a good example of a U(1) symmetry breaking. In

this case, the minima of energy lie on the circle making up the vacuum manifold :

M = S1 as shown in fig.1.7.
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1.4.2 QCD Phase transition in the early Universe

Figure 1.9: QCD phase transition in the Universe [16]

Approximately 10 microseconds after the Big Bang a phase transition from the

quark-gluon plasma to a hadron gas is expected to have taken place at a temper-

ature of about TQCD ∼ 150 − 200MeV. During the Quantum Chromodynamics

(QCD) phase transition, composites of quarks called hadrons are formed. In par-

ticular, bound states of one quark and one anti-quark called mesons are created.

Below this critical temperature, the physics of hadrons can be well described by a

linear sigma model of four scalar fields which, three of them representing the pion

triplet and one representing the σ-field.
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Phase transition

A phase transition can be seen as a non-analyticity in the equation of state or

in p(T) which describes the evolution of the pressure in function of the tempera-

ture. The transition is of first order if dp/dT has a discontinuity. If not, it is of

higher-order [15]. Phase transitions are characterized by the order parameter. It

is normally a quantity which is zero in one phase, usually above the critical tem-

perature, and non-zero in the other. In case of a symmetry breaking potential, the

order parameter of the system is given by the expectation value of the Higgs field,

〈φ〉. On fig.1.10, one can see the jump in 〈φ〉 occurring at the critical temperature.

Figure 1.10: Example of the evolution of the potential shape at different temper-
ature for a 1st order phase transition. In a 1st order phase transition the value of
the Higgs field VEV, 〈φ〉, changes discontinuisly close to the critical temperature,
Tc .

If p(T) is continuous everywhere but the physical properties of the Universe

change qualitatively within a short temperature interval, the transition is called

a crossover. A simple example of crossover corresponds to the water to vapor
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transition at high-pressure. The current consensus on the QCD phase transition is

that it is a crossover.

Thermal field theory

In order to model the effects of a thermal bath on a system, one can use finite-

temperature field theory to compute physical observables [16]. One approach is to

make the time imaginary and wrapped on itself with a period β = 1/kbT , where

kb is the Boltzmann constant.

Figure 1.11: When the time is Euclideanized and made periodic, the spacetime can
be seen as a cylinder of radius proportional to the inverse temperature : r = 1

2πkbT

and of infinite height.

As shown in fig.1.11, the new time variable, τ = it, becomes compactified and

runs from 0 to β instead of −∞ to +∞. As a result, spacetime becomes Euclidean:

the metric goes from Minkowski, with signature (-, +,+,+ )to a metric describing

an Euclidean geometry (+,+,+,+). The Lagrangian density, L, and the action,

S, becomes Euclidean as well. The Euclidean action, SE, is the integral of the

Euclidean Lagrangian density, LE :

SE =

∫ β

0

dτ

∫

d3xLE.
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When computing a physical observable in thermal equilibrium, there are strong

links with statistical physics. The partition function of the system, Z = Z(V , T , µ),

can be used to describe the system as shown in fig.1.12.

Figure 1.12: Particle scattering and simplification of the system at finite-
temperature. Left: Complicated system at zero temperature. Right: At finite
temperature and chemical potential, interactions within the box represent an er-
godic system that thermalizes. Figure from [15].

Z, the grand canonical partition function, is the trace of the density matrix of

the system ρ̂: Z = Trρ̂ where ρ̂ = e−(H−µN̂)/T . H is the Hamiltonian, T is the

temperature, µ the chemical potential and N̂ is any conserved number operator. As

in statistical physics, many physical observable can be defined from the partition

function:

P = T
∂lnZ
∂V

, N = T
∂lnZ
∂µ

, S =
∂T lnZ
∂T

, E = −PV + TS + µN (1.23)
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where P is the pressure, S the entropy and E, the energy of the system. As shown

in fig.1.12, physical observables 〈O〉, can be computed via

〈O〉 = Tr[Oρ̂]

Z . (1.24)

For a simple theory with boson fields φ and Euclidean action SE(φ), the parti-

tion function is given by the path integral

Z =

∫

[dφ] exp[−SE(φ)]

where

SE(φ) =

∫ β

0

dτ

∫

d3xLE(φ),

and the field φ satisfies periodic boundary conditions in the (imaginary) time di-

rection φ(τ = 0, x) = φ(τ = β, x). The quantum field theory may also involve

fermions, in which case, fermion fields ψ(τ, x) instead satisfy anti-periodic bound-

ary conditions : ψ(τ = 0, x) = −ψ(τ = β, x).

In order to study more complicated systems describing the Universe it is useful

to use the notion of effective potential. Usually, it can be defined by a Legendre

transform via [19] :

Z[j] ≡ exp{iW [j]} (1.25)

and the effective action Γ[φ] as the Legendre transform of (1.25)

Γ[φ] = W [j]−
∫

d4x
δW [j]

δj(x)
j(x) (1.26)

where φ(x) = δW [j]
δj(x)

.

Factoring out an overall factor of spacetime volume, the effective potential,

Veff(φc), can be defined as,

Γ[φc] = −
∫

d4x = −V
T
Veff(φc), (1.27)
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where φc is a constant.

In chapter 5, the effective potential coming from a thermal bath of photons

acting on out-of-equilibrium fields is computed. In that case, finite-temperature

field theory techniques apply only to the gauge field representing the photon field

since it is the only field in thermal equilibrium. In order to compute the effective

potential of the system, one can use the background field method and decompose

each gauge field into a constant part and a perturbative part : Aµ = Āµ+A
′
µ where

∂µĀµ∂
µĀµ = 0. This method is further developed in chapter 5.

The linear sigma model

The linear sigma model is a simple toy model model where the symmetry break-

ing occurs when the sigma field takes on its vacuum expectation value and gives rise

to a triplet of massless pions ~π = (π0, π+, π−). Two are charged, π+ and π− and

one is neutral, π0. Table 1.2 shows some basic properties of the particles coming

from the fields involved in the linear-sigma model.

Table 1.2: The Pion Triplet and its chiral partner

Pion Anti-particle Quark content Rest mass MeV/c2 Charge Mean Lifetime in s

π+ π− ud̄ 139.570 18(35) +1 e 2.6033± 0.0005× 10−8

π− π+ ūd 139.570 18(35) -1 e 2.6033± 0.0005× 10−8

π0 π0 uū−dd̄√
2

134.976 6 (6) 0 e 8.4± 0.4× 10−17

Chiral partner

σ : Hypothetical c1(uū+dd̄)+c2ss̄ 600 (400-1200) 0 e 6.6− 11× 10−25

The following Lagrangian describes the system :

L0 =
1

2
∂µσ∂

µσ +
1

2
∂µ~π∂

µ~π − λ

4
(σ2 + ~π2 − η2)2 , (1.28)

where η2 is the ground state expectation value of σ2 + ~π2.



Topological defects at finite temperature 33

The potential term, λ
4
(σ2 + ~π2 − η2)2 is invariant under the rotation of the four

fields, σ,π+, π− and π0. Thus, the symmetry of the vacuum manifold is O(4) and

the vacuum manifold is a 3-sphere : M= S3. According to the Kibble mechanism

described above, the system does not admit any topologically stable strings since

Π1(S
3) = 1 . By effectively reducing the vacuum manifold to S1, it may be possible

to obtain strings. Having an electric charge, the charged pions fields are coupled

to electromagnetism and the Lagrangian can be promoted to a Lagrangian with

covariant derivatives, electromagnetism becoming turned on.

In chapter 5, an effective potential is derived from the extra term coming from

the coupling between the charged pions and gauge fields in thermal equilibrium.

This gives rise to an “effective vacuum manifold” which admits strings.
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Chapter 2

Radiation Bounce from the

Lee-Wick Construction ?

The following is extracted from the article “A Radiation Bounce from the

Lee-Wick Construction?” published in collaboration with Robert Branden-

berger in Phys.Rev.D82, 063532 (2010).

Abstract It was recently realized that matter modeled by the scalar field sec-

tor of the Lee-Wick Standard Model yields, in the context of a homogeneous and

isotropic cosmological background, a bouncing cosmology. However, bouncing cos-

mologies induced by pressure-less matter are in general unstable to the addition

of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a

bouncing cosmology if we add not only radiation, but also its Lee-Wick partner,

to the matter sector. We find that, in general, no bounce occurs. The only way

to obtain a bounce is to choose initial conditions with very special phases of the

radiation field and its Lee-Wick partner.

36
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2.1 Introduction

The inflationary scenario [1] is the current paradigm of early universe cosmol-

ogy. It addresses some of the problems which the previous paradigm, the Standard

Big Bang model, could not address, and it gave rise to the first theory of cosmolog-

ical structure formation based on fundamental physics [2] whose predictions were

later confirmed by the precision observations of the cosmic microwave background.

Inflationary models, however, are faced with serious conceptual problems (see e.g.

[3]), among which the singularity problem and the “Trans-Planckian” problem for

fluctuations. In the context of General Relativity as the theory of space-time, it has

been shown [4] that inflationary models have a singularity in the past and there-

fore cannot yield a complete theory of the early universe. The “Trans-Planckian”

problem for fluctuations [3, 5] relates to the fact that in inflationary models, the

wavelengths of perturbation modes which are observed today were smaller than

the Planck scale in the early periods of inflation, and were thus in the “short wave-

length zone of ignorance” in which we cannot trust the theory which is being used

to track the fluctuations. In fact, in [5] it is shown that the predictions for observa-

tions are in fact rather sensitive to the physics assumed in this zone of ignorance.

These conceptual problems of inflationary cosmology form one of the motivations

for considering possible alternatives to inflation.

One of the alternative scenarios to inflation is the “matter bounce” paradigm

(see e.g. [6, 7] for introductory expositions). In this scenario it is assumed that

the Universe undergoes a nonsingular cosmological bounce. Time runs from −∞

to +∞. The time coordinate can always be adjusted such that the bouncing point

is at time t = 0. The Hubble radius H(t)−1 is the scale which separates wave-

lengths on which microphysics dominates (sub-Hubble) from those where matter

forces are frozen out (super-Hubble). If the contracting and expanding phases far
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away from the bouncing point are described by General Relativity and we consider

matter with pressure density p > −ρ/3 (where ρ is the energy density), then it

follows that scales which are currently observed exited the Hubble radius at some

point during the contracting phase. As was realized in [5, 9, 10], if the curva-

ture fluctuations start out early in the contracting phase on sub-Hubble scales in

their vacuum state, then the growth of the perturbations on super-Hubble scales

during the period of contraction leads to a scale-invariant spectrum of curvature

fluctuations on super-Hubble scales before the bounce. Detailed analyses of the

evolution of cosmological fluctuations through the nonsingular bounce performed

in the context of specific bouncing models (see e.g. [11, 12, 13]) show that the

spectrum of curvature fluctuations is unchanged during the bounce on wavelengths

which are large compared to the bounce time, a result which agrees with what is

obtained by applying the Hwang-Vishniac matching conditions [14, 15] to connect

perturbations across a spacelike “matching” hypersurface between a contracting

and an expanding Friedmann universe.

By construction, a bouncing cosmology is nonsingular. In such a model, the

wavelength of fluctuations which are being probed in current observations always

remains far larger than typical microphysical scales. If the energy density at the

bouncing point is set by the scale of particle physics Grand Unification, then the

physical wavelength corresponding to the current Hubble radius is about 1mm, to

quote just one number. Hence, the fluctuations remain in the regime controlled by

the infrared limit of the theory, far from the trans-Planckian zone of ignorance.

The challenge is to obtain a bouncing cosmology. One must either give up Gen-

eral Relativity as the theory of space-time, or else one must invoke a new form of

matter which violates some of the “usual” energy conditions (see [16] for a discus-

sion of the assumptions underlying the singularity theorems of General Relativity).
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For a recent review on how bouncing cosmologies can be obtained see [17]. We here

mention but a few recent attempts. Introducing higher derivative gravity terms

can lead to nonsingular cosmologies, as in the “nonsingular universe construction”

of [18]. Similarly, the ghost-free higher derivative action of [19] leads to a bouncing

cosmological background. Horava-Lifshitz gravity also leads to a bouncing cosmol-

ogy provided that the spatial curvature does not vanish [20]. Bouncing cosmologies

may also arise from quantum gravity, as e.g. in loop quantum cosmology (see e.g.

[21] for a recent review). If we maintain General Relativity as the theory of space

and time, then one can obtain a bounce by introducing new forms of matter such as

“quintom” matter [22]. In this case, in addition to the matter sector with regular

sign kinetic action, there is a new sector (a “ghost” sector) which has an opposite

sign kinetic action.

Several decades ago, Lee and Wick [23] introduced a field theory construction

which involves degrees of freedom with opposite sign kinetic terms. The Lee-Wick

model aims at stabilizing the Higgs mass against quadratically divergent terms and

is interesting to particle physicists since it can address the “hierarchy problem”.

The Lee-Wick construction was recently resurrected and extended to yield a “Lee-

Wick Standard Model” [24, 25]. The Lee-Wick model can thus potentially provide

a framework for obtaining a bouncing cosmology. In [26], the Higgs sector of the

Lee-Wick Standard Model was analyzed and it was shown that, indeed, a bouncing

cosmology emerges. However, the scalar field Lee-Wick bounce is unstable against

the addition of regular radiation to the matter sector (as will be explained in Section

2 of this paper). Since we know that there is radiation in the Universe, one may

then worry whether the Lee-Wick bounce can be realized at all. However, to be

consistent with the philosophy of the Lee-Wick construction, Lee-Wick radiation

terms with opposite sign kinetic actions must be added. In this paper we address
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the question whether, in this context, a cosmological bounce can be achieved. We

find that unless the phases of the two fields are chosen in a very special way then

no bounce will occur.

The outline of this paper is as follows: in the next section we briefly review the

philosophy behind the Lee-Wick model and discuss why the scalar sector of the

Lee-Wick model taken alone would yield a bouncing cosmology. In Section 3 we

introduce the Lagrangian for Lee-Wick electromagnetism and derive the expression

for the energy density. In order to study the cosmological implications of our action,

we need to know how plane waves of the Lee-Wick partner of the radiation field

evolves. This is the focus of Section 4. After understanding how regular and

Lee-Wick radiation evolve, we can then study under which conditions a bouncing

cosmology might result.

2.2 Review of the Lee-Wick Model and the Scalar

Lee-Wick Bounce

We will review the Lee-Wick model and the Lee-Wick bounce in the simple case

of a single scalar field φ̂. The hypothesis of Lee and Wick [23] was to add an extra

scalar degree of freedom designed to cancel the quadratic divergences in scattering

matrix elements. Originally, the new degree of freedom was introduced by adding

a higher derivative term of the form (∂2φ̂)2 to the action, yielding a higher order

differential equation and hence a new degree of freedom. It is, however, simpler

to isolate the new degree of freedom by introducing an auxiliary scalar field φ̃ and

redefining the “physical” field to be φ (see [24]). After doing this and after a field

rotation the Lagrangian becomes

L =
1

2
∂µφ∂

µφ− 1

2
∂µφ̃∂

µφ̃+
1

2
M2φ̃2 − 1

2
m2(φ− φ̃)2 − V (φ− φ̃) , (2.1)
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whereM ≫ m is the mass scale of the new degree of freedom, and V is the original

potential which after the field redefinition depends on both fields.

The field φ̃ is called the Lee-Wick partner of φ. It has the opposite sign kinetic

Lagrangian and the opposite sign of the mass square term. Hence, without any

coupling to other fields or to gravity the evolution of φ̃ would be stable and consist

of oscillations about φ̃ = 0. However, in the presence of any coupling of φ̃ with other

fields there are serious potential instability and unitarity problems [27, 28, 29, 30].

Ways to make the theory consistent were discussed many years ago in [31] and

more recently in [32] in the case of interest in the current paper, namely Lee-

Wick electromagnetism. In [32], a proposal for a ultraviolet (UV) complete theory

of Quantum Electrodynamics via the Lee-Wick construction was made. It was

argued that the presence of ghost poles in virtual state propagators and the loss

of microcausality do not necessary mean that causality is violated at macroscopic

scales. This would be the case if the Lee-Wick particles decayed fast enough [33].

The Lee-Wick model has been resurrected in [24] with the goal of studying

signatures of this alternative model to supersymmetry in LHC experiments. For

some projects to try to test experimentally the predictions of the Lee-Wick model

see e.g. [35, 34].

Let us now review [26] how a nonsingular bouncing cosmology can emerge from

the scalar sector of a Lee-Wick model. In fact, for this to happen no coupling

between these fields is required, and hence we will assume V = 0 in the following

discussion. We take initial conditions at some initial time in which both the scalar

field φ and its Lee-Wick partner φ̃ are both oscillating about their ground states,

and that the positive energy density of φ exceeds the absolute value of the neg-

ative energy density of φ̃, i.e. we start in a phase dominated by regular matter.
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We assume that the Universe is contracting with a Hubble rate dictated by the

Friedmann equations.

Initially both fields are oscillating and their energy densities both scale as a−3(t),

where a(t) is the cosmic scale factor. Since M ≫ m while the energy density of

φ̃ is smaller than that of φ, the amplitude Ã of φ̃ must be much smaller than

the amplitude A of φ. During the initial period of contraction, both amplitudes

increase at the same rate. At some point, however, Ã becomes comparable to

mpl, the four dimensional Planck mass. As we know from the dynamics of chaotic

inflation [36], at super-Planckian field values φ will cease to oscillate - instead,

it will enter a “slow-climb” regime, the time reverse of the inflationary slow-roll

phase. During this phase, the energy density of φ increases only slightly. However,

φ̃ continues to oscillate and its energy density increases in amplitude exponentially

(still proportional to a−3). The energy in φ̃ (i.e. its absolute value) will hence

rapidly catch up with that of φ. When this happens, H will vanish. Since the

kinetic energy of φ̃ overwhelms that of φ, Ḣ > 0 and thus a nonsingular bounce

will occur [26], the Universe will begin to expand.

The matter bounce in the Lee-Wick scalar field model was analyzed in detail

in [26]. In particular, it was verified explicitly that initial vacuum fluctuations on

sub-Hubble scales in the contracting period develop into a scale-invariant spectrum

of curvature fluctuations on super-Hubble scales after the bounce. A distinctive

prediction of this scenario is the shape and amplitude of the three-point function,

the ‘bispectrum” [37].
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However, the scalar field Lee-Wick bounce in unstable towards the addition of

radiation before the bounce 1 : Since the energy density in radiation scales as a−4 it

becomes more important than that of φ̃ as the Universe decreases in size, and will

hence destabilize the bounce. Can the addition of a Lee-Wick partner to regular

radiation help restore the bounce? This is the question we ask in this work. We

will follow the same type of reasoning as above, but for the case of radiation: we

now introduce a Lee-Wick gauge field, the partner of the standard one, which will

initially be dominant. We use the Lagrangian for a U(1) Lee-Wick gauge boson

(see [24]) to which we add a coupling term between the normal and the Lee-Wick

field in order to allow the energy to flow from one component to the other. Our

goal is to see if we can get a bouncing universe using this setup.

2.3 The Model

We will consider the radiation sector of Lee-Wick quantum electrodynamics

and will start with a higher derivative Lagrangian [24] for a U(1) gauge field Aµ of

the form:

Lhd = −1

4
F̂µνF̂

µν +
1

2M2
A

DµF̂µνDλF̂ ν
λ , (2.2)

where Fµν is the field strength tensor associated with Aµ and D denotes the covari-

ant derivative. Note the sign difference in the second term compared to [24] : This

will prevent the appearance of a tachyonic massive Lee-Wick (L-W) gauge boson.

The mass MA corresponds to the mass of the new physics in the model. To solve

1 The Lee-Wick matter bounce is also unstable against the addition of anisotropic
stress in the initial conditions. This is a well-known problem for bouncing cosmolo-
gies which we will not further address in this paper.
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the Hierarchy Problem of the Standard Model, this mass should be of the order of

1TeV.

The higher derivative terms in the above Lagrangian lead to an extra propagat-

ing mode. We can isolate it using the usual Lee-Wick construction by introducing

a new field Ã (Â = A+ Ã) called Lee-Wick partner, which depends on derivatives

of the original field and adjusting the gauge fields such that the kinetic term of

the Lagrangian becomes diagonal in Aµ and Ãµ. We find that the propagator for

the Ãa field has pole at p2 = M2
A and has an opposite sign compared to the nor-

mal one. Thus, it is a ghost field (with the associated problems of instability and

nonunitarity mentioned in the previous section). The Lagrangian becomes:

L = −1

4
(FµνF

µν − F̃µν
˜F µν) + cFµν

˜F µν +
M2

A

2
ÃaÃa . (2.3)

We have added a coupling term, with coupling constant c, in order to allow the

energy density to be able to flow from the normal field to the Lee-Wick field. Since

the Lee-Wick sector is not observed in experiments today, we choose the two fields

to be weakly coupled. In the case when the coupling constant is equal to zero, MA

is the mass of the L-W gauge field.

Note that the U(1) gauge invariance of electromagnetism is broken by the ad-

dition of the Lee-Wick sector. In addition to the problem of ghosts, this is an-

other serious potential problem for the model which we are currently investigating.

Given that gauge invariance is violated, we need to justify our choice of the cou-

pling between the two fields. We have used gauge invariance and power counting

renormalizability to pick out the term we have added to the Lagrangian in order

to describe the coupling. If the entire Lagrangian were gauge-invariant, this would

clearly be the correct procedure. In the presence of a symmetry breaking term

which is very small (for large values of MA) we can use gauge invariance of the low
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energy terms in the action to justify neglecting small symmetry breaking coupling

terms if we are interested in energy transfer between the two fields which should

be operational already at low energies.

As our initial conditions in a contracting universe, we imagine that the usual

radiation field dominates the energy-momentum tensor. This implies that we must

set the initial amplitude of Ãµ to be very small compared to that of the regular

gauge field Aµ. In this case, then if MA is large enough compared to the ex-

perimental energy scale, we would not expect to see the ghost radiation field in

experiments.

The energy-momentum tensor following from (2.3) is

Tµν = −1
4
gµν(FλσF

λσ − F̃λσ
˜F λσ − 4cFλσ

˜F λσ) + Fµ
λFνλ − F̃µ

λ
F̃νλ

+1
2
gµνMA

2ÃaÃa −M2
AÃµÃν − 4cFµλF̃ λ

ν (2.4)

and its trace is, contrary to the case of pure radiation, nonzero:

T µ
µ = M2

AÃaÃa . (2.5)

Using the Friedmann metric given by (2.16), the energy density is equal to:

T00 =
1

4
(F 2−F̃ 2)−cFλσF̃

λσ+F0
λF0λ−F̃0

λ
F̃0λ−M2

A(
Ã2

2
+Ã0

2
)−4cF0λF̃ λ

0 . (2.6)

We can split this into three different terms, the contribution of normal radiation,

ρA =
1

4
(F 2 + F0

λF0λ) , (2.7)

the contribution from Lee-Wick radiation,

ρÃ = −1

4
(F̃ 2 + F̃0

λ
F̃0λ)−M2

A(
Ã2

2
+ Ã0

2
) , (2.8)
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and the term coming from the mixing between the two fields,

ρA−Ã = −c(Fλσ
˜F λσ + 4F0λF̃ λ

0 ) . (2.9)

The equation of state is like that of radiation but with an additional term

proportional to the mass of the Lee-Wick gauge field:

w ≡ p

ρ
=

ρ

3ρ
+
T µ
µ

3ρ
=

1

3
+
M2

AÃaÃa

3T00
. (2.10)

We note that this expression is valid only when the total energy density is nonzero,

and thus it would not be valid at the bouncing point if there were a bounce.

We can actually define three different equation of state parameters, one for each

type of energy:

wA = wA−Ã =
1

3
and

wÃ =
1

3
+
M2

AÃaÃa

ρÃ
, (2.11)

the last of which is nonconstant in time. The equation of state parameter for the

coupling term is the same as the one for normal radiation since the trace of the

coupling energy-momentum tensor vanishes.

Our goal is to see under which conditions the above matter Lagrangian leads to

a cosmological bounce. We will initially turn off the coupling between the two fields

(i.e. set c = 0), derive the solutions of the equations of motion for both fields, and

study what scaling with the cosmological scale factor a(t) these solutions imply for

the three contributions to the energy density discussed above. We find that - unlike

what happens for the scalar field Lee-Wick model of [26] - there is no mechanism

which leads to a faster increase in the energy density of the Lee-Wick partner field

than that of the original radiation field. Thus, a bounce can only occur if there is
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a mechanism which drains energy from the original gauge field sector to the Lee-

Wick partner field. It is for this reason that we have introduced a direct coupling

term between the two fields in our Lagrangian. We will then study the effects of

the coupling between the two fields, working in Fourier space and making use of

the Green function method. We find that the sign of the energy transfer depends

not only on the sign of the coupling coefficient c, but also on the phases of the

oscillations of the two fields. Averaging over the phases, we find no net energy

transfer, and hence there can be no cosmological bounce.

As initial conditions we choose a state in the contracting phase in which the

regular radiation field is in thermal equilibrium at some initial time ti. Since we

want to start with a state which looks like the time reflection of the state we are

currently in, we assume that the energy density in Ãµ is initially subdominant.

We, however, do assume that Ãµ has excitations for modes with wave-number

comparable to the initial temperature.

In the absence of coupling between the two fields, the distribution of Aµ would

remain thermal, with a temperature T which blue-shifts as the Universe contracts.

The corresponding energy density would scale as a−4. The presence of coupling

will lead to a departure from thermal equilibrium. We will assume, however, that

a(t) continues to scale like
√
t, the scale factor of radiation. If there were a bounce,

this approximation would fail at some point sufficiently close to the bounce time.

2.4 Equations of Motion

The equations of motion obtained from varying the Lagrangian with respect to

Aµ and Ãµ are:

∂µ(F
µν − 2c ˜F µν) + 3H(F 0ν − 2cF̃ 0ν) = 0 (2.12)

−M2
AÃ

ν + ∂µ( ˜F µν + 2cF µν) + 3H(F̃ 0ν + 2cF 0ν) = 0 . (2.13)



Equations of Motion 48

Combining them, we find that the L-W field will act as a source term for the normal

field:

∂µF
µν + 3HF 0ν =

2cM2
A

1 + 4c2
Ãν (2.14)

but that the L-W field is decoupled from the normal one and therefore only depends

on the initial conditions:

∂µ ˜F µν + 3HF̃ 0ν − M2
A

1 + 4c2
Ãν = 0 . (2.15)

From this last equation, we can also read off the new mass which the Lee-Wick

partner field obtains in the presence of coupling: M ′
A = MA√

1+4c2
, which is about the

same asMA at weak coupling. We can notice that at very strong coupling, the L-W

gauge field becomes massless and therefore would evolve like a normal photon.

We will consider a homogeneous and isotropic universe with metric

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] , (2.16)

where t is physical time, x, y and z are the three spatial comoving coordinates, and

we have for notational simplicity assumed that the Universe is spatially flat.

Since the equations of motion are linear, we can work in Fourier space, i.e. with

plane wave solutions. There will be no coupling between different plane waves. For

simplicity, we focus on waves propagating along the z-axis with the same wave

number, k, for the Lee-Wick and the normal gauge field. We work in the real basis

of Fourier modes cos(kz) and sin(kz).

Without loss of generality we can restrict attention to one polarization mode

which we take to be the electric field in the x direction and the magnetic field in the

y direction. In this case, the only nonzero components of the field strength tensors

are : F 01, F 13, F̃ 01 and F̃ 13. Using the temporal gauge where : Ã0 = A0 = 0, we

find that only the first component of the gauge fields are nonzero, and we can make
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the ansatz

A1(k, t) = f(t)cos(kz) and Ã1(k, t) = g(t)cos(kz) (2.17)

or equivalently

A1(k, t) = a(t)−2f(t)cos(kz) and Ã1(k, t) = a(t)−2g(t)cos(kz) . (2.18)

From (2.14) and (2.15),we obtain two linear second order differential equations

with a damping term for the coefficient functions f(t) and g(t):

f̈(t) +Hḟ(t) + [
k

a(t)
]2f(t) = − 2c

1 + 4c2
M2

Ag(t) (2.19)

g̈(t) +Hġ(t) + [[
k

a(t)
]2 +

M2
A

1 + 4c2
]g(t) = 0 . (2.20)

For k
a

≪ MA√
1+4c2

, the L-W field behaves as a harmonic oscillator with angular

frequency MA√
1+4c2

. As a consequence of the cosmological dynamics the oscillator

undergoes damping (in an expanding universe) or antidamping (in the case of in-

terest to us, that of a contracting universe). The regular radiation field satisfies

the equation of a driven oscillator, again subject to cosmological damping or anti-

damping. Notice that(2.19) has a particular solution fp(t) = 2cg(t). The driving

term can lead to energy transfer between the regular radiation field and its L-W

partner. In the following we wish to study if the energy transfer is able to drain

enough energy from the regular radiation field to enable a bounce to occur.

To solve these equations for any H(t), it is easier to use the conformal time

η =
∫

dt
a
and to make things clearer, we introduce new functions u and v such that

u(η) = f(η) and v(η) = g(η). Equations (2.19) and (2.20) can thus be rewritten
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as:

u′′(η) + k2u(η) = −a(t)2 2c

1 + 4c2
M2

Av(η) (2.21)

v′′(η) + [k2 + a(t)2
M2

A

1 + 4c2
]v(η) = 0 , (2.22)

where ′ denotes the derivative with respect to η. For a radiation-dominated uni-

verse, we have a(η) = η.

From (2.21) we see that in the absence of coupling we get simple oscilla-

tions in conformal time with frequency k for the normal gauge field. For the

L-W field we get oscillations in conformal time, with a time dependant frequency

k̃ =
√

k2 + a(t)2
M2

A

1+4c2
. In physical time these correspond to :

f(t) = Ccos(2
√
tk + φ) (2.23)

g(t) =
α

t
1
4

WhM(
−ik2

√
1 + 4c2

2MA

,
1

4
,

2iMAt√
1 + 4c2

) +
β

t
1
4

WhW (
−ik2

√
1 + 4c2

2MA

,
1

4
,

2iMAt√
1 + 4c2

)

where WhM and WhW are the Whittaker functions (see e.g. [38]), α and β are

constants characterizing the phase of g(t) and φ is the phase of f(t).

Before discussing the solutions of these equations we must specify our initial

conditions. We consider a contracting phase dominated by regular radiation. Since

we have in mind an initial state which looks like the time reverse of a state in the

early radiation phase of our expanding cosmology, we will start at some time ti in

thermal equilibrium with a temperature much smaller than the Planck scale. The

occupation numbers of the Fourier modes of the regular radiation field are hence

given by the thermal distribution, with the peak wave-number being set by the

temperature and hence much larger than the Hubble rate. We are thus considering

modes inside the Hubble radius. Since we are interested in studying the possibility

of obtaining a bounce, we will work at temperature higher than the mass MA.
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We assume that the energy density of the L-W radiation field is subdominant

at the initial time ti. The most conservative assumption is that the distribution

of wave-numbers is also peaked at the initial temperature. These assumptions will

allow us to pick out the limiting cases of the solutions of the above equations (to

be discussed in the following section) which are relevant for us.

2.5 Solutions

2.5.1 Solutions for the Lee-Wick field

Depending on whether the physical wave-number is larger or smaller than the

mass of the L-W gauge field, M ′
A = MA√

1+4c2
, we get different behaviors for the

solution g. Since we are interested in exploring the solutions at high densities,

close to the hypothetical bouncing point, we will assume that the temperature is

larger than the mass L-W field. We will focus on wave-numbers close to the peak of

the thermal distribution function, and hence k/a > M ′
A. In this limit, the solutions

for the L-W gauge field will simply be oscillating in conformal time with frequency

k:

g(t) = C̃cos(ηk) = C̃cos(2
√
tk) , (2.24)

where we have used the scaling of a(t) of a radiation-dominated universe to ex-

press the conformal time η in terms of physical time t, and where C̃ is a constant

amplitude.

The normal gauge field satisfies a harmonic oscillator equation with a driving

term with which the L-W field acts on it. The strength of the driving term is

proportional to the coupling constant c in the Lagrangian. The general solution

of the inhomogeneous equation for u is the general solution of the homogeneous

equation plus a particular solution of the inhomogeneous equation whose amplitude
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is proportional to c and which can be determined using the Green function method

(see later). The homogeneous solution for u is oscillating with frequency k.

For large wavelength, i.e. k
η
≪M ′

A the solutions for g behave like a combination

of Bessel functions.

g(t) = α t
1
4J(

1

4
,

MAt√
1 + 4c2

) + β t
1
4Y (

1

4
,

MAt√
1 + 4c2

) , (2.25)

where α and β are constants that can be determined using the initial conditions

and J and Y are, respectively, the Bessel functions of order 1
4
of the first and the

second kind.

A more physical way of understanding the behavior is to rewrite the solutions

in the asymptotic limits. For large values of t and for M ′
At ≫ | 1

16
− 1|, the L-W

gauge field oscillates with a frequency corresponding to the mass of the L-W gauge

field, M ′
A. Indeed, in this case :

J(
1

4
,M ′

At) ≈
√

2

πM ′
At

cos

(

M ′
At−

3π

8

)

(2.26)

Y (
1

4
,M ′

At) ≈
√

2

πM ′
At

sin

(

M ′
At−

3π

8

)

(2.27)

Therefore, in this limit the L-W gauge field scales like g(t) ∝ t−1/4 ∼ a(t)−1/2 when

we are in a radiation-dominated period, which we are during a certain time since

the initial state is dominated by regular radiation.

To better understand the behavior of the solutions in the small k limit and at

large times, we can rewrite the solution using powers of the scale factor. The two

independent solutions are

g(t) ≈ a(t)−
1
2 e

±
∫

1
2

√

H(t)2− 4M2
A

1+4c2
dt
, (2.28)
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though this expression is valid only when the square root term in the exponential

is approximately constant. Choosing the initial time ti such that
M2

A

1+4c2
≫ H(ti)

2

we see that this inequality stays valid only a finite period of time since H(ti)

increases with time in a radiation phase of a contracting universe. We immediately

get g(t) ∝ a(t)−1/2cos( MA√
1+4c2

t) which is in agreement with the behavior we found

using asymptotic values of the Bessel functions.

In the opposite case, when t is close to 0 (and we are still considering large

wave-numbers), the asymptotic forms of the Bessel functions of first and second

kind scale as a power of t:

t
1
4J(

1

4
,

MAt√
1 + 4c2

) =
2

5
4 ( MA√

1+4c2
)1/4Γ(3

4
)
√
t

π
+ o(t2) (2.29)

t
1
4Y (

1

4
,

MAt√
1 + 4c2

) =
−2

3
4

( MA√
1+4c2

)1/4Γ(3
4
)
+
2

3
4 ( MA√

1+4c2
)1/4Γ(3

4
)
√
t

π
+
1

3

2
3
4M2

At
2

( MA√
1+4c2

)
1
4 (1 + 4c2)Γ(3

4
)
+O(t2) .

If we choose the amplitude of the two Bessel functions to be equal and opposite in

(2.25), we get a cancellation of the square root term in g(t) and thus the L-W gauge

field scales as g(t) ≈ C3−C4t
2+o(t2). In the general case we get g(t) ≈ C3+C5

√
t

where C3 and C5 are constants.

Note that the closer we get to t = 0, less and less modes will satisfy the

condition k ≪ |η| MA√
1+4c2

. Instead, they will evolve into the large wave-number

regime discussed at the beginning of this subsection. They will oscillate and behave

exactly as normal radiation.

We note that since g(t) is just oscillating , its effect on the normal field will

decrease with time in a contracting phase as the source will scale as a(t)2 ∼ t in a

radiation-dominated era and time runs from −∞ to 0 in the contracting phase.
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2.5.2 Scaling of the Energy Densities

The energy densities for each type of radiation can be rewritten in terms of

f, g and their derivatives for each mode k by averaging < cos(kz)2 > over the

z-direction:

ρA(t, k) =
1

4a2
[(
k

a
)2f(t)2 + ḟ(t)2] (2.30)

ρÃ(t, k) = − 1

4a2
[((
k

a
)2 +

M2
A

2
)g(t)2 + ġ(t)2] (2.31)

ρA−Ã(t, k) = − c

a2
[(
k

a
)2f(t)g(t) + ḟ(t)ġ(t)] . (2.32)

Rewriting this in term of conformal time, η, we get :

ρA(η, k) =
1

4a(η)4
[u′(η)2 + k2u(η)2] (2.33)

ρÃ(η, k) =
−1

4a(η)4
[v′(η)2 + [k2 +

M2
A

2
a(η)2]v(η)2] (2.34)

ρA−Ã(η, k) =
−c
a(η)4

[u′(η)v′(η) + k2u(η)v(η)] . (2.35)

In the absence of coupling between the two fields the solutions for u correspond

to undamped oscillations. Hence, the energy density of the regular radiation field

scales as a−4 as we know it must. The contribution of all short wavelength modes

to the L-W energy density also scales as a−4 since for these modes v is oscillating

with constant amplitude. The coefficient is negative as expected for a ghost field.

The third energy density, that due to interactions, also scales as a−4 for short

wavelengths.

The contribution of long wavelength modes to the energy density of the L-W

field and to the interaction energy density scale as a−p with a power p which is

smaller than 4. For large times, the power p is 3 in the energy density for the L-W

field, i.e. a scaling like that of nonrelativistic matter. Close to t = 0 the power
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changes to p = 2. This can be seen most clearly from (2.31) and from the scalings

of g(t) derived earlier.

Hence, we conclude that in the absence of coupling between the two fields (i.e.

for c = 0), the energy density in the regular radiation field will dominate throughout

the contracting phase if it initially dominates, and hence no cosmological bounce

will occur. In fact, for temperatures T < M
′

A, modes of v with values of k close

to the peak of the thermal distribution scale as matter. Hence, the ratio of the

energy density in the L-W field to the energy density in the regular radiation field

decreases which renders it even more difficult to obtain a bounce. Once T > M
′

A,

the energy densities in both fields scale as radiation.

2.5.3 Solution for the Regular Radiation Field

We now consider the evolution of the regular radiation field in the presence of

a nonvanishing coupling with the L-W radiation field. Our starting point is the

set of equations of motion (2.21) and (2.22). From (2.22) it follows that the ghost

field v evolves independently. In turn, it influences the evolution of the regular

radiation field u as a source term. We expect the coupling constant c to be small.

First, we show that the correction to the energy density in the presence of

nonvanishing coupling is very small, namely of order c2. We observe that if we

turn on the coupling, the following is a solution of (2.21):

u(η)c 6=0 = u(η)c=0 + 2cv(η) . (2.36)

Inserting this into ρA(k, η) (see (2.33)) yields

ρA c 6=0 = ρA c=0−4c2(ρÃ+
M2

A

4
a(η)−2v(η)2)+

c

a(η)4
[u′(η)v′(η)+k2u(η)v(η)] (2.37)

Note that ρÃ and v stay the same when we turn the coupling on. We also have a

change in the expression for the coupling term in the energy density since it also
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depends on u:

ρA−Ã c 6=0 = − c

a(η)4
[u′(η)v′(η) + k2u(η)v(η)]− 2c2

a(η)4
[v′(η)2 + k2v(η)2] . (2.38)

The total energy density when the coupling is turned on is

ρtot c 6=0 = ρA c 6=0 + ρÃ + ρA−Ã = ρA c=0 + (1 + 4c2)ρÃ − c2M2
Aa(η)

−2v(η)2 (2.39)

This looks very much like the total energy we had before adding any coupling

(ρtot c=0 = ρA c=0+ρA−Ã) but with two correction terms of order c2. Both correction

terms appear to decrease the total energy density (recall that ρÃ is negative).

The second correction term (the last term in (2.39), however, increases less fast

in a contracting background than the other terms, and the first correction term

corresponds to a small time-independent renormalization of the energy density in

the L-W field. Thus, it appears that if the energy density of the regular radiation

field dominates initially, then it will forever and no bounce will occur. In the

following we will confirm this conclusion by means of an analysis which compares

solutions with and without coupling with the same initial conditions.

The evolution of u in the presence of the coupling with v can be determined

using the Green function method. The general solution u(η) of (2.21) is the sum

of the solution u0(η) of the homogeneous equation which solves the same initial

conditions as u and the particular solution δu(η) with vanishing initial conditions.

The particular solution is given by

δu(η) = u1(η)

∫ η

ηI

dη
′

ǫ(η
′

)u2(η
′

)s(η
′

)− u2(η)

∫ η

ηI

dη
′

ǫ(η
′

)u1(η
′

)s(η
′

) , (2.40)

where u1 and u2 are two independent solutions of the homogeneous equation, ηI is

the initial conformal time ,
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ǫ(η) is the Wronskian

ǫ(η) =
(

u
′

1u2 − u
′

2u1
)−1

, (2.41)

and s(η) is the source inhomogeneity

s(η) = −a2 2c

1 + 4c2
M2

Av(η) . (2.42)

In our case, the solutions of the homogeneous equation are u1(η) = cos(kη) and

u2(η) = sin(kη) and the Wronskian is ǫ(η) = −1/k.

Since it is less hard to imagine a bounce once the energy densities in both fields

scale as radiation, and since to study the possibility of a bounce it is important to

investigate the dynamics at very high temperatures when the bulk of the Fourier

modes of both fields scale as radiation, we will consider in the following Fourier

modes for which v is oscillating.

We will now show that the sign of the energy transfer between the two fields

depends on the relative phase between the oscillations of u0(η) and v(η). We are

interested in conformal time scales long compared to the oscillation time k−1 but

short compared to the cosmological time. Hence, we can approximate the scale

factor in (3.82) by a constant. A simple calculation then shows that if we choose

phases for which v(η) = v0sin(kη) and u0 = Acos(kη) then

u(η) ≃
(

A− cv0
1 + 4c2

M2
A

4k
(η − ηI)

)

cos(kη) . (2.43)

For a coupling constant c > 0 this choice of phase hence leads to draining of energy

density from the regular radiation field. On the other hand, the phase choice

v(η) = v0cos(kη) and u0(η) = Asin(kη) leads to

u(η) ≃
(

A+
cv0

1 + 4c2
M2

A

4k
(η − ηI)

)

sin(kη) (2.44)

and hence to a relative increase in the energy density of the regular radiation field.
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We need to consider the full phase space of Fourier modes. Even if we only

consider modes with fixed value of k given by the peak of the thermal distribution,

we must sum over the different angles. Since there is no reason why the phases for

different Fourier modes should be the same, we must take the expectation value

of the energy transfer averaged over all possible choices of phases. This average

obviously vanishes. Hence, we conclude that without unnatural fine tuning of

phases it is not possible to obtain the required draining of the energy density from

u to v.

2.6 Conclusions and Discussion

If the scalar field sector of the Lee-Wick Standard Model is coupled to Einstein

gravity, then - in the absence of anisotropic stress - it is known that a bouncing

cosmology can be realized. Since the energy density in radiation increases at a

faster rate in a contracting universe compared to that of nonrelativistic matter, the

cosmological bounce is unstable to the addition of radiation to the initial conditions

early in the contracting phase. However, one may entertain the hope that the

presence of the ghost radiation which is present in the Lee-Wick model might

allow a bounce to occur in analogy to how the presence of ghost scalar field matter

is responsible for the bounce in the scalar field Lee-Wick model.

For a Lee-Wick radiation bounce to occur, either the energy density of the ghost

radiation would have to increase faster intrinsically than that of regular radiation,

or there would have to be a mechanism which drains energy density from the

regular radiation sector to the ghost sector. We have shown that neither happens,

unless the initial phases of regular and ghost radiation are tuned in a very special

way. Thus, we have shown that in the Lee-Wick Standard Model, the presence of

radiation prevents a cosmological bounce from occurring.
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The methods we have used in this paper could be applied to other proposals to

obtain a bouncing cosmology by modifying the matter sector. Rather generically,

one needs to worry whether any given proposal is robust towards the addition of

radiative matter. The stability can be studied using the methods we have devel-

oped. Whether a channel to effectively drain energy density from radiation to ghost

matter will exist may depend rather sensitively on the specific model. Here, we

have shown that in the Lee-Wick Standard Model this does not happen. The same

Green function method could be used to study the energy transfer in other models.

Cosmologies in which the bounce is induced by extra terms in the gravitational

sector such as in the “nonsingular universe construction” [18], the model of [19] or

the Horava-Lifshitz bounce [20] are more likely to be robust against the addition of

matter. Specifically, the constructions of [18, 19] are based on theories which are

asymptotically free in the sense that at high curvatures the coupling of any kind

of matter to gravity goes to zero. This means that a bounce will not be effected

by adding radiative matter. In Horava-Lifshitz gravity, there are higher spatial

derivative gravitational terms which act as ghost matter scaling as a−4 and a−6.

The latter are present if we go beyond the “detailed balance case” and we allow for

spatial curvature. In this case, once again radiative matter can be added without

preventing a cosmological bounce.
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The Lee-Wick scenario in the pure radiation case, when only the

gauge field and its Lee-Wick partner are present, allows a bouncing

universe under very specific conditions. In the pure matter scenario,

it has been shown that a bounce can occur. Mixing these two cases can

shed light on the presence of a bounce when both radiation and mat-

ter coexist. The following chapter aims at understanding the energy

transfer between radiation, that scales like a−4 in an expanding Uni-

verse, and matter that scales like a−3. It also discusses the conditions

under which a bouncing universe occurs.



Chapter 3

On the Instability of the

Lee-Wick Bounce

The following is an extract from the article “On the Instability of the Lee-

Wick Bounce,” published in collaboration with Taotao Qiu and Robert Bran-

denberger in Phys. Rev. D84, 043505 (2011).

Abstract It was recently realized [11] that a model constructed from a Lee-

Wick type scalar field theory yields, at the level of homogeneous and isotropic

background cosmology, a bouncing cosmology. However, bouncing cosmologies

induced by pressureless matter are in general unstable to the addition of relativistic

matter (i.e. radiation). Here we study the possibility of obtaining a bouncing

cosmology if we add radiation coupled to the Lee-Wick scalar field. This coupling in

principle would allow the energy to flow from radiation to matter, thus providing a

drain for the radiation energy. However, we find that it takes an extremely unlikely

fine-tuning of the initial phases of the field configurations for a sufficient amount of

radiative energy to flow into matter. For general initial conditions, the evolution

leads to a singularity rather than a smooth bounce.

64



Introduction 65

3.1 Introduction

Both Standard [1] and Inflationary Cosmology [2] suffer from the initial sin-

gularity problem and hence cannot yield complete descriptions of the very early

Universe. If one were able to construct a nonsingular bouncing cosmology, this

problem would obviously disappear. However, in order to have a chance to obtain

such a nonsingular cosmology, one must either go beyond Einstein gravity as a

theory of space-time (see e.g. [3] for an early construction), or else one must make

use of matter which violates the “null energy condition” (see [4] for a review of

both types of approaches).

Interest in nonsingular bouncing cosmologies has increased with the realization

that they can lead to alternatives to inflationary cosmology as a theory for the

origin of structure in the Universe. A specific scenario which can arise at the level

of homogeneous and isotropic cosmology is the “matter bounce” paradigm which

is based on the realization [5, 6] that vacuum fluctuations which exit the Hubble

radius during a matter-dominated contracting phase evolve into a scale-invariant

spectrum of curvature perturbations on super-Hubble scales before the bounce. The

key point is that the curvature fluctuation variable ζ grows on super-Hubble scales

in a contracting phase, whereas it is constant on these large scales in an expanding

phase. Since long wavelength modes exit the Hubble radius earlier than short

wavelength ones, they grow for a longer period of time. This provides a mechanism

for reddening the initial vacuum spectrum. It turns out that a matter-dominated

contracting phase provides the specific boost in the power of long wavelength modes

which is required in order to transform a vacuum spectrum into a scale-invariant

one. Studies in the case of various nonsingular bounce models [7] have shown that

on wavelengths long compared to the duration of the bounce phase, the spectrum
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of fluctuations is virtually unchanged during the bounce. Thus, a scale-invariant

spectrum of curvature fluctuations survives on super-Hubble scales at late times.

Provided that the bounce can occur at energy scales much below the Planck

scale, nonsingular cosmologies solve a key conceptual problem from which infla-

tionary cosmology suffers, namely the “Trans-Planckian” problem for fluctuations

[8, 9]: If the period of inflationary expansion of space lasts for more than 70H−1,

whereH is the Hubble expansion rate during inflation (in order to solve the key cos-

mological mysteries it was designed to explain, inflation has to last at least 50H−1),

then the physical wavelengths of even the largest-scale fluctuation modes we see

today will be even smaller than the Planck length at the beginning of inflation

and thus in the “zone of ignorance” where the physics on which inflation and the

theory of cosmological perturbations are based, namely Einstein gravity coupled

to semiclassical field theory matter, will break down. In contrast, in a nonsingular

bouncing cosmology the wavelength of modes which are currently probed by cos-

mological observations is never much smaller than 1mm (the physical wavelength of

the mode which corresponds to our current Hubble radius evaluated when the tem-

perature of the Universe was 1016GeV) and hence many orders of magnitude larger

than the Planck length. Thus, the fluctuations never enter the “trans-Planckian

zone of ignorance” of sub-Planck-length wavelengths.

Possibly the simplest realization of the matter bounce scenario is the “quintom

bounce” model [10] and is obtained by considering the matter sector to contain two

scalar fields, one of them (the “ghost field”) having the “wrong” sign of the kinetic

action. The potential of the ghost scalar field also has the opposite sign to that of

regular scalar fields such that in the absence of interactions, the ghost field has a

classically stable minimum. As has been noticed in [11], such a quintom bounce
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model also arises from the scalar field sector of the “Lee-Wick” (LW) Lagrangian

[12] which contains higher derivatives terms.

The quintom and Lee-Wick bouncing cosmologies are obtained in the following

way [10, 11]: We begin in the contracting phase with both the regular and the ghost

scalar field oscillating homogeneously in space about their respective vacua. We

assume that the energy density is dominated by the regular matter field, and that

hence the total energy density is positive. Once the amplitude of the regular scalar

field exceeds the Planck scale, the field oscillations will freeze out and a slow-climb

phase will begin during which the energy density of the field only grows slowly (this

is the time reverse of the slow-roll phase in scalar field-driven inflation). However,

the ghost field continues to oscillate and its energy density (which is negative)

continues to grow in absolute value. Hence, the total energy density drops to

zero, at which point the bounce occurs, as has been studied both analytically and

numerically in the above-mentioned works. Note that the energy density in this

bounce model scales as matter until the regular scalar field freezes out.

A major problem of bouncing cosmologies realized with matter which scales as

a−3 as a function of the scale factor a(t) is the potential instability of the homo-

geneous and isotropic background against the effects of radiation (which scales as

a−4 and anisotropic stress which scales as a−6 1 . If we simply add a noninteracting

radiation component to the two scalar field system, then unless the initial energy

density in radiation is tuned to be extremely small, then the radiation component

will become dominant long before the bounce can arise, and will prevent the energy

density in the ghost field from ever being able to become important, resulting in

1 One of the major advantages of the ekpyrotic bouncing scenario [13] is that
the contracting phase is stable against such effects.
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a Big Crunch singularity. Similarly, unless the initial energy density in anisotropic

stress is very small, it will come to dominate the energy density of the Universe long

before the bounce is expected. The anisotropies will destabilize the homogeneous

background cosmology, and will prevent a bounce. Note that at the quantum level,

there is an additional severe problem for bounce models obtained with matter fields

with ghostlike kinetic terms, namely the quantum instability of the vacuum (see

e.g. [14]).

In this paper we will focus on the radiation instability problem. For the purpose

of this discussion we will simply assume that anisotropic stress is absent. In a recent

paper, two of us studied the possibility that a bounce could arise if radiation is

supplemented with Lee-Wick radiation [15]. However, we showed that this hope is

not realized: the addition of Lee-Wick radiation does not prevent the Big Crunch

singularity from occurring. In the presence of radiation, the only hope to obtain a

bounce is to introduce a coupling between radiation and ghost scalar field matter

which could effectively drain energy density from the radiation field and prevent

the energy density of radiation from becoming dominant. Here we study this

possibility. However, at least for the specific Lagrangian which we consider, we

find that a bounce only emerges for highly fine-tuned phases of the fields and their

velocities in the initial conditions.

The paper is organized as follows: In Section II, we introduce the model we

study, namely the scalar field sector of Lee-Wick theory coupled to radiation, and

write down the general equations of motion. In Section III we set up the equations

of motion linearized about the bounce background, treating the entire radiation

field as an inhomogeneous fluctuation. In particular, we study the different terms

which contribute to the energy-momentum tensor and identify those which could

assist in obtaining a nonsingular bounce. In Section IV we study the solutions
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of the perturbed equations of motion, and in Section V we analyze the evolution

of the different terms in the energy-momentum tensor, identifying the conditions

which would be required in order to obtain a nonsingular bounce. We have also

evolved the general equations of motion for the two inhomogeneous scalar field

configurations and the classical inhomogeneous radiation field in the homogeneous

background cosmology. Section VI summarizes some of the numerical results. Both

the analytical and numerical results confirm that we need unnatural fine-tuning of

the initial conditions in order to obtain a nonsingular bounce. In the final section

we offer some conclusions and discussion.

3.2 The Model

The Lee-Wick scalar field model coupled to electromagnetic radiation is given

by the following Lagrangian:

L = −1

2
∂µφ∂

µφ+
1

2M2
(∂2φ)2 − 1

2
m2φ2 − V (φ)

−1

4
FµνF

µν − f(φ, ∂2φ, FµνF
µν) , (3.1)

where m is the mass of the scalar field φ, and V (φ) is its potential. Here we adopt

the convention that

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) , (3.2)

where a(t) is the scale factor of the Universe. Since it is a higher derivative La-

grangian in φ, the scalar field sector contains an extra degree of freedom with

the “wrong” sign kinetic term and with a mass set by the scale M . We choose

m ≤ M ≤ mP l, where mP l is the Planck mass, since we want the regular scalar

field to dominate at low energies, but at the same time we do not want to worry

about quantum gravity effects. The second line of the Lagrangian (3.1) contains
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the kinetic term of the radiation as well as the coupling term, where we assumed

both for the sake of generality and because of foresight that the radiation field

couples not only to the scalar field φ itself, but also to the higher derivative term.

The electromagnetic tensor, Fµν , is related to the radiation field Aµ through the

usual definition

Fµν ≡ ∇µAν −∇νAµ , (3.3)

where ∇µ is the covariant derivative.

It is convenient to extract the extra degree of freedom as a separate scalar field.

To do this, we use the field redefinitions

φ ≡ φ1 − φ2 ,

φ2 ≡ ∂2φ/M2 . (3.4)

The Lagrangian (3.1) then takes on a simpler form:

L = −1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 −
1

2
m2φ2

1 +
1

2
M2φ2

2

−1

4
FµνF

µν − f(φ1, φ2, FµνF
µν) , (3.5)

where we have chosen the potential to be zero. In this new form, the Lagrangian

describes two massive scalar fields with one of them (i.e., φ2) behaving like a“ghost”,

and both of them coupled to the radiation field.

The coupling term f(φ1, φ2, FµνF
µν) should in principle be arbitrary, however,

in this paper we will take a specific form for convenience. The form will be:

f(φ1, φ2, FµνF
µν) = −1

4
(cφ2

1 + dφ2
2)FµνF

µν , (3.6)

where c and d are coupling constants which have mass dimension −2. The interac-

tion terms are nonrenormalizable. To make sure that such terms could be thought
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of as arising from an effective field theory which is consistent at the bounce, we

must make sure that the coefficients are chosen such that the contribution of the

interaction term to the Lagrangian density is smaller than that of the other terms.

This must be true even at energy densities at which the bounce occurs in the

pure scalar field model. It is easy to see that this condition will be satisfied if the

coefficients c and d are both of the order m−2
pl .

It is the purpose of this paper to study the effects which these coupling terms

have on the dynamics of the system. We know that in the absence of coupling, i.e.

when c = d = 0, a bounce will only occur if the initial radiation energy density is

tuned to a very small value compared to the scalar field energy density. This is

because the positive definite energy density of radiation will scale as a−4 which is

faster than that of the scalar fields, in particular the ghost scalar field. Generically,

it will dominate the energy of the Universe after some amount of contraction, it

will prevent the ghost scalar field energy density from catching up and will thus

prevent a bounce, leading to a Big Crunch singularity instead. With nonvanishing

values of c and d, however, the scalars are in principle able to drain energy from

the radiation.

From the Lagrangian (3.5), one can obtain the stress-energy tensor Tµν by

varying the action with respect to the metric gµν . In the hydrodynamical limit,

we can take Tµν to be of the form of diag{ρ, a2(t)p1, a2(t)p2, a2(t)p3} where ρ and

p are energy density and pressure, respectively. As a result of the variation, we

obtain the following form of the stress-energy tensor:
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Tµν = gµνL+ ∂µφ1∂νφ1 − ∂µφ2∂νφ2 + (1− cφ2
1 − dφ2

2)FµλF
λ
ν ,

= gµν
[ φ̇2

1

2
− 1

2a2
∂iφ1∂iφ1 −

1

2
m2φ2

1 −
φ̇2
2

2
+

1

2a2
∂iφ2∂iφ2 +

1

2
M2φ2

2 −
1

4
(1− cφ2

1 − dφ2
2)F

2
]

+∂µφ1∂νφ1 − ∂µφ2∂νφ2 + (1− cφ2
1 − dφ2

2)FµλF
λ
ν , (3.7)

where F 2 = FµνF
µν. Since we will be studying the contribution of plane wave

perturbations of the scalar fields and we will treat radiation as a superposition of

waves, we kept the space-derivative terms.

By varying the Lagrangian with respect to the matter fields φ1, φ2 and Aµ, we

also get the equations of motion for all three fields:

✷φ1 − (m2 − c

2
F 2)φ1 = 0 , (3.8)

✷φ2 − (M2 +
d

2
F 2)φ2 = 0 , (3.9)

(1− cφ2
1 − dφ2

2)(∂νF
µν + 3HF µ0)

−2(cφ1∂νφ1 + dφ2∂νφ2)F
µν = 0 (3.10)

which will be analyzed in detail in the rest of the paper.

3.3 Dynamics

Since the equations of motion are nonlinear, we cannot work in Fourier space,

and use plane wave solutions. However, we are interested in how initially small

amounts of radiation build up and possibly transfer their energy to scalar field

fluctuations. We treat radiation as a superposition of fluctuations. Therefore it
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makes sense to linearize our equations about the homogeneous scalar field back-

ground. Thus, we make the following ansatz for the scalar fields:

φ1(t, z) = φ
(0)
1 (t) + ǫφ

(1)
1 (t, z) + ǫ2φ

(2)
1 (t) (3.11)

φ2(t, z) = φ
(0)
2 (t) + ǫφ

(1)
2 (t, z) + ǫ2φ

(2)
2 (t) , (3.12)

where the expansion parameter ǫ is taken to be much smaller than 1 2 . The

first term on the right hand side of each line, i.e. φ
(0)
1,2(t) correspond to the back-

ground fields, the terms φ
(1)
1,2(t, x) are the fluctuations, and the second order terms

φ
(2)
1,2(t) describe the back-reaction of the fluctuations on the background and can be

computed from the leading second order corrections (averaged over space) of the

equations of motion 3 .

To simplify the analysis, we describe radiation in terms of plane waves in a

fixed direction (which we take to be the z direction). Without loss of generality

we can restrict attention to one polarization mode which we take to be the electric

field in the x direction and the magnetic field in the y direction. In this case, the

only nonzero components of the field strength tensor are F 01 and F 13. Using the

temporal gauge where A0 = 0, we find that only the first component of the gauge

2 The expansion parameter ǫ should be viewed as parameterizing the initial
ratio of radiation energy to background scalar field energy. Thus, the leading
contribution of the radiation field is first order in ǫ. Via the coupling terms in
the Lagrangian with coefficients c and d, the linear radiation field induces linear
scalar field inhomogeneities φ

(1)
1 and φ

(1)
2 . These corrections will contain a further

suppression factor since c and d are small coefficients. Similarly, the same coupling
terms in the Lagrangian will lead to a perturbation δγ of the rescaled radiation
field γ which is of linear order in ǫ but suppressed by factors of c and d.

3 By taking the scalar product of the second order equations with a fixed plane
wave (instead of averaging over space) one could also compute the back-reaction
of the fluctuations on the inhomogeneous modes.
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field is nonzero. For a single wavelength fluctuation we can make the ansatz

A1(k, t) = f(t)cos(kz) ≡ γ(k, t) , (3.13)

or, equivalently,

A1(k, t) = a(t)−2γ(k, t) . (3.14)

Since in the linearized equations of motion the Fourier modes are independent, we

can consider φ
(1)
1 and φ

(1)
2 also to be plane waves propagating in z direction, so they

depend only on z and t.

With Eqs. (3.11-3.14) in hand, we can write down the energy densities of the

various fields at each order in perturbation theory.

3.3.1 The stress-energy tensor

First of all, we insert the above perturbative ansatz for the fields into the stress-

energy tensor of the system. From the general expression (3.7) for Tµν we get

Tµν = gµν
[ φ̇2

1

2
− 1

2a2
∂zφ1∂zφ1 −

1

2
m2φ2

1 −
φ̇2
2

2
+

1

2a2
∂zφ2∂zφ2 +

1

2
M2φ2

2 (3.15)

−1

4
(1− cφ2

1 − dφ2
2)F

2
]

+ ∂µφ1∂νφ1 − ∂µφ2∂νφ2 + (1− cφ2
1 − dφ2

2)FµλF
λ
ν .

The 00 component of Eq. (3.15) denotes the energy density of the system

ρ =
1

2
(φ̇2

1 +
k2

a2
φ2
1 +m2φ2

1)−
1

2
(φ̇2

2 +
k2

a2
φ2
2 +M2φ2

2) + (1− cφ2
1 − dφ2

2)(
F 2

4
+F0λF

λ
0 ) ,

(3.16)
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so at each level in perturbation theory, we have

ρ(0) =
1

2
(

˙
φ
(0)
1

2

+m2φ
(0)
1

2
)− 1

2
(

˙
φ
(0)
2

2

+M2φ
(0)
2

2
) , (3.17)

ρ(1) = (φ̇
(0)
1 φ̇

(1)
1 +m2φ

(0)
1 φ

(1)
1 )− (φ̇

(0)
2 φ̇

(1)
2 +M2φ

(0)
2 φ

(1)
2 ) , (3.18)

ρ(2) =
1

2
(

˙
φ
(1)
1

2

+ φ̇
(0)
1 φ̇

(2)
1 +

k2

a2
φ
(1)
1

2
+m2φ

(1)
1

2
+m2φ

(0)
1 φ

(2)
1 )− 1

2
(

˙
φ
(1)
2

2

+ φ̇
(0)
2 φ̇

(2)
2

+
k2

a2
φ
(1)
2

2
+M2φ

(1)
2

2
+M2φ

(0)
2 φ

(2)
2 ) + (1− cφ

(0)
1

2 − dφ
(0)
2

2
)(
F 2

4
+ F0λF

λ
0 ) ,

=
1

2
(

˙
φ
(1)
1

2

+ φ̇
(0)
1 φ̇

(2)
1 +

k2

a2
φ
(1)
1

2
+m2φ

(1)
1

2
+m2φ

(0)
1 φ

(2)
1 )

−1

2
(

˙
φ
(1)
2

2

+ φ̇
(0)
2 φ̇

(2)
2 +

k2

a2
φ
(1)
2

2
+M2φ

(1)
2

2
+M2φ

(0)
2 φ

(2)
2 )

+(1− cφ
(0)
1

2 − dφ
(0)
2

2
)(
k2

2a4
γ2 +

γ̇2

2a2
) . (3.19)

We can similarly obtain the pressure of the system from the ii components of

Eq. (3.15). Note that due to the anisotropy in Tµν caused by the gauge field as

well as by the anisotropic fluctuations of the scalar fields, the pressures in the three

directions are no longer identical. The pressure in each direction can be written as

pi =
1

2
(φ̇2

1 −
k2

a2
φ2
1 −m2φ2

1)−
1

2
(φ̇2

2 −
k2

a2
φ2
2 −M2φ2

2)

−(1− cφ2
1 − dφ2

2)(
F 2

4
− FiλF

λ
i

a2
) +

∂iφ1∂iφ1

a2
− ∂iφ2∂iφ2

a2
, (3.20)

with no summation over the index i. From this formula, we can see that at both

zeroth and first order, the pressure is isotropic:

p
(0)
i =

1

2
(

˙
φ
(0)
1

2

−m2φ
(0)
1

2
)− 1

2
(

˙
φ
(0)
2

2

−M2φ
(0)
2

2
) , (3.21)

p
(1)
i = (φ̇

(0)
1 φ̇

(1)
1 −m2φ

(0)
1 φ

(1)
1 )− (φ̇

(0)
2 φ̇

(1)
2 −M2φ

(0)
2 φ

(1)
2 ) , (3.22)
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while the second order pressure for each direction gives

p
(2)
i =

1

2
(

˙
φ
(1)
1

2

+ φ̇
(0)
1 φ̇

(2)
1 − k2

a2
φ
(1)
1

2
+m2φ

(1)
1

2
+m2φ

(0)
1 φ

(2)
1 )− (3.23)

1

2
(

˙
φ
(1)
2

2

+ φ̇
(0)
2 φ̇

(2)
2 − k2

a2
φ
(1)
2

2
+M2φ

(1)
2

2
+M2φ

(0)
2 φ

(2)
2 ) (3.24)

+
∂iφ1∂iφ1

a2
− ∂iφ2∂iφ2

a2
− (1− cφ

(0)
1

2 − dφ
(0)
2

2
)(
F 2

4
− FiλF

λ
i

a2
) ,

where i = 1, 2, 3.

We can thus obtain every component of p
(2)
i :

p
(2)
1 =

1

2
(

˙
φ
(1)
1

2

+ φ̇
(0)
1 φ̇

(2)
1 − k2

a2
φ
(1)
1

2
+m2φ

(1)
1

2
+m2φ

(0)
1 φ

(2)
1 )− 1

2
(

˙
φ
(1)
2

2

+ φ̇
(0)
2 φ̇

(2)
2 − k2

a2
φ
(1)
2

2

+M2φ
(1)
2

2
+M2φ

(0)
2 φ

(2)
2 ) + (1− cφ

(0)
1

2 − dφ
(0)
2

2
)(
k2

2a4
γ2 − γ̇2

2a2
) , (3.25)

p
(2)
2 =

1

2
(

˙
φ
(1)
1

2

+ φ̇
(0)
1 φ̇

(2)
1 − k2

a2
φ
(1)
1

2
+m2φ

(1)
1

2
+m2φ

(0)
1 φ

(2)
1 )− 1

2
(

˙
φ
(1)
2

2

+ φ̇
(0)
2 φ̇

(2)
2 − k2

a2
φ
(1)
2

2

+M2φ
(1)
2

2
+M2φ

(0)
2 φ

(2)
2 )− (1− cφ

(0)
1

2 − dφ
(0)
2

2
)(
k2

2a4
γ2 − γ̇2

2a2
) , (3.26)

p
(2)
3 =

1

2
(

˙
φ
(1)
1

2

+ φ̇
(0)
1 φ̇

(2)
1 − k2

a2
φ
(1)
1

2
+m2φ

(1)
1

2
+m2φ

(0)
1 φ

(2)
1 )− 1

2
(

˙
φ
(1)
2

2

+ φ̇
(0)
2 φ̇

(2)
2 − k2

a2
φ
(1)
2

2

+M2φ
(1)
2

2
+M2φ

(0)
2 φ

(2)
2 ) + (1− cφ

(0)
1

2 − dφ
(0)
2

2
)(
k2

2a4
γ2 +

γ̇2

2a2
) , (3.27)

and the average is

p
(2)
eff =

p
(2)
1 + p

(2)
2 + p

(2)
3

3
(3.28)

=
1

2
(

˙
φ
(1)
1

2

+ φ̇
(0)
1 φ̇

(2)
1 − k2

a2
φ
(1)
1

2
+m2φ

(1)
1

2
+m2φ

(0)
1 φ

(2)
1 )− 1

2
(

˙
φ
(1)
2

2

+ φ̇
(0)
2 φ̇

(2)
2 − k2

a2
φ
(1)
2

2

+M2φ
(1)
2

2
+M2φ

(0)
2 φ

(2)
2 ) + (1− cφ

(0)
1

2 − dφ
(0)
2

2
)(
k2

6a4
γ2 +

γ̇2

6a2
) . (3.29)

From the above, we can also see that in order to analyze the behavior of the

energy density up to second order, we need to know the evolution of scalar fields

up to second order as well as that of the gauge field up to first order, while the

behavior of the gauge field to second order is not required.
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It will be useful in the following to separate the contributions to the energy

density and pressure in a different way, namely,

i) the contribution from the background homogeneous part of the scalar fields,

ρhφ = ρ
(0)
φ phφ = p

(0)
φ , (3.30)

ii) that of the scalar field perturbations (in slight abuse of notation we call this the

“inhomogeneous” term),

ρinhφ = ǫρ
(1)
φ + ǫ2ρ

(2)
φ pinhφ = ǫp

(1)
φ + ǫ2p

(2)
φ , (3.31)

iii) the contribution of the gauge field,

ρg =
1

2a2
(γ̇2 +

k2

a2
γ2) , (3.32)

pg =
1

6a2
(γ̇2 +

k2

a2
γ2) , (3.33)

(iv) the contribution of the coupling term,

ρc = −(cφ
(0)
1

2
+ dφ

(0)
2

2
)

8a2
(γ̇2 +

k2

a2
γ2) = −Φρg , (3.34)

pc = −(cφ
(0)
1

2
+ dφ

(0)
2

2
)

24a2
(γ̇2 +

k2

a2
γ2) = −Φpg , (3.35)

where in the last equation we define Φ to be the quadratic combination of the two

fields:

Φ = (cφ
(0)
1

2
+ dφ

(0)
2

2
)/2 . (3.36)
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From the above we can deduce the equation of state parameter for each part:

wh
φ =

˙
φ
(0)
1

2

−m2φ
(0)
1

2 − ˙
φ
(0)
2

2

+M2φ
(0)
2

2

˙
φ
(0)
1

2

+m2φ
(0)
1

2 − ˙
φ
(0)
2

2

−M2φ
(0)
2

2
, (3.37)

winh
φ = ǫ

(

p(1)

ρ(1)
− p(0)ρ(1)

ρ(0)
2

)

+ ǫ2
(

p(2)

ρ(0)
− p(0)ρ(2)

ρ(0)
2 − p(1)ρ(1)

ρ(0)
2

)

, (3.38)

wg = wc =
1

3
. (3.39)

From the equations above, we see that for positive values of the constants c and

d, the coupling of the scalar field with the gauge field will give rise to a contribution

ρc to the energy density which has the same equation of state but opposite sign

to that of the gauge field. Therefore, the coupling can help drain energy from

the gauge field. It is because of this mechanism that we might hope to achieve a

cosmological bounce in the presence of radiation. A first indication on whether a

bounce might occur can be obtained by considering the scaling of each contribution

to the energy density as a function of the scale factor a(t). To find these scalings,

we need the time dependence of the linear and quadratic contributions to each

field. Therefore, we need to solve the matter field equations of motion. In the

following subsection, we present the equations for the fields at each order, while

the solutions and detailed analysis will be performed in the next sections.

3.3.2 Equations of Motion

Keeping in mind the ansätze for Aµ, φ1 and φ2, their equations of motion at

each order can be obtained from (3.8), (3.9) and (3.10):

a) At zeroth order,























φ̈
(0)
1 + 3Hφ̇

(0)
1 +m2φ

(0)
1 = 0 ,

φ̈
(0)
2 + 3Hφ̇

(0)
2 +M2φ

(0)
2 = 0 .

(3.40)
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Note that there is no equation at this order for Aµ because it is of first order in ǫ.

b) At first order,































































φ̈
(1)
1 + 3Hφ̇

(1)
1 + (k

2

a2
+m2)φ

(1)
1 = 0 ,

φ̈
(1)
2 + 3Hφ̇

(1)
2 + (k

2

a2
+M2)φ

(1)
2 = 0 ,

(1− cφ
(0)
1

2 − dφ
(0)
2

2
)(∂νF

µν + 3HF µ0)

−2(cφ
(0)
1 ∂νφ

(0)
1 + dφ

(0)
2 ∂νφ

(0)
2 )F µν = 0 ,

(3.41)

Making use of Eqs. (3.13) and (3.14), the equation for the gauge field can also be

rewritten as

(1− cφ
(0)
1

2 − dφ
(0)
2

2
)(γ̈ +Hγ̇ +

k2

a2
γ)− 2(cφ

(0)
1 φ̇

(0)
1 + dφ

(0)
2 φ̇

(0)
2 )γ̇ = 0 .(3.42)

c) At second order,























φ̈
(2)
1 +m2φ

(2)
1 − c

2
< FµνF

µν > φ
(0)
1 = 0 ,

φ̈
(2)
2 +M2φ

(2)
2 + d

2
< FµνF

µν > φ
(0)
2 = 0 .

(3.43)

Here, pointed parentheses indicate spatial averaging (since we are only focusing

on the zero mode of the second order field fluctuations). We also neglected the

effect of Hubble friction since it does not give an important contribution for the

second order fluctuations. There is a second reason for neglecting the effect of

Hubble friction: in order for the energy transfer from radiation to scalar fields to

be effective in draining enough energy from the radiation field to prevent a Big

Crunch singularity, the time scale of the draining process must be shorter than the

Hubble time. Hence, it is self-consistent to neglect terms that induce changes only

on longer time scales.
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3.4 The general solution

In this section we will solve the equations of motion (3.40), (3.41) and (3.43)

to see if and how a bounce will happen.

It is usually useful to perform the analysis in the conformal frame where the

conformal time η ≡
∫

a−1(t)dt is used rather than the cosmic time. Additionally,

to extract the dependence on the scale factor, it is convenient to use the following

two variables:

u1(η) ≡ a(η)φ1(η), u2(η) ≡ a(η)φ2(η) . (3.44)

Hereafter, we will use u
(i)
j (i = 0, 1, 2, j = 1, 2) to denote the i-th order perturbation

of the j-th scalar field. Moreover, for simplicity, we can parameterize the scale

factor a(t) as

a(η) = a0t
p = a0|η|

p
1−p , (3.45)

with

p =
2

3(1 + w)
, (3.46)

where a0 and w are the initial value of the scale factor and the equation of state of

the Universe, respectively. This is a self-consistent assumption when w is nearly a

constant. The evolution of w in our case will be shown numerically in Section VI.

3.4.1 Solutions for φ
(0)
1 and φ

(0)
2

Using the parametrization (3.45), the equations of motion at zeroth order of

the two scalar fields become:






















u
(0)
1

′′
+ (a20m

2η
2p
1−p − p(2p−1)

(1−p)2η2
)u

(0)
1 = 0 ,

u
(0)
2

′′
+ (a20M

2η
2p
1−p − p(2p−1)

(1−p)2η2
)u

(0)
2 = 0 ,

(3.47)
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where a prime denotes the derivative with respect to conformal time η. Their

solutions are:

u
(0)
1 ∼

√

|η|H± 1−3p
2

(

(1− p)am|η|
)

, (3.48)

u
(0)
2 ∼

√

|η|H± 1−3p
2

(

(1− p)aM |η|
)

, (3.49)

where H± 1−3p
2

represents the (±1−3p
2

)-th order Hankel function. Far away or close

to the bounce, i.e. for a|η| ≫ m−1,M−1 and a|η| ≪ m−1,M−1, respectively, the

approximate solutions are:

1)Oscillations for large values of the scale factor a|η| ≫ m−1,M−1:

u
(0)
1 ∼ |η|

p
2(p−1)

√

2

(1− p)πa0m
cos
(

(1− p)a0m|η| 1
1−p + θ

(0)
1

)

, (3.50)

u
(0)
2 ∼ |η|

p
2(p−1)

√

2

(1− p)πa0M
cos
(

(1− p)a0M |η| 1
1−p + θ

(0)
2

)

, (3.51)

(where θ1 and θ2 are phases set by the initial conditions). In terms of the non-

rescaled fields φi one obtains damped (or antidamped) oscillations (depending on

whether we are in an expanding or a contracting period)

φ
(0)
1 ∼ |η|

3p
2(p−1)

√

2

(1− p)πa
3
2
0m

cos
(

(1− p)a0m|η| 1
1−p + θ

(0)
1

)

, (3.52)

φ
(0)
2 ∼ |η|

3p
2(p−1)

√

2

(1− p)πa
3
2
0M

cos
(

(1− p)a0M |η| 1
1−p + θ

(0)
2

)

. (3.53)

2)“Frozen” evolution for small values of the scale factor a|η| ≪ m−1,M−1:

u
(0)
1 ∼

(

(1− p)a0m
)

1−3p
2 |η|

1−2p
1−p

Γ(3(1−p)
2

)
+

(

(1− p)a0m
)− 1−3p

2 |η|
p

1−p

Γ(1+3p
2

)
, (3.54)

u
(0)
2 ∼

(

(1− p)a0M
)

1−3p
2 |η|

1−2p
1−p

Γ(3(1−p)
2

)
+

(

(1− p)a0M
)− 1−3p

2 |η|
p

1−p

Γ(1+3p
2

)
, (3.55)
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from which it follows that the nonrescaled fields φi evolve as

φ
(0)
1 ∼

(

(1− p)a0m
)

1−3p
2 |η|

1−3p
1−p

a0Γ(
3(1−p)

2
)

+

(

(1− p)a0m
)

3p−1
2

a0Γ(
1+3p
2

)
, (3.56)

φ
(0)
2 ∼

(

(1− p)a0M
)

1−3p
2 |η|

1−3p
1−p

a0Γ(
3(1−p)

2
)

+

(

(1− p)a0M
)

3p−1
2

a0Γ(
1+3p
2

)
, (3.57)

from which we can see that the last term of φ
(0)
i is a constant mode while the first

term is a varying one. Depending on the value of p (or equivalently w) the varying

mode could be growing (for p > 1/3 or −1 < w < 1), in which case it becomes

dominant, or decaying (for p < 1/3 or for w > 1 or w < −1), in which case it

becomes subdominant. We can usually neglect the decaying part of the fields.

3.4.2 Solutions for φ
(1)
1 and φ

(1)
2

Following the steps performed in the last subsection, we can also get the solu-

tions for the first order components of the scalar fields. Using the equations (3.41)

for the first order perturbations we obtain the following equations of motion for

u
(1)
1 and u

(1)
2 :























u
(1)
1

′′
+ (k2 + a20m

2η
2p
1−p − p(2p−1)

(1−p)2η2
)u

(1)
1 = 0 ,

u
(1)
2

′′
+ (k2 + a20M

2η
2p
1−p − p(2p−1)

(1−p)2η2
)u

(1)
2 = 0 .

(3.58)

Depending on the value of k, we obtain different approximation solutions. For

wavenumbers large compared both to the Hubble radius and to the mass term, we

obtain oscillatory solutions with fixed amplitude.

Considering now modes which are still sub-Hubble (i.e. k|η| > 1) but for which

the mass term dominates over the contribution of the field tension (i.e. the term

involving k), we can neglect both the k2 term and the term involving p(2p−1)
(1−p)2η2

. The
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simplified equation for these modes is























u
(1)
1

′′
+ a20m

2η
2p
1−pu

(1)
1 = 0 ,

u
(1)
2

′′
+ a20M

2η
2p
1−pu

(1)
2 = 0 ,

(3.59)

whose solutions are

u
(1)
1 ∼

√

|η|H 1−p
2

(

(1− p)a0m|η|
)

∼ |η|
p

2(p−1)

√

2

(1− p)πma0
cos
(

(1− p)a0m|η|+ θ
(1)
1

)

, (3.60)

u
(1)
2 ∼

√

|η|H 1−p
2

(

(1− p)a0M |η|
)

∼ |η|
p

2(p−1)

√

2

(1− p)πMa0
cos
(

(1− p)a0M |η|+ θ
(1)
2

)

. (3.61)

For modes outside the Hubble radius (kη ≪ 1), we have























u
(1)
1

′′
+ (a20m

2η
2p
1−p − p(2p−1)

(1−p)2η2
)u

(1)
1 = 0 ,

u
(1)
2

′′
+ (a20M

2η
2p
1−p − p(2p−1)

(1−p)2η2
)u

(1)
2 = 0 ,

(3.62)

which have the same form as Eq. (3.47) so their solution will be the same as given

in Eqs. (3.54) and (3.55). Note that on scales larger than the Hubble radius we

cannot neglect the metric fluctuations. However, the typical time scale associated

with the growth of metric fluctuations is the Hubble time scale, and we are looking

for effects on shorter time scales, as already mentioned. Hence, the neglect of

metric fluctuations is justified.

We have thus seen that the first order solutions for the scalar fields scale the

same way with |η| as the zeroth order solution. This is because in the small |η|

region where the a′′(t)/a(t) term dominates over the other ones, the equations for

first order and zeroth order modes are almost the same. Thus, unless the energy
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density in the u
(1)
i modes dominates at the initial time, it will never dominate over

the background contribution from the u
(0)
i terms. Thus we can conclude that the

first order fluctuations of scalar fields will not prevent the bounce.

3.4.3 Solution for the gauge field γ

In this section, we will analyze the gauge field γ which is also considered to be

of first order. The equation (3.42) can directly be transformed to conformal frame

as:

γ′′ + k2γ − 2(cφ
(0)
1 φ

(0)
1

′
+ dφ

(0)
2 φ

(0)
2

′
)

1− cφ
(0)
1

2 − dφ
(0)
2

2 γ′ = 0 . (3.63)

Since the coefficients c and d are small, we can take the last term to be a source

term. In a first order Born approximation, we can write the total solution as

γ ≃ γ0 + δγ , (3.64)

where γ0 is the solution for the homogeneous equation obtained by setting c = d =

0, while δγ is the leading correction term obtained by inserting γ0 into the source

term (the last term in (3.63)).

The zeroth order (homogeneous) equation is easily solved and gives

γ0 ∼ cos(k|η|+ θγ) . (3.65)

For the first order equation, it is convenient to define

P (η) ≡ −2(cφ
(0)
1 φ

(0)
1

′
+ dφ

(0)
2 φ

(0)
2

′
)

1− cφ
(0)
1

2 − dφ
(0)
2

2 , (3.66)

so that the equation becomes

δγ′′ + k2δγ + P (η)γ′0 = 0 , (3.67)
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where we neglected the small term P (η)δγ′. Inserting the solution of γ0 (3.65), we

get the following equation for δγ:

δγ′′ + k2δγ = −P (η)γ′0 . (3.68)

We are interested in the scaling of δγ as a function of time. For this purpose,

we need to work out the scaling in time of the source term in (3.68). Since the

solutions for φ
(0)
1 and φ

(0)
2 scale differently in time in the two time intervals discussed

in Subsection (3.4.1), it is necessary to analyze these two intervals separately.

For times obeying a|η| ≫ m−1,M−1, then by differentiating (3.52) and (3.53)

with respect to η we have:

φ
(0)
1

′ ∼ |η|
p+2

2(p−1)

√

2

(1− p)πa
3
2
0m

(3.69)

×
[

− 3p

p− 1
cos
(

(1− p)a0m|η| 1
1−p + θ

(0)
1

)

+ a0m|η| 1
1−p sin

(

(1− p)a0m|η| 1
1−p + θ

(0)
1

)]

,

φ
(0)
2

′ ∼ |η|
p+2

2(p−1)

√

2

(1− p)πa
3
2
0M

(3.70)

×
[

− 3p

p− 1
cos
(

(1− p)a0M |η| 1
1−p + θ

(0)
1

)

+ a0M |η| 1
1−p sin

(

(1− p)a0M |η| 1
1−p + θ

(0)
1

)]

.

Note that |η| 1
1−p ∼ t is a decaying mode in the contracting phase and thus the last

terms inside the square brackets in the above formulae can be neglected compared

to the first ones. Since

P (η) = −2(cφ
(0)
1 φ

(0)
1

′
+ dφ

(0)
2 φ

(0)
2

′
)

1− cφ
(0)
1

2 − dφ
(0)
2

2 ≈ −2(cφ
(0)
1 φ

(0)
1

′
+ dφ

(0)
2 φ

(0)
2

′
) , (3.71)

then combining all these results we get

δγ ∼ C1|η|
1−4p
1−p . (3.72)
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For a|η| ≪ m−1,M−1 , then differentiating (3.56) and (3.57) with respect to η

we obtain

φ
(0)
1

′ ∼ 1− 3p

1− p

(

(1− p)a0m
)

1−3p
2 |η|

−2p
1−p

a0Γ(
3(1−p)

2
)

, (3.73)

φ
(0)
2

′ ∼ 1− 3p

1− p

(

(1− p)a0M
)

1−3p
2 |η|

−2p
1−p

a0Γ(
3(1−p)

2
)

, (3.74)

when p > 1/3 and

φ
(0)
1

′ ∼ φ
(0)
2

′ ≈ 0 (3.75)

when p < 1/3. Then we can solve Equation (3.68) to get:

δγ ∼ C2|η|
3−7p
1−p , p >

1

3

δγ ∼ C3 cos(k|η|+ θδγ) . p <
1

3
(3.76)

In the above expressions for δγ, C1, C2 and C3 are complicated prefactors in front

of the η-dependent terms.

In summary, we see that the interactions give only a subleading correction δγ

to γ0.

3.4.4 Solutions for φ
(2)
1 and φ

(2)
2

Finally, let us consider the homogeneous component of the second order fluctua-

tions of the scalars, namely, φ
(2)
1 and φ

(2)
2 . If we only consider the energy density up

to second order, these second order field perturbations give a contribution through

their coupling to the background fields. In the following we find the solutions of

(3.43) and study the effects of the induced terms in the stress-energy tensor on a

possible bounce.
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Given the solution for the gauge field γ obtained in the last subsection, it is

easy to rewrite Eqs. (3.43) as:























u
(2)
1

′′
+ a2m2u

(2)
1 = c (k

2γ2−γ′2)
a2

u
(0)
1 ,

u
(2)
2

′′
+ a2M2u

(2)
2 = −d (k2γ2−γ′2)

a2
u
(0)
2 ,

(3.77)

where we made use of the fact that

FµνF
µν = 2(k2γ2 − a2γ̇2)/a4 . (3.78)

Equation (3.77) has the same form as the zeroth order equation but with a

small source term generated by the interaction with the gauge field. This equation

can be solved using the Born approximation (details are given in the Appendix).

The general solution is the sum of the general solution of the homogeneous solu-

tion plus the solution including the source which has vanishing initial data. The

inhomogeneous term is suppressed by the coupling constants c and d compared to

the homogeneous solution, but, as shown in the Appendix, it scales as a high power

of η−1. Via the coupling to the background scalar fields, the above second order

terms enter into the expression for the energy density to second order. The signs

of the corresponding terms in the energy density are indefinite in the sense that

they depend on the phases of the initial field configurations. Since it is these terms

that dominate the energy density near the bounce, we find that whether a bounce

occurs or not depends sensitively on the phases in the initial conditions, and that

in fact in the case of many plane wave modes initially excited, a bounce requires

very special phase correlations.
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3.5 Evolution of the components of the energy

density

In the previous section we have solved all of the field equations up to second

order in the amplitude of the fluctuations. We have found the scaling in time of

each field at each order. Now we are ready to look at how all of the terms in the

expression for the energy density ρ(0), ρ(1) and ρ(2) at various orders in perturbation

theory (namely, Eqs. (3.17)-(3.19)) scale in time. This analysis is straightforward

but very important if we are to determine whether a bounce is possible, since in

four space-time dimensional classical Einstein Gravity with flat spatial sections a

bounce can only happen when the negative terms in the energy density catch up

to the positive contributions [10].

In the following we give a table of how each term contained in ρ scales with

time as the background cosmology bouncing point (the bounce which is achieved in

the absence of radiation and scalar field inhomogeneities) is approached. We will

identify the terms which dominate in this limit. This will give us a good indication

under which conditions a bounce can occur. The tables are structured as follows:

the first line “Terms”, indicates which term we are considering, the next set of lines

“Behavior” gives the scaling in time in the various limits and in the two relevant

ranges of the parameter p which indicates the equation of state, and the last line

gives the sign with which the term contributes to the energy density. Note that

we focus on the growing mode solution to each field (which is constant for small η

in the case p < 1/3). We give separate tables for terms of zeroth, first and second

order in ǫ.

a) For terms contained in ρ(0):
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Table 3.1: Behavior of background terms for the energy density

Terms
˙
φ
(0)
1

2

m2φ
(0)
1

2 − ˙
φ
(0)
2

2

−M2φ
(0)
2

2

Behavior

a−3− 2
p

(

a|η| ≫ m−1
)

a−6
(a|η| ≪ m−1

p > 1
3

)

0
(a|η| ≪ m−1

p < 1
3

)

a−3
(

a|η| ≫ m−1
)

a−6+ 2
p

(a|η| ≪ m−1

p > 1
3

)

a0
(a|η| ≪ m−1

p < 1
3

)

a−3− 2
p

(

a|η| ≫ m−1
)

a−6
(a|η| ≪ m−1

p > 1
3

)

0
(a|η| ≪ m−1

p < 1
3

)

a−3
(

a|η| ≫M−1
)

a−6+ 2
p

(a|η| ≪M−1

p > 1
3

)

a0
(a|η| ≪M−1

p < 1
3

)

Sign
Positive
Definite

Positive
Definite

Negative
Definite

Negative
Definite

b) For terms contained in ρ(1):

Table 3.2: Behavior of terms of order 1 in the energy density

Terms φ̇
(0)
1 φ̇

(1)
1 φ

(0)
1 φ

(1)
1

Behavior

a−3− 2
p

(

|η| ≫Max{k−1, (am)−1}
)

a−
9
2
− 1

p

( |η| ∈ [k−1, (am)−1]
p > 1

3

)

a−6
( |η| ≪Min{k−1, (am)−1}

p > 1
3

)

0
( |η| ∈ [k−1, (am)−1]

p < 1
3

)

0
( |η| ≪Min{k−1, (am)−1}

p < 1
3

)

a−3
(

|η| ≫Max{k−1, (am)−1}
)

a−
9
2
+ 1

p

( |η| ∈ [k−1, (am)−1]
p > 1

3

)

a−6+ 2
p

( |η| ≪Min{k−1, (am)−1}
p > 1

3

)

a−
3
2

( |η| ∈ [k−1, (am)−1]
p < 1

3

)

a0
( |η| ≪Min{k−1, (am)−1}

p < 1
3

)

Sign Indefinite Indefinite

Terms −φ(0)
2 φ

(1)
2 −φ̇(0)

2 φ̇
(1)
2

Behavior

a−3
(

|η| ≫Max{k−1, (aM)−1}
)

a−
9
2
+ 1

p

( |η| ∈ [k−1, (aM)−1]
p > 1

3

)

a−6+ 2
p

( |η| ≪Min{k−1, (aM)−1}
p > 1

3

)

a−
3
2

( |η| ∈ [k−1, (aM)−1]
p < 1

3

)

a0
( |η| ≪Min{k−1, (aM)−1}

p < 1
3

)

a−3− 2
p

(

|η| ≫Max{k−1, (aM)−1}
)

a−
9
2
− 1

p

( |η| ∈ [k−1, (aM)−1]
p > 1

3

)

a−6
( |η| ≪Min{k−1, (aM)−1}

p > 1
3

)

0
( |η| ∈ [k−1, (aM)−1]

p < 1
3

)

0
( |η| ≪Min{k−1, (aM)−1}

p < 1
3

)

Sign Indefinite Indefinite

These terms, however, all vanish if the energy density is defined by spatial
averaging.
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c) For terms contained in ρ(2):

Table 3.3: Behavior of terms of order 2 in the energy density

Terms
˙
φ
(1)
1

2

φ̇
(0)
1 φ̇

(2)
1

k2

a2
φ
(1)
1

2
m2φ

(1)
1

2

Behavior

a−3− 2
p

(

k|η| ≫ 1
)

a−6
(k|η| ≪ 1
p > 1

3

)

0
(k|η| ≪ 1
p < 1

3

)

a−7− 1
p

(

a|η| ≫ m−1
)

a−
17
2

(a|η| ≪ m−1

p > 1
3

)

0
(a|η| ≪ m−1

p < 1
3

)

a−5
(

k|η| ≫ 1
)

a−8+ 2
p

(k|η| ≪ 1
p > 1

3

)

a−2
(k|η| ≪ 1
p < 1

3

)

a−3
(

k|η| ≫ 1
)

a−6+ 2
p

(k|η| ≪ 1
p > 1

3

)

a0
(k|η| ≪ 1
p < 1

3

)

Sign
Positive
Definite

Indefinite
Positive
Definite

Positive
Definite

Terms − ˙
φ
(1)
2

2

−φ̇(0)
2 φ̇

(2)
2

k2

a2
φ
(1)
2

2 −M2φ
(1)
2

2

Behavior

a−3− 2
p

(

k|η| ≫ 1
)

a−6
(k|η| ≪ 1
p > 1

3

)

0
(k|η| ≪ 1
p < 1

3

)

a−7− 1
p

(

a|η| ≫M−1
)

a−
17
2

(a|η| ≪M−1

p > 1
3

)

0
(a|η| ≪M−1

p < 1
3

)

a−5
(

k|η| ≫ 1
)

a−8+ 2
p

(k|η| ≪ 1
p > 1

3

)

a−2
(k|η| ≪ 1
p < 1

3

)

a−3
(

k|η| ≫ 1
)

a−6+ 2
p

(k|η| ≪ 1
p > 1

3

)

a0
(k|η| ≪ 1
p < 1

3

)

Sign
Negative
Definite

Indefinite
Negative
Definite

Negative
Definite

Terms m2φ
(0)
1 φ

(2)
1 −M2φ

(0)
2 φ

(2)
2

Behavior

a−7+ 1
p

(

a|η| ≫ m−1
)

a−
17
2
+ 2

p

( a|η| ≪ m−1

p > 1
3

)

a−
11
2
+ 1

p

( a|η| ≪ m−1

p < 1
3

)

a−7+ 1
p

(

a|η| ≫M−1
)

a−
17
2
+ 2

p

(a|η| ≪M−1

p > 1
3

)

a−
11
2
+ 1

p

(a|η| ≪M−1

p < 1
3

)

Sign Indefinite Indefinite

These terms do not vanish upon spatial averaging.
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Table 3.4: Behavior of terms of order 2, including a gauge field component in the
energy density

Terms a−4k2γ20 (−cφ(0)
1

2 − dφ
(0)
2

2
)

+a−2γ̇20 ×(a−4k2γ20 + a−2γ̇20)
a−4k2γ0δγ a−2γ̇ ˙δγ

Behavior a−4

a−7
(

a|η| ≫ m−1
)

a−10+ 2
p

( a|η| ≪ m−1

p > 1
3

)

a−4
( a|η| ≪ m−1

p < 1
3

)

a−8+ 1
p

(

a|η| ≫ m−1
)

a−11+ 3
p

(a|η| ≪ m−1

p > 1
3

)

a−4
(a|η| ≪ m−1

p < 1
3

)

a−7
(

a|η| ≫ m−1
)

a−10+ 2
p

(a|η| ≪ m−1

p > 1
3

)

a−4
(a|η| ≪ m−1

p < 1
3

)

Sign
Positive
Definite

Indefinite
(Depending only on c and d)

Indefinite Indefinite

Note that we have expressed the time dependence in terms of the dependence

on the scale factor a(t). At this stage, we only need to focus on the exponent of

the power-law scaling. The more negative the power is, the more rapidly the term

grows in a contracting phase (since a(t) is decreasing with time).

As mentioned earlier, the conditions for a bounce to occur in four space-time

dimensional classical Einstein gravity with flat spatial sections is that the total

energy density reaches zero during the contracting phase. Thus, there needs to be

a negative definite term which starts out small but grows faster than the positive

definite terms due to the regular scalar field and regular radiation. In the absence

of radiation and scalar field inhomogeneities, it is the contribution to the energy

density of the ghost field φ2 which plays this role.

From the table we see that there are three kinds of terms: positive definite,

negative definite and indefinite ones. The first set contains the kinetic and potential

terms of the normal scalar as well as the free energy density of the gauge field, the

second set is made up of the kinetic and potential terms of the ghost scalar, while

the third set contains terms which arise due to the coupling terms between scalars

or between scalars and gauge fields.
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Looking first at the terms which are independent of the coupling term between

the fields, we see from the first line of the “Behavior” set of lines in the third table

that, indeed, in the presence of radiation the energy density in radiation grows

faster than that in the two scalar fields, thus preventing a bounce. In the presence

of coupling between the fields, however, there are terms which scale with a larger

negative power of a(t). The signs of some of them, however, depend on the initial

phases for the linear fields γ, φ
(1)
1 and φ

(1)
2 .

Note that the signs of the scalar coupling terms are determined by the evolution

of each field and thus are hard to be identified in a general analysis. The same is

true for the gauge coupling terms (the last two in the third table). However, the

coupling terms between the scalar fields and the gauge field (the third to last in

the third table) can be made negative/positive definite easily by setting the signs

of the coefficients c and d to be both positive/negative.

It is reasonable to assume that the contracting phase begins with the regular

scalar field dominating the energy density, and that the contribution of the Lee-

Wick scalar is much smaller. For single Fourier mode initial conditions of the

radiation field, this can be achieved with the appropriate choice of the initial phase

(see Example 1 in the following section containing our numerical results). However,

for multiple initial radiation Fourier modes excited any initial phase difference

between the modes will produce a contribution with the wrong sign and will thus

prevent a bounce (see Example 3 in the following section). In the presence of

an infinite set of modes, the phase correlations required to obtain a bounce thus

appear to have negligible measure in initial condition space. Thus, even in the

presence of coupling between scalar fields and radiation, the Lee-Wick bounce is

unstable.
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The bounce, if it exists, will happen at a time which can be chosen to be

t = 0. Its duration (the time interval lasting from the time the Hubble radius

stops decreasing in the contracting phase until when it starts expanding in the

post-bounce phase) will be denoted by ∆t. Since the various components of the

energy density scale with different powers of a(t), it is clear that the duration of

the bounce will be shorter or equal to the Hubble radius H−1
max (which gives the

time scale on which the ratios of energy densities in different components change)

at the beginning of the bounce phase. For the background bounce model, we have

Hmax ∼ m.

There are two kinds of bounces according to the duration of the bounce phase

i) If the period ∆t ≃ m−1, the bounce will go from the time

tB− ∼ −(∆t)

2
∼ − 1

2m
(3.79)

to the time

tB+ ∼ (∆t)

2
∼ 1

2m
(3.80)

with a low speed. We call this a “slow bounce”. In this case, the Universe will

enter the bounce period at the critical time tc ∼ m, and only the a|η| ≫ m−1

approximate solutions of the previous tables will be applicable and not ones for the

interval a|η| ≪ m−1. ii) If the period ∆t≪ m−1, the bounce will happen in a very

short time with very fast speed. This can be called the “fast bounce”. In this case,

the Universe evolves from the far past (−ti with |ti| ≫ 1) to t = 0, passing through

the point tc ∼ m, then entering into the region |t| . m before finally reaching the

bouncing point. In this case, both of the two approximate solutions of the field

evolution will be applied.

Let us now consider the necessary conditions for a bounce (as we have indicated

above and will see from the numerical analysis, these conditions are not sufficient
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- in addition to the conditions which follow, appropriate correlations in the initial

phases are required). We start in the region of time a|η| ≫ m−1. We study

the conditions required to have the terms that might give a bounce grow relative

to the other terms during this phase. If the conditions are not satisfied, or the

bounce does not happen even if the conditions are satisfied, then a bounce may

still occure in the a|η| ≪ m−1 region. The conditions for the terms in the energy

which could compensate the positive radiation contribution to become dominant

are then studied. If these conditions are not satisfied, either, then a bounce is

impossible.

A necessary condition for a bounce to be possible requires the growth rate of

one of the indefinite sign terms in the third table above exceed all that of all of

the positive definite terms. In the a|η| ≫ m−1 region, this requires 8 − 1/p > 5,

which equivalently constrains the equation of state parameter w to be in the range

w < 1. If this condition is satisfied in this region, then a slow bounce may happen

depending on the choice of the initial phases.

If the condition is not satisfied in the a|η| ≫ m−1 region, the Universe may

evolve into the a|η| ≪ m−1 region, in which the evolution of the fields are different,

and new constraints on p and w will arise if a bounce is to be possible. Following

the above logic, we find that the conditions under which a bounce might happen

are much looser, namely w > −7/6.

To summarize this section: we have identified necessary conditions for a bounce

to occur. Whether one actually does occur even if the conditions are satisfied

depends on the initial phases of the fields. This must be studied numerically. In

the following section we will give one example of specially chosen phases for which

a bounce is possible. However, when we look at a more general choice of phases,

the bounce will not occur.
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3.6 Numerical Results

In order to support the analysis in the last section, we performed numerical

calculations. Such numerical work is necessary because our analytical analysis is

only approximate. In particular, we worked in perturbation theory up to order

second order in ǫ. In addition, even in cases where our analytical analysis would

indicate the possibility of a bounce, the perturbative analysis will break down

near the bouncing point, and there is no assurance that the trends seen in the

perturbative analysis will persist.

We have numerically solved the full nonlinear equations of motion for the matter

fields in the presence of a homogeneous expanding background cosmology. The

homogeneous cosmology is obtained numerically by solving the first Friedmann

equation

H2 =
8πG

3
ρ , (3.81)

where G is Newton’s gravitational constant (related to the Planck mass used ear-

lier), and ρ is the total energy density, averaged over space.

Figures 3.1-3.6 are two groups of numerical results with different parameters.

In both cases we choose the initial energy density of the gauge fields to be larger

than that of the Lee-Wick scalar, but less than that of the normal scalar. These

initial conditions correspond to the situation we are interested in, namely starting

in a matter-dominated contracting phase in the presence of some radiation which

is subdominant. Fig. 3.1, 3.2 and 3.3 show an example with parameters c > 0 and

d > 0. We choose initial conditions in which a single Fourier mode fluctuation is

excited, and in which the phases are chosen as indicated in the figure caption. For

these initial phases, we obtain a bounce. In Fig. 3.1, we see that the equation of

state w begins with a value slightly larger than 0, and then evolves to some nearly

fixed value. For the case of our initial condition choice, it appears to be w ≃ −0.6,
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in the region where the bounce is allowed to happen. At the bouncing point, the

equation of state will drop to −∞, while after the bounce, the equation of state

will rise again to w ≃ 0.6. Fig. 3.2 is the plot of the scale factor in this case

which shows explicitly the occurrence of the bounce. Fig. 3.3 gives a comparison

-1.0 -0.5 0.0 0.5
-10

-8

-6

-4

-2

0

2

 

 

t

w

Figure 3.1: The evolution of the equation of state w with respect to cosmic
time t (horizontal axis), in the first simulation, a simulation with only a single
Fourier mode excited and phases chosen as indicated below. We see that w drops
to −∞, indicating that there is a bounce. The background fields are plotted
in dimensionless units by normalizing by the mass mrec = 10−6mP l while the
time axis is displayed in units of m−1

rec. The mass parameters m and M were
chosen to be m = 5mrec and M = 10mrec. The initial conditions were cho-
sen to be γi ≃ −1.85 × 105mrec, γ̇i ≃ 7.35 × 106m2

rec, φ1i ≃ 1.015 × 105mrec,
φ̇1i ≃ 6.39× 105m2

rec, φ2i ≃ 2.54× 102mrec, φ̇2i ≃ −4.96× 103m2
rec. The coefficients

c and d are chosen to be c = 10−10M2
rec and d = 10−10M2

rec. The wavenumber is
k ≃ 0.01hMpc−1.

of the energy densities of some components during the process. Initially, we set

the energy density of the gauge field γ to be between the normal scalar and Lee-

Wick scalar. When the evolution of the Universe enters into a region with nearly
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Figure 3.2: The scale factor of the Universe in the same simulation that leads to
the evolution of the equation of state shown in Fig. 3.1. From the plot we see that
the bounce happens at t = 0.

constant w, the gauge coupling component of energy density ρc will grow very fast.

It is negative and thus enables the negative part of the energy density to catch up

with the positive one, thus allowing the bounce to happen. For the inhomogeneous

fluctuation, we choose the wavenumber to be k ≃ 0.01hMpc−1 which corresponds

to a scale which is observable by CMB and LSS experiments.

Figs. 3.4, 3.5 and 3.6 give the corresponding results in the case when we choose

c > 0 while d < 0 (with all initial conditions identical). This case seems dangerous

because the contribution of the Lee-Wick scalar to the fluctuation terms could lead

to an instability. However, as we have mentioned before, since the effects of the

Lee-Wick scalar are less than that of the normal scalar, it is still possible for the

bounce to happen. Fig. 3.4 shows the equation of state of the system. We can see

that the evolution of w is about the same as that in Fig. 3.1, since the change of

the sign of d does not alter the result too much. Fig. 3.5 is the behavior of scale
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Figure 3.3: Energy densities of φ1, φ2 and γ in the system with parameters chosen
as in Fig. 3.1. The curves from top to bottom are ρφ1 (black), ρφ2 (red), ρc (dark
cyan) and ργ (blue), respectively. The variables are also normalized with the mass
scale mrec = 10−6mP l.

factor in this case while Fig. 3.6 gives the comparison of the energy densities of all

components.

A change in the phase of the initial radiation field velocity will not change the

results (if we keep the other initial conditions fixed). On the other hand, if we flip

the sign of the initial velocity of one of the two scalar fields, then the sign of the

dominant contribution to the energy density as we approach the bounce will flip

and this will prevent a bounce. If we use initial conditions containing two excited

Fourier modes, then we obtain a bounce only if the signs of the initial field velocities

are both chosen as in the first run whose results are shown here. Different phases



Numerical Results 99

-1.0 -0.5 0.0 0.5
-10

-8

-6

-4

-2

0

2

 

 

t

w

Figure 3.4: The evolution of the equation of state w as a function of cosmic time t
(horizontal axis). The behavior that w drops to −∞ indicating that a bounce takes
place. The background fields are plotted in dimensionless units by normalizing by
the mass mrec = 10−6mP l while the time axis is displayed in units of m−1

rec. The
mass parameters m and M were chosen to be m = 5mrec and M = 10mrec. The
initial conditions were chosen to be γi ≃ −1.85×105mrec, γ̇i ≃ 7.35×106m2

rec, φ1i ≃
1.015×105mrec, φ̇1i ≃ 6.39×105m2

rec, φ2i ≃ 2.54×102mrec, φ̇2i ≃ −4.96×103m2
rec.

The coefficients c and d are chosen to be c = 10−10M2
rec and d = −10−10M2

rec. The
wavenumber k ≃ 0.01hMpc−1.

for the scalar field velocities of the two modes destroys the possibility of obtaining

a bounce.

Figures 3.7, 3.8 and 3.9 show the results for the equation of state parameter w,

the Hubble parameter H and the contribution of the various components to the

total ρ in the case of a simulation in which two Fourier modes are excited, with

velocities of both scalar fields having opposite signs from those in the previous

example. As is obvious, a Big Crunch singularity occurs.
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Figure 3.5: The scale factor of the Universe driven by the system with parameters
chosen as in Fig. 3.4. From the plot we see that the bounce happens at t = 0.
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Figure 3.6: Energy densities of φ1, φ2 and γ in the system with parameters chosen
as in Fig. 3.4. The curves from top to bottom are ρφ1 (black), ρφ2 (red), ρc (dark
cyan) and ργ (blue), respectively. The variables are also normalized with the mass
scale mrec = 10−6mP l.
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Figure 3.7: Evolution of the equation of state w as a function of cosmic time t
(horizontal axis). The background fields are plotted in dimensionless units by nor-
malizing by the mass mrec = 10−6mP l while the time axis is displayed in units
of m−1

rec. The mass parameters m and M were chosen to be m = 5mrec and
M = 10mrec. This plot is the evolution of the system with two Fourier modes
combined together. The one is of which the wavenumber k ≃ 0.01hMpc−1 with
initial conditions γi ≃ −1.85×105mrec, γ̇i ≃ 7.35×106m2

rec, φ1i ≃ 1.015×105mrec,
φ̇1i ≃ 6.39× 105m2

rec, φ2i ≃ 2.54× 102mrec, φ̇2i ≃ −4.96× 103m2
rec, which if taken

alone will give the bounce as has been shown in the previous example. The other
is of which the wavenumber k ≃ 0.04hMpc−1 with initial conditions of the same
initial values of the fields but the opposite signs of the scalar field velocity. From
this plot we can see that the combination of the two Fourier mode will (generally)
cause w blow up, thus preventing the bounce. This means that the bounce requires
special fine-tuning of the initial phases for each Fourier mode. The coefficients c
and d are chosen to be c = 10−10M2

rec and d = −10−10M2
rec.
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Figure 3.8: The Hubble constant of the Universe driven by the system with pa-
rameters chosen as in Fig. 3.7. From the plot we see that there is a singularity at
t = 0.
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Figure 3.9: Energy densities of φ1, φ2 and γ in the system with parameters chosen
as in Fig. 3.7. The curves from top to bottom are: ρφ1 (black), ρφ2 (red), ρc (dark
cyan) and ργ (blue), respectively. The variables are also normalized with the mass
scale mrec = 10−6mP l.
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3.7 Conclusions and Discussion

In this paper we analyzed in detail the possibility of obtaining a cosmological

bounce in a model which corresponds to the scalar field sector of the Lee-Wick

theory coupled to relativistic radiation. It is known that the scalar field sector

of the Lee-Wick theory in the absence of other fields can yield a cosmological

bounce [11]. In fact, the Universe will scale as nonrelativistic matter with < w >≃

0 both before and after the bounce. Thus, this model is a possible realization

of the “matter bounce” scenario. However, this background is unstable to the

introduction of radiation since in the contracting phase the growth of energy density

in radiation will exceed that of matter and will lead to a Big Crunch singularity

As has been shown in previous work [15], the introduction of a Lee-Wick partner

to radiation does not prevent this instability. In this paper, we introduced an

interaction between the radiation field and the scalar fields. The interaction could

help drain energy from the radiation field to the Lee-Wick scalar, and thus could

prevent the radiation from growing too fast to destroy the bounce.

We analyzed the equations describing the evolution of the three matter fields

(regular scalar field, its Lee-Wick partner and the radiation field) on a cosmological

background both analytically and numerically. Our analytical analysis was pertur-

bative and made use of the second order using Born approximation. The expansion

parameter is set by the initial amplitude of the gauge field. We solved the equa-

tions of motion for each field at each order, and obtained their approximations in

different cases. We compared their contributions to the total energy density, and

derived necessary conditions for a bounce to happen. To support our analysis, we

also performed numerical calculations.

Specifically, we investigated initial conditions in which one or two Fourier modes

of the radiation field and the scalar field fluctuations are excited. We found special
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initial conditions which indeed lead to a nonsingular bounce. Changing the sign

of the initial scalar field velocity will destroy the bounce solution. In the presence

of two Fourier modes, we found that a bounce requires identical initial phases for

the two modes. For general initial conditions, we conjecture that the measure of

such initial conditions which lead to a bounce is very small. We thus find that

the addition of coupling terms between the scalar fields and radiation cannot save

the Lee-Wick bounce background from the instability problem with respect to the

addition of radiation (nor, for that matter, with respect to scalar field fluctuations).

The instability problem with respect to anisotropic stress will be even worse.

We have studied a particular form of the coupling between the two scalar fields

and radiation. We believe, however, that our conclusions - namely that the cou-

pling cannot drain energy sufficiently fast from the radiation phase to prevent a

singularity - will hold for more general couplings. The reason is that in the coupling

terms can both turn radiation energy into scalar field energy and conversely turn

scalar field energy into radiation. As in the example studied in this paper, it will

require a fine-tuning of the phases in the initial conditions to prevent the channel

generating radiation to be effective.
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Appendix : Green’s function determination of u
(2)
i

The solution for the second order scalar field correction u
(2)
i can be determined

using the Green function method. The general solution of (3.77) is the sum of the
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solution u0(η) of the homogeneous equation which solves the same initial conditions

as u and the particular solution δu(η) which vanishes at time ηI . The particular

solution is given by

δu(η) = ua(η)

∫ η

ηI

dη′ǫ(η′)ub(η
′)s(η′)− ub(η)

∫ η

ηI

dη′ǫ(η′)ua(η
′)s(η′) , (3.82)

where u1 and u2 are two independent solutions of the homogeneous equation, ǫ(η)

is the Wronskian:

ǫ(η) =
(

u
′

aub − u
′

bua
)−1

, (3.83)

and s(η) is the source inhomogeneity.

Recall from the main text that the second order field correction terms satisfy

the equations:























u
(2)
1

′′
+ a2m2u

(2)
1 = c (k

2γ2−γ′2)
a2

u
(0)
1 ,

u
(2)
2

′′
+ a2M2u

(2)
2 = −d (k2γ2−γ′2)

a2
u
(0)
2 ,

(3.84)

We will demonstrate the analysis for the case of u
(2)
1 . Let us consider evolution

for a short interval of time starting at some initial time ηI . Then, we can neglect

the expansion of the Universe in the equation of motion and take a(η) = a(ηI). We

are then interested in how the result scales in ηI . Using this trick, the solutions of

the homogeneous equation can be taken to be

ua(η) = cos(ωmη)

ub(η) = sin(ωmη) (3.85)

and the Wronskian is

ǫ(η) = − 1

ωm

where ωm =
√
a2m2 . (3.86)
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Using the result for the background γ from the main text, the source term

becomes

sγ(η) = c
(k2γ2 − γ′2)

a2
u
(0)
1

∼ a−2k2|η|
p

2(p−1) × cos(2k|η|+ 2θγ) cos((1− p)am|η|+ θ
(0)
1 ) ,

since γ0 ∼ cos(k|η|+ θγ).

Combining these results we obtain

u
(2)
1 ∼ − cos(ωmη)

∫ η

ηI

dηk2

a3(t)m
|η|

p
2(p−1) × sin(ωmη) cos(2k|η|+ 2θγ) cos((1− p)am|η|+ θ

(0)
1 )

+ sin(ωmη)

∫ η

ηI

dηk2

a3(t)m
|η|

p
2(p−1) × cos(ωmη) cos(2k|η|+ 2θγ) sin((1− p)am|η|+ θ

(0)
1 ) ,

u
(2)
2 ∼ − cos(ωMη)

∫ η

ηI

dηk2

a3(t)M
|η|

p
2(p−1) × sin(ωMη) cos(2k|η|+ 2θγ) cos((1− p)aM |η|+ θ

(0)
1 )

+ sin(ωMη)

∫ η

ηI

dηk2

a3(t)M
|η|

p
2(p−1) × cos(ωMη) cos(2k|η|+ 2θγ) sin((1− p)aM |η|+ θ

(0)
1 ) .

Note that if we only care about their scalings with respect to conformal time η or

scale factor a(t), the above solutions can be reduced to

u
(2)
1,2 ∝ |η|

9p−2
2(p−1) ∝ a−

9
2
+ 1

p , (3.87)

and for the case of a matter-dominated era where p = 2/3, it is straightforward to

show that

u
(2)
1,2 ∝ |η|−6 ∝ a−3 . (3.88)
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Bouncing universes represent an alternative to the current paradigm

of standard cosmology, inflation. One very important question that

inflationary cosmology tries to answer concerns the creation of all the

matter observed today. This chapter explores one of the mechanisms

responsible for particle production at the end of inflation, during re-

heating. In particular, it studies preheating, a mechanism of fast

particle production via parametric resonance, in models where the

particle driving inflation, the inflaton, reaches its speed limit.



Chapter 4

Particle production during

preheating

The following is extracted from the article “Preheating with the Brakes

On: The Effects of a Speed Limit” published in collaboration with Aaron

Vincent and Bret Underwood in Phys. Rev. D84, 043528 (2011).

AbstractWe study preheating in models where the inflaton has a non-canonical

kinetic term, containing powers of the usual kinetic energy. The inflaton field oscil-

lating about its potential minimum acts as a driving force for particle production

through parametric resonance. Non-canonical kinetic terms can impose a speed

limit on the motion of the inflaton, modifying the oscillating inflaton profile. This

has two important effects: it turns a smooth sinusoidal profile into a sharp saw-

tooth, enhancing resonance, and it lengthens the period of oscillations, suppressing

resonance. We show that the second effect dominates over the first, so that preheat-

ing with a non-canonical inflaton field is less efficient than with canonical kinetic

terms, and that the expansion of the Universe suppresses resonance even further.

110
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4.1 Introduction

After a sufficiently long period of inflation the Universe would be cold and de-

void of observable matter. The energy responsible for driving inflation is trapped

in the (nearly) homogeneous inflaton field φ. In order for observable matter to

emerge from the post-inflationary Universe, the inflaton field must couple to ad-

ditional degrees of freedom in a way that the inflationary energy is dumped into

observable matter through a process known as reheating [1, 2, 3]. For the purpose

of reheating, the inflaton can couple to other scalar fields, fermions, or gauge fields.

If the inflaton couples to bosonic fields, such as other scalar fields, novel conden-

sation effects can take place. In particular, because there is no exclusion principle,

the inflaton field can transfer a large amount of energy to the reheating field χ (the

“reheaton”) in a process that is far from equilibrium. Such enhancements result

from non-linear resonance effects due to the interaction between the inflaton and

reheaton. For example, for the Lagrangian

L =
1

2
(∂φ)2 − V (φ) +

1

2
(∂χ)2 +

1

2
g2φ2χ2 , (4.1)

the equation of motion for large-scale modes of χ (neglecting the expansion of the

Universe) becomes that of a harmonic oscillator with a time-dependent frequency,

χ̈(t) +
(

k2 + g2φ(t)2
)

χ(t) = 0 (4.2)

where k is the comoving wavenumber of the χ field and φ = φ(t) is the time-

dependent background solution for the inflaton. At the end of single field infla-

tion the inflaton oscillates about the minimum of its potential, so that the time-

dependent frequency ω(t)2 = k2+g2φ(t)2 oscillates with time. It is well-known that

a harmonic oscillator with an oscillating time-dependent frequency can exhibit res-

onance effects, where the amplitude χ(t) of the oscillator grows exponentially with
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time. This post-inflationary exponential growth of certain long-wavelength modes

of χ is dubbed “preheating” [4, 5, 6, 7, 3, 8], and has been studied in a variety

of different contexts. See [9, 10, 11] for some reviews of this extensive literature.

Most importantly for this paper, the majority of these studies (with the exception

of [12]) have focused only on quadratic kinetic terms for the effective theory of

reheating.

This approach towards inflationary and reheating model building neglects, how-

ever, the fact that these simple Lagrangians are really effective field theory (EFT)

descriptions, only valid at sufficiently low energies. In particular, these Lagrangians

should be understood as having been obtained by integrating out physics above

some scale Λ at which new physics (such as new fields or new interactions) become

important. The effects of physics above this energy can be parameterized in the

EFT through non-renormalizable operators suppressed by powers of the scale of

new physics,

Leff = L0 +
∑

n>4

cn
On

Λn−4
. (4.3)

As an example, consider the two-field Lagrangian,

L =
1

2
(∂φ)2 +

1

2
(∂ρ)2 +

ρ

Λ
(∂φ)2 − 1

2
Λ2ρ2 − V (φ) , (4.4)

with φ the inflaton field and ρ some heavy field with mass Λ. For energies below Λ,

we can integrate out ρ at the classical (tree) level to obtain the effective Lagrangian

[13, 14],

Leff =
1

2
(∂φ)2 +

(∂φ)4

Λ4
− V (φ) . (4.5)

The effective theory now contains a new contribution to the kinetic part of the

action for the inflaton. More generally, one can consider as a low energy EFT a
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Lagrangian for the inflaton of the form1

Leff = Leff (X,φ) , (4.6)

where X ≡ −1
2
(∂φ)2. Inflation with Lagrangians of this type can have novel

features, such as a speed limit on the motion of the homogeneous inflaton and a

sound speed of perturbations less than one c2s ≤ 1, that have important implications

for inflationary perturbations and models [16, 17, 18, 19, 20].

It is the post-inflationary dynamics of (4.6) that is most interesting to us here.

In particular, we will couple the non-canonical inflaton in (4.6) to a canonical

reheaton field through a quartic interaction:

Lpre = Leff (X,φ) +
1

2
(∂χ)2 − 1

2
g2φ2χ2 − 1

2
m2

χχ
2 . (4.7)

The equation of motion for the reheaton is still of the form (4.2). However, since

the resonance arising from the time-dependent harmonic oscillator (4.2) is a non-

linear effect, it is sensitive to the precise profile of the inflaton φ(t) as it oscillates

about its potential minimum. The profile of the oscillation is in turn sensitive

to the non-canonical kinetic terms in (4.7). Thus, the modified dynamics from

non-canonical Lagrangians can play an important role in the physics of preheating.

In this paper, we will discuss the implications of an inflaton sector with non-

canonical kinetic terms for preheating. We first discuss in Section 4.2 the dynamics

1 This is, of course, not the most general effective theory of the form (4.3). In
particular, we have omitted terms involving higher derivatives. This can be done
self-consistently as long as the higher derivatives are small for the physics we are
interested in, which we will argue is the case. See also [13] for further analysis of
the validity of the truncation (4.6) in the context of inflation. It is also worthwhile
to note that certain Lagrangians of the form (4.6) are protected against corrections
by powerful non-linear symmetries [15].
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of a non-canonical inflaton oscillating about its minimum. A fairly generic feature

is the existence of a speed limit on the motion of the inflaton, restricting how

fast it can move in field space. When the oscillating inflaton saturates this speed

limit, its profile is no longer sinusoidal but instead takes a saw-tooth form. In

Section 4.3 we show how the equation of motion for reheaton perturbations can

be recast into a form of Hill’s equation, for which well-known techniques exist

for finding resonance bands. Two competing effects lead to modifications of the

standard theory of preheating: non-canonical kinetic terms lead to a “sharper”

inflaton profile, enhancing resonance, while the period of oscillation is lengthened

due to the speed limit, suppressing resonance. The net result is that the latter effect

dominates, so that the resonance for non-canonical kinetic terms is less efficient

than its canonical counterpart. After illustrating the effects of the expansion of the

Universe, we summarize our results in Section 4.4. The Appendix contains further

details about methods for computing the properties of parametric resonance.

4.2 Non-Canonical Kinetic Terms

Let us first focus on the implications that non-canonical kinetic terms of the

form (4.6) have on the motion of the inflaton field oscillating about its minimum.

Inflationary Lagrangians of this form with no potential energy have been proposed

as an alternative to potential-dominated inflation, and are dubbed “k-inflation”

[16]. More generally, however, we expect the inflationary sector to have both kinetic

and potential energy; in this case, the effective Lagrangian Leff (X,φ) can be seen

as an extension of standard slow-roll inflationary models with non-canonical kinetic

terms. These non-canonical Lagrangians have a number of interesting properties

that make them attractive to inflationary model building and phenomenology. On

the model-building side, the non-canonical kinetic terms significantly modify the
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dynamics of the inflaton so that the speed of the inflaton can remain small even

when rolling down a steep potential [18, 13]. In many cases, this results in a

“speed limit” for the inflaton, namely a maximum for the speed of the homogeneous

mode of the inflaton. This is a great advantage to model building, since then it

is less necessary to fine-tune the inflationary potential to have very flat regions

supporting slow roll inflation. Inflation with non-canonical kinetic terms can also

lead to interesting signatures in the CMB, such as observable non-gaussianities

[17, 19, 20].

We will choose to work with inflationary Lagrangians of the “separable” form

(discussed in more detail in [13, 21]):

Leff (X,φ) =
∑

n≥0

cn
Xn+1

Λ4n
− V (φ) = p(X)− V (φ) , (4.8)

where we have written p(X) as a power series expansion in X/Λ4, with Λ some

UV energy scale. Since Λ is typically the mass scale of some heavy sector we have

integrated out, we require it to be larger than the mass of the inflaton Λ ≫ mφ

in order for such an effective field theory perspective to make sense. As a further

restriction, we will take c0 = 1, so that for small X/Λ4 ≪ 1, the Lagrangian

reduces to the usual canonical Lagrangian. In order for the power series expansion

to make sense, the series must have some non-zero radius of convergence R so that

the series converges in the domain of convergence X/Λ4 ∈ [0, R), with R ≤ 1 (it

is not necessary that the series itself converge at the boundary). Finally, we will

also require that the first and second derivatives of the power series are positive

∂p
∂X
, ∂2p
∂X2 > 0 so as to guarantee that we satisfy the null energy condition and have

subluminal propagation of perturbations [13, 22, 23, 24].
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In a FLRW background

ds2 = −dt2 + a(t)2d~x2 (4.9)

the scale factor a(t) is driven by the energy density of the homogeneous inflaton

φ(t),
(

ȧ

a

)2

=
1

3M2
p

[

2X
∂p

∂X
− p(X) + V (φ)

]

, (4.10)

where now X = 1
2
φ̇2. The equation of motion for φ(t) in this background becomes,

φ̈+ 3Hφ̇c2s +
∂V

∂φ

c2s
∂p/∂X

= 0 (4.11)

where the sound speed c2s, defined by

c2s =

(

1 + 2X
∂2p/∂X2

∂p/∂X

)−1

, (4.12)

is so called because it also appears as the effective speed of perturbations of φ about

this background. We will ignore the expansion of the Universe for now, dropping

the Hubble friction term in (4.11), and will return to the effects of expansion of

the Universe in Section 4.3.3.

For simplicity, we will take the potential V (φ) of the inflaton to only consist of a

mass term V (φ) = 1
2
m2

φφ
2. This could be the entire inflaton potential, as in chaotic

inflation, or just the form of the potential near its minimum. The difference is not

particularly important, as we are primarily concerned with the phase when the

homogeneous inflaton is oscillating about its minimum, where the quadratic form

of the potential will be sufficient. For a scalar field with a canonical kinetic term in

this potential, the equation of motion is that of a simple harmonic oscillator: the

inflaton oscillates sinusoidally φ(t) = Φ sin(mφt).

The behavior of a non-canonical kinetic term, however, can be qualitatively dif-

ferent. As with the canonical case, the potential provides a force that accelerates
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the inflaton. However, now the effective force ∂V
∂φ

c2s
∂p/∂X

is also a function of the

speed of the inflaton. Recall that the kinetic term p(X) is a series which is only

defined within a finite radius of convergence, 1
2
φ̇2

Λ4 ≤ R. As the inflaton speed ap-

proaches the radius of convergence |φ̇| →
√
2RΛ2 the series p(X) or its derivatives

∂p/∂X, ∂2p/∂X2 may converge or diverge, depending on the precise form of the

series chosen. Notice that if the second derivative of the series ∂2p/∂X2 diverges

faster than the first derivative ∂p/∂X at the boundary of the domain of conver-

gence, so that c2s → 1
2X

∂p/∂X
∂2p/∂X2 → 0, then the effective force vanishes. Said another

way, as the force from the potential increases the speed of the inflaton, the non-

canonical kinetic dynamics modify the effective force felt by the inflaton so that

the effective force, and thus the acceleration of the inflaton, vanish as the infla-

ton approaches the radius of convergence. Thus, Lagrangians for which ∂2p/∂X2

diverges as φ̇ approaches the radius of convergence have a speed limit, such that

|φ̇| ≤ φ̇max =
√
2RΛ2. Certainly, as the inflaton approaches the speed limit, we

are approaching the boundary of validity for the EFT (4.8). Thus, it is advanta-

geous to have a symmetry that protects the form of the Lagrangian against further

corrections as this threshold is approached [15]. Further, requiring perturbivity of

the inflaton perturbations places a bound on the minimal sound speed c2s, thus re-

stricting how close to the boundary of the EFT we can go [25, 26, 27]. Fortunately,

there is a window where both the system is perturbative and the inflaton is close

to its speed limit, so that the effects we are interested in below are still present.

For potentials that are sufficiently steep, the inflaton quickly attains its speed

limit and stays there until it reaches the other side of the potential, where it

decelerates and changes direction, as shown in Figure 4.1. This has two important

consequences that will play a very important role in preheating:
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Figure 4.1: The motion of the homogeneous inflaton φ(t) about the minimum of the
(quadratic) potential differs depending on whether the kinetic terms are canonical
or non-canonical. For canonical kinetic terms the motion is sinusoidal. For non-
canonical kinetic terms the motion approaches a saw-tooth with a much longer
period as the inflaton saturates its speed limit. This form of the inflaton profile is
universal for Lagrangians that have a speed limit, except for a very small region
near the turning point which is unimportant for preheating.

(a) The profile becomes sharper, with a smooth sinusoidal profile turning into a

saw-tooth profile.

(b) The speed limit slows the inflaton down, lengthening the period.

These two effects can be clearly seen in Figure 4.1. As mentioned earlier, the form

of the potential about the minimum is in principle unrelated to the form of the

potential during inflation. This implies that the behavior of the inflaton oscillating

about its potential minimum can be dominated by the non-canonical kinetic terms,

independent of whether inflation itself is dominated by these terms.
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When the inflaton saturates the speed limit its profile along one of the legs is

approximately linear in time2 :

φ(t) ≈
√
2RΛ2(t− tj) , (4.13)

where tj is the time when the inflaton crosses zero. For small Λ this linear approx-

imation of the inflaton is valid up to the turning point |φ| ≈ Φ, so the period of

oscillation is

TNCR =
4Φ√
2RΛ2

, (4.14)

with t ∈ [−TNCR

4
, TNCR

4
]. In order for the non-canonical kinetic terms to be im-

portant, this must be much larger than the canonical period of oscillation TCR =

2π/mφ (otherwise the inflaton would not reach the speed limit during oscillation),

so

TNCR ≫ TCR ⇒ Λ ≪
(

2

R

)1/4
√

Φmφ

π
. (4.15)

This provides a precise condition for the small Λ limit where the system is very non-

canonical. Together with the requirement that the effective field theory description

make sense Λ ≫ mφ, we have the following regime for Λ where both the EFT

description makes sense and the speed limit is saturated:

1 ≪ Λ

mφ

≪
(

2

R

)1/4
√

Φ

πmφ

. (4.16)

Clearly, for too small of an amplitude Φ of the initial oscillation this cannot be

satisfied. Since the expansion of the Universe and the transfer of energy from

2 This implies that the acceleration is approximately zero, so higher derivative
corrections to the effective Lagrangian (4.8) are very small, as discussed in footnote
1.
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the inflationary to the reheating sector cause the amplitude of oscillation to de-

crease over time, eventually the inflaton no longer saturates the speed limit and

the inflaton profile behavior returns to the canonical limit.

Perhaps the most well-known non-canonical Lagrangian that leads to a speed-

limit for the inflaton is that of the DBI Lagrangian [18] (with constant warp factor,

see [28]):

p(X) = −Λ4

[
√

1− 2X

Λ4
− 1

]

. (4.17)

This Lagrangian arises by considering the motion of a space-filling D3-brane in a

compact space, with φ taking the role of a transverse coordinate of the D3-brane.

In this case the speed limit has a nice geometrical interpretation - it is just the

effective speed of light for motion the extra dimensions (the effective speed of light

is not necessarily unity if the metric on the internal space has non-trivial warping).

We can also represent (4.17) as a power series representation in powers of X/Λ4 as

in (4.8) with a radius of convergence R = 1/2. But the condition for obtaining the

speed limit behavior can be satisfied by a much larger set of Lagrangians, not just

the DBI Lagrangian. For example, Lagrangians of the form [13],

p(X) = −Λ4

[

(

(1− 1

R

X

Λ4

)R

− 1

]

, (4.18)

with R < 1 (which includes (4.17) for R = 1/2), or

p(X) = −Λ4

[

log

(

1− X

Λ4

)

− 1

]

(4.19)

are all of the form (4.8) (with radii of convergence R, 1 respectively) and all lead

to speed-limiting behavior for φ. Importantly, though, the details of preheating

driven by such fields will be insensitive to these different choices of Lagrangians -

as long as there is a speed limit, the profile φ(t) will be that of the solid line in

Figure 4.1.
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4.3 Preheating with Non-Canonical Inflation

4.3.1 Floquet Theory of Resonance

In the previous section we described the effects of non-canonical kinetic terms

on the profile φ(t) of an inflaton oscillating about the minimum of its potential,

ignoring the coupling of the inflaton to the reheaton field. Now, we will consider

the impact on preheating of the coupling between the inflaton and reheaton sectors

as in (4.7), with the inflationary Lagrangian given by (4.8),

Lpre = p(X)− 1

2
m2

φφ
2 +

1

2
(∂χ)2 − 1

2
m2

χχ
2 − 1

2
g2φ2χ2 , (4.20)

where we will assume that p(X) gives rise to a speed limit.

While the inflaton is dominated by its spatially homogeneous mode φ = φ(t),

which is oscillating with period T , the reheaton is assumed to have a vanishing

background vacuum expectation value (VEV) 〈χ〉 = 0. Thus, we will consider

fluctuations of the reheaton about the vacuum, which may be decomposed into a

set of Fourier modes

χ = δχ̂(~x, t) =

∫

d3k

(2π)3

(

ei
~k·~xδχk(t) + e−i~k·~xδχ∗

k(t)
)

. (4.21)

Ignoring for now the expansion of the Universe, the equation of motion for the

reheaton fluctuations is

δχ̈k(t) +
(

K + g2φ(t)2
)

δχk(t) = 0 (4.22)

where K ≡ k2 +m2
χ. This is easily recast into a driven harmonic oscillator known

as Hill’s equation [29], after a redefinition to a dimensionless time coordinate τ =

4π(t− t0)/T (a prime denotes a derivative with respect to τ):

δχk(τ)
′′ + [Ak + qF (τ)] δχk(τ) = 0, (4.23)
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where F (τ) is a 2π-periodic function symmetric about τ = 0, satisfying
∫ π

−π
F (τ)dτ =

0. Floquet’s theorem (see [29]) states that solutions to (4.23) have the form

δχk(τ) = eµ̃kτg(τ) + e−µ̃kτg2(τ) (4.24)

where g(τ), g2(τ) are oscillating solutions, and the Floquet growth exponent µ̃k

depends on Ak and q and is complex in general. For certain ranges of Ak and

q, known as resonance bands, the real part of the Floquet growth exponent is

non-zero3 leading to exponentially growing solutions:

δχk(τ) ∼ eµ̃kτ . (4.25)

In order to compare models of preheating with different oscillating profiles φ(t)

it is more convenient to parameterize the growth exponent in terms of physical time

t:

δχk(t) = eµkt (4.26)

where µk = µ̃k
2π
T
, with T the period of oscillation of the inflaton. The relation

between the two growth exponents is that µ̃k represents the growth per oscillation

of the inflaton, while µk represents that growth per unit of physical time, which

takes into account effects on the overall growth due to changes in the period. The

physical growth exponent µk is the appropriate quantity to use to evaluate the rate

of growth compared to the rate of expansion of the Universe. Particle production

is tracked by the number density nk of particles, constructed as the energy of a

mode divided by the effective mass m2
eff,k = k2+m2

χ+g
2φ(t)2, and also scales with

3 Without loss of generality, we will take the real part of the Floquet exponent
to be positive.
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the Floquet exponent as

nk =
meff,k

2

(

|δχ̇k(t)|2
m2

eff,k

+ |δχk(t)|2
)

∼ e2µkt . (4.27)

For any given oscillating profile φ(t) for the inflaton, with corresponding F (τ) in

(4.23), it is possible to numerically determine the resonance bands; the procedure

is outlined in Appendix 4.4. We distinguish two opposite regimes:

1) CR: Canonical Reheating, where the reheaton is coupled to an inflaton with

a canonical kinetic term (or equivalently where Λ2 >> φ̇ at all times so that

the inflaton effectively behaves canonically), p(X) ≈ X.

2) NCR: Non-Canonical Reheating, where the reheaton is coupled to an in-

flaton with a non-canonical kinetic term p(X), such that the inflaton speed

approaches the speed limit φ̇ ≃
√
2RΛ2 as it oscillates about its minimum.

First, let us write the equation of motion for the reheaton fluctuations δχk(t) in

the form (4.23) for the CR case. As discussed in the previous section, an inflaton

oscillating in a quadratic potential with a canonical kinetic term has a sinusoidal

profile φ(t) = Φ sin(mφt). The reheaton equation of motion can then be recast into

the form of a Hill equation (4.23) with the identifications:

Ak =
2K + g2Φ2

8m2
φ

, qCR =
g2Φ2

8m2
φ

, (4.28)

τ = 2mφt, F (τ) = cos τ (4.29)

Hill’s equation in this form is more commonly known as the Mathieu equation, and

the resonance bands, plotted in (K,Φ) space in Figure 4.2, take the familiar form

from previous studies of preheating [6, 3].

In the opposite limit (NCR), when the inflaton has a non-canonical kinetic term

with a speed limit |φ̇|max =
√
2R Λ2, the profile φ(t) becomes a saw-tooth, as in

Figure 4.1. Along one of the “legs” of this profile, the inflaton is linear in time as
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in (4.13), so that the reheaton equation of motion becomes:

δχ̈k(t) +
(

K + 2Rg2Λ4t2
)

δχk(t) = 0 . (4.30)

This can also be rewritten in the form of a Hill’s equation (4.23) with the identifi-

cations:

Ak =
KΦ2

2Rπ2Λ4
+

1

3

g2Φ4

2Rπ2Λ4
, qNCR =

g2Φ4

2Rπ2Λ4
,

τ =

√
2RΛ2π

Φ
t, F (τ) =

τ 2

π2
− 1

3
. (4.31)

The resonance bands for this form of Hill’s equation are shown in Figure 4.2. The

two regimes can easily be connected numerically.

There are two main regimes of interest of (4.23) for the resonance bands: nar-

row resonance q ≪ 1 and broad resonance q ≫ 1. For g2Φ2/m2
φ ≪ 1, the CR

scenario is in the narrow resonance regime. When non-canonical kinetic terms

are important, however, the parameter qNCR in the corresponding Hill’s equation

(4.31) is enhanced relative to the canonical case

qNCR =
g2

2Rπ2

(

Φ

mφ

)2 m2
φΦ

2

Λ4
= qCR

4

Rπ2

m2
φΦ

2

Λ4
. (4.32)

The enhancement factor m2
φΦ

2/Λ4 ≫ 1 is large in order for the inflaton to saturate

the speed limit, so unless qCR is correspondingly small, when the CR scenario is

in the narrow resonance regime the NCR scenario is in broad resonance. This has

important physical implications, since then not only is the growth per period µ̃k

larger for non-canonical kinetic terms, but there is also growth over a much larger

range of scales. We will see in the next section, however, that this enhancement is

overwhelmed by suppression of particle production due to the lengthening of the

period.
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Figure 4.2: Resonance bands for reheaton perturbations as a function of the scale
K and initial amplitude of the oscillating inflaton Φ with g = 0.005 in the case
when the reheaton is coupled to an inflaton with canonical (CR scenario, up) and
non-canonical (NCR scenario, down) kinetic terms.
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The resonance due to (4.22) depends on the physical wavenumber of the fluc-

tuation k; most particle production occurs when the effective mass K + g2φ2(t)

vanishes. This implies that the resonance is most efficient at large scales K ∼ 0,

as can be seen in Figure 4.2. In practice, however, we cannot work on scales larger

than the Hubble radius while neglecting metric perturbations, so k > H. In addi-

tion, a non-zero bare mass mχ for the reheaton also keeps the effective mass from

vanishing. But as long as we work on sufficiently large scales (and with a suffi-

ciently large initial amplitude) so that K ≪ g2Φ2, the maximum of resonance at

K = 0 will be a good approximation for the maximum resonance at large scales.

Figure 4.3 displays the growth exponent µk as a function of the initial amplitude

Φ of the inflaton for large scales (namely K = 0). Several features are evident: for

decreasing Λ, more resonance bands become accessible, because the system enters

the broad resonance regime; the maxiumum size of the growth exponent in the first

resonance band decreases as Λ decreases, reflecting the lengthening of the period;

and the heights of the resonance bands for small Λ decrease with increasing Φ,

also due to the lengthening of the period for large initial amplitudes (note that the

period for canonical kinetic terms is independent of the amplitude).

This effect is not limited to the DBI case: Figure 4.4 compares the Floquet ex-

ponent for several Lagrangians of the forms (4.18) and (4.19). While the behaviors

differ slightly as one moves away from the canonical case, they converge again in the

regime where inflaton oscillations saturate the speed limit. The black dotted line

in Figure 4.4 shows the Floquet exponent when the period lengthening is not taken

into account: as the inflaton trajectory approaches the saw-tooth shape, energy is

injected into the reheaton field over a longer amount of time, allowing for more par-

ticle production. This saturates when the slope φ̇ approaches the constant speed

limit for most of the period. This enhancement is clearly subdominant, however,
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Figure 4.3: Floquet growth exponent µ0 per unit of physical time for K = 0 for
three different values of Λ in DBI inflaton-driven preheating. Lowering the speed
limit Λ2 of the inflaton greatly reduces the strength of parametric resonance because
the period of oscillation (4.14) increases as 1/Λ2. The additional suppression of
the resonance due to the dependence of the period on the amplitude of inflaton
oscillations Φ is also evident.

when compared with the suppression of particle production from the elongation of

the period itself.

We close this section by comparing our results with previous explorations in the

literature. Ref. [12] found an expression for small φ̇/Λ2 for the growth exponent

µk in the case of a DBI inflaton by perturbing the canonical equation of motion.

Up to order φ̇/Λ2 and for K = 0, this corresponds to:

µk ≃

√

(

θ2
2

)2

−
(

θ
1/2
0 − 1

)2

(4.33)

with

θ0 ≡
g2Φ2

2m2

(

1 +
9Φ2m2

φ

32Λ4

)

, θ2 ≡
g2Φ2

4m2

(

1 +
3Φ2m2

φ

8Λ4

)

. (4.34)
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This result is illustrated in the right panel of Fig. 4.4. For mφ/Λ < 1 it provides a

good approximation of the gain in particle production one would expect from DBI

inflation were it not for the lengthening of the period, which the authors of [12]

correctly identified as “DBI friction” but did not quantify. We are interested in

the opposite limit, however, where the non-canonical kinetic terms are more than

just a small perturbation.

4.3.2 Non-Canonical Limit

In the non-canonical limit, the equation of motion for the reheaton perturba-

tions (4.30) can be written in a simple and suggestive form by making a redefinition

to a different dimensionless time coordinate than we considered earlier:

τ =
(

g
√
2RΛ2

)1/2

t =
(

2Rg2
)1/4

Λ t . (4.35)

The reheaton equation of motion then becomes

d2χk(τ)

dτ 2
+
[

κ2 + τ 2
]

χk(τ) = 0 , (4.36)

where κ2 ≡ k2+m2
χ√

2RgΛ2 . The time range of the new time variable is −∆τ
2

≤ τ ≤ ∆τ
2

where ∆τ = TΛ(2g
2R)1/4Λ = (8g2/R)1/4(Φ/Λ).

The benefit of making this redefinition is that the problem of broad resonance

can be mapped to the problem of scattering of a particle with energy κ2 off of an

inverted parabolic potential with an effective Schrödinger equation [6, 3]:

d2χk(τ)

dτ 2
+ (κ2 − Veff (τ))χk(τ) = 0 . (4.37)

This scattering problem can be solved using standard techniques (see Appendix

4.4), leading to the result:

µ̃k =
1

2π
ln

[

1 + |Rk|2|
|Dk|2

+ 2
|Rk|
|Dk|2

cos θtot

]

(4.38)
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Figure 4.4: Floquet exponent µ of the first resonance band for K = 0 for g =
0.005 (up) and g = 0.5 (down). Λ >> mφ corresponds to the canonical case CR.
Parameter R in the left-hand panel refers to (4.18), and log refers to (4.19). In
both panels the black dashed line is the growth of particle production per period,
whereas the blue solid line is the true growth of particle production per physical unit
of time. Additionally, in the left panel the magenta dotted line is the analytical
result (4.41), showing good agreement with the numerical results in the regime
where the speed limit is important. In the right panel we have also included the
approximate result from [12] (dotted red line, (4.33)), which did not include the
suppression from the speed limit. As discussed in Section 4.2, the effective theory
breaks down for mφ > Λ and results should therefore not be trusted beyond this.



Preheating with Non-Canonical Inflation 130

in terms of the reflection and transmission amplitudes Rk, Dk and the phase of

the reheaton mode θtot. For an inverted parabolic potential, the reflection and

transmission coefficients are known, so the average growth index simplifies to be

[3]:

µ̃k =
1

2π
ln
[

1 + 2e−πκ2 − 2 sin θtote
−π

2
κ2
√

1 + e−πκ2

]

. (4.39)

For large scales κ2 ≈ 0 this has a maximum/average value of µ̃k ≈ (0.28, 0.175) [3].

The average growth index µ̃k ≈ 0.175 only gives the typical growth over one

period of oscillation for broad resonance, and is the same regardless of whether the

inflaton dynamics are canonical or non-canonical. In particular, it does not depend

on the type of non-canonical Lagrangian used - any non-canonical Lagrangian that

leads to a speed limit for the oscillating inflaton will have the same average growth

factor over one period µ̃k. The reason the average growth index does not depend on

whether the system is canonical or non-canonical is because we are working in the

broad resonance limit, where only the slope of the inflaton profile (in dimensionless

coordinates) at the point where the inflaton crosses zero matters.

However, as discussed before, the true comparison of the particle production

between the canonical and non-canonical models should be the growth µk over

some fixed physical time period ∆t

nk ∝ e2µ̃k
2π
T

∆t ∼ e2µk∆t , (4.40)

where T is the period, so that the true growth index is the average growth index

over one period divided by the length of the period, µk = µ̃k2π/T . This leads to

the main result of this section: since the period for an oscillating inflaton with

non-canonical dynamics is much longer than the period for an oscillating inflation

with canonical dynamics TNCR ≫ TCR, we have much more growth in a canonical

system over some fixed physical time ∆t, (µk)CR ≫ (µk)NCR. In particular, the
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ratio between the two should fall off as the ratio of their periods,

(µk)NCR

(µk)CR

=

√

R

2

πΛ2

Φmφ

≪ 1 , (4.41)

for decreasing Λ at κ = 0. Indeed, this is precisely what is found using numerical

techniques, as shown in Figure 4.4.

Finally, we comment on the possiblity for non-canonical kinetic terms to en-

hance resonance by turning a putative CR system in narrow resonance into a NCR

system with broad resonance. A CR system in narrow resonance with qCR ≪ 1 has

(µk)CR ∼ qCRmφ [3]. As discussed in Section 4.3.1, the same system in NCR has

qNCR ∼ qCRf
2, with f = Φmφ/(

√
2RΛ2) ≫ 1. But as just discussed the growth ex-

ponent in broad resonance for NCR is a fixed number divided by this enhancement

factor, (µk)NCR ∼ 0.1mφ/f . Thus, in order for the NCR system to be in broad

resonance qNCR ∼> 1, we have that (µk)NCR ∼< 0.1mφq
1/2
CR, representing an enhance-

ment from CR narrow resonance by a factor of 0.1/q
1/2
CR. While this enhancement

can be large if the original CR system is very far in the narrow resonance regime,

the growth factor is still quite suppressed.

4.3.3 Expansion of the Universe

Up to now we have ignored the expansion of the Universe. Including expansion

has several effects on preheating which have been well-studied for CR [6, 3, 8]:

i) The amplitude of inflaton oscillations decreases due to Hubble damping in-

versely proportional to time Φ(t) ∼ t−1.

ii) The parameters of Hill’s equation (Ak, q) become time dependent. In partic-

ular, qCR ∼ t−2 due to the time dependence of the inflaton amplitude.

iii) The physical wavenumber kphys = k/a(t) redshifts with the expansion, so each

comoving mode only spends a finite amount of time in a resonance band.

iv) The resonance is stochastic [3].
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v) Preheating is ineffective when the rate of particle production drops below

the expansion rate, e.g. when µk < H. For narrow resonance this condition

cannot be satisfied, thus particle production can only occur in the broad

resonance regime.

We will now make some simple estimates of how these effects will change for NCR.

First, the Hubble friction term may be removed from the inflaton equation of

motion (4.11) by rescaling the inflaton field by powers of the scale factor φ(t) =

Φ0φ̃(t)/a(t)
3/2c2s , so that φ̃(t) is a fixed unit-amplitude oscillating function, and

Φ(t) = Φ0/a(t)
3/2c2s is the time-dependent amplitude. When the period of oscil-

lation of the inflaton is much smaller than the timescale for the expansion of the

Universe, the energy density can be averaged over several oscillations ρφ ∼ m2
φφ

2 ∼

a(t)−3/c2s . The scale factor thus grows as a(t) ∼ t2/3c
2
s , so that the amplitude falls is

inversely proportional to time Φ(t) ∼ Φ0/t as with a canonical kinetic term. The

decaying inflaton profile in an expanding background is shown in Figure 4.5. It

is worth noting that in the far non-canonical limit the period of the inflaton can

be larger than the Hubble time due to the period lengthening effect. When this

occurs, Hubble friction damps a significant amount of the amplitude in the first

oscillation, quickly bringing the system back to the previous case.

For a fixed cutoff scale Λ, the condition for the oscillating inflaton to saturate

the speed limit (4.16) is violated once the amplitude of oscillation drops below

some critical amplitude. The number of oscillations of the inflaton scales with

time N ∼ t/T , so that the time-dependent amplitude drops below this critical

amplitude after N ∼ mφΦ0/Λ
2 oscillations, where Φ0 is the initial amplitude. Thus

the inflaton no longer saturates the speed limit after N ∼ mφΦ0/Λ
2 oscillations,

and behaves canonically after this time.



Preheating with Non-Canonical Inflation 133

Figure 4.5: Expansion of the Universe causes the amplitude of the inflaton to decay
inversely proportional to time, as shown here for Λ = 10mφ andmφ = 10−5Mp with
an initial amplitude of Φ0 = 0.05Mp. The dashed line indicates the t−1 behavior
of the decaying amplitude.

Another important effect is the dependence of the Hill’s equation parameters

(4.31) on time. Since qNCR depends on the fourth power of the amplitude, it quickly

becomes small at a much faster rate qNCR ∼ t−4 than it would in CR, qCR ∼ t−2.

In particular, after only N ∼ g1/2Φ0/Λ oscillations, the narrow resonance regime

where qNCR ∼< 1 is attained. As noted above, narrow resonance with CR is inefficient

for an expanding background. Since we argued in the previous section that particle

production for NCR is suppressed compared to CR, narrow resonance for NCR is

also inefficient in an expanding background. This means that after N ∼ g1/2Φ0/Λ

oscillations the resonance shuts off due to expansion of the Universe. The other

effects of an expanding Universe listed above for CR (iii,iv) do not appear to be

qualitatively different for NCR, so we will not comment further on them.

In summary, including expansion of the Universe for NCR leads to a decaying

amplitude of inflaton oscillations inversely proportional to time Φ(t) ∼ t−1. After

many oscillations the amplitude decreases so much that either: (a) the inflaton
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ceases to saturate the speed limit during oscillation, effectively becoming canon-

ical; or (b) the Hill’s equation parameter qNCR(t) becomes so small that particle

production cannot compete with the expansion of the Universe, shutting off the

resonance. Which outcome dominates depends on the relative magnitudes of mφ/Λ

and g1/2; when the former dominates, outcome (a) occurs first, and vice-versa.

4.4 Conclusion

Preheating in the post-inflationary Universe is the explosive production of

particles far from thermal equilibrium that occurs as the inflaton field oscillates

about its potential minimum. We have examined preheating for an inflaton sector

that has non-canonical kinetic terms arising as an effective theory Leff (X,φ), for

X = 1
2
(∂φ)2, which may arise from the existence of new physics at some energy

scale Λ > mφ. Effective theories of this type can give rise to a speed limit for the

motion of the inflaton φ, as in DBI inflation [18]. In addition to having important

implications for inflationary model building, the speed limit plays an important role

in modifying the nature of preheating in the post-inflationary Universe. In par-

ticular, as the non-canonical terms become important, non-canonical preheating

departs significantly from the canonical case via three main effects:

i) The sinusoidal inflaton profile becomes a saw-tooth, elongating the fraction

of the inflaton period in which significant particle production may occur, and

moves the system from narrow to broad resonance.

ii) Effect i) is offset by an elongation of the inflaton oscillation period by a factor

f =
√

2
R

Φmφ

πΛ2 ≫ 1. This suppresses the amount of χ particle production per

unit time by 1/f .

iii) Effect ii) affects the competition between χ production and Hubble expan-

sion, making preheating even less efficient in an expanding Universe.
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In general, then, preheating when the inflation has non-canonical kinetic terms

is less efficient than with a purely canonical kinetic term. This implies that if

preheating is to be important at all in the early Universe, then the UV scale of

new physics that couples kinetically to the inflaton must be sufficiently high that

the effective non-canonical kinetic terms are negligible.

We have only focused on non-canonical kinetic terms for the inflaton sector

in this paper. Certainly, however, due to the non-linear nature of the parametric

resonance, it would be interesting to study how non-canonical kinetic terms for the

reheating sector would affect the physics of preheating. We leave this to future

work.
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Appendix A: Computing the Floquet exponent

There exists a straightforward method of computing the Floquet exponent µk

as a function of the parameters Ak and q, which has been extensively covered in

the literature (e.g. [29, 30, 31]).

We start with Hill’s equation of the form (4.23). The periodic function F (τ)

may be decomposed:

F (τ) =
M
∑

n=−M

dne
inτ , (4.42)
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with Ak defined such that:
∫ π

−π

F (τ)dτ = 0. (4.43)

Floquet’s theorem (see [29]) states that solutions to (4.23) are of the form,

χk(τ) = eµ̃kτg(τ) + e−µ̃kτg2(τ) (4.44)

where g(τ) and g2(τ) are periodic functions with period T , and µ̃k, called the

Floquet exponent or characteristic exponent, is complex. Clearly when µ̃k has a

non-zero real part we have exponential growth of χk — this is the parametric

resonance effect. Without loss of generality, we will take the real part of µ̃k to be

positive, and so we will drop g2(τ) since its coefficient is exponentially decreasing.

In order to find solutions of the form (4.44), we first Fourier expand g(τ)

χk(τ) =
∞
∑

n=−∞
cne

(µ̃k+in)τ (4.45)

and plug this Fourier series back into the equation of motion (4.23) to derive a

recursion relation for the coefficients cn in terms of µ̃k, Ak, q, dn:

cn +
q
∑M

m=−M dmcn−m

((µ̃k + in)2 + Ak)
= 0 ∀n ∈ (−∞,∞) . (4.46)

These recursion relations define a matrix problem

B(µ̃k, Ak, q, dm)







































c−n

...

c−1

c0

c1
...

cn







































= 0 (4.47)
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with n→ ∞, where the elements Brs of the (infinite) matrix B are given by:

Brs =















1 if r = s

qdr−s

(µ̃k+ir)2+Ak
r 6= s

. (4.48)

The matrix problem (4.47) implies that the (infinite) matrix B is singular, so

it must have vanishing determinant

∆(µ̃k, Ak, q, dm) = |Brs| = 0 . (4.49)

The vanishing of the determinant (4.49) defines an implicit function µ̃k = µ̃k(Ak, q, dm).

In practice, we perform a Fourier transform of the inflaton profile written in terms

of F (τ) numerically, and evaluate the M ×M determinant (4.49); a matrix size

M ∼ 100 is sufficient for convergence of the first tens of resonance bands.

Let us briefly comment on the differences in solving for the growth exponent

µ̃k using this method for canonical and non-canonical kinetic terms. Clearly, F (τ)

for non-canonical kinetic terms (4.31) expanded in Fourier modes involves many

terms, as opposed to the single Fourier mode for canonical kinetic terms. Thus,

one difference between resonance with canonical and non-canonical kinetic terms is

the inclusion of more terms in the Fourier expansion of the profile. Naively, then,

there are more modes in the driving force with which the χk fields may resonate.

This is the feature arising from the “sharpening” of the profile. However, the other

important effect of the non-canonical kinetic terms is the extreme lengthening of

the period of oscillation, thus suppressing the resonance in physical time.
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Appendix B: Scattering from a Parabolic Poten-

tial

In many cases of interest, the equation for perturbations of the reheaton χk:

χ̈k(t) +
[

k2 +m2
χ + g2φ2

]

χk(t) = 0, (4.50)

can be converted into a Schrödinger scattering problem. In this appendix, we will

outline the equivalence between these two perspectives; see [6] for more on the

correspondence. We will imagine that φ(t) has a large slope in some region for

some finite amount of time, as shown in Figure 4.6. Linearizing about this point,

we have

φ ≈ φ0 + λ(t− ti) . (4.51)

This linear approximation is valid roughly for some time interval 2∆t, i.e. for

ti−∆t ≤ t ≤ ti+∆t. Outside this interval, the field χmust behave adiabatically: its

potential is slowly-varying and can therefore be approximated by a WKB approach.

The equation of motion around the point of adiabaticity violation becomes:

χ̈k(t) +
[

k2 +m2
χ + g2(φ0 + λ(t− ti))

2
]

χk(t) = 0 . (4.52)

We can map this problem into a Schrödinger-like equation by redefining the time

variable τ ′ ≡
(

g
λ

)1/2
(φ0 + λ(t− ti)), so that the equation of motion is written:

d2χk(τ
′)

dτ ′2
+
[

κ2 + τ ′2
]

χk(τ
′) = 0. (4.53)

We have defined κ2 ≡ k2+m2
χ

λg
. The time range of the new variable is τ ′i−∆τ ′ ≤ τ ′ ≤

τ ′i + ∆τ ′, where τ ′i = φ0(g/λ)
1/2 and ∆τ ′ = (λg)1/2∆t. The transformed equation
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(4.53) resembles a Schrödinger equation with the effective potential:

Veff =































−(τ ′i −∆τ ′)2 = −V0 = const τ ′ < τ ′i −∆τ ′ (Region I)

−τ ′2 τ ′i −∆τ ′ ≤ τ ′ ≤ τ ′i +∆τ ′ (Region II)

−(τ ′i +∆τ ′)2 = −V1 = const τ ′ > τ ′i +∆τ ′ (Region III)

(4.54)

The setup of this effective scattering problem is shown in Figure 4.6.

Figure 4.6: Left: Linearizing φ(t) ≈ φ0+λ(t− ti) about some point (ti, φ0). Right:
The associated effective scattering problem.

The solution in each region is therefore known:

χk =































A1e
−ik1τ ′ + B1e

+ik1τ ′ (Region I)

A2Dν ((1 + i)τ ′) + B2Dν̄ ((−1 + i)τ ′) (Region II)

A3e
−ik2τ ′ + B3e

+ik2τ ′ (Region III)

(4.55)

where k1 ≡
√

κ2 + V 2
0 , k2 =

√

κ2 + V 2
1 , ν ≡ 1

2
i(i − κ2), and the functions Dν(x)

are parabolic cylinder functions.
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In the language of scattering matrices, the ingoing/outgoing waves are param-

eterized as






αj+1
k e−iθkj

βj+1
k eiθ

k
j






=







1
Dk

R∗

k

D∗

k

Rk

Dk

1
D∗

k













αj
ke

−iθj
k

βj
ke

iθj
k






(4.56)

where Dk, Rk are the transmission and reflection coefficients, the αk, βk are normal-

ized such that |αk|2 − |βk|2 = 1 with the “particle number” defined as nk = |βk|2,

and θjk ≡
∫ T

0

√

k2 +m2
χ + g2φ2dt is the accumulated WKB phase up to the time

of scattering. Apart from an overall normalization, it should be clear that the αj ’s

correspond to the Aj’s and the βj’s to the Bj’s above.

From (4.56) we can write

βj+1
k = αj

ke
−2iθj

k
Rk

Dk

+ βj
k

1

Dk

(4.57)

which we can use to find the final number of particles nj+1
k in terms of the original

number of particles nj
k (together with the normalization condition on the α):

nj+1
k =

∣

∣

∣

∣

Rk

Dk

∣

∣

∣

∣

2

+
1 + |Rk|2
|Dk|2

nj
k

+2
|Rk|
|Dk|2

cos θtot

√

(1 + nj
k)n

j
k (4.58)

where θtot ≡ argαj
k − arg βj

k − argRk − 2θjk is the total accumulated phase. In the

large nj
k limit, we can drop the first term and simplify the last term, so that we

have

nj+1
k =

[

1 + |Rk|2
|Dk|2

+ 2
|Rk|
|Dk|2

cos θtot

]

nj
k . (4.59)

The average growth exponent over one period is defined as

nj+1
k = e2µ̃k

π
T
∆tnj

k = e2πµ̃knj
k (4.60)
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for ∆t = T over one period. Thus, the growth exponent is,

µ̃k =
1

2π
log

[

1 + |Rk|2
|Dk|2

+ 2
|Rk|
|Dk|2

cos θtot

]

. (4.61)

Averaging over many possible initial phases, we can consider θtot as a random

variable; thus, we will take cos θtot ∼ 0 on average.

In order to compute the scattering amplitudes Rk, Dk, one needs to solve the

continuity equations across the boundaries of Regions I, II and III for the wave-

functions (4.55). In general, it is not possible to solve these equations analytically.

However, for special cases the equations can in fact be solved.

The first limit we will take is |τ ′i | ≫ 1; in the original setup, this corresponds

to taking φ0
√
g/
√
λ to be large, e.g. the region of linearization takes place very far

from φ = 0. In this limit the effective potential becomes essentially a step function:

Veff =















−V0 τ ′ < τ ′i (Region I)

−V1 τ ′ > τ ′i (Region II)

(4.62)

where |V0 − V1| =
√

g/λ|∆φ|, with ∆φ the change in the inflaton over the time

period ∆t, and |V0| ∼ |V1| ≫ 1. In order for the step function approximation to be

a valid approximation to the inverted quadratic effective potential, we need that

the change over the step function be small, e.g. |V0−V1|
V1

≪ 1. The transmission and

reflection coefficients can easily be computed

D2
k =

4(κ2 + V0)(κ
2 + V1)

(2κ2 + V0 + V1)2
;

R2
k =

(V0 − V1)
2

(2κ2 + V0 + V1)2
; (4.63)

so that the growth exponent becomes

µ̃k =
1

2π
ln

[

1 + (V0 − V1)
2

4
√

(κ2 + V0)(κ2 + V1)

]

. (4.64)
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With the requirements above that the size of the step be small, we have Dk ≈ 1

and Rk ≈ 0, so that µ̃k ∼ ln(1) ∼ 0. This is expected - if the inflation has a very

large offset, the effective mass of the reheaton m2
eff = k2 +m2

χ + g2φ2
0 is large, so

there will be very little particle production.

Alternatively, in the limit τ ′i = 0, the scattering potential becomes symmetric

about τ = 0. For ∆τ ≫ 1 the scattering amplitudes are known [6]:

Dk =
eiϕk

√
1 + e−πκ2

; (4.65)

Rk = − ieiϕk

√
1 + eπκ2

; (4.66)

where the angle ϕk is

ϕk = argΓ

(

1 + iκ2

2

)

+
κ2

2

(

1 + ln
2

κ2

)

. (4.67)

The implications of scattering in this case is considered in more detail in the main

text.
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The last three chapters dealt with very early universe cosmology be-

fore the age of the Universe reaches 10 microseconds. As the Universe

cools more and more symmetries are broken during phases transitions.

Those phase transitions are associated with the creation of topological

defects. After reheating, 10 microseconds after the Big Bang, hadrons

including pions are created during the QCD phase transition. At that

time, pion strings may appear but are topologically unstable. This

chapter makes use of finite-temperature field-theory in order to find

stabilization mechanisms for a possible pion string in a thermal bath

of photons.



Chapter 5

Effects of a Thermal Bath of

Photons on Embedded String

Stability

The following is an extract from the article “Effects of a Thermal Bath

of Photons on Embedded String Stability” published in collaboration with

Robert Brandenberger in Phys. Rev. D85, 107702 (2012).

Abstract We compute the corrections of thermal photons on the effective po-

tential for the linear sigma model of QCD. Since we are interested in temperatures

lower than the confinement temperature, we consider the scalar fields to be out of

equilibrium. Two of the scalar field are uncharged while the other two are charged

under the U(1) gauge symmetry of electromagnetism. We find that the induced

thermal terms in the effective potential can stabilize the embedded pion string, a

string configuration which is unstable in the vacuum. Our results are applicable in a

more general context and demonstrate that embedded string configurations arising

in a wider class of field theories can be stabilized by thermal effects. Another well-

known example of an embedded string which can be stabilized by thermal effects is
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the electroweak Z-string. We discuss the general criteria for thermal stabilization

of embedded defects.

5.1 Introduction

Topological defects can play an important role in early universe cosmology (see

e.g. [1, 2, 3] for overviews). On one hand, particle physics models which yield

defects such as domain walls which have problematic and unobserved effects can

be ruled out. On the other hand, topological defects may help explain certain cos-

mological observations. They could contribute to structure formation or generate

primordial magnetic fields which are coherent on cosmological scales [4].

The Standard Model of particle physics does not give rise to topological defects

which are stable in the vacuum. On the other hand, it is possible to construct

stringlike configurations which would be topological defects if certain of the fields

were constrained to vanish. If they are not, then the defects are unstable in the

vacuum. Such defects are called “embedded defects” (see [5] for an overview). Two

prime examples of such embedded defects are the pion string arising in the low-

energy linear sigma model of QCD [6], and the electroweak Z-string [7] arising in

the electroweak theory.

Both the pion string and the electroweak Z-string arise in models with two

complex scalar fields, one of them uncharged with respect to the U(1) gauge field

of electromagnetism, the second charged. In terms of real fields, we have four real

scalar fields φi, i = 0, .., 3 with a bare potential of the form

V (φ) =
λ

4

(

φ2 − η2
)2
, (5.1)

where φ2 =
∑3

i=0 φ
2
i . In both physical examples, two of the fields (φ0 and φ3) are

uncharged whereas the two others are charged. Since the vacuum manifold of this
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theory is M = S3, there are no stable topological defects, only Π3 defects which

in cosmology are called textures [8].

However, the presence of an external electromagnetic field breaks the symmetry

since only two of the fields couple to the photon field. Interactions with the photon

field lift the potential in the charged field directions, leading to a reduced symmetry

group G which is

G = U(1)global × U(1)gauge (5.2)

instead of O(4). The vacuum manifold becomes a circle M = S1 corresponding to

φ1 = φ2 = 0, φ2
0 + φ2

3 = η2 . (5.3)

It is possible to construct embedded cosmic string solutions which are topological

cosmic strings of the reduced theory with φ1 = φ2 = 0. The field configuration of

such a string (centered at the origin of planar coordinates and extended along the

z-axis) takes the form

Φ(ρ, θ) = f(ρ)ηeiθ , (5.4)

where the complex electrically neutral field is Φ = φ0 + iφ3. f(ρ) is a function

which interpolates between f(0) = 0 and f(ρ) = 1 for ρ → ∞ with a width which

is of the order λ−1/2η−1. In the above, ρ and θ are the polar coordinates in the

plane perpendicular to the z-axis.

In [9], a plasma stabilization mechanism for the pion string and the electroweak

Z-string was proposed. The argument was based on interpreting the terms in the

covariant derivative which couple the charged scalar field π+ = (1/
√
2)(φ1 + iφ2)

to the gauge field as a term which, if the gauge field is in thermal equilibrium, will

add a term proportional to δV ∼ e2T 2|π+|2, to the effective potential of the scalar
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field sector. This lifts the potential in the direction of the charged scalar fields,

leaving us with a reduced vacuum manifold given by (5.3).

In this paper we put this suggested stabilization mechanism on a firmer foun-

dation, focusing on the example of the pion string. The setting of our analysis is

the following: we are interested in temperatures below the chiral symmetry break-

ing transition. Hence, the scalar fields are out of thermal equilibrium. However,

the photon field is in thermal equilibrium. This is not the usual setting for finite

temperature quantum field theory (since not all fields are in thermal equilibrium)

and hence non-standard techniques are required.

We compute the effective potential for the scalar fields obtained by integrating

out the gauge field, taking it to be in thermal equilibrium. To do so we use a

functional integral in which the time domain is Euclidean and ranges from 0 to β,

where β is the inverse temperature. We find that the resulting scalar field effective

potential has a broken symmetry and a vacuum manifold given by (5.3). There is

hence an energetic barrier which has to be overcome to destroy a pion string.

5.2 The Pion String

The cosmological context of this work is Standard Big Bang Cosmology. At

about 10 microseconds after the Big Bang a phase transition from the quark-

gluon plasma to a hadron gas is expected to have taken place at a temperature

of about TQCD ∼ 150 − 200MeV. Below this critical temperature, the physics of

hadrons can be well described by a linear sigma model of four scalar fields which

we collectively denote by φ, three of them representing the pions. If we make the

standard assumption that the relevant bare quark masses vanish, i.e. mu = md = 0,

where the subscripts stand for the up and down quark, respectively, we know that

the effective action (in vacuum) will have a SU(2) symmetry which is spontaneously
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broken by a potential V (φ). This spontaneous symmetry breaking leads to a mass

for the fourth scalar field, the so-called sigma field.

In the setup described above, the “vacuum manifold” M, i.e. the set of field

configurations which minimize the potential, is nontrivial and takes the form of a

3-sphere S3. There are no stable topological defects associated with this symmetry

breaking, only global textures which are not stable. In particular, since the first

homotopy group of the vacuum manifold is trivial, i.e. Π1(M) = 1, there are no

stable cosmic strings.

However, as discussed in [6], it is possible to construct embedded strings for

which the charged pion fields are set to zero, and the two neutral fields (the neutral

pion and the sigma fields) form a cosmic string configuration. This is the so-called

“pion string”.

Since two of the four scalar fields are charged (the two charged pion fields) while

the remaining two are neutral, turning on the electromagnetic field will destroy the

O(4) symmetry and will break it down to U(1)global × U(1)local. The second factor

corresponds to rotations of the charged complex scalar field, the first to a rotation

of the neutral one. The pion string can be viewed as the cosmic string configuration

associated with the first U(1).

As a toy model for the analytical study of the stabilization of embedded defects

by plasma effects we consider the chiral limit of the QCD linear sigma model,

involving the sigma field σ and the pion triplet ~π = (π0, π1, π2), given by the

Lagrangian

L0 =
1

2
∂µσ∂

µσ +
1

2
∂µ~π∂

µ~π − λ

4
(σ2 + ~π2 − η2)2 , (5.5)

where η2 is the ground state expectation value of σ2 + ~π2. In the following, we

denote the potential in (5.5) by V0.
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Two of the scalar fields, the σ and π0, are electrically neutral, the other two are

charged. Introducing the coupling to electromagnetism, it is convenient to write

the bosonic sector L of the resulting Lagrangian in terms of the complex scalar

fields

π+ =
1√
2
(π1 + iπ2), π− =

1√
2
(π1 − iπ2) . (5.6)

According to the minimal coupling prescription we obtain

L =
1

2
∂µσ∂

µσ +
1

2
∂µπ

0∂µπ0 +D+
µ π

+Dµ−π− − 1

4
FµνF

µν + V0 ,

where D+
µ = ∂µ + ieAµ , D−

µ = ∂µ − ieAµ .

Effective pion-photon interactions appear through the covariant derivative. They

break the O(4) symmetry which the Lagrangian would have in the absence of the

gauge field.

In the following we work in terms of the two complex scalar fields

Φ = σ + iπ0

πc = π1 + iπ2 , (5.7)

the first of which is electrically neutral, the second charged.

The minimum of the potential can be obtained for 〈πc〉 = 0 and 〈Φ〉 = η and

electromagnetism is unbroken. In that case, the vacuum manifold S3 reduces to S1

and some string configurations exist. They are not topologically stable since they

can unwind by exciting the charged fields, i.e. 〈πc〉 6= 0. This string solution is the

“pion string”. The field Φ vanishes in the center of the string (the charged field

vanishes everywhere) and this implies that there is trapped potential energy along

the string.

Note that if we distort the field configuration to have 〈πc〉 6= 0, then the U(1) of

electromagnetism gets broken and there is a magnetic flux of 2π
e
in the core of the
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string. To see how this flux may arise, consider as starting point the pion string

configuration with πc vanishing everywhere. To see the effect of the charged field,

let us now consider exciting a constant πc in the core of the string and see how the

potential energy evolves in this case. We easily find that as long as |πc| ≪ η, we

get an increase in the potential energy in the core of the string:

V (φ = 0, πc) ≃ V0(0, 0) +
√

λV0|πc|2 (5.8)

and the lowest potential energy configuration is obtained for πc = 0. Based on

potential energy arguments alone we would infer that we could get a stable string.

However, the kinetic and gradient energies lead to an instability of the vacuum

pion string configuration.

We want to consider the effect of a photon plasma on the stability of the pion

string. Here we consider an ultrarelativistic plasma of photons. The effective

Lagrangian that describes such a plasma is [10] :

Leff = LQED + Lγ (5.9)

We do not consider the electrons in the Lagrangian for QED, but simply take

LQED = −1

4
FµνF

µν , (5.10)

where Fµν is the field strength associated with the electomagnetic 4-potential Aµ.

The plasma terms in the effective Lagrangian (5.9) are

Lγ =
3

4
m2

γ Fµα

〈

KαKβ

(K · ∂)2
〉

F µ
β , (5.11)
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where Kα is the four-vector which represents the momentum of the hard field in

the loop, and mγ is the thermal photon mass which is given by

m2
γ =

e2

9

(

T 2 +
3

π2
µ2

)

, (5.12)

and µ is the quark chemical potential.

What really matters is not the plasma behavior but rather its influence on

a charged scalar field. We will use the “Hard Thermal Loop” formalism, that

is we work in the limit where the plasma temperature is much higher than any

momentum or mass scale in the problem. In our case we have the following for a

scalar field φ in the fundamental representation of the gauge group [11]:

Ls =
3

4
m2

s φ
†
〈

D2

(K ·D)2

〉

φ (5.13)

This reduces to

Ls = m2
sφ

†φ (5.14)

where K is the moment of the hard field in the loop and ms =
eT
2

is the thermal

scalar mass (see [12] for details).

Applying the above to our charged field πc, the effective Lagrangian becomes

L = −1

4
FµνF

µν +
1

2
∂µσ∂

µσ +
1

2
∂µπ

0∂µπ0

+D+
µ π

+Dµ−π− − V0 −
e2T 2

4
π+π− . (5.15)

This gives rise to a new effective potential while retaining the gauge invariance of

the Lagrangian:

Veff =
λ

4
(σ2 + ~π2 − η2)2 +

e2T 2

4
π+π− , (5.16)

where e2T 2

4
π+π− = e2T 2

8
(π2

1 + π2
2) =

e2T 2

8
|πc|2 .
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Based on potential energy considerations, the induced terms in the effective

potential should lead to the stabilization of pion strings.

5.3 Effective potential computation

An improved way to study the stability of the pion string in the presence of a

thermal bath is to determine the effective potential of the scalar fields (which are

out of thermal equilibrium) in the presence of a thermal bath of photons. This

effective potential can be obtained by computing the finite temperature functional

integral over the gauge field, treating the scalar fields as external out-of-equilibrium

classical ones. They are out of thermal equilibrium since their masses are heavy

compared to the temperature if we are below the critical temperature. Note also

that string configurations are out-of-equilibrium states below the Ginsburg tem-

perature (which is the temperature slightly lower than the critical temperature

when the defect network freezes out during the symmetry breaking phase transi-

tion [1, 2, 3]).

We make use of the imaginary time formalism [13] of thermal field theory (see

e.g. [14] for a review). We work in Euclidean space-time: t → iτ and τ : 0 →

T−1 = β.

The starting point is the action

S[Aµ,Φ, πc] =
∫

d4x[1
2
∂µΦ∂

µΦ + λ
4
(|Φ|2 + |πc|2 − η2)2]

+
∫ β

0
dτ
∫

d3x[D+
µ π

+Dµ−π− − 1
4
FµνF

µν ] (5.17)

where the space integral runs from −∞ to +∞.

In the imaginary time formalism of thermal field theory, the integration over

four-momenta is carried out in Euclidean space with k0 = ik4, this means that the

transition from zero temperature field theory is obtained via
∫

d4k
(2π)4

→ i
∫

d4kE
(2π)4

.
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Next, we recall that boson energies take discrete values, namely k4 = ωn = 2nπT

with n an integer, and thus

∫

d4kE
(2π)4

→ T
∑

n

∫

d3k

(2π)3
. (5.18)

We use this Matsubara mode decomposition for the gauge field only, because

it is the only field in thermal equilibrium.

The standard definition for the effective potential is based on the Legendre

transform of the generating functional (see [14, 15] for reviews). However, the finite

temperature effective potential with the scalar fields viewed as classical background

fields can also be defined as

Z[T ] =

∫

DΦDπcDAµe−S[Aµ,Φ,πc]

=

∫

DΦDπce−S[Φ,πc]e−
Veff (Φ,πc)V

T (5.19)

where S[Φ, πc] is the gauge field independent part of the (non-Euclidean) action,

V is the volume of the system and
∫

dτd3x = V

T
.

To evaluate the total partition function Z[T ] of the system we work in the co-

variant Feynman gauge following the procedure reviewed e.g. in [16], according to

which the two unphysical degrees of freedom of Aµ that correpond to the longitu-

dinal and timelike photons are cancelled by the ghost and antighost fields c and

c̄:

Z[T ] =

∫

DΦDπcDcDc̄DAµe
−S[Φ,πc] (5.20)

×e−
∫ β
0 dτ

∫

d3x c̄(−∂2−e2|πc|2)ce−
∫ β
0 dτ

∫

d3x 1
2
Aµ(∂2+e2|πc|2)Aµ

Here the summation of AµAµ is in Euclidean space since A0 → iA0. We can see

from above that the gauge field obtains an effective mass equal to meff = e|πc| .

Now we simply evaluate the Gaussian integration over the gauge field and the ghost



Effective potential computation 156

fields.

Z[T ] =

∫

DΦDπce−S[Φ,πc]

×e2 1
2
Tr[ln(ω2

n+k
2+m2

eff )]e−4 1
2
Tr[ln(ω2

n+k
2+m2

eff )]

Z[T ] =

∫

DΦDπce−S[Φ,πc]e−Tr[ln(ω2
n+k

2+m2
eff )] (5.21)

Comparing (5.21) with the definition (5.19) of the effective potential we find

Veff (Φ, πc, T ) = V0 + lim
V→∞

T

V

∑

n∈Z
ln(ω2

n + k2 +m2
eff ) + cst

=
λ

4
(|Φ|2 + |πc|2 − η2)2 + 2

∫

d3k

(2π)3
[
ω

2
+ T ln(1− e−

ω
T )] (5.22)

where ω =
√

k2 +m2
eff and V0 = λ

4
(|Φ|2 + |πc|2 − η2)2. The thermal part,

J(meff , T ) =
∫

d3k
(2π)3

T ln(1− e−
ω
T ), admits a high-temperature expansion :

J(meff , T ) =
T

2

∑

n

∫

d3k

(2π)3
ln(ω2

n + k2 +m2
eff )

≃ −π
2T 4

90
+
m2

effT
2

24
−
m3

effT

12π
(5.23)

−
m4

eff

32π2

[

ln

(

meffe
γE

4πT

)

− 3

4

]

+O(
m6

eff

T 2
) .

The zero temperature part, J0(m), is UV divergent :

J0 (m) =

∫

d3p

(2π)3
ω

2

∣

∣

∣

∣

ω=
√

p2+m2

= −m
4µ−2ǫ

64π2

[

1

ǫ
+ ln

µ2

m2
+

3

2
+O (ǫ)

]

. (5.24)

The renormalized value of this integral has been obtained using the MS renor-

malization parameter µ̄. d = 3 − 2ǫ is the dimension of the momentum integral.

Considering renormalization of coupling constants as well, will give O(~) correc-

tions to the potential, but should not change the topology of the vacuum manifold.
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For example, if the vacuum manifold is a circle it could become a titled circle but

since these are small effects, this will not affect the presence of a topological defects.

At high-temperatures we can truncate the series in (5.23) and get

Veff (Φ, πc, T ) =
λ

4
(|Φ|2 + |πc|2 − η2)2 − π2T 4

45
+
e2|πc|2T 2

12

−e
3|πc|3T
6π

− e4|πc|4
16π2

[

ln

(

e|πc|eγE
4πT

)

− 3

4

]

where we neglect terms of order e6|πc|6
T 2 . This potential is also the approximate

potential close to the (0,0) point of the (Φ, πc)-plane. For consistency with the

hard thermal loop approximation, we can check that, when the gauge field takes

on an effective mass, meff , it has 3 polarizations instead of 2. This leads to the

appearance of an overall factor of 3
2
for the thermal part of the effective potential.

The term quadratic in temperature then becomes m2
effT

2/8 as it appears in (5.16).

The above computation shows that the effects of the photon plasma create

an energy barrier which lifts the scalar field effective potential in direction of the

charged fields. In order to minimize this effective potential, the charged fields must

go to zero. The “effective” vacuum manifold M is now no longer S3 but rather

M = S1 which has nontrivial first homotopy group and hence admits stable cosmic

string solutions which are precisely the pion strings discussed earlier.

5.4 Conclusions

We have studied the effective potential for the scalar fields of the low-energy

effective sigma model of QCD in the presence of a thermal bath of photons. We

have shown that the plasma effects lift the potential in direction of the charged

pion fields, and lead to an effective vacuum manifold which admits cosmic string

solutions, the pion strings.
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Our analysis puts the stabilization mechanism of [9] on a firmer footing. It

shows that if pion strings form, they will be stabilized by plasma effects, at least

at a classical level. The stability of pion strings to quantum processes remains to

be studied.

The analysis in this paper applies not only to pion strings, but equally to the

corresponding embedded strings in the electroweak theory, the Z-string. Thus,

below the confinement scale the Standard Model of particle physics admits two

types of classically stable embedded strings.

Our arguments, however, are more general and apply to many theories beyond

the Standard Model. Given a theory with a multicomponent scalar field order

parameter with one set of components which are neutral, and a second set which

are charged - neutral and charged being with respect to the fields excited in the

plasma. Then topological defects of the theory with vanishing charged order pa-

rameters become embedded defects of the full theory with the property that they

are stabilized in the early Universe.

Stabilized embedded defects can have many applications in cosmology. For

example, stabilized pion strings provide an explanation for the origin and large-

scale coherence of cosmological magnetic fields [4]. On the other hand, stabilized

embedded domain walls would lead to an overclosure problem. Hence, theories

admitting those types of embedded defects would be ruled out by cosmological

considerations.
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Chapter 6

Conclusion

Early Universe cosmology involves many epochs and most of them are not fully

understood. Even the standard Big Bang model taken all the way back to the

initial singularity has yet to be proved.

Inflation, the current paradigm of standard cosmology, has made impressive

predictions for cosmic microwave background observations. However it suffers from

several conceptual problems, in particular the singularity problem at t = 0. A

Big Bounce replacing the Big Bang would avoid the initial singularity but requires

infinite time in the past, so no origin of time. A non-singular bounce requires a new

form of matter, with negative kinetic energy which may imply ghost instabilities.

In this thesis, another instability, the instability of the contracting phase due to

radiation, has been discussed. Many non-singular bouncing models are plagued

by those instabilities and any type of matter involved in those models must be

phenomenologically viable. None of the non-singular bouncing models are, as of

today, as observationally satisfying as the current paradigm of inflation. Other

models involving string theory, like the Ekpyrotic scenario, are trying to provide a

valid alternative to inflation.
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Returning to inflationary cosmology, problems like particle production at the

end of inflation have not been solved, and the hypothetical scalar field driving

inflation, the inflaton, has never been observed. This may be the Higgs boson,

which, if produced in the lab, would be the first scalar particle ever discovered.

Chapter 4 considered specific models where the inflaton has a speed limit, and

studied how particle production occurred via parametric resonance. It proved that

preheating when the inflation has non-canonical kinetic terms is less efficient than

with a purely canonical kinetic term.

Another puzzle in cosmology is the absence of observed topological defects.

The Universe being a system that is monotonically cooling, it should undergo some

phase transitions during which defects formation should be ubiquitous. Chapter

5 showed a stabilization mechanism for defects existing in the Standard Model

of particle physics, namely the pion strings. The method uses a thermal bath to

stabilize those defects. If stable, the latter may have important consequences in

cosmology.

The way the Universe is modeled today involves many uncertainties and simpli-

fications. Indeed, toy models are widely used to describe more complicated physics.

Many problems have yet to be solved in order to have a theory of the early Uni-

verse fully consistent with the Standard Model of particle physics and with current

observations.


