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Directeurs de thèse M. Marc Bonnet (POems, ENSTA)

M. Jean-François Semblat (GER 1, IFSTTAR Paris)

Rapporteurs M. Geert Degrande (KU Leuven)

M. Alan Millard (CEA)
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Résumé étendu

CONTEXTE

Cette thèse porte sur la modélisation numérique de la propagation des ondes visco-élastiques

dans les milieux étendus et infinis. Cette problématique est pertinente pour plusieurs types

d’application, tels que la transmission des vibrations dues au trafic ferroviaire ou la propagation

des ondes sismiques dans les sols (idéalisés comme infinis ou semi-infinis), leur interaction

avec la géologie de surface (effets de site) et avec les structures (interaction sol-structure, ISS).

Parmi les méthodes numériques qui permettent de résoudre ce type de problème, nous pouvons

citer la méthode des éléments de frontière (Boundary Element Method, ou BEM [44, 51]) ou la

méthode des éléments finis (Finite Element Method, ou FEM [159, 330]).

La BEM nécessite uniquement la discrétisation de la frontière du domaine d’interêt, ce qui

réduit d’une unité la dimension spatiale du problème à résoudre. De plus, sa formulation prend

implicitement en compte les conditions de rayonnement à l’infini, ce qui permet de modéliser

des domaines infinis. Enfin, une fois que la solution sur la frontière est connue, la BEM permet

l’évaluation précise de la solution en tous points du domaine, évitant les erreurs liées à la dis-

persion numérique ou à l’anisotropie du maillage introduites par les discrétisations volumiques.

Pour ces raisons, la BEM est une méthode particulièrement bien adaptée pour le calcul de la

propagation d’ondes sismiques.

En contrepartie, la BEM est limitée aux milieux linéaires et homogènes par morceaux. De

plus, sous sa forme classique, elle amène à résoudre un système linéaire dont la matrice est

pleine et (avec l’approche par collocation) non-symétrique. Cela induit pour la BEM classique

un coût numérique important et limite la taille des problèmes à O(104) degrés de liberté (DDLs)

de frontière.

Il existe plusieurs stratégies permettant d’augmenter la taille des modèles BEM et d’accélérer

la résolution du système linéaire. On peut en particulier citer les méthodes algébriques, qui

agissent directement sur le système matriciel (H-matrices [149], Adaptive Cross Approxima-

tion [30]), et la méthode multipôle rapide (Fast Multipole Method, ou FMM [260]) qui se base

sur une décomposition des solutions fondamentales. En particulier, la FMM appliquée à la

BEM et sa version multi-niveau (Multi Level-FMBEM, ou ML-FMBEM) autorise, par rapport

à la BEM classique, une forte réduction de la complexité en temps de calcul et en mémoire
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(de O(N2) à O(N logN)) [68, 82, 236]. Concernant l’élastodynamique, la ML-FMBEM a été

récemment appliquée à la résolution de problèmes de propagation d’ondes sismiques dans des

milieux homogènes par morceaux [62, 63].

La FEM, quant à elle, permet de traiter des problèmes à comportement complexe (hétérogène,

anisotrope, non-linéaire) et est donc la principale méthode numérique de calcul de structures.

De plus, le système linéaire d’équations produit par la FEM fait intervenir une matrice creuse.

En revanche, la FEM repose sur une discrétisation volumique du domaine d’intérêt et nécessite

des stratégies spécifiques (conditions absorbantes [34], éléments infinis [37]) pour la prise en

compte des conditions de rayonnement. Par ailleurs, la dispersion numérique et l’erreur de pol-

lution entachent la précision des calculs de propagation d’ondes. Ces considérations font que

les éléments finis ne sont pas toujours adaptés à la propagation des ondes dans des domaines

étendus ou à fréquence élevée.

Une alternative intéressante à l’emploi de conditions d’absorption consiste à coupler la FEM

avec la BEM. Cela permet à la fois de prendre en compte des structures à comportement com-

plexe et et de garantir le rayonnement des ondes à l’infini. Le couplage FEM/BEM permet de

résoudre un problème contenant des irrégularités (de géométrie ou comportement, contenues

dans une région limitée de l’espace) en champ proche avec les éléments finis, la propagation en

champ lointain étant prise en compte par les éléments de frontière.

Ce travail de thèse poursuit deux objectifs principaux. D’une part, la formulation FMBEM

pour l’élastodynamique 3-D en domaine fréquentiel, issue de travaux précédents, a été étendue

au cas des milieux faiblement amortis. D’autre part, deux méthodes différentes de couplage de

la FEM avec la ML-FMBEM ont été proposées et comparées.

Le manuscrit est organisé en trois chapitres. Le premier chapitre, de nature bibliographique,

est une introduction aux sujets abordés au cours du travail. Le deuxième chapitre est dédié à

l’application de la FMBEM à la visco-élasticité 3-D. Enfin, le troisième chapitre porte sur le

couplage FEM/FM-BEM en visco-élastodynamique 3-D.

APPLICATION DE LA FMBEM MULTI-NIVEAU À LA VISCO-ÉLASTODYNAMIQUE 3-D

La formulation ML-FMBEM pour l’élastodynamique 3-D en domaine fréquentiel a été étendue

au cas des milieux viscoélastiques faiblement amortis. L’adaptation de la ML-FMBEM aux

matériaux amortissants permet de reproduire la décroissance de l’amplitude des ondes due à la

dissipation intrinsèque du milieu de propagation, et de décrire l’amplitude limitée et le décalage

de phase typiques des systèmes excités près de la résonance [128].

L’introduction de l’atténuation dans la ML-FMBEM influence l’évaluation de la décomposi-

tion multipôlaire des solutions fondamentales de la visco-élastodynamique. Premièrement,

aucune étude mathématique rigoureuse n’a été proposée à ce jour sur la convergence de la

formulation FMBEM en nombre d’onde complexe, contrairement à celle en nombre d’onde

réel (acoustique, électromagnétisme, élastodynamique) pour laquelle plusieurs études exis-

tent [82, 299]. D’autre part, peu de travaux dans la littérature abordent le problème du réglage

des paramètres algorithmiques de la FMM pour prendre en compte le nombre d’onde com-
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plexe, et ceux-ci n’ont pas été effectués dans le domaine de la visco-élastodynamique (voir

[134] en électromagnétisme, [323] en acoustique, [118] pour des problèmes génériques de type

Helmholtz avec une formulation FMM adaptée aux basses fréquences).

D’un point de vue formel, la formulation intégrale des éléments de frontière et la méthode

multipôle rapide en visco-élastodynamique sont identiques à celles de l’élastodynamique, la

seule différence étant qu’en visco-élastodynamique, le nombre d’onde est complexe à cause de

l’atténuation.

La première section du chapitre 2 est un rappel de la formulation ML-FMBEM en visco-

élastodynamique. La deuxième section rappelle la loi de comportement des milieux visco-

élastiques linéaires isotropes pour des sollicitations harmoniques, puis définit le nombre d’onde

complexe et son approximation dans le cas des milieux peu amortissants. La section 2.4

présente ensuite la formulation en nombre d’onde complexe pour la méthode FMBEM multi-

niveaux.

La section 2.5 détaille les parties de la formulation qui sont particulièrement touchées par

l’introduction des paramètres complexes, comme l’évaluation numérique du développement

multipôle du noyau de Helmholtz. On met en évidence les erreurs d’évaluation de ce noyau que

l’on commet lorsque l’on utilise les réglages numériques utilisés pour la formulation en nombre

d’onde réel. L’étude menée pour pouvoir évaluer précisément ce développement est également

présentée. On y montre que la série définissant la fonction de transfert doit être tronquée à un

ordre plus élevé (comparativement à la formulation en nombre d’onde réel) et on propose une

relation permettant d’ajuster le paramètre de troncature selon le niveau d’amortissement.

COUPLAGE FEM/FMBEM EN VISCO-ÉLASTODYNAMIQUE 3-D

Le chapitre 3 est dédié au couplage FEM/FMBEM, permettant de combiner la flexibilité de la

FEM (géométries et comportement complexes) et la capacité de la BEM à traiter les domaines

infinis. Ce couplage peut être considéré comme une forme de décomposition du domaine (Do-

main Decomposition Methods, ou DDMs [305]). Contrairement au couplage FEM/BEM clas-

sique, pour lequel la littérature est vaste [15, 104], peu de travaux existent sur le couplage

FEM/FMBEM [120, 134, 323], et aucun aucun d’entre eux ne concerne la visco-élastodynami-

que.

Dans cette thèse, deux approches de couplage sont proposées. L’idée est d’associer un sous-

domaine spatialement borné contenant des structures complexes ou des fortes hétérogénéités (le

problème en champ proche associé, résolu par la FEM) et son complémentaire semi-infini (le

problème en champ lointain associé, résolu par la ML-FMBEM) au moyen d’une décomposition

de domaine sans recouvrement. Des conditions de transmission (continuité des déplacement

et équilibre des tractions) garantissent la continuité à travers l’interface commune. Les deux

approches de couplage proposées, l’une de nature séquentielle et l’autre de nature simultanée,

ont été mises en œuvre et leur performances évaluées sur des exemples simples.

Couplage séquentiel : il s’agit d’un couplage du type Dirichlet-Neumann avec une seule re-

laxation du champ de déplacement sur l’interface. Des codes FEM (CESAR-LCPC) et ML-
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FMBEM existants ont été utilisés comme des boı̂tes noires et sont interfacés par un algorithme

externe. La dépendance de la convergence par rapport au paramètre de relaxation, à la géométrie

et au contraste de comportement des matériaux (ici linéaires dans les deux sous-domaines) est

étudiée à l’aide de plusieurs exemples.

Couplage simultané : il repose sur la résolution d’un système global d’équations combiné avec

les conditions de transmissions sur l’interface. Une condensation implicite des degrés de liberté

FEM est appliquée et le système global, piloté par la ML-FMBEM, est résolu itérativement par

l’algorithme GMRES (Generalized Minimal Residual). Ici encore, des études paramétriques

sont effectuées sur plusieurs exemples.

CONCLUSIONS ET PERSPECTIVES

L’objectif de cette thèse a été double. D’une part, on a étendu avec succès la formulation

FMBEM pour l’élastodynamique 3-D en domaine fréquentiel au cas des milieux faiblement

amortis. D’autre part, on a proposé et mis en œuvre deux méthodes différentes permettant de

coupler la FEM et la ML-FMBEM. Pour des raisons de temps, les deux approches n’ont pas

encore été testées sur des problèmes identiques, ce qui empêche pour l’instant une comparaison

rigoureuse de l’efficacité des deux approches de couplage. Ceci constituera l’objectif d’études

comparatives ultérieures.

Le couplage FEM/FMBEM a cependant donné des résultats très encourageants et nous

parait être une direction de travail intéressante pour les applications dans les domaines de

l’interaction sol-structure (ISS) et la modélisation des vibrations ferroviaires. Plusieurs amélio-

rations sont envisageables à court terme (section 3.7), en particulier l’extension du couplage

FEM/FMBEM (i) aux maillages non-conformes, (ii) à des comportements non-linéaires dans le

sous-domaine FEM, (iii) aux milieux anisotropes, ou (iv) aux milieux poro-élastiques.



Abstract

BACKGROUND

The numerical simulation of elastic wave propagation in unbounded media is a topical issue.

This demand arises in a variety of real life engineering problems, from the modelling of railway-

or machinery-induced vibrations to the analysis of seismic wave propagation and dynamic soil-

structure interaction. Due to the complexity of the involved geometries and materials behavior,

modelling such situations requires sophisticated numerical methods.

The most popular methods in the engineering practice are the finite and the spectral ele-

ment methods. They present known advantages (deal with complex geometries, material non-

linearities, etc) and drawbacks (numerical damping and dispersion, spurious reflections at ar-

tificial truncation boundaries). Although various numerical strategies exist to limit spurious

reflections (e.g. absorbing boundary conditions or boundary layers), the Boundary Element

method (BEM) remains a very effective approach for dynamic problems in spatially-extended

regions (idealized as unbounded), especially so since the advent of fast BEMs such as the fast

multipole method (FMM) used in this work.

The BEM is based on a boundary integral formulation which requires the discretization

of the only domain boundary (i.e. a surface in 3-D) and accounts implicitly for the radiation

conditions at infinity. As a main disadvantage, the BEM leads a priori to a fully-populated and

(using the collocation approach) non-symmetric coefficient matrix, which makes the traditional

implementation of this method prohibitive for large problems (O(106) DoF). Applied to the

BEM, the multi-level version of the fast multipole method (ML-FMM) strongly reduces the

computational complexity and the memory requirement typical of the classical formulation,

making the BEM very competitive in modelling elastic wave propagation. The elastodynamic

version of the fast multipole BEM (FMBEM), in a form permitting piecewise-homogeneous

media, has for instance been successfully applied to the solution of seismic wave propagation

problems.

SUMMARY OF CONTRIBUTIONS OF THIS THESIS

The present thesis aims at extending the capabilities of the existing frequency-domain elastody-

namic FMBEM in two directions:

vii
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Adaptation to viscoelastodynamics. The time-harmonic elastodynamic ML-FMBEM formula-

tion has been extended to the case of weakly dissipative viscoelastic media. The underlying

boundary integral equation and fast multipole formulations are formally identical to that of

elastodynamics, except that the wavenumbers are complex-valued due to attenuation. Attention

is focused on evaluating the multipole decomposition of the viscoelastodynamic fundamental

solution. A damping-dependent modification of the selection rule for the multipole truncation

parameter, required by the presence of complex wavenumbers, is proposed. It is empirically

adjusted so as to maintain a constant accuracy over the damping range of interest in the approx-

imation of the fundamental solution, and validated on numerical tests focusing on the evaluation

of the latter. The proposed modification is then assessed on 3D single-region and multi-region

visco-elastodynamic examples for which exact solutions are known. Finally, the multi-region

formulation is applied to the problem of a wave propagating in a semi-infinite medium with a

lossy semi-spherical inclusion (seismic wave in alluvial basin). These examples involve prob-

lem sizes of up to about 3 105 boundary unknowns.

Coupling of the FMBEM with the finite element method. FMBEM/FEM coupling approaches

take advantage of the versatility of the FEM to model complex geometries and non-linearities

and of the exact account for infinite domains, mobile boundaries or unknown boundaries of-

fered by the boundary integral approach. In this thesis, we apply two strategies for coupling

the FMBEM and the FEM to solve three-dimensional time-harmonic wave propagation prob-

lems in unbounded domains. The main idea is to separate one or more bounded subdomains

containing complex structures or strong heterogeneities (solved by the FEM) from the com-

plementary semi-infinite viscoelastic space of propagation (solved by the FMBEM) through a

non-overlapping domain decomposition. The two following strategies have been implemented

and their performances compared on simple examples.

First strategy: it consists in an iterative Dirichlet-Neuman coupling with single interface

relaxation of the displacement field. Existing FEM (CESAR-LCPC) and FMBEM software are

used in black-box fashion and driven by an external interface algorithm. The dependence of

the convergence on the relaxation parameter and on the geometrical/material properties of the

problem at hand is shown through different examples.

Second strategy: it is a simultaneous coupling approach based on solving a global system of

equations combined with the transmission conditions across the common interface. An implicit

condensation for the FEM degrees of freedom is employed and the global system is solved by

generalized minimal residual (GMRES).
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1.1 OVERVIEW

This thesis focuses on the numerical modelling of 3-D elastic wave propagation in unbounded

media. Among the existing numerical methods suitable in elastodynamics, the Boundary El-

ement Method (BEM) is very well adapted to deal with propagation in unbounded media be-

cause of the built-in, exact satisfaction of radiation conditions. Moreover, the boundary-only

discretization required by the formulation allows smaller model sizes w.r.t. volume-based meth-

ods such as the FEM. However, the BEM leads to the resolution of a full linear system, which

entails high CPU costs and memory requirements that increase with the size of the problem.

In case of large domains or high-frequency problems, these requirements become too high,

letting the classical BEM loose competitiveness towards other numerical methods such as the

Finite Element Method (FEM). In this sense, the BEM has recently known important advances,

with the extension of the accelerated versionof the Fast Multipole Boundary Element Method

(FM-BEM) to 3-D multi-domain elastodynamics [62, 63]. The Fast Multipole algorithm, intro-

duced in 1987 by Leslie Greengard and Vladimir Rokhlin [142], is considered among the ten

best algorithms of the computer age [96], and nowadays is hugely employed in fields such as

electromagnetism or acoustics. Applied to the classical BEM formulation, the Fast Multipole

Method (FMM) allows to overcome its major limitations, namely the CPU costs and memory

requirements.

1.2 WAVE PROPAGATION PROBLEMS IN UNBOUNDED DOMAINS

Wave propagation in viscoelastic unbounded media is a useful idealization for a variety of real-

life engineering problems. In this work we focus on two specific applications, namely the seis-

mic wave propagation and the traffic-induced vibrations. This Section is thus devoted to a brief

introduction to these two classes of problems involving wave propagation. We describe their

main features and highlight the peculiarities and the challenges of their physical and numerical

modelling.

1.2.1 Seismic wave propagation

The prediction of seismic ground motions is a crucial step in the evaluation of seismic risk.

This task raises the need for the analysis of three different phenomena, sketched in Figure 1.1:

the fault rupture mechanism (e.g. rupture initiation, fault size and plane, slip distributions), the

elastic wave propagation through the earth’s crust and the local site response. On the one hand,

the local site response depends on the characteristics of the incident wave field (amplitude,

duration and frequency content of the ground motion), which influence the energy content and

the spatial variability of the ground motion. On the other hand, it depends on the presence of

topography irregularities, of near-surface sedimentary structures or of lateral discontinuities,

which cause multiple wave scattering, trapping of specific frequency components and ground

motion amplification. In the following, the main issues related to the propagation of seismic

waves are briefly presented.
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Figure 1.1: Seismic wave propagation from the source to an alluvial site [285].

Effects of surface topography and subsurface heterogeneities. Historically, anthropic settle-

ments have often risen and developed over alluvial valleys. For example, Mexico City sits

on an old lakebed, and it is partially surrounded by mountain ranges. During the earthquakes

that struck the city in 1985, a great amplification of the ground motion was measured in different

areas of the basin. This amplification was due to the resonance in the lakebed sediments, to the

long duration of the shaking, and to the interference of scattered and trapped waves. Also the

1994 Northridge (California) and the 1995 Kobe (Japan) earthquakes, classified as moderate-

to-large, have shown an unexpected potential for causing damage due to their local geological

features. Other big cities known to lye over alluvial basin are Santa Cruz (California, hit in

1989 by the Loma Prieta earthquake), Caracas (Venezuela), Grenoble (France).

All these observations have shown that the ground motion is influenced by the vertical het-

erogeneities of the medium, i.e. by the horizontal layering of different geological structures. To

explain this phenomenon, the simplified model of a stratified medium composed by soft alluvial

layers over a rigid bedrock is often used. Using the theory of elastic wave propagation [4], the

velocity contrast between a stiffer and a softer medium is shown to cause frequency-dependent

amplifications and a trap of the transmitted wave field. The assumption of horizontally strat-

ified medium justifies one-dimensional approaches, allowing for the identification of the site

fundamental frequency or the characterization of non-linear seismic response [26, 92].

Figure 1.2: Simple models to explain topographic effects: (a) triangular infinite wedge model and (b) approx-

imation of the ground surface by through and wedges [193].
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Figure 1.3: The Rognes hill after the Lambesc earthquake (1909, France). The effects of amplification

induced by the presence of the hill are clearly visible in this picture taken few time after the ground motion.

However, approaches based on 1-D simulations do not account for horizontal heterogeneities.

Therefore, they cannot satisfactorily estimate the maximum amplification level in realistic me-

dia, nor explain the strong amplification and the longer motion duration caused by lateral dis-

continuities [229]. Such phenomena, due to the horizontal heterogeneities are called basin

effects. They are relevant for a local hazard assessment, and can be investigated only through

two- and three-dimensional simulations [26, 39, 280].

Also the presence of topographic irregularities such as ridge or hills affects the ground

motion, see e.g. the damages suffered by the french Rognes’ city, hit in 1909 by the Lambesc

earthquake (see Fig.1.3), or by the Pacoima dam during the 1971 San Francisco earthquake [46].

Simple idealized models such as those shown in Figure 1.2 enable to qualitatively explain the

observed amplification phenomena, e.g. the higher amplifications at mountain tops occurring

when the wavelengths are comparable with the mountain width. The interaction of incoming

and reflected waves produces complicated amplification patterns, whose localisation depends

on the type of the wave, its angle of incidence and its frequency content [47, 241, 270]. The

amplification at mountain tops generally decreases along the slope or as the angle of incidence

increases [25].

Although the analysis of simplified models helps in the understanding of the main amplifi-

cation phenomena caused by the propagation of seismic waves in irregular topographic profiles,

it generally leads to an underestimation of the amplification levels [131].

Effects of ground motion spatial variability. The analysis of data recorded at dense instru-

ment arrays shows a difference in seismic time histories recorded in different locations. This

phenomenon, called the spatial variability of ground motion, has been studied since the mid
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1960’s [42]. As the signal characteristics (amplitude, phase, duration, etc) vary at the scale of

widely extended areas, the uniform excitation generally used as input for studying the response

of single structures is no longer realistic. The response analysis of long (e.g. pipelines, dams) or

multi-supported structures (e.g. bridges) need to account for the fact that their supports undergo

non-uniform excitation. The physical causes for the spatial variability lie in the wave passage

effect (i.e. the differences in the arrival time of seismic waves at various locations) and in the

loss of coherency effects, namely in the source position, extent and history of trigger, in the dif-

ferent propagation paths of the incident waves, which travel through a heterogeneous medium,

and in the attenuation, see Figure 1.4 [2]. The loss of coherency between signals recorded at

various locations is used as stochastic estimation of the spatial variability. Usually, it is esti-

mated through empirical and semi-empirical models. For an exhaustive review on the subject

we suggest [326].

Effects of site-city interaction (SCI). The study of the basin effects allows the analysis of the

free-field response of a given site. However, the presence of a city on the free surface influences

the free-field response of the ground motion. In 1970, Jennings investigated the ground mo-

tion generated by a vibrating building [165]. Since, the hypothesis that the interaction between

the radiating fields induced by multiple adjacent buildings could influence the free-field ground

motion has been confirmed by many observations, and several works addressed this topic. An

analytical approach has been proposed by Guéguen, based on a superposition of single modal

soil-structure interaction analysis [144]. Numerical simulations have been conducted mainly in

two dimensions, with the use of simplified models to isolate the buildings interaction from the

Figure 1.4: Physical causes underlying the spatial variability of ground motion (from [326]).
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Figure 1.5: (a) Model for the analysis of site-city interaction in a shallow alluvial basin ( [279]). (b) Influence

of site-city interaction on the amplification of the seismic ground motion in a shallow alluvial basin (Nice,

France): perturbations up for a given city configuration ( [279]).

basin effects, see Figure 1.5 [184, 279]. In regular cities, the band of resonance frequencies

of the buildings is narrow. When these frequencies coincide with the resonance frequency of

the underlying soft soil layer, resonance occurs for the building group, which exhibit a homo-

geneous group effect. In this case, inside the city a strong reduction of the ground motion (up

to 50%) can be achieved, whereas outside the city an increase of the ground motion around

10% can be observed. The city irregularity modifies this coherency in the buildings response,

causing a strong decrease of spatial correlation of the ground motion [27].

1.2.2 Vibrations due to traffic or construction works

Ground vibrations may be generated by rotating turbines, vibrating machines, by road or rail-

way traffic (at surface or underground), by pile driving, by excavating machines (see Figure 1.6)

or by explosions at construction sites. Some of these sources are transient, e.g. explosions or

construction works, and the disturbance they occasion is often small or however limited in time.

Some other sources, e.g. road or railway traffic, act in the long term and their propagation in

urban areas may produce annoyance to human beings (under the form of building vibration or
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of noise), long term structural effects on structures (ancient buildings, historical monuments)

or disturbance on technology equipments located close to the source [308]. With the modern

development of high speed trains and of metropolitan railways, vibrations have become a major

issue. When dealing with a new project, the vibration levels attainable in the surrounding envi-

ronment should be quantified in advance, to provide adequate isolation countermeasures at the

design stage. In existing structures, effective isolation techniques have to be designed a poste-

riori to mitigate excessive vibration levels. In this perspective, numerical simulations constitute

an essential tool of prediction for engineers.

Railway-induced vibrations. Modelling the passage of a train is a complicated task. Indeed, it

produces a dynamic interaction between the train wheels, the rails, the sleepers and the underly-

ing ballast structure (see Figure 1.7a) which is difficult to reproduce. Moreover, all these parts

contain geometrical imperfections that introduce further vibrations in the system. In situ mea-

surements allow a realistic evaluation of the propagation phenomena. However, the recorded

signals include all incertitudes concerning the local geology, ground heterogeneities and the

dynamic train-track-embankment interaction [282]. The numerical modelling is a key tool

to analyse the in situ measurement and generalize the attenuation law for the ground vibra-

tions [282]. In [288], the track is modelled as a beam structure resting on a layered ground.

(a) (b)

Figure 1.6: Vibrations due to construction works: (a) breakthrough of the Herrenknecht Tunnel Boring Ma-

chine (TBM) at Sao Bento Station under construction (2003, Porto Metro Line S, Portugal) [145], (b) two

examples of soil dynamic compaction that generate ground vibrations. Often civil engineering works in urban

areas induce ground vibrations from short- to long-time periods.
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To couple the track and the ground, the authors propose to model the sleepers as a continuous

mass per unit length of the track and the ballast as a continuous distributed vertical spring stiff-

ness and mass. Train-track-embankment dynamic interactions have been studied for example

in [5, 59, 163, 167, 256, 303].

(a)

(b)

Figure 1.7: Railway-induced vibrations modelling: (a) cross section of the track-embankment system and

(b) sketch of the Thalys high-speed train used in [240] (top) and the corresponding model used for numerical

simulations, consisting in a beam lying on an elastic foundation subjected to the wheel forces transmitted by

the train.

Isolation techniques. Most of the vibratory energy is carried by the Rayleigh waves [36, 319],

a type of waves that propagates close to the soil surface and that decays more slowly with

distance than the volume waves do [193]. Therefore, the ground vibration may be reduced by

placing a suitable wave barrier in the ground [11, 12, 36, 60, 76, 187]. The trench barriers shield

the propagating waves, lead to a complex mechanism of wave reflection, mode alteration and

wave transmission, and finally produce a reduction in ground vibration beyond the trench [282].

There exist two techniques of vibration mitigation based on the insertion of barriers. On the one

hand, the so called active isolations aim at the source isolation; the barriers are thus located

near to the source of vibration. On the other hand, the passive screening methods provide the

”receiver” isolation; the barriers are positioned close to the area to be protected or along the

propagation path. In the former case the mechanism mentioned above of waves interaction

with the barriers involves both body waves (P and S) and Rayleigh waves, whereas in the latter
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case Rayleigh waves are dominant, due to the greater radiation damping of the body waves

[193]. Literature on isolation techniques is huge. Numerical evaluation of vibration screening

is addressed for example in [6–8, 13, 17, 20, 105, 127, 156, 201, 202, 209, 223, 321].

1.3 WAVE PROPAGATION IN A VISCOELASTIC MEDIUM

1.3.1 Elastic wave equation in the time domain

Let Ω ∈ R
3 be an isotropic homogeneous linear elastic solid with boundary ∂Ω and char-

acterized by a density ρ. The description of wave propagation in Ω during the time interval

t ∈ [0, tF ] is based on the balance of momentum (Cauchy first law of motion) combined with

the compatibility conditions and the constitutive relation, respectively given by:

∇.σ + ρF = ρ ü in Ω× [0, tF ], (1.1a)

ε(u) =
1

2
(∇u +∇uT ) in Ω× [0, tF ], (1.1b)

σ = A : ε, (1.1c)

where ”∇.” is the divergence operator, σ = σ(x, t) is the stress tensor, ε = ε(x, t) is the

deformation tensor ü = ü(x, t) is the second-time derivative of the displacement field u(x, t),

F = F(x, t) is a body source distribution and A is the fourth-order elasticity tensor. Equation

(1.1) can be recast in the following equivalent forms [4]:

ρü = µ∇2u + (λ+ µ)∇∇.u + ρF , (1.2)

ρü =
µ

1− 2ν
∇(∇.u) + µ∇2u + ρF . (1.3)

For a well-posed problem, conditions have to be prescribed at the domain boundary (boundary

conditions, BCs) and at the initial time t = 0 (initial conditions). Boundary conditions can

be of different types, depending if they impose the solution (displacements u) or its derivative

(tractions t). Among the others, we cite the Dirichlet BCs (u), Neumann BCs (t), Cauchy BCs

(both u and t), Robin BCs (linear combination of u and t), mixed BCs (different BCs are used

on different parts of the boundary). The initial conditions gives the solution at the instant from

which the physical system evolves:

u(x, 0) = u0(x),

u̇(x, 0) = v0(x).

The case of vanishing initial conditions (i.e. u0(x) = v0(x) = 0) is termed initial rest or

quiescent past.

Body waves. As any vectorial field which is sufficiently regular admits the decomposition in

an irrotational part and an incompressible part, the elastodynamic displacement field u can be
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written:

u = ∇Φ + rotΨ, (1.4)

where Φ (a scalar potential of dilatation) and Ψ (a vectorial potential of distortion) satisfy

uncoupled wave equations. Substituting the potentials of (1.4) in (1.3) yields

∇2Φ = c2P Φ̈, ∇2
Ψ = c2SΨ̈; (1.5)

where

c2P =
µ

ρ

2(1− ν)

(1− 2ν)
, c2S =

µ

ρ
, γ =

cS
cP

=

√

(1− 2ν)

(2− 2ν)
.

Subscript P refers to the irrotational primary waves (rot uP = 0), that propagate with veloc-

ity cP involving a particle motion parallel to the direction of wave propagation. Subscript S

indicates the incompressible shear waves (div uS = 0), characterized by the velocity cS . The

particle motion induced by shear waves is constrained in the plane perpendicular to the direc-

tion of motion. The S-waves divide in SH (S-horizontal) and SV (S-vertical) depending on the

polarization of the particle motion (i.e. in the horizontal or in the vertical plane). The primary

and the shear waves are the only two types of waves that can exist in an unbounded elastic

solid [193].

Surface waves. If a wave propagation problem (1.1) is associated with free-surface boundary

conditions, other solutions to the motion equation rise. These solutions are waves that involve a

particle motion restricted to a shallow region close to the free surface, and are called Rayleigh

waves. Rayleigh waves travel slightly more slowly than the shear waves and produce both a

vertical and horizontal particle motion that follow a retrograde elliptical pattern. The depth at

which Rayleigh waves induce significant motion is inversely proportional to the frequency of

the wave. Thus, low-frequency Rayleigh waves can produce particle motion at large depth,

whereas high-frequency Rayleigh waves are confined to shallow depths. Noting KRS the ratio

between the wave propagation velocity of the Rayleigh and the shear waves KRS = cR/cS , the

following cubic equation in K2
RS can be defined [193]:

K6
RS − 8K4

RS + (24− 16γ2)K2
RS + 16(γ2 − 1) = 0,

Another type of wave rises at the interface between layers having a high contrast of material

properties (e.g. soft layer lying on a rigid bedrock). These waves are called Love waves. For a

detailed description of all body and surface waves we refer the reader to [10, 108, 193].

1.3.2 Elastic wave equation in the spectral-domain

Sometimes the variables of the problem have a harmonic dependence in time, at a given fre-

quency ω . This can be the case for example of a system submitted to steady forces which

have reached a permanent regime in time, or of a transient dynamic problem formulated in the
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Fourier domain. In these cases, the initial conditions are negligible (they can be considered as

located at t=−∞) , and the system of partial differential equations which governs the problem

can be formulated in the frequency domain. The unknown field variable is now a complex-

valued function which depends on the fixed angular frequency ω, related to the time-dependent

unknown as follows [44]:

u(r, t) −→ ℜ[ũ(r)e−iωt] (1.6)

Let consider a linearly elastic homogeneous body Ω bounded by a border ∂Ω. The equation of

motion can be derived in the spectral domain by applying the Fourier transform to the Cauchy

first law of motion (1.1) [4]:

∇.σ + ρω2u + ρF = 0 in Ω. (1.7)

1.3.3 Low-strain levels and linear viscoelasticity

A stress wave propagating in a viscoelastic medium is subjected to two different attenuation

phenomena, namely the geometric and the material damping [193]. The geometric damping

has purely geometrical origin and is independent of the behaviour of the material. It is also

called radiation damping because it results from the spreading of the wave energy at its wave

front when travelling away from its source. The material damping, or intrinsic damping, is

strictly related to the physical properties of the medium and represents different energy dissi-

pation mechanisms, i.e. ground boundary relaxation, thermoelasticity, diffusional motion of

dislocations and point defects, etc. Wave propagation through the earth’s crust or in the ground

presents both attenuation phenomena.

Experimental observations show that the stress-strain path followed during a cyclic excita-

tion process and the magnitude of the deviatoric strain tensor are the most important external

variables affecting the dynamic soil response [195]. Depending on the attained strain level,

four types of phenomenological soil response to cyclic excitation can be identified (Tab. 1.1).

Strains below the so-called linear cyclic threshold strain γℓ
t correspond to a nearly linear ma-

terial response, whereas at larger strains non-linear behavior sets in and eventually dominates.

Shear Strain 0 < γ ≤ γℓ
t γℓ

t < γ ≤ γv
t γℓ

t < γ ≤ γv
t γv

t < γ ≤ γpf
t

Magnitude Very Small Small Strain Intermediate Large Strain

Strain Strain

Soil Response Linear Non-linear Non-linear Non-linear

Viscoelastic Viscoelastic Elasto-Visco- Elasto-Visco-

Plastic Plastic

Type of - Material Material Material and

Non-Linearity Geometric

Table 1.1: Phenomenological soil response to cyclic excitation as a function of shear strain level [195]. Below

the linear cyclic threshold strain γℓ
t the behavior of soil can be accurately described from the phenomenological

point of view by the theory of linear viscoelasticity.
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The intended applications of this work are weak seismic waves or traffic-induced vibrations,

for which shear strain levels are below the linear threshold. In this range, the typical dynamic

stiffness reduction of inelastic behaviors is not yet observed, and there are not yet differences

between drained or undrained responses, and the behavior of soil can be accurately described

from the phenomenological point of view by the theory of linear viscoelasticity [193]. In gen-

eral, the value of γℓ
t varies considerably with the soil type; it is on the order of 10−4% for sands

and of 10−3% for normally consolidated clays with a plasticity index PI = 50 [195].

The dynamic properties of soils are obtained in laboratory by imposing a cyclic loading

history to a material specimen. Few laboratory tests enable to measure the dynamic properties

of soils at low strain levels. The most employed techniques are the cyclic triaxial test and the

resonant column test, followed by the ultrasonic pulse test and the piezoelectric bender element

test. The basic principle of the resonant column device (Figure 1.8) is to excite one end of a

confined cylindrical soil specimen in a fundamental mode of vibration by means of (free or

forced) torsional or longitudinal excitation. Then, the measured resonance frequency and the

amplitude of vibration are used to compute the wave velocities and strain amplitudes in the

specimen. The dissipation displayed by a cyclically loaded material can be characterized by

two quantities, namely the energy dissipated during each loading cycle and the ratio of this

energy to an elastic reference energy. The second is the attenuation Q−1, a measure of the

internal friction, defined as [9]:

Q−1(ω) = −∆E

2πE
(1.8)

where ω is the angular frequency of excitation, ∆E is the energy dissipated during each cycle

and E is the peak strain energy stored in the volume. For a detailed introduction to anelasticity

we address the reader to [70] (theory of viscoelasticity) and [9] (applied seismology).

(a) (b)

Figure 1.8: Pictures of a resonant column test device employed to measure the dynamic properties of soils up

to medium strain levels of order O(10−3) (courtesy of Luca Lenti, IFSTTAR). (a) Measuring system and (b)

detail of the sample cell.
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The attenuation plays an important role for vibrating systems close to their resonance fre-

quency, because it allows the system to stay under a limited displacement amplitude. Another

consequence of attenuation is the phase velocity dispersion, where the phase-velocity VΨ = ω/k

is defined as the velocity at which points of constant phase propagate (ω being the circular fre-

quency and k the real wavenumber) [174, 207]. The variations in phase velocity depend on

viscoelastic properties of the medium, on the frequency content of the propagating wave and on

the path followed by the latter. Due to this dispersion, wave data (body waves, surface waves,

laboratory ultrasonic data, etc) can not be directly compared until a correction is made, e.g. by

using the Futterman’s theory for the body waves [57, 174].

1.3.4 Constitutive law for an isotropic linear viscoelastic medium

The constitutive relation for a linear viscoelastic medium is given by [70]

σij(x, t) =

∫ t

−∞

Cijkℓ(t− τ) ε̇kℓ(x, τ)dτ, (1.9)

where σij(x, t) and εkℓ(x, τ) are generic components of the stress and linearized strain tensors

and Cijkℓ is the relaxation tensor, defined as the stress response for a Heaviside unit step function

type strain variation. The constitutive law for a linear viscoelastic medium and the associated

complex wavenumbers and mechanical parameters will be deepened in Chapter 2 to introduce

the complex-wavenumber formulation of the fast-multipole boundary element method.

1.3.5 Rheological models

As the present work has been carried out in the frequency domain, the dependence of the ma-

terial damping on the frequency does not play a significant role, thus no use has been made of

any frequency-dependent dissipation model. However, time-domain analyses require the choice

of an appropriate theoretical or empirical model for the lossy medium (soil) which takes into

account the attenuation-frequency dependence [49, 285].

The rheological properties and behavior of soils can be well approximated by simple com-

binations of two elementary models: the Hooke body (reproducing a perfectly elastic behavior

through a simple spring) and the Stokes or Newton body (also called Stokes or Newton dashpot,

reproducing perfectly viscous behaviors). The most employed rheological models, the Maxwell

body, the Kelvin-Voigt body and the Zener (or linear standard) body, are depicted in Fig.1.9.

The expression of the complex modulus and of the relaxation and creep functions are different

for each model, depending on the combination of elementary entities by which each model is

constituted. The frequency-dependent attenuation relations of these three rheological models

read:

Q−1
Max(ω) =

E

ωη
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(a) (b) (c)

Figure 1.9: Various rheological models: (a) Maxwell, (b) Kelvin-Voigt and (c) Zener models.

Q−1
K−V (ω) =

ωη

E

Q−1
Zen(ω) =

ωηE

Ev(E + Ev) + ω2η2

In Fig.1.10, the attenuation curves for the three rheological models are superposed. The

Maxwell model does not allow instantaneous elasticity, as it involves an infinite attenuation in

the zero-frequency limiting case (statics), the Kelvin-Voigt model attenuation in almost pro-

portionate to the frequency and the Zener model present a band-pass effect at low and high

frequencies, and a band-cut effect in the middle-frequency range. For a detailed description

of these simplest rheological models we refer the reader to the papers [226, 246] and mono-

graphs [49, 285]. Fig.1.11 shows the agreement of viscoelastic simulations compared with

experimental results obtained by centrifuge testing [283]. In particular, the peaks of the sig-

nals due to the presence of high frequencies are strongly attenuated by the Kelvin-Voigt model,

coherently with the observation made above around the frequency-dependent attenuation.

Rheological models in seismic modelling. A number of observations have shown that the quality

factor Q−1 in the geological structures only slightly depends on frequency, remaining almost
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Figure 1.10: Attenuation versus frequency for different viscoelastic models.
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Figure 1.11: Signals of a longitudinal propagating wavefield registered at different points. Comparison of

amplitude results obtained by experimental centrifuge testing (a) and by a numerical method that use different

rheological models, namely (b) the Maxwell model and the (c) Kelvin-Voigt model (from [283]).

constant over a wide frequency range [188]. To fit with these experimental results, Liu et al.

in 1976 proposed a complex viscoelastic model produced by the superposition of twelve Zener

models, all having the same relaxed modulus but different central angular frequency [207].

This yields the Nearly Constant Q model (NCQ), whose frequency-dependence of attenuation

and phase and group velocities as depicted in Fig.1.12. This model is quite flexible because its

parameters can be set to obtain a nearly constant value of attenuation over the desired frequency

range. However, the NCQ model holds only for Q30. Moreover, the width and cut-off frequency

of the band over which Q−1 is constant is arbitrary, and the physical interpretation is weak,

depending on the chosen model. A similar model was proposed in [106]. The NCQ model has

been extended to non-linear behavior in [88]. In 1979, Kjartansson proposed the Constant Q

model (CQ), which is a limit of the NCQ model for an infinite set of Zener models [185]. This

model has the advantage of offering a frequency-independent Q and thus being easy to use in

various situations. For a deeper insight in the rheological models (or relaxation mechanisms)

we suggest [49, 285].

1.4 SIMULATING WAVE PROPAGATION

1.4.1 Analytical approaches

The first study of the vibration of an elastic half-space dates back to the classic work of Lamb

in 1904 [196], who concentrated his attention on the vibrations generated by a point force

normally applied to the free surface. With this work, carried out after the discovery of Rayleigh

waves [253], Lamb endeavoured to make a step further in the theoretical understanding of

earthquake phenomena, at that time analysed in the framework of the general laws of wave

propagation in an infinite medium developed by Green and Stokes.
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Figure 1.12: Frequency-dependence of (a) internal friction (or Q−1), (b) phase and group velocities and (c)

attenuation factor for a Nearly Constant Q model having twelve relaxation mechanisms (from [207]).

Seismic wave propagation Nowadays, seismic problems involving simple geometries can be

solved through modal approaches or analytical approaches. Modal approaches are based on the

Rayleigh’s method, an energy approach used in structural dynamics to find approximations to

the lower natural frequency of a multi-degrees-of-freedom system; procedures based on such

approach have been first devised for 1D soil profiles [92], then extended to two- and three-

dimensional sedimentary valleys [239, 284]. Among the analytical approaches available in the

literature to compute the scattering of a plane incident wave to an irregular interface we cite the

Aki-Larner technique (AL), in which the scattered field is defined as the superposition of plane

waves [9] and a series expansion of wave functions [268], which for simple geometries give a

semi-analytical approximation of the scattered wave field.

Railway-induced vibrations In the last decades, considerable analytical efforts have been de-

voted to studying the response of a half-space to surface (static and harmonic) fixed or moving

loads. After Lamb various researchers as [247], Bycroft [55], Lysmer and Richart [213] and

Richart et al. [258] have studied the vibratory response of foundations. In 1994, Auersch stud-

ied the dynamic interaction of an infinite plate resting on a homogeneous half-space under a
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vertical harmonic point load [19]. Results show that, at low frequencies, the behavior of the

system was dominated by the half-space, at high frequencies by the plate, and in the interme-

diate range of frequencies by a dynamic interaction between the plate and the half-space, with

a strong decreasing in waves amplitudes with distances. In 1998, Jones and Petyt employed a

semi-analytical approach to study the ground vibrations caused by a rectangular harmonic load

acting on a visco-elastic layer overlying a visco-elastic half-space [168]. Sheng et al. consid-

ered a harmonic unit point load acting on a railway track structure, defined as a beam resting on

a layered ground [288]. A review of analytical models used to compute ground-borne vibrations

can be found in [162, 200].

Barber has been one of the first who introduced the mobility of the source. In 1996, he

proposed an exact expression for computing the normal surface displacements due to a normal

point force moving at constant speed over the surface of an elastic half-space [24]. Later,

various studies addressed the response of infinite periodic structure to moving loads [32, 289].

In 2006 and 2007, in various works Karlström and Boström proposed an analytical approach

and a related numerical scheme to compute the ground vibrations from railways [175–177].

1.4.2 Numerical modelling of wave propagation

Introduction

A variety of numerical methods exists for discretizing and solving the three-dimensional wave

equation. Hereinafter, a brief survey of the most employed numerical methods for modelling

wave propagation in unbounded domains is provided. These numerical methods differ in how

they represent a continuous function and its time and space derivatives. In the next paragraphs,

we review the most important volume methods (class of methods based on the three-dimensional

discretization of the problem domain), namely the finite and the spectral element methods, the

finite difference method, the finite volume method, the discontinuous Galerkin method and the

discrete element method. The boundary element method, being of concern in the present work,

is treated in details in the next Section.

The volume methods have in common some important computational issues. For example,

the physical impossibility to discretize an infinite domain constrains them to consider a finite

domain by introducing artificial boundaries through appropriate artificial boundary conditions

to avoid the spurious reflections or wraparound from these fictitious boundaries. Another issue

related to the volume methods concerns the discretization of large 3D regions. This leads to

large systems of equations that easily involve millions of degrees of freedom and are prone to

cumulative numerical dispersion.

Various other numerical methods allow to simulate the wave propagation in unbounded me-

dia but they are not discussed here. Among the others, the Thin-Layer Method (TLM) combines

the FE method in the direction of layering together with analytical solutions for the remaining

directions [180, 242]. The ray theory is based on the fact that propagating waves follow paths

that respect the Snell’s law and their amplitude at the wavefront is given by the geometrical
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spreading of rays from the source to the receiver, and it is mainly used for wave propaga-

tion simulations on the earth crust and mantel scale [10]. The reflectivity method is based on

a cylindrical coordinate system, through which wave equations are conveniently reduced into

1D [214, 232]. In [269], Sánchez-Sesma et al. proposed a choice of major contributions that

triggered the development of powerful methods to compute ground motion. Among others, the

Wong and Jennings’ (1975) approach to topographical effects using boundary integrals [317],

the Brebbia’s book on the Boundary Element Method [51] and the Aki and Richards’ book on

Quantitative Seismology [10].

Numerical models for attenuation and inelasticity. At the origin, time-domain simulations were

restricted to elasticity because the attenuation law for an isotropic viscoelastic medium ex-

pressed as a time convolution of a relaxation function and the strain rate (i.e. the Boltzmann

principle) required too high storage capacities to be used and was therefore impractical to im-

plement. To overcome this limitation, in 1984 Day and Minster proposed to approximate the

viscoelastic modulus by a low-order rational function of frequency and to determine the coeffi-

cients of this function by the Padé approximant method [86]. This representation of the anelastic

attenuation law was shown to be better suitable for time-stepping. Day and Minster observed

that all approximants led to causal, stable and dissipative Q operators that form uniformly con-

vergent sequences (limn→∞ Q−1 = Q−1). Some years later, Emmerich and Korn [106] and Car-

cione et al. [57] proposed the direct use of simple rheological models (a generalized Maxwell

body like model and a generalized Zener model respectively) whose viscoelastic modulus was

expressed as a rational function. They showed that more accurate and efficient results could

be obtained with respect to the Day approach. In 2005, Moczo and Kristek have shown the

equivalence of the Emmerich and Korn generalized Maxwell body and the generalized Zener

body [226]. The limitation of the introduction of the additional memory variables as firstly

proposed by [86] consists in the very large computational storage required. Recently, efforts

have been made towards more memory-efficient implementations [84, 85]. In Sec. 1.3.5, the

rheological models used in seismic wave propagation are briefly summarized. In the follow-

ing, we will indicate how each method handles attenuation for wave propagation simulations in

anelastic media.

Overview of numerical methods in visco-elastodynamics

Finite Difference Method. The finite-difference (FD) method is based on a discretization of the

domain by a space-time grid. This method is largely adopted because of its satisfactory accu-

racy, ease of implementation, and low memory needed per grid point. In 1968, a first paper by

Alterman addressed wave propagation in a layered elastic medium triggered by a buried point

source emitting a compressional pulse [14]. In this work, the propagation equation was solved in

each homogeneous medium and boundary conditions between the different media were explic-

itly verified ( homogeneous approach). Later, this approach was improved to implicitly satisfy

the boundary conditions at the layer interfaces (heterogeneous approach) [182]. Some prob-
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lems related to the numerical dispersion of the wave field were overcome with the introduction

of staggered grids, that made the finite-difference method more efficient than the finite-element

method in the high frequency range [309]. An overview of staggered-grid approaches can be

found in [141]. In 2000, Saenger et al. proposed to use the rotated staggered-grid (RSG) to

deal with high contrast discontinuities [267]. The RSG enables to model cracks, pores, free

surfaces without using boundary conditions. Recently, the same authors apply the RSG to the

wave equations for anisotropic and viscoelastic media [266]. A comparison of high-accuracy

finite-difference schemes is addressed in [331].

As the classical FDM relies upon regular grids, it is limited in presence of strong contrast

in the material stiffness because it is not easy to adapt to the local wavelengths of propagating

waves. The discretization with respect to the shorter wavelength leads to an over-refinement

of the stiffer regions, with a consequent growth of the required computational time and CPU

memory. Moreover, the time step in an explicit time integrator is artificially small to accommo-

date the Courant-Friedrichs-Lewy (CFL) stability condition in the stiffer regions. To overcome

these limitations, discontinuous grids can be employed [18,194]. Alternatively, the FDM can be

coupled with the finite-element method (FEM) in a hybrid method, where one or several regions

are modelled by the FEM, and the propagation space by the FDM. In [228], the FEM is used to

discretize a dynamically rupturing fault and the free-surface topography, and the FDM is used

to discretize the heterogeneous medium of propagation.

Various studies addressed the stability, numerical dispersion, physical dispersion, and com-

putational accuracy and efficiency of the viscoelastic finite-difference schemes [259]. Nowa-

days, large three-dimensional FD visco-elastic wave propagation modelling can be performed

by using massive parallelization techniques [43].

Finite Element Method and Spectral Element Method. The finite element method (FEM) in

dynamics is based on a discrete approximation of the equation of motion in its weak formu-

lation [159, 330]. This method presents well known advantages, as the possibility to model

complex geometries (e.g. arbitrary shapes, realistic topography profiles), complicated consti-

tutive laws (e.g. non-linearities, inelasticity) and strong heterogeneities or inclusions. First

applications of the FEM to seismology were carried out in the ’70s in [212] (for surface waves)

and [293] (for body waves). A recent review of the FEM in seismic wave modelling can be

found in [216]. In the practice, the FEM is widely adopted to simulate ground-borne vibrations

induced by dynamic sources located in the vicinity of the free-surface such as railway traf-

fic [169, 170, 263, 287] or tunnels excavation [250, 322]. However, the classical FEM is based

upon low-order approximations that are known to introduce numerical dispersion [221, 231].

Other purely numerical spurious effects may arise, e.g. numerical damping, polarization er-

rors, numerical anisotropy introduced by the spatial discretization, errors in phase and group

velocities, spurious diffraction and scattering or extraneous parasitic modes [285]. These nu-

merical errors are non physical, and must be minimised. For this purpose, one possibility when

using low order FE is to refine the discretization of the computational domain. However, this
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choice involves a growth of the computational costs. Another possibility is to increase the de-

gree of polynomials used in the basis functions. The efficiency of high-order FEM in ground

motion simulations is discussed in [278]. High-order methods may also combine the accu-

racy of the global pseudo-spectral method with the flexibility of the finite-element method.

They were originally introduced in computational fluid dynamics [244] and are called spec-

tral finite element method (SEM or SFEM). Reviews of the SEM in seismology are addressed

in [66, 192, 225]. Some applications of the SEM are the seismic inverse problems, that aim

at improving source and Earth models [306], or the simulation of ground motion induced by

surface moving loads [240].

With modern advances in parallel computing and supercomputing performances, the ex-

pensive time and memory requirements usually needed for problems involving a high num-

ber of degrees of freedom (DoF) have been broken down [22]. Parallelization techniques and

multi-core computations can be easily exploited in the framework of the domain decompo-

sition approaches [109, 305]. Domain decomposition methods (DDM) will be introduced in

Section 3.2.2. An octree-based finite-element method has been proposed for ground motion

simulation in realistic basins by Bielak et al. [40], and high-order FEM simulations have been

recently performed on large clusters by Komatitsch et al. [190].

In FEM simulations in anelastic media, attenuation and dispersion are taken into account

in the material constitutive law through a damping matrix. In structural dynamics, although

the field of damping matrix identification is still widely open [249], usually the proportional

damping is employed through the so called Rayleigh matrix, where damping is a linear com-

bination of the mass and stiffness matrices [69]. In seismic wave propagation, nearly constant

Q-models (NCQ) or constant-Q (CQ) models are usually employed (see Sec. 1.3.5). In 1997,

Semblat gave a rheological interpretation of the Rayleigh matrix by showing the equivalence

of the Rayleigh damping and the generalized Maxwell model for small to moderate values of

damping ratio [277]. The finite-element frequency domain viscoelastic formulation will be

recalled in Section 3.3.

Discontinuous Galerkin Method. The discontinuous galerkin (DG) method was introduced in

the early seventies [254] for the numerical approximation of linear transport equations. The

DGM can be thought as a hybrid of the finite-element and the finite-volume methods, the nu-

merical solution being approximated by piecewise polynomials which allows discontinuities

of the solution across the element interfaces. In fact, the finite-volume method (FVM) con-

stitutes a particular case of the DGM, having zero-order approximations. The high-order ac-

curacy of the DGM on unstructured and non-conforming meshes, the local hp-refinement, the

weak boundary conditions allow accurate modelling of strong heterogeneities and discontinu-

ities. Theoretical and computational developments of the DGM until 2000 are well described

in [71]. Recent advances in seismic wave propagation modelling can be found in [98] (DGM)

and in [99, 100] (FVM). In [227], Moczo et al. investigate and compare the accuracy of 3-

D time-domain explicit numerical schemes based on the FD, FE, spectral-element (SE) and
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discontinuous-Galerkin (DG) methods with respect to the VP/VS ratio in an unbounded homo-

geneous medium.

The incorporation of realistic attenuation properties in DGM consists in completing the

linear hyperbolic system arising from the velocity-stress formulation with additional equations

for the anelastic functions that result from the rheological model of the generalized Maxwell

body [178].

Discrete Element Method. The discrete particle scheme was at the origin introduced for the

physical modelling of microscopic crystals [157], then this approach was extended to rock me-

chanics problems and named the distinct-element method [78]. In the discrete element method

(DEM) the medium is not considered as a continuum, but composed by discrete material par-

ticles. For equilibrium, these particles interact with each other at their contact points, are sub-

jected to elastic forces proportional to their displacement and their movement is followed in the

space by numerically solving their motion equations. Thus, the DEM does not solve the contin-

uum wave equations directly, but try to replicate the underlying physics at a ’microscopic scale’

discrete micro-mechanical interaction rules between the particles. An advantage of the discrete

methods consists in the fact that discontinuities (e.g. fractures, pore fluids, non-welded inter-

faces) can be naturally handled. Moreover, a large range of heterogeneity in grain properties can

be explored, such as size and bulk modulus, as well as a variety of spatial distributions of those

properties. Application of the discrete-element method in ground motion simulations can be

found in [237,304]. Recently, Munjiza proposed a new very promising method which merges fi-

nite element tools and techniques with discrete element algorithms, the combined finite-discrete

element method. This method allows the transition from continua to discontinua (e.g.fracture

and fragmentation processes, explosions) and to account for multi-phase materials [67], energy

dissipation mechanisms (e.g. elastic hysteresis, plastic strain, friction) [233].

1.4.3 Artificial truncation of unbounded domains

A computational domain, i.e. the spatial domain over which an equation is solved numerically,

must be of finite dimension. Therefore, when the problem at hand is defined over an infinite

domain, an artificial boundary B must be introduced to restrict the original problem over a

bounded domain Ω. To truncate infinite or large domains, three main classes of approaches

are available: the boundary integral methods, the infinite elements techniques and the artificial

boundary conditions (ABCs), see Figure 1.13. The objective is that the solution of the problem

in Ω together with the chosen approach on B corresponds to the restriction to Ω of the solution

over the infinite domain. In the present work, attention is focused on the boundary integral

method. Therefore, the use of coupled formulations finite/boundary element method to truncate

the infinite domain is specifically addressed in Section 3.2.

Infinite elements, pioneered in early ’90s by Bettess [37], are derived from standard finite

elements and modified to represent a decay type behavior as one or more dimensions approach

infinity [89, 330]. Coupling FEM/infinite elements formulations have been applied to vari-
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Figure 1.13: Various approaches to deal with the artificial truncation of unbounded domains. Example of

wave propagation problem restricted to a finite domain Ω with artificial boundary B: (a) truncated domain and

artificial boundary, (b) absorbing layers method (e.g. PML), (c) infinite elements technique, (d) boundary in-

tegral method. In (d), notice that piecewise homogeneous layers can be solved within the BEM, thus avoiding

the discretization of large domains and consequent computational costs and numerical dispersion.

ous wave propagation problems in unbounded media, for example: seismic wave propagation

in three dimensional continuum [327], in unbounded saturated porous media [183], to train-

induced vibration studies [321, 322]. The third class of methods are the ABCs, which include

non-reflecting boundary conditions (NRBCs) and absorbing layers (e.g. the perfectly matched

layers, PML).

Artificial boundary conditions. Artificial boundary conditions (ABCs) are specific boundary

conditions defined on the external artificial boundary B of Ω to reproduce the radiation con-

ditions at infinity and to avoid spurious reflections. In the literature, depending on the field

in which they are employed (e.g. acoustics, electromagnetics, meteorology, elastodynamics)

ABCs are also called radiating, silent, open, free-space or transparent boundary conditions.

The two main categories of available ABCs are the following:

• Non-reflecting boundary conditions (NRBCs). NRBCs divide into local (approximated)

and non-local (exact). Low-order local NRBCs, introduced in the late 70’s, approximate

the NRBCs on B [29, 107]. They are simple and easy to implement, numerically cheap

and can be applied to any geometry. However, they lack accuracy. Non-local NRBCs,

introduced in the late 80’s [135,181], have high accuracy and robustness at the price to be

cumbersome and computationally expensive. Moreover, as the exact ABCs involve inte-

gral transforms along B and pseudodifferential operators, such BCs can be easily applied

only over simple geometries of B. High-order local BCs were proposed more recently

to improve accuracy performances of the local BCs [143, 151]. High-order local NRBCs
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based on an optimally localized Dirichlet-to-Neumann BC (DtN) were derived by Givoli

for a general class of wave problems, then applied to time-dependent waves in [136].

However, the better accuracy of high-order local NRBCs is obtained by somehow ac-

counting for the non-local nature of ABCs. Thus, this procedure penalizes the typical

advantages of the pure local NRBCs. A review of the NRBCs containing a comparative

study of the local and non-local conditions can be found in [137, 307].

• Absorbing layers. This technique consists in adding one or more artificial absorbing

layers on the external boundary Γ of the truncated domain. The mechanical characteris-

tics of the layers are such that they are able to keep the energy of the wave and to soak

it up, preventing any reflection. The simpler absorbing layers (called ”sponge layers”)

only add some dissipative terms to damp the outgoing waves. However, this approach

has two limitations, namely i) the properties of the layers depend on the frequency and

direction of propagation of the incident wave and ii) the gradient within the absorbing

layers may produce itself spurious reflections. The perfectly matched layers (PML) were

first introduced for the Maxwell’s equation in 1994 [34]. Besides the classical one [114],

various types of PML formulations have been proposed recently as the filtering (or convo-

lutional) PML [114] and the multidirectional PML [191,281]. Stability of the PML model

is addressed in [31].

1.5 FAST MULTIPOLE BOUNDARY ELEMENT METHOD

After the volume methods, we present the boundary element method and highlight the main fea-

tures of the fast multipole algorithm and other techniques used to accelerate boundary element

computations. The fast multipole boundary element method (FM-BEM) will be recovered in

more detail in Section 1.5.

1.5.1 Boundary Element Method.

The boundary element method (BEM) is based on boundary integral equation (BIE) formula-

tions [44,51]. Two types of BIE formulations can be used for the description of boundary-value

problems: direct BIE formulations relate the values taken on the boundary by the primary phys-

ical variables (i.e. the potential and its normal flux), whereas indirect BIE formulations use

secondary variables, namely a real or fictitious source densities that usually do not have phys-

ical meaning. In the theory of elasticity, direct integral equations are formulated through the

application of the Somigliana identity [297], whereas indirect integral equations stems from

the potential theory. The present work is based on a direct BIE formulation. The BIEs can be

discretized using a collocation method, that consists in enforcing the BIE in a certain number

of discretization points or elements [44], or using a Galerkin method, a variational approach

based on a weak formulation of the BIE [45]. The former leads to a non-symmetric system

matrix, whereas the latter has the advantage that it may lead to a symmetric system of equa-

tions, although at the price of evaluating double surface integrals. In addition to the reduced
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model size allowed by the boundary-only discretization, the boundary element method is very

well suited to dealing with propagation in unbounded media because of the built-in, exact sat-

isfaction of radiation conditions [48, 95]. Thanks to this property, the BEM does not need the

introduction of artificial boundaries as in volume methods. For this reason, in various fields

such as acoustics, electromagnetism or elastodynamics, the BEM is often coupled with the

finite element method to solve wave propagation problems in infinite domains as an alterna-

tive to the use of non-reflecting boundary condition (NRBCs). As this aspect is of particular

interest in the present work, it is addressed in more details in Section 3.2. The BE formula-

tion relies upon the use of particular fundamental solutions in the reciprocity identity. As the

Green tensors for configurations like the half-space or layered media are difficult and costly to

implement, often the free-space Green tensor is used together with appropriate boundary con-

ditions for dealing with piecewise homogeneous media and semi-infinite domains. The direct

traditional BEM find numerous applications in two-dimensional and three-dimensional ground

motion simulations [166, 230, 255]. Some interesting example of application of the BEMs to

vibrations modelling can be found in [13, 21, 117, 179]simulations.

1.5.2 Viscoelasticity with BEMs.

Various approaches exist to adapt the elastodynamic BEM to viscoelasticity. In general, the

time-domain boundary element method is characterized by a temporal convolution of the fun-

damental solutions with boundary data that are approximated by polynomial shape functions

in time and in the finite elements. Three main approaches are available. The first consist in

using directly the viscoelastic fundamental solutions in the time-domain and perform the con-

volution product analytically. However, viscoelastic fundamental solutions exist only for very

simple problems (e.g. for quasi-static problems in visco- or poroelasticity time-dependent fun-

damental solutions), but they are complicated and yield to very sensitive algorithms. Moreover,

time-stepping should be properly chosen to avoid instabilities and artificial damping [274]. The

second possibility consists in performing a classical time-domain time-stepping by using the

elastic-viscoelastic correspondence principle in the Laplace domain. The elastic-viscoelastic

correspondence principle allows to obtain the viscoelastic fundamental solutions from the elas-

todynamic ones by substituting the elastic moduli in the Laplace transformed domain with the

transformed impact response functions of the viscoelastic material model. This second ap-

proach has however the disadvantage of requiring an inverse transform back to the time-domain

that depends strongly on the choice of the inverse formula parameters. The third approach is

based on the convolution quadrature method (CQM) proposed by Lubich in 1988 [210]. In this

approach, the convolution integral is approximated by a quadrature formula whose weights are

determined by the Laplace transform of the fundamental solution and a linear multistep method,

thus avoiding the back transformation from the Laplace domain [272, 274, 275].

In the frequency domain, usually the mechanical parameters are complex-valued, with the

imaginary part expressing attenuation [94]. Recently, Chaillat and Bui proposed a simple

method to formulate the viscoelastic BIEs by using the classical elastodynamics BEM formula-
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tion and keeping the material parameters real-valued. To do this, they used a Zener rheological

model and introduced new intermediate variables [64].

1.5.3 Inelasticity with BEMs.

Modelling material inelasticity is a modern challenge of numerical ground motion simula-

tions [292]. In high seismic activity zones, experimental measurement by accelerometers have

provided direct evidence of nonlinear soil behavior [314]. Various boundary-element formula-

tions exist to handle dynamic inelastic problems under condition of small strains and displace-

ments, involving for example elastoplastic or viscoplastic behaviors [35, 154, 296]. In [35],

Beskos distinguished the formulations that employ elastodynamic fundamental solutions from

those that use the elastostatic fundamental solution. The numerical method that use the elas-

tostatic fundamental function is also called domain-BEM (D-BEM) [153]. However, both for-

mulations involve inelastic domain integrals. A full domain discretization is required in the

regions in which inelastic behavior is expected. As a consequence, the advantage of the elastic

BE formulation of restricting the discretization to the only boundary is lost. To avoid the do-

main discretization, a new type of BEM has been proposed in which the inertial domain integral

is transformed into a boundary integral by a suitable choice of interpolation functions, the dual-

reciprocity BEM (DR-BEM) [243]. The discretized equations of motion are then solved by

efficient time stepping algorithms. However, as in both the D-BEM and the DR-BEM the radi-

ation condition is not fulfilled by the fundamental solution, non-reflecting boundary conditions

should be provided. In 2005, Soares et al. proposed an iterative coupling between a D-BEM and

a time domain BEM (TD-BEM) for non-linear dynamic analysis. The original problem domain

was split into two subdomains. Then, the bounded subdomain containing non-linearities was

modelled by D-BEM, whereas the complementary unbounded domain (that guarantee the wave

radiation) was modelled by the TD-BEM [295].

As inelastic behavior are well handled by the finite-element method and the radiation in

elastic infinite domains naturally fulfilled by the classical BE formulation, often hybrid meth-

ods which appropriately combine the advantages of both the FEM and the BEM are preferred.

Several FEM/BEM coupling techniques have been presented in the literature. In this work, we

are interested in coupling the FEM with the fast-multipole BEM in visco-elastodynamics, see

Section 2.4.2 and Chapter 3. The algorithms presented here deserve further investigations in

the near future, oriented in particular towards the account for inelastic behaviors in the FEM

subdomain.

1.5.4 Fast BEMs.

Solving the potentially large fully-populated non-symmetric linear system arising in the clas-

sical BEM formulation entails unreasonably high CPU time and memory requirements (e.g.

using direct solvers such as LU factorization CPU = O(N3)). The use of iterative solvers (e.g.

the generalized minimal residual method, GMRES) reduces to CPU = O(N2) per iteration,
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but the size of the problems is limited to N = O(104) on ordinary computers. To overcome

this limitation and accelerate the solution of the BE linear system, various techniques have been

developed during the last decades. Usually, they rely upon iterative solvers and aim at accel-

erating the matrix-vector product performed at each iteration, which is the most expensive task

for an iterative solver. Some of these acceleration methods are based on approximations of

the kernel function (e.g. the fast-multipole method), others are kernel-independent purely alge-

braic approaches based on fast representation of the coefficient matrix (e.g. the panel clustering

method, the H-matrix method, the adaptive-cross approximation). The fast-multipole method

(FMM) was introduced for the rapid evaluation of the potential and force fields in systems in-

volving large numbers of particles, and it is based on a multipole expansion of the fundamental

solution [142, 260]. For a linear system of size N , the FMM combined with an iterative solver

entails a solution time of order O(N logN). The FMM applied to the BEM is used in the

present work and will be detailed in Section 1.5. In 1989, the panel clustering discretization

approach was applied to the fast solution of the boundary-element linear system in the so-called

panel clustering method [150]. More recently, the H-matrix method has been introduced. This

approach uses the hierarchical H-matrices to represent the collocation BEM matrix [149]. The

adaptive cross-approximation (ACA) approach is based on the low-rank approximation tech-

nique, a block-wise approximation of the collocation matrix by low-rank matrices [30]. In the

wavelet-based methods, the system matrix is approximated by a sparse matrix containing only

nearby wavelet interactions [38].

1.5.5 Remark: BEM vs ABCs.

The main available techniques to deal with the numerical truncation of an infinite or large do-

main have been briefly summarized above. In the context of artificial BCs, Givoli divides wave

problems in four categories of increasing difficulty [136]: (i) linear time-harmonic wave prob-

lems, (ii) linear time-dependent wave problems in non-dispersive homogeneous media, (iii)

linear time-dependent wave problems in dispersive and/or stratified media and (iv) non-linear

time-dependent wave problems. Problems (i) have been treated extensively with both local and

exact NRBCs and various PML formulations. Problems of the type (ii) are more difficult to

handle with the ABCs, but they have been addressed in some works, recalled in [136]. The

treatment of dispersive or layered media is addressed only in very few works. Finally, problems

having non-linearity extending to infinity have been very poorly discussed in the literature.

The present work addresses problems of type (i) in dispersive and/or stratified media, and the

fast-multipole boundary element method (FMBEM) is used as an alternative to the ABCs. The

main advantage of using the FMBEM with respect to the NRBCs is that the former combines

the high accuracy of non-local NRBCs with the advantages of local NRBCs (geometrically

more adaptable, numerically cheap). Compared to the PML, the FMBEM discretizes only the

artificial boundary B of the truncated domain Ω. Moreover, eventual stratifications or piecewise

homogeneous layers can be discretized within the same FMBEM, thus limiting the dimensions

of Ω, as shown in Figure 1.13.
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1.6 OUTLINE

The objective of this thesis is to make a step forward in the numerical modelling of wave prop-

agation in three-dimensional unbounded media. Intended applications vary from seismic wave

propagation and amplification analysis to the modelling of railway-induced vibrations in the

ground and propagation in adjacent structures. The starting point of the present work is the

fast-multipole formulation of the boundary element method (FM-BEM) in frequency-domain

elastodynamics proposed by Chaillat in [62, 63]. The FM-BEM and its variant multi-level

(MLFM-BEM) strongly reduces the computational burden of the traditional BEM and enables

the solution of problems involving up to O(106) degrees of freedom (DoFs). Although the elas-

todynamic FM-BEM was limited to linear elastic behavior and piecewise homogeneous media,

it has been successfully applied to the solution of seismic wave propagation problems. The

present thesis aims at extending the potentialities of the existing FM-BEM in two directions.

On the one hand, the ML-FMBEM formulation has been extended to viscoelasticity. Indeed,

the ability to consider material attenuation enables more realistic wave propagation modelling,

allowing to e.g. reproduce the amplitude decay of propagating waves or free vibrations or de-

scribe the finite amplitudes and phase shifts of systems excited near resonance. On the other

hand, the possibility to couple the FM-BEM with the finite element method (FEM) has been

investigated in order to increase the applicability of the method to deal with complex structures,

strong heterogeneities or eventual non-linear behaviors.

Apart this introductory chapter, Chapter 2 is concerned with carrying over the existing

single- and multi-domain elastodynamic multi-level FM-BEM formulations to the case of weakly

dissipative viscoelastic media. In Chapter 3, two different strategies for coupling the FEM and

the MLFM-BEM are proposed. The first approach consists in an iterative Dirichlet-Neumann

coupling with interface relaxation of displacements. The main advantage of this approach is

the easy implementation, because existing FEM and FMBEM software can be used in black-

box fashion and be only driven by the external interface algorithm. However, the convergence

of the overall algorithm depends strongly on the problem geometry, boundary data and on the

choice of the relaxation parameter. The second strategy is a simultaneous coupling approach

based on the solution of a global system of equations combined with the transmission condi-

tions across the common interface. An implicit condensation for the FEM degrees of freedom

is employed and the global system is solved by generalized minimal residual (GMRES). This

second approach has the advantage to be robust and scalable. In this thesis, using available

resources, we have integrated some needed FEM subroutines in the FMBEM software. Future

applications of the FEM/FMBEM coupling are oriented towards the study of seismic waves

propagation and soil-structure interaction, traffic-induced vibrations and their interaction with

adjacent structures.

This thesis has four Appendices. Appendix A is devoted to the numerical evaluation of the

spherical Hankel functions with complex-argument, an issues related to the evaluation of the

Helmholtz Green’s function expansion for the complex-wavenumber formulation.. Appendix B

contains the analytical formula for the solution of the academic problems employed in Chapter
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2. Appendix C is a brief review of the most used interface relaxation algorithms that can be

possibly used in alternative to the Dirichlet-Neumann algorithm adopted in this work to study

the iterative FEM/FMBEM coupling. Finally, Appendix D contains the User’s guide to the three

codes used in the present work, namely COFFEE (fast FMBEM solver for 3-D time-harmonic

visco-elastodynamics), CUSEQ (iterative FEM/FMBEM coupling) and CUSIM (simultaneous

FEM/FMBEM coupling).
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2.1 INTRODUCTION

This work is concerned with carrying over the single- and multi-domain elastodynamic FMBEM

formulations of [62,63] to the case of weakly dissipative viscoelastic media. Indeed, the ability

to consider material attenuation enables more realistic wave propagation modelling, allowing

to e.g. reproduce the amplitude decay of propagating waves or free vibrations or describe the

finite amplitudes and phase shifts of systems excited near resonance [128].

The overall FMBEM algorithm is identical to that for the corresponding lossless medium,

but the setting of important algorithmic parameters such as the truncation parameter is affected

by the damping factor, an issue which has not been studied in depth, in particular in terms of

mathematical error analysis. A complex-wavenumber FMBEM formulation for electromag-

netic scattering is proposed in [133, 134], where the truncation parameter is empirically shown

to increase with β in order to maintain a given accuracy on the fundamental solution evaluation.

Empirical studies on the low-frequency expansion [118] yield guidelines on the adjustment of

the truncation parameter depending on β. The FMBEM analysis of sound fields in porous mate-

rials is addressed in [323], where contributions from cells located beyond a certain normalized

distance from the evaluation point are simply ignored, resulting in a well-conditioned influence

matrix and a reduced computational time. The latter approach is, however, not suitable for

weakly dissipative media (β ≪ 1) because the cut-off distance is proportional to β−1.

This Chapter is organized as follows. Section 2.2 recalls the classical elastodynamics BIE

formulation and its solution using the multi-level fast-multipole boundary element method

(FMBEM). Section 2.3 gathers necessary background about the time-harmonic behavior of

weakly dissipative viscoelastic media. Section 2.4 details the key BIE formula affected by

the introduction of the complex-wavenumber and complex mechanical parameters. Section 2.5

then concentrates on the crucial task of evaluating the multipole decomposition of the viscoelas-

todynamic fundamental solution. In the present work, a damping-dependent modification of

the selection rule for the multipole truncation parameter, required by the presence of complex

wavenumbers, is proposed, empirically adjusted so as to maintain a constant accuracy over

the damping range of interest in the approximation of the fundamental solution, and validated

on numerical tests focusing on the evaluation of the latter. The proposed modification is next

assessed in Section 2.6 on full visco-elastodynamic examples for which an exact solution is

known. In Section 2.7, the visco-elastodynamic settings are finally applied to the multi-domain

version of the ML-FMBEM featuring a BE-BE coupling strategy, previously developed in [63]

for the elastodynamic case, and validated on a simple spherically-symmetric configuration and

on the problem of a wave propagating in a semi-infinite medium with a lossy semi-spherical

inclusion (alluvial basin).
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2.2 ELASTODYNAMIC FAST MULTIPOLE BOUNDARY ELEMENT METHOD: SURVEY

2.2.1 Boundary Element Method

Hereafter, we introduce the boundary integral equation formulation for frequency domain elas-

todynamics and the boundary-element method. First, we briefly recall the reciprocity iden-

tity and the fundamental solutions. Then, we define the integral representation formula, the

boundary integral equation and their discretization in the framework of the frequency domain

elastodynamic BEM.

Reciprocity identity. Let Ω be a bounded elastic body with boundary ∂Ω and density ρ. The

reciprocity identity stems from the virtual work principle and expresses an integral relation

between two general elastodynamic states (u(1),σ(1),F(1)) and (u(2),σ(2),F(2)) on Ω:

∫

∂Ω

[

T n(u(1)).u(2) − T n(u(2)).u(1)
]

dS =

∫

Ω

ρ
[

F(2).u(1) − F(1).u(2)
]

dV, (2.1)

where u denotes the displacement field, σ the stress field, F is a body force distribution and

T n(u) ≡ σ(u).n is the traction vector operator. When Ω is unbounded, eq. (2.1) holds provided

that the two elastodynamic states satisfy the decay and radiation conditions at infinity, sufficient

conditions to ensure the uniqueness of solution in exterior problems [108].

Free-space fundamental solution. Let Ω′ be an open subset of R
3 such that Ω ⊆ Ω′. The

solutions to the local equation of motion in Ω′ for a point force source of unit amplitude applied

at a point x ∈ R
3 in the direction i, i.e.:

ρF i(y) = δ(y − x)ei, y ∈ Ω′

are called fundamental (or elementary) solutions. For time-harmonic problems with circular

frequency ω, the fundamental solutions solve the Helmholtz equation:

∆U + k2U + δ(y − x) = 0 (2.2)

where k = ω/c is the real wavenumber. In the particular case when Ω′ = R
3, the fundamental

solution which solves the Helmholtz equation is called the Helmholtz fundamental solution and

reads [108]:

Uk
i (x, y;ω) =

1

4πµr
[Aδik +Br,ir,k] , (2.3a)

Σk
ij(x, y;ω) =

1

4πµr2
[2Cr,ir,kr,j + (δikr,j + δjkr,i)D + δijr,kE] (2.3b)

where Uk
i (x, y;ω) and Σk

ij(x, y;ω) are respectively the i−th components of the displacement

vector and traction tensor associated to the elastodynamic fundamental solution generated at a
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point y ∈ R
3 by a unit point force applied at x ∈ R

3 along the direction k. Noting xα = kαr

(α = S, P ) (with kα real wavenumber) and γ = cS/cP , the coefficients in (2.3) are equal to:

A =

(

1 +
i

xS

− 1

x2
S

)

eixS − γ2

(

i

xP

− 1

x2
P

)

eixP ,

B =

(

3

x2
S

− 3i

xS

− 1

)

eixS − γ2

(

3

x2
P

− 3i

xP

− 1

)

eixP ,

C =

(

−15

x2
S

+
15i

x2
S

− ixS + 6

)

eixS − γ2

(

− 15

x2
P

+
15i

x2
P

− ixS + 6

)

,

D = (ixS − 1)eixS + 2B, E = (1− 2γ2)(ixP − 1)eixP + 2B.

The Helmholtz fundamental solutions are symmetric, i.e. U(x, y) = U(y, x) and Σ(x, y) =

Σ(y, x), and are singular at x = y:

U(x, y;ω) = O(r−1), Σ(x, y;ω) = O(r−2).

Between the time and the frequency domain fundamental solutions (respectively the Stokes and

the Helmholtz fundamental solution), there exists a duality which can be expressed in the time

domain by choosing the appropriate function of time as follows (the problem in the frequency

domain can be seen as a time domain problem with the particular choice: f(t) = e−iωt):

U(x, y;ω) = U
[

x, t, y | f(t)] = U[x, t, y | e−iωt
]

.

In 2001, Yoshida proposed a reformulation of the fundamental solutions (2.3) in terms of deriva-

tives of the scalar kernel G(r, k) = eikr/4πr, which is the free-space Green’s function for the

Helmholtz equation [325]. These read:

Uk
i (x, y;ω) =

1

k2
Sµ

[

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(‖y − x‖; kS) +

∂

∂xi

∂

∂yk
G(‖y − x‖; kP )

]

,

T k
i (x, y;ω) = Cijkℓ

∂

∂yℓ
Uk
h (x, y;ω)nj(y), (2.4)

Cijkℓ being the components of the fourth-order elasticity tensor and nj(y) the outward unit

normal. As the fast-multipole method relies upon a multipole expansion of the Green’s function,

the reformulation (2.4) is better suited to the application of the fast-multipole method to the

boundary integral formulation then relations (2.3) and has indeed been used in [62] to extent

the FMM to the BEM for frequency domain elastodynamics.

For wave propagation in semi-infinite media (e.g. ground motion or vibration problems), the

use of the half-space Green’s function would avoid the discretization of the free-surface, thus

strongly enhancing the computational performances of the FM-BEM. However, as the half-

space fundamental solutions are not derivatives of the Helmholtz fundamental solution nor of

1/r their multipole expansion is difficult to define. Moreover, the half-space Green’s function

expansion can not be simply derived from the full-space one. Some works address the multipole
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expansion of the half-space Green’s function in the field of electromagnetism [132, 208, 271].

In elastodynamics, Chaillat has recently proposed a formulation for the half-space fundamental

solutions in the form of a Fourier 2-D integral whose density is the product of a function of x

and a function of y, [61]. However, there are no published results yet that use the half-space

Green’s function for fast-multipole accelerated boundary-element method.

Integral representation. The integral representation formula stems from the introduction in the

reciprocity identity (2.1) of the Helmholtz fundamental solution (2.4) defined over the auxiliary

domain Ω′ and the unknown field (ui(y) , ti(y)) defined over a domain Ω ⊆ Ω′. For any point

x ∈ Ω but x /∈ ∂Ω, the integral representation formula (IR) for the displacement field has the

form:

αuk(x) =

∫

∂Ω

[ti(y)U
k
i (x, y;ω)− ui(y)T

k
i (x, y;ω)]dSy +

∫

Ω

ρFi(y)U
k
i (x, y;ω)dVy (2.5)

where αuk(x) =
∫

Ω
δ(y − x)uk(y)dVy, and α = 1 (x ∈ Ω) or α = 0 (x /∈ Ω). Eq. (2.5) directly

relates the displacement field in Ω to the displacements and tractions on its boundary ∂Ω. In a

well-posed boundary-value problem, the value of either u or t is prescribed at any given point

x ∈ ∂Ω, the remaining one being unknown. Assuming Neumann boundary conditions tD over

the portion of boundary ∂tΩ for definiteness, in absence of body forces, eq. (2.5) becomes:

uk(x) =

∫

∂Ω

[tDi (y)U
k
i (x, y;ω)− ui(y)T

k
i (x, y;ω)]dSy, (x ∈ Ω). (2.6)

Notice that once the solutions on the boundary are known, the solution at any desired interior

point of the domain can be recovered using eq. (2.6).

Boundary integral equation. The integral representation formula does not hold for x ∈ ∂Ω.

When y = x, a strong singularity of the normal derivative of the fundamental solution occurs

and the integral over ∂Ω is not convergent. The limiting case x ∈ ∂Ω in the integral representa-

tion (2.6) yields the singular boundary integral equation (BIE) [44, 50, 146]:

cik(x)ui(x) =

∫

∂Ω

ti(y)U
k
i (x, y;ω)dSy − (P.V.)

∫

∂Ω

ui(y)T
k
i (x, y;ω)dSy (x ∈ ∂Ω). (2.7)

After introduction of the boundary conditions tD over ∂tΩ, it can be rewritten:

(Ku)(x) = f(x) (x ∈ ∂Ω), (2.8)

with the linear operator K and the right-hand side f given by:

(Ku)(x) = cik(x)ui(x) + (P.V.)

∫

∂Ω

ui(y)T
k
i (x, y;ω)dSy

f(x) =

∫

∂Ω

tDi (y)U
k
i (x, y;ω)dSy (x ∈ ∂Ω),
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where (P.V.) indicates a Cauchy principal value (CPV) singular integral. The free-term cik(x)

depends on the local boundary geometry and it is equal to δik/2 at any smooth boundary point

x ∈ ∂Ω. Regularized forms of the boundary integral free of the CPV equations can be found

in [53, 80].

Boundary element method The boundary element method (BEM) is based on the numerical

solution of the boundary integral equation (2.8) for those unknowns which are not specified

by the boundary data (i.e. the boundary conditions). Once solved, both the displacement and

traction fields are known, and the integral representation can be invoked for the evaluation of

the solution at interior points. The numerical solution of BIE (2.8) is based on a discretiza-

tion of the surface ∂Ω into NE non-intersecting boundary elements with NnE nodes. If the

boundary elements use the same set of shape functions to represent both the element geom-

etry and displacement interpolations, they are termed isoparametric elements. Although low

order isoparametric elements are poor, they are largely employed because they allow to easily

map complex shapes and curved boundaries. In the present work, we use isoparametric bound-

ary elements with piecewise-linear interpolation of displacements and constant interpolation of

tractions. The collocation method is then employed, i.e. the solution is sought by enforcing the

BIE at a finite number of collocation nodes (if the displacement is unknown at that node) or

elements (if the traction is unknown at that element). Thus, the NI displacement interpolation

nodes (NI ≤ NnE) also serve as collocation points. A square complex-valued matrix equation

of size N = 3NI of the form:

KU = F, (2.9)

is obtained, where (i) U ∈ C
N collects the unknown nodal displacement components and (ii)

K ∈ C
N×N (influence matrix) and F ∈ C

N are discrete versions of K and f in (2.8), respec-

tively. Setting up K classically entails computing all element integrals for each collocation

point, at a O(N2) computational cost. K is invertible, but fully-populated and non-symmetric,

and its storage on ordinary computers is limited to models with N = O(104). Solving the linear

system (2.8) by means of direct solvers (e.g. Gauss elimination, LU factorization) entails a cost

of CPU = O(103), which becomes quickly impractical for models involving high values of N

(e.g. large domains, high frequency problems). Usually, iterative solvers such as the GMRES

are used, which requires a computing time of order O(102). However, to apply the BEM to

problems involving up to N = O(106) fast procedures are needed 1.4.2. In this work, we used

the fast multipole method (FMM) to accelerate the boundary element method. More details

concerning the implementation of the boundary element method can be found in [61].

2.2.2 Fast Multipole-Boundary Element Method

The Fast Multipole algorithm was introduced in 1985 by Vladimir Rokhlin [260] for the 2D

Laplace equation in integral form, then in 1987 by Leslie Greengard [142] for multi particles

simulations. The capabilities of the fast-multipole algorithm applied to the boundary element
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method, i.e. the Fast Multipole-Boundary Element Method (FMBEM) and its recursive variant

the Multi Level-FMBEM (ML-FMBEM) have rapidly progressed during the last two decades,

allowing many engineering applications requiring large BEM models, in connection with e.g.

acoustics [23], elastodynamics [63], Stokes flows [119] or electromagnetism [68]. FMBEMs

for real values of the wavenumber k, which correspond to wave propagation problems in un-

damped media, have been extensively studied and implemented, see e.g. [81,147,236], while the

collocation FMBEM for 3D-frequency domain elastodynamics in homogeneous or piecewise-

homogeneous elastic media is addressed in [62, 63]. Importantly, these algorithms are backed

by error analysis results for the multipole expansion of the fundamental solutions, which also

provide guidelines about suitable settings of e.g. truncation parameters. In contrast, only scat-

tered efforts have so far been devoted to FMMs for Helmholtz-type problems involving complex

wavenumbers of the form k⋆ = k(1 + iβ), with β > 0 quantifying material damping.

The present work is based on the FM-BEM formulation proposed in [62] for frequency

domain elastodynamics. In particular, the fast multipole method uses a diagonal form of the

Helmholtz Green’s function [82,251,261], which is known to be well suited for mid-frequency

regimes. In fact, this formulation breaks down at very low frequencies, where it has to be

replaced by a low frequency formulation such as the classical multipole expansion of [83].

Hereafter, the multi-level FM-BEM formulation is recalled. For the sake of continuity and

clarity, the same notations of Chaillat [61] will be used throughout this thesis.

Diagonal multipole decomposition of the elastodynamic fundamental solutions The main fea-

tures of the fast multipole BEM (FMBEM) formulation considered herein are those previously

developed in [62] for the elastodynamic (i.e. non-dissipative) case, based on the decomposition

of the Helmholtz Green’s function G(r; k) in diagonal form. The decomposition of G(r; k) rests

upon choosing two poles x0, y0 respectively close to x, y, recasting the position vector r = y−x

as r = (y−y0)+r0+(x0−x) = r0+r′ (Fig. 2.1) and invoking the Gegenbauer addition theorem

(see [3, 81]) and reads:

G(r; k) = lim
L→+∞

GL(r; k), GL(r; k) :=

∫

ŝ∈S

eikŝ.(y−y0)GL(ŝ; r0; k)e
−ikŝ.(x−x0)dŝ (2.10)

where S = {ŝ ∈ R
3, ‖ŝ‖ = 1} is the unit sphere and the transfer function GL(ŝ; r0; k) is given

by

GL(ŝ; r0; k) =
ik

16π2

L
∑

l=1

(2ℓ+ 1)iℓh
(1)
ℓ (kr0)Pℓ(ŝ.r̂0) (2.11)

ry

y0

r0

x

x0

r′ = (y − y0) + (x0 − x)

Figure 2.1: Plane wave expansion of the Helmholtz Green’s function: decomposition of the position vector.
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(a) (b)

Figure 2.2: Schematic of the main idea beyond the application of the FMM to the BEM. (a) Standard BEM

is non-local (unlike the finite element method) and requires the evaluation at each collocation point x of the

contributions (i.e. the fundamental solutions, which are everywhere non-zero) coming from all source points y.

For a problem of size N , this procedure needs O(N2) operations. (b) The FMM is based on a decomposition

of the fundamental solutions in two local multipole expansions and a transfer function. This fast procedure

needs only O(N) operations.

in terms of the spherical Hankel functions of first kind h
(1)
ℓ (kr0) and Legendre polynomials

Pℓ(ŝ.r̂0), and with r̂0 = r0/r0. This decomposition entails a reformulation of the fundamental

solutions in terms of products of functions of x and y. This allows to re-use integrations with

respect to y when the collocation point x is changed, and thus to lower the overall complexity (to

O(N logN) using the multi-level form of the FMM), as shown in the schematic of Figure 2.2.

Equation (2.10) essentially represents G as a superposition of plane waves [82]. The decompo-

sition of the elastodynamic fundamental solutions follows by substituting eq. (2.10) in eq. (2.4):

Uk
i (x, y;ω) = lim

L→∞

∫

ŝ∈S

eikP ŝ.(y−y0)Uk,P
i,L (ŝ; r0)e

−ikP ŝ.(x−x0)dŝ

+ lim
L→∞

∫

ŝ∈S

eikS ŝ.(y−y0)Uk,S
i,L (ŝ; r0)e

−ikS ŝ.(x−x0)dŝ, (2.12a)

T k
i (x, y;ω) = lim

L→∞

∫

ŝ∈S

eikP ŝ.(y−y0)T k,P
i,L (ŝ; r0)e

−ikP ŝ.(x−x0)dŝ

+ lim
L→∞

∫

ŝ∈S

eikS ŝ.(y−y0)T k,S
i,L (ŝ; r0)e

−ikS ŝ.(x−x0)dŝ. (2.12b)

where U and T are the elastodynamic transfer functions

Uk,P
i,L (ŝ; r0) =

γ2

µ
ŝiŝkGL(ŝ; r0; kP ), (2.13a)

T k,P
i,L (ŝ; r0) =

ikSγ
3

µ
CijhℓŝℓŝhŝkGL(ŝ; r0; kP )nj(y), (2.13b)

Uk,S
i,L (ŝ; r0) =

1

µ
(δik − ŝkŝi)GL(ŝ; r0; kS), (2.13c)

T k,S
i,L (ŝ; r0) =

ikS
µ

(δhk − ŝkŝh)CijhℓŝℓGL(ŝ; r0; kS)nj(y). (2.13d)
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A key error analysis result for the real-wavenumber case [81] states that, if x0, y0 are chosen so

that

r′/r0 ≤ 2/
√
5 (r′ := ‖r′‖, r0 := ‖r0‖) (2.14)

there exist four constants C1, C2, C3, C4 such that for given ǫ < 1, one has |GL(r; k)−G(r; k)| <
ǫ if [81]

L(r′) = C1 + C2kr
′ + C3 ln(kr

′) + C4 ln(ǫ
−1). (2.15)

The truncation parameter L(r′) represents the expansion length and will be discussed in detail

in section 2.2.4.

Multi-level fast multipole formulation The multi-level FM-BEM exploits a recursive subdivi-

sion of a cube enclosing the domain Ω (level 0) into 8 cubic cells (levels 1, 2, . . .), see Fig. 2.3.

The subdivision process stops when the linear size of the smallest cells becomes smaller than

the threshold

dmin = αλS, (2.16)

corresponding to a certain preset fraction α of the shear wavelength λS . The deepest level ℓ̄

reached in the subdivision process, termed the leaf level, is such that d(ℓ̄+1) ≤ dmin ≤ d(ℓ̄).

The presence of a lower threshold dmin is due to the divergent behavior of h
(1)
n (z) in the small-

argument limit, entailing a loss of accuracy when using small cell sizes. The cell size threshold

α has to be estimated through numerical tests. The value α = 0.3 was found to be suitable in

the elastodynamic case [62]. In this hierarchical structure, x0 and y0 in (2.10) are chosen as

the centers of the two cubic cells Cx (containing collocation points) and Cy (containing source

points). Cells Cy that share at least a corner with Cx are termed adjacent cells, i.e. Cy ∈ A(Cx).
The set of cells Cy that lie on the same level as Cx and that are not directly adjacent but have

a parent cell adjacent to that of Cx constitute the interaction list, i.e. Cy ∈ I(Cx). These

definitions are displayed in a 2D schematic example in Fig. 2.4. For two non-adjacent cells,

one always has r′/r0 ≤
√
3/2. Partitioning the space into cubic cells thus ensures verification

of condition (2.14), and hence convergence of (2.10) for L → +∞, whenever the collocation

Figure 2.3: 3D recursive subdivision of a cube enclosing the domain boundary ∂Ω up to the leaf level ℓ.
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Figure 2.4: Simplified 2D sketch of the (a) single-level and (b) multi-level FMBEM. For a given collocation

point x, far field contributions from points y belonging to non-adjacent cells are gathered at y
(ℓ̄)
0 , accumulated

upwards at all parent cell centers up to y
(2)
0 , transferred to same-level non-adjacent cell centers x

(2)
0 belonging

to the interaction list of y
(2)
0 , accumulated downwards in all children cells down to x

(ℓ̄)
0 , and finally locally

expanded at x about x
(ℓ̄)
0 . In the single-level FMBEM is ℓ(ℓ̄) =(2).

points x and the integration points y lie in non-adjacent cells. The highest active level is ℓ = 2,

as pairs of non-adjacent cells cannot occur at levels 0 or 1. The multi-level FMBEM exploits

the representation (2.10) to evaluate the influence of far integration points y clustered around

y0 on the collocation points x clustered around x0, y0 and x0 being the center of non-adjacent

clusters.

The influence matrix K of the global BEM system (2.9) is then additively split into two

parts:

KU = K
near

U+K
FMM

U, (2.17a)

F = F
near + F

FMM. (2.17b)

The part Knear containing the contributions from adjacent cells, which is sparse and to which

the expansion (2.10) is not applicable, is set up using usual BEM integration and assembly

techniques and stored. The contribution K
FMM exploiting the expansion (2.10) is neither set up

nor stored. Instead, the contribution K
FMM

U to the matrix-vector product KU is computed for

each GMRES iteration. Keeping the example of a Neumann problem with imposed traction

distribution tD, the decomposition of the system has the form:

(Ku)near(x) = cik(x)ui(x) +
∑

Cy∈A(Cx)

(P.V.)

∫

∂Ω∩Cy

ui(y)T
k
i (x, y;ω)dSy (2.18a)

f(x)near =
∑

Cy∈A(Cx)

∫

∂Ω∩Cy

tDi (y)U
k
i (x, y;ω)dSy (2.18b)
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(Ku)FMM(x) =
∑

Cy /∈A(Cx)

∫

∂Ω∩Cy

uiT
k
i (x, y;ω)dSy, (2.18c)

f(x)FMM =
∑

Cy /∈A(Cx)

∫

∂Ω∩Cy

tDi (y)U
k
i (x, y;ω)dSy (2.18d)

Summarizing, the acceleration introduced by the FM algorithm stems from (i) the reduction

of the integrations on ∂Ω coming from the separation of variables introduced in (2.10), and

(ii) the optimal task partitioning allowed by the recursive subdivision. The single-level fast

multipole BEM is the particular case in which the leaf level coincides with the first active level,

i.e. ℓ̄ = ℓ(2).

The evaluation of far contributions by multi-level FMM at a general cell C ℓ̄
x passes through

different steps. Starting from the leaf level ℓ̄ to the maximum level ℓ(2) the so called upward

pass consists in recursively computing the multipole moments for all cells Cy at each level

ℓ(2) ≤ ℓ(ℓ) ≤ ℓ(ℓ̄), transfer their contribution close to Cx, then extrapolate them to the upward

level. Once reached the upper level ℓ(2), the downward pass consists in descending the octree

in the opposite sense (by means of inverse extrapolations) and aggregating the local expansion

contributions at each level until the leaf level is reached, where final integration is performed.

In formulae, the aforementioned steps read as follows [62].

1. Initialization of the multipole moments. The multipole moments, or radiation functions,

are computed for each lowest cell Cy = C(ℓ)
y (with ℓ = ℓ̄, ℓ̄− 1, ..., 2):

RS,u
k (ŝ; Cy) = −ikS [δikŝj + δjkŝi − 2ŝiŝj ŝk]

∫

∂Ω∩Cy

ui(y)nj(y)e
ikS ŝ.(y−y0)dSy, (2.19a)

RP,u(ŝ; Cy) = −ikSγ
3

[

2ν

1− 2ν
δij + 2ŝiŝj

]
∫

∂Ω∩Cy

ui(y)nj(y)e
ikP ŝ.(y−y0)dSy, (2.19b)

RS,t
k (ŝ; Cy) =

1

µ
[δka − ŝkŝa]

∫

∂Ω∩Cy

ta(y)e
ikS ŝ.(y−y0)dSy, (2.19c)

RP,t(ŝ; Cy) =
γ2

µ

∫

∂Ω∩Cy

ŝata(y)e
ikP ŝ.(y−y0)dSy . (2.19d)

2. Initialization of the transfer. Local expansions are computed at each level for each collo-

cation cell C(ℓ)
x :

LS,u
k (ŝ(ℓ); C(ℓ)

x ) =
∑

C
(ℓ)
y ∈I(C

(ℓ)
x )

GL(ŝ
(ℓ); r0; kS)RS,u

k (ŝ(ℓ); C(ℓ)
y ), (2.20a)

LP,u(ŝ(ℓ); C(ℓ)
x ) =

∑

C
(ℓ)
y ∈I(C

(ℓ)
x )

GL(ŝ
(ℓ); r0; kP )RP,u(ŝ(ℓ); C(ℓ)

y ). (2.20b)
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3. Upward extrapolation. The radiation functions are extrapolated to the upper level ℓ(ℓ−1):

RS,u
k (ŝ; C(ℓ−1)

y ) =
∑

C
(ℓ)
y ∈S(C

(ℓ−1)
y )

exp
[

−ikS ŝ.(y
(ℓ)
0 − y

(ℓ−1)
0 )

]

RS,u
k (ŝ; C(ℓ)

y ), (2.21a)

RP,u(ŝ; C(ℓ−1)
y ) =

∑

C
(ℓ)
y ∈S(C

(ℓ−1)
y )

exp
[

−ikP ŝ.(y
(ℓ)
0 − y

(ℓ−1)
0 )

]

RP,u(ŝ; C(ℓ)
y ), (2.21b)

where ŝ indicates that the radiation functions are defined over the unit sphere of integration

which is discretized differently at each level (because the quadrature rule depends on the

truncation parameter L) and S(C) generally represents the set of children of a given cell

C.

4. Downward inverse extrapolation. At each level from ℓ(3) to ℓ(ℓ̄), the downward step con-

sists in updating the local expansion at each level with contributions coming from the

superior levels:

LS,u
k (ŝ; C(ℓ)

x ) = LS,u
k (ŝ; C(ℓ)

x ) + exp
[

−ikS ŝ.(y
(ℓ)
0 − y

(ℓ−1)
0 )

]

LS,u
k (ŝ; C(ℓ−1)

x ), (2.22a)

LP,u(ŝ; C(ℓ)
x ) = LP,u(ŝ; C(ℓ)

x ) + exp
[

−ikP ŝ.(y
(ℓ)
0 − y

(ℓ−1)
0 )

]

LP,u(ŝ; C(ℓ−1)
x ). (2.22b)

5. Integration at the leaf level. The final integration over the unit sphere use a quadrature

method with quadrature points ŝq and weights wq and reads:

(Ku)FMM
k (x) ≈

Q
∑

q=1

wq

[

e−ikS ŝ.(x−x0)LS,u
k (ŝ; Cx) + e−ikP ŝ.(x−x0)LP,u

k (ŝ; Cx)
]

(2.23a)

f(x)FMM
k (x) ≈

Q
∑

q=1

wq

[

e−ikS ŝ.(x−x0)LS,t
k (ŝ; Cx) + e−ikP ŝ.(x−x0)LP,t

k (ŝ; Cx)
]

. (2.23b)

2.2.3 Multi-region FMBEM formulation for seismic wave propagation

Wave propagation analyses often involve heterogeneous media (e.g. seismic waves in geolog-

ical structures). Following the single-domain elastodynamic ML-FMBEM formulation [62], a

multi-region version of the elastodynamic ML-FMBEM was proposed in [63], allowing to study

e.g. the amplification by topographical irregularities of seismic waves propagating in homoge-

neous media. Hereafter, we recall only the main steps of this ML-FM-based BE-BE coupling

strategy. For a detailed explanation, we refer the reader to its exhaustive presentation addressed

in [61, 63].

Continuous BEM formulation for a mono-region seismic diffraction problem. As often in seis-

mic numerical modelling, the total displacement field u is decomposed into the free-field motion



2.2. Elastodynamic Fast Multipole Boundary Element Method: survey 41

�

�

�

�

(a) (b)

Figure 2.5: Decomposition of the traction field in case of incident wave. In the presence of topographical

irregularities from the planar traction-free surface F , e.g. a canyon, tF + tS = 0 (where tF are the free-field

tractions and tS is the scattered component of the incident wavefield) (from [63]).

uF (i.e. the total motion induced by an incident wave travelling in the half-space ΩF superiorly

limited by the planar free-surface F , as in Fig.2.5a) and its scattered component uS that arises

in presence of eventual topographical irregularities (see Fig.2.5b) such that u = uF + uS .

Let first consider a homogeneous isotropic linear elastic domain Ω1 of boundary ∂Ω1 char-

acterized by the presence of irregularities (e.g. canyons, hills) submitted to the incidence of a

seismic wave, as in Fig. 2.6 where Γ = ∂Ω1 ∩ F , Γ1 includes all topographical irregularities

and ∂Ω1 = Γ ∪ Γ1. In this case, the Neumann boundary data on ∂Ω1 are the known traction

free-field tS = −tF , and the BIE can be solved for uS by applying the classical boundary inte-

gral equation (2.7). Alternately, the integral equation (2.7) can be reformulated in terms of the

total field u and of the free-field uF as:

cik(x)ui(x) +

∫

Γ1∪Γ

ui(y)T
k
i (x, y;ω)dSy −

∫

Γ1

ti(y)U
k
i (x, y;ω)dSy =

cFik(x)u
F
i (x) +

∫

F

uF
i (y)T

k
i (x, y;ω)dSy, (∀x ∈ ∂Ω1). (2.24)

Extension to multi-region problems. We now apply the continuous BIE formulation (2.24) to

the propagation of a seismic wave in a multi-region domain where the various subregions are

Figure 2.6: Seismic mono-domain scattering problem. The planar free surface F is used to define the free-

field. The boundary of the domain Ω1 is ∂Ω1 = Γ∪Γ1, where Γ = ∂Ω1∩F and Γ1 includes all topographical

irregularities.
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Figure 2.7: Seismic wave propagation problem in a multi-region domain: n-layered basin embedded in the

homogeneous half-space Ω1. (a) Notation of the different domains and of the free-surface Γ ∪ Γ1 ∪ Γn, (b)

notations adopted for the definition of the interfaces and their (outwarding) normal and (c) definition of triple

points arising at the intersection of three subregions.

characterized by different mechanical properties. For this class of problems, the continuous

formulation in terms of the total field is convenient because transmission conditions are defined

in terms of total field as well. Let the original domain Ω be partitioned into n piecewise-

homogeneous bounded subdomains Ωi (2 ≤ i ≤ n), embedded in a complementary semi-

infinite domain Ω1, such that Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωn. The problem is depicted in Fig. 2.7a.

Perfect bond is assumed between different subdomains, i.e. Ωk ∩ Ωℓ = 0 (for 1 ≤ k, ℓ ≤ n,

k 6= ℓ). The notations adopted at the common interfaces are recalled in Fig. 2.7b, with the

normals outwarding each region. The points in common between three subdomains are the

triple points (Fig. 2.7c). The global free-surface is given by Ωn ∪ Γ ∪ Γ1, where Γ and Γ1

respect the definition given in the previous paragraph for a mono-domain scattering. Hereafter,

we use abbreviations Uk
i , T

k
i instead of Uk

i (x, y;ω), T k
i (x, y;ω). Moreover, the superscript α

in U
k(α)
i , T

k(α)
i will refer to the elastodynamic fundamental solutions defined in terms of the

material parameters of the subdomain Ωα. In the subdomain Ω1, the boundary integral equations

corresponding to the collocation over the boundary ∂Ω1 = Γ ∪ Γ1 ∪ Γ1m (where 2 ≤ m ≤ n

refers to the subdomains that share a portion of boundary with Ω1, i.e. that are adjacent) reads:

cik(x)u
α
i (x) +

∫

Γ1∪Γ

u1m
i (y)T

k(1)
i dSy +

n
∑

m=2

∫

Γ1m

u1m
i (y)T

k(1)
i dSy −

∫

Γ1

t1i (y)U
k
i (x, y;ω)dSy

−
n

∑

m=2

∫

Γ1m

t1mi (y)U
k(1)
i dSy = cFik(x)u

F
i (x) +

∫

F

uF
i (y)T

k
i dSy, (∀x ∈ ∂Ω1),

(2.25)

where x is by convention the collocation point and y is the source point. In the free-term

cik(x)u
α
i (x), α = 1 if the collocation point x lies on the ”irregular” surface Γ1 and α = 1m if

x lies on a shared internal interface Γ1m. The right-hand side term is defined over the planar

free-surface F , that does not necessarily coincides with the global domain boundary. In each
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bounded subdomain Ωℓ (2 ≤ ℓ ≤ n) one has:

cik(x)u
α
i (x) +

∫

Γℓ

uℓ
i(y)T

k(ℓ)
i dSy

+
∑

m≥1
m 6=ℓ

∫

Γℓm

(

uℓm
i (y)T

k(ℓ)
i − tℓmi (y)U

k(ℓ)
i

)

dSy, (∀x ∈ ∂Ωℓ). (2.26)

In the free-term, again α varies with collocation, i.e. α = ℓ, ℓm depending on if x lies on Γℓ or

on Γℓm. In the second term, the free-surface condition tℓi(y) on the eventual Γℓ has been already

taken into account. After invoking strong continuity uℓm = umℓ and equilibrium tℓm + tmℓ = 0

conditions, equation (2.26) can be rewritten in terms of interface unknowns uℓm and tℓm (ℓ < m)

[63]:

cik(x)u
α
i (x) +

∫

Γℓ

uℓ
i(y)T

k(ℓ)
i dSy +

ℓ−1
∑

m=2

∫

Γℓm

(

umℓ
i (y)T

k(ℓ)
i + tmℓ

i (y)
)

U
k(ℓ)
i dSy

+
n

∑

m=ℓ+1

∫

Γℓm

(

uℓm
i (y)T

k(ℓ)
i − tℓmi (y)

)

U
k(ℓ)
i dSy = 0 (∀x ∈ ∂Ωℓ). (2.27)

Fast-multipole BE-BE coupling strategy. The BE-BE coupling strategy proposed in [63] for

seismic scattering problems uses the continuous formulation of BIEs in terms of total field as

proposed in the previous paragraphs. For each subdomain, a separate octree structure is defined,

a boundary integral equation is formulated (eq. (2.26) for the semi-infinite Ω1 and (2.27) for

the bounded subdomains Ωi, 2 ≤ i ≤ n) and the corresponding contributions to the global

matrix-vector product are computed. To ensure a global square system of equations, linear

combinations of the BE equations arising from collocation at nodes or interface element shared

by more than one subregion are defined, and the global matrix-vector product is evaluated by

combining accordingly the contributions coming from the various interfaces relative to each

subregion.

2.2.4 Computational aspects

Truncation of the transfer function. The multipole expansion (2.10) is convergent in the limit

L → +∞ allowing the convergence of the viscoelastodynamic kernels. However, for computa-

tional reasons, it is evaluated for a finite value of the truncation parameter L, and the FMBEM

uses the truncated approximation GL(r; k) of G(r; k). Choosing a suitable truncation level L is

delicate, as L has to be large enough to guarantee sufficient accuracy in the expansion (2.10),

while not exceeding values significantly larger than kr so as to avoid blow-up of the Hankel

functions h
(1)
n occurring for n ≫ z.

Besides its influence on the convergence of (2.10), the parameter L affects both computa-

tional time and memory consumption. Indeed, the numerical integration over the unit sphere S
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is based on a product rule in the angular spherical coordinates (θ, φ) which needs O(L2) points

overall [82], since the polar coordinate θ ∈ [0, π] and the azimuthal coordinate φ ∈ [0, 2π]

are treated using a (L+ 1)-point Gaussian rule and a 2L-point uniform rule, respectively.

This approach allows to integrate exactly the L2(S)-orthonormal set of spherical harmonics

(Yp,m(θ, φ))0≤p≤L,−p≤m≤p of order ≤ L.

The choice of the parameter L is thus critical for both the performance and the efficiency of

the FMBEM algorithm. In real-wavenumber problems, L is set according to a rule involving

kD (with D the length of the cell diagonal), and is thus level-dependent as a result. In particular,

for an accurate evaluation of decomposition (2.10), L must be slightly greater than kD [74].

In practice, selecting the truncation parameter L using rules inspired by (2.15) requires

adjusting the constants using numerical experiments [189, 299]. In elastodynamics, starting

from a relation of the form

LE(D;C) = kD + C log10(kD + π), (2.28)

the constant C has been empirically set to C = 7.5, by seeking a trade-off between the RMS

discrepancy between ML-FMBEM versus standard BEM and the CPU time per iteration [62].

Relation (2.28) depends on the cell linear size D through the dimensionless parameter k|r′|,
hence is level-dependent.

Number of levels. The minimum number of levels is three, i.e. ℓ(0), ℓ(1), ℓ(2). This is the case

of the single-level FMBEM. In the multi-level FMBEM, the maximum number of levels is es-

tablished by the stopping criterion (2.16). In this range, choosing a low number of levels means

having a large size kD of the leaf cells, thus increasing the near interactions evaluation through

the standard BEM. As a consequence, the FMBEM would not be so convenient, involving a

complexity close to the standard BEM O(N2). On the other hand, if a large number of levels is

chosen the number of transfers increases and the approximations introduced by the numerical

truncation of the Green’s function multipole expansion reduces the overall precision. These

observations are explained in detail in [61].

2.3 BEHAVIOR OF WEAKLY DISSIPATIVE MEDIA

2.3.1 Constitutive law for a linear viscoelastic medium

The constitutive relation for a linear viscoelastic medium (1.9), recalled here for ease of read-

ability, is [70]:

σij(x, t) =

∫ t

−∞

Cijkℓ(t− τ) ε̇kℓ(x, τ)dτ, (2.29)

where σij(x, t) and εkℓ(x, τ) are generic components of the stress and linearized strain tensors

and Cijkℓ is the relaxation tensor. The integral (2.29) is also called hereditary integral and
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represents a time convolution of the relaxation tensor and the strain rate:

σ(x, t) = C(t) ∗ ε̇(x, t) . (2.30)

Using the properties of convolution, (2.30) can be rewritten as:

σ(x, t) = Ċ(t) ∗ ε(x, t) = M (t) ∗ ε(x, t) , (2.31)

where M (t) = Ċ(t), time derivative of a Heaviside unit step function in strain, is the stress

response to a Dirac δ-function in strain. Applying the Fourier transform yields the complex,

frequency-dependent viscoelastic modulus

M ⋆(ω) = F {M (t)} = F
{

Ċ(t)
}

. (2.32)

The relation (2.29) shows that, unlike elastic materials, the stress in a viscoelastic medium at

a given time t depends linearly on the strain history until that time t (i.e. the memory effect).

This implies the validity of the superposition principle. Moreover, the upper integration limit

ensures causality (i.e. that Cijkℓ(t−τ) = 0 for τ > t). For a homogeneous isotropic viscoelastic

medium, the relaxation tensor Cijkℓ(t) in (2.29) is written in terms of two independent Lamé-

type coefficients

Cijkℓ(t) =
[

λ(t)δijδkℓ + µ(t)(δikδjℓ + δiℓδjk)
]

H(t), (2.33)

where H(·) is the Heaviside step function. In this work, time-harmonic motions with angular

frequency ω are considered, and the strain then takes the form εij(x, τ) = εij(x)e
−iωτ ; a similar

behavior is assumed for all other time-varying quantities. Eq. (2.29) then becomes [94]

σij(x, t) =

[

iω

∫ ∞

−∞

λ(η)H(η)eiωηdη

]

εkk(x)δije
−iωt+2

[

iω

∫ ∞

−∞

µ(η)H(η)eiωηdη

]

εij(x)e
−iωt,

having used the transformation η := t−τ and with the zero lower bound of the integral replaced

by −∞ by virtue of (2.33). The terms inside square brackets are the Fourier transforms λ⋆(ω)

of λ(t)H(t) and µ⋆(ω) of µ(t)H(t), respectively. With the time factor e−iωτ omitted hereon,

the constitutive relation (1.9) is finally written in the form

σij(x, ω) = C⋆
ijkℓ(ω)εkℓ(x, ω), C⋆

ijkℓ(ω) = λ⋆(ω)δijδkℓ + µ⋆(ω)(δikδjℓ + δiℓδjk), (2.34)

which emphasizes the well-known formal analogy between linear viscoelastic and linear elastic

time-harmonic problems, the main difference between the two situations being that the Lamé

coefficients, wave velocities and wavenumbers are complex-valued and frequency-dependent in

the viscoelastic case (in which case an asterisk is used, in (2.34) and hereafter, to distinguish

them from their real-valued, elastic, counterparts). For the present work, carried out in the

frequency domain, the dependence of the material damping on the frequency does not play

a significant role, whereas time domain analyses would require an appropriate theoretical or
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empirical model for the lossy medium (soil), e.g. a rheological model, which takes into account

the attenuation-frequency dependence [49, 88].

2.3.2 Complex wavenumbers and mechanical parameters

Complex wavenumbers k⋆ have the form [49, 285]

(k⋆(ω))2 = ρω2/M⋆(ω) (2.35)

(where M⋆(ω) = Mr(ω)− iMi(ω), with Mr > 0 and Mi ≥ 0, is the complex modulus defined

in (2.32) (e.g. M⋆ = λ⋆ or µ⋆) and |M⋆(ω)| =
√

M2
r (ω) +M2

i (ω) its absolute value), and may

be written as

k⋆(ω) = k(ω) + iα(ω), (2.36)

where k(ω) (real wavenumber) and α(ω) (attenuation factor) are given by [195]:

k(ω) = ω

√

ρ(|M⋆|+Mr)

2|M⋆|2 , α(ω) = ω

√

ρ(|M⋆| −Mr)

2|M⋆|2 . (2.37)

The ratio χ(ω) between the imaginary and the real part of the complex wavenumber is given

by:

χ(ω) =
α(ω)

k(ω)
=

√

|M⋆| −Mr

|M⋆|+Mr

=
√

Q2 + 1−Q, (2.38)

where Q = Mr/Mi is called quality factor or loss tangent or loss angle, and its inverse Q−1

is the attenuation. Once the complex modulus M(ω) is known, one can determine the phase

velocity and the attenuation factor of harmonic waves propagating in linear viscoelastic media:

c(ω) =

√

Mr

ρ

√

2(1 + 1/Q2)

1 +
√

1 + 1/Q2
,

α(ω) = k(ω)χ(ω) = k(ω) Q(
√

1 + 1/Q2 − 1) .

Truncating the Maclaurin series expansion of
√

1 + 1/Q2 at the first order, i.e.
√

1 + 1/Q2 =

1 + 1/(2Q2) + ◦((1/Q2)2) yields the approximations:

c̃(ω) = c
(1 + 2β2(ω))
√

1 + β2(ω)
,

α̃(ω) = k(ω)Q(1 +
1

2Q2
− 1) = k(ω)

1

2Q
= k(ω)β(ω), (2.39)

β(ω) being the material damping ratio. The material damping parameter β is mostly used in

geotechnical earthquake engineering. Damping is equivalently quantified using the loss fac-
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tor η = 2β (in structural dynamics and vibration analysis), or the attenuation Q−1 = 2β (in

seismology [193] or acoustics [49]); all these parameters are clearly dimensionless.

However, the approximation Q−1(ω) = 2β(ω) is valid only under a certain threshold of

attenuation, i.e. when the imaginary part of the complex modulus is much lower than the real

part, β(ω) ≪ 1. Media belonging to this range are called weakly dissipative or low-loss media,

and their low-strain properties are defined in (2.39) [195]. In Fig. 2.8, the approximations α̃(ω)

and c̃(ω) of the attenuation factor α(ω) and of the phase velocity c(ω) are compared with their

exact value as a function of attenuation. The error committed by doing these approximations

is plotted in Figure 2.9. For considering weak dissipation, values of attenuation should be

contained in the range 0 ≤ Q−1(ω) ≤ 0.2, which implies 0 ≤ β(ω) ≤ 0.1. Damping in real

soils follows the weak-dissipation assumption, with typical values in the range β = 0.03−0.06.

In the present work, we adopt the weak dissipation assumption and thus limit our analysis to

the corresponding range of β for which the assumption is valid. Finally, we can express the

complex wavenumber for weakly dissipative soils as follows:

k⋆(ω) = k(ω) + iα̃(ω) = k(ω)[1 + iβ(ω)].

The complex-valued Lamé constants can then be written as [94]:

µ⋆ = µ(1− 2iβµ) + o(βµ), λ⋆ = λ(1− 2iβλ) + o(βλ)

in terms of the distinct material damping ratios βµ, βλ which allow to distinguish the contri-

bution to the damping of shear and pressure waves. The complex shear wavenumber is hence

given by k⋆
S = kS(1 + iβµ), where kS = ω

√

ρ/µ is the real shear wavenumber. The com-

plex pressure wavenumber k⋆
P , the complex Poisson’s ratio ν⋆ and the complex S- and P-wave

velocities are then given by:

k⋆
P = k⋆

Sγ
⋆, ν⋆ = λ⋆ / (2λ⋆ + 2µ⋆), c⋆S =

√

µ⋆/ρ et c⋆P = c⋆S/γ
⋆, (2.40)

with γ⋆2 = µ⋆/(λ⋆ + 2µ⋆) = (1 − 2ν⋆)/(2(1 − ν⋆)). For the sake of simplicity, the material

damping ratios are assumed to be the same, i.e. β = βµ = βλ. The complex Poisson’s ratio

then reduces to the real Poisson’s ratio, i.e. ν⋆ = ν = λ/2(λ+ µ).

2.4 MULTI-LEVEL FMBEM FORMULATION FOR VISCOELASTODYNAMICS

The FMBEM algorithm for viscoelastodynamics does not change from the corresponding real-

wavenumber case recalled in section 2.2. However, some important algorithm parameters are

affected by the presence of a damping factor β > 0. This Chapter is devoted to the study

of the behavior of these numerical parameters (among which the truncation parameter) and to

empirically establish their optimal setting in order to guarantee convergence and accuracy of

the overall method. In this section, we explicit those relations of the FMBEM algorithm which

are particularly concerned by the introduction of a positive β.
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Figure 2.8: The approximations (a) α̃(ω) of the attenuation factor α(ω) and (b) c̃(ω) of the phase velocity

c(ω) (in dotted line) are compared with the corresponding exact values (continuous line) ( (2.39)). The weakly

dissipation assumption means that approximations α̃ and c̃ hold within limited values of Q−1 (quantified in

Fig. 2.9).
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Figure 2.9: Quantification of the validity range for the weakly dissipation assumption. The relative error

made using the approximations (2.39) of the attenuation factor ǫα and phase velocity ǫc is plotted against the

quality factor. Assuming that the approximations hold for a relative error ǫ < 10−2, their range of validity is

0 ≤ Q−1 ≤ 0.2, which corresponds to a damping factor 0 ≤ β ≤ 0.1

2.4.1 Viscoelastodynamic boundary element formulation

Let Ω ⊂ R
3 denote a region of space occupied by a three-dimensional isotropic homogeneous

viscoelastic solid with boundary ∂Ω, characterized by the complex shear modulus µ⋆, the com-

plex Poisson’s ratio ν⋆ and density ρ. Assuming the absence of body forces, the displacement
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u is given at any interior point x ∈ Ω by the boundary integral representation formula

uk(x) =

∫

∂Ω

[

ti(y)
⋆

Uk
i (y−x;ω)− ui(y)

⋆

T k
i (x, y;ω)

]

dSy (x ∈ Ω), (2.41)

where t is the traction vector. In the complex-wavenumber formulation,
⋆

Uk
i (y− x;ω) and

⋆

T k
i (x, y;ω) denote the i−th components of the displacement and traction vector associated to

the visco-elastodynamic fundamental solution generated at a point y ∈ R
3 by a unit point force

applied at x ∈ R
3 along the direction k, given by

⋆

Uk
i (y − x;ω) =

1

k⋆2
S µ⋆

(

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys

⋆

G(‖y−x‖; k⋆
S) +

∂

∂xi

∂

∂yk

⋆

G(‖y−x‖; k⋆
P )

)

⋆

T k
i (x, y;ω) = C⋆

ijhℓ(ω)
∂

∂yl

⋆

Uk
h (y − x;ω)nj(y), (2.42)

in terms of the complex-wavenumber equivalent
⋆

G(r; k⋆) of the free-space Green’s function

G(r; k) for the real-k Helmholtz equation:

⋆

G(r; k⋆) =
eik

⋆r

4πr
= e−βkr e

ikr

4πr
= e−βkr G(r; k), (2.43)

and where n(y) is the outward unit normal and the relaxation tensor components C⋆
ijhℓ are given

by (2.34). In (2.43), waves emitted by a source point x are spatially oscillatory, which is re-

flected by the real wavenumber k, while also exponentially decaying away from x when material

damping is present, i.e. β > 0.

Assuming Neumann boundary conditions for definiteness, the limiting case x ∈ ∂Ω in the

integral representation (2.41) yields the singular boundary integral equation (BIE) [44, 50]:

(Ku)(x) = f(x) (x ∈ ∂Ω), (2.44)

with the linear operator K and the right-hand side f given by

(Ku)(x) = cik(x)ui(x) + (P.V.)

∫

∂Ω

ui(y)
⋆

T k
i (x, y;ω)dSy

f(x) =

∫

∂Ω

tDi (y)
⋆

Uk
i (x, y;ω)dSy (x ∈ ∂Ω).

where (P.V.) indicates a Cauchy principal value (CPV) singular integral. The free-term cik(x)

depends on the local boundary geometry and it is equal to δik/2 at any smooth boundary point

x ∈ ∂Ω.

As in the real-wavenumber case, the numerical solution of the BIE (2.44) is based on a

discretization of the surface ∂Ω into NE isoparametric boundary elements, with piecewise-
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linear interpolation of displacements, based on three-noded triangular boundary elements. The

NI displacement interpolation nodes thus defined also serve as collocation points. The square

complex-valued matrix equation of size N = 3NI has the same form of (2.9)

KU = F.

We recall that (i) U ∈ C
N collects the unknown nodal displacement components and (ii) K ∈

C
N×N (influence matrix) and F ∈ C

N are discrete versions of K and f , respectively.

2.4.2 Multi-Level Fast Multipole BEM (ML-FMBEM)

Setting up K classically entails computing all element integrals for each collocation point, at

a O(N2) computational cost. The fully-populated nature of K makes both its storage and the

application of direct solvers either impractical or impossible for BEM model sizes exceeding

N = O(104). Instead, iterative solvers such as GMRES [265] must be used, but large BEM

models require that integral operators (i.e., after discretization, matrix-vector products KU) be

evaluated using procedures which are faster than the standard method, whose O(N2) complex-

ity is prohibitive. A widely used approach for that purpose is the fast multipole method (FMM),

based on a reformulation of the fundamental solutions in terms of products of functions of x

and y. This allows to re-use integrations with respect to y when the collocation point x is

changed, and thus to lower the overall complexity (to O(N logN) using the multi-level form of

the FMM).

In visco-elastodynamics, the decomposition of
⋆

G(r; k⋆) in diagonal form reads

⋆

G(r; k⋆) = lim
L→+∞

⋆

GL(r; k
⋆),

⋆

GL(r; k
⋆) :=

∫

ŝ∈S

eik
⋆ŝ.(y−y0)

⋆

GL(ŝ; r0; k
⋆)e−ik⋆ŝ.(x−x0)dŝ,

(2.45)

where S = {ŝ ∈ R
3, ‖ŝ‖ = 1} is the unit sphere and the transfer function

⋆

GL(ŝ; r0; k
⋆) is given

by

⋆

GL(ŝ; r0; k
⋆) =

ik⋆

16π2

L
∑

l=1

(2ℓ+ 1)iℓh
(1)
ℓ (k⋆r0)Pℓ(ŝ.r̂0), (2.46)

in terms of the spherical Hankel functions of first kind h
(1)
ℓ (k⋆r0) and Legendre polynomials

Pℓ(ŝ.r̂0), and with r̂0 = r0/r0.

2.5 TRUNCATION OF THE TRANSFER FUNCTION WITH COMPLEX-WAVENUMBER

This section is concerned with the numerical evaluation of the plane-wave decomposition (2.45)

when using complex wavenumbers, so as to determine practical settings for the visco-elastodynamic

ML-FMBEM exploiting that representation of the fundamental solution.
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2.5.1 Evaluation on the transfer function

Empirical observations in the real-wavenumber case. The viscoelastic constitutive parameters

of the medium, e.g. the wave velocities and wavenumbers, are complex-valued and frequency-

dependent (Sec. 2.3). This is expected to affect the ML-FMBEM mainly through the setting of

L for the evaluation of the kernel approximation (2.10). The latter, after replacing the integral

over the unit sphere S by a discrete quadrature with points ŝq ∈ S and weights wq, reads:

G(r; k⋆) ∼
Q
∑

q=1

wqe
ik⋆ (̂sq .r′)GL(ŝq; r0; k

⋆). (2.47)

In general, the error induced by using decomposition (2.10) for a finite value of L and substitut-

ing the integration over S by the discrete numerical quadrature (featuring Q = O(L2) points)

depends on r′ (position of points x, y with respect to local poles x0, y0), |k⋆D| (dimensionless

cell size), r0 (distance between cells) and on the choice of the quadrature over S . At any given

level, the most unfavorable configuration, leading to the least accurate evaluation of G(r; k⋆),

corresponds to non-adjacent cells that are closest (Fig. 2.10). This particular configuration has

been considered as a reference configuration in the following. When r0 increases, the approx-

imation GL(r; k
⋆) of G(r; k⋆) becomes more accurate, as shown in Fig. 2.11(a-c), where the

relative error ε = |GL − G|/|G| is depicted as a function of |k⋆d| and L for three different

relative distances between cells r0 = 2d, 2D and 3D (Fig. 2.11, top left), d being the linear cell

size and D =
√
3d the cell diagonal. When r′ increases, i.e. the points x, y move farther from

poles x0, y0, the exponential in (2.47) oscillates, reducing the accuracy of GL, see Fig. 2.12.

Loss of accuracy of the multipole expansion in the damped case. For a given configuration of

cells and points, increasing values of the damping ratio β lead to a loss of accuracy in the

evaluation of G(r; k⋆). This is shown in Fig. 2.13 for two points x, y lying in a pair of closest

non-adjacent cells and such that r′ = 0.8D. The behavior of the spherical Hankel functions with

complex arguments influences the computation of the transfer operator (2.46), as it is addressed

in [97, 155]. The classical ascending three-term recurrence (TTR) formula [3] is stable and

can be employed for the evaluation of h
(1)
ℓ (k⋆r0) with ascending ℓ. The value of L defined by

equation (2.28) becomes suboptimal for β > 0 and needs to be adjusted as a function of β.

To study the error due to the choice of L on the approximation GL(k
⋆, |r0 + r′|) of G(k⋆, r),

a relative error ξ has been defined for the most unfavorable cell configuration (r0 = 2d) in the

�

��

Figure 2.10: Closest non-adjacent cells (r0 = 2d), for which GL yields a least accurate approximation of G.
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Figure 2.11: Influence of the distance r0 between cells on the accuracy of the multipole expansion: contour

lines of log10(ε). x and y are located at a fixed distance r′ = D.

form:

ξ2(β) =

(

∑

|k⋆d|

∑

r′

|G−GL|2
)/(

∑

|k⋆d|

∑

r′

|G|2
)

. (2.48)

Mesh nodes or quadrature points may lie anywhere in a cell. Thus, to obtain a realistic set of

points inside a cell, uniform and Gaussian distributions have been considered for r′. The error

ξ(β) is depicted in Fig. 2.14 (solid lines) for one distribution of r′ of each type. Although ξ(β)

is lower for the Gaussian distribution, the accuracy in the evaluation of G(k⋆, r) for both dis-

tributions progressively deteriorates as β increases. In the following, we propose to modify the

selection rule (2.28) by making it dependent on β so as to achieve a constant average accuracy

ξ over the damping range 0 ≤ β ≤ 0.1 representative of weakly dissipative materials.

2.5.2 New damping-dependent selection rule for truncation parameter L

Having shown in section 2.5.1 that selecting L according to (2.28) does not guarantee that GL

given by (2.10) approximates G sufficiently well in the complex-wavenumber case, a modi-

fied selection rule that depends on the damping level β, where LE(D;C) defined by (2.28) is

replaced by LV(D; β, C1, C2) defined by

LV(D; β, C1, C2) = k⋆D + (7.5 + C1β) log10(k
⋆D + π) + C2β, (2.49)
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Figure 2.12: Influence of r′ on the accuracy of expansion (2.10): contour lines of log10ε (a) r′ = 0, i.e.

x = x0, y = y0; (b) r′ = 0.6D; (c) r = D, i.e.x, y lie on opposite vertices.

is now considered. Note that (2.28) is a special case of (2.49), since LV(D; 0, 0, 0) = LE(D),

and that the influence of β on the selection rule is controlled by the adjustable constants C1, C2.

The relative error indicator (2.48) has accordingly be redefined so as to perform an averaging

over the damping range 0 ≤ β ≤ 0.1:

ζ2(C1, C2) =

(

∑

β

∑

|k⋆d|

∑

r′

∣

∣G−GL

∣

∣

2
)/(

∑

β

∑

|k⋆d|

∑

r′

|G|2
)

. (2.50)

Suitable settings of C1, C2 are now sought from empirical tests. Figure 2.15 shows the contour

lines of ζ(C1, C2) for 0 ≤ C1, C2 ≤ 50 (dotted lines) and the value of LV(D; β, C1, C2). As

C1, C2 > 0 increase, the value of L increases while decomposition (2.10) approximates G

better. Many combinations of C1, C2 thus achieve a given error level ζ . Among these, setting

C2 = 0 and using a nonzero value for C1 only is seen to correspond to the lowest value of L,

i.e. is cheapest in terms CPU time. This led to reformulate the adjustment rule for L in terms of

a new function L′
V, with

L′
V(D; β, C) = k⋆D + (7.5 + Cβ) log10(k

⋆D + π) = LV(D; β, C, 0). (2.51)

instead of LV defined by (2.49). To further illustrate this choice, which is retained thereafter,

Fig 2.14, shows ξ(β) defined by (2.48) as a function of β for the uniform and Gaussian dis-

tributions of points and (C1, C2) = (0, 0), (50, 50) or (60, 0). In particular, the combination
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Figure 2.13: Influence of β on the accuracy of expansion (2.10): contour lines of log10ε for two given points

belonging to the closest non-adjacent cells (r0 = 2d) at a fixed distance from poles (r′ = 0.8D).

(C1, C2) = (60, 0) is seen to return an almost constant accuracy over the damping range of

interest, while (C1, C2) = (0, 0) leads to a deteriorating accuracy as β increases.
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Figure 2.14: Relative error ξ in the numerical evaluation of expansion (2.10): influence of β and constants

C1, C2, for two assumed distributions of r′, with r0 = 2d fixed.
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Figure 2.15: Contour lines of relative error (blue) and of averaged L (red) in (C1, C2)-space.

2.6 FULL ML-FMBEM EXAMPLES IN 3-D VISCO-ELASTODYNAMICS

In this section, the effect of introducing the complex wavenumbers k⋆
P,S into the complete ML-

FMBEM formulation, and in particular the importance of evaluating the kernels G(r; k⋆
P,S) us-

ing the damping-dependent selection rule (2.51) for L, are studied on two 3D visco-elastodynamic

examples for which analytical solutions are known. Both examples involve a spherical cavity

of radius R embedded in a viscoelastic isotropic infinite medium. In the first example the cav-

ity surface is subjected to a time-harmonic uniform pressure P (Fig. 2.16.a), while the second

example considers the scattering by the cavity, now assumed traction-free, of an incident plane

P-wave (Fig. 2.16.b) defined by uinc = ∇ exp
(

ik⋆
P z − βkPR

)

. The corresponding analytic

solutions are given for convenience in the Appendix. Only the surface of the spherical cavity

is meshed. The Poisson ratio is set to ν = 0.25, and the dimensionless frequency defined as

ηP = kPR/π. Three values of ηP have been considered, with the size of the models adjusted so

as to maintain a mesh density of about 10 points per S-wavelength, see Table 2.1.
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Figure 2.16: Geometry and notation: (a) pressurized spherical cavity, and (b) diffraction of a P-wave by a

spherical cavity.
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Mesh sphere3 sphere4 sphere5

N 7 686 30 726 122 886

ηP 1.5 3 6

Nb. levels 4 5 6

Table 2.1: Reference tests for the cavity problems. ηP = kPR/2π is the normalized frequency.

The results obtained by selecting L according to either the existing real-wavenumber rule

LE (2.28) or the proposed complex-wavenumber rule L′(·, β, C) (2.51) are compared, in terms

of relative RMS error, CPU time per GMRES iteration and number of GMRES iterations and

for the two examples considered.
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Figure 2.17: Results obtained by selecting L using the real-wavenumber rule LE, for (a) the pressurized

spherical cavity, and (b) the scattering of a P-wave by a spherical cavity.
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Performance of the previous rule LE. When LE is used (Fig. 2.17), i.e. for L independent on

β, the relative RMS error remains almost constant (or slightly decreases) as β increases, with

the CPU time per iteration also relatively insensitive to β, and GMRES converges within fewer

iterations. The reduction in the iteration count is ascribed to the exponential spatial decay of

G(r; k⋆) with r for β > 0, which balances the loss of accuracy in the kernel approximation.

Performance of the new β-dependent rule L′
V. To evaluate the influence of the constant C, the

two examples have been solved using several values of C in L′
V(·, β, C), with results depicted in

Fig. 2.18. In addition to the improved accuracy in the evaluation of G permitted by rule (2.51)

(see Sec. 2.5.2), this choice yields increasing solution accuracy (i.e. decreasing relative RMS

solution error), at the cost of a growing CPU time (due to the O(L2) quadrature points) as β

increases. The case C = 0 corresponds to L′
V = LE (real-wavenumber rule) and is reported

for comparison. When too-large L are generated (C = 150), the divergence threshold of the
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Figure 2.18: Influence of different values of the constant C in relation (2.51) : pressurized cavity (a) and

scattering by a spherical cavity (b) for ηP = 3.
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Figure 2.19: Results using L = L′′

V: (a) pressurized cavity and (b) scattering by a spherical cavity, for different

values of ηP .

Hankel functions is reached for β = 0.1, with a sharp drop in solution accuracy. The choice

C = 60, which yields an approximately constant accuracy in the evaluation of G, offers a

good compromise in terms of computational efficiency. Hence, the finally proposed damping-

dependent selection rule is:

L′′
V(D; β) = k⋆D + (7.5 + 60β) log10(k

⋆D + π) = L′
V(D; β, 60) (2.52)

Results obtained on the two example configurations using (2.52) are reported in Fig. 2.19.

The good agreement between the ML-FMBEM and analytical solutions is further stressed on

Fig. 2.20 for the scattering problem, with comparisons for the total radial displacement along

radial lines emanating from the sphere shown for several azimuths (θ = 0, π/4, π/2, 3π/4, π)

and damping factors (β = 0, 0.04, 0.08). For 0 ≤ θ ≤ π/2, the amplitude reduction occurring

with increasing damping is clearly seen. For θ > π/2, the amplitude growth with β is due to
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Figure 2.20: Scattering of an incident plane P-wave by a spherical cavity (with ηP = 4): comparison between

the ML-FMBEM and analytical solutions (radial displacement along radial lines emanating from the sphere)

for several azimuths (θ = 0, π/4, π/2, 3π/4, π) and damping factors (β = 0, 0.04, 0.08).

the apparent backward propagation on the r/R axis (forward amplitude decay appearing as a

backward exponential growth).

Remarks on the cell size threshold. The possibility to adjust the cell size threshold dmin = αλS

(Sec. 2.2.2) as a function of β is now investigated. Recall that α = 0.3 was found to be suitable

in the elastodynamic case [62]. Setting α = 0.15 instead adds one level to the octree. This extra

level results in loss of solution accuracy (of about one order of magnitude in terms of RMS),

which for viscoelastic cases is only partially compensated by the accuracy gains observed for

increasing β, see Fig. 2.21 where the effect of an extra level is tested for the two examples, with
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Figure 2.21: Influence of the cell size threshold α = 0.3, 0.15 using the proposed L−relation: (a) pressurized

cavity and (b) scattering by a spherical cavity.

L set using (2.52). In Fig. 2.21b, the relative RMS error for α = 0.15 and β > 0.08 has a value

comparable to the elastodynamic combination α = 0.3 and β = 0 (in which case adding the

new level led to acceptable results). However, this is not the case for the other example. Thus,

the presence of viscoelastic damping does not appear to allow a modification of the α = 0.3,

e.g. by making it dependent upon β, that is guaranteed to yield uniform acceptable solution

accuracy. In fact, a simple β-dependent rule for determining α = 0.3 was tried, leading to

similar conclusions.

2.7 MULTI-DOMAIN ML-FMBEM IN 3-D VISCO-ELASTODYNAMICS

The possibility to account for material damping allows a more realistic modelling of seis-

mic wave propagation in alluvial soil deposits, which are lossy materials. Here, the previ-

ously discussed alterations to the elastodynamic ML-FMBEM allowing its extension to visco-

elastodynamics have been introduced into the multi-domain ML-FM BE-BE coupling of [63],
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Figure 2.22: Multi-domain validation problem.
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Figure 2.23: Two-region example, comparison of results obtained with L set using either LE (2.28) or

L′′

V (2.52).

recalled in the subsection 2.2.3. The visco-elastodynamic multi-domain ML-FM BE-BE thus

obtained is now studied on numerical examples derived from those of [63], with the objective

to study the effect of damping.

2.7.1 Verification on a two-region example

Consider a spherical cavity of radius R1, surrounded by a spherical layer Ω1 of outer radius

R2 and embedded in a 3-D visco-elastic isotropic infinite medium Ω2, submitted to an internal

uniform time-harmonic pressure P , see Fig. 2.22. The materials in Ω1 and Ω2 are homoge-

neous and their mechanical properties are detailed in Table 2.2. This problem has an analytical

solution, given in the Appendix B .

The damping in Ω2 is β2 = 0.05, while various values in the range 0 ≤ β1 ≤ 0.1 are

considered for Ω1. The size of the problem is N = 307, 224, and the octree for each region
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µ ν ρ

Ω1 4 0.25 3

Ω2 2 1/3 1

ℓ L
(ℓ)
1 = LE(·) L

(ℓ)
1 = L′′

V(·;β1)
(β1 = 0.04) (β1 = 0.1)

2 25 28 32

3 16 18 22

4 10 13 15

Table 2.2: Two-region example: material properties (left), value of L1 for active levels 2, 3, 4 using

rules (2.28) or (2.52), for β1 = 0.04 or 0.1 (right).
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Figure 2.24: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

geometry and finite boundary element discretization.

has a leaf level ℓ̄1 = ℓ̄2 = 5. This problem has been solved with L set using either the elastic

rule (2.28) or the damping-dependent rule (2.52). Results on the relative error between the

numerical and analytical solutions for the displacement on the cavity wall and the interface

between Ω1 and Ω2 are shown in Fig. 2.23, while the values of L1 at the active levels ℓ1 = 2, 3, 4

given by rules (2.28) and (2.52) are reported in Table 2.2. Compared to the elastic rule LE, the

proposed damping-dependent rule L′′
V brings improvement on solution accuracy while requiring

fewer GMRES iterations, each iteration being however somewhat more expensive due to the fact

that L′′(D; β) increases with β.

2.7.2 Seismic wave propagation in a damped basin

In this section, an example previously used in [268] and [63] for elastic waves is considered,

where a vertically-incident plane P-wave propagates in a viscoelastic half-space containing a

semi-spherical soft basin Ω2 (Fig. 2.24). As the present FM-BEM is based on the full-space

fundamental solution, the BE mesh must include the free surface (Fig. 2.24, here truncated

within a radius D = 5R from the basin center). The basin Ω2 and the complementary semi-

infinite medium Ω1 are constituted of homogeneous, isotropic and visco-elastic materials, with

equal damping ratios (β(1) = β(2) = β) and other mechanical parameters such that ν(1) = 0.25,

ν(2) = 1/3, µ(2) = 0.3µ(1) and ρ(2) = 1.2ρ(1). Four different normalized frequencies ηP =

k
(1)
P R/π are considered. Computational data and results are summarized, for each frequency
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k
(1)
P R/π = 0.5 Pb size dmin/λS ℓ̄1 ; ℓ̄2 CPU/Iter;Nb Iter CPU/Iter ;Nb Iter CPU/Iter;Nb Iter

(β = 0) (β = 0.05) (β = 0.1)

0.5 17,502 0.15 5; 4 7.6; 26 7.7; 23 9.2; 22

0.7 17,502 0.15 6; 4 5.7; 34 5.9; 27 7.1; 24

1 90,057 0.3 5; 4 62.6; 51 72.7; 34 95.5; 29

2 190,299 0.3 6; 5 120.3; 95 153.7; 49 189.9; 35

Table 2.3: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

computational data and results.

and damping values β = 0.0, 0.05, 0.1, in Table 2.3, in terms of BEM model size N , cell

division threshold α = dmin/λS , number of levels of the octree for each subregion, CPU time

per GMRES iteration, and GMRES iteration count. The results obtained are consistent with

observations made in the previous sections. In particular, for increasing β, the iteration count

drops while the CPU time per iteration increases. Moreover, the necessary coincidence of the

results for β = 0 with the corresponding ones of [63] has been successfully checked.

Contour maps for the vertical and horizontal displacements, uz and uy, on the free surface

are shown in Fig. 2.25 for three levels of damping β, illustrating the effect of damping on the

|uz|

(a) (b) (c)

|uy|

(d) (e) (f)

Figure 2.25: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

contour maps of (a,b,c) |uz| and (d,e,f) |uy| at k
(1)
P R/π = 2 for three levels of damping in both media

(β1 = β2 = β): (a,d) β = 0 (purely elastic case), (b,e) β = 0.05 and (c,f) β = 0.1.
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basin response. The surface displacements are then compared on Fig. 2.26 with corresponding

(elastic) results of [63] for the four frequencies ηP = 0.5, 0.7, 1.0, 2.0. Results are reported in

Figs. 2.26. The amplitude decrease at the basin center in the β = 0.1 case reaches 30% for the

z-component.

Influence of the truncation radius D. An interesting issue concerns the choice of the truncation

radius D of the discretized free surface, i.e. the smallest value Dmin of D for which the solution

is insensitive to the free-surface truncation. Such parametric studies were conducted for the

elastic case in [63], and the results compared with those obtained using a semi-analytical ap-

proach in [268]. Here, it is important to determine how Dmin depends on damping. Figure 2.27a

shows |uz| on the soft basin surface computed using meshes corresponding to different values

D. The oscillations reflecting the sensitivity of the solution to the choice of D in the elastic

case (β = 0) are apparent. Convergence was found to be achieved for D ≥ 13R in the elastic

case [63], with oscillations of up to ±4% about the reference solutions when using D < 13R.

Here, with β = 0.05, such oscillations are strongly reduced, as shown in Fig. 2.27b. Fig-

ure 2.28 emphasizes these observations by plotting the ratio |uz|(D)/|uz|ref at the basin center,
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Figure 2.26: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

influence of the damping (β = 0, 0.05, 0.1) on the surface displacements |uy| and |uz| at k
(1)
P R/π = 0.5 (a),

0.7 (b), 1 (c) and 2 (d).
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Figure 2.27: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

influence of damping on the basin surface displacements at k
(1)
P R/π = 0.5 for different free surface truncation

radii D/R = 2, 4, 10, 15, 20: (a) β = 0, i.e. elastic case; (b) β = 0.05.
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Figure 2.28: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

ratio |uz|(D)/|uz|ref for the vertical displacement at the basin center, with |uz|ref := |uz|(D = 20R).

with |uz|(D) computed using given truncation radius D and |uz|ref := |uz|(D = 20R) a refer-

ence solution obtained using D = 20R, the normalized frequency being set to ηP = 0.5. The

fact that damping reduces the solution errors caused by the free surface truncation allows to use

lower values of D when dealing with viscoelastic media, with truncation values Dmin = 6R

(resp. Dmin = 3R) found to be suitable for β = 0.05 (resp. β = 0.1).

2.8 SOME REMARKS ON PRECONDITIONING

This work does not address the very important, and still largely open, issue of preconditioning

the FMBEM. Frequently-used techniques include block-diagonal preconditioners [124, 298],

the incomplete LU factorization with threshold [286], the flexible generalized minimal residual

method (fGMRES) proposed in [264] and used e.g. in [148] for the 3-D Helmholtz equation,

the sparse approximate inverse (SPAI [58]). More recently, a preconditioning based on the
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Calderon identities for periodic transmission problems for the 3-D Helmholtz equation has been

proposed [235] for accelerating the convergence in the presence of sharp solution variations

caused by high velocity contrasts.

For multi-domain problems, the system matrix is populated with various blocks whose mag-

nitude depend on material properties, with magnitude disparities leading to significant increases

in GMRES iteration count. In a previous work [63], an equation scaling approach was imple-

mented and shown on various examples to reduce this problem. The iteration count is never-

theless known to increase with N or k. A simple preconditioning strategy is proposed in [65],

where the matrix of near interactions (i.e. gathering the contributions from adjacent cells to

the influence matrix K) is used in a preconditioning matrix equation, which is solved using

GMRES set with a low accuracy threshold (hence the iterative solution algorithm features two

nested GMRES solvers).

No preconditioner was used in this work, in order to compare “raw” versions of the FMBEM

with or without attenuation. The latter, moreover, does not appear to harm the GMRES conver-

gence, since the iteration count was usually found to reduce as β increases (see Figs. 2.17-2.19).

The inner-outer preconditioned GMRES solver previously used for the elastodynamic FMBEM

can easily, and in due course will, be incorporated into the present visco-elastodynamic FMBEM,

with expected computational savings similar to those observed in [65].

2.9 CONCLUSIONS

In this Chapter, the application of a previously-published ML-FMBEM for 3-D time-harmonic

elastodynamics (involving real wavenumbers) to linear visco-elastodynamics (involving com-

plex wavenumbers, with a small imaginary part accounting for weakly dissipative materials)

has been investigated. While the underlying BIE and FM formulations are formally identical

to that of elastodynamics, the presence of complex wavenumbers called for a reassessment of

the main settings of the ML-FMBEM, and especially of the level-dependent rule for choosing

the truncation parameter L. An empirical study has been conducted, showing that a modified,

damping-dependent selection rule for L improves the average accuracy for the evaluation of

the visco-elastodynamic fundamental solution over a range of material damping ratio values β

consistent with intended applications in civil engineering or geophysics. The resulting visco-

elastodynamic ML-FMBEM has been tested on several 3D example problems involving either

single-domain or multi-domain configurations, with comparisons to known analytical solutions

made in both cases. These examples involved BE models of size up to N ≈ 3 105 boundary un-

knowns. Finally, the multi-region formulation was applied to the problem of a (seismic) wave

propagating in a semi-infinite medium with a lossy semi-spherical inclusion (alluvial basin).

The influence of the truncation radius on the free surface was tested on this problem, using BE

models of size up to N ≈ 2 105. As expected, accounting for material damping was found

to permit lower values of the truncation spatial radius than in the purely elastic case, implying

substantial savings on the BE model size.
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3.1 INTRODUCTION

The coupling of the finite element method (FEM) with the boundary element method (BEM)

takes advantage of the versatility of the FEM to model complex geometries and non-linearities

and the exact account for infinite domains, mobile boundaries or unknown boundaries offered

by the boundary integral approach. Usually, this coupling is realized through conventional

approaches or in the framework of the domain decomposition methods, both introduced in

Section 3.2. The main idea is to separate one or more bounded regions containing the vi-

brating complex structure, any steady source or complex-shaped receiver from the complemen-

tary semi-infinite space of propagation. The bounded subdomains are modelled by the FEM,

whereas the half-space where they are embedded is solved within the BEM, which formulation

allows the exact physical radiation of the waves in the surrounding soil. In the present work,

interest is focused on wave propagation problems in semi-infinite domains. The media are sup-

posed to have linear visco-elastic behavior. Non-linearities are not considered here, although

their treatment may be considered as a natural extension of this work. Figure 3.1 shows vari-

ous possible applications of the FEM/BEM coupling in the field of seismic wave propagation,

vibrations in urban environment and soil-structure interaction (SSI).

3.1.1 Contribution of this thesis

To the author’s knowledge, no approaches have been proposed to date for coupling the FEM

and the fast multipole BEM for solving 3-D seismic wave propagation problems. With this

purpose in mind, the objective of this part of thesis is to compare two FEM/FMBEM coupling

approaches.

The first strategy consists of an iterative coupling, which makes use of a modified version

of the algorithm proposed by [205]. The algorithm alternates between Dirichlet solutions on
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Figure 3.1: Various possible applications of the FE/FM-BE coupling in three-dimensional wave propagation

and soil-structure interation (SSI): (a) incident seismic wave, (b,c) induced vibration in urban environment.

Complex geometrical details, anisotropies, non-linearities are confined in a bounded subdomain modelled by

FEM (ΩF ), whereas the complementary semi-infinite space of propagation is modelled by BEM (ΩB).
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ΩF and Neumann solutions on ΩB. A relaxation of the displacement field on the FEM/BEM

interface is performed at each iteration. Existing FEM and BEM software are used in black-

box fashion, driven by an external interface algorithm, a strategy often adopted in previous

formulations of BEM-FEM coupling because of its easy implementation [103]. However, it

has two main drawbacks: (i) the convergence depends on the value chosen for the relaxation

parameter, and (ii) each global iteration in general would require NFMBEM internal GMRES

iterations for the fast solution of the BE global system, i.e. it would need Nglob × NFMBEM

iterations for a single computation. This latter disadvantage can be partially smoothed by setting

at each new global iterate the GMRES initial guess to the solution of the previous iterate.

The second strategy is a simultaneous coupling approach based on solving a global system of

equations combined with the transmission conditions across Φ. An implicit condensation for the

FEM degrees of freedom is employed, and the global system is solved by generalized minimal

residual (GMRES). The blocks corresponding to the BEM equations are never explicitly built.

At each iteration, the matrix-vector product is computed by the FMBEM (with a complexity

of order O(NlogN) instead of O(N2) using traditional BEM). The FEM damped dynamic

stiffness matrix is set up once and for all, stored in the compressed sparse row (CSR) format

then invoked at each iteration to solve the FE system.

This Chapter is organized as follows. After an introduction to the domain decomposition

methods and a bibliographic survey of the available FEM/BEM coupling approaches, the iter-

ative and the simultaneous FEM/FMBEM couplings are presented. A distinctive feature of the

FEM/FMBEM coupling is the possibility to solve geometrically complex problems. However,

in this work the validation of the proposed algorithms has been carried out on deliberately sim-

ple examples to allow the comparison with FMBEM results. Before the concluding remarks,

the perspectives of applicability of the presented coupling approaches are discussed. Details of

the implementation of both coupling approaches are addressed in Appendix D.

3.1.2 Work choices and constraints

The purpose of this part of work is to compare different FEM/FMBEM coupling strategies

and to identify the most effective one in sight of the intended application, i.e. seismic wave

propagation in large domains potentially containing localized non-linearities, anisotropies or

complex geometries. During the work, some choices have been driven by external constraints,

that we introduce in the following.

As this thesis has been conducted within the IFSTTAR1 (ex Laboratoire Central des Ponts et

Chaussées, LCPC), we took the natural choice of using the IFSTTAR own code CESAR-LCPC 2

for the FEM part. CESAR-LCPC is a civil engineering computation software with modular

architecture, mainly based on the finite element method, having its own pre-processing and

post-processing program (called Cleo and Peggy respectively) [160,161]. The computational

core of CESAR-LCPC is called CESAR. In particular, the CESAR module required to solve 3-

1French institute of science and technology for transport, development and networks (www.ifsttar.fr)
2www.itech-soft.com/fr/cesar/cesar.htm
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D time-harmonic linear visco-elastodynamic problems within the FEM and used in the present

work is called LINC.

The initial idea was to use CESAR in a black-box fashion for the iterative coupling and in an

interactive manner for the simultaneous coupling without modifying the original module LINC.

Indeed, LINC includes some features as for example to store the FEM dynamic stiffness matrix.

However, this module it is not yet able to freely interact with an external code. Therefore,

whereas the iterative coupling algorithm partially exploits the capabilities of the module LINC

(code CUSEQ, see Appendix D), for the simultaneous coupling we have preferred to implement

directly the needed FEM subroutines in the existing FMBEM code COFFEE. This latter choice

was dictated by time constraints, and has some drawbacks. In particular, as a consequence of

the conforming coupling (i.e. matching grids at the FE/BE subdomains interface) the type of

finite elements that can be used in the FEM subdomains is limited to linear four-node tetrahedra,

which are known to be particularly dispersive in FEM dynamics computations.

We are aware of the limitation caused by these choices, taken for lack of time. Therefore,

forthcoming improvements include (i) the implementation of a non-conforming coupling allow-

ing non-matching grids at the FE/BE interface (see Sec. 3.7) and (ii) the possibility to couple

the code CUSIM with an external FEM code (including modification to the module LINC and

an opening to free FEM codes). These measures will ensure a total freedom in the definition

of the FEM subdomain in terms of material behavior, type of finite element (beam elements

for a better modelling of structures, contact elements to account for the soil-structure dynamic

interaction, etc), etc. We refer to Section 3.7 for a more detailed explanation of the expected

further improvements.

3.2 FEM / BEM COUPLING APPROACHES FOR WAVE PROPAGATION PROBLEMS: SUR-

VEY

In Section 1.4.2, we have introduced some of the main existing methods for the numerical mod-

elling of wave propagation in 3-D unbounded media. Depending on the formulation and on the

type of discretization, each method has its own advantages and drawbacks in dynamics. Among

the other methods, the finite element method (FEM) and the boundary element method (BEM)

are of interest in the present work because of their complementarity, which has been largely

exploited in the last decades through coupled formulations. The FEM is usually employed to

discretize one or more bounded regions containing complex structures or portion of material

where non-linearities are expected to occur, whereas the BEM is adopted as an alternative to

the non-reflecting boundary conditions (NRBCs) to assure continuity at the artificial bound-

ary and simulate the radiation to infinity of the wave field. The FEM/BEM coupling can be

performed either through conventional approaches or domain decomposition approaches.

3.2.1 Conventional approaches

The conventional approaches use an entire unified system of equations for the whole domain by

altering the formulation of one of the two methods to make it compatible with the other. Con-
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ventional approaches divides into BEM-hosted (or ’equivalent’ or ’local’ BE) and FEM-hosted

(or ’equivalent’ or ’local’ FE). In BEM-hosted approaches, the FEM system is modified by in-

troducing a matrix that transforms the tractions applied on the domain in the equivalent vector

of nodal forces. This transformation matrix only depends on the spatial interpolation functions,

i.e. the shape functions, for the elements along the interaction boundary. Then, the FEM and

BEM systems are assembled as shown in the diagram of Figure 3.2. Similarly, in FEM-hosted

approaches the boundary element domain is transformed into a macro finite element defined by

the equivalent dynamic stiffness matrix, as shown in Figure 3.3. In general, conventional ap-

proaches are rarely used because the advantages of FEM system properties, namely symmetry,

sparsity and bandedness, are lost. Moreover, implementation of conventional approaches needs

an integrated finite element-boundary element computational environment, a highly undesir-

able requirement because of high intrusivity with respect to existing FEM and BEM codes. A

forced symmetrization of the indirect BEM was proposed for FEM-hosted approaches in [328].

However, some authors criticized this artifice to be mechanically inconsistent, and to lead to

a non-accurate numerical solution [219]. A review of classical BEM/FEM coupling methods

can be found in [158]. In particular, for elliptic problems we refer to [302] and for symmetric

hybrid methods to [45, 77].

BEM FEM

[H] {uB} = [G] {tB} [K] {uF } = {fF }
↓ ⇐⇒ ↓

[
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]
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Figure 3.2: BEM-hosted approach: the FEM right-hand side is slightly modified to be hosted by the BEM

system. The transformation matrix [M ] is defined as {f}= [M ] {t}, where {f} is the vector of nodal forces

equivalent to the tractions {t} applied on the domain. Superscripts Φ and I separate the DoFs belonging to

the FE/BE interface Φ from the internal DoFs I .

BEM FEM

[H] {uB} = [G] {tB}

↓

[M ] [G]−1 [H] {uB} = [M ] {tB}
↓

[

K̃
]

{uB} = {fB} ⇐⇒ [K] {uF } = {fF }

Figure 3.3: In FEM-hosted approach, an equivalent dynamic stiffness matrix [K̃] is defined for the BE domain

and the BEM system is slightly modified to be hosted by the FEM system.
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Despite their computational burden, conventional approaches are often used in the engineer-

ing practice for problems of limited size. For example, a BEM-hosted FEM/BEM coupling

method has been used for the 3D analysis of a half-space stiffened by piles [72, 73]. FEM-

hosted methods have been successfully applied since the late 1980s [125, 312]. Recently, they

have been used for example in time-domain soil-structure interaction (SSI) [300], in the study of

railway-induced vibrations [17,290] or surface vibrations induced by underground traffic [5,15].

Andersen et al. [16] define a moving load source in a convected coordinate system to describe

the ground vibrations due to the passage of a train. Problems involving non-linearities in the

FEM subregions have been addressed for example in [245, 324].

3.2.2 Domain decomposition methods: introduction

Main idea. In general, a coupled system consists either of two or more physical systems in-

teracting with each other and which solution can not be sought independently, or of one single

problem which solution is split in subdomains for computational reasons. According to the

spatial decomposition of the global domain, domain decomposition methods (DDMs) divide

in two categories: overlapping and non-overlapping [330]. In the non-overlapping approach

(called Class I), the subdomains share a portion of boundary and the coupling has the form of

specific boundary conditions defined on the common interface. The need for the splitting of a

domain into two or more subdomains may be motivated by the interaction of different physical

problems, e.g. fluid-structure interaction, or because different procedures are computationally

desirable on the subdomains, e.g. different meshes, different time-stepping procedures or com-

bination of different numerical methods. In the overlapping approach (called Class II), the

subdomains overlap (partially or totally) and the coupling occurs in the differential equations

describing the different phenomena involved.

Continuity of displacements and equilibrium of the tractions across the common interfaces

must be assured through appropriate transmission conditions (TC) to recover the original prob-

lem. Depending on the type of connection between two subdomains, transmission conditions

can be enforced in a weak or in a strong sense. Strong coupling conditions require conforming

connection of the interface meshes, i.e. that (i) there is a one-to-one correspondence between

Figure 3.4: Diagram of the possible domain decompositions: (a) overlapping subdomains, (b) non-

overlapping subdomains with matching grids at the common interface and (c) non-overlapping subdomains

with non-matching grids.
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degrees of freedom on the interface (i.e. meshes coincide) and that (ii) the traces of interpolation

functions on the shared faces are the same. In this case, continuity and equilibrium conditions

are directly imposed on the interface nodes. Otherwise, if the above conditions are not re-

spected the subdomains connection is said to be non-conforming and weak coupling conditions

are imposed.

Origin and development. The first Domain Decomposition Method was proposed in a pioneer-

ing paper in 1870 by the German mathematician Hermann Schwarz. It consisted in an alternat-

ing method to solve a PDE defined over two overlapping subdomains. Despite this old origin

however, the interest of the numerical community towards Domain Decomposition Methods

arose only in the 1980’s (the first international congress on DDM took place in Paris in 1987).

Two are the main reasons for this resumption. On the one hand, the enormous progresses made

in the numerical modelling field during last decades has enabled the solution of more complex

and larger problems, i.e. problems with increasing memory and time consumption require-

ments. On the other hand, concurrent advances in parallel computing have provided power-

ful computational tools to support this demand. Nowadays, Domain Decomposition Methods

constitute a class of numerical methods and the framework in which efficient solvers for the

iterative solution of substructured problems are derived. Fundamental theory of DDMs can be

found in [305]. The web page of Domain Decomposition Methods, www.ddm.org, offers all the

proceedings of the almost annual International Conference on Domain Decomposition Meth-

ods, links to people working in the field and information about books and other material related

to Domain Decomposition.

3.2.3 Classical non-overlapping domain decomposition methods

In non-overlapping DDMs (or iterative substructuring methods), the original problem defined

over a domain Ω is partitioned into a set of subdomains as [305]:

Ω =
n
⋃

i=1

Ωi, withΩi ∩ Ωℓ = Φiℓ, i 6= ℓ,

where Φiℓ is the portion of surface shared by adjacent subdomains i and ℓ. The subdomains are

linked through the definition of relevant transmission conditions (TC) on the common interfaces

Φ. Then, the global solution is either found by solving a global system of equations incorporat-

ing the TC or constructed iteratively from the repeated solution of local problems (by means of

direct or iterative local solvers). An iterative domain decomposition method for the solution of a

linear system is said to be optimal if its rate of convergence to the exact solution is independent

of the size of the system, and scalable if its rate of convergence does not deteriorate when the

number of subdomains grows [305]. The iterative substructuring algorithms should assure op-

timality and scalability. Usually, for two-structures problems these two properties are satisfied.

For multi-structures systems, suitable preconditioners ensure optimality and the incorporation
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of a coarse global problem ensures scalability. In particular, in parallel computing there exist

two definitions of scaling that represent how the execution time varies with the number of pro-

cessors: the strong scaling refers to a problem of fixed size, whereas the weak scaling refers to

a fixed-size problem per processor.

The literature concerning DDMs is huge. However, the classical strategies developed for

potential or linear elasticity problems can be divided into several categories depending on how

each method deals with the boundary conditions at the interface Φ [139]. In primal approaches,

the interface primal variable (the displacement field in elasticity) is chosen as the main un-

known. The balancing domain decomposition (BDD) [217] and the balancing domain decom-

position by constraints (BDDC) [93] are examples of primal approaches applied within the finite

element method. The first step consists of solving a Dirichlet problem on each subdomain Ω(i)

considering an initial guess uΓ
0 = 0. Then, the difference of the normal derivatives of the so-

lutions of the two Dirichlet problems (uΓ
1/2) is imposed as Neumann data on Γ and a Neumann

problem is solved on each subdomain as an intermediate n + 1/2 iteration. Finally, the values

obtained (λ
(i)
n+1) are used to correct the initial guess uΓ

0 and find the new iterate uΓ
1 , see Fig. 3.5.

In dual approaches, the interface dual variable (force density in elasticity) is chosen as

the main unknown, see Fig. 3.6. The finite element tearing and interconnecting method

Figure 3.5: Step of a primal approach [139].
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Figure 3.6: Step of a dual approach [139].

(FETI) [112] is an example. In FETI methods the continuity of primal unknowns is enforced

using discrete Lagrange multipliers, and the corresponding saddle-point problem is solved it-

eratively via a preconditioned conjugate gradient (PCG) subspace iteration. The inexact FETI

considers both primal and dual variables as unknowns and uses inexact subdomain solvers in-

stead of the direct ones [186]. Mixed approaches consider a linear combination of primal and

dual variables as principal unknown on the interface, then solve the global system iteratively and

post-compute the primal and dual solution field [138]. In hybrid approaches, different boundary

conditions (primal, dual or mixed) are assigned to different parts of the interface [110]. For a

comprehensive introduction to non-overlapping DDM in computational mechanics we refer the

reader to [116, 139, 203, 305].

In 2003, Langer and Steinbach introduce the boundary element counterpart of FETI, i.e.

the boundary element tearing and interconnecting method (BETI) [197], later extended to an

inexact fast multipole BETI [199]. They also propose a coupled FETI/BETI method based on

symmetric coupled boundary and finite element equations that preserves the optimality, scala-

bility and robustness of FETI [198].

Among the available non-overlapping DDM, the interface relaxation (IR) approaches in-

volves separated computations on each subdomain (possibly by means of different codes) with

successive updating of the boundary conditions on the common interface until final convergence
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is reached [102, 103, 257]. Relaxation algorithms are distinguished by the type of interface

smoothing procedure applied at each iteration, called relaxation. The main existing interface

relaxation FEM/BEM coupling algorithms are summarized in Appendix C. The main advan-

tage of IR methods consists of the fact that they allow the use of existing codes as black boxes.

However, the interface relaxation depends on empirical coefficients that vary with the problem

at hand and that strongly influence the convergence. In [172], N. Kamiya et al. implemented

a BE-BE coupling analysis using different IR algorithms on a cluster computing system and

compared three alternative schemes for the solution of internal virtual boundaries: the Uzawa

method (equivalent to a parallel Dirichlet-Dirichlet algorithm) with a non-overlapping Schwarz

Neumann-Neumann and a Schwarz Dirichlet-Neumann algorithm. In this study, the coefficients

appearing in the definition of the new iterate have been derived through numerical tests. Per-

formances of individual schemes have also been investigated, and as a result the Schwarz D-N

seems to be the fastest and the most stable. In successive studies, the same authors have imple-

mented a CBEM-FEM coupling using first the non-overlapping Schwarz Dirichlet-Neumann

combined method resulting from the previous work [173], then a conjugate gradient method

(CGM) for the renewal of unknowns on the combination boundary [171]. Recently, a symmet-

ric BEM has been coupled with the FEM in electroencephalography, to simulate on the scalp

the potential of an electromagnetic field generated by a simulated source. This coupling uses a

Dirichlet-Neumann algorithm with interface relaxation [238].

Coarse space. In the case of many subdomains, to avoid data transmission through interme-

diate subdomains and to propagate information through the whole problem, the possibility to

define a second coarse level has been introduced (historically at the DD1, 1987, Paris). The

main purpose of the coarse space is to provide a minimal amount of global transfer of infor-

mation, at each step, across the entire domain (i.e. minimize data exchange between local

problems) in order to obtain optimal bounds [218, 315].

Domain decomposition methods for the Helmholtz problem. Application of the classical non-

overlapping domain decomposition methods to Helmholtz-like problems is not straightforward.

Local eigensolutions may appear when solving the local boundary value problems causing pos-

sible non-uniqueness of the solution. Various approaches have been proposed to extend the

application of DDM to Helmholtz problems. In 1990, Despres extended the Schwarz non-

overlapping domain decomposition method of [206] to time-harmonic wave propagation prob-

lems and showed that using Sommerfeld-type boundary conditions between adjacent subdo-

mains leads to a unique solution of the Helmholtz equation in a given finite domain [91]. Later,

La Bourdonnaye et al. [87] abandoned the iterative relaxation-like algorithm of Desprès to for-

mulate the interface problem in terms of Lagrange multipliers, and for its solution they develop

a scalable preconditioned Krylov method. To date, some of the existing approaches consist in:

(i) the definition of a coarse mesh finite element problem [56,111], (ii) the use of Robin bound-

ary conditions at the interface Φ [301] and (iii) the extent of the Robin conditions to a first- or

a second-order optimal transmission conditions [126]. A survey of non-overlappind DDM for

harmonic wave propagation models is presented in [75].
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3.2.4 Coupling of FEM with BEM and FMBEM for wave propagation problems

In 1996, Lin proposed an interface relaxation algorithm for linear elastostatics [113, 205]. This

algorithm was then applied in transient elastodynamics [311]. Recently, Soares [294] ap-

plied an iterative interface relaxation algorithm for 2D structural analyses in the time domain.

Here, distinct time-step discretizations were considered in different subdomains. Moreover,

to match the ’time-disconnected’ results in the different subdomains, adapted time interpola-

tion/extrapolation procedures were used. Non-linear behavior confined in the FEM subregions

have been addressed in several works [79, 104, 296, 310].

To take advantage of the acceleration induced by the fast multipole method (FMM) to the

BEM, the finite element has been sometimes combined with the fast-multipole boundary Ele-

ment method (FMBEM) to solve engineering problems. The electromagnetic scattering of in-

homogeneous objects, with the interior problem modelled by the FEM and the exterior problem

modelled by the fast multipole BEM was used in [291]. In 2005, Fisher used a FMBEM/FEM

mortar coupling to study fluid-structure interaction [115]. He used finite plate elements to model

the vibrating structure and a Galerkin formulation for the acoustic BEM domain. The interface

pressure was modelled as a Lagrange multiplier, and non-matching grids were assumed at the

interface. A unique coupled system was solved within a Uzawa-type scheme, where the matrix-

vector product of the BEM submatrices was carried out by multi-level diagonal FMM. Marg-

onari and Bonnet coupled the FEM with a collocation FMBEM in elastostatics, using a global

iterative GMRES (generalized minimal residual) solver improved by a preconditioner based on

the sparse approximate inverse (SPAI) of the BEM block [222]. Frangi employed an implicit

condensation to solve a magnetostatic problem [120]. Schneider [276] applied in fluid-structure

interaction field the approach proposed by Burton and Miller in 1971 [54] that suggested the

use of a linear combination of the boundary integral equation and its normal derivative to obtain

a unique solution of the exterior problem at all wave numbers. In his work, he solved the global

system of equations by using the diagonal fast multipole method. The Burton-Miller formula-

tion was used also in a coupling of the FEM with the symmetric Galerkin BEM accelerated by

a diagonal multi-level FMM applied to frequency-domain acoustic scattering [129, 220] and to

fluid-structure interaction [52].

3.3 FINITE ELEMENT METHOD FOR TIME-HARMONIC VISCO-ELASTODYNAMICS

In this Section, the weak formulation of a time-harmonic wave propagation problem and its

discretization by the finite element method are briefly recalled.

3.3.1 Time-harmonic formulation

Let the subdomain Ω ∈ R
3 be a homogeneous viscoelastic body with boundary ∂Ω, submitted to

external boundary conditions harmonic in time with circular frequency ω. Assume that Dirichlet

boundary conditions are imposed on a portion ∂UΩ and that Neumann conditions on a portion

∂TΩ such that ∂Ω= ∂UΩ ∪ ∂TΩ, as depicted in Fig. 3.7. In the following, the factor e−iωt is
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Figure 3.7: Equilibrium of a viscoelastic solid Ω under time-harmonic boundary data uD, tD.

systematically omitted. The problem is governed by the local equations

∇.σ(x, ω) + ρω2u(x, ω) = 0, (x ∈ Ω) (3.1a)

ε(x, ω) =
1

2
(∇u +∇uT )(x, ω), (x ∈ Ω) (3.1b)

σ(x, ω) = C⋆(ω) : ε(x, ω), (x ∈ Ω) (3.1c)

with the boundary conditions

u(x, ω) = uD(x, ω), (x ∈ ∂UΩ) (3.1d)

σ(x, ω).n(x) = tD(x, ω), (x ∈ ∂TΩ), (3.1e)

where C⋆ is the complex relaxation tensor. Multiplying the equation (3.1a) by the kinematically

admissible virtual field w, integrating by parts and introducing the constitutive law (3.1c) leads

to the weak formulation:

∫

ΩF

ε[u(x, ω)] : C⋆ : ε[w(x, ω)] dV

=

∫

ΩF

ρω2 u(x, ω).w(x, ω) dV +

∫

∂ΩF

[σ(x, ω).n(x)].w(x, ω) dS. (3.2)

Hereinafter, we omit the dependence (x, ω) for convenience. Let Ω̃ denote the approximation of

the domain Ω after the three-dimensional finite element discretization, and ∂Ω̃ the discretization

of ∂Ω. Separating the unknown displacement degrees of freedom u0 from those imposed by the

boundary data uD (such that u = u0 + uD) yields

∫

Ω̃

ε[u0] : C⋆ : ε[w] dV −
∫

Ω̃

ρω2 u0.w dV

= −
∫

Ω̃

ε[uD] : C⋆ : ε[w] dV +

∫

Ω̃

ρω2 uD.w dV +

∫

∂T Ω̃

tD.w dS, (3.3)
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where uD is an extension in Ω of the uD appearing in the definition (3.1d). Moreover, u0 = 0

and w=0 on ∂UΩ. The weak formulation (3.3) can be rewritten in the form:

W
TKU = W

T
F,

which is equivalent to the linear system:

KU = F, (3.4)

where K is the damped dynamic stiffness matrix, U collects all unknown displacement degrees

of freedom in the subdomain Ω̃, F = F
U+F

T is the vector of generalized nodal forces associated

respectively with prescribed displacements on ∂U Ω̃ and tractions on ∂T Ω̃. The matrix K is given

by:

K = K− iωC− ω2
M (3.5)

K being the elastic stiffness matrix, C the damping matrix and M the mass matrix. The ”−iωC”

in (3.5) stems from the assumption of harmonic time-dependence factor e−iωt. There exist

different methods to define the damping matrix (e.g. viscoelastic models, Rayleigh, Caughey,

etc). In this work, since the problem is solved in the frequency domain, we consider a simple

model, the proportional Rayleigh damping.

3.3.2 The Rayleigh damping matrix

The Rayleigh formulation defines the damping as proportional to the mass and stiffness matri-

ces:

CF = aKF + bMF .

Coefficients a, b are related to the damping factor β by [277]

2 β = a ω + b/ω., (3.6)

where ω is the circular frequency. This relation is important because it allows to establish

a consistency between the definition of damping in the BE and the FE subdomains. Infinite

damping of low and infinite frequencies is expected from (3.6). The coefficients a, b should be

chosen such that the damping is almost constant over the seismic frequency range [207]. For

small to moderate values of the damping ratio, an interpretation of the Rayleigh damping as

a particular Generalized Maxwell rheological model is discussed in [277]. For time-domain

analyses, the proposed equivalence allows to easily derive a, b from the constitutive parameters

of the rheological model. However, when working in the frequency domain, this step is not

necessary and one should only respect the relation (3.6). Therefore, a, b are not a priori unique.

In this work, to define a, b we refer to the structural dynamics theory, where the damping factor β

is defined as a modal damping ratio ξn (for n structural modes), related to the natural frequency

ωn by the relation (3.6) (with β := ξn and ω = ωn). Here, the (a, b) coefficients are derived by

solving two algebraic equations of type (3.6) for the two modes ωi and ωj and imposing ξ =
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ξi = ξj [69], in order to obtain almost the same values of damping for all the desired n modes.

In the present work, we have chosen (a, b) as the couple of coefficients which correspond to the

minimum of the Rayleigh curve (3.6), i.e. a = β/ω and b = β ω. This choice allows to recover

the pure elastic behavior in case of lossless materials.

3.3.3 FEM numerical dissipation and dispersion for wave propagation problems

Accurate modelling of wave propagation with FEM depends strongly on the wavenumber k.

Usually, for low wavenumber problems the ’rule of thumb’ kh =const is used (h being the finite

element mesh size) [152]. However, for medium to high wavenumber, this rule deteriorates the

numerical results [28]. An analysis of stability and error estimation for a one-dimensional model

problem subjected to a constraint of the kh magnitude for h-FEM is addressed in [164]. In par-

ticular, the influence of the topology of triangles or tetrahedra elements for the discretization of

2D, respectively 3D domains on the solution of Helmholtz problems is addressed in [313,320].

For 3D problems, it was observed that the numerical dispersion using non-uniform unstructured

meshes of linear tetrahedra is smaller if compared to uniform structured meshes. A possible ex-

planation is that each finite element introduces a numerical dispersion that results in a positive

or negative phase error depending on the shape and orientation of the element w.r.t. the prop-

agating wave. For a uniform mesh this leads to a cumulative error, whereas for a non-uniform

mesh (made of random-oriented and shaped elements) is likely to facilitate the cancellation of

the phase error [320]. A direct effect of the numerical dispersion is the pollution, defined as the

difference between the discretization uI of the exact solution u and the discrete FE solution uh,

as shown in Fig. 3.8 [90].

Figure 3.8: Numerical dispersion in the FEM solution of a 1D wave propagation problem (0 ≤ x ≤ 1)

on a uniform mesh with element size h = 0.1 [90]. The superposition of the exact and numerical solution

shows the error on the wavenumber produced by the discretization. The pollution error, directly related to the

dispersion, is defined as the difference between the discretization uI of the exact solution u and the discrete

FE solution uh.
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3.3.4 Influence of the mass matrix formulation on numerical dispersion

The approximation of the mass through the mass matrix M in (3.5) influences the numerical

dispersion. The two main methods to construct the mass matrix of an individual element are

the consistent and the lumped mass [159, 252, 285]. To build the consistent mass matrix, the

same shape functions [N ] used for deriving the element stiffness matrix are used. Therefore,

the consistent mass matrix is fully populated. For the finite element of density ρ the elementary

mass matrix M (e) reads:

[M
(e)

consist
] =

∫

V (e)

ρ[N ]T [N ]dV. (3.7)

The lumped mass matrix is apportioned through concentrated masses mi at the i node points.

This excludes the dynamic coupling between the element displacements given by the shape

functions, resulting in a purely diagonal element mass matrix:

[M
(e)

lump
] =

ρV (e)

4
[I12], (3.8)

where [I12] is the (12 × 12) identity matrix. On the one hand, the lumped mass matrix is pre-

ferred when the physical problem approaches the assumption of concentrated masses, e.g. in

structural dynamics (modal analysis), when multi-storey buildings are considered as multiple-

DoF systems. Moreover, the diagonal lumped mass matrix offers computational and storage

advantages, for example in explicit time integration. However, (i) it overlooks the inertial ef-

fects due to bending and (ii) it overestimates the rotational inertia in rigid-body beams rotations.

On the other hand, the consistent mass matrices are more accurate, at the price of being com-

putationally more expensive for large problems.

The consistent and the lumped mass matrix formulations introduce a numerical dispersion with

opposite effects. For example, the consistent mass overestimates, while the lumped mass under-

estimates, the natural frequency of oscillating systems [159]. Therefore, a mixed mass matrix

formulation was proposed as a linear combination of the previous two methods [211]:

[M
(e)

mix
] = α[M

(e)

consist
] + (1− α)[M

(e)

lump
], (3.9)

with the coefficient α varying between 0 < α < 1. The mixed formulation often leads to

better numerical results, minimizing the numerical error introduced by the mass approximation.

Hereinafter, sometimes we will compare performances of these different formulations.

3.4 DOMAIN DECOMPOSITION AND INTERFACE PROBLEM

3.4.1 Surface loading and far field excitation

In any homogeneous isotropic viscoelastic domain Ω ∈ R
3, the wave field generated by time-

harmonic boundary conditions applied on any portion of the boundary ∂Ω of Ω radiates from the

source towards infinity. Throughout this chapter, we will refer to this particular case of loading
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with the general term surface loading. Some examples of this kind of excitation are illustrated in

Fig. 3.1b-c. On the other side, the propagation in the computational domain of an incident wave

coming from infinity will be denoted as far field excitation, like in the example depicted in Fig.

3.1a. The two denominations are inspired by the most common applications related to the two

phenomena, namely the ground vibration generated by a surface loading and the propagation

of seismic waves generated by a remote source. The formulation of each numerical method

is defined in terms of total or of scattered field, depending on the problem at hand. The FEM

formulation presented in Sec. 3.2 is expressed in terms of the total field. The boundary integral

equation (2.7) can be used for seismic scattering single-domain problems. For multi-domain

problems, one should use the continuous formulation of the BIE in terms of total wavefield

recalled in Sec. 2.2.3. When defining a coupled problem, it is thus necessary to establish a

consistent definition of the adopted formulations and/or of the transmission conditions.

For a pure surface loading, the classical FEM formulation in terms of total field as intro-

duced in Section 3.3 and the boundary integral equation as written in (2.7) holds. If a far field

excitation is analysed, one should choose between solving the equation of motion in terms of

total field or of scattered field. The former case would need to employ the continuous formula-

tion of the BIE in terms of total field, the latter to use a FEM formulation in terms of scattered

field. During the Chapter we will specify in each case which formulation has been used.

3.4.2 Interface problem statement

Let Ω ⊂ R
3 denote a region of space occupied by a three-dimensional isotropic homogeneous

(visco)elastic solid with boundary ∂Ω, as depicted in Fig. 3.9a. Body forces and boundary con-

ditions are assumed time-harmonic with circular frequency ω, the implicit factor e−iωt being

systematically omitted in the following. As the domain Ω may feature complex geometrical

(a) (b)

Figure 3.9: Spatial domain decomposition for FEM/BEM coupling: (a) original time-harmonic problem

defined in the semi-infinite domain Ω and (b) decomposition in the two non-overlapping subdomains ΩB

(discretized by BEM) and ΩF (discretized by FEM). The portion of surface shared by the two subdomains is

the interface Φij , where by convention ij subscript indicates the subdomain to which the interface belongs (i)
and the adjacent one (j). Normals are oriented outwards each subdomain.
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details, heterogeneous or anisotropic materials (all of these features being here assumed to

be confined in a bounded region) a solution of the wave propagation problem by FMBEM is

not feasible for many applications. Therefore, a spatial decomposition of Ω into a bounded

subdomain ΩF (which embraces the above mentioned ”irregularities”) and into its unbounded

complement ΩB (which allows the wave radiation and dispersion at infinity) is introduced. Al-

lowing more flexibility, the finite element method is used to discretize the problem in ΩF , while

the boundary element method is used for the subdomain ΩB. Possible piecewise homogeneous

regions in ΩB are treated with the BE-BE coupling presented in Sec. 2.2.3. The two subdo-

mains ΩB,ΩF are supposed to be non-overlapping. The portion of boundary shared by the

subdomains is the interface Φ = ∂ΩB ∩ ∂ΩF . Hereinafter, the notation Φij will indicate the

portion of surface of the subdomain Ωi adjacent to Ωj and having the normal n oriented from

Ωi to Ωj . Summarizing (with reference to Fig. 3.9):















Ω = ΩB ∪ ΩF , (domain decomposition)

ΩB ∩ ΩF = ∅, (non-overlap)

Φ = ∂ΩB ∩ ∂ΩF , (interface)

where
{

∂ΩF = ΓF ∪ ΦFB,

ΓF = ∂Ω ∩ ∂ΩF ,

{

∂ΩB = ΓB ∪ ΦBF ,

ΓB = ∂Ω ∩ ∂ΩB.

Continuity of the displacement field and equilibrium of the traction field across the common in-

terface Φ must be enforced through appropriate transmission conditions. Depending on the type

of connection between the subdomains, transmission conditions can be enforced in a weak or

in a strong sense. As recalled in the introductory Chapter 1, strong coupling conditions require

conforming connection of the interface meshes, i.e. that (i) there is a one-to-one correspondence

between degrees of freedom on the interface (i.e. meshes coincide) and that (ii) the traces of

interpolation functions on the shared faces are the same. In this case, continuity and equilib-

rium conditions are directly imposed on interface nodes. In the present work, matching grids

and conforming connections are considered along the interfaces, where a strong coupling is

imposed. Displacements uD(t) and tractions tD(t) can be imposed on the portions ∂uΩ and ∂tΩ

of the boundary. The system of local equations governing the elastodynamic problem restricted

to each subdomain Ωs (s = B,Fi) reads (neglecting body forces):

∇.σs(x) + ρsω
2us(x) = 0, (x ∈ Ωs), (3.10a)

εs(x) =
1

2
(∇us +∇uT

s )(x), (x ∈ Ωs), (3.10b)

σs(x) = Ds : εs(x), (x ∈ Ωs). (3.10c)
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where ρs is the mass density of the domain Ωs and Ds is the fourth-order tensor expressing the

constitutive behavior. The boundary conditions of Dirichlet or Neumann type read

us(x) = uD
s (x), (x ∈ ∂UΩs), (3.10d)

σs(x).ns(x) = tDs (x), (x ∈ ∂TΩs). (3.10e)

In elasticity, Ds would be the fourth-order elasticity tensor, whereas in visco-elasticity it would

be the relaxation tensor C⋆. Considering the unit normal n as pointing outward from each Ωs,

the transmission conditions on each general Φiℓ read:

ui(x) = uℓ(x), (x ∈ Φiℓ), (3.10f)

σi(x).ni(x) + σℓ(x).nℓ(x) = 0, (x ∈ Φiℓ). (3.10g)

3.4.3 Assumptions common to the coupling algorithms

The presence of surface piecewise homogeneous layers (see Fig. 3.10) can be taken into ac-

count by using the multi-region BE-BE coupling presented in Section 2.2.3. To distinguish the

BE/BE interfaces from the FE/BE ones, we will denote the former with Γ and the latter with Φ

throughout the Chapter.

Convention for normal vectors. As already mentioned, the normals are considered outwarding

each subdomain, as shows Fig. 3.11. Subscript ij (where i, j can be alphanumerical depending

on the domain to which one is referring) always indicates that the degree of freedom (DoF)

belongs to domain i, whereas j specifies the subdomain with which the DoF is shared.

Discretization of the subdomains. The surface of ΩB is discretized with three-node triangular

boundary elements, and the FE volumes ΩF are discretized with four-node isoparametric lin-

(a) (b)

Figure 3.10: Coupling FE and multi-region FM-BE: (a) the original domain of the wave propagation problem

and (b) the spatial decomposition in subdomains and their discretization. The thin structure and the closer

complex material heterogeneities are enclosed in a bounded 3-D subdomain, which is modelled by FEM. The

geological layers are modelled by a multi-region FMBEM.
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�
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�

Figure 3.11: Outwarding normal convention for the subdomains FE and BE.

ear tetrahedral elements. The set of three-node triangular faces of the tetrahedra lying on the

interface Φ constitutes the discretization of the corresponding BEM surface, as shown in Fig.

3.12. Consequently, each part of the BEM mesh intersecting the interface Φ and the trace of the

FEM three-dimensional mesh on Φ are the same by construction. Moreover, they are associated

with the same interpolation functions, namely piecewise linear interpolation of displacements.

As the interpolation on the interface is conforming, perfect bonding conditions are expressed in

strong form on the nodal values. The two subdomains cannot be solved independently, and the

original problem is recovered by the transmission conditions on the interfaces.

3.5 ITERATIVE FEM/FMBEM COUPLING

3.5.1 Introduction

To solve the coupled problem we use a single relaxation sequential Dirichlet-Neumann algo-

rithm . This algorithm was first proposed in 1996 by Lin in the form of an interface relaxation

algorithm for linear elastostatic [205]. Convergence studies [101, 103] proved that the conver-

gence depends on many factors such as the material properties of the subdomains, the boundary

conditions, the mesh density and the coefficients governing the interface relaxation. The algo-

rithm of Lin was then adapted to transient elastodynamics by Soares et al. [296] and by Von

Erstoff and Hagen [311]. In the following, we distinguish between the surface loading case and

the far field excitation case, the latter being an extension of the former to the case of an incident

wave field.

��

�����

���	ABCDE

���	ABCDE

Figure 3.12: Assumptions on the discretization of the subdomains. (a) Finite tetrahedral elements and bound-

ary triangular elements match at the interface Φ, (b)
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3.5.2 Interface relaxation algorithm for a surface loading

Let the domain Ω ∈ R
3 be a homogeneous viscoelastic body with boundary ∂Ω, submitted to

external time-harmonic tractions tD with circular frequency ω applied to a portion ∂TΩ of the

free surface ∂Ω, see Fig. 3.13. Let us split the domain in two non-overlapping complementary

subdomains such that:

Ω = ΩB ∪ ΩF , with ΩB ∩ ΩF = 0, and ∂ΩB ∪ ∂ΩF = Φ. (3.11)

The surface of the subdomain ΩB, defined as ΓB ∪ΦBF (where ΓB = ΩB ∩ ∂Ω), is discretized

by BEM. The volume ΩF is discretized by FEM. Continuity and equilibrium at the interface

Φ are imposed through transmission conditions uΦ
F = uΦ

B (where uΦ
B indicates the trace of

the displacement field uB on the interface ΦBF ) and tΦF + tΦB = 0 (where tΦF is derived in a

post-processing step from the FEM displacement solution). Starting from an initial guess on

the interface, the solution of the global problem is sought by alternating the local solution of

the two subproblems until convergence of the displacement field on the interface Φ. At each

iteration n, the (squared) relative error between the displacement field on the interface Φ at

successive iterates is defined as:

ζ2r = |uΦ
F,n − uΦ

B,n|2/|uΦ
B,n|2.

Convergence is reached when ζr < ǫ, for a given accuracy ǫ. The adopted interface relaxation

algorithm is summarized in Alg. 1. At the iteration n = 0, an estimate is made of the Dirichlet

boundary conditions on the interface ΦFB. For simplicity, we set to zero the displacement field

uΦ
F,0. Then, the local FE problem is solved and the corresponding post-computed tractions on

ΦFB are imposed in turn as Neumann boundary condition on the BE subdomain to solve for

displacements. At each iteration, the interface smoothing procedure (relaxation) is applied in

�

�

�

(a) (b)

Figure 3.13: Time-harmonic load on a semi-infinite space. (a) Initial problem defined in the infinite domain Ω
and (b) corresponding decomposition in a bounded subdomain modelled by the FEM and the infinite space of

propagation modelled by the BEM. Φ defines the portion of surface shared by the FE- and the BE-subdomain,

i.e. Φ = ∂ΩB ∩ ∂ΩF .
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the form:

uΦ
Fi,n+1 := (1− θ)uΦ

Fi,n
+ θuΦ

B,n (3.12)

The empirical relaxation parameter θ, handles the relaxation and it ensures or accelerates the

convergence [103]. The relaxer θ can either be chosen as constant throughout a computation,

or dynamically be determined at each iteration by minimizing the square error functional of

interfacial displacements. In this work θ has been considered as a constant. The convergence

of the interface relaxation (IR) algorithm depends on various factors, namely the mesh density,

the geometry, the material properties and of the initial guess of the boundary conditions on

the interface. Elleithy et al. [102] studied the convergence conditions for the Lin algorithm

in elastostatics, and provided a parametric study allowing the choice of empirical parameters

depending on the type of problem.

Algorithm 1 Sequential Dirichlet-Neumann for a surface loading

1: Initial guess: uΦ
F,0 on ΩF

2: for n = 0, k do

3: solve Dirichlet problem on ΩF for uΦ
F,n

4: compute corresponding interface tractions tΦB,n

5: solve Neumann problem on ΩB for uΦ
B,n

6: compute relative error ζr = |uΦ
F,n − uΦ

B,n|/|uΦ
B,n|

7: if ζr < ǫ then

8: stop

9: else

10: relaxation

11: end if

12: end for

3.5.3 Interface relaxation algorithm for a far field excitation

Let the domain Ω ∈ R
3 be a heterogeneous viscoelastic body with boundary ∂Ω, with the

heterogeneities concentrated close to a generic superficial structure. The domain is submitted

to an incident time-harmonic plane wave with circular frequency ω, see Fig. 3.14.

The algorithm employed to solve the global problem is illustrated in Alg. 2. First, the

FMBEM is used to pre-compute the scattered displacement field uBS
induced on the boundary

ΓB ∪ ΦBF of ΩB (where ΓB = ΩB ∩ ∂Ω) by the incident wave. The corresponding solution in

terms of total field is obtained by adding the incident wave field to the scattered solution, i.e.

uB = uBS
+ uBI

. Then, after invoking continuity conditions, the restriction uΦ
B of uB to the

interface ΦBF is relaxed (by applying the relation (3.12)) and employed as initial guess for the

iterative algorithm. At this point, the solution of the problem involves the alternating solution

of a local Dirichlet problem in the FE subdomain and of a local Neumann problem in the BE

subdomain until convergence of the displacement field on Φ is reached. At a given iteration n,

the former implies the solution of the FEM system (3.4) for uF , followed by the computation
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(a) (b)

Figure 3.14: Incident plane wave coming from a far field excitation source. (a) Initial problem defined in the

infinite domain Ω with boundary ∂Ω and (b) corresponding decomposition in a bounded subdomain modelled

by the FEM (containing anisotropies and structures) and the infinite space modelled by the BEM.

of total interface tractions tΦF,n. The scattered traction field, given by

tΦFS ,n
= tΦF,n − tΦFI ,n

, (3.13)

is then applied to the BE-interface ΦBF after invoking continuity tΦB,n = −tΦFS ,n
. Alternatively,

the total field formulation for the BEM can be used. However, in this work this possibility has

not be exploited.

Algorithm 2 Sequential Dirichlet-Neumann for incident wavefield

1: Pre-step define incident wave tBS
on ∂ΩB

2: solve Neumann problem on ΩB for scattered uΦ
BS

3: compute total field uΦ
B = uΦ

BS
+ uΦ

BF

4: relaxation of uΦ
B

5: Initial guess: uΦ
F,0 := uΦ

B

6: for n = 0, k do

7: solve Dirichlet problem on ΩF for uΦ
F,n

8: compute corresponding interface tractions tΦF,n
9: compute the tractions diffracted by the FE subdomain tΦFS ,n

, Eq. (3.13)

10: tΦB,n := −tΦFS ,n

11: solve Neumann problem on ΩB for uΦ
B,n

12: compute relative error ζr = |uΦ
F,n − uΦ

B,n|/|uΦ
B,n|

13: if ζr < ǫ then

14: stop

15: else

16: relaxation

17: end if

18: end for
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3.5.4 Implementation

The iterative nature of the algorithm involves separate computations of the BEM and FEM local

problems defined respectively on ΩB and ΩF . A Matlab program called CUSEQ has been writ-

ten to drive the iterative solution of domain decomposition problems involving either surface

loading or far field excitation. Details concerning the program can be found in Appendix D.

In the FE subdomain, the time consumption for the assembly and the factorization of the

global damped stiffness matrix K of (3.4) increases with the size of the problem. However,

as at each iteration only the displacement boundary conditions on Φ vary on the ΩF domain,

the matrix K needs to be evaluated and factorized only once, at the iteration corresponding

to the initial guess, then stored in sparse format to squeeze out any zero elements and save

memory. Also the vector of generalized forces associated to eventual Neumann BC F
T
F (e.g.

surface loading) is computed only at the first iteration, then stored. At each iteration and until

convergence, only the vector of nodal forces associated to Dirichlet BC F
U
F on Φ is recomputed

in order to update the RHS of (3.4) and solve the linear system for global displacements. In this

work, the precision of the algorithm has been set to ǫ = 10−3, see Fig. 3.15a.

Refinement of the iterative algorithms. The iterative interface relaxation algorithms proposed

above have two main drawbacks. The first is that the convergence depends on the chosen value

of the relaxation parameter θ. This aspect will be investigated in Section 3.5.5. The second

consists of the fact that each global iteration a priori requires NFMBEM internal GMRES iterations

for the fast solution of the BE global system, i.e. Nglob × NFMBEM iterations are needed for a

complete computation. This disadvantage can be reduced by setting at each new global iterate

the GMRES initial guess to the solution of the previous iterate. This modification is simple to

implement and has a strong influence on the acceleration of the convergence process. This is

shown for a simple example test in Fig. 3.15b, where the dotted line indicates the convergence

acceleration induced by this refinement of the algorithm.
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Figure 3.15: (a) Study of the precision of the algorithm: ratio |u|(ǫ)/|u|ref for the displacement resultant at

the canyon edge x/R = 1. The precision of ǫ = 10−3 has been imposed as required precision in the iterative

algorithm. (b) Number of iterations of GMRES solver when setting the Initial Guess (I.G.) to zero uI.G.,it = 0
or to the solution at the previous iteration uI.G.,it = uit−1. Results in (a) and (b) refer to the scattering of a

vertically incident P-wave by a semi-spherical canyon test.
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3.5.5 Verification

We now present some verification examples on simple test problems representing the two load-

ing possibilities described above, namely a surface loading and a far field excitation. In each

example, the results obtained using CUSEQ have been compared with the solution of the same

problem solved by using the pure fast multipole BEM. In fact, the geometries of the chosen

examples are deliberately simple to allow the modelling of the same problem by using the

FMBEM. The first example consists of a simple time-harmonic load applied on the free-surface

of a homogeneous half-space Ω. The second is an example of screening of the ground vibra-

tions generated by a superficial load by semi-circular trenches excavated in the ground. The

third example consists of the study of the scattering of a vertically-incident seismic wave field

by a semi-spherical canyon.

Example of surface loading: time-harmonic load on a half-space

Let us consider the case of a time-harmonic load applied on a portion ∂TΩ of the free-surface

∂Ω of a homogeneous isotropic linear (visco-)elastic half-space Ω, as illustrated in Fig. 3.13.

Let the medium be characterized by normalized shear modulus µ = 2, Poisson’s ration ν = 0.25

and density ρ = 1. For a normalized frequency ηP = kP/ω = 0.75, results are displayed in

the form of contour maps in Figs. 3.16, 3.17 and 3.18. In particular, Fig. 3.17 is an example of

the post-processing visualizations that can be performed with existing external codes. CUSEQ

is able to read and write data sheets readable by CESAR-LCPC and its post-processing part

PEG3D. For a lower frequency example, Fig. 3.18 shows the contour map of FMBEM results

side by side with the BE-subdomain coupling results for two different values of damping factor

β = 0 and β = 0.1.

Unique BE domain Coupling: BE subdomain Coupling: FE subdomain

(a) (b) (c)

Figure 3.16: Time-harmonic load on a half-space. Contour maps of the vertical displacement on the free sur-

face in the plane (x,y) by using the FMBEM and the proposed iterative FEM/FMBEM coupling. (a) FMBEM

results, (b) coupling BEM subdomain results (the semi-spherical cavity due to the absence of the FE subdo-

main in the middle of the surface is recalled by a dotted line) and (c) coupling FEM subdomain results after

convergence.
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Figure 3.17: Time-harmonic load on a half-space. Contour map of the horizontal displacement ux in the FE

subdomain (post-processing with CESAR-LCPC).

Example of surface loading: vibration isolation through semi-circular trenches

A simple problem has been considered to analyse the behaviour of the algorithm and evaluate

the effect of the relaxation parameter θ. Let Ω be a homogeneous isotropic semi infinite medium

submitted to a uniform time-harmonic load on the portion of surface ∂TΩ, as depicted in Fig.

3.19a. To test the domain decomposition coupling, the original problem domain is decomposed

into two subdomains, as shown in Fig. 3.19b. The semispherical volume ΩF contains the loaded

surface and is modelled by FEM. The complementary semi infinite domain ΩB allows the wave

uz (β = 0) uz (β = 0.1)

(a) (b)

ux (β = 0) ux (β = 0.1)

(c) (d)

Figure 3.18: Time-harmonic load on a half-space. Contour map of the vertical and horizontal displacements

uz and ux on the free surface in the plane (x,y) for different damping factor β = 0 and β = 0.1.
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�
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�

(a) (b)

Figure 3.19: Vibration isolation through semi-circular trenches: geometry of the problem with notations.

X
Y

Z

X
Y

Z

(a) (b)

Figure 3.20: Vibration isolation through semi-circular trenches: coarse mesh (a) of the FEM subdomain and

(b) of the BEM subdomain.

radiation and it is modelled by fast BEM. Again, Ω is supposed to involve a single material,

characterized by normalized values of the shear modulus µ = 2, Poisson’s ratio ν = 0.25

and density ρ = 2. To assess the accuracy of the solution, the surface displacement field

computed on the coupled problem with the sequential iterative algorithm has been compared to

the corresponding solution computed by using only the FMBEM method.

Results presented in the following refer to a harmonic load at normalized frequency ηP =

kP/π = 0.5. The BE subdomain is discretized with 2, 774 three-node triangular elements,

and the FE semispherical volume is discretized with 2, 560 tetrahedra. The interface Φ =

∂ΩB∩∂ΩF is a semi-spherical surface, here discretized with 312 triangular three-node elements.

As expected, the relaxation parameter θ strongly affects the convergence, as shown in Fig. 3.22

for three values of θ. At each n+1 iteration, the interfacial displacement field uΦ
F,n+1 is updated

with a fraction θ of the BE subdomain displacement field contribution uΦ
B,n. Therefore, when

θ increases the convergence accelerates. However, there is an upper threshold beyond which

convergence is lost. A more detailed parametric study is needed in order to account for the

influence of the mesh density or of eventual material heterogeneities.

The increase of intrinsic attenuation in the material accelerates the convergence. Although
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Figure 3.21: Vibration isolation through semi-circular trenches. Real part of the surface vertical displace-

ments uz along the (a) x and the (b) y axis: comparison of results obtained using the interface relaxation

FEM/FMBEM coupling (continuous line) and the FMBEM as reference (dotted line).
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Figure 3.22: Time-harmonic load on a semi-infinite space: influence of the relaxation parameter θ on the

convergence history.

the number of iterations on the interface does not change in the coupling algorithm, the iterative

solution of the BE subdomain by fast multipole method is accelerated when 0 < β ≤ 0.1 [140].

In Fig. 3.16, the contour maps of the vertical and horizontal displacements uz and ux on the

BE subdomain surface (with the semi-spherical interface in the middle of the domain) ∂ΩB are

depicted for the purely elastic material (β = 0, Fig. 3.16a,c) and the damped material, (β = 0.1,

Fig. 3.16b,d). Fig. 3.17 displays the contour map of the horizontal displacements ux in the FE

volume.

Example of far field excitation: scattering by a semi-spherical canyon

To assess the iterative algorithm for far field excitations sources, the canonical problem of the

scattering of a vertically incident P-wave on unit amplitude has been considered. A mesh of the

model (coarse for the sake of clarity) is displayed in Fig. 3.23. As in the previous examples,
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X Y

Z

X Y

Z

(a) (b)

Figure 3.23: Scattering of a vertically incident P-wave by a semi-spherical canyon: (a) global mesh and (b)

cross section detail of the FE subdomain boundary mesh.

the medium is assumed to be constituted by a single material, which has the same properties

of previous verification tests. Two normalized frequencies have been considered, namely ηP =

0.25 and ηP = 0.5. The absolute vertical displacement on the positive x-axis are reported in

Fig. 3.24 for three values of the damping ratio β = 0 (top), 0.05 (middle), 0.1 (bottom) at

normalized frequencies ηP = 0.25 (a,c,e) and ηP = 0.5 (b,d,f).

3.5.6 Conclusions

In this section, a sequential interface relaxation method (IRM) is used to couple the finite el-

ement method and the fast-multipole boundary element method (FMBEM) to solve 3D time-

harmonic linear elastic problems over unbounded domains. The method is based on a domain

decomposition in several disjoint, non-overlapping subdomains. In particular, a bounded region

is extracted from the complementary semi-infinite space of propagation. The bounded subdo-

main is modelled by the finite element method, whereas the half-space where it is embedded

is solved by the boundary element method, which formulation allows the exact radiation of the

waves in the surrounding soil. At each iteration of the algorithm, a smoothing procedure is

applied on the boundary conditions transmitted between the subdomains in order to guarantee

and speed up the convergence. The range of the relaxation parameter to obtain convergence

has been established for each problem considered, and no empirical parametric studies have

been conducted to extrapolate global range of validity. Although in this section only one ma-

terial has been considered, the algorithm can be easily extended to consider the presence of

heterogeneities located inside each subdomain. The presented algorithm deserves further in-

vestigations in the near future, oriented in particular towards the modelling of soil-structure

interaction problems.
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(e) ηP = 0.25, β = 0.1 (f) ηP = 0.5, β = 0.1

Figure 3.24: Scattering of a vertically incident P-wave by a semi-spherical canyon at normalized frequency:

surface displacements |uy| and |uz| for three values of damping ratio β = 0 (top), 0.05 (middle), 0.1 (bottom)

at normalized frequencies ηP = 0.25 (a,c,e) and ηP = 0.5 (b,d,f).
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3.6 SIMULTANEOUS FEM/FMBEM COUPLING

3.6.1 Introduction

The second strategy that has been applied in this thesis for coupling the FEM and the FMBEM

is a simultaneous approach based on solving a global system of equations combined with the

transmission conditions across the common interface. In particular, we apply a modified ver-

sion of the approach proposed by Frangi in [120], based on an implicit condensation for the

FEM degrees of freedom. The global system is then solved by generalized minimal residual

(GMRES). The simultaneous coupling algorithm has been implemented in a Fortran 90 based

code called CUPSIM. The capabilities offered by this code and instruction for use are addressed

in Appendix D.

For the moment, the study of this approach has been limited to problems where the load

consist in time-harmonic boundary data imposed on a part of the BE-subdomain boundary (free

surface or internal BE boundaries, e.g. cavities embedded in the BE-subdomain). Adaptation

of the algorithm to far field excitations requires only minor modifications but it has not been

implemented in the present work. Adaptation of the algorithm to problems having a time-

harmonic source in the FE-subdomain are slightly more complicated to implement, because the

global algorithm needs to be modified.

3.6.2 Domain decomposition for the simultaneous coupling: notation

We now consider the wave propagation problem depicted in Fig. 3.25a, defined in the un-

bounded domain Ω ∈ R
3 and generated by a time-harmonic distributed load. For simplicity

of exposition let Ω be a homogeneous domain characterized by a complex shear modulus µ⋆,

density ρ and Poisson’s ratio ν. Let us split the original domain into two non-overlapping sub-

domains, as depicted in Fig. 3.25b. The corresponding interface problem has been described

in Sec. 3.4.2. Decomposition can include more than one bounded FE-subdomains. However,

�

�

�

(a) (b)

Figure 3.25: Time-harmonic load on a semi-infinite space. (a) Initial problem defined in the infinite domain

Ω and (b) corresponding decomposition in a bounded subdomain modelled by the FEM and the infinite space

of propagation modelled by the BEM, separated by the interface Φ. The source is assumed to be applied on

the boundary of ΩB .
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(a) (b)

Figure 3.26: Subdomains of the domain decomposition shown in Fig. 3.25b: notations of the separation

between internal and interface degrees of freedom. (a) FEM subdomain ΩF and (b) BEM subdomain ΩB .

this possibility has been treated later in order to evaluate its influence on the algorithm scala-

bility. The bounded subdomain ΩF ∈ R
3 has the boundary ∂ΩF = ΓF ∪ ΦFB whereas the

BEM-subbdomain ΩB ∈ R
3 has the boundary ∂ΩB = ΓB ∪ ΦBF .

The interfaces ΦBF and ΦFB refer to the same surface, but to different numerical discretiza-

tions of it. ΦBF is discretized by three-node BE linear triangles, whereas the three-node linear

triangles that discretize ΦFB are the trace on Φ of the four-node linear tetrahedra coming from

the 3-D FEM discretization. Finally, as matching grids are considered on Φ, ΦBF and ΦFB

differ only for the normal orientation (outwarding each subdomain), which is defined by the

local elements numbering and cross product.

In the following two subsections, we detail the formulation of the FEM and of the FMBEM

for the reference case of Fig. 3.25. Notations in both formulations refer to the separation of the

total degrees of freedom (DoFs) between internal and interface degrees of freedom as displayed

in Fig. 3.26. On the one hand, vectors (uF , tF ) collect all DoFs that belong to the volume ΩF

except those lying on the interface ΦFB (i.e. ΩF \ΦFB), these latter being specifically denoted

by (uFB, tFB), see Fig. 3.26a. On the other hand, vectors (uB, tB) refer to the DoFs belonging

to the surface ΓB and (uBF , tBF ) to those lying on the interface ΦBF , see Fig. 3.26b. DoFs lying

on surfaces edge, i.e. ΓF ∩ ΦFB or ΓB ∩ ΦBF , are considered as interface DoF, i.e. belonging

to ΦFB and ΦBF respectively.

3.6.3 The finite element subdomain

The three-dimensional subdomain ΩF is discretized by four-node linear tetrahedra, each node

having three translational DoFs. In the weak formulation (3.3), the vector of all displacement

DoFs u was split in u = u0 + uD to distinguish unknown displacement DoFs u0 from those

DoFs imposed by the boundary data uD. In the simultaneous FEM/FMBEM coupling, the load

is applied on the BEM surface ΓB. Thus, there are no imposed displacements nor tractions

inside the volume ΩF \ΦFB, and the internal DoFs uF are therefore always unknown. As
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we will see later, the coupling algorithm provides that continuity across ΦFB is guaranteed by

imposing the displacement field on the interface coming from the adjacent BE-subdomain, i.e.

uFB := uBF . After substituting u0 := uF , uD := uFB, tD = 0 in the weak formulation (3.3),

the final linear system reads:

KFUF = FF , (3.14)

where KF is the dynamic damped stiffness matrix as defined in 3.5, UF is the vector collecting

all unknown (internal) degrees of freedom and FF is the vector of generalized forces associ-

ated with displacements uFB imposed on ΦFB. Separation of internal and interface degrees of

freedom leads to
[

KF
F KF

FB

KFB
F KFB

FB

]

{

uF

uFB

}

=

{

0

fFB

}

. (3.15)

3.6.4 The boundary element subdomain

The subdomain ΩB has boundary ∂ΩB = ΓB ∪ ΦBF . For a Neumann problem, the traction

DoFs are known on ΓB and unknown on the interface ΦBF , whereas displacement DoFs are

unknown on the whole ∂ΩB. The boundary integral equation (BIE) (2.7) reads:

cik(x)ui(x)+(P.V.)

∫

∂ΩB

ui(y)T
k
i (x, y;ω)dSy−

∫

∂ΩB

ti(y)U
k
i (x, y;ω)dSy = 0, (x ∈ ∂ΩB).

where Uk
i (x, y;ω) and T k

i (x, y;ω) are the visco-elastodynamic fundamental solution as defined

in (2.42). After the boundary element discretization of ∂ΩB, the following linear system of

equations rises:

HBUB −GBTB = 0,

where HB and GB are fully populated, non-symmetric integral operators, and UB, TB gather

all the displacement and traction degrees of freedom. Separating internal and interface degrees

of freedom as shown in Fig. 3.26 yields to the collocation BIE:

cik(x)ui(x) + (P.V.)

∫

ΓB

uB
i (y)T

k
i (x, y;ω)dSy + (P.V.)

∫

ΦBF

uBF
i (y)T k

i (x, y;ω)dSy

−
∫

ΓB

tBi (y)U
k
i (x, y;ω)dSy −

∫

ΦBF

tBF
i (y)Uk

i (x, y;ω)dSy = 0, (x ∈ ∂ΩB).

This, using matrix-notation corresponds to:
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B HB

BF

HBF
B HBF

BF

H̄B
B H̄B

BF

H̄BF
B H̄BF

BF
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uB

uBF
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BF
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B GBF

BF
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}
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where the superscript of the integral operators indicates the portion of surface where collocation

is performed, and the subscripts indicates the portion of surface where the source lie. Overbars

on integral operators (e.g. ḠB
B) indicate that element collocation is performed. Separation of

unknowns leads to














HB
B HB

BF −GB
BF

HBF
B HBF

BF −GBF
BF

H̄B
B H̄B

BF −ḠB
BF

H̄BF
B H̄BF

BF −ḠBF
BF





















uB

uBF

tBF







=















bB
B

bBF
B

b̄
B
B

b̄
BF
B















, (3.16)

where b
j
i = Gj

i ti and b̄
j
i = Ḡj

i ti. The system (3.16) can be written as:

KBXB = BB (3.17)

3.6.5 Simultaneous algorithm for a BE surface loading

To solve the FEM/FMBEM coupled problem we use a modified version of the approach pro-

posed by Frangi et al. for magnetostatics [120], where the problem of a ferromagnetic interior

domain surrounded by an unbounded domain containing a current source was studied. In the

present work, we use the main idea beyond that approach to couple the FEM and the FMBEM

for time-harmonic visco-elastodynamics.

No global FEM/FMBEM system of equations is built. Instead, the FEM system is solved

implicitly in the FMBEM system. The displacements on the FE-BE interface Φ are chosen as

primary unknowns, and continuity across the interface Φ is guaranteed by the strong conditions

uFB = uBF , (3.18a)

tFB = −tBF . (3.18b)

The simultaneous algorithm is based on the following steps, see Alg. 3. The system (3.16) is

solved iteratively by GMRES. At each iteration n, the approximation built by GMRES of the

interface displacement field ũn
BF in X̃

n
B is used as boundary condition ũn

FB for the subdomain

ΩF by invoking continuity (3.18a) across the interface. The vector F̃n
F of nodal forces associated

with the imposed displacements ũFB on ΦFB is computed. Then, the following FEM system is

solved directly:

KF Ũ
n
F = F̃

n
F , (3.19)

where the sparse dynamic damped stiffness matrix KF has been set up and stored in a pre-

processing step. The tractions t̃
n

FB on the interface elements ΦFB are computed from ele-

ment stresses and substituted back in the GMRES approximated vector X̃n
B using the condition

(3.18b) for the evaluation the fast-multipole matrix-vector product and the computation of the

residual. The simultaneous coupling algorithm have been implemented by integrating the FEM

and the coupling steps into an existing FMBEM code. Implementation details are addressed in

App. D.
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Algorithm 3 Simultaneous coupling algorithm

1: Pre-step Domain decomposition of Ω in non-overlapping ΩF and ΩB (Sec. 3.6.2)

2: Discretization of ΩF (3-D) and ∂ΩB (2-D), definition of ΦFB and ΦBF

3: Define and store vector of corresponding interface nodes

4: Define FEM problem in ΩF , store coordinates and connectivity tables

5: Set up and store sparse KF and FF (eq.(3.14))

6: Define FMBEM problem in ΩB and prepare data and geometry input file

Main algorithm

7: Definition of the FMM-octree for ∂ΩB

8: Compute and store BEM near contributions Knear and F
near (eq.(2.17b))

9: Read stored FEM-KF , -FF , -coordinates and -connectivity tables

10: Initialize GMRES (solution vector and restart parameter)

11: for n = 0, k do

12: Compute F̃
n
F associated with the approximated displacements ũFB

13: Solve FEM system (3.19)

14: Compute t̃
n
FB and substitute back in X̃

n
B

15: FMM matrix-vector product and compute residual

16: if convergence then

17: stop

18: end if

19: end for

3.6.6 Remark on GMRES accuracy

The simultaneous FEM/FMBEM coupling algorithm has been implemented in the code CUSIM,

which capabilities are detailed in Appendix D.2. We recall that in FMBEM visco-elastodynamics

(in the code COFFEE), the tolerance used to stop the iterative solver GMRES was recommended

to 10−3 [61]. In CUSIM, after numerous computations at different normalized frequencies and

for different configurations, this tolerance of GMRES has been set to 10−2. Indeed, with the

simultaneous algorithm described above we could not reach better accuracy results. Despite

this limitation, the simultaneous coupling algorithm leads to results that are acceptable for the

intended applications (i.e. seismic wave propagation, traffic vibrations).

3.6.7 Verification

The simultaneous FEM/FMBEM algorithm has been tested on various three-dimensional exam-

ples, which have been chosen deliberately simple to allow a direct comparison with FMBEM

results. Three general types of material have been defined to simulate various impedance ratios

between adjacent media. The corresponding material properties are listed in Tab.3.1. The first

example consists of a propagation problem in a homogeneous isotropic linear (visco-)elastic

domain. We use this basic test to study the influence of the 3-D FEM inclusion in the homoge-

neous medium and consequently the influence of the mass matrix definition in the finite element

formulation. The following examples introduce heterogeneities inside the FEM subdomain and
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Material type µ ν ρ cS
A 2 0.25 2 1

B 0.5 µ(A) 0.2 0.75 ρ(A) 0.8

C 0.16 µ(A) 0.3 0.6 ρ(A) 0.5

Table 3.1: Dimensionless mechanical properties of three types of material used for the validation tests and

corresponding shear wave velocity.

at the FE/BE interface Φ in order to verify the continuity across the interface in case of strong

wave velocity ratio between the subdomains. For each test, the effects of material attenuation

on the algorithm accuracy has been examined and compared to the purely elastic cases. Co-

herently with the weakly dissipation assumption of Chapter 2, values for the damping factor of

0 ≤ β ≤ 0.1 have been considered. Three damping factor values β = 0, β = 0.05 and β = 0.1

have been used as reference values for the comparison. This study shows a strong improvement

on global accuracy and decrease of the FEM numerical dispersion with growing β.

Wave propagation in a homogeneous half-space

Let Ω ∈ R
3 be a semi-infinite homogeneous isotropic visco-elastic medium with boundary ∂Ω,

as depicted in Fig. 3.27a. A spatial domain decomposition is applied as shown in Fig. 3.27b,

following the decomposition rules and notations introduced in Sec. 3.6.2. As indicator of

accuracy we adopt the relative error ξ between the vertical displacement field computed by the

FEM/FMBEM simultaneous coupling (uCUP) and that computed using the FMBEM of reference

(uREF) along the x-axis (see Fig. 3.27c):

ξ2 =
∑

(

|uREF − uCUP|2
)

/
(

∑

|uREF|2
)

. (3.20)
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(a) (b) (c)

Figure 3.27: Time-harmonic load on homogeneous half-space (A-type material), geometry and notation. (a)

Initial problem defined in the semi-infinite domain Ω, and (b,c) corresponding decomposition in a bounded

subdomain modelled by the FEM (ΩF ) and the infinite space of propagation modelled by the BEM (ΩB).
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ηP 1

Pts/λS 10 15 20

NBEM 26 766 60 444 115 068

NFEM 15 834 46 470 127 818

NT4 28 317 87 454 250 306

Table 3.2: Time-harmonic load on homogeneous half-space made of A-type material (Fig. 3.27). Reference

tests here at normalized frequency ηP = 1. The wavelength is λS = 1.15 (β = 0).

Results presented in the following refer to a time-harmonic surface loading at normalized fre-

quency ηP =kPRF/2π=1, where RF is the radius of the FEM subdomain. The plane BE-free

surface ΓB =ΩB ∩ ∂Ω has been truncated at a distance RB = 4RF . For simplicity, radius RF

has been chosen of unit length, thus resulting in RB=4. The circular portion of surface ∂TΩ on

which time-harmonic tractions are imposed has radius 0.2 and it is located at a distance Rt =2

from the axis origin. Results presented hereinafter refer to three numerical models which sizes

are reported in Tab.3.2 for different choices of mesh density.

Influence of the mass matrix on attenuation. Results obtained using the mesh densities of

Tab.3.2 are reported in Fig. 3.28. These results have been obtained adopting the consistent

mass matrix definition in the FEM formulation. The graphs on the left column display the ver-

tical component of real displacements, whereas those on the right the horizontal components.

Graphs (a,b) correspond to the purely elastic case, (c,d) to a viscoelastic medium characterized

by damping factor β = 0.05 and (e,f) to a viscoelastic medium with β = 0.1. In (a,b), the

numerical dispersion introduced by the FEM-subdomain is clearly visible. Using the classical

”rule of thumb”, i.e. ten points per wavelength, leads to a relative error ξ = 0.01, as shown in

the first column of Tab.3.3. Figure 3.29a,b are a zoom of Fig. 3.28a,b on the abscissae interval

that corresponds to the FEM subdomain (i.e. −1 ≤ x ≤ 1). Here, results obtained using three

different mesh densities are compared with the reference FMBEM solution. Using 10 points

per S-wavelength (p/WL) the numerical dispersion appears in the form of numerical damping

(spurious amplitude reduction) and wavelength modification, exactly as defined in Fig. 3.8.

Using 15 p/WL improves results and reduces dispersion. The best performance is obviously

reached with 20 p/WL, although this choice implies a larger size for the FEM problem and (as

a consequence of the matching grid assumption on the interface Φ) for the BEM problem and it

therefore slows down computations, as proved in Tab.3.3. The imaginary part of displacements

follows the same global trend, as shown in Fig. 3.30.

The numerical dispersion, so apparent in the purely elastic case, tends to reduce with the

introduction and growth of the attenuation level. This is shown in Fig. 3.28c-f and quantified

in Tab. 3.3 through the relative error ξ. The number of GMRES iterations reduces with grow-

ing β, whereas the CPU time per iteration increases, coherently with the visco-elastodynamics

FMBEM results presented in Chapter 2.
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Figure 3.28: Time-harmonic load on homogeneous half-space (A-type material), mesh density study. Com-

parison of the real vertical uz (left) and horizontal ux (right) displacements along the x-axis computed by the

FMBEM and by the simultaneous FEM/FMBEM coupling using different number of points per wavelength,

10, 15 p/WL and the consistent mass matrix formulation. The subplots are closer views on the portion of

surface modelled by FEM (−1 ≤ x ≤ 1). The damping factor worth β = 0 in (a,b), β = 0.05 in (c,d) and

β = 0.1 in (e,f).
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FEM Mass matrix Mconsist Mlump

Pts/λS 10 15 20 10 15 20

β = 0
Nb. Iter 18 18 18 19 18 18

CPU/Iter. [sec] 14 58 170 16 59 100

ξ 0.01 0.05 0.046 0.06 0.044 0.042

β = 0.05
Nb. Iter 13 13 14 13 13 13

CPU/Iter. [sec] 20 51 256 23 74 240

ξ 0.051 0.047 0.045 0.039 0.037 0.034

β = 0.1
Nb. Iter 10 11 12 10 10 11

CPU/Iter. [sec] 19 71 310 29 58 247

ξ 0.027 0.025 0.024 0.024 0.023 0.021

Table 3.3: Time-harmonic load on homogeneous half-space made of A-type material (problem of Fig. 3.27;

model properties are detailed in Tab.3.2) at normalized frequency ηP = 1: comparison of results obatined

using two different formulations for the FEM mass matrix. The GMRES accuracy is ǫ = 10−2 (coupling) and

ǫ = 10−3 (FMBEM).
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Figure 3.29: Time-harmonic load on homogeneous half-space (A-type material), mesh density study. Zoom

of the previous Fig. 3.28a,b on the case β = 0 on the FEM subdomain surface (−1 ≤ x ≤ 1).

FEM dispersion and influence of the mass matrix. Using different formulations of the FEM

mass matrix is observed to influence the FEM numerical dispersion described in the previous

paragraph. In Fig. 3.31, the results obtained considering the consistent and the lumped mass

matrices are compared, the mixed mass matrix oscillating between the two curves as a function

of the coefficient α, see Sec. 3.9. For this specific example, this picture shows that the lumped

matrix displays a lower numerical dispersion than the consistent formulation. Indeed, although

the amplitude reduction is similar, the lumped matrix fits slightly better the FMBEM wavelength

of reference.
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Figure 3.30: Time-harmonic load on homogeneous half-space (A-type material), mesh density study. Plot of

imaginary part of displacements for β = 0 with a zoom on the FEM subdomain surface (−1 ≤ x ≤ 1).
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Figure 3.31: Time-harmonic load on homogeneous half-space (A-type material). Comparison of the real (a)

vertical uz and (b) horizontal ux displacements along the x-axis computed by the FMBEM (dotted line) and

by the simultaneous FEM/FMBEM coupling using different formulations for the mass matrix (consistent in

solid blue line and lumped in solid black line). A zoom on the portion of surface modelled by FEM (i.e.

−1 ≤ x ≤ 1) is reported in (c,d).
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Figure 3.32: Time-harmonic load on a homogeneous half-space containing a soft superficial basin. The basin

has C-type material properties, the surrounding soil has A-type properties.

Wave propagation in a homogeneous half-space containing a soft inclusion

Let now Ω ∈ R
3 be a semi-infinite homogeneous isotropic visco-elastic medium with A-type

mechanical properties containing a soft inclusion (e.g. a basin) of C-type properties, as depicted

in Fig. 3.32a. The geometry of the load surface is the same of the previous example, i.e.

RF1 = 1, RB = 4 and Rt = 2. The soft inclusion has semi-spherical shape with radius RF2 =

0.5. The spatial domain decomposition is shown in Fig. 3.32b. The relative error ξ is again

employed as indicator of accuracy between the vertical displacement field computed by the

FEM/FMBEM simultaneous coupling and the reference FMBEM displacement field along the

x-axis (as defined in (3.20)). Results presented hereinafter refer to a time-harmonic surface

loading at normalized frequency ηP = kPRF1/2π= 1 in the homogeneous unbounded domain

ΩB.

The mesh sizes of the employed numerical models are listed in Tab.3.4. As in the previous

example, the case of purely elastic media displays higher numerical dispersion than the case

of lossy media. This is shown in Fig. 3.33 and quantified in Tab.3.5 where the consistent

mass matrix has been adopted. Fig. 3.34 shows the contour plot of the vertical and horizontal

displacements in the x-y plane. The little circular solid line centered in the origin is the soft

basin, whereas the dotted line is the trace of the interface Φ on the plane free surface.

ηP 1

Pts/λS(basin) 10

NBEM 165 816

NFEM 161 832

NT4 352 200

Table 3.4: Reference tests for the vibration problem of a homogeneous half-space containing a soft superficial

basin. The degrees of freedom in each domain are reported for the case at normalized frequency ηP = 1 and

10 points per λS in the basin region.
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(βsoil, βbasin) (0,0) (0.05,0.1)

Nb. Iter 14 11

CPU/Iter. [sec] 25 30

ξ 0.056 0.027

Table 3.5: Results in term of CPU time per iteration and number of iterations for a purely elastic and a pure

viscoelastic problem (βsoil = 0.05 and βbasin = 0.1) .
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Figure 3.33: Time-harmonic load on a homogeneous half-space containing a soft superficial basin. The wave

velocity in the soil worth cS(soil) = 2 cS(basin). The plot displays real vertical uz and horizontal uy

displacements along the x-axis at normalized frequency ηP = 0.75. In (a),(b) (βsoil = βbasin = 0, in (c) and

(d) βsoil = 0.05 and βbasin = 0.1.

Wave propagation in a homogeneous half-space containing a soft inclusion: contrast at the inter-

face Φ

Let now consider again the problem of a C-type soft inclusion embedded in a homogeneous half

space having A-type material properties. Let increase the radius of the basin to RF1 =RF1 =RF ,
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� �

(a) (b)

Figure 3.34: Time-harmonic load on a homogeneous half-space containing a soft superficial basin. Contour

of the real vertical (a) and horizontal (b) displacements (β = 0, ηP = 0.75).

as shown in Fig. 3.35a. In this case, the interface between different media coincides completely

with the FE/BE interface Φ. The results in terms of real displacement field obtained by using the

consistent and the lumped matrices are plotted and displayed in Fig. 3.36. In the purely elastic

case, the best approximation is clearly given by the lumped mass matrix, that reaches a largely

better accuracy w.r.t. the consistent mass matrix. In the case of lossy media, this disparities in

accuracy caused by the choice of the mass matrix formulation attenuate. In Fig. 3.37, we report

only results obtained with a consistent mass definition. The following Fig. 3.38 is a zoom on

the interval −1 ≤ x ≤ 1 and the real displacement amplitudes using the consistent, mixed and

lumped mass matrix are compared.
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Figure 3.35: Time-harmonic load on a homogeneous half-space (of A-type material) containing a soft super-

ficial basin (of C-type material). Here, the heterogeneity boundary coincides with the interface Φ.
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Figure 3.36: Time-harmonic load on a homogeneous linear elastic half-space containing a soft superficial

elastic basin. Real vertical uz and horizontal ux displacements are depicted along the x-axis for β = 0 and

ηPB
= 1 in the unbounded BEM domain. The soft basin is discretized with ten points per wavelength. Results

obtained by using the consistent mass matrix (solid blue line) and the lumped mass matrix (solid dark line).
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Figure 3.37: Time-harmonic load on a homogeneous viscoelastic half-space containing a soft superficial lossy

basin. Real vertical uz and horizontal ux displacements along the x-axis at normalized frequency ηPB
= 1 in

the unbounded BEM domain and ηPF
= 1.3 in the FEM basin. Damping factors is worth βsoil = 0.05 and

βsoil = 0.1.

3.6.8 Straightforward improvements

The simultaneous coupling is a very promising approach. Due to time constraints, the code

that we implemented is for the moment limited to surface loading sources applied on the BEM

subdomain boundary. However, only minor modifications are needed to extend CUSIM to the

following features.

1. Multi-BE region problem. As CUSIM is an hybrid code based on the FMBEM code

COFFEE, the BE-BE coupling strategy that enables multi-region BEM problems is al-
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Figure 3.38: Zoom on the vertical uz and horizontal ux displacements along the x-axis (the segment that

intersect the FEM subdomain, i.e. −1 ≤ x ≤ 1) for the example of Fig. 3.35. The soft basin is discretized

with ten points per wavelength. The dotted line traces the reference solution obtained using the pure multi-

region FMBEM, the solid lines represents the solution of the FEM/FMBEM coupling obtained by using three

different definitions of the mass matrix: the consistent mass matrix (black), the mixed matrix (purple) and the

lumped mass matrix (red).

ready implemented. The corresponding subroutines should only be updated with minor

modifications in order to be validated.

2. Far field excitation problems. As for the multi-BE region problem, the extension of inci-

dent wave-field (i.e. to the total field formulation) is straightforward, needing only little

modifications in order to be validated.

3. Sources located in the FEM subdomain. If non-zero tractions BC are prescribed in the

FEM subdomain, the coupling algorithm should be slightly modified.

4. Dialogue with an external FEM code. The use of an external, dedicated FEM code has

the important advantage to give total freedom in the modelling of the FEM subdomain

(e.g. account for different types of finite elements, complex geometry details, etc). The



3.7. Perspectives 111

main capability required to the FEM code is to be able to execute the following duties

separately on demand: (i) set up and return the dynamic stiffness matrix, (ii) compute

and return the vectors of nodal forces associated to prescribed traction and displacements,

(iii) solve the FEM linear system and return the solution, (iv) compute the stress tensor

from the nodal displacement solution and return the corresponding tractions on the surface

shared with the BEM subdomain (i.e. the interface Φ). This step is not difficult to put into

practice and will strongly enhance the potentiality of the simultaneous coupling.

3.6.9 Conclusions

In this Section, a simultaneous approach to couple the finite element method and the fast-

multipole boundary element method has been proposed to model three-dimensional visco-

elastodynamics problems in unbounded domains. The algorithm is based on the fast solution of

the BEM global system of equations and by an implicit condensation of the FEM internal de-

grees of freedom performed at each global GMRES iteration. This approach has been applied

on examples having very simple shapes in order to allow an easy comparison with the refer-

ence results obtained with the FMBEM method. This algorithm has proved to be stable after

the introduction of various forms of heterogeneities, including strong material contrast at the

FE/BE interface. Introduction of complex structures of heterogeneities in the subdomain ΩF

is straightforward and do not need modifications of the implemented code (CUSIM, detailed in

App. D.2).

3.7 PERSPECTIVES

The present work has extended the capabilities of the FMBEM fast solver for 3-D frequency-

domain elastodynamics originally developed by Chaillat (COFFEE) [61] in two directions.

Firstly, to account for a more realistic material behavior, the FMBEM has been adapted to

visco-elastodynamics through a complex-wavenumber formulation. This first step has enabled

to model wave propagation problems in unbounded, isotropic linear visco-elastic media. Sec-

ondly, the FMBEM has been coupled with the FEM through a simultaneous algorithm, open-

ing to the modelling of more complex media. The promising results obtained are encourag-

ing. Further efforts will be devoted on the one hand to the introduction of a non-conforming

FEM/FMBEM coupling, on the other hand to introduce more complex formulations for the

soil material, e.g. possibly non-linearities or anisotropies confined in the FEM subdomain and

poro-elastodynamics.

Non-conforming coupling. In the engineering practice it is often desirable that the meshes of

two adjacent regions do not match, because this relaxes significantly the constraints imposed on

the mesh generation. Non-matching grids are preferable for time-dependent problems, jumps of

mechanical properties (that involves the over-refinement of stiffer regions), corner singularities,

local anisotropies, etc. The combination of different discretization schemes on non-overlapping
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subdomains or the coupling between non-matching grids typical of overlapping subdomains

lead to non-conforming grids which can be analysed in the framework of mortar methods. In

the case of non-overlapping subdomains, a mortar finite element space is defined on the non-

matching interface and continuity of the trace of the solution is enforced by Lagrange multipli-

ers [316]. The mortar element method was originally introduced by Maday [215], whereas the

formulation with Lagrange multipliers was proposed later by Ben Belgacem [33].

Recently, Fisher and Gaul have employed a mortar-type approach for coupling the FEM

with the fast multipole BEM using Lagrange multipliers on the coupling interface for study-

ing acoustic-structure interaction [115]. In linear elastodynamics, Lagrange multipliers have

been used to couple the FEM and the BEM for example in [262]. In fact, the use of these

approaches offers the important advantage that non-conforming discretizations can be coupled.

In the present work we used conforming coupling with interface matching grids. As a con-

sequence, problems presenting high contrast in material properties at the FEM/BEM interface

may be characterized by over-refinements.

Let us consider the problem of wave propagation in a soft basin of C-type material embedded

in a ”stiffer” half-space of A-type material (stiff soil). The shear-velocity ratio between the two

regions is csoilS /cbasinS = 2. The interface Φ separating the FEM and the BEM subdomains can

be defined (i) inside the homogeneous semi-infinite space (as in Fig. 3.32) or (ii) coincident

with the heterogeneity interface as in Fig. 3.35. In the latter case, to respect the ”rule of

thumb” in the FEM subdomain one would have 20 pt/WL in the BEM subdomain, resulting

in a useless computational burden. In fact, using conforming coupling leads to a total size of

Nconf =NB+NF =2NF (NF and NB denoting the size of the FEM and of the BEM discretized

local problems respectively). Non-conforming coupling would lead to Nnon−conf =NF + N ′
B

(with N ′
B<<NB).

This drawback can be partially overcome by avoiding that the coupling interface Φ coincide

with the boundary of a strong heterogeneity (the above case (i)). In this case, variable densities

can be used for the FEM subdomain mesh (finer in the inclusion, coarser at the FEM interface

ΦBF ), as shown in Fig. 3.39. As explained in Sec. 3.6.8, further improvements of the present

work include enabling the simultaneous coupling algorithm to completely dialogue with an

external FEM code. This will allow more flexibility in the choice of the finite elements (possible

coupling of different finite elements, e.g. beam elements, within the FEM subdomain), and will

further smooth the limitation of interface matching grids.

Material non-linear behavior. Depending on the level of attained strain, materials can display

non-linearities. The more simple approach to account for non-linearities is to employ a linear

equivalent approach. A brief survey of how to deal inelasticity within the boundary element

method is addressed in Sec. 1.5.3.

Material anisotropy. Anisotropy of soil materials, i.e. the directivity of the mechanical prop-

erties, reflects the history of the medium (deposition, deformation, consolidation, etc). The
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Figure 3.39: Conforming coupling: clipping of the FEM mesh refinement of a soft inclusion embedded in

a stiffer half-space (see the problem of Fig. 3.32). View of the clipping in the Y, Z (a) and in the X,Y (b)

planes (for clarity, only a 2-D mesh of the FEM mesh is drawn).

description of an anisotropic elastic material requires the specification of 21 elastic constants

(whereas purely isotropic materials need only 2 of them). These are difficult to be empirically

determined. However, the possible presence of symmetry planes may considerably reduce their

number (e.g. the transverse anisotropy requires only 5 constants) [318]. Simple anisotropic

behavior could be easily introduced in the simultaneous FEM/FMBEM coupling presented in

this work.

Poro-elastodynamics. In the practice, the soil is often assimilate to a viscoelastic continuum.

However, its multi-phase nature (viscoelastic soil particles interacting with the surrounding fluid

phase) can be taken into account through poroelastic formulations. The first consistent theory

of wave propagation in fluid-saturated solids was provided by Biot [41]. Poro-elastodynamics

FEM formulations can be used for bounded domains [329]. To solve wave propagation prob-

lems in unbounded domains, the finite element method can be coupled with the infinite ele-

ments [183, 234] or with the boundary element method [204, 224, 273].
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Appendix A

Numerical evaluation of the spherical

Hankel functions with complex-argument
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Chapter 2 addresses the application of the time-harmonic fast multipole boundary element

method (FMBEM) to 3-D visco-elastodynamics under the assumption of weakly dissipative

media, i.e. damping factor 0 ≤ β ≤ 0.1 (see sec.2.3). A key aspect in this work is the numerical

evaluation of the complex-wavenumber k⋆ Helmholtz Green’s function truncated expansion as

defined in (2.45) and (2.46) and recalled here for simplicity:

⋆

G(r; k⋆) = lim
L→+∞

⋆

GL(r; k
⋆),

⋆

GL(r; k
⋆) :=

∫

ŝ∈S

eik
⋆ŝ.(y−y0)

⋆

GL(ŝ; r0; k
⋆)e−ik⋆ŝ.(x−x0)dŝ,

(A.1)

where S = {ŝ ∈ R
3, ‖ŝ‖ = 1} is the unit sphere and the transfer function

⋆

GL(ŝ; r0; k
⋆) is given

by

⋆

GL(ŝ; r0; k
⋆) =

ik⋆

16π2

L
∑

l=1

(2ℓ+ 1)iℓh
(1)
ℓ (k⋆r0)Pℓ(ŝ.r̂0). (A.2)

Main observations and results concerning the FMBEM are discussed in Chapter 2. In this

Appendix, we give some details about the free space Helmholtz Green’s function expansion

(A.1) and its numerical evaluation in the presence of real- and complex-valued wavenumber.

115
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A.1 SPHERICAL HANKEL FUNCTIONS

In visco-elastodynamics, the numerical evaluation of the truncated expansion (A.1) of the Helmholtz

Green’s function requires the evaluation of the spherical Hankel function h
(1)
ℓ (k⋆r0) having

possibly complex-valued argument. We now introduce the Bessel and Hankel functions. The

Bessel’s spherical differential equation reads [3]

z2w′′ + 2zw′ +
[

z2 − n (n+ 1)
]

w = 0 n = (0,±1,±2, ...)

Linearly independent solutions are the spherical Bessel functions (of fractional order) of the

first kind jn(z) and of the second kind yn(z):

jn(z) =

√

π

2z
Jn+1/2(z) yn(z) =

√

π

2z
Yn+1/2(z), (A.3)

where the index n takes integer values and Jn+1/2(z) and Yn+1/2(z) are the Bessel functions of

fractional order of first and second kind respectively. The spherical Hankel functions of first

and second kind h
(α)
n (z) (α = 1, 2) are a linear combination of the first two spherical Bessel

functions (and therefore also called spherical Bessel functions of third kind):

h(1)
n (z) = jn(z) + iyn(z) =

√

π

2z
H

(1)
n+1/2(z), (A.4)

h(2)
n (z) = jn(z)− iyn(z) =

√

π

2z
H

(2)
n+1/2(z), (A.5)

where H
(1)
n+1/2 and H

(2)
n+1/2 are the Hankel function of fractional order and of first and second

kind. Explicitly, the first n=0, 1, 2 functions jn(z), yn(z) are:

j0 =
sinz

z
, y0 = −j−1(z) = −cosz

z
,

j1 =
sinz

z2
− cosz

z
, y1 = j−2(z) = −cosz

z2
− sinz

z
,

j2 =

(

3

z3
− 1

z

)

sinz − 3

z2
cosz, y2 = −j−3(z) =

(

− 3

z3
+

1

z

)

cosz − 3

z2
sinz.

In particular, we are interested in the spherical Hankel function of first kind h
(1)
n (z) appearing

in (A.2). This can be written [3]:

h(1)
n (z) = (−i)n+1 e

iz

z

n
∑

m=0

(

n

m

)

(−2iz)−m = (−i)n+1 e
iz

z

n
∑

m=0

(n+m)!

m!(n−m)!(2z)m
,

and the first two read:

h
(1)
0 (z) = −i

eiz

z
, h

(1)
1 (z) = −eiz

z + i

z2
.
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A.2 NUMERICAL EVALUATION OF SPHERICAL H
(1)
N (Z⋆) WITH COMPLEX ARGUMENT

The spherical Hankel function of first kind with complex argument h
(1)
n (z⋆) can be computed

either via superposition (A.4) or directly with the ascending three terms recurrence relation

(TTRR) for Bessel functions [3]:

fn+1(z
⋆) = (2n+ 1)z⋆−1fn(z

⋆)− fn−1(z
⋆), (fn = jn, yn, hn) (A.6)

where z⋆ is the complex argument z⋆ = z(1 + iα). Notice that in our application of the fast

multipole method, the argument of the Bessel and Hankel functions is z⋆ := k⋆r0, where k⋆ is

the complex wavenumber and r0 is the distance between the center of two cubic cells in the

FMM-octree. Thus, α corresponds to the damping factor β defined in Chapter 2 . Relation

(A.6) enables to calculate the values of the function at any order n+1 starting from function

values of two known consecutive orders n − 1 and n. However, the stability of the recurrence

has to be analysed before use in order to avoid the accumulation of round-off errors while repet-

itively applying the recurrence formula [130, 248]. In the following, we compare the values of

the spherical Hankel function of first kind h
(1)
n (z⋆) computed (i) by superimposing the first and

second kind Bessel functions as in (A.4) and (ii) by using the direct ascending recurrence for-

mula (A.6). The numerical evaluation of complex-argument Bessel and Hankel functions by

superposition is addressed in [97] and [155] respectively. The former proposed an algorithm to

overcome the numerical instabilities related to the numerical computation of the Bessel func-

tions of integer order and complex argument. The latter suggested a technique for the evaluation

of the integer order Hankel functions with complex-valued argument having a large imaginary

part by combining the Bessel functions of first and second kind without running into round-off

errors.
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Figure A.1: Spherical Bessel functions for fixed argument z versus increasing order n [97].



118 Chapter A. Numerical evaluation of the spherical Hankel functions with complex-argument

Algorithm 4 Backward algorithm for the numerical computation of jn(z
⋆)

1: Initialization: {j}(0 : n) = {0}
2: j0 := 0
3: j1 := 1
4: m = int(n+ 2|z⋆|)
5: for k = m : −1 : 0 do

6: jk = (2k + 3) j1/z
⋆ − j0

7: if k ≤ n then

8: {j}(k) := jk
9: end if

10: j0 := j1
11: j1 := jk
12: end for

13: j0 := sin z⋆/z⋆

14: {j} := j0.{j}/{j}(0)

Evaluation of the spherical Hankel function by superposition of Bessel functions. Results from

old studies indicate that the relation (A.6) can be applied safely provided that |fn(z)| is mono-

tonically increasing in the direction n of the recurrence and that backward recurrence rela-

tions should be used when |fn(z)| decreases with growing n [130]. In Fig. A.1, the spherical

Bessel functions of first and second kind are depicted for four values of coefficient α, namely

α = 0, 0.05, 0.1, 0.5. This figure let two important aspects emerge. First, for both real- and

complex-valued argument the spherical Bessel functions behave differently before and after the

threshold n= |z| (in the figure, n=30). Second, the growth of the imaginary part of the argu-

ment affects the global trend in magnitude and in movement. The following considerations are

drawn on previous works about the integer order-Bessel function of first and second kind with

complex argument [97, 155], but still apply for the spherical Bessel functions:

1. Real argument z. This is the case of |ℑ[z⋆]| = 0 or |ℜ[z⋆]| ≫ |ℑ[z⋆]|, and correspond

to the black continuous and dotted lines in Fig. A.1. The magnitude of the functions

|fn(z⋆)| holds steady for n< |z⋆|. In this range either the forward or the backward TTRR

(recurrence applied toward decreasing n) apply. At n> |z| the global trend change. Func-

tion yn(z) increases against n and can be calculated with a forward TTRR starting from

generic y0(z) and y1(z), whereas jn(z) drops and thus the lower orders have to be com-

puted through a backward TTRR, starting from arbitrary orders jq(z) and jq+1(z). The

employed backward algorithm is detailed in Alg.4. Therefore, usually the computation of

real-argument Bessel functions is computed using the forward TTRR (A.6) for jn(z
⋆) and

the backward Alg.4 for jn(z
⋆).

2. Complex argument z⋆. For a fixed real part z of the argument, the growth of the imaginary

part through the coefficient α influences the function |fn(z)| as shown in Fig. A.1. In this

case, the backward TTRR still applies for jn(z), whereas for yn(z) one should use the

backward TTRR for n < n∗, and the forward TTRR for n > n∗, where n∗ is the order
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at which the minimum of the function is located. After some experimentations, Du Toit

evaluated n∗≈|z|+|ℑ(z)|/2.

Due to the weak-dissipation assumption described in Chapter 2, in the present work the range

of damping factor β is limited to 0 ≤ β ≤ 0.1. In this range, we find that Alg.4 for the yn(z
⋆)

holds and that there is no need to find the minimum in the function nor to split the algorithm for

its numerical computation as suggested in [97, 155] (and valid for larger values of β).

Direct evaluation of the spherical Hankel function. The spherical Hankel function h
(1)
n (z⋆) can

be computed directly by using the recurrence formula A.6. The corresponding algorithm, sum-

marized in Alg.5, gives accurate results and can be used safely provided that the imaginary part

of the argument respect the assumption of α ≤ 0.1.

Algorithm 5 Forward recurrence relation for the numerical computation of h
(1)
n (z⋆)

1: Initialization: {h}(1 : n+ 1) := {0}
2: {h}(1) := eiz

⋆
/(iz⋆)

3: {h}(2) := −eiz
⋆
(z⋆ + 1)/z⋆2

4: for k = 2 : n do

5: {h}(k + 1) = (2k + 1){h}(k)/z⋆ − {h}(k − 1)
6: end for

A.3 THE HELMHOLTZ GREEN’S FUNCTION EXPANSION

A.3.1 The Gegenbauer series

For arguments z ≫ 1, the following asymptotic approximation holds [82]:

h(1)
n (z) ∼ (−i)n

eiz

iz
(z → +∞), (A.7)

which means that h
(1)
n (z) behaves at infinity as the elementary solution. Given r, ρ, θ, λ arbitrary

complex and denoting R =
√

r2 + ρ2 − 2rρcosθ the addition theorem reads [3]:

sinλR

λR
=

∑+∞
n=0(2n+ 1)jn(λr)jn(λρ)Pn(cos θ)

−cosλR

λR
=

∑+∞
n=0(2n+ 1)jn(λr)yn(λρ)Pn(cos θ) (A.8)

The expansion of h
(1)
0 (λ|R|) (i.e. the Gegenbauer series) can be written:

h
(1)
0 (λR) = j0(λR) + iy0(λR) =

sinλR

λR
− i

cosλR

λR

=
+∞
∑

l=0

(2l + 1)jn(λr)Pl(cos θ)[jl(λρ) + iyl(λρ)]
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ry

y0

r0

x

x0

r′ = (y − y0) + (x0 − x)

Figure A.2: Recast of the position vector R.

=
+∞
∑

l=0

(2l + 1)jn(λr)h
(1)
0 (λρ)Pl(cos θ) (A.9)

Recasting the general distance vector in the form R = y − x = r0 + r′, where

r0 = y0 − x0, r′ = (y − y0) + (x0 − x)

and using (A.7) with z = k|R| and (A.9), the Gegenbauer series can be written:

eik|R|

ik|R| =
+∞
∑

l=0

(2l + 1)jl(k|r′|)h(1)
0 (k|r0|)Pl(r0.r

′) (A.10)

A.3.2 The spherical harmonics

The spherical harmonics satisfy the spherical harmonic differential equation given by the angu-

lar part of Laplace’s equation. In spherical coordinates, the Laplace’s spherical harmonics form

an orthogonal system:

∫

S

Y m
l (ζ)Y m′

ℓ′ (ζ)dζ = δℓℓ′δmm′ (∀(ℓ, ℓ′) ∈ N, ∀(m,m′) ∈ {−ℓ, ...,+ℓ}×{−ℓ′, ...,+ℓ′}),
(A.11)

where S = {ζ ∈ R
3/|ζ| = 1} is the unit sphere, δ is the Kroneker delta. The spherical harmon-

ics verify the addition theorem:

Pℓ(ξ.ζ) =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Y m
ℓ (ξ)Y m

ℓ (ζ) (A.12)

where Pℓ(z) denote the ℓ-order Legendre polynomial.

A.3.3 Plane wave expansion

Using the addition theorem (A.12), the definition (A.11) and the Jacobi-Anger expansion (ex-

pansion of exponentials of trigonometric functions in the basis of their harmonics) for plane

wave in the direction ŝ

eiK (̂s.r′) =
+∞
∑

ℓ=0

(2ℓ+ 1)iℓjℓ(K|r′|)Pℓ(ŝ.r
′) (∀r′ ∈ R

3) (A.13)
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we can finally write the plane wave expansion:

eik|R|

|R| = ik

+∞
∑

ℓ=0

(2ℓ+ 1)jℓ(k|r′|)h(1)
0 (k|r0|)

4π

(2ℓ+ 1)

l
∑

m=−ℓ

Y m
ℓ (r0)Y

m
ℓ (r′)

∫

ŝ∈S

Y m
ℓ (ŝ)Y m

ℓ (ŝ)dŝ

= ik

+∞
∑

ℓ=0

(2ℓ+ 1)jℓ(k|r′|)h(1)
0 (k|r0|)

(2ℓ+ 1)

4π

∫

ŝ∈S

Pℓ(ŝ.r
′)Pℓ(ŝ.r0)dŝ

=
ik

4π

∫

ŝ∈S

eik(̂s.r
′)

+∞
∑

l=0

(2l + 1)i−lh
(1)
0 (k|r0|)Pl(ŝ.r0)dŝ

=

∫

ŝ∈S

eik(̂s.r
′)GL(ŝ; r0; k)dŝ (A.14)

where the transfer function GL:

GL(ŝ; r0; k) =
ik

4π

+∞
∑

l=0

(2l + 1)i−lh
(1)
l (k|r0|)Pl(ŝ.r0).

After replacing the integral over the unit sphere S by a discrete quadrature with points ŝq ∈ S
and weights wq, reads:

G(r; k⋆) ∼
Q
∑

q=1

wqe
ik⋆ (̂sq .r′)GL(ŝq; r0; k

⋆). (A.15)

The plane wave approximation has a physical interpretation. The field eikr/r radiating from a

point source can be approximated by superimposing plane waves, as depicted in Fig. A.3 [82].

For r → ∞, the field can be locally considered as a plane wave propagating in one direction.

Approaching the source, i.e. r → O(1), the approximation should account for different direc-

tions through superposition of several plane waves. Finally, closed to the source the radiating

field is approximated by a number of radially propagating plane waves. The discrete directions

of propagations are the discrete quadrature points of the unit sphere in (A.15).

Figure A.3: Plane wave approximation [82].
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Appendix B

Analytical solutions for test problems

Contents

B.1 Spherical cavity under uniform pressure . . . . . . . . . . . . . . . . . . . . . . . 123

B.2 Spherical cavity under uniform pressure surrounded by a spherical shell . . . . . 123

B.3 Scattering of a P-wave by a spherical cavity . . . . . . . . . . . . . . . . . . . . . . 124

B.1 SPHERICAL CAVITY UNDER UNIFORM PRESSURE

Let R be the radius of a spherical cavity embedded in a viscoelastic isotropic infinite medium

and subjected to an internal time-harmonic uniform pressure P . This spherically-symmetric

problem has a closed-form solution, with the radial displacement and stress given (with α =

ik⋆
PR, θ = 4(1− α) + α2/γ⋆2 and γ⋆ defined as in (2.40)), by

ur(r) =
PR2

µ⋆θr2
(R− αr) exp

[

α
( r

R
− 1

)]

, (B.1a)

σrr(r) =
PR

θr3

(

− αr

γ⋆2
+ 4αRr − 4R2

)

exp
[

α
( r

R
− 1

)]

(B.1b)

B.2 SPHERICAL CAVITY UNDER UNIFORM PRESSURE SURROUNDED BY A SPHERI-

CAL SHELL

This spherically-symmetric problem also has a closed-form solution. Referring to Fig. 2.22, the

radial displacement u
(i)
r in domains Ωi (i = 1, 2) is such that u

(i)
r = ∂φi/∂r, with potentials φi

given by

φ1 =
A1

r
exp(ik

⋆(1)
P r) +

B1

r
exp(−ik

⋆(1)
P r) , φ=

A2

r
exp(ik

⋆(2)
P r) (B.2)
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where the coefficients A1, A2, B1 are found by solving





eα1(α1 − 1) −e−α1(α1 + 1) eα2(1− α2)

eα1µ1θ1 e−α1µ1(θ1 + 8α1) −eα2µ2θ2
eα3µ1θ3 e−α3µ1(θ3 + 8α3) 0











A1

B1

A2







=







0

0

−PR3
1γ

⋆2
1







with α1 = ik
⋆(1)
P R2, α2 = ik

⋆(2)
P R2, α3 = ik

⋆(1)
P R1 and θi = 4(1−αi)+α2

i /γ
⋆2
i (i = 1, 2) where

γ⋆
i is defined in each domain as in (B.1b).

B.3 SCATTERING OF A P-WAVE BY A SPHERICAL CAVITY

ur =
1

r

+∞
∑

n=0

[Φ0i
n(2n+ 1)U

(1)
1 (k⋆

P r) + AnU
(3)
1 (k⋆

P r) + CnU
(3)
3 (k⋆

Sr)]Pn(cos θ) (B.3)

uθ =
1

r

+∞
∑

n=0

[Φ0i
n(2n+ 1)V

(1)
1 (k⋆

P r) + AnV
(3)
1 (k⋆

P r) + CnV
(3)
3 (k⋆

Sr)]
d

dθ
Pn(cos θ) (B.4)

with

U
(1)
1 (z) = njn(z)− zjn+1(z) V

(1)
1 (z) = jn(z)

U
(3)
1 (z) = nh(1)

n (z)− zh
(1)
n+1(z) V

(3)
1 (z) = h(1)

n (z)

U
(3)
3 (z) = n(n+ 1)h(1)

n (z) V
(3)
3 (z) = (n+ 1)h(1)

n (z)− zh
(1)
n+1(z)

and where the constants An, Cn, obtained from enforcing the traction-free boundary condition

on the surface of the spherical cavity, are given by

An = φ0i
n(2n+ 1)

[

T
(1)
11 (k⋆

PR) T
(3)
43 (k⋆

SR)− T
(1)
41 (k⋆

PR) T
(3)
13 (k⋆

SR)
]

/∆n

Cn = φ0i
n(2n+ 1)

[

T
(1)
11 (k⋆

PR) T
(3)
41 (k⋆

SR)− T
(1)
41 (k⋆

PR) T
(3)
11 (k⋆

SR)
]

/∆n

with

T
(1)
11 (z) = (n2 − n− 1

2
k⋆2
S r2)jn(z) + 2zjn+1(z)

T
(1)
41 (z) = (n− 1)jn(z)− zjn+1(z)

T
(3)
11 (z) = (n2 − n− 1

2
k⋆2
S r2)h(1)

n (z) + 2zh
(1)
n+1(z)

T
(3)
13 (z) = n(n+ 1)[(n− 1)h(1)

n (z)− zh
(1)
n+1(z)]

T
(3)
41 (z) = (n− 1)h(1)

n (z)− zh
(1)
n+1(z)

T
(3)
43 (z) = (n2 − 1− 1

2
k⋆2
S r2)h(1)

n (z) + zh
(1)
n+1(z)



B.3. Scattering of a P-wave by a spherical cavity 125

and

∆n = T
(3)
11 (k⋆

PR) T
(3)
43 (k⋆

SR)− T
(3)
41 (k⋆

PR) T
(3)
13 (k⋆

SR)

The series appearing in the displacement fields formula (B.3) and (B.4) converges after a certain

number of terms, as shown in Fig.B.1 for the example of diffraction by a spherical cavity.
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Figure B.1: Scattering of a plane P-wave from a spherical cavity : convergence of the analytical ur field as a

function of the truncation parameter.
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Appendix C

Interface relaxation algorithms for

non-overlapping domain decomposition

Contents

C.1 Interface problem statement in elasticity. . . . . . . . . . . . . . . . . . . . . . . . 127

C.2 Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

In this Appendix, the main interface relaxation FEM-BEM coupling algorithms used in

the literature are summarized. Although the algorithms are here presented for the elasticity

problem, they can be applied in frequency-domain elastodynamics provided that the natural

frequency of boundary conditions do not coincide with a resonant frequency of the interior

problem. In the present work, we applied a modified sequential Dirichlet-Neumann interface

relaxation algorithm to a fast multipole BEM/FEM coupling for wave propagation problems

in three-dimensional unbounded domains. A review of the interface relaxation algorithms for

elliptic problems can be found in [103, 257].

C.1 INTERFACE PROBLEM STATEMENT IN ELASTICITY.

Let consider a domain Ω ∈ R
3 submitted to a classical linear elasticity problem, Figure C.1.

Denoting A the elasticity tensor and f the the volumic efforts imposed on Ω, the system is

governed by the following equations:



































div(σ) + ρf = 0 in Ω

ǫ(u) = 1
2
(∇u+∇uT ) in Ω

σ = A : ǫ(u) in Ω

u = uD on ∂uΩ

σ.n = tD on ∂tΩ

(C.1)

The boundary conditions are such that ∂uΩ ∪ ∂tΩ = ∂Ω and ∂uΩ ∩ ∂tΩ = 0. Assuming that

A define s a symmetric positive definite bilinear form on 2nd-order symmetric tensors and that

127



128 Chapter C. Interface relaxation algorithms for non-overlapping domain decomposition

(a) (b)

Figure C.1: Reference problem.

mes(∂uΩ) > 0 (no floating structures), problem (C.1) has a unique solution. Supposing Ω

partitioned into two non-overlapping subdomains
{

Ω(s), s = 1, 2
}

:















Ω = Ω(1) ∪ Ω(2)

Ω(1) ∩ Ω(2) = 0

Γ = ∂Ω(1) ∩ ∂Ω(2)

(C.2)

with (∂Ω(s) ∩ ∂Ω) > 0. System (C.1) can be rewritten in a form restricted to subdomains Ω(s):



































div(σ(s)) + ρf (s) = 0 in Ω(s)

ǫ(u(s)) = 1
2
(∇u(s) +∇u(s)T ) in Ω(s)

σ(s) = A : ǫ(u(s)) in Ω(s)

u(s) = u
(s)
D on ∂uΩ ∩ ∂uΩ

(s)

σ(s).n(s) = t
(s)
D on ∂tΩ ∩ ∂uΩ

(s)

(C.3)

Considering the normal as pointing away from Ω(s), the transmission conditions on Γ read:

{

u(1) = u(2) on Γ

σ(1).n(1) + σ(2).n(2) = 0 on Γ
(C.4)

The displacement-based finite element approximation of the problem gives rise to a linear sys-

tem in the form :
[

K(s)
] {

u(s)
}

=
{

f (s)
}

+
{

λ(s)
}

(C.5)

where
{

λ(s)
}

is the vector of nodal generalized forces associated with tractions along Γ.

C.2 ALGORITHMS.

In the following, five algorithms are collected: a sequential Dirichlet-Neumann, three parallel

algorithms (Neumann-Neumann, Dirichlet-Neumann and Dirichlet-Dirichlet) and an averaging

Dirichlet-Neumann.
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Algorithm 6 Sequential Dirichlet-Neumann

1: Initial guess: uΓB,0

2: for n = 0, k do

3: solve Dirichlet-pb on BE subdomain → tΓB,n

4: fΓ
F,n = MtΓB,n

5: solve Neumann-pb on FE subdomain → uΓF,n
6: if uΓF,n = uΓB,n then

7: stop {convergence}
8: else

9: uΓB,n+1 := (1− θ)uΓB,n + θuΓF,n {relaxation}
10: end if

11: end for

Algorithm 7 Parallel Neumann-Neumann

1: Initial guess: tΓB,0, t
Γ
F,0

2: for n = 0, k do

3: solve Neumann-pb on BE subdomain (tΓB,n) → uΓB,n

solve Neumann-pb on FE subdomain (fΓ
F,n = MtΓF,n) → uΓF,n

4: relaxation

tΓB,n+1 := tΓB,n + β(uΓF,n − uΓB,n)

tΓF,n+1 := −tΓB,n+1

5: if (tΓB,n+1 = tΓB,n) & (tΓF,n+1 = tΓF,n) then

6: stop {convergence}
7: end if

8: end for

Algorithm 8 Parallel Dirichlet-Neumann

1: Initial guess: uΓB,0, t
Γ
F,0

2: for n = 0, k do

3: solve Dirichlet-pb on BE subdomain (uΓB,n) → tΓB,n

solve Neumann-pb on FE subdomain (fΓ
F,n = MtΓF,n) → uΓF,n

4: relaxation

uΓB,n+1 := (1− γ)uΓB,n + γuΓF,n
tΓF,n+1 := −tΓB,n

5: if (uΓB,n+1 = uΓB,n) & (tΓF,n+1 = tΓF,n) then

6: stop {convergence}
7: end if

8: end for
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Algorithm 9 Geometric contraction: parallel Dirichlet-Dirichlet

1: Initial guess: uΓB,0, u
Γ
F,0

2: for n = 0, k do

3: solve Dirichlet-pb on BE subdomain (uΓB,n) → tΓB,n

solve Dirichlet-pb on FE subdomain (uΓF,n) → fΓ
F,n

4: tΓF,n = M−1fΓ
F,n

5: scaling uΓB,n with tΓB,n, tΓF,n
6: relaxation {geometric contraction}

uΓB,n+1 := uΓB,n − α(tΓB,n + tΓF,n)

uΓF,n+1 := uΓB,n+1

7: if (uΓB,n+1 = uΓB,n) & (uΓF,n+1 = uΓF,n) then

8: stop {convergence}
9: end if

10: end for

Algorithm 10 Averaging Dirichlet-Neumann

1: Initial guess: uΓB,0, u
Γ
F,0

2: for n = 0, k do

3: solve Dirichlet-pb on BE subdomain (uΓB,n) → tΓB,n

solve Dirichlet-pb on FE subdomain (uΓF,n) → fΓ
F,n

4: tΓF,n = M−1fΓ
F,n

5: averaging

tΓB,n+1/2 := (1− φ1)t
Γ
B,n − φ1t

Γ
F,n

tΓF,n+1/2 := (1− φ1)t
Γ
F,n − φ1t

Γ
B,n

6: solve Neumann-pb on BE subdomain (tΓB,n+1/2) → uΓB,n+1/2

solve Neumann-pb on FE subdomain (fΓ
F,n+1/2 = MtΓF,n+1/2) → uΓF,n+1/2

7: averaging

uΓB,n+1 := (1− φ2)u
Γ
B,n+1/2 + φ2u

Γ
F,n+1/2

uΓF,n+1 := (1− φ2)u
Γ
F,n+1/2 + φ2u

Γ
B,n+1/2

8: if (uΓB,n+1 = uΓB,n) & (uΓF,n+1 = uΓF,n) then

9: stop {convergence}
10: end if

11: end for
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The present thesis aims at extending the capabilities of the existing time-harmonic elasto-

dynamic FMBEM in two directions. On the one hand, the FMBEM formulation have been

extended to the case of weakly dissipative viscoelastic media. The existing ML-FMBEM code

for 3-D time-harmonic elastodynamic, called COFFEE [61], has been modified to account for

weakly dissipative media through the complex wavenumber formulation detailed in Chapter

2. On the other hand, two strategies have been applied to couple the FMBEM and the FEM

to solve three-dimensional wave propagation problems in unbounded domains. For this pur-

pose, two codes have been conceived for the FEM/FMBEM coupling corresponding to the two

approaches proposed in Chapter 3.CUPSEQ is a Matlab-based code that drives the iterative cou-

pling between two external software, treated as black-boxes. CUPSIM is a Fortran 90-based

code that integrates COFFEE and FEM subroutines in order to solve a unique system of equa-

tions by GMRES. This Appendix is devoted to an introduction to the use of the three codes

including their capabilities, the instructions needed for the preparation of input data files and

the post-processing of results.

D.1 COFFEE PROGRAM

D.1.1 Introduction

The code COFFEE is a Fortran-based program that solves 3-D linear (visco-)elastodynamics

problems in the frequency domain by the boundary element method accelerated by fast multi-

pole method (FMBEM). Our contribution consist in the extent of the capabilities of the program

written by Chaillat [61], originally limited to linear elastic problems, to deal with weakly dissi-

131
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pative media. The code is capable to solve mono-region problems involving a single isotropic

homogeneous domain (Fig.D.1a) and multi-region problems involving piecewise isotropic ho-

mogeneous media (Fig.D.1b). For single-region problems, the code uses the formulation de-

tailed in Section 2.2.2. For multi-region problems, the BE-BE coupling approach described in

Section 2.2.3 is used. The type of problem to be solved is dictated by the time-harmonic bound-

ary conditions defined on the whole domain boundary. For seismic problems, the incident wave

field should be analytically computed in a pre-processing step by the user, then imposed as

boundary data through the input files.

(a) (b)

Figure D.1: Main intended applications of the FMBEM solver COFFEE are seismic problems or local bound-

ary excitations problems in (a) homogeneous media or (b) piecewise heterogeneous media. Cavities or inclu-

sions of simple shape can be also modelled by the BEM (b).

D.1.2 Installation requirements.

The program COFFEE is written in Fortran 90 language and should be compiled within an Intel

Fortran compiler provided with Math Kernel Library (MKL), a library of optimized mathemat-

ical routines including the Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra

PACKage (LAPACK) [1]. The GMRES and Flexible-GMRES invoked in COFFEE are pub-

lic domain routines provided by CERFACS [121, 122]. A Makefile example for compiling

COFFEE on a Linux platform is shown in Fig.D.2.

D.1.3 Input files

The program COFFEE needs three input files, namely (i) a geometry file (problem.GEO ), (ii) a

problem data file (problem.DAT ) and (iii) a computation parameters file (Parameter.txt). Only

the problem data file has been slightly modified w.r.t. the original version to account for the

damping factor in the definition of the mechanical properties of each ”zone” (i.e. each subre-

gion).

If the problem at hand requires the use of the continuous formulation in terms of total field

(see Sec.2.2.3), e.g. for a basin problem, two additional input file are needed, providing the

geometry of the planar free surface (problem.GEO2 ) and the known displacement field (prob-

lem.DAT2 ) that appears in the right hand side term of the boundary equation (2.24). In both

cases (classical or total field formulation), the displacement field can be computed in any do-
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EXE = coffee.exe # Name of the executable program

FC90 = ifort # Invoke Intel Fortran Compiler

MKL PATH = /opt/intel/Compiler/11.1/072/lib/

MKL INCLUDE = /opt/intel/Compiler/11.1/072/include

# Debug options

# OPT= -g -CB -W1 -check format -check uninit -ftrapuv -warn unused -cpp -check nopower -warn all -check all

# Standard options

OPT = -I $MKL INCLUDE

# List of object files, i.e. all source files with extension ”.o”.

# (NOTE: use the tabular key (Tab) at the beginning of each row)

OBJECTS = all contributions.o read parameters.o read input file size.o read input file.o\
read input file2.o build cell.o pre-octree.o pre build octree.o \
(. . . )

zPackgmres.o zPackfgmres.o interface main.o main.o

MKL OBJECT= mkl dfti.o

all: coffee

#Compilation

coffee: $(MKL OBJECT) $(OBJECTS)

$(FC90) $(OPT) $(MKL OBJET) $(OBJECTS) -L$(MKL PATH) -lmkl intel lp64

-lmkl intel thread -lmkl core -liomp5 -lpthread -o $(EXE)

%.o : %.f90

$(FC90) $(OPT) -c $¡

%.o : %.f

$(FC90) $(OPT) -c $¡

clean :

rm -f *.o ; rm -f *;̃ rm -f *.obj ; rm -f *.mod

Figure D.2: Makefile for compiling COFFEE on a Linux platform (use terminal command make to compile).

In the Makefile, comment lines are preceded by symbol #.

main point by applying the integral representation (IR) (2.5). For this purpose, an additional

input file called problem.POSTGEO should be provided, containing the coordinate table of the

points where the IR is applied.

We stress that the extension of input files must respect the capital letters format, where

indicated. For a detailed description of the input files we refer the reader to the COFFEE User’s

Guide in [61]. Here, we limit our exposition to the main characteristics of each input file in

order to highlight the modifications related to the presence of lossy media.

1. Geometry file (problem.GEO). This text file contains all information about the problem

geometry and is divided in three sections, separated by the symbol #. This three sections
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are identified by the keywords Zones, Vertices and Triangles and contain respectively the

number of BEM regions (piecewise homogeneous layers having different mechanical pa-

rameters), the coordinate table and the connectivity table, see Fig.D.3. Noting with NN

the total number of nodes and NZ the number of zones, the coordinate table has size

NN×(3+NZ ) because for each boundary node it contains its three Cartesian coordinates

and the list of the zones to which the node belongs. For example, if a node lies on the

interface between the Zone 1 and the Zone 2 in a problem counting three regions, the inter-

face node references are given by indZ(node) = [1, 2, 0]. In the section Triangles, after

a single-row list of the number of boundary elements per zone (NENZ), the connectivity

tables are listed per zone, after the keyword Zone and the corresponding label. Notation

ENZ
ℓ (i) corresponds to the label of the i-th node of the ℓ-th boundary element belonging

to the zone NZ.

2. Problem data file (problem.DAT). This text file contains the definition of (i) the angular

Zones

NZ

#

Vertices

NN

x1 y1 z1 indZ(1)
...

xNN yNN zNN indZ(NN )

#

Triangles

NE1 . . . NENZ

Zone

1

E1
1(1) E1

1(2) E1
1(3)

...

E1
NE1

(1) E1
NE1

(2) E1
NE1

(3)

(. . . )

Zone

NZ

ENZ
NENZ

(1) ENZ
NENZ

(2) ENZ
NENZ

(3)
...

ENZ
NENZ

(1) ENZ
NENZ

(2) ENZ
NENZ

(3)

#

Figure D.3: Format of the geometry input file problem.GEO. Sections are separated by the symbol #. NZ is

the number of zones or subregions in the domain, NN the number of mesh nodes and NENZ is the number of

boundary elements in the zone NZ.
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frequency ω to which the system is harmonically submitted, (ii) the material properties of

each zone and (iii) the boundary data and unknown degrees of freedom. For each zone

NZ, the material properties needed for the definition of the mechanical parameters are

the shear modulus µNZ , the Poisson’s ratio νNZ , the mass density ρNZ and the shear and

compression damping factors βS
NZ and βP

NZ for characterizing the attenuation in shear

and compression waves respectively. Often, the same value is considered for the two

factors, i.e. βS
NZ = βP

NZ [94]. The format of the data file is shown in Fig.D.4. Sections

are always separated by the symbol #. After the definition of the angular frequency

and the material properties, six sections define the boundary data and unknown degrees

of freedom (DoFs). In sections DISP UNK and TRAC UNK the unknown displacement

and traction DoFs are defined. By convention, i (i=1, 3) defines the Cartesian direction of

the j-th collocation node or element. The keyword DIR must be specified for each DoF.

Sections DISP B and TRAC B contain the displacement and tractions time-harmonic

boundary data respectively. The complex value val is assigned to each i-th direction of

the j-th node or element.

In case of scattering problems formulated in terms of total field, the sections NODE RHS

and TRAC RHS are devoted to the definition of the known free field, see Section 2.2.3.

The format to be used here is the same as in sections DISP B and TRAC B.

3. Integral representation input file (problem.POSTGEO). In this file, the coordinate table

of the interior points NR for which solution is computed by using the integral representa-

tion (2.5) is listed, see Fig.D.5. The IR is applied provided the boundary integral equation

(BIE) has been solved on all the domain boundaries (and eventual interfaces).

4. Input files for scattering problems with total field formulation (problem.GEO2 and prob-

lem.DAT2). This files contain the geometry and data (free field) of the planar free surface

that appears in the right hand side of the BIE (2.24). The geometry file problem.GEO2

defines the geometry of the discretized (truncated) free-surface. The format is the same as

problem.GEO, but the keyword Zone refers to the region for which the integral is com-

puted. The problem data file contains only the DISP B section of displacement free field.

D.1.4 Output files

COFFEE has four fixed output files. Two of them (respectively named problem.DISP NODES.txt

and problem.TRAC ELEM.txt) collect the computation results, the other two contain informa-

tion about the computation itself (ERROR.err and STATUS.log). If the integral representation

has been required for a certain set of points (through the input file problem.POSTGEO ),

In problem.DISP NODES.txt, for each node n the Cartesian component of the complex

displacement are given in the following order (n=1, NN ):

n ℜ(ux) ℜ(uy) ℜ(uz) ℑ(ux) ℑ(uy) ℑ(uz)
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Problem

ω

#

Material properties

µ1 ν1 ρ1 βS
1 βP

1

. . .

µNZ νNZ ρNZ βS
NZ βP

NZ

#

DISP UNK

DIR

i

j

. . .

#

TRAC UNK

ZONE

1

DIR

i

j

. . .

ZONE

NZ

. . .

#

DISP B

DIR

i (ℜ(val),ℑ(val))

j

. . .

#

TRAC B

ZONE

1

DIR

i (ℜ(val),ℑ(val))

j

. . .

ZONE

NZ

. . .

#

NODE RHS

#

ELEM RHS

#

Figure D.4: Format of the geometry input file problem.DAT.
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Vertices

NR

Zone

1

x1 y1 z1
...

Zone

NZ
...

xNR yNR zNR

#

Figure D.5: Format of the geometry input file problem.POSTGEO. Coefficient NR is the number of nodes for

which integral representation is computed.

In problem.TRAC ELEM.txt, the element tractions are given with the following convention

(e = 1, NE):

e ℜ(tx) ℜ(ty) ℜ(tz) ℑ(tx) ℑ(ty) ℑ(tz)

During the computation, the most important information are collected in the file STATUS.log:

the FMM octree geometry (number of levels, cells size), the GMRES parameters and its con-

vergence history, the number of iterations and the CPU time per iteration and the residuum at

the last iteration. In case of error during the computation, the file ERROR.err should contains

the explication of the error nature and its localisation in the source code.

D.1.5 Post-processing

The results can be easily exploited using Matlab and visualized by the help of scientific visual-

ization software as for example the OpenGL-based software medit 3.0 [123].

D.2 CUSIM PROGRAM

D.2.1 Introduction

The program CUSIM solves 3-D time-harmonic linear (visco-)elastodynamics problems by

coupling the finite element method (FEM) and the fast multipole boundary element method

(FMBEM) according to the simultaneous approach proposed in Section 3.6. Due to external

constraints, we have chosen to integrate the FEM subroutines needed by the coupling algo-

rithm in the program COFFEE, thus resulting in the hybrid Fortran 90-based code CUSIM. The

preparation of input files and the analysis of output results are guided by two Matlab codes



138 Chapter D. User’s guides

called PRE-CUSIM and POST-CUSIM. Although computations can be performed indepen-

dently with CUSIM (provided the input files are coherent and available in the right format),

these pre- and post-processing programs are very useful for piloting the domain decomposition

and the generation of the FEM and BEM mesh (that should perfectly match at the common

interface). A diagram of the main steps of the program CUSIM are represented in Fig.D.6.

D.2.2 Installation requirements.

For the compilation, CUSIM requires the same libraries and routines needed by COFFEE and de-

tailed in Section D.1.2, i.e. MKL, GMRES and the Flexible-GMRES. The Makefile of CUSIM

is almost the same of CX-COFFEE, see Fig.D.2. Only two Fortran files, read FEM.f90 and

comp FEM.f90 are added to the object files list. These two files contain the FEM subroutines.

After compilation under Linux platforms, the executable CUSIM can be easily launched from

the prompt.

D.2.3 Input files

CUSIM needs two input files for the BEM subdomain and one for the FEM subdomain. The

input files required for the BEM subdomain are the geometry file problem.GEO and the data file

problem.DAT. These two files are the same of those needed by COFFEE, and their format has

been detailed in Section D.1.3. Referring to the example depicted in Fig.D.7, the geometry input

file defines the discretized subdomain boundary ∂ΩB, whereas the data file describes the time-

harmonic boundary data, i.e. prescribed tractions on the surface ΓB and unknown displacements

and efforts field across the common interface ΦBF .

The input file problem FEM.GEO contains all characteristics of the FEM subdomain geometry

and of the mesh. As shown in Fig.D.8, the file is composed of five sections separated by the

symbol # :

• FE Vertices. In the first line, the number NN of mesh nodes and the number NM of

materials in the FEM subdomain are listed. In each of the successive NN rows, after the

three coordinates of the FEM i-th node, the local number of the corresponding BE-node

NB(i) on the matching grid is reported.

• FE Tetrahedra. The number of three-dimensional finite elements of the FEM volume

mesh (for the moment limited to linear four-noded tetrahedra) is followed by the global

NN×4 connectivity table that defines each element through the list of its nodes. The total

number of entries for each line is 4+1, the last integer coefficient specifying the material

type of the element.

• FE Interface T3. After the number NI of three-noded triangles that constitute the in-

terface mesh, the connectivity table of the trace of interface tetrahedra that constitute the

interface mesh on the FEM subdomain side is reported.
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Pre-processing

⋄ Geometry and mesh creation (GMSH)

⋄ Creation of local FEM and BEM subproblems (PRE-CUSIM)

CUSIM

⋄ Reads FEM input files

⋄ Assembly FEM dynamic stiffness matrix KF

⋄ Reads BEM input files

⋄ Generation of the FMM octree enclosing ∂ΩB until leaf level lℓ

⋄ Compute and store near contributions Knear and F
near, Eq.(2.17b)

⋄ Compute and store far contributions FFMM, Eq.(3.5)

⋄ Initialization of the GMRES solver

⋄ Run GMRES for the solution of the linear system (3.17)

For each GMRES iteration n
⋄ Invoke continuity ũFB := ũBF across the interface ΦFB

⋄ Compute FEM nodal forces F̃n
F associated with interface displacements ũFB

⋄ Solve the FEM system (3.19) directly (PARDISO)

⋄ Compute t̃
n
FB

⋄ Invoke equilibrium tBF = −tFB

⋄ Substitute tBF back in X̃
n
B

⋄ FMMmatrix-vector product and computation of the residuum

Convergence?

Stop

Post-processing

⋄ Compute relative error w.r.t. pure FMBEM/analytical results (POST-CUSIM)

⋄ 3-D results visualization (Medit)

Yes

No

Figure D.6: Schematic description of the simultaneous coupling algorithm implemented in CUSIM, after a

pre-processing step for the generation of the global mesh and of the local subproblems. The FEM steps are

highlighted in blue whereas the BEM steps are in black.
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�

�

�

(a) (b)

Figure D.7: Example of problem that can be solved by using the simultaneous FEM/FMBEM coupling. The

original semi-infinite domain Ω (a) is split into two non-overlapping subdomains ΩB (discretized by BEM)

and ΩF (discretized by FEM) (b).

• Interface tetrahedra list. This section simply contains the vertical list of tetrahedra having

at least one node on the interface Φ.

• Material properties. The mechanical properties of the materials presents in the FEM

subdomain are listed here: the shear modulus µ, the Poisson’s ration ν, the mass density ρ

and the Rayleigh coefficients required for the definition of the Rayleigh damping matrix.

PRE-CUSIM. A Matlab program called PRE-CUSIM has been written to drive the creation

of the BEM and FEM local subproblems (Fig.D.7b) starting from the original unique problem

defined on the domain Ω (Fig.D.7a). The global mesh is generated with GMSH v.1.60.1,

free software available with documentation at the web page www.geuz.org/gmsh/. In GMSH,

the geometry of the domain Ω is defined by means of the file problem.geo1, whose format is

described in Fig.D.10 for the example problem of Fig.D.7. The order used in the definition

of Circle, Line Loop and Ruled Surface determines the orientation of the surface normal, as

shown in Fig.D.9d. Indeed, GMSH will generate a mesh whose traces on each surface respect

the normal orientation defined in the geometry file (the normal orientation of a mesh being

determined by the node ordering, via the evaluation of a cross product). For an exhaustive

description of the geometry file format we refer the reader to the GMSH documentation.

PRE-CUSIM requires the following information: the problem name, the number of materi-

als in the FEM sub-domain, the possibility to store in text format certain geometry information

that can be reused for successive computations (e.g. list of interface tetrahedra), the number

characterizing each physical entity (defined in the last lines of Fig.D.10) and the problem data

(circular frequency, material properties). The Rayleigh coefficients required for the definition of

the FEM damping matrix are computed by the code starting from values of damping factor and

1Note: do not confuse the GMSH file problem.geo with the problem.GEO (capital .GEO extension) input file of COFFEE



D.2. CUSIM program 141

FE Vertices

NN NM

x1 y1 z1 NB(1)
...

xNN yNN zNN NB(NNF )

#

FE Tetrahedra

NE

E1(1) E1(2) E1(3) E1(4) indM (1)
...

ENE(1) ENE(2) ENE(3) ENE(4) indM (NE)

#

FE Interface T3

NI

E=I1(1) I1(2) I1(3)
...

INE(1) INE(2) INE(3) INE(4)

#

Interface tetrahedra list

1
...

NT

#

Material properties

µ1 ν1 ρ1 a1 b1

. . .

µNM νNM ρNM aNM bNM

#

Figure D.8: Format of the geometry input file problem FEM.GEO. NN is the number of FEM-mesh nodes,

NE the number of finite elements (linear four-noded tetrahedra), NM the number of materials in the FEM

subdomain, NI the number of nodes lying on the FE-BE interface Φ and NT the number of tetrahedra having

at least one node on Φ. In the Material properties section, a and b are the coefficients required for the coherent

definition of the damping Rayleigh matrix.

respecting the relations described in Sec.3.3.2. With this information, PRE-CUSIM reads the

mesh of the original problem and the definition of the physical entities assigned to the various

portion of surfaces or volumes. Then, it defines the local subproblems and creates the input files

for the code CUSIM.
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(a) (b)

XY
Z

(c) (d)

Figure D.9: Graphic visualization with the code GMSH: definition (a) of points number (black), circles number

(blue), (b) of plane and ruled surfaces and (c) of the final mesh for the problem of Fig.D.7. The convention for

orientation of loop lines and surface normals is shown in (d).

D.2.4 Output files

CUSIM produces two output text files containing the results (complex nodal displacements) in

the FE- and in the BE- subdomains, called resu dispFEM.txt and resu dispBEM.txt respec-

tively. For each node, the Cartesian components of displacement are given in the following

order:

n ℜ(ux) ℜ(uy) ℜ(uz) ℑ(ux) ℑ(uy) ℑ(uz)

where n=1, NNFE in resu dispFEM.txt and n=1, NNBE in resu dispBEM.txt.

D.2.5 Post-processing

The 3-D visualization of results can be exploited by means of different software such GMSH

or the OpenGL-based software medit 3.0 [123]. A Matlab function called POST-CUSIM has

been written to read the CUSIM output files, re-combine the local FEM and BEM results in a

global results set, prepare the Medit input files in the right format and eventually compute the

relative error between results obtained using the simultaneous coupling with analytical results.
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\\Mesh density coefficients

lcFE=.03;

lcBE=.03;

\\Geometry

rFE=.5;

rLOAD=.2;

dist=1.5;

rBE=2.;

Point(1) = {0, 0, 0, lcFE}; Point(2) = {rFE, 0, 0, lcFE}; Point(3) = {0, rFE, 0, lcFE};

Point(4) = {-rFE, 0, 0, lcFE}; Point(5) = {0, -rFE, 0, lcFE}; Point(6) = {0, 0, -rFE, lcFE};

Point(7) = {rLOAD+dist, 0, 0, lcBE}; Point(8) = {-rLOAD+dist, 0, 0, lcBE}; Point(11) = {dist, 0, 0, lcFE};

Circle(1) = {2, 1, 3}; Circle(2) = {3, 1, 4}; Circle(3) = {4, 1, 5};

Circle(4) = {5, 1, 2}; Circle(5) = {3, 1, 6}; Circle(6) = {6, 1, 5};

Circle(7) = {4, 1, 6}; Circle(8) = {6, 1, 2}; Circle(9) = {7, 11, 8};

Circle(10) = {8, 11, 7};

Line Loop(11) = {-7, -2, 5}; Ruled Surface(11) = {11};

Line Loop(12) = {-5, -1, -8}; Ruled Surface(12) = {12};

Line Loop(13) = {-3, 7, 6}; Ruled Surface(13) = {13};

Line Loop(14) = {8, -4, -6}; Ruled Surface(14) = {14};

Line Loop(32) = {1, 2, 3, 4};

Line Loop(33) = {9, 10};

Plane Surface(34) = {32};

Plane Surface(35) = {33};

Surface Loop(15) = {14, 11, 13, 12, 34};

Volume(31) = {15};

Point(9) = {rBE, 0, 0, lcBE}; Point(10) = {-rBE, 0, 0, lcBE};

Circle(36) = {9, 1, 10}; Circle(37) = {10, 1, 9};

Line Loop(38) = {36, 37};

Plane Surface(39) = {-32, 33, -38};

\\Definition of physical entities

Physical Surface(27) = {11, 12, 13, 14}; \\Interface ΦFB

Physical Volume(28) = {31}; \\FEM volume

Physical Surface(29) = {35}; \\Load surface

Physical Surface(30) = {34}; \\FEM free-surface

Physical Surface(40) = {39}; \\BEM free-surface

Figure D.10: Format of the geometry GMSH input file problem.geo for the example of Fig.D.9. Comments

are preceded by the symbol \\. Documentation for write this kind of file is available on the GMSH website.
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D.3 CUSEQ PROGRAM

D.3.1 Introduction

CUSEQ is a Matlab-based program that drives the iterative coupling between the FEM code

CESAR-LCPC and the FMBEM solver COFFEE. The external FEM program should assembly

the damped dynamic stiffness matrix, the known right-hand side and solve the FEM linear

problem. In particular, using an existing FEM code is advantageous because different types of

finite elements (e.g. beam elements) or anisotropic laws can be used within the FEM subdomain.

The only condition to be respected is that the trace of the finite elements on the interface ΦFB

must guarantee the conforming match with the BE subdomain discretization in three-noded

triangles. For the reasons explained in Sec. 3.1.2, if the finite element model employs only

four-noded tetrahedra, some FEM functions have been implemented CUSEQ in order to have a

higher flexibility than using the actual CESAR module LINC.

D.3.2 Installation requirements.

The program CUSEQ is a Matlab R2010a function and does not require specific packages nor

libraries in itself. However, as it drives a sequential coupling between external codes, one

should ensure that the external codes are well installed before use. For the specific installation

requirements please refer to Section D.1 for COFFEE and to [160, 161] for CESAR.

D.3.3 Input data

CUSEQ does not requires specific input files. However, the head of the main program CUSEQ.M

should be modified to define the problem mechanical parameters, amplitude and circular fre-

quency of the boundary data and the options for the computation (name of the FEM external

code, etc).

D.3.4 Output data and post-processing

CUSEQ alternates the solution of local BEM and FEM subproblems by using COFFEE and

CESAR (or own CUSEQ subroutines) respectively. Once the convergence of the iterative cou-

pling algorithm is reached, the solution will be available for both subproblems separately, ac-

cording to the program adopted. Thus, BEM results obtained with COFFEE are written in the

files problem.DISP NODES.txt and problem.TRAC ELEM.txt. The nodal FEM displacement

results are stored in the file problem uFE.dat with the following format:

ℜ(ux) ℜ(uy) ℜ(uz) ℑ(ux) ℑ(uy) ℑ(uz)
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Pre-processing

CUSEQ

⋄ Creation of local FEM and BEM subproblems

⋄ If incident wavefield (IW): compute uΦB (Pre-step of Alg.2)

⋄ Initial Guess of displ uΦF,0 on ΦFB:

− uΦ
F,0 := ∅ (surface loading case)

− uΦ
F,0 := uΦB (incident wavefield)

⋄ Pre-compute and store (using CESAR or CUSEQ):

− FEM stiffness matrix KF

− FEM vector f0T associated to prescribed data

Interface relaxation

⋄ Relax uΦF

FE analysis on ΩF

⋄ Solve Dirichlet pb for uF,n

⋄ Compute σF,n, then interface tractions t
Φ
F,n

⋄ Compute tΦFS ,n, Eq. (3.13)

BE analysis on ΩB

⋄ Invoke trac TC on ΦBF :

− tΦB,n := −tΦF,n (surface loading case)

− tΦB,n := tΦFS ,n (incident wavefield)

⋄ Solve Neumann pb for uB,n

⋄ Add incident field uB,n = uB,n + uBF ,n

Convergence?

Stop

Post-processing

Iteration n

Yes

No

Figure D.11: Schematic description of the simultaneous coupling algorithm implemented in CUSEQ. If the

FEM mesh is exclusively made of linear four-noded tetrahedra, the code CUSEQ can solve the FEM subprob-

lem independently. Text in blue indicates steps followed by the algorithm in case of incident wavefield.
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l’élastodynamique. C.R. Acad. Sci., Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences

de la Terre, 300:633–636, 1985.

[54] A.J. Burton and G.F. Miller. The application of integral equation methods to the numerical solution of some

exterior boundary-value problems. Proc. Royal Soc. London, 323:201–220, 1971.

[55] G.N. Bycroft. Forced vibrations of a circular plate on a semi-infinite elastic space and on an elastic stratum.

Phil. Trans. Royal Soc. London, 248, Ser.A:327–368, 1956.

[56] X.-C. Cai and O.B. Widlund. Domain decomposition algorithms for indefinite elliptic problems. SIAM J.

Sci. Stat. Comp., 13:243–258, 1992.
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