N
N

N

HAL

open science

Electromagnetic signature of human cortical dynamics
during wakefulness and sleep

Nima Dehghani

» To cite this version:

Nima Dehghani. Electromagnetic signature of human cortical dynamics during wakefulness and sleep.
Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI, 2012. English. NNT:

. tel-00728697

HAL Id: tel-00728697
https://theses.hal.science/tel-00728697

Submitted on 6 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-00728697
https://hal.archives-ouvertes.fr

U~,MmcC

AaA( SORBONNE

Electromagnetic signature of human cortical dynamics
during wakefulness and sleep

Signature électromagretique de la dynamique corticale
pendant I'éveil et le sommeil chez ’lhomme

Nima Dehghani

These de Doctorat
en Neurosciences Computationnelles

) Université Pierre et Marie Curie (UPMC)
Ecole Doctorale Cerveau, Cognition, Comportement

Soutenue le 30 At 2012, avec le Jury compesle:

Sonja Giin Rapporteur
Jean-Philippe Lachaux Rapporteur
Eric Halgren Examinateur
Michel Le Van Quyen Examinateur
Régis Lambert President du Jury
Alain Destexhe Directeur de thse

Laboratory of Computational Neuroscience
Unité de Neurosciences, Information et Complexité (UNUPR-3293),
Centre National de la Recherche Scientifique (CNRS), GifYaxette, France






Contents

Preface 9
Acknowledgments 11
Summary 13
Résune 15
| Introduction 19
1 History & Instrumentation 21
1.1 Macroscalerecordings . . . . . . . . . 21
1.1.1 Electroencephalography (EEG). . . . . . . .. .. ... .. .... 21
1.1.2 Magnetoencephalography (MEG). . . . . .. .. ... ... .... 24
1.2 Microscalerecordings. . . . . . . . . .. 26
1.2.1 Importance of invivo measurements . . . . . . ... ... ... .. 26
1.2.2 Extracellularinvivo measurements. . . . . . ... ... .. .... 27
1.2.3 Multielectrode recording of extracellular signatof neural activity. . 27
2 Biphysics 29
2.1 Sources of Extracellularfields . . . .. . ... ... .. ... ... . .... 29



2.2 From micro-scale to meso-scale to macro-scale. . . . . . ... ... ... 30
2.3 Forward model and inverse solution in a volume conduoidium . . . . . . 32
2.4 Multiscalesynchrony. . . . . . . . . ... ... 33
2.5 Spatial reach of LFP & Electromagnetic Lead field. . . . . ... ... ... 35
2.6 Frequency-dependent characteristics: Low-passitidfend its effect on fre-
quencyscaling . . . . . . .. 36
2.7 Nonuniformity of the extracellular space and inhomagrof the conductive
Medium . . . . . . e 37
2.8 Influence of tissue conductivity anisotropy. . . . . . . . .. ... ... ... 38
2.9 State-dependent characteristics . . . . . . ... .. ... ... . 39
Neural avalanche dynamics 41
3.1 Self-organized criticality. . . . . . . . . . ... 41
3.2 Neuralavalanches. . . . . . . .. . ... 42
Studies 45
Overview 47
4.1 Electromagnetic properties of the extracellular mediu. . . . . . .. .. .. 49
4.2 State-dependent spatiotemporal dynamics of corticabeircuitry . . . . . . 50
4.3 Neural avalanchedynamics. . . . . . . . . . . .. 51
MEG/EEG Spectra 53
5.1 Summary . . . ... e e 55
5.2 RESUME. . . . . . . 56
5.3 Introduction. . . . . . . .. 57
54 Methods. . . . . . . . 57

5.4.1 Participants and MEG/EEG recordings. . . . . .. ... .. .... 57



5.4.2 Noise correctionmethods . . . . . ... ... ... ... L. 58
5.4.3 Frequency scaling exponent estimation . . . . .. ... .. .. .. 59
5.4.4 Regionofinterest(ROI) . . .. .. .. .. ... .. .. ....... 60
55 Theory. . . . . . e 60
5.5.1 Generalformalism. . . . . . ... .. ... ... 60
5.5.2 Expression for the electricfield . . . . . ... ... ... .. .... 62
5.5.3 Expression for magnetic induction. . . . . .. ... ... ... ... 62
5,54 Boundaryconditions . . . . ... .. ... ..o 63
5.5.5 Quasi-static approximation to calculate magnetication. . . . . . . 63
556 CONSequUENCES. . . . . . . i e e e e e 64
5.6 Testonexperimentaldata. . . .. ... ... ................. 65
5.6.1 Frequency scaling exponent estimation . . . . .. ... .. .. .. 66
5.6.2 MEG and EEG have different frequency scaling expanent. . . . . 66
5.6.3 Spatial variability of the frequency scaling expanen. . . . . . . .. 67
5.6.4 Statistical comparison of EEG and MEG frequencysgali. . . . . . 67
5.6.5 Relation of scaling exponent to signal-to-noiseorati . . . . . . . .. 69
5.7 DISCUSSION . . . . . . . e 69
5.8 Appendices. . . . . . . e 73
5.8.1 A:Theoretical . . . .. . ... .. ... . 73
5.8.2 B: Methodological. . . . ... ... ... .. .. ... .. ...... 78
59 Figures& Tables. . . . . . . . . . . . . .. 80
5.9.1 Figures. . . . . . . e 80
59.2 Tables . . . . .. 86
5.10 Suplplementart Tables & Figures. . . . . . . . . .. . ... .. ... .... 87
5.10.1 Supplementarytable . . . . ... ... ... ... .......... 87

5.10.2 Supplementaryfigures. . . . .. . ... . .. .. ... ... 87



6 Human neocortical excitation and inhibition 91
6.1 Summary . . . . . . . e e e e e 93
6.2 RESUME. . . . . . . . e 94
6.3 Results . . . . . . ... 95

6.3.1 SeparationofRSandFSCells . . ... ... ... ......... 95
6.3.2 Putative Monosynaptic Connections . . . . . . .. ... ... ... 96
6.3.3 Spatiotemporal Dynamics of Cell Interaction. . . . . ... ... .. 97
6.3.4 State-Dependent Long-Range Correlation. . . . . . ... .. ... 98
6.4 DISCUSSION . . . . . . . . 99
6.4.1 Separating Excitation from Inhibition . . . . . . ... ... ... .. 99
6.4.2 Spatiotemporal Extent of Neuronal Interrelatiopshi. . . . . . . .. 100
6.5 Materialsand Methods . . . . . . . ... .. Lo 101
6.6 Supporting Information . . . . ... ... oL 102
6.6.1 Unit Recording and Spike Sorting. . . . . . ... ... ... .... 102
6.6.2 Discrimination of Pyramidal (Pyr) Cells and Fastkpg (FS) Interneu-
rons(Int) . . . . .. 102
6.6.3 Detecting Monosynaptic Connections from Cross-€ograms. . . . 102
6.6.4 Nonstationary Correlation . . . . . ... .. ... .. ........ 103
6.6.5 SleepScoring . . . . . . . ... 103
6.6.6 Electrode Localization . . . . . . ... ... ... ... L. 104
6.7 Figures& Tables. . . . . . . . .. . .. ... 104

7 Avalanche dynamics 115
7.1 SummMary . . ..o e e e 117
7.2 RESUME. . . . . 118
7.3 Introduction. . . . . . .. 119
7.4 Materialsand Methods . . . . . . . ... .. .. 120



741 Recordings. . . . . .. ..
7.4.2 Avalanche detection. . . . . ... ... ... .. .....
7.4.3 LFP peak and spiking relationship. . . . . ... ... ...
7.4.4 Testing power law distribution in empirical data . . . . . .
7.45 Alternativefits. . . . . . ... ... oL
75 Results . . .. ..
7.5.1 Avalanche definition. . . . . . ... ... .. ... ..
7.5.2 Powerlawfit. . . . . ...
7.5.3 Avalanche analysisfromspikes. . . . . ... ... ....
7.5.4 Avalanche dynamics from local field potentials . . . . . .

7.5.5 Statistical analysis of the avalanche distributions

7.5.6 Goodnessoffit . ... .. ... ... ... .. ... ...
7.5.7 Avalanche size boundaries. . . . . ... ... ... ...
7.5.8 Alternative distributions for avalanche dynamics. . . . . .
7.6 DiscussSion . . . . ...
7.7 FIiguUres . . . . . .
7.8 Tables. . . . . .

8 Appendix: Cell/LFP relations and E/I balance

8.1 Summary. . . . . ..
8.2 Résumé. . . . . . ...
8.3 Materialsand Methods . . . . . . . ... ... L.
8.4 Figures . . . . . . ..

1l Discussion

9 EEG/MEG Spectra

173



9.1 Theoretical investigation of the frequency scaling BfFzand MEG signals. . 173

9.1.1 recountofbiophysics. . . . ... .. .. ... .. .. ... ..., 173
9.1.2 Theoreticalassumptions. . . . . . . . ... ... o 174
9.2 Analysis of the frequency scaling of EEG and MEG signals. . . . . . . .. 175
9.2.1 precisionsand precautions. . . . . . .. ... ... 175
9.3 concerns and future possibilites. . . . .. .. ... oo oo oL 177
9.3.1 Precise 3D geometricmodels . . . . ... ... ... ........ 177
9.3.2 Multiscalestudies. . . . . ... ... ... 177
9.4 Conclusion . . . . . . .. 177
10 Network dynamics 179
10.0.1 Morpho-functional discrimination of putative ibliory and putative
excitatory units.. . . . . . ... 180
10.1 Spatiotemporal dynamics of excitation and inhibition . . . . . . . ... .. 182
10.2 Limitations . . . . . . . . . 183
10.3 Conclusion & future directions . . . . . . . . . . ... ... 184
11 Avalanche dynamics 185
11.1 Avalanche dynamics fromunitrecordings. . . . . . . . .. .. .. .. ... 185
11.2 Avalanche dynamics from LFP recordings . . . . . . . .. ... ... ... 186
11.3 Methodological considerations. . . . . . . .. .. ... ... ........ 187
11.4 Future directions. . . . . . . . . . . . e 188
12 Grand conclusion 189

IV  Bibliography 193



Preface

My training as both a medical doctor and a theoretical sisehas made me very aware of the
gap between diagnostic/therapeutic approaches to disedshe quantitative characterization
of biological network dynamics. It is my belief that to briglthis gap, practicing medicine will
and should be supplemented by automated adapting algaeribfitombined anticipatory and
therapeutic devices. In keeping with this belief, after pteting my medical training | joined
the Harvard/MIT Martinos center for Biomedical Imaging.n& then, | switched to pure re-
search to understand the fundamentals of how differens p&#d biological system interact. At
Martinos and then UCSD Multimodal Imaging Lab (a joint veetlbetween Departments of
Radiology and Neuroscience) and MGH Neurology departn@ottical Physiology Lab) un-
der the supervision of Eric Halgren, along with Syd Cash wapéetl multimodal investigations
to study the sleep rhythms in healthy and epileptic patiehbgiether, we studied the electro-
magnetic signature of sleep graphoelements. We contirhisdine of work in intracranial
recordings from epileptic patients.

Subsequently, | joined Unité de Neurosciences, Inforomegt Complexité (UNIC) at Centre
national de la recherche scientifigue (CNRS), to earn a PhBearetical and computational
neuroscience under the supervision of Alain Destexhe. ARENwe adapted the physics of
electromagnetism toward the understanding of the spgutpkrties of non-invasive large scale
neural activity measurements. In studying invasive ensemgzordings of neural spiking and
local field potentials from epileptic patients, we used @pts from statistical physics to assess
self organized criticality in neural tissue. In additione &nalyzed the network properties of
excitation and inhibition in micro-circuitry of the cerelbrcortex in order to better understand
cortical spatiotemporal dynamics.

Throughout my independent studies, | have let the questefise what | read and learn
next. The questions that interest me have always been ol gditisdiction of the reductionist
view. | do believe this is a natural fruit of my initial tramg in medicine. It is my belief that for
better understanding a complex system, one needs to quasttharacteristics at many scales.
The body of work presented in this thesis, is driven by thighel hope to use this invaluable
experience in my future investigations.
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Summary

Analyzing brain function at multiple scales is a necess#ep $0 understand its complexities.
In this thesis work, we tackled this issue at both macro anttarscales using non-invasive
and invasive recordings. We have used a series of compuogatiechniques and correlation
analyses to analyze recordings of the human brain activitynd wakefulness and sleep.

In a first study, we analyzed simultaneous elecroencepratodEEG) and magnetoen-
cephalogram (MEG) recordings in awake human subjects. \OWeesththeoretically that if the
medium is resistive, the frequency scaling of EEG and ME@agshould be the same at low
frequencies €10 Hz). To test this prediction, we analyzed the spectrummofitaneous EEG
and MEG measurements in four human subjects. In a givenmrggithough the variability of
the frequency scaling exponent was higher for MEG compardelBG, both signals consis-
tently scale with a different exponent. In some cases, thkngcwas similar, but only when the
signal-to-noise ratio of the MEG was low. Several methodsai$ée correction for environmen-
tal and instrumental noise were tested, and they all inecetse difference between EEG and
MEG scaling. We conclude that there is a significant diffeeem frequency scaling between
EEG and MEG, which can be explained if the extracellular mediincluding other layers such
as dura matter and skull) is globally non-resistive. Théste® or non-resistive nature of the
extracellular space in the brain is an important deterntifa@rcorrectly modeling extracellular
potentials.

In a second study, we analyzed the spatio-temporal dynawmhiesgcitation and inhibition
during human sleep from high-density intracranial reaogdi We used high-density record-
ings obtained in epileptic patients and from unit recordjnge successfully separated between
RS neurons (regular or bursting cells) from fast-spiking)(Eells. The high density of the
array allowing recording from large number of cells (up tQ B6lped us to identify apparent
monosynaptic connections, which confirmed the excitatadyiahibitory nature of RS and FS
cells, thus categorized as putative pyramidal and inteores) respectively. Using such a sep-
aration, we investigated the dynamics of correlations iwidach class. A marked exponential
decay with distance was observed in the case of excitatdrditufor inhibitory cells. Thus,
our study provides, for a first time, insight on the interptdyexcitation and inhibition in the
human neocortex.

13
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In a third study, we investigated dynamical signatures ohglex dynamics, and self-
organized activity, from intracranial recordings in catpmkey and humans. We compared
the collective dynamics of different in vivo preparationgidg wakefulness, slow-wave sleep
and REM sleep, in cat parietal cortex (96 electrodes), mpnikator cortex (64/96 electrodes)
and human temporal cortex (96 electrodes) in epileptiep&di In neuronal avalanches defined
from units (up to 152 single units), the size of avalanchegnelearly scaled as power-law, but
rather scaled exponentially or displayed intermediatérsgaAvalanches defined from nLFPs
displayed power-law scaling in double logarithmic repréagons, as reported previously in
monkey. However, avalanche defined as positive LFP (pLFBkgevhich are not related to
neuronal firing, also displayed apparent power-law scal@@igser examination of this scaling
using the more severe cumulative distribution function EpPepresentation did not confirm
power-law scaling. The same pattern was seen for cats, markd human, as well as for
different brain states of wakefulness and sleep. We alsedesther alternative distributions.
While simple exponentials yielded very good fits of the anake dynamics, the bi-exponential
distribution provided the best fit to the data. Collectivéhese results show no clear evidence
for power-law scaling or self-organized critical statetsthee level of spiking activity or local
field potential, in the awake and sleeping brain of mammaeadsnfcat to man.

Finally, in an appendix, we provide preliminary results atite relations between excita-
tory and inhibitory cells with local field potentials in humsaleep. The high-density intracranial
recordings described above (96-electrode array) were tosadalyze the differential firing of
RS and FS cells during different sleep stages, devoid ofiatéé activity. Up to 90 simultane-
ously recorded units (in Layer Ill), and 96 local field potah{LFP) recordings, provide a good
basis to characterize the dynamics of excitation and itibibduring different brain states. Dur-
ing slow-wave sleep (SWS, Stage Il or IV), dominated byalelave activity, all neurons fired
according to Up and Down states, in relation to slow-wavespdexes in the LFP, as described
previously. Both RS and FS cells were silent during the Detates. During REM sleep and
wakefulness, both types of units fired according to verygintar patterns of discharge, while
the LFP or ECoG were desynchronized. In all states, FS cedig §iignificantly more than RS
cells (about 4 to 5 times on average). These results provat@acterization of the different
roles of excitation and inhibition in the different wake asidep states in humans.

In conclusion, we have used different measurement metfrods microscopic scale (single
unit activity), mesoscopic (LFP) and macroscopic (ECoGGEMEG) to characterize wake
and sleep states in humans (as well as cat and monkey in ahg.siMe conclude that the brain
follows complex dynamics at all scales. There is globallewilence for self-organized critical
dynamics, but the brain activity manifests other signs tff@ganization, such as large-scale
rhythmical activity and multiple exponential processese ¥dggest that all results could be
explained by the interplay of excitation and inhibition. \Aeticipate that coupled oscillator
network models of interacting excitation and inhibitiorosld reproduce these findings, which
constitutes a challenge for future work.



Resune

L'analyse de la fonction cérébrale a de multiples éelsebst une étape nécessaire pour com-
prendre ses complexités. Dans ce travail de these, nauns @tudié cet aspect aux niveaux
microscopiques et macroscopiques en utilisant des etm@gisnts invasifs et non-invasifs.
Nous avons utilisé une série d'outils d’analyse compoitaitels et de corrélation pour étudier
I'activité cérébrale pendant I'éveil et le sommeil.

Dans une premiere étude, nous avons analysé les emneeggsits simultanés d’électro-
encéphalogramme (EEG) et magnétoencéphalogramme B le cerveau de sujets éveillés.
Nous montrons théoriquement, que si le milieu est réslstcomportement d’echelle en fré-
guence doit étre le méme pour les signaux EEG and MEG & bfessguence <10 Hz). Afin
de tester cette prédiction, nous avons analysé le sp#etmeegistrements EEG et MEG simul-
tanés de quatre sujets humains. Le comportement d'echelfréquence de 'EEG montre des
variations cohérentes sur la surface du cerveau, avecxgpesants en général compris entre
1/f et 1/ f?; ces exposants tendent & tre plus faibles dans lesietgmporales et pariétales.
Dans une région donnée, les exposants de la MEG ont una&bildé plus grande que pour
'EEG, mais les deux signaux ont systematiquement un exgatifferent. Dans certains cas,
les exposants sont proches, mais ces cas correspondemtaunais rapport signal/bruit pour la
MEG. Plusieurs méthodes de corrections du bruit instruadetb environmental ont été testées,
et dans tous les cas, ces méthodes augmentent la difédencomportement spectral entre
'EEG et la MEG. En conclusion, il y a une difference sigrafive de comportement déchelle
en frequence entre EEG et MEG, ce qui peut étre expliqle miilieu extracellulaire (inclu-
ant d’autres couches telles que la dure-mere et le craa)@alement non-résistif. La na-
ture résistive ou non-résistive du milieu extracellidagést un déterminant important pour la
modélisation des potentiels extracellulaires.

Au cours d’'une seconde étude, nous avons analysé la dgoanspatio-temporelle de
I'excitation et de l'inhibition pendant le sommeil a parti'enregistrements intra-craniens a
haute densité. Ces enregistrements a haute densitepentia séparation efficace entre cel-
lules “regular spiking” (RS) et “fast spiking” (FS). La hautensité des électrodes permet
d’obtenir des connections apparemment mono-synapticiede corroborer cette séparation
RS-FS avec la nature excitatrice ou inhibitrice de la conoec Cette procédure confirme
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que les cellules classifiees comme FS sont toujours imitiedt, alors que les RS sont toujours
excitatrices, et donc peuvent étre classifiées resgngnt comme cellules pyramidales ou in-
terneurones inhibiteurs. Finalement, nous investiguardyhamique des corrélations au sein
de chaque classe de neurone. Les corrélations entretexcganontrent une décroissance ex-
ponentielle avec la distance, tandis que les cellules itntuigs restent corrélées a plus grande
distance. L'amplitude des corrélations dépend de Beltemporelle du calcul de corrélation,
mais pas la constante spatiale. Cette constante est ctepatec la taille typique des col-
lonnes corticales chez ’lhomme. Ces résultats permetient la premiére fois, de caractériser
I'activité neuronale et l'interaction entre excitatiohnihibition dans le neocortex humain.

Dans une troisieme étude, nous avons investigué leatsiggs de la dynamique complexe
et l'activité auto-organisée, a partir d’enregistrenseintra-craniens chez le chat, le singe et
’lhomme. Nous utilisons des enregistrements a haute tedans le cortex moteur du chat
(96 €électrodes), le cortex moteur et prémoteur du singkaes le cortex temporal humain (96
électrodes) de patients épileptiques. Lors d’avalasctédinies a partir d'unités (jusqu’a 160
neurones), les distributions ne se comportent pas en louidsgnce, mais tendent a étre expo-
nentielles ou intermédiaires. Nous analysons égaletasriotentiels de champ (LFPs), et en
particulier les pics négatifs (nLFPs) au sein de I'ensend@lectrodes (de 96 a 128 sites, selon
la configuration d’enregistrement). Dans ce cas, les aghdéfinies a partir des nLFPs peu-
vent se comporter en loi d’échelle, comme observé pl&rinent chez le singe. Cependant,
les avalanches définies a partir des pics positifs (pLFRg)ne sont pas directement reliées
aux décharges des neurones, ont le méme comportemenandlyse plus détaillée en utilisant
la représentation cumulée (CDF) ne confirme pas la poesde loi de puissance. Les mémes
résultats s'appliquent au chat, au singe et aux enregistres humains, pendant differents états
cérébraux d’éveil et de sommeil. Nous avons égalenestétdes distributions alternatives, et
des processus multi-exponentiels semblent expliqueritshditions obtenues, de fagon op-
timale pour des distributions bi-exponentielles. L'enb&de ces résultats ne montrent pas
d’evidence de loi de puissance ou d'états critiques dameiteeau éveille ou en sommeil de
differents mammiferes, du chat a ’lhomme.

Finalement, dans un appendice, nous montrons des raspitdiminaires concernant les
relations entre cellules excitatrices et inhibitrices|est potentiels de champ locaux pendant
le sommeil humain. Nous avons pu séparer les cellules émtgelar-spiking” (RS) et “fast-
spiking” (FS), ce qui a été confirmé par connections mgnaptiques (voir Peyrache et al.,
PNAS, 2012). Nous analysons ici la décharge spécifiquealkges RS et FS pendant differents
etats d’éveil et de sommeil, sélectionnés sans agtinterictale. Jusqu’a 92 unités enregistrées
simultanément, procurent une base solide pour la caisat®&n de la dynamique de I'excitation
et de I'inhibition pendant ces differents états. Pentiasbmmeil lent (Stade Il ou V), dominé
par les ondes lentes de type delta, tous les neurones déahaelon des états “Up” ou “Down”,
en relation avec les ondes lentes du LFP, comme décriegeament. Les cellules RS et FS
sont toutes silencieuses pendant les états “Down”. Peételanmmeil REM et pendant I'éveil,
les neurones déchargent de facon irreguliere alordeggUEP ou 'ECoG sont désynchronisés.
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Dans tous les états les cellules FS déchargent plus queeliedes RS (4 ou 5 fois plus en
moyenne). En conclusion, ces résultats procurent unettisation des differents roles de
I'excitation et de l'inhibition pendant I'éveil et le sonmeih chez I’'homme.

En conclusion, nous avons utilisé differentes méthadkesnesure, aux échelles micro-
scopiques (activité unitaire), mésoscopique (LFP) etnoscopiques (ECoG, EEG, MEG), pour
caractériser les états de veille et sommeil chez I'homaires{ que chez le chat et le singe dans
une étude). Nous concluons que le cerveau suit une dynaroauplexe a toutes les échelles.
Il N’y a pas d’évidence de dynamique auto-organiséequrétj mais I'activité du cerveau man-
ifeste d’autres signes d’auto-organisation, comme Viétisynchrone a grande distance et
des processus multi-exponentiels. Nous suggérons queesekats peuvent etre expliqués
par l'interaction entre excitation et inhibition. Nous i@igons que des réseaux d’oscillateurs
couplés, avec interaction entre excitation et inhibita&vraient pouvoir expliquer ces résultats.
Cette perspective constitue un défi pour des études future
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Chapter 1

History & Instrumentation

The history of the sciences is a
great fugue, in which the voices of
the nations come one by one into
notice.

Johann Wolfgang von Goethe

In our studies, we used large scale non-invasive and invaiesordings of the brain. The
two non-invasive modalities, Electroencephalogram (E&t) Magnetoencephalogram (MEG)
are capable of registering the ongoing dynamics of the hwaim millisecond accuracy. They
provide a window to capture the global dynamics of the brailultielectrode recordings, on
the other hand, give us the opportunity to zoom into the dyosut microcircuitry of cortical
columns. Below, we briefly present the instrumentation ohez these modalities. The physics
of the signal obtained from these devices dictates the @atithe biophysical signature of the
underlying measurements of neural computation.

1.1 Macroscale recordings

1.1.1 Electroencephalography (EEG)
1.1.1.1 Brief history of the instrumentation

The first measurements of the spontaneous electrical goti/the brain were carried out by
Richard Caton (1842-1926). The initial report was only espreation before the British Med-
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ical Association in 1875. A summary of that report, laterpegred in the British Medical
Journal in 18777].

The following paragraph is based on the narrative of hismteplm every brain hitherto ex-
amined, the galvanometer has indicated the existence dfieleurrents. The external surface
of the grey matter is usually positive in relation to the aué of a section through it. Feeble
currents of varying direction pass through the multipliéren the electrodes are placed on two
points of the external surface of the skull. The electricents of the grey matter appear to have
a relation to its functions. When any part of the grey maten ia state of functional activity, its
electric current usually exhibits negative variation. Ewample, on the areas shown by Dr. Fer-
rier to be related to rotation of the head and to masticatiegative variation of the current was
observed to occur whenever those two acts respectively pegfermed. Impressions through
the senses were found to influence the currents of certais aeeg., the currents of that part of
the rabbit’s brain which Dr. Ferrier has shown to be relatechovements of the eyelids, were
found to be markedly influenced by stimulation of the opposgtina by light. (1875)"7].

Caton studied electrical activity of more than 40 cat’s biti and monkey’s brains using
unipolar electrodes. In some experiments, he used bi-Ipd@iss recordings and in the others,
he placed one electrode on the cerebral cortex (or on thergegier) and the other on the
surface of the skull, 3]. Caton used Thompson’s galvanometer to track variatidrnthie®
electrical activity; however lacking recording instruntgrhe amplified the waveform optically
by shining a meniscus lamp on a wall. Therefore his countedehinitial studies are based on
personal observations. He also identified the regions agedovith motor movement (of the
head and eye). In his 1887 report to the Ninth Internationatlidal Congress in Washington
DC, he mentioned that variations happen across sleep arefula&ss, anesthesia, and noticed
their cessation after death. He was also successful in egakirrent variation through shining
light into the eyes and stimulating the skin but was unablevoke auditory responseS8]]
Therefore not only was he the discoverer of EEG, but he wagladsfirst functional topographer
who discovered oscillatory, spontaneous and evoked reggon

After Caton, Danilevsky (Russia, 1852-1939) carried ouwinkganeous and evoked EEG
recordings in animals (published in 1877). In 1890s, Ad@tB (Poland, 1863-1939) adapted
these techniques and, in EEGs from rabbit and dog, addedda®nization in visual cor-
tex to the scientific repertoire. Later in 1908, he used agtgalvanometer to achieve higher
precision in his recordings. This instrument had just begroduced by Willhelm Einthoven
(Netherlands, 1860-1927) for cardiac electric activityasurements. After this publication, the
Austrian Academy of Science published Fleischel Von Maixanpublished work on disabling
the visual cortices of numerous species by cooling and efdam, though he had not reported
any oscillatory activity. In Kiev, 1912, Vladimir Vladimavich Pravdich-Neminsky created the
first photographic recordings through a combination of thwanometer and a moving paper;
in fact, he reported a very clear description of alpha and betves. In 1913, Beck’s advi-
sor, Cybulski combined a camera with the galvanometer armtded experimentally induced
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seizures in dogs3| 4].

In 1924, Hans Berger (Germany, 1873-1941) was the first tordethe human electroen-
cephalogram. In his paper "Uber das Elektrenkephalogramsritenschen” (On the EEG in
humans), which was published in 1929, he gave full creditdto@:

"Caton has already (1874) published experiments on the$¥@idogs and apes in which
bare unipolar electrodes were placed either on the ceretax and the other on the surface of
the skull. The currents were measured by a sensitive gatvates. There were found distinct
variations in current, which increased during sleep anth Wit onset of death strengthened,
and after death became weaker and then completely disagpeézaton could show that strong
current variations resulted in brain from light shone irite eyes, and he speaks already of the
conjecture that under the circumstances these corticedrmisrcould be applied to localization
within the cortex of the brain. (Translated by Cohen, 19%8)2 [2,5, 6].

Berger used the Einthoven string galvanometer. He injtisdled zinc-plated needle in order
to stabilize electrode and thus reduce the high level ofendds the amplitude was very weak,
he replaced his needle electrodes with lead-foiled eldessoaked in salin@[3]. Berger
described low-frg (low frequency) as low order and high{figgh frequency) as high order: "I
shall subsequently designate the waves of first order aga alpkies and waves of second order
as beta waves, just as i shall use E.E.G as the abbreviatieteftiroencephalogram and E.C.G
for the electrocardiogram’?].

Berger discovered alpha rhythm, describing its frequeniciOacycles per second (hertz)
and as a dominant oscillation during relaxation or eyesedocondition. He found that this
rhythm would disappear in the eyes-open condition and dghes during mental effort (such
as arithmetics) and the presentation of loud noises or plastimuli [2, 3, 7]. Interestingly, his
reports were unnoticed by the scientific community until4,9%hen Lord Adrian (England,
1889-1977) and Matthews confirmed his basic observatiocwrdeng their own brainwaves
using their cathode-ray oscillosco.[Both Adrien and Einthoven went on to win the Nobel
prize for their work on neurons and ECG. It was the discogasfdEEG pattern dynamics during
sleep by Alfred Loomis (USA, 1887-1975) in the mid1930s thtatacted the attention of the
scientific community to the value of EEQ][ By the 1940s, EEG had become widespread and
since then, little has changed in the basics of its instruatem.

1.1.1.2 Apparatus and the recordings

EEG is widely used and had become a popular method for thénvasive measurement of the
global activity of the brain. Its ease of operation, low ¢osin-invasiveness and high temporal
resolution (in the order of millisecond) has put it aheadchefdther non-invasive modalities like
PET (positron emission tomography), fMRI (functional matio resonance imaging), MRS
(magnetic resonance spectroscopy) and SPECT (Singlepleobission computed tomogra-
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phy). Of the non-invasive methods, only MEG matches its mmapresolution $-10]. In
contrast, EEG has disadvantage in localization by compatis the mentioned methodgtl].

EEG recordings are done with different spatial arrangerotalectrodes. These montages
can have anywhere from a few to a couple hundred electrodssor&ngs can be acquired as
referential, bipolar or referenced to average of elecsdtlf. EEG has clinical usage in mon-
itoring epilepsy, anesthesia, intensive care units (IOtd) ia comatose states. In research, itis
widely used in cognitive neuroscience and experimentatipsipgy. In such fields, usually the
focus is on the quantification of behavior using evoked piedé(EPs), associated with sensory
stimuli, or Event-related potentials (ERPS), occurrintasdr latencies and are more associated
with endogenous brain state. ERPs, like p300 reported ®y1§] and N400 discovered byl p)
could also be used in brain-computer interface (BCI) redear

One of the key conditions for such studies is that the EP or E&&o be reliably linked to
the ongoing behavior and stimuli§]. Though, the dynamics of the underlying characteristics
of magnitude, phase and coherence are the cornerstone ebanlusion obtained from EEG
recordings. In chapter 2, we focus on the EEG spectral bigiphyas the hallmark of these
features.

1.1.2 Magnetoencephalography (MEG)
1.1.2.1 Brief history of the instrumentation

In comparison to EEG, magnetoencephalography (MEG) igly faéw method for measuring
brain dynamics. It is much more complex and far more expernsiterms of its cost and oper-
ation. However, with this price, comes powerful abilitiestieasure extremely weak magnetic
field of the brain. The first sensitive measurements of thenetgfield of currents generated
by biological tissue was done for the heart. In 1967, Davithé&lobuilt a magnetic shielded
room to record from weak magnetic signals of the heart at tberof amplitudes of 10° to
10" gauss 17]. Shortly after, he also pioneered measuring the magnetit dif the brain in a
multilayer magnetically shielded chamber and introdubedMEG [L8]. These initial measure-
ments were based on a million turn coil. Later, James Zimraarmvented a highly sensitive
magnetometer, called "superconducting quantum intanterelevice” (SQUID) which is based
on superconducting loops containing Josephson junctit®js By adapting SQUIDs, magne-
toencephalography became much more sensitive to weak tafjekls of the brain and the
new age MEG was born. In that work, David Cohen measured alpttm in a healthy human
and also recorded the abnormal activity of an epileptiogoa{R0].
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1.1.2.2 Apparatus and the recordings

Electrical currents in the cortex produce minute (#0Tesla) perturbation in the magnetic field
outside the skull near the scalp. These changes in magnetievill cause current to flow
in a flux transformer. This flux transformer, via an input dsitoupled to the SQUIDg, 21].
Because SQUID-sensor units operate at low temperatuseatbeypically housed in a thermos-
like container, named a dewatr, filled with liquid helium. Tdatom of the dewar is shaped like
a helmet and houses hundreds of SQUID-sensor units. Thertfe sensors are only a few
millimeters away, on the other side of the insulating lafrem the scalp§]. Each sensing coil
samples the local magnetic field (in the case of magnetos)aiethe gradient of the magnetic
field (in the case of gradiometers). The sampling frequem¢lieofull set of sensors can reach
a few thousand times a secoridl].

In recent years, advancements in atomic magnetometry loaisthe interaction of resonant
light with atomic vapor, has become an alternative to SQUIT}. Also, some efforts have
been made to measure the magnetic field at higher tempesatureagnetic field sensor that
combines a superconducting flux-to-field transformer witbvenoise giant magnetoresistive
sensor. This type of sensor can reliably operate at tempesatip to 77 degrees of kelvin. A
prototype of this design has shown the ability to succelysfakasure 32 fT (femto Tesla2).

1.1.2.3 MEG& noise

Handling noise is a major challenge in MEG. Magnetic fluagtreg of the brain signal, are
usually lower than 102 T (tesla), or 108 G (gauss). This is many orders of magnitude weaker
than the fluctuating magnetic background. Such urban andeatnimagnetic fluctuations can
reach 107 T (or 103 G). Earth’s steady magnetic field is in the range of 0.5x4D(or 0.5 G).
Therefore, reliable measurements of MEG not only requirerg 8ensitive magnetic detector
(i.e. SQUID), but is also highly dependent on the proper seggion of the magnetic noise (i.e.
fluctuating magnetic backgroundJ].

There are three major ways to suppress the magnetic noigefirshway is to record in a
magnetically shielded room, which can exclude major coreptsof the fluctuating external
fields. The magnetic shielded room (MSR) is constructed thitee nested enclosures. Each
enclosure consists of a high-permeability magnetic lagevell as an aluminum layer. The mu-
metal reduces the low frequency noise while the aluminunpsegses high-frequency noise
[24]. The second way is to measure the gradient of the magnelitifistead of the field
itself. To do so, some manufacturers, have developed greders, which are of two types: i)
planar gradiometer, consisting of two flux transformer athin one plane but connected in
opposition, ii) radial gradiometer, consisting of two caah flux transformer loops connected
in opposition. When a background fluctuation is far from adgreneter, its signal at the two
coils is almost equal and therefore its gradient approx@snaero and largely cancels. On the
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other hand, fluctuations near the gradiometer have diffet@nes when reaching the coil and
therefore their gradient is not canceled. The third way aé@asuppression is via software
processing of the MEG signal8,P, 23]. There are numerous ways to implement algorithms to
suppress the noise. Independent Component Analysis (IZ&\rpupled to electro-oculogram
(EOG) and electrocardiogram (ECG) can be very effectivdimieating magnetic artifacts of
biological origin (see 6] for an example). Another way is the signal source separd&sS)
method. Assuming that there are no magnetic sources in batthe sensors and the outside
of the brain, the measured signal is decomposed to two aasgd harmonics that arise from
within the sphere surrounding the head, ii) harmonics thadtrhave arisen at a distance. By
removing the external harmonics, one can achieve excluditre possible interferenceT].

In evaluating the spectrum of the MEG, the background natsexves meticulous attention.
For dealing with this issue, we have adapted noise suppressihniques based on empty MSR
recordings. Details of the methods are described in ch&pter

1.2 Microscale recordings

1.2.1 Importance of in vivo measurements

Over the last three decades, a variety of in vitro prepamnatltave been used in experimental
neuroscience research. They range from isolated singtengto cell cultures, brain slices, and
sometimes whole brain preparations. All these technigage high-resolution. The operator
can control and directly manipulate experimental cond&io The widespread adaptation of
such methods has been very valuable in that they enable wpidiyr explore processes in
individual cells, synapses, and small neuronal networkkiacreasingly enrich the wealth of
the data on the basic functioning of the neurons. Howevecdmepromise is that such data
are obtained in dramatically altered in vitro preparatiomere the interconnections between
the brain areas are severed8[29]. The absence of full connectivity in most brain slices and
distorted GABAergic levels create patterns of spontaneatisity that are very different from
those observed in vivo situatioB()].

Moreover, the in vivo high conductance state has a profoffedten the responsiveness of
neurons, individually and en masse. In individual neurtots) synaptic conductance received
by the neuron is larger than its leaky resting conductandeeréfore, a network of neurons,
has the capacity to operate in certain states that are npegycachievable in the case of low
conductance in vitro (se8]] for an extensive review of high conductance state). Intadical
inhibitory processes and connectivity of cortico-thalampathways are essential elements of
the oscillatory and synchronicity activity of the recipabthalamocortical networksp]. Such
characteristics magnify the importance of in vivo measetsfor studies that, like ours, tackle
the dynamics of sleep and wakefulness.
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1.2.2 Extracellular in vivo measurements

Extracellular recordings are usually done by insertindhhigpedance microwires. Extracellu-
lar voltage measurements could be split into two componeénéshigh-frequency component
(usually >300 or 500 Hz) that contains the action potentials (spikés)earons and samples
the activity proximal to the electrode, and ii) a low-freqag component (up to 300 or 500
Hz), called "Local Field Potential”, which reflects the emd®#e activity in the vicinity of the
electrode 29].

High enough signal-to-noise ratios (SNR) for the signalsiog from neurons that are in
close proximity (50-100 micron) to the electrode tip enakddo measure the activity of single
units. As the neurons get further and further away from teetedde (up to 150 microns), the
shape of their spikes can no longer be reliably distingusdeeit is masked by the noise. This
type of signal is referred to as MUA (multi-unit activity)t. the distance to the electrode is too
far, the spiking activity is not reliably separated froms®[32, 33].

From the high-frequency component, individual spikes ateded using an amplitude
threshold. Next they are sorted according to the charatitespike waveform shape of in-
dividual neurons. This shape is mainly dictated by the molgdy of the dendritic trees, as
well as the distance from the electrode and the orientati@rtmorization relative to the elec-
trode B4, 35. These morphological features are then used as inputsisteclthe (or for clus-
tering) algorithms performing the classificatid6]. Many different methods of spike sorting
have been proposed. Some detailed reviews solely focusoissiie B7,38]. Based on such
spike waveform features from high-density recordings &0 possible to reliably separate the
units into two categories of "regular-spiking” (RS) andsfapiking” (FS) B9-41]. In chapter
6, we show how this can be done in extracellular recording® fihe human cortex.

1.2.3 Multielectrode recording of extracellular signature of neural activ-
ity

Gerstein & Clark were among the first to pioneer multiple rdowgs. In their experiment, they
used a tungsten microelectrode with several small holets wminyl insulation. This electrode
enabled simultaneous recording of the action potentials fmultiple adjacent neuron87).
Current acquisition systems allow the simultaneous rengrdf up to hundreds of channels
simultaneously29]. This opens up the fascinating opportunity to study largk mopulations
in order to understand how they encode sensory processthgetravior in anesthetized ani-
mals and in behaving animals. Also, in recent years, therambraent of etching and silicon
probe fabrication has created the opportunity to recorthfalronically implanted arrays of
hundreds of electroded?]. Multielectrode recording techniques vary in their desiganging
from "microwires” [43], stereotrodes and tetrode®], to complex 3-D systems built from sili-
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con [45,46]. These types of electrode arrays enable simultaneoustiegaf MUA, single-unit
activity as well as LFP from large numbers of neurofd.

Complex brain processes require the recruitment of largeijadion of neurons47]. The
study of single neurons only provides a very limited scopé¢hefwhole dynamics33, 48)].
Using multielectrode arrays provides the opportunity tadgtconnectivity patterns of close-
by neurons 33,49]. Multielectrode recordings of ensembles can act as a britkjween the
activity of individual neurons and their computational leestration toward a rich collective
dynamics 0]. Expression of these higher-order brain functions is @ulgievable through the
coordinated spatiotemporal activity patterns of distiéouneuronal ensembleS, 52]. Some
studies have begun to validate such hypotheses througlestafirecordings of the activity
patterns in neural ensembles excited by patterned visoalls{53].

In our studies of the dynamics of cortical microcircuitrye Wwenefited from the Utah elec-
trode arrays (known as UEA, and specifically Neuroport in anmecordings). Utah multielec-
trode arrays have been used in visual prostheB8§ motor prosthetic $4] or in studies of
epilepsy p5,56]. The fabrication and characteristics of these deviceslaseribed elsewhere
(see B6,57]). Their pneumatic insertion techniquéq, as well as the stability of record-
ings [B9] and their neurosurgical aspects in human patied@stjave been discussed extensively
in those references. In our study, we used these types gkawdackle the spatiotemporal dy-
namics of excitation and inhibition (chapter 6), the dynesyof neural avalanches (chapter 7)
and the relationship between spiking and LFP in differeaiest (chapter 8).




Chapter 2

Biphysics

The knowledge of anything, since
all things have causes, is not
acquired or complete unless it is
known by its causes.

Ibn Sina (Avicenna)

Computation and information processing in the brain takegs at multiple scales. Study-
ing the complex dynamics of the brain requires integratibinformation acquired at different
levels of neural computation. In the last chapter, we disedshe instrumentation of large-scale
non-invasive methods and invasive electrophysiologicadatities. In this chapter, we describe
the biophysics at these scales along with each other.

2.1 Sources of Extracellular fields

Microelectrodes wires in the extracellular space measwgevbltage fluctuations at the con-
ductive tip of the electrode. These measurements refleatléuotrical field perturbations that
happen within the vicinity of the electrodd4]. A variety of sources, rising from the interaction
of neural elements, contribute to such fluctuations. Itéssilnperposition of the currents and po-
tentials produced by such sources that is studied in thedfedtectrophysiology. These sources
originate at a multitude of positions on the excitable meanbkrt ranging from spine to dendrite,
soma, axon or axon terminal. The different temporal natfithese sources, as well as their
electrochemical composition, dictate the biophysicalirabf the measured signal. The known
sources include: a) synaptic activity, b) fast action ptéds, c) calcium spikes , d) intrinsic
currents, e) gap junctions, f) neuro-glia interaction apdghaptic couplinggl].

29
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2.2 From micro-scale to meso-scale to macro-scale

Typically, the measured extracellular electrical sigealivided into the high frequency and low
frequency components. The high frequency component iggtitado be mainly influenced by
action potentials while the low frequency component, theated "local field potential (LFP)”
has a much more complicated origi®2[ 63]. The relationship between spike and LFP is of
great interest to the neuroscience community. It is betidhat spikes reflects the output of
individual neural elements while LFPs serves as some saroltgctive input. Therefore, in
essence, spike and LFP act as the two pillars of neural netwaonputation. Their interaction
evolves as a bidirectional entity. The LFP acts as a modutz#tgpiking activity while the
spikes leave their imprint on the oscillatory signals cymeeby LFP B2, 63]. What are the
origins of these different signals? How do they coalesceomical computations? How do
they link to the recordings at larger scales (i.e. EEG and WBE@e evaluate these issues from
theoretical considerations as below:

The assumption that transmembrane current flow is the gienexfal FP, was first put for-
ward a few decades ago by Eccles and Lorente de@4p6p|. It has been suggested that
the spatial weighted average of the synaptic transmemlmaments constitutes the biophysi-
cal origins of LFP $6]. Some have pointed that it is not the action potentials Sedues but
the dendritic processing of synaptic inputs that shapedte field potential§6-68]. Interest-
ingly, there is a study that postulates the possibility dicecpotentials contributing to the MEG
signal [69].

In contrast to the invasive recordings of extracellulaeptial, EEG recordings are acquired
through electrodes placed at the surface of the scalp. lyshake electrodes are orders of mag-
nitude bigger than those optimized to record local field po&ds [16]. What are the generators
of EEG signals? A much widely practiced assumption is thatisipg bigger electrodes, one
scales up the volume of the recorded tissue. Therefore, byngdrom micro-meso scale
(LFP) toward meso-macro scale (IEEG and EEG), the naturbeo$ignal stays the same but
the measurement include a much larger population of ne&h30]. In the case of LFP,
complexity is a result of the evolving temporal dynamicshad spatial distribution of current
sources within the conducting volume of the cortex. The catidity and permittivity prop-
erties of the extracellular medium dictate the spatioterpoatterns of the electric field. In
this view, the constraints of filtering by the scalp is the ongssumptive difference between
LFP and EEG 16]. Computational studies based on the detailed morpholégeorons have
proposed that these spatiotemporal LFP patterns also dememeuronal morphologies, spatial
positions of the driving synapse, as well as electrode déagrpositions ¢8].

The link between the meso-scale "local field potential’efi#lly known as LFP) and the
meso-macro scale "global field potential” (i.e. iIEEG or EES&based on the structure of the
cortex. By adapting quasi-static approximation of Maxvegluations, macroscale recordings
are modeled based on the mesoscopic details of the cortgahiaation. Cortical architecture
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is arranged in laminar and columnar fashion. The laminaritthe cortex corresponds to the
distribution of the incoming cortical projection from tlaahic relay nuclei as well as the special-
ization of the output units of corticothalamic conneciMi71, 72]. Columnar modules of the
cortex contain pyramidal cells in layers Ill, IV and V. The@ dendrite (and initial part of the
axons) of these cells run in parallel and are perpendicaltre cortical sheet, while the spatial
extension of their dendritic tufts binds them together &ate a functional module of network
of neurons 73, 74]. In the biophysical characterization of EEG, these fesglare chosen as
the simple mesoscopic elements of the model. Each mesasalepient is a simplified cortical
minicolumn ( 0.03 mm) and macrocolumn scales ( 1 mm) with hiei@-5 mm [75)].

In these mesoscopic elements, post-synaptic potentiakedanic currents to flow in the
apical dendrites of parallel cortical pyramidal neuronsede currents ("impressed current”),
represent the overall effects of post-synaptic potenglayers Il/11l and V of the neocortex.
Based on the electrical conservation law, impressed cisrteave the soma and passively re-
turn through the extracellular space. This passive ohnaipgayation of the ions is called "return
current” [16,76,77]. These return currents propagate through a conductieettimensional
extracellular continuump, 76]. The potential difference of the "return currents” at tlcalp is
the measured EEG signary,78,79]. While both impressed and return currents create magnetic
fields, it is mostly the intracellular longitudinal impreskcurrents that create measurable mag-
netic induction field at the MEG senso&7T8]. The connection between the generating current
and the magnetic flux was studied in biophysically realistimputational models showing that
local neural dynamics are the products of lamina-specifi@gtic drive B0, 81].

In the current practice of EEG/MEG modeling, it is suggedteat the vector sum of the
electrical activity (within the mesoscopic elements of tieetex) can always be approximated
with a current dipole 75, 78]. The post-synaptic current traveling through parallehdtgic
structure and the asymmetrical arrangement of the cortigars impose the perpendicular
displacement of charges as the major component of electyoatia signatured, 75,79]. It has
been argued that current multipoles could properly forteuiae spatially extended sources and
that dipoles are not physiologically well-suited for madglsuch casesBP—84]. The counter
argument has been that quadrupole and higher moments caysdie reduced to a combination
of proximal dipoles 78]. Others have argued that single monopoles are mathernhatcel
physically implausible entities and the description ofalgs as a gradient of monopoles is
solely for mathematical conveniencg7]. However, in a recent study, it was shown that this
standard model is insufficient for describing the observeR ko EEG and that monopoles are
necessary for the macroscopic modeling of these sigB8]s [f future investigations further
confirm these findings, it becomes necessary to develop sttt incorporate monopoles as
an essential element of the electrical signature of negtality [63].
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2.3 Forward model and inverse solution in a volume conduc-
tor medium

Given an electromagnetic measurement, what can we say #imgburce generators of the
observations? Conversely, if we preset the sources to a galee, can we predict the electro-
magnetic measurements at a point, nearby or far? These tesiigns belong to the general
category of inverse problems and forward predictors. Tlsg fileals with estimating the phys-
ical parameters that we cannot directly observe, while #itted uses physical parameters to
predict observations. In other words, inverse solution fmdiard predictor are inseparable
sides of the same coin. This concept was first introduced 29 1§ Viktor Hambardzumyan
(1908-1996). Since then, it had been widely used in seisgyplastrophysics, and of course
electromagnetism. Naturally, it was adapted in studyingsBEEG and LFPs. An essential
property of inverse solutions in electromagnetism is itpdsed property. In other words, given
a set of electromagnetic measurements, there are no uniueyament of generators; many
different solutions exists for that specific set of measuets. However, as discussed above,
each inverse solution is coupled with its forward predicfomore accurate forward predictor
will bring us a better approximation in the inverse modelifrgcluding a priori information in
our inverse models, narrows down the solutions to a few pdsEs instead of unlimited counts
of an ill-posed situation. This type of thinking simply tsdates to the bioelectromagnetism as
well.

The so-called "source localization”, based on inversetsmiy is geared toward identifi-
cation of the sources of the measured signal throughout tilktethe micro-meso scale, it
refers to the reconstruction of the membrane potentialifatains from the measured invasive
extracellular recordings, i.e.,LFP/spikes (for a revieeg §2]). In the meso-macro scale do-
main, it refers to the reconstruction of the impressed cusrsFom the EEG, MEG or combined
EEG/MEG recordings (for a review se& 78]).

As discussed above, the accuracy of the forward predict@mrniénes how close the so-
lutions of the inverse problem are to reality. Here, the fandvpredictor equals the simula-
tion of the field distribution for a given arrangement of @t dipoles in a volume conductor
medium. For the rationale behind the adaptation of dipotetha main sources of the elec-
tromagnetic signature and the pitfalls of such assumpt@esabove. The main elements in
forward models of Maxwell’'s equations are a) spatial disttion of the sources, b) volume
conductor geometry (morphological structure, detail abtaristics of the tissue conductivities)
) sensor characteristics (their spatial configuratiare and material of the sensors), and d) the
spatial relation between the above mentioned 3 elementse Btxurate details of the forward
predictor is paralleled with an improved inverse soluti8n/[7, 78]. After achieving a proper
forward model, adding constraints (such as temporal behawise characteristics, anatomical
constraints based on MRI, and a priori assumptions fromrotiagalities) to inverse models,
improves the yielded solutiong7, 86-88].
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Neglecting the capacitive and inductive effect in the et@otagnetic propagation will pro-
vide the opportunity to adapt linear quasi-static Maxwgliations. This approach, because of
it convenience, has become the cornerstone of modelingtiaafd predictor for both micro-
meso (LFP) and meso-macro scale (EEG/ME&PBR, 76,77,89]. In such case, the inaccu-
racies in forward modeling of mesoscopic dipole currentspéifies to a few categories: a)
mis-specification of the source space, b) inaccuraciessinldscription of the physical proper-
ties of the head (boundary shape, conductivity values ofafge scale mediums), c) improper
sensor configuration information and d) incorrect or inadeg information on the spatial re-
lation of the last 3 mentioned elemen#&g]. In parallel, the current forward model of LFP
generators relies on several assumptions: (a) Quasiapgiroximation of Maxwell’s equations
based on the assumption that the electric and magnetic &stddecoupledd], (b) Linearity of
the extracellular medium, (c) Ohmic (resistive) medium #gr@lassumption that the capacitive
properties of the neural tissue are negligible, (d) Isatrégralar) extracellular conductivity, (e)
Frequency-independent extracellular conductivity afjdH@mogeneous extracellular conduc-

tivity [ 62)].

In the next few sections, we will evaluate the consequentdsese assumptions, will dis-
cuss their pitfalls and provide a summary of experimertadtetical studies which support or
refute them. We will begin with a brief overview of synchraatymultiple scales followed by a
discussion of the different characteristics of volume eartar.

2.4 Multiscale synchrony

he precise timing between the LFP and spikes is a fundamemashcteristic of how they co-
modulate each other. The correlation of LFP with synchrediglow subthreshold membrane
potential oscillations does not necessitate the synchwbsgiking within that neural population
[90]. Some reports have shown that even in the absence of spikifg and nearby neuron
membrane potential could be highly correlat®d][ Studies of spike-free LFP segments have
provided evidence that some LFP-spike relationshipsyiotiallisecond precision while other
do not harbor such feature8Z. This is in with the notion that LFP could also reflect sugplu
spiking activity. In such a scenario, only a fraction of gslcould be devoted to the assembly
formation among neuron93].

The importance of synchronized activity in modeling LFP &it5/MEG is severalfold (the
word is actually severalfold, not an indication of multifégds). First, when measured signals
are correlated, there are two plausible interpretationgieameasurements are reflective of two
independent but correlated sources or b) the correlatianbigproduct of volume conduction
from a distant single source and has nothing to do with a [ziioa at the two spatial location
of electrodesT5]. It has been shown that long-scale synchrony are the sigmaf cognitive
processing and short-scale synchronies are likely a bytoof volume conduction. These
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studies also propose an elegant method for separating eatomduction induced effects from
true signal synchrony of the generator&0,[94, 95]. Second, based on the hypothesis that the
LFP and EEG are generated by summed postsynaptic potefiaisese signal to gain enough
strength to be recorded, there must exist a synchronizethgga of the cortical neurons within
the generating unitg4]. The non-synchronized fluctuations in the dendritic e will can-
cel, and the signature at a distant electrode approximéadys to zeroq7]. Therefore, the
accepted view is that the generation of both LFP and EEG grendkent on the synchronized
synaptic currents leading to the formation of strong enaligbles that can be measured at the
recording electrodeslp, 75]. It is because of the influence of synchrony that the sizéhef t
generating region not only depends on the detailed neurophntogy and spatial arrangement
of synapses, but is also heavily influenced by the correlaticynaptic activity 96].

It has been suggested that the synchrony profile of the efluéar potentials may be differ-
ent based on the recording modality. These findings origthitom EEG/MEG studies of sleep
spindles. In prior studies of spindles in cats, these gralgmeents appear to be synchronous
across the cortex and thalam@]. Simultaneous recording of EEG/MEG showed that, like
the prior reports in cats, spindles are highly synchronauwess the scalp in the electroen-
cephalogram (EEG). However, they had had a low spatial esicerin MEG. In addition, the
correlation between the MEG and EEG signature of the sanplgeements were lov2p, 98).
Aside from the variability in spindle frequency and its phasross locations, MEG also mani-
fested a pronounced variability across spindles, and &argte segments of spindlezg 99].
Depth and grid intracranial recordings (IEEG) further ified that, in contrast to the scalp EEG,
cortical spindles show strong dissociations in their ptzaskamplitude. Current source density
(CSD) from transcortical laminar recordings proved thesence of two patterns of spindling:
a) spindles with sinks in the middle layer, b) spindles wité sink in the superficial layerS§].
The comparatively higher coherence of the superficial $egdn light of the incoming pro-
jections from the matrix thalamocortical system to thegeis [L00 101], suggested a possible
sensitivity of EEG to the matrix system and its diffuse tésgacross wider areas of the cor-
tex. In contrast, it seems that the MEG may be more sensditteet focal thalamocortical core
system. The scenario can be summarized as poor sensitiwWi£G (relative to EEG and due
to spatiotemporal cancellation), to widespread synchusm@nerators along with it higher rel-
ative sensitivity to focal generatorgq, 98, 102. These findings and hypotheses were further
confirmed by the experimental and computational studiepioidées [L03 104]. Moreover, it
was found that in some cases spindles are only seen by MEG lhed they are detected by
both MEG and EEG, the oscillatory fingerprint starts eadied last longer in the case of MEG.
This study suggests that EEG spindles emerge when MEG sgidicome synchronized and
activate diffuse generators visible to EEBf. Thus, it is possible that EEG and MEG have
differential sensitivity to thalamocortical core and npagystems. This conjecture further adds
to the complexity of discerning the sources of the measundtisoale signal.
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2.5 Spatial reach of LFP& Electromagnetic Lead field

One of the complex features of the LFP is its spatial reacme3avestigations pointed to a pos-
sible extreme locality of LFP106,107]. However, the majority of other reports have provided
evidence to the contrary. These studies report a much mogrsxe scope of LFP, horizontally
or vertically, ranging from few hundred microns up to few limiketers B8, 108-111]. Recent
experimental and biophysically-driven computationatigds, shed light on this issue and bring
them together as two sides of the same coin, in that the LFRakpaach is not statically
fixed [96,117. It has been shown that LFP can expand beyond its microdoarad, through
volume conduction, be detected many millimeters distaitstactive generator. Such volume-
conducted potential may reach the surface of the cortex tteep layer generator$11,112.
These studies show that LFPs may reflect two different mdgledess differentiated but more
local versus ii) a more differentiated but less local modeis lthe synchrony that dictates
whether the coin is flipped to reflect very local or looselydibooeural population signature.
In the case of uncorrelated synaptic input to a populationenfrons, the measured LFP only
reflects the activity within its 200 micrometer perimet®6][ This finding is in line with the
predictions of Nunez and Srinivasan which indicate thataigal stimuli which activate a very
small area will invoke LFPs that have a very limited spatedah [5]. When the synaptic
currents are correlated, the activated area is larger arsp#tial reach is wider.

In parallel to the spatial reach of LFP, the sensitivity @ats of the MEG and EEG sensors
is known as the lead fields of the sensors. These "lead fieldstalculated based on the im-
plemented forward predictor. A variety of situation maydéa a microscopic or macroscopic
"silent source” for either MEG, EEG or both. These "silentiszes” do not generate any scalp
potentials or extracranial magnetic fields at &b,[78]. Therefore, comparison of MEG and
EEG lead fields is not straightforward. The complexity ostbomparison lies in their differ-
ential characteristics in a few main categories. First, Mi&S an advantage over EEG in the
insensitivity of the magnetic field to tissue conductiviiffetences (see section below for de-
tails). In this case, EEG is affected by MEG is not. For exan@ISF will have a very minimal
effect on MEG but because of its high conductivity, it ampBfiEEG’s leadfield. Secondly
there is an orientation selectivity/bias; this factor naaffects MEG. In a symmetric spherical
conductive volume, the radial sources are invisible to tlagmetic sensor outsidg,[113. In
an analogy, MEG sensors are blind to the dipoles that aratedeperpendicular to the inner
surface of the skull and thus are normal to the surface of thgnatic sensorpB, 76, 114.
One should note that because of the convolutions of thexgdtiese so-called, radial dipoles
may be originating from either gyri or sulci. In contrast t&EK8 sensors, EEG lead fields see
both tangential and radial sources due to the fact that ddtiese sources produce return cur-
rents. [6,114-117]. Thirdly, MEG's relative blindness to the deep sourcesagsed by loss
of its sensitivity to the small fluctuations in the magneteddi Assuming that the generator is
a current dipole, the sensor’s sensitivity drops propaogido distance squared between source
and sensord, 76, 77]. Goldenholz et al have shown that MEG is more sensitive fuedi
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cial sources and EEG is more sensitive to deep soulded. [Lastly one must consider signal
cancellation due to the complex spatial configuration ofg¢berces. In the case of both EEG
and MEG, closely opposing dipole sources cancel each offigis could happen in variety
of complex spatial configuration. An example is the cantieltaof sources of the walls of
the sulcus due to their orientation disparity. In such a case possible that even tangential
dipoles get canceled out and therefore do not reach the rsejid®, 119. In addition, when
distributed sources become simultaneously active, tsae&hance for widespread cancellation
of the sources]15116,119. Selective cancellation of signals due to backgroundbaativity
significantly contributes to the signal to noise ratio (SNR)he source of interest in MEG vs.
EEG [116 118 119. In the light of all these complexities and individual sersdifferences
in their lead fields, it is always essential to record fromrgdanumber of sensors in order to
deduce the information about the spatial distribution efsburces78].

There are few of points that are worth mentioning in thisisectFirst, the independence
of the LFP spatial reach from the morphology of the neuromnitha spatial distribution of the
synapsesdo6] does not match with the concept of "silent sources” as dised above. Although
the closed sources were defined for mesoscopic mo@8lsi{ is very likely that the complex
geometry of source distribution within a microdomain of twrtex dramatically affects the
eventual net electrical field and orientation magnitudeco8d, if according the Riera et al.
( [85]) monopoles participate in the field generation, then tlz&l lgeld or spatial reach are
no longer going to be solely affected as the inverse of squdistance (14), but rather the
monopole sources attenuate much more sha8yy [This scenario also makes the prediction
of forward models more complex. Finally, in order to gain @& information about the
lead field, it may be very good to i) increase the number ofisgrsectrodes and ii) combine
modalities from different scales; for example, simultame®&EG and MEG 12(Q or laminar
electrode with grid 99].

2.6 Frequency-dependent characteristics: Low-pass filtang
and its effect on frequency scaling

To begin, it is important to note that the model 86] has certain assumptions that dictate the
fate of its predictions. While this model factors out thegirency-dependence of LFP spatial
reach, there is evidence that both intrinsic dendriticriitig of the LFP at the level of individ-
ual neurons§8,121] as well as frequency dependence of the extracellular meflli22, 123
could play a significant role in imposing a frequency-demar@ of LFP spatial reach, in vivo.
Moreover, the linearity of the model based on its prior agsiions like passive dendrites and
current-based synaptic inputs, is inconsistent with thstemt knowledge of nonlinear interac-
tion of transmembrane current and membrane poteritg 1 25.
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There are a few types of low-pass filterings that affect tleetebmagnetic signature of
neural activity. Filtering effects on EEG signal is more agggive and frequency dependence of
the conductivity of the tissues within the head, acting asgoioral filter, imposes a considerable
effect on the EEGJ26. The reason is because EEG is not only influenced by nosthésy of
the extracellular medium, but also must propagate throaglows media, such as cerebrospinal
fluid (CSF), dura mater, cranium, muscle and scalp skin. Byparison, LFP is less filtered;
however, it still is influenced because the signals comiogfthe sources must pass through the
extracellular medium to reach the recording electrd@$p [These frequency filtering properties
cause the action potential to have minimal contributiorh®[tFPs, unless the distance to the
recording electrode is very small. Such investigationslistehat the relative position of the
neuron, with respect to the electrode, as well as the ddtaierphology affect the amplitude
of the extracellularly recorded spike39 62, 66]. The overall effect is that signals of a high
frequency nature travel minimally while low frequencieseigate more widespread pattern.
The result is that the action potentials are only recordeddsrby electrodes while the LFP
reflects signals coming from a larger population. Moreowerjronal dendritic morphology
also acts as an additional source of low-pass frequencyiridteffect for the field potential (for
both LFP and EEG). This type of filtering is mediated by thespascable properties of the
dendritic tree structuresp, 121].

1/ f spectra can be the signature of self-organized crinpbahomenall27,12§. Frequency
scaling has been reported in the power spectra of EEXS, 30, MEG [131], intrarcranial
recordings (IEEG) from epileptic patient$32 133 as well LFP from awake catslB4]. It
has been suggested that neuronal activity, manifestedking@nd LFP, could be orchestrated
according to a self-organized fashiokBf. Alternatively, this frequency dependence of the
impedance could be a phenomenon that is caused by ionisidiff@nd the filtering properties
of the currents through extracellular media rather thandeifluenced by the dendritic low-
pass filtering $3,136. According to this hypothesis, the observed 1/f scalinmeasurements
of the electrical field (LFP, IEEG and EEG) have the same wosign frequency filtering by
extracellular media. This view is further supported by tbagistency of the predictions of this
type of filtering with the transfer function between simuakausly recorded intracellular and
extracellular potentialsl3.

2.7 Nonuniformity of the extracellular space and inhomo-
geneity of the conductive medium

The assumption of homogeneity of the extracellular medias een widely adapted in the
models of LFP and EEG'B,137]. The simplicity of the resultant constant conductivitgymittivity
variable in Maxwell equations has made this assumption allpopne. Such models do not
allow for the frequency-dependence of signals of extrataibrigin [63]. This approach is sup-
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ported by findings of an experimental studyf which reported that the extracellular medium
is purely resistive. However, these experimental findimgopposed by comprehensive studies
of the conductivity in biological tissuelB9-141]. For a comparison between the findings by
Logothetis vs Gabrieli and the plausible pitfalls of the esimental conditions , see a recent
review [63]. Moreover, it is known that at the microscale level, thesstural composition of
the extracellular space is highly inhomogenedi#2[143.

Similarly, the inverse solution of the macroscale elecgnetic signal is also sensitive to
the conductivities of the mediur8,[77,144,145. Although, because of the adaptation of meso-
scopic current dipole elements in the case of EEG/MEG imveotution, the conductivity issue
is more limited to tissues "en large” rather than the smalhednts in a cortical column. To
be precise, it has been shown that cerebrospinal fluid (ZRE), scalp white matter and gray
matter each have their own specific conductivities. For etajmt was reported that CSF is
much more conductive than the cellular brain tissi#6148. The skull itself was found to
be composed of a low-conducting part named compacta and baitgr conducting one called
spongiosal49 150. Recent advancements have led to the development of nuisé@ro/ivo
methods for measuring conductivities of different tissndgbe head.151-156. It is important
to point out that MEG and EEG have different conductivityfjles. Skull conductivity imposes
great smearing of the EEG signal, thus reducing its spasalution, while MEG is largely un-
affected B, 15(0. Modeling MEG, advantageously, requires a much simpléuwme conductor
model and fewer tissue boundaries. It has been shown thabapyating the outer skull surface
by an isotropic sphere or by a set of overlapping spheressézperform on par with more
computationally demanding boundary element meth@@sl57]. The reasoning behind this
model is the assumption that MEG is mostly sensitive to ther@ssed current (and not to the
ohmic return current) and the induced magnetic field in amitegfimedium is independent of
the conductivity 7.

These characteristics also become crucial in cross-sitalges aiming to connect the meso-
scale field potentials (IEEG) to macro-scale field potes{{BEG). It has been shown that holes
in the skull affects the conductivity pattern. Thereforesimultaneous iIEEG/EEG recordings,
the relation between the two becomes quite complex unlesscanductivity changes are taken
into account. Beside invasive (simultaneous iEEG and EE@rchination of these altered con-
ductivities [L55, an indirect MR-based method (Diffusion Tensor Magnets&ance Imaging
) has also been developelbp, 156.

2.8 Influence of tissue conductivity anisotropy

In micro-meso scale forward models, the assumptions iscbadluctivity in all 3 directions
(of x,y,2) is equal §2]. These assumptions, as discussed before, are based atyaegiorting
homogeneity of conductivity in the grey matter of monkeyter(138. Others have shown ev-
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idence of anisotropy in the rat barrel corté&6B 159. There is a possibility that some of these
differences could be species-dependent. However, it sdehthe reports by Logothetis et al
are inconclusive without further quantitative analy4iSg. Moreover, in another series of stud-
ies done with great emphasis on details, strong evidencergfomogeneity in different tissues
are provided139-141]. ( for a detailed critical evaluation of the technical asfgeof these two
studies and their potential shortcomings, €% ]. Additionally, , if the lack of anisotropy were
to be true, then the spatial reach of LFPs should not be dreadty different. Studies by Goto
et al report that horizontal conductivity is half of the veal direction L59. Some studies have
reported a vertical volume conduction of layer IV LFPs reaghhe cortical surfacelfl1,112.
This observation satisfies the evidence for anisotropy ateonmeso scale. Yet still, the com-
mon practice of forward modeling is based on the assumpfi@otropic conductivity. Recent
advances in studies of connectomics or synaptondi6é8, [L61], will certainly provide an op-
portunity to not only have a better understanding of thelm@iemicrocircuitry fL62], but also
to have a better formulation of the micro-meso scale voluamelactor.

At the meso-macro scale, evidence of strong anisotropy ebtiin tissue has been put
forward by number of studiedf7, 156,163 164]. A recent technically demanding study has
provided very orderly anisotropic rules of the white mafte85. These anisotropies, depend-
ing on their location, would cause different levels of pdration on the electrical field. For
example, in the case of skull anisotropy, a severe smeaffiect @as been observed. However,
these types of anisotropy do not affect the ME@T, 150.

Anisotropy of the white matter forces the return currentdlda in parallel to the white
matter fiber tracts. Naturally, superficial sources are nethmaffected by this factor before
reaching the extracranial sensors. In contrast, deepecesbeing surrounded by more of such
anisotropies will affect both MEG and EEG cas@ég|| It is possible to non-invasively estimate
the white matter anisotropy based on the Diffusion tensagimg (DTI) [154, 156, 166]. In
comparison to isotropic models, such anisotropic modelstam improved performance in the
calculation of intracranial EEG forward solutiobdq].

2.9 State-dependent characteristics

Nonlinear influences of dynamic changes in ionic condudastates 167, the leaky con-
ductance in rest versus high conductance in up sg&ifealong with the common features of
"up state” and slow-wave sleefi§8 169, enforce a complex state-dependent nonlinear local
dynamics that is not accounted for in these experimentalpctational studies. The computa-
tional consequences of high conductance state, i.e. "@aldaresponsiveness and gain mod-
ulation” [170, "modulation of intrinsic neuronal properties1T1, 172, "increased temporal
resolution” 173 and the resultant randomness in synaptic activity, leathéoemergence of
stochasticity in neural dynamics. Therefore, as it has lseewn, that the spatial correlation of
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LFPs changes according the state of the cortical dynarhi¢$.[




Chapter 3

Neural avalanche dynamics

In physics we have dealt hitherto
only with periodic crystals.

Erwin Schrodinger

3.1 Self-organized criticality

The dynamics evolution of many natural complex systems éappglose to a phase transition
point. Systems which maintain themselves at (or close td)as@ transition point, are called
self-organized critical (SOC) systems. The so-calledtital configuration” keeps such dissi-
pative dynamical systems with many degrees of freedom toatp@ear the phase transition.
This critical configuration internally fine tunes the evabatthe system128 175. After per-
turbation by external stimuli, such systems return baclqtoldrium. This behavioral dynamic
leads to the emergence of punctuated equilibriliid].

The family of SOC systems was introduced by Bak, Tang and &¥iedd [L127]. SOC
systems have been observed in many different natural phemamrfrom sandpiles, to rice piles,
in forest fires and earthquakek2B, 175-178. Scale-invariance is a fundamental characteristic
of SOC systems. The power-law distribution of charactesstf the system’s dynamics, such
as event size or the waiting time between events, is usuatigidered as the evidence for scale-
invariance. Therefore, the temporal fingerprint of SOC ayst is often described by/1 or
1/ 2 noise and their spatial signature is manifested as a soaeiant fractal 128 175. These
features indicate a tendency toward long-lasting tempmrédng-range spatial correlations in
the system.

41
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Non-critical systems’ response to perturbations reliesheir characteristic response time
and spatial tuningl28. In contrast, critical systems may respond with differer@gnitudes
in perturbations each time they are pushed by a given stsnulthis property is preserved
to achieve punctuated equilibrium. This characteristiSQfC systems, brings them to the
spotlight as a candidate for neural information processtgecifically, if an SOC state were
to be responsible for neural processing, then the recruattimie‘avalanches” would substitute
oscillations or waves as the pillar for neural coding.

The dynamics of SOC systems are structured as “avalanchastiaity, separated by silent
periods. Avalanche sizes are typically distributed as agodaw, which is particularly interest-
ing for the scale invariance it preseht®ower-laws are ubiquitous features in many physical
phenomena such as phase transitions. In these cases, timepkis called the critical exponent.
Diverse natural systems, as they evolve toward criticatpw the same critical exponent. This
may indicate some unifying underlying dynamics for sucheys of such nature.

3.2 Neural avalanches

As mentioned above, it is of crucial interest to evaluatetiwdeneural avalanche recruitments
follow a power-law distribution. In such a case, the povan-lcould be a signature for the
underlying critical dynamics in the neural network. If n@unetworks were to operate near
criticality, rather than the usual wave-type, oscillatorystochastic dynamics, it would then
rely on long-lasting and long-range correlations.

Evidence of SOC in the spontaneous activity of neural ndtwas first shown by Beggs
and Plenzn vitro [135. The distribution of neural events (or “neuronal avalaseh was
reported to follow the power-law distribution. This featuwvas interpreted as evidence for
self-organized criticality in the nervous system (see FI3@ for retinal spontaneous activity).
Microscale scale-invariant dynamics were originally need in spontaneous cortical activity
of in vitro preparations, i.e. slice cultures and acute slices, ardilathe anesthetized rat (in
vivo) [135 180. In all these studies, nLFPs, i.e. local maximas of negad®flections in LFPs
above some threshold, was the reference for creating thermbee data. Later, studies of spike
avalanche in dissociated cultures also suggested thavatenahes follow a power-law regime
and therefore cortical dynamics are of a self-organizirtgnea [L81].

The presence of avalanches is however controversialo. Often with no real “pause”
in the firing activity of a large network, it becomes diffictdt properly define the "avalanche”
in the awake in vivo state3p, 134. In an early study on awake cats, it was shown that the
spectrum of local field potential (LFP) scales as 1/f. Howespgike recordings did not follow

irstTo be precise, if the probability of observing value x ogiven variable is a power-laya(x) = ax 9,
then scaling« by a constant factor yields to a proportional lawcx) = ac 9x 7.
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a power-law distribution. 134]. It was suggested that the observed power-law in dis@etiz
LFPs of prior studies could be attributed to the filteringlod propagated electrical field in the
extracellular medium134,136.

In contrast, later studies report that in anesthetized [d®8 and awake monkeyslB3,
power-law distributed avalanches are present in the negpéaks of the local field potentials
(LFP). Based on the assumption that LFP negative peaks atistisglly related to neuronal
firing, this scale-invariant behavior was taken as eviddacself-organized criticality. These
observed power-laws in the negative LFP peak were therizetd in a later report showing
that even purely stochastic processes can display powesdaling when subjected to similar
thresholding procedure484]. It has to be emphasized that stochastic mechanisms, thier
SOC, are perfectly capable of manifesting power-law dtesi4184-18€6. There are many
different scenarios that lead to the emergence of spuriouseplaw. For example, sudden
termination of exponentially growing processes will leacheavy tail power-like distribution
[187]. This case would be similar to a non-stationary Poissorgsses, or combining Poisson
processes at different rates, a situation that is likelyapgen in the nervous system. Such
scenarios can give rise to spurious power laws.

These contrasting results correspond to different préjpasaand recording techniques, sin-
gle units or LFPs, or different species, so that it is difficalcompare them. In Chapter 7, we
attempt to overcome these shortcomings by providing a syaie analysis of both units and
LFPs for different species and different brain states.
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Chapter 4

Overview

If biologists have ignored
self-organization, it is not because
self-ordering is not pervasive and
profound. It is because we
biologists have yet to understand
how to think about systems
governed simultaneously by two
sources of order, Yet who seeing the
snowflake, who seeing simple lipid
molecules cast adrift in water
forming themselves into cell-like
hollow lipid vesicles, who seeing
the potential for the crystallization
of life in swarms of reacting
molecules, who seeing the stunning
order for free in networks linking
tens upon tens of thousands of
variables, can fail to entertain a
central thought: if ever we are to
attain a final theory in biology, we
will surely, surely have to
understand the commingling of
self-organization and selection. We
will have to see that we are the
natural expressions of a deeper
order. Ultimately, we will discover
in our creation myth that we are
expected after all.

Stuart Kauffman
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4.1 Electromagnetic properties of the extracellular medim

The electromagnetic nature of the extracellular mediumrmisssential component of the field
potentials modeling in neural tissue. In the chapter 2, wavided extensive details on the
characteristics of the medium. Here, we briefly re-sketdse¢hconcepts and formulate our
approach to study this issue in the case of large scale nasire recordings (i.e. EEG and
MEG).

In general, the extracellular space around neurons isdered as a purely resistive medium
[75]. Aresistive (or Ohmic) medium simply replaces the exthatar space with a simple resis-
tance. This approach turns the Maxwell equations into gstasic ones and significantly sim-
plifies the computations of the field potentials. The outcarihguch an assumption is that ev-
erything adds up linearly and the extracellular potentialsbe estimated from the joint activity
of all the existent elements within the studied volumg, L88. This approach is also routinely
practiced in electromagnetic source localization. In fam{inverse solution, in macroscopic
modeling of the medium, the assumption of resistivity is ¢benerstone of forward predictor
calculations. Thus, any inverse solution based on suchai@hmodels also treats the medium
as a simple linearly resistive oné€, 189 19(. However, if we formulate the medium in a
non-resistive fashion, the assumption of a quasi-staficcegpmation of Maxwell equations is
no longer valid and the equations become significantly monegdex [L22). In such a case, the
generators within the volume no longer add up in a simplealiriashion and the sum will be
greater than its parts.

As mentioned in the chapter 2, the experimental evidencatahe non-resistive charac-
teristics of the medium are contradictory. Some experisegport pure resistivity to be the
case [38 while others present it to be of a non-resistive natir@¥141, 191].This issue is
still subject for debate as none of these studies followeexgerimental setup that would al-
low the use of currents at the level of physiological peratidns in the medium. Using high
current intensities masks the filtering properties of tesute by preventing phenomena such as
ionic diffusion [192. Details of the potential pitfalls in these experiments discussed else-
where B3]. In summary, these studies are inconclusive and furthek wgoneeded to test this
issue experimentally.

In chapter 2, we also presented the case for different cteaisiics of EEG and MEG.
Their rather complex comparative features in terms of lealddiand synchrony, as well as
differential sensitivity to tissue conductance is the ka®e the formulation of our study. In
Chapter 5, we propose an indirect method to estimate whetheot extracellular space can
be considered a purely resistive medium. Like others, we loas assumptions on a non-
capacitive medium. We then show theoretically that in swages, the frequency-scaling of the
EEG and MEG should behave similarly. We then test the sdesttading of simultaneous EEG
and MEG measurements in humans. In doing so, we adapt naistons for MEG. This
comparative characterization of frequency scaling presial window to address the question of



50

the non-resistivity of the medium.

4.2 State-dependent spatiotemporal dynamics of cortical m
crocircuitry

In chapter 2, we reviewed the state-dependent modulatidui-Bf correlations. We also dis-
cussed the case for LFP-spike relationship and how thetufesican help us discern the nature
of the generators in invasive recordings. In humans, irdraal recordings are routinely used
as a means to localize epileptogenic foci prior to surgicztment of epileptic foci. Recent
advances in these extracellular recordings have providddace to record from an ensemble
of neurons using microwired 93 or 2D multielectrode arrayssp]. Such recording systems
have been shown to provide excellent recordings of singleon activity in human cerebral
cortex (for recent reports, se€J4-196€]). In our experiments, we used the so-called Neuroport
electrodes based on Utah electrode arrays. A methodolagiaat of the properties of these
high density multielectrode arrays is provided in chapter 6

Using these electrodes, we were able to tackle the statendept spatiotemporal dynam-
ics in the human cortex. Such dynamics manifest rich chariatics of excitation/inhibition
interaction. As the local dynamics are shaped by these tff@reint populations, studying their
functional relationship is crucial in our understandingro€rocircuitry of the cortex. In animal
experiments, it is possible to separate units between laegpiking” (RS) and “fast-spiking”
(FS). In rat hippocampus, RS and FS cells can be reliablyratgzhbased on spike waveform,
duration and mean firing ratd()]. This type of separation was validated using intracetlatad
juxtacellular recordings simultaneous with extracelukcordings from the same neurons in
vivo [197-199. A similar approach was also used to successfully separdte into RS and
FS cells in human hippocampugl].

To date, such validation experiments are not available dondn cerebral cortex. Nonethe-
less, it was previously shown that separation between R3-8ncklls is possible and reliable
using high-density recordings in rat cerebral cort@® P0(. As for hippocampal recordings,
this separation results in different waveforms, rates artdcrrelations. In addition, occa-
sional monosynaptic connections confirmed the excitatatyne of RS cells, and similarly that
FS cells are inhibitory.

We follow the same approach using high-density microebeletrarrays in human cerebral
cortex as described in Chapter 1. We attempt to separataceitrlarly-recorded units into
RS and FS cells, and to investigate their excitatory or i nature based on monosynaptic
connections. Using this morpho-functional approach, weddithe cells into two clusters of
putative inhibitory (FS) and putative excitatory (RS). Wen evaluated their network interac-
tion in different states of consciousness. In chapter 6 ganele8present an extension of this
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study where we test the balance of excitation and inhibitadiifferent states and quantify the
dynamic multiscale correlation within the microcircuitsf’the human neocortex.

4.3 Neural avalanche dynamics

In chapter 3, we briefly overviewed self-organized criti&0OC) systems. We discussed their
discoveries 127], dynamical properties128 175 and their spatiotemporal signatures. We
also briefly discussed why SOC systems are appealing to tn@fegeuroscientists from an
information coding point of view. A stark contrast betweemeairal network operating in SOC
mode with one that relies on oscillatory and stochastic @itdgs is in long-range and long-time
correlation within the system. In an SOC system, the remrent of avalanches is the defining
characteristic of its dynamic.

One of the fundamental the characteristics of SOC systeties &ccurrence of “avalanches”
of activity, separated by quiescent periods. The prolghilf occurrencep(x) of a given
avalanche sizg typically follows a power-law:

p(X) ~ X,
wherea is the scaling exponent of the distribution.

As discussed previously, if a system manifests power-laen fit is likely that it is of an
SOC nature. A number of in vitro studies (slices/culture®\vjale evidence of a power-law
distribution and thus verify the assumption of neural avelhees. However, the existence of
power-law in an intact brain in vivo is a subject for debateam® prior studies have shown
evidence of criticality in invasive recordings from the teor[135 182 183. In parallel, there
are also some large-scale non-invasive recordings that tegorted the presence of spectral
1/f in MEG and EEG recordingslB0 131]. In contrast, some reports have shown that the
spiking activity in awake in cats does not scale as powertHa84] and that stochastic processes
subjected to the arbitrary thresholding of LFP could alsmwskpurious power-lawslB4 and
that the observed 1/f scaling in LFP could be described basedte filtering properties of the
extracellular medium[36. Footnote: (For a comprehensive review of criticalityeasch in
nervous system, se&gq).

To overcome these controversies, in our investigationsstweied the system at both ends
of the scale. The spectral frequency scaling of MEG and EESagaomplished with detailed
attentions to the MEG noise as well considering the SNR apdg@aphical distribution of the
sensors with different lead fields (chapter 2). In studypigefLFP avalanches, we approached
the system at multiple conscious states of wakefulnesa-slave sleep (SWS) and rapid-eye
movement (REM). To avoid species-specific findings, we useltierectrode recordings from
cats, monkeys and humans, sometimes from two corticalitatecorded simultaneously. In
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all these preparations, we used the data from Utah elecaodgs (see chapter 1 for instru-
mentation details). In addition to studying avalanchespikiag activity, we also studied LFP
avalanches. In our examination, we investigated both thathe LFP (nLFP) peaks (which is
related to spiking of neurons) as well as the positive LFR-pLpeaks, which are not related to
neuronal firing. To analyze this extensive set of data, frouftirstates, multi-species, multiple
cortical areas and multiple scales, we used rigorous mettiat are proposed to be capable
of discerning true power-laws from spurious observati@@d]. These studies are presented in
chapter 7.




Chapter 5

MEG/EEG Spectra
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It is the harmony of the diverse
parts, their symmetry, their happy
balance; in a word it is all that
introduces order, all that gives
unity, that permits us to see clearly
and to comprehend at once both
the ensemble and the detalils.

Henri Poincaré
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5.1 Summary

The resistive or non-resistive nature of the extracellsface in the brain is still debated, and
is an important issue for correctly modeling extracellydatentials. Here, we first show theo-
retically that if the medium is resistive, the frequencylseashould be the same for electroen-
cephalogram (EEG) and magnetoencephalogram (MEG) sightde frequencies<{10 Hz).

To test this prediction, we analyzed the spectrum of simelbas EEG and MEG measurements
in four human subjects. The frequency scaling of EEG disptapherent variations across the
brain, in general betweery 1 and 1/ f2, and tends to be smaller in parietal/temporal regions. In
a given region, although the variability of the frequencglsry exponent was higher for MEG
compared to EEG, both signals consistently scale with @mdifft exponent. In some cases,
the scaling was similar, but only when the signal-to-no&erof the MEG was low. Several
methods of noise correction for environmental and instmtalenoise were tested, and they all
increased the difference between EEG and MEG scaling. Iolgsion, there is a significant
difference in frequency scaling between EEG and MEG, whah lze explained if the extra-
cellular medium (including other layers such as dura maiterskull) is globally non-resistive.

Reference:
J Comput Neurosci. 2010 Dec;29(3):405-21. Epub 2010 Aug‘Epecial issue on modeling
extracellular potentials”

Keywords:
EEG , MEG; Local Field Potentials , Extracellular resistiyi, Maxwell Equations , Power-law
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5.2 Resune

La nature résistive ou non-résistive du milieu extradelte est toujours débattue, mais elle con-
stitue un élément important pour la modélisation despii¢ls extracellulaires. Nous montrons
d’abord théoriquement, que si le milieu est résistif denportement d’echelle en frequence doit
étre le méme pour les signaux d’électroencéphalograiff&G) et magnétoencéphalogramme
(MEG) a basse frequence<10 Hz). Afin de tester cette prédiction, nous avons anakysé
spectre d’enregistrements EEG et MEG simultanés de gsajets humains. Le comporte-
ment d’échelle en frequence de 'EEG montre des variatioohérentes sur la surface du
cerveau, avec des exposants en général compris ehtretll/f2; ces exposants tendent a
étre plus faibles dans les régions temporales et plgteDans une région donnée, les ex-
posants de la MEG ont une variabilité plus grande que p&lt®, mais les deux signaux ont
systématiquement un exposant different. Dans certamdes exposants sont proches, mais ces
cas correspondent a un mauvais rapport signal/bruit @olHEG. Plusieurs méthodes de cor-
rections du bruit instrumental et environmental ont ég#ées, et dans tous les cas, ces méthodes
augmentent la difference de comportement spectral ekt et la MEG. En conclusion, il y

a une difference significative de comportement déchelfeézuence entre EEG et MEG, ce qui
peut étre expliqué si le milieu extracellulaire (incltdirautres couches telles que la dure-mere
et le crane) est globalement non-résistif.
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5.3 Introduction

An issue central to modeling local field potentials is whettie extracellular space around
neurons can be considered as a resistive medium. A resisédaim is equivalent to replacing
the medium by a simple resistance, which considerably sii@plthe computation of local
field potentials, as the equations to calculate extracelfiglds are very simple and based on
Coulomb’s law [/5,188. Forward models of the EEG and inverse solution/sourcalipation
methods also assume that the medium is resisti®d B9 190. However, if the medium is non-
resistive, the equations governing the extracellularmcecan be considerably more complex
because the quasi-static approximation of Maxwell equatc@annot be madéd.22.

Experimental characterizations of extracellular regitstiare contradictory. Some experi-
ments reported that the conductivity is strongly frequeteyendent, and thus that the medium
is non-resistive (139-141, 191]. Other experiments reported that the medium was esskgntial
resistive [L38. However, both types of measurements used current intesigar larger than
physiological currents, which can mask the filtering praipsrof the tissue by preventing phe-
nomena such as ionic diffusio®92. Unfortunately, the issue is still open because theretgxis
no measurements to date using (weak) current intensitgswbuld be more compatible with
biological current sources.

In the present paper, we propose an indirect method to dstifrextracellular space can be
considered as a purely resistive medium. We start from M#bageations and show that if the
medium was resistive, the frequency-scaling of electrephalogram (EEG) and magnetoen-
cephalogram (MEG) recordings should be the same. We thethiescaling on simultaneous
EEG and MEG measurements in humans.

5.4 Methods

5.4.1 Participants and MEG/EEG recordings

We recorded the electromagnetic field of the brain duringiguakefulness (with alpha rhythm
occasionally present) from four healthy adults (4 males &§e35). Participants had no neuro-
logical problems including sleep disorders, epilepsy,ulrssance dependence, were taking no
medications and did not consume caffeine or alcohol on tyeofithe recording. We used a
whole-head MEG scanner (Neuromag Elekta) within a magalétishielded room (IMEDCO,
Hagendorf, Switzerland) and recorded simultaneously @@lchannels of EEG and 306 MEG
channels202. MEG SQUID (super conducting quantum interference devsemsors are ar-
ranged as triplets at 102 locations; each location contaies’'magnetometer” and two orthog-
onal planar “gradiometers” (GRAD1, GRAD2). Unless othemmvnoted, MEG will be used
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here to refer to the magnetometer recordings. LocationseoEEG electrodes on the scalp of
individual subjects were recorded using a 3D digitizer (lRBatus FastTrack). HPI (head posi-
tion index) coils were used to measure the spatial reldtipnsetween the head and scanner.
Electrode arrangements were constructed from the projecti 3D position of electrodes to a
2D plane in order to map the frequency scaling exponent ipag@phical manner. All EEG
recordings were monopolar with a common reference. Sagpdite was 1000 Hz.

For all subjects, four types of consecutive recordings wétained, in the following order:
(1) Empty-room recording; (2) Awake “idle” recording whesebjects were asked to stay com-
fortable, without movements in the scanner, and not to facuanything specific; (3) a visual
task; (4) sleep recordings. All idle recordings used henewgade in awake subjects with eyes
open, where the EEG was desynchronized. A few minutes ofigieetime was recorded in the
scanner. For each subject, 3 awake segments with duratié® séconds were selected from
the idle recordings (see example signals in Bid).

As electrocardiogram (ECG) noise often contaminates MEGrings, Independent com-
ponent analysis (ICA) algorithm was used to remove suchacoimation; either Infomax @p]
or the “Jade algorithm” from the EEGLAB toolbo2(03 was used to achieve proper decontam-
ination. In all recordings, the ECG component stood out vebystly. In order not to impose
any change in the frequency content of the signal, we did setthe ICA to filter the data
on any prominent independent oscillatory component andé solely used to decontaminate
the ECG noise. We verified that the removal of ECG did not cbahg scaling exponent (not
shown).

In each recording session, just prior to brain recordingsyecorded a few minutes of the
electromagnetic field present within the dewar in the magrsétielded room. Similar to wake
epochs, 3 segments of 60 seconds duration were selecteadoioéthe four recordings. This
will be referred to “empty room” recordings and will be usedoise correction of the awake
recordings.

In each subject, the power spectral density (PSD) was eabmulilby first computing the
Fast Fourier transform (FFT) of 3 awake epochs, then avegabeir respective PSDs (square
modulus of the FFT). This averaged PSD was computed for ab BBd MEG channels in
order to reduce the effects of spurious peaks due to randatuditions. The same procedure
was also followed for empty-room signals.

5.4.2 Noise correction methods

Because the environmental and instrumental sources oé raves potentially high in MEG
recordings, we took advantage of the availability of emyatgm recordings to correct for the
presence of noise in the signal. We used five different metifimdnoise correction, based on
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different assumptions about the nature of the noise. Weritheslbelow these different correc-
tion methods, while all the details are giverSapplementary Methods

A first procedure for noise correction, exponent subtractieS), assumes that the noise is
intrinsic to the SQUID sensors. This is justified by the féettithe frequency scaling of some
of the channels is identical to that of the correspondingtgmmpom recording (see Results). In
such a case, the scaling is assumed to entirely result frerffittering” of the sensor, and thus
the correction amounts to subtract the scaling exponents.

A second class of noise subtraction methods assume thabieia of ambient nature and
is uncorrelated with the signal. This chatacteristics,ram@ts the use of spectral subtraction
(where one subtracts the PSD of the empty-room from that @MIEG recordings), prior
to the calculation of the scaling exponent. The simplesnfof spectral subtraction, linear
multiband spectral subtraction (LMSS), treats the senswlisidually and does not use any
spatial/frequency-based statistics in its methodol®f4. An improved version, nonlinear
multiband spectral subtraction (NMSS), takes into accthumtsignal-to-noise ratio (SNR) and
its spatial and frequency characteristi2®% 206. A third type, Wiener filtering (WF), uses
a similar approach as the latter, but obtain an estimateeohtiiseless signal from that of the
noisy measurement through minimizing the Mean Square EXM8IEE) between the desired and
the measured signa(7,208|.

A third type of noise subtraction, partial least squaresSPlegression, combines Principal
component analysis (PCA) methods with multiple linear @sgion P09 210. This methods
finds the spectral patterns that are common in the MEG andhtipgyeroom noise, and removes
these patterns from the PSD.

5.4.3 Frequency scaling exponent estimation

The method to estimate the frequency scaling exponent wapased of steps: First, applying
a spline to obtain a smooth FFT without losing the resolufem can happen by using other
spectral estimation methods); Second, using a simple paljal fit to obtain the scaling ex-
ponent. To improve the slope estimation, we approximated®D data points using a spline,
which is a series of piecewise polynomials with smooth titeorss and where the break points
(“knots”) are specified. We used the so-called “B-splin&gsletails in211].

The knots were first defined as linearly related to logaritfith@frequency, which naturally
gives more resolution to low frequencies, to which our tgeapplies. Next, in each frequency
window (between consecutive knots), we find the closest P&evo the mean PSD of that
window. Then we use the corresponding frequency as the @athrknot in that frequency
range, leading the final values of the knots. The resultingtkstay close to the initial dis-
tribution of frequency knots but are modified based on eaok@&s PSD data to provide the
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optimal knot points for that given sensor (Fig2A). We also use additional knots at the outer
edges of the signal to avoid boundary effe@&d. The applied method provides a reliable
and automated approach that uses our enforced initialéregyusegments with a high emphasis
in low frequency and it optimizes itself based on the datae®dbtaining a smooth B-spline
curve, a simple 1st degree polynomial fit was used to estithatslope of the curve between
0.1-10 Hz (the fit was limited to this frequency band in ordeavoid the possible effects of
the visible peak at 10 Hz on the estimated exponent).Usisgrbthod provides a reliable and
robust estimate of the slope of the PSD in logarithmic sadeshown in Fig5.2B. For more
details on the issue of automatic non-parametric fitting, thie rationale behind combining the
polynomial with spline basis functions, we refer the readdf13 as well as 214 and [215.

This procedure was realized on all channels automaticillg ¢hannels for MEG, 60 chan-
nels for EEG, for each patient). Every single fit was furthisuslly confirmed. In the case of
MEG, noise correction is essential to validate the res&lts.doing so, we used different meth-
ods (as described above) to reduce the noise. Next, all théoned steps of frequency scaling
exponents were carried out on the corrected PSD. Resulshaven in Fig5.4.

5.4.4 Region of Interest (ROI)

Three ROIs were selected for statistical comparisons otdapegraphic plots. As shown in
Figure5.4(panel F), FR (Frontal) ROI refers to the frontal ellipsoiX (Vertex) ROI refers to
the central disk located on vertex and PT (Parietotempog#d)s to the horseshoe ROI.

5.5 Theory

We start from first principles (Maxwell equations) and derequations to describe EEG and
MEG signals. Note that the formalism we present here ismiffethan the one usually given (as
in [216,217)], because the linking equations are here considered inrtieest general expression
(convolution integrals), in the case of a linear medium ge77.4 in R1§. This generality is
essential for the problem we treat here, because our aimcsmpare EEG and MEG signals
with the predictions from the theory, and thus the theorytrbesas general as possible.

5.5.1 General formalism
Maxwell equations can be written as

(5.1)

T o
Il
—.l o

_l’_
3
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If we suppose that the brain is linear in the electromagsetise (which is most likely), then
we have the two following linking equations. The first eqaatiinks the electric displacement
with the electric field:

—00

— +0° —
B :/ e(T)E(t—1)dr (5.2)
whereeg is a symmetric second-order tensor.

A second equation links magnetic induction and the magfietat:
_ o o
B:/ H(T)H(t—1)dT (5.3)

wherey is a symmetric second-order tensor.

If we neglect non-resistive effects such as diffusion @édand Destexhe, 2009), as well
as any other nonlinear effeétghen we can assume that the medium is linear. In this case, we
can write:

j= /+w o(T)E(t—1)dT (5.4)

—00

whereo is a symmetric second-order tensorBecause the effect of electric induction (Fara-
day’s law) is negligible, we can write:
O-D = pfee OB = 0
OxE = 0 OxH = j+%
This system is much simpler compared to above, becauseieliéeid and magnetic induction
are decoupled.

(5.5)

By taking the Fourier transform of Maxwell equations (Ef4) and of the linking equations
(Egs.5.25.35.4), we obtain:

0.0 = pi™ 0B = 0 (5.6)
DXEf = 0 DXHf = Tf+iwf)f .
wherew = 2rtf and
Dy &rEg
%f = IJfFif_’ (5.7)
it = P+o¢Es

2Examples of nonlinear effects are variations of the maapisconductivityo; with the magnitude of electric
field E. Such variations could appear due to ephaptic (electrid)fieteractions for example. In addition, any type
of linear reactivity of the medium to the electric field or magic induction can lead to frequency-dependent
electric parameterg, ¢, u (for a detailed discussion of such effects, sE@].

3Note that in textbooks, these linking equations (E2-5.4) are often algebraic and independent of time (for
example, see Egs. 5.2-6, 5.2-7 and 5.2-82h7]. The present formulation is more general, more in the lie o
Landau and Lifchitz21§].
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where the relatioro;E; in Eq. 5.7 is the current density produced by the (primary) current
sources in the extracellular medium. Note that in this fdation, the electromagnetic pa-
rametersss, s andor depend on frequenty This generalization is essential if we want the
formalism to be valid for media that are linear but non-ridges which can expressed with
frequency-dependent electric parameters. It is also stamiwith the Kramers-Kronig rela-
tions (see218 219).

T]E’ is the current density of these sources in Fourier frequspage. This current density is
composed of the axial current in dendrites and axons, asagéfie transmembrane current. Of
course, this expression is such that at any given pointetisemly one of these two terms which
is non-zero. This is a way of preserving the linearity of Ma@kvequations. Such a procedure
is legitimate because the sources are not affected by tilfiey produce

5.5.2 Expression for the electric field

From Eq.5.6 (Faraday’s law in Fourier space), we can write:
Ef =—[Vs . (5.8)

From Eq.5.6 (Ampere-Maxwell’s law in Fourier space), we can write:

O-(OxHf) = O-jf+iwd-(gEs)
= 0-JP—0-((of +iwe)OVs) =0 (5.9)
Settingy; = 07 +iwé&;, one obtains:
O-(ysOVe) =0-j7 (5.10)

wherel]- ﬂ? Is a source term ang is a symmetric second-order tensor(3). Note that this
tensor depends on position and frequency in general, amtbthe factorized. We will call this
expression (Edb.10 the “first fundamental equation” of the problem.

5.5.3 Expression for magnetic induction

From the mathematical identity

OxOxX=—-0?X+0(0-X) (5.11)

4In textbooks, the electric parameters are sometimes ocemesicas complex numbers, for example with the
notion of phasor (see Section 5.3 in Gulrajagi J], but they are usually considered frequency independent.

SIf it was not the case, then the source terms would be a fumofithe produced field, which would result in
more complicated equations
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it is clear that this is sufficient to know the divergence anel ¢url of a fieldX, because the
solution of 02X is unique with adequate boundary conditions.

As in the case of magnetic induction, the divergence is rsaciyg zero, it is sufficient to
give an explicit expression of the curl as a function of therses.

Supposing thalt = Lpd(t) is a scalar (tensor where all directions are eigenvectars),
taking the curl of Eg5.6 (D), multiplied by the inverse of;, we obtain the following equality:
05 (WO x Br) = kol x (Y17 (5.12)

becausél x E; = 0. This expression (Ed.12 will be named the “second fundamental equa-
tion”.

5.5.4 Boundary conditions

We consider the following boundary conditions:

1 - on the skull, we assume thdt(T) is differentiable in space, which is equivalent to
assume that the electric field is finite.

2 - on the skull, we assume thaty; [0V; is also continuous, which is equivalent to assume
that the flow of current is continuous. Thus, we are interksiesolutions where the electric
field is continuous.

3 - because the current is zero outside of the head, the tyreemendicular to the surface
of cortex must be zero as well. Thus, the projection of theeruron the vecton hormal to the
skull’s surface, must also be zero.

A(R) -yt OV (X) = 0 (5.13)

The latter expression can be proven by calculating the totaknt and apply the divergence
theorem (not shown).

5.5.5 Quasi-static approximation to calculate magnetic iduction

The “second fundamental equation” above implies invergngvhich is not possible in general,
because it would require prior knowledge of both conduttigind permittivity in each point
outside of the sources. If the medium is purely resistige=t y wherey is independent of
space and frequency), one can evaluate the electric fietdditd next integrat&; using the
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guasi-static apprOX|mat|on (Ampere-Maxwell’s law). Bese for low frequencies, we have
necessarilyjs >> iwD+, we obtain

D X Bf = “Ojf )
which is also known as Ampere’s law in Fourier space.

Thus, for low frequencies, one can skip the second fundaahexuation. Note that in
case this gquasi-static approximation cannot be made (suébr digh frequencies), then one
needs to solve the full system using both fundamental egpusti Such high frequencies are,
however, well beyond the physiological range, so for EEG liit{> signals, the quasi-static
approximation holds if the extracellular medium is resistior more generally if the medium
satisfies] x Et = —iwB; = 0 (see Eqs5.5and5.6).

According to the quasi-static approximation, and usinditileng equation between current
density and the electric field (E§.7), we can write:

O x B = po(j} — yOVy) (5.14)

Because the divergence of magnetic induction is zero, we framn Eq.5.11

OxOxBf = —0%Bf = — o0 x (JF — yOVs) (5.15)

This equation can be easily integrated using Poisson @t€toisson equation” for each
component in Cartesian coordinates) In Fourier space,rtegral is given by the following

expression
Ox ( Vs (r!
/// (R0 — yave( >)d\/ (5.16)
oo IIf’—rII

5.5.6 Consequences

If the medium is purely resistive (“ohmic”), theymdoes not depend on the spatial position
(see 122 192)) nor on frequency, so that the solution for the magneticiotan is given by:

0
/// H:—Jfr dl (5-17)

head

and does not depend on the nature of the medium.
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For the electric potential, from E§.10 we obtain the solution:

B 4ny/// |§ J):/ 519

Thus, when the two source terris< jP and0- j? are white noise, the magnetic induction
and electric field must have the same frequency dependenceeoVer, because the spatial
dimensions of the sources are very small (see appendicesgaw suppose that the current
densityﬂ?(?) is given by a function of the form:

P(%) = [PER)F(f) (5.19)

such that] x jf and- Jf have the same frequency dependence for low frequencies. F4y.
constitutes the main assumption of this formalism.

In Appendix A, we provide a more detailed justification ofstiEissumption, based on the
differential expressions of the electric field and magnetitiction in a dendritic cable. Note
that this assumption is most likely valid for states with loarrelation such as desynchronized-
EEG states or high-conductance states, and for low-frexjegras we analyze here (see details
in the appendices).

Thus, the main prediction of this formalism is that if therexellular medium is resistive,
then the PSD of the magnetic induction and of the electriemitl must have the same fre-
guency dependence. In the next section, we will examinadfighthe case for simultaneously
recorded MEG and EEG signals.

5.6 Test on experimental data

A total of 4 subjects were used for the analysis. Figbreshows sample MEG and EEG
channels from one of the subjects, during quiet wakefuln@déthough the subjects had eyes
open, a low-amplitude alpha rhythm was occasionally preG@nvisible in Fig.5.1). There
were also oscillations present in the empty-room signal,tihese oscillations are evidently
different from the alpha rhythm because of their low ampléwand the fact that they do not
appear in gradiometers (see Suppl. Fig. S1).

In the next sections, we start by briefly presenting the ntkthat was used to estimate the
frequency scaling of the PSDs. Then we report the scalingrexpts for 0.1-10 Hz frequency
bands and their differences in EEG and MEG recordings.
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5.6.1 Frequency scaling exponent estimation

Because of the large number of signals in the EEG and MEG deags, we used an automatic
non-parametric procedure to estimate the frequency sc@ee Methods). We used a B-spline
approximation by interpolation with boundary conditiondind a curve which best represents
the data(see Methods). A high density of knots was given ¢oldtv-frequency band (0.1-
10 Hz), to have an accurate representation of the PSD in éimd,land calculate the frequency
scaling. An example of optimized knots to an individual sgns shown in Figuré.2A; note
that this distribution of knots is specific to this partiaus&nsor. The resulting B-spline curves
were used to estimate the frequency scaling exponent uslsty @egree polynomial fit. Fig-
ure5.2B shows the result of the B-spline analysis with optimizedtkr(in green) capturing the
essence of the data better than the usual approximatio sfdpe using polynomials (in red).
The goodness of fit showed a robust estimation of the slopgy usispline method. Residuals
were -0.01+ 0.6 for empty-room, 0.2 0.65 for MEG awake, 0.05 0.6 for LMSS, 0.005+
0.64 for NMSS, 0.08t 0.5 for WF,0.001+ 0.02 for PLS, and -0.02 0.28 for EEG B-spline
(all numbers to be multiplied by 164).

5.6.2 MEG and EEG have different frequency scaling exponest

Figure5.3 shows the results of the B-spline curve fits to the log-log RSBrequency for all
sensors of all subjects. In this figure, and only for the edsgsaal comparison, these curves
were normalized to the value of the log(PSD) of the highesjdency. As can be appreciated,
all MEG sensors (in red) show a different slope than that ef EEG sensors (in blue). The
frequency scaling exponent of the EEG is close to Af (&caling), while MEG seems to scale
differently. Thus, this representation already showsrdliféerences of scaling between EEG
and MEG signals.

However, MEG signals may be affected by ambient or instruai@oise. To check for this,
we have analyzed the empty-room signals using the sameseggiegion and techniques as for
MEG, amd the results are represented in Bi§.(insets). Empty-room recordings always scale
very closely to the MEG signal, and thus the scaling obsemedEG may be due in part to
environmental noise or noise intrinsic to the detectorsis Emphasizes that it is essential to
use empty-room recordings made during the same experimeottect the frequency scaling
exponent of MEG recordings.

To correct for this bias, we have used five different procedysee Methods). The first
class of procedure (ES) considers that the scaling of the ME@tirely due to filtering by the
sensors, which would explain the similar scaling betweer@Qvdihd empty-room recordings.
In this case, however, nearly all the scaling would be ahelis and the corrected MEG signal
would be similar to white noise (scaling exponent close t@keBecause the similar scaling
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may be coincidental, we have used two other classes of norsection procedures to comply
with different assumptions about the nature of the noisee 3dcond class, is composed of
spectral subtraction (LMSS and NMSS) or Wiener filteringe(Methods). These methods are
well-established in other fields such as acoustics. Thd ttlass, uses statistical patterns of
noise to enhance PSD (PLS method, for details see Methods).

5.6.3 Spatial variability of the frequency scaling exponen

We applied the above methods to all channels and represt@estaling exponents in topo-
graphic plots in Fig5.4. This figure portrays that both MEG and EEG do not show a homoge
nous pattern of the scaling exponent, confirming the diffees of scaling seen in Fi§.3.
The EEG (Figures.4A) shows that areas in the midline have values closer to llewhose

at the margin can deviate frony 1 scaling. MEG on the other hand shows higher values of
the exponent in the frontal area and a horseshoe pattermvofdlue exponents in parietotem-
poral regions (Figur&.4B). As anticipated above, empty-room recordings scale motess
uniformly with values close to Af (Figure5.4C), thus necessitating the correction for this phe-
nomena to estimate the correct MEG frequency scaling exgoigfferent methods for noise
reduction are shown in Figuie4: spectral subtraction methods, such as LMSS (Fi§ub),
NMSS (Figure5.4E), WF enhancement (Figute4F). These corrections preserve the pattern
seen in Figuré&.4B, but tend to increase the difference with EEG scaling: osthod (LMSS)
yields minimal correction while the other two (NMSS and WBgUand-specific SNR informa-
tion in order to cancel the effects of background colored@(see Suppl. Fig. S2), and achieve
higher degree of correction (see Supplementary Methodddtails). Figure5.4G portrays
the use of PLS to obtain a noiseless signal based on the neiasurements. The degree of
correction achieved by this method is higher than what iseaeldl by spectral subtraction and
WF methods. Exponent subtraction is shown in Figuei. This correction supposes that the
scaling is due to the frequency response of the sensors,eaty mbolishes all the frequency
scaling (see also Suppl. Fig. S3 for a comparison of diffemegthods of noise subtraction).

5.6.4 Statistical comparison of EEG and MEG frequency scatig

Based on the patterns in Fig.4, we created three ROIs covering Vertex (FR), Vertex (VX) and
the horseshoe pattern (PT). These masks are shown iB.Big.

Figure5.5A represents the overall pattern providing evidence on #meral difference and
the wider variability in MEG recordings. The next three pamelate to the individual ROIs. Of
the spectral subtraction methods, NMSS achieves a higlygee®f correction in comparison
with LMSS (see Figuré.4C, Figure5.4D as well as Suppl. Fig. S3). Because NMSS takes into
account the effects of the background colored-noise (Supigl S2), it is certainly more rele-
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vant to the type of signals analyzed here. The results of NBI8SNF are almost identical and
confirm one another (see FigusedE, as well as Suppl. Fig. S3). Therefore, of this family of
noise correction, only NMSS is portrayed here. Of the mestdehling with different assump-
tions about the nature of the noise, the “Exponent subtmattlmost abolishes the frequency
scaling (Also see in Figurb.4H, as well as Suppl. Fig. S3). Applying PLS yields values in
between “Exponent subtraction” and that of NMSS and is pged in Figureb.5.

In the Frontal region (Figur&.5B), the EEG scaling exponents show higher variance by
comparison to MEG. Also, EEG shows some overlaps with th&iligion curve of non-
corrected MEG,; this overlap becomes limited to the tail ehthe NMSS correction and is
abolished in the case of PLS correction. As can be appregig®e (Figure5.5C) shows both
similar values and similar distribution for EEG and nonfected MEG. These similarities, in
terms of regional overall values and distribution curve, farrther enhanced after NMSS cor-
rection. It is to be noted that, in contrast to these sintitsj the one-to-one correlation of
NMSS and EEG at VX ROI are very low (see below, Table 1B-C). Valees of PLS noise
correction are very different from that of EEG and have a lsimbut narrower, distribution
curve shape. Two other ROIs show distinctively differeritiea and distribution in comparing
EEG and MEG. Both NMSS and PLS agree on this with PLS showingerestreme cases.
Figure 5.5D reveals a bimodal distribution of MEG exponents in the gtatemporal region
(PT ROI). This region has also the highest variance (in ME&isg exponents) compared to
other ROIS. The distinction between EEG and MEG is enhanedtlL5 estimates; however,
the variance of PT is reduced in comparison to NMSS while timoHdality is still preserved but
weakened. The values of mean and standard deviation fog R@$s’ exponents are provided
in Table 1A (meant standard deviation).

The box-plots of Fig5.5-plots further show the difference between the medianstypper
guartile and interquartile range. The overall differereéhiat the uncorrected MEG has much
wider variance compared to EEG and corrected MEG (in casé ®fddrrection); the absolute
value of the median of MEG (uncorrected, or corrected withexiNMSS or PLS) is always
smaller than that of EEG. The VX region is an exception to theva rules; interestingly, the
one-to-one correlation of VX happens to be the lowest ofsaé(below). In the case of NMSS-
corrected MEG, the shape of the pdf is preserved. Howeve,ialtrows the distribution curve
of MEG but further enhances the differences between MEG a&ff@.H herefore, median and
lower/upper quartiles will have different value than thBE&G.

Correlation values (Table 1B-C) show that, although VX R@s lthe closest similarity in
terms of its central tendency and probability distributibmprovides the lowest correlation in a
pairwise fashion. P-values (for testing the hypothesisaotaorrelation against the alternative
that there is a nonzero correlation) for Pearson’s coioglatere calculated using a Student’s t-
distribution for a transformation of the correlation andythwere all significant (less than 1¥
for a = 0.05). Similarly, a non-parametric statistic Kendall tank correlation was used to mea-
sure the degree of correspondence between two rankingssaadsing the significance of this
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correspondence between MEG and EEG in the selected ROl (I@h P-values for Kendall's
tau and Spearman’s rho calculate using the exact permui@istributions were all significant
(less than 10%° for a = 0.05). Kendall tau shows that the rank correlation for edba consid-
ered together as well as for PT, show a lesser correlationttiet is shown by Pearson linear
correlation. Furthermore, we carried out a Kruskal-Watlisparametric version of one-way
analysis of variance. We used this test to avoid bias in ANQX#uskalWallis assumes that the
measurements come from a continuous distribution, butex¢ssarily a normal distribution as
is assumed in ANOVA). KruskalWallis uses analysis of vac@on the ranks of the data values,
not the data values themselves and therefore is an appef@s for comparison of the homo-
geneity of pattern between ROIs of two image as well as thatissical median. As shown in
Table 1D, all p-values were significant emphasizing thesd#iice between the spatial aspect of
the spectral nature of MEG and EEG. Note that the differeficealing exponent of EEG and
MEG was also confirmed by nonlinear spatial kendall con@tednalysis, independently of the
ROIs classification (not shown).

5.6.5 Relation of scaling exponent to signal-to-noise rati

Noise correction does not affect all the sensors in a sanfeofas As presented in Suppl.
Fig. S3, the simple linear spectral subtraction (LMSS) neadlto an increment or decrement
of the scaling exponent. In any case, the correction actlibyehis method is minimal. This
is due to the fact that LMSS ignores the complex non-linestepas of the SNR in different
channels (Suppl. Fig. S2). We show that for all subjecthhasrequency goes up, the SNR goes
down. It is also noticable that in each defined frequency pbaed 0-10 Hz (Slow, Delta and
Theta), 11-30 Hz (Beta), 30-80 Hz (Gamma), 80-200 Hz (Fastlason), 200-500 Hz (Ultra-
fast oscillation), there is an observable sensor-to-geBlN® variability. This variability is at its
maximum in the band with the highest SNR (i.e. 1-10 Hz). Afjether, the non-linear nature
of MEG SNR shows that a linear spectral subtraction couldatemon-optimally, leading to
minimal correction. This also conveys that the optimal $@¢correction can be achieved
only by non-linear methods that explicitly take into accotire SNR information of the data.
Therefore the correction achieved by NMSS and WF have higddiglity, in agreement with the
fact that both methods yield similar results in terms of ealand spatial distribution (Fi§.4E,
Fig. 5.4F).

5.7 Discussion

In this paper, we have used a combination of theoretical apdranental analyses to investi-
gate the spectral structure of EEG and MEG signals. In thieping of the paper, we presented
a theoretical investigation showing that if the extradalmedium is purely resistive, the equa-
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tions of the frequency dependence of electric field and magimeluction take a simple form,
because the admittance tensor does not depend on spatidinaies. Thus, the macroscopic
magnetic induction does not depend on the electric fielddeithe neuronal sources, but only
depends on currents inside neurons. In this case, the fiegealing of the PSD should be
the same for EEG and MEG signals. This conclusion is onlydvalthe linear regime, and for
low frequencies.

An assumption behind this formalism is that the spatial arquency dependence of the
current density factorize (E®.19. We have shown in the appendices that this is equivalent
to consider the different current sources as independdmis,Tthe formalism will best apply
to states where the activity of synapses is intense and of legr correlation. This is the
case for desynchronized-EEG states or more generally “togiductance states”, in which the
activity of neurons is intense, of low correlation, and theuronal membrane is dominated
by synaptic conductance8]]. In such conditions, the dendrites are bombarded by istens
synaptic inputs which are essentially uncorrelated, arel@an consider the current sources
as independentlR3. In the present paper, we analyzed EEG and MEG recordingsiéh
desynchronized states, where this formalism best applies.

Note that the above reasoning neglects the possible effabtropt variations of impedances
between different media (e.g., between dura matter andbieginal fluid). However, there is
evidence that this may not be influential. First, our presiowdeling work 122 showed that
abrupt variations of impedance have a negligible effecbanftequencies, suggesting that even
in the presence of such abrupt variations should not playesatdow frequencies. Second, in
the frequency range considered here, the skull and the skiveay close to be resistive at low
frequencies 140, so it is very unlikely that they play a role in the frequersnaling in EEG
and MEG power spectra even at high frequencies.

In the second part of the paper, we have analyzed simultanég®G and MEG signals
recorded in four healthy human subjects while awake and epes (with desynchronized
EEG). Because of the large number of channels involved, wd as automatic procedure (B-
splines analysis) to calculate the frequency scaling. Aadidn previous studied 9,134,220,
we confirm here that the EEG displays frequency scaling ¢m#eéf at low frequencies How-
ever, this ¥ f scaling was most typical of the midline channels, while terapand frontal leads
tended to scale with slightly larger exponents, up t6%l(see Fig5.4A). The same pattern was
observed in all four patients.

This approach differs from previous studies in two aspdstst, in contrast to prior studies
(such as 130 131]), we calculated the frequency scaling of all the sensodscat not confine
our analysis to a specific region. Second, unlike other thya®rs (such as2Rl, 227), we

SNote that to compare scaling exponents between studies osigake into account that the electrode montage
may influence the scaling. For example, in bipolar (diff¢ie@h EEG recordings, if two leads are scaling as
1/(A+ f)and ¥/ (B+ f), the difference will have regions scaling a&fZ.
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did not limit our evaluations to either EEG or MEG alone, kather analyzed the scaling of
both type of signals simultaneously. Such a strategy erals¢o provide an extended spatial
analysis of the frequency scaling. It also provides a chémcempare the scaling properties of
these signals in relation to their physical differences.

For the MEG recordings, the frequency scaling at low fregiemwas significantly lower
compared to the EEG (see Fig3). This difference in frequency scaling was also accomphnie
by spatial variability patterns (see Fi§.4) showing three distinct regions: 1) a frontal area
where the exponents had their highest values in the case &;M[Ea central area where the
values of exponents of EEG and MEG get closer to each otheBgagarietotemporal horse-
shoe region showing the lowest exponents for MEG with birhodaracteristics (Figs.5). In
some cases, the scaling of the uncorrected and corrected3fa@l was also close tg/1, as
reported previously (Novikov et al., 1997). In the fronted@ (FR mask), the scaling exponent
of the EEG was generally larger. At Vertex (VX mask), EEG anB®lhad similar values
and at the Parietotemporal region (PT mask), MEG showed adahproperty with a much
broader range of scaling exponent in comparison to EEG (ge&H). Note that to avoid the
effect of spurious peaks, Novikov et al. used the spectrusigsfal differences and argued for
the existence of a local similarity regime in brain actifiyd1]. This approach fundamentally
changes the spectral characteristics of Magnetometeist{wireasure the absolute magnitude
of the magnetic induction) into a measure that only for thigmegoring sensors approximates
the behavior of the gradiometers (which measures the gradighe magnetic induction). So
it is not clear how to relate their values to the ones obtalrezd.

To make sure that the differences of frequency scaling bEtvieEEG and MEG were not
due to environmental or instrumental noise, we have usedliiferent methods to remove the
effect of noise. These methods are based on different asgmapbout the nature and effect of
the noise. A first possibility is to correct for the noise iodd by the MEG sensors. It is known
that the SQUID detectors used in MEG recordings are veryitsgn environmental noise and
they can produce /f noise B]. Under this assumption, part of the scaling of the MEG could
be due to “filtering” by the sensors themselves, which jwesti simple subtraction of scaling
exponents to remove the effects of this filtering. Note thahsempty-room recordings were not
possible for the EEG, although the noise from the recordatgscould be estimated (sel8f
for example). Because in some cases both MEG and emptyrapralsihave similar scaling,
a simple correction by subtracting the exponents would atreatirely abolish the frequency
scaling while in other cases it may even revert the sign ostading exponent (see Fi§.4H ,
Suppl. Fig. S3).

However, if noise is not due to the sensors but is of additiveowrelated nature, then an-
other method for noise correction must be used. For thiorease have used a second class
of well-established methods consisting of spectral sghitra [204, 223. Using three of such
methods (LMSS, NMSS and WF) changed the scaling exponethiputifundamentally chang-
ing its spatial pattern (Figh.4D-F). The largest correction was obtained by non-lineahoes$
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which take into account the SNR information in the MEG signdle also applied another
class of method which uses the collective characterisfiedl érequencies in noise correction
(PLS). Similar to exponent subtraction, this method nealolglished all the scaling of the MEG
(Fig.5.4G). In conclusion, although different methods for noisetgdiion give rise to different
predictions about frequency scaling, all of the used mettesthanced the difference between
EEG and MEG scaling. Thus, we conclude that the differené&xss and MEG scaling cannot
be attributed to noise, but is significant, therefore raiciftg the conclusion that the medium
must be non-resistive.

An alternative method to investigate this is the “Detren@éuttuation Analysis” (DFA;
see [L30,221,222 224). Like many nonlinear approaches, DFA results are veryerdble to
the selection of certain parameters. Different filters salyeaffect the scaling properties of the
electromagnetic signals to different extents, and theegtoe parameters estimated through the
DFA analysis could be false or lead to distorted interpretat of real phenomen&25, and
these effects are especially prominent for lower frequesjoivhich are precisely our focus of
investigation here. One of the fields for which DFA can previdbust results is to analyze
surrogate data with known characteristics. Although the afsDFA to evaluate the scaling
exponents of EEG was vigorously criticize2PH], a previous analysi2R1, 222 reported two
different regions, a central and a more frontal, which socomeborrelate with the FR and VX
regions identified in our analysis. Similarly, a study 2@ using DFA provided evidence
for topographical differences in scaling exponents of EEGrdings. They report that scaling
exponents were homogeneous over the posterior half of #ip and became more pronounced
toward the frontal areas. In contrast to Linkenkaer-Hamsah, [L30 (where envelope of alpha
oscillations was used for DFA estimation), this study usesraw signal in its DFA analysis
and yields values closer to those reported here.

Both uncorrected signals and empty-room correction shaw tthere is a fundamentally
different frequency scaling between EEG and MEG signal#h wear-Y f scaling in EEG,
while MEG shows a wider range at low frequencies. Although fiossible that non-neuronal
sources affect the lower ene:{Hz) of the evaluated frequency doma#®[], the solution to
avoid these possible effects remain limited to invasivehoés$ such as inserting the electrode
into the scalp228§ or using intracranial EEG recordings (similar t8f3. This approach would
render wide range spatial recording as well as simultanewasive EEG and MEG recordings
technically demanding or impractical. However, if tectadlig feasible, such methods could
provide a way to bypass non-neuronal effects at very lowueegy. It could also provide a
chance to evaluate the effects of spatial correlation ontsglestructure at a multiscale level.

The power spectral structure we observe here is consisténtvgcenario proposed previ-
ously [134: the 1/f structure of the EEG and LFP signals is essentially due teguincy-
filtering effect of the signal through extracellular spattes type of scaling can be explained
by ionic diffusion and its associated Warburg impeddnsee Bédard and Destexhe, 2009).

"lonic diffusion can create an impedance known as the “Warimapedance”, which scales ag{w, giving
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It is also consistent with the matching of LFPs with multiHwextracellular recordings, which

can be reconciled only assuming affilter [134]. Finally, it is also consistent with the recent
evidence from the transfer function calculated from irgtldar and LFP recordings, which

also showed that the extracellular medium is well descritpe@ Warburg impedance 23.

If this non-resistive aspect of extracellular media is aondid, it may influence the results of
models of source localization, which may need to be refoated by including more realistic

extracellular impedances.

In conclusion, the present theoretical and experimentalyars suggests that the scaling of
EEG and MEG signals cannot be reconciled using a resistitraastlular medium. The /Af
structure of EEG with smaller scaling exponents for MEG issistent with non-resistive ex-
tracellular impedances, such as capacitive media or @iffiu@Varburg) impedances. Including
such impedances in the formalism is non trivial becauseetiapedances are strongly fre-
quency dependent. The Poisson integral (the solution afSBais lawd-D = —0- €0V = p)
would not apply anymore (se&22 1927)). Work is under way to generalize the formalism and
include frequency-dependent impedances.

Finally, it is arguable that the scaling could also be infeexhby the cancellation and the
extent of spatial averaging of microscopic signals, whighdifferent in EEG and MEG (for
more details on cancellation se¥LH; for details on spatial sensitivity profile se€lf4]). Such
a possible role of the complex geometrical arrangement détying current sources should
be investigated by 3D models which could test specific assomgpabout the geometry of the
current sources and dipoles, and their possible effect equéncy scaling. Such a scenario
constitutes another possible extension of the preseny.stud

5.8 Appendices

5.8.1 A: Theoretical
5.8.1.1 Frequency dependence of electric field and magnetiuction

To compare the frequency dependence of magnetic inductidrekectric field, we evaluate
them in a dendritic cable, expressed differentially. Foriféeential element of dendrite, in
Fourier space, the current produced by a magnetic field @eihaplace law) is given by the
following expression (see Appendix B):

Y
= sy (5.20)
r/

581 (1) = L2 P() x E

CAm 7 —

1/f scaling in the power spectrda29,230Q.
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when the extracellular medium is resistive. Note that thea@® of magnetic induction is es-
sentially given by the component q?f’ along the axial directionjt) within each differential
element of dendrite because the perpendicular (membranent does not participate to pro-
ducing the magnetic induction if we assume a cylindrical s)atry.

For the electric potential, we have the following diffei@héxpression for a resistive medium
(see Appendix C):

vy = L 200 1 D
aye—r|  Amyr—7|

(5.21)

wherejT is the transmembrane current per unit of surface.

If we consider the differential expressions for the magnietiluction (Eq5.20 and electric
potential (Eq.5.21), one can see that the frequency dependence of the rati@ioffodulus
is completely determined by the frequency dependence ofatiie of current densityjf" and
J'f In Appendix D, we show that this ratio is quasi-independ#rrequency for a resistive
medium, for low frequencies (smaller thalO Hz), and if the current sources are of very low
correlation.

Thus, magnetic induction and electric potential can be wely approximated by:

N
Vi()=N<V>=N< 5 oV} >
NG (5.22)
Bi(M)=N<B>=N< y 6B} >
=1

for sufficiently small differential dendritic elements (I large).

Because the functions of spatial and frequency are statilstindependent, we can write
the following expressions for the square modulus of thediésge Eqss.20and5.21):

Vi[> = N2|<§V'(?)G|”‘(f)>|2 = V@PIG(H?
= (5.23)

BaI? = N2 < 3 BOGND > = IWEORIG?

where G(f) =< G"(f) >, V!(r) =< V!(r) > and W(r) =< B'(r) > . Thus, the scaling of the
PSDs of the electric potential and magnetic induction mesthe same for low frequencies
(smaller than~10 Hz) if the medium is resistive and when the current sounee® very low
correlation.
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5.8.1.2 Differential expression for the magnetic inductia

According to Maxwell equations, the magnetic inductioniiseg by:

D/ /
/// H:_Jfr/i (524

head
wheredV = dx1dx2dx3 and
0(—t = = -
[F—r|" |[F—r'|3

for a perfectly resistive medium.
We now show that this expression is equivalent to Amperddceplaw.

From the identityD’ x (gA) = g(00’ x A) + 'g x A, where[l’ = éXax/ +q,iy, éz%

can write: -
/ / / o Hpiny o —1jav (5.25)
1) ||r’—rf|| Tan IF—|

Moreover, we also have the following identity

[ - [
head ||F’— r’H dhead
wheren'is a unitary vector perpendicular to the integration swefand going outwards from
that surface. Extending the volume integral outside thel htee surface integral is certainly

zero because the current is zero outside of the head. Itslibat:

(5.26)
H?—r’H

r_r
dv 5.27
= I T gNTETE (627
head
wheredV = dx1dx2dx3 because
7
0ty =T -
[r—r'] |7 —r']]

Eq. 5.27is called the Ampeére-Laplace law (see Eq. 13 in Hamalaiat al., 1993). It is
important to note that this expression for the magneticdtida is not valid when the medium
IS not resistive.

Finally, from the last expression, the magnetic inductiong differential element of den-
drite can be written as:

081 (1) = g ) s O

(5.28)



76
5.8.1.3 Differential expression of the electric field and eltric potential

In this appendix, we derive the differential expression tfee electric field. Starting from
Eq.5.10 we obtain the solution for the electric potential'

Vi(r) = “4my /// ||r_r/|| (5.29)

It follows that the electric field produced by the ensemblsamirces can be expressed as:

By (7) = —OVy ( /// 7P v (5.30)
£(7) (M= 4— =y f ||F’—r ||3
head
such that every differential element of dendrite produbeddllowing electric field:
. 0. P o
SE((F) = ) v (5.31)

Ay =

The transmembrane curredit- obeysdl{ =iwpr (7')dV because we are in a quasi-stationary
regime in a differential dendritic element. Taking into egnt the differential law of charge
conservatiorid - j (F') = —iwps ('), we have:

N R A R
Ay PP A [r—r?

where ' is the density of transmembrane current per unit surfaced&i the surface area
of a differential dendritic element. This approximatiorcestainly valid for frequencies lower
than 1000 Hz because the Maxwell-Wagner time (see Bedard, @086b) of the cytoplasm
(r%(,tvo —g/0 ~ 107108 is much smaller than the typical membrane time constaninefuaion

(Tm~5—20msy.

(5.32)

Finally the contribution of a differential element of deitérto the electric potential at posi-
tionT is given by
. 1 olF(™) 1 )
oVi (T) = — = =
AT e || AR |7 7|

(5.33)

We note that the expressions for the electric field and piailgaroduced by each differential
element of dendrite have the same frequency dependenceseeités directly proportional to
Jy—ff for the two expressions. Also note that if the medium is tegstheny; = y and the

frequency dependence of the electric field and potentiabalely determined by that of the
transmembrane curreff.
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5.8.1.4 Frequency dependence of the ratl;Sf )/ IT(X).

For each differential element of dendrite, we consider thadard cable model, in which the
impedance of the medium is usually neglected (it is usuahsalered negligible compared to
the membrane impedance). In this case, we have:

. v
i = - tiwcnV"
. . (5.34)
I f_ 19
i = 05 =~ ri ox

whereV{", jif, jT, cm, rm etr; are respectively the membrane potential, the current tensi

in the axial direction, the transmembrane current dentsig/specific capacitanc€ (), the
specific membrane resistan&®.7) and the cytoplasm resistivitgm).

It follows that

(%) 'm 17}
PR nAtien) ax ) (5:35)

wheretm = rmCm.

Underin vivo-like conditions, the activity of neurons is intense andefiMow correlation.
This is the case for desynchronized-EEG states, such agayak-open conditions, where the
activity of neurons is characterized by very low levels ofretations. There is also evidence
that in such conditions, neurons are in “high-conductatates” 31], in which the synaptic
activity dominates the conductance of the membrane andegraveer intrinsic currents. In such
conditions, we can assume that the synaptic current soareesssentially uncorrelated and
dominant, such that the deterministic link between cursenirces will be small and can be
neglected (seelp3). Further assuming that the electric properties of exitatar medium are
homogeneous, then each differential element of dendnitdeaconsidered as independent and
the voltaged/, have similar power spectra.

In such conditions, we have:
V(X) = FM(X)GM(f) (5.36)

Note that this expression implies that we have in generatééah differential element of den-
drite:

ir® = F™(x) (25 2m)GM( f)
(5.37)
i = -2 Xem(f) =FiR)GM(f)

according to Eg5.34
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It follows that

jif (2) rm d rm 0

"® (1t iwt) ax N~ 12 - o In(F (X)) (5.38)

Thus, for frequencies smaller thap(iw 1y) (about 10 to 30 Hz fory, of 5-20 ms), the ratio

%}% will be frequency independent, and for each differentiahent of dendrite, we have:

{11 — FRe 539

jfx = F(RGM(f)

for frequencies smaller than10 Hz.

5.8.2 B: Methodological
5.8.2.1 SNR

Two of the used methods for noise-correction are based od-$aecific signal-to-noise ra-
tio (SNR) in order to cancel the effects of background calemeise in the spectra of in-
terest. In each subject, average PSD was used to calcutpial-$0-noise ratio (SNR). For
SNR calculation, few frequency bands were defined basedeooategorization in Buzsaki &
Draguhn P31]: 0-10 Hz (Slow, Delta and Theta), 11-30 Hz (Beta), 30-80 Barfima), 80-200
Hz (Fast oscillation), 200-500 Hz (Ultra-fast oscillatjo®NR was calculated as:

PSDsignal;
s 10% IoglO(iF,SDﬂgirg’;i )
n

SNRj = (5.40)
for a given band "b” and sensor "i”, "n” is the frequency rasidn of that band. This method
was applied on individual average PSD as well as shape pregepline of each average PSD
where each PSD was fist smoothed in log10 scale using a shegerying spline, i.e, Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP).

5.8.2.2 Multiband spectral subtraction

Assuming the additive noise to be stationary and uncogehaith the clean signal, nearly most
spectral subtraction methods can be formulated using anedri& equation:

— —

IS(K)[* = &Y (K)[* — b D(K)| (5.41)
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where|§< | Yk and||5k| refer to enhanced magnitude spectrum estimate (correigiedls the
noisy magnitude spectrum (original signal) and noise ntagei spectrum estimate (“noise”),
respectively.k is the frequency index, whilex andby are linear coefficient parameters of the
summation. Spectral subtraction methods fall into thremmategories (Sim et al., 1998). The
simplest of all, a linear method wheag = by = 1, a=2, following [204] was used here. This
linear multiband spectral subtraction (LMSS) method islv@stablished for noise subtraction
(see ROq for a comparative study of noise subtraction methods).

An improved method, witla, = 1 andby = v, where "v” is the oversubtraction factor. This
method uses oversubtraction and introduces a spectrainigptr minimize residual noise and
musical noiseZ32. A second category of spectral subtraction is basednby = f(k). Third
and the most robust methods are based on a non-linear rmdtgaétraction (NMSS) where
a, = 1 andby = v(k); i.e., the oversubtraction factor is adjusted based on efisgend’s SNR.
These methods proposed [B30p, 206 are suitable for dealing with colored noisz23 233, a
case similar to MEG recordings. The spectrum is divided dtoon-overlapping bands, and
spectral subtraction is performed independently in eacldb@he Egs5.41is simply reduced
to:

IS = [%(K)*— ai&|Di(k)|% b < k< (5.42)

whereb; and g are the beginning and ending frequency bins of the ith frequdand,q;

is the overall oversubtraction factor of the ith band ahds a tweaking factor. The band
specific oversubtraction factof is a function of the segmenta8NR of the ith frequency band.
After calculating bandspecific SNR (E¢s.40), we used the product of lower 10 percent of
crosssubject average SNR and standard deviatio)BNJR to estimate thex; & subtraction
coefficient. Next, simply by multiplying the noise PSD byshioefficient and subtracting it
from the measured PSD, the enhanced PSD was achieved.

5.8.2.3 Wiener filter (WF) spectral enhancement

The principle of the Wiener filter is to obtain an estimatelad tlean signal from that of the
noisy measurement through minimizing the Mean Square E¥M8IE) between the desired and
the measured signa(7,208. In the frequency domain, this relation is formulated aefihg

transfer function: )
Ps(k
WF(K) = =t 5.43
M= 51+l (549
where, as befores(k) and P, (k) refer to enhanced power spectrum estimate and noise power
spectrum estimate respectively for a signal frame larglthe frequency index. Based on the
definition of SNR as, the ratio of these two elements, one cantlate the WF as:

_ 1 -1
Wh = [1+ g 5] (5.44)



80

After calculation of bandspecific WF, the noisy signal is giyomuliplied by the WF to obtain
the enhanced signal.

5.8.2.4 Partial least square (PLS) approximation of non-nisy spectrum

Partial least squares (PLS) regression, combines “Pahcpmponent analysis” (PCA) and
“Multiple linear regression”209,234. While PCA finds hyperplanes of maximum variance
between the response and independent variables, PLS tgrthecpredicted variables and the
observable variables to a new space. Then from this new sipéinds a linear regression model
for the projected data. Next, using this model, PLS finds thiidimensional direction in the X
space that explains the maximum multidimensional variaireetion in the Y space[1L0,234].

If X is the PSD of noise measurement and Y is the PSD of the medsignal contaminated
with background noise, one can use PLS to "clean” one matiiby predicting Y from X and
then using the residual of the prediction of Y by X as the eatemof pure PSD. The patterns
of the awake spectrum that statistically resembles thepettof emptyroom spectral noise are
those that should be removed. As during PLS algorithm, the damean subtracted and z-
normalized, the predection of Y from X is an approximate @& #iscored PSD. Therefore, the
reseidual Y, which is taken as the spectral features thahotibe predicted by noise, also has
zscored values. It has too be emphasized that this apprdadénoising only works in the
spectral but not the time domain.

5.9 Figures& Tables

5.9.1 Figures
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Figure 5.1. Simultaneous EEG and MEG recordings in an awake human subjes

example shows a sample of channels from MEG/EEG after EC&memoval. Labels refer
to ROIs as defined in methods (also see Figu# FR: Frontal, VX:Vertex and PT:
Parietotemporal. These sample channels were selectepresent both right and left
hemispheres in a symmetrical fashion. Inset: magnificaifdhe MEG (red) and
“empty-room” (green) signals superimposed from 4 sampéaokls. All traces are before any
noise correction, but after ECG decontamination.
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Figure 5.2. A.log-log scale of the PSD vs frequency of a sample MEG sealemg with the
corresponding log(PSD) values (shown as circles) at opéchknots in log-scale. B. 1st
degree Polynomial fit on B-spline curve effectively capsupeoperties of the signal better than
simple polynomial fit and avoids the 10 Hz peak. The fit wastkahbetween 0.1 to 10 Hz
excluding the boundaries. This limits the fit approximatiothe next limiting optimized

knots (between 0.1 and 0.2 to between 9 and 10 Hz) to avoidethlespat alpha and low
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Subject 1 Subject 2

Normalized log PSD

2 4 0 1 2 3 2 4 o0 1 2 3
log f

Figure 5.3. B-spline fits of EEG awake and MEG awake (prior to noise cdiwag recordings
from all four subjects. Each line refers to the fit of one semstog(PSD)-log(frequency)
scale. For the ease of visual comparison of the frequendyngexponent, log(PSD) values
are normalized to their value at the maximum frequency. pactel represents the data related
to one of our four subjects. These plots show a clear distinttetween the frequency scaling
of EEG and MEG. Insets show the comparison between MEG avpaiag {0 noise
correction) and MEG empty-room recordings (not normaljzétbte that the empty-room
scales the same as the MEG signal, but in general EEG and M&&ditferently.
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MEG Emptyroom

| ROI masks

G PLS

Figure 5.4. Topographical representation of frequency scaling expoaseraged across four
subjects. A. EEG awake. B. MEG awake. C. MEG empty-room. DMEG after spectral
subtraction of the empty-room noise using linear (LMSS) aod-linear (NMSS) methods
respectively. F. MEG spectral enhancement using Wienerifily (WF). G. MEG, partial least
square (PLS) approximation of non-noisy spectrum. H. Egposubtraction (the exponent
represented is the value of the frequency scaling expomdrilated for MEG signals,
subtracted from the scaling exponent calculated from theesponding emptyroom signals).
I. Spatial location of ROl masks (shown in yellow). FR covis Frontal, VX covers Vertex
and PT spans Parietotemporal. Dots show spatial arrangeh£d2 MEG SQUID sensor
triplets. The background gray-scale figure is same as thénquemnel B. Note that panels A
through H use the same color scaling.
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Figure 5.5. Statistical comparison of EEG vs. MEG frequency scalingoevemt for all regions
(A) and different ROI masks (B,C & D). In each panel, a boxtglo top is accompanied by a
non-parametric distribution function in the bottom. In tbe graph, the box has lines at the
lower quartile, median (red), and upper quartile valuesalfst and biggest non-outlier
observations (1.5 times the interquartile range IRQ) aosvshas whiskers. Outliers are data
with values beyond the ends of the whiskers and are disphajtbch red + sign. In the bottom
graph, a Non-parametric density function shows the digtion of EEG, MEG and
empty-room-corrected MEG frequency scaling exponentte(tiat LMSS and WF are not
shown here; see the text for description.). Thick and thiticed lines show the mean and
mean+ std for each probability density function (pdf).
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5.9.2 Tables
A. Mean and standard deviation
EEG MEG (awake) NMSS
All -1.334+0.19 -1.24+-0.26 -1.06+0.29

FRROI | -1.36+0.25 -0.97+0.10 -0.76+ 0.09
VXROI | -1.21+0.13 -1.36£0.10 -1.14+0.11
PTROI | -1.36+0.12 -1.30+£0.29 -1.164+0.32

B. Pearson correlation
EEG vs. MEG EEG vs. Corrected MEG (NMSS)

All 0.29 0.32
FRROI | 0.41 0.32
VX ROI | -0.17 -0.15
PT ROI | 0.35 0.38

C. Kendall Rank Corr
EEG vs. MEG EEG vs Corrected MEG (NMSS)

All 0.21 0.24
FR ROI | 0.29 0.21
VX ROI | -0.03 -0.04
PT ROI | 0.23 0.26
D. KruskalWallis
p value Chi-square df Error
All <101 15316 34838
All noise-corrected | < 101 8.03 16 34838
FR ROI <1015 33016 5008
FR ROI noise-corrected < 101> 3.72 16 5008
VX ROI <101 172168 5452
VX ROI noise-corrected < 1071 0.23 16 5452
PT ROI <101 02116 13010
PT ROI noise-corrected < 1071 1.18 16 13010

Table 5.1.ROI statistical comparison. A. mean and std of frequenciesegoonent for all
regions and individual ROI. B. numerical values of lineaaRen correlation. C. rank-based
Kendall correlation. D. non-parametric test of analysisariance (KruskalWallis). Corrected
MEG refers to spectral subtraction using NMSS. The fulléablprovided in Supplementary
information.
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5.10.1 Supplementary table

A. Mean and standard deviation

EEG MEG (awake) MEG(empty) LMSS
All -1.33+0.19 -1.24+0.26 -1.04+0.13 -1.24+0.28
FRROI | -1.36+0.25 -0.97+0.10 -0.97+0.06 -0.96+ 0.11
VXROI | -1.214+0.13 -1.36+0.10 -1.10+0.09 -1.36+0.10
PTROI | -1.36+0.12 -1.30+£0.29 -1.08+0.15 -1.31+0.32
NMSS WF PLS ES
All -1.06+0.29 -1.05+0.27 -0.50+ 0.11 -0.20+ 0.23
FRROI | -0.76+ 0.09 -0.76+0.08 -0.40+ 0.05 -0.00+ 0.09
VXROI | -1.144+0.11 -1.12+0.11 -0.50+0.04 -0.26+ 0.08
PTROI | -1.16+0.32 -1.14+0.30 -0.54+0.11 -0.224+0.26
B. Pearson correlation of EEG vs.
MEG LMSS NMSS WF PLS ES
All 0.29 0.29 0.32 0.33 0.37 0.35
FRROI | 0.41 0.39 0.32 0.37 0.01 0.17
VXROI | -0.17 -0.10 -0.15 -0.13 0.01 -0.28
PTROI | 0.35 0.34 0.38 0.39 046 041
C. Kendall Rank Corr of EEG vs.
MEG LMSS NMSS WF PLS ES
All 021 0.21 0.24 025 0.29 0.23
FRROI | 0.29 0.23 0.21 0.27 -0.06 0.12
VX ROI | -0.03 0.04 -0.04 -0.03 0.07 -0.09
PTROI | 0.23 0.23 0.26 0.26 0.30 0.27

Table 5.2. ROl statistical comparison for different noise correctinathods. A. mean and std
of frequency scale exponent for all regions and individu@l.BB. numerical values of linear
Pearson correlation. C. rank-based Kendall correlation.

5.10.2 Supplementary figures
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Figure 5.6. Figure S1: Frequency spectra of magnetometers and grasicsn€omparison of
awake (blue) vs empty-room (red) recordings between Magneters (MAG) and
Gradiometers (GRAD1, GRAD2) in a sample subject. As for tB&Ethe MEG signal is
characterized by a peak at around 10 Hz, which is presumalglyaresidual alpha rhythm
(although the subject had eyes open). This is also visibla the MEG signals (Figh.1) as
well as from their PSD (Figh.3and MAG panel here). The power spectrum from the
empty-room signals also show a peak at around 10 Hz, but ¢aik gisappears from the
gradiometer empty-room signals, while the 10 Hz peak of MEIGp®rsists for gradiometers
awake recordings. This suggests that these two 10 Hz peakkffarent oscillation
phenomena. All other subjects showed a similar pattern.
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Figure 5.7. Figure S2: Signal-to-noise ratio (SNR) of Magnetometera @i for multiple
frequency bands: 0-10 Hz (Slow, Delta and Theta), 11-30 HzgB 30-80 Hz (Gamma),
80-200 Hz (Fast oscillation), 200-500 Hz (Ultra-fast dstibn). In the scatterplots, red
astrisks relate to individual sensors and the blue linead#nd-specific mean across the
sensors. In boxplots, the box has lines at the lower quantiéglian (red), and upper quartile
values. Smallest and biggest non-outlier observatiolstiihes the interquartile range IRQ)
are shown as whiskers. Outliers are data with values beyandrtds of the whiskers and are
displayed with a red + sign. In all subjects, the SNR showsal{specific trend and has the
highest value for lower frequencies and gradually dropsrdasvband frequency goes up. As
the frequency drops, the variability of SNR (among sensiss}; therefore, the SNR of the
lowest band (1-10 Hz) shows the highest sensors-to-seasability and the highest SNR in
comparison to other frequency bands.
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Awake LMSS NMSS PLS ES

Figure 5.8. Figure S3: Noise correction comparison. Every horizomta showes a voxel of
the topographical maps shown in Fi4 sorted based on the scaling exponent values of
awake MEG (left stripe). Using a continuous color spectrtimase stripes show that minimal
correction is achived by LMSS. As indicated in the text, teefgrmance of this method is not
reliable due to the nonlinear nature of SNR (see Suppl. Y. SMSS yields higher degree

of correction. WF performs almost identical to NMSS (notwhdiere). Exponent subtraction
almost abolishes the sacling all together (far right syrip&.S results in values between
NMSS and "Exponent subtraction”. For details of each of éhmmrection procedures, see
Methods. LMSS, NMSS and WF rely on additive uncorrelatedireadf noise. “Exponent
subtraction” assumes that the noise is intrinsic to SQUILS Bscertains the characteristics of
noise to the collective obeserved pattern of spectral domeioss all frequencies. See text for
more details.
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There is a fundamental error in
separating the parts from the
whole, the mistake of atomizing
what should not be atomized. Unity
and complementarity constitute
reality.

Werner Karl Heisenberg
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6.1 Summary

Intracranial recording is an important diagnostic methmatinely used in a number of neuro-
logical monitoring scenarios. In recent years, advancésrarsuch recordings were extended
to include unit activity of an ensemble of neurons. Howesedgetailed functional characteri-
zation of excitatory and inhibitory cells has not been afigad in human neocortex particu-
larly during the sleep state. Here, we report that such featiscrimination is possible from
high-density recordings in the neocortex using 2-dimamaimultielectrode arrays. Successful
separation between RS neurons (regular or bursting cedis) fast-spiking (FS) cells resulted
in well-defined clusters where each showed unique intrifisigy properties. The high density
of the array allowing recording from large number of cellp {a 90) helped us to identify ap-
parent monosynaptic connections, which confirmed the @&xceit and inhibitory nature of RS
and FS cells, thus categorized as putative pyramidal aedchiatirons, respectively. Finally, we
investigated the dynamics of correlations within eachsl#s marked exponential decay with
distance was observed in the case of excitatory but not fabiitory cells. While the amplitude
of that decline was dependent on the timescale at which threlabons were computed, the
spatial constant was not. Furthermore, this spatial cahgtacompatible with the typical size
of human columnar organization. These findings provide ailéet characterization of neu-
ronal activity, functional connectivity at the micro-aiiit level and the interplay of excitation
and inhibition in the human neocortex.

Reference:Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1731-6

Keywords: spontaneous activity , ensemble recordings , single uaiictfonal dynamics
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6.2 Resune

Les enregistrements intra-craniens constituent unbodétimportante de diagnostic ultilisée de
facon routiniere dans plusieurs scenarios de monit@migeurologie. Ces dernieres années, les
avancées de ces méthodes ont permis I'enregistremeingrieug unitaires multiples. Cepen-
dant, une caractérisation fonctionnelle détaillée daranes excitateurs et inhibiteurs n'a pas
encore éteé realisée dans le neocortex humain, et eicydaat pendant le sommeil. Dans cette
etude, nous montrons qu’une telle discrimination entrerorees excitateurs et inhibiteurs est
possible a partir d’enregistrements a haute densité agemde peignes d’électrodes en 2D.
Une séparation efficace entre cellules “regular spikiiRS) et “fast spiking” (FS) est possi-
ble et résulte en deux ensembles bien séparés, avecamepEs distinctes. La haute densité
des électrodes permet d’obtenir des connections appagatmmono-synaptiques, et de corro-
borer cette séparation RS-FS avec la nature excitatridalobitrice de la connection. Cette
procédure confirme que les cellules classifiees comme RS@gours inhibitrices, alors que
les RS sont toujours excitatrices, et donc peuvent étissifiees respectivement comme cel-
lules pyramidales ou interneurones inhibiteurs. Finalgimeous investiguons la dynamique
des corrélations au sein de chaque classe de neurone. irektions entre excitateurs mon-
trent une décroissance exponentielle avec la distanogdistgue les cellules inhibitrices restent
corrélées a plus grande distance. L'amplitude deetations dépend de I'échelle temporelle du
calcul de corrélation, mais pas la constante spatialéeCehstante est compatible avec la taille
typique des collonnes corticales chez 'homme. Ces r@sufiermettent une caractérisation
détaillee de I'activité neuronale, de la connectif@actionnelle au niveau de microcircuits, et
de linteraction entre excitation et inhibition dans le oexdex humain.
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From columnar microcircuit235-237] to higher-order neuronal functional units, neocorti-
cal dynamics are characterized by a large range of spatidkamporal scale231,238. Recent
technical improvements have allowed the nature of thesardies in the human brain to be di-
rectly explored: Single-neuron activity in conjunctiontkwiocal field potentials (LFPs) can be
detected from the cerebral cortex and hippocampus in thesead intense monitoring of brain
activity before surgical treatment of epileptic fo239. Modern electrode systems provide the
possibility of extracellular recordings of neuronal endées by using either microwire$93 or
high-density microelectrode arrayd&( 240. Prior efforts have demonstrated excellent record-
ings of single-neuron activity in human cerebral corte84-196]. Separation of units between
“regular-spiking” (RS) and “fast-spiking” (FS) neuronsepumably excitatory (pyramidal) and
inhibitory (interneuron) cells, respectively, is commppkracticed in animal experiments. In
the neocortex of various mammalian species, RS and FS egllbe reliably separated based
on spike waveform, duration, and firing rat&9,[241]. Similar criteria were also used to suc-
cessfully separate units into putative pyramidal (Pyr}scahd inhibitory interneurons (Int) in
human hippocampugll]. Two recent studies have used morphological featuresstinduish
between these two classes of neurd$;%6]. However, the network interaction between these
types of morphofunctional discriminated units has sttty not been investigated. Neuronal
correlations have been shown to decay with space in primanal/cortex, possibly caused by
the highly structured nature of input842. In parallel, it has been shown that, in the rodent
hippocampus, at the top of cortical processing, such amteffiedistance on neuronal corre-
lations was also present and was different for excitatoxy iahibitory cells p43. The 2D
high-density recordings of human neuronal activity offeinggque opportunity to study the spa-
tiotemporal dynamics of excitation and inhibition in theonertical network $5, 56,244]. In
the present paper, we successfully categorize the exXurkargt recorded units into RS and FS
during sleep and show their putative excitatory or inhityiteature based on monosynaptic con-
nections. We also provide evidence for distinctive netwdyRamics for each category of these
neurons during drowsiness and sleep spontaneous activity.

6.3 Results

6.3.1 Separation of RS and FS Cells

A sample recording of intracranial EEG, LFP, and unit recayd from the microelectrode array
is shown in Figures.1 The firing of excitatory and inhibitory cells was stronglgrelated

(Figure6.1C). By using standard method39, 241], those two cell types were discriminated
on the basis of their action potential waveforms (S| Matsremd Methods). The waveform
half-widths and valley-to-peak distributions exhibit@gbtautomatically detected well-defined
clusters (Figures.2 A and B). Other waveform features can be used and yieldedahe s
separation (Figuré.6B and C). Each cluster showed a distinct spike waveform (EigLeC):
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A short, fast-decaying action potential represents pugafiS and GABAergic cells; a large
and slower one depicts putative RS and glutamatergic nsurArtotal of 190 RS and 46 FS
cells were discriminated from three patients (four reaogdsessions). This ratio amounts to
an 80% excitatory and 20% inhibitory distribution of cellhis morphological clustering was
validated by distinctive cell intrinsic properties. Theesage firing rates showed remarkable
separation between the two groups, with FS firing at hightarsréFigure6.2D, P < 10719,
one-way ANOVA). Both firing-rate distributions had a Gaasslike shape in logarithmic x
coordinates (Figuré.2D); therefore, firing rates can be estimated as being draam fog-
normal distribution for both cell types. FS firing rate wasawerage five times higher than
RS cell firing rate was, which, interestingly, is comparabléhe ratio of discriminated FS and
RS cells in the whole dataset. Coefficients of variation &g of the SD to the mean of
the interspike interval (ISI) distribution] were also sifigantly different for the two cell groups
(Figure6.2E, P< 0.01, one-way ANOVA). Furthermore, cells could be also sggted based on
their autocorrelogram (Figu@2F): Int are known to have long refractory periods and show a
slow rising autocorrelation. On the other hand, RS cellsws$itarp autocorrelograms, reflecting
their shorter refractory period and their tendency to firdoumsts. The distributions of the
modes (i.e., time of maximal values in the autocorrelognamere highly distinct (Figuré.2G).
Finally, isolated neurons were tested for their burstinefbe histograms of the ISIs were
sometimes characterized by a clear bimodality, especidtign the logarithm of the I1SI was
considered (Figur6.2H, Left and Center). Cells were classified as bursty when plasged the
significance level of a bootstrap-based test for bimod§##g. As displayed in Figuré.2H,

of the population that did not have FS morphological charistics, 64% expressed bursting
behavior. Only 2% of FS (that is only one cell in the whole datashowed such properties.

6.3.2 Putative Monosynaptic Connections

Analysis of cross-correlograms between pairs of unitsaaglthe characterization of putative
monosynaptic connection89]: Positive, short-latency peaks:dms) are the sign of a biased
tendency of the reference cell A firing just before the otleir(@) at above chance level, which
would thus be the functional signature of an excitatory nsynaptic connection from cell A
to cell B. Conversely, a gap in the crosscorrelograms inégan inhibitorymonosynaptic con-
nection. The expected cross-correlogram for two unrelegdld was obtained by jittering each
pair of spike trains and by computing the 99% confidence vatdS1 Materials and Methods).
Cell pairs showing an excess of biased spikes occurringeathos threshold were categorized
as monosynaptically connected. Fig6r8A shows an example of a reciprocally connected pu-
tative Pyr/Int pair. Occasionally, some Pyr cells excitadther target cells without any signifi-
cant reciprocal connection (Figuse3B). The excitatory or inhibitory nature of the postsynaptic
effect from the efferent cells was remarkably matched tar ty@ke waveform characteristics
(Figure6.3C). This association of synaptic effects with action padntaveforms significantly
differed from chancex? = 33.6,d f = 2, Pj0.0001) and provides converging evidence for the
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validity of the morphofunctional dichotomy within the neivk. The monosynaptic connectiv-
ity matrix was typically sparse. In the dataset, only 0.17%he possible connections (28 of
16,932) showed a significant monosynaptic effect in theszomsrelograms. This result was
not different for postsynaptic excitation and inhibitiaegpectively, 0.16% and 0.19% of the
total numbers of possible postsynaptic contacts from Pymtazells; P> 0.05, binomial test).
Monosynaptic contacts were almost entirely local, 76% (L1810 of excitatory effects, and
the totality of inhibitory ones was confined to pairs recardae the same electrode (Fig. 3D);
5.65% of the possible contacts on pairs from same electrioowesd a significant bias in the
cross-correlograms. Based on this functional categaoizathroughout the rest of the paper,
we interchangeably use FS, inhibitory, and Int. Similawg do the same for RS, excitatory,
and Pyr.

6.3.3 Spatiotemporal Dynamics of Cell Interaction

To investigate the interaction at the maximum possibleigpstale (i.e., 4 mm), we correlated
the binned spike trains at various timescales. This apprpaavides a spatiotemporal view
of cell-cell interaction, mono- or polysynaptically. Figu6.4, Center Upper and Right shows
the strength of the absolute correlation between one exafyal cell and all other Pyr cells:
The strength of the correlation between Pyr cells seemsaedse with distance. The absolute
Pearson’s correlation coefficients were directly relaegéeak or trough in the cell's cross-
correlograms for different randomly chosen Pyr cells (FegbL4, Right) in reference to the
spike trains of the example cell from Figused, Center Upper. Conversely, for Int (Figuses,
Center Lower and Left), the correlation between cell papgeared to be independent of the
distance separating the two cells. Also, unlike for Pyrs;dihe degree of modulation of the
cross-correlograms did not appear to be related to the §iPearson’s correlation, possibly
because of the dependence of correlation coefficients dimtehsic firing rates p46.

To further analyze the relationship between correlatichgpatial arrangement of the cells,
all of the cell pairs from the datasets were pooled togetret the absolute coefficients of cor-
relation, computed with 50-ms time bins, were plotted asration of interelectrode distance
(Figure6.5A). To remove bias caused by firing-rate inhomogeneity imedation values and to
render Pyr-Pyr correlation coefficients comparable tog¢hafdnt pairs, correlations were then
normalized by the geometric mean of each cell pair’s aveligigg rates p4€. Furthermore, to
avoid experiment-dependent spurious covariation, whiaig, fior example, arise from electrode
drift, a local version of correlation was used (S| Materetsl Methods). This analysis revealed
that, first, the correlation between cell pairs recordethftbe same electrode depended on their
connectivity: As expected, putative monosynapticallyreeeted pairs—whatever the nature of
the synapse(s)—-showed significantly higher absolute letioa than did nonconnected pairs
(Figure6.72), revealing fine-scale structure in local microcircui®cond, at the level of the
whole recording matrix, the cell pairs were divided in twdeggries: putative inhibitory Int
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pairs (designated as the I-I group) and excitatory Pyr g&HE& group). Because of the improb-
ability of an equal sampling ratio of the recorded Int and &sfts to the existent cells in the
examined tissue, the E-I comparison does not hold the sahdéyas do E-E and Il compar-
isons of correlation and therefore is not reported here. likear regression between absolute
correlations and distance between recording sites showedaive slope for both groups but
was significant only for the E-E group. Furthermore, wherstrae analysis was carried out for
different time bin sizes (Figur@.5B and Figure5.83), the negative slope of the linear regression
was significant (R< 0.05, Pearson’s correlation test) across all timescaleth&E-E group,
but not for the I-1 group. To ensure that the oversampling yof ¢&lls compared with Int did
not yield the difference in the significance levels, the namdf Pyr pairs was down-sampled
to match the number of Int pairs and bootstrapped. The @tivel between neuronal pairwise
correlation and distance remained significantly lower tbdor time bins smaller than 200 ms
(Figure6.9).

Next, the correlation values were averaged in equally sp@d&mm intervals of interelec-
trode distance (Figuré.5C). The relationship between correlation and spatial distavas ap-
proximately flat in the I-1 group, thus confirming the lack adignificant relationship. The E-E
correlations decayed with distance and were well fit withragkparameter exponential (Fig-
ure 6.5D). The fitting parameters can be reduced to two meaningfiulega the spatial extent
of the exponentiad and the relative (dimensionless) amplitude modulakigh that quantifies
the amplitude of the decay relatively to the baseliré3 decreased monotonically with time
bin widths, whereas the spatial constanivas more or less constant, with an average value of
1 mm. Notice that such decay did not sustain for time binsdonigan 2 s (the two far right
points in Figure6.5D). This decay resulted from a monotonic increase in thellvaseorrela-
tion B and from a decrease of the exponential amplitudBigure6.5D, Inset; values diverged
for time bins longer than 2 s). Similar results were yieldedrfon-normalized coefficients of
correlation (Figures.1(b).

6.3.4 State-Dependent Long-Range Correlation

Finally, we investigated the difference in spatial cortielabetween different states (Figl8&E).
Clear periods of light and deep non-rapid eye movement (NR&bep were detected in ad-
dition to wake/drowsiness epochs in two of the three pati@htree recording sessions, repre-
senting 87% of the total discriminated cells in the ana)ysi$e rapid eye movement (REM)
episodes were brief, if detectable at all. For Int pairs,lihear regression between neuronal
pairwise correlation and distance was never different f@anFor Pyr pairs, this correlation
was highly significant for wake/drowsiness and light NREMeoalmost all tested time bin
sizes. During deep NREM, the correlation was smaller fordifferent time bins but was still
significant, or very close to significance, for most comarss
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6.4 Discussion

The present paper reports a detailed quantitative anadjdise dynamics of excitation and
inhibition in the human neocortex during overnight sleep. particular, using massive cell
recordings we have shown (i) robust morphological (exthaleg waveform features) discrimi-
nation of putative cortical excitatory and inhibitory neas; (ii) in vivo evidence of functional
monosynaptic connections in the human neocortex; (iicfiemal behavior of inhibitory and
excitatory cells during human sleep; (iv) distinctive spimporal patterns of Pyr-Pyr and Int-
Int assembly interactions; and (v) detailed quantificatiboorticocortical correlations. Hence,
this paper provides a unique insight to the dynamics of huneacortical microcircuits.

6.4.1 Separating Excitation from Inhibition

Different attempts were carried out recently to distinguigtween putative Int and Pyr cells,
for example, in the hippocampal formatio?4[/]. In nonprimates, the separation between the
two populations on the basis of extracellular features i8 generally acceptedp, 241]. In
this paper, human neocortical cell recordings were cladten their extracellular waveforms.
The two parameters describing waveform morphology formetl-defined clusters that were
captured by standard algorithms (Figér@ and Figure5.6A). First, despite the a priori higher
probability to detect the high-amplitude spikes from laRye cells, the overall proportion of
cells in each group (80% Pyr and 20% Int) was consistent vaghkhown ratio between Pyr
and Int cells in the neocorteX43. In other words, a random sampling with extracellular
electrodes gives rise to the expected distribution of gekes, thus indicating that they are both
detectable with sufficient reliability. Second, this segton was consistent over several other
cell-intrinsic parameters, such as firing rates (higheF®rnt) or the high tendency of the Pyr
cells to burst (Figur®.2). As supplementary evidence of separation between Int gndefls,

we analyzed the potential monosynaptic interactions batveell pairs and categorized them
as excitatory or inhibitory. The distribution of cells’ gegnaptic effects perfectly matched the
clustering of excitatory and inhibitory cells based on tteitracellular features (Figui@ 3).
Overall firing rates were surprisingly low; 0.5 Hz for the RS cells and 2 Hz for the FS cells.
However, using long-lasting recordings allowed us to iasolate the cells’ spikes during
cluster-cutting procedures, even if those were sometiregg nare, whereas those low firing-
rate cells could have been disregarded in other situatibims.low firing rate may relate to the
recordings being in superficial layers because animal esugiive demonstrated that many of
these neurons have lower firing rates than in the deep 1a348s ||t is also consistent with other
recordings in human neocortedd5 and may reflect fundamental metabolic constraints in large
brains R49. Theoretical studies have emphasized that, in a sparselgyected network, the
seemingly irregular firing of cells could be the consequesfdbe balance between excitation
and inhibition R50-252] . Similarly, intracellular recordings have revealed adbale between
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excitatory and inhibitory conductance both in vitiaP] and in vivo [253, they and even shown
a possible excess of inhibition in viv@$4. However, inhibitory cells are four to five times
less common than excitatory cells, as are the number of sgsahey form onto postsynaptic
targets 143. Although direct demonstration of balanced excitationl amhibition requires
intracellular recordings, our extracellular analysisvades indirect evidence in favor of such
a balance. First, the average firing rate of Int was five timighdr than that of Pyr cells
(Figure6.2), which is the same ratio as the total number of cells fromhdgpe. Second, it
has been shown theoretically that balanced networks exhiigavy-tailed, wide range of firing
rates P50, which was found to be the case for the human neurons reddrdee, where, for
both Pyr and Int, the firing rates were log-normally disttdal(Figures.2).

6.4.2 Spatiotemporal Extent of Neuronal Interrelationshps

The interaction between neocortical neurons takes plagéfatent spatiotemporal scales, and
this paper sheds light on such interactions in human nemcove found that the short-latency
monosynaptic effects from spike-train cross-correlogramere confined to the same or very
proximal electrodes (Figur6.3D), in agreement with the rapid decrement with distance of
synaptic contact probabilityl}3 255. The extent of monosynaptic contacts in local circuits is
still a subject of debatelf}3 235 236,255, and it is important to bear in mind that spike-train
correlation analysis?b5 is likely to underestimate the number of actual contactsabse it is
based only on suprathreshold activity from pre- and postsira neurons. The connected cells
showed higher long-timescale correlations than the cettended from the same electrodes
without any detectable synaptic contact (Fig@ré. This finding suggests that connected units
tend to participate in the same cell assemblE} find echoes the recent findings that suggest
that those units are more likely to receive common inputhkiwithe cortical columnZ35. We
also found that the binned spike-train correlations shosgatial dependence only for excita-
tory cell pairs, whereas inhibitory cell pairs were as much@ated with both proximal and
distal electrodes over the 4-mm extent of the array. For seéll pairs, the modulation of the
spatial extent decreased with the timescale at which @iroels were computed; however, the
spatial constant of this decay ( 1 mm) was approximatelyadhees independent of the timescale
(Figure6.5and Figures.8).

These results have strong implications for our understenai cortical network dynamics.
First, the neuronal activity of Pyr cells remains coherena®cale corresponding to the spatial
extent of the axonal arborization in superficial layers.sTikialso the same spatial extent of a
typical “hyper-columnar” organization of human neocoffte43, robustly described in primary
sensory cortices and less in higher-order areas such asntipetal neocortex. Second, the cor-
relations tended to equalize, as measured by the spatididatoon factor, for longer timescales.
This is a known result from neocortical LFPs that shows higditial correlation over a large
proportion of the network during slow wave activi®d8 256 (characterized by long-timescale
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dynamics) compared with low spatial correlation duringegalominated by short timescales
exhibiting desynchronized, low-amplitude, and fast datdns [L74]. Accordingly, when the
relationship between Pyr pairwise correlations and distamas investigated separately for the
different wake/sleep states, the main difference was tbheedse of this relationship during deep
NREM sleep, although still significant (Figue5E), presumably because of the widespread
entrainment of neuronal activity by sloavbscillations. Conversely, the large spatial extent of
interneuronal correlations could be caused by common stibakinputs over large neocortical
areas impinging directly onto GABAergic cells, as can bedase for thalamocortica8p, 97)
projections. In addition, the highly complex distributiof interneuronal connectivity, with
some cells contacting very distant areas, could produgedstale synchronization of the in-
hibitory network R57]. It is important to keep in mind that these recordings weein
epileptic patients, and, although the present analyses dame in periods of activity devoid
of seizures or activity on either the microelectrode arragrmy subdural electrode, we cannot
eliminate the possibility that some of our results may reéfeepathological rearrangement of
neuronal numbers and/or interconnections. The currenttsesuggest that neocortical princi-
pal cells may be organized into coherent firing units, or aslemblies, mainly on the basis of
local excitatory interactions ( 1 mm). In parallel, the initory network maintains coherent ac-
tivity over much larger distances-@ mm). The role of such large-scale synchronized inhibition
should be investigated by future studies. These resultstitote an initial step toward under-
standing the dynamic and functional microarchitecturewhhn neocortical circuits, charac-
terized by spatiotemporal interactions spanning sevedalre of magnitude. Overall, this paper
not only extends the prior work reported in animals to the &nmwortex but also tackles it with
an exhaustive quantification that can be verified in futuneiss (in animals as well as in hu-
mans) and will prove useful in the interpretation of the matudies, published and underway,
that explore the details of human single neurons during itiogn sleep, seizures, and a wide
range of other situations.

6.5 Materials and Methods

Recordings were made from three patients (ages 21, 24, agdt®® women and one man).
All patients had focal epilepsy arising from differing cags a cortical dysplasia, a glioneural
tumor, or postencephalitic cortical gliosis and hippocahsglerosis as confirmed by postoper-
ative histology. The NeuroPort electrode array, Immintengas placed in layers II/lll of the
middle temporal gyrus in all three patients. This array is@n-based, made up of 96 micro-
electrodes with 40Q¢m spacing, covering an area ox#4 mm(40). A total of four nights of
natural sleep were examined (one night for two of the patiénto nights for the other patient).
Data were sampled at 30 kHz (Blackrock Microsystems). Thalamtation site was included
in the therapeutic resection in all patients. Recordingseweade in 40-min segments, which
were concatenated over a given night for spike sorting. I8imgits were discriminated by using
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standard clustering methods (S| Materials and Methodsyaverage, 57%412%) of the elec-
trodes showed visible neuronal activity, including eledes that were not possible to cluster:
Individual cells were isolated from 75%-(4%) of these electrodes. On average, 1:80.26)
neurons were discriminated from each electrode where sitég# neuron was isolated. See Sl
Materials and Methods for further details.

6.6 Supporting Information

6.6.1 Unit Recording and Spike Sorting

For offline sorting, the first three principal componentsmke waveforms were computed in-
dependently for recordings from each electrode. The spilegs then clustered automatically
with an expectation-maximization (EM) algorithm (Klustak, http://klustakwik.sourceforge.net)
and then manually processed with Klusters software (ittpsters. sourceforge.net/). Because
the signal was sometimes not stable, great care was takemgdyoike cluster cutting. Some
cells with drifting action potential amplitudes were calesied only for a portion of the total
recording during which they were unequivocally distindpaisle from the background noise. In
that case, the average firing rates were computed only oggrdtiod those cells were firing.

6.6.2 Discrimination of Pyramidal (Pyr) Cells and Fast-Spking (FS) In-
terneurons (Int)

Average waveforms were computed for each isolated cell. éssribed previously, the half
width of the extracellular positive deflection has, at themeal population level, a bimodal
distribution [39,241]. The separation is even more striking when the valleydakyparameter
[39] is added for 2D clustering (Figuré.2 A and B). Automatic clustering of these average
waveforms from individual cells by using a k-means alganttiscriminated two groups of
cells (Figure6.2 A and B). The resultant clustering was further confirmed b¥zev clustering
method (Figurés.6).

6.6.3 Detecting Monosynaptic Connections from Cross-Coealograms

We used established metho@5¥§ to detect statistically significant temporal bias in thdl ce
pair relative spike timing indicative of putative monosptia connections. The spikes were
jittered by adding a random value (froma normal distribaitrath a 10-msSD and 0 mean) to
the spike times. For each cell pair, 1,000 jittered spikasravere created, and the expected
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cross-correlogram (and 99% confidence interval) was estoinan 0.5-ms time bins under the
null hypothesis of no monosynaptic effects between the telts.c For any given cell pair
where at least two consecutive bins in the [1.5 ms, 4 ms]vatezxceeded or were below
the 99% confidence interval, the interaction was consideredosynaptic. A final and blind
examination of the cell pair cross-correlograms was caroet to remove noisy pairs. The
strength of the interaction was defined, at the time lag ofimak(or minimal) value in the
actual cross-correlogram, as the ratio between the valtigeadctual cross-correlogram (from
which was subtracted the average value expected for utatadeunits) and the SD of the
distribution from jittered spike trains.

6.6.4 Nonstationary Correlation

The firing rates of neurons may not be stationary over the teegrdings performed in the
present study. To avoid any potential bias that could rdsuit such long-timescale fluctua-
tions, we filtered the spike trains so that only local firintegawere taken into accourzg?].
The binned spike trains (in time bins of the indicated lehgtkre filtered with a “Mexican
hat”-shaped kernel, equal to the sum of a positive (widthni a negative Gaussian function
whose width is the quadratic mean of T and a value J. Througheupresent paper, we used
T = 3 (expressed in number of time bins) ahe 4T. The covariance between two neurons’ fir-
ing was obtained by computing the dot product of the resylfiltered and binned spike trains.
The correlation was calculated by dividing the covariangehg product of the square roots
of the two individual variances (the dot product of the fiétgibinned spike train with itself).
Only cells with an average firing rate above 0.1 Hz were inetlith the correlation study unless
stated otherwise.

6.6.5 Sleep Scoring

The postimplantation recordings were performed duringicil monitoring for seizures. We
used a combination of video monitoring, scalp EEG, elecutmgraphy (EOG), and clinical
intracranial EEG to stage the sleep. The sleep staging waieaaut in three of the four
recording sessions (comprising 87% of the neural datajdRayEe movement (REM) episodes
were too brief; therefore, we did not include REM in our as@y Nonetheless, all states-
including clear episodes of quiet waking/ drowsiness,tligin-rapid eye movement (NREM),
and deep NREM were present during all recordings. In thigpage focused on these states
and excluded the rare REM episodes as well as periods whepattemt was interacting with
medical personnel. In addition, any seizure activity (omen¢ in one patient) was removed
from the data and not further analyzed.
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6.6.6 Electrode Localization

The electrode-localization procedure was based on contgpguregistration of high-resolution
preoperative MRI with postoperative computed tomograpdiig into account the parenchy-
mal shift introduced by the implantation) and 3D renderifiggach patient’s cortical surface
[these methods are described elsewh2&8]].

6.7 Figures& Tables
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Figure 6.1. (A) Localization of subdural electrodes (S| Materials andthbds) and the
NeuroPort electrode array (gray square in Inset). (B) Gtesaaes show electrocorticogram
(EcoG) of the four closest contacts to the microelectrod&? tecorded from the NeuroPort is
plotted in black. Raster plot shows the pooled firing of intoity (red) vs. excitatory (blue)
cells for this period of slowwave sleep (note: the color idytor visualization purposes. For
morpho-functional discrimination of putative inhibitoaynd excitatory cells see Figuée2 and
Figure6.3and the realted text). Histogram shows normalized neurfoirad rate for the two
groups of cells in 200-ms time bins. (C) Total spikes by RSE8&aells in successive 200-ms
bins, plotted against each-other (same epoch as in B).
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Figure 6.2. Separation of FS and RS cells based on spike waveform. (Agy/&dpeak and
half-peak widths were the two parameters chosen to desspike waveforms. (B) Each cell’'s
average waveform is represented in the 2D space of the mietia parameters. The two
clusters were identified with a k-means algorithm represgni red FS and in blue RS cells.
(C) Average spike waveform for the two groups. Shading gmts SD. (D) Probability
density of firing rates for the two groups. (Inset) Averag&EM. (E) Box plot indicating
interquartile distribution of coefficients of variation\{of ISlIs. (F) Average autocorrelogram
normalized to maximum for each group. (G) Distribution ofcorrelogram modes (time of
maximum peak) for each group. (H) Distribution of I1SIs for@a@ample RS cell (Left) and an
FS cell (Center). The gray part of the distribution indicatee ISI categorized as bursts.
(Right) Percentage of cells classified as bursty for eadtyqe. AP, action potentials. In D
and G, the density probabilities were computed from kesnebothing density estimates of
the actual data and displayed such that the sum over the whspkayed interval is equal to
100 for each group.
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Figure 6.3. Putative monosynaptic connections reflect neuronal tyeCfosscorrelogram
(Lower, referenced to firing by the putative Int) impliesipgocal monosynaptic interactions
between an FS Int and an RS Pyr cell identified by their autetmgrams (y-axis display rate
in Hz) and spike waveforms (Upper Left and Upper Right, retipely). The large peak in the
cross-correlogram indicates that the putative Pyr celssesnatically firing 2 ms before the
putative FS Int. Conversely, the decreased firing for 4 mey #fie putative Int firing suggests
that it inhibits the putative Pyr cell. Dashed green linesvgkthe 99% confidence interval from
jittered spike trains. (B) In this example a putative Pyt {refference of the
cross-correlogram) tended to excite a putative Int at atytef 3 ms. In A and B, cells were
recorded on the same electrodes; because of the natur&kefdgiection, the central values of
the cross-correlograms are thus null. (C) The sign andgitnesf the putative monosynaptic
connections were matched to the spike’s average wavefamall 8ots, all neurons; large
dots, identified cell that appeared to monosynapticallgafanother cell. Color code for sign
(blue, excitation; red, inhibition) and strength (darkakglight, strong) of the connection. (D)
Total number of synaptic connections between pairs of cetlsrded by the same first- or
second neighbor electrodes.
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Figure 6.4. Spatial distribution of cell-cell interactions in an exam@D recording session.
(Center Upper) Correlation values of one putative Pyr célhall others. Color codes for the
absolute value of Pearson’s correlation (calculated femsins), with black indicating low
correlation and copper indicating high. (Right) Randontipgen cross-correlograms between
the reference cell and nine others sorted by correlatiamegalThe y axis displays
instantaneous rates of target cells. (Center Lower) Caticgls between one putative Int and
all others. (Left) Sample Int-Int cross-correlograms.
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Figure 6.5. Relation of firing correlation to distance between cells) Kdrmalized

coefficients of correlations were plotted against the distcbetween the two cells in each pair
of putative Int (I-1 correlations, Left) and putative Pyr-EEcorrelations, Right) cells computed
on time bins of 50 ms. Only the E-E group shows a significamdimregression (red and blue
lines). (B) Correlation values of linear regressions fdfedent time bins. Shaded areas
indicate the 95% confidence interval (Fisher method). Nusbgcell pairs are indicated for
the two populations. (C) Same as in A but normalized corigalatoefficients were averaged
over 0.8-mm spatial intervals. For E-E connections, thewgéswell fitted with an
exponential. (D) Strength and extent of spatial modulatiB-E correlations relative to the
time bin width. Strength of spatial modulation is estimatgth the dimensionless quantity
kappa/beta. Green intensity codes for spatial extent afntbe@ulation (lambda). (Inset) Values
(y axis) of the fitting parameters beta (solid line) and kafgfmdted line) in function of time

bin length (x axis). (E) Same as in B but in different wakegplstates. Analyses were
restricted to cells with mean firing rate 0.3 Hz in each particular state, resulting in the
different numbers of cell pairs as indicated.
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Figure 6.6. Separation of regular-spiking (RS) and FS cells with a Ganssixture model.
The E-M algorithm was used to obtain maximum likelihoodresties of the parameters in a
Gaussian mixture model with two components for an n-by-d dadtrix, where n = 238 is the
number of observations (individual cells pooled togetihenfall subjects) and d = 2 is the
dimension of the data (valley-to-peak and half-peak widtlike Mahalanobis distance (in
squared units) of each observation to the mean of each ofvthedmponents of the Gaussian
mixture distribution (described above) was computed. Tlhtgd results form a curve in a
non-Euclidean space where those above the diagonal repfeSend those below show RS
characteristics. The asterisk indicates the only misnagoboint between the two clustering
procedures. (B) Spike waveform clustering using valleyp¢ak amplitude ratio and
valley-to-peak widths. Colors indicate clustering basedhe features used in the main text
(half-peak width and valley-to-peak distance). (C) Samia &but using half-valley width
and valley-to-peak distance.
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show positive peaks indicative of strong correlation. (BxBlot of absolute correlation of
binned spike trains (using 50-ms bins) depicting intertjigadistribution. Correlations were
significantly stronger for monosynaptically connectedpéP < 0.0001, one-way ANOVA).
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Chapter 7

Avalanche dynamics

The irreversibility of time is the
mechanism that brings order out of
chaos.

llya Prigogine
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7.1 Summary

Self-organized critical states are found in many naturatesys, from earthquakes to forest
fires, they have also been observed in neural systems,ydartic in neuronal cultures. How-
ever, the presence of critical states in the awake brainirencantroversial. Here, we compared
avalanche analyses performed on diffei@ntivo preparations during wakefulness, slow-wave
sleep and REM sleep, using high-density electrode arragatimotor cortex (96 electrodes),
monkey motor cortex and premotor cortex and human temportex (96 electrodes) in epilep-
tic patients. In neuronal avalanches defined from units ud&0 single units), the size of
avalanches never clearly scaled as power-law, but ratlaedexponentially or displayed in-
termediate scaling. We also analyzed the dynamics of loglal fiotentials (LFPs) and in par-
ticular LFP negative peaks (nLFPs) among the differentteddes (up to 96 sites in temporal
cortex or up to 128 sites in adjacent motor and pre-motoraas}. In this case, the avalanches
defined from nLFPs displayed power-law scaling in doublat@gmic representations, as re-
ported previously in monkey. However, avalanche definedatipe LFP (pLFP) peaks, which
are less directly related to neuronal firing, also displagpparent power-law scaling. Closer
examination of this scaling using the more reliable cuningedistribution function (CDF) and
other rigorous statistical measures, did not confirm pdesrscaling. The same pattern was
seen for cats, monkey and human, as well as for differentistates of wakefulness and sleep.
We also tested other alternative distributions. Multipte@nential fitting yielded optimal fits
of the avalanche dynamics with bi-exponential distribagioCollectively, these results show no
clear evidence for power-law scaling or self-organizetiaai states in the awake and sleeping
brain of mammals, from cat to man.

Reference:
Submitted to Frontiers in Physiology, 2012 Aug. 3:302. d6i:3389/fphys.2012.00302, special
issue on “Critical Brain Dynamics”
(Edited by He BY, Daffertshofer A, Boonstra TW).

Keywords:
Criticality, Self-organization, Brain Dynamics, Scaleamiance, Complexity, Power-law
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7.2 Resune

Les états auto-organisés critiques (SOC) ont étéifilemtians de nombreux systemes naturels,
des tremblement de terre aux feux de forét, et ils ont egahe été observés dans le systeme
nerveux, en particulier en culture. Cependant, la préseecels états dans le cerveau éveillé
reste encore controversée. Dans cette étude, nous comspaes analyses d’avalanche dans
differentes préparationis vivo pendant I'éveil, le sommeil lent et le sommeil REM. Nous
utilisons des enregistrements a haute densité dans texcaroteur du chat (96 électrodes),
le cortex moteur et prémoteur du singe et dans le cortexdemhpumain (96 électrodes) de
patients épileptiques. Lors d’avalanches définies &rpdiunités (jusqu’a 160 neurones), les
distributions ne se comportent pas en loi de puissance, teadent a étre exponentielles ou
intermédiaires. Nous analysons également les poterdizlchamp (LFPs), et en particulier
les pics négatifs (NLFPs) au sein de I'ensemble déleesdde 96 a 128 sites, selon la con-
figuration d’enregistrement). Dans ce cas, les avalancéisies a partir des nLFPs peuvent
se comporter en loi d’échelle, comme observé préecédamhichez le singe. Cependant, les
avalanches définies a partir des pics positifs (pLFPS)ngwsont pas directement reliees aux
décharges des neurones, ont le méme comportement. Ulysepéus détaillée en utilisant
la représentation cumulée (CDF) ne confirme pas la poesde loi de puissance. Les mémes
résultats s’appliquent au chat, au singe et aux enregistres humains, pendant différents états
cérébraux d’éveil et de sommeil. Nous avons égalenesiétdes distributions alternatives,
et des processus multi-exponentiels semblent expligeedikributions obtenues, de fagon
optimale pour des distributions bi-exponentielles. Lemble de ces résultats ne montrent
pas d’evidence de loi de puissance ou d’états SOC dansveaegveille ou en sommeil de
differents mammiferes, du chat a ’lhomme.
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7.3 Introduction

Self-organized criticality (SOC) is a dynamical state ofyatem which maintains itself at (or
close to) a phase transition point. This family of systemeeveitially described by Bak, Tang
and Wiesenfeld]27), and have been found in many natural systems (revieweti28 175).
SOC systems are characterized by scale invariance, whiagkually identified as a power-
law distribution of characteristics of the system’s dynesmsuch as event size or the waiting
time between events. The temporal fingerprint of SOC sysismften 1/f or 1/f2 noise.
These features are interesting because they show the peesétong-lasting or long-range
correlations in the system.

The dynamics of SOC systems are structured as “avalanchastiaty, separated by silent
periods. Avalanche sizes are typically distributed as agvdaw, where the probability of
occurrencep(x) of a given avalanche sizescales as:

a

p(x) ~ X7,
whered is the scaling exponent of the distribution.

SOC systems have been observed in many different naturabptena, from sandpiles, to
rice piles, in forest fires and earthquaké28 175-178. Evidence of SOC was also demon-
strated in circuits of neuroria vitro [135, where network activity was found to alternate be-
tween active and quiescent periods, forming “neuronakaaies”. The presence of avalanches,
although cleain vitro, is more controversiah vivo. Since power-laws fit neuronal avalanches
better than other alternative probability distributio289, their presence has been taken as
evidence for neuronal avalanchasivo. In anesthetized cat482 and awake monkey4 B3,
power-law distributed avalanches have been found in thkspeflocal field potentials (LFP).
However, LFP peaks are only statistically related to nealrfinng. In a study on awake and
naturally sleeping cats, no sign of avalanches were foungeuronal firing 134, and the
apparent power-law scaling of LFP peaks could be explairsedmaartifact induced by the
thresholding procedure used to detect LFP peaks. Previodies have shown that even purely
stochastic processes can display power-law scaling wHgaaead to similar thresholding pro-
cedures 184. It was also stressed that power-law statistics can bergtate by stochastic
mechanisms other than SOC34-186. Similarly, if exponentially growing processes are sud-
denly killed (or “observed”), a power-law at the tail endslwimerge [L87]. This case, would
be similar to a non-stationary Poisson processes, or congoRoisson processes at different
rates, a situation that is likely to happen in the nervousesys Such scenarios can give rise to
spurious power laws.

These contrasting results correspond to different préjpasasand recording techniques, sin-
gle units or LFPs, or different species, so that it is diffidcol compare them. In the present
paper, we attempt to overcome these shortcomings by prayalisystematic analysis of both
units and LFPs for different species and different braitesta
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7.4 Materials and Methods

7.4.1 Recordings
7.4.1.1 Cat

Recordings of local field potentials (LFPs) and action podéés (APs) were obtained from
motor cortex in 2 felines (M1 and approximately hindlimbimg. Commercially obtained
96-electrode sputtered iridium oxide film arrays (Blackriddicrosystems, Inc., Salt Lake City
UT) were chronically implanted and recordings were perfdnin the awake, unrestrained
feline (as described irbP]). Electrodes on the array were arranged in a square witm#on
spacing and 1 mm shank length. LFPs and APs were recordeglai§ierebus data acquisition
system (Blackrock Microsystems). Spike sorting on AP daga werformed using the t-dist
EM algorithm built into Offline Sorter (Plexon, Inc.). All anal procedures were performed in
accordance with University of Utah Institutional Animalr@and Use Committee guidelines.

We also compared these data with previously published raldtitrode data on cat parietal
cortex ( L74. In this case, a linear array of 8 bipolar electrodes (s#edrby 1 mm) was
chronically implanted in cortical area 5-7, together witiiagraphic and oculographic record-
ings, to insure that brain states were correctly discrineidéquiet wakefulness with eyes-open,
slow-wave sleep, REM sleep). Throughout the text, this ddtbe referred to as “cat iii”
LFP signals were digitized off-line at 250 Hz using the Igoftware package (Wavemetrics,
Oregon; A/D board from GW Instruments, Massachusetts; lassdilter of 100 Hz). Units
were digitized off-line at 10 kHz, and spike sorting and disination was performed with the
DataWave software package (DataWave Technologies, Qlupfitters were 300 Hz high-pass
and 5 kHz low-pass).

7.4.1.2 Monkey

Recordings from three monkeys were used in this study. Eamhkey was chronically im-

planted with 100-electrode Utah arrays (400microm intecteode separation, 1.0 mm elec-
trode length; BlackRock Microsystems Inc., Salt Lake Cifly)Lin two monkeys (i) and (ii), we

used recordings made during the performance of motor tagks motor tasks involved mov-

ing a cursor to visually-presented targets in the horidguitme by flexing and extending the
shoulder and elbow of the arm contralateral to the cerelaali$phere that was implanted. In
monkey (iii), sleep recordings were used to test avalangharmics. Monkey i was implanted
with one 96 electrode array in primary motor cortex (Ml) angeaond 96 electrode array in
dorsal premotor cortex (PMd) from which recordings were enand 64 electrodes in each cor-
tical area. Monkey ii had an array implanted in Ml from which &lectrodes were recorded.
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and Monkey iii had two arrays in Ml and PMd from which 96 eleckes were recorded in
PMd cortex and 32 electrodes were recorded in Ml area. Darigording session, local field
potential (LFP) signals were amplified (gain, 5000), baadpfiltered (0.3 Hz to 250 Hz or
0.3 to 500 Hz), and recorded digitally (14-bit) at 1 kHz peawrhel To acquire extracellular
action potentials, signals were amplified (gain, 5000)dspass filtered (250 Hz to 7.5 kHz)
and sampled at 30 kHz per channel. For each channel, a thdeshs set above the noise
band: if the signal crossed the threshold, a 1.6ms durafitmesignal - as to yield 48 samples
given a sampling frequency of 30 kHz - was sampled around tkarcence of the threshold
crossing and spike-sorted using Offline Sorter (Plexon, Dallas, TX). All of the surgical and

behavioral procedures performed on the non-human primates approved by the University
of Chicago’s IACUC and conform to the principles outlinedle Guide for the Care and Use
of Laboratory Animals (NIH publication no. 86-23, revise@8b).

7.4.1.3 Human

Recordings were obtained from two patients with medicailyactable focal epilepsy using
NeuroPort electrode array as discussed previouslyZ6d. The array, 1mm in length, was
placed in layers Il/1ll of the middle temporal gyrus with ammed consent of the patient and
with approval of the local Institutional Review Board in acdance with the ethical standards
of the Declaration of Helsinki. This array is silicon-basethde up of 96 microelectrodes with
400-um spacing, covering an area of44 mm. Since the corners are omitted from the array,
the furthest separated contacts are 4.6 mm apart. Data wermgled at 30 kHz (Blackrock
Microsystems, Salt Lake City, Utah, USA). The continuousording was downsampled to
1250 Hz to obtain LFPs. The dataset we analyzed was devoidyofaam of identifiable
epileptic activity (such as interictal spikes), and thegswo seizure in the analyzed dataset.
The implantation site was included in the therapeutic résedn both patients. For details on
spike sorting, see26q.

7.4.2 Avalanche detection

Avalanches are defined by temporally contiguous clusteesfity among the different elec-
trodes, separated by periods of silence. Either trains ofamal action potentials (spikes) or
LFP peaks can can be analyzed for the occurrence of avakanthere are two empirical limits
on bin duration. The smallest bin size is set by the duratfdh@action potential. The upper
boundary, is limited by how many unique values of the aggeegasemble activity occur in a
window. When the number of unique values approaches 1, rastadaloses its definition, be-
cause there is no silent period left. In the cat data, whenestlre 160 cells, we reach this limit
at a bin-width of 16 ms. So, we have stayed within the 1-15 rgre in which an avalanche
could be well defined.
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7.4.2.1 Spike avalanche

In each set of recordings, regardless of the spatial locaifca given electrode in the multi-
electrode array, its spiking activity was put in the same poth all other spikes recorded from
other electrodes of the same array. This ensemble traceheadinned and coarse grained for
different ot ranging from 1 ms to 16 ms in 2 ms steps. This created a sdrl@a®containing
the ensemble of activity across all neurons for diafThe sum of spiking in that bin represents
the total bin activity. The sum of all bin activities betwesvo quiescent bins, represents the
avalanche size, which was later used for statistical aralyNotice that in the case of the min-
imum ot = 1, avalanche size would range between 0 and maximum nuofipeurons present
as this bin approximates the size unity of spiking periodjuFe 7.1A shows the definition of
avalanche in spike series from human recordings.

7.4.2.2 LFP avalanche

Each LFP trace was first detrended through a least-squardsafitraight line to the data and
subsequent subtraction of the resulting function fromraisample points. After this detrending
removed the mean value or linear trend from a LFP vector, & than normalized (Z score)
to have a common reference frame for discretization acrbaarels, recordings, states and
species. The z-scored LFP, was then discretized througbah ieaxima peak detection. An
optimizing small running average filter was designed ands3@s of the filter were applied to
the data in order to remove small spurious peaks in each LR€ctlen. Next, by comparing
each element of data to its neighboring values, if that saropbata was larger than both of
its adjacent ones, that element was considered as a lodal Neat, all the peaks were sorted
in descending order, beginning with the largest peak, andextified peaks not separated by
more than minimum peak distance (of 3 samples) from the oesl beak were discarded.

The threshold was fixed and defined as a multiple of the stdndkariation (STD) of the
LFP signal. Different thresholds were tested, starting254STD and increasing in 0.25 steps
up to 5x STD for both negative and positive maxima. This procedure rgalized on each LFP
channel, state, species (F®1B). Such matrix of discrete events (for a given polarity and a
given threshold), was then treated the same way the spikéxmats used to create avalanche
vectors of quiescent and active periods.
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7.4.3 LFP peak and spiking relationship
7.4.3.1 Wave-triggered-average (WTA)

We used wave-triggered averaging (WTA) to analyze the wdiffees in the relationships of
spikes to nLFP versus pLFP. In WTA, the individual negatiVLpeaks (nLFP) were used to
epoch the ensemble spike series. The epoched ensemblesspid® were normalized by the
number of epochs (triggered by nLFPs). This procedure weesnpeed for the three differ-
ent thresholds (low, medium and high) and the results weeeaged across these thresholds
to obtain cross-threshold WTA percentage firing to quarthfy spike-nLFP relationship. An
identical procedure was applied to pLFPs. The red and bllié lsoes in Figure7.6 refer to
nLFP-spike and pLFP-spike WTA percentage firing, respelbtiv

7.4.3.2 Controls and Randomization Methods

We used 4 methods of surrogate/randomization in order tluateathe statistical robustness
of the comparative relation of spike-nLFP vs spike-pLFRctEaf the following 4 methods,
was first performed on all 3 chosen thresholds and then thétsegere averaged to obtain the
overall randomization effect.

7.4.3.2.0.1 Poisson surrogate dataAt the first step, we wanted to test whether the ob-
served nLFP and pLFP differences could be reproduced bygate spike series. For this type
of control, first, each individual channel's spike rate wafcalated. Then, using a renewal
process, a surrogate Poisson spike series for that chaasetiwated (matching the firing rate
and duration of the experimental data from that channel@nThll Poisson spike series (across
all channels) were aggregated together to create the etsepike series (similar to the ex-
perimental data). Next, for each pLFP (or nLFP), the WTA a$ tRoisson aggregate series
was created. This procedure was repeated 1000 times andubrmyged across the 1000 trials.
The results were close to a constant WTA percent firing anahdidluctuate according to the
timing of the peak LFP that was used to epoch each individuBAWvent. This control test
showed that the simple aggregate of surrogate Poissonsspaikenot reproduce the observed
relation between nLFP and spikes in the WTA or mimic the badraxf natural peak(positive
or negative)-induced percentage firing. This procedurealss repeated with Poisson spikes
without a refractory period and provided similar results.

7.4.3.2.0.2 Random permutation In a follow up test, we wanted to verify that random-
izing the aggregate spike series by itself can not mimic theeoved the LFP-spike relation.
For this procedure, we performed a random permutation oaghesgate spike series and then



124

calculated the nLFP(and pLFP)-based WTA. This procedure nepeated 1000 times. The
observations are similar to the Poisson randomizationfyueg that the nLFP peak is not re-
producible by randomization of spikes and the fluctuatidn®/@A percentage firing are not
results of random events.

7.4.3.2.0.3 Local jitter randomization of LFP peaksNext, we wanted to evaluate the
effects of randomization based on the statistics of theviddal channel's LFP peak times
(before aggregating them into the ensemble LFP peak tr&im$t, each channel’s nLFP IPI
(inter-peak-interval) were calculated. Then these IRdsfiall channels were put in the same
pool and the, 0.25, 0.5 and 0.75 quantiles IPI for the agdeegiaFPs were extracted. Next,
we created a normal distribution with 0.5 percentile as tleam) the interquartile range (0.75
guantile minus 0.25 quantile) as the standard deviatioh@fdf, and N events matching the
number of aggregate nLFPs. This set of values, were usedtdo fLFPs in the following
manner. Each sample from the aggregates nLFP peak seriahiftad according to one drawn
sample (without replacement) from the nLFP jitter pool. Tection of the shift was to the
right if the drawn jitter value was negative (and to the leftthe positive value). The magnitude
of the shift was defined by the value of the jitter itself. Tlaeng procedure was repeated for
pLFPs. The results of this randomization are shown in Figusé\. As can be appreciated, with
this tightly regulated data-driven local randomizatidme structure of the WTA is preserved
except for the peak curve around O for the nLFP case.

7.4.3.2.0.4 Fixed-ISI circular shift of spikes In this procedure, we kept the ISI (inter-
spike interval) of the aggregate spike series as well adth@nter-peak intervals) of the nLFP
and pLFP intact but randomized the relation between theeggde spike and aggregate peak
series. In each of the 1000 trials, a circular shift with thegmtude chosen randomly between
1 and the range of the ISI, was performed. The results, shoviAigure7.6.B, show that by
destroying the relation between ensemble spikes and efsgrahks while preserving their
internal structure, the observed fluctuations and most rtaptly, the tightly bound relation of
nLFP and spikes, is lost.

7.4.4 Testing power law distribution in empirical data

For testing the power-law behavior, usually a simple legsiase method is applied to fit a
power-law on the data. If such fit in a log-log scale, followsteight line, the slope of the
probability density function (PDF) line is taken as the s@akxponent. Such method is widely
practiced but is highly inaccurate in its estimation of texestence of power-law in a given
dataset. It has been argued that, for obtaining statistisalind results in estimating power-
law in empirical data, one has to rely on rigorous statisticathods. In a detailed analysis
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of the problem 201, 261], it was proposed that the cumulative distribution funet{&€DF) is
much more accurate to fit the power-law exponent, as well &etttify if the system obeys a
power-law.

If the initial distribution of the PDF is power-law, i.e.,
p(x) =Cx ¢,

then CDF is defined as

inf C
Pr(X >x) = C/ XX = ——x (@1
X a—-1

Thus, the corresponding CDF also behaves as a power-lawjtbhua smaller exponent
a—-1

being 1 unit smaller than the original expone2®]].

Generally, in fitting the power-law to the empirical datd,thé initial values (left hand of
the distribution histogram i.e, smallest sizes of avalasglare included in the used decades
to obtain the slope of the fit (scaling exponert The inclusion of these initial parts may
cause significant errors, and should be remoa€d,[262 263. Thus, before calculating the
scaling exponent, it is essential to discard the valuesib#ie lower bound Xmin). It is only
above this lower bound that, a linear PDF or CDF can be reliabed for estimation of the
scaling exponent. There are different methods for propgmeason of theX,in. We used
a Kolmogorov-Smirnov (KS test) optimization approach thearches for the minimum “dis-
tance” (D) between the power-law model and the empiricagnetiior Xi>Xmin, “D” is defined
as

D = maxS(x) —P(x)],

S(x) the CDF of the empirical data and P(x) the CDF of the besthing power-law model.
The Xnmin value that yields the minimum D, is the optim&hin. TheXmin is used in a maximum
likelihood estimate (MLE) of power-law fit to the CDF of thesdanches in order to obtain the
scaling exponent. This fitting, however, does not providesatistical significance on whether
the power-law is a plausible fit to the data or not. After thnestion of Ximin and the exponent,
we generated N (N=1000) power-law distributed surrogata dath the exact same features
of Xmin and exponent. Each of these surrogate series are then fitteghower-law and KS
statistics of distance D (to the surrogate power-law), i$gomed. The fraction of N that the
resultant statistics was bigger than the one obtained frmempirical data, comprises the p-
value. If p-value< 0.1, the power-law is ruled out. However, even if p-valuaigér than this
threshold, the data is not necessarily guaranteed to beajeddoy a power-law process unless
no better distribution is found to estimate the propertieh® data. For this, the alternative test
was adapted as following.
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7.4.4.1 Generating power-law distributed random numbers wth high precision

It is essential to use high precision and reliable algorghmgenerate random numbers from
a given probability distribution; otherwise the statiatitests based on such distributions may
be erroneous. For initializing the generator with an “letle§eed”, we adapted the reliable
Mersenne Twister algorithm (known as MT19937AR) with futepision of Mersenne prime
(219937_1) [264). . This algorithm provides a proper method for running Mo@arlo simu-
lations. After initialization, “Transformation algorith” was used to generate the desired dis-
tribution [201, 265. All the random number generations and analyses were peeid on a
16-core Intel 48 GB Linux platform equipped with 448 core [de82050 GPU with double
precision of 515 Gflop and single precision of 1.03 Tflops. &iligtom code was based on Mat-
lab (Mathworks) and CUDA (NVIDIA) wrapper Jacket (Acceles) for parallel computing on
GPU.

7.4.5 Alternative fits

The power-law fit was compared with alternative hypotheseest which distribution best fits

the data. The alternatives included exponential distidibuas predicted by a Poisson type
stochastic process), "Discretized log-normal distribati(which is represented as a linear fit in
log-normal scale), as well as fit of "Discrete exponentiatilbution” nature. These fits had two
general types of simple exponential, defined ) = aexp(bx) as well as sum of exponential
set as:f(x) = aexp(bx) + cexp(dx) In each case, residual analyses, goodness of fit as well as
confidence and prediction bounds were used to evaluate tiperies of each fit vs power-law.

In case of a good fit model, Residual, defined as the differbeteween data and fit, should
approximate random error and behave randomly.

7.4.5.1 Goodness of fit comparison of exponential models

A measure of “goodness of fit”, R-square, is the ratio of th@ s squares of the regression
(SSR) and the total sum of squares (SST). This measure seqsethe square of the correla-
tion between the observed and predicted response valuwkg)dinates what percentage of the
variance of the data is explained by the chosen fit (valuessifirare range from 0, worst fit, to
1, the best possible fit). If we have SSR 8S§eg= (Vi — )2, and SSE asSSir= 3;(yi —¥)?,
and SST as:SSot = Si(yi — ¥)?, where,y;,y,y are the original data values, their mean and
modeled values respectively. Then, it follows that:

S&n
R? = SSey/SSot = 1 2

- SSot

Correction by “total degree of freedom” and “error degredreédom”, defines adjusted R-
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square:

o N—l . S%rrdft
§2_1—(1—R2)m =1 S5, d%.

where “N” is the sample size, and “M” is the number of fitted ficents (excluding constants).
Usage ofR? in the comparison of “simple exponential” and “sum of exputie” is warranted
by the fact that by an increase in the fitted number of the corapts, from one model to
the other, the degrees of freedom changes. BBtandR? measures were estimated through
nonlinear least square optimization of exponential cutté@d. In the optimization process for
estimating the coefficients of the models, we adapted Lexgpblarquardt algorithm with a
tolerance of 108 [266].

7.4.5.2 Test of linearity in log-normal scale

Linearity in log-normal scale, is a hallmark of an exponanfamily process. In order to
test the linearity of the PDF in log-normal scaling, we usembifRnean square error (RMSE),

RMSE(H) = /MSE(6) where MSE is:sdi];é”. This measure ranges from 0 to 1, where closer
value to 0 is an indicator of a better fit.
This test was performed by fitting= Log(P(x)) with a linear least square first degree polyno-
mial. As shown in Fig7.13C, sometimes, the initial values in the left tail may sligtdkeviate
from a simple 1st degree polynomial. Therefore, we testeethdr the linearity was improved
or worsened when the data range was reduced to aboveX$gmeéd-or doing so, we adapted a
more stringent regression, bisquare robust 1st degreaoiial [266]. This method is an iter-
atively reweighted least-squares, based®®rand assigns less weight to the values farther from
the line. This procedure was repeated after excluding cpresd single values from the left tail
(up to 20 percent of the points). For each new shortenedss¢he RMSE (based on bisquare
method) was re-calculated. The rational behind using RM8Eeisting the linearity range in
these datasets (with variable N) is that when a distincttpsinemoved from the dataset, 2
other reductions follow: a) the sum of squares and b) degrEsedom. Thus, if after lim-
iting the range, the error remains the sai®&,; would increase. Similarly, when the error is
significantly reducedSS,r would increase. Therefore, any change in the error, shauidhe
considered significant if it is compensated by the amounhahge in the degree of freedom.
For quantifying this, we defined two measures for lineartpiovement after limiting the data
aboveXmin. The first measure, “overal RMSE change” (0RMSE), was defased

RMSE, — RMSE,_;

ORMSE= RMSE, * 100,

In parallel, “relative RMSE change” (rRMSE), was defined as:

RMSE,_i+1 — RMSE,_|
RMSE,

rRMSE = * 100
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, whereRMSE, was the RMSE of the full length data. Next, these measures n@malized
to their maximum loRMSEandnrRMSE and a 3rd dimension was created by the distance of
each pairfoRMSE nrRMSE), from the geometrical diagonal defined as

_ def(Q2—QY)- (P— Q)]

P 1(Q2— QU]

, Where P was the coordinates of a pombRMSE nrRMSE) while Q1=[0 0] and Q2=[1 1]
were the vertices of the geometrical diagonal of the RMSHsgpa&ce. The point that had the
maximum {1— D;) + noRMSE+ nrRMSE” (this value can range between 0 to 3), was taken
as the optimal linearizing shortening inde%{,) (Fig. 7.13). Next, we fitted all data ranges
(from N sample points ttN — Xmin) with the two exponential models as described above.

7.5 Results

In this study, we used data from multielectrode recordimg3 species: cat motor cortex (cats
i and ii with a 96 channel multielectrode array in primary orotortex, hindlimb area), cat
parietal cortex (cat iii, 8 bipolar electrodes), monkey anatortex (three monkeys with a 64
or 96 recordings from 96 channel multielectrode arrays imamand/or premotor cortex), and
humans (2 patients with a 96 multielectrode array in midehegoral gyrus). In the following,
we briefly address definition of avalanche, then describedbelts of power-law analyses on
spike avalanche, state-dependence, regional differemmkpolarity-dependence of LFP max-
ima avalanche. At the end, we briefly discuss alternativeditee data.

7.5.1 Avalanche definition

Figure7.1lillustrates the definition of avalanche for discrete (spéad continuous (LFP) data,
as they are used in this study. For both spikes and LFP, wehissdf 1 to 15 ms (in 2ms
steps) for defining the quiescent vs active periods. Avdlas@re defined by contiguous bins
of non-zero activity, separated by periods of quiescenop{gbins). The size of the avalanche
is defined as the sum of all activities (spikes or LFP peak#)iwthat active period. Thus, the
avalanches depend on the bin size (as illustrated inFid\ for spikes). For LFPs, we first
discretized the continuous data based on its local maxim#h Bositive and negative maxima
were examined in our study. For each polarity, 17 levelsi&gholds were chosen (see Methods
for details). After discretization, the obtained matrixgF.1B) was used for the same binning
and avalanche definition as used for spike series.
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7.5.2 Power-law fit

It has been shown that that CDF provides a a better measurd’Dg as it avoids erroneous
measures at the far end of the distribution tail of probgbdurve R01,261]. It is also necessary
to exclude the values below the valid lower bound, or elsecHieulated coefficient could be
highly biased 201]. In each of the following estimates of power-law distriloumt, based on
the methods described previously, we adapted the followtegs on analyzing the CDF of
avalanches: Values above a giv&qi, are used in a maximum likelihood estimate (MLE) of
the exponentr. For each CDF, the proper lower bound@fi, is selected using a KS test. We
also used 1000 semi-parametric repetitions of the fittirag@dure for obtaining estimates of
uncertainty and goodness of fit.

7.5.3 Avalanche analysis from spikes

Next, we studied whether the spike avalanches follow pdexgrdistributions.

7.5.3.1 Avalanche analysis in wakefulness

We first studied avalanche dynamics in awake resting reegsdirom cats and humans. As
depicted in Fig.7.2, neither of these species, showed a dominant power-lawheha their
spike avalanche size distribution. The average scalingrexmt of awake recordings for the
decades that could be considered to follow power-law (+Xsin), was to high to be related to
SOC systems (see Tableland Table7.2and Fig.7.2i,ii,iii)). These values not only are distant
from those of 1/f noise, but also only apply to partial paftthe CDF (cumulative distribution
function) of avalanche sizes. These lack of clear powerdaaracteristics is shown witkin
lower boundary (green dotted lines in Fig2). Only values abovein could "statistically”
follow a power-law regime and as mentioned, even in thoses;abe exponent values were
too high to be considered a signature of SOC systems. It igrtapt to note that the CDF
representation is cumulative, and thus the left tail is motwedled from the data but its influence
is shifted to the right (see details iRQ1]; see also Methods).

Interestingly, representing the size distributions in-liogar scale revealed a scaling very
close to linear for all species (Fig.3), indicating that avalanches defined from spikes scale
close to an exponential, as would be predicted by a Poisgmstochastic process. This con-
clusion was also reached previously by analyzing units dfél tecordings in catdB4. Also,
as can be seen in the inset of panel A of Fi, the same analyses done on the awake record-
ing from the parietal cortex (albeit spatially sampled dy@electrodes) shows similar scaling
behavior.

In addition to wake resting recordings, we also considegedndings made while monkeys
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engaged in cognitive motor tasks. Similar to awake restegndings in cat and man, the lower
bound was variable between different binning sizes, thakuding parts of the "invalid” initial
avalanche sizes, which are usually used as evidence oéegesbf power-law135 183 259.
The inclusion of these initial parts may cause errors, anckwemoved here; however, their
cumulative effects are still present in the tested reginb@veX,, of the analyzed “cumulative
distribution function” P01,261-263. Above the lower bound value, all the CDF curves showed
significant high exponent values. Interestingly, the MIifoth monkeys A and B) had similar
mean to PMd (TableZ.1, Fig. 7.2D,E,F), suggesting similar dynamics in the two areas.

7.5.3.2 Avalanche analysis during natural sleep

It has been claimed that wakefulness may not be the bestestigplay SOC, and that avalanches
may be more naturally related to brain states with osaifetj and slow-wave oscillations in
particular R67]. In contrast to this, a previous study in cat found that Ikakefulness, slow-
wave sleep (SWS) did not display power-law scaling as defir@d spike avalanched84],

but this latter study suffered from a limited spatial samgli To further investigate the issue,
we have examined SWS and Rapid Eye Movement (REM) sleepdsanith more dense sam-
pling of spike activity. Figure3.4and7.5, show the analyses for cat, human i and ii as well as
monkey iii (Ml and PMd) for SWS and REM periods. In none of theases we see clear sign
of power-law scaling. In all cases (except human ii), theakality of lower bound between dif-
ferent bin sizes is robust. All the curves represent "phirgiaf power-law” with high exponent
values. During SWS, cat, human subjects and monkey iii (Ml BWd) all manifested either
lack of significant power-law scaling, or had such higheramnent values that makes it highly
unlikely for power-law to be the generating process of spieamics (Tabler.1). Similarly, in
REM periods, there was no evidence for power-law scalingimémn i’s first and second REM
episodes. Together, with Cat REMs’ high exponents valussep-law scaling appears to be an
unlikely candidate to describe the statistics of neurahdiriTable.7.1). Taken together, these
various tests all based on proper statistical inferentesy shat spike avalanches do not follow
power-law scaling, for any brain state or sampling density.

Detailed numerical values for spike avalanche CDF expana@md their goodness of fit are
provided in Table7.1and Table7.2

7.5.4 Avalanche dynamics from local field potentials

Next, we investigated the occurrence of avalanche type imduaycs from the local field poten-
tials, which were simultaneously recorded with unit atyivin all datasets.
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7.5.4.1 Relation between LFP peaks and spiking activity

Calculation of neuronal avalanches from LFP data is basddeassumption that statistically
speaking, in comparison with the positive LFPs (pLFP), tegative LFP (nLFP) peaks are
more strongly related to neuronal activity (e.g., SE&4 and references therein). Indeed, the
8-electrode cat LFP data analyzed here show such a reldfr@n1[84]. To further test this re-
lation, we also examined the simultaneous LFP and unit d&egs in the ensemble recordings
in cat, man and monkey. We used a wave-triggered-averag®)\Wbcedure, where the en-
semble of nLFPs were used to epoch the ensemble spike ncfivéraging across these WTAs
across different thresholds, show that there is indeed & wedationship between nLFP and
spiking (Fig.7.6A). However, repeating the same procedure for positive LLEFFP] peaks, did
not display any relation (Fig..6B), in agreement with the same analysis in ca&4. Through
four different types of control and randomization, we shbatthe relation between nLFP and
spike is robust and is not attributable to randomness of giiiergy events or spurious fluctua-
tions in the LFPs. For details of these control/randomizgtsee methods and Fig.6. This
fundamental difference between nLFP and pLFP peaks pre@dery important test to infer if
a given power-law observation from LFPs is related to theedllgthg neuronal activity, as we
will see below.

7.5.4.2 nLFP avalanches

Similar to previous studies, we investigated the avalamymamics from nLFPs. The nLFPs
were detected using a fixed threshold, defined as a multipleeotandard deviation (STD)
of the LFP signal (see Methods), and several thresholds tested. In the following, we use
“high”, “medium” and “low” thresholds, which correspond 2025, 1.75 and 1.25 multiples of
the standard deviation, respectively. As shown in Figg.and7.8, the distributions defined
for avalanches at different bin sizes and thresholds seehsptay power-law scaling, both for
human and monkey. This result seems to be in agreement wittasanalyses done on awake
monkey [L83. However, plotting the same data as CDF revealed that thiengcas power-law
was very narrow (Fig7.9). While Monkey ii displayed apparent power-law over morarth
one decade, the other cases from cats and humans, did niatydssyy convincing power-law
scaling. For details of nLFP avalanches for an example stylgead its comparison with pLFP
avalanches, see Table3. One can also note that in some of the CDFs (and their coarterp
PDF), there is a possibility that the distribution can bensexgted into two regions each covering
certain decades of avalanche size. In such cases, relyiagiogle scaling exponent to describe
the totality of the functional dynamics of the network doe$ seem adequate. This could be
an indication that the space of the distributions is notamif and the underlying mechanisms
could be of metastability natur6g. In such scenario, interaction with the external world
could push the system from the “currently most stable stata’new “most stable state”. Such
constant changes may lead to the formation of nonunifortmilligion of the neural events at
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different temporal scales. Therefore it is essential tolesjze that, in some cases, one scaling
exponent may not be sufficient to describe the complexithefspiking or oscillations.

7.5.4.3 pLFP avalanches

Next, we investigated the avalanche dynamics of positivieé pEaks, which, as we have seen
above, is not statistically related to firing activity (Fig6). Similar to nLFP peaks, the pLFP
avalanches defined for human wakefulness did not displaygptaw scaling (Fig7.10. Both
nLFP and pLFP had similar CDF of avalanche size across diftespecies and cortices. The
example shown in FigZ.10 (awake human) shows that across different thresholds, iidtR
and pLFP had variable lower bounds and high scaling expsrfentthe region of the data
that could statistically be considered for power-law prtips. Moreover, the absence of any
region with clear linear scaling in the logarithmic coomties further confirms that there is no
power-law scaling in this case. For details, see Tahl®.

7.5.4.4 Avalanches in different cortical regions

In the cases that we had simultaneous, dual array multietketrecordings from PMd and Ml,
the analyses showed that these two cortical areas do notsgos/of criticality but have slight
differences in their exponent values for Ml and for PMd (EafBl1and Table7.2, Fig.7.17).
Such findings show that the fact that these two corticestljreteract with each other, and one
acts as input and one as the output of motor processing singéflécted in their slightly different
CDF features. Thus, two different cortical areas seem tolayssimilar features, although no
sign of power-law scaling.

7.5.5 Statistical analysis of the avalanche distributions

7.5.6 Goodness of fit

Given datax and given lower cutoff for the power-law behavi¥i,, we computed the cor-
responding p-value for the Kolmogorov-Smirnov test, adoay to the method described in
Clauset et al.201]. See methods for details. The results are given in Tables7.2and 7.3
(“gof” columns).
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7.5.7 Avalanche size boundaries

Imposing lower or upper bounds when fitting avalanche digtions can greatly affect the
outcome of the fit201]. In many cases, the analyses have been limited to the lowerdary
of avalanche size- 1 andXmax 0f N, where N is the number of channels. Using such bounds
improves the fitting of the data by power-law compared to othstributions, as confirmed
by KS-statistics 259. The pitfalls of such an approach are two-fold: a) the loweundary
is set to 1, therefore the avalanches that are below the addedower bound oni, are
erroneously fitted with the power-law, thus reducing thél®lity of the fit while producing
mis-estimated scaling exponents (s2@]] for details of lower bound selection). Kyaxis set
to the maximum active channels, and any return to a givenreias counted in the avalanche,
but the maximum allowed avalanche size is limited to N, basethe argument that the large
avalanches are infrequent and their inclusion implies mi$tis type of approach, limits the
number of avalanches to an extreme degree and introduces aBelow we investigate this
bias.

7.5.7.1 Avalanche size distribution and upper boundary linits

Fig. 7.12tests the effect of enforcing an upper boundary to the achmnalysis. The red
color shows the excluded (saturated) avalanches enforgdichlting the Xnaxto N (number
of independent measures), while cyan represents the atdemvalanches below this upper
threshold. This figure shows that setting tgax to a cutoff value of N, produces variable
biases based on the bin size. Importantly, in simultangosiorded regions, the majority
of avalanches will be included in one case (like in PMd as showpanel A) but not in the
other (like MI, as depicted in panel B). Such discrepancy leasjzes that setting a cutoff will
necessarily introduce a bias and causes variable resottsré&gion to region and from bin size
to bin size.

7.5.7.2 Comparison of exponential and power-law fit: Model Ns-specification and lower
boundary problem

It has been argued whether neuronal avalanches are betdrkit an exponential or power-
law distribution. Here we tested two aspects, exponensapewer-law comparison, as well
as the effect of setting a lower boundary to the fit. It has b&®wn that defining a proper
lower boundary improves the maximum likelihood that therdhation could be fit by a power-
law [201]. In agreement with this, Klaus et al. (2011) used a lowematany of 1 and showed
that using KS-statistics, the power-law indeed provideiteb fit to the data in comparison
to exponential distribution. Here, we systematicallygesivhether such practice would return
erroneous results in avalanche analysis. The results simokig. 7.13A,B, are from cat spikes
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data. For each bin size, we first defined the optimal lower Hagnafter Clauset et al. (
[20]]; see Methods), calle¥nin. We started with a lower boundary set to 1, and reduced the
distribution of avalanche data gradually updgin. For each newly produced set, we calculated
the empirical CDF (ECDF) as well as the provisional fittediaroility’s CDF (based on direct
maximum likelihood) for both exponential as well as powes:l The results for a sample bin
size are shown in Figl.13A. Power-law at the lower boundary of 1 provides a bad fit. Hosve
overall, power-law outperforms the exponential fit, spicifter limiting the range of the data
by increasing the lower boundary. The best power-law fit imioled when the lower boundary

approacheXmin.

This finding matches the results of the KS test (base@0fi) as we report in this manuscript.
However, from our analyses, we know that when we reach thepogger-law fit, the estimated
scaling exponents are too high for any known natural systefimilow a self-organized critical-
ity regime. Therefore, we have a situation where either ate gnreliable but desired scaling
exponent by setting the lower boundary to 1, or one obtailibte but undesired scaling ex-
ponent by setting the lower boundaryXgi, > 1.

Next, we quantified the goodness of fit with a more rigorousaggh than the simple KS
test. If the parametric CDF is close to the probabilitiesrfrine ECDF, then the depicted line
should approach the diagonal (1:1) line with minimal driftrh it. For quantifying this, we
measured the integral of the distance of each point on theyyes from the 1:1 diagonal line.
This value should be zero in a perfect fit; its non-zero vahmas departure from a perfect
fit. Fig. 7.13 shows the results for all bin sizes. Similar to Klaus et 289, the power-law
provides a better fit in comparison to exponential. Howetbeste are two aspects that can not
be ignored for this condition to be true: a) the distance owups only as we tighten the lower
bound criteria to be close t&nin, but it does not mean that this is a proper fit.; b) there is no
rule of thumb for such an improvement; in almost all of theesas linear relationship in the
normal probability plot distribution of the distance wad fmund. This shows that power-law
provides a better fit than the exponential distribution,that both fits are not satisfactory. We
consider alternative distributions below.

7.5.8 Alternative distributions for avalanche dynamics

Although previously, at the microcircuit scale, some stgdhave asserted the existence of
criticality as a universal characteristic of neural dynesnin both spike and LFP avalanches
[135 269, other evidence suggest that same behavior can also bevelidbrough stochastic
processesl34,184). In this study, after rigorous testing, we showed that tredanches do not
follow power-law as a universal feature. Thus we also testeether an alternative probability
distribution could provide a better estimate for the expental observations.

We first tested a simple exponential fitting of the spike avettes, by fitting straight lines in
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alog-linear plot. As seen from Fig.13C, alinear fit (“exp1”) can only fit part of the data, as the
initial points (for small size) do not scale linearly. In detion of the lower bound of linearity,
i.e. Xmin), the robust bi-square method is more stringent than sitepkt square fits and leaves
behind more data points for exponential fitting (see difietees in Fig.7.13C; errors based
on bi-square are plotted in Fig.13D; see Methods for details on linearity optimization).

Next, we tested a multiple exponential fitting of the datae Tationale is that two expo-
nential processes may represent differences in two paposadf cells, for example excitatory
and inhibitory cells. The fit resulting from a “sum of expotiahprocesses” was extremely
good in minimum residual and reliable prediction boundstiier data (Fig7.13). This “sum
of exponential” model (“exp2”) gave a very good performaincéoth full length (dark blue)
and reduced aboveXyin’ (red). The “simple exponential” model (expl) reaches a/\god
fit only for the reduced set (cyan) but not for the full lengttiree avalanches (light brown). For
comparison of “expl” and “exp2” on different spike avalaeshwith and without “linearity
improvement”, see Figr.13. Overall, it seems that both expl and exp2 exhibit comparab
high values of goodness of fit for the reduced sets. Howevay, the double exponential fit
was able to fit the entire dataset.

7.6 Discussion

In the present paper, we have analyzed and compared thenelvaldynamics obtained from
multielectrode recordings of spikes and LFPs, for threeigige cat, monkey and human. In
each case, we used recordings exclusively made in nonkeatigetd brain states, including
quiet and active wakefulness, SWS (slow-wave sleep) and [RE\pid eye movement). The
primary result of our analysis is that there is no power-laaliag of neuronal firing, in any
of the examined recordings, including “desynchronizedCEtates (wakefulness), SWS, and
REM sleep. All species consistently showed distributiohgWv approached exponential distri-
butions. This confirms previous findings of the absence ofgrdaw distributions from spikes
in cats [L34], and extends these findings to monkeys and humans. An aberdicism to that
prior study is that a set of 8 electrodes is too low to propeoyer the system, and the absence
of power-law may be due to this subsampling. We show herelieasgame results are obtained
when a significantly higher density of recording is used ficonng the absence of power-law.

In contrast, avalanche dynamics built from nLFPs displayede nuanced results. In some
cases, the avalanche size distributions appear to drawighdttine in log-log representations,
but the more reliable CDF-based tests did not show cleaeaecl for power-law scaling. In-
deed, statistical tests such as the KS test did not give nomg evidence that these data are
universally distributed according to a power-law. More ortantly, while nLFP are related
to firing activity, we showed that a similar behavior was atdserved for pLFP peaks. The
avalanche analysis from positive peaks displayed singsults as for negative peaks, although
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positive peaks displayed a weaker statistical relationriogfiactivity. Using 4 types of con-
trol/randomization we provide very robust evidence thatfimdamental differences between
nLFP and pLFP are not attributable to random behavior ofespik LFP peaks. Yet still, the dis-
cretized thresholded LFPs, show strikingly similar bebain their avalanche statistics. These
findings render any conclusions about self-organizecdcaltity based on simple power-laws of
PDFs as phenomenological.

Together, these results suggest that the power-law behalvgerved previously in awake
monkey [L83 269 cannot be reproduced in awake humans’ temporal cortext@rchmonkey
motor cortex. This conclusion also extends to slow-waveséind REM sleep, which we found
did not display power-law distributed avalanches, as ddfinem either spikes or LFPs. In
searching for the linear domains in CDF based on the KS test¢an force the scaling exponent
to fall within the range of the plausible values (comparabléhnose observed in known physical
phenomena). Doing so, of course, yields more conservatiltes of scaling, but means that
such scaling would be applicable to only a limited range daddn fact, unless the system
has universal scaling, there is always a tradeoff betweemnathge to which a scaling exponent
can be extended (i.e. the linear regime in the data) and themity of the scaling exponent
value to those of a narrow range (in this case, values of the §@tems are of interest). Our
tests, did not force the scaling exponent to be limited toeslbetween 1-2, therefore it had
a more stringent emphasis on the linearity of more decadéiseodvalanche sizes. In some
cases where the data showed statistically significantrityeéghe obtained scaling exponents
were an order of magnitude higher than what falls in the rarigke critical regime of known
physical phenomena. Conversely, these observations ithpty a single scaling exponent is
not sufficient to explain the complex dynamics of ensembliac

A possibility worth exploring is that some form of power-lawLFPs is the result of volume
conduction associated with LFPs recorded in high densigyar When a peak is detected, it is
often also present in many different channels. A possybiiirth to explore is whether the same
event could be volume-conducted across many channels arriéng which may lead to an arti-
ficial increase the large-size avalanches. This possilsitibuld be examined by mathematical
models of the volume conduction effect.

It must be noted that the evidence for self-organized @fitic in neuronal cultures or in
slices [L35, as well as in anesthetized stat&é8% is not contradictory with the present findings.
The wiring ofin vitro preparations, as well as the network dynamics in anesttasiavidently
different than in the intact brain. We find here that theredgwidence for SOC in wakefulness
and natural sleep states, and for 3 different species. Owotliee hand, the report of power-law
scaling of nLFPs avalanches in awake monkeyJ seems in contradiction with the present
findings. Many possibilities exist to reconcile these obagons, such as differences between
brain region, recording method, cortical layer or volumadaction effects. These possibilities
should be investigated in future studies. Moreover, in ameceport 270, it has been shown
that data from high density recordings (up to 512 electrpffesn from neural culture show
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elements of universality and that avalanches can be celtaipgo a universal scaling function
[271]. Such findings confirm that brain circuiits vitro operate near criticality. Further studies
should examine how to reconcile such evidence with the ptése&ivo findings.

Due to the high dimensionality of neural data, it is cruc@keparate the features of the
inferred models that are induced solely by the inferencemmehfrom those that reflect natural
tendencies of the studied syste?®§. In some cases, one could fit the data with different lines
by limiting the range of the decades within which a fit is azaly. While it is indeed possible,
and highly likely, that neural data at this level follow a rtingicale regime, albeit such a property
would push the system away from cohesively operating absgénized criticality because the
relation between microscopic interaction of the (neurajreents and collective behavior (of the
cortical network) no longer manifests in single valued dees, like a single scaling exponent.

Finally, it is important to emphasize that the present tesuére obtained using statistical
tests similar to previous statistical analys281, 261]. In particular, the use of the CDF distri-
bution rather than simple log-log representations of the distribution is a particularly severe
test to identify if a system scales as a power-law. The useatifical measures such as the
Kolmogorov-Smirnov test (Tablé€..1, 7.2and 7.3) also constitutes a good quantification of
which distribution fits the data, and is largely superiorhe teast square fit in double loga-
rithmic scale R01]. The uncertainty and goodness of fit were estimated by 18pétitions of
each fitted distribution. We also showed that setting bouadke fit can introduce biases in
favor of power-law fits, as analyzed previous®@fl]. In agreement with this, it was found with
bounded fits that power-law provides a better match to datgpaoed to exponential distribu-
tions [259. Our analysis shows that neither power-law nor exponkdisdributions provide
acceptable fits to the datasets analyzed here. Multi-expiahéts suggest that bi-exponential
processes provide a particularly good fit to the distriugjonvhich suggests that the underly-
ing neuronal dynamics is most compatible with two exporaipiiocesses, which could be for
example excitation and inhibition, both scaling as exptiaédistributions. Such a possibility
should be tested by further studies, and seem in agreem#nthgi complementary excitatory
and inhibitory dynamics found in the awake and sleepingtz6(.

7.7 Figures
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A) Avalanche definition for ensemble spiking
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B) Local negative maxima LFP discretization
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Figure 7.1. Definition of avalanches. (Axomparison of avalanche definition for 8ms vs 16
ms binning; green vertical lines define the boundaries ofslbimning; naturally, each 16ms
bin is composed of 2 independent 8ms bin (depicted with reétddines). Accolades point to
the avalanches, separated by quiescent periods. Top, &tamekies and their sizes, Bottom:
16ms avalanches and their corresponding size. Pleasehabiadt avalanche continues after
of the limits in this figure (B) negative local maxima obtained from the grid of electrodesf
period of 10 sec. Each row represents negative maxima ofygedif-P channel of a selected
threshold level>1.75x STD of the normalized LFP. The red dots in the bottom refer to
ensemble presence of nLFP maxima.
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Figure 7.2. Avalanche analysis on spiking activity during vekefulness.In idle awake (A).

Cat i (96-electrode array) and Cat iii (inset, 8-electrodayg, (B). Human i (96-electrode
array),(C). Human ii (96-electrode array). Different line colors retie different bin sizes as
shown in the legend. The lower bounx{,, shown in green dotted line), shows that the CDF
of avalanche size, only partially, may follow power-lawtdisution. Even in such cases, the
exponents had very high values, well above the criticaéityime that is hypothesized for 1/f
noise. PaneléD),(E) and(F), show the same type of curves for monkeys engaged in cognitiv
motor task (96-electrode array; augmented with a 64-&ldetarray). Same pattern is
observed; it also seems MI has slightly higher values thad iPMhe plausible power-law
regime. For the mean/std exponent values, see Taldland Table7.2
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Figure 7.3. Spike avalanche distributions in log-linear r@resentation. Different line colors
refer to different bin sizes as shown in the legend. An exptiakprocess has a linear trend in
log-linear scale. Spike avalanches for all coarse grailangls, showed a linear trend. Please
notice that bin sizes 11 and 15 are not shown because forahgych the line plot, but
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showed similar linear trend in this scale (not shown).
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Figure 7.4. Avalanche analysis of spiking activity during fow-wave sleep. (A)Cat iii, (B)
Human i,(C) monkey iii Ml and(D) monkey iii PMd. Different line colors refer to different
bin sizes as shown in the legend. In parallel to awake dyre(figure 2), there is no sign of
criticality, the curves follow different partial powerviewith high exponents and variable
lower bound values. The avalanche dynamics do not showexdégtendent trend. For the
mean/std exponent values, see Tabl&.



142

A) Cat iii, REM 1

B) Cat iii, REM 2
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Figure 7.5. Avalanche analysis of spiking activity during FEM sleep. (A)cat iii REM
episode 1(B) cat iii REM episode 2(C) human i REM episode IDP) human i REM episode
2. Different line colors refer to different bin sizes as sinawthe legend. Similar to awake and
SWS, the lack of criticality, variability through differenoarse graining thresholds and lower
bounds is the universal finding. For the mean/std expondnésasee Table. 1
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A) Ensemble WTA vs local jitter
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Figure 7.6. Relation between unit firing and LFP peaks in waké&lness.nLFP (red) and
pLFP(blue)-based wave-triggered average (WTA) of peeggntinit activity, showing that the
negative peaks have closer association with an increaseuodnal firing.(A) Tightly

regulated local jitter of NLFP peaks destroys the large np&&k. Inset shows the zoom
around 0.(B) Preserving the internal structure of aggregate spike &nathensemble LFP
peaks, but destroying the relation between the two leadwsetdisappearance of the nLFP
peak. See text for details of randomization and controlg WWTA traces in this figure are
from Human i, (based on 183127, 98520 and 47451 nLFP and ¥58%225 and 36020 pLFP
peaks for low, medium and high threshold respectively.)
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A) nLFP, low thresh B) nLFP, mid thresh C) nLFP, high thresh
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Figure 7.7. Avalanche analysis in awake monkey LFPs in log&hmic representation. A
power-law process has a linear trend in log-log scale. LiEgdtive or positive) maxima
avalanches for all coarse graining levels, as well as atistwlds, showed a linear trend.
Please notice that bin sizes 11 and 15 are not shown becaube fdarity in the line plot;
however, they too, also showed a very clear linear trendignsitale. Such trend is necessary
but not sufficient for a process to be power-law. See text agdBF
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A) nLFP, low thresh B) nLFP, mid thresh C) nLFP, high thresh
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Figure 7.8. Avalanche analysis in awake human LFP in logarlimic representation. A
power-law process has a linear trend in log-log scale. LiEgdtive or positive) maxima
avalanches for all coarse graining levels, as well as adisttwlds, showed a linear trend.
Please notice that bin sizes 11 and 15 are not shown becaube fdarity in the line plot;
however, they too, also showed a very clear linear trendignsitale. Such trend is necessary
but not sufficient for a process to be power-law. See text ag.dBF
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Figure 7.9. Avalanche analysis based on LFP negative peakswakefulness. (A)Cat ii (96
electrode array) and Cat iii (inset, 8 electrode arréy),Human i,(C) Human ii ,(D) Monkey

il MI. In all cases, different binnings lead to variable lavimund and scaling exponents. Lack
of linear trend in CDF shows that the observed linear trerldgdog scale, as shown in

Fig. 8.7and Fig.8.8, are not sufficient for showing that avalanche dynamics avesp-law
processes. For the mean/std exponent values, see Table.
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Figure 7.10. Comparison of Avalanche analysis based on negg and positive peaks.

LFP (negative or positive) maxima avalanches for all cograeing levels, as well as all
thresholds did not show linear trend in CDF, therefore reegatver-law as the generating
process. These curves show while nLFP has a closer relatibrspiking, the avalanche
dynamics of nLFP and pLFP are strikingly similar in theirkax robust criticality when tested
with rigorous statistical tests.
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Figure 7.11. Avalanche analysis in different cortical area recorded simultaneously.
Avalanche dynamics in nLFP shows that the CDF of the inputangut units of two
interacting cortices have slightly different charactigegsbut neither follow criticality regime.
(A) Monkey i, Ml, low thresholdB) Monkey i, MI, medium thresholdC) Monkey i, Ml,
high threshold(D) Monkey i, PMd, low thresholdE) Monkey i, PMd, medium thresholdF)
Monkey i, PMd, high threshold.
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Figure 7.12. Effects of setting upper boundaries on avalame size distribution. Each

column shows avalanches of a different bin size (increafsorg left to right).Pane(A) and

(B), show the results of spike avalanche size distribution®RNd and Ml (respectively).

For each bin size, the distributions of different avalansizes are shown in circles; the
avalanche size increases from the bottom to the top, whelsite of each circle represents the
ratio to the overall number of avalanches. Red color showgxicluded (saturated) avalanches
enforced by limiting the Xmax to N (number of independent sugas; i.e. units in the case of
spike avalanches and electrodes in the case of LFP ava@n&an color shows the included
avalanches. Y axis is in logarithmic scale for better vieazion and the values of Y represent
the orders of magnitude of N for proper comparison betweterdnt bin sizes (i.e. a given
circle at y=2, represents the avalanches that their sizag(), its diameter shows the number
of avalanches that had that size and its color shows whétisencluded or excluded
according to the Xmax=N rule).
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Figure 7.13. A-B: Fits comparison and lower boundary.C-F:Aternative fits for avalanche
size distributions. (A) Probability-Probability plot (ECDF vs provisional CpFor a sample
bin-size (cat i spike avalanche). Green colors are p-p pldECDF vs exponential, and blue
colors are for p-p plot for ECDF vs power-law. In each colanily, as the lower boundary is
increased (from 1 to Xmin), the color saturation fades;dagkest color shows lower boundary
of 1 and the lightest shows lower boundary of Xmin (where Xmibhased on the Clauset
method for fitting power-law to empirical datgB) Integral of p-p distance to the 1:1 diagonal
(perfect match of the parametric CDF to ECDF). The colora€hb red) are related to bin
sizes (from smallest to biggest). Cross signs represeptmextial distance and circles
represents power law distance to the EC{TF. Simple exponential fitting of spike avalanche
data. The data points (purple and green) are plotted in #inegs representation, together
with a simple polynomial fit (blue), a robust fit calculatedtbe full length data (red) and a
robust fit on the reduced data (magenta). The two verticaslindicate the lower bound of the
region of linearity, i.e. Xmin’, calculated based on the simple polynomial fit (black) amel t
bi-square method (grey)D) Comparison of the goodness of fit of different exponentialtt
different reductions of the same dataset. The 3 coordirateormalized overall
improvement of RMSE” (noRMSE), “normalized relative impement of RMSE” (nrRMSE)
and distance of a point from the diagonal in (hnoRMSE,nrRM@&He. Each point in this 3D
space, is the result of a bi-square robust fit after elimimadif the firsti elements of the data
(best fit in red).(E) Bi-exponential fitting of the same data. The “sum of expor¢htnodel
(exp2) gave a very good performance in both full length (ddwe) and reduced above&min”
(red). The “simple exponential” model (expl) reaches a geqd fit only for the reduced set



7.8 Tables
Species Loc
Monkeyi Ml
Monkeyi Pmd
Monkey ii Ml
Monkey iii Ml
Monkey iii  Pmd
Catii MI
Cat iii Parietal
Cat iii Parietal
Cat iii Parietal
Cat iii Parietal
Human i Temporal
Human i Temporal
Humani Temporal
Human i Temporal
Human i Temporal
Human i Temporal
Humani Temporal

Table 7.1. Summary spike avalanche

State
Awake
Awake
Awake
SWS
SWS
Awake
Awake
SWS
REM 1
REM 2
Awake
SWS 1
SWS 2
REM 1
REM 2
Awake
SWS

CDF exponent
3.4413+ 0.7616
4.1668 0.6590
4.6250+ 0.4730
4.5560+ 0.7980
3.7768- 0.8660
2.8412+-1.2184
3.1416 0.8720
4.2116 0.7930
3.3246- 0.8150
3.4058- 0.8250
3.54960 0.8790
3.63400.6410
3.25500.5770
3.3748 0.8560
3.6430 0.5540
3.9200 0.7970
3.89560.7630

Cross species summary of spike avalanche

Pval

0.0419 0.1152
0.1130: 0.2140
0.4550- 0.3600
0.0030G: 0.0100
(0==N0)

0.3056: 0.3844
0.2010: 0.3680
0.3290- 0.3620
0.2990: 0.2170
0.4250: 0.4470
0.3870: 0.3650
0.3790: 0.3150
0.171Q: 0.2670
0.0930: 0.1720
0.0960: 0.1950
0.008G: 0.0230
0.0070: 0.0140

151

gof

0.0442+ 0.0216
0.018@: 0.0050
0.033@: 0.0120
0.022@: 0.0080
0.0430+ 0.0170
0.0599 0.0368
0.027@: 0.0180
0.035@: 0.0140
0.029@: 0.0110
0.023@: 0.0140
0.021@: 0.0080
0.025@: 0.0100
0.033@: 0.0150
0.030@: 0.0090
0.032@: 0.0170
0.009@: 0.0070
0.010@: 0.0070
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Table 7.2. Detailed Awake spike Avalanche

Loc
Ml
Ml
Ml
Ml
Ml
Ml
Ml
Ml
PMd
PMd
PMd
PMd
PMd
PMd
PMd
PMd

Monkey i detailed table.

Bin size(ms) CDF exponent

2.5
5
3.36
3.63
3.03
3.83
3.35
2.83
4.1
2.81
5
4.85
4.03
4.21
4.25
4.08

Pval  gof
0 0.036
0.008 0.020
0 0.029
0 0.039
0 0.047
0.327 0.034
0 0.060
0 0.089
0 0.006
0 0.021
0 0.018
0.061 0.017
0 0.022
0.018 0.024
0.216 0.019
0.61 0.017



Bin size(lms) Polarity Threshold CDF exponent
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Table 7.3. Detailed Awake LFP Avalanche

neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
neg
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos

Low
Low
Low
Low
Low
Low
Low
Low
Mid
Mid
Mid
Mid
Mid
Mid
Mid
Mid
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Mid
Mid
Mid
Mid
Mid
Mid
Mid
Mid
High
High
High
High

1.71
2.99
2.55
2.84
2.42
2.37
2.43
2.36
1.83
2.79
2.84
2.81
2.84
2.84
2.71
2.74
1.9
1.55
2.44
2.43
241
2.39
2.3
2.3
1.68
1.37
3.03
4.21
3.59
3.39
2.98
2.9
1.74
3.67
3.79
5
3.78
3.68
3.87
3.51
1.76
1.47
3.19
3.17

Pval
0
0.056
0
0.074

gof
0.019
0.051
0.052
0.052
0.053
0.059
0.054
0.052
0.015
0.040
0.042
0.048
0.050
0.048
0.058
0.056
0.018
0.029
0.036
0.046
0.036
0.035
0.036
0.040
0.020
0.073
0.066
0.051
0.048
0.047
0.046
0.052
0.018
0.062
0.069
0.061
0.041
0.036
0.049
0.046
0.020
0.061
0.067
0.066
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Chapter 8

Appendix: Cell/LFP relations and E/I

balance

155

al-gabr means “restoring”,

referring to the process of moving a
subtracted quantity to the other
side of an equation; al-mugabala is
“comparing” and refers to
subtracting equal quantities from
both sides of an equation.

al-Kitab al-mukhtasar fi hisab
al-jabr Wei-muqabala (“The
Compendious Book on Calculation
by Completion and Balancing”).

al-Khwarizmi
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~Appendix: Relations between excitatory and
Inhibitory cell activity and local field potentials
during human brain states.
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8.1 Summary

High-density intracranial recordings (NeuroPort 96-#leie array) were obtained in the tem-
poral cortex of humans under treatment for neurosurgery.siiéeessfully separated regular-
spiking (RS) and fast-spiking (FS) cells, as confirmed fromnosynaptic connections (see
Peyrache et al., SFN Abstract 2011). We report here thereiffeal firing of RS and FS cells
during different sleep stages, devoid of interictal atyiviUp to 90 simultaneously recorded
units (in Layer IIl), and 96 local field potential (LFP) redangs, provide a good basis to charac-
terize the dynamics of excitation and inhibition duringeliént brain states. During slow-wave
sleep (SWS, Stage Il or IV), dominated by delta-wave atti\all neurons fired according to
Up and Down states, in relation to slow-waves complexesern_tfP, as described previously.
Both RS and FS cells were silent during the Down-states. rMQuREM sleep and wakeful-
ness, both types of units fired according to very irreguldtepas of discharge, while the LFP
or ECoG were desynchronized. In all states, FS cells firedifsigntly more than RS cells
(about 4 to 5 times on average). We next evaluated the cleaistzds of the different stages
in more detail by using an automatic categorization of skteges combined with sequential
multitaper spectral estimation. Dividing the recordingsepisodes of light SWS, deep SWS,
REM and wakefulness, we calculated and compared the spwatiafer function (LFP-Units)
for each stage. We also estimated the correlated firing ofitiits, as well as the spatial and
temporal correlation of LFPs and cells, which are signifilyalarger for SWS. In conclusion,
these results show unit firing and spectral properties fondrusleep, and are consistent with
well-known electrophysiological characteristics in casl rats.
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8.2 Resune

Des enregistrements intra-craniens de haute-densa@r@®ort, 96 electrodes) ont été obtenus
dans le cortex temporal de patients traités pour la nelimmigie. Nous avons pu séparer les
cellules entre “regular-spiking” (RS) et “fast-spiking*$), ce qui a été confirmé par connec-
tions monosynaptiques (voir Peyrache et al., PNAS, 2012)usN\analysons ici la décharge
spécifique des cellules RS et FS pendant differents dtateil et de sommeil, sélectionnés
sans activité interictale. Jusqu’a 92 unités enreggstisimultanément, procurent une base solide
pour la caractérisation de la dynamique de I'excitatiodeetinhibition pendant ces différents
états. Pendant le sommeil lent (Stade Il ou IV), dominélesondes lentes de type delta, tous
les neurones déchargent selon des états “Up” ou “Downtekation avec les ondes lentes du
LFP, comme décrit precedemment. Les cellules RS et F&tgotes silencieuses pendant les
etats “Down”. Pendant le sommeil REM et pendant I'éve§ heurones déchargent de facon
irréguliere alors que le LFP ou 'ECoG sont desynchresidans tous les états les cellules FS
déchargent plus que les cellules RS (4 ou 5 fois plus en nm&jeltnsuite, nous avons évalué
les caractéristiques de chaque état en utilisant uneeguve de classification automatique et
analyse spectrale. En divisant les enregistrements en stiheger, sommeil profond, sommeil
REM et éveil, nous calculons la fonction de transfert el@seneurones et le LFP pour chaque
etat. Nous estimons aussi le degré de corrélation deones, et 'étendue spatiale et tem-
porelle de ces correlations, qui est la plus grande pourrtersel profond. En conclusion, ces
résultats demontrent que les relations entre unitéeg-Bt dépendent de I'état cérébral, et sont
consistantes avec les résultats publiés chez le chatait le
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8.3 Materials and Methods

Human intracranial recordings

Recordings were obtained from two patients with medicailyactable focal epilepsy using
NeuroPort electrode array as discussed previouslyZ60. The array, 1mm in length, was
placed in layers Il/1ll of the middle temporal gyrus with ammed consent of the patient and
with approval of the local Institutional Review Board in acdance with the ethical standards
of the Declaration of Helsinki. This array is silicon-basethde up of 96 microelectrodes with
400-um spacing, covering an area ob44 mm. Since the corners are omitted from the array,
the furthest separated contacts are 4.6 mm apart. Data wemeledd at 30 kHz (Blackrock
Microsystems, Salt Lake City, Utah, USA). The continuousording was downsampled to
1250 Hz to obtain LFPs. The dataset we analyzed was devoidyofam of identifiable
epileptic activity (such as interictal spikes), and thegswo seizure in the analyzed dataset.
The implantation site was included in the therapeutic e both patients. For details on
spike sorting, see Peyrache et ab(J.

8.4 Figures
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Figure 8.1. Relation between units and LFPs during wakefuless.
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Figure 8.2. Relation between units and LFPs during light slav-wave sleep (Stage ).
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Figure 8.3. Relation between units and LFPs during deep slowvave sleep (Stage V).
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Figure 8.4. Relation between units and LFPs during REM sleep
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Figure 8.5.

Firing per bin

overall firing pattern

Normalized population firing pattern

I 1
25 50 time(Sec) 75 100

Relation between units and LFPs during a focal seure.



165

avg spike-triggered Ifp (across all Excitatory Neurons) avg spike-triggered Ifp (across all Inhibitory Neurons)

150 2

100 - A 1 ;"\\
0 RAATRTN \ N\ T

B <
A8 5-
50 | \ §
— Awake
-100 —— Light Sleep
R —Deep Sleep
150 - —REM
-200 -
-250 -5
0 50 100 150 200 250 0 50 100 150 200 250
Time(ms) Time(ms)

Figure 8.6. Relation between units and LFPs using spike-tggered averages (STA),
during different brain states.
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Figure 8.7. State-dependent descriptive statistics of FSVRS.
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Figure 8.8. State-dependent firing probability. Density probabilities were computed from
kernel smoothing density estimates of the actual data aspdadied such that the sum over the
whole displayed interval is equal to 100 for each group. Top in deep NREM, both firing
rate distributions (FS in red and RS in blue) had a gaus#karshape in logarithmic
x-coordinates suggesting log-normal distribution for 8 RS cells. The FS cell distribution
in Wake/drowsy as well as light NREM show possibility of bidab characteristics. Bottom
row: Distribution of auto-correlogram modes (time of maxim peak) for each group.



167

bin size

-25 -20 -15 -10 =5 0
ensemble magnitude

[43
]
@
c
=

=15 -10 £S5 0
ensemble magnitude

Figure 8.9. Multiscale dynamic excitation/inhibition balance: distribution of ensemble
magnitude. Top:Awake, Bottom: SWS. Moving 30 sec windows, sliding inet steps, were
used to characterize the dynamics of E/I balance. In eaahgtep, the 30 sec window of the
spike matrix was binned at multiple time-scales of 1, 5, 10,49, 80 and 100 ms. For each
binned spike matrix, the ensemble magnitude of excitati@hiahibition was calculated as the
sum of all FS (or RS) spikes within that window. Scatter hgséons, show how the magnitude
range is distributed for FS (negative on x axis) and RS (jvesiin x axis). The range of the
size of these ensemble magnitudes, seem to be in balant¢éaesdcales. The L-R symmetry
shows that "distribution of ensemble magnitude” is simitarFS and RS for all scales. The
pyramidal shape shows that as the scale increases, ngthrghier ensemble magnitudes are
plausible and the range of possible magnitudes is wideril&ipattern was observed for both
awake and SWS.
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Figure 8.10. Multiscale dynamic excitation/inhibition baance: frequency of ensemble
magnitude. Top:Awake, Bottom: SWS. The histogram count of differerdemble
magnitudes (regardless of their time scale) is symmetiocddoth FS (red) and RS (blue).
Therefore the frequency of ensemble magnitude also seeotida/fa balanced regime for
both awake and SWS states.
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Figure 8.11. Dynamic pairwise-correlation of LFP.Top:Awake, Bottom: SWS. Moving 30
sec windows, sliding in 1 sec steps, were used to charaeteérezdynamics of LFP correlation.
In each time step, pair-wise correlation coefficient amoRg Ichannels was calculated. The
values from all pairs, all time steps were pooled togetherdate the historgram distribution
of dynamics LFP correlation. In case of SWS, the shift to tktrof the histogram, shows an
overall higher level of correlation within this 4mmx4mm glatbf the cortex.
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Chapter 9

EEG/MEG Spectra

You can't say A is made of B or
vice versa. All mass is interaction.

Richard Feynman

In Chapter 5, we have combined theoretical and experimamialyses to investigate the
spectral structure of EEG and MEG signals.

9.1 Theoretical investigation of the frequency scaling of EG
and MEG signals

9.1.1 recount of biophysics

As discussed in chapter 2, in macroscopic modeling of ME@HEe common practice is to
assume that the cortex is composed of mini-columns or meaitoynins R72. In each of these
elements, the vector sum of electrical activity is modeled aurrent dipoleq8]. It is hypoth-
esized that such dipoles have the same biophysical root®n@ne structural organization of
the cortex, when pyramidal cells in a given column are at#iyathe current passes through the
apical dendritic structure toward the soma. This "imprd&serrent leaves the soma and "pas-
sively” returns to the superficial layers of the corté&$,[76]. The magnetic induction caused
by the impressed current is responsible for the MEG signdltha ohmic passive current is
the source of EEG signa8[79]. If the activity within mesoscopic elements is synchreuiz
the approximated current dipole has a big enough amplithdedan be detected by distant
electrodes.
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The propagation of the electromagnetic source throughxtracellular medium abides by
the same principles that any electromagnetic wave wouldvioin its propagation through a
volume conductor. By assuming that the extracellular i®lyuresistive, quasi-static Maxwell
eqguations can be used to predict the propagation of theeteagnetic field generated by cur-
rent dipoles. Given a set of sources, the precise predidfidineir spatial spread, i.e. forward
model, would rely on the volume conductor’'s geometry anddoativity. In defining the con-
ductivity profile, the common practice is to neglect the cipae effects, but leave room for
possible inclusion of medium inhomogeneity and anisotribmne decides to include more
details in the model77, 78]. In the numerical approach to the conductor modeling, twbet
one uses "Quasi-analytical solutionsrg 89, 273, or relies on "Boundary element model
(BEM)” [102 157] or adapts "Finite element/volume model (FEM/FVM)146, the differ-
ences are only in piecewise details. In principle, by inclgdnore details, the computational
cost adds up but the equations remain quasi-static. Bastb@s® assumptions, the conductivity
profile of the gray matter is similar for both MEG and EEG.

Other barriers, between the source and the sensor outsitie skull, include CSF, scalp
and skull. It is known that electrical field is influenced bltaese elements while the magnetic
field is not B,16,75,77]. These barriers acting as spatial filters cause a smedifatd en EEG
but not MEG. However, the spectral content of EEG and MEG kh@main the same.

9.1.2 Theoretical assumptions

Our first study was formulated to explore these assumptiboatathe conductivity profile of
gray matter and the negligible effect of other barriers agcsal content. In chapter 5, we start
with theoretical formulation of the spectral density of MEB&d EEG based on a purely resis-
tive medium, and then follow with an experimental sectiastitey the validity of such assump-
tions against the simultaneous measurements of EEG/ME&:Ban resistivity assumption,
the frequency scaling of EEG and MEG signals should be simBased on our theoretical
calculations, this conclusion is only valid in the lineagiree, and for low frequencies. One of
prerequisites of this phenomenon to be fully realized, esstbsumptive independence of current
densities at large scale. Therefore, the desynchroniz¢el istthe best matching experimental
scenario to test this hypothesis. It has been shown thatmaatate (a form of the high conduc-
tance in vivo) increased excitability of the neural memierdne to the synaptic bombardment
is associated with the low correlatioB1]. This situation results in focal activation, where at
the micro-meso scale would lead to independence of the s§L2§].
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9.2 Analysis of the frequency scaling of EEG and MEG sig-
nals

9.2.1 precisions and precautions
9.2.1.1 Optimal state

In the second part of the chapter, we have presented thexg@tponent analyses obtained
from the PSD of simultaneously recorded EEG/MEG signalsffour healthy subjects. In all
cases, the recording were from the "desynchronized EE@"statiake with eyes open (which
are the states at which our formalism best applies).

9.2.1.1.0.5 Data-driven optimized exponent estimation For automated and proper cal-
culation of the frequency scaling exponent on large numbbeshannels, we used a semi-
parametric data-adapting "B-spline” optimization methoabtain a smooth FFT without los-
ing its frequency resolution. This method enforced craehat would maximally improve the
estimates from the low frequencies (which are the range athwdur formalism best applies).

9.2.1.1.0.6 Multimodal topographical characterization é scaling exponent Due to

the complex geometry of the volume conductor and diffeeg¢sensitivity of MEG and EEG
to orientation of the current dipoles, it is important toatdite the scaling exponent for all of
the sensors (more is better) not a small group confined toengiegion [as in studies such
as [L30 131]. Naturally, the best case scenario is to compare the tepdgral maps of "si-
multaneously” recorded MEG and EEG instead of limiting thalgses to only one modality
(such as 221,227)). Thus we relied on multimodal topographical characegron of scaling
exponent to yield higher reliability.

9.2.1.1.0.7 Proper selection of the MEG sensor typeMagnetometers measure the ab-
solute magnitude of the magnetic induction and Gradiomseteasure the gradient of the mag-
netic induction. Due to this property, a distant backgrosodrce largely cancels at gradiome-
ters. Therefore, these types of sensors are less n@i&g|[ This characteristic may prompt
one to inadvertently estimate the scaling exponents frensfiectral difference of magnetome-
ters. This estimation is rationalized by the desire to mithechigher SNR of the gradiometers
and avoid spurious peak$31. Such a practice is improper because it fundamentally gésn
the spectral characteristics of the source and turns itantapproximated behavior of the gra-
diometers. Not only is this an uncontrolled approximatiahddso the gradiometers themselves
are not the prime choice for the estimation of frequencyisgaxponents. A better approach is
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to use Magnetometers in a highly shielded room and applyctsaiéy” proper noise reduction
methods to achieve reliability in the estimates. In the sextion, we discuss such methods.

9.2.1.1.0.8 Noise correction As discussed in chapter 2, magnetic measurements are
highly susceptible to the environmental and instrumendéen While our data was recorded
in a highly effective 6-layer magnetic shielded roo?d]| it is desirable to exclude the effects
of the magnetic noise from the estimated scaling exponeigt.also shown that the MEG sen-
sors may have different SNR characteristics depending @in télative location with respect
to head 118. In order to remove the noise effect, we developed a few oreasof noise re-
duction based on the empty room recordings prior to the @xatal session. As, a priori, the
nature of noise was not known, each method was designed wiiffeaent source of noise in
mind. In case of SQUID sensor noise induced la simple subtraction of scaling exponents
was used to remove the effects of this filtering. In case oftagduncorrelated noise, spectral
subtraction methods (linear, non-linear multi-band satiton and Weiner Filter) based on the
band-specific SNR information, would remove the frequerayisg imposed by the noise pres-
ence. To address general additive uncorrelated noiséaldaetst squares (PLS) was applied to
help remove the noise based on its collective features.

9.2.1.2 Comparison with other studies

Prior studies have reported that, at low frequencies, EES ehfrequency scaling of /X
[129 134, 220. Our findings showed that while (at low frequencies) EEGoléigs frequency
scaling close to Af, the spatial distribution of scaling exponents is not umfoMEG showed
significantly lower scaling exponents and it too had a noifieam, but more complex, to-
pographical map of scaling exponent. This variable topolgial map could further be se-
guestered into 3 main regions: 1) a frontal area where therexqs had their highest values in
the case of MEG 2) a central area where the values of expooEBEG and MEG get closer to
each other and 3) a parietotemporal horseshoe region spakeriowest exponents for MEG
with bimodal characteristics.

Prior studies results each match with a subset of our obsengg130, 131, 221,222 226.
However, as they were more methodologically limited, (astio@ed above and discussed in
chapter 5) it is not clear how to relate their values to thesartgained here. It is safe to say
that the burden of the confirmation of our findings is uponifeidetailed and methodologically
sound experiments. In summary, both uncorrected signalseapty-room correction show
that there is a fundamentally different frequency scaliagyieen EEG and MEG signals. Even
in the light of different noise subtraction, the noise-eoted MEG showed a further distance
from EEG in terms of frequency scaling exponent.
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9.2.1.3 Mismatch of the quasi-static approximations with lhe experimental findings

The mismatch between the predictions of quasi-static aqpetdions, and the complex vari-
ability of the measured scaling exponent of EEG vs MEG, shibnaisthe original assumptions
about the conductivity profile of gray matter and the neglgieffect of other barriers on spec-
tral content are improper. These findings are consistehttvé hypothesis that the/ 1 struc-
ture of the field potentials (EEG or LFP) is essentially dua feequency-filtering effects of the
extracellular medium due to the Warburg impedance causéahixydiffusion [123 134,192.

9.3 concerns and future possibilities

9.3.1 Precise 3D geometric models

Complex spatial configuration of the sources and the diffiesesensitivity of the MEG and
EEG signals to dipole orientatiod]4-116], remain as possible reasons for the different spec-
tral behavior of EEG and MEG. The questions of whether therexbdf spatial averaging of
microscopic signals or the cancellation of sources of thiksved the sulcus due to their ori-
entation disparity could affect the scaling of spectralsiigmrshould be examined in the future
studies adapting detailed 3D geometric models of the tissue

9.3.2 Multiscale studies

Bypassing non-neuronal effects at very low frequency usingsive electromagnetic measure-
ments is a possibility. Moreover, multiscale simultanemeordings from an invasive method
with a non-invasive one, like iIEEG and MEG (as &2[)) could provide a chance to evaluate
the effects of spatial correlation on spectral structure raultiscale level.

9.4 Conclusion

These theoretical considerations and experimental agglysggest that a purely resistive ex-
tracellular medium cannot explain the observed differanceequency scaling of EEG. The
1/f structure of EEG with smaller scaling exponents for MEG issistent with non-resistive
extracellular impedances, such as capacitive media augiliii (Warburg) impedances (see
[63,122 197) . If this non-resistive aspect of extracellular mediagsfirmed, it may influence
the results of models of source localization, which may riedx reformulated to include more
realistic extracellular impedances.
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Chapter 10

Network dynamics

For it is the same whether you take
it that the Earth is in motion or the
Sky. For, in both the cases, it does
not affect the Astronomical
Science. ltis just for the Physicist
to see if it is possible to refute it. .

Abu-Rayhan Biruni

In Chapter 6, we used multielectrode array recording ofscetim layer I/l of the of
the middle temporal gyrus in epileptic patients. Detailghed instrumentation are presented
in Chapter 1. These high-density arrays, provide an oppityttio analyze the dynamics of
the microcircuitry of a 4x4 mm patch of the cortex which is e tsame order of magnitude
as a cortical column. We used overnight sleep recordingstfopn a detailed quantitative
analysis of the spatiotemporal dynamics of excitation antibition in the human neocortex.
The findings are categorically divided to: (i) robust morgical (based on the extracellular
waveform features) discrimination of putative corticatiéatory and inhibitory neurons; (ii) in
vivo evidence of functional monosynaptic connections mhiaman neocortex; (iii) functional
behavior of inhibitory and excitatory cells during humaeeg; (iv) distinctive spatiotemporal
patterns of Pyr-Pyr and Int-Int assembly interactions; dejailed quantification of cortico-
cortical correlations. Below, we provide an overview thiésdings.
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10.0.1 Morpho-functional discrimination of putative inhibitory and pu-
tative excitatory units.

10.0.1.1 Morphological clustering of spike waveforms

It has been shown that the extracellular spike waveform raay enformation about the func-
tional characteristic of its generating cell. A short, fdetaying action potential has been asso-
ciated with Fast-spiking (FS) and GABAergic cells; therefsuch characteristics are indicative
of putative inhibitory neurons. A large and slower actiortgndial depicts Regular-spiking
(RS) and glutamatergic neurons, thus suggesting that therger is a putative excitatory cell.
The spike waveform features, along with firing rate charssties, have therefore been used
to discriminate FS and RS cells in various mammalian spesigsh as rats39] and guinea
pigs [24]1]. Using spike waveform features, later studies succeedegparating FS and RS
cells in human hippocampud], 247 as well as human neocortexH, 56.

In our study, we computed the average waveform from eacledasll. Then the wave-
form’s "half width” and "valley-to-peak” were used in a K-raBs clustering algorithm to suc-
cessfully separate the units into the two category of FS aBdSelecting different pairs of
waveform features, like "valley-to-peak amplitude rataid "valley-to-peak widths” or "half-
valley width” and "valley-to-peak distance” also providextching results. Moreover, a more
sophisticated Expectation-Maximization (E-M) algorithwsed on the Gaussian mixture mod-
els provided robust discrimination and confirmed the sejmara

This segregation was consistent with several other celhsit parameters of pyramidal and
inhibitory neurons. For example, as anticipated, FS celisdi much higher rates (five times
higher than RS) while RS cells showed 64% bursting behauiocdmparison to the only 2%
of FS). These two groups manifested different coefficiehtaaation (the ratio of the standard
deviation to the mean of the interspike interval (ISI) disition). Additionally, the autocor-
relogram of putative inhibitory neurons showed a slow gsautocorrelation while putative
excitatory cells had sharp autocorrelaograms. The twoggraiso had highly distinctive distri-
butions of the mode (i.e., time of maximal values in the aotmdogram). These characteristics
match the known longer refractory period in the case of F& egld shorter refractory period
for the RS cells. Such properties may equip the inhibitollscs members of an ensemble
with longer memory of the immediate past events.

The ratio of the "putative” excitatory (RS) to "putative”hibitory (FS) was 4 to 1 which
is consistent with the known ratio between the pyramidaliahditory cells in the neocortex
[143. This finding is interesting because despite the assumpliat larger pyramidal cells
generate higher amplitude spikes (and thus are more easdgtdble in the extracellular space),
a random sampling within the dense multielectrode arragld of view detected both groups
with sufficient reliability.
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It has to be emphasized that not all excitatory cells hava@waextracellular spike wave-
form signature. This issue seems to be especially cleareinmbtor cortex. In cats, in vitro
[274), in vivo [279, and during anesthesi276], it has been shown that pyramidal neuron
exhibits a wide variety of spike durations and waveformsluding thin spikes. Similarly, evi-
dence for thin spikes from a recent study in awake monkeyrskny motor area77] suggests
that spike duration alone may not be a reliable tool propertyiscriminate interneurons and
all types of pyramidal neurons in extracellular recordingerhaps the finding of these studies
shows that the different functional cytoarchitecture & thotor cortex (morphology of cells,
their density, modes of action and the composition of theaeedlular tissue itself) and/or the
specific layer of the cortex may play a role in how electrode®rd the extracellular signature
of action potentials.

10.0.1.2 Functional discrimination of units

Monosynaptic connectivity can be used as an evidence foralty of the morphofunctional
dichotomy within the network. Pairwise cross-correlogsaran help characterizing putative
monosynaptic connection89]. Statistically significant temporal bias in the cell paatative
spike timing can be used as an indicator of putative mongsimeonnections355. For any
given pair of units, excessive biased spikes occurring efi@low a statistical thresholdwithin
the short-latency<4 ms) interval was the indicator of their monosynaptic fioral connec-
tivity. In the analyzed cross-correlograms, statisticaignificant peaks were considered as
the functional signature of an excitatory monosynapticnemtion from cell A to cell B. Con-
versely, statistically significant drops were interpregsch sign for an inhibitory monosynaptic
connection.

The distribution of the observed monosynaptic functioralreectivity perfectly matched
the morphological clustering of the two excitatory and tdry populations. The monosynap-
tic connectivity matrix was typically sparse (17%) and niffiedent for excitatory or inhibitory
units. Monosynaptic connections were almost entirelyli¢gairs recorded on the same elec-
trode) for both populations. These observations haveiodmaitations based on the fact that
the adapted method underestimates the number of actuaidoakcconnectivities based on its
reliance on suprathreshold activity from pre- and pos@gyiec neurons. The locality of the
monosynaptic connectivity is in line with the fast distartmpendent decay of synaptic con-
nections 143 255. The spatial extent of local monosynpatic connectivitynewever, still a
subject of debate?35,236. Studying longer scale correlations showed that the uaiterded
from the same electrodes had higher functional connegtwith each other than with those
recorded from other electrodes. This resonates with thethgsis that connected units are
more likely to form dynamic cell assemblietd. The observed morpho-functional dichotomy
in our investigations enabled us to characterize the dymameraction of excitatory and in-
hibitory units, which is discussed next.
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10.0.1.3 Functional balance of inhibition and excitation

Theoretically, it has been suggested that in a sparselyemed network, the seemingly irregu-
lar firing of cells could be the consequence of the excitditidwibition (E-1) balance250-252.
These theoretical predictions match with intracellulatigations of a balance between exci-
tatory and inhibitory conductance both in vitrd72 and in vivo [253. Possible excess of
inhibition in vivo has also been suggest&b4]. Our extracellular analysis in chapters 6 and
8 represent indirect evidence in favor of E-I balance. Theraye firing rate for inhibitory
neurons were five times higher than the excitatory neurone\ine inhibitory cells were 4
to 5 times less common than excitatory cells. Thus it seemustttial synaptic activity of the
two populations are in an ongoing balance. Also, the logmabudistribution of the firing rates
(for both populations), matches the theoretical predictibheavy-tailed firing rate in sparsely
connected network2pd.

10.1 Spatiotemporal dynamics of excitation and inhibition

Proponents of rate coding hypothesis have argued that thkeawidence for correlated corti-
cal activity is not mirrored by a functional significancedahat the firing rate is sufficient for
mediating perceptual bindin@T8. In contrast, according to the temporal coding hypothesis
it has been suggested that the overall functional architeclong with coordinated spiking
activity on a fine temporal scale is an essential propertyheffinctioning brainZ79. What

is neglected in the former claim is the detailed cytoarchitee of the neocortex and the local
spread of synaptic connectivity. What is missing from thera&laim is the approximate bal-
ance of excitation-inhibition. Earlier studies have shadha existence of a distant-dependent
pairwise correlation between MUAs. In addition, the sgaidend of the functional clusters
was reported to match with the spatial organization of tmseey cortex contained by optical
imaging 80. The morpho-functional characterization of FS and RSaiindm the ensemble
recordings gave us the opportunity to test the spatioteahpatent of excitation and inhibition.

We found that the excitatory cells show a distant-dependemelation whereas inhibitory
cell pairs were equally correlated with both proximal anstali electrodes over spatial extent
of the array. Our findings were later confirmed by an in vitnadgtreporting that, in contrast
to RS neurons, FS interneurons correlation was not disegmerntent281]. We also noticed
that in the case of excitatory cell pairs, as the timescateqize) increased, the modulation of
the spatial extent decreased and the correlations tendeglitdize irrespective of the distance
between the units.

These results have strong implications for our understenol cortical network dynamics,
particularly with respect to the spatial extent of E-E clatien with the axonal arborization of
the excitatory units of the human hypercolumn. Interesyiitgs known that this spatial extent
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of arborization is more evident in the primary sensory cegithan the higher order areas, like
the examined temporal neocortex in our stuti¢d. In contrast, common subcortical inputs
over large neocortical areas impinging directly onto GAB#fie [80, 97] could be the result
of the observed large spatial extent of inhibitory corielas. This finding shows that what is
neglected in the rate coding hypothedg§ is a major property of the cortical microcircuitry.
The tendency of the correlations to equalize at longer toales, along with the E-I balance
measures (presented in Chapters 6 and 8) are reflectiveapbpmeximate balance of excitation-
inhibition; this concept is missing from the temporal caghypothesis279.

In studying the spatiotemporal dynamics in different wale®p states, we also found that
the distance-dependent E-E relationship decreased ddeieyg NREM (non-REM) sleep. Al-
though this distance-dependent property still remainatissically significant. From the meso-
scopic or macroscopic field potentials, i.e. LFP and EEG, m@\kthat during the slow-wave
sleep, functional units orchestrate over large ar@88 56|, while during desynchronized
state, neocortex manifests low spatial correlatib#4. The fact that SWS is matched with
"long time scale dynamics” and that desynchronized statevstharacteristics of "short time
scale dynamics” gives us a hint that functional units of tbetex are capable to operate in
different modes. In addition, along with the intricate goespecific spatiotemporal connectiv-
ity of excitatory and inhibitory cells, some neurons areatdp of reaching very distant areas
and could produce large-scale synchronization of the itdrjpnetwork B3]. Also, different
thalamocortical (core and matrix) projections could réamore focal or widespread cortical
areas 26,98,107. If cognition and feature binding is needed, perhaps tistesy tends to use
a mode that rapidly but specifically recruits the proper taxory cell. It is the task of the in-
terneurons to balance the network in terms of the tempouatfaa spatial extent of excitation.
In such a scenario, temporal and rate codes are two sides shthe coin, where one morphs
into another depending on the required computation.

10.2 Limitations

Our study was based on recordings from epileptic patientghoAgh the selected segments
were void of epileptic activities, there is a possibilityatithe studied tissue is not cytoarchi-
tecturally and/or functionally normal. However, studyihg E-I balance in the seizure and the
preliminary findings of E-I disturbance during seizures #@ter 8) may hint that the studies
tissue may functionally behave normal except at the timesuses when the whole network
is pushed out of balance.
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10.3 Conclusion& future directions

Our study not only extends some of the prior work in animaréture to the human cortex
but also provides novel characterization of the dynamidbt®ieocortical microcircuitry. The
observed large-scale synchronized inhibition, along Wigmore focal synchronized excitation
and their variable characteristics at different time-ssalnd conscious states, serves as an initial
step toward better understanding the intricate dynamiagh@®fmeural network computation.
Extension of these findings to the study of cognition, sleabseizures will help to better see
the ever evolving spatiotemporal dynamics of the brain.




Chapter 11

Avalanche dynamics

A cloud is made of billows upon
billows upon billows that look like
clouds. As you come closer to a
cloud you don'’t get something
smooth, but irregularities at a
smaller scale.

Benoit Mandelbrot

The dynamics of SOC systems are structured as “avalanchastiaity, separated by silent
periods. Avalanche sizes are typically distributed as agvdaw, which is particularly in-
teresting for the scale invariance it presents. In Chapteve/have analyzed and compared
the avalanche dynamics obtained from multielectrode dtogs of spikes and LFPs, for three
species: cat, monkey and human. In each case, we used regoakiclusively made in non-
anesthetized brain states, including quiet and active fuliless, SWS (slow-wave sleep) and
REM (Rapid eye movement). In monkeys, we had the opportaajtgimultaneously, record
from two different patches of the cortex. In all cases, wadugw@h-type multielectrode arrays.
The details of the instrumentation are described in Chdpter

11.1 Avalanche dynamics from unit recordings

Previously, it had been shown that awake spike avalanchandis do not show power-law
characteristicsl34]. This study was criticized as having poor spatial samp(iorgy 8 elec-
trodes, arranged linearly with contacts far from each dibvgproperly characterizing avalanche
dynamics). In our study, we used the significantly highersitgriwo dimensional arrays.
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Whether the recordings were from “desynchronized” EEGestdtvakefulness), SWS, and
REM sleep, we found no evidence for meaningful power-laviisgan the neural avalanches.
This was the case for all three species.

11.2 Avalanche dynamics from LFP recordings

In evaluating LFP avalanche dynamics, we not only evaluaégrtive LFP (nLFP) peaks, but
also analyzed positive LFP (pLFP) peaks. Additionally, dach of these polarities, we used
numerous thresholds to discretize LFP in order to createalarache matrix. Our analyses for
LFP avalanche dynamics was only done in awake state. In sasescthe subject was in idle
wakefulness and in others they were engaged in a cognitdteftask.

In contrast to spikes, analysis of nLFP avalanches displalyghtly variable results. In the
log-log representation, some cases appeared not to follstraaght line and therefore could
not be considered to have power-law distribution. Othewsjdver, appeared to distribute close
to a power-law in such representation. Albeit, when thesesavere tested with stringent
statistical tests (CDF-based evaluation of power-law ipieical datasets), they did not show
clear evidence for meaningful power-law scaling. It is adaesed that nLFPs have a closer tie to
cell spiking activity. This factor, along with the reportgdwer-law scaling of nLFP in vitro, has
been taken as evidence of self-organized criticality inrtberal dynamicsl[35. If that were
the case, pLFPs (which are not as tightly related to neuragjishould not scale as a power-
law. If pLFPs scale as a power-law as nLFPs do, then suchhgdalia spurious one and is the
result of something else rather than self-organized atitic Based on the above argument, we
also tested pLFPs from the three species at different thlégsland at different time scales. The
results were similar to the findings drawn from the analysed. BP avalanches, in that in some
cases pLFPs did not scale as power-law and other cases thegale as power-law but with
estimated exponents that were not meaningfully relevasglfeorganized critical systems.

Given these findings, it is necessary to provide a comparatnalyses of the relationship
between spiking and the LFP peaks. Comparing nLFPs vs pLik®gesl that the former had
a closer relationship with spike timing. We then used 4 mashaf surrogate/randomization in
order to evaluate the statistical robustness of the cortipanelation of spike-nLFP vs spike-
pLF. Each of these randomization methods tested a speaifepty of spike/LFP distribution
. ) using Poisson surrogate data, we tested whether thevaasalLFP and pLFP differences
could be reproduced by surrogate spike series, ii) Randomuyiation was used to verify that
randomizing the aggregate spike series by itself cannotiertime observed the LFP-spike re-
lation, iii) Local jitter randomization was used to evakidhe effects of randomization based
on the statistics of the individual channel’s LFP peak tirtiefore aggregating them into the
ensemble LFP peak train) of LFP peaks, and iv) Fixed-ISlutaicshift of spike was applied
todestroy the relation between ensemble spikes and ensgraéaks while preserving their in-
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ternal structure. All these test confirmed that the funddalathfferences in the comparative
nLFP-spsike and pLFP-spike relationships are not attéerfatim randomness of spikes or LFP
peaks. Together, these findings show that basing self-megmriticality on the power-law
scaling of pLFPs is not proper as it seems that such obsengatire phenomenological rather
than depicting true nature of the underlying computatioth@neural tissue.

While it is imperative that findings of some earlier studiegévisited and tested with more
robust statistical methods, the evidence for power-lawridigion (and the conclusion of self-
organized criticality based on that) from in vitrt35 or anesthetized statd 82 match our
understandings about the natural differences of functiorganization in comparison with in
vivo non-anesthetized brain. Additionally, a recent réjpais shown that collapsing avalanches
(from high density in vitro recordings) show elements ofvensality P70, a feature that is
better tied to self-organized criticality. These obseorat do not contradict our results from
in vivo non-anesthetized cortex in that the wiringiofvitro preparations are fundamentally
different from the in vivo situationd0]. In addition, the network dynamics in anesthesia are
much different from the high conductance st&#[ On the other hand, our results do contradict
the report of power-law scaling of nLFPs avalanches in awa&akeys 183. The scope of
that study has been more limited in terms of i) the densityhefélectrodes and number of
independent recordings of LFP and spike andii) the stadistigor. Additionally, there are
other possibilities that could reconcile these differdrmgervations, such as differences between
the examined brain region, recording method, corticallayerolume conduction effects.

11.3 Methodological considerations

In the search for the power-law in empirical data, using C¥ridbution is statistically much
more superior to the simple log-log representations of the distribution R01, 261]. Addi-
tionally, the Kolmogorov-Smirnov test is also largely stipeto the least square for fitting a
distribution to an empirical dat21]. It is also important to note that in using CDF-based KS
test, one can force the scaling exponent to fall within thrgyeaof the plausible values. After
such practice, and if the scaling exponent passes statistgnificance testing, naturally, the
yielded scaling exponents will have values comparable dselin known self-organized nat-
ural systems. However, it is the range of the data that has &abrificed in order to achieve
these "acceptable” (from self-organized criticality poaf view) exponent values. The only
scenario that will not impose any trade-off between the eaofghe data and the plausible scal-
ing exponent of SOC systems, is when the system universadlgs across all the decades of
its events.

In our analyses, we adapted the CDF-based KS testing of pewekle opted to conserve
more decades of the avalanche sizes in order to better uadeérthe avalanche dynamics at
the operating scales of the brain. Therefore, we did noefsaaling the exponent range to be
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limited to that of the known SOC systems (i.e 1-2). Therefarecases where the data was
fit with a proper power-law, examining of the scaling expdneadue becomes essential. In
such situations, the obtained exponents were orders of itndgrhigher than those of the SOC
systems. Therefore, we claim that the power-law was nost&xi or meaningless.

Conversely, some may opt to sacrifice the range in order @mbiesirable scaling expo-
nents. This is exactly the approach that was adapted by Kiaak[259. In their approach,
they limit the range of the data between 1 and maximum numiiedependent observations.
Based on this range, they claimed that the power-law waspeniig better than exponentials
in describing the avalanche distribution. Therefore, vetete our data in a similar fashion and
found that setting such lower and upper bounds can introbizses in favor of power-law fits.
However, while power-law outperformed exponential, noregaena proper fit for the avalanche
data. We further showed that the avalanche data can be vdrfitmeth a bi-exponential dis-
tribution. Of course this was done with statistical rigoptove that the added coefficients are
not the reason behind the fit improvement. This finding co@dnbline with the fact that the
two populations of excitatory and inhibitory neurons, bodlild have their specific exponential
distribution and therefore the conjoint ensemble reflectperties of the two system as one
bi-exponential process. Moreover, our results show thertetlis a possibility that avalanche
dynamics follow a multi-scale regime.

11.4 Future directions

One of the shortcomings of the LFP avalanche analysis isittigrtiores the volume conduc-
tion and the spatial reach of the LFP altogether (for detailthese biophyscial characteristics
of extracellular recordings, see Chapter 2). In high dgresitays, peak detection at a given
recording site, is usually accompanied closely at diffedrannels. Therefore, it is essential
to theoretically and experimentally test the possibilityalume-conduction contribution to the
avalanches. Additionally, it would be interesting to tesiether the data can be collapsed into
a universal scaling functior2[f 1].




Chapter 12

Grand conclusion

More is different.

Philip Anderson

The fundamental differences between the analysis of néysaplogical measurements and
other non-biological or biological time-series are twofa) neurophysiological measurements
contain information encoding dynamics and b) the dimeradiynof neural data is many orders
of magnitude larger than that of the other types of timeeseriVith the birth and rapid devel-
opment of high throughput neural data, recorded by miniz¢drdevices, we are facing new
challenges. There is an increased necessity to develodwethat are capable of unraveling
the inherent complexity of biological systems as observedhultidimensional data. At the
same time, this provides us the opportunity to adapt new oaistiand create algorithms that
would help to detect the emergence of disorders of neuralarks or evaluate the functional
dynamics of their modification through the course of mediatrvention.

In this thesis we have taken a multimodal approach to anahezebserved brain dynamics.
Our multiscale experimental methods included large saaterdings including non-invasive
methods at the macro-scale, i.e. EEG/MEG, at invasive laggée recordings at meso-scale,
i.,e. ECOG (electrocorticogram), and at micro-scale highsttg 2-D multielectrode arrays
(for recording from a small patch of cortex). It is essent@luse a multiscale approach to
understand the system better and predict its behavior vigheh accuracy. Whether we are
interested in unraveling the mysteries behind cognitiony@wish to predict seizure or devise
brain-computer interfaces, studying the system at its itndé modes of operation (ranging
from desynchronized state to SWS and other states of carswss) and at different levels of
resolution is to the key to understanding and harnessingdimplexity of the brain.

Brain shows a complexity unseen in other systems. Parily,ctbhmplexity is a reflection
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of computation at multitude of levels. Other face of the breamplexity roots in the fact that
as the registration and process of information happensesoale, it transcends to the other
scales. This creates an information processing systensthaer changing dynamically. "How
these system-wide changes happen across the differeas8&ahis is one of the key questions
in the daunting task of unraveling the mysteries behind titecacy of neural computation.
There is no doubt that only the simultaneous measuremerdssamany scales can show us
the right answer. However, technically, such task is shibad of us. Surly, with the future
advancements, it will be feasible to study the computatiomany scales at once. At the
time being, we can approach this problem through indiregtsw#ne way to find such links
would be to investigate a certain type of information preaesg through parallel studies at
multiple scales. For example, one can study facial recmgniising macro-scale recordings
(like EEG or MEG) and then, separately, he could repeat threessxperiment while recording
LFPs or spikes in the region of interest. Then, by combiniregibformation, he could arrive
at a detailed picture of that specific brain function. Suclagproach is good for pinning down
the properties of information processing behind a certanctionality of the brain. The other
approach, which we adapted, is to find the links that reflech#ture of large-scale organization
of neural computation. This body of work investigates tlegestlependence of organization of
computing characteristics of the brain.

It is now understood that the neural doctrine of Ramon y Gajabt sufficient to tell us how
the brain works. In the last decade, the nature of networkpeation at micro-scale and large-
scale network interaction at macro-scale have became tijectwf active research in neuro-
science. By adapting a multi-scale multi-modal approacghhave a chance to combine details
obtained from these different angles and construct thedhiat integrate microscopic models
(that track the details of the system) with macroscopic dties track the global dynamics of
the system). In parallel to dynamic assessment of mulesoaliral complexity, it is essential to
bind them together in a cohesive manner. The adapted miedafitour work are indeed com-
plementary, each having a unique vantage point. The diffedesensitivity between EEG and
MEG to core and matrix thalamocortical projections prowdduable information about syn-
chrony and recruitment vs asynchrony and fragmentatiorofal networks. But how does the
brain orchestrates its many scales of computation into amngue functional structure? Inves-
tigating the possibility of spectral self-organizatioong-term state-dependent spatiotemporal
dynamics at microscale and the avalanches at micro and reesiohelp to decipher how the
system is governed. In this thesis, we have shown that thrergpeharacteristics of MEG and
EEG have fundamental differences in their characteristicscontrast to the prior belief, we
show evidence to the contrary of self-organized critigaht large-scale spectra. The findings
were suggestive of a highly complex pattern of spectralfest(at the studied frequencies) that
are reflective of the dynamics oscillatory aspects of camtewell as the nature of the medium.
It suggest that while the system may be communicating egeltarough rhythmic activity, the
controlling elements are not all summarized in near a phiassition. This temporal character-
istic of self-organization at the spectral regime was medoby our investigation of the spatial
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avalanches at the other end of the computing scale, i.eingpéctivity, and at the mediator
stage, i.e. the avalanches constructed from the local frtieihpials. The studies of avalanche
dynamics show us that neural networks of the brain may opénat multi-scale regime rather
than in punctuated equilibrium. In this study, we suggest tihe dynamics are best predicted if
one assumes that multiple processes interact with eacharddorm the future computational
connectivity of the system rather than being pushed badkaphase transition zone each time
a perturbation (here, information processing) occurs. $hugly on microcircuitry is a step to-
ward better prediction of the spatiotemporal dynamics &rmation flow within the neural
networks. The rich dynamics of the two populations, i.e. itaxory and inhibitory neurons,
and their distinctive spatiotemporal correlation chaggstics show that the cortex, fine tunes
its state-dependent activity through focal computing &tary elements controlled by a more
wide-spread inhibitory force. It is the constant interptetween these two systems that shapes
an ongoing balance between the systems while providingléygmund for instant response to
the incoming stimuli and replay of information.

Bringing these findings under the same roof will enable usetbelb understand how the
computation at a multitude of scales emerges from the ictieraof the units with each other
within their medium and how the medium affects the way thernmfation is encoded within the
network. In summary, we found no evidence for global featwkself-organized critical dy-
namics at the levels that we have investigated. Howevergsults show that self-organization
may emerge through other routes. It could be that largeestgthmical activities recruit the
individual elements into a cohesive action. But it has to impleasized that speaking of “in-
dividual elements” does not just simply translate to a séemarture from the neuron doctrine
by scaling up the size of functional units from the indivitinaurons to, for example, a hyper-
column. The observed rich spatiotemporal dynamics in audiss and the emerging evidence
from other investigators guide us to a new doctrine in whiwh functional elements are not
rigid and predefined. But perhaps, the state-dependenlfabsr and rhythmic activity recruit
ensemble of neurons, tune them for the action that itseléigges the forthcoming rhythmic
activity. Self-organization happens within a dynamic eoniment where it is influenced by the
medium’s physical characteristics and limitations andigriices the components of the system.
But where are the switches for controlling this self-orgation? We suggest that perhaps the
interplay of excitatory and inhibitory elements (again wistwto emphasize that by element we
mean a dynamic collection of individual neurons and thefrainding medium and perhaps
glia) is they key element. It is through the interaction ofltiple exponential processes that
the inhibition and excitation mutually control each otheddhe fate of the neural network.
We suggest that the coupled oscillator network models efauting excitation and inhibition
should reproduce these findings. To what degree such atistraould reflect the dynamics of
the system, is a challenge for future work.

Theories built upon multimodal, multi-scale investigasand computational studies, will
help pave the way for quantitative medicine. By adapting &irsaale multi-modal approach,
one can create a dynamic algorithm that would search foepettin multidimensional space
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of high throughput neurophysiological data. Such algamghwvould detect any perturbation
that could lead to the abnormal behavior of the system asgesain its fractal dimensionality
and complexity emerge. My expectation is that, in the near& this work will be directly
applicable to an anticipatory device. These types of grdiory devices are critical because
they will stand as one of the pillars of modern medicine anilprove to be inseparable from
therapeutical control of biological networks. We are atitifancy of unraveling the mysteries
of biological computation. The bits of a constantly morghoomputing environment perhaps
are not limited to a series of units that their dissociatiomtegrations would create a less or
more sophisticated being. It is the emerging ascent of lfitateracting elements that truly
defines the complexity of the system. Surly as Philip Andesad, “more is different”; but in
our case, it is the emerging information processing thraughitude of scales that transcends
us from being to becoming.
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