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Introduction

The union of quantum mechanics and information science opened the way to quantum infor-
mation which gave rise to numerous fundamental advances and powerful applications. In this
broad field, single photon emitters are promised to a central place. Since the theory and the
demonstration of the sub-poissonian emission from atoms by J. Kimble, L. Mandel and M.
Dagenais[1l [2],the realization of two photons interferences[3], single photons proved to be essen-
tial to convey quantum information [4, [I1], and to be the best candidates for the implementation
of quantum networks[5], and for the realisation of quantum computing operations[I2]. Early
works on atoms and ions proved they were very well suited systems for proof of principle demon-
strations, but they lack integration possibilities, for their use in technological developpement and
in real life. Therefore, the need for more suitable alternatives forced the community to investigate
new systems in solid state physics.

Researchers produced large efforts to provide nanoscale condensed matter systems, able to
emit single photons on demand in a scalable, robust, and practical way. In this quest, they
developped a very large variety of different emitters such as nitrogen vacancy centers, nanocrys-
tals, molecules and semiconductor quantum dots. These systems proved to be very efficient
single photon emitters, but showed diverse performances regarding the three main requirements:
tunability, robustness, and stability.

The strength of condensed matter systems is their tunability. Engineering on solid state
system provide the possibility to change the properties of the emitter at will. The colour of
photons emitted by nanocrystals is determined by their size and can cover wavelength ranging
from infrared to UV[6]. This is also true for semi conductor quantum dots, and the wide range
covered by the possible emission energies is made accessible by the variety of semi-conductor
materials which can compose the quantum dot. Even if such considerations are often overlooked,
the nanometric size of these structures are also bringing important processes dominating their
physics: carriers-phonon coupling, exchange interaction between confined carriers spins or cou-
pling between carriers and magnetic spins eventually inserted in or outside the quantum dot.
However, the control of the size and of the semi-conductor composition is limited by the growth
conditions imposed by the conventionnal Stranski-Krastanov (SK) method. The quantum dots
are self-assembled by release of elastic energy accumulated by lattice mismatch between the semi-
conductor host matrix and the quantum dot semi-conductor. Thus, control of the quantum dot
dimensions is difficult. Alternative techniques enabling growth of quantum dots embedded in
nanowires are suppressing these limitations, allowing a large choice of the composing materials,
and offering, in principle, the possibility to tune the quantum dots dimensions: they are putting
scalability of semiconductor heterostructures at a higher level.

For the second one, robustness, nitrogen-vacancy centers and nanocrystals showed remar-
quable successes, in particular for their ability to operate at room temperature[7, 8, ©]. Semi-
conductor quantum dots showed interesting potential in this domain but occurence of effective
non-radiative processes and correlated emissions of photons coming from different transitions
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of the same quantum dot created some limitations in the use of these objects as reliable sin-
gle photon emitters at high temperature. Large efforts, in the optimisation of existing growth
processes, in the developpement of very confining heterostructures and in the diversification of
growth modes, have been devoted to overcome these difficulties. In this aspect, fabrication of
quantum dots embedded in nanowires obeys to very different rules than self assembled quantum
dots. In addition to being less restrictive in the choice of the materials, quantum dots are no
longer interconnected by a 2D layer (wetting layer), cutting off one of the main channel for escape
of the carriers. This is a very promising feature, combining important confinement and potential
good resistance against temperature.

The weak point of condensed matter systems is their stability. The environnement is highly
influencing the emission of these objects. The interaction of the emitter with the numerous
degrees of freedom of the surrounding solid leads to random fluctuation of the emission energy
and eventually to blinking. Coupling of the emitter with phonon modes in the crystal creates
a dephasing, which is not linked to a loss of population of initial state of the radiative transi-
tion. The effect of this coupling gets worst when temperature is increased and transition energy
linewidths become extremely large. Fluctuations of the electronic environnement are also a
source of dephasing. This random Stark-shift of the emission energy is called spectral diffu-
sion. In opposition with phonon coupling, which is a non correlated process, spectral diffusion is
time correlated and it is is a reasonable approximation to considere it as a Markovian process.
Thus, these two different random processes, with two different statistics, are major obstacles to
any two-photons interference operation, and therefore to the use of condensed matter systems for
quantum computing. They can even lead to problems in the use of semi-conductor quantum dots
to more simple single photons applications like quantum cryptography and can be the source of
the blinking phenomen in nanocrystals, leading to long periods of time with no emission.

The work proposed in this thesis is based on the use of the photon correlation technique. It
is known since the pioneer works on the correlation of the light by Handbury-Brown and Twiss
(HBT) that such experiments give access to the emission statistic of the studied object [10].
Slight modification of the original HBT setup gives access to the correlation between photons
emitted by different transitions of the same quantum dot. And by pushing further this technique,
one can also have access to the emission energy statistic. Results obtained in this thesis are,
in some way, very specific to the optical properties of the studied object - ZnSe/CdSe nanowire
quantum dots- but in some points, they are general to condensed matter systems and they are
strongly related to the three key issues addressed above.

This manuscript is organized as follows:

- In the first chapter, we will recall the most basic notions about semiconductor nanowire
quantum dots and the quantum treatment of light detection and correlation.

- In the second chapter, we present the dynamic of neutral nanowire quantum dots, and in
particular the influence of the dark exciton states, and the exciton- phonon coupling efficiency
on the emission.

- In the third chapter, we present the use of such neutral quantum dots as single photon emit-
ters at room temperature: this is the first time epitaxied quantum dots reach this achievement.
We discuss the causes of the limitations of their performances as a single photon emitter, and
explain the obtention of this result by investigating their optical properties, in particular with
temperature.

- The fourth chapter is devoted to the dynamic of charged quantum dots, leading to conclu-
sions about the spin relaxation of the excited trion, the measurement of the p-hole spin flip time,
and giving some indication on the possible doping nature of the quantum dot.

- In the last chapter, we investigate the spectral diffusion problem by photon correlation tech-



nique. By a theoretical work, we show that the measured halfline auto-correlation function bears
at the same time the signature of the sub-poissonian emission (anticorrelated) of the quantum
dot, the correlated first order Markovian (short memory) emission energy fluctuation and the
(uncorrelated) Poissonian emission energy of the homogeneous linewidth, imposed by radiative
lifetime and phonon braodening. After describing the different signatures of these combined
energy and emission processes on the correlation function, we explain how to extricate the corre-
lated and the uncorrelated processes, and experimentally determine separately the homogeneous
linewidth and the fluctuation amplitude due to the spectral diffusion. Finally, we apply this work
on nanowire quantum dots by performing temperature and power dependent experiments. This
led us to conclusions on the energy statistic of the emitter at high temperature, and by inter-
pretations using the Kubo-Anderson model, we also conclude on the environnement fluctuations
behaviour when the two parameters (temperature and power) are changed.
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Chapter 1

Introduction

In this introduction chapter, we will recall the basic ideas necessary for the good understanding
of this manuscript. First, we’ll briefly describe the structure of the single photon emitter used for
the following studies, its characteristics and advantages. Then, we will give a few theorical and
experimental elements on the quantum treatment of light detection and correlation, containing
the basics of the work we will present in the other chapters.

1.1 Nanowire quantum dots

1.1.1 Semiconductor nanostructures
Band structure of a IT VI semiconductor compound

IT VI semiconductor materials are composed by two elements, each of them characterized by
their 4 external levels (1 type S and 3 type P). Hybridisation of these atomic orbitals result in 4
bounding states (1 S orbital and 3 P orbitals) and 4 anti-bounding states (1 S and 3 P orbitals).
The type II element (Cd,Zn) has two electrons on its external layer and the type VI (Se) has 4
electrons. The 4 bounding orbitals are populated by the 6 electrons and form the valence band.
The 4 antibounding orbitals are initially empty. The lowest empty state is the antibounding
S orbital. It is the conduction band. The energy between the conduction and valence band is
defined as the energy bandgap E, (1.7 €V for CdSe and 2.7 eV for ZnSe)

&
&
P
2
Cllss
-z
-4
-6
-8

Figure 1.1: ZnSe Band structure

The optical properties of the material are controlled by the bands symetry at k=0 (the so
called T point ). Electrons, belonging to the the conduction band, formed by the S antibounding
orbital, have an angular momentum null and their total angular momentum is J=1/2 .

5



Chapter 1. Introduction

For the valence band, the spin orbit coupling lifts the degeneracy at k=0 between states of
total angular momentum J=1/2 and J=3/2 coming from the P angular momentum L=1 of the
P bounding states and the spin 1/2. Thus, the valence band is decomposed in two level groups:
a J=3/2 quadruplet and a J=1/2 doublet separated by a spin orbit coupling energy A, .

For the conduction band, around k=0, one can describe the dispersion relation by a parabolic
approximation:

hk?
Ek)=E;+v.—
(k) g T Ve 2mo
where m, is the free electron energy. The effective mass of the electron in the material is

mE=my/Ye.

Excitation of a semi conductor material

By laser excitation or electrical excitation one can promote in the conduction band an electron
residing on the valence band. The result is a system composed by a J=1/2 electron on the S
type conduction band and an absence of electron in the P type valence band. This is the hole
particle. It can be described as a quasi-particle of total angular momentum J=3/2 (heavy hole)
or J=1/2 (light hole) and effective mass mj = mq/7 .

The resulting electron and hole are interacting via Coulomb interaction, which lowers the
energy of this complex called “exciton”. This system can be described by a Schrodinger equation
similar to the hydrogen atom.

p: v 7

2m}  2mj  Amee, | Te — 1 |

Y(re,rn) = Eap(rers)

The solutions of this equation are well known and it is easy to derive the energy and the
effective Bohr radius of the 2 particle system:

% ap.€.my
aqaq = —-
1%

ﬂ}b* + Tr}* , the reduced mass, ag = 0.0529nm the Bohr radius of the Hydrogen atom,
¢ the material dielectric constant. In bulk (CdSe the Bohr radius has been measured at 5.6 nm.
This value is important as it defines for which dimension it is possible to confine the exciton,
which is necessary to impose to this particle a discrete density of state and create a quantum

dot.

with p =

Confinement of the carriers

It exists a few way of reducing the dimensions of a semi-conductor. By creating small particles
of semi-conductor materials as for the colloidal quantum dots, or by inserting a small gap semi
conductor in a larger gap semi conductor, one can realize different confinements from quantum
wells to quantum wire or quantum dots. Thus by reducing the confinement dimensions from
bulk to the order of the Bohr radius, one confine the exciton and make its energy discrete.

The full calculation of the exciton energy in a quantum dot requires to take into account
the confinement energy of the hole and the electron, to consider effective mass anisotropy of the
hole, strain contributions, and an evaluation of the binding energy. This calculus is relatively
challenging and is most commonly done by a variational calculation [I3]. The result is highly
influenced by the confinement potential considered. The most simple and efficient are the finite



1.1. Nanowire quantum dots

or harmonic confinement, but as the real confinement potentials of the quantum dots are rarely
well known they only provide approximated values.

One can experimentally probe this value by spectrally analyzing the photons coming from
the recombination of the exciton. As in a quantum dot it has a discrete density of states, one
expect a very sharp band emission energy. As electrons and holes are fermions of total angular
momenta projection :l:% or j:%, one can put at maximum 2 carriers on the same confined level.
The resulting combinations of charges in the quantum dots are compiled in fig. [[.2] The exciton
can coexist with an extra carrier: it is the charged exciton. When the exciton recombination
happens in the presence of an extra carrier, the emission energy is shifted because of Coulomb
interaction between the exciton and the charge. Thus one can separate spectrally the emission of
the different possible combinations of charges in the quantum dot. The same way, the biexciton
is the presence of two excitons at the same time in the quantum dot and the charged biexciton
is composed by two excitons and an extra carrier in the P shell.

@ | @ |
X CX

@ @@

| 9O | | 0O |

X X CXX

¢
°3

Figure 1.2: Different states of a quantum dot

1.1.2 Nanowire quantum dots growth

There are a few methods to grow epitaxied quantum dots. The vast majority of reports on
epitaxied quantum dots were done on self assembled systems. However, some alternatives exist,
and nanowire quantum dots proved to be a very credible and advantgeous method in many
aspects.

SK growth method

This the most common and investigated method to produce self assembled quantum dots. These
quantum dots are fabricated by epitaxial growth of one type of crystal on top of another. If
the lattice constants differ noticeably (e.g. In(Ga)As/GaAs), small islands of the top material
are formed to minimize the strain. This growth mode is called Stranski-Krastanov growth.
Finally the islands are additionally overgrown by the substrate material to form quantum dots.
Depending on the underlying semiconductor materials, self-assembled quantum dots can cover
a broad spectral range from ultra-violet to the infra-red regime. The wetting layer forms a

7



Chapter 1. Introduction

quantum well, which usually shows photoluminescence above the quantum dot emission energy.
Finally the islands are overgrown by the substrate material to form quantum dots.

Snm

Figure 1.3: (a) TEM image of a CdSe layer on ZnSe below the critical thickness (3 ML). (b)
Above the critical thickness it relaxes by forming a QD. (¢) AFM image of CdSe QDs distributed
on a ZnSe surface. (d) Micro-photoluminescence image of InP quantum dots in GalnP. The image
was taken through a bandpass filter to suppress excitation stray light. (a)—(c) taken from [22],

(d) from [23]

Despite being the most used growth method for epitaxied quantum dots, a few noticeable
disadvantages exist. As the quantum dots are self-assembled, there is no control of their size or
shape. Secondly, as the quantum dots are surrounded by a wetting layer, that may introduce
undesired non-radiative decay channels. Finally, this is very uneasy to control the spatial density
of the quantum dot, and one usually need some processing, as etching or masks to achieve single
quantum dot spectroscopy.

All these problems mostly don’t exist in the growth method of nanowire quantum dot that
is exposed in the next section, the VLS method.

VLS growth method.

The growth of the sample from where are extracted all the results presented in this manuscript
was performed by Miryam Elouneg Jamroz. We briefly describe here the VLS method used for

8



1.1. Nanowire quantum dots

the growth of the nanowires.

The Vapour-Liquid-Solid (VLS) growth method is the most frequently employed technique
for the growth of semi-conductor nanowires[I5] [16]. Starting from 1990s, this technique was
employed by many researches to form nanowires and nanorods from a rich variety of materials:
elemental semiconductors[I7, [I8] , ITI-V semiconductors [19], II-VI systems [20], and oxides|21].
The employed growth techniques comprise diverse epitaxial methods, such as Chemical Vapor
Deposition (CVD) , or Molecular Beam Epitaxy (MBE).

In the VLS method, one starts with nanometer-sized metal particles, that are deposited on
the surface. During the growth, the substrate is heated above the melting point of the metal
nanoparticles to a temperature at which it forms an eutectic phase with one of the epitaxial
semiconductor reactants. The continued feeding of the semiconductor atoms into the liquid
droplet supersaturates the eutectic. This alloy acts as a reservoir of reactants, which favorites
the growth at the solid-liquid interface and thus forms a one-dimensional nanowire with the
alloy droplet remaining on the top. The size of the metal particle also affects the diameter of
the nanowire and its growth speed [21].

(a) deposition of a gold film
Au (d) inclusion of a CdSe QD
Gahs I
b annealing (580°C),
'[: ) dewetting of the gold film

© O

(d:l end of growth

'[:C} beginning of MBE growth
IZn.ISE | ] CdSe
AulZn ZnSe
@ alloy
;TL,I. - FnSe

Figure 1.4: ZnSe nanowire growth process via MBE VLS method

fig. [[.4khows the growth process on the example of MBE grown ZnSe nanowires. It started
with the desoxidation of a GaAs (100) wafer at high temperature (>640°C) followed by MBE
growth of a (>300nm) GaAs layer (100) in a III-V MBE chamber and a ~30nm ZnSe (100) thin
film in a II-VI MBE chamber. ZnSe surface is chosen to initiate the growth of the NWs, to
benefit from homoexpitaxy and promote oriented nanowire growth, and also to shield the NWs

9



Chapter 1. Introduction

from potential Ga and As dopants. A small amount of Au was then evaporated onto the surface
in a separate chamber and the sample was returned to the II-VI chamber where the Au film
was dewetted at 510°C for 20 min. Finally the sample temperature was lowered to 410°C and
the rotating sample was exposed to fluxes of Zn and Se for 20 min to obtain the nanowires.
The CdSe QD segment of the nanowires was achieved at the 15th minute of growth simply by
switching the Zn flux for a Cd flux for 30 s. The fluxes were 3.4(Zn), 2.2(Cd), 10(Se) x10-7 Torr.
The entire process was performed under UHV conditions. This recipe permitted to obtain low
density (15/um?), homogeneous 10 nm diameter nanowires, with a length of around 200 nm (see
fig. ) . The low density was a crucial condition for the nanowires not being in competition
during the growth.

Some recent studies showed some indications that the growth process could actually be VSS
(Vapor solid solid) with the gold catalyst being solid instead of liquid as in the classical VLS
method. This work is in progress and is out of the scope of this manuscript.

1.1.3 Microscopy characterization

We give here a short outlook of microscopy experiments used to help the growth and obtain
structural informations about the nanowire quantum dots. It has to be mentioned that all the
microscopy work presented here was performed by Martien Den-hertog.

SEM microscopy

Several advanced microscopy techniques were used. In fig. in the SEM Top view and in the
perpendicular SEM view, we can see the “as grown” nanowires growing along 2 directions. They
tend to grow mostly in the Zn-terminated B direction of the substrate crystal for reasons that
are still unknown, and a smaller fraction grows vertically along the (100) direction.

Figure 1.5: ZnSe/CdSe/ZnSe NWs grown a ZnSe buffer. a, Top view SEM image showing a
majority of uniformm N'Ws inclined respect to the substrate surface. The bright dots are the NWs
standing straight up. b, Perpendicular SEM view of the same sample.

HRTEM

The Nanowires were studied by high resolution transmission electron microscopy (HRTEM) and
high resolution high angle annular dark field scanning TEM (HAADF STEM)[24]. fig.
presents the HRTEM image of a full NW from the ZnSe substrate to the gold particle. Its
diameter, constant all along the NW| is of 10nm. Generally the NWs have the [0002] hexagonal
wurtzite (WZ) structure with numerous stacking fault defects and some small regions with the
[111] cubic zinc blende (ZB) crystal structure, as shown in fig. a-b.The Geometrical Phase
Analysis (GPA) technique can be used on HRTEM images of NWs to map the interplanar spacing
along the wire axis. Since the CdSe (0002) interplanar spacing (0.350nm) is larger than the ZnSe

10



1.1. Nanowire quantum dots

interplanar spacing (0.327nm) this technique allows us to obtain the size of the QD and its
localization along the NW. The GPA analysis of the whole NW reveals no change of lattice
space all along the wire except in a region at about 120nm from the gold particle (Fig. 3c).
That corresponds to the estimated position of the CdSe quantum dot. The interplanar change
obtained from a line profile along this region (Fig. 3e) indicates that in fact the QD is not the
pure CdSe compound but a ZnxCd1-xSe ternary alloy as its maximum is smaller than the value
of pure CdSe. The QD size is estimated as the full width half maximum of the interplanar lattice
spacing along the growth direction of the peak obtained by the GPA analysis. It varies between
2.5 and 4 nm and four out of five observed QDs had a size of 3.7 to 4 nm.

These measurements were done on the sample giving the best optical results. Some others
were done on the many previous samples, and permitted to make a correlation between the
optical and the microscopic measurements, from sample to sample.

distance (nm)

Figure 1.6: Structural analysis by transmission electron microscopy of a single ZnSe/CdSe/ZnSe
NW. a, series of HRTEM images along the whole NW. stacking faults and small cubic regions
are indicated by arrows. b, HRTEM of the boxed region in a. ¢, geometrical phase analysis of
the growth plane. d, overlay of the gpa map on the HRTEM image. e line profiles made in c
along the arrow (line profile) and along the dashed boxed region (dashed profile), taken from
reference [24].

Optical and microscopy correlation

In fig. [I.7]is presented the luminescence energy of quantum dots coming from different samples.
There is a correspondence between these energies and the size of quantum dots determined by
HRTEM techniques. Indeed, the results of models taking into account a mixed composition of
the CdSe quantum dots, and measured quantum dot sizes are fitting the experimental datas.
Despite the dispersion of measured quantum dot sizes, and the difficulty to make this kind of
measurements on more than a few nanowires per sample, it confirms the validity of the microscopy
work by optical measurements.

For the sample giving the best optical performances, and for the others, the best fit is
given by the 60% Cd concentration quantum dot curve. This result is also confirmed by EDX
measurements (chemical composition) showing lower Zn presence in the Quantum Dot area.
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Figure 1.7: Photoluminescence energy vs QD size for different samples. Size error bars are based
on the distribution of values obtained by TEM observations, and energy errors bars are based
on the PL emission range of a given sample. Calculations were done by Regis Andre.

1.1.4 Sample preparation

Substrat lithography

For single quantum dot spectroscopy, it is necessary to mark the substrates with reperes. It was
done by optical lithography on silicon wafers.

A negative resine was spread on the masked substrate before insulation with deep UV flashes.
After titanium and gold deposition and lift off, we obtained pum size gold plots organized in an
marked pattern.

Nanowire depositions
Nanowire were dispersed on the silicon marked substrate by direct contact with the as grown
sample and rubbing. The result is a non homogeneous disposition of the nanowires with areas

of high density of nanowires but with numerous low density areas fig. [1.9 with one or two
luminating nanowires in the beam spot.

1.1.5 Photoluminescence setup
In this section we describe the elements of the basic photoluminescence setup( see fig. [1.10) .

12
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Figure 1.8: Lithography pattern
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Figure 1.10: Basic photoluminescence setup

Excitation lasers

Three different lasers were available for our experiments.

A continuous 405 nm blue diode, a 475 nm monomode laser, and an near infra red Ti-Sa
Laser. For pulsed excitation, the latter can be used in pulsed regime with Pulse time width 1ps
and a repetition rate of 80Mhz. As the studied quantum dots are emitting in the visible range,
we need to double its frequency (divide by two the wavelength) with the help of a non linear
LBO doubling crystal. It is wavelength tunable and we can provide sharp-band excitation from
400nm to 590nm.

13
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Figure 1.9: nanowires after deposition

Polarizers and densities

Lasers being linearly polarized, \/2 polarizers are placed in the excitation and detection path.
Nanowires are strongly linearly polarized along the direction of the nanowire [3I] and to optimize
the detection and excitation efficiency, one need to control the polarizations. On the contrary,
as explained in the previous section, nanowires are seen by the side, thus we have no acces to
the circularly polarized fine exciton structure and no circular polarizer is used in this work.

In addition, to precisely control excitation power, an additional \/2 polarizer and a polar-
ization selecter are coupled on the excitation path. For rough power tuning, one use optical
densities.

Cryostat

Two different cryostats were used in this work.

The He microstat is a Helium circulation cryostat, highly adaptated to optical experiments
involving high temperatures, requiring high stability, in time and in temperature. The latter
qualities were crucial for experiments requiring very long integration times and performed at
room temperature. Such performances are obtained because Helium is circulating directly around
the sample and there is no long coldfinger connecting the helium and the sample, introducing
large inertie to temperature and mechanical dilatations, which affect the stability. For rough
displacement of the excitation along the sample, the cryostat is mounted on micrometer stages
and for fine position optimization, Piezolelectric controls are implemented.

Objective

This is an Olympus NA =0.4 objective. This relatively weak numerical aperture is due to long
working distance. It is however not well optimized for the photons correlation experiments
exposed in this thesis, as integration time depends quadratically on the collected intensity. For-
tunately, nanowire quantum dots are very efficient emitters, which permitted many different

14



1.2, Quantum treatment of light detection and correlation

photons correlation measurement with no major difficulty. Only the beam splitter (T=92%,
R=8%) was chosen to increase the collection efficiency.

Spectrometers

Two spectrometers were used in this work. The first one is a 500 SI/SM of 50 cm focal Chromex
spectrometer. Two gratings were used for high resolution (1200 gr/mm) and low resolution (150
gr/mm) spectroscopy. The second one is a 50 cm focal IHR 55 with same resolution gratings.

Combined with respectively an Andor (1024 lateral pixels) and a PIXIS camera (1340 lateral
pixels), both of them have approximately the same spectral resolution (~ 200ueV).

Avalanche photodiodes

The choice of photodetectors for the correlation experiments is very important. For high reso-
lution experiments, we use Idquantique 40 ps resolution APD’s. They are very useful to probe
very fast phenomenons, especially for cross-correlation experiments. They are also a little more
difficult to use as their detection chip is small (20 um diameter) and require attention for the
choice of the optics focusing the collection beam on it.

For low time resolution experiments, we use Perkin Elmers APDs, with 400 ps resolution.
They allow to probe phenomenons in the nanoscale range and are very easy to align as their
detection ship is 250 pum of diameter. The main interest of these APD’s is that their quantum
efficency is twice larger (55% at 550 nm) than the efficiency of the fast APD’s.

1.2 Quantum treatment of light detection and correlation

The light coming from the single photon emitter, we described above is a special type of emission.
We are now interested in how it is possible to detect and measure correlation of the outcoming
light. In our particular case, the semi-classical theory of light detection is not appropriate. As we
will see, the sub poissonian emission statistic is the result of a the quantum mechanical state of
the optical field, and to describe it properly, we have to give the main elements of the quantum
light detection theory, and also the experimental setup used to obtain evidence of such statistic.

1.2.1 Detection probability

Our photons detectors are using the photoelectric effect: light falls on a metallic or semi-
conductor surface, which sometimes makes bound electrons being released from the metal: they
are the photoelectrons. If a positively charged electrode is placed near the photoemissive cathode
so as to attract photoelectrons, an electric current can flow in response to the incident light (fig.
. The device therefore becomes a photoelectric detector.

In the assumption that the incident light is in a coherent state | {v}), it can be shown that
the probability of detection of the light by one electron is [25]:

Pye(r,t, At) = nl(r, t)At,

with 7 the detection efficency, At the detection time and I(r,¢) the intensity of the light at
position r and time t.
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Figure 1.11: Idealized photodetector with a bound electron in a potential well

The probability P(r,t, At) of photodetection by one or more of the N bound electrons is
given by the binomial sum

N
P(r,t,At) = > CR [nI(r,t) A" [1 — nI(r,t) AL}V "

n=1
If NnI(r,t)At < 1, the dominant term in the series is the first and:
P(r,t,At) ~ Nnl(r,t)At (1.1)

More generally, n measuring the likelihood of detection by one electron may not be the same
for all electrons but may depend on the position r within the cathode. We should replace eq.
by a more general integral relation:

P(ro,t,At) = /g(r)n(r)[(r,t)At.d3r,

in which g(r) is the bound electron density and rg is the midpoint of the cathode. If g is
constant and 7 and I vary only with the z position,

0z
P(ro,t,At) = Sg/ n(z)I(z,t)At.dz
0
for I(z,t) = I(ro,t)f(z),the detection probability takes the form

P(ro,t,At) = acSI(ro,t)At = Al(ro,t)At,

where
0z
a = (g/0) /O 0(2)f(2)dz

the dimensionless quantum efficiency of the detector.
The detection probability is proportional to At , then we will write the detection probability:

P(r,t,At) = Pi(rt)At
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1.2, Quantum treatment of light detection and correlation

with the understanding that P; is a probability density.

To calculate the photodetection probability on the two different photodetectors, one need to
calculate the photodetection probability for the first one at ¢; , which is on the form A1 I(ry,t1)Aty
, to take the state after the first detection, and calculate the photodetection probability on the
second detector at to . But as the initial state was taken to be a pure coherent state, the state
remains unchanged after the first detection. Thus the joint probability can be written:

Py(r1,t1;re, to) At1 Aty = Ay (11, t1) Aty . A2l (1o, t2) Aty (1.2)

To generalize the last expression to any initial state (not necessarily a pure coherent state),
we can consider that we have to deal with an ensemble of coherent states. If each realization
| {v}) of the ensemble is characterized by a weight ¢(| {v})) , so that the initial density operator
pr of the field is:

pF = /¢(\ {vI) [ {vH{v} Jd{v}.
We can rewrite the joint probability given by fig.

Pg(Tl,tl,Atl;Tg,tQ,Atg) = /¢( {V}>)A1[(T1,tl)Atl.AQI(Tg,tg)Atgd {I/}

= <A1I(7“1, tl)Atl.AQI(Tg, t2)>¢
= A1A2<I(T1, tl)[(T‘Q, t2>>¢At1At2

We now make use of the so-called optical equivalence theorem, which asserts that the expec-
tation value of any normally ordered field operator can be written as an ensemble average, in
which the creation and annihilation operators are replaced by their left and right eigenvalues and
the average is taken with the space functional ¢({r}) used as weighting functional. The eigenval-
ues a*(r,t) , a(r,t) on which the intensities I(r,t) = a*(r,t).a(r,t) are then to be replaced by the
corresponding creation and annihilation operators af (r,t) , a(r,t) and the quantum expectation
is to be calculated.

PQ(Tl, tl; T2, tg)AtlAtQ = AlAtl.AgAt2<aJ{(T1, tl).al (7‘1, tl).ag (TQ, tg).ag (T’Q, t2)> (13)

1.2.2 Photoelectric correlations

It is an immediate consequence of eq. for the joint probability that if

(L(r1,t1)1(r2,t2)) # (L(r1,t1)) (I (r2, t2)), (1.4)

then
Py(r1,t15m2,t2) # Pi(r1,t1) Pi(re, t2)

where Pj(r,t) is the single probability density for photodetection.

This implies that the two photodetections at rq,t; and 7y, t2 are not independent but are
correlated. Only for special states of the field does the inequality in eq. [I.4/have to be replaced by
an equality, and then the joint probability factorizes into a product of the separated probabilities.
An example of that is provided by a pure coherent state | {v} >, or by a randomly phased single
mode laser.

By introducing the normalized intensity correlation function A(ry,t1,7r2,t2) defined by the

formula: (It (ra. 1))
(L(r1,t1))((r2,12))

)\(Tl,tl,'f'Q,tQ) = _17 (15>
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we can re express the joint detection probability in the form

PQ(Tl,tl;’l“g,tQ)AtlAtQ = A1<I(T1,t1)>At1A2<I(T2,t2)>At2 [1 + )\(7‘1, tl; T2,t2)]
= Pl(’l”l, tl)Atlpl(TQ,tg)Atz [1 + )\(Tl,tl; T‘Q,Ifg)]
(1.6)

This shows clearly that the normalized function A(r1,¢1,79,%t2) provides a measurement of
the lack of statistical independence of the photoelectric pulses.

1.2.3 Bunching effect: Handbury-Brown and Twiss experiment
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Figure 1.12: Hanbury Brown and Twiss setup as presented in their nature publication (1956)

For states for which photoelectric correlations exist, the photoelectric pulses produced by illu-
minated photodetectors evidently do not occur strictly at random, and by studying their correla-
tions in space and time, one should be able to obtain information about the nature of the optical
field. The first experimental proof of this, and the first evidence for the existence of photoelectric
correlations, was provided by the experiments performed in the 1950’s by Handbury-Brown and
Twiss (1956,1957)[26), [32] with the apparatus shown in fig. [1.12] The light beam from a mercury
arc was divided into two by a beam splitter, and the two beams fell on two photomultipliers, one
of which could be translated across the field.

As the light is produced by a stationary thermal source, the average intensity doesn’t depend
on time and the normalized correlation function A(r1,¢1,79,t2) depends only on the time differ-
ence to — t; = 7 and can be denoted A(r1,r2,7) can be simply related to the normalized second
order correlation function:

(al(r1,t1).az(ra, t2))
[(I(r1,t1))(I(ra, t2))]*/?

For stationary light, A(ry, 72, 7) =| v(r1, 72, 7) |?
Equation eq. becomes

7(7”17 tla T2, t2> =

Py(r1,t1; 7o, t) Aty Aty = A (I(r1)) Aty Ao (I (ra)) Ato [14 | y(r1, r2, 7) ]

which shows that photoelectric correlations are expected at r; and r2 so long as the de-
gree of coherence is not zero at these points. This is confirmed by experimental results which
showed a bunching of the joint probability decreasing with the separation length between the
two detectors. We won’t enter into the details of photocurrent correlation theory necessary to
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1.2, Quantum treatment of light detection and correlation

describe a measurement in which the individual photoelectric pulses may not be resolved because
of the relatively slow electronics at disposal of the experimentalists. However it showed that the
measurement of the quantity | y(r1,72,7) |? is possible by setting up two photodetectors in an
optical field, and materializes the correlated character of the light by a bunching effect on the
joint probability versus the delay between two photodetections. This effect is easily transpos-
able on the experiment we will present in chapter 5 of the manuscript where we will probe the
correlation of the energy of the emitter.

The autocorrelation experiment used in this thesis is a direct derivative of the HBT experi-
ment. However we will use it in a first step, not to prove the correlation of an optical field, but
to prove the anti correlation of a special optical field. This is the anti bunching effect.

1.2.4 Antibunching effect
Correlation of a quantum state of the optical field

In the experiment considered above, photoelectric pulses occurring exhibit bunching, as shown
by the fact that the joint detection probability always satisfies the inequality

PQ(Tat;Tvt + T) < PQ(T‘,t;T’,t)
According to eq. and eq. this implies that
(I(r,)I(r,t +7)) < (I*(r,1))

In other words, the two-time intensity autocorrelation function either falls from its initial value
at 7 = 0 or remains constant. One can show from the Schwarz inequality that this equation must
hold generally for a stationary field. It follows that for such states the photoelectric pulses must
exhibit either bunching or complete randomness; antibunching, which implies that Py(r,¢;r, ¢t +
T) > Py(r,t;7,t) is impossible under these circumstances. Both thermal light and laser light
have to be excluded. Observation of photoelectric antibunching therefore provides evidence for
an explicitly quantum mechanical state of the optical field, whereas bunching carries no such
implication. This is in agreements with the predictions of the quantum theory of resonance
fluorescence and it was first observed by Kimble, Dagenais and Mandel in 1977 [27].

As we have seen, the joint probability that a photodetector exposed to the atomic fluorescence
registers two photons at time t and ¢+ 7 is proportional to the second order intensity correlation:

T (et t+ 1) = (I(r,t)I(r,t +7)). (1.7)

It can be demonstrated that, in the case of the atomic fluorescence, the intensity correlation
can be expressed such as ( [28] Kimble, Mandel 1976):

I(r,t)I(r,t+7)) = L(r,t))I(r,7))a (1.8)

The first factor (I(r,t)) is proportional to the probability that one photon is emitted at time
t, and it becomes constant at steady state. But in the process of emission the atom makes
a quantum jump to the ground state, and the second factor (I(r,t)) is proportional to the
probability that another photon is emitted after a subsequent time delay 7 , given that the atom
is in the ground state at time 7 = 0.
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A Sub-poissonian source

If the number of photons n emitted by the atom in a short interval T is counted, then the photon
statistic must be sub-poissonian. It can be shown that the variance of n is given by

((An)?) = (n)(1 + (m)0(T)/T),

where the function (T is defined by the integral

T
o(T) :/ (1= |7 | /T)X(T)dT.

-T

For a sufficiently short time interval T, A\(7) may be replaced by A(0) under the integral so
that

T
0(T) ~ )\(0)/ (1= | 7| /T)dr = XO0)T.
-T
Hence the variance becomes
((An)?) = (n)(1 + A(0)(n)),
From equations eq. and eq. 1+ X(0) =0, or

so that,
{(An)?) = (n)(1 — (n)),
Thus the detected photons are sub-poissonian as ((An)?) < (n), The Q factor characterizing
the departure from the Poisson statistic is defined as:

The first experimental confirmation of subpoissonian statistics in resonance fluorescence was
demonstrated in 1983 by Short and Mandel [30].

Antibunching measurement

To characterize experimentally the antibunching effect, the photoelectric pulses from the two
detectors are fed to the start and stop of a time-to-digital converter, that registers their separation
7 . The number of pulse pairs n(7) is a direct measure of the joint photodetection probability and
therefore of I'® (r;¢,t + 7). After renormalization, one obtain the intensity correlation function
in the steady state or long time ¢t — co:

(I(r,t)I(r,t+ 7))
(I(r,00))?

In fig. a) is represented the antibunching setup which permits the measurement of this
quantity. As quantum dots are “artificial atoms”, ie a two level system which is emitting photons
one by one, one expect the photons emission to obey a sub poissonian statistic. First evidences
of antibunching in quantum dots were demonstrated by P. Michler et al. in colloidal quantum
dots [33]. We will discuss this in more details in the third chapter of this manuscript, devoted
to room temperature antibunching measurement.

gAr) =14 A1) =

(1.9)
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1.2, Quantum treatment of light detection and correlation

From eq. and eq. one can express the second order correlation function with proba-
bilities:
pt+7t)  plt+7]1)

@ (r) = -
SO = e~ pe )

p(t) is the photodetection probability at any time t , p(t + 7 | t) is the probability to detect
a photon at time t 4+ 7 knowing that a photon was detected at time t, and as the quantum dot

emission is stationary,
G (r) = p(7 | 0)
p(7)

One can model this measurement by considering a two-levels system (fig. b)), and the
level populations ng,,ng such as n, +ng = 1. The detection of a photon at time 0 means that
the system is such as (n;(0) = 0,n9(0) = 1). By letting the system evolve from these initial
conditions, one can evaluate ¢(® (1),

(n(7) | n2(0) = 0)

@) () —
g (1) n(00)

b)

Beam splitter APD1

X

Monochromator

APD2

Figure 1.13: a) autocorrelation (antibunching) setup, b) two level system model

Cross-correlation measurement

It is also possible to slightly modify this setup and instead of measuring correlation of photons
emitted by the same transition, measuring correlation between different transitions of the quan-
tum dot. This is the cross correlation setup. One can probe the quantum dot dynamic and obtain
different interesting informations about nature of the transitions, delays between the transitions,
spin-flip or carrier relaxation times. To do so, the setup is put in the configuration represented
in fig. 1.14 a). We send photons coming from two transitions on two separated photodetec-
tors. A typical situation where cross correlation experiment can be performed as presented in
fig. 1.14 b): for example, a three-level system with the levels linked two by two by a transition
(2 — 1,3 — 2) rate. The aim of such an experiment is to characterize the link between the
two resulting transitions. In this case, if a photon has been emitted by the upper transition, the
system is in the initial state (n1(0) = 0,7n2(0) = 1,n3(0) = 0) and

(n2(7) | n2(0) = 1)
ng(00)

g (r) =

21



Chapter 1.

Introduction

22

We’ll use this modelization principle mainly in the chapter 4 of this manuscript, where we
will probe the dynamic of a charged quantum dot.

a)

b)

Monochromateur 1

Monochromateur 2

Figure 1.14:

a) cross-correlation setup, b) example of model with a 3 levels system



Chapter 2

Neutral nanowire quantum dots
dynamic

In this section we investigate the dynamic of a neutral nanowire quantum dot. What is meant
by the word “neutral” is the fact that the recombinations of the exciton and of the biexciton
are done without the presence of any excedentary carrier. We will summarize here the optical
experiments which permitted to identify the emission lines, to describe the exciton and biexciton
dynamic and to probe and model how the temperature is influencing it. The understanding of
this dynamic, especially the dark exciton influence, is very precious for the application presented
in the chapter 3, dealing with the emission of single photons at room temperature.

2.1 Emission lines characterisation

XX (a)
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Figure 2.1: Typical spectrum of a neutral quantum dot

In fig. is shown a typical spectrum of a nanowire neutral quantum dot emission. The
two lines correspond to the exicton and biexciton recombination. They are separated by a 20
meV binding energy. We summarize in this section the different basic experiments allowing us
to label these emission lines.
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Figure 2.2: Typical power dependence of the integrated lines intensity at 4 K

2.1.1 Power dependence.

In fig. 2.2 is plotted the integrated line intensity versus the excitation power P. This is pulsed
excitation at wavelength A = 420nm. The two lines don’t show the same behaviour. Whereas
the exciton line shows linear dependence (I, o< P1%%), the biexciton one is quadratic (I, o
P19). This is because the biexciton needs the relaxation of 2 excitons in the quantum dot.
Thus, at low power the exciton is more luminescent and at high power it is overcome by the
biexciton luminescence. The most interesting point of this figure is the saturation values of
the 2 lines, which are different. In pulsed excitation, at saturation power (ie the probability
to have a biexciton after each pulse equal to 1) and if we model the quantum dot by a 3 level
system (exciton, biexciton, empty states), saturation values should be the same, as a biexciton
recombination is followed by an exciton recombination. We will discuss this more in details in
the section dedicated to the dark exciton influence in this structure.

2.1.2 Lifetime experiment

By decay time experiment, we have access to the probed level population in time. One can
describe this population by the rate equation:

dng 1
= ——n, 2.1
dt Tde " (2.1)

Tde is defined as the decay time of the population n,, which is from eq.
The decay time is decomposed as follows:

T 1s the radiative lifetime and 7, takes into account the loss of excitonic population by non
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radiative processes. At 4 K the latters are supposed to be null, then eq. becomes:

dng 1
— - 2.2
dt " (22)

x

for the biexcton one have the same expression

dnge 1

dt T

Ny

At T—=4K, the excitonic population decays exponentially with a time 7/, the radiative life-
time. In fig. are plotted the two decay curves of the exciton and the biexciton. It is clear
that the exciton is decaying slower than the biexciton (7,, = 400 ps, 7, = 300 ps). This can
be explained by the fact that the biexciton is composed by two excitons, and thus have a larger
probability to decay. In a very simple picture, we would say that we should have 7, = 27,,.
However this picture is wrong if we take into account the Coulomb interaction in the biexciton
and it can be shown the ratio between exciton and biexciton lifetime depends on the confinene-
ment [43]. We'll also see that, for the exciton the measured decay time is not the real radiative
lifetime. The transition towards dark states must be added, as we will do in the dark exciton
section.

2 3
Time (ns)

Figure 2.3: Decay of the exciton (blue) and biexciton (red) populations at T=4K.

2.1.3 Cross-correlation measurement:

In the introduction chapter, we discussed about how correlation measurements could help to
understand the dynamic of a multi-state emitter. We use here this technique to probe the link
between the two transitions appearing on the spectrum. In fig. is plotted the result of
the cross correlation between the excitonic and biexcitonic lines. The asymetric shape and the
bunching appearing for positive delays of the curve is characteristic of a radiative cascade. We
first try to explain and model it with a 3 levels system (ground state, exciton, biexciton) in fig.
c¢). For the positive delay, the initial condition is that a photon coming from the biexciton
recombination was detected at 7 = 0 , the system is in the exciton state. The bunching is due
to the fact that under such initial conditions, the probability to have an exciton in the quantum
dot is much larger than the probability to have it at any time and the decrease of this bunching
with the delay is due to the decay rate of the exciton. The value of this bunching is interesting:
for 7 = 0 and if we define p,(0,0) the probability to have an exciton in the quantum dot at time
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0, knowing that a photon from the biexciton was detected : we measured

p=(0,0)
Pz (00)

g%(0) =

The probability to have a an exciton after a biexciton recombination is 1 (p;(0,0) = 1).Thus,
one can deduce p,(00) = 0.23, the probability of presence of the exciton in the quantum dot in
the steady state. The dashed curve in fig. a) is obtained from the 3 levels system (fig.
c)). Tt is immediatly obvious that we underestimated here the g?(0), ie the exciton is generally
less present in the quantum dot than predicted by the model. Thus, the exciton decays in an

=4.3.

additionnal state, that we introduce in the next section.

Though these three different experiments, we were able to determinate the origin of the lines
observed on the spectrum and conclude that we were studying a neutral quantum dot. However,
this set of experiments is also indicating the strong influence of the dark exciton, which will be

part of our model for the next section.
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Figure 2.4: a)exciton/biexciton cross correlation figure, (dashed line) simulation obtained from
the 3 levels model (c)). (b) exciton/biexciton cross correlation figure, (dashed line) simulation
obtained from the 4 levels model (d)) including the dark exciton. For both models, the pump

rate was fixed at r = 3ns~!
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2.2. Influence of the dark exciton

2.2 Influence of the dark exciton

2.2.1 exciton fine structure

In the introduction chapter, we explained that spin-orbit coupling resulted in the presence of
light hole of total angular J, = 1/2 and heavy hole J, = 3/2 states in the valence band. The
anisotropic strains imposed by the lattice mismatch between the quantum dot material and the
nanowire material lifts the degeneracy of these states at the I' point through the so called Bir
Pikkus hamiltonian contribution. Thus, we only consider the heavy hole states to understand
optical properties of the exciton. Conduction band being formed by a S orbital, Electrons have
a total angular momentum J, = 1/2. The exciton states are split into higher energy states of
total angular momentum projection J, = +1, and lower energy states of total angular momentum
projection J, = +2. They are separated by the exchange interaction energy AFE, as the transition
between the 2 energy levels is a spin flip of the hole or the electron. We represented these states
and the possible transitions between them in fig. d).

The high energy states (J, = £1) are radiative, as momentum conservation allows the exciton
recombination by a photon emission. On the contrary, the low energy states (J, = £2) are non
radiative. This will have an important effect on the photon emission of the studied object.

2.2.2 Interaction energy measurement
Spin flip rates

We pointed out in the previous chapter that power dependence and lifetime experiments were
showing strong signatures of dark exciton influence. We will use this in order to measure spin
flip rates between the dark and the bright exciton.

Under pulsed excitation, and when the biexciton is saturated, after biexciton radiative re-
combination, a bright exciton is present in the quantum dot. As shown in fig. d), this exciton
can recombine radiatively or have one of its carrier spin flip and transit through the dark exciton.
The latter is then stored and exciton doesn’t produce any photon. We have the evidence of such a
mechanism in fig. 2.2. At 4K, exciton and biexciton power dependences don’t show the same sat-
uration values, wich means that a photon coming from the biexciton recombination is not always
followed by an excitonic photon. If we consider the four-levels model presented in fig. d), and
set the initial conditions of biexciton saturation (n44(0) = 1, n44(0) = n4(0) = ny)(0) = 0.),
and considering that , at 4K, the dark to bright spin flip rate 4,2 = 0, one can easily solve the
associated rate equation and find that the exciton/biexciton ratio at saturation is:

L'y
Ty /zxx(sat) = T (23)

z + Vspl ‘
This rate can vary a lot, depending on the spin flip rate towards the dark state, thus, de-
pending on the importance of the depopulation of the bright exciton state. We'll see that the
range of measured bright to dark spin flip is very important, and led, for the fastest spin flips to
ratios such as 7, /.q(sat) ™ é From the lifetime experiment we extract the exciton decay time 74,
(see eq. . This decay time takes into account all the possible decay channels of the excitonic
population. In the model we consider, the exciton can recombine radiatively with a radiative
lifetime 7, or spin flip towards the dark state with a spin flip time 7p;:

1 1 1
Tdx Tx Tspl
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From eq. and eq. one can determinate separately I'; and ~sp1. For the quantum dot
where the presented decay time curves are extracted in the previous section we found 7, = 550 ps
and 7gp1 = 1.2 ns. The measurement of the exciton decay time is performed at very low power,
so that the population of the biexciton can be neglected.

Interaction energy determination

In the section above, we fixed the exciton radiative lifetime 7, and the bright to dark spin flip
time 7,1 at 4K. We now increase the temperature and measure again the decay curve of the
exciton.

Spin flip of the carriers are assisted by acoustic phonons. The speed of this mechanism will
depend on how efficiently the carrier couples to these phonons (we will see that in section 2.3),
and also on the avaible phonon population. Thus, spin flip transition rates depend on the phonon
population that follows a Bose-Einstein distribution Np(T,AE) = kexp(A}E‘/(kBT))' The spin

flip rates vsp1 (bright to dark) and ~s,2 (dark to bright) can be written as:

'75p1 = FQ(NB(T, AE) + 1)
Ysp2 = DoNp(T, AE)
(2.5)

T', is the spin flip rate at OK. This quantity was determined in the previous section, as
FO ~ ’Yspl (4K)

By increasing the temperature, one increase the phonon population, and make the spin
flip rates increase. These enhancements can be followed through temperature dependant decay
time measurements. In fig. is presented the evolution of the decay time curve for different
temperatures from 4K to 80 K. It is mono-exponential at 4 K and becomes multiexponential as
the temperature increases with the apparition of a slow component which corresponds to the non
radiative recombination time of the dark exciton. The spin flip transition 72 (dark to bright) is
activated and we observe a phenomenon of repopulation of the bright level from the dark state.
This is why the curve becomes biexponential. The importance of this repopulation increases
with temperature and the weight of the slow component is enhanced until the dark and bright
states are thermalized. Eventually, the slow component dominates the measurement and the
decay time curve becomes mono-exponential again.

The parameters involved in the fit of these curves are the following: I'y, vsp1,Vsp2:I'nr. The
radiative recombination rate is considered as constant with temperature and is calculated from
the first decay time measurement at 4K. It is possible to extract the three other temperature
dependent rates, as they act differently on the shape of the decay time curve. Indeed, 7gp1 is
related to the fast component, I',, to the slow component occuring with temperature, vsp2 acts
on the weight of the slow component as it determinates the importance of the repopulation of
the bright state from the long lived dark state.

In fig. are reported the measured spin flip rates as a function of the temperature for a
typical quantum dot. We fit them with eq. with T'g fixed from the 4 K measurement, the
interaction energy AF is tuned in order to fit the experimental datas.

Statistics on several quantum dots

The process described above was reproduced on nine different quantum dots. As shown in fig.
measured splittings range from 4.2 meV to 9.2 meV. A clear trend is appearing: splittings
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Figure 2.5: Temperature dependent decay time curves from 4K to 80K

measured for low energy emission QDs are generally smaller compared to splittings measured
for high energy emission (QDs. The latters correspond to small size QQDs, where electron and
hole wave functions overlap very well, so that their exchange energy is large, leading to large
AF. Such relationships between QD sizes and energy splittings have been calculated for colloidal
QDs[36, 44] . Change in composition of the CdxZnl-xSe QD can also act the emission energy
and the value of AE. Our measurements do not follow exactly a smooth law. The shape of
the confinement has also a strong influence on the wave function forms, and consequently on
their correlation function. For example the prolate or oblate nature of the QD geometry appears
to have an important effect[36]. This explains why we obtained a cloud of experimental points
following a general trend instead of a strict dependence.

2.2.3 Exciton-phonon coupling efficiency
Bright to dark spin flip rate

As explained in section 2.2, at 4 K one have access to the bright to dark spin flip rate I'sp1 =~ T'o.
In fig. 2.8 are plotted the measured I'g for the nine different quantum dots versus the dark
bright energy splitting AFE. It can be first noted that the measured rates are comparable and
even larger than the excitonic radiative rate. This is why the bright exciton is so depopulated
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Figure 2.6: Spin flip rates versus temperature. dashed line is obtained from acoustic phonon
model. The exchange interaction extracted from the fit is AE = 7.2 meV.

compared to the biexciton in all the QDs investigated. The results displayed in fig. 2.8 also show
an enhancement of the transition rate with AF. This indicates that large AFE splittings lead to
extremely fast depopulation of the bright state.

This rate quantifies the speed of the spontaneous emission of phonons resulting from such
a downward transition. Thus, it depends on the efficency of the coupling between one of the
exciton carrier and acoustic phonons.

PQ X R(AE)

R(AE) is the phonon spectral density in the quantum dot and quantifies the efficency of
the exciton-phonon coupling. It depends on the exciton wave function and on the quantum dot
geometry and dimensions[34], B5]. We calculate it in the next section and propose a quantitative
explanation for the increase observed in fig. 2.8.

Phonon spectral density

We shall only consider longitudinal acoustical (ILA) compression modes since longitudinal optical
(LO) phonons have energies of about 30 meV far above the dark - bright exciton splitting AE. In
the following we will perform this calculation both in the 3D and in the 1D case for the available
phonon modes. The NW geometry is obviously somewhere in-between these two extreme cases
that will only give us a qualitative behavior. We first consider the 3D situation. The phonons
dispersion is bulk-like, approximated by the Debye law w(k) = ¢k, with ¢; the sound speed for
LA phonons in the semiconductor material. Piezoelectric interactions and longitudinal optical
(LO) phonon couplings are neglected. The exciton-phonon interaction is dominated by the hole-
phonon interaction [37]. We therefore consider only the latter, whose Hamiltonian can be written,
in the second quantization representation with respect to the carrier states, as:

1
Hh = ﬁ Z a;rza;,fh,nn’(k)(bk + b—k)

knn’/
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Figure 2.7: Increase of exchange interaction energies AE between DS and BS measured on nine
QDs as a function of their excitonic emission energy.

where a;rl and a, are the hole creation and annihilation operators, bL and by are LA phonon

creation and annihilation operators. The index n represents the excitation level of the hole, and
k the phonon mode.
The coupling constant is defined as:

[ hk
(k) = — (K
fh,nn( ) Oh 2,0VC[ nn( )a

where oy, is the deformation potential for holes, V is the unit cell volume, p is the CdSe
volumic mass. The quantity F,,,/(k) is a purely geometrical form factor given by[38]

Far(h) = [ " B (1) (r).

—00

In order to evaluate the coupling constant for the lowest hole state f11(E) we consider the
harmonic oscillator potential ground state as the wave function of the hole:

o0 = e 4 (1) -4 (2) ]

where r is the position component in the xy plane and [, ,[, are respectively the in plane,
and out of plane (z direction) localization widths. For this wave function the form factor is easily

found as
kil N2 [kal\?
Fll(k:):exp !—( L2L> —( 9 ) ]
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Figure 2.8: Transition rate from BS to DS I'y,1 at 4K plotted as a function of splitting energy
AFE between DS and BS for nine dierents QDs. The dashed line is a guide for the eyes

For the lowest hole state, the phonon spectral density in the QD is:

o (N(E) +1x—zfn ) RIB(E — B(R)) + 6(E + B(R)]

R(E) =
After performing the summation over k in the continuum limit, introducing the quadratic
density of state of the phonons corresponding to the 3D case, the phonon spectral density is :

R(E) = R,E’¢(E),

with
(on)?
8m2hpc}

o —

The quantity R, contains all material parameters. The cubic dependence is due to the
quadratic phonon density of state in a 3D geometry, and the function g(E) is a function of the
energy and of the geometrical parameters of the QD|[39]

g(E)Z/g

s
2

( cos  exp [_(l;h);c? X ((:052( + i lj) sanCﬂ dc¢,

where ( is the angle of the wave vector k with respect to the normal to the z direction.

Describing coupling of the hole to phonons confined in a nanowire the same way as in a 3D
semi conductor bulk matrix seems a rough approximation. So we also considered the 1D case in
which the nanowire is taken as an infinitely thin monomode phonon wave guide. The phonon
density of state is constant and we consider that only the phonons propagating along the nanowire
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(z direction) can couple to the hole whose wavefunction is taken as 1, (r) oc exp[—(1/2)(2/1,)?].
The spectral density becomes:
Rip(E) < Egip(E),
with
I2E? ]

91D(E) = €xp {—%QC%

The phonon spectral density is linear with energy but the geometrical factor g1 p(E) has the
same gaussian energy dependence as g(FE).

R(E) (a.u.)

2 4 6 8 10
Phonon energy (meV)
Figure 2.9: 3D Phonon spectral density for 3 different QD sizes along the z direction (red curve:

[, =2 nm, green curve: [,=4 nm, blue curve: [,=6 nm). Smaller QD z dimension shifts the
maximum of the coupling constant toward the higher energies, and enhances its relative value.

Effects of the quantum dot size

After calculating the spectral density of the phonons in a quantum dot, we are now interested
on how the size of the quantum dot is influencing it and affects the transition rate I'g.

Three calculated 3D phonon spectral densities corresponding to three different [, values
(. = 2,4,6 nm) are plotted in fig. [2.9] Because of its increase with energy (linear for 1D, cubic
for 3D), R(AE)corresponding to QDs with smaller [, have their maximum enhanced and shifted
toward the higher energies. As a consequence, in small QDs, high energy phonons couple more
efficiently with the hole.

On the other hand by reducing the quantum dot size, one enhance the exchange interaction,
and therefore the bright dark splitting shown in fig. 2.7. This increase can be evaluated by the
calculus of the short range hole-electron exchange energy:

1
AE = AE3dW/!l/}e(r)QWh(r)Pdgh

where ),/5,(r) are the electron/hole wave functions, AFE34 is the exchange energy in the bulk
material ZnCdSe [40] (AE3? = 0.19 meV, for a Cdy 5Zng.5Se composition of the QD as measured
in high resolution TEM experiments [42]), and |¢3¢(0)|? = 1/ma’} with a% the Bohr radius of
the free exciton. To match the measured values of AE (from 4 meV to 9 meV), we set the lateral
confinement parameter [, at 4nm. When [, decreases AFE increases. And as, for the energy
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range we are interested in, the phonon spectral density R(FE) is decreasing with E, this would
indicate that the coupling is less efficent for large AFE.

As a conclusion, the size reduction has two opposite effects: It shifts towards high energies
and enhances the phonon spectral density, which is favorable to a better coupling of the hole to
the phonons, and at the same time it increases the energy of the transition AFE, which is making
this coupling less efficient.

Simulation of the spin flip rate increase.

In order to determinate which of the two opposite effects of the size reduction is dominating in
our structure, we calculate the phonon spectral density R(AE) for QD with different bright dark
splittings AFE owing to their different sizes. This way we can conclude on how is evolving the
hole-phonon coupling efficiency and obtain conclusions on how the spin flip rate should depend
on the exchange interaction. This process is summarized on a simple sketch in fig. a) for
a small quantum dot (large AF) and a big quantum dot (small AFE). The idea is to compare
the variation of R(AFE) resulting from a size reduction 6l,. If R(AFE) is increased, we can
conclude that the exciton-phonon coupling is more efficient for larger exchange interactions, as
we experimentally find.

The results, for the 3D and 1D cases described above, are plotted in figure fig. (b) and
(c). Because of the simplicity of the considered exciton wave function, the aim of the calculation
is neither to fit the experimental data nor to obtain a quantitative estimation of the transition
rates. However, we can show that the hole-phonon coupling efficiency is increasing with AFE in
both cases, which is not a trivial result as the cut-off imposed by the dimensions of the QD makes
this efficiency vanish for higher energy phonons. The effect of the confinement dimensions on the
phonon spectral density can be a good explanation for the trend measured by the experiment
in fig. The two situations considered here are extreme cases and we can expect a real
nanowire geometry to impose an intermediate behavior for the hole phonon coupling.

2.2.4 Consequence on the exciton luminescence

This increase of the exciton-phonon coupling efficiency with energy splitting has some conse-
quences on the temperature dependent exciton-biexciton saturation ratio under pulsed excitation.
This calculated ratio is represented in fig. as a function of temperature and energy splitting
AFE. We used the level scheme presented in fig. d) and the values of the transition rates
given in section 1. The relation between v,,1(4K) and AFE is taken from the function used as a
guide for the eyes in fig. 2.8. We also considered the increase of the dark exciton non radiative
recombination I'y,(T') with temperature following an Arrhenius law Iy, (T') ~ exp(—E,/kpT),
with an activation energy E,. For the two QDs studied in fig. 2.12] we have measured E, = 30+5
meV and we have taken E, = 30 meV in the model used in figures fig. and fig. The
particularity here is that the DS lifetime at T = 4K (1/I'y, = 5 ns) is rather short compared
to values reported in other systems (up to lus [41]) and is of the same order of magnitude as
the exciton radiative lifetime when temperature is raised up to only several tens of K. A char-
acteristic temperature behavior is shown in fig. 2.11] The exciton intensity is very small at low
temperature (particularly in the high splitting region), increases as temperature is increased up
to T'= 50 K, and finally decreases with higher temperatures. The effect of repopulation of the
bright exciton due to the DS to BS spin flip is compensated and overwhelmed by the exciton
population loss caused by the faster dark exciton non radiative recombination.
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Figure 2.10: a) Zoom of the high energy side R(AF) curve, for two quantum dots QDA and
QDB with size lf >1B which leads to bright-dark splittings AFEA < AEB. When going from
a big dot (QD A) to a small dot (QD B), the size effect alone leads to a increase of R3p, but
the reduction of size comes with a increase of the bright-dark splitting which reduces the final
value of R3p. (b) Calculated 3D hole-phonon coupling efficiency vs transition energy AE. (c)
Calculated 1D hole-phonon coupling efficiency vs transition energy

One can also observe that, at high temperature, the exciton emission intensity is still signifi-
cantly weaker than the biexciton. This last conclusion is very important and will lead us to one
of the arguments used in the next chapter dealing with the obtention of antibunching at room
temperature.

As shown in fig. representing the exciton-biexciton ratio versus temperature for 2 dif-
ferent QDs with different measured AE ( 4.5 meV and 8.5 meV ), this exciton line intensity
decrease is more sensitive for large AFE. However, at 300K, the bright exciton is still less lumi-
nescent for large splittings. The overall conclusion is very important and will lead us to one of
the arguments used in the next chapter dealing with the obtention of antibunching at room tem-
perature. Indeed, as we will discuss later, the phonon broadening of the lines occuring at room
temperature produces an overlap of the exciton and biexciton lines. Thus, at high temperature,
one can not discriminate the lines spectrally and measurement of the autocorrelation of one line
is inevitably degraded by contamination of the other line. We’ll also see that this contamination
has strong effect because exciton and biexciton are sending photons by bunches, which leads to a
high probability to measure coincidences at the zero delay (see chapter 1, section 3 and chapter
3, section 1). We will take great advantages on the fact that one of the line intensity is weaker
than the other, even at room temperature.
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Figure 2.11: Calculated Exciton/biexciton intensity ratio as a function of the exchange interac-
tion AFE and the temperature

2.3 Conclusion

In this chapter, after identifying unambiguously the nature of transitions observed on the spec-
trum, we investigated the dynamic of the neutral quantum dot, discussing the balance of the
transitions between the exciton states (dark and bright) and the biexciton. This led us to a
better understanding on how the quantum dot size was influencing the exciton-phonon coupling,
how the transition from the bright states to the dark states was affected and to explain the
temperature behaviour of this system. The conclusions we made will help us to explain the
possibility to use neutral quantum dots as efficient single photon source at room temperature.
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Figure 2.12: Exciton/biexciton intensity ratio as a function of the temperature for two different
AFE . Squares and dots are experimental values for 2 different quantum dots.
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Chapter 3

Single photon emission at room
temperature

For some applications using the ability of an emitter to send single photons, such as quan-
tum cryptography [47], it is desirable to operate at room temperature. Amongst the numerous
different emitters developped in the last 10 years, the vast majority are unable to fullfill this
requirement. In this chapter, after defining the state of the art, we will demonstrate that the
emitter we are studying in this thesis proved to be still operational at room temperature. In
particular, we’ll describe its advantages, quantify the degradation of the single photon signal
quality with temperature, and study its resistance against temperature. The source of single
photons is the biexciton recombination. This original choice is justified by the conclusions of the
work exposed in chapter two. Specificities of the optical properties of nanowire quantum dot led
us to the first demonstration of antibunching at room temperature from an epitaxied quantum
dot.

3.1 State of the art

In this section we summarize briefly the different existing single photon sources, underlining their
maximum operating temperature resistance. In fig. [3.1]is provided a list of the different reported
single photon sources.

Two structures, NV centers and nanocrystals, are already routinely providing single photons
at room temperature. For nanocrystals, the very common blinking phenomen is degrading their
ability to emit single photons on demand. However some solutions were proposed to reduce and
eventually anihilate such inconveniants during the last few years [55, 56]. The demonstration
of single photon emission performed at room temperature in this thesis is the first reported on
epitaxied quantum dots. AIN/GaN quantum dots [52], CdSe/ZnSe self assembled quantum dots
[53], and the first generation of Cdse/ZnSe nanowire quantum dots [54] already exhibited single
photon emission at high temperature (~=200K).

The second point we emphasize is the radiative lifetime of the emitters displayed in fig. [3.1]
This time is limiting the single photon emission rate. We measured for the biexciton ( chapter 2,
section 1) a radiative lifetime of 300 ps. This means that the emission rate (2.5 Ghz) potentially
reacheable is an order of magnitude larger than for all the other emitters.
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No No mK

Atoms

(Kimble, 1977) 16.5 ns
lons

(Dietrich, 1987) No No mK 3.5ns
Dye molecules

(Lounis 2000) No Yes 300K 3.8 ns
NV centers

(Kurtsiefer 2000, No No 300K 11.6 ns
Beveratos 2000)

Carbon nanotubes

(Hgele 2008) No No 90K 0.25 ns
Nanocrystals

(Wang 2009) No No 300K 4.1 ns
Quantum dots

(Bounouar 2011) = No 300K 0.3 ns

Figure 3.1: Summary of principle existing single photon sources

3.2 Antibunching measurement.

3.2.1 Pulsed and continuous excitation

We have two options concerning the excitation mode of the quantum dot during the antibunching
measurement. Between these two options, the one which is allowing us to obtain the best signal
to noise ratio for an integration time as short as possible is the best. In fig 3.2 are presented
typical autocorrelation histograms for continuous and pulsed excitation obtained at 4 K. In fig
3.2 a), the antibunching in continuous excitation is represented by the characteristic dip around
the zero delay. The correlation time of this symetrical dip is such as:

1
;d = Yrad + Ypump

Vrad is the radiative rate and 7pump is the pump rate. Thus, the correlation time of the
antibunching is at best the radiative lifetime. It is reduced when the pump power is increased.
The conditions to observe the antibunching is to use a set up with a time resolution inferior
to the radiative lifetime of the emitter (here 300 ps), and to set the counting channels time
at least 10 times smaller (7. = 30 ps). Let’s note that the fast APD’s with the required time
resolution have a quantum efficiency (25%), twice smaller than slow APD which could be used
under pulsed excitation. The advantage is that at saturation, the biexciton emits one photon per
lifetime whereas in pulsed excitation, the emission rate is limited by the excitation rate (yg = ﬁ
) of the pulsed laser (here 13 ns). The intensity gain (compared to pulsed mode) is 71:7:1 ~ 40.

In the situation where the single photon source intensity at saturation under continuous
excitation is 4.10° photons per second. 2.10° photons per second hit each APD, and the detection
counting rate for each APD is

25

N1 =Ny = 2.105.ﬁ = 5.10% counts.s™

1

We considere to have an acceptable signal to noise ratio when we have N, =25 counts per
channel. The statistical noise is v/25 = 5 counts, and the signal to noise is % Let us calculate
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Figure 3.2: Typical biexciton autocorrelation histograms. a) under continuous excitation, b)
under pulsed excitation

the integratio time T needed to obtain this signal to noise ratio under continuous excitation.
The number of coincidence per counting channel should be, for a poissonnian source:

NC = Nl.NQ.TC.T,

Thus the corresponding integration time is.

N
= Nl.NQ.Tc =320

In fig 3.2 b) is represented a typical biexciton autocorrelation histogram at 4 K. Each peak
is separated by 13 ns and represents the coincidences recorded after successive excitation pulses.
The zero delay pulse correspond to coincidences occured after the first excitation pulse. The
antibunching signature is the abscence of zero delay peak in the histogram.

For the pulsed mode, we only need to set the counting channel time equal to the excitation
repetition time Tr. The saturation intensity of the emitter has to be divided by 40, as it is only
excited every 13 ns. And we take into account that slow APD with cumulated time resolution of
700 ps are appropriate, and that they have a quantum efficiency of 50%. The photons detected
per second are N; = Ny = 2.5.103counts.s 1

Therefore, the integration time becomes, in this case:

Ne

T—__ "¢
Ni.No.7

=300s

For the two situations, the integration time is similar. This is due to the very short radiative
lifetime of the emitter, ie the large loss of intensity under pulsed excitation, which compensates
the advantage given by the large counting channel time. However this configuration has other
interests.

Depending on the quality of the single photon emission, this zero delay peak attenuation
can be relative. And it’s much easier to estimate the quality of the single photon emission
by measuring the area of the central peak compared to the others. This is especially true at
high temperature, where the degradation of the antibunching is very important, and for high
excitation powers, where the correlation time of the antibunching under continuous excitation is
very short. The last reason is more technical. When we performed this study, the only continuous
laser at our disposal was a 405 nm diode. The pulsed laser permitted us to excite the quantum
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Chapter 3. Single photon emission at room temperature

dot below the ZnSe barrier, which revealed to be a cleaner and more efficient excitation. It also
created less damages on the nanowire after long exposition, especially at high temperatures.

In the following, the presented antibunching measurements - and pulsed cross correlation
measurements - were obtain with a 475 nm pulsed excitation.

3.2.2 Measurement

One can show that autocorrelation measurements on a signal composed by N emitters exhibit
ag?(0) =1— % [58]. Thus, zero delay autocorrelation of a true single photon source should
be below 0.5. In fig. b), is shown the autocorrelation of the biexciton at 4K, exhibiting a
very good antibunching. In fig. ) is shown the autocorrelation of the same line at 300K.
The antibunching was degraded, but it is still demonstrating that the emitter is a single photon
emitter. (¢2(0) =0.48 from raw datas)

Similar result was obtained on an other quantum dot at 290K with a non corrected g2(0) =
0.42. A few other quantum dots exhibited antibunching at 250 K and many at 200K. The
main experimental problem for such high temperature measurements was the destruction or
deterioration of the quantum dots with the joint temperature and optical excitation.

The degradation of the antibunching was progressive as temperature was increased (see fig.
. We believe that one part of this degradation is due to the exciton parasitic emission caused
by lines enlargement (around 18 meV at 300K), we'll see in the last chapter of this manuscript
that this enlargement is only due to phonon braodening and not spectral diffusion. But the
mixing between exciton and biexciton is not the only reason. In the next sections we explain
how we extract the antibunching at zero delay value, how we remove noise background from
the raw datas, and we discuss the possible causes of measurement degradation occuring with
temperature.

3.2.3 Evaluation of ¢®(0)

The ¢2(0) value is the area of the zero delay peak divided by the area of one of the other peaks. In
order to avoid possible errors on this evaluation due to statistical fluctuations and any bunching
effect (not present in our system) of the non zero peaks intensity, we normalize the autocorrelation
figure more rigorously. The coincidences occuring at non zero delays are uncorrelated. (all
the characteristic times of the quantum dot are much smaller than the repetition time of the
excitation of 13 ns). Thus they are governed by a poissonnian statistic. It is possible to calculate
the theoretical number of coincidences we should obtain for each peak if we know the count rate
for each APD and the integration time:

Ne = N1.No.T.Tg.

N1 and Ny are the count rates on APD 1 and APD 2, T the total integration time and Tg is
the repetition time of the laser. At 300K, the number of counts rate per APD was approximately
4000 s~'. We divide the peaks area by the calculated quantity N.. In fig. ) the numbers
indicted above each peak are deduced from this renormalisation. At 300K, the number of counts
rate per APD was approximately 4000 s~'. For the non zero delay peaks, fluctuation of these
numbers around 1 is due to poissonian statistical fluctuation. The value of g?(0) = 0.48 is also
obtained from the renormalisation.
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Figure 3.3: (a) and (b): spectra at 4K and 300K. (c) and (d): antibunching figure of the biexciton
at 4K and 300K

3.2.4 Noise substraction

One can also evaluate degradation of the antibunching due to the noise coming from luminescence
background and APD’s dark counts. This noise is poissonian, and has no correlation with the
single photon emission. One can show that, if we consider a signal to noise ratio p = SJFLB, with
S the signal intensity and B the noise intensity, then the corrected zero delay normalized peak
area is [58]:

(2)

gcorr(o) = (92(0) - (1 - PZ))/pz.

After noise substraction (the noise was estimated from spectra) we found a corrected g2,,..(0) =
0.23. We discuss in the following why we don’t obtain a perfect antibunching with g%)nr(O) ~ 0.
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Figure 3.4: Degradation of antibunching with temperature. Blue dots are the measured non
corrected ¢g2(0), and red dots are the corrected values g2,..(0).

3.3 Biexciton as single photon emitter: pollution from the exci-
ton
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Figure 3.5: Neutral quantum dot spectra under pulsed excitation from 100K to 300K

In chapter 2, we concluded that the exciton luminescence intensity is weaker than the biexci-
ton because the bright exciton state is very efficiently depopulated by a spin flip process towards
the dark exciton state. This conclusion also holds at high temperature as shown in fig. .
Thus we choosed the biexciton as the most adequate transition for single photon production.

Exciton and biexciton send photons by bunches since they come from the same radiative
cascade, thus pollution of one line by the other on the zero delay correlation function is enhanced.
We can estimate the effect of the pollution of the biexciton single photon signal by the exciton
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parasitic emission. Let us suppose we make the autocorrelation of a signal mixing exciton and
biexciton emission such as the exciton fraction « is:

Iy
Ipw + 1y

o =

with I, and I, the integrated intensities of the exciton and biexciton lines respectively sent
towards the 2 APD’s.
The general expression of the autocorrelation function derived in chapter 1 is:

we decompose this expression with the 4 possible configurations for the occurence of a coin-
cidence caused by the 2 emission lines.

(L + 1n)? [p(X(lT)) XX (L2p(X(7) | X(0) + Lneap(X () | XX (0))

+ LLop(XX(7) | X(0)) + Ip(XX(7) | XX(0)) (3.1)

g (r) =

with p(X(7))and p(XX (7)) the probability to detect a photon coming from the exciton and
from the biexciton respectively.

Under pulsed excitation, and for —Tr/2 < 7 < Tgr/2, with Tg the repetition time of the
pulsed laser, ie after the first excitation pulse and before the second (the excitation pulses dura-
tion being around ps), on the 4 terms composing the right side of eq. only the cross terms
are non-zero, so:

1 I Izmp T) ’ XX(O)) + 1 IzIz:cP(XX<T) ‘ X(O)) (3 2)
(Lo + Iax)? p(X(7)) +p(XX(7)) (Lo + Lax)? p(X(7)) + p(XX(7)) '

g3 (1) =

The relation between p(X (7)) and p(XX(7)) can be deduced from the ratio between the
lines intensities:
Iy

p(X (7)) = T—p(XX(7)) (3.3)
xrxr

If we call g%(0) , the quality of the antibunching and, the relative area of the zero delay peak,

and not the value of the pulsed autocorrelation function at 7 = 0, this quantity can be expressed
by integrating eq. between —Tgr/2 and Tr/2.

we inject eq. in eq. after integration,

s Dwle (TR p(X() [ XX(0)  Lule [T p(XX(7)] X(0))
I (O) a (Iac + wa)Q. /—TR/Q p(X(T))(l + %:) " (Ix + wa)Q' /—TR/2 P(XX<7'))<1 + ﬁ)

200\ _ Iy ? Log Tr/2 p(X(7) | XX(0))
7(0) = [(Ix+fm)] @ +Im>'/_TR/2 X()

Pl
Lo 17 L TRI2 p(X X (7)
* |:(I$ + Ia::v>:| (Iz + I:w) . /—TR/2 p(XX

| X(0)
()
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Chapter 3. Single photon emission at room temperature

We express this equation with the exciton fraction « defined above.

o)y o [T X [ XXQ) | TR (XX () | X(0)
g°(0) =1 >/TR/2 oxmy el /TR/Q HXX(T)

(3.4)

J- Tr/2 % is the central peak relative area of the cross correlation between the

Tr/2  p(X(7))
exciton and the charged exciton. For the central peak, W is non-zero for positive

delays. It correspond to the case where the biexciton photon is the start of the measurement.
In the same idea, % represents the cross correlation between the exciton and the
biexciton, but the central coincidences occur when the exciton pulse arrives to the correlation
card delayed with respect to the biexciton pulse. Thus, between —Tx/2 and Tg/2, this function
is non zero only for the negative delays. In fact, 2 (X’E&liiig(o)) nd 2 (X();(X)(\X)go)) would represent
the same experiment except one difference: between the two experiments we would have switched
the wires connecting the APD’s to the counting card. After this, it is immediate to conclude

that:

/TR/2 p(X(7) | XX(0)) :/TR/2 p(XX(7) | X(0))
~rp2 P(X(7)) ~rp2 PXX(7))

therefore eq. becomes

200) = [02(1 = a) + a1 — a)? /2 p(X(r) | XX(0))
g(0) = [@*(1 —a) +a(l ”'/_TR/z p(X(7))

After rearranging the terms with « :

) — it [T P(X(7) | XX(0)
PO =at-a) [ ) &

This is the product of a function depending on the exciton fraction a and f T%é 32 %ﬁg{)(o))

which is the value of the normalized zero delay peak of the cross correlation between the exciton
and the biexciton. Note that for a pure excitonic emission (o = 1), or a pure biexcitonic emission
(a = 0), the g2(0) is null, as expected for a pure single photon source. Between these two extrema
there is a maximum (o = 0.5) where the pollution (of the exciton by the biexciton or of the
biexciton by the exciton) is the most efficient. In our case, the biexciton intensity is always,
a <0.5. In fig. is plotted (o — 1) as a function of a. This is the dependance of g?(0) with
the exciton fraction.

/- T;}é % %ﬁ%(o)) quantifies the correlation between excitation and biexciton emissions and
is easily measurable experimentally. As explained in chapter 1 sec. 3 on the bunching effect, it
takes values larger than 1. Thus the correlation between the exciton and the biexciton emissions
enhances the degradation of the antibunching. In fig. is presented a typical measured cross
correlation between exciton and biexciton under pulsed excitation. Note that the central peak is
symetrical in the measurement because the resolution of the setup (700 ps here) is much larger
than the 300 ps of the biexciton lifetime, which, in principle, rules the decrease of the central
peak for positive delays. The normalized zero delay peak area is a direct measurement of the

correlation part of eq. We measured here fTR/2 W = 3.5.
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Figure 3.6: Dependance of ¢(?(0) with a

Therefore a pollution of the biexciton antibunching by an exciton fraction « in the measure-
ment of 5% results in a measured ¢g2(0) of 0.17. Thus, because of the correlation between photons
emitted by excitons and biexcitons, the degradation of the biexciton antibunching by the exciton
is much more efficient than a random poissonnian noise.
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Figure 3.7: Cross correlation of the exciton and the biexciton under pulsed excitation

Weakness of the bright exciton was an advantage that other epitaxied structures able to keep
luminescence at high temperature such as GaN quantum dots don’t have. FExciton-biexciton
mixing caused a too strong degardation of the antibunching (g%(0) = 0.7 at 200K) [52]. Abscence

of wetting layer is the cause of the second advantage proposed by the nanowire quantum dots:
resistance against temperature.
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Chapter 3. Single photon emission at room temperature

3.4 Robustness against temperature

The antibunching degradation with temperature also comes from a decrease of the signal to
noise ratio with the activation of non radiative processes. This effect can be quantitatively
evaluated by investigating the temperature dependence of the biexciton lifetime (fig. . At
low temperature, the biexciton decays radiatively with a decay time (see chapter 2)

1

T =0.3ns

T = Trad =

The decay rate I',.4q is constant up to around 100 K and then increases due to the appearance
of non-radiative channels represented by the rate ~,,:

I' = Frad + Ynr

100

) Delay (ns)

Figure 3.8: Temperature dependence of biexciton decay time

The measured values of vy, (T) follow an Arrhenius law (fig. [3.9):

__Ea
’Ym"(T) = yoe *BT)

with activation energy Ea ranging from 40 to 170 meV depending on the quantum dots (fig.
. Roughly speaking, the activation energy quantifies the energy barrier for the biexciton to
disappear non-radiatively.

The actual mechanism is likely to be an escape of a hole to a nanowire surface state or to
the ZnSe barrier (holes are less confined than electrons in CdSe/ZnSe heterostructures). With
the latter assumption, the largest observed values of Ea are not compatible with a pure CdSe
composition in the QD (valence band offset ~ 300 meV), but rather with a Zn,Cd;_,Se ternary
alloy with & ~ 0.5 Zn intermixing. This QD composition is consistent with the TEM analysis
(briefly presented in chapter 1). fig. m a) shows that low emission energy QDs exhibit large
activation energies, fitting Wlth the fact that more energy is required to escape from a deeper
potential well (fig. b)). According to this criteria, low emission energy QDs should be more
robust with respect to temperature.

This study is consistent with temperature resolved macroPL of as grown quantum dots.
When temperature is increased photoluminescence energy of quantum dots are shifting because
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Figure 3.9: Evolution of the non radiative rate with temperature for 3 different nanowires
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Figure 3.10: a) Activation energy versus exciton emission energy, b) simplified scheme of the
interpretation of result presented in (a): E, is smaller for good confinement, ie small quantum
dots.

of dilatation of the crystal lattice . Such shift were measured and fitted using the Varshni’s
empirical expression.

aT?

T+ 8

The parameters values extracted from the fit are: o = 9.23 ¢V/K and § = 234 K.

In order to study the evolution of photoluminescence of an ensemble with temperature, we
removed from the experimental datas the single quantum dot red shift described above.

In fig. a) are presented macrophotoluminescence experiment results for increasing tem-
perature, after removal of the single quantum dot red shift caused by temperature on single
quantum dots.

Despite this removal we still observe a red shift. This is due to the dependence of the
activation energy, which is not the same for every emission energy. Low energy quantum dots
are resisting better than high energy quantum dots. The high energy side of the gaussian
distribution of luminescence energy is decreasing faster than the low energy side.

We reproduced theoretically this experiment by applying to a gaussian photoluminescence
energy dispersion, similar to the experimental measurements, an activation energy determinated

by the linear fit presented in fig. Results of this simulation are plotted in fig. [3.11b). The

E.(T) = E;z(0K) —
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Chapter 3. Single photon emission at room temperature

ensemble redshift simulated from 4K to 260K is around 20 meV, which is less than the 30 meV
observed in the experimental datas. It can come from the fact that we don’t really know how
are resisting quantum dot emitting at energies lower than 2.25 €V, as we didn’t identified any
in microPL experiments. We don’t even know if contribution to the macroPL curves at such
small energies are coming from quantum dots. These macrophotoluminescence experiments are
done on “as grown sample”. The nanowires are standing on the ZnSe buffer, which luminescence
(from defects) is also contributing to the measurement. Anyway, this shift observed in macro PL
confirms the observations done on single nanowires.

a) b)
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Figure 3.11: a) Experimental macroPL after removal of single quantum dot red shift, the red line
represents the red shift of the emission caused by the temperature increase. It is measured at 20
meV, b) Simulated macroPl, black dashed line represents the red shift of the emission caused by
the temperature increased from 20K to 260K. This shift is around 30 meV.

We conclude from this that low energy quantum dots are resisting better to temperature and
are more appropriated for single photon emission at room temperature, from this point of view.

3.5 Conclusion

We have observed antibunching at 300 K on the biexciton line of CdSe/ZnSe nanowire quantum
dots. This is the first time such a result is obtained on an epitaxied quantum dot.

The two important conclusions of this chapter are in contradiction. In one hand, we saw, in
the chapter 2 devoted to the influence of the dark exciton, that the bright exciton intensity tends
to be weaker for high emission energy quantum dots, reducing the pollution of the antibunching
measurement at room temperature. On the other hand, we showed that low energy emission
quantum dots were resisting better to temperature. Thus, the single photon quality one expect
from a room temperature emitter is found in quantum dots which show the lowest resistance
to temperature. In principle, a trade off should be found by picking up quantum dots emitting
in average energy, which could show a good temperature robustness, and still have a reduced
excitonic intensity.

It has to be said that all this study on the exciton and on temperature resistance was done
after obtention of the room temperature antibunching. Therefore, no strategy in the choice of
the potentially good quantum dots was adopted, which may have optimized this demanding
experiment.
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Chapter 4

Dynamic of a charged quantum dot

Until now, we only dealt with neutral quantum dots. In this chapter, we study the dynamic of
charged quantum dots. Excitonic or biexcitonic recombinations can occur also in the presence of
an excess charge. Coexistence of emission lines coming from charged and non charged excitons
on the same spectrum indicates that there is a probability to capture a single charge in the
quantum dot. Thus, the quantum dot switches from a “neutral” state to a “charged” state
and vice versa. In this chapter we describe how we can identify emission lines of such charged
quantum dots, model and optically probe the relations between its different states by photon
correlation technique. Then, we will show that this experimental technique applied on biexciton
lines allow us to investigate the fine structure of the excited trion, and obtain informations about
its relaxation dynamic towards the trion state. At the end we will explain how such measurement
provided an indication on the quantum dot charge type.

4.1 Characterisation
CX
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Figure 4.1: Typical spectrum of a charged quantum dot.

A typical spectrum of a charged quantum dot is plotted in fig. The five lines correspond
to different transitions of the same quantum dot. They come from recombinations of the exciton
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Chapter 4. Dynamic of o charged quantum dot

X, the charged exciton CX (trion), the biexciton XX, and the two lines labeled CXX1 and CXX2
correspond to the recombination of the charged biexciton towards two different states of the
excited trion. We will discuss this last point in section 3 of this chapter. For the understanding
and the modeling of the cross-correlation measurements, we will use the equation derived in
chapter 1, which is allowing us to simulate the cross correlation figure with a simple set of rate
equations. In the case of a radiative cascade (2 — 1 — 0) the cross correlation between 1 and 2
states gives (see chapter 1), for 7 > 0

(2) ( ) _ (nl(T)/nl(O) = 1)

91217 ny(7)

with njand no populations of the two excited levels.
And for 7 <0

(2) ( ) _ (nQ(T)/nO(O) = 1)

g_T
-2 na(T)

with ng the ground state population.
The set of rate equations we will use is represented by the scheme pictured in fig.
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Figure 4.2: (a) Power dependence of the different lines of the charged quantum dot. The inten-
sities of the two lines CX X; and CX X were added. (b) Decay time curves of the 5 lines at
very low excitation power.

The power dependencies of these transitions measured under pulsed excitation are plotted
in fig. a). Only the exciton shows linear dependence, the others, XX, CX and the sum of
the 2 lines of CXX show quadratic dependence. The exciton saturation value is lower than the
biexciton because of the presence of the dark exciton state as discussed in the chapter 2. The
charged exciton stauration value is also larger than the biexciton, which would indicate that
the quantum dot is more often charged than neutral. And we can also note that the charged
exciton is saturating at a larger value than the charged biexciton. This would imply that some
transitions from the charged biexciton recombination are missing or are non radiative.

In fig. b) we plotted the decay curves for the five lines, at low excitation power in order
to avoid effects of radiative cascades. We measured the following decay times: 74(X) = 320 ps,
74(CX) = 400 ps, 74(XX) = 250 ps, 74(CXX) = 200 ps. Decay time measurements on CXX1
and CXX2 give the same result. It is not surprising as we are here measuring the initial state
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population evolution with time, and as these two transitions have the same initial state (charged
biexciton), they show the same decay curve. The exciton has a shorter decay time than the
charged exciton, which is unusual. This is also the consequence of very large transition towards
the dark exciton state, which is making the decay of bright exciton population faster. The charge
states of the quantum dot don’t have such dark states.

These preliminary measurements provide informations about the indentity of the lines but
they are unsufficient to demonstrate unambiguously their nature and to describe the quantum
dot dynamic.

4.2 Dynamic of the charged exciton

Cross correlation measurements involving the charged exciton were performed by Gregory sallen
during his thesis [60], on the first generation of nanowire quantum dots which were already
exhibiting charge exciton line. As it can be seen in fig. the line we attribute to the charged
exciton is not at equal distance between the exciton and the biexciton as it has been reported
by Sallen et al [59] or in this reference [61], for CdTe/ZnTe SK quantum dots, but is shifted at
lower energy, closer to the biexciton. This can come from a different confinement in the quantum
dot or by a different doping of the CdSe. We will discuss the problem of the doping type in an
other section of this chapter (section 3).

The set of rate equations we will use to fit the datas is represented by the scheme pictured
in fig. As these experiments are done under continuous excitation, we represent the exciton
pump rate by the quantity r, and the charge capture rates by vp, e, for the hole and electron
respectively. In principle the two last quantities are not equal, and we didn’t justify yet the fact
we describe the first charge captured as a hole in the model. We will try to bring arguments for
this choice.

Charged Quantum dot Model
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Figure 4.3: Model for a charged quantum dot
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4.2.1 Neutral lines

The cross correlation measurement between exciton and biexciton shows similar result as the
measurement exposed in chapter 2 about neutral quantum dots. However there is small differ-
ence. In fig. we plotted the cross correlation figure obtained between exciton and biexciton.
We find the typical figure of a radiative cascade with the asymetrical shape and the character-
istic bunching at zero delay. In chapter 2, we explained that the zero delay value of the cross
correlation function was giving an information about the presence of the exciton in the steady
state. Here we measure

2 pZE(Ov 0)
g°(0) = =5.5
(0) 12 (00)
This means that p,(o0) = % = 0.18. This is lower than the probability to find an exciton in

the neutral quantum dot (p=0.23). This can be explained by the fact that there is now more
states in the quantum dot. However, from one quantum dot to the other, it’s difficult to make
definitive conclusions as the transition rate from bright to dark state of the exciton can change
very much, and has a large influence on this measurement (chapter II, section 1).

& a [9)]
T

N
T

Normalized coincidences
w
T

Delay (ns)

Figure 4.4: Cross correlation of the exciton and the biexciton

4.2.2 Charged lines

We now perform cross correlations between the charged exciton CX line and the neutral lines (X
and XX). In fig. is plotted the cross correlation figure between exciton and charged exciton.
It is also asymetrical but there is no bunching as it was the case between the exciton and the
biexciton. Indeed, the two states are not linked by a radiative cascade, but one need a charge
capture to go from one to the other. If we consider the positive delays, in fig. the start
is given by the emission of a photon coming from the exciton. Thus at 7 = 0, the quantum
dot is empty( (0) state ). The characteristic time of the coincidences increase with the delay
corresponds to the time it takes for the quantum dot to be pumped in the charged exciton state.
This can be done by the capture of 3 charges, or 1 exciton and 1 charge. For the negative delays,
the start is given by the emission of a photon coming from the charged exciton recombination.
At 7 = 0, there is a single charge in the quantum dot, the short time to recover an exciton in
the quantum dot is the charge capture time. This is the same process to understand fig.
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4.2. Dynamic of the charged exciton

b), the cross correlation between CX and XX. This time, for the positive delays, the start is
the recombination of a biexciton, and the long time is the time taken by the quantum dot to be
pumped from the exciton state to the charged biexciton state. For negative delays, at 7 = 0,
there is a charged exciton in the quantum dot, and the short time needed to have a charged
exciton is the time needed to capture a single charge. To fit the datas, we set the exciton pump
rate r =4 ns~', y, = 0.28 ns~!, 7. = 2.5 ns~!. The probability to capture an electron is higher
than the probability to capture a hole. But, the doping nature of the quantum dot depends also
on the density of free holes or electrons around the quantum dot, thus these measured capture
rates are not in contradiction with the hypothesis we made on the doping nature (the hole is
captured first).
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Figure 4.5: a) Cross correlation between exciton and charged exciton. b) cross correlation
between charged exciton and biexciton.

In fig. the charged biexciton (CX X1+ CXX2)/ biexciton cross correlation histogram is
plotted. We find a similar non symetrical shape of the antibunching, caused by the non symmetry
of pumping rates necessary to go from an exciton to a charged biexciton and to go from a biexciton
to a charged biexciton. To fit this histogram, we set the pumping parameter such as: 7 = 7 ns™!,
Y = 0.2 ns~!, 4. = 0.5 ns~!. These rates are larger than the pumping rates used for the fit
of cross correlation figures involving the charged exciton. This is because we used an excitation
power larger in order to have enough counts coming from the charged biexciton and the exciton.
At relatively low excitation power, in the continuous excitation regime, the exciton is intense,
despite presence of the dark exciton, and cross correlation between charged exciton and exciton
is easier. At high power, the exciton becomes small but lines corresponding to the biexciton and
the charged biexciton are dominating, and the cross correlation measurement between the two
charged lines is possible.

These measurements are unambiguous proof of the nature of the lines present in the spectrum
plotted in fig. We showed that the lines labeled “exciton” and “biexciton” were linked by
a radiative cascade, as it was the case for neutral quantum dots. We showed that, a charged
exciton line is coexisting with the neutral lines. The charged exciton is not as directly linked
to neutral states (XX and X) as it is for a radiative cascade. One need a charge capture to
go from an exciton to a charged exciton. In the next section we demonstrate that the two low
energy lines CXX1 and CXX2 are coming from the recombination of an other charge state of the
quantum dot (the charged biexciton CXX), and that this recombination leads to a much more
complicated situation from the dynamic point of view.
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Figure 4.6: Charged biexciton (CX X1+ CX X2) / biexciton cross correlation

4.3 Relaxation dynamic of the excited trion

Negatively charged biexciton was already observed in SK CdSe/ZnSe quantum dots[62], with
two characteristic emission lines, corresponding to two transitions towards two different states of
the excited trion. We propose here to use the photons cross-correlation technique to probe the
dynamic of the latter. After recalling the fine structure of the excited trion, we will show that
these experiments can provide us some interesting informations about spin relaxation mechanisms
and on the doping nature in the quantum dot. Concerning the last point, we will consider from
the beginning that the excedentary charge in the quantum dot is a hole, and we will justify this
hypothesis in the last part of this section.

4.3.1 Charged biexciton recombination

In fig. a), we draw a scheme of the charged exciton recombination. The final state of this
transition is a single hole in the quantum dot. The two states of the hole 3/2 spin projections -3/2
() or +3/2 (1)) are degenerated if no magnetic field is applied. Since the charged exciton total
hole spin M is zero, there is no Electron hole exchange interaction and, as a consequence, a single
resonance appears in the optical spectra (line labeled CX). The situation is completely different
for the charged biexciton recombination. As illustrated in fig. b), The charged biexciton
is composed by two excitons in the s shell and an excedentary hole in the p shell. When one
exciton is recombining the final state is an exciton in the s shell and a hole in the p shell: we
call this complex excited trion that we label X™*. The fine strucure of this excited particle
is complicated. As it consists of an electron-hole pair in the s-shell and a hole in the p-shell,
there are 23 = 8 possible spin configurations, which naively leads to the eightfold degeneracy.
The latter is partially lifted if we take into account the h-h and e-h interaction energies. By
describing the fine structure of the final state of the charged biexciton, one can understand the
origin of the lines attributed to the charged biexciton recombination, and one can also explain
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the mechanisms involved in such transitions.
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Figure 4.7: Scheme of the transition between a) charged exciton and single hole, b) charged
biexciton and excited trion

4.3.2 Excited trion fine structure

In fig. we explain how are organized the excited trion spin configurations. Because of
holes-holes and electrons-holes carrier interactions , the eightfold degeneracy of X is lifted to
four degenerate doublets. The “singlet states” are antisymetrical and are composed by two spin
antiparallel holes in the s- and p-shell defining a spin singlet, with total hole angular momentum
M=0, and total spin z-projection f, = +1/2. These states can be written as follows in the
representation | M, M, f, >:

1 1

10,0, = —= [(pls = Uyl 1

with f)5, 1}y, hole spins in the s and p shell respectively, and 1 the electron spin. Only one of
the possible spin configurations is presented for convenience.

The “triplet states”are 6 symetrical M=3 states. Their total spin z-projections are respectively
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Figure 4.8: Spin configurations of the 4 excited trion states (Only one of the possible electron
spin configuration is presented for convenience.)
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Total energy of the singlet state is higher than the triplet states due to the isotropic h-h
exchange interaction being much larger than the e-h exchange interaction. The positive excited
trion fine structure has been calculated by taking into account exchange interaction and coulomb
interactions [64], and has been confirmed experimentally by photoluminescence and photolumi-
nescence excitation experiments [64 65]. In fig. is described this fine structure, and the
possible transitions from the charge biexciton to excited trion. We also indicated the total an-
gular z-projections of the different states, this quantum number defining the optical selection
rules. Thus, the transition from the charged biexciton (F, = +3/2) and the lower triplet state
(F, = £7/2) is forbidden. We identitfy the higher charged biexciton energy line in the spectrum,
labeled CXX1, to the transition from the charged biexciton to the state ff,f1sl, and CXX2, the
lowest energy line, the transition to the higher energy triplet state % [(frpdhs + Uptrs) 4] The
transition from the charged biexciton to the singlet state is optically allowed. However, we don’t
observe it in photoluminescence spectrum. The line corresponding to such a transition should
appear at low energy, at an energy difference from CXX1 much larger than the energy differ-
ence between CXX1 and CXX2. This transition was observed in positively charged InAs/GaAs
quantum dots [67], but was at least one order of magnitude weaker than the two others. The
equivalent of this transition in negatively charged CdSe/ZnSe quantum dots, exhibiting charged
biexciton lines, was also not observed [62] [63].
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Figure 4.9: Excited trion fine splitting and observed transitions from the charged biexciton the
the excited trion. Only electron spin down configuration is presented for convenience.

Spectroscopy on the charged biexciton gives us the opportunity to probe the fine structure of
the excited trion, which is much more complex than the charged exciton fine structure. In this
context we will see, in the next section that photon correlation is a powerful technique to study
its spin dynamic.

4.3.3 Spin Relaxation in the excited trion

From the explanations above, we understand the origin of the observed charged biexciton lines,
but we now have to understand how the excited trion can transit towards the charged exciton
state. To do so, we will perform cross correlation measurements between the charged biexciton
lines and the charged exciton line. In first approximation, one should observe a cross correlation
figure similar to the measurements on exciton-biexciton radiative cascades. However, we saw in
the previous discussion that an intermediate state (excited trion) exists between charged biexciton
and charged exciton. Thus, we don’t deal with a direct radiative cascade. We need to study
the relaxation of the excited trion to the charged exciton state to understand the correlations
between photons emitted from the charge biexciton and from the charge excitons. In fig.
are represented the relaxation processes of the excited trion leading to the charge exciton state.

After the transition CXX1, the quantum dot is projected in the state f,fs). The two holes
(on the p and s shells) have parallel spins. Because of the Pauli principle, the p hole has to
spin flip before relaxing in the s shell and the final state of this spin flip is the singlet state
% [(fpls — Upfrs) 1. The antisymetrical singlet state has the same symetry as the charged

exciton (as a fermion). Therefore the excited trion transits through this state before relaxing
towards the charged exciton state.

The characteristic time of the p-hole spin flip can be of a few hundred picoseconds, (~ 1 ns
in InAs/GaAs quantum dots [67] and around 70 ps for weakly confined p states in CdTe/ZnTe
quantum dots). The singlet state can then relax to the charged exciton state

After the transition CXX2 the quantum dot is projected in the state % [(frpdhs + Uptts) 4.

The total angular momentum z-projection of this state is f, = j:%, the same as the singlet state
. Thus it only needs a relative phase m—shift for spin configuration to be excited to the singlet
state and subsequently relax in the charge exciton state X . This phase shift is considered as
very fast, at least an order of magnitude faster than the spin flip of the hole[66]. As a consequence
the relaxation process following a CXX2 transition should be much faster than the relaxation
process following a CXX1 transition. Then the situation can be simplified, as shown in fig. {.11],
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the charged biexciton recombinations are followed by 2 different relaxation processes, a fast one
and a slow one. In the following interpretations, we considere the relaxation from the higher
singlet state to the charge exciton state as instantaneous (y3 ~ 00), and we convolute the figures
obtained from the model by the experimental resolution (~ 100 ps).
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Figure 4.10: Relaxation processes of the excited trion
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Figure 4.11: Two relaxation ways (fast and slow) for the excited trion

In order to probe these two relaxation times, we performed the cross correlation of the
charged biexciton lines with the charged exciton. In fig. are plotted the results of these
measurements.

fig. ) shows the CX X2/X™ cross correlation histogram. We obtain again an asymetrical
figure, with a strong bunching for positive delays, characteristic of a direct radiative cascade.
To fit the experimental datas, we had to set the pumping rate , from the higher energy triplet
state to the singlet state, 70 = % ps~!. The corresponding relaxation time is smaller than the
experimental resolution (100 ps). In fig. b) is plotted the CXX1/X™ cross correlation
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4.8. Relazation dynamic of the excited trion

histogramm. We see here the appearence of a slight delay, around the zero delay value, and
the bunching is reduced. This means that the quantum dot stayed in the excited trion state
for a significant amount of time. From the fit we extract a relaxation time (from f},fhs! to the
singlet state) 7 = 711 = 200 ps £50 ps. This is a direct measurement of the spin flip time of the
p-hole. This process is here relatively fast compared to measured hole spiflip time in InAs/GaAs
quantum dots (1ns) [67], but slower than the measured spin flip times for weakly confined p hole
state (70 ps).
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Figure 4.12: a) cross correlation CXX2/X™ | b) cross correlation CXX1/X+

4.3.4 Nature of the doping

In the begining of this section, we made a strong hypothesis. We considered that the excedentary
charge was a hole, and that the quantum dot was p-doped. This choice can be surprising because
the ZnSe material is usually naturally n-doped. For such n doped quantum dots, the excited
trion fine structure is different from what we described previously. Indeed the excedentary charge
is not a 3/2 spin heavy hole but a 1/2 spin electron. Thus we have to modify the energy orders
of the excited trions states. This fine structure[63], 67, 68| is presented and compared the positive
excited trion fine structure in fig 4.13. The important modification is that higher triplet state
is not an antiparalel electron spins state, but a state with parallel spins and total z-projection
momentum f, = +1/2. The antiparalel electron spins state of momentum z-projection f, = +5/2
is at lower energy. In this configuration the excited trion relaxation following CXX2 (the lowest
energy biexciton transition) should be the slower one, as it would involve a spin flip of an electron.
But as we showed above, the measurements indicate an opposite behaviour. The explanation
would be that the excedentary charge in the quantum dot is a hole and the doping is of p-type
doping. The most convincing experiment would be to perform photoluminescence of Single-dot
on a gated, charge tunable structure allowing the properties of both excitons and biexcitons to
be studied in both charge neutral and negatively-charged environments in the presence of excess
electrons [69]. However, electrical contacting of nanowire is very difficult and would request a
long work of processing and optimization.
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Figure 4.13: Fine structures of the excited trion in the case of a p-doped quantum dot and a
n-doped quantum dot.

4.4 Conclusion

In addition of being a very precious tool for unambiguous identification of the numerous lines
of a charged quantum dot, the photon correlation technique proved to be a powerful technique
when used to study the charged exciton dynamic and the different processes ruling the relaxation
of the excited trion different states, when their characteristic times were accessible to our limited
temporal resolution. For exemple we saw that the spin flip time of the excess p hole was of the
order of 200 ps, and that the relative phase w—shift was too fast to be measured by our setup.
It also permitted to bring clues in the determination of the doping type of the quantum dot
without electrical excitation.
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Spectral diffusion

In the introduction of this manuscript, one of the key issues we addressed was the stability of the
single photon emitter. We underlined the fact that, as it is the case for any condensed matter
system, the emitter is coupled with its environnement. The result of this undesirable coupling
is an increase of the transition linewidth. The emitter produces photons at different energies,
according to an energy distribution larger than what is imposed by the radiative lifetime. This
is a severe limitation for two photons interference operations, as one needs to use photons as
identical as possible. The nature of the environnement influences can be diverse. From all the
possible processes, two have a strong impact in our system. The well known phonon-broadening
is effective when the excitonic recombination can occur by the emission of a photon and the
emission or absoprtion of a phonon from the surrounding crystal simultaneously. The energy
of the photon emitted is randomly shifted depending on the energy of the emitted or absorbed
phonon. In principle, for the next single photon emission, the system doesn’t keep the memory of
the previous emission energy. Thus, this is an uncorrelated process with respect to the time. On
the contrary, the second process we will consider is very different: this is the spectral diffusion.
It is caused by the electronic fluctuation of the environnement. As one can define a correlation
time of such fluctuations, the spectral diffusion is a correlated process. The energy of an emission
depends on the energy of the previous emission. One can approximate it as a first order Markovian
process: the emission energy depends on the previous emission, but not on a older emission (see
annexe ). This type of process is sometimes called “short memory” process.

We saw in the third chapter that the autocorrelation of the emitted intensity field allowed
us to define the emission statistic. We will show in this last chapter that, by putting energy
conditions on the detection of this field, one can probe the emission energy statistic of the
emitter. The two processes influencing its emission energy having very different statistics, they
have different consequences on the correlation measurements we perform. The aim of this chapter
is to describe and model the signatures of these processes and show that it is possible to extricate
them and evaluate their relative importance.

At the end we will also study the influence of excitation power and temperature on the fluctu-
ations of the environnement. Thanks to the Kubo Anderson model, which was recently adaptated
to the physics of the semi-conductors [104], we will be able to interpret the experimental results.
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5.1 Phenomenon description

5.1.1 Definition

Spectral diffusion is a random evolution of the emission energy of a single object or an ensemble
of objects. This is the result of fluctuating properties of the environment regarding the spectrum
of the studied object. This phenomen was observed in many different systems such as single
molecules|81], ensemble of nuclear spins|73], organic glasses[74] and quantum dots[77]. The
sources of spectral diffusion can be very diverse, depending on the nature of the fluctuating
reservoir. The fluctuation times can range from nanoseconds to several seconds and the total
amplitude from a few peV to several meV|[75]. This effect is an important inconvenience for
the use of quantum dots as single photon emitters: the energy emission cannot be precisely
determined. Colloidal quantum dots are highly concerned by this problem. Their emission can
fluctuate on tens of meV and they are usually blinking at the same time[76], even if with careful
processing, it recently became possible to reduce|79] or anihilate this effect[80].

5.1.2 Examples and sources
Spectral diffusion on magnetic nuclear resonance (NMR)

In 1954, Carr and Purcell showed that magnetic nuclear resonance spectra were influenced by
spectral diffusion. In presence of a magnetic field the nuclear spin is orientated towards 2
directions: parallel and anti-parallel with respect to the magnetic field. The energy splitting
between these two states is AE = vAB where « is the gyromagnetic factor and B the magnetic
local field.

In condensed phases, thermal activation perturbs the nuclear spin orientations, producing a
fluctuation of the local magnetic field and modifying the splitting AE [73], 2]. The effect of these
fluctuations on the NMR spectrum is a type of spectral diffusion. Temperature dependence of this
fluctuations showed a very original effect[78]: the NMR spectrum narrowing, called motionnal
narrowing with increasing temperature. This effect will be briefly mentionned in section 3.2.4.
as a regime predicted by the Kubo Anderson model.

Organic glasses:

It is possible to mesure the absorption of organic glasses by making hole burning experiments|88]|
(see section 3.1.2 ). This is how Small et al. obtained hole width larger than the T of the
system[80]. This experimental result can be explained by molecular mouvements possible in
glasses. In such disordered systems a lot of microarrangements are possible and the cristalline
structure evolves with time. Schulte et al. modelized these structural microarrangement fluctu-
ations by a two level system, TLS, (see section 3.2.1). They gave quantitative interpretations of
the measured hole burning widths.

Single molecule:

Looking at single objects brings more informations about this phenomen as it becomes possible to
measure the fluctuation time. Lu et al. studied Photoluminescence of a single cholesterol oxidase
molecule[81] and were able to record its intensity fluctuation. They noticed that the latter evolves
with time by random jumps fig. This can be explained by considering the fluctuation of the
molecule between a bright state and a dark state: it is the blinking phenomen. These two states
correspond to two different chemical compositions of the molecule. The molecule in bright state
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(called E-FAD) transits to the dark state (E-FADH _2) after a reduction reaction. The enzym
can then go back to the bright state (oxidized state) in the presence of dioxygene. By mesuring
in real time the intensity fluctuations it is possible to follow the kinetic of the chemical reaction

sustained by the molecule.
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Figure 5.1: Emission evolution of the molecule with time [81]

Colloidal quantum dots:

Spectral diffusion on colloidal quantum dots was the subject of numerous studies in the last 15
years|75, 83, 84]. The typical spectral width of these structures can be relatively large, several
orders of magnitudes larger than the lorentzian broadening imposed by the exciton or charged
exciton lifetime. Measurements of the spectral jitter due to the spectral diffusion can be done
on an ensemble of quantum dots or on a single object.
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Figure 5.2: Temporal evolution of the emission of a few quantum dots[85]
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Figure 5.3: Three 1 min spectra of the same quantum dot.[75]

fig. shows the temporal evolution of the emission of a small ensemble of quantum dots
We can clearly see that some groups of lines are jittering synchronously. The jitter
of the lines is attributed to random change of the electronic environnement of the quantum

(QD’s).
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dots. Defects in the vicinity of the quantum dots randomly change their charge state, trapping
or releasing carriers, and thus generating fluctuating electric fields that can reach a strength
of several tens of kV/cm at the position of the QD’s[86]. The measurement is here possible
on a simple CCD camera with millisecond acquistition time because the fluctuations are slow
(milliseconds to hundred of milliseconds charcteristic times).

Fig. 5.3 (S. A. Empedocles et al. [75]), shows 3 different spectra of the same single quantum
dot integrated over 1 minute at low pump power. Not only the position of the line changes but
its shape also evolves from one spectrum to the other, which means that fluctuations happen in
a timescale much longer than 1 minute.

Another interesting information is the fluctuation amplitude under different conditions. It is
easy to access it if this amplitude is larger than a few hundred of peV as it can be mesured by
a direct observation on single quantum dot spectra. On fig. (a) is presented the linewidth
(averaged on more than 30 quantum dots) versus the excitation intensity. It clearly shows that
the amplitude gets larger as the pump rate is increased. This is consistent with the scenario of
charges randomly trapped in the vicinity of the quantum dot as the amplitude of the Stark shifts
created by them are dependent on the number of carriers injected near the nanocrystal.

fig. [p.4(b) shows the influence of the environnement. Overcoated quantum dots are less
sensible to the excitation intensity than uncoated ones. This difference is explained by the
presence of ZnS shell forcing trapped charges to reside farther away from the quantum dot,
reducing the internal electrical field[87, [90].
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Figure 5.4: (a) Linewidth excitation intensity dependence at different temperatures, (b) influence
of the quantum dot environnement: average linewidth power dependence in 56 uncoated quatum
dots and 40 coated quantum dots (circles: uncoated, triangles: coated).[84]

Epitaxied quantum dots:

Similar observations were reported for epitaxied self assembled quantum dots [88] R9]. fig.
shows the temporal evolution of the emission spectrum of an ensemble of InAlAs quantum dots.
The 2 arrows on the right of the figure indicate the time when power is increased. Spectral
diffusion is activated during this high power period.
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Figure 5.5: Temporal evolution of the emission spectrum of several InAlAs/GaAs quantum
dots|[88]

On single II-VI quantum dot emission spectrum (fig. , energy fluctuations can be fol-
lowed in real time[88]. Optically excited carriers trapped in the vicinity of the quantum dots
randomly screen the local electric field . Because of the Stark effect, the exciton emission en-
ergy is modified by the trapping or escape of the carriers surrounding the quantum dot. The
synchronized fluctuations of the three energy lines show that they belong to the same quantum
dot and are influenced by the same environnement. Fluctuations times are here on the order of
several seconds and the “homogeneous” lines are larger than 100 peV, which represents a two
orders of magnitude higher energy than what is imposed by the Tsof the system. Robin et al.
explain this carrier trap/escape influence by the presence of stacking defaults in the wetting layer
(see fig. . As the carriers are photocreated, the more the power is increased, the more free
charges are created, and thus, the more trap/escape processes happen. This explains the spectral
diffusion activation with power indicated in fig. for InAlAs quantum dots.
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Figure 5.6: Temporal evolution of the emission spectrum of a single CdTe quantum dot[90]
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Figure 5.7: Quantum dot Stark effect modelisation. The presence of a charge in the vicinity of
the quantum dot modifies the local electric field and Stark shifts the transition energy.
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5.1.3 Problems of the spectral diffusion on the coherence of the quantum
dots emission

Indistinguishable single photons emission

Most proposed applications for single-photon sources in the field of quantum information (except
quantum cryptography[91]) involve two photons interference. Such applications include quantum
teleportation[92], post selective production of polarization entangled photons[93], and linear-
optics quantum computation[94]. To perform successfully these operations, consecutive photons
emitted by a single photon source need to be identical and exhibit two-photon interference effects.
If we consider two photons interfering at the same spatial point we can quantify their ability to
interfer efficiently by the mean overlap between the two photons wavepackets:

V(AL = / 2y (t+ At)dt [2)

with x(t) and y(t) the photons wave packets, At is the the time delay between the two photons
arrivals. For two ideally indistinguishable photons, the overlap at zero delay is perfect and
V(0) =1.

After the early works of Hong ou and Mandel on two-photons interferences|[124], the first result
on indistinguishablility of single photons emitted by epitaxied quantum dots was reported by
Santori et al.[95]. They tested the two photon-interference quality of semi-conductor quantum
dots with the following methode: The quantum dot is excited twice every 13 ns by a pair of
equally intense pulses with 2 ns separation. Two pulses, each containing zero or one photons,
emerge from the single mode fibre. They are split into two arms by a beam splitter, with one arm
(2ns + At) longer than the other. The beams then recombine at a different place on the same
beam splitter. The two outputs of this interferometer are collected by photon counters, and a
photon correlation histogram is generated of the relative delay time 7 = to — t; for two photons
coincidence events, where tyand to are times at which photons are detected at detectors 1 and 2,
respectively. The central peak of the resulting correlation figure gives them access to the mean
overlap between the 2 successive photons V(At). They find that the mean overlap decreases
with At with a characteristic time similar to the radiative lifetime, as it should be the case for
an ideal single photon emitter. However, interferometry measurements revealed relatively short
coherence length (7. > 275), with 75 the radiative lifetime. The conclusion is that the primary
spectral broadening mechanism is a spectral diffusion occuring at a timescale of more than 2
nanoseconds.

This aspect is very interesting: one can avoid spectral diffusion mechanism by forcing the
single photon source to emit photons at a rate larger than the diffusion rate, allowing to optimize
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5.2. Theory and model

indistiguishability of emitted photons, and therefore, its ability to produce reliable 2 photons
interference operations. Information about spectral diffusion such as correlation time of the
fluctuations can be very helpful to choose this emission rate before setting up such operations.

Effect on single spin memory

Since several years, it has been proposed to use the excedentary electron spin of the trion as a
qubit [I19, 120]. A pumping laser, resonnant with the transition (|J) —|{1,{)), (1 representing
electron spin state and {} representing electron spin state), which power is optimized to have all
the |]) state population completely initialized to |1) provides the initialization.Then, a second
“rotation laser” is added, with varying power, and photons count rates are measured from the
transition ([{1,{) —1)) and, as shown in fig. one can observe Rabi oscillations between
the two spin states|121].
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Figure 5.8: Rabi oscillations between the spin states evidence: photon signal versus rotation
pulse power [121]

The amplitude of the Rabi oscillations decreases owing to incoherent processes such as trion
dephasing. This can be understood as a decrease of the length of the Bloch vector of the two
state system. Spectral diffusion can take an important part on such dephasing as it randomly
shifts the trion state energy. This is an effect to avoid. The information on the excedentary
electron spin might be lost quickly, it adds a limitation on the number of operations done with
a qubit.

Of course such considerations are not relevant for semi-charged quantum dots, with alternance
between charged and neutral exciton. Indeed, the information stored in the excedentary charge
is destroyed each time an other charge neutralizes the quantum dot.

5.2 Theory and model

For the description of spectral diffusion, the Kubo Anderson seems the most apropriate. Despite
a few approximations, it successfully predicted the motional narrowing observed in RMN spectra.
During her thesis, where she demonstrated for the first time, motional narrowing on epitaxied
quantum dots, Alice Berthelot succeeded to explain unconventionnal experimental results by
adaptating this model to the environnement of a semi-conductor quantum dot. We will recall here
how is constructed this theory, in particular how is built a realistic random process describing the
electronic environnement of a quantum dot at the price of certain approximations. It will allow us
to interpret our experimental results obtained by modifying excitation power and temperature,
in the last section of this chapter.
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Chapter 5. Spectral diffusion

5.2.1 Emission spectrum of a frequency fluctuating emitter
Relaxation function

As the system is influenced by fluctuation of its environment, the transition frequency of the two
level system is a random variable w(t). The dipole p(t) evolution is described by the differential
equation:

= = iw(t)u(t) (5.1)

After inegration on time:

wu(t) = u(0)exp <z/0 w(@)d@) (5.2)
w(t) can be decomposed as:
w(t) = wo + dw(t) (5.3)

wo is the transition frequency mean value (w(t))r dw(t) is its fluctuating part, and ()7 rep-
resents the averaging over a periode T. The dipole autocorrelation function is:

(" (t + m)u()r =| po I* o(r)exp(—iwor) (5.4)

¢(7) is the so called “system relaxation function”. Its expression is:

-
o(r) = {eap(i [ d03(0))r (55)
0
The relaxation function is very important as it quantifies the accumulated phase caused by
the random fluctuations dw(¢). It also has a direct relation with the intensity spectrum defined
in the next section.
We obtain an analoguous relation for the electrical field autocorrelation function:

(E(t+7)E(t))r =| Eo |? ¢(1)exp(—iwoT) (5.6)
Hence| ¢(7) |verifies the equation:

(Bt + T EQ®)T |

i =¢W() (57)

| o(7) |=

g (1) is the first order correlation function of the field.

Intensity spectrum and Wiener-Khintchine theorem.

The Wiener-Khintchine theorem asserts that the autocorrelation function of a stationnary ran-
dom process and the intensity power (or spectral density) of the process form a Fourier transform
pair:

1 [ ,

S(w) = / (E*(t+71)E(t))e“ dr (5.8)
27 J_

We can deduce a simple relation between the intensity spectrum and the electrical field.

(Ex(t+7)E(t)r =TF[S(w)] (5.9)
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5.2. Theory and model

introducing equation eq. in eq.

| TFS(w)] |

[ o(r) |= (5.10)
0
The relaxation function is the Fourier transform of the intensity spectrum. As defined in
equation eq. it is a time average value of the random variable dw(t). To obtain the spectrum

we need to know its probability distribution P(dw).

5.2.2 Spectral diffusion modelisation: Random telegraph noise

Based on works achieved by Kubo[97], Anderson[98] and Burstein[99, 100], Eberly et al. [101]
developped a model based on an arbitrary number of fluctuating two level systems (TLS) to
describe theoretically the fluctuations of noisy laser-atom interactions. All this work is based on
an elementary simple random process called “random telegraph signal’.’

Random telegraph noise: interaction with a TLS

The random process (fig. [5.2.2)) called “random telegraph signal” dw(t) takes on two fixed values,
a and -a, alternately and jumps instantaneously between them at completely random times, at
an average rate %

Single signal: N = 2 values
(a) Single sig 0 ()

3 i | —

Figure 5.9: Illustrating a realization of the random telegraph signal dw(t)[L01]

We first consider a single TLS and want to know how it is influencing the emitter spectrum.
In this case the enegry evolves around its mean value wy. Its variable part dw(t) oscillates by
random jumps between +a and -a.

Let us now calculate the autocorrelation function I'(7) = (dw(t)éw(t + 7)).The product
Sw(t)dw(t + 7) can take on only two values a? or —a?. If dw(t) has switched an even number of
times in the interval from t to t + 7 then dw(t)dw(t + 7) = a?, whereas the product yields —a?
if there have been an odd number of switches. If p(n, ) is the probability of n switches in the
interval 7, it follows that

n=0,24,... n=13,5
o
= a? Z(—l)”p(n, T). (5.11)
n=0
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Chapter 5. Spectral diffusion

As the switches occur at random at an average rate %, p(n,T) is a Poisson distribution with

parameter (n) = =, i.e.

T7
(r/T)re= /")

p(n,7) = .

When this expression is inserted into eq. it yields

22 7'/T (=r/T)

for 7 > 0,

and since I'(—7) = T'(7),
K I)
T
It is possible to link the autocorrelation function with the relaxation function defined in
section 2.1.1:

['(7) = a’exp(—2 (5.12)

t+7
o(r) = {expli / 466(0)))r = (f ()7

f(7) is a function defined such as:

t+1
exp(i /t dOow(0)).

If we differentiate f(7) with the delay we have:

%f(T) =dow(t +7)f(T)
f(r)y=1 —i—i/o dsdw(t + s)f(s)

By combining the two previous equations:

%f(T) = 0w(t +7) [1 +i/0Tds5w(t—i—s)f(3) (5.13)

We calculate the stochastic average (f(r)), decorrelating dw(t + s) from the function f(s).
This is possible because the random telegraph is a Markov process which has the following
property:

(0w (t1)......0w(ty)) = (dw(t1)dw(t2)) (dw(t3)......0w(tn))

it <ty <tz <.... < tp.
using this property and eq. ,0(T) satisfies the equation[102]:

) _ oot / (B (7)) b(s) = — /0 asT(r - s)éls)  (5.14)

0

72



5.2. Theory and model

Injecting the autocorrelation function of dw obtained in eq.

9p(1) _ o7 2
5. = ¢ /0 ds.exp( T | 7 —s|)o(s) (5.15)
The solution of such an equation is written as:
1,1 1 1,1 1
6(7) = 5z + Deap(—( = N | 7 ) = 5z — Deap(—(z+ N [ 7)) (5.16)

with A2 = % — a2
As explained in section 2.2.1, the intensity spectrum is the inverse Fourier transform of the
autocorrelation function of the electrical field E(t).

S(w) < TEY(E(t)E*(t 4+ 7))]

2
87;9 ’EO |2

x
(w—wo)t + [F — 2a%](w — wp)? + a?

(5.17)

It is clear that the spectrum will depend on the sign of A\? = % —a?. We can obtain a singlet or
a doublet for the electrical field spectrum. As exposed on figure 3.2 with increasing fluctuation
time T (a=1, wo = 0) the central part of the power spectrum splits in two components located
at frequencies w = wp + [a® — (1/T?)]Y/2. The spectrum is a direct representation of the energy
distribution of the system. For fast fluctuations the spectrum is narrowing around the system

average frequency. But even in this case It is non lorentzian: The far wing of the power spectrum,
given by eq. falls of as 1/w?, faster than the lorentzian.
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Figure 5.10: Intensity Spectra calculated for a dipole fluctuating as a telegraph random process,
for 4 different average fluctuation times: T=0.2, T=1, T=2,T=8.

It is easier to understand it by writing the relaxation function | ¢(7) | for the two extreme
cases (oI < 1 and oT > 1).

In the case of very slow fluctuations (a7' > 1),
|7

|6(7) |= eap(—)eos(ar)
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Chapter 5. Spectral diffusion

In the limit of a infinitely large time T for a jump to occur, the system fluctuates between
the 2 states corresponding to the TLS energy states distribution. The spectrum corresponding
to such a relaxation function is an exact description of this energy distribution (fig. with
lorentzian line centered around the 2 energies of the TLS.

In the opposite case, if aT < 1,

2T

o(r) = exp(— "= | 7

This is a monotonous exponential decay. The system doesn’t have time to make a cycle
between the 2 TLS states as it was the case for the slow fluctuation regime and as shown on
fig. the energy of the system is averaged around its mean value. This is an elementary
manifestation of the so called motionnal narrowing.

Pre-gaussian noise:

To generate a more complexe fluctuation process, Wodkiezicz et al. [I01] proposed to super-
pose N TLS. In this section we will calculate the associated relaxation function and see what
approximation is used to complete the calculation. For very large N, the limit of this process is
a gaussian-process named Kubo-Anderson process explained in the next section.

(b) Three signals
B R T
« a[ LT i

LT

T

J

(c) Sum of three signals: N = 4 values g la)
3
o 1
-1
-3
Time —+

Figure 5.11: pregaussian noise
Processus construction: We consider N identical and uncorrelated TLS contributing to the
generation of the pre-gaussian noise. An exemple is schematized on fig. for N=3. The

frequency is described by the following expression:

w(t) = wo + dw(t)
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5.2. Theory and model

sw(t) = S bwi(t) (5.18)
i=1;N

Sw;(t) is the fluctuating part of the i** frequency TLS, evolving between +a and -a.

Relaxation function: Let us remind the relaxation function expression:

() = (eapli /0 " Sw(t)dt))r

Introducing in this expression eq.

on( (exp(i / Z(Swl )dt >p= H exp(i /&uz ))dt)r (5.19)

i=1,N i=1,N

During the construction of this pre gaussian process we made the assumption that the N TLS
were uncorrelated. Hence we are allowed to write:
(exp(i / dw(t

( TI exn( / Sw;(t))dt >7=
i=1,N 0 i=1 N
As a result, the relaxation function of a dipole in interaction with N uncorrelated TLS is the
product of the N relaxation functions calculated for a single TLS.
In the case of N identical TLS we can write:

1.1 + Dexp(— (l_)\)|7|)_1(i—1)exp( (1

>(7x 2 T\ T

5 (7 0T (520)

on(T) =
Large N limit: Wodkiewicz et al. name this total process a “pre-gaussian noise”[I01]. Indeed,
they show in the same paper that in the limit where N — o0, the described process tends
towards a Gaussian stochastic process and the variable dw(t) follows a gaussian distribution.
This is a consequence of the central limit theorem wich asserts that a sufficently large number
of independant random variables will be approximately normally distributed.

5.2.3 Kubo-Anderson model

Kubo and Anderson used a gaussian fluctuation process to explain RMN spectra fluctuation due
to nuclear spin fluctuations [73]. As for previous models we will calculate its relaxation function
and deduce the intensity spectrum associated for such a process under extreme limit conditions.

Relaxation function:

We now consider a Gaussian process, described by a variable dw(t) defined by its standard
deviation X and its correlation time 7. such as:
t
(6w (t)dw(0)) = S2eap(—) (5.21)

Te

The relaxation function can be decomposed with the cumulant methods as follows:

(b(T):exp[—i/O dt(dw(t 2'/ dt/ dt (dw(t)dw(t)) + ..] (5.22)
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Chapter 5. Spectral diffusion

In this expression the second order term only is non-zero:

-as (dw(t)) = 0, the first term is equal to zero.

- as dw(t) is a gaussian process, moments of orders greater than 2 are zero[103].
As a result the only remaining term is the second one:

b(r) = e:np[—% /O "t /O "t (5u(t)sw(t))]

— eap|— /0 " dt(r — 1) (5w (7)5(0))] (5.23)
We introduce eq. (2.21) in eq. (2.23):

]

Te

#(r) = expl— /0 "dt(r — t)Seap(— L))

KA

O(1) = exp[—X*7 (exp(——) +

Te Te

—1)] (5.24)

Fast and slow fluctuation regimes: conditions for the motional narrowing

Slow fluctuation regime: For 7. > 1, the system is in the “slow fluctuation regime”, its
relaxation function regime can be approximated by:

8(r) = eap(~ 3 527?)

The intensity spectrum corresponding to this relaxation function is the inverse fourier trans-
form of ¢(7) (section 2.1.2):
(W —wo)?

S(w) = enp(—

)
This is a gaussian profile spectrum, with a linewidth equal to: I'y = 2h+/2In23;.

In the slow fluctuation regime, the spectrum is representative of the gaussian frequency
distribution of the fluctuations.

Fast fluctuation regime: For X7, < 1, the system is in the “fast fluctuation regime”, its
relaxation function regime can be approximated by:

(1) = exp(=¥* | 7 )

The inverse fourier-transformation of this exponential relaxation function leads to a Lorentzian

profile intensity spectrum:
1

S(w) = (w—wp)? + X217,

Its linewidth is: T'y = 2A% 27,

When the rate of the fluctuations is increased the spectrum transits from a gaussian profile
to a more narrow lorentzian lineshape. As for the simple example of the single telegraph noise
(section 2.2.1), when the frequency fluctuations gets faster, the spectrum is narrowing around
its average frequency. This phenomenon is called “motional narrowing”. This phenomenon was
observed on InAs/GaAs quantum dots and explained by A. berthelot et. al[104] 105] with the
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5.2. Theory and model

help of the Kubo Anderson model. The originality was that the transition from the slow to the
fast fluctuation regime occured when temperature or the excitation power was lowered. This is
quite counter-intuitive as fluctuations tend to be slower when those 2 parameters decrease. This
“unconventionnal” behaviour is due to a very important assymetry between the capture and the
escape rates. In the next section, we explain how the Kubo model has been adapted to non
symetrical fluctuation processes.

Generalization of the Kubo-Anderson model to non symetrical fluctuations.

Correlation time and intensity variance: R.J Cook et al. [I06]calculated the correlation
function corresponding to a 3 level system (fig. a)). It includes 2 excited states: a low radia-
tive rate level “weak” (1 photon per second for example), and a high radiative rate (10®photons
per second for exemple) level “Strong”. These two levels are linked by a ground state. The result
is a blinking system wich is behaving as a telegraph noise signal. The difference here is that, as
the strong level is very fast-decaying the system jumps much faster in the weak level than the
opposite. The fluctuations are non symmetrical.

(a) — (b)

Figure 5.12: (a) 3 level system considered by R.J. Cook. Levels 1 and 2 are linked to the ground
state 0 through a strong and weak transition respectively. (b) Fluorescent Intensity versus time.
Interruptions of fluorescence are due to excitation of the weak transition 0 — 2.

They show that we can consider this 3 level system as an effective 2 level system. The upper
level is (0+1) and the lower level is 2. These two levels are linked by an upward transition rate
Riand a downward rate R_such as :

P+ = P27
P = P() —+ P1
(5.25)

which are the probabilities that the weak transition is excited or not excited respectively.
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0+1

R_ R,

Figure 5.13: Effective 2 level system

They derived the second order correlation function, which is on the form [106]:
T(r) = (I(®)I(t+ 7)) = M} + o7e” PR

M;={(I) = IoRfii‘R_is the mean value of the intensity and o? = (I%) — (I)? = Ig%
is the variance of the intensity.

It is also clear here that the correlation time is such as:

1
— =R, +R_

Te

Application to a quantum dot environnement: In section 1, we explained how the Stark
shift of the exciton transition in an epitaxied quantum dot is caused by the captures and escapes
of a free carrier in defects in the vicinity of the quantum dot. Those two processes, causing the
energy fluctuation of the exciton, usually have different characteristic times ( 7y for the escape,
7, for the capture).

'\T | Tt f

e e
B B

Figure 5.14: Capture and escape of a carrier near the quantum dot.

If we consider the presence of a single defect around the quantum dot, and that the presence
of a charge in this defect is stark-shifting the transition of an energy A, we can approximate the
charge-escape process of this charge with the non symmetrical random telegraph noise described
by R.J. Cook et al. :

Iy = A.
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11,1
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Considering N uncorrelated and identical traps as we did for the transition from the single
telegraph noise to the Pre-gaussian noise, the total variance of the fluctating system is:

2 2 _ 2
OTot = E o, = Nog
i=1,N

with o; the energy variance of the i*" trap. We can now deduce the standard deviation of
the fluctuations ) :

Y =

/A
S

The amplitude of the fluctuations depends on the number of traps around the quantum dot

and on the ratio between the escape and the capture times. It reaches its maximum when the

Smaz= ‘/QNEA, corresponding to the standard deviation given

fluctuations are symetrical (1) = 7¢), ¥
by the Kubo anderson model.

In the following we will deal with the full width half maximum of the gaussian distribution
of the fluctuations ¥ = 2v/2in2X,, and we will call this quantity the fluctuation amplitude.

This concept of symmetrical fluctuation will be crucial in the understanding of experimental
results presented in section 5. If we plot the amplitude versus the ratio of the escape and
capture times % (fig. , we can notice that it is increasing as the ratio tends to 1, i.e.
the fluctuations get more and more symmetrical. This is also quickly saturating around it’s
maximum value, which means that if the system is almost symetrical, a small variation of this
ratio won’t affect much the amplitude.
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Figure 5.15: Fluctuation amplitude versus ratio between capture and escape rates
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5.3 Correlation time measurement via photon counting.

To fully describe the spectral diffusion phenomen on a single object, one need to know 3 param-
eters: the correlation time of the fluctuations 7., the amplitude of the fluctuations ¥ and the
homogeneous linewidth ¢ of the transition. In this section, we will be interested in the measure
of 7.. In his thesis, Gregory Sallen developped a photon correlation method able to easily mesure
this quantity[114]. Before briefly describing this technique, we make a short summary of the
already existing techniques in order to compare their precision.

5.3.1 Other methods and time resolutions:
Photoluminescence spectroscopy

The first and simplest way to mesure the correlation time of the line spectral jumps is to collect
and accumulate spectra on a timescale as short as possible.This way one can probe the different
line positions between the successive integrations. Using a CCD camera, one can acquire a
spectrum every 1 ms, which defines the time resolution of the method. This permitted to
measure the first spectral diffusion characteristic times on quantum dots [75, 90].

Hole burning experiment

Spectral hole burning is the frequency selective bleaching of the absorption spectrum of a mate-
rial, which leads to an increased transmission (a "spectral hole") at the selected frequency[108].
To observe such a phenomen, the spectrum needs to be inhomogeneously broadened as it is the
case for dye molecules or an ensemble of quantum dots and the material must undergo, after
light absorption (from the narrow band pump excitation) , a modification which changes its
absorption spectrum probed by the large band laser. Such an absorption spectrum is plotted on
fig. a), it is called the spectral hole burning(SHB).
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Figure 5.16: a)SHB-response versus detuning at a fixed frequency Q@ = 20 kH z, b) SHB linewidth
versus pump frequency. Inset plot in semi-log scale ¢) Expanded scan of the SHB-resonance.

We can extract from these datas the zero phonon line of a single transition and its correspond-
ing phonon broadening. In this reference , Palinginis et al. modulate the pump intensity with a
frequency Q[I09]. The SHB spectrum is strongly influenced by Q. As shown in fig. b), the
SHB linewidth decreases with €). In the limit that the modulation period is long compared with
the time scale at which the spectral diffusion takes place, spectral diffusion can lead to significant
broadening of the SHB resonnance. The SHB linewidth obtained at modulation frequency of a
few MHz approaches an assymptotic value, approaching the homogeneous linewidth. We can also
estimate an order of magnitude of the correlation time of the spectral jumps (here 10~ M Hz).
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5.8. Correlation time measurement via photon counting.

the precision of the measurement here is poor and the resolution is limited by the maximum
intensity frequency of the pump.

This experiment is very well fitted to homogeneous linewidth measurements. On fig. [5.16],
is plotted the SHB- response versus the detuning. We have access to the zero phonon linewidth
(around 6ueV) and also to the phonon coupling absorption spectrum.

This method, despite not being a time resolved experiment allows to have an order of mag-
nitude of the correlation time and is the most precise method for homogeneous zero phonon
linewidth evauation.

Fluctuating excitation wavelength time correlation:

This is a relatively old technique (1998)[110], which doesn’t require any single photon counting
system or APD. One need to be in a two photons excitation configuration, (excitation wavelength
twice larger than the transition wavelength). Instead of recording one spectrum with an accumu-
lation time long enough to have the required signal /noise ratio, N very fast laser frequancy scans
over the same spectral region are acquired. Fach of them is a SM spectrum with a high time
reslution but very small signal /noise ratio. To keep this high time resolution and to improve the
signal to noise, autocorrelation function (ACF’s) are calculated for each scan, and then these
functions are averaged:

wo

P&
(ACFW)) = &3 / L (@) I (w + oo
k=1 0/2

—Ww

where Ij(w) is the kth single scan spectrum.

If ACF(w') is significantly different from zero only for 0<w’ < w/,,. < wo, this indicates

that a part of the scan interval wgconsists on no signal and can be narrowed without loosing the
jumping object emission. Thus, w/,,./r,where 1 is the scanning rate, can be defined as the time
resolution.

In SM excitation spectra, Ipare proportional to the population of the excited state. This
population is a solution of the optical Bloch equations when the molecular resonnance frequency
v and the laser frequency ware functions of time. w(t) = —wy/2 + rt , with r the scan rate, and
v(t) is a stochastic function wich represents the random fluctuation of the molecular resonance.
As the steady state population is a Lorentzian function of w(t) — v(t),

(ACP(W) = + /Oo {lo =P 412} ot o (P 412}

—00 r

The total recording time is Nwq /7, and v(t) = ) Gn(t) where ¢, (t) are stochastic functions
describing temporal frequency changes. Only (,,(t) with correlation times shorter than wg/r are
significant.

An example of measurement with this technique is given on fig. On part a) an integrated
2 photons excitation spectrum is plotted and on part b) The spectrum corresponding to a fast
scan. In the inset where the corresponding ACF(w) is plotted, they measure a correlation time
contribution down to 40 ms, the temporal resolution of this method.
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Figure 5.17: a) integrated TPE spectrum. b) one scan spectrum. A and B are the two extreme
frequencies for the scan serie necessary for the ITFC integration. Inset: ITFC graph.

Photon-correlation Fourier spectroscopy

In order to avoid the limitations pointed out in the previous section about Standard Fourier
spectroscopy, L. Coolen et al. developped a technique which is coupling to a Michelson inter-
ferometer experiment, a correlation setup able to convert spectral fluctuations into intensity
fluctuations[113].

At the output of the two interferometer arms, two interference fringe patterns are obtained,
troubled by the spectral diffusion. Thanks to the correlation setup, one can have a time resolved
measurement of the spectral diffusion effect, as it will affect the correlation figure with respect
to the delay between to photon detections. For large delays, the correlation figure will be more
affected by the spectral diffusion than for small delays. A correlation time of the fluctuations
can be extracted. L Coolen et al. measured a correlation time of 200 us, achieving a maximum
resolution of 20 us, limited by the very sensitive stability of the experiment.

The fringe spectral spacing can be made infinitely small by increasing the optical path dif-
ference between the two arms, so that the resolution can be made arbitrarily small and exceed
the homogeneous linewidth. When the fringe spectral periodicity becomes narrower than the
homogeneous linewidth (ie. optical path difference is large), the intensity noise is no longer re-
lated to spectral diffusion. The authors take benefit from the infinitely high spectral resolution
of interferometry technique. This way, they measured homogeneous linewidth of 6 ueV'.

It is the ultimate method to fully characterize the spectral diffusion of a photon emitter,
giving, in principle with the best resolution, all the characteristic parametters of the statistical
distribution of the emission. However, this experiment is very difficult and demanding to be
executed.
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5.8. Correlation time measurement via photon counting.

5.3.2 Experimental setup and technique:
Principle of the measurement.

As explained in Chapter 3, the object we are studying is emitting photons following a sub-
poissonian statistic. In other terms, it is not emitting photons randomly but one by one. Under
continuous excitation, the average emission rate of these single photons is I';.q, the radiative
rate of the transition. If this emission rate is larger than the correlation rate of the spectral
jumps, the photon statistic can be described as in plotted fig. a). The right part of the
line and photons emitted at an energy belonging to the right part are colored in blue. The left
part of the line and photons emitted at an energy belonging to the left part are colored in red.
The emitter has the time to send several photons in the right side before having its emission
energy shifted to the left side by the spectral diffusion. If we now send these photons in a HBT
setup, selecting spectrally the whole line, we perform a simple autocorrelation and observe the
antibunching phenomen with a characteristic rate T'..

a) b) Rside

2326 2328 2330 2.326 2328 2.330
Energy (eV) Energy (eV)
T
T T, cX
3 — b
Whole LD L L Lside 1Ll LI 1L HE 10,
Hne Rside L1l 1l 111,

-20 -10 0 10 20

Figure 5.18: a) Autocorrelation of the whole line: spectrum, photon statistic and autocorrelation
function. b)Autocorrelation of the right half-line: spectrum, photon statistic and autocorrelation
function

We now select spectrally the right part of the line (see figure 3.3 b)) and perform the auto-
correlation of the right side. The selected photons are now only detected when the homogeneous
line is in the right part. After a time 7., the line gets out of the selected spectral zone and no
photon is measured. The resulting emission is no longer a simple sub-poissonian source (it is
represented in blue on fig. b)). Photons are now detected by “bunches” and the result on
the autocorrelation function of such a source at zero delay is a ¢(7. > 7 > Traq) > 1 as plotted
on fig. b). We already observed in chapter 2 such “bunching effect” in the cross correlation
experiment on the exciton and the biexciton or on charged exciton and charged biexciton, 2 pairs
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Chapter 5. Spectral diffusion

of transitions linked by a radiative cascade.

We can understand here such a “bunching effect” simply as follow: When the first photon
hits one of the APD and gives the start, the line is in the right part of the line. There is more
probability for the line to emit again a photon in the right side than at any random time and to
give the stop. As a result there are more events measured on a short delay than for an infinite
delay where detections of the start and stop photons are uncorrelated. After a longer delay, the
g%(7) decreases exponentially with a characteristic time 7.. The probability for the line to stay
in the right side is getting lower for longer delays because it has more time to jump in the left
side . The time 7. measured can be considered as the time it needs to leave the right side.

Modelisation for an infinitely sharp homogeneous linewidth:

G. Sallen et. al. showed that we can model this mesurement and extract from it the correlation
time of the fluctuations by a simple rate equation.[114]

It can be represented by a two-level system splitted in two parts (Right and Left) correspond-
ing to the presence of the line in the left or right part of the inhomogeneous energy distribution.
The system is pumped from the ground state (0) to the excited state (1), with a pump rate r,
and can relax from the excited state to the ground state with a radiative rate «v. The line can
also transit from the Left side (L) to the right side (R) with a rate g and back with a rate 7.

(fig. p.19).

Yr

C2

YL
Yr

C2

Yo

Figure 5.19: Splitted two-level system describing the spectral diffusion for an infinitely sharp
homogeneous line transiting in the right and left side of the inhomogeneous energy distribution
under countinuos excitation.

We can now derive the population of each state with the following set of rate equations [115]:

dno L

ar "MoL = YRMoL +ynir + LR (5.26)
dnip,

dr ML= ARML + oL + YLNIR (5.27)
dnor

di  "Mor — YRMOL +YN1R + YRMOL (5.28)
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5.8. Correlation time measurement via photon counting.

dnir
dt

nor, N1r, Nor, Mg are the population of the (0, L), (1, L), (0, R), (1, R) states respectively.
We define Nog = ), no; and N1 =), ny;, with i = R, L and Ny + Ny = 1.
We also define

= —7YN1R — YLMIR + TTOR + YRNIL (5.29)

Ye = VR + 7L (5.30)

From the previous set of equations we obtain:

dNq(t
1) _ —yN; + 7Ny (5.31)
dt
the solution of this differential equation is:
Ny(t) = —— + Ceap(—(r +7)t) (5.32)

_7“+7

with C a constant depending on the initial conditions.
We can do the same for the total population of one side i of the line: N; = ng; + n1;, i=R,L.
We have

dNi(t) _ v
— L Kexp(—, .
L ~ + Kexp(—~.t) (5.33)

K is a constant depending on the initial conditions. We also note that the population decay
only depends on the 7. parameter, it is the correlation rate.
The general solutions of the set of 4 equations presented above are such as:

nol'(t) == Ng(t)Nl(t) (534)

n1i(t) = Ni(t)Ni(t) (5.35)

In the experimental configuration we choose (ie. the autocorrelation of the right side of
the line), the start photon is sent from the right side. So the system is in the (0,R) state at
t=0: nor(0) = 1, and we considere the probability to detect an other photon comming from
the same right side after a delay 7. This correspond to the following autocorrelation function

2(R,R,T) = n1R(7)
9 AT n1gr(c0)’
Using the previous equations we find:

9P (R, R,7) =1+ (%; — Deap(—er)][1 — exp(=(r + v)7)]. (5.36)

vr(7L) can be seen as the probability for the line to jump from the left (right) side towards
the right (left) side. As 7. is the sum of those 2 probabilities, it is just the probability for the
line to jump. As a result, this experiment gives a direct mesurement of the correlation time.
This allowed the mesurement of the first nanosecond- scale correlation time on a fluctuating
system[114].

It is also clear that the yp and vy, rates depend on the right and left areas relative sizes as
there is more probability for the line to jump in a large area than in a small one. We are here
placed in the particular situation where we perform the autocorrelation of one half of the total
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Chapter 5. Spectral diffusion

line. As a result, there is as much probability for the homogeneous line to jump in the right side
than in the left side and we have:

YR =L (5.37)
R= % (5.38)

The autocorrelation function becomes:
9*(R,R,7) = [1 + exp(—7.7)][L — exp(—(r +7)7)] (5.39)

It is the product of 2 expressions. As [1—exp(—(r+7)7)] describes the single photon behaviour
of the emitter, [1 4+ exp(—~.7)] describes the spectral diffusion phenomenon and its influence on
the ability of the emitter to send photons in the right spectral window. We can always express the
autocorrelation function as a product of a energy position term and an emission term, if energy
position and emission are two independant events (see annexe 1). An exemple is plotted on fig.
a). The theoretical curve calculated in eq. is convoluted with the temporal resolution
of the setup used for the mesurement. The fig. b) shows the contribution of the spectral
diffusion on the autocorrelation function. We can notice that for zero delay the value of this
bunching is 2. This means that the line has a probability 1/2 to be in the right side. By reducing
the detection zone for the autocorrelation we can increase the contrast of this bunching, as the
less the line is present in the measured area, the larger is the zero delay value of the bunching.
But it would also degrade the count rate on each APD, and impose a longer integration time.
When we increase the detection area, we go towards the autocorrelation function of the whole
line and the bunching is decreasing. Thus, the measurement is very sensitive to the area chosen
for the detection. In order to collect photons comming exactly from the half line, the slit is open
in such way that all photons from the line are counted by the detectors N. Then, the grating
orientation is corrected in order to put half of the line out of the detection slit and collect exactly

% photons.
a b
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Figure 5.20: a) Theoretical half line autocorrelation function after convolution with the exper-
imental temporal resolution. b) Contribution of the spectral diffusion to the autocorrelation
function.
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5.4. Mesurement of the homogeneous linewidth and fluctuation amplitude.

Experimental setup

The experimental apparatus is a HBT setup (see section 2.4 of chapter 1). We use 2 Perkin
Elmer with 400 ps resolution APD’s for photons detection. This leads for the whole experiment
to 700 ps resolution. We choose this type of APD’s here because the characteristic time of the
phenomenon we want to observe is larger than the nanosecond and their quantum efficency is
twice better than the faster APD’s used for cross correlation or decay time experiments. This
is particularly important as we collect photons only on half lines. A monochromator ( about
300 pev resolution) is used for spectral selection of half line. Events are recorded on a HPCSPC
counting card. The excitation laser is a continuous above ZnSe barrier 405 nm diode.

5.4 Mesurement of the homogeneous linewidth and fluctuation
amplitude.

In the previous chapter, we explained how we can extract the correlation time from the half line
autocorrelation measurement. We will show in this one how we can obtain informations about
the homogeneous linewidth and the fluctuation amplitude, and obtain more information on the
emission of a single nanowire quantum dot with this technique.

5.4.1 Separation of emission and energy position correlations

This aim of this subsection is the obtention of a preliminary result, which will simplfy the rather
complex calculations leading to the derivation of the halfline autocorrelation function for a non
infinitely sharp homogeneous linewidth.

We saw in the precedent example (section 3) that the autocorrelation function is the product
of the spectral diffusion part (bringing information on the correlation of the homogeneous line
energy) and the single photon part (bringing information on the correlation of the emission). We
propose to show that this is a general result when emission and energy position of the line are
independant, which is always the case for us.

Let’s define the following ensembles:

-y(t) : ensemble of events such as a photon is detected at time t.

- 4L, ensemble of events such as a photon is emited by the two level system.

- 4%+ ensemble of events such as the two level system energy is in the right spectral window.

The emission of a photon by the TLS and its energy situated in the right spectral window
are two independant events, so:

PVem N Vin) = P(Vem) P(Vin) (5.40)

We go back to the expression of autocorrelation function in term of probabilities:

#(r) = 200 110) (5.41)

p(¥(7))

To detect a photon at time t, one need to have a photon emitted by the TLS at time t and
to have the TLS energy in the right spectral window at time t:

V(t) = szm N ’an (542)
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Chapter 5. Spectral diffusion

Therefore,

p(Y(7) [ 7(0)) = p(¥ NV | Yom 0 in) (5.43)
Using eq. in eq. [5.43] we have:

P(Y(T) [ 7(0)) = p(vim | Yo NV Vo) P Vi | Vo N Y¥in) = 2V | Yo )P (Vi | Vi) (5.44)

We can now find the expected general expression, separating the TLS emission and energy
correlation functions in the autocorrelation function of the right side of the emission line.

92(7_) _ P(’Y;—m ‘ ’ng) P(’YZ‘Tn ‘ V?n) — gm(T)gz‘Qn(T) (5_45)

P(Vm) P(Vi)

This result will make our future calculations of correlation functions easier, especially in the

next section, as the emission part g2, (7) will always be the same and we’ll only have to focus
on the derivation of giQn (1), the second order correlation function of the TLS energy position.

5.4.2 Modelization for a finite homogeneous linewidth
Evidence of the finite linewidth

The expression of the autocorrelation function calculated in section 5.3.2 shows that the corre-
lation rate has no influence on the bunching height and that it reaches the value of 2 for the
autocorrelation of an half-line (fig. b)). In simple words, one can say that the probability
for the line to be in the right spectral window does not depend on its jumping speed. An exemple
is plotted in fig. a). In blue is plotted the theoretical function derived previously:

9*(R,R,7) = [+ exp(—c7)][L — exp(—(r +7)7)] (5.46)

We observe that we can’t fit the experimental datas (in red) with this expression. The
bunching is lower than expected if we consider the model of an infinitely sharp line moving from
one side to the other. In order to fit correclty the datas, we introduce an independant parameter
B in the bunching part of the expression such as:

(R, R, 7) = [1 + Bexp(—er)][1 — exp(—(r + 7)7] (5.47)

The result of this new fit is plotted on figure 3.7 b) with a parameter 8 = 0.5, meaning
that the value at zero delay of the bunching plotted for the infinitely sharp homogeneous line
model (fig 3.6 b) is not longer 2, but 1.5. Two independant parameters are now ruling the
characterization of spectral diffusion, the correlation rate 7. and the ’bunching height’ 3.

We can conclude that the model we presented in section 5.3.2 does not fully describe the
reality. In order to explain the origin of the parameter 3, and to understand which other
quantities are influent in this measurement, we need to produce a model considering a finite
linewidth for the homogeneous line.

Consequences of a finite linewidth on photon statistic.

We now consider that the line fluctuating from one spectral window to the other is no longer
infinitely sharp. The center of this line can be in the left side, but the corresponding photon
detected can come from the right one, and vice versa. This behaviour is represented in fig.
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5.4. Mesurement of the homogeneous linewidth and fluctuation amplitude.

a) o b) of
1.8F 1.8
1.6F 1.6}
1.4t Jl | I / ‘
1.2 T w“”"ﬂ )WW o Wl "‘1; o V’mw“
~ N !H,”\’ ‘\/\Uf\mu \“/ l\” Y [\/\\,\M\"\«,’W‘, ﬂ D?_ I M \r s /\ ‘Av )
¢ 1Fray-ee-- Vi === T o 1F==gT . - LT >
- 11 U '[\‘ & vy W
“% 0.8 1 0.8/
0.6+ 0.6
0.4+ 0.4+
0.2¢ 0.2
20 10 0 10 20 20 10 0 10 20
T (ns) T (ns)

Figure 5.21: a) Autocorrelation of the half-line. The theoretical curve calculated with the in-
finitely sharp homogeneous line model is plotted in blue, experimental datas in red. b) Theoret-
ical curve corrected with the parameter g = 0.5.

Whereas in the first case, the spectral windows where photons are emitted is the same as the
position of the line, in the second case, it’s no longer true. The direct consequence is a relative
loss of the characteristic “photons bunching” emission for a more “poissonian type” emission. This
is a way to explain the weakness of the measured bunching. In fact, to the bunching statistic we
could derive from the rate equations of section 5.3.2, we have to superpose a random uncorrelated
emission statistic introduced by the finite linewidth of the emitter.

a) Case of an infinitely sharp homogeneous linewidth

RSidE e s

L side >

b) Case of a finite homogeneous linewidth

Rside — e

Lside. g ———>

Figure 5.22: a) Photon statistic of the emitter in the case of an infinitely sharp homogeneous
line. Blue (red) dots represent photons emitted in the right (left) spectral window. b) Photon
statistic of the emitter in the case of a finite homogeneous linewidth. Blue (red) dots represent
photons emitted when the center of the homogeneous line is in the right (left) spectral window
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Finite homogeneous linewidth model

In the previous infinitely sharp model we define a model where a two-level system can be in the
right or in the left window. The situation is now more complicated, as the TLS energy fluctuates
from the right side to the other with a correlated statistic, but can also be randomly, and with no
time correlation, distributed in energy along the lorentzian profile imposed by the homogeneous
linewidth.

The total energy Efof the TLS at time t is the sum of two random variables:

El =t + ¢ (5.48)

where ! is the energy position of the center of the homogeneous linewidth at time t. It is
distributed along the gaussian distribution of the fluctuations. This energy is time correlated.
This means that the value of the random variable at time ¢ + 7 is influenced by its position at
time t and :

(') # () () (5.49)

el is the energy shift due to the homogeneous linewidth at time t. we assume it has a
lorentzian distribution centered on p!. This variable is described by a poissonian process and is
not time correlated.

(T = (")) = (°)(eT) = (e7)? (5.50)
The spectral window of detection is defined by the energy interval I,,. In the experimental
configuration we consider, I,, = [0, +o0[.

The energy of the TLS is in the right spectral window at time t when E'el,,, so when:
(e" + ph)el, (5.51)

If we define the ensemble 7! as the ensemble of events such as the two level system energy
is in the right spectral window, it corresponds to the ensemble of etand p'such as (e! + pl)el,:

N, = {(5t + ,Ut)E(In)}
Yin = {(€° + 10)e(1n)}

we also define the following ensembles :

-y(t) : ensemble of events such as a photon is detected at time t.

- 4L, ensemble of events such as a photon is emited by the two level system.

- % ¢ ensemble of events such as the two level system energy is in the right spectral window.

-ut. : ensemble of p such as plel,.

it + ensemble of u such as ' ¢ I,

We found out in the previous subsection that we can always write down the autocorrelation
function as:

9 (1) = g2 (T)gin(7)

PO 0,
T

FCARE the energy position part of the autocorrelation that we need to

with gfn (1) =
correct.

p(V | 7in) = p({ (" + u)e(Tn) } [ i) (5.52)
We use here the extended form of the Bayes theorem which asserts that for a ensemble A
such as A =), A;,
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5.4. Mesurement of the homogeneous linewidth and fluctuation amplitude.

P(B) =) P(B| Ai)P(A)
SO eq. becomes:

PV | Vin) = p(E™ + 1) e(In)} | 1) | von) o (it | Vo)
+ p({(E™ 4+ 1))} | 1) | Vin) Pt | Vin)
(5.53)

({(e™ + p")e(I)} | pf,), The ensemble of values taken by e and p such as (e + p)e(I,,) at time
7, knowing that pel, at time 7 is independant from the possible values taken by € at time 0.
Indeed, ¢ is a poissonnian random process. The condition on the p value is already fixed at time
7in ({(¢" + pu")e(n)} | 1), a condition on its value at time 0 doesn’t change the ensemble.

so we can conclude that the ensemble ({(7 + u7)e(I,)} | uf,) and 72, are independant en-
sembles, thus:

p(({(e + (@)} | 1) | Vi) p(kn | i) = p({(E™ + 7))} | ph) (il [ 7im)  (5.54)

and

POV | i) = (™ + u)e(Tn)} | 15 p(iln | i) + p({(E™ + 17)e(In)} | i) (1wt | Vin)
For any ensembles A and B, one have the basic relationship:

P(A

(
P(B)

~—

P(A|B)=P(B| A)

SO eq. becomes:

p(id,) P(Hnt)
PV | von) = p({(e™ + 1M)e(Tn)} | 13) p(in | 15) S22+ p({ (7 + 1T )e(In) } | 1) P (Vi | Bpr) =2
P(Vin) p(Vin)
(5.55)
We apply again the Bayes Theorem on the probabilities p(7, | u%,) and p(v9, | p7..)-
PV | 1) = p((vin | 1859) | 1) (s, | 1) + (v | 19us) | 13 )P (1 | 127,,)
= (v | 1) (1 | 1) + p(von | 190 P (110t | 11Ey,)
p(ud,) p(11d,)
= p(¥in | 1) p (i | 185 p(ﬂg) + (Vo | 100t ) (B | Bt i M"it) (5.56)
The same way,
0 T 0 0 T 0 P(H?n) 0 0 T 0 P(Mgut)
PVin | owt) = Pin | 13n) Pt | 1in) —7—5 4 PVin | Bowe) P(Bout | ous) =2 (5.57)
p(lu’out) ( out)
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we inject the two last equations in eq. [5.55}

PV 1Y) = (v | 1) P (Vo | 189) (1, | 125,)

(5.58)

For this experiment, p(u),), p(ul,)and p(v2,) are respectively the probability to have puely,
p ¢ In, and {(e” + u")e(l,)} at any time. Thus:

1

P(in) = pltiouw) = P(Vin) = 5

and eq. becomes

PV 1Y) = (v | 1) p (Vo | 189) (1, | 125,)
+ (¥ | 1) P (Vi | 1) P (1t | Bt
0 0 0
+ 0(Vin | Hot) PVin | 1) Pt | i)

+ p(’szn ‘ :ugut)p(’y?n | lugut)p(:ugut | /Lgut)
(5.59)

The probability for the TLS to be in a the right spectral window, knowing that it was at
t=0, is the sum of 4 probabilities, describing the 4 configurations possible for this event:

-For the first term, the homogeneous line is in the spectral window at t=0 and also at t=r.

-For the second, the homogeneous line is out of the spectral window at t=0 and in at t=7

-For the third, the homogeneous line is in the spectral window at t=0 and out at t=r.

-For the fourth term, the homogeneous line is out of the spectral window at t=0 and also at
t=r.

Let’s evaluate p((v], | (,ul.Tn(out)) , the probability that the TLS energy is in the right spectral
window at time t when the center of the homogeneous line is in (out of) the right spectral window,
making here the assumption that the homogeneous line is a lorentzian centered on £ = p and
that, in accordance with the Kubo-Anderson model, the energy distribution of the fluctuations
is gaussian.

p(ﬁlen N 'u’;n(out))
p(uzn(out))
We consider a Lorentzian centered in the right spectral window,(ue[l;]), and calculate the
probability to measure a photon coming from it in the right spectral window.

For a given lorentzian centered in u, the probability for the TLS to be in the right spectral
window is the ratio between the lorentzian area in the right spectral window and its total area:

p(ryZTn | luz—n(out)> = = 2p(’YzTn N :ufz—n(out)) (560)

1
*lor(c, E — w).dE Jg.r,,

P,(vip) = 7 lor(o,E — n).dE. (5.61)
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Figure 5.23: Lorentzian centered on energy p and gaussian distribution of the possible u positions.
This distribution is cut by the spectral selection of the right part of the inhomogeneous line. It
defines the area of the lorentzian where photons can be detected.

with
2

o
1+ (5742

We have then to consider the probability for the lorentzian to be centered at the position
FE = 1, and have to multiply the previous expression by the probability density imposed by the
gaussian distribution Gauss(3, u)dp and integrate over all the p such as: pely,.

fuelin(out) (GGUSS(E, 'u) ‘[E€Iin (lOT(O’, B u)dE)dIU/)

POV O (o) = [ (Gauss(Z, 1) [F(lor(o, E — p).dE).dp) (562)

lor(o, B — ) =

. 2 . .
with Gauss(X, u) = ﬁewp (ﬁ), the standard deviation Xy = 2\/%
This is the probability for the TLS to be in the right spectral window and the lorentzian
centered in the right (left) spectral window at any time, so
it doesn’t depend on the delay 7 and are only functions of the homogeneous linewidth pa-

rameter cand the flucutation amplitude X:

We rewrite the eq. with these coefficients:

P(Yin(7) | Yin(0)) = 4 [aZ,p(1iy | 19,) + CinQout p(1f, | 1out) + Coutinp(Ligus | 19,) + e P (ot | Hiorat)]
(5.64)
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This probability depends on one hand on the coefficients a;pand ey swhich depend them-
selves on the geometry of the homogeneous lorentzian linewidth and of the gaussian distribu-
tion. They take into account the random uncorrelated statistic introduced by the finite ho-
mogeneous linewidth. On the other hand, eq. depends on the probabilities p(u, | p2.),

p(ul | 19 )so(ud s | 19 )Y, p(ud | 18,,) which are describing how the center of the homogeneous
linewidth is transiting from one spectral window to the other and take into account the correlated
part of the statistic. All these probabilities can be determined analytically with the model of the
infinitely sharp homogeneous linewidth presented in section 3.2 of this chapter and its associated
rate equations.

For the first one,p(u],, | ,ugn), the probabitlity to have the line in the right spectral window at
t = 7 knowing it was at ¢ = 0 is equal to the population of the right spectral window ng(7),with
the initial condition ng(0) = 1.

p(ih | 1) = (nr(7) | nR(0) = 1) (5.65)

For simplicity, we consider the total population of the right spectral window and don’t make
a distinction between excited and ground states as it was in section 3.2.2. We will loose the
single photon part of the autocorrelation function, but as explained in the same section, we’ll
just have to multiply by [1 — exp(—(r + )7)] to find it back.

p(ul, | 19,) has already been calculated in section 3.2.2 and we also use eq. eq.

and eq. (VR =L =%):

TR TR

1 1
T 0
i in) — 1—-— cl)= 35 T35 e .
P05 | ) = 4 (1 = Pemp(—er) = 5 + Geap(—re) (5.66)
We do the same for the 3 other probabilities:
T 0 _ _ _ TR _ 1
P(Kin | Houw) = (nr(T) | nR(0) = 0) = 7[1 — exp(=er)] = 5[l — eap(—7eT)]
. 1
Pur | #in) = (no(7) [ nR(0) = 1) = S[1 = exp(—7e7)]
g . 1 1
PUitur | Houe) = (n2(7) | n(0) = 0) = [Z2 + (1 = “=)eap(=7e7)] = [5 + geap(—7)]
(5.67)

We put all these expressions in eq. :

1,1

4[2( 2(
To obtain the correlation function, we divide this expression by the probability to detect a

photon at any time: p(vin(t)) = p(7in(00) | 7in(0)) = i[%(a + QGu) + Qinout),

P(Vin(T) | 7in(0)) = Qi + aout) + Qintout + (5 (i, + aout) Qinout)-€xp(—cT)] (5.68)

92 (7_) =1+ (%(O[ + aout) ainaout)
" (5 (a + aout) + alnaout)

exp(—) (5.69)
finally, rearranging terms and adding the emission part g2,,(7), one have:

(ain - aout)2

2
R R,T)=1]1
g ( ) 77-) [ + (Oéin+040ut>2

exp(=7eT)][1 — exp(—(r +7)7)] (5.70)
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5.4. Mesurement of the homogeneous linewidth and fluctuation amplitude.

We recognize the 8 factor introduced in section 4.1.2, which was defining the importance of
the bunching:

(ain - aout)2
(ain + aout)Q

We can make two remarks about this factor:

- The bunching factor g is exclusively ruled by the uncorrelated random statistic of the finite
homogeneous linewidth (expressed by coefficients ajpand apyt), and is a function of o and X. As
shown on fig. , the bunching is important (red areas) for small o and large the fluctuation
amplitudes X.

B = (5.71)
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Figure 5.24: Bunching value depending on fluctuation amplitude ¥, and homogeneous linewidth
o

- The behaviour of 8 at the limits is interesting: When the homogeneous linewidth tends to
0, 0 < 3, and we have:
1
oyt — 0

so, 8 — 1, which is its expected value in the case of the infinitley sharp linewidth.

When the homogeneous linewidth becomes much larger than the fluctuation amplitude, o >
>

and 8 — 0, the bunching is collapsing. This corresponds to a case where the poissonian
satistic of the homogeneous linewidth takes over the correlated statistic of the spectral diffusion.
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We’ll see, in the last chapter of this part, that the phonon broadening of the homogeneous
linewidth with increasing temperature finally dominates the spectral diffusion broadening of the
gaussian fluctuation amplitude and defines the linewidth of the charged exciton transition.

To finish this section, lets remark that the halfline autocorrelation function bears simulta-
neously the signature of the subpoissonian emission statistic (zero delay dip), the correlated
spectral diffusion energy statistic (bunching), and the poissonian energy statistic of the homo-
geneous linewidth (limitation of the bunching), the two last signatures, the correlated and the
uncorrelated, having opposing effects.

5.4.3 Monte Carlo simulation:

In order to confirm the analytical expression of eq. derived from complex calculi, we per-
formed a montecarlo simulation, by building numerically the function g?(R, R, T) for a pois-
sonnian emitter spectrally diffusing in and out of the detection spectral window. In this case,
g2,(7) = 1 as for any poissonnian emitter. Thus, the simulation gives direct access to g2, (7)
and consequently to 3.

After generating a poissonian photons stream we assign to each of them a random energy in
a gaussian distribution. We calculate the probability of the homogeneous line to jump between
the emission of the (i — 1)** photon and the i*" photon:

The energy of the (i — 1) photon is in the interval:

Ii v =Iin = [Eil _oF M}

—.F;_
27 11+2

with §F an infinitesimal energy.
In the case of a jump of the homogeneous line, the energy of the i** photon is in the interval:

oF oF
Ii = Ioy = |:_007Ei—1 - 2} U [Ei—l + 274‘00}

Thus, the probability for the homogeneous line to jump between the emission of the ith and
the (¢ — 1) photon is:

Piumpiy = pPEp" elous} | {p%elin}) = W;Ut [1 — exp(—eT)]

C

This probability has already been calculated in section 4.1 (fig. [5.67).

Yout 18 the exit rate of the homogeneous line, from I;nto oy, Veis the “jump rate” of the
homogeneous line.

For an infinitely small 0 E, v, «~ Your and:

Piump(i/i-1)) = [1 — exp(—eT)]

If the ' photon doesn’t jump it takes the same energy as the (i — 1)** photon.

We then discriminate photons belonging to energies outside the detection area by applying
an energy condition . They won’t be counted in the correlation.

To calculate the correlation function of the resulting photons stream we compute the delay
between the arrival of each photon and all the other photons of the stream. By building the
histogram of these delays one obtain the correlation function of the stream. [122].

The result of the simulation is plotted on fig. ) We find again the result explained in
previous section, the bunching part of the half line autocorrelation function takes a value of 2 at
zero delay. To evaluate 3 from the simulated data, one onlys need to take g2(0).
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5.4. Mesurement of the homogeneous linewidth and fluctuation amplitude.

To simulate the finite homogeneous linewidth effect we add for each photon an energy shift
€. € is a random variable distributed along a lorentzian distribution of linewidth o. The effect
of this addition is shown on fig. ) As expected the bunching is less important and the
B factor goes from 1 to 0.5 in the case of a finite homogeneous linewith ¢ = 0.3meV and a
fluctuation amplitude X = 1.7meV.

18l tal 6=0.3 meV
Z=1.7meV
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Figure 5.25: Calculated half line autocorrelation functions of a poissonnian emitter. a) for an
infinitely small homogeneous linewidth, b) for an homogeneous linewidth o = 0.3meV'.

To compare this simulation with the analytical expression, we fix the ¥parameter and change
o. We then report the calculated 3 values versus the ratio & (see fig. . We can notice that
the two methods (analytical and Monte Carlo) give the same dependance, which validates the
modelisation performed in the previous section.

09l \
0.8 |\
07l k
06 \*
@osl

0.4r *

0.3- k3

-,

02 e e,

0.1 ol SFRSIPRFURE

0 05 1 15 2
c/Z

Figure 5.26: § versus the ratio between homogeneous linewidth and fluctuation amplitude. Red
line: analytical model described in section 4.2. Blue dots: Monte Carlo simulation result.

5.4.4 Homogeneous linewidth and fluctuation amplitude determination

The fit of the experimental datas allows to extract, as 2 independant fit parameters, the cor-
relation time 7. and 3. As shown in the previous section the latter depends on the fluctuation
amplitude 3 and the homogeneous linewidth o. To estimate them separately, we can use the
emission spectrum measured, and by making the same assumptions as before (the homogeneous
line is lorentzian and the fluctuation distribution is gaussian) we obtain a second equation linking
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the 2 parameters.

+o00
S(o,X,w) = / lor(o,w).gauss(X,w — £)d (5.72)

The spectrum S(o,X,w) is the convolution of the homogeneous line and the fluctuation
distribution and is represented in eq. by a Voigt function. We need to perform a double fit
to extract the good values of cand X, as it exists an infinity of couples (o, X) satisfying the first
or the second equation. The solution couples of the the spectrum fit are tested with the second
equation and the good values of ¢ and X are then selected.
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Figure 5.27: Spectrum of the charged exciton line fitted with a Voigt profile.

This process was repeated on 3 nanowire quantum dots. The correlation measurements and
spectrum fits were done on the charged exciton lines as they were the most luminescent for most of
the temperature and excitation power applied. On fig. [5.28] the 3 resulting experimental points
are plotted. They represent the mesured § parameters versus the homogeneous linewidths. We
can notice that despite the emission lines of these 3 charged excitons correspond to 3 different
fluctuation amplitudes (1.2 meV, 1.4 meV and 1.7 meV), the homogeneous linewith we find is the
same (around 300 peV'). This value is actually the spectral resolution of the experiment, and it
limits our measurement. The true homogeneous linewidth is probably smaller but, one needs a
better spectral resolution to have acces to it. For the 3 different fluctuation amplitudes consid-
ered, the curves (o) are plotted. They follow the same trend: For an increasing homogeneous
linewidth, [ is decreasing, ie the bunching contrast gets lower. It also shows that for large X, the
autocorrelation of the half-line gives a more pronounced bunching. The last interesting point is
that, for a very small homogeneous linewidth, bunching is larger but the fluctuation amplitude
is less influent on its value and it becomes harder to have a good precision on its measurement.

5.4.5 Measurement precision

The last interesting point is that, for a very small homogeneous linewidth, bunching is larger but
the fluctuation amplitude is less influent on its value. Hence it becomes harder to have a good
precision on its measurement. Indeed, as shown in fig. the 3 bunching curves are converging
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Figure 5.28: Parameter 3 versus homogeneous linewidth for 3 different fluctuation amplitudes X
(1.2 meV, 1.4 meV, 1.7 meV). The 3 points are experimental datas taken from the emission of
the charged exciton of 3 different quantum dots.

for very small homogeneous linewidth values. When ¢ <« X, the precision on the measurement
is very poor. It is also the case when o > 3. To estimate what is the measurement precision
and determinate an optimal ratio, where the experiment is the most performant we define the
quantity p such as:

d
()

sy

Ml Q
t9

p quantifies the sensitivity of the bunching value to a variation of the ratio. In fig. pis
plotted as a function of the ratio. The precision is optimal for a ratio & = 0.37, corresponding
to the abscisse of the maximum value of p (see fig. [5.29). Thus, the experiment is generally well
adaptated to homogeneous linewidth o which are on the same order of magnitude as 33, and still
smaller than 3. If we consider the precision good enough when p=0.2, the condition on o is:

01¥ <o <X

5.4.6 Conclusion

We showed here that the auto-correlation technique can bring all the informations for the full
characterization of a spectrally diffusing emitter. Indeed, after data treatment technique pre-
sented in the last section of this chapter, one can obtain seperately o (homogeneous linewidth),
Y (fluctuation amplitude) and T'. (correlation rate)

It is however limited spectrally by the monochromator resolution (300 pev in this work) and
temporally by the single photons detectors resolution (700 ps in this work). Even if the spectral
resolution can be optimized, it will be hard to reach resolution obtained by PCFS method, and
even if it was possible we saw that the precision of the measurement would be degraded for such
large fluctuation amplitudes. Though, the correlation technique is much easy to set up.
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Figure 5.29: Precision of the measurement versus ratio &

5.5 Application to spectral diffusion in a single nanowire quan-
tum dot

Effects of a fluctuating environnement of a quantum dot has already been studied by several
methods described in section 3 of this chapter. We showed in the previous chapter how powerful
and easy to set up was the photon correlation method and until which point it allows the
user to have access to many of the characteristic physical values of a frequency fluctuating
emitter, at the same time . Indeed, we now have quite easily access to the correlation rate, the
fluctuation amplitude and, under some restrictions, the homogeneous linewidth. To study how
these quantities are evolving, we will tune the environnement fluctuations by the 3 parameters at
our disposal: excitation power, temperature and excitation wavelength. Finally, we will interpret
the evolution of these quantities following the Kubo Anderson model|[111] and will extract some
important conclusions on the line braodening of a single photon emitter.

5.5.1 Correlation rate and fluctuation amplitude
Correlation rate

Keeping in mind the idea of the quantum confined Stark effect introduced in section 1, we can
write down the expression of capture and escape rate of a carrier in the vicinity of a quantum
dot by summing the possible physical processes. A carrier can be captured or can escape from a
trap by optical or accoustic phonons absorption or emission and by Auger processes.

Thus, the capture rate I'| and escape rate I'y can be written as:

F¢ = Fac(NBl + 1) + F()])(]VBQ + 1) + f(P)
Tt = TucNp1 + TopNp2 + f (P)

I'ye and T’y are the accoustic and optical phonon assisted capture rates at 0K, Ngjand Ny
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5.5. Application to spectral diffusion in a single nanowire quantum dot

are the accoustic and optical phonon populations and are function of temperature such as:

1
Np1 = 5
1—e *8BT
1
Npo =

_ _Bay
1—e¢e #BT

F is the energy of an accoustic phonon and Fs the energy of an optical phonon.

f(P) and f'(P) describe the Auger processes involved in the escape or capture of a carrier.
They depend on power but their dependancies are not known and are probably different. We
can only give their general expression:

F(P) = Ty (ﬁo)ﬂ (5.74)

If we approximate the environning traps of the quantum dot as N independant TLS with non
symmetrical fluctuations (sec 2.3.3.), the correlation rate is the sum of the escape and capture
rates:

I'. = FT_'_Fi (5.75)

Fluctuation amplitude

In section 2.3.3, we derived the expression of the fluctuation amplitude as a function of the
capture and escape times, given by the non symmetrical Kubo Anderson model:

Y= VNA
LETRED)

It is a function of the ratio between I'y and I'j. The symmetry of the escape and capture
processes will highly influence the amplitude of the fluctuations.

(5.76)

5.5.2 Power dependence

At 4K, the expressions of capture and escape rates are more simple, as Ng1 =~ Npo = 0.

[} =Toc +Top + f(P)

/

I'y=f(P)
(5.77)
The ratio between these rates which are ruling the amplitude are such as:
r Lo + T P
Ly _ Tac+ Top + f(P) (5.78)

I f(P)
To simplify the problem, we will make the approximation that the same auger process is
involved in the capture or the escape of a carrier:

f(P)=f(P) (5.79)
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The relaxation of carriers in traps by coupling to optical phonons are reported at the picosec-
ond scale[I18]. If we were probing them, they would dominate the correlation rate and limit
the correlation time to a few ps, which is not the case. Measured time are in the nanosecond
scale. These ultrafast fluctuations are probably in the “homogeneous linewidth” we defined in
the previous chapter, and are out of sight of our experiment for temporal resolution reasons.
In the following we will only consider optical phonon processes for the capture or the escape of
carriers.

Thus,

& o FEC
Iy f(P)

In the last expression it is easy to predict how the ratio will evolve with power. In the low
power regime, the Auger process contribution is very small and the ratio is such as % > 1. This

+1 (5.80)

means that the fluctuations are highly non symmetrical: the capture of carriers dominates the
fluctations at low power. In the high power relgime, the Auger term becomes larger than the
capture assisted by phonon coupling I',., then ﬁ — 1. Auger processes are dominant for both
the escape and capture, and as a result fluctuation become symmetrical.

On fig. are plotted the correlation rates and amplitudes as a function of excitation
power. As described above, the correlation rate and FWHM increase with power. The power
dependent Auger process become faster and makes the fluctuations symetrical, ie the FWHM
gets larger. Both of the experimental measurements of the amplitude and the correlation rate
with power are fitted with a global method. The best global fit is given for the following set of
parameters: 8 = 0.65 , I'ye = 0.03ns7 1, Loug = 0.06ns™!, Py = 1.1mW. We can notice that the
Auger processes dominate quickly the phonon-carrier coupling mechanisms which are relatively
inefficient at 0K (7T,. = 33ns), this is why the FWHM is saturating in the high power regime.

5.5.3 Temperature dependance

We saw that we could interpret the experimental datas obtained via photon correlation technique
and with varying power with the help of the Kubo Anderson model. In this section,we study how
temperature influences the emitted photons energy statistic and the environnement fluctuation
processes.

Homogeneous linewidth broadening and fluctuation amplitude

When the temperature is increased, the first striking consequence on the half line autocorrelation
measurement is a quick collapse of the bunching. In fig. are plotted the right half line
autocorrelation figures for different temperatures from 4K to 60K. The value of the g factor
we introduced in chapter 4 is decreasing from the initial value of 0.5 to almost 0 near 60K. No
bunching is observed at higher temperatures for this quantum dot with fluctuation amplitude
for the charged exciton of 1.7 meV.

Such decrease of § with temperature can only be attributed to a broadening of the homo-
geneous linewidth, thanks to exciton-phonon coupling. The energies of photons resulting from
such coupling are randomly distributed along a complex temperature dependant energy profile
[123] that we will approximate here by a lorentzian with variable linewidth o (7). These energies
are governed by a poissonian process and are not time correlated . This bunching collapse means
that total photon energy statistic belongs more and more to a poissonian process type and is less
and less time correlated by the spectral diffusion process.
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Figure 5.30: a) Correlation rate versus power exictation for the 3 different nanowires. b) FWHM
vs excitation power. Fit parameters are given in the text.

For a different quantum dot, with weaker fluctuation amplitude X (1.2 meV), the the bunch-
ing totally collapses around around 40K. As the value of 8 depends on the ratio between the
fluctuation amplitude and the homogeneous linewidth, the latter needs to be less broadened (ie
at smaller temperature) to catch up a smaller fluctuation amplitude.
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Figure 5.31: Autocorrelations of the right spectral side of the line for increasing temperature.
On the right of the figure, illustration of the broadening of the homogeneous line (red line)
in the Gaussian distribution of the fluctuations (blue), in the approximation of a Lorentzian
homogeneous line profile model.

We can have more precise informations on the temperature dependance of the photon energy
statistic by evaluating the effective homogeneous linewidths and the fluctuation amplitudes for
different temperatures. This is reported on fig. (dots for the homogeneous linewidth and
squares for the fluctuation amplitudes), for two different quantum dots (blue and red color). The
two quantities are determined with the method exposed in section 4.2. As suspected during the
observation of the autocorrelation figures, the effective homogeneous linewidths increase with
temperature, they reach the same order of magnitude as the fluctuation amplitude and even
become larger for high temperatures (40-60K). The increase of the linewidth is similar for the
two quantum dots, which is a good indication on the reproductibility of the measurement.

The other important information is that the fluctuation amplitude is constant with tem-
perature (for the investigated 2 quantum dots). We will discuss more precisely this surprising
phenomen in the next subsection. By increasing the temperature, one only broadens the distri-
bution of the energy-shifts imposed by the homogeneous linewidth, and the distribution of the
fluctuations due to the spectral diffusion remains the same. This has two consequences:

-The temperature broadening of the FWHM observed on the spectra are only due to the
phonon broadening of the homogeneous linewidth.

-At room temperature the measured FWHM of 16 mev is in very large part the result of the
phonon broadening. The energy of the photons detected from these large lines are randomly
distributed with a poissonian process. The time correlated jumps of the spectral diffusion are
negligible. Thus, if someone has the objective to generate coherent single photon emission with
a very sharp band energy at room temperature, it is useless to fight against spectral diffusion.
To begin, it is more relevant to try to reduce the temperature induced phonon coupling.
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Figure 5.32: Fluctuation amplitude (squares) and homogeneous linewidth (dots) for 2 different
quantum dots (red and blue)

Temperature effect on the Correlation rate

As we did for the power dependance of the spectral diffusion, we will interpret the correlation
rate and fluctuation amplitude temperature dependances with the help of the Kubo Anderson
model. In the previous subsection we pointed out that the amplitude of the fluctuations were
constant with temperature. In fig. we plotted the correlation rate versus temperature.
We observe a slight increase of this quantity, which is due to the enhancement of the phonon
population.

[. =T4c(2Np1 + 1) + 2f(P) (5.81)

At the same time the ratio between escape and capture rates is:

F(LC
Iy Tu(Np+1 P Tae
L _ (Np1 +1) + f( ):1+ :1+% (5.82)
Ty~ TucNpi+ f(P) TwcNp1 + [(P) L+ S5

For efficiency and integration time reasons, these temperature dependent measurements where

done at high power, for F‘}C(]}[,fl < 1, so we can approximate this expression as follows:

Lo + Lac o Np1(T). <1>2 (5.83)
Ty fpy f(P)

In the high power regime, where Auger processes are dominating, the temperature increase
of the phonon population have much less influence on the % ratio, as they belong to the power
second order term.

The second reason why tempretaure is not affecting the FWHM in the high power regime is

that the amplitude is saturating when % ~ 1. Indeed, as we discussed in section 2.3.3. on the
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gerneralization of the Kubo anderson model for non symetrical fluctuations:
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Figure 5.33: The correlation rate (blue dots) , and the relative fluctuation amplitude (blue
crosses) versus the temperature. Plain lines are results given by the Kubo Anderson model.

For the fits, we used the same parameters determined for the power dependance: 'y, =
0.03ns 1, Loug = 0.06ns~!, B = 6.5. the power is fixed at P=3mW, and the fit gives an
accoustic phonon energy F,. = 1.5meV, It can be interpreted as the mean energy given by the
carrier to the system during its relaxation in the trap.

5.5.4 Conclusion

Thanks to the Kubo anderson model, we are able to explain qualitatively the evolution of the
fluctuations with temperature or power, by paying the price of a few approximations. Increase of
the excitation power activates auger processes which are quickly overcoming relatively inefficient
accoustic phonons assisted relaxations and make escape and capture rates symmetrical. This
results in an increase and eventually in a saturation of the line FWHM. This interpretation is in
opposition with the model proposed in this reference [116], where a single charge is trapped in the
vicinity of the quantum dot, all the other charges being repulsed by coulomb interaction. This
picture would explain a constant FWHM with increasing power but is not consistent with the
increase of the FWHM observed in our case. On the contrary, their experimental observations
can be interpreted via the kubo Anderson model. Indeed, for accoustic phonons relaxation totally
inefficient or negligible, one can imagine that the Auger processes are ruling capture and escape
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processes, even at low power, thus fluctuations would be aways symmetrical and the fluctuation
amplitude would be constant with power.

We also obtained conclusions about how temperature influences the energy emission statistic.
Indeed, the amplitude of the time correlated spectral diffusion is constant with temperature,
while phonon broadening gets more and more important, and is actually the only responsible
for the observed spectral line broadening. Thus, at high temperature, the uncorrelated phonon
broadening process is dominating the correlated spectral diffusion process, and the expression of
this domination is a constant half line energy correlation function.
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General conclusions and perspectives

The results obtained in this thesis are the result of the exploitation of a unique sample, except
a few results concerning correlation of optical measurements and microscopy. The latters are
related to characterisation work on the different samples produced during 3 years. Dispersion of
the optical properties observed on the quantum dots of the same sample allowed us to conduct
fine studies and to show different interesting dependances. One could say that we turned im-
perfections of our objects into opportunities -the spectral diffusion topic is a good example- to
understand their physical properties, and we even opened our experiments and reflexions towards
more general considerations. We present here the main conclusions of this work in the order of
presentation of this manuscript, each of them followed by the description of the corresponding
perspectives.

Neutral nanowire quantum dots

We investigated the excitonic dynamic in the CdSe/ZnSe nanowire quantum dots. Early studies
were performed by Gregory Sallen on these structures during his thesis but they were limited to a
characterisation work - identification of the emission lines, influence of the dark exciton state on
the dynamic of charged quantum dots. By a theoretical work, we detailed the exciton-acoustic
phonon coupling, responsible for the hole spin flip transition from the bright to the dark state.
We investigated the quantum dots size effects, we determined for which conditions the efficiency
of the coupling is the most important, explaining the increase of the bright exciton depopulation
with exchange energy. We then included the effects of a thermal phonon bath, induced by the
increase of the temperature in the model. It allowed us to explain experimental results obtained at
high temperature and to extract a very interesting conclusion: the exciton luminescence intensity
remains smaller than the biexciton intensity at room temperature. This set of results is specific
to the studied structure, and exhibits a few original behaviour for a condensed matter single
photon emitter, especially for a semi-conductor quantum dot. The large measured exchange
interactions and fast spin-flip processes are the result of small dimensions of the quantum dot
and very good confinement. This is a consequence of the nanowires VLS growth mode, which
implies the absence of the wetting layer and a more abrupt confining interface between the small
gap and the large gap semi-conductors.

This is one of the reasons why research on nanowires in our group switched towards the
fabrication of magnetic nanowires in the hope that coupling between the quantum dot carriers
and magnetic atoms spins inserted around the quantum dot will be enhanced. In addition, control
on the quantum dots size and geometry is expected in these structures in order to provide tunable
magnetic anisotropy. The main idea is to insert manganese magnetic atoms in the nanowires. As
radiative internal transitions of the Mn atom are in the emission range of CdSe/ZnSe nanowire
quantum dots, it has been decided to investigate the growth of CdTe/ZnTe nanowire quantum
dots. The growth of such structures is relatively new and first optical results were reported very
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recently by an other group [72].

Room temperature single photon emission

We demonstrated room temperature single photon emission. This result is specific to this system
for two reasons. First, the use of the biexcitonic transition is a very original choice if we consider
other room temperature operating emitters such as nanocrystals where biexciton is hardly ob-
served because of very efficient Auger processes. The presence of the exciton and of the biexciton
in a close energy range is a major obstacle to the production of quality single photon emission
signal at high temperature. We showed that, by essence, the pollution of biexcitonic single
photon emission by the exciton emission is important because of their correlation. Thus, the
weakness of the exciton luminescence in our system was a decisive feature. The second reason
which was not less decisive, was the very good resistance against temperature. Again, this is due
to the nanowire growth mode and the abscence of a 2D layer which is an undesirable connection
between quantum dots and the main channel for carriers escape in self-assembled systems.

To finish on this point, note an appreciable property of these quantum dots: a very fast
spontaneous emission rate, with a lifetime of only 300 ps. This could allow to reach an extremely
high single photon emission frequency (2.5 Ghz) and to avoid slower decoherence processes which
are reducing the photons indistinguishability, without the need to use any microcavity and the
associated Purcell effect. The eventual implementation of such microcavity would accelerate even
more an already very fast emission of the quantum dots[72], potentially leading to very efficient
two-photon interferences [95] and a high fidelity generation of polarization entangled photons
pairs[125, 126]. In the case of nanowire quantum dots, with an intrinsec very good in-plain
isotropy, the latter idea can be an extremely interesting perspective.Providing the nanowires
could be observed as grown, from the top.

Temperature robustness and indistinguishability of photons are not the only issues in the
quest of single photon emission from quantum dots. One can also expect them to be efficient.
During the last years Julien Claudon et. al. developed a top down fabrication strategy leading
to photonic nanowires guiding the emission of III-V quantum dots. They even optimized their
etching process in order to fabricate a taper with a special angle and eventually extracted 72% of
the light emitted by the quantum dot[127]. This is an impressive achievement if we consider that
a quantum dot is shining in every direction and that only a small fraction of the light emitted in
the light cone defined by the numerical aperture of the objective is collected. The VLS growth
mode of the nanowires forbbids to use the top down approach. However the bottom up version
of Julien Claudon’ s work would be the fabrication of core shell structures, with lateral growth
of ZnSe shells around the nanowires. The advantage is the assurance to have one single quantum
dot in each core shell structure. And more important: the quantum dot would be perfectly
centered. The efficiency of the emission guide is dependent on the position of the quantum dot
with respect to the photonic wire axis[I28]. Instead of having randomly distributed quantum
dots in the photonic wire, we would obtain a deterministically centered single quantum dot in
every photonic wire.

Dynamic of charged quantum dots

We also studied the dynamic of charged quantum dots. We didn’t use them for room temperature
single photon emission even though they represent 80% of the explored quantum dots. The
charged exciton line could be a good candidate, as its emission is not correlated with exciton and
biexciton lines. However its energy position (between exciton and biexciton) is not favourable.
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At high temperature, we would detect the correlated pollutions of the exciton and the biexciton.
The solution would be to use permanently charged quantum dots, with no neutral line, but no
clear identification of such spectra has been done.

Charged quantum dots were interesting for an other reason: they exhibited two charged
biexciton lines. Cross correlation measurements between these lines and the charged exciton line
allowed us to detail the excited trion fine structure and to measure the speed of its different
relaxation mechanisms, in particular to give a carrier spin flip time of around 200 ps. The dif-
ferent mechanisms measured times led us to think we were dealing with p-doped quantum dots,
which is relatively surprising for a naturally n-doped material such as CdSe. There is no easy
experiment to test this hypothesis. It is extremely difficult to apply a voltage bias on 10 nm
nanowires, even if the skills necessary to contact sub-micrometer nanowires are present in the
group. Presently, the resolution of the SEM associated with the electron gun insulating the resine
for the fabrication of nanowires contact is not sufficient. Moreover, we didn’t detect any lumi-
nescence from the ZnSe nanowires, wich could have constituted a good marker. Such nanowire
electroluminescence technology was developped recently with the fabrication of quantum light
emitting diodes comprised on a single InAsP quantum dot embedded within the depletion region
of a p-n structure[I129)]. After optimization, and reduction of non radiative processes in the doped
nanowire, one can expect the possibility to product electrically pumped single photon emitter
with nanowires. The production of such an object requires the intentional p and n doping of the
nanowire. Even though this operation is routinely performed in ITI-V nanowires, this is far to
be our case.

One dimensionnal effects

From the geometry of the nanowires, one would suppose that 1D effects can be probed on
these structures. Physics on 1D systems is very appealing on the paper but is extremely hard to
demonstrate experimentally. The two attempts made in this direction failed. For the first one, the
strong lateral confinement in the nanowire imposes a discretisation of the phonon dispersion[130].
Theoretically, the consequence on the emission spectrum is the presence of resonances in the
phonon broadening, which should appear clearly on both sides of the zero-phonon line when the
temperature is increased|[I31]. Because of the very small diameter of the nanowires (10 nm) the
resonances should be well separated (~ 1 meV between the resonnances). The fact we observed
a bulk-like phonon broadening makes us think that we don’t study a clean 1D system, but
the presence of numerous defects convolve the nice discretisation of the phonon dispersion we
expected. The purpose of the second attempt was to probe the electronic 1 D density of state of
the nanowire by a photoluminescence excitation above the ZnSe 442 nm bandgap. In principle,
one should observe a characteristic ﬁ dependance with multiple resonances due to the lateral
confinement. The calculations predicted a 4 meV separation between the 2 first resonnace peaks.
But no such resonnance was observe clearly and the PLE spectrum looked flat.

Spectral diffusion

The spectral diffusion topic was already approached by Gregory Sallen during his thesis. He
developped the experimental technique allowing to measure correlation time in the nanosecond
range. From this, we sophisticated the understanding of the measurement and extended its
possibilities. By a theoretical work, we showed that the half-line autocorrelation function gives
access not only to the emission statistic (as the traditionnal HBT setup does), but also to
the emission energy statistic. We extricated the influences of the uncorrelated homogeneous
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General conclusions and perspectives

linewidth energy distribution and the correlated spectral diffusion process. By measuring the
bunching contrast, one can extract the relative importance of the two different statistics. Direct
applications of this theoretical approach is the determination of the homogeneous linewidth, in
the limit of the experimental resolution, and the amplitude of the spectral diffusion. In particular,
temperature dependant experiments showed that the latter amplitude was constant and the
exciton-phonon coupling was the only responsible for the temperature induces line broadening.
This phonon braodening proves to be the dominant mechanism in the high temperature ranges
and the spectral diffusion effect is then negligible. This conclusion is important. This means,
that the main obstacle to indistinguishable single photon emission at room temperature is not
spectral diffusion, but coupling of the emitter to phonons. It would be interesting to see if this
behaviour is general to all the condensed matter systems, or if it is very specific to our quantum
dots. Anyway, we believe that the experimental method we propose is realistic and easy to set
up for any spectroscopy group.

We also analyzed the influence of the temperature and the excitation power on the fluctuation
of the quantum dots electronic environnement. After interpretating the experimental results
with the help of the Kubo-Anderson model, the main conclusions we extracted was that the
symmetrisation of the fluctuations was playing an important role on their amplitude and speed
and that the Auger process was the dominant process for capture and escape of the carriers,
especially at high power where they are responsible for a total symetrisation of the fluctuations.
This symmetrisation of the fluctuations leads to a saturation of the spectral diffusion amplitude.
When temperature is increased, the amplitude is the same. Thus, phonon broadening amplitude
can catch up spectral diffusion and dominate the spectrum, this explains the conclusion we did
on the relative importance of emission energy statistics derived from the bunching contrast.
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Annexe: Random processes

The concept of a random process represents a generalization of the idea of a set of random
variables 1, xo, x3, ..., when the set is no longer countable and the variables form a continuum.
We therefore introduce a continuos parameter t, representing the time, that labels the variates.
We call x(t) a random process if x does not depend on t in a deterministic way.

Stationnarity

Random functions of time frequently have the property that the character of the fluctuations
does not change with time, even though any realization of the ensemble x(t) changes continually
in time. Such process is said to be statistically stationary. We call a random process process
stationary if all the probability densities p1, po2, ps3,... governing the fluctuations are invariant
under an arbitrary translation of the origine of time ie. if, for all T:

pn(l‘nvtnaxn—htn—lv ...,iUl,tl) = pn(xnatn + T, Tp—1,tp—1+ T7 ey 1,01 + T)

Under these circumstances, the expectation values of (1), z(t2) and z(¢3)... are also invari-
ant under time translation.
And one can show the correlation function has the following property:

L(t1,t2) = (@(t1)a(t2)) =T(t1 — t2)

Poissonian process

A Poisson process at rate is a renewal point process in which the interarrival time distribution is
exponential with rate : interarrival times {X,, : n > 1} arei.i.d. with common distributionF'(x) =
PX<z)=1-e 12>0;, B(X)=1/\

The reason that the Poisson process is named so is because: For each fixed t > 0, the
distribution of N(t) is Poisson with mean \t:

with k& > 0.
In particular, E(N(t)) = t, Var(N(t)) = A, t > 0. In fact, the number of arrivals in any
interval of length t, N(s + t) - N(s) is also Poisson with mean \t:

_ae (A
C TR
with s >0, k>0, and E(N(s+t) — N(s)) = At, Var(N(s+t) — N(s)) = At, t > 0.

P(N(s+t)—N(s)=k) =
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Anneze: Random processes

N(s+1t) — N(s) is called a length t increment of the counting process {N(t) : t > 0}; the
above tells us that the Poisson counting process has increments that have a distribution that is
Poisson and only depends on the length of the increment. Any incrementof length t is distributed
as Poisson with mean At. This is an example of a process having stationary increments: Any
increment of length t has a distribution that only depends on the length t. The Poisson process
also has independent increments, meaning that non-overlapping increments are independent: If
0 <a<b<ec<d, then the two increments N(b) — N(a), and N(d) — N(c) are independent
intervalls.

Remarkable as it may seem, it turns out that the Poisson process is completely characterized
by stationary and independent increments:

Suppose that is a simple random point process that has both stationary and independent
increments. Then in fact, is a Poisson process. Thus the Poisson process is the only simple point
process with stationary and independent increments.

Gaussian process

Gaussian process is a stochastic process whose realisations consist of random values associated
with every point in a range of times (or of space) such that each such random variable has a
normal distribution. It can be completely defined by its mean value (x(¢)) and its correlation
function (x(t1)x(t2)). A gaussian process is not necessarily stationary.

First order markovian process

Unlike the poissonian process, which is independant of its history, the first order markovian
process is influenced by its immediate or most recent past. Its probability density satisfies the
equation:

P (Thns thgn o3 Tt 1 Tt | Thos thgoos ©1581) = Dt (Thcns thgn -3 Tt 15 Tt | Thos ti;)

with (t1 <ty < t3)

The most recent past governs the time evolution of the process.

One can show that the joint probability of n events governed by a Markovian process can be
decomposed as follows:

pn(%’n,tn,ﬂ?n—l,tn—h ...,.1‘1,751) = p(-rn?tn ‘ xnflatnfl)p(xnflatnfl | $n72,tn72> ---p(iUl,tl | 551,751)]?(331,751)

The telegraph noise process is a first order markovian process.
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Résumé

Le travail proposé dans cette thése est basé sur des expériences de corrélation de photons faites
sur un émetteur de photons uniques semi conducteur: une boite quantique de CdSe dans un
nanofil de ZnSe. La premiére démonstration de production de photons uniques d’une boite
quantique épitaxiée a température ambiante y est présentée. La transition biexcitonique est
la source utilisée et son rapide taux d’émission spontanée (temps de vie radiatif de 300 ps) en
fait un emetteur extremement rapide. Pour expliquer ce résultat, nous avons étudié expéri-
mentalement et théoriquement 'efficacité de couplage exciton-phonon et ses conséquences sur
Iintensité de 'exciton avec la température. Nous présentons également des résultats optiques
portant sur la robustesse de cette structure a haute température. La technique de corrélation
de photons est également appliquée sur des boites quantiques chargées. La présence du biex-
citon chargé nous a permis de sonder la structure fine du trion excité, de décrire ses processus
de relaxations et d’obtenir une mesure directe du temps de spin flip du trou sur I’état p. Des
indications sont également données sur la nature possible du dopage. Nous avons aussi étudié la
diffusion spectrale de ’émetteur causée par les fluctuations électroniques de son environnement.
Par un travail théorique nous montrons comment interpréter 'effet de 1’élargissement phonon de
la raie homogene, (processus Poissonien) combiné avec 'effet de la diffusion spectral (processus
Markovien) sur la fonction d’” autocorrélation de la demi-raie. Grace a I’expérience, nous conclu-
ons sur la statistique de ’énergie d’émission de ’émetteur & haute température. Nous appliquons
cette théorie sur les nanofils et interprétons les dépendances en température et en puissance des
fluctuations de ’environnement grace au modéle de Kubo-Anderson.

Summary

The work proposed in this thesis is based on photon correlation experiments performed on a
semi-conductor single photon emitter: CdSe/ZnSe nanowire quantum dot. Is presented the first
demonstration of single photon emission at room temperature from an epitaxied quantum dot. To
explain this result we investigated by a theoretical and experimental study, the exciton-phonon
coupling efficiency and its consequence on the exciton luminescence intensity with temperature.
We also present optical results on the robustness against temperature of this structure. Photon
correlations techniques are also applied on charged quantum dots. Presence of the charged
biexciton allowed to probe the fine structure of the excited trion, to describe its carrier relaxation
processes, and to obtain a direct measurement of the p-shell hole spin flip time. Indications
are also given on the possible doping nature. We also investigated spectral diffusion of the
emitter caused by electronic fluctuations of the environnement. By a theoretical work, we show
how to model the effect of the homogeneous phonon broadening, (poissonian emission energy
process) combined with the spectral diffusion effect (markovian emission energy process) on
the half line autocorrelation function. Thanks to experiments, We conclude on the statisic of
the emission energy of the emitter at high temperature. We apply this theory on CdSe/ZnSe
nanowire quantum dots and interpret temperature and power dependance of the environnement
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fluctuation thanks to the Kubo-Anderson Model.
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