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There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.
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Abstract

With the rise of the so-called cognitive robotics, the need of advanced tools
to store, manipulate, reason about the knowledge acquired by the robot has
been made clear. But storing and manipulating knowledge requires first
to understand what the knowledge itself means to the robot and how to
represent it in a machine-processable way.

This work strives first at providing a systematic study of the knowl-
edge requirements of modern robotic applications in the context of service
robotics and human-robot interaction. What are the expressiveness require-
ment for a robot? What are its needs in term of reasoning techniques? What
are the requirement on the robot’s knowledge processing structure induced
by other cognitive functions like perception or decision making? We propose
a novel typology of desirable features for knowledge representation systems
supported by an extensive review of existing tools in our community.

In a second part, the thesis presents in depth a particular instantiation
of a knowledge representation and manipulation system called ORO, that
has been designed and implemented during the preparation of the thesis.
We elaborate on the inner working of this system, as well as its integration
into several complete robot control stacks. A particular focus is given to the
modelling of agent-dependent symbolic perspectives and their relations to
theories of mind.

The third part of the study is focused on the presentation of one im-
portant application of knowledge representation systems in the human-
robot interaction context: situated dialogue. Our approach and associated
algorithms leading to the interactive grounding of unconstrained verbal
communication are presented, followed by several experiments that have
taken place both at the Laboratoire d’Analyse et d’Architecture des Systemes at
CNRS, Toulouse and at the Intelligent Autonomous System group at Munich
Technical University.

The thesis concludes on considerations regarding the viability and im-
portance of an explicit management of the agent’s knowledge, along with
a reflection on the missing bricks in our research community on the way
towards “human level robots”.

Keywords: Cognitive Robotics, Knowledge Representation and Reasoning, Human-
Robot Interaction, Ontologies, Natural Language Processing
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Résumé

Ancrer l'interaction: Gestion des connaissances pour la robotique inter-
active

Avec le développement de la robotique cognitive, le besoin d’outils avancés
pour représenter, manipuler, raisonner sur les connaissances acquises par
un robot a clairement été mis en avant. Mais stocker et manipuler des con-
naissances requiert tout d’abord d’éclaircir ce que 1'on nomme connaissance
pour un robot, et comment celle-ci peut-elle étre représentée de maniere
intelligible pour une machine.

Ce travail s’efforce dans un premier temps d’identifier de maniére sys-
tématique les besoins en terme de représentation de connaissance des ap-
plications robotiques modernes, dans le contexte spécifique de la robotique
de service et des interactions homme-robot. Nous proposons une typologie
originale des caractéristiques souhaitables des systéemes de représentation
des connaissances, appuyée sur un état de 1’art détaillé des outils existants
dans notre communauté.

Dans un second temps, nous présentons en profondeur ORO, une in-
stanciation particuliére d'un systeme de représentation et manipulation des
connaissances, congu et implémenté durant la préparation de cette these.
Nous détaillons le fonctionnement interne du systeme, ainsi que son inté-
gration dans plusieurs architectures robotiques completes. Un éclairage
particulier est donné sur la modélisation de la prise de perspective dans
le contexte de l'interaction, et de son interprétation en terme de théorie de
'esprit.

La troisieme partie de 1’étude porte sur une application importante
des systémes de représentation des connaissances dans ce contexte de
I'interaction homme-robot : le traitement du dialogue situé. Notre ap-
proche et les algorithmes qui ameénent a I’ancrage interactif de la communi-
cation verbale non contrainte sont présentés, suivis de plusieurs expériences
menées au Laboratoire d’Analyse et d’Architecture des Systemes au CNRS a
Toulouse, et au groupe Intelligent Autonomous System de 'université tech-
nique de Munich.

Nous concluons cette these sur un certain nombre de considérations sur
la viabilité et I'importance d’une gestion explicite des connaissances des
agents, ainsi que par une réflexion sur les éléments encore manquant pour
réaliser le programme d’une robotique “de niveau humain”.






Zusammenfassung

Verankerung der Interaktion: Wissensmanagement fiir interaktive Roboter

Mit dem Aufstieg der sogenannten kognitiven Robotik ist der Bedarf
an machtigeren Werkzeugen gestiegen, um das Wissen vom Roboter zu
speichern und weiter zu verarbeiten. Diese Arbeit stellt zuerst eine Studie
tiber die Anforderungen an solche Werkzeuge vor und schlédgt eine neuartige
Typologie von wiinschenswerten Eigenschaften fiir Wissensreprasentations-
Systeme vor.

Wir fithren dann ein solches System namens ORO ein. Wir zeigen
seine innere Arbeitsweise sowie seine Integration in verschiedene Roboter-
Architekturen. Ein besonderer Fokus liegt auf Agenten Perspektiven und
ihre Beziehungen zur Theory of Mind.

Der dritte Teil der Studie stellt eine Komponente zur Verarbeitung von
Dialogen vor, die die interaktive Verankerung der freien verbalen Kommu-
nikation ermdglicht. Wir schliefSen mit mehreren Experiment-Berichten und
einer Diskussion tiber die fehlenden Bausteine auf dem Weg zum “human
level” Roboter.
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Conventions and Notations

This thesis relies on several notations and specific writing conventions to describe
symbolic knowledge and logical relations.

Ontologies and excerpts of ontologies presented in the work are mostly written
in the W3C’s OWL language. As a derivative of XML, it uses namespaces to declare
the scopes of concepts. The main namespaces that are used in this work are owl:,
rdf:, rdfs: (respective namespaces and schema namespace of the Web Ontology
Language and the Resource Description Framework), cyc: (concepts defined in the
OPENCYC upper ontology) and oro: (concepts defined in our OpenRobots Common-
Sense ontology). For readability, the namespaces will be omitted when they are not
required for the understanding.

The table below summarises the terminology that we use in this work to discuss
knowledge representation questions. While these terms are generally not strictly
synonyms, we will use them interchangeabily when no confusion may arise.

Entity, Class (OWL), Relation, Instance (OWL), In-
Element, Concept (DL) Property (OWL), | dividual (DL)
Concept Role (DL),

(Binary) Predicate

Description Logic terminology (noted DL above) for classes (i.e. concept) and rela-
tions (i.e. role) will be used only in the specific context of Description Logic. In other
cases, we use the term concept as a general term that encompasses classes, properties and
instances in the OWL terminology.

Depending on the context, a logical statement is either a declarative sentence or the
meaning of this sentence (in this case, it is a fact or a belief). Statements are generally
represented as triples (subject, predicate, object). Statements that are explicitely added
to a knowledge base are called assertions.

Again, we may use interchangeabily the terms statement, assertion, fact, belief, triple
when no confusion arise.

Single concepts are typeset with this font: concept, while statements are typeset in
this way (when represented as triples): (subject predicate object).

Relations between concepts and rules rely on logical connectors. The table below
presents the most important ones that are found in this thesis.

XV
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“models”

intersection or conjunction of classes
union or disjunction of classes
universal restriction

existential restriction

class equivalence

empty set

logical AND
logical OR
implication

L <>|sgnw<ca|T

Finally, we punctually use the Manchester Syntax' to present in a readable way
complex class expressions.

Thttp://www.w3.0rg/TR/owl2-manchester—syntax/
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Chapter 1

Introduction: Robots, Interaction and
Knowledge

Nao has been seen playing with autistic children, Justin is able to gently tap on the
chocolate powder dispenser to prepare a hot chocolate, the PR2 robot(s) are taking
orders and bring beers and popcorn around the labs, while Rosie pours pancake dough
on a heater for the afternoon snack: if recent experiments conducted in the labs around
the world are any indication, service robots are leaving the realm of Sci-Fi, dreams and
phantasms to become a reality.

Nao, Justin, PR2, Rosie: robots play with children, prepare hot chocolates, serve fresh beers
or make pancakes. Still in the labs, not yet with complex interactions with humans. What is
missing for them to enter our homes?

From technological demos, these robots are now moving to real-world coworkers
and companions, and they are undoubtedly to knock at our doors in the coming years.

The perceptual layers have moved up from traditional sensing modalities (camera
images, laser scans) to synthetic pseudo-sensors like face recognition, SLAM-based
localisation, or the Kinect-based human tracker.

Perceiving and understanding the environment is now a matter of rebuilding an
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Figure 1.1: Towards the cognitive robot

internal, amodal, model of the environment, with two interleaved facets: a continuous,
geometric world on one hand and a discrete, symbolic world on the other hand. This,
by itself, is sufficient to build efficient, compliant, reactive manipulators.

But perceiving an inanimate environment is not enough for a companion robot:
such a robot does not live in isolation in a world that would have been tailored to
its capabilities. It lives in the real world, in interaction with other intelligent agents,
and we want it to be endowed with social skills. It needs also to become aware of the
human, as a physical entity of course, but also as a mindful entity. This implies that
the robot is not only able to represent inanimate objects, not only able to represent its
own mental state, but also able to guess and represent mental states of other agents,
other intelligences. And interaction requires more, like communication skills and social
capabilities: agency, perspective taking, theory of mind, not to mention the endless
piles of information available from our connected world.

Figure|1.1|tries to relate socio-cognitive skills and acting skills of various domains
of robotic research. Our focus in on the cognitive robot, and in this work, we postulate
that further development of such robots relies on the acquisition of even better, richer,
more diverse cognitive abilities, and that the key of this development lies in a better
understanding of what knowledge means to a robot, and how to represent it. The What,
and the How of knowledge for robots.

We propose to give life to these two questions by narrating a short story of two
robots and a human...
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Figure 1.2: The Brownie scenario

1.1 A prototypical scenario

The aim of this imaginary scenario (that has not been implemented, neither in simula-
tion nor on a robot) is to materialise early in this thesis the context and challenges of
knowledge representation and manipulation for service, social and interactive robotics.
It underlines the place, the role and the need of knowledge in a near-future, everyday
situation where several robots and humans co-exist and cooperate. This scenario will
also be a source of support examples for later sections of the thesis. Also, we have em-
phasised several keywords in this description: we will come back to them in chapter 2]
to explain them formally and relate them to each other.

We entitle our scenario “the Brownie scenario” (Figure[I.2): Robi and Roba are two
service robots, that can freely move and pick objects around (with possibly different
hardware and software architectures, including different knowledge representation
systems: typically, two robots built by two different companies). They cooperate with a
human in a kitchen environment.

The main task of the scenario is the joint realization of a brownie, initiated by Tom,
the human: “Let’s make a brownie for tonight!”.

The scenario is successful 1) if the task is achieved (the brownie is baked), 2) in a
reasonable time (typically shorter than what it would have been required by the human
alone), 3) and the human is happy by the help it received (he/she did not feel useless,
uncomfortable, unsafe).

We voluntarily do not detail the subtasks of the scenario, neither we define how
they are shared amongst agents: our focus is on knowledge needs and flows.

A “first-order” analysis of this task leads to a rough partition of the required repre-
sentation abilities:

1. Representation abilities related to the execution of a complex spatio-temporal
task,
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2. Representation abilities related to cooperation with other agents.

We can further refine these categories: to prepare and bake a brownie, the robot
tirst needs to make sense of the term brownie itself: what is it? what is it used for?
what is it made of? etc. We call this knowledge common-sense knowledge and the robot
must be able not only to represent it, but also to have access to an initial source (for
instance through a initial set of facts that are made available at startup, or via access to
a Web-based knowledge base like Wikipedia)

Once bound to the action make, this should lead the robot to build and represent
a context: we are in a scenario involving cooking. The context enables the robot to
retrieve more common-sense knowledge, like that actions related to cooking often take
place in the kitchen, cooking requires ingredients, utensils and a procedure that may be
provided by a recipe.

These last assertions imply several other capabilities: “cooking often takes place in
the kitchen” implies that representation of both uncertainty and likelihood is desirable.
The fact that cooking is associated to a place further implies that the system models
locations and is able to attach thematic relations to concepts (here, the likely location of
the cooking action).

“cooking requires a procedure and ingredients” hints about another important fea-
ture closely tied on knowledge manipulation: reasoning. The robot can infer that cooking
may require a recipe since a procedure and a list of ingredients are pre-requisites of
the cooking action that may be provided by a recipe. If we omit the “may”, this is a
typical example of first-order logic reasoning. Many other reasoning techniques exist
(including probabilistic ones — ones able to deal with the “may”), we shall illustrate
some of them later in this scenario.

We mentioned that a recipe often provides a procedure (or a plan). The robot should
be able to store this plan in a way that allows later execution. The plan is likely to
contain spatio-temporal constraints (like “put the brownie in the oven for 20 min” or “let’s
cook for tonight”) that must be as well appropriately handled.

To make decision, a robot may also want to predict the state of the world after
some action (“if I leave the cake 2h in the oven, it will burn”). Such ability to project
itself in future or, generally speaking, in other possible state of the world is related to
several cognitive ability and reasoning techniques: planning, projection, representation of
possible worlds and non-monotonic reasoning, in addition to common-sense knowledge
and physics-based reasoning (that allows for instance to predict that an egg is likely to
break if dropped).

Procedures are in addition often underspecified: we can expect the recipe to provide
a cooking duration, but we usually do not expect the recipe to tell us to first open the
oven door, and then put the cake into it, since it is self-evident that the door must first
be opened to put the cake in the oven. Our cognitive robot should ideally be able to
detect and possibly complete such underspecification.

Then, we want our three agents to cooperate. This, in turn, leads to another set of
cognitive abilities.

Cooperation in our scenario can intervene at many places. For instance, an agent
may want to inform another one about the number of eggs that are necessary for the
brownie. This helping behaviour makes sense only if the first agent knows that the
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recipient agent both needs the information but does not know it. This in turn requires
the robot to be able to model the knowledge of the other agents: to think from the
perspective of another agent (an idea that is related to the availability of a theory of mind,
we will come back to it later on).

Ability to communicate is one important pre-requisite to collaboration. Commu-
nication in general requires the addresser and the addressee to share a common inter-
pretative framework (a shared common-sense knowledge — or cultural background
— and a shared context). In our scenario, the agents are working in a kitchen. This
element of context does not however suffice if, for example,the human asks a robot
to “give [him] the bowl”. Behind the symbol “bowl”, which physical entity are we
actually talking about? If we want to talk and act on the world, this so-called grounding
operation is essential. It is a bidirectional process: in covers the top-down operation
(from the symbol to the percept) and the bottom-up converse (retrieval or creation of
symbols from perception).

A related ability is called pre-supposition accommodation: if one of the agent moves
behind another one, with the brownie dough in its arm, and says “be careful, I'm
behind you!”, we want the first agent to be able to represent both symbolically and
geometrically (because, for instance, if the agent want to move, it must take into account
the new obstacle) something that is not directly perceived.

Also central to cooperation are the notions of joint intentions and joint goals: to help
the human during the cooking session, the robots need to track how far they are into the
recipe, what is the next step the human is likely to go for, how tasks are currently split
between agents, what action is currently blocking the procedure, etc. This knowledge
should let the robot identify the intentions of other agents and create accordingly joint
goals. Hence, a knowledge representation system aiming at dealing with cooperative
behaviours is likely to have goal management structures taking explicitly into account
other agents’ actions and goals.

In order to effectively share tasks, the robot must also know what it is capable of:
capability introspection (both in term of general capability and of immediate ability) is
thus often desirable. It can be extended to general introspection (like the ability to tell
“who I'am” or “what do I think of”) that may be required for the interaction.

Last but not least, our scenario assumes implicitly natural interaction between hu-
mans and robots (as shown by the casual style of the order “Let’s make a brownie!”),
and we want to ensure that the knowledge available to the robot provides efficient
support to the natural language understanding (for instance by adopting models and
vocabulary that are both well suited for machine processing and remain as close as
possible to the humans own structures and vocabulary), and also to non-verbal forms of
communication, like gestures.

Before explaining with more details in the next chapter the keywords we have
emphasised in the scenario, we would like to briefly focus on the challenges specifically
related to the human-robot interactions. Not only in term of knowledge representation,
but more broadly in term of specific cognitive capabilities.
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Figure 1.3: Interacting with the robot in an everyday situation: the human asks for help
in vague terms, the robot takes into account the human’s a priori knowledge and spatial
perspective to refine its understanding of the question.

1.2 Robots for interaction

This work comes indeed from researches in the specific context of the human-robot
interaction, or, to put it another way, in the context of interaction for joint action with
humans, in a situated environment (figure [1.3).

“Let’s bake a brownie for tonight!”, proposes Tom. The robots smoothly prepare all the
ingredients, and they start to cook together a delicious cake...

Natural interaction and cooperation are actually the current (dare we say, short-
term) targets for the human-robot interaction community. The “Brownie scenario”
we presented above belongs to the broad class of interactive manipulation problems:
several agents agree on a (more or less implicit) joint goal that requires some sort of
cooperation to be successfully achieved. This class of problems involves both dialogue
and manipulation and they are often not completely defined at start-up: they require
iterative, interactive resolution (step-by-step process, questions-answers,...).

What are the cognitive prerequisites for such a sentence —“Let’s make a brownie
for tonight”— to be understood by the robot, correctly interpreted in the spatial and
temporal context of the interaction, and eventually transformed into a set of actions?
We distinguished four main tasks in [74]:

1. building and maintenance of a consistent geometric model of the current situation,
acquired through perception or deduction from previous perceptions,

2. building of an unambiguous and complete symbolic representation of concepts



Introduction: Robots, Interaction and Knowledge

Multi-modal Dialog

Hello!
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L o Activity

Take
(Human, BlueCube, Table)

Figure 1.4: A robot reasoning about human-robot interaction and anticipation of human
activities: sources of knowledge are multi-modal dialogue and observation of the environ-
ment and the human activities. The robot “knows” and reasons about the fact it is observed
by the human.

(objects, agents, actions...) underlying the interaction, and practical for decision-
making processes,

3. establishing the joint goal(s), building and maintenance of iteratively shared
(human-robot) plans,

4. refinement and execution of the computed plans, and monitoring of those achieved
by the human partner.

While each of these items is equally important to actually perform the interac-
tion — and we will present (with illustration from experiments) how our knowledge
representation system integrates and communicates with other processes to form a
knowledge-enabled robotic architecture —, the thesis focuses on the second point: it
presents techniques, developed and used on several real robots, for the symbolic
representation of environment and mental models suitable for grounded situation
interpretation, decision-making and control.

Models for the interaction Figure[G.I|summarises the main aspects of the interaction,
that are to be translated into models. From the robot perspective, several cognitive skills
are involved: dialogue processing through verbal and deictic modalities (what does the
human say? What attitude — gaze orientation, postures, gestures... — does he express?),
acquisition and maintenance of one or several models of the environment, not only
from the robot point of view, but also from the other agents’ points of view, anticipation
(what are the intentions of the human? Can I predict and anticipate his/her actions?),
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Figure 1.5: The Communication Model, as proposed by Jakobson [56]. In bold characters are
the communication dimensions, in italics, the corresponding communication functions.

planning and control (how would I proceed further towards the goal?), monitoring
of the other agents” activities (do we have an effective cooperation?) and the overall
progress of the task.

As we shall see, all these cognitive capabilities also translate into requirements on
the knowledge representation systems that we want to clarify.

The need of communication is probably the most salient one. The classical model
of communication proposed by Jakobson in 1960 (figure exposes in a bright way
the main functions involved in a communication, be it verbal or non-verbal. While
the channel and the code are the technical side of the communication, the message in
relation with the context are directly concerned with the question of the meaning. And
the meaning is itself tightly bound to the knowledge available to the agent.

The question of the communication between a robot and another agent (agent in a
broad sense: another robot, a human, but also a remote knowledge base or the robot’s
developer) actually underlies many of the challenges of knowledge representation:
how to represent the knowledge I want to exchange, and how to recognise, represent
and share a context that ensures that both ends of the communication channel correctly
interpret the message. Or, to put it another way: how to ensure that the meaning is
correctly conveyed around while conducting social interactions?

1.3 The challenges

From the set of questions raised in the previous paragraphs, we can now articulate the
challenges that are to be tackled in this field of knowledge representation for service or
companion robotics.

The first challenge is to... clarify the challenges (!) of knowledge representation: we
said “knowledge”, we said “reasoning”, we said “representation”, but clear definitions
are yet to be provided. Numerous requirements on what Newell calls the knowledge
level of intelligent agents have emerged from our Brownie scenario, but how do they
articulate? Are they comprehensive?

To allow further progresses in the field of cognitive robotics, we think it is mandatory
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to lay down solid theoretical and practical foundations to the knowledge needs of
service and interactive robots. This is our first challenge.

The second challenge is more technical: how to build such a “knowledge-enabled”
robot? Since many years, researchers create and study so-called cognitive architectures,
implemented as abstract, computer-based, virtual models of the human cognition.
Robots, as embodied and interactive agents, raise specific issues. What are those?
Which are the right technical approaches to tackle them? Can we build today at least
an instance of such a cognitive system, and if we can not, why that? How the abstract
idea of knowledge translates into practical, meaningful concepts?

Our third challenge relates to the specific question of the human-robot interaction.
We claim that robots now belong to the realm of social individualities. What does that
mean? Which consequences does that have on our initial knowledge challenge? How
does it translate into practical issues, like natural language understanding?

All the contributions (summarised in the next section) of this thesis can be related to
one of these three challenges, and we hope they contribute to the progress towards the
understanding of these questions.

1.4 Contributions

We have presented our challenges: this section now summarises the main contributions
of the thesis, both from a scientific point of view and from a technical point of view.

1.4.1 Scientific contributions

The starting point of our thesis is the feeling that a better understanding of the knowl-
edge needs of robotic applications in human, i.e. complex, dynamic, semantically-rich,
environments, would be beneficial to the research in cognitive robotic.

Building upon an extensive review of the literature and the formulation of several
interaction scenarii (that themselves led to experiments on real robots), we have it-
eratively refined the “knowledge for interaction” problem. The formalization of this
question is one of the main scientific outcomes of this work: we have listed and or-
ganised into a typology a set of desirable characteristics of knowledge representation
systems for service robotics (chapter2).

This typology aims at offering a comprehensive and consistent base to evaluate
existing systems and to draw new research perspectives. It also enables to better assess
the progresses of the Service Robot and Human Robot Interaction research communities
towards the long term goal of human-level artificial intelligence for robots, as would say
McCarthy.

Another scientific contribution of this thesis is its participation to narrow down
the gap between research on embodied and disembodied artificial agents: we have
tried to bridge experiences learned from years of research on disembodied cognitive
architectures (both from the computing science and neuropsychology communities)
with the constraints from real-world systems that weigh on robotic architectures. No-
tably, we have tried to identify theoretical reference contributions from the diverse
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fields of cognitive sciences that are relevant to knowledge-enabled robotics. We have also
proposed reference implementations on robots for some of them.

At the architectural level, our work also helps to better understand the knowledge
flows in modern cognitive architectures for robots. By introducing explicit knowledge
in our architectures, it allows the humans that design and program robots to talk
about and question this knowledge: it singularises and materialises concepts that were
beforehand often diffuse and ubiquitous. This leads us to define the idea and propose
an implementation of a knowledge-oriented architecture (section [7.2).

This work has also several more focused scientific contributions. The centralised
semantic architecture that we propose is original. While it exhibits shortcomings for
some cognitive tasks, it also proposes novel efficient ways to represent and manipulate
knowledge simultaneously for multiple agents (chapter [3). Along with the survey of
current knowledge systems that we have conducted, it effectively completes the picture
of available designs of knowledge representation systems.

Amongst the cognitive abilities that our developments have enabled, a particular
scientific focus was led on the acquisition and modeling of multiple, agent-dependent
symbolic worlds. This opened new perspectives related to perspective-aware reasoning
or theories of mind for robots that are detailed in this work.

We also have a scientific contribution on the grounding of human-robot dialogue in
natural language (chapter 5). We have algorithmically formalised a grounding process
that takes advantage of multi-modal communication (verbal, deictic and immanent) and
handles the semantics of several more complex language features like quantification.
This system also has contributions related to the semantic validation of thematic roles
and interactive disambiguation that takes into account human attentional focus.

1.4.2 Technical contributions

This thesis has four major technical contributions: the software development of the
ORO server as a semantic blackboard dedicated to robotic applications, the design of the
ORO ontology as a domain-specific common-sense ontology tailored for service robotic
needs, the pervasive integration of a new semantic layer into several existing robot
architecture, and finally, the software development of Dialogs, a module for natural
language grounding.

The main software contribution of the thesis is the development of an open-source,
versatile and light-weight knowledge base that stores in a formal framework based
on first-order logics both the robot’s own beliefs and the mental models (as perceived
by the robot) of every other cognitive agent that the robot interacts with (chapters
and ). This tool, called ORO, is implemented as a platform/middleware-agnostic
server, and exposes to the robot’s modules several advanced reasoning services (via
the integration of external reasoners). This software project is now publicly available,
used by other laboratories, and comes with extensive documentation and bindings for
several mainstream languages (C++, Python...) and middleware (ROS, YARP).

In parallel of this development, and in collaboration with other developers, we have
also drafted (and partially implemented) a proposal for a standard API for knowledge
manipulation that supports the specific needs of robotic applications (section [2.4).

10
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Coming along with the ORO server, we introduce in this thesis the ORO common-
sense ontology which is a proposal of an upper ontology for service and interactive
robotics (section[G.3). This ontology consists of about two hundred classes, relations
and rules that are relevant for the modeling of the robot’s beliefs and state, and the
interactions with other agents (humans or robots). This ontology also tries to stay closely
aligned with the standard OPENCYC upper-ontology to guarantee interoperability with
semantic web resources and other robots.

A third technical contribution is the introduction of a new knowledge-oriented,
event-driven communication model between high-level decisional modules (section[4.4):
by introducing the notion of semantic events, the ORO server enables the development of
new executive layers that combine reactive behaviour with high-level abstractions: for
instance, triggering a behaviour when a human looks at the robot while sit, can be ex-
pressed in our architecture as a single proposition: subscribe ([* type Human,
x looksAt myself, % isSitting true], behaviour_callback()). This
highly expressive event model opens a new range of development opportunities for
decisional modules.

During the preparation of the thesis, we have also developed a new stand-alone
natural language processor for English language (chapter[5). It takes advantage of the
different symbolic models exposed by the ORO server to analyse, resolve the semantics
and ground dialogues. It can process orders, questions and positive assertions and
translates them into new symbolic facts. It includes a custom grammatical parser, a re-
verbalization module, several discrimination strategies, including interactive ones. The
application is developed in Python (about 15K lines of code), can be used in real-time
on the robot, and is accompanied by a speech recognition interface developed as an
Android application.

A last notable software contribution is our involvement in the MORSE simulator for
academic robotics. We have played a central role in the original design and development
of the core functionalities of this open-source simulator which is now used by over
twenty laboratories world-wide. While this project as a whole is not directly related
to main topic of the thesis, we have led the effort towards effective simulation of
human-robot interaction in MORSE. It is briefly presented at section[6.2.1]

1.5 A reader’s guide

The thesis in one hour

Because of the contingencies of this world, we acknowledge that the complete reading
of this thesis may not fit in one’s tight schedule.

If you have only about one hour to dedicate to this work, we suggest to read the
following sections in that order:

e What are the challenges? (section page|(178),
e Contributions (section |G.1.2} page(179),

¢ The ORO functional overview (section 3.1} page[57),

11
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e The first interaction experiment (section page|121),

e The evaluation of ORO and other knowledge representation systems (section 6.}

page[107),
e And finally, the discussion on perspectives (section page(138),

Hopefully, this quick overview of the work can help you to select sections that you
may want to visit more in depth.

For the patient reader

Roughly speaking, the thesis is organised in three parts: an analysis of knowledge
representation systems for service and personal robotic, the presentation of ORO,
our own implementation of such a knowledge representation system, and finally we
report on practical uses of explicit knowledge manipulation on robots, first for natural
language processing, then through several experiments.

The first part is covered in the chapter 2} after a discussion on what we call “knowl-
edge” in our context, we explore its importance by listing, in a typology of characteris-
tics, the requirements of our robots related to knowledge management. This chapter is
completed by a survey of eight systems for knowledge management that have been
already deployed on real robots.

At the end of the thesis, we give a second look at these systems to try to draw a
picture of the overall landscape of knowledge representation approaches in the robotic
research community, to identify new possible research directions.

The second part is covered by chapters|3|and 4, Chapter |3|presents the functional
side of ORO server, some of the algorithms that are implemented, and discusses its
knowledge model (the ORO common-sense ontology). The technical side is presented in
chapter [d where we emphasise the integration of ORO within a larger robotic architec-
ture. The articulations with perception, planning and control are presented.

Chapters [ and [| form the third and last part of the thesis. Chapter [f details
Dialogs, a module for situated dialogue grounding that takes advantage of the symbolic
knowledge exposed by ORO, and chapter [6| presents several evaluations of our work
through various experiments conducted during the four years of the thesis preparation.

We conclude the thesis with a discussion of several issues related to knowledge
management in service robots (importance of embodiment, relationships between the
symbolic and continuous realms, etc.) and some remarks that could further improve
knowledge representation and management in future robotic architectures.

12



Chapter 2

Symbolic Knowledge Representation

2.1 Knowledge and robotics

The idea of Cognitive Robotics was coined in the early 1990s by Reiter. In a chapter
on that subject in Foundations of Artificial Intelligence [78], Levesque reminds about the
manifesto they wrote together in 1998:

Central to this effort is to develop an understanding of the relationship
between the knowledge, the perception, and the action of [...] a robot. The
sorts of questions we want to be able to answer are

e to execute a program, what information does a robot need to have at the
outset versus the information that it can acquire en route by perceptual
means?

e what does the robot need to know about its environment versus what
need only be known by the designer?

e when should a robot use perception to find out if something is true as
opposed to reasoning about what it knows was true in the past?

e when should the inner workings of an action be available to the robot
for reasoning and when should the action be considered primitive or
atomic?

and so on. With respect to robotics, our goal (like that of many in Al)
is high-level robotic control: develop a system that is capable of generating
actions in the world that are appropriate as a function of some current set of
beliefs and desires.

Indeed, pervasive knowledge could safely be considered as the prominent character-
istic of cognitive robotics. This chapter is dedicated to an analysis of what is knowledge
for a robot, and what are the important features of knowledge and knowledge repre-
sentation that are relevant to cognitive robotics.

The next section attempts to give a practical definition of knowledge for robotics,
with a few of its major characteristics. We then review some existing material from
diverse fields of cognitive robotics to propose our own typology of the needs and
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characteristics of knowledge representation for service and interactive robotics. About
tifty such items are identified, defined, and organised in a large set.

We then put into practice this reference by surveying eight systems and architectures
for robots. Their main strengths are underlined, in order to depict the state of the
research in knowledge representation for robots.

Finally, we conclude this chapter on symbolic knowledge representation by briefly
presenting a novel API for knowledge manipulation, jointly designed with several
other researchers on knowledge representation.

What do we call “knowledge”? Since we will discuss at length the concept of knowl-
edge in the context of robotics in the coming pages, it is useful to make our terminology
explicit.

Be it in philosophy, cognitive sciences or computer sciences, reaching an agreement
on a definition of “knowledge” seems difficult.

Allen Newell’s famous Knowledge Level [98] can be a starting point: for Newell, knowl-
edge is a medium between agents and goals, actions, bodies. Whereas the symbol level
deals with representation, the knowledge level deals with language, semantics; whereas
the symbol level deals with inference, the knowledge level deals with entailment. We
will, at the conclusion of the thesis, give a second look to this distinction.

In our robotic context, we define knowledge as a narrower concept, while keeping
Newell’s link to actions: “knowledge” is for us a set of interrelated logical facts that are
meaningful to the robot executive controller. By meaningful we mean that can possibly be
interpreted to lead to a purposeful action. We will see that our main challenge while
designing a cognitive architecture is furthermore to make this knowledge as explicit as
possible.

The relation of data and information to knowledge is a debated epistemology question
known as the “DIKW” hierarchy question. In this thesis, we will associate data to low-
level material like raw sensor output, and information to uncontextualised symbolic
facts.

To give a example, we can imagine a human reading a book while being tracked by
a Kinect sensor: the pose of the human skeleton in the world would be the data, the
fact looksAt (human, book) as interpreted by a geometric reasoning module would
be the information, the fact 1ooksAt (john, war_and_peace), fully grounded and
connected to the whole knowledge base of the robot would be proper knowledge.

This simple example also acknowledges the tight coupling between the symbolic
and the geometric realms: while Al at its origins was mostly a matter of symbolic
models, it has been since recognised that not only that the mind is not a purely abstract
system, disconnected from the physical world, but even more, cognition fundamentally
relies on its relation to the physical world (so-called embodied cognition). Varela [138] is
one of the main discoverer of these mechanisms, and coined the concept of enactivism
as the theoretical framework that study the links between cognition, embodiment and
actions.

From the perspective of communication, knowledge is for us an information inter-
preted in the cultural and social contexts of the robot. This translates into three practical
features: knowledge is made of statements that are contextualized, grounded, and limited
to a domain of validity. These three features have important consequences for the way
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a knowledge representation and storage system must be designed. Let us examine
them:

Contextualizing is the ability for a cognitive system to connect a fact with a cultural
context, an interpretive frame and the set of other facts previously acquired by the agent.

Since machines are limited to syntactic (in contrast to semantic) processing, we are
mostly looking for a syntactic (i.e. , based on symbols) matching between concepts
representations (in our case, sets of alphanumeric characters)..

The cultural context is a broad set of common, general facts that are considered widely
accepted among the interactors (e.g. “bottles may contain water”). This knowledge is
often referred as common-sense knowledge.

By interpretive frame we mean that a concept may have different interpretations
depending on the agent, the current situation or the time frame the statement belongs
to. Since a fact in one frame can be different (or even inconsistent) with a fact in another
frame (for instance, one object can be visible for the robot and invisible for another
agent), the underlying knowledge representation system must properly handle these
interpretive frames.

Note that effectively representing a context is a rather different task than identifying
it. This aspect will be further discussed at the end of this work.

Grounding corresponds to the identification or creation, and then, maintenance of a
link between the symbol (the syntactic form of knowledge the computer will manipu-
late) and its semantics, i.e. its meaning, anchored in the world (the relations between
the symbol, the referent of the symbol, and mediating minds is classically referred
as the semantic triangle, and has been extensively studied in linguistics). The issue of
grounding is well known in cognitive science and is summarised by Harnard [44] by
this question: “how the semantic interpretation of a formal symbol system can be made
intrinsic to the system?”. This issue has a very practical importance in robotic: for a
robot to be both endowed with a symbolic representational and reasoning system, and
able to act in the physical world, it must ground its knowledge.

Domain of validity specifies the scope in which an information is (believed to be)
true. It covers several aspects: temporal, situational and probabilistic. While related to
the previous concept of interpretive frames, the domain of validity addresses the question
whether a fact must be or not considered in a given context. This validity limitation is
not usually carried by the fact itself. In the previous example, for instance, the robot
observes a human sitting at a table. The fact “a human is sitting at the table” is true
only for a limited period of time, until the human stands up. This period of time is not
directly accessible (the robot does not know how long the human plans to stay), but
the knowledge representation must be able to deal with this uncertainty and should
explicitly label this fact as being limited in time.

To know if a fact is permanent or transitional (Pollock [105], page 51) is difficult
(especially considering that a feature may be considered as permanent or not depending
of the context: within the situation “a family meal”, the fact “the human is sitting at the
table” could be considered as permanent. Conversely, “ground is static” is generally
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considered as a permanent fact, expect if we are talking of planetary mechanics for
instance. The difficulty lies in the selection of the relevant situation in which reasoning
must be carried out at a given time) and have currently to be defined in the cultural
background of the robot.

These three aspects lead us to envisage the question of knowledge representation
from two perspectives: elements that are essential to the knowledge (without those,
informations could not become knowledge), and processes that are necessary to produce
knowledge.

Knowledge is essentially dependent on the ability to represent:

e links, connections between atoms of knowledge,

e a general cultural background, in the form of common-sense knowledge,
e interpretive frames, contexts, restrictions on the domain of validity.

It must also rely the following active processes to:

e acquire and maintain knowledge perceived from the physical world or retrieved
from other sources (interaction with other agents, web-based contents,...)

e add and connect new facts to existing ones,
e monitor contexts and accordingly manage the validity of the stored knowledge,

¢ ensure the logical consistency of the knowledge repository, and explicit inconsis-
tencies when required’.

We have already seen in the imaginary scenario introduced in chapter that
many other cognitive abilities related to knowledge representation and manipulation
are required by service robots to actually operate, and the above items are more a
high-level view of what knowledge intrinsically need to exist. The next section aims at
providing a large, comprehensive set of cognitive abilities related to knowledge, that
encompasses both essential and non-essential features of knowledge representation
systems.

2.2 A typology of knowledge representation requirements
for robotics

This section now focuses on formalizing the knowledge representation issue: we aim
tirst at establishing a comprehensive typology and nomenclature (figure of repre-
sentational needs for robotics in the specific context of service robotics, before painting,
at section the current landscape of approaches to the knowledge representation
problem in the research community. For each such “dimensions” of knowledge rep-
resentation system, we provide a short definition accompanied by links to relevant
literature.

!One may argue that the real world is however inherently inconsistent; we will discuss several aspects
of inconsistencies representation and management later on.
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Figure 2.1: Taxonomy of the analysis dimensions of knowledge representation systems for

service robotics.

17



Symbolic Knowledge Representation

The typology has been built from three main sources: a review of the existing
literature on that topic that we present in the next section; the survey of eight knowledge
representation systems already deployed; our own experience, acquired during the
thesis preparation with the help of many discussions with researchers from both CNRS
and TUM, that allowed to interweave two slightly different perspectives on knowledge
in robotics.

We also wish to mention that the short presentation of each feature does not claim
to be a comprehensive summary of the field: it is beyond our capabilities to cover in a
few lines all what the areas of time representation, planing or formal logic have said during
the last 30 years. We indeed focus on the aspects relevant to knowledge representation
and certainly involuntarily omit many significant works in these fields.

2.2.1 Previous work

As said, the typology we propose is in part based on a comprehensive synthesis of
classifications and analysis found in the literature. This synthesis is focused on cognitive
abilities strictly related to knowledge manipulation in the context of service robotics.

Levesque and Lakemeyer [78] present in their chapter on Cognitive Robotics several
characteristics of knowledge representation systems for robots, stressing the need of
representing the dynamics of the world. Sensing is included in the knowledge representa-
tion via fluents; they introduce the idea of possible worlds to represent distinct parallel
mental models; action representation and reasoning about tasks is discussed in the
context of situation calculus; open world vs. closed world approaches are mentioned. They
also discuss how robot programming and knowledge representation can be related. We
integrate most of these items in our typology.

In a slightly broader context, Heintz et al. [50] define knowledge processing middle-
ware as systems supporting “declarative specifications for flexible configuration and
dynamic reconfiguration of context dependent processing at many different levels
of abstraction”. They identify six characteristics: the system must be able to merge
informations from different, possibly distributed sources; it should support quantitative
as well as qualitative processing of information, it should offer bottom-up and top-down
processing, it should be able to deal with uncertainty, allow for “flexible configuration
and reconfiguration” (which require what we call here non-monotonicity) and finally
meta-knowledge and introspective capacities (“declarative specification of the processing
functionalities”).

Several surveys compare global cognitive architectures [72, 139, 26]. Langley, Laird
and Rogers [72] distinguish nine capabilities: recognition and categorisation, decision
making, perception and situation assessment, prediction and monitoring, planning,
reasoning, execution control, interaction and learning/remembering/introspection.
They also separately identify four properties of a cognitive architecture, that categorise
how knowledge is handled by the architecture: representation of knowledge, organ-
isation of knowledge, utilisation of knowledge and acquisition and refinement of
knowledge. This categorisation had a notable influence on our typology, and many of
these categories are also present in our proposal.

Vernon et al. [139] split these architectures into two broad categories: the cognitivist
ones (where cognition is considered as an explicit computation problem, often based
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on symbol manipulation), and the emergent ones (where cognition only exists as a result
of the interaction of the system with its environment). The approaches presented in this
chapter are, at a few exceptions, prototypical cognitivist approaches that aim at making
knowledge explicit within the robot architecture. Vernon et al. propose twelve charac-
teristics of cognitive system to compare architectures. Amongst them, they mention the
inter-agent epistemology (how the structure of the world is captured in a representation
and shared), the relation to embodiment, the ability to anticipate and to adapt, and the
mechanisms of motivation. While presented at the level of the whole robotic architecture,
these features also translate into knowledge representation strategies and are relevant
to our study.

Chong et al. [26] also provide a recent review of the main cognitive architectures,
with a focus on eight functions: perception, memory, goals management, problem
solving capabilities, planning, reasoning, learning and links to neurobiology.

At an even broader scope, several authors from fields that are connected to robotics
have previously listed desirable features of artificial systems aiming at rich cognitive
abilities.

For instance McCarthy recently listed in [93] the challenges he identifies on the road
to a human-level Al

e the ability to “operate successfully in the common sense informatic situation”,

o the necessity of relying on mathematical logic, as the most fruitful formalism for
machine intelligence,

o the ability to deal with approximate concepts and approximate theories (that would
include representing them, and reasoning with them),

e non-monotonic reasoning,

e what McCarthy calls Elaboration Tolerance: the ability to extend on demand the
closed domain of interpretation for a given assertion,

e the ability to formalise and reason about contexts,
e reasoning about events, and in particular, actions,
e the capacity of introspection,

¢ and finally, he points the issue of giving computer the right heuristics for decision
making.

Coming from the perspective of natural language processing in situated context,
Roy and Reiter summarise in [112] what they see as the main challenges to be tackled
by knowledge representation systems: cross-modal representation systems, association of
words with perceptual and action categories (grounding), modeling of context, definition
of the right granularity of models, integration of temporal modeling and planning, ability
to match past (learned) experiences with the current interaction and ability to take into
account the human perspective.

Knowledge representation systems in robotics are directly affected by these points,
and we indeed integrate them in our typology, in slightly reformulated ways.
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2.2.2 What can be represented?

A.1. Logic formalism

.2. Expressive power

/
A. Expressiveness — A.3. OWA/CWA

A.4. Uncertainty

A.5. Meta-cognition

This first axis of analysis is its intrinsic expressive power. It answers the question:
what can be possibly represented. When it explicitly exists, the language of representa-
tion plays here an obvious role.

Main logic formalisms

The main role of a knowledge representation system is to provide an adequate repre-
sentation system to formally store facts and concepts that could be informally described
in natural language.

Formal logic aims at providing such a representation system with the added value
of providing a tractable support for inference and reasoning.

Most (but not all) of the systems we have surveyed rely on a particular logic for-
malism. The choice of the formalism has a strong impact, on one side, on the range of
ideas that can be expressed conveniently (practical expressiveness) or at all (theoretical
expressiveness), on the other side, on the ability to solve the fundamental inference
problem (called satisfiability: is a given logical sentence true in my model?) in a tractable
manner.

A large number of logic formalisms do exist and we briefly present below the most
relevant ones for systems actually deployed in robotic architectures.

Predicate logic is the family of logic formalisms the most commonly found in knowl-
edge representation. It distinguishes itself from the simpler propositional logic by the use
of quantification to increase generality. First-order logic (FOL) is the subpart of predicate
logic where the objects of predicates (or formulae) are simple terms, while in higher-order
logics, predicates can be themselves objects of other predicates.

Horn clauses are an important subset of FOL because the satisfiability of a set of
such clauses is a P-complete problem (i.e. practically tractable). A Horn clause is a
disjunction of literals (a clause) with at most one positive literal: -p VvV =gV ---V -t Vv,
which can also be represented as (p A g A -+ - At) — u. Important logic programming
languages like Prolog are based on Horn clauses.

The family of Description Logics [9] also plays an important role. It is also a subset
of the first-order logic, with some extensions in second-order logic. Description logics
are notable because most of them are known to be decidable (but not always in a
practically tractable manner). In description logic, axioms are build from concepts, roles
(that are unary or binary predicates) and individuals. The W3C OWL-DL standard is a
widely-used language to describe domains with the description logic.

Because description logics have been originally created from the perspective of a
knowledge representation language and not a logic language, their terminology (concept or
class, role or property, individual,. . .) is well-suited to knowledge description.
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Modal logic, that allows for statement qualification like possibility or necessity, have
been shown to be closely related to description logics [10]. Modal logic allows to
represent conveniently parallel possible worlds and facts like “the robot knows that the
human knows how to read a recipe”.

Temporal logic are designed to represent and manipulate assertions whose truth value
may vary in time. We introduce one of its key idea (the fluents) later in the typology.

One last class of logics that is of particular relevance for robotic applications is
the probabilistic logics or Bayesian logics. These logics provide a formal framework to
reason on propositions whose truth or falsity is uncertain. We elaborate below on the
representation of uncertainty.

Note that most of these logic formalisms are still active research field on their own,
and practical considerations (especially the availability of reasoners efficient enough
for on-line use on a robot) often constrain the choice of a logical formalism and a level
of expressive power.

Expressive power

Logical formalisms each bring a certain level of expressive power. For instance, the
following classical syllogism can not be represented in propositional logic because of
the use of universal quantification:

1. All men are mortal,
2. Socrates is a man,

3. Therefore, Socrates is mortal

However, the following weak version of the syllogism can be represented in propo-
sitional logic:

1. If Socrates is a man, then Socrates is mortal,
2. Socrates is a man,

3. Therefore, Socrates is mortal

Generally speaking, expressive power comes at the cost of more complex satisfiability
and consistency? computations, possibly leading to untractable, if not undecidable (i.e.
systems where it is proven that a proposition can not be decided to be true or false)
problems.

Figure[2.2|shows that the expressive power of description logics and Horn clauses
partially overlaps. In section we mention extensions to description logics based
on rule systems that bring closer the two approaches.

The relationships between expressive power and reasoning complexity that follow
has been extensively studied for Description Logics. Zolin [149] maintains a “complex-
ity navigator” that allows to conveniently explore these relationships and indexes most
of the literature on that subject.

2We precise these concepts at sectionm
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First-Order Logic

Description Horn Logic
Logic Programs
Logic
Programs
(negation as
failure)
(procedural

attachments)

Figure 2.2: expressiveness overlap of Description Logics and logic programs based on Horn
clauses, taken from [40Q]

It can be noted that the relation between expressiveness and reasoning complexity
is fragile: for instance, adding the following axiom (farFrom disjointProperty near)
(that states that two individuals can not be at the same time near and far from each other)
changes the expressiveness power of the ORO Common-Sense ontology (presented
at chapter 3) from SHOZQ(D) to SROZQ(D)?: this seemingly innocuous assertion
change the complexity class of the whole ontology, and the concept satisfiability reason-
ing problem switches from a NExpTime-complete problem to a NExpTime-hard problem
(i.e. , at least as hard as the hardest problem in NExpTime).

This “instability” has practical consequences on run-time performances on the
robot because a light alteration of the knowledge structure can lead to very noticeable
performance drops.

Open world and close world assumptions

The close world (CWA) vs. open world (OWA) assumptions name a modelling choice on
the completeness of a knowledge domain. In the close world assumption, a proposition
that can not be proven true is assumed to be false (negation by failure), while in the open
world assumption, a proposition may be considered either true, false or unknown.
This distinction is important in robotics where the robot may have to manipulate
concepts with only partial knowledge on them. For instance, let us imagine a robot
that sees a bottle on a table, whose bottom is hidden by another object. The robot can
not prove that the bottle is indeed on the table. A knowledge representation system
relying on the closed world assumption would then assume the bottle is not on the
table (R A(bottle, table)) whereas with the open world assumption, the proposi-

isOn
tion ROY A (bottle, table) would be undecided. Example in table 2.1/ provides another

example of consequences of the CWA /OWA choice on reasoning.

The OWL language is specifically known to assume an open world. Domains con-
strained with the closed world assumption lead to more tractable inference problems,
and allow for instance the use of logic languages like Prolog. Thus, several approaches
exists to locally close a domain (cf Levesque [78]], section 24.3.2 for a summary of those
ones).

3See appendix|A|for a brief explanation of this notation
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Action Part involved
PickSoftly hand
PickAndPlace arm, hand
MoveArm arm

Table 2.1: Assuming the question is: select actions that do not require to move the arm, a CWA
reasoner would return PickSoftly whereas an OWA reasoner would not return anything
if the PickSoftly action is not explicitly said not to involve the arm.

Representation of uncertainty and likelihood

Sources of uncertainty for a robot are two-fold: uncertainty intrinsic to facts (like “It may
rain tomorrow”), uncertainty caused by imperfect perception of the world (“Is the bottle
really on the table?”). Most logics do not account explicitly for uncertainty. It must be
either relied on specific logics (like Bayesian logics) or on extensions of classical logics.

Meta-cognition: knowledge on the knowledge

As stated by Cox and Raja [28], meta-cognition is composed of both “meta-level control of
cognitive activities and the introspective monitoring of such activities to evaluate and to explain
them”.

Sloman proposes in [125] a detailed analysis of meta-cognition and its different
aspects in both natural (human) and artificial systems.

A knowledge representation system endowed with meta-cognition is not only able to
manipulate knowledge but also to exhibit and manipulate the structure of its knowledge
and the reasoning process. For instance, the ability to explain a logical inconsistency in
a KRS is a meta-cognitive function, as is the ability to expose and alter the knowledge
structure (these two reasoning techniques have their own entries in the taxonomy, at
section2.2.4]

At section [2.2.3|below, we discuss the idea of introspection. Meta-cognition can be
viewed as the technical facet of the introspection in general.

2.2.3 How things are represented?

We do not discuss in this section the general strategies to construct a knowledge model
(they will be presented in section [2.2.7). We focus here on questions that involve repre-
sentational challenges (time, space, context) or require specific cognitive capabilities
(theory of mind, introspection, memory).

B.1. Roles
B.2. Context
B. Representation —  B.3. Modality
—

B.4. Introspection

B.5. Memory
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Role representations

This section discusses strategies and approaches to represent in a knowledge model
three important roles: spatial relations, time and representation of actions.

B.1.1. Space
B.1 Roles - B.1.2. Time

B.1.3. Actions

Representation of space Symbolic representation of space is a widely studied topic.
In particular, a large literature corpus is available on spatial ontologies.

Two main classes of spatial relations are usually represented at the symbolic level:
the topology of environments and the placement of physical entities.

B.1.1.1. Topology

B.1.1 Space
B.1.1.2. Placement

Topological maps are abstractions of an environment as graphs where nodes repre-
sent places and edges represent connections between places. Because they are symbolic
representation, topological maps allow higher-level reasoning (such as containment,
connectivity, regions) than metric maps.

One important contribution to the building of a coherent representational stack for
space representation is the Spatial Semantic Hierarchy [66] introduced by Kuipers. It
consists in multiple interacting representations of space, both qualitative and quantita-
tive, that span from sensor-level representation to ontologies of places and regions.

Symbolic representation of entities placement can be absolute or relative. The
relation is0n, for example, leads to absolute statements: the validity of the relation is
independent of the nature of its subjects and objects, and is also independent of the
observer.

On the contrary, the relation nextTo is relative, and depends on the relative size
of the subject and the object. Two houses distant of 2 meters from each other can be
considered as next to each other. Two ants separated by 2 meters are not next to each
other.

The relation 1e£tof is another example of relative spatial relation, this time because
it depends on the observer viewpoint.

Choices must be made in the knowledge representation system to adequately repre-
sent relative spatial relations. Options include the computation of such relations only
on-demand, when the context is known (which viewpoints, etc.) or storage of these
facts in different models, one per agent.

Representation of time As an agent acting at human-like time scale and dealing with
temporal concepts (like actions), a robot needs to represent and reason about time. Time
representation is split into two distinct abilities: representing time points (both in the
past — which is roughly equivalent to assignment of timestamps to events the robot
perceives — and in the future), and representing passing time (situations, durations,
timespans) like in “the eggs will be cooked in 10 min”.
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This is usually formalised as a disjunction in time representation between events,
that is, any durationless temporal concept, and situations, that is, any temporal concept
with a non-zero duration®.

Numerous techniques to represent and reason about time have been devised.
Amongst the most significant ones, we can mention Allen’s interval algebra [5] and
Ghallab’s chronicles [39].  The concept of fluent also play an important role for
time representation: fluents are properties (or conditions) that change over time, like
sees(agentl, apple,t).

We call a system that does not account for time (i.e. that mentally permanently lives
in present) atemporal.

Actions Events and actions are two temporal concepts that are of particular impor-
tance to robotic systems, as systems that perceive, react and perform in their environ-
ment.

While representation of events boils down to label a timestamp, representation of
actions are more complex since not only they deal with durations, but they also imply
semantic interactions between concepts. From a taxonomy point of view, actions are a
particular type of event that normally leads to a situation corresponding to the action
realisation.

Thematic roles [41] (also found as semantic roles or theta roles in the literature) allow
to semantically qualify the parameters of an action. The recipient of the action, the
performer, the object acted upon, the destination are some example of common thematic
roles. Table 2.2/ presents a more comprehensive list of thematic roles proposed by [1]]
(see [43] for a comparison of other sets of thematic roles present in the literature).

In the context of robotic, task often represents an aggregate of (atomic) actions. We
use the term here as the representation of the abstract model of an action. Tasks usually
specify at least the conditions required to performed the action and the consequences
of the realization of the action, and are central to the decisional layers of the robot, in
particular for the planning, monitoring and execution control activities. Knowledge
representation systems may thus have specific mechanisms to represent them (and
possible, to reason about them, as presented in section [2.2.4).

An technical report we have written on task modeling in OWL ontologies is available
in appendix

Plans representation is closely related to action and task representation. It is specifi-
cally discussed at section [2.2.4]

Context modeling

Knowledge is contextualized information: it is essential for the robot to associate the
facts it represents to a context. The context carries the keys for the interpretation of the
information and set a common ground for interaction (and, in particular, communi-
cation [56]). It implicitely defines the domain of validity of the facts and carries the
common-sense knowledge required to fill the gaps of the knowledge explicitely shared
between the agents.

4Other definitions of a situation do exist, notably in the context of situation calculus [79], Reiter and
Levesque consider a situation to be an history of actions.
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Role Meaning

Agent The doer or instigator of the action denoted by the predicate.

Patient The undergoer of the action or event denoted by the predicate.

Theme The entity that is moved by the action or event denoted by the
predicate.

Experiencer The living entity that experiences the action or event denoted by
the predicate.

Goal The location or entity in the direction of which something moves.

Benefactive The entity that benefits from the action or event denoted by the
predicate.

Source The location or entity from which something moves.

Instrument The medium by which the action or event denoted by the predi-
cate is carried out.

Locative The specification of the place where the action or event denoted
by the predicate in situated.

Table 2.2: A list of thematic roles, as proposed by Aarts [1]. Depending on the action, only
certain roles are meaningful.

Context is generally difficult to recognise, represent and reuse because it is multiform
and largely implicit nature. It is also never unique: at a given moment, several contexts,
at different temporal, spatial, social scales, overlap.

In the current literature in robotics and cognitive architectures, the term context
usually simply refers to a set of beliefs that initiate a representation (and reasoning)
frame: in [76]], the robot creates a context of interaction with a specific human by storing
in a separate model the beliefs of this human and using this knowledge when dialoging
with the human, the reasoning network is reinitialised in the GLAIR architecture when
the hypotheses that defined the current situation are not believed anymore [118].

This acception of context is simplistic, and omit the overlapping and multi-scale
aspects of context modeling.

We see context representation as one of the main challenge of knowledge repre-
sentatio in general, and we will further discuss the importance and issues brought by
context modeling in the conclusion of the thesis.

Modality, contingency and theory of mind

Linked to the context representation, but seen from another angle, knowledge represen-
tation systems may support logical modality. A knowledge model is logically modal if
is support the concept of possible worlds, i.e. , parallel beliefs models (or interpretations)
that can be independently accessed.

A contingent proposition is defined as neither always true (a tautology) nor always
false (a contradiction) in every possible world: its truth value depends on the context.
In knowledge representation systems for robotics that support logical modality, inter-
pretations are often initialised with a common set of initial beliefs (like common-sense
knowledge). This initial common knowledge is hence true in every possible worlds for
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the robot, and thus does not belong to its contingent knowledge.

On the contrary, alternative mental models with contingent knowledge may be used
to represent different (possibly hypothetical or even imaginary) views on the world,
from the robot own perspective or context, or from other perspectives computed by the
robot.

The representation of the mental perspective of other agents has a particular impor-
tance in human-robot interaction. It relies first on the ability to literally view the world
from a standpoint which is not egocentric. This cognitive ability is referred as perspective
taking. Flavell [36] and Tversky [136] define the psychological grounds of perspective
taking, that are themself originated in Piaget’s work on cognitive development (recent
studies on infants include Moll [95] for instance). Perspective taking begins to be
studied on robots as well [133} 21, 111].

The idea of a theory of mind [106] emerges from the perspective taking ability. It can
be defined as the ability for one to understand and acknowledge that other intelligent
agents can have their own mental state (that includes beliefs, intents, desires, knowl-
edge) that is possibly different from one’s own. The attention plays a central to the
development and recognition of a theory of mind [14, [77].

A notable consequence of having a theory of mind is the representation of false
beliefs, i.e. , facts that are believed to be true for an agent, but false for other ones. The
Sally and Ann experiment [77] (figure is a classical example of a false belief situation.
In Sally thinks the ball is in the beige box because she did not see Ann moving it.
An external observer asked “Where will Sally look for the ball?” would answer “in the
blue box” without a theory of mind (i.e. , a model of the knowledge of Sally), whereas
it would correctly answer “In the beige box” with a theory of mind.

Scassellati [116] is one of the first to have implemented a theory of mind on a
humanoid robot.

Self-knowledge: Who am I? What can I do?

Self-knowledge Self-knowledge is the term used in philosophy and psychology to
describe the knowledge that an individual has, acquires or infers about itself through
its experiences. It answers the question “What am I like?”.

Introspection is the technical meaning to access to self-knowledge by the ability
to self describe: what are my capabilities, what is my state (performing some action,
idling, etc.), what are my beliefs, what are my intentions and my plans?

Introspection must be distinguished from meta-cognition: While introspection may
require meta-cognition (for instance to be able to expose its internal knowledge), it is
not always mandatory. The current state of the robot can be represented as a simple
instantiation of a specific category (for instance, if the robot gives an object to the human,
this state could be represented with the triples [ robot performs actionl, actionl isA

Givel.

Modeling of the robot capabilities A particularly important aspect of self-knowledge
for robots relates to the description of its own capabilities: which sensors/actuators/-
computation services exist and are currently available ? While at a first level, these
descriptions can be static (e.g. the robot has one laser scanner and two arms), at more
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Figure 2.3: The standard “Sally and Ann” false-beliefs experiment, taken from [77].

advanced levels, the description is updated and reflect the current (and possibly past
and future) state of the robot. Note that these descriptions may also involve geometric
descriptions (a kinematic chain, the pose of a device, etc.) that may be deported outside
of the main knowledge base. Efforts trying to formalize, maintain and expose the
capabilities and state of a robot are not new (and ground themselves in work and
techniques for self-descriptive remote procedure calls in computing science), but take a
renewed importance with applications for high-level multi-robot cooperation.

Recent works by Kunze et al. [68] seeks at defining a formal language to represent
the capabilities of a robot.

Memory

Memory has been studied at length in the cognitive psychology and neuropsychology
communities: Atkinson and Shiffrin [7] introduce the idea of short-term and long-term
memory, Anderson [6] splits memory into declarative (explicit) and procedural (implicit)
memories, Tulving [134] organises the concepts of procedural, semantic and episodic
memories into a hierarchy. Short-term memory is refined with the concept of working
memory by Baddeley [11] (Figure[2.4).

It is worth emphasising that if memory is commonly associated to the process of
forgetting facts after a variable amount of time, it actually covers more mechanisms that
are relevant to robotics, like selective remembering triggered by a specific context or
reinforcement learning.

Most knowledge representation systems offers some kind of memory as a pool of
facts that are not forgotten by the robot until it is halted (this memory is often referred
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Figure 2.4: Overview of the main types of memories, based on [7,6}[134} [11]

as a working memory, but with a meaning unrelated to Baddeley’s definition). Some
systems may propose persistent storages that allow the robot knowledge to grow over
time, while others may offer a larger range of memory categories, like short term
memory (that lasts for a couple of seconds) or episodic memory (that allows the robot
to selectively remember facts associated to specific events).

In the larger field of cognitive architectures, the SOAR architecture [73] is one of
those that tries to reproduce a human-like memory organisation. The GLAIR cogni-
tive architecture also have a concept of long term/short term and episodic/semantic
memories.

2.24 Reasoning techniques

C.1. Stan-
dard reasoning

C.2.

stantiation and
ctural alteration

C.37 Lazy evaluation
C.4. Uncertainty

C. Reasoning -C.5. Non-monotonicity

—_—
C.6. Presupposition

C.7. Prediction
explanation

8. Planning

C.9. Naive physics

Standard reasoning techniques

We call standard reasoning techniques techniques based on logical inference, using resolu-
tion algorithms like forward chaining, backward chaining or semantic tableaux.

Main reasoning problems include concept satisfiability, consistency checking and in-
stance checking.

Concept satisfiability verifies if it is possible to find a non-empty interpretation of a
concept (or an expression defining a concept) in the knowledge model. For instance,
the formula P1lant A isRed, which defines the concept of red plants, is satisfiable in a
model B iff Ja, Plant(a)A isRed(a), i.e. if we can find at least one red plant a in our
model.
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Checking the consistency of a model is equivalent to checking the satisfiability of
each of the concept defined in the knowledge model.

Instance checking consists in verifying that an individual « is an interpretation of a
concept (or concept expression) C'in the knowledge model. A typical example would
be that we are provided with an instance ob ject1 and we want to know if this object is
a kind of Bottle or Glass.

Inferences can also be drawn from other constructs, whose availability depends on
the representation language. OWL, for instance, has constructs for:

e class subsumption (to represent inheritance relations)
e reasoning on roles properties, including:

— entailments based on roles domain and range (for instance, if the domain of
the role thinksoOf is known to be ThinkingAgent, then

thinksOf(a,b) —ThinkingAgent(a)),
- universal, existential and cardinality constraints,

- several second-order predicates (inverse, symmetry, transitivity, etc.)

e class restrictions like:

Bottle =Artifact that (hasShape value cylinderShape)

e set operations like:

Color=J(blue, green, orange, black,...)

Rule Languages As mentioned earlier, knowledge models based on description logics
can be extended through rule languages (typically for OWL, the SWRL language).

An intersection of properties is an example of expression that can only be repre-
sented with rules. For instance:

looksAt (?agt, ?obj) ApointsAt (?agt, ?obj) = focusesOn (?agt, ?obj)

Dynamic instantiation and alteration of the knowledge structure

The content of a knowledge base is often conveniently divided into a structural part that
defines the conceptualisation of a domain in term of vocabulary and relations between
the concepts, and an instantiation of this structure into concrete entities.

The terms TBox and ABox are commonly found to describe these two different types
of statements in ontologies: TBox statements describe a system structure (made, for
example, of a set of classes and properties) whereas the ABox contains TBox-compliant
statements that are asserted in this structure.

Knowledge representation systems allow to modify the ABox, which can be con-
sidered as the dynamic part of the knowledge base. Alteration of the ABox include
the addition or retraction of relations between existing instances, and the addition or
removal of instances. We call the later dynamic instantiation: the capability for a system
to create new instances at run-time. The term dynamic instantiation applies primarily to
concrete entities (typically, a new object is discovered by the robot, a symbolic instance
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is created for it), but may also apply to abstract entities (like an instance of action, of a
teeling, etc.).

The knowledge representation system may also allow to alter the TBox. This requires
the underlying reasoning systems to be able to dynamically take into account structural
changes in the knowledge base.

Example of TBox alteration include modification of the taxonomy (like addition
or retraction of a subClassOf relation), changes to the asserted domain or range of a
predicate, addition or retraction of rules.

Supporting TBox alteration has notable consequences on the learning capabilities of
the system: teaching general facts (i.e. , facts at the level of whole categories) like “cars
go on roads” to a robot requires an alteration of the TBox.

Lazy evaluation

Lazy evaluation describes the ability for a KRS to delay active knowledge acquisition or
reasoning operations until the value is actually needed.

For instance, a system that computes the symbolic relative placement of two objects
only when this fact is required to answer a query would be said to adopt a lazy
evaluation strategy, whereas a system that computes a priori such relations (and by
consequence, carries out such computation for possibly all known objects) would be
said to use a strict evaluation policy.

Lazy evaluation has an immediate impact on efficiency and scalability of the system,
and some problems may even be only tractable with a lazy evaluation strategy (the
relative placements of object is an example of combinatory explosion in strict evaluation
approaches, although this issue could be mitigated in real use-cases by heuristics that
would select a subset of objects to evaluate).

One downside is that the knowledge base never contains explicitly the complete set
of beliefs of the robot. This limits for instance the ability for the robot to react to logical
conditions that involve facts that are lazily evaluated (“trigger a callback when object A
is behind object B” would not be triggered with a purely lazy evaluation strategy for
spatial relations).

(Non) monotonic reasoning

Monotonic reasoning means that addition of new assertions to a knowledge base can
only extend the set of assertions that can be inferred, while a non-monotonic reasoning
scheme may lead to retraction of facts. McCarthy coined a famous example to illustrate
the need of non-monotonic reasoning:

Consider putting an axiom in a common sense database asserting that
birds can fly. Clearly the axiom must be qualified in some way since pen-
guins, dead birds and birds whose feet are encased in concrete can’t fly. A
careful construction of the axiom might succeed in including the exceptions
of penguins and dead birds, but clearly we can think up as many additional
exceptions like birds with their feet encased in concrete as we like. For-
malised non-monotonic reasoning provides a way of saying that a bird can
fly unless there is an abnormal circumstance and reasoning that only the
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abnormal circumstances whose existence follows from the facts being taken
into account will be considered.

An important application of non-monotonic reasoning is the representation of
change: for example, to make a brownie, one needs to crack eggs and mix them to the
chocolate. The eggs disappear and are replaced by a dough:

Egg(a)A Chocolate (b)AMakeDough(a, b, ¢c) — = Egg(a)A— Chocolate(b)A Dough(c)

The insertion of the proposition MakeDough(a, b, c) leads to retraction of other facts.
This rule requires non-monotonic reasoning to be applied.

Default logic is one of the formal logics that account for representing general truth and
exceptions to it (for instance, tomatoes are red, in general). However, due to computational
complexity of these models (most of inferences in default logic are known to be N P-
complete problem), classical logics and most of the existing reasoners do not allow
non-monotonic reasoning. For instance, the SWRL rule language, usually associated
to the OWL-DL ontology language, does not allow non-monotonic reasoning (only
so-called DL-safe rules are allowed).

One important exception is the negation as failure inference rule, as implemented
by PROLOG for instance, that allows for non-monotonicity within the closed world
assumption.

Presupposition accommodation

Presupposition accommodation [140] is the ability for a system to automatically create a
context allowing to make sense of a proposition.

Applied to robotics, we can imagine a human telling a robot “Please get me the
bottle that is behind you”. If the robot has not yet see what is behind it, it needs to
assume (and represents in its knowledge model) that a undefined bottle can be found
somewhere in the half of space behind it.

A knowledge representation system able to cope with presupposition accommoda-
tion would be able to take into account this (usually under-defined) information that is
not grounded into perception for later inferences.

This ability to imagine a physically state of the world that is not actually perceived
can be seen as the converse of the grounding ability.

Note also that presupposition accommodation implies a bidirectional link of the
symbolic knowledge model with a geometric (or physical) model of the environment.

Prediction, projection, explanation

Levesque [78] distinguishes two main tasks related to reasoning on actions and conse-
quences of actions, the projection task and the legality task.

We call diagnosis the converse of the projection task: the ability to track back the
origin of a decision, and explanation the more general ability to explicit a reasoning or a
decision.
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D.1 Projection

C.6 Prediction D.2 Legality

and Explaination - D.3 Diagnosis

D.4 Explaination

Projection task : determining whether or not some condition while hold after a
sequence of actions. The projection task is a typical non-monotonic reasoning task,
since at each step, the system must add but also retract beliefs, as defined in the tasks
post-conditions.

Legality task : determining whether a sequence of action can be performed starting
in some initial state.

The projection and legality tasks are illustrated in appendix [Bwhere the tractability
of task representation in DL ontologies is discussed.

Diagnosis : this corresponds to the ability to rewind on past events in case of failure to
provide possible explanation. This can be seen as the temporal reverse of the projection
task. Because of their modelling of situations as an history of actions, derivatives of
the GOLOG logic programming languages are a good example of the diagnosis task
integrated to the knowledge representation system [42].

Explanation Diagnosis is also linked to the explanation or justification capabilities
that may be offered by the knowledge representation system. The explanation of an
entailment is the sequence (or set of sequences if several are possible) of reasoning steps
that allow to reach a conclusion. An explanation can also conversely explain why a
statement leads to a contradiction.

The following example shows an explanation for an inconsistency in a particular
knowledge base: by adding the statement (robot1 belongsTo humanl), we observe that
an inconsistency is triggered. The reasoner provides the four following observations to
explain the inconsistency:

1. robotl TypebelongsTosome Thing
2. belongsTo Domain Artifact

3. robotl Type Agent

4. DisjointClasses: Agent,Artifact

This explanation directly portrays the underlying structure of the knowledge model:
we can understand that a robot is modelled here as an agent, that agents and artifacts are
disjoint classes and that only artifacts can belong to someone, hence the inconsistency.
A KRS may provide mechanisms to expose this kind of analysis, either automatically
when inconsistencies occur, or on demand.

Explanation of contradictions plays a particular role for robots: from a cognitive
point of view, a logical inconsistency (i.e. , a contradiction) can be viewed as a cognitive
conflict or cognitive dissonance (i.e. , two incompatible models of the world that must be
dealt with). Being able to expose and explain such cognitive conflicts eases the control
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of the behaviour of the robot in unexpected semantic situations, and forms a first step
towards an adequate reaction.

Cognitive dissonance is also identified by developmental psychologists like Piaget
as a motivation factor for a child to progress through the various stages of its cognitive
development. This has been also studied in robotics [102].

The cognitive capability of justification is also intimately linked to the meta-cognition
capability and participates to the overall cognitive observability of the system.

Task planning

Symbolic task planning is the ability for a robot to select a sequence of actions in
order to reach a given final state. This capability is closely related to the previously
mentioned projection and legality tasks: for a robot to plan, it must be able to build
hypothetical states of the world that would follow from the successive application
of actions (prediction task), and at each step, select possible, legal actions based on
their pre-conditions (legality task). As already mentioned, these tasks are highly non-
monotonic.

Symbolic task planning in general is a large research field [113]. The so-called
Classical Planning Problem, first, is characterised by a unique known initial state,
durationless deterministic actions which can be taken only one at a time, and a single
agent. STRIPS and PDDL are amongst the commonly used languages for representing
such planning problems.

Planning with nondeterministic durationless actions with probabilities can be repre-
sented as discrete-time Markov decision processes (MDP), and when full observability is
replaced by partial observability, we deal with partially observable Markov decision process
(POMDP).

Hierarchical Task Networks (HTN) are another common formalism for planning prob-
lems, where an initial set of tasks (High Level Tasks, HLA) is decomposed into either
primitive actions or a new set of subtasks.

From the observation that the core reasoning techniques (back and forward chaining)
are shared between planners and reasoners used in knowledge representation systems,
task planning can be considered within the KRS.

Since McCarthy’s Situation Calculus in 1963, numerous knowledge representation
formalisms dedicated to representation and reasoning about actions and situation have
emerged: besides situation calculus, fluent calculus and event calculus are the main
ones. Thielscher [131] recently proposed a unification of these approach in a new action
calculus.

The GOLOG [80] language and its derivatives (like READYLOG [35] and IN-
DILOG [42]) propose implementations of the situation calculus focused on robotic
applications.

It is however also common to rely on external components dedicated to symbolic
task planning (in particular because of the non-monotonicity requirements) with a tight
link to the KRS for domain retrieval and/or resulting plan storage.

Finally, in the context of interaction between several agents, the management of
joint intentions and joint goals [132,32] are additional aspects that have to be represented
and appropriately handled by the planning subsystem.
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Physics-based reasoning

As embodied entities, robots have to interact with physical entities. Naive physics
reasoning covers all the everyday reasoning the humans unconsciously perform, like
taking into account gravity (“if I drop a ball, it falls down”) or common physical
properties of objects (“a glass may break if dropped”, etc.). Many of the interactions
with our everyday environments are ruled by such laws that are difficult to exhaustively
encode.

Some systems [67] rely on external dedicated physics engine to compute symbolic
facts from on-demand physics simulation. This requires a tight integration between
the symbolic model and a geometric model that carries the geometries and physical
properties of objects.

2.2.5 Acquiring knowledge

D.1 Acquisi-
tion and fusion

/
D. Acquisition -  D.2 Grounding

\

D.3 Motivation

Knowledge acquisition and modalities fusion

In our context, acquiring knowledge means to build new logical statements from data
sources and to anchor them into the existing knowledge. We consider three possible
sources of data: proprioceptive/exteroceptive sensing, interaction with other agents,
humans or robots, and remote knowledge bases. The acquisition process has generally
two steps: the information acquisition by itself, and the transformation of the information
into knowledge, aligned with the robot existing model (following our terminology for
information and knowledge, as discussed at the beginning of the chapter).

It must be observed that knowledge acquisition is generally not done directly in
the knowledge representation system. External components (often aggregated into
knowledge acquisition pipelines) are usually required to convert percepts into symbolic
facts and to ground them.

While we do not review in this article all these systems, the whole process of
knowledge acquisition is central in cognitive robotic architecture and the design of
knowledge representation systems can influence or be influenced by the approach to
knowledge acquisition.

In particular, complex robotic systems often require multi-modal perception capa-
bilities (for instance, a robot can only interpret an utterance like “this is a plate” if it is
able to understand gestures, understand natural language and merge them in a timely
manner). Multi-modal interpretation can take place at various levels, but in many cases
(especially if the modalities are of very different natures, like in the example above)
merging will require symbolic-level reasoning. The KRS has a direct impact on the
feasibility and ease of such operations.

Let review shortly the three sub-categories of knowledge acquisition.
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D.1.1 Sensing
/

D.1 Acquisi- D.1.2 Interaction

tion and fusion

—_
D.1.3 Linked Resources

Sensing From the point of view of knowledge representation, the sensing capability
can be split into proprioceptive sensing (i.e. , sensing of the robot own internal state) and
exteroceptive sensing (sensing of the robot environment). The (physical) introspection
capabilities of the robot relies on the former.

Exteroceptive sensing is the most obvious and largely studied mean of knowledge
acquisition. Traditional sensing devices (IR, cameras, laser-scanners), while still present
and widely used (navigation based on 2D localisation and obstacle avoidance is today
the standard), are being step-by-step replaced by synthetic sensors.

These synthetic sensors include post-processing to provide higher-level percepts
that ease the grounding. The prototypical example of such a device is the Kinect sensor.
At a first level, it replaces traditional stereo vision algorithms by providing a fast, robust
depth map. At a second level, it provides accurate, real-time tracking recognition and
tracking of whole body poses of human.

Other examples of such synthetic sensors exist: face recognition, off-the-shelf perfor-
mant SLAM solutions, automatic cluster segmentation in point clouds (with the PCL
library), etc.

While the progresses of these sensing technologies are remarkable, one field of
perception remain a very difficult challenge: accurate and generic object recognition.
Most of the current approaches to object recognition rely on a mix of point cloud
segmentation and fitting with visual feature recognition (SIFT-like algorithms), but it
remains a slow and fragile task.

Interaction Interaction with other intelligent agents (humans or robots) is another

important source of knowledge acquisition. It relies obviously on some form of sensing

(from speech recognition to gesture recognition) but we distinguish it from the previ-

ous section because interaction implies a form of communication. Communication is

associated to specific functions (as shown on Jakobson’s diagram, figure pagel8),

and in particular, it implies a shared context (usually implicit) between interactors.
We distinguish between two main interaction channels: verbal and deictic.

D.1.2.1 Ver-
bal Interaction

D.1.2.2 Deic-
tic Interaction

D.1.2 Interaction

The field of verbal interaction processing for robots spans from pattern-based,
constrained sentences recognition to natural, bidirectional, unconstrained verbal com-
munication. A large literature corpus exists on Natural Language Processing (NLP)
which is presented at section page[97]

NLP is an established research field by itself, and while the robotic community is
still lagging behind on many theoretical aspects, it brings one important aspect: the
embodiment. Because the interactors, both the robot and the human, are establishing a
communication within a shared physical context, the verbal communication channel
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is complemented by deictic channels, back channels and possibly shared physical
experiences: a human can show something to a robot, saying “Give me this”. This is
not possible for a virtual agent.

Several of the knowledge representation systems we present have developed spe-
cific built-in mechanisms or extensions to parse, ground and possibly rebuild natural
language.

Deictic (used in the literal meaning of “display, demonstration, reference”) interac-
tion is also an established field of research in human-robot interaction. Common deictic
forms of communication [81] include attentional focus (via face and gaze tracking) and
joint attention, pointing, emotional expressions (based on face expressions, postures,
emotional gestures).

Like other knowledge acquisition modalities, the recognition and interpretation of
deictic communication is rarely directly included in a KRS, but, as previously men-
tioned, the symbolic representation of such communication acts is relevant and impor-
tant to achieve successful multi-modal interactions.

Linked Knowledge Resources Robots, and in particular service robots, have usually
an access (with possibly security-related constraints) to the World Wide Web and remote
knowledge stores.

The current shift towards the Semantic Web (i.e. structured, annotated data that
are easily machine-processable) makes increasingly easy to have robots to reuse au-
tonomously this knowledge. The DBPedia project, for instance, illustrates well the
tendency: it provides an automatically generated RDF version of the Wikipedia ency-
clopedia.

In its current state, the relevance of the DBPedia project in our context is however
limited: the triples that are extracted are mostly “mechanical” (like the categories of a
term, or factual informations extracted from Wikipedia’s InfoBox), and the vast majority
of the knowledge actually contained in the encyclopedia pages remains out of reach of
automated parsers. Efforts in that direction however exist [99 34].

Another notable project that seeks at providing large amount of machine-friendly
common-sense knowledge is the MIT’s OpenMind project [119]. The project is designed
to let the general public easily add common-sense statements in semi-controlled natural
language, which is then processed to a publicly available ontology.

Another approach that is easier at short-term to let robots remotely access knowl-
edge repositories consists is building robot-specific shared repositories, with declarative
and/or procedural (i.e. , plan library) knowledge. The RoboEarth [143] project is an
example of such an effort.

Grounding/anchoring strategies

Grounding (also called anchoring when specifically referring to the building of links be-
tween percepts and physical objects [27]) is the task consisting in building and maintaining
a bi-directional link between sub-symbolic representations (sensors data, low-level actu-
ation) and symbolic representations that can be manipulated and reasoned about [44].
Being embodied entities with interaction with other embodied entities as a funda-
mental requirement, robots and robotic is deeply concerned by the grounding issue.
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Figure 2.5: Example of a semantic map, taken from .

Being actually implemented on real service robots, all the symbolic knowledge
representation systems that we review in this study have some kind of grounding
process. Numerous approaches exist, like amodal proxies [54], grounded amodal repre-
sentations [3,91], semantic maps (Figure 19])) or affordance-based planing
and object classification [84] 137].

Intrinsic motivation and curiosity

The reasons for a robot to acquire knowledge are diverse, and usually external to
the robot itself. It is often driven by the requirements of tasks that the robot has to
execute. In this case, motivations are managed by the execution controller and are
mostly invisible to the knowledge representation system.

However, motivation can also be intrinsic, driven by the internal state of the robot’s
beliefs, without external pressure or reward. In this case, the

In the context of robotics, Oudeyer notes however that the information that is com-
pared [to compute a level of motivation] has to be understood in an information theoretic
perspective, in which what is considered is the intrinsic mathematical structure of the values of
stimuli, independently of their meaning. [102].

Psychological grounds of motivation are summarized in while the main ap-
proaches to computational motivation, divided into knowledge based models, compe-
tence based models and morphological models, are surveyed in [103].

2.2.6 Practical integration in robotic architectures

E.1 Sensori-motor

E.2 Executive layers

E. Integration
E.3 Monitoring

E.4 Performances

Knowledge representation systems do not mean anything to robots if they are
considered in isolation. This section proposes categories of features related to the
integration of the KRS into a larger software architecture that includes perception
routines, decision-making processes and actuation control.
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We also mention some practical aspects of a real-world system, like performances
and monitoring tools that come along with the KRS.

Integration with sensori-motor layers

We have previously discussed (section[2.2.5) the principles of the grounding process
that aims at establishing and maintaining a connection between percepts (and to a
lesser extend, low-level actions) and symbols.

While every real-world cognitive robot need some kind of grounding, the actual
implementations lead to very different information flows.

The systems can be roughly split into two classes: passive knowledge repositories
that process symbolic facts produced by lower-level sensori-motor layers (push flow);
active knowledge managers that directly query (possibly by polling or on-demand)
low-level layers.

This macroscopic distinction is however mostly a matter of defining the frontiers
of the KRS: some systems like KnowRob [130] encompass geometric reasoning layers
that would be considered as external by other systems like ORO [75] that focus on the
symbolic fact storage and rely on a ecosystem of independent modules to provide and
consume symbolic knowledge.

Other systems do not fit either in such a partition between active and passive systems
because they do not stand as independent modules but exist as diffuse, ubiquitous
knowledge manipulation system (case of the CAST knowledge model [54]), for instance
because they are primarily language [35, 114].

Integration with executive layers

Conversely, the knowledge management module need a tight integration with the
decision-making processes. As for the integration with sensori-motor layers, the borders
of the KRS can be fuzzy and vary from one architecture to another: many consider
symbolic task planning as an integral role of the KRS, while other have dedicated
extensions for planning, some integrate learning as an on-the-flight process that is part
of the KRS, others as an independent deliberative process, etc.

The actual integration techniques vary also widely, from language extensions (like
the integration of CRAM [15] with KnowRob) and client-server architectures, to event-
driven models (SHARY and ORO [3]]). Choices at this level have notable consequences
on the whole design of the upper control architecture of the robot, in particular regard-
ing its modularity and the ease of addition of new components.

Monitoring and debugging

It is common to have knowledge representation systems at the heart of a cognitive
robotic architecture, and therefore KRS are easily “buried” in the system.

At the same time, the symbolic model often provides a valuable synthetic view
on the whole state of the robot, furthermore easily understandable by the human
developer (the fact (humanl issitting true) is easier to interpret than the suite of
relative coordinates of each joints of the human skeleton, as provided by the human
tracker, for instance).
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Tools to trace and visualise at run-time the evolution of the knowledge structure
and contents may be available with the KRS, as well as post-processing tools that run
on the trace to analyze a posteriori the cognitive behaviour of the robot.

Evaluation of performances

Benchmarks of symbolic systems for robots are hard to conduct for several reasons:
identifying good metrics for robotic experiments in general is difficult because of the
complex interactions between tenth of modules running in parallel, and isolating one
specific component is difficult. Also, knowledge representation systems are often
tightly coupled to the other modules. To quote Langley [72]:

The conventional wisdom of software engineering is that one should de-
velop independent modules that have minimal interaction. In contrast, a
cognitive architecture offers a unified theory of cognition with tightly inter-
leaved modules that support synergistic effects.

The lack of standard API for knowledge services makes it also hard to switch
between KRS to compare them.

Finally, because service robots are designed to act in rich, dynamic environments,
possibly with humans, building repeatable experiments is challenging, and quantitative
measurements are often not the right metric [72].

We will however present here some quantitative metrics (related to scalability, for
instance), followed by qualitative evaluation approaches, grouped under the term
Cognitive Performances.

E.4.1 Raw Per-
E.4 Performance — formances
Evaluation —  E.4.2 Cognitive

Performances

Raw Performances The raw performance is evaluated on quantitative benchmarks.
The main metric is the scalability SK75 of the system with the size of the knowledge
base o = |AZ| (in term of atoms or statements).

We call relaxation time RM the (averaged) time required by the system after a model
modification of type M before being available for further interaction, and query time
QM the (averaged) time to execute a query of complexity C on the KRS. The type M of
model alteration is either an ABox modification (addition/removal of an instance) or a
TBox alteration (addition/removal of a class, a class restriction or a rule).

Temporal scalability is defined in term of the nature of the function fM<(0) = RM(0)+
QC(0) (i.e. the relation of the relaxation time and query time to the knowledge base size).
Space scalability is the relation of memory consumption to the size o. The scalability is
tightly coupled to the expressiveness of the underlying knowledge model, which need
to be known for the scalability measurement to be meaningful.

Because of coupling and repeatability issues we have mentioned, raw performances
of KRS are often benchmarked with synthetic datasets (which leads to another issues:
how to assess the meaningfulness of the performance of a reasoner on an artificial
ontology? [13]) or “toy” experiments that do not always model the whole complexity
of real-world application [26].
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Cognitive Performances While evaluating the raw performances of knowledge rep-
resentation systems in a relevant manner may be difficult, the cognitive performances
of the robot as a whole can be also evaluated.

Langley et al. [72] propose five such dimensions of evaluation: the generality of
the system (can it adapt easily to new tasks?), the rationality or relevant of the infer-
ence/reasoning/decisions the system take, the reactivity and persistence that evaluates
if the behaviour of a cognitive system is appropriate under unpredicted changes, the
improvability of the system as a function of the knowledge added to it, and finally, the
resulting autonomy of the system.

Cognitive performance can also be evaluated with the support of tools developed
in cognitive psychology. Several standard tests (like False-Belief experiments [77] or
the Token test [31]) have been used to judge the cognitive abilities of robots [91} 21]].

2.2.7 Knowledge instantiation

E1 Design Strategy

2 Common-sense

F. Knowledge — and Alignement

instantiation - .
E3 Metrics

F.4 Granularity

This last branch of our taxonomy looks at the actual content of the knowledge base:
the knowledge instantiation. Here, instantiation does not only refer to the instantiation
of the knowledge structure (what we have called the ABox), but also includes the
knowledge structure itself (the TBox).

While we have previously mentioned features of knowledge representation systems
that enable the robot to fill its knowledge base with content and alter the knowledge
structure, most of the systems also come with a certain amount of initial knowledge
that often includes common-sense knowledge (i.e. facts that widely known to humans,
and hence often implicit: “to put a cake in the oven, one must first open the oven’s
door”).

The design strategy, the choice to rely on common-sense knowledge or not, the
reuse of standard ontologies, the quantity of a priori knowledge are many parameters
that lead to different knowledge models.

Design strategy

The main challenge of knowledge representation can be summarised as How to model the
real-world state and interactions in a symbolic way, processable by the robot to make decisions.
We have already introduced the term grounding to describe the (bi-directional) process
of binding percepts to symbols.

We have also seen that the instantiation of the knowledge (i.e. , the actual, practical
knowledge available to the robot) comes either from some variant of perception plus
grounding, or from knowledge that the developer considers as already meaningful for
the robot: remote semantic databases or initial (common-sense or situation specific)
knowledge.
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This translates into two main strategies to drive knowledge instantiation: a top-down
design or a bottom-up design.

A bottom-up approach to knowledge instantiation takes the output of sensors as the
primary source of knowledge: instances of objects, agents, and their relations directly
result from what is perceived. No abstract, “from the more generic to the more specific”
process takes place.

Steels [127] considers this approach to be a solved issue, and according to Slo-
man [123] (and his stance against the “Symbol Grounding meme”), since bottom-up
grounding boils down to grounding of somatic concepts (i.e. roughly, the sensori-motor
relationships that the robot learns from its interaction with the world), it constrains in
an unacceptable way the range of concepts accessible to the robot.

Knowledge instantiation can also be approached as a top-down activity: in natural
language grounding, for instance, the robot needs to automatically bind an abstract
representation (a group of words uttered by a human) to an unambiguous, context-
dependent, internal concept. This concept may (or may not) be a priori available to the
robot as a pre-loaded ontology (what we previously called the cultural background of
the robot). In any case, the robot must conduct a cognitive process that leads from an
abstract concept to a concrete entity.

The bottom-up and top-down strategies also reflect how the knowledge structure
itself is constructed: either by successive classification and refinement of percepts, or
from generic categories, typically extracted from standard upper-ontologies.

Common-sense and alignment with standard upper-ontologies

At section[2.2.5 we have presented how remote knowledge bases are a valuable source
of knowledge, including common-sense knowledge, that robot can extract.

Building a priori knowledge with a top-down strategy leads to populate the upper
part of the taxonomy with abstract concepts like Thing, Time, Person, etc. The organ-
isation of the whole knowledge depends on the design of this abstract part of the
common-sense knowledge.

Different knowledge structures at this level can lead to serious misunderstanding;:
for instance, if one robot considers the concept of a person as representing some intelli-
gent, possibly disembodied, entity, and another robot represents a person as a subclass
of mammals, their models of the world are likely to be conflicting.

To be able to successfully exchange knowledge with other systems (robots, databases,
natural language parsers, etc.), the common-sense knowledge of robots is thus often
aligned with a standard upper-ontology.

Many such upper-ontologies exist (table 2.3|lists some of them). While CYC and
SUMO are current the main two, many efforts take place to make these ontologies com-
patible with each other (in particular by using the WORDNET thesaurus as intermediate
unambiguous source of semantics).

Metrics and quality criteria

Qualitative and quantitative metrics give an insight on the size, complexity and effec-
tiveness of ontologies used with the robots.
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Project Terms Assertions (triples)
Cyc > 300 000 > 3 000 000

YAGO > 10000 000 > 120 000 000
SUMO 20 000 60 000

DBPEDIA (for English) 1840 000 385 000 000
OPENMIND Common Sense (for English) 1000 000

Table 2.3: Raw size of major upper-ontologies.

Table[2.3|gives such metrics for five major upper-ontologies commonly used in the
semantic Web community (taken from [88] and the projects’ respective websites). It is
interesting to note the large variations between projects like DBPEDIA whose content is
automatically generated from Wikipedia, CYC or SUMO, which are both hand written,
but do not adopt the same strategy to select the knowledge to represent.

These metrics do not reflect adequately the expressive complexity, though: in most of
these ontologies with a large amount of terms and assertions, taxonomic relations (isa)
or technical predicates (URI, translations, etc.) account for a large part of the assertions,
at the expense of real semantic relations.

Other metrics that include the type of predicates that are used, or the computed DL
expressiveness, can be more significant (some are presented in table page [66).

Qualitative evaluation of ontologies is also a well studied field. In Staab’s Handbook
on Ontologies, Vrandecic¢ [141] provides a synthesis of qualitative criteria for ontology
assessment. He lists eight of them: accuracy, adaptability, clarity, completeness, computa-
tional efficiency, conciseness, consistency, and organizational fitness. Details and relevant
literature can be found in Vrandeci¢’s chapter.

Granularity

Amongst the characteristics of ontologies, knowledge granularity qualifies the level of
details or refinement of the knowledge stored. The level of granularity of a robot’s
ontology hints on the place of the symbolic layer in the whole robotic architecture:
some systems (like OMRKEF [128]) go as down as storing SIFT features (i.e. a large
volume of numerical values) in the ontology. The storage of literal values is indeed a
relevant case for robotics. Depending on the representation language, literal values can
be naturally represented and processed (common case in logic programming language)
or not (storing numerical value, let alone matrices, in OWL is cumbersome and not
efficient due to the serialisation to XML).

The issue of the granularity of models can also be partially addressed by splitting
the knowledge representation into a geometric level (where all numerical values are
stored) and a purely symbolic level. The communication between the two layers is
however a complex question.

It must finally be noted that complex robotic systems are likely to use different
level of the knowledge depending on the task to achieve, and the granularity of the
knowledge should probably be considered as a dynamic property.
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2.3 Existing systems for knowledge representation in ser-
vice robotics

Table lists the knowledge representation systems that we have surveyed.

This section first clarify the inclusion criteria, and then briefly presents each of them.
At chapter [, we will consider again these systems, this time as a whole, to build a
summary of the fields of knowledge representation that are adequately (or not) tackled
by the existing systems.
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Project Category

Authors (Institution)

Project homepage

Programming lan-
guage

Knowledge model/Logical

Formalism

Main refer-
ence

ARMAR/Tapas Formal

CAST Proxies Ubiquitous
GSM Structural
Ke Jia Project Formal
KNOWROB Formal
NKRL Language

OUR-K/OMRKF  Formal

PEIS KR&R Formal

Holzapfel, Waibel

(Karlsruhe TH)

Wyatt, Hawes, Jacobsson, Krui-
jff (Brimingham Univ.,, DFKI
Saarbriicken)

Mavridis, Roy

(MIT MediaLab)

Chen et al.

(Univ. of Science and Technol-
ogy of China)

Tenorth, Beetz

(TU Munich)

Zarri et al.

(Paris Est Créteil Univ.)

Lim, Suh et al.

(Hanyang Univ.)

Daoutis, Coradeshi, Loutfi, Saf-
fiotti

(Orebro Univ.)

www.wrighteagle.org/en

ias.in.tum.de/kb/wiki

incorl.hanyang.ac.kr/xe

WWW.aass.oru.se/~peis

ASP (Answer Set
Programming)

PrOLOG
NKRL
?

C,CycL

TFS (Typed Feature Struc-

tures)
Amodal proxies

ASP

PROLOG + OWL-DL

DL + Horn Clauses

CycL (Ist and 2nd order

logics, modal logics)

[51]

[54]

(1]

[24]

[130]
[i14]
[82][128]

[29]

Table 2.4: List of surveyed systems. Categories are Formal for systems that have a formal underlying knowledge representation, Ubiquitous
for systems where knowledge is fully distributed, Language for languages used as KRS on robots or Structural for KRS where knowledge is
represented as special data structures.
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Survey Inclusion Criteria

Every robotic system has, implicitly or not, some knowledge representation systems.
It may range from a simple state vector to an explicit symbolic knowledge base. This
survey focuses on the right end of this spectrum: symbolic systems, suited for abstract
reasoning.

Besides, we have decided to restraint the set of systems to those actually imple-
mented on robots, and used in semantic-rich environments (i.e. dynamic, partially
unknown environments with a large range of different entities which may have inter-
actions). The typical scenario that would involve such robots is the Brownie Scenario
already presented at section a service robot in a human-friendly environment like a
kitchen.

We have limited ourselves to systems that 1. run on service robot (that is, robots that
interact with objects in a semantic-rich environment primarily designed for humans),
2. ground the knowledge in the physical world (physically embedded systems able to
assess their environment), 3. are able to merge different knowledge modalities, 4. are
able of on-line, dynamic knowledge acquisition and reasoning (i.e. not simple static
databases).

These criteria exclude platforms like DYKNOW [49] which are focused on data
fusion and knowledge grounding at lower levels.

We have also chosen not to include the GOLOG language and its derivatives [80, 135,
42] in this survey. While several implementations on robots, including service robots,
do exist, the focus of this language is on representation and reasoning about actions
and situations, and the link with symbolic, abstract knowledge is not explicit.

While classical cognitive architectures like SOAR [73], GLAIR [118] or ACT-R have
declarative knowledge modules [30] and have been recently used on service robots (see
ACT-R/E [60] for instance), they are also absent from this survey because we did not
tind much references in the literature on knowledge manipulation and representation
applied to real-world robotic scenarii for these architectures.

A comprehensive reference on (bio-inspired) cognitive architectures is also available
from the BICA Society [126].

2.3.1 ARMAR/Tapas

TAPAS is the name of the knowledge representation system and dialogue manager
found on the ARMAR III robot [51] for the Karlsruhe Institute of Technology.

Knowledge in TAPAS exists as procedural knowledge (plans) and declarative knowl-
edge. The later is split into lexical knowledge, semantic knowledge and a database of
identified objects (with their properties). The lexical knowledge contains lexical and
grammatical informations about the objects. The semantic knowledge is organised into
an ontology relying on typed feature structures (TFS [23], a formalism originating from
the computational linguistics community, and a superset of first-order logic).

TAPAS has a strong focus on natural language grounding. It proceeds by generat-
ing grammars from properties represented in the ontology to parse and understand
dialogue.

Another focus is put on handling unknown words and objects. TAPAS provides
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routines to recognise unknown entities, and propose and interactive and iterative verbal
process to categorise (including adding new categories) those new concepts.

Experiments TAPAS has been used experimentally in a kitchen environment where
naive users had to ask the robot for an object and get information about another object.

2.3.2 CAST knowledge model

CAS (CoSy Architecture Schema) Toolkit [48] is a comprehensive toolkit aimed at building
cognitive architectures for robots through a set of interconnected SA (subarchitectures).
The CAS does not expose a central knowledge base as seen in other works. It represents
instead knowledge as unrooted proxies. Those proxies are formally defined in [54] as
p = (F,, u,) where F, is a set of instantiated features (like ¢5%°*") and u,, a proxies union
that form an equivalence class corresponding to one entity.

A union of proxies forms a global amodal representation of an entity, that can be
explicitly shared and manipulated. Being not centralised, the knowledge model can
be qualified of ubiquitous. Furthermore, knowledge source in the CAS architecture
is tightly bound to the on-line grounding process (be it grounded in perception or
in dialogue). While nothing seems to prevent it, no a priori knowledge (including
common-sense knowledge) is used.

Knowledge sharing is ensured by the event mechanism of CAST: modules can
monitor proxies for alteration by other modules. Jacobsson et al. mention how this can
apply to reinforcement learning: the vision module creates a proxy for an orange object.
This proxy get monitored by a learning module. In parallel, the proxy is bound to an
union by the natural language understanding module that add new a feature like “this
object is a fruit”. The learning module is called back, and can add this new information
to its model.

In the presented implementation, the CAST knowledge model does no allow for
effectively representing actions or temporal information.

Knowledge Acquisition Several techniques for knowledge acquisition have been
explored within the CAST framework. Cross-modal knowledge fusion [46] is well
studied, and the interaction with natural language processing [65| 64] is a particular
emphasise of the project.

In [45], Hawes et al. also explore curiosity mechanisms in the context of spatial
representations with the robot Dora.

Experiments CAST has been used in several experiments, including table-top ma-
nipulation (with a focus on language understanding) and more recently on the Dora
robot [45] for indoor exploration.

2.3.3 GSM

GSM (for Grounded Situation Model) [91] is a knowledge representation system primarily
built to “facilitate cross-modal interoperability”, especially in the context of verbal
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Figure 2.6: Simplified hierarchical structure of the Grounded Situation Model, based on [91].

interaction with a robot.

GSM does not rely on any formal language but rather on a layered data structure
(figure that organises the surrounding world into agents and relations between
agents. Each agent (any animate or inanimate object) is attached to a physical model
(made of body parts that have properties like their position, color, etc.) and a mental
model (which is a recursively embedded GSM, thus allowing a sort of theory of mind).

Properties are represented in three layers: a stochastic representation, close to
sensory percepts, a continuous single-valued encoding of the stochastic model, and a
discrete, categorical model.

One notable feature of GSM is the bidirectionality of the grounding process: not only
sensor percepts are abstracted into categories suitable for human conversation, but
human utterance (like “There is a red ball in the center of the table”) can also be turned
into property descriptions. This basically enable the knowledge representation system
of the robot to imagine entities.

GSM also features several strategies for managing time and events. Moments are
created by storing timestamped snap-shots of GSM, and event classifiers allow to define
and detect events.

Experiments GSM has mostly been tested on table-top manipulation and interaction
tasks (a “conversational helping hand” as stated by the authors) implemented on
a 7-DOF arm equipped with force feedback, cameras for blob tracking and speech
recognition (Sphinx4). Mavridis and Roy provide in addition an in-depth analysis of
the performance of GSM by the mean of a standard psycholinguistic test, the Token
test [31].
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2.3.4 Ke Jia Project

The Ke Jia project [24] integrates on a mobile platform a knowledge representation
language with natural language processing, task planing and motion planing.

Knowledge representation relies on Action Language C, itself based on Answer Set
Programming (ASP) [38]. These languages, that are syntactically close to Prolog, are
based on stable models of logic programs, and support non-monotonic reasoning. Default
and non-monotonic reasoning has been especially researched within the Ke Jia project
for symbolic task planing [57] and underspecified natural language processing.

Amongst other features, the natural language processing capabilities of the system
support acquisition of new logical rules at run-time.

Experiments The Ke Jia robot has been demonstrated in several tasks involving
human-robot interaction with natural language. These tasks include a task with multi-
ple pick & carry that are globally optimised, naive physics reasoning via taught rules or
more complex scenarii with the robot delivering drinks, taking into account changing
and mutually exclusive preferences of users.

2.3.5 KnowRob

KNOWROB [130] is an integrated knowledge management system developed at the
Technical University of Munich. It is build as a set of modules (figure [2.7| organised
around a core reasoning system written in Prolog. This core module interfaces through
Java/Prolog or C/Prolog APIs with external modules.

Extension modules can plug into the system to provide specialised reasoning ca-
pabilities or interfaces to external data sources, e.g. to read object detections from the
vision system. These modules operate on the level of instances (ABox).

Knowledge model KNOWROB can load OWL ontologies, and the KnowRob-Base
ontology is provided as a common-sense ontology, with a focus on household and
kitchen domains. KNOWROB also store and reason on introspective knowledge through
the Semantic Robot Description Language [68] that allow to represent symbolically the
capabilities of the robot, and is used for planning.

Reasoning Techniques Amongst the notable KNOWROB extensions, PROBCOG [55]
is an effort to provide probabilistic reasoning based on bayesian networks, integration
with naive physics reasoning has been studied [67], automatic parsing of Web resources
in semi-natural language has been also experimented with [99].

Grounding KNOWROB offers a mechanism called computables that allow to evaluate
certain predicates by calling external dedicated functions (for instance, the valuation
of a proposition like (objectl ison object2)is computed when required by calling a
specific geometric reasoning module). In combination with Prolog’s lazy evaluation
strategy, this supports a good scalability.

Computables rely on various subsystem to evaluate. In particular, it relies on the CoP
framework [62] and semantic maps [19] for the recognition of objects and environment.

49



Symbolic Knowledge Representation

Reasoning
- Computable Robot Classification Semantic
Desclr\?t\on Logics P?J?ablllsclc classes and capability and clustering similarity
nference nference properties matching methods measures
N A TP
g0 50 QA
<WWw> ( )
c Semi-automated
o Parsing
B
" <WwWw>
'5 Remote Databases
(=2 (Online shops)
<
<WWw> - >
& e KnowRob
- Eaorth .
] knowledge representation
E =
o
c =
X

Observation of
Humans

Prolog Interface

OS > T CTHTh Gh G Vision System,
R .org Internal Robot Kinematics
14

Integration with other modules

Figure 2.7: Overview of the KNOWROB framework, taken from [129].

Experiments KNOWROB has been deployed on several scenarii at the Technical Uni-
versity of Munich, on the PR2 robot and on a 2-arm custom mobile manipulator in the
scope of the “assistive kitchen” [16] project. These experiments include retrieval and
automated parsing of recipies from the Web, retrieval and manipulation of various
kitchen tools, cooperation between two robots.

2.3.6 NKRL

NKRL stands for Narrative Knowledge Representation Language. While this language
is developed since a long time by Zarri [147, [148]], recent research direction include
application to the robotic field [114]. NKRL is not per-se a knowledge representation
system, as it is primarily a language. However, it is used as the representation and
reasoning mechanism for robots by Sabri et al.

Knowledge representation The NKRL language semantics are stored in two ontolo-
gies: an ontology of concepts €2 and an ontology of events W. The ontology of events is
made of action or situation templates. Templates are a set of predicates (MOVE, PRO-
DUCE, RECEIVE, EXPERIENCE, BEHAVE, OWN and EXIST) associated to thematic
roles. Grounding and reasoning with NKRL is based on template matching.

Experiments The main scenario of development for NKRL-based robots is the Smart
Home and monitoring of eldery people. Knowledge acquisition partially rely on
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ambient intelligence (RFID, pressure sensors in the chairs, etc.). The scenario is still
being implementated.

2.3.7 OUR-K and OMRKF

The Ontology-based Unified Robot Knowledge [82] (OUR-K) framework, successor
of the Ontology-based Multi-layered Robot Knowledge Framework [128] (OMRKEF),
is a knowledge representation system based on five inter-related classes of knowledge
(figure2.8). It proposes a layered approach to knowledge representation that allows
to integrate the grounding process to the knowledge representation process. OUR-K
knowledge model is implemented with a mix of Description Logics for the concept
hierarchies and Horn clauses.

Each level of knowledge is build as three stages of ontological realization: a meta-
concept (the level itself, like “temporal context”, “behaviour” or “object feature”), a
taxonomy of concepts inside this level (for instance cup : Object C tableware : Object)
and an instantiation of the taxonomy (cupl : cup).

Representation The environment is represented in OUR-K in the spaces : Model
knowledge level as a classical three layers mapping (metric, topological and semantic
maps). Objects (in objects : Model) are localised in spaces : Model through Voronoi
nodes.

The knowledge class Context proposes an explicit statement of spatial context
(mostly geometric relations between objects), temporal context and a more general
high-level context, inferred from spatial and temporal contexts.

Finally, the Activity knowledge class store compound actions in a HTN-like struc-
ture, exploited at run-time by a planner.

Experiments Experiments conducted with OUR-K and OMRKEF include finding
kitchen objects and reporting about their state to a human. This experiment also
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Figure 2.9: The PEIS knowledge representation system, taken from [29]

shows how OUR-K can deal with objects only partially matched by their descriptor by
introducing a candidate() function.

2.3.8 PEIS KR&R

PEIS ECOLOGY [115] is a software ecosystem that aim to binds autonomous robotics
with ambient intelligence (network of sensors). PEIS stands for Physically Embedded
Intelligent System: every robots or intelligent device in the environment is abstracted as
a PEIS.

Each PEIS physical component is running a PEIS Kernel instance. Communication
between instance relies on a custom P2P communication protocol.

The PEIS architecture allows for adding new abilities through software components
sharing the common tuple space.

We consider here the semantic layer [29], referred as PEIS KR&R, that includes
symbolic representation and reasoning.

Knowledge model The PEIS Knowledge representation system relies on the RE-
SEARCHCYC and CYCL language to represent knowledge. The CYCL language allows
to represent first order logic sentences and has extensions for modal logics and higher
order logics.

As a system relying on CYCL, contexts can be expressed as microtheories: the truth
or falsity of a set of statement depends of the microtheory in which these statements are
evaluated.
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The PEIS KR&R system is deeply integrated to the general PEIS Ecology smart
environment. Figure[2.9|gives an overview of the interactions between PEIS knowledge
processing layers.

Knowledge Acquisition The primary source for knowledge acquisition is perception.
The PEIS ecosystem provides a SIFT-based object recogniser used in conjunction with
ceiling cameras for object localisation. Other perceptual modalities are available (like
human tracking, ambient environment monitoring).

A template-based natural language parsing system may also be used to add new
assertions to the system.

The system can ask the human for help to disambiguate between concept names.

Anchoring Daoutis et al. formalise the issue of anchoring as finding a predicate
grounding relation g C P x ® x D(®), where P is a set of predicate symbols, ¢ a set of
percept’s attributes, and D(®) the domain of these attributes.

In the current implementation, object category (returned by the SIFT classifier),
color, location, spatial relations (both topological — at, near — and relative to the robot —
left, behind, etc.) and visibility are the five classes of extracted attributes.

Integration in the robot architecture The PEIS framework offers through the PEIS
middleware a practical way to insert a new component into the shared tuple space. Thus,
the KR&R module can be seamlessly integrated into the PEIS ecosystem.

Experiments Experiments involving PEIS take place in a Smart Home environment
(PEIS Home). The implemented case studies explore dialogue-based interaction with
the robot about known objects.

2.4 An interface for knowledge manipulation in robotics

During the preparation of the thesis, discussions with several people involved in
knowledge representation (namely Dominik Jain, Lars Kunze, Michael Beetz) have
led to the draft of a generic API for knowledge access and exchange between robotics
components.

This section presents this effort of standardisation that is (partially) implemented by
the ORO server, presented in the next chapter.

2.4.1 Rationale and general considerations

The original idea comes from the acknowledgement that more and more software com-
ponents for robotics want to store or use symbolic data. Since established international
efforts at defining standard for inter-component communication like ROS have already
proved their usefulness, one single API for different knowledge representation and
management systems could be equally useful.
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The APIis designed for robotics (even if probably useful in other contexts): it aims to
be simple and practical for clients by focusing on core knowledge operations (addition
of knowledge, retraction, querying) with consistency constraints; it explicitly supports
uncertain knowledge and multiple models (modality); it makes clear how knowledge
is added or retracted with explicit policies.

We have attempted to design it in a way that do not restrict expressiveness (any
logical sentence that can be expressed in the logic of predicates, with a probabilistic
extension, can be manipulated by the API), and a simple extension mechanism should
permit future evolutions in a backward compatible way.

Besides facilitating exchange of knowledge contents between systems by ensuring
one standard formalism, another outcome of the adoption by several KRS of this API
is that it allows easy switch between semantic engines (and thus benchmarking and
sharing of unit-tests).

This API was developed with Prolog-based knowledge systems, Description Logics-
based knowledge bases and Markov networks in mind, and should cover as well other
systems related to predicate logics (with or without a probabilistic extension).

Besides standard operations on axioms and taxonomy, the API aims to cover:

e probabilities associated to statements
e management of several models

e explicit policies to add, retract or, more generally, alter knowledge (for instance,
to guarantee consistency when adding knowledge)

e specific, implementation-dependent, extensions through the special method.

Implementations are not always expected to cover to whole API, but must have a
predicable behaviour when a part of the API is not implemented. In particular, the API
makes no assumptions on implementations regarding:

o the actual supported expressiveness (the API allows to express general first-order
logics statements, but the underlying implementation may support only a subset,
for instance, Description Logics)

e Closed-world assumption vs Open-world assumption

e Reasoning capabilities

2.4.2 The Knowledge API

The APl is divided in five parts:
1. Methods related to service management,
2. Methods related to knowledge alteration,
3. Methods related to knowledge querying,

4. Methods related to models manipulation and finally
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Key Values Meaning

method add (default) the statements are added to the knowledge base,
without ensuring consistency.

safe_add the statements are added only if they (individu-
ally) do not lead to inconsistencies.

retract the statements are removed from the model. As-
sociated probabilities are discarded.

update Updates objects of one or several statements in
the specified model. If the predicate is not in-
ferred to be functional (i.e. , it accept only one
single value), behaves like add.

revision or Updates objects of one or several statements in

safe_update the specified model if it does not (individually)
lead to inconsistencies. If the predicate is not
inferred to be functional (i.e. , it accepts only one
single value), behaves like safe_add.

model all (default) all existing models (section b are impacted by
the change.

a valid model id or a only the specified model(s) are impacted
set of valid model id

Table 2.5: Knowledge revision policies.

5. Methods related to taxonomy walking.

Parts 2 and 3 are the two main parts, involved with knowledge manipulation.

Knowledge Alteration Methods in part 2 are build around the generic revision
method, that takes as parameter a set of logical propositions and a policy.

A policy is represented as a set of (key, value) pairs whose possible values are
presented in table

Knowledge Querying The main method that allow for knowledge retrieval is £ind.
A find query is build as a set of partial statements (i.e. , statements with named or
anonymous unbound terms) that form a pattern. It returns statements matching the
pattern.

“Shortcut” methods are offered by the API for common operations (adding/re-
tracting a statement, checking if a statement exists, etc.). Where relevant, probabilistic
versions of the methods are also defined.

The complete API reference is provided in Appendix

55



Symbolic Knowledge Representation

Chapter recap

That concludes the chapter on Symbolic Knowledge Representation for robotics.

In that chapter, we have first discussed a definition of knowledge in our context of
service robotics and human-robot interaction. We have presented several references
from the literature regarding the identification and classification of prominent features
of knowledge representation systems.

We have then introduce a comprehensive typology of such features, that comprises
of about fifty concepts sorted into six main categories: features related to knowledge
expressiveness, features related to representation techniques, features related to rea-
soning, features related to acquisition and grounding of knowledge, features related
to the integration of a KRS into a larger robotic architecture, and finally, features that
characterise the represented knowledge itself. Each of the fifty concepts has been briefly
presented with references to the literature.

Finally, we have surveyed eight systems for knowledge representation in service
robots and underlined their main strengths.

The next chapter introduces ORO, a tenth KRS that we have designed and imple-
mented during the thesis preparation.
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Chapter 3

The OpenRobots Ontology Framework

This chapter introduces the OpenRobots Ontology server and its common-sense knowl-
edge base.

We present here the functional description of oro-server, and detail its knowledge
model. Its actual implementation is discussed in the next chapter.

We also present the OpenRobots Common-Sense Ontology that contains most of the
knowledge at hand when the robot starts.

3.1 Functional overview

We have adopted a centralised approach for knowledge management called ORO [75].
The platform is designed as a central knowledge storage service implemented as a
server where the robot components can add or query statements at run-time. Figure
illustrates the main functional components of ORO.

At the core, ORO is build around the OpenJena' ontology management library,
connected to the Pellet® reasoner.

A front-end accepts and manages connections to clients. The clients’ requests are
processed by a set of internal modules: basic operations on statements, but also higher
cognitive and human-robot interaction related features are available. External plugins
can also be added via a specific extension mechanism.

Besides acting as a facts database, the ORO platform exposes several functions: oper-
ations on knowledge statements relying on inference (through a continuous first-order
logic classification process), management of per-agent symbolic models, categorisation
of sets of concepts and profiles of memory (that enable the robot to “forget” about some
facts).

ORO also provides an event mechanism that allows components to be triggered
when specific events occur. A component can for instance subscribe to events of kind [
?agent isVisible true, Z?agent type Human]. Assoon as the perception layer detects
a human in the robot’s field of view and accordingly updates the knowledge base, the
executive layer is triggered. The event framework also takes advantage of the inference

Thttp://www.openjena.org
http://clarkparsia.com/pellet
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Figure 3.1: Overview of the ORO architecture.

capabilities of ORO. Thus an event can be indirectly triggered if its triggering conditions
can be inferred to be true.

3.2 The ORO knowledge model

3.2.1 Expressiveness

Unlike systems relying on logic programming, ORO is purely based on Description
Logics: the ORO knowledge model is based on RDF triples (i.e. exclusively binary
predicates). Triples (subject predicate obiject) are the atoms of knowledge for ORO.

Knowledge in the ORO server is represented with OWL2. As already mentioned at
section [2.2.4), the available constructs include:

e inheritance relations, e.g. :

(Bottle subClassOf Container) [= all bottles are containers,
e property axioms

— specification of predicates” domain and range, e.g. :
(thinksAbout domain IntelligentAgent) = only intelligent agents can think,

— cardinality constraints (including al1value, someValue, hasValue),
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— property characteristics (symmetry, transitivity, reflexivity, antisymmetry,
etc.)

e class restrictions like:

Bottle = Artifact that (hasShape value cylinderShape)

e set operations like:

Color = unionOf(blue, green, orange, black...)

DL-safe* SWRL (Semantic Web Rule Language) rules are also supported. For example:

looksAt (?agt, 7?70obj) A pointsAt (?agt, ?obj) = focusesOn (?agt, ?obj)

The formal expressiveness of the current version of the ORO common-sense ontol-
ogy (commit 19£1£c£27 in the public repository?) is SROZQ(D), which correspond
to the OWL2 language full expressiveness (the appendix [A] presents the usual naming
conventions of Description Logics expressiveness).

Table page|66| gives quantitative details on the type of axioms used in the ORO
common-sense ontology.

Reification Since RDF triples constrain to binary predicates, reification is often re-
quired to express n-ary relations. For instance, the relation A gives object B to C can
not directly be represented in RDF. This relation is reified as {(actl type Action),
(actl performedBy B),({actl actsOn B), (actl receivedBy C)}. Aslong as the instance
act1 exists in the knowledge base, the original relation A gives object B to C is considered
to hold. This kind of reification is common in the ORO knowledge model.

Reification can also take place at a meta-level (this is the level usually intended
by the term reification): a triple (subject predicate object) can be itself reified in
{(stmt1 type Statement), (stmtl hasSubject subject), (stmtl hasPredicate predicate),
(stmt1 hasobject object)}. This level of reification allows to characterise the knowl-
edge atoms themselves, for instance to specify when the atom was added. The section
on memory management in ORO server, below, gives examples of usage of this meta-
cognition feature.

Note that in traditional logical programming like Prolog, reification is rarely strictly
required since no constraints hold on the arity of predicates. To store the date of creation
of a facts, one could simply add it as a supplementary argument of the predicate®.

Open World Assumption Following the OWL language model and as mentioned at
section the ORO knowledge model makes the open world assumption.

This allows to easily represent that a fact is unknown (by simply not stating it in the
knowledge base), but also requires to carefully explicit what the entities are and are not.

3In DL-safe rules, variables bind only to explicitly named individuals in the ontology.

4Clonable from http://git.openrobots.org/git/robots/oro.git

°In the case of time representation, however, reification — or, in the case of logic programming,
second order logic — often takes place through the fluents mechanisms, see section2.2.3]
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3.2.2 Special representation techniques
Representation of alternative knowledge models

As pictured in Figure ORO stores independent cognitive models for each agent
it interacts with. When the ORO server actually identifies a new agent (or infers that
some instance is an agent), it automatically creates a new, separate, in-memory OWL
model for that agent. Then, different robot components, like execution control or
situation assessment, may store the agents’ beliefs in separate, independent models.
All knowledge processing functions in the robot’s primary model are equally available
in every agent’s model, which allows us to store and reason on different (and possibly
globally inconsistent) models of the world.

Each of these models is independent and logically consistent, enabling reasoning
on different perspectives of the world that would otherwise be considered as globally
inconsistent (for instance, an object can be visible for the robot but not for the human.
This object can have at the same time the property isvisible trueand isVisible
false in two different models).

We present at section page[82] a 3D real-time environment, SPARK, that allows
to compute on-line several symbolic properties that are dependent on the perspectives.

Theory Of Mind and contexts By maintaining independent mental states for each
agent it interacts with, we consider the robot to be endowed with a simple theory of
mind [116]: the robot can explicitly model the beliefs of its interactors, it expose them to
the control architecture, and the same set of cognitive abilities are available on these
secondary model as on the main model: reasoning, inconsistencies detection, events,
etc.

Proper false beliefs experiment, similar to the Sally and Ann experiment presented in
the previous chapter, has been recently conducted with ORO by Mathieu Warnier, as
reported in [145]: in this experiment, two humans observe a table with several objects,
then one leaves while the other one moves around some objects. This leads to two
different set of beliefs on the world, which the robot explicitly stores and updates when
necessary (if the human comes back and check the table, for instance).

These multiple models can also be viewed as different interpretive frames, allowing
the robot to interpret the same reality from different points of view. In this sense,
each model carries a context of interaction. In chapter 5| we present how such agent-
dependent contexts are used by a natural language processor to make sense of user
sentences from his/her point of view.

Multi-lingual support

The RDF specification supports internationalisation by the way of language tags: plain
literals may have an optional language tag (taken from the standard RFC-3066) that
tells in which human language the literal is expressed.

ORO benefits from this mechanism, and can be configured to use a specific language
as default. When an language is explicitly selected, the translated labels of concepts
(when available in the underlying ontology) are used instead of the default English
ones.
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Figure 3.2: Sample taxonomy to illustrate common ancestors algorithms.

Since only the labels (i.e. the human-friendly name of the concepts) are subject to
translation, changing the default language of the ORO server has no semantic impact:
entities in the ontology always refer to same concepts. Same inferences are drawn, same
connections to knowledge sources are made, etc. The strength of semantic approaches
is here well illustrated.

3.2.3 Reasoning techniques
Standard inference services

As explained in the next chapter, we use the Pellet open-source reasoner to reason on the
knowledge base. This enables to expose several standard inference services: consistency
checking, concept satisfiability, classification and realisation (the most specific classes
that an individual belongs to).

In case of inconsistency in one of the knowledge models stored by ORO, an ex-
planation of the inconsistency is proposed, in a human-readable form, for debugging
purposes. The automatic exploitation of the explanation by the robot executive con-
troller is yet to be developed.

Grounding, classification and discrimination algorithms

ORO server implements several algorithms to identify similarities and differences
between concepts (classes or instances) [110]. The main ones are presented in this
section.

Common and first different ancestors The Common Ancestors algorithm (algorithm3.2.1)
returns the classes that are the “first” common super-classes of the two concepts.

Algorithm 3.2.1: COMMONANCESTORS(conceptl, concept2)

7 + SUPERCLASSES(conceptl) N SUPERCLASSES(concept2)
return (c € Z|SUBCLASSES(c) NZ = ()
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Taking the taxonomy in figure 3.2|as example, the common ancestors for the pair
{white whale, moon} are {spatial thing, white object}, i.e. the set of classes
that belong to the intersection of the super-classes of both the concepts and that have
no sub-classes in this intersection.

The common ancestors are useful to determine the most precise class(es) that include
a given set of individuals.

Algorithm 3.2.2: FIRSTDIFFERENTANCESTORS(conceptl, concept2)

C + COMMONANCESTORS(conceptl, concept?2)
S < SUPERCLASSES(conceptl) U SUPERCLASSES(concept2)
return (Ve € C, DIRECTSUBCLASSES(c) N S)

The First Different Ancestors algorithm (algorithm returns the list of direct
sub-classes of the common ancestors. They are intuitively the most generic types
that differentiate the two concepts. In the taxonomy figure two instances a and b
of respectively white whale and moon have as first different ancestors the two sets
{animal, satellite} (subclasses of ancestor spatial thing) and {white whale,
moon} (subclasses of ancestor white object).

Clarification Algorithm During interactions with other agents, the robot is often
required to figure out which individual correspond to a description like “red object”,
"a bottle”, ”a book larger than this other one”, etc. This is a key part of the grounding
capability.

Clarification and discrimination algorithms are based on what we call descriptors:
descriptors can be properties of individuals, either acquired by the robot are statically
asserted in a common-sense ontology. They are also the result of other reasoning
algorithms like the Common Ancestors and Different Ancestors algorithms presented
above. We shall see later how symbolic knowledge is first acquired from geometric
reasoning or natural language processing, and we consider in this section that the
clarification process is based on an established ontology, like the sample proposed in
figure

Based on this ontology and a given partial (or complete) description of an object (list
of attribute-value pairs), the robot is able to identify the referred object the following
way (Algorithm [3.2.3). First it obtains all objects that fulfil the initial description by
querying the agent model in the knowledge base. Based on the result it either succeeds
(obtains one single object), fails (no object with that description could be found) or
obtains several objects. In this last case, a new descriptor is added (mark ) to the initial
description and the process starts over again until all possible descriptors have been
added.

Failure occurs hence in two cases: when the description does not match any object
from the robot’s knowledge, either because the robot’s knowledge is incomplete (the
human refers to an unknown descriptor or descriptor value), or when a set of candidates
could not get successfully discriminated with the available descriptors.

Two options are available to add new descriptors: directly asking the human for
more information, or automatically searching a new attribute and ask the human for
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‘ thing ’
plant [ animal }
/ type type type type\
plant1 animal1 animal2 animal3
hasColorl eatsl hasColo/ \eats lhasColor
green banana yellow grass white

Figure 3.3: Sample ontology to illustrate the discrimination routines. plant1 is an instance
of Plant and animal [1-3] are instances of Animal.

its value. In the latter case, we need to automatically find the best discriminant for the
current list of objects being evaluated (candidates in the algorithm).

Algorithm 3.2.3: DISCRIMINATION(description, agent)

candidates < GETOBJECTFROMDESCRIPTION(description, agent)
if |candidates| =1
then return (candidates|0])

else if |candidates| =0
then output (No object found!)

el description < ADDDESCRIPTOR(description, agent) 1
return (DISCRIMINATION(description, agent))

Finding a discriminant We have implemented a set of semantic categorisation func-
tions in ORO. One of them consists in looking for discriminants, i.e. descriptors that
allow a maximum discrimination among a set of individuals.

We distinguish two types of discriminants. Complete discriminants are those at-
tributes (or properties) that totally discriminate the set of individuals. In other words,
properties whose values can uniquely identify those individuals. However, they are
not always available. First, because two or more individuals may share the same value,
and second, because not all individuals may share the same properties. Thus, partial
discriminants are those that split at best the set of individuals in different subsets based
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on some criteria.

Algorithm 3.2.4: GETDISCRIMINANT (individuals)

P <+ ONTOLOGY.GETPROPERTIES(individuals)
P«
foreachp ¢ P
Nind < NBINDIVIDUALSWITHPROPERTY (p) @
Nyl < NBDIFFERENTVALUES(p) 2)
if ngy >1

then P < APPEND([p, Nind, Nvai]) (3)

(4)

do

RANK(P)
return (P[0][0])

The algorithm to determine the type of discriminant available (Algorithm [3.2.4) has
the following steps (to better follow it, we base its description on the ontology example
illustrated in figure[3.3). We search a discriminant for the following individuals: plant1,
animall, animal2 and animal3. First we obtain the direct properties and classes for
all the individuals, i.e. we do not consider all the hierarchy of properties and classes
(in the example, plant1 has two super-classes (Plant and Thing), but we only take
the most direct one (the class P1ant)). Next, we compute the number of individuals
per property (mark[I)) and the number of different values for that property (mark [2).
For instance, for the property type: all the four instances have a type, n;, = 4, and
this property has two possible values (Plant and Animal), nya = 2. If nye > 1 (in other
words, if not all individuals have the same value), then we consider that property as a
potential discriminant (mark 3). Finally, we rank (mark4) the list of potential properties
following two criteria: the number of individual occurrences (i.e. we maximise the
coverage of that property) and the values occurrences (i.e. the more distinct values, the
better). The best discriminant corresponds to the first element of the sorted list. In other
words, the class with higher number of occurrences and more variety in it. If several
properties are equal, we return all of them.

In our example, the algorithm would return the type as best the partial discriminant.
If we only consider the instances of the class Animal, it would return two properties
equally discriminant: hasColor and eats.

We use this algorithm in particular for interactive concept grounding. We will detail
this approach at chapter

Memory

The ORO server offers a mechanism to mimic simple forms of biological memory.
When new statements are inserted in the knowledge base, a memory profile is optionally
attached to them.

Three such profiles are predefined: short term, episodic and long term.
They each correspond to a different lifetime for the statements (respectively 10 seconds,
5 minutes and no time limit). After this duration, the statements are automatically
removed from the knowledge base.
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Name Example

rdfs:subClassOf
rdfs:subPropertyOf
rdfs:domain

Human subClassOf Agent)
hasColor subPropertyOf hasFeature)
thinks domain IntelligentAgent)

owl:inverseOf
owl:FunctionalProperty
owl:TransitiveProperty

sees inverseOf seenBy)

(
(
(
rdfs:range (name range string)
(
(age type FunctionalProperty)
(

isAbove type TransitiveProperty)

Table 3.1: Some of the properties and classes defined in RDFS and OWL that allow to define
the semantics and relations of terms within an ontology.

This approach is limited. In particular, episodic memory primarily refers to the
semantics of the statements (that is expected to be related to an event) and not to a
specific life duration. We discuss at the end of this work possible improvements.

Active Concepts We rely however on this short term memory for a particular use-
case: active concept. Some modules, like our natural language processor (described at
chapter[5), use the short termmemory profile to mark for a few seconds important
concepts that are currently manipulated by the robot. For example, if a human asks
the robot: “Give me all red objects”, the human, the Give action, and each red objects
that are found are successively marked as active concepts by inserting statements like
(human type ActiveConcept) in the short-term memory (which can be considered, in
this case, to be a working memory, as defined at section[2.2.3). We use this feature to
give a (visual) feedback to the users (section4.3.2)

Knowledge structure alteration and learning

In the ORO server, the knowledge structure (TBox) is purely declarative and asserted
as regular statements (like (Location subClassOf SpatialThing)), following the RDF
Schema (RDFS) and OWL language constructs.

In complement to the constructs already presented at section [3.2.1} table [3.1]lists the
main properties and classes defined in RDFS and OWL that allow to describe the ontol-
ogy structure. These constructs can all be inserted at run-time to alter the knowledge
model of the server. They are immediately taken into account by all reasoning process
taking place after this point.

While we do not claim to have addressed the issue of learning in general, TBox
alteration coupled with language processing features, enables to implement specific
learning mechanisms. For example, one can teach the robot that cats are animals by
processing a sentence like “Cats are animals” into (cat subClassof Animal) and then
adding it at run-time into the knowledge base. From that points, all entities asserted or
inferred to be cats will be as well inferred to be animals.

The case study Point & Learn (section[6.2.2) presents some experimental results in
this domain.
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Expressiveness SROZQ(D)
Axioms 961 (annotations: 359)
Class count 108

Object property count 78
Data property count 13

Individual count 21
Functional properties 19
Inverse properties 9

Transitive properties 4
Symmetric properties 3

Table 3.2: Statistics on the ORO common-sense ontology.

Fast concept lookup

Because retrieving a concept from its label (for instance, a “location” is the human label
for the concept cyc:SpatialThing-Localized) is a frequent operation, in particular
for language processing application, the ORO server also provides a fast concept look-
up mechanism to search for a concept identifier by its label. This also takes into account
the chosen language (English, German, French...).

3.3 Knowledge instantiation: the OpenRobots Common-
Sense Ontology

The ORO platform is made of the server that we have presented, and a common-sense
ontology, the ORO Common-sense Ontology.

At start-up, the knowledge model of the ORO server is initialised with a configurable
sets of ontologies that build together the initial pool of facts known to the robot: the
common-sense ontology and optional, domain dependent ontologies.

Each time a new model is created (typically when a new agent is detected), it is also
initialised with the same pool of facts. From the point of view of the robot, this ensure
that all the different agents share the same background knowledge.

Usually, the ORO server is started with the common-sense ontology that we present
in this section, and one scenario-specific ontology that usually contains the set of
individuals with relevant properties needed by the experiment.

The table[3.2|gives a first overview of the extend and expressive level of the ORO
common-sense ontology. While the raw numbers of axioms is in no way comparable to
large upper ontologies (as presented at chapter 2), the modeling is also more expressive
(with the use of second order predicates) than the ontologies that are partially or
completely generated automatically.

The ORO common-sense ontology has been designed from two requirements: cov-
ering our experimental needs and conforming as much as possible to the OPENCYC
upper ontology.
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Figure 3.4: The upper part of the ORO common-sense TBox. All these concepts belong to
the OPENCYC namespace.

This lead to a bidirectional design process: from bottom-up regarding the choices of
concepts to model, top-down regarding the upper part of the taxonomy. This upper part
of the ontology is pictured on figure All the classes visible on this figure belong to
the OPENCYC namespace (the cyc: prefix is omitted).

By aligning the upper part of the ontology on OPENCYC (as other KRS, like KNOWROB
or PEIS K&R, did) has multiple advantages. First the design of this part of the on-
tology is generally difficult: it pertains to abstract concepts whose mutual relations
comes to philosophical debates. The upper taxonomy of OPENCYC represents a relative
consensus, at least within the semantic Web community. Then, because it is a well
established project with numerous links to other on-line databases (like Wikipedia
or WordNet), the reuse of important OPENCYC concepts ensures to a certain extend
that the knowledge stored by the robot can be shared or extended with well-defined
semantics. A good example is the concept of Object: In everyday conversation, an object
is a relatively small physical thing, that can be typically manipulated. Normally, a
human is not considered as an object. In CYC, an object has a more precise definition: it
is something partially tangible. That includes obviously the humans, and actually many
other entities that would not be commonly said to be objects (the Earth for instance).
Thus the importance of relying on well-defined and standard semantics to exchange
informations between artificial systems.

This figure also illustrates the fundamental disjunction in the ORO model
between temporal and spatial entities (formally, (TemporalThing 1 SpatialThing)* = 0,
with 7 the interpretation of our model).

The class purposeful action is the superset of all the actions that are voluntarily
performed by the robot (or another agent). Subclasses (like Give, LookAt, etc.) are not
asserted in the common-sense ontology, but are added by the execution controller (in
link with the symbolic task planner) and the natural language processor based on what
is actually performable and/or understandable by the robot at run-time.

The tree of figure (this subset of the ontology is indeed a tree: this has however
not to be the case in general, and, as a matter of fact, the TBox of the whole ORO
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Figure 3.5: TBox of the specialisations of PartiallyTangible.

common-sense ontology does not form a tree) is not equally developed at lower levels.
We have already briefly mentioned the developments of the actions. The other impor-
tant part is the descendants of the partially tangible thing (whatis commonly
called an object). Figure |3.5/gives more details on this part of the ontology.

This excerpt from the ontology makes the bottom-up design process visible: only
few types of partially tangible things appear, and only subclasses relevant to the context
of service robotics in an human-like environment are present.

Lastly, the ORO common-sense ontology contains several rules and class expressions
that encode non-trivial inferences.

The definition of the Bott1le is a case in point. We already gave a simplified version,
here the complete definition:

Bottle = Container and Tableware that (hasShape value cylinderShape and
hasCharacteristicDimensiononly int[>= 0.1, <= 0.3])

If a human informs the robot that a given object is indeed a bottle, the robot can
then infer much more on this object. And if the human affirms that a car is a bottle, the
robot may question this assertion because of the inconsistent size.

Chapter recap

We conclude here this third chapter. This chapter was focused on the functional and
algorithmic presentation of the ORO server, a semantic blackboard where robotic modules
can write and querying pieces of knowledge.

We have mentioned how multiple mental models can be managed by the server,
and we have also presented several active services, like the discrimination algorithms
or the management of the memory.
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Finally, we have presented the ORO common-sense ontology that provide the robot
with an initial background knowledge, shared by all the agents.

The next chapter first gives some implementation and technical details about the
ORO framework, and then present how ORO is integrated with other components
on real robots. In particular, we detail the integration with the geometric reasoning
module and the symbolic task planner.
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Chapter 4

Implementation and Integration on
Robots

4.1 A centralised server-based implementation

The ORO server is a multi-platform command-line application that starts a socket
server to which clients can send requests to store or retrieve symbolic statements.

Figure 4.1| gives an overview of the ORO server architecture. The server is build
on three layers: a front-end, in charge of the communication with external clients, a
set of central modules that either handle incoming requests or provide background
processing (like the event monitoring or the memory management), and a back-end,
that stores the knowledge models in several parallel pools of RDF triples, one per
agent. The back-end provides all the knowledge manipulation features required by the
modules including reasoning.

The ORO server is written in Java 6. This choice is due to widespread use of the
Java language in the semantic Web community that leads to the fact that most of the
RDF/OWL API and reasoners are available as Java libraries. As mentioned previously,
the ORO server relies on the Open Jena API for OWL manipulation and on the Pellet
reasoner for all reasoning tasks. Java was thus the best candidate to glue them in a
robotic-friendly knowledge base.

41.1 Front-end

Communication with external components is handled by the server front-end. It was
originally build as a YARP node, but was eventually transformed into a simpler and
more generic socket interface. The socket connector uses a simple ASCII protocol,
presented in figure Communication with dedicated robotic middlewares like ROS
or YARP is provided by dedicated external clients. Section briefly presents them.

When a request is received by the front-end, it is parsed, deserialised and dispatched
to the module providing the requested service.
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Figure 4.1: The software architecture of the ORO server.
method name
[parameter 1]
[parameter 2]
[parameter n]
#end#
(a) Client requests
ok error event
[return value] [exception name] event 1id
#end# [human-readable error] #end#

#end#
(b) Server answers

Figure 4.2: The ORO server protocol. Elements in square brackets are optional. Note that
the ok and error message are synchronous server answers to client requests while the
event message is produced asynchronously.
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4.1.2 Modules

These modules are initialised and maintained by the server. They provide the actual
features of the server as sets of services (like add, get Subclasses, etc.).

Some modules do not expose any services. They provide instead other form of
knowledge management. For instance, the MemoryModule is in charge of the applica-
tion of the memory policies. It discards old statements depending on the memory class
they belong to (short term memory, long term memory, etc.).

Regular services (i.e. that are actual Java methods) are invoked by the front-end.
They process the request and interact with the knowledge pool via the back-end
interface.

Plugins The server can be easily extended by the mean of plugins. These are JAR
tiles that are loaded at run-time and have access to the exact same internal APIs as
regular modules like the event module or the categorisation module. ORO comes with
a tool that ease the creation of new plugins by generating customisable templates. The
process is documented in a tutorial available on-line!.

4.1.3 Back-end

The back-end consists in a pair {triples store, reasoner}. For ORO, we make the choice
to rely the open-source OPEN JENA library to store and access the RDF graph, in
combination with the PELLET reasoner. However, due to clean separation, other APIs
(like the MANCHESTER OWL-API) and reasoners (like FACT++ or HERMIT) could be
used with little changes in the back-end APL

Open Jena

JENA [92] is a mature library for the semantic Web, originally developed by Hewlett-
Packard labs, and now under the leadership of the Apache foundation.
As stated on its official website?, the Jena Framework includes:

e an API for reading, processing and writing RDF data in XML, N-triples and Turtle
formats;

¢ an ontology API for handling OWL and RDFS ontologies;

e its own rule-based inference engine for reasoning with RDF and OWL data
sources;

e stores to allow large numbers of RDF triples to be efficiently stored on disk;
e a query engine compliant with the SPARQL specification

e servers to allow RDF data to be published to other applications using a variety of
protocols, including SPARQL.

Thttp://www.openrobots.org/wiki/oro-server-plugins
’JENA website: http://incubator.apache.org/jena/

73


http://www.openrobots.org/wiki/oro-server-plugins
http://incubator.apache.org/jena/

Implementation and Integration on Robots

Pellet

PELLET [120] is a reasoner for Description Logics developed by Clark&Parsia®.

Pellet supports reasoning with the full expressiveness of OWL-DL (SHOZN (D))
and OWL 2 (SROZQ(D)).

Pellet provides all the standard inference services that are traditionally provided by
DL reasoners: consistency checking, concept satisfiability, classification (computation
of all the classes the instances belong to) and realisation (the most specific classes that a
specific individual belongs to). It also supports DL-safe SWRL rule.

The use of a reasoner is completely transparent for the modules: the reasoner
is automatically called when a model changes to classify it. Thus, queries to the
knowledge models always access both the asserted and inferred sets of statements. As
a consequence, the ORO server can be run with no reasoner without any visible API
change for the modules. They will simply manipulate only asserted facts.

414 API

As of version 0.8, the ORO server API exposes about 50 methods (some of them are
besides polymorphic) organised into seven categories: Base, Agents, Administration,
Concept comparison, Events, Queries and Taxonomy walking.

Partial support for the Knowledge API (section[2.4) has also been added to ORO server
0.8: the newly introduced revise method that takes a revision policy as parameter is
a versatile and generic mechanism that deprecates de-facto several methods currently
exposed by the APIL.

The details of the current API is provided in appendix D]

4.1.5 Notes on the Java implementation

The ORO server has been developed with modularity in mind, thus most of its structure
relies on clearly defined Java interfaces. Figure 4.3| presents the main ones.

The application entry point is the OroServer class. The class instantiate one front-
end (IConnector), one main back-end (I0OntologyBackend) and several modules
(IModule), including plugins that are loaded at run-time.

Modules usually also implement the IServiceProvider interface to expose ser-
vices (IService). These are the actual methods found in the server APL Java methods
that belongs to the API simply need to be decorated with a @RPCMethod Java annota-
tion to be automatically exposed. Extending the server API is thus simply a matter of
annotating almost any Java method* with @RPCMet hod. Listing shows one example
of a service annotated in such a way, the add method. This method convert a set of
strings representing triples into IStatements, and add them to the triple store with
the back-end method oro.add.

( '

category="base",

SPELLET website: http://clarkparsia.com/pellet
“The only constraint being the input and output datatypes: currently, primitive types, simple collec-
tions and objects with explicit serialisation/deserialisation methods are supported.
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Figure 4.3: Main Java interfaces and classes of the ORO server.

desc="adds_one_or_several_statements_(triples_S—P-O)."
add (Set<String > rawStmts, String memProfile)
Set<IStatement> stmtsToAdd = HashSet<IStatement >();

(String rawStmt : rawStmts) {
(rawStmt == )
IllegalStatementException ("Got_a_null_stmt!");
IStatement s = oro.createStatement(rawStmt);
stmtsToAdd.add(s);

}

oro.add (stmtsToAdd, MemoryProfile. fromString (memProfile), );

Listing 4.1: The add method from ORO BaseModule

As visible on the figure the Agent sModule plays a particular role: it manages
the alternative knowledge models of other agents, and store a I0OntologyBackend
for each of them. This module also re-export a large part of the services exposed by the
BaseModule (methods for standard knowledge manipulation), but in their multi-agent
versions.

This design issue (duplication of certain basic services) is due to the historical
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development of the ORO server, and should be improved in future versions.

4.2 Bindings to other languages and components

To ensure the integration of the ORO server in existing robotic architectures, we have
developed several idiomatic language-specific bindings, as well as bridges with two
widespread robotic middlewares, ROS and YARP.

4.2.1 Language bindings

The main interaction gate with the ORO server is its socket interface (as presented
above, at section [4.1.1). Sockets are light-weight, platform independent, and supported
by every programming languages. Developing an interface with ORO server in a new
language is hence relatively easy.

For our own needs, and because they are amongst the most widely used languages,
bindings for Python and C++ are available by default with ORO server.

The complete Python and C++ API will not be presented here (their documentations
are available on-line®), but we present two short example that demonstrate how the
knowledge base can be integrated in code in a natural way.

Python

The Python script below (listing[4.2) demonstrates several of the interaction mechanisms
with ORO server: model alteration, queries and events.

time
pyoro

onEvent(evt):
("God_save_the_queen!_ " + evt + "_killed_Bond!")
oro = pyoro.Oro()
oro += ["Spy_rdfs:subClassOf_Human",
"bond_rdf:type_Spy",
"bond_rdfs:label_\"Bond, James_ Bond\""]

"bond,_rdf:type_Human" oro:
("Alright , _Bond,  is, _a, human")

oro += "pr2_rdf:type_Robot"

ag oro["*_rdf:type_Agent"]:
("Agent_" + ag + "_is_here.")

Shttp://www.openrobots.org/wiki/oro-server-bindings

76



http://www.openrobots.org/wiki/oro-server-bindings

22
23
24
25
26
27
28
29
30
31
32
33

IO U1 WIN -

Implementation and Integration on Robots

oro.subscribe ([ "?a_kills_bond"], onEvent)
oro += "pr2_kills_bond"

time.sleep (1)
# the event should have been triggered

pyoro.OroServerError ose:
("Oups! _An_error, occured!”)
(ose)

oro.close ()

Listing 4.2: Example of interaction with oro-server in Python

At line 8, we establish the connection to the server. We assume here that the server
is launched on the default port and on the local machine.

At line 10, three facts are added to the knowledge base. The first one modifies the
TBox of the ontology (alteration of the knowledge structure) while the two other ones
modify the ABox (a new instance and a new label). Adding (or removing) triples from
the ontology is done naturally with the += and -= operators.

At line 14, we check that a fact holds, either in the asserted model or in the inferred
model (in this case, Bond is inferred to be a human because we added before that spies
are types of humans). Here as well we use a natural idiomatic Python syntax that
creates and executes a SPARQL query behind the scenes.

Line 19 shows another way to execute queries, with a dictionary-like accessor. Both
humans and robots are asserted to be agents in the ORO common-sense ontology, thus
this query returns a list [bond, pr2].

Line 22 shows how events are created. We first subscribe to an event by passing a
pattern (?a kills bond) and a callback (implemented at lines 4-5). Line 23 triggers
the event, and the callback method is then invoked.

We have kept this example simple. The complete Python API allows to describe
more complex events (when a fact can not be inferred, when a new instance of a given
class appears, etc.), to manipulate different models, to walk through the ontology
taxonomy;, etc.

C++

The C++ bindings are provided as a library called 1iboro. The listing 4.3 presents
some examples of its usage.

<iostream >
<iterator >
<set>

"liboro/oro.h"

"liboro/oro_library.h" // static library of ORO concepts
"liboro/socket _connector.h"
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std ;
oro;

EventCallback : OroEventObserver {
() ( OroEvent& evt) {

cout << "Event_triggered!" << endl;

main ( )
set<string > partial_stmts;
set<Concept> result;

SocketConnector connector("localhost", "6969");
Ontology *oro = Ontology ::createWithConnector (connector);

//Creation of instances

Agent robotl = Agent::create("Nice_Robot", Classes::Robot);

Agent human = Agent:: create("Young PhD", Classes::Human);

//First query
partial_stmts.insert("?mysterious_rdf:type_Agent");
oro—>find ("mysterious", partial_stmts, result);

copy(result.begin(),
result.end(),
ostream_iterator <Concept>(cout, "\n"));

partial_stmts.clear ();
result.clear ();

//More statements are added to the knowledge base
Object table = Object:: create(Classes:: Table);

Object unknown_object = Object:: create ();
unknown_object. assertThat (Properties ::isOn, table);

oro—>add (Statement("oro:isOn_rdfs:subClassOf_oro:isAt"));
Agent myself("myself");

myself.sees (unknown_object);
myself.sees (human);

//A query involving multiple partial statements
partial_stmts.insert("?mysterious_isAt_?support");
partial_stmts.insert("?support_rdf:type_cyc:Table");
partial_stmts.insert("myself sees_?mysterious");
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oro—>find ("mysterious", partial_stmts, result);

copy(result.begin(),
result.end(),
ostream_iterator <Concept>(cout, "\n"));

//Events

EventCallback ec;

Classes ::Human. onNewlInstance (ec);

Agent superman = Agent:: create("Superman", Classes ::Human);

sleep (1);

set<string > event_pattern;
Property flyingProp = Property("isFlying");
event_pattern.insert( superman.id() + "
oro—>registerEvent (ec,
FACT_CHECKING,
ON_TRUE_ONE_SHOT,

_isFlying _true");

event_pattern, "");
superman. assertThat (flyingProp, "true");
sleep (1);
0;

Listing 4.3: Example of interaction with oro-server in C++

At lines 22 and 23, the oro object is built as a singleton. This actually connects the
application to the ontology server.

At line 26 and 27, we create two new instances of agents labeled Nice Robot and
Young PhD (the static types Classes: :Robot and Classes: : Human are generated
from the ontology itself by a script).

A first simple query (line 30 and 31) return a std: : set of concept IDs.

At line 41, a new object is created. No label is defined, but the class is set to be
a table. On the contrary, at line 43, we create a generic object (only asserting it is an
instance of Object).

At line 44, we assert a property (here also, the list of available properties is statically
generated from the ORO ontology).

As shown at line 46, we can as well access the ontology at a lower level, directly
adding (or removing) new triples. In this case, we modify the TBox of the knowledge
base.

C++ objects can also be created by using directly the concept IDs, as shown line 48
for the special concept myself (an instance always representing the robot itself).

Some object properties frequently used in the ontology are available as methods, as
seen lines 50 and 51.
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Lines 54 to 58 show a more complex query, involving several partial statements.
Named variables (like ?mysterious or support) are used in the statements to refer-
ence the same entities.

Lastly, lines 65 to 80 show two ways of defining events with a callback functor
(defined at lines 12-16).

To deal with real-world constraints, 1iboro also provides mechanisms to reconnect
to the ontology server when the connection is lost, and has a built-in buffering system
to increase bandwidth for components that produce a large amount of symbolic facts.

4.2.2 Interface with robotic middlewares

While convenient in certain cases, language-level interfaces do not usually offer the
modularity and loose-coupling required by complex robotic architectures where tenth
of modules, possibly spread over several computers, need to talk together. The ac-
knowledgement of this issue has led to the development over the last ten years of
numerous so-called robotic middlewares that abstract away inter-module communication
(at the transports, protocols and programming interfaces levels).

We provide with ORO server wrappers for two of the main middlewares currently
in use in the robotic community, ROS [108] and YARP [94].

These wrappers use the C++ or Python bindings previously presented to expose the
teatures of ORO server as a stand-alone ROS/YARP nodes.

4.3 Monitoring and debugging

4.3.1 Logging and debugging tools

The ORO server offers several levels of logging, from almost silent to very verbose. In
verbose mode (debug level), the server outputs exact incoming requests, along with
millisecond accurate timestamps.

Those logs can then be replayed by a special tool written in Python that simulates
the original communication with the server: timestamps are respected and if multiple
clients where connected to the server, the log player forks one thread by client to
simulate parallel access to the server.

Also available to the developer, an explanation of the inconsistencies when they
occur is produced by the server, and helps to retrace the sequence of logical steps that
led to the inconsistency.

4.3.2 Visualisation

Visualisation of ontologies is a difficult task in general because of their complex graph
structure. In order to present anyway the content of the ontology to external observers,
we have developed an OpenGL-based dynamic visualiser called oro-view (figure[d.4).
This application connects to the ORO server and lets the user explore the taxonomy
by simply selecting concepts on the screen. Nodes are then expanded, distributed
in a force-directed layout, and further reveal the structure of the ontology. Because
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Figure 4.4: Two screenshots of the oro-view visualisation tool. On the left one, an
ActiveConcept (in yellow) is visible.

oro-view takes on-demand its input from the server, changes in the ontology (new
facts being added, etc.) are reflected in the viewer when the user refreshes nodes.

oro-view also subscribes at start-up to a special event for active concepts (it monitors
new instances of the Act iveConcept class). Each time an individual is asserted to be an
ActiveConcept, the server triggers back oro-view that creates a visual focus on the
concept (the individual “pops up”). When displayed during experiments, this provides
visual feedback to external observers. In particular, we made use of this feedback
during the public performance of the Roboscopie theatre play (section [6.2.4).

oro-view also provides export to GraphViz dot format for latter reuse of the
ontology graph in publications.

4.4 Integration in the robot architecture

Figure presents the organisation of the upper software layer (the “decisional” or
“cognitive” layer) of the service robots Jido and PR2 as currently in service at LAAS (this
architecture is described in detail in [3]). The sensori-motor layer (bottom) is abstracted
in SPARK, an intermediate amodal 3D model where geometric (and some temporal)
reasoning take place.

The outcome of the geometric analysis, as well as the result of the dialogue process-
ing module (DIALOGS), are stored in ORO, that plays the role of as a central knowledge
hub. The symbolic knowledge base triggers events that are captured by a top-level
execution controller.

In our architecture, the controller can rely on two specialised planners: MHP, a
geometric motion and manipulation planner [122} 86, [104] and HATP, a symbolic task
planner [4].

The dialogue processing module, as well as the symbolic task planner, also use the
knowledge base to answer questions or initialise the planning domain.

During a typical interaction experiment (such an experiment is describe at chapter[6),
the execution controller decides upon a goal to reach, requires a plan from the task
planner, allocates the actions to the human and the robot, communicates the shared

81



Implementation and Integration on Robots

Execution Controller

shared plans Goal/ Plan Management Situation assessment Action Refinement,
( 9 and context management Execution and Monitoring
% ) Luman-aware U
symbolic task planning \
1 motion plan

requests

Event world model and
world model vents agents beliefs
and agents
beliefs
natural language
groundlng

Human-aware
Motion and

Manipulation Planning

action monitoring

and management of
&position hypotheses

Geometric & Temporal Reasoning

Management of environment

Symbolic Facts Production World Update Management geometric model
Sensorimotor layer T ¢
Perception Actuation
Tags ARToolKit, Kinect, Motion Capture Pan Tilt Unit, Gripper, Arm, Wheels

Figure 4.5: Software architecture of PR2 and Jido, two service robot interacting with humans
at LAAS-CNRS.

plan to the human, and controls and monitors its execution. The operation continues
until the goal is achieved, is declared unachievable or is abandoned by the human.

In this architecture, only ORO and Dialogs (the dialogue processing module that
we present in the next chapter), as components, are the actual direct outcomes of
this doctoral work. It is however important to present the other one all here as well
since a knowledge base only make sense within a larger architecture, with knowledge
providers and consumers. Furthermore, the approach to knowledge management intro-
duced by this thesis had a strong influence on the design of the communication flows
between all these components. Thus, this section introduces the software components
that have been used in conjunction with ORO (mostly, but not only, on the LAAS
robots), and details how these components produce, exchange and consume symbolic
knowledge.

4.41 Acquiring and anchoring knowledge in the physical world: the
SPARK module

Anchoring perceptions in a symbolic model requires perception abilities and their
symbolic interpretation. In this section we present SPARK (SPAtial Reasoning & Knowl-
edge [121]), a situation assessment reasoner that generates symbolic knowledge from
the geometry of the environment with respect to relations between objects, robots and
humans, also taking into account the different perspective that each agent has on the
environment.

SPARK can be seen as an amodal geometric model of the environment that serves
both as basis for the fusion of the perception modalities and as bridge with the symbolic
layer.
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Figure shows a screenshot of the SPARK environment side-by-side with the real
environment. In this example, objects are identified and localised through 2D barcodes.
The human pose is tracked with a Kinect-like device (assisted by motion capture to
accurately track the head motion, which is required to compute what the human is
looking at).

The geometric model is continuously updated at run-time by the robot.

Building an agent-aware symbolic model of the environment

On Perspective Taking Visual perspective taking refers to the ability for visually
perceiving the environment from other’s point of view. This ability allows us to identify
the objects in situations where the visual perception of one person differs from the other
one. In developmental psychology, one typical example consists of two similar objects
in a room (e.g. . two balls) where both are visible for the child, but only one is visible
for the adult. Thus, when the adult asks the child to hand over “the ball”, the child is
able to correctly identify which ball the adult is referring to (i.e. the one visible from the
adult point of view), without asking [95].

Besides, in order to compute a visual perspective, the actual visibility alone is not
enough. We include not only what the other person sees in a given moment, but also
what he can see with a minimal effort (moving the eyes or the head). To model the
potential visibility of an object we compute a visibility ratio while turning the head of
the agent model towards the object (figure 4.8 page [87).

Spatial perspective taking refers to the qualitative spatial location of objects (or
agents) with respect to a frame (e.g. the keys on my left). Based on this frame of reference,
the description of an object varies [87]. Humans mix perspectives frequently during
interaction. This is more effective than maintaining a consistent one, either because the
(cognitive) cost of switching is lower than remaining with the same perspective, or if the
cost is about the same, because the spatial situation may be more easily described from
one perspective rather than another [136]. Ambiguities arise when one speaker refers
to an object within a reference system (or changes the reference system, i.e. switches
perspective) without informing his/her partner about it [21, 111]. For example, the
speaker could ask for the “keys on the left”. Since no reference system has been given,
the listener would not know where exactly to look. However, asking for “the keys on
your left” gives enough information to the listener to understand where the speaker is
referring to. On the contrary, when using an exact, unambiguous term of reference to
describe a location (e.g. . “go north”) no ambiguity arises.

In this work, we use two types of the frames of reference: egocentric (from the robot
perspective) and addressee-centred (from the human perspective).

Symbolic locations Human commonly refer to the positions of objects with symbolic
descriptors (like on, next to...) instead of precise, absolute positions. These type of
descriptors have been studied in the context of language grounding [101} 89,109, 59,
18]. In SPARK we focus agent-independent symbolic locations and agent-dependent,
relative locations.
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Figure 4.6: The robot represents at run-time its environment in a 3D model resulting of the
sensors’ inputs fusion (Kinect, motion capture, 2D barcodes tracking).

) |0, 0,47 |

(a) (b) (c)

Figure 4.7: Spatial relations between two objects: (a) 1sOn relation, (b) 1 sIn relation, and
(c) isNext To relation.

Agent-independent locations We can refer to object locations with respect to other
objects in the environment, such as above, next to, in, etc. SPARK computes three main
relations based on the bounding box and centre of mass of the objects (fig. [4.7):

isOn: computes if an object O, is on another object O, by evaluating the center of
mass of O according to the bounding box of Os.

isIn: evaluates if an object O, is inside another object O, based on their bounding
boxes BBy, and BBy,.

isNextTo: indicates whether an object O, is next to another object O,. We cannot
use a simple distance threshold to determine if two objects are next to each
other since the relation is highly dependent on the dimensions of the objects.
For instance, the maximum distance between large objects (e.g. two houses) to
consider them as being next to each other is much larger than the maximum
distance we would consider for two small objects (e.g. two bottles). Thus, the
relation between the dimensions and the distances of the objects are taken into
account.

To ensure the different agent models are up-to-date, all these properties are always
computed on-line, each time the current state of the world changes.
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Table 4.1|lists all the symbolic placement relationships that are currently computed
by the system.

Subject Predicate Object Notes

Location isAt = cyc:objectFoundInLocation Location

—> isOn = cyc:above_Touching
—> isIn
—> isNextTo
Location isAbove = cyc:above-Generally Location inverse Of isBelow
isOn = isAbove

Location isBelow Location inverse Of isAbove

Table 4.1: List of statements describing spatial relationships between objects. “—" indicates
sub-properties. When existing, the equivalent predicate in the OPENCYC standard (prefix
cyc:) has been added.

SPARK also compute symbolic facts related to agent independent world dynamics.
The predicate isMoving states, for each tracked entity, whether it is currently moving
or not.

Agent-dependent placements While in previous section we listed several absolute
location predicate, many topological relations are directly dependent from the observa-
tion point.

The predicate hasRelativePosition represents spatial locations between agents
and objects that are agent dependent. We compute these spatial locations by dividing
the space around the referent (an agent) into n regions based on arbitrary angle values
relative to the referent orientation. For example, for n = 4 we would have the space
divided into front, left, right and back. Additionally, two proximity values, near and
far, are also considered. The number of regions and proximity values can be chosen
depending on the context where the interaction takes place.

Through perspective taking, SPARK computes for each agent a symbolic description
of the relative positioning of objects in the environment (table [4.2).

Subject Predicate Object Notes

Location hasRelativePosition Location
—> behind = cyc:behind-Generally inverse Of inFrontOf
—> inFrontOf = cyc:inFrontOf-Generally inverse of pehind
— leftof inverse of rightor
— rightof inverse of 1eftos

Object cyc:farFrom Agent

Object cyc:near Agent

Table 4.2: List of statements describing relative spatial relationships between objects and
agents.
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Building a model of agents

Building a grounded symbolic model of the physical environment does not suffice
in general to fully ground the human-robot interaction, and a model of the current
capabilities of the agents surrounding the robot is also required.

There are a number of common properties for a robot and a human related to their
capabilities in a given situation: they can both reach, grasp, look at, point at, etc.: we
group them in the Agent category, defined as entities that can act in the environment
and manipulate it.

SPARK computes the following capabilities from the perspectives of each agent:

e Sees: An important ability to know about an agent is to predict What can it see?, i.e.
what is within its field of view (FOV). Being able to compute this information, the
robot can reuse it for instance to infers which object a human is searching for (the
one that is not currently visible, otherwise the user would not be searching for it).
In figure the field of view of a person is illustrated with a grey cone (broader
one). While he is able to see the two small boxes on the table in front of him, the
big box on his right is out of his FOV, and therefore, he is not able to see it.

e Looks At: this relation corresponds to what the agent is focused on, i.e. where its
focus of attention is directed. This model is based on a narrower field of view,
the field of attention (FOA). Figure shows the field of attention of a person
with a green cone (narrower one). In this example only the grey box satisfies the
looksAt relation.

e Points At: verifies whether an object is pointed at by an agent. This relation is
particularly useful during interaction when one of the agents is referring to an
object saying “this" or “that" while pointing at it.

If a larger object occludes a smaller one while an agent is pointing at them, the out-

come of the evaluation will result only in one relation, i.e. (agent_01 pointsAt object_01)
since the small one is not visible to the agent. On the contrary, if the small object

is in front of the big one, then both objects will satisfy the relation, which may
generate an ambiguity (which object the agent refers to?) that is let to be solved

by other discrimination algorithms.

To make recognition more robust, these three first capabilities are filtered with an
hysteresis function at the geometric level.

o Reachable: it allows the robot to estimate the agent’s capability to reach an object,
which is fundamental for task planning. For example, if the user asks the robot
to give him/her an object, the robot must compute a transfer point where the
user is able to get the object afterwards. Figure shows different reachability
postures for each object on the table. In the example, the bottle and the box are
both reachable for the human, but the teddy bear is too far. Instead, from the
robot’s perspective, the teddy bear is reachable, while the bottle is not.

While the first three relations (sees, looksAt and pointsAt) are computed through
a model based approach, the latter one is based on the Generalized Inverse Kinematics
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Figure 4.8: (a) Field of view (FOV) and the field of attention (FOA) of the human. (b)
Different reaching postures for the human.

with pseudo inverse method [96, 12] to find a posture for the agent where its end-
effector is at the centre of the object within a given tolerance.

Tables 4.3| summarises the predicates produced by SPARK during the agent capabil-
ities analysis phase.

Subject Predicate Object Notes

Agent looksAt SpatialThing

Agent sees SpatialThing

SpatialThing isInFieldOfView xsd:boolean via inference:

(myself sees *) &
(» isInFieldOfView true)

Agent pointsAt = cyc:pointingToward SpatialThing

Agent focusesOn SpatialThing via inference:
looksAt A pointsAt =
focusesOn

Agent seesWithHeadMovement SpatialThing

Agent reaches Object

Table 4.3: List of facts describing the attentional state and the abilities of an agent. 10oksat
is interpreted as an object being in the field of attention of an agent. An object is seen if it is
visible for the agent without moving the head (i.e. , in field of view).

Table {4.4{lists the other symbolic facts that are produced and maintained by SPARK
related to the general state of the agent.

4.4.2 Symbolic task planning

Complex human robot interaction also requires reasoning about the actions the agent
can perform: How can they achieve a specific goal? What are the required actions to
achieve this goal? Which actions can be performed by each agent? etc.

In the previous sections, we have seen how symbolic knowledge is produced and
stored from the real physical world. In this section, we present one possible way to use
these symbolic models of the environment and the interacting agents to produce a plan
of actions for a complex goal.
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Subject Predicate Object

Agent hasIn{Left|Right}Hand GraspableObject
Agent hasPosture Posture

Agent currentlyBodilyDoes Action

Table 4.4: List of statements describing the state of an agent in general. posture can be
either standing Or sitting. The currentlyBodilyDoes predicate states the current action of
the agent, be it intentional or not.
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Figure 4.9: Screenshot of the HATP console. On the left panel, we see the results of the
requests to ORO, on the bottom right the resulting plan.

In order to devise how a given goal can be accomplished, the robot has to elaborate
a plan,i.e. a set of actions to be achieved by the robot and its human partners. We use
in our architecture the HATP planner [4] (for Human Aware Task Planner, figure [4.9).
HATP is based on a Hierarchical Task Network (HTN) refinement, which performs
an iterative task decomposition into sub-tasks until reaching atomic actions [97]. The
planning domain defines a set of methods describing how to decompose a task and can
be seen as the procedural knowledge of the robot (note that this knowledge in stored in
the own resources of the planner, not in ORO). HATP is able to produce plans for the
robot’s actions as well as for the other agents. It can be tuned by setting up different
costs depending on the actions to apply and by taking into account a set of constraints
called social rules. This tuning aims at adapting the robot’s behaviour according to the
desired level of cooperation of the robot.

Agents and action streams The robot plans not only for itself but also for the other
agents. The planning domain of each agent is instantiated from the agent-specific
model in the ORO server. The resulting plan, called “shared plan” is a set of actions
that form a stream for each agent involved in the goal achievement. Depending on the
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context, some “shared plans” contain causal relations between the agents. For example,
the second agent needs to wait for the success of the first agent’s action to be able to
start its own action. When the plan is performed, causal links induce synchronisation
between agents. Figure illustrates a plan with two streams.

TAKE (HUMAN1, THROW (HumMAN1, TAKE (HUMAN1, THROW (HUMANZ,
GREY_TAPE, TABLE) GREY_TAPE, Trash1) WALLE TAPE, TABLE) WALLE _TAPE, Trash1)

Human Q O O Q

oot @—@—@—@

TAKE (ROBOT, THROW (roBOT, TAKE (ROBOT, PUTRV (rOBOT, TAKE (roBOT, THROW (rosoT,
BLACK _TAPE, TABLE) BLACK _TAPE, Trash2) WALLE TAPE, TABLE) WALLE TAPE, TABLE) LOTR_TAPE, TABLE) LOTR_TAPE, Trash2)

O

Figure 4.10: A plan produced by HATP with 2 streams

Action costs and social rules A cost and a duration function is associated to each
action. The duration function provides a duration interval for the action achievement
and is used, in one hand, to schedule the different streams and, in the other hand, as
an additional cost function. In addition to these costs, HATP also takes into account a
set of social rules. Social rules are constraints aiming at leading the plan construction
towards the best plan according to some human preferences. The social rules we have
defined so far deal with:

e undesirable state: to avoid a state in which the human could feel uncomfortable;

e undesirable sequence: to eliminate sequences of actions that can be misinterpreted
by the human;

o effort balancing: to adjust the work effort of the agents;

e wasted time: used to avoid long delays between the actions of the human partner

(tigure [4.11));

e intricate links: to limit dependencies between the actions of two or more agents.

TAKE (HUMANI, THROW (HumAn1, TAKE (HUMANI, THROW (HumAN1,
GREY_TAPE, TABLE) GREY_TAPE, Trash1) WALLE_TAPE, TABLE) WALLE TAPE, Trash1)

Human

@ O

@ O

O
Robot Q Q O =©

TAKE (rRoBOT, PUTRV (roBoOT, TAKE (roBOT, THROW (rosOT, TAKE (roBOT, THROW (rosoOT,
WALLE TAPE, TABLE) WALLE TAPE, TABLE) BLACK_TAPE, TABLE) BLACK TAPE, Trash2) LOTR_TAPE, TABLE) LOTR_TAPE, Trash2)

Figure 4.11: Same plan with minimised wasted time.
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Figure 4.12: Example of graphical scripts produced with the CSLU Toolkit. Behaviours are
programmed by building a network of connected “boxes”.

Several levels of cooperation By tuning its costs and adapting its social rules, HATP
can be used to compute various alternative plans. These plans can be categorised into
several levels of cooperation

¢ helping the human to achieve his goal by acting for him
e sharing concrete resources by handing some objects

e collaboration of the robot and the human by coordinating their actions towards a
human-robot joint goal.

4.4.3 Execution control

Depending on experimental setups, the ORO server has been integrated with several
distinct execution controllers. We briefly present them here, with some details regarding
the integration knowledge base/controller.

CSLU Toolkit The CSLU Toolkit is a rapid application development framework
developed at Oregon University. It comprise of a suite of tools that enable exploration,
learning, and research into speech and human-computer interaction via a user friendly
graphical interface (figure £.12). The CSLU toolkit has been employed in several
experiments of the European FP7 CHRIS project (some are presented at section[6.2.2}
others are presented in [70, [71]]) to develop scripted verbal interactions with robots.

The CSLU Toolkit can be easily extended with the TCL scripting language, for which
bindings with the ORO server exist. This enable users to graphically design interaction
experiments that take advantage of the knowledge base and its reasoning infrastructure
to add and retrieve concepts.
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CRAM CRraM [15] (Cognitive Robotic Abstract Machine) is a RPL-derived framework
for rapid development of cognitive robot control programs that is developed at the
Intelligent Autonomous Systems at TU Munich.

The integration of ORO is seen as an extension to the robot’s belief state that not
only contains abstract identifiers of the internal object representation used in plans, but
also the semantics and roles of objects in the scenario.

CRAM automatically updates the ORO server whenever an object enters or leaves
the field of view with a perception stack based on the COP framework [62].

The Odd One Out experiment (section[6.2.2) relies on CRAM for the robot control.

SHARY SHARY [144] is a high level robot control system for cognitive robot interact-
ing with humans, based on the OPENPRS environment (an open-source implementation
of PRS Procedural Reasoning System [53]]).

A full OPENPRS interface with ORO has been developed, and request and events
mechanisms are heavily used by SHARY to monitor and react to changes in the robot
environment.

SHARY also produces symbolic facts that are added to the ORO server, including
the outcome of actions. This allows to partially expose the internal state of the execution
controller, and enhancing the introspective capabilities of the system.

Finally SHARY can also directly interacts with situation assessment and geometric
layers (like the SPARK module), which indirectly influences the ORO content. For
instance, SHARY can create or delete position hypotheses for currently unperceived
objects, which in turn are converted into (de-facto) hypothetical symbolic beliefs in the
knowledge base.

Section presents an experiment that demonstrates the integration between
SHARY and ORO.

pyRobots pyRobots is not a real execution controller: it comprise of a set of Python
scripts that ease the construction of complex scripted interaction. pyRobots is based
on actions (high-level tasks like got o, pick or give®) that are combined into plans.

ORO server is integrated in pyRobot s via the ORO Python bindings (presented at
section[4.2.1). The action that is currently performed, is maintained up-to-date in the
server, and actions are free to store or retrieve facts (for instance, the pick task add the
fact (myself hasInRight/LeftHand x), x being replaced by the ID of the object that is
taken.

Events can also be used by the application designer.

4.4.4 Integration with natural language processors

Figure gives a functional overview of components involved in the situated dialogue
grounding.
Verbal interaction with a human is either initiated by the human or by the robot.
In case of human initiated dialogue, two main steps follow: understanding the
direct meaning of the sentence (what does the words mean?), and understanding the

°The complete list is available online: http://www.openrobots.org/wiki/pyrobots!
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Figure 4.13: Schematic view of the integration of a natural language processor in the
architecture

intent of the sentence. The first step usually requires a large amount of queries to the
knowledge base to clarify and disambiguate the meaning of the sentence ; the second
step, depending on the intent (question, desire, assertions), leads to either other queries
(to answer a question) or new assertions.

An interaction initiated by the robot usually follows an event triggered by the con-
troller (or possibly directly by the knowledge base). The dialogue that it initiates then
requires the same interaction capabilities with the knowledge base that we mentioned
in the previous paragraph.

Studying the integration of natural language grounding with a symbolic knowledge
base is one of the focus of the thesis, and the next chapter is entirely dedicated to

DIALOGS, a component for situated natural language processing, and its integration
with ORO.

Chapter recap

This concludes the chapter 4! In this chapter, we have first developed some technical
and implementation-related details, including the software architecture of the ORO
server, examples of integration with the Python and C++ API, and an overview of the
visualisation and debugging tools.

The chapter then focused on the actual integration of ORO server in existing robotic
architecture. We have first presented the software architecture of the decisional layer of
service robots at LAAS. We have introduced the SPARK module for geometric reasoning
and symbolic situation assessment and underline its perspective taking capabilities.

We have finally presented briefly HATP, a symbolic task planner for human-robot
cooperative task planning that takes advantage of the ORO server for planning initiali-
sation, and mentioned four control environment that have been used with ORO.

The next chapter is now dedicated to one specific application of the knowledge base:
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situated natural language grounding.
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Chapter 5

Knowledge Enabled Situated Natural
Language Processing

5.1 Grounding verbal interaction into the robot knowl-
edge

5.1.1 Situated speech acts

A messy kitchen table, covered with knifes, spoons, bowls... Tom is preparing the
brownie, with Robi and Roba, its two robots.

“ —Robi, give me this bowl”, says Tom, looking at the table. The robot smoothly
grasps the bowl, and hands it to the human.

What are the prerequisites for such a human sentence — “Robi, give me this bowl”
— to be understood by the robot, correctly interpreted in the spatial context of the
interaction, and ultimately transformed into an action?

Austin [8] would have at first glance analysed such kind of sentence as a speech act,
comprising of locutionary, illocutionary and possibly perlocutionary acts: First, we want
to understand the direct meaning of the sentence (locutionary act): we must acquire
the sentence, convert it into a useful syntactic form (quite probably by mean of speech
recognition), and understand the semantics of the sentence, i.e. What is referred by
“Robi”? What is “give”? What is “me”? And “this bowl”?

Working in a situated context, we want furthermore to resolve these semantics atoms
(i.e. ground them) in the sensory-motor space of the robot. For instance, “this” is a
demonstrative pronoun that refers in this context to the object the human is focusing
on, whatever focusing means: here, we guess Tom is looking at some bowl, which is
a possible cue. But it could as well point at something or refer to some previously
mentioned concept.

Second, the illocutionary force, i.e. the intent of the utterance as thought by the agent
must be extracted, and understood. In our example, Tom obviously wants an action to
be performed by the robot. The action parametrisation is conveyed by the semantics
attached to the words and the grammatical structures of the sentence. In our example,
the type of action is given by the verb “give”. Assuming the robot has some procedural
knowledge (a planning domain and a planner) attached to this symbol, the action
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Figure 5.1: Asking the robot to hand over a tape on the table.

type can be considered as grounded for the robot. We can as well understand that the
recipient of the action is the human, the performer is the robot itself, and the object
acted upon is the bowl. These are the basic thematic roles that can be extracted from the
sentence that allow to fully ground the action.

Extracting these speech acts and turning them into a content processable by the
robot is a difficult challenge in the general case. We base our approach on three distinct,
inter-related cognitive functions:

1) Physical environment modelling and spatial reasoning (grouped under the term
situation assessment) are in charge of building and maintaining a coherent model of the
physical world. We have presented SPARK in the previous chapter.

2) Knowledge representation and management: we have also already presented the ORO
server in the previous chapters. It endows the robot with an active knowledge base
that provides a logically sound symbolic model of its beliefs on the world, as well as
models for each cognitive agent the robot interacts with.

Used in combination with the situation assessment framework, the robot is thus
able to maintain different models of the world, one per agent. This proves an essential
feature [112,65] to enable perspective-aware grounding of natural language, as we will
see in next sections.

3) Dialogue input processing, including natural language parsing capabilities, disam-
biguation routines and interactive concept anchoring. We focused our efforts on three
classes of utterance, commonly found in human-robot interaction: statements (i.e. new
facts the human wants to inform the robot), orders (or more generically desires) and
questions on declarative knowledge (Whose answers do not require explicit planning). This
would roughly cover the representative (sometimes referred as assertives) and directives
type of illocutionary acts in Searle [117] classification.
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5.1.2 Related work

Processing natural language in situated context is already an established research
field. We have already mentioned Roy and Reiter [112] that propose cross-modal
representation systems, association of words with perceptual and action categories,
modelling of context, figuring out the right granularity of models, integrating temporal
modelling and planning, the ability to match past (learned) experiences with the
current interaction and the ability to take into account the human perspective as the
main challenges of situated dialogue processing.

Kruijff et al. provides in [65] an up-to-date survey of literature on situated human-
robot dialogue, focusing on formal representation systems, bi-directionality of the
interaction and context building. They point as well that, compared to the cognitive
psychology community, the “situated AI” community started only recently to take into
account agents focus, perspective and temporal projection abilities.

Dialogue processing on real robots have been explored by several teams. Scheutz [22]]
has contributions regarding natural language processing in an incremental way, and
how this enables instant back-channel feedback (like nodding).

Hiiwel et al. [52] propose the concept of Situated Semantic Unit: these meaning
atoms are extracted from sentences and expose semantic links to other units. The
parser tries to satisfy these links and rate accordingly the semantic interpretation of the
sentence. Used in conjunction with ontologies, their approach offers good robustness
to ungrammatical or partial utterances. They validated the approach with an extensive
user-study.

Several other systems, already presented at chapter 2, have tackled the challenge:
the Tapas system, the GLAIR architecture, GSM or the Ke Jia project.

Compared to these previous contributions, our efforts have two foci: (1) integration
between language processing and perception of the environment and the humans,
from several perspectives; and (2) realistic human-robot interactions: real-time process-
ing; open speech; complex, dynamic, partially unknown human environments; fully
embodied autonomous robots with manipulation abilities.

We do not claim however any significant contribution to the field of theoritical
computational linguists (see [65] for a survey of formal approaches to natural language
processing in the robotics field): our main contribution here is the grounding of concepts
involved in the human discourse through the robot’s own knowledge.

Section [5.2| presents the overall grounding process and section 5.3 proposes an
analysis of the processing of three prototypical sentences. Experimental results are
presented in the next chapter on the evaluation.

5.2 The Natural Language Grounding Process

As stated above, we process three categories of sentences: statements, desires and ques-
tions that can be answered from the declarative knowledge present in the robot knowl-
edge base (a choice similar to the Behaviour Cycle in the GLAIR architecture [118]). In
our work, the grounding process of the human discourse consists in extracting either
the informational content of the sentence to produce statements or its intentional content
(i.e. performative value) to collect orders and questions.

97



Knowledge Enabled Situated Natural Language Processing

In put —f Pre-processing

v

Parsing

v

Pronouns +

ueries
anaphors ‘.q_ ___________ >
resolution

v .
queries

Noun phrase ¢ - »
resolution =¥ Discrimination 4

v A

Verbal phrase Actions
resolution library

v

Content analysis

b

Statement
builder /

’
' /’
‘lquerles ’
........... -
’
’
’
’

Verbalization Q»Output

Resolution

Ontology server

)
)
|
)
|
)
[}
]
]
[}
I
]
]
]
[}

[
asserts !
’ >

Interpretation

Figure 5.2: The DIALOGS module has four main steps: the parsing, the resolution, the
interpretation and the verbalisation.

As shown in Figure the DIALOGS module that we have developed, is composed
of four main blocks. The user’s input is first pre-processed. For instance, I'm constructs
are expanded into I am and then parsed. The parser is a custom-made, rule-based (i.e.
grammar-free) tool that extracts the grammatical structure from the user’s sentence.

Figure shows an example of the raw output of the parser for a moderately
complex sentence.

The result of the parsing is then sent to the resolution module. The processing can be
divided again in three steps: (1) pronouns and anaphora are replaced by, respectively,
the correct speaker ID and the ID of the last object spoken about (extracted from the
dialogue history), (2) nominal groups are disambiguated and grounded (noun phrase
resolution), and (3) verbal groups are resolved as well, and their associated thematic
roles are retrieved (verbal phrase resolution). Algorithm describes the overall
process (with the subroutine GenerateDescription presented in algorithm [5.2.2] page [100).
Next section describes specific examples to show how the noun and verbal phrase
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>> IMPERATIVE
VP: remember (present simple)
SUBSENTENCE (aim: that)
NP: I
VP: want (present simple)
direct objects:
NP: you
secondary VP: give ()
direct objects:
NP: my nice blue bottle
indirect objects:
NP: me

Figure 5.3: Raw output of the DIALOGS parser after processing the sentence: “remember
that I want you to give me my nice blue bottle.” Nominal groups are not grounded yet.

resolution takes place.

Algorithm 5.2.1: RESOLUTION(sentence, currentSpeaker)

G < PARSENOMINALGROUPS(sentence)
foreachg € G
D < GENERATEDESCRIPTION(g) (1)
candidates < ONTOLOGY.FIND(D) (2)
if |candidates| = 0

then J Output (Couldn’t resolve the group!)

exit

else if |candidates| =1

do then id < candidates|0] 3)

if ONTOLOGY.CHECKEQUIVALENT(candidates)
then id < candidates|0]
else
else id < DISCRIMINATION (candidates, currentSpeaker)
REPLACE(g, id, sentence)

The result of the resolution is then send over to the interpretation module that first
performs a content analysis (what was the intent of the utterance: information, question
or desire) and then translate the original sentence into RDF statements (the statement
building step).

As represented in Figure 5.2} both resolution and interpretation tightly rely on the
communication with the knowledge base. All the concepts the robot manipulates are
stored in the ontology server and retrieved through logical queries, except for the verbs
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that are currently stored in a dedicated library (the action library in the diagram).

Algorithm 5.2.2: GENERATEDESCRIPTION(group)

procedure GENERATEDESCRIPTION(group)
noun < GETNOUN(group)
. /d <+~ ONTOLOGY.LOOKUP
if ONTOLOGY.LOOKUP(noun) € (Instances) id < ONTOLOGY.LOOKU ‘(noun)
return (D + (x sameAs < id >))

else D =D + (x type < noun >)

det <~ GETDETERMINANT (group)
if det € (possessives)
then D = D + (x isRelatedTo < possessor >)
if det € (demonstratives)
if ONTOLOGY.CHECK((< currentSpeaker > focusesOn ))
then ¢ then D =D + (< currentSpeaker > focusesOn )
else D = D + ANAPHORICMATCHING()

adjs < GETA