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“Niczego w życiu nie należy się bać,
należy to tylko zrozumieć.”
Maria Skłodowska-Curie

« Dans la vie, rien n’est à craindre,
tout est à comprendre. »

Marie Sklodowska-Curie
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Streszczenie

W 1967 zaobserwowano w promieniowaniu radiowym pulsary, obiekty, które okazały
się potwierdzeniem przewidywań teoretycznych z lat trzydziestych XX wieku dotyczą-
cych możliwości istnienia gwiazd neutronowych. Gwiazdy neutronowe rodzą się w
wybuchu supernowej, końcowym stadium życia gwiazd o masie ponad ośmiokrotnie
przewyższającej masę Słońca. Dotychczas znamy dwa tysiące gwiazd neutronowych
obserwowanych we wszystkich długościach fali w Galaktyce i Obłokach Magellana.
Dla około sześćdziesięciu z nich oszacowano masę, niekiedy z dość dużą dokładnoś-
cią. Przy masie porównywalnej z masą Słońca i rozmiarze kilkudziesięciu kilometrów
pulsary są gwiazdami o największych wartościach gęstości i ciśnienia wsród obiektów
obserwowanych we Wszechświecie. Struktura i własności materii w takich warunkach
ciągle stanowią nierozwiązany problem. Gwiazdy neutronowe są unikalnym laborato-
rium pozwalającym na studiowanie własności gęstej materii oraz badanie teorii graw-
itacji.

W pracy przedstawione zostaną trzy aspekty dotyczące dynamiki i ewolucji gwiazd
neutronowych.

Jeden z nichma związek z ewolucją termiczną izolowanych oraz akreujących gwiazd
neutronowych. Analiza stygnięcia gwiazd neutronowych wskazuje, że ich skorupa jest
kryształem zawierającym gaz neutronowy w stanie nadciekłym. Ostatnie obserwacje
chłodzenia gwiazdy neutronowej CassiopeiaA pozwoliły na określenie niektórych włas-
ności nadciekłości materii we wnętrzu gwiazdy. Okazuje się, że porównanie teore-
tycznych modeli ewolucji cieplnej gwiazdy neutronowej z obecnymi pomiarami ich
temperatury prowadzić może do lepszego zrozumienia własności gęstej materii. Przy
opisie stygnięcia gwiazdy neutronowej konieczne jest uwzględnianie takich procesów
fizycznych jak emisja neutrin z wnętrza i fotonów z powierzchni, przewodnictwo ciepl-
ne, nadciekłość i nadprzewodnictwo. W pracy zajmuję się zarówno wpływem nad-
ciekłości neutronów w skorupie na ewolucję cieplną gwiazdy, jak i prezentacją mod-
elu zewnętrznych warstw akreującej gwiazdy neutronowej (skorupa, otoczka), który
pozwala na odtworzenie obserwowanych własności relaksacji termicznej gwiazd neu-
tronowych wkrótce po ustaniu (lub znacznym osłabieniu) procesu akrecji.
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Drugim tematem pracy jest modelowanie rotacji gwiazdy neutronowej uwzględnia-
jące elastyczne własności gęstej materii. Własności te mogą być istotne w sytuacji kiedy
materia przypomina kryształ; jest tak w przypadku skorupy gwiazdy neutronowej,
a niektóre modele teoretyczne przewidują taki efekt również w centralnych rejonach
gwiazdy neutronowej. Dotychczasowa analiza tych efektów oparta była o modele trak-
tujące efekty elastyczności w ramach dynamiki newtonowskiej. W pracy przedstawione
są równania opisujące rotację gwiazdy w oparciu o relatywistyczną teorię elastyczności
w ramach ogólnej teorii względności.

W trzeciej części pracy analizowana jest ewolucja rotacji akreującej gwiazdy neu-
tronowej. Problem ten odnosi się do własności pulsarów milisekundowych, gwiazd
neutronowych rozkręconych do okresów kilku milisekund poprzez akrecję materii z
gwiazdy towarzyszącej. W ramach zaproponowanego modelu akrecję rozpatruje się
z uwzględnieniem oddziaływania gwiazdy z dyskiem akrecyjnym poprzez pole mag-
netyczne oraz bierze się pod uwagę istnienie marginalnie stabilnej orbity będącej efek-
tem ogólnej teorii względności. Analiza obserwacji niektórych milisekundowych pul-
sarów pozwala nawyznaczenie ich okresu, masy i polamagnetycznego. Przedstawiony
model pozwala na określenie parametrów gwiazdy neutronowej będącej prekursorem
obecnie obserwowanego pulsara. Zastosowno go do trzech obiektów: dwóch pulsarów
o najwyższych zmierzonych dokładnie masach i do najlżejszego obserwowanego pul-
sara.

Konfrontacja modeli gwiazd neutronowych z obserwacjami w aspektach przedstaw-
ionych w pracy prowadzi do lepszego zrozumienia własności materii przy bardzo du-
żych gęstościach.

Praca została napisanawewspółpracy CentrumAstronomicznego imMikołaja Koper-
nika Polskiej Akademii Nauk wWarszawie oraz Laboratoire Univers et Théories w Ob-
serwatorium Paryż-Meudon-Nançay we Francji.



Résumé

Envisagées par L. Landau en 1931 avant même la découverte du neutron par J. Chad-
wick l’année suivante et prédites par Baade et Zwicky en 1934, les étoiles à neutrons ne
furent observées qu’en 1967 par hasard et en radio, sous forme de pulsars. Elles sont
créées lors de l’explosion, appelée supernova, d’étoiles environ huit fois plus massives
que notre Soleil, à la fin de leur vie. Une masse de une à deux fois celle du Soleil pour
un rayon d’une dizaine de kilomètres seulement font d’elles des objets relativistes et
parmi l’une des formes de matière les plus denses de notre Univers. Depuis leur pre-
mière observation, environ deux mille étoiles à neutrons ont été observées dans toutes
les longueurs d’onde, dans notre Galaxie et dans les nuages de Magellan et la masse
d’une soixantaine d’entre elles a pu être déterminée. Néanmoins, leur structure et les
propriétés de la matière en leur sein sont mal connues. Elles constituent donc des labo-
ratoires célestes qui permettent de comprendre et de tester de nombreux domaines de
la physique, parmi lesquels la physique nucléaire et la gravitation.

Le travail de cette thèse porte sur l’étude théorique de trois aspects de la dynamique
et de l’évolution des étoiles à neutrons.

La premier sujet traite de l’évolution thermique des étoiles à neutrons qu’elles soient
isolées ou accrétant de la matière d’une étoile compagnon. Des travaux précédents ont
montré que la croûte d’une étoile à neutrons, sa partie supérieure, est cristalline et que
ses neutrons sont superfluides. Récemment l’observation directe du refroidissement de
l’étoile à neutrons au cœur du reste de supernova Cassiopée A a permis de mettre des
contraintes sur les propriétés superfluides de la matière dans le cœur des étoiles à neu-
trons. Ainsi la comparaison des modèles d’évolution thermique avec les observations
permet de comprendre les propriétés de la matière et contraint les modèles de physique
nucléaire. La modélisation de l’évolution thermique nécessite de prendre en compte de
nombreux aspects de microphysique, en particulier l’émission de neutrinos dans toute
l’étoile et de photons à sa surface, la diffusivité et la possible superfluidité de la matière.
D’une part, a été étudiée lors de cette thèse l’influence de la superfluidité des neutrons
dans la croûte sur l’évolution thermique d’une étoile à neutrons. D’autre part, un nou-
veau modèle qui décrit précisément la physique de l’envelope et de l’atmosphère des
étoiles à neutrons accrétantes a été mis au point. Des résultats préliminaires montrent
qu’il permet pour la première fois de reproduire la relaxation thermique d’étoiles à neu-
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trons, observée en X, après que l’accretion qui eut lieu pendant des périodes d’une à
plusieurs dizaines d’années s’est arrêtée.

Le deuxième sujet de cette thèse porte sur la modélisation de la rotation d’étoiles à
neutrons incluant les propriétés élastiques de leurs parties solides. En effet, il est admis
que la croûte d’une étoile à neutrons est solide et certains travaux de physique nucléaire
suggèrent qu’il en est de même pour son cœur. Jusqu’à présent l’effet de l’élasticité des
parties solides sur la rotation n’a été pris en compte que dans la cadre newtonien. À
partir d’un modèle relativisite qui décrit le phénomène d’élasticité, les équations qui
décrivent la rotation d’une étoile à neutrons en totalité ou en partie solide ont été déri-
vées.

Le troisième et dernier sujet de cette thèse concerne l’évolution de la rotation et du
champ magnétique d’une étoile à neutrons accrétante. En effet, certaines étoiles à neu-
trons, appelées pulsars millisecondes sont des objets agés dont la rotation a été accélérée
à des périodes de quelques dizaines de millisecondes par l’accrétion de la matière d’une
étoile compagnon. Le modèle mis au point pendant cette thèse utilise une description
relativiste du disque d’accrétion magnétisé et permet de suivre à la fois l’évolution de la
période de rotation et du champmagnétique de l’étoile à neutrons. La masse, la période
et indirectement le champ magnétique de certains pulsars millisecondes ont été mesu-
rés grâce à des observations en radio. Le modèle permet de mettre des contraintes sur
les propriétés des étoiles à neutrons dont sont issus ces pulsars et est appliquée à trois
d’entre eux : les deux plus massifs et le moins massif.

Ainsi la modélisation des étoiles à neutrons et la comparaison avec les observations
permet de comprendre les propriétés de la matière dite froide à très haute densité.

Cette thèse a été réalisée en cotutelle entre le Centre d’Astronomie Nicolas Copernic
de l’Académie des Sciences polonaise à Varsovie, en Pologne et le Laboratoire Univers
et Théories de l’Observatoire de Paris-Meudon-Nançay, en France.



Abstract

Anticipated by L. Landau in 1931, before the discovery of the neutron by J. Chadwick
one year later and predicted by Baade and Zwicky in 1934, neutron stars were observed
only in 1967 by chance and in radio, as pulsars. They originate from the explosion,
called supernova, at the end of the life of stars that are about eight times more massive
than our Sun. With a mass one to two times the one of the Sun for a radius of few tens
of kilometers, neutron stars are relativistic objects and one of the densest form of matter
in our Universe. Since their first observation, around two thousand neutron stars have
been observed in all wavelengths in our Galaxy and in the Magellanic Clouds and the
mass of approximately sixty of them has been determined. Nevertheless, their structure
and the properties of the matter inside them are still poorly known. They are therefore
cosmic laboratories that enable to understand and test various fields of physics, in par-
ticular nuclear physics and gravitation.

This thesis presents the theoretical study of three aspects of the dynamics and evo-
lution of neutron stars.

The first aspect addresses the thermal evolution of isolated and accreting neutron
stars. Previous studies showed that the crust of neutron stars, their upper part, is crys-
talline with superfluid neutrons. Recently the direct observation of the cooling of the
neutron star in Cassiopeia A supernova remnant has constrained the superfluid prop-
erties of the matter in the core of neutron stars. Therefore, the comparison between the
thermal evolution models and the observations of neutron stars allows to understand
the properties of matter and constrains the nuclear physics models. Many aspects of
microphysics have to be taken into account in the modeling of the thermal evolution,
in particular, the emission of neutrinos from the interior of the neutron star and of pho-
tons at the surface, the diffusivity and the possibility of matter superfluidity. On the
one hand, the influence of the superfluidity of the neutrons in the crust on the thermal
evolution of neutron stars has been studied. On the other hand, a new model based
on an up-to-date description of the physics of the envelope and of the atmosphere of
accreting neutron stars has been developed. Preliminary results show that it enables for
the first time to reproduce the thermal relaxation observed in X-rays of neutron stars
when accretion stopped after they had accreted matter for years to decades.
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The second subject of this thesis deals with the modeling of the rotation of neutron
stars, including the elastic properties of their solid parts. Indeed, their crust is thought
to be solid and some nuclear models suggest that their core may be in the same phase.
Previous works considered the effects of the elasticity of the solid parts in the frame-
work of Newtonian dynamics. Based on a general relativistic theory of elasticity, the
equations for the rotation of a neutron star with a (partly) solid interior have been de-
rived.

The third and last part of this thesis regards the evolution of the rotation and of
the magnetic field of an accreting neutron star. Indeed, a certain type of neutron stars,
called millisecond pulsars, are old objects that have been spun up to periods of few tens
of milliseconds by the accretion of matter from a companion star. The model that has
been developed during my Ph.D. studies uses a relativistic prescription for a magne-
tized accretion disk and describes both the variation of the period and of the magnetic
field of the neutron star. The mass, the period and indirectly the magnetic field of some
millisecond pulsars can be determined thanks to radio observations. The model enables
to put constraints on the properties of the progenitor neutron star of these millisecond
pulsars and is applied to three of them : the two most and the less massive ones.

Thus confronting the models for the evolution and dynamics of neutron stars with
observations enables to understand the properties of the so-called cold matter at very
high density.

My Ph.D. studies have been carried out jointly between the Nicolaus Copernicus
Astronomical Center of the Polish Academy of Sciences, in Warsaw in Poland and the
Laboratory Universe and Theories at Paris-Meudon-Nançay Observatory, in France.
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Neutron stars are among the most exotic objects in our Universe and are stellar labo-
ratories for both astrophysics and microphysics. Indeed, their central density is so high
that atomic nuclei disappear in their core. Their magnetic field can be as large as 1015 G
and they are very compact and rapidly rotating objects. The modeling of their evolution
and dynamics requires a precise description of their relativistic andmicrophysical prop-
erties. They are therefore of particular interest for astrophysicists together with nuclear
physicists.

The first part presents general aspects concerning neutron stars. After a short histor-
ical review, chapter 1 details the neutron star formation mechanism. Then a toy model
enables to understand their basic dynamics. Chapter 2 explains why neutron stars are
cosmic laboratories that enable to test and understand various field of physics such as
nuclear physics and gravitation.

The second part addresses the thermal evolution of neutron stars. Chapter 3 gives
a general overview of the subject, with a particular attention to the connection with
the observations. After a short historical review, the different microphysics ingredients
that enter the modeling of the thermal evolution are presented step by step. Chapter
4 then focuses the thermal evolution of young neutron stars and details new calcula-
tions for the specific heat of the superfluid neutrons in the crust of neutron stars and
their influence of the cooling. In chapter 5, the thermal evolution of accreting neutron
stars is explained and a new model for the latter with promising preliminary results is
presented.

The third part deals with the rotation of neutron stars. In chapter 6, a model for
rotating neutron stars with a perfect fluid interior and the constraints that can be put on
themicrophysical properties by the observations of rotating neutron stars are presented.
Chapter 7 then shows that sudden changes in the rotation of neutron stars suggest that
some parts of neutron stars are solid and therefore undergo elastic deformations that
have to be taken into account in themodels. Both Newtonian and relativistic formalisms
for elasticity are then introduced. In chapter 8, the derivation of the relativistic equations
for rotating neutron stars with a solid interior and their numerical resolution, currently
in progress, are explained.

In the last and fourth part, the dynamics of neutron stars in binary systems are ad-
dressed. Chapter 9 introduces the different evolutionary scenarios in binaries that can
result in the formation of millisecond pulsars, that are the most rapidly rotating neu-
tron stars observed. They are believed to have been spun up by the accretion of the
matter from a companion star in a binary. Chapter 10 presents a simple model for the
evolution of the rotation and of the magnetic field of an accreting neutron star. It is then
applied in chapter 11 to three millisecond pulsars and enables to assess the properties
these neutron stars had before accretion started.
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Introduction

In this first introductory part, general aspects concerning neutron stars are presented.
In chapter 1, a short historical review (section 1.1) shows that neutron stars were first

theoretically predicted objects in the 1930s before their observation almost forty years
later. Section 1.2 explains that neutron stars are the remnants of massive stars after their
death in supernova explosions and details their formation. A toy model for neutron
stars is presented in section 1.3 and enables to understand their basic dynamics and
their different types (section 1.4).

Chapter 2 shows that neutron stars are cosmic laboratories that enable to test and
understand various fields of physics. The structure of neutron stars is presented and
the interplay between nuclear matter theories and neutron stars global properties is
explained (section 2.1). Section 2.2 details how observations of neutron stars enable
to constrain dense matter models. Finally, tests of theories of gravity, in particular of
General Relativity, that have been performed so far thanks to the timing of pulsars are
developed in section 2.3.
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This first chapter aims at giving some general ideas about neutron stars. After a short
historical review in section 1.1, the origin of neutron stars in supernova explosions will
be explained (section 1.2). A simple toy model for pulsars is presented in section 1.3
and the different types of observed neutron stars are detailed (section 1.4).

1.1 From theoretical predictions to observations

In February 1932, James Chadwick published a paper reporting the discovery of the
neutron (Chadwick, 1932). The legend says that in the evening of the announcement,
Lev Landau suggested Bohr and Rosenfeld that dense stars entirely composed of neu-
trons might exist and a paper was published also in February 1932 (Landau, 1932). The
simultaneous release of the papers was in fact a coincidence (Haensel et al., 2007) ! In-
deed Landau had written his paper by the end of February 1931 in which he anticipates
that in the stars heavier than 1.5 M⊙

1, "the density of matter becomes so great that atomic
nuclei come in close contact, forming one gigantic nucleus".

In 1934, Baade & Zwicky, who analyzed observations of supernova explosions, pro-
posed that "supernovæ represent the transitions from ordinary stars to neutron stars, which in
their final stages consist of extremely closely packed neutrons".

In 1939, Tolman and Oppenheimer & Volkoff independently derived the equations
of hydrostatic equilibrium for a spherically symmetric star in the framework of General
Relativity. Oppenheimer & Volkoff solved the equations for a model of stellar matter
composed of a gas of non-interacting, degenerate and relativistic neutrons and obtained
of maximummass of ∼ 0.7M⊙. They however suggested that repulsion in the neutron-
neutron interaction may increase the maximum mass. This was indeed confirmed by
Cameron (1959) who obtained a maximum mass of 2 M⊙.

Subsequent works focused on the composition and superfluidity of the interior, the
neutrino emission and the thermal evolution of neutron stars (Haensel et al., 2007).

With the beginning of X-ray astronomy, several methods and attempts tried to ob-
serve neutron stars, however unsuccessfully. In July 1967, Antony Hewish decided,
with a graduate student Jocelyn Bell, to study interplanetary scintillation and constructed
a radio telescope which was sensitive to weak discrete radio sources. In August, Jocelyn
Bell saw large fluctuations in signal at about the same time on successive days which
did not look like scintillation. It soon appeared that the fluctuations were occurring four
minutes earlier each day, as expected for signals of celestial origin. In November, a very
stable pulse periodicity of 1.337s was found. The discovery was published in February
1968 (Hewish et al.) and the authors suggested that the source may be a white dwarf
or a neutron star. The pulsating source was called the pulsar PSR B1919+21 where PSR
mean "Pulsating Source of Radio" and B1919+21 refers to its position in the sky. Hewish
(only) received the Nobel Prize in 1974 for the discovery of pulsars.

1The mass of the Sun : M⊙ = 1.98× 1033 g is extensively used in the following.
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In June 1968, Gold identified pulsars as neutron stars and proposed that the period
should increase because they loose rotational energy by emitting electromagnetic radi-
ation. By the end of 1968, the Vela and Crab pulsars were discovered with periods of 89
ms and 33 ms. White dwarfs could not account for such short periods, they would be
destroyed by the centrifugal forces. Only a neutron star could vibrate or rotate so fast.
Furthermore a rotation would slow down, not a vibration. A slowdown rate was soon
identified in the period of the Crab. Finally, both the Crab and Vela pulsars are located
in supernova remnants, providing the confirmation of Baade-Zwicky prediction (Lyne
& Graham-Smith, 2005; Haensel et al., 2007).

1.2 Birth of a neutron star

There exists two types of supernovæ which can be associated with two different phe-
nomena : thermonuclear supernovæ and core-collapse (or gravitational) supernovæ.
The word supernova was first used in a paper by Baade & Zwicky in 1934. They were
the first to distinguish the novæ, which are sudden thermonuclear reactions due to the
accretion of matter from a red giant onto a white dwarf in a binary system, from the so-
called supernovæ. A white dwarf is composed of electron degenerate matter and is the
final evolutionary stage of a star whose mass is below eight solar masses (∼ 97% of the
stars in our Galaxy), after the envelope of the star has been spread into space forming a
planetary nebula. A given white dwarf may become a nova many times and does not
necessarily expel or burn all the material that has accumulated since the last outburst.
Novæ comes from the Latin word meaning "new" and refers to the fact one may think
that a new star has appeared.

Baade and Zwicky realized that, since the sources are extragalactic, the amount of re-
leased energy must be much larger for supernovæ than for novæ. They also understood
that supernovæ are the transition from ordinary stars to neutron stars (Gourgoulhon,
2005).

The supernovæ are classified according to the absorption lines in their spectrum
soon after the explosion. If the hydrogen line is present, the supernova is of type I,
otherwise it is of type II. Type I supernovæ are also subdivided into :

• type Ia if silicon II lines are visible,

• type Ib if helium I lines are visible and not silicon II ones,

• type Ic if neither silicon II nor helium I lines are visible.

No type Ib, Ic or II supernovæ have been observed in elliptical galaxies, in which no
new stars are formed and all high-mass stars have already exploded. Therefore, one
can conclude that contrary to type Ib, Ic and II, type Ia supernovæ are not the result of
the stellar collapse of a high-mass star into a compact object but of the collapse of white
dwarf because its internal degeneracy pressure can no longer support the accretion of
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Figure 1.1: Interior of an evolved high-mass star.

matter from a companion. As the white dwarf collapses, the temperature rises and
carbon fusion begins everywhere throughout the white dwarf instantaneously leading
to the observation of a thermonuclear supernova. The distinctions between the other
types come from the progenitors. For type Ib and Ic supernovæ, the progenitor has
already lost its hydrogen envelop (for example a Wolf-Rayet star).

1.2.1 Pre-supernova evolution

The last stage of the stellar evolution of a massive star is called a pre-supernova.

1.2.1.1 High-mass stars stellar evolution

High-mass stars, with a mass M & 8 M⊙, evolve much faster than their lower-mass
counterparts : their larger mass speeds up all phases of the stellar evolution. During
some million years, they burn their nuclear fuel in successive nucleonsynthesis stages.
A high-mass star can fuse not only hydrogen and helium, but also carbon, oxygen and
heavier elements up to iron via a nucleosynthesis chain that can be schematically sum-
marized by the reactions :

1H → 4He → 12C → 16O → 20Ne → 28Si → 56Fe. (1.1)

At the end of its life, the star is observed as a red supergiant with a very large radius
and a low surface temperature. Its interior resembles the layers of an onion (figure 1.1) :
shells of heavier and heavier elements fuse at smaller and smaller radii and at higher
and higher temperatures.

At the center of the star, a compact iron core, composed of 56Fe and neutron-rich iron-
group nuclei (for example, 46Ca, 66Ni, 50Ti and 54Cr, Bethe et al. (1979)) is surrounded by
a shell of burning silicon, the latter fusing into iron.
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1.2.1.2 The Chandrasekhar mass

Iron being the most stable element, ie. with the highest binding energy per nucleon, its
fusion does not release energy. The degeneracy of electrons, at the density∼ 106 g cm−3,
is the source of a pressure in the iron core, which does only depend on the density and
not on the temperature. The Chandrasekhar mass (1931) given by the relation (Bethe
et al., 1979) :

MCh = 1.457

(

Ye
0.5

)2

M⊙, (1.2)

is the maximum mass the pressure of the degenerate electrons can support before col-
lapsing. Ye is the electron fraction, ie. the number of electrons per baryon (neutron and
proton). In the iron core, at high densities (ρ ≃ 1010 g cm−3), electron captures on nuclei
and on protons (inverse-β decay) occur :

(Z,A) + e− → (Z − 1, A) + νe, (1.3)
p+ e− → n+ νe, (1.4)

with (A,Z) the atomic nucleus with Z protons and A nucleons, decreasing the value
of Ye below 0.5 (Ye ∼ 0.42). The Chandrasekhar mass associated with the iron core is
therefore slightly below 1.4 M⊙, around 1.2 M⊙.

1.2.2 Core-collapse supernova explosions

1.2.2.1 The implosion phase

Right after the iron core of a massive star reaches the Chandrasekhar mass, the collapse
starts and the star implodes.

When the mass of the iron core becomes larger than the Chandrasekhar mass, the
star internal support starts to dwindle. Gravity overwhelms the pressure of the gas and
the star implodes falling on itself (upper left plot in figure 1.2). Typical initial conditions
at the beginning of the collapse are (Woosley et al., 2002) :

• Tc ∼ 7× 109 K, the central temperature,

• Mcore ∼ 1.4M⊙, the mass of the iron core,

• RFe ∼ 103 km, the radius of the iron core,

• ρc ∼ 8.7× 109 g cm−3, the density at the center of the star.

The increases in density and temperature due to this infall can not ignite new nuclear
reactions, which could counteract the implosion, since the burning of iron does consume
energy. The infall is even accelerated by two processes (Gourgoulhon, 2005; Janka et al.,
2007) :
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• the electron captures on protons and on nuclei are strongly out of equilibrium.
This leads to the neutronization of the core. The neutrinos released by this process
escape freely from the core as long as the density remains under the critical density
ρ ≃ 1012 g cm−3. Thus, the degeneracy pressure in the core is reduced;

• the photo-dissociation of the iron nuclei into α-particles (4 He) costs energy :

γ + 56Fe → 13α+ 4n (1.5)

When the density reaches the critical density, the neutrinos become trapped in the
core because their diffusion time becomes larger than the collapse time (upper right plot
of figure 1.2). The infall is thus quasi-adiabatic.

The collapse then proceeds homologously, meaning that it behaves as a unit, col-
lapsing self-similarly. The infall velocity is equal to zero at the center of the core and
linearly increases up to a maximum before decreasing in the outer regions. The sound
velocity varies like the density, decreasing from the center to the outer layers. Thus, a
point where the sound speed is equal to the infall velocity exists : it is called the sonic
point. The homologous core is the region in which the sound speed is larger than the
infall velocity, so different parts can communicate via pressure waves. It is the part of
the iron core that collapses as unity in a subsonic way. On the contrary, the collapse in
the regions situated at larger radii than the sonic point is supersonic.

1.2.2.2 The bounce phase

Tenmilliseconds after the beginning of the collapse, the nuclear saturation density (ρ0 =
2.4×1014 g cm−3) is reached. At this density, the distance between the particles becomes
so small that they are very close to the distance at which nuclear forces are effective.
These forces are repulsive at short distances and are the source of a new pressure which
abruptly opposes the collapse and rests the central part of the core. The homologous
core bounces in response to the increased nuclearmatter pressure and resulting pressure
waves propagate at the speed of sound. In the meantime, the regions of the iron core
lying outside the homologous core continue to fall inwards at a supersonic speed. At the
sonic point, the pressure waves accumulate creating a shock wave, ie. a discontinuity
in pressure and matter velocity (figure 1.2, middle left plot). The location and strength
of the shock wave depend on the model for dense matter, which is poorly known.



1.2. BIRTH OF A NEUTRON STAR 33

0.5

R [km]

eν

e

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

ν

1.00.5

Si

M(r) [M ]

eν

eν

eν

M(r) [M ]

eν

eν

eν

eν

eν

Fe, Ni

M(r) [M ]

R   ~ 3000

eν

eν

eν

ν

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

e

Ch
M(r) [M ]~ M

Fe, Ni

Si

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

0.5 1.0

R [km]

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Si

R [km]

M(r) [M ]

Fe, Ni

0.5 1.0

Si

R [km]

R [km]

R [km]

Si

1.0M(r) [M ]

Si−burning shell Si−burning shell

Si−burning shellSi−burning shell

νe,µ,τ ,νe,µ,τ

R  ~ 100g

Fe

,µ,τe,ν,µ,τeν

α,n

,µ,τe,ν,µ,τeν

R
Fe

R
Fe

(

δ

>∼

δ

ο)

R
Fe

δ

c o)2∼

δ

<

formation
shock 

radius of

gR  ~ 100

α,n
α,n,

seed
12

9
Be,

C,

eν

R
Fe

position of
shock

formation

R
Fe

ν

Neutrino Trapping

Shock Stagnation and    Heating,

,µ,τe,ν,µ,τeν

~ 10

free n, p

ν

νe

e

1.3 1.5

R  ~ 50ν

p

n

sR  ~ 200

Fe
R

10

10

10

10

2

3

4

5

R   ~ 10ns

R

31.4
ν

He

Ni

α

Si

PNS

r−process?

n, p

O

p
free n,

Fe

Ni

Rν

hcM

~ 100

Bounce and Shock Formation

nuclear matter

~ 10

nuclei

(t ~ 0.11s,  

1.3 1.5

R  ~ 50ν

Explosion  (t ~ 0.2s)

sR  ~ 200

PNS gain layer

cooling layer

R   ~ 10ns

R

1.4
ν

Neutrino Cooling and Neutrino−

PNS

Driven Wind  (t ~ 10s)

n, p

nuclear matter
nuclei

Shock Propagation and    Burst

R  ~ 100 kms

Rν

(t ~ 0.12s)

heavy nuclei
hcM

δ

c(t ~ 0.1s,     ~10¹² g/cm³)(t ~ 0)

Initial Phase of Collapse

Figure 1.2: Schematic representation of the evolutionary stages of stellar core collapse.
MCh stands for the Chandrasekhar mass, Mhc the mass of the subsonically collapsing
homologous inner core, RFe, Rs, Rns, and Rν the iron core radius, shock radius, neutron
star radius, and neutrinosphere radius, respectively and ρ0 is the nuclear saturation
density. The arrows represent the velocity vectors. Figure from Janka et al. (2007).
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1.2.2.3 The explosion phase

The shock wave at the sonic point propagates faster than the speed of sound through
the rest of iron core eventually reaching the helium/hydrogen envelope. During the
propagation of the wave, two different phenomena compete :

• the emission of neutrinos by the cooling proto-neutron star, formed by the com-
pressedmatter at the center of the star, can reheat the shockwave through neutrinos-
nuclei interactions when the particles reach the shock-wave from behind (figure
1.2, middle right plot);

• the formation of alpha particles and of nucleons from the photo-dissociation of the
iron-peaked nuclei by the shock wave leads to the loss of energy.

Naively, one can think that the shock wave will reach the envelop and blow it off. It is
the prompt explosion mechanism. But sophisticated Newtonian and relativistic hydro-
dynamics in spherical symmetry, which take into account the description of the weak
interactions, the nuclear equation of state effects and the neutrino transport have shown
that the prompt bounce-shock mechanism is not the driver of supernova explosions. For
stars with masses above 10 M⊙, the energy available for the shock is not sufficient. Most
of the shock energy is used in the outer core to dissociate heavy nuclei into nucleons.
The shock stalls and turns into an accretion shock at a radius around 1−2×107 km. The
compact remnant left at the center of the collapsing star begins to form and grows by
the accretion of the infalling matter until the explosion restarts. In the so-called delayed
explosion mechanism, the shock is revived by two phenomena (Janka et al., 2007) :

• the proto-neutron star behind the shock is very hot with a central temperature
of 1011 K and cools by emission of neutrinos. The shock gets reheated by these
neutrinos after few seconds;

• in the zone between the proto-neutron star and the shock wave, convection starts
in the matter heated by neutrinos. This convection allows the neutrino energy to
be efficiently transferred to the shock wave.

Thus, the shock starts again and its propagation heats matter to temperatures above
a billion kelvin. This leads to fusion reactions forming heavy elements such as radioac-
tive nickel and cobalt which will latter decay into iron. When the shock wave reaches
the surface, it blows off the envelop (lower plots in figure 1.2). The envelop is heated
up, emitting intense electromagnetic radiation and matter is ejected into space. A type
II supernova, resulting from the disruption of the star, is observed. The explosion leaves
a remnant at the center, which can be of two types :

• a neutron star, ie. a tiny ultra-compressed remnant, mostly composed of neutrons,

• a black hole : the proto-neutron star can collapse into a black hole few seconds/minutes
after the explosion if accretion onto its surface goes on, ie. if the velocity of parts
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of the external layers is below the escape velocity. Therefore, the total mass of the
remnant exceeds the neutron star maximum mass leading to the formation of a
black hole.

1.2.2.4 Supernovæ simulations

The delayed neutrino-heating mechanism has been shown to lead to explosions for a
progenitor 8−10M⊙ star with an ONeMg core inside a very dilute He-core (Janka et al.,
2007).

For more massive stars, the input of multi-dimensional processes is needed to get an
explosion. In fact, neutrino energy deposition behind the shock is crucial to revive it.
Such effect can be triggered by the Standing Accretion Shock Instability (SASI), a generic
instability of the shock to non-radial deformations, whose underlying physical mecha-
nism is still unclear. This causes the shock to be pushed further out and increases the
time matter stays in the layer heated by neutrinos, strengthening the neutrino-energy
deposition and leading to an asymmetric beginning of the explosion (Janka et al., 2007;
Marek & Janka, 2009). So far, two-dimensional simulations of 10 − 11 M⊙ stars with a
small iron core surrounded by low density shells have led to explosions.

Explosions of more massive progenitors may involve three-dimensional hydrody-
namics, the rapid rotation of stars, magnetohydrodynamics or a more precise descrip-
tion of neutrino transport and properties and of the high-density equation of state.
Marek & Janka (2009) obtained, for the first time, stellar core collapse for a 15 M⊙ star
with a two-dimensional axisymmetric hydrodynamic simulation, confirming the im-
portance of the SASI and of a precise description of the neutrino transport.

1.2.2.5 Energy release

The potential energy of the iron core of the pre-supernova is (Gourgoulhon, 2005) :

Egrav(pre− SN) ∼ −3

5

GM2
Fe

RFe

(1.6)

with RFe ≃ 1500 km,MFe the mass of the core and G the gravitational constant.
The potential energy of the proto-neutron star is :

Egrav(proto− NS) ∼ −3

5

GM2

R
(1.7)

with R ≃ 10 km the radius of the neutron star and M its mass, which, under the as-
sumption of mass conservation, is the same as the mass of the "Fe" coreM =MFe.

The energy released by a type II supernova is :

ESNII ∼ Egrav(pre− SN)− Egrav(proto− NS) (1.8)
∼ −Egrav(proto−NS) (1.9)
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since R ≪ RFe. For typical values of the mass and radius (R = 10 km andM = 1.4M⊙),
one gets :

ESNII ∼ 3× 1053erg. (1.10)

This corresponds to the total amount of energy the Sun produces when burning hydro-
gen during ten billion years !

The released energy is divided in the following way (Gourgoulhon, 2005) :

• the vast majority (99%) is emitted by neutrinos,

• ∼ 1% is released in the kinetic energy of the matter ejected by the shock-wave,

• ∼ 0.1% ≃ 1050 erg is emitted as electromagnetic radiation,

• less than 10−4 is emitted as gravitational waves.

1.2.2.6 Formation of heavy elements

Supernovæ are the furnaces in which at least half of the isotopes heavier than the iron
group are formed (Woosley & Janka, 2005).

The necessary conditions for their formation : a very short time-scale (∼ 1 s), a high
temperature (∼ 109 K) and a very high flux of neutrons (∼ 1020 neutrons/cm−3) can
only be achieved in the explosive situations that supernovæ are. Merging neutron stars
and neutron rich jets or winds from gamma-ray bursts also produce heavy elements but
they are too rare to account for the observed abundances.

The heavy elements are produced by the so-called r-process, where "r" stands for
rapid-neutron capture. To explain the solar abundances, this process must occur in the
innermost ejecta, close to the neutron star. There, during ten seconds, a neutron-rich
wind is blown by an intense flux of neutrinos from the cooling neutron star. Since the
star has already blown off nearly all the stellar material, the properties of the wind
reflects the one of the compact object and not of the exploding star. Therefore, the set
of relative abundances in the wind will be the same for a supernova produced long ago
by a star with low initial concentration of heavy elements and by a present star. This
feature is consistent with the observations.

The electron neutrinos and their antiparticles blowing out from the star interact the
neutron star atmosphere, composed of photons, electron-positron pairs and unbound
neutrons and protons. The r-process consists in the following reactions :

νe + n → p+ e−, (1.11)
ν̄e + p → n+ e+. (1.12)

Antineutrinos are hotter because the outer layers of neutron stars are neutron-rich and
they more easily pass through this layer than neutrinos. There is therefore an excess of
neutrons compared with protons.
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Figure 1.3: An artist view of a pulsar.

The initial temperature of 10 billion K allows two nucleons to combine to make α
particles. Since there are more neutrons than protons in the wind, the latter mostly con-
sists in α particles and free neutrons. The wind cools as it flows. At 5 billion K, some α
particles assemble into heavier elements, especially the ones of the iron group. During
the next seconds, when the temperature is around 1 billion K, the heavy nuclei capture
many neutrons, leading to the r-process. To fully reproduce the solar abundances, one
must add two major ingredients to the previous picture : magnetic field and rotation, to
decrease the average density of the wind and allow more neutrino captures and energy
deposition. But their role are still unclear and they are the subject of further investiga-
tion.

1.3 Neutron stars as magnetic dipoles

According to the so-called "lighthouse" model schematically plotted in figure 1.3, a pul-
sar is a rotating neutron star. As a neutron star spins, charged particles are accelerated
along the magnetic field lines and emit electromagnetic radiation. The radiation beam
that is formed sweeps the sky like a lighthouse and each time it crosses the observer’s
line of sight, a pulse is observed. Therefore the period of the pulses corresponds to the
rotational period of the neutron star.

1.3.1 Rotational energy

Assume that a neutron star is a solid ball of massM and radius R, rigidly rotating with
an angular velocity Ω = 2π/P , with P the rotational period.

The pulsar rotational energy is :

Erot =
1

2
IΩ2 =

2π2I

P 2
(1.13)
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with I the moment of inertia.
For a solid ball, I = 2

5
MR2. A simple estimate gives :

I = 0.8× 1045
(

M

M⊙

)(

R

106 cm

)2

g cm2. (1.14)

Thus with equation (1.3.1) the rotational energy release is :

dErot

dt
= IΩΩ̇ = −4π2IṖ

P 3
. (1.15)

1.3.2 Magnetic dipole radiation

Suppose that a neutron star is a rotating magnetic dipole with α the angle between the
rotation and magnetic axis and B the magnetic field strength at the magnetic equator.

Larmor formula for the power of the magnetic dipole radiation is :

Prad =
2

3

µ̈2

c3
(1.16)

with µ the magnetic dipole moment. For a uniform magnetized sphere, µ = BR3 sinα.
Since the dipole rotates with an angular velocity Ω around its rotation axis, µ =

µ0 exp
−ıΩt so µ̈ = Ω2µ (Jackson, 1998).

Thus,

Prad =
2

3

(BR3 sinα)
2
Ω4

c3
=

2

3c2
(

BR3 sinα
)2
(

2π

P

)4

. (1.17)

1.3.3 Surface magnetic field

Assuming that the loss of rotational energy originates from the emission of electromag-
netic radiation,

Prad = −dErot

dt
. (1.18)

Finally,

B =

(

3c3I

8π2R6 sin2 α
P Ṗ

)1/2

. (1.19)

Thus, the characteristic pulsar magnetic field BPSR = B sinα is (Haensel et al., 2007) :

BPSR =

(

3c3I

8π2R6
PṖ

)1/2

, (1.20)

≈ 3.2× 1019
(

I

1045 g cm2

)1/2(
106 cm
R

)3(
P

1 s

)1/2
(

Ṗ

1 s s−1

)1/2

G. (1.21)
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1.3.4 Characteristic age

Assuming that the pulsar magnetic field does not change with time, equations (1.15)
and (1.17) give :

PṖ = const. (1.22)

Integrating this equation from t = 0 to t, one gets :

t =
P

2Ṗ

[

1−
(

P0

P

)2
]

(1.23)

with P and Ṗ calculated at the instant t and P0 the initial rotational period of the pulsar.
Assuming that P0 ≪ P (t), equation (1.23) gives :

τPSR =
P

2Ṗ
(1.24)

where τPSR is the characteristic age of the pulsar.
Equation (1.24) is derived assuming that the rotational energy loss originates from

the magnetic dipole radiation. A more general formula can be derived :

P n−2Ṗ = const (1.25)

with n the so-called braking index. For the magnetic dipole model, n = 3.
Livingstone et al. (2006) reported that for several pulsars, the magnetic index is well

below 3, suggesting that processes other than magnetic dipole radiation are at the origin
of the loss of rotational energy and that the model presented here is too simple. It only
gives orders of magnitude for the pulsar age and magnetic field.

1.4 A variety of neutron stars

Since the discovery of the first pulsar in 1967, neutron stars have been observed in all
wavelengths from radio to γ-rays. They show a large diversity in their emission and
intrinsic properties. The neutron stars for which the period P and period derivative Ṗ
have been measured are plotted in the P − Ṗ diagram in figure 1.4. Are also indicated
the lines of constant BPSR and τPSR.

Based on observations, neutron stars can be classified into different groups, pre-
sented in the following (Haensel et al., 2007; Kaspi, 2010).

Rotation-powered pulsars
Rotation-powered pulsars are neutron stars whose emission is powered by the loss

of rotational energy due to magnetic braking. They are extremely regular pulsators
and emit in all wavelengths. In the P − Ṗ diagram, one can distinguish two distinct
populations (see also part IV) :
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Figure 1.4: P -Ṗ diagram for 1704 objects : 1674 rotation powered pulsars (small black
dots), 9 AXPs (blue crosses), 5 SGRs (green crosses), 3 central compact objects (CCO -
cyan circles), 6 isolated neutron stars (ISN - magneta squares), and 7 RRATs (red trian-
gles) for which these parameters have been measured. Lines of constant BPSR (dashed
lines) and τPSR (dot-dashed lines) are plotted. The solid line is a model death-line (see
text for details). From Kaspi (2010).

• the normal pulsars, with periods of the order of few seconds and BPSR ∼ 1012 G;

• the millisecond pulsars, in the lower left of the diagram. They have P . 30 mil-
liseconds andBPSR ∼ 108 G. They are old neutron stars that have been spun tomil-
lisecond periods during an accretion episode. The Fermi Space Telescope showed
that some of them are bright γ-ray sources.

They exhibit both steady and pulsed X-ray emission. The former is thought to be the
thermal emission from the surface of neutron stars while they cool down (see part II).
The latter is non-thermal and pulsed and is due to the pulsar magnetospheric activity.

Since rotation-powered pulsars spin down, their radio emission ultimately turns off
when they cross the so-called death line. This is consistent with the lack of observations
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of pulsars with long periods and small period derivatives. The location of the death-line
is model-dependent.

Rotating radio transients
The rotating radio transients (RRATs) do not produce periodic radio emission but

exhibit short radio bursts. Whether they are a specific type of rotation-powered pulsars
or a distinct population is still unclear.

Magnetars
Magnetars are believed to be young, isolated neutron stars powered by a large mag-

netic field BPSR ∼ 1014 − 1015 G. They have long periods 5 . P . 12 s. Two types of
magnetars exist :

• the Anomalous X-ray pulsars (AXPs) : they show a pulsed X-ray emission. Bursts
were observed from some of them;

• the Soft-Gamma Repeaters (SGRs) : they exhibit highly irregular bursts in soft
γ-rays and X-rays.

Observations of bursts from AXPs suggested that AXPs and SGRs belong to the same
class of neutron stars.

High-B rotation-powered pulsars
Several radio pulsars have inferred magnetic fields B ∼ 4 × 1013 G, comparable to

the lowest values observed for magnetars. They are called high-B rotation-powered
pulsars. The observation of a week-long X-ray burst from the young high-B rotation-
powered pulsar PSR J1846-0258 (Gavriil et al., 2008) suggests that they could be transient
magnetars.

Isolated neutron stars
The seven isolated neutron stars (ISNs) exhibit a thermal X-ray emission with a low

luminosity and are therefore close with a distance d . 500 pc but do not emit in radio.
They have long periods P ∼ 3 − 10 s, higher than average magnetic fields and ages
: BPSR ∼ 1013 G and τPSR ∼ 1 − 4 Myr. Therefore, they may be rotation-powered
pulsars viewed off the radio beam. However, their luminosity is too large for their age
suggesting that they undergo additional heating.

Central compact objects
Central Compact Objects (CCOs) can not basically be classified in one of the afore-

mentioned categories. They have a bright X-ray emission and lie at the center of su-
pernova remnants. They have very small inferred magnetic fields and large ages, much
longer than the age of their supernova remnant.
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Neutron stars in binaries
X-ray binaries are composed of a neutron star (or a black hole) and a companion star

(neutron star, white dwarf or normal star). The former accretes matter from the latter
and this phenomenon is at the origin of the observed X-ray emission. The emission can
be regular or irregular, persistent or transient.

The connections between the different types of isolated neutrons are still unclear and
magneto-thermal evolution models aim at accounting for their diversity.
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Neutron stars are extreme objects and cosmic laboratories for various fields of physics.
In particular, they are a unique probe to understand the properties of dense matter and
to test the gravitation theories.

In section 2.1, the structure of a neutron star is detailed and the relativistic equations
for hydrostatic equilibrium are derived. Then, section 2.2 presents the observations and
the constraints derived from them that can be put on the properties of the matter inside
neutron stars. Finally, it is shown that neutron stars allow to accurately test theories of
gravity (section 2.3).

2.1 From microphysics to astrophysics

Neutron stars have masses M ∼ 1.4 M⊙ and radii R ∼ 10 km. Their compactness
parameter :

GM

c2R
∼ 0.2. (2.1)

shows that they are relativistic objects.
Their mean mass density is :

ρ̄ ≃ 3M

4πR3
, (2.2)

∼ 7× 1014 g cm−3, (2.3)
∼ 2ρ0, (2.4)

where ρ0 = 2.8 × 1014 g cm−3 is the nuclear saturation density, ie. the mass density in
heavy nuclei. Neutron stars are one of the densest form of matter in the Universe.

Finally, both General Relativity and nuclear physics are necessary to describe the
properties of neutron stars.

2.1.1 Structure of a neutron star

A neutron star can be divided into five different regions (Haensel et al., 2007) :

Envelope
Located above the surface, the envelope is a ∼ 0.1 − 10 cm thick layer of plasma that

determines the spectrum and the properties of the neutron star emission. Theoretical
models of magnetized and non-magnetized envelopes have been developed and are of
great interest for the study of the thermal evolution of neutron stars (see part II).

Outer crust
The outer crust, which is few hundred meters thick, extends from a density of 106

g cm−3 to the neutron-drip density ρND = 4 × 1011 g cm−3 and its matter consists of
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Figure 2.1: Schematic structure of a neutron star. From Haensel et al. (2007).

degenerate and ultrarelativistic electrons e and of ions Z that form a solid crystal. β-
captures of the electrons, the so-called neutronization, make the nuclei more and more
neutron-rich with increasing density. At the bottom of the outer crust, the neutrons start
to drip out of the nuclei forming a neutron gas.

Inner crust
The inner crust is composed of electrons, of a lattice of neutron-rich ions and of free

neutrons n, that are more and more numerous with increasing density. The free neu-
trons may be superfluid in the 1S0 channel. At the bottom of the inner crust, the nuclei
are believed to be so strongly deformed that they become non-spherical. They may
form tubes and slabs. These are the so-called pasta phases (Ravenhall et al., 1983; di
Gallo et al., 2011). At the boundary between the inner crust and the core, at the density
ρ = ρ0/2, the nuclei disappear.

Outer core
The outer core is made the so-called npeµmatter ie. of mainly neutrons together with

protons p, electrons and muons µ, the two latters forming ideal Fermi gases. All species
are strongly degenerate. The neutrons and protons can be superfluid. The outer core is
several kilometers thick and extends up to the density ∼ 2ρ0. Its properties depends on
the model for the many-body nucleon interaction.

Inner core
The inner core, with densities 2ρ0 . ρ . 10ρ0, is present only in the center of mas-

sive neutron stars. Its composition and properties are still unknown and the subjects of
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active research. Models considering the appearance of hyperons, of pion or kaon con-
densates and even a transition to quark matter have been proposed. So far, only matter
composed of nucleons and of nucleons and hyperons can be studied in laboratories.

2.1.1.1 Equation of state

Thanks to experimental data and theoretical works, the properties and composition of
the crust of neutron stars are rather well known. This is not the case for the core since
its densites (ρ & ρ0) are too high to be reproduced in laboratories at the temperatures
encountered in neutron stars and the modeling of many-body systems of strongly in-
teracting particles is complex and still in progress. Therefore the so-called equation of
state (EoS) is one of the many mysteries of neutron stars. It describes the dependence
of the pressure with respect to the density and is model-dependent. Since the seminal
works by Landau (1932) and Baade & Zwicky (1934), more and more equations of state
have been developed and they are more and more accurate and complex.

2.1.2 Equations for the stellar structure

2.1.2.1 Tolman-Oppenheimer-Volkoff equations

Consider a spherically symmetric star. The effects of rotation are neglected. This is
a good approximation unless it rotates as fast as millisecond pulsars. The metric for
a static, spherically symmetric space-time, using the Schwarzschild coordinates xα =
(t, r, θ, ϕ), is :

gαβdx
αdxβ = −e2φ/c

2

c2dt2 +

(

1− 2Gm

rc2

)−1

dr2 + r2
(

dθ2 + sin2 θdϕ2
)

. (2.5)

It can be shown that, at the Newtonian limit,m(r) and φ(r) are respectively the gravita-
tional mass enclosed in a sphere of radius r and the gravitational potential (Gourgoul-
hon, 2005).

According to the metric (2.5), the proper radial length dl, the proper volume dV
between the shells of radii r and r + dr and the proper time interval dτ are :

dl =
dr

√

1− 2Gm/(c2r)
, (2.6)

dV =
4πr2dr

√

1− 2Gm/(c2r)
, (2.7)

dτ = eφdt. (2.8)

Considering that neutron star matter forms a perfect fluid, ie. a non-viscous medium
in which all stresses are zero except for an isotropic pressure P , the stress energy tensor
is :

T αβ =

(

ρ+
P

c2

)

uαuβ + Pgαβ (2.9)
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with uα the matter 4-velocity. Note that the total energy density ρ is the sum of the
internal energy and the mass energy, divided by c2.

The perfect-fluid approximation is justified under the condition that the stresses pro-
duced by elastic strains in the solid crust (see chapters 7 and 8) or by strong magnetic
fields are generally negligible compared to pressure.

The Einstein equation gives (Tolman, 1939; Oppenheimer & Volkoff, 1939) :

dm

dr
= 4πr2ρ, (2.10)

dφ

dr
=

(

1− 2Gm

rc2

)−1(
Gm

r2
+ 4πGr

P

c2

)

, (2.11)

dP

dr
= −

(

ρ+
P

c2

)

dφ

dr
. (2.12)

These are called the Tolman-Oppenheimer-Volkoff (TOV) equations. The first and third
ones describe the mass balance and the hydrostatic equilibrium and the second one is
the relativistic equation for the metric function φ.

There are four variables : m(r), ρ(r), φ(r) and P (r) but only three equations. There-
fore, the system has to be supplemented by an equation of state which provides the
relation P (ρ). The dependence of the equation of state on the neutron star temperature
T is not included since few hours to few days after its birth, kBT ≪ εF with εF the Fermi
energy in the neutron star and kB the Boltzmann constant.

The boundary conditions are :

• m(r = 0) = 0.

• P (r = 0) = Pc with Pc the central pressure;

The radius R of the neutron star is determined by the condition : P (R) = 0.
Outside the star, P (R ≥ 0) = 0 and ρ(R ≥ 0) = 0. Therefore equation (2.10) gives

m(r ≥ R) = M , whereM is a constant. It is the gravitational mass of the star. Outside
the star, the space-time is describes by the Schwarzschild metric. Therefore, eφ(R)/c2 =
√

1− 2GM/(c2R).

2.1.2.2 Baryon mass

Let nb be the baryon number density in the star measured in a local reference frame.
The total baryon number Ab of the star is :

Ab =

∫ R

0

nb
4πr2

√

1− 2Gm/(c2r)
dr. (2.13)

A simple estimate for a 1.4 M⊙ neutron star is (Haensel et al., 2007) :

Ab ≃M/mn ≃ 1.7× 1057 baryons, (2.14)
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Figure 2.2: Schematic M − ρc diagram for a cold dense matter equation of state. The
solid and dotted lines indicate stable and unstable configurations respectively. The dots
shows the maximum and minimummass stars. From Haensel et al. (2007).

with the neutron mass : mn ≃ 1.67× 10−24 g.
Withmb the mass of one baryon, the baryon massMb is :

Mb = Abmb. (2.15)

As a first approximation mb ≈ mn and thusMb = Abmn.
Note that, during the evolution of an isolated neutron star, only Ab andMb are con-

stant and notM .

2.1.2.3 Minimum and maximummasses

For a given equation of state, choosing some central density ρc (or equivalently, by the
mean of the equation of state, Pc), one can calculate M = M(ρc) and R = R(ρc) by
solving the TOV equations (2.10-2.12).

Varying ρc, one can construct aM − ρc diagram for a given equation of state. Such a
diagram is schematically shown in figure 2.2 for a cold dense matter equation of state.

On figure 2.2, the static stability criterion states that configurations with :

dM

dρc
< 0 (2.16)

are unstable with respect to small deformations (Harrison et al., 1965) (see Haensel et al.
(2007) for a detailed discussion).

Therefore, one can distinguish different segments : in solid lines are plotted the sta-
ble configurations and in dotted lines the unstable ones. The high-density stable seg-
ment corresponds to neutron stars and the low-density one to white dwarfs. In particu-
lar note that for neutron stars, are plotted a maximum and a minimum mass,Mmax and
Mmin respectively.

Configurations with :
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• M > Mmax collapse into black holes;

• M < Mmin explode.

Both the values of the minimal and maximum masses depend on the equation of
state for dense matter. While Mmin is well established Mmin ≃ 0.1 M⊙ (Haensel et al.,
2007),Mmax is not known and is in fact determined by the equation of state in the high-
density regime, for ρ & ρ0, which poorly known.

However, there exists a firm upper bound on the maximum mass. By imposing that
the equation of state is causal which is equivalent to the condition that the sound speed
cs is subliminal :

c2s =
dP

dρ
< c2, (2.17)

one gets (Haensel et al., 2007) :

Mmax ≤ 3.0

√

5× 1014 g cm−3

ρu
M⊙, (2.18)

where ρu . 2ρ0 is the density above which the equation of state is not known. Thus,

Mmax . 3M⊙. (2.19)

2.2 A laboratory for microphysics

2.2.1 Mass-radius diagram

For a given equation of state, one can construct the so-called mass-radius (M −R) rela-
tion by varying the central density.

Figure 2.3 plots the mass-radius relation for a set of equations of state assuming dif-
ferent compositions and interactions. Note that for low masses, the radius of neutron
stars with pure nucleonic or nucleonic together with exotic matter decreases for increas-
ing mass. This is the contrary for bare strange stars.

In figure 2.3, theM−R relation for an equation of state is plotted up to its maximum
mass. There is a large scattering in the predicted maximum masses. One can classify
the equations of state according to this criterion. Soft equations of state give a low
maximum mass and stiff ones a high one. Note that for a given mass, the radius of
neutron star models increases with the stiffness of the equation of state. The onset of
exotic matter in a neutron star model softens the equation of state.

2.2.1.1 Bounds on the mass and radius

General relativity constraint
General Relativity imposes that the radius of a neutron star is larger than the Schwarz-
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Figure 2.3: Mass-radius diagram : relation between the mass and the radius of neutron
stars for different models of interior, assuming nucleonic matter (blue), nucleonic and
exotic matter (pink) and strange quark matter (green). Are also plotted the different
constraints and the measurements of the most massive pulsars (see text for details).
From Demorest et al. (2010).

schild radius, ie. :

R > 2
GM

c2
. (2.20)

Finite pressure constraint
Assuming a uniform density profile inside a neutron star and finite pressure, one gets

(Shapiro & Teukolsky, 1983; Glendenning, 1996) :

R >
9

4

GM

c2
. (2.21)

Causality constraint
A lower bound on the radius of neutron stars, through the determination of the max-

imum value of the gravitational redshift and assuming a causal equation of state, is
(Haensel et al., 2007) :

R > 2.9
GM

c2
. (2.22)

Rotation limit
The fastest spinning neutron-star observed so far is PSR J1748-2446ad with a rota-

tional frequency f = 716 Hz (Hessels et al., 2006). This frequency constrains the masses
and radii of neutron stars.
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An empirical relation was derived by Lattimer & Prakash (2004), for neutron stars
with masses not close to the maximum mass :

RNR < 10.4

(

1000Hz
f

)2/3(
MNR

M⊙

)1/3

km, (2.23)

with RNR andMNR the radius and mass of the non-rotating neutron star.
The spin frequency of PSR J1748-2446ad gives the following constraint :

RNR ≤ 13.0

(

MNR

M⊙

)1/3

km. (2.24)

Note that the present section deals with non-rotating neutron star configurations.
Discussion about the effects of rotation on the properties of neutron stars, in particular
on theM − R diagram, is postponed to section 6.7.

2.2.2 Observational constraints

2.2.2.1 Binary orbit

Consider a binary system composed of a pulsar and a companion star. The binary orbit
can be described by the five usual Keplerian parameters (Lorimer, 2008; Haensel et al.,
2007) :

• the orbital period Pb,

• the projected semi-major orbital axis x,

• the orbital eccentricity e,

• the longitude of periastron ω,

• the epoch of periastron passage T0.

The parameters x and Pb enter the mass function :

fmass (M,Mc) =
4π2

G

x3

P 2
b

, (2.25)

=
(Mc sin i)

3

(Mc +M)2
, (2.26)

where M and Mc are the masses of the pulsar and of the companion star, respectively,
and i is the angle between the orbital plane and the plane of the sky.

If the five Keplerian parameters are measured, the only two unknowns are the neu-
tron star and companion star masses.

For several binary systems, to describe the orbital evolution, it is necessary to take
into account the relativistic effects, via the five following post-Keplerian parameters
(Lorimer, 2008) :
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Figure 2.4: Measured neutron stars masses. From Lattimer & Prakash (2010).

• the advance of periastron ω̇,

• the time dilation and gravitational redshift parameter γ due to the gravitational
field of the companion star,

• the rate of orbital decay due to gravitational wave radiation Ṗb,

• the two Shapiro delay parameters : the range r and the shape s, that describe the
general relativistic delay of the pulsar signals due to the gravitational field of the
companion star.

These five parameters are function of the masses of the pulsar and of the companion star
and of the five Keplerian parameters. Their dependence on these variables depends on
the theory of gravitation that is used. This is why measuring more than two parameters
enables to the test this theory, General Relativity in particular, as shown in section 2.3.

2.2.2.2 Mass measurements

Masses of neutron stars were determined in several types of binaries as shown on figure
2.4 (Haensel et al., 2007) :
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• X-ray and optical binaries. The orbital period is obtained by observing the orbital
variability of one of the star. The Doppler shifts of the spectral lines for optical bi-
naries and the Doppler delay of the pulse time of arrival for X-ray binaries enable
to measure the evolution of the orbital velocity on the line of sight. If the latter is
determined for one of the companion, the five Keplerian parameters can be mea-
sured. Observations of the radial velocity of the other star and of eclipses in the
binary then enable to calculate the masses of the stars;

• binaries composed of a radio pulsar and a degenerate (neutron star orwhite dwarf)
or non-degenerate companion star. The very high precision of the measurement
of the pulsar period enables to determine accurately the masses. The masses of
the stars can be obtained through the measurements of the mass function together
with two post-Keplerian parameters. Masses are most accurately measured in
double neutron star binaries.

The most massive neutron star observed so far is PSR J1614-2230 reported by De-
morest et al. in 2010 (see also section 11.2.2). The measurement of a large Shapiro delay
since the system is nearly-edge on together with the standard Keplerian parameters en-
abled to determine the mass of the pulsar : M = 1.97 ± 0.04 M⊙. It implies that the
maximum attainable mass for a given equation of state (EOS) must be higher than this
highest measured mass ie. :

Mmax(EOS) ≥Mobs
max withMobs

max = 1.97 M⊙. (2.27)

As shown on figure 2.3, this puts strong constraints on the equation of state, favoring
stiff ones, and rules out the models for exotic or quark matter composition presented in
the figure. However, recent equations of state with exotic matter compatible with PSR
J1614-2230 mass measurement have been developed (eg. Bednarek et al. (2011)).

2.2.2.3 Radius measurements

Measurements of both the mass and radius of neutron stars can further constrain the
equation of state via the mass-radius diagram (figure 2.3). Neutron star radii can be
obtained by different methods (Haensel et al., 2007) :

• gravitational redshift together with mass measurements;

• fitting the spectrum of the thermal emission of isolated neutron stars;

• fitting the spectrum of type I X-ray bursts or quiescent thermal emission from
accreting neutron stars.

However, the radii measured from these techniques are not precise enough and/or too
model-dependent to constrain the equation of state (see also part II of this thesis).
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Figure 2.5: Orbital decay of PSR B1913+16. The data points correspond to the observed
values, with error bars too small to be visible and the parabola to the expected ones
according to General Relativity. From Weisberg et al. (2010).

2.2.2.4 Other constraints

Constraints on the composition and properties of the interior of neutron stars can also
be obtained from the modeling the thermal evolution of isolated and accreting neutron
stars, as extendedly shown in the second part of the present thesis.

Understanding the glitches, which are sudden increase in the otherwise decreasing
rotational frequency of pulsars, may also to understand the properties of neutron star
matter (for more details see Pizzochero (2010)).

In the near future, neutron star microphysics may be probed by the observations of
gravitational waves from (Andersson et al., 2011) :

• rotating neutron stars made asymmetric because of strain in the crust or in the
core (see part III of this thesis) or of the magnetic field ;

• oscillations and instabilities in neutron stars;

• inspiralling binaries, which are systems of two neutron stars or a neutron star and
a black hole driven to coalescence by the emission of gravitational waves.

So far, no gravitational waves have been observed but upper limits on the gravitational
wave emission from the Crab andVela pulsars and on their ellipticity were derived from
LIGO and Virgo data (Abbott et al., 2010; Abadie et al., 2011).
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2.3 A laboratory for gravitational physics

2.3.1 Gravitational wave emission

In 1974, Russel Hulse and Joseph Taylor discovered the first pulsar in a binary : PSR
B1913+16. Moreover, its companion star is also a neutron star (Hulse & Taylor, 1975).
Since then, regular observations have enabled to measure two post-Keplerian parame-
ters : the advance of periastron ω̇ and the gravitational redshift and time-dilation pa-
rameter γ. The masses of the neutron stars were then derived : M1 = 1.4398 ± 0.0002
M⊙ and M2 = 1.3886 ± 0.0002 M⊙ (Weisberg et al., 2010). Moreover, a third parameter
has been measured : the rate of orbital decay Ṗb. The latter originates from the emis-
sion of gravitational waves. The comparison between its observed value and the one
predicted by General Relativity was made as shown on figure 2.5. The observed de-
crease is 99.7 ± 0.2 % the theoretical one. This is therefore an indirect evidence of the
existence of gravitational waves as predicted by General Relativity. In 1993, Hulse and
Taylor were awarded the Nobel Prize in Physics "for the discovery of a new type of pulsar,
a discovery that has opened up new possibilities for the study of gravitation1".

2.3.2 Test of gravitation theories

Measurements of more than two post-Keplerian parameters from the observation of
neutron stars allow to test the theories of gravitation in the strong-field regime.

Currently, the best system to test gravitation theories is the double neutron star sys-
tem PSR J0737-3039 (Lorimer, 2008). In fact, the two neutron stars are observed as radio
pulsars. The discovery of the first pulsar was reported by Burgay et al. (2003) and the
observation of the second pulsar was published one month later by Lyne et al. (2004).
Extended timing of the two pulsars was performed since then and the system allows to
perform four independent tests of General Relativity through the measurements of the
rate of orbital decay Ṗb, the Shapiro delay parameters r and s and the gravitational red-
shift and time dilation parameter γ (Kramer et al., 2006). The post-Keplerian parameters
are function of the masses of the two pulsars. Figure 2.6 shows the constraints on the
two masses derived from the measured values of the post-Keplerian parameters. The
shaded regions correspond to sin i > 1 and are therefore excluded. R is the ratio of the
masses of the two pulsars. If General Relativity is correct, all the lines must intersect at
the same point corresponding to the exact values of the neutron stars masses, as plotted
in the inset. The measurements show that General Relativity is correct within an uncer-
tainty of 0.05% (Kramer et al., 2006) ! Breton et al. (2008) reported the measurement of
the relativistic spin-orbit coupling, corresponding to the Ωb line in figure 2.6, which is
in agreement with General Relativity prediction at the 0.13 % level.

1Press release of 1993 Nobel Prize in Physics
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Figure 2.6: Mass-mass diagram for PSR J0737-3039 illustrating the present tests con-
straining general relativity in the double pulsar system. See text for details. From Breton
et al. (2008).

In conclusion, neutron stars are cosmic laboratories whose understanding requires
the involvement of various fields of physics and that enable to test in particular nuclear
physics and theories of gravitation.
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Thermal evolution of neutron stars
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Introduction

Neutron stars are born hot in supernova explosions and the subsequent cooling is driven
first by the neutrino emission from the interior and then by the emission of photons at
the surface.

In chapter 3, after a short historical review in section 3.1, are introduced the relativis-
tic heat equations and the numerical code that I used during my Ph.D. studies (section
3.2). The different microphysics ingredients that enter the equations are presented in
section 3.3. This enables to construct a toy model for the cooling of isolated neutron
stars and to build a scenario for their thermal history (section 3.4). In section 3.5, the ef-
fects of superfluidity in the interior and the heating processes are reviewed. Then, step
by step, the influence of the different microphysics inputs on the cooling are detailed in
section 3.6. After a presentation of the challenges and current status of the observations
of cooling isolated neutron stars (section 3.7), their confrontation with the theoretical
modeling is shown to enable to constrain the properties of the matter in the interior of
neutron stars in section 3.8.

Chapter 4 focuses on the thermal evolution of young neutron stars with an age of
few hundred years (section 4.1). New calculations for the specific heat of the superfluid
neutrons in the inner crust are presented in section 4.2 and their influence on the cooling
and the crust thermalization is detailed in section 4.3. The results were published in the
paper Fortin et al. (2010). The theoretical and observational perspectives conclude this
chapter (section 4.4).

The thermal evolution of accreting neutron stars also enable to put constraints on the
properties of the matter inside neutron stars, as shown in chapter 5. The observations
of accreting neutron stars allow to distinguish different accretion regimes and types of
sources (section 5.1). The origin of the quiescent luminosity is explained in section 5.2
and a consistent model for the thermal evolution of accreting neutron stars is presented
and confronted with the observations in section 5.4. Special focus is placed on a specific
type of sources, the so-called quasi-persistent X-ray transients in the last section 5.5.
They are neutron stars that accreted matter during a long period of time, from years
to decades. Previous works demonstrated that the modeling of their thermal evolution
just after accretion stops allows to infer information about the properties of neutron stars
crust. A newmodel, that has been developed during my Ph.D. studies, is presented and
preliminary results show promising perspectives.
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I started studying the cooling of isolated neutron stars during my master’s, under
the supervision of Jérôme Margueron (Institute of Nuclear Physics in Orsay, France).
The project about young neutron stars we started by then continued during my Ph.D.
In parallel, with Leszek Zdunik and Paweł Haensel, we have focused on the thermal
evolution of accreting neutron stars. I have extensively used the NSCool code devel-
oped by Dany Page to perform calculations. In particular, the code was modified to use
the new specific heat calculations presented in Fortin et al. (2010) and adapted to the
new model for the thermal evolution of accreting neutron stars.
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Confronting the theoretical modeling of the thermal evolution of isolated neutron
stars with the available observations offers the possibility to understand the properties
of dense matter. After presenting a short historical review of the field in section 3.1, the
derivation of the relativistic heat equation and the NSCool code that is used to solve it
in this thesis are presented in section 3.2. A toy model developed in section 3.3 enables
to construct the cooling scenario detailed in section 3.4. Section 3.5 introduces general
aspects concerning the superfluidity and the heating processes that can be encountered
in neutron stars. Section 3.6 explains step by step the influence of the different mi-
crophysics inputs that enter the cooling model. Finally, the observations presented in
section 3.7 are shown to enable to put constraint on the properties inside the core of
neutron stars in section 3.8.

3.1 A little bit of history

The thermal evolution of neutron stars was first studied in the 1960s, before the dis-
covery of neutron stars, when the first X-ray detectors on balloons and rockets were
launched (Haensel et al., 2007; Yakovlev et al., 1999). Stabler (1960) and Chiu (1964) esti-
mated that neutron stars could be observed thanks to their thermal emission. After the
discovery of X-ray sources in 1963 by Bowyer et al., first simplified calculations were
performed by Morton (1964) and Chiu & Salpeter (1964).

The modern modeling of the cooling of neutron stars started with the seminal work
by Tsuruta & Cameron (1966) that included the main elements of the theory but consid-
ered an isothermal interior (Tsuruta, 2009). Malone (1974) performed the first calcula-
tions beyond this approximation, solving the exact equations and the effects of General
Relativity on the thermal evolution were included by Glen & Sutherland (1980). The
subject was in fact revived in 1978 with the launch of the X-ray Einstein Observatory.
The influence of the composition of the core of neutron stars, the different neutrino re-
actions and the modeling of the envelope, in the presence of a strong magnetic field,
were studied.

Since the launch of ROSAT X-ray telescope in 1990 and XMM-Newton and Chan-
dra X-ray observatories in 1999, active work focuses on the effects of superfluidity in
neutron stars and on the late evolutionary stages of the thermal evolution.

More details on the history of neutron star cooling can be found in the nice review
by Yakovlev et al. (1999).

3.2 Thermal evolution modeling

3.2.1 General relativistic heat equations

The general relativistic equations for the thermal evolution of a spherically symmetric
star were initially derived by Thorne (1977).
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3.2.1.1 Equation for energy balance

Let L be the luminosity, T the temperature and φ the function entering the metric (2.5 ).
The gradient in luminosity is a function of the change in temperature, the neutrino

losses and the heat sources.
The equation for energy balance reads :

∂

∂r

(

Le2φ
)

= − 4πr2eφ
√

1− 2Gm/c2r

(

CV
∂T

∂t
+ eφQν − eφQh

)

(3.1)

with

• CV the specific heat (in erg cm−3 K−1);

• Qν the neutrino emissivity (in erg s−1 cm−3);

• Qh the rate of heat production per unit volume (in erg s−1 cm−3).

3.2.1.2 Equation for energy transport

In neutron stars, the energy is transported by the diffusion of photons, the heat conduc-
tion and the neutrinos that freely escape.

The equation for energy transport is :

∂

∂r

(

T eφ
)

= −1

κ

L

4πr2
eφ

√

1− 2Gm/c2r
, (3.2)

where κ is the thermal conductivity (in erg cm−1 s−1 K−1).
The condition for isothermality states that the quantity T eφ is constant.

3.2.1.3 Boundary conditions

The system of the two equations (3.1) and (3.2) is solved to obtain the evolution of the
luminosity and temperature profiles, L(r, t) and T (r, t) respectively, with :

• an initial profile : L(r, t = 0) and T (r, t = 0);

• at the center of the star : L(r = 0, t) = 0;

• at the surface of the star R : L(r = R, t) = 4πR2σT 4(r = R, t).
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3.2.1.4 Heat equation

Note that the set of equations (3.1) and (3.2) can be rewritten in the form of a unique
partial differential equation for the temperature T :

∂

∂r

[

√

1− 2Gm/c2rκr2eφ
∂

∂r

(

T eφ
)

]

=
r2eφ

√

1− 2Gm/c2r

(

CV
∂T

∂t
+Qνe

φ −Qhe
φ

)

. (3.3)

In the non-relativistic limit, eφ ≃ 1 and
√

1− 2Gm/c2r ≃ 1, so the equation (3.3)
becomes :

∂

∂r

[

κr2
∂T

∂r

]

= r2
(

CV
∂T

∂t
+ Qν −Qh

)

, (3.4)

that corresponds to the one-dimensional heat equation in Newtonian dynamics.

3.2.2 Modeling

The structure, composition and global properties (radius, mass, . . . ) are given by the
solution of the Tolman-Oppenheimer-Volkoff equations (2.12) and are fixed in the sub-
sequent cooling simulations.

To simplify the calculations, the neutron star is usually divided into two parts, fol-
lowing Gudmundsson et al. (1983) :

• the interior, where the density ρ ≥ ρb with ρb = 1010 − 1011 g cm−3. The heat
equation is solved in this region, including all the necessary physical ingredients;

• the heat-blanketing envelope for ρ ≤ ρb. In the interior of neutron stars, the high
thermal conductivity due to the degenerate electrons results in a uniform tem-
perature profile few years after the birth. In the atmosphere, the heat transport
is dominated by the photons. In between there exists a thin layer which has a
low thermal conductivity since the electrons are not highly degenerate and the
high density strongly prevents photon transport. This results in high temperature
gradients in the envelope, that is few hundred meters thick. Therefore, a vari-
ety of models are devoted solely to the precise modeling of the envelope, in the
plane-parallel and stationary approximation, including the possible presence of
light elements such as hydrogen or helium resulting from the accretion of matter
(Potekhin et al., 1997) or the anisotropy in the thermal transport due to the mag-
netic field of the star (Potekhin et al., 2003). More information in Page (2009).

The models of envelope provide a relation between the surface temperature Ts and the
temperature at the inner-boundary of the envelope Tb. In fact, the heat equation is
solved in the region that extends from the center of the star to the density ρb, as shown
in the figure 3.1.
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Figure 3.1: Schematic structure of a neutron star. See text for details.

Note that the temperature Ts is the temperature measured by an observer at the sur-
face of the neutron star. However an observer at infinity will measure this temperature
redshifted, ie. :

T∞
e = eφ(R)Ts. (3.5)

The photon luminosity that is observed L∞
γ is also redshifted :

L∞
γ = e2φ(R)Lγ , (3.6)

and the apparent radius of the neutron star R∞ is given by :

R∞ = e−φ(R)R. (3.7)

3.2.3 NSCool code

Several groups have developed numerical codes that solve the heat equation in order to
the study the thermal evolution of neutron stars. Among them is the group led by Dany
Page at the National Autonomous University of Mexico (Mexico). A one-dimensional
code called NSCool has been developed for several years now and is freely available
online1. The results of the modeling of the thermal evolution of neutron stars that I
present in this thesis have been performed with this highly-modular code.

The NSCool is based on an implicit scheme developed by Henyey et al. (1964),
suitable for the study of spherically symmetric problems, that employs the Newton-
Raphson method to solve the heat equation. More details can be found in the user’s
guide of the code, that is available on its webpage.

3.3 A toy model

The modeling of the thermal evolution of neutron stars requires a precise description of
the different ingredients that enter the heat equation :

1http://www.astroscu.unam.mx/neutrones/NSCool/

http://www.astroscu.unam.mx/neutrones/NSCool/
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• the thermal conductivity κ;

• the heat capacity per unit volume also called the specific heat CV;

• the neutrino emissivity Qν ;

• the envelope model.

This section aims at giving some general though simplistic ideas about these differ-
ent microphysics inputs. More details can be found in Yakovlev et al. (1999), Yakovlev
& Pethick (2004) and Page (2009).

3.3.1 Thermal conductivity

The thermal conductivity κ measures the ability of a material to conduct heat. The
higher thermal conductivity results in a faster heat transfer in the material.

Contributions to the thermal conductivity are provided (Haensel et al., 2007) :

• by the photons in the atmosphere of neutron stars;

• by the electrons in the crust;

• mostly by the electrons and the neutrons in the core, for npeµmatter.

In the crust, the main contribution of the electrons to the thermal conductivity comes,
for temperatures T & 3 × 107 K, from the electron-ion scattering and for temperatures
T . 3 × 107 K, from the electron scattering by the so-called impurities (ions that have a
charge different from the one of most ions) and by the electrons.

Calculations show that the thermal conductivity in neutron star is high and there-
fore ∼ 102 − 103 years after birth, the interior of neutron stars is believed to be almost
isothermal. The thermal conductivity is few orders of magnitude smaller in the crust
and therefore the crust remains hot during a longer time than the core.

The magnetic field influences the thermal conductivity and makes it anisotropic. In
particular, the electron thermal conductivity is strongly reduced across the magnetic
field but remains unchanged along the field lines. In the following, non-magnetic mod-
els of neutron stars will be considered.

3.3.2 Specific heat

The specific heat CV is a measure of the energy that is required to increase the tempera-
ture of a given material.

The heat capacity is the sum of the contributions of :

• the electrons, the free neutrons and the atomic nuclei that form a lattice, in the
crust (see section 4.2);

• the free neutrons, protons and electrons in the core, for npeµ composition.
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3.3.3 Neutrino emission

Neutrinos are believed to be at the origin of the efficient cooling of neutron stars with a
temperature T & 106−107 K. In fact they are created in numerous reactions as reviewed
by Yakovlev et al. (2001) and escape then freely, carrying away energy.

3.3.3.1 Neutrino emission from the core

The neutrino processes in the core of non-superfluid neutron stars can be divided into
two groups :

• the fast ones with an emissivity of :

Qf
ν = QfT 6

9 , (3.8)

• the slow ones with an emissivity of :

Qs
ν = QsT 8

9 , (3.9)

with T9 = T/109 K and Qf,s slowly varying functions of the density. They will be con-
sidered as constant in the following.

Fast processes
The most powerful fast neutrino process in the so-called direct Urca (DUrca) process,

which is in fact the β-decay of the neutron followed by its inverse reaction :

n→ p+ e− + ν̄e and p+ e− → n+ νe. (3.10)

For this process, Qf ∼ 1027 erg cm−3 s−1. However, the energy and momentum conser-
vation imposes a density threshold to this process (Page, 2009).

The reaction (3.10) involves the degenerate particles whose energy and momentum
are very close to the Fermi energy and momentum pF,i. The number density of a species
i is related to its Fermi momentum by :

ni =
p3F,i
3π2~3

. (3.11)

On the one hand the energy conservation in the process (3.10) imposes, with µi the
chemical potential of the species i, that :

µn = µp + µe, (3.12)

assuming that the neutrinos escape and have a null chemical potential. On the other
hand, the conservation of the momentum in the process (3.10) requires that

pF,n 6 pF,p + pF,e. (3.13)
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Charge neutrality imposes that np = ne, or from the equation (3.11), pF,p = pF,e. There-
fore equation (3.13) reads :

pF,n 6 2pF,p (3.14)

that gives in terms of the density
nn 6 8np. (3.15)

Defining the proton fraction xp = np/(nn + np), one gets :

xp > 1/9 ≃ 11%. (3.16)

Therefore, the DUrca process is thought to operate only in the inner core of neutron
stars which is present only in massive neutron stars with M ∼ 1.5 M⊙ (Lattimer et al.,
1991). For the DUrca process one has Qf ∼ 1027 erg cm−3 s−1.

Processes similar to the DUrca one may also operate if hyperons, pions or kaon con-
densates or quark matter are present. The threshold on the proton fraction for this pro-
cess to start is then affected. However, these processes are less efficient than the pure
DUrca process (Yakovlev & Pethick, 2004).

Slow processes
There exist slow neutrino processes that may operate in particular when the DUrca

process is forbidden. The analogue of the latter is the so-called modified Urca (MUrca)
process :

n+N → p+ e− + ν̄e +N and p+ e− +N → n + νe +N, (3.17)

where N is a spectator nucleon that ensures that the momentum conservation is sat-
isfied. Nevertheless, since five degenerate fermions are involved instead of three, the
efficiency is significantly reduced as compared with the DUrca process, as shown by
equations (3.8-3.9). For the MUrca process, Qs ∼ 1021 erg cm−3 s−1. MUrca processes in-
volving hyperons, pions or kaon condensates or quark matter also exist if these species
are present, though less efficient : Qs ∼ 1018 erg cm−3 s−1 .

The nucleon-nucleon bremsstrahlung is also thought to be an efficient process in the
core of non-superfluid neutron stars :

N +N → N +N + νν̄, (3.18)

with N a nucleon and ν, ν̄ an (anti)neutrino of any flavor. Qs ∼ 1019 erg cm−3 s−1 for
this process.

Weaker neutrino reactions may also be mentioned (Yakovlev et al., 2001) :

• Coulomb bremsstrahlung :

l + C → l + C + νν̄, (3.19)

with l a lepton (e or µ) and C any charged fermion (e or p). Qs ∼ 1014 erg cm−3 s−1;
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• lepton MUrca process :

µ+ C → e− + C + νµ + ν̄e and e− + C → µ+ C + νe + ν̄µ, (3.20)

with Qs ∼ 1014 erg cm−3 s−1.

3.3.3.2 Neutrino emission from the crust

The two dominant processes in the crust are (Yakovlev et al., 2001) :

• the plasmon decay :
Γ → νν̄, (3.21)

with Γ the plasmon, which is the quasiparticle associated with the plasma oscilla-
tion;

• the electron-nucleus bremsstrahlung :

e− + (A,Z) → e− + (A,Z) + ν + ν̄, (3.22)

with (A,Z) the atomic nucleus.

There exist many neutrino processes in the crust. More information can be found in
Yakovlev et al. (2001).

3.3.4 Envelope model

The first models of envelope have been obtained assuming its matter is catalyzed, ie.
consists of 56Fe and iron-like nuclei (Gudmundsson et al., 1983; Hernquist & Applegate,
1984). However, in the early stage of the star history, lighter elements such hydrogen,
helium, carbon or oxygen may have been accreted and deposited at the surface (Page,
2009). Since the electron thermal conductivity varies with the inverse of the charge num-
ber Z, the heat transport is then faster in the envelope (see eg. Potekhin et al. (1997)).
Therefore, as shown on the figure 3.2, for a given Tb at the inner boundary of the enve-
lope, the redshifted effective temperature T∞

e (and thus the surface temperature Ts) is
higher for a model of accreted envelope as compared with one for catalyzed matter.

The magnetic field makes the heat transport anisotropic (see section 3.3.1) and there-
fore the temperature non-uniform in the envelope, affecting the Ts−Tb relation. Models
of magnetized envelope have been developed (Potekhin &Yakovlev, 2001) for catalyzed
matter in the envelope or including the effects of accreted light elements (Potekhin et al.,
2003). The figure 3.2 compares the envelope models for catalyzed matter when includ-
ing or not the effect of the magnetic field.

3.3.5 Analytical solutions

The previous sections presented some general aspects of the microphysics input that
is involved in the modeling of the thermal evolution of a neutron star. Some simple
analytical results can now be obtained (Page et al., 2006).
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Figure 3.2: Relationships between the redshifted effective temperature T∞
e and Tb at

the bottom of the envelope for different amounts of light elements parameterized by
η ≡ g2s 14∆ML/M (∆ML is the mass in light elements in the envelope, gs 14 the surface
gravity in units of 1014 cm s−2, andM is the star mass), in the absence of magnetic field
(Potekhin et al., 1997). Also shown are the relationships for an envelope with catalyzed
matter without and with a magnetic field with a strength of 1011 G following Potekhin
& Yakovlev (2001). From Page et al. (2006).

3.3.5.1 A simple model

Approximate heat equation
Consider a neutron star in the framework of Newtonian gravity. The heat equation is

therefore given by the equation (3.4). Calculations show that the thermal conductivity
is high in neutron stars and therefore, as the first approximation, the interior can be
considered as isothermal. Integrating the heat equation over the whole star, one gets :

Ctot
V

dT

dt
= −Lν − Lγ +H, (3.23)

with Ctot
V the total specific heat, ie. integrated over the whole star, Lν the total neutrino

luminosity, Lγ the surface photon luminosity and H the rate of energy released due to
the heating processes integrated over the whole star (see also section 3.5.2). However,
in the following, the heat sources are neglected : H = 0.

Let us assume that the initial temperature is flat ie. T (t = 0) = T0.

Total specific heat
As a first approximation, one can consider that each species i in the interior of a neu-

tron star forms a Fermi liquid with a specific heat C i
V ∝ T . Therefore the total specific

heat writes :
Ctot

V = C · T, (3.24)

with C = 1030 erg K−2 (Page et al., 2006).
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Neutrino luminosity
For simplicity, only the DUrca andMUrca neutrino processes can be considered with :

Lf
ν = N f · T 6, (3.25)

Ls
ν = N s · T 8, (3.26)

respectively, where N f = 10−9 erg s−1 K−6 and N s = 10−32 erg s−1 K−8.

Envelope model and photon luminosity
One consider a simple but reasonable model of envelope with a power-law depen-

dence (cf. 3.2) :
Ts ∝ T 0.5+α (3.27)

with α ≪ 1. Therefore the photon luminosity is :

Lγ = 4πR2σT 4
s = ST 2+4α (3.28)

with S = 4× 1014 erg s−1 K−2−4α.

3.3.5.2 Different cooling stages

The neutrino cooling stage
Since the neutrino luminosity has a much stronger temperature dependence than the

photon luminosity, in the first stage, one can neglect the photon luminosity Lγ .
One then finds, for T ≪ T0 and α ∼ 0:

• for the fast neutrino cooling :

T ≃
(

C

4N f

)1/4

t−1/4 and Ts ∝ t−1/8; (3.29)

• for the slow neutrino cooling :

T ≃
(

C

6N s

)1/6

t−1/6 and Ts ∝ t−1/12. (3.30)

The associated neutrino cooling time scales are :

• for the fast neutrino cooling :

τ fν ≃ C

4N fT 4
≃ 4minutes ·

(

C30

4N f
−9T

4
9

)

(3.31)

with C30 = C/1030 erg K−2 and N f
−9 = N f/10−9 erg s−1 K−6;

• for the slow neutrino cooling :

τ sν ≃ C

6N sT 6
≃ 6months ·

(

C30

6N s
−32T

6
9

)

(3.32)

with N s
−32 = N s/10−32 erg s−1 K−8.

These results clearly explain the fast and slow cooling terminology.
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Stage transition
When the temperature has sufficiently decreased, the neutrino and photon luminos-

ity are comparable. The neutron star keeps cooling and therefore enters the so-called
photon stage, for which the neutrino luminosity can be neglected.

The transition from the neutrino stage to the photon stage occurs when the temper-
ature of the neutron star reaches :

• for the fast neutrino cooling :

T f
trans. ≃

(

S

N f

)1/4

∼ 106 K and Ts ∼ 105 K; (3.33)

• for the slow neutrino cooling :

T s
trans. ≃

(

S

N s

)1/6

∼ 108 K and Ts ∼ 106 K. (3.34)

The photon cooling stage
In the second and last stage, the photon luminosity dominates over the neutrino one.
One gets therefore

t ≃ ttrans. +
C

4αS

(

1

T 4α
− 1

T 4α
trans.

)

, (3.35)

with ttrans. the time when T = Ttrans..
When t≫ ttrans. and T ≪ Ttrans.,

T ≃
(

C

4αS

)
1
4α

t−
1
4α and Ts ∝ t−

1
8α . (3.36)

Therefore, the evolution of the temperature strongly depends on the parameters S and
α and thus on the model of envelope but also on the specific heat that can be affected by
the superfluidity (see section 3.5.1).

3.4 Cooling history of a neutron star

The description of the physical processes involved in the thermal evolution of a neutron
star together with the estimates presented in the previous sections enable to build a
simple scenario for the cooling of an isolated neutron star.

A proto-neutron star is formed in a supernova event with a high temperature T ∼
1011 K. The proto-neutron star becomes a neutron star when it gets transparent to the
neutrinos that are formed in its interior.

The neutron star enters the neutrino cooling stage. During∼ 100 years, the low ther-
mal conductivity in the crust keeps it hot while the core cools by emission of neutrinos.
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Therefore, the core and and the crust cool independently and the evolution of the sur-
face temperature reflects the thermal state of the crust and is sensitive to its physical
properties.

Then the core and the crust thermal evolutions couple. The cooling wave from the
core reaches the surface and the whole neutron star cools by the emission of neutrinos,
mainly from the core. The physical properties of the core are reflected in the evolution
of the surface temperature.

The temperature keeps decreasing until the neutrino luminosity becomes compa-
rable to the photon luminosity. The neutron star enters the photon cooling stage, the
precise moment depending on the efficiency of the neutrino processes, and the evolu-
tion of the internal temperature is governed by the emission of photons from the surface
and is sensitive to the properties of the outer parts of the star.

3.5 Towards a more realistic model

3.5.1 Superfluidity in neutron stars

It is believed that nucleons can be in a superfluid state in the interior of neutron stars.
This phenomenon has a strong influence on the cooling properties of the neutron stars
and therefore on the thermal evolution of neutron stars (Yakovlev et al., 1999; Page et al.,
2006; Page, 2009).

3.5.1.1 From BCS theory to neutron star superfluidity

After the development of the BCS theory by Bardeen, Cooper & Schrieffer in 1957 to
explain the electron superconductivity, Bohr et al. (1958) suggested that a similar phe-
nomenon, called superfluidity may occur in systems of nucleons inside the atomic nu-
clei. Migdal (1959) noticed that it may also appear in the interior of neutron stars.

The main point of the theory is that, in a system of degenerate fermions, an attractive
interaction between the particles near the Fermi surface results the formation of pairs
of fermions, named Cooper pairs. Superfluidity of charged particles like the electrons
implies superconductivity of the latter. The transition from the normal to the superfluid
state is a second order phase transition that occurs when the temperature decreases
below a critical temperature Tc. The latter depends on the strength of the interaction
between the fermions. For T < Tc, the dispersion relation of the fermions has an energy
gap ∆(T ). The latter can be seen as the half of the binding energy of the Cooper pair. It
is temperature-dependent and :

kBTc = 0.5669∆(T = 0). (3.37)

The values of the critical temperature and of the pairing gap are also density-dependent :
Tc(ρ),∆(ρ).
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In neutron stars, the superfluidity is caused by the strong interaction between the
neutrons, the protons and, if present, the hyperons. Pairing may occur in the singlet-
state of the nucleon pair : the 1S0 channel or in the triplet-state : the 3P2 channel. Wolf
(1966) showed that the neutrons are paired in the 1S0 channel for ρ < ρ0 and thus can
be superfluid in the crust of neutron stars. Since the singlet-state neutron-neutron inter-
action becomes repulsive for higher densities, the neutron 1S0 pairing disappears in the
core. However, proton pairing in the singlet-state can occur in the core. Hoffberg et al.
(1970) later noticed that the neutron interaction in the triplet-state is attractive when
ρ > ρ0 and therefore, the neutrons can be also superfluid in the core of the neutron stars.

3.5.1.2 From microphysics to astrophysics

Note that most of the seminal studies dealing with superfluidity were performed be-
fore the discovery of the pulsars in 1967. Since the neutron stars lose energy due to
their electromagnetic radiation, their rotational period P is expected to decrease with
time. However, the timing of radio pulsars showed that some of them exhibit sudden
increases in their rotational period followed by a slow relaxation. These phenomena are
called glitches and are mainly observed from young radio pulsar (see also section 7.1.2).
Baym et al. (1969) subsequently proposed that the glitches originate from the interaction
between the normal and the superfluid components of the matter inside neutron stars.

3.5.1.3 An open issue

The pairing gap of neutron star ∆ is still the subject of active research and since the
1970s, nucleon critical temperatures have been calculated for different models of nu-
clear interaction and many-body theories and have been shown to depend a lot on the
inclusion of the in-medium effects. Tc increases strongly when the attraction between
the nucleons is stronger. Figure 3.3 shows for example, the variation of the pairing crit-
ical temperatures with the density for the 1S0 neutron pairing in the crust and the 3P2

neutron and 1S0 proton pairing in the core, for various models (see also the review by
Lombardo & Schulze (2001)). One can draw some general conclusions :

• 1S0 neutron superfluidity can appear in the inner-crust of neutron stars and the
maximum of its critical temperature ranges from 108 − 1011 K depending on the
models of superfluidity. It is by far the most studied type of superfluidity in neu-
tron stars;

• 3P2 neutron superfluidity and 1S0 proton superfluidity can be present in the core
of neutron stars with a maximum critical temperature between 108 and 1010 K.

3.5.1.4 Consequences of baryon superfluidity

On the hand, when the temperature decreases below the critical temperature Tc of a
given type of baryons, the appearance of an energy gap ∆ in the dispersion relation of
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Figure 3.3: Pairing critical temperature Tc as a function of the density ρ in neutron star
matter for different models of nucleon superfluidity. From Page (1998).

these baryons makes them inactive. Therefore all the physical processes : the specific
heat and the neutrino emissivity involving these baryons are strongly suppressed, by a
factor e−∆/kBT if T ≪ Tc.

The effects of the superfluidity are included in the cooling calculations by writing :

• for the specific heat :

C
pair
V (T ) = Rc(T/Tc)× Cnorm

V (T ) (3.38)

with C
pair
V and Cnorm

V the specific heat of the superfluid and normal baryons, re-
spectively, and Rc a reduction factor.

• for the neutrino emissivity :

Qpair
ν (T ) = Rν(T/Tc)×Qnorm

ν (T ) (3.39)

withQpair
ν andQnorm

ν the neutrino emissivity of the superfluid and normal baryons,
respectively, and Rν a reduction factor.

When T = Tc, Rc(T/Tc) = 1 and Rν(T/Tc) = 1 and for T ≪ Tc, Rc(T/Tc) = 0 and
Rν(T/Tc) = 0. The two reduction factor are different for each neutrino process and type
of superfluidity that are considered.

The neutrino emissivity of given baryons is exponentially reducedwhen they are su-
perfluid. For example, the proton superfluidity in the core of a neutron star suppresses
also the Urca (DUrac andMUrca) processes but do not affect the neutron-neutron brems-
strahlung.

On the other hand, the pairing of baryons initiates a new type neutrino processes
called the pair breaking and formation (PBF) processes. The energy is released in the
form a neutrino-antineutrino pair when a Cooper pair of baryons is formed. The figure
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Figure 3.4: Temperature dependence of the neutrino emissivity associated with the
Cooper pairing of neutrons for three models of superfluidity, at the density ρ = 2× 1014

g cm−3 and for a maximum of the critical temperature TC = 109 K. From Yakovlev et al.
(2001).

3.4 shows the variation of the neutrino emissivity due to the Cooper pairing of the su-
perfluid neutrons for three models of superfluidity, at the density ρ = 2 × 1014 g cm−3

and for a maximum of the critical temperature TC = 109 K. The process starts when
T . TC, is maximum when T ∼ 0.8TC and is exponentially suppressed at T ≪ TC .
More information in Yakovlev et al. (2001).

For both 1S0 and 3P2 pairings, the emission of neutrinos by the PBF process can
occur through two different channels : the axial and vector channel (Page et al., 2009;
Page, 2009). Recent calculations (Leinson & Pérez, 2006a,b) have shown that the vector
part of the PBF process is in fact strongly suppressed, the axial part being then the main
contributor to the PBF neutrino emissivity. As a result :

• for neutron 1S0 pairing in the crust, the PBF process has a negligible effect since
the contribution from the axial channel is suppressed for non-relativistic particles
such as the ones in the crust;

• for proton 1S0 pairing in the core, the emissivity is given by the axial part of the
PBF process and is approximately :

Qp1S0
ν ∼ 5× 1019T 7

9R
p1S0
ν (T/Tc); (3.40)
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• for neutron 3P2 pairing in the core, the emissivity is slightly reduced and is of the
order of

Qn3P2
ν ∼ 4× 1021T 7

9R
n3P2
ν (T/Tc). (3.41)

3.5.2 Heating processes

Several heating processes that may occur in isolated neutron stars have been identified
(Schaab et al., 1999; Page et al., 2006; Tsuruta, 2009) such as :

• Joule heating from the decaying magnetic field in neutron stars;

• crust cracking : as the neutron star slows down, it adapts its shape through a series
of crust breaking. This phenomenon generates some heat in the crust;

• frictional heating : frictions between the crustal lattice that spins down with the
star and the superfluid neutrons that do not can cause heating. Its efficiency de-
pends on the strength of the pinning of the superfluid vortex in the crust;

• chemical heating : as the neutron star slows down, its density increases and the
β-equilibrium is lost. The subsequent non-equilibrium reactions may be at the
origin of internal heating.

These processes are believed to play an important role in the thermal evolution of neu-
trons older than ∼ 106 years.

3.6 Influence of the microphysics input

The previous sections provide us with the description of the different ingredients that
enter the modeling of the thermal evolution of isolated neutron stars. Let us now inves-
tigate separately the effects of the microphysics on the temperature evolution.

3.6.1 Non superfluid stars

Figure 3.5 shows the evolution of the redshifted surface temperature T∞
e for non-super-

fluid neutron stars of varying mass for the model described in more details in Page &
Applegate (1992). Such curves are called cooling curves. The DUrca process is allowed
for M ≥ 1.35 M⊙. Therefore, the MUrca process is the dominant neutrino process in
neutron stars with a mass lower than this value. For neutron stars with a massM ≥ 1.35
M⊙, the size of the region that emits neutrinos via the DUrca process increases with the
mass of the star.

In the first ∼ 10 − 100 years, all the cooling curves exhibit a plateau-like behavior.
According to the cooling scenario developed in the section 3.4, at this stage, the core
and crust cool independently and the evolution of the surface temperature is controled
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Figure 3.5: Influence of the nature of the Urca process on the cooling of stars of different
masses. From Page et al. (2006).

by the properties of the crust, which has a low neutrino emissivity. This is at the origin
of the plateau in the cooling curves.

Let us compare now the influence of the nature of the Urca process on the subse-
quent cooling of an isolated neutron star. The neutron stars in which DUrca process
(M > 1.35M⊙) is allowed exhibit a very high neutrino emissivity that is at the origin of
the sharp temperature decrease observed in the cooling curves. This decrease happens
when the cooling wave from the core reaches the surface after its propagation in the
crust. A more massive neutron star has a thinner crust and the propagation time of the
cooling wave in the crust in thus shorter. Therefore, the temperature drops earlier in
more massive stars. The temperature decrease is much less pronounced for low-mass
neutron stars (M < 1.35M⊙) and the cooling curves are almost mass-independent since
the microphysics properties of their interior are similar.

Then, the thermal relaxation of the neutron star is over and the whole neutron star
cools by emission of neutrinos mainly from the core. The surface temperature reflects
the properties of the core and a second plateau-like behavior is observed.

Finally, ∼ 106 years after its birth, when the temperature is sufficiently low, the old
neutron star enters the photon cooling stage and cools by emission of photons from the
surface.

In conclusion, the thermal evolution of an isolated neutron star depends dramati-
cally on the type of Urca process that occurs in its core and thus on its mass.
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Figure 3.6: Effect of the superfluidity on the cooling of a 1.4M⊙ neutron star with and
without nucleon pairing. The associated PBF process is artificially turned off or on. See
text for details. From Page et al. (2004).

3.6.2 Superfluid stars

As presented in section 3.5.1, the effect of nucleon superfluidity is twofold. On the one
hand, the specific heat and neutrino emissivity of the superfluid nucleons are signif-
icantly reduced when the temperature decreases below the critical temperature. The
specific heat of nucleons which is one of the main contributor to the total specific heat
for non-superfluid matter is reduced and so is the total specific heat. The neutrino emis-
sivity due to theMUrca (and DUrca if present) process is strongly reduced. On the other
hand, nucleon superfluidity triggers new efficient neutrino processes, the so-called PBF
processes.

The figure 3.6 shows the influence of the superfluidity on the cooling curve of a 1.4
M⊙ build for the APR equation of state (Akmal et al. (1998); see also section 10.4.1). The
main neutrino process in the core is the MUrca process. Details on the 1S0 neutron and
proton and 3P2 neutron pairing models can be found in Page et al. (2004).

Let us first consider the solid curves, when the PBF process is turned off. Both the
specific heat and the neutrino emissivity are then reduced. However the decrease of the
latter is smaller. Therefore during the neutrino cooling era, the star with pairing cools
more slowly than the normal star. During the photon cooling era, the paired star cools
faster since its specific heat is reduced, as seen in the approximate formula (3.36).

When including the PBF processes associated with nucleon superfluidity, the results
are drastically different in the neutrino cooling phase. The PBF processes are so efficient
that they do not only compensate the slowing down of the cooling due to the reduction
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Figure 3.7: Effect of the envelope model on the cooling curve. Are plotted the cooling
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imum amount of light elements and H for an envelope model with catalyzed matter.
From Page et al. (2004).

of the specific heat, but they even accelerate the cooling. The temperature decreases
faster when the PBF processes are included so the transition to the photon cooling stage
happens earlier. Since the thermal evolution in the photon cooling stage depends on the
specific heat solely, the late cooling is similar when including or not the PBF processes.

3.6.3 Influence of the envelope model

Figure 3.7 shows the influence of the envelope model on the cooling curve of a neutron
star, that is discussed in section 3.3.4. For T . 104 yr, in the neutrino cooling stage,
a model with a higher amount of light elements has a higher redshifted effective tem-
perature since the heat transport is then more efficient. Therefore it enters the photon
cooling stage at earlier times and therefore, cools then faster.

3.6.4 Influence of the equation of state

The figure 3.8 illustrates the influence of the equation of state on the thermal evolution
of an isolated neutron star. Cooling curves are shown with and without pairing, the
pairing properties being fixed.

When no pairing is included, the different cooling curves are quasi-indistinguishable.
Slight differences can be observed when the superfluid effects are included. These dif-
ferences originate from the density dependence of the superfluid properties.
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Figure 3.8: Effect of the equation of state on the cooling of 1.4 M⊙ neutron star. Cases
without and with pairing are considered. From Page et al. (2004).

3.6.5 Minimal cooling paradigm

Considering the number of parameters one can play with in the modeling of the ther-
mal evolution of an isolated neutron star, Page et al. (2004) have introduced the so-called
minimal cooling paradigm. Its purpose is to investigate whether observations are con-
sistent with an enhanced cooling in some neutron stars that results from DUrca pro-
cesses due to nucleonic or exotic matter.

Therefore, in the minimal cooling paradigm, no fast neutrino emission or exotic mat-
ter is allowed in the core of the neutron stars. This strongly restricts the number of
equation of state that can be used. However, all the other possible ingredients entering
the modeling of the thermal evolution are taken into account, in particular, the effects
of the pairing on the specific heat and neutrino emissivity and of the composition of the
envelope (Page, 2009). Eventually, the paradigm should also include the effects of the
magnetic field.

3.7 Observations of the temperature of isolated neutron

stars

Let us now discuss the observational measurements. Comparing the evolution of the
surface temperature of different neutron stars whose age is knownwith the results of the
theoretical modeling may ultimately enable to constraint the microphysics properties of
the interior of neutron stars.
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Neutron stars are small objects and thus their thermal radiation is weak. Themodern
instruments are able to detect neutron stars located only few kiloparsecs from us and
with a high enough temperature∼ 105−107 K.Most of radiation is emitted in the (0.01-1
keV) range, that is the soft X-ray and hard ultraviolet range (Yakovlev et al., 1999).

In 1975, a first upper limit on the surface temperature on the Crab was set by Wolff
et al.. Then detections of or upper limits on the thermal radiation emitted by isolated
neutron stars were obtained by soft X-ray telescopes on the space observatories (Ein-
stein, EXOSAT, ROSAT, ASCA, RXTE, XMM-Newton, Chandra, . . . ) or by ultraviolet
telescopes (eg. EUVE) (Yakovlev et al., 1999).

3.7.1 An observational challenge

Determining the surface temperature and the age of a neutron star suffers from a lot of
uncertainties.

On the one hand, when the spectrum from a neutron star is observed, the thermal
component has to be separated from the background emission created by the supernova
remnant, the non-thermal emission produced in the magnetosphere of the neutron star
and the thermal emission originating from hot polar spots due to the pulsar activity.
As a consequence middle-aged neutron stars are most likely to be observed since they
are still hot, their supernova remnant is extended and their magnetospheric activity is
reduced.

The fit of the spectrum of a neutron star depends on many parameters such as the
effective temperature, the magnetic field, the chemical composition of the envelope, the
temperature and size of the polar caps, the properties of the non-thermal radiation, the
mass and radius of the neutron star, the distance, the column density of the interstel-
lar medium between the source and the observer, . . . . The small number of detected
photons makes therefore the constraints on these parameters too strong. However ad-
ditional constraints can be put thanks to radio, optical, gamma-ray observations that
enable to determine for example the distance to the source from parallax measurements,
the column density of the interstellar gas, . . . . For more details, see Yakovlev et al. (1999).

On the other hand, the age determination is likely to be uncertain. Only if the su-
pernova has been observed in the past can the age be well known. Otherwise, it is
determined from the measurement of the expansion velocity of the supernova remnant,
from the spin-down age that is likely to be approximative or by tracing back in time
and space the proper motion of the source if it possible to associate it with its birth place
(Ho, 2011).

3.7.2 Present status

For all the reasons presented previously, the age and surface temperature are known
for only a dozen of sources. In figure 3.9 I present the available observational data on
the surface temperature of isolated neutron stars. Note the large uncertainties on both
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Figure 3.9: Observational limits on the redshifted surface temperature as a function of
the age of isolated neutron stars. Data from the references cited in Shternin et al. (2011).
The stars are : 1 – PSR B0531+21 (Crab), 2 – PSR J0205+6449 (in 3C 58), 3 – PSR J1119–
6127, 4 – RX J0822–4300 (in Pup A), 5 – PSR J1357–6429, 6 – RX J0007.0+7303 (in CTA 1),
7 – PSR B0833–45 (Vela), 8 – PSR B1706–44, 9 – PSR J0538+2817, 10 – PSR B2334+61, 11 –
PSR B0656+14, 12 – PSR B0633+1748 (Geminga), 13 – RX J1856.4–3754, 14 – PSR B1055–
52, 15 – PSR J2043+2740, 16 – RX J0720.4–3125 and in red the Cassiopeia A neutron star.
The measurements are uncertain so the error-bars are large.

variables. Until the observations of the neutron star in Cassiopeia A supernova remnant
in 2010, the surface temperature of neutron stars was known at only one single instant
in time.
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Figure 3.9 shows that so far, the surface temperature was determined for neutron
stars with an age ranging from ∼ 300 to 106 years. According to the cooling scenario de-
scribed in section 3.4, these neutron stars are in the neutrino cooling state and modeling
their thermal evolution may enable to constraint the properties of the core.

3.7.3 Cassiopeia A neutron star

Cassiopeia A supernova remnant was discovered in radio observations in 1947 and is
the brightest astronomical radio source beyond the Solar System (Ho & Heinke, 2009).
The supernova was likely observed by the first Royal Astronomer John Flamsteed on
August 16, 1680 (Ashworth, 1980) and has therefore an age of 331 years which is in
agreement with the study of the expansion of the remnant (Fesen et al., 2006). It is one
of the youngest-known supernova remnants in our Galaxy. It is located at a distance of
d = 3.4+0.3

−0.1 kpc from the Earth (Reed et al., 1995). The central compact object was only
identified in Chandra first-light observations in 1999 (Tananbaum).

The interpretation of the X-ray spectrum of the central compact object in Cassiopeia
A was a challenging task (Pavlov et al., 2004; Ho, 2011). Indeed, spectral fits with a
blackbody or a model of hydrogen atmosphere give a size for the region emitting the
thermal radiation of few kilometers. If the compact object is a neutron star, then the
radiation is emitted by a hot spot at its surface. Thus, as the neutron star rotate, pulsa-
tions should be observed and these have never been detected in X-rays (Pavlov & Luna,
2009).

In 2009 Ho & Heinke fitted the spectrum of the compact object in Cassiopeia A su-
pernova remnant with a model of non-magnetized atmosphere made of carbon. They
obtained a size for the emitting region comparable to the typical radius of a neutron
star, confirming that the central compact object is a neutron star. This study was the
first determination of the composition of the atmosphere of an isolated neutron star.

In 2010, Heinke & Ho presented the results of the fit of five observations extended
over nine years of the neutron star in Cassiopeia with Chandra and reported that the
temperature has decreased by 4% : from 2.12 × 106 K in 2000 to 2.04 × 106 K in 2009.
This work was the first direct observation of the cooling of an isolated neutron star
and has opened an exciting window on the cooling of isolated neutron stars. In 2011,
Shternin et al. (2011) reported a new determination of the surface temperature of the
neutron star in Cassiopeia A supernova remnant and confirmed that the neutron star is
cooling. Figure 3.10 shows the non-redshifted surface temperature of the neutron star
as a function of the time of observation.

3.7.4 Future perspectives

The next generation of X-ray satellites are expected to provide more observations of
cooling neutron stars, detecting fainter sources, with smaller error bars. Among them
are :
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Figure 3.10: Surface temperature of Cassiopeia A neutron star as a function of the time of
observation. 2σ error bars for the temperature. Between 2000 and 2011, the temperature
decreased by a factor 4.5%. Data from Shternin et al. (2011).

• NuSTAR (USA) : an hard X-ray telescope whose launch is planned for March 12,
2012;

• ASTROSAT (India) with far UV, soft and hard X-ray telescopes, expected to be
launched in 2012;

• ASTRO-H (Japan)with soft and hard X-ray telescopes, imagers and spectrometers,
to be launched in 2014;

• GEMS (USA) : an X-ray telescope that will measure the polarization of emitted
X-rays , expected for July 2014;

• LOFT (Europe), one of the four candidate medium-size missions on the ESA Cos-
mic Vision program. If selected, it will provide high-time-resolution X-ray obser-
vations of compact objects and be launched in 2022;

• ATHENA (Europe), one of the three candidate large-size missions on the ESA Cos-
mic Vision program. It is expected to perform high resolution X-ray imaging, tim-
ing and spectroscopy. If selected, it will also be launched in 2022.

The distance determination, which is one of the key parameter for the temperature
measurements, will be more accurately calculated by parallax measurements with radio
observations from VLBI or the future SKA. Better statistics on pulsars and supernova
remnants age may also enable to estimate the error when using the spin-down age (Tsu-
ruta, 2009).
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3.8 Theoretical modeling versus observations

Finally, let us now confront the theoretical modeling with the observations presented in
the previous section.

3.8.1 Modeling of the cooling of Cassiopeia A neutron star

Shternin et al. (2011) and Page et al. (2011) modeled the cooling of the neutron star in
Cassiopeia A supernova remnant and independently reached similar conclusions :

• the cooling rate is too large to be triggered by the MUrca process alone;

• the temperature decrease of a neutron star undergoing DUrca process happens
∼ 30− 100 years after birth and is not consistent with the observations;

• the observed cooling is due to the recent onset of the neutron 3P2 PBF process in
the core. The maximum of the critical temperature TC ≃ 5 × 108 K, as shown in
the figure 3.11. The value reported by Shternin et al. (2011) is very close TC ≃
(7− 9)× 108 K ;

• the rapidity of the cooling of the neutron star originates from a strong proton su-
perfluidity. Figure 3.12 schematically shows the cooling curves for different dom-
inant neutrino processes. On the left panel, no proton superfluidity is included.
The neutron star cools due to the emission of neutrinos from the MUrca process
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Figure 3.13: Cooling curve for a 1.4 M⊙ neutron star with strong proton superfluidity in
the core. Figure from Page et al. (2011).

until its temperature reaches TC for the neutron 3P2 pairing. The PBF process due
to this superfluidity is then triggered and the neutron cools faster. On the right
panel, proton superfluidity in the core strongly suppresses the MUrca process.
Therefore the neutrino losses are smaller and the star is hotter. It then reaches the
critical temperature for the neutron 3P2 pairing and the PBF process is switched
on. The slope of the cooling curve is larger when the protons are superfluid in the
core. This is in agreement with the observations of the cooling of Cassiopeia A
neutron star;

• these conclusions are unchanged for a large range of neutron star mass (1.4 .M .

1.9M⊙);

• all in all, figure 3.13 shows a good fit of the observations of the cooling of the
neutron star in Cassiopeia A supernova remnant.

Note that other studies simulated the cooling of the neutron star in Cassiopeia A su-
pernova remnant. Among them Blaschke et al. (2011) argued that the observed cooling
originates from the substantial reduction of the thermal conductivity due to medium
effects.

3.8.2 Modeling of all the available data

Shternin et al. (2011) presented a very complete comparison between the theoretical
modeling and all the available observations of isolated neutron stars. They considered
a model of neutron star that is fully consistent with the observations of the Cassiopeia
A neutron star. Note that this model allows for DUrca process whenM > 1.83 M⊙ and
has a maximum allowable mass of 1.93 M⊙. Figure 3.14 shows sequences of cooling
curves for neutron 3P2 superfluidity with a critical temperature that has a maximum of
TC ≃ 9 × 108 K at a density of ρ ≃ 1015 g cm−3. Low-mass neutron stars whose central



3.8. THEORETICALMODELING VERSUS OBSERVATIONS 89

Figure 3.14: Sequences of cooling curves for neutron stars with a mass ranging from 1
M⊙ to the maximum allowable mass for the APR equation of state, with strong proton
superfluidity and neutron 3P2 superfluidity in the core. See text for details. The dashed
line is the cooling curve of the warmest possible neutron star with this model (M = 1
M⊙ and a carbon atmosphere) and the dot-dashed for the coolest possible (maximum
allowable mass and no proton superfluidity in the core). The sources are the same as in
figure 3.9. Figure adapted from Shternin et al. (2011).

density is of the same order therefore have amoderate emissivity due to the PBF process
and are therefore hotter than high-mass neutron stars. Therefore, this model enables to
fit the observations of all the sources except the coolest and warmest ones.

However, on the one hand, the coolest ones can be fitted by models of high-mass
neutron stars for which the DUrca process is allowed and thus not reduced by the pro-
ton superfluidity. This implies that the critical temperature of the proton superfluidity
is low at the very center of massive neutron stars. On the other hand, the warmest
neutron stars are consistent with low-mass ones with an atmosphere composed of light
elements. As explained in section 3.3.4, a higher amount of light elements makes the
redshifted effective temperature higher.

In conclusion, the modeling of the thermal evolution of isolated neutron star is a
complex subject that requires the precise calculations of many properties of the interior
neutron stars such the thermal conductivity, the specific heat, the neutrino emissivity
or of their envelope. However, confronting the models with the observations of the
cooling of the neutron star in Cassiopeia A supernova remnant has recently enabled
to put constraints on the superfluid properties of the core of neutron stars. The new
generation of X-ray satellites that may detect fainter sources and with better accuracy is
expected to allow to further constrain the properties of dense matter.
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The thermal evolution of young and isolated neutron stars is driven by the proper-
ties of the matter in the crust. Therefore, their precise modeling is necessary to calculate
the quickness of the crust thermalization as explained in section 4.1.

JérômeMargueron (Institute of Nuclear Physics in Orsay, France) and I started study-
ing the thermal evolution of young neutron stars in the fast cooling scenario, when
DUrca process is triggered, during a six-months training period formymaster of physics
in 2008. We developed a simple cooling code with Wolfram Mathematica. Later in col-
laboration with Fabrizio Grill (Milan University, Italy at that time), Nicolae Sandulescu
(National Institute of Physics and Nuclear Engineering, Bucharest, Romania), new cal-
culations of the specific heat of the superfluid neutrons in the inner crust, taking into
account the presence of the clusters were performed. They are detailed in section 4.2.
Using the NSCool code developed by Dany Page (National Autonomous University
of Mexico, Mexico) (section 3.2.3) I simulated the cooling of young neutron stars. The
model and the results are reported in section 4.3. The results for the fast cooling scenario
were published in the paper Fortin et al. (2010). Ultimately the model may be compared
to observations of young neutron stars and may enable to understand the properties of
the matter in the crust of neutron stars (section 4.4).

4.1 Thermal evolution in the early ages

As explained in section 3.4, after the neutron star interior becomes transparent to neutri-
nos, the core and crust cool independently during∼ 100 years. The core cools quickly by
emission of neutrinos while the crust stays hot and acts like a heat-blanketing envelope.
A cooling wave from the center propagates in the crust and when it reaches the surface,
the effective temperature decreases, as shown on figure 3.5. One can distinguish two
cooling scenarios :

• fast cooling (or enhanced cooling) due to the triggering of the very efficient DUrca
process in the core of the star. The temperature drops by an order of magnitude
when the cooling wave reaches the surface;

• slow cooling, if the core cools by the MUrca process. The effective temperature is
then reduced by a factor ∼ 2.

Brown et al. (1988) gave one of the first estimation of the cooling time τcool that is
the propagation time of the cooling wave in the crust in the case of fast cooling due to
strangeness condensation in the core. Neglecting the relativistic effects and the neutrino
losses in the crust, the heat equation (3.3) writes :

1

r2
∂

∂r

[

κr2
∂T

∂r

]

= CV
∂T

∂t
. (4.1)

As a first approximation, considering that :
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• the temperature T , CV and κ are nearly constant in the crust;

• ∂/∂r ∼ 1/lcrust with lcrust the crust thickness;

• ∂/∂t ∼ 1/τcool,

one gets :

τcool ∼ l2crust
CV

κ
, (4.2)

∼ l2crust
Dcrust

(4.3)

with Dcrust = κ/CV the thermal diffusivity in the crust. Brown et al. (1988) got τcool ∼
10− 100 years.

Lattimer et al. (1994) studied the thermal evolution of young neutron stars in the fast
cooling scenario with a more precise model. They showed in particular that the cooling
time is insensitive to the properties of the core in particular to its neutrino emission, but
depends strongly on the properties of the crust in particular its thickness.

Gnedin et al. (2001) used a realistic model for the thermal evolution, with a code
similar to NSCool to study the influence of the superfluid effects in the inner crust on
the cooling time. They concluded that superfluidity strongly fastens the cooling and
thus reduces the cooling time.

In conclusion precise calculations of the specific heat in the inner crust of neutron
stars are necessary to precisely determine the cooling time.

4.2 The specific heat in the crust

Let us detail the different calculations that are used in Fortin et al. (2010) for the specific
heat in the crust.

4.2.1 The cluster structure of the inner crust

The structure of the inner crust was first calculated by Negele & Vautherin in 1973. The
inner crust is assumed to be composed of non interacting and spherical Wigner-Seitz
cells that form a periodic lattice. In each cell, a nuclear cluster is surrounded by a gas of
free neutrons and relativistic electrons in equal number with the protons of the cluster.
The energy minimization at β-equilibrium determines the proton and neutron fraction
numbers and the size of the cells. Note that the effects of the pairing of the neutrons
were not included (Hartree-Fock calculations). The properties of the cells are shown
in table 4.1. In the following the pasta phases, at the interface between the inner-crust
and the core, are neglected so an additional Wigner-Seitz cell calculated by Negele &
Vautherin (1973) that may be in one of these phases is not included. The figure 4.1
shows the proton and neutron densities (in fm−3) for a selected set of the Wigner-Seitz
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cell N Z RWS ρ ρ0n
[fm] [g cm−3] [fm−3]

10 140 40 54 4.7× 1011 7.4× 10−5

9 160 40 49 6.7× 1011 1.3× 10−4

8 210 40 46 1.0× 1012 2.8× 10−4

7 280 40 44 1.5× 1012 5.3× 10−4

6 460 40 42 2.7× 1012 1.15× 10−3

5 900 50 39 6.2× 1012 3.0× 10−3

4 1050 50 36 9.7× 1012 4.6× 10−3

3 1300 50 33 1.5× 1013 7.5× 10−3

2 1750 50 28 3.4× 1013 1.7× 10−2

1 1460 40 20 8.0× 1013 3.8× 10−2

Table 4.1: The properties of the Wigner-Seitz cells calculated by Negele & Vautherin
(1973) i.e. the density ρ, the numbers of neutrons N and protons Z, the cells radius RWS

and ρ0n the number density of the neutron gas at zero temperature.

cells. It shows that at the center of each cell, the nucleus is surrounded by a uniform gas
of unbound neutrons. With increasing density, the distance between the cells decreases
and the density of the neutron gas increases.

4.2.2 Specific heat in the crust

The total specific heat (section 3.3.2) is the sum of the contributions from the different
species in the crust, ie. :

• from the ultrarelativistic electrons that from a degenerate gas. Their specific heat
is :

C
(e)
V =

kB(3π)
2/3

3~c

(

Z

V

)2/3

T, (4.4)

where V = 4/3πR3
WS is the volume of the Wigner-Seitz cell and Z the number of

the electrons in the cell which is equal to the number of protons;

• the lattice of nuclei. The calculations include the possible phase transition between
the solid and the liquid phase and are based on the works by Slattery et al. (1982);
Baiko et al. (2001); Potekhin & Chabrier (2010); Carr (1961);

• the free neutrons in the inner crust that are believed to be superfluid in the 1S0

channel. The calculations of their specific heat are detailed in the following.
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Figure 4.1: Proton (lower solid line) and neutron (upper solid line) densities (in fm−3)
as a function of the radius (in fm) for Wigner-Seitz cells 10, 7, 4, 2 and 1. The lower plot
corresponds to the cell in the pasta phases that we do not consider here. Two nuclei are
plotted in each cell. From Negele & Vautherin (1973).

4.2.3 Specific heat of the superfluid neutrons

4.2.3.1 Skyrme nuclear interaction and HFB calculations

The modeling of the nuclear interaction inside the nuclei is an unsolved and complex
problem (Berger, 2009; Gulminelli, 2011). Several models for the effective nucleon-
nucleon interactions have been developed. Their parameters are fixed by fitting ex-
perimental data. One can distinguish two types of effective interactions :

• the Gogny interaction that has a finite range and therefore enables to model long
range interactions and pairing properties but it is complicated to use in many-
body calculations;

• the Skyrme interaction that has a zero range ie. it uses a local contact force between
two nucleons that is proportional to δ(r) with δ the Kronecker symbol and r the
distance between the two nucleons. Its simple form makes it easy to use.

Several parameterizations for the latter have been proposed. In the following, the
SLy4 (Skyrme Lyon) effective nucleon-nucleon interaction is used whose parameters
have been determined to reproduce experimental constraints from neutron rich nuclei
(Chabanat et al., 1997). It is therefore suitable for the description of the properties of
neutron star matter.
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For a given nuclear interaction, the many-body problem has then to be solved. Ab
initio calculations that solve exactly the Schrödinger equation exist but they are not ap-
plicable for nuclei with A ≥ 16. The nuclear shell model that is an analog of the atomic
shell model does not enable to describe the very neutron-rich nuclei that are present in
the crust of a neutron star. Therefore, mean field theories were developed. The central
idea is to decompose the Hamiltonian H into two parts, one corresponding to the dy-
namics of independent nucleons in a common nuclear potential and the other one that is
called the residual interaction. The latter includes the effects of the pairing correlations,
of the collective oscillations of the mean field, . . . Berger (2009). The Schrödinger equa-
tion can be then be solved by different methods. Among them are Hartree-Fock (HF)
calculations enables to solve the Schrödinger equations for interacting particles and the
Hartree-Fock-Bogoliubov (HFB) approach that is an extension of the first one and that
includes the pairing correlations and thus describes the properties of superfluid parti-
cles.

4.2.3.2 Pairing models

Since the strength of the pairing force is still unknown, two models for the pairing force
of the superfluid neutrons that correspond to two pairing scenarios are used :

• strong pairing that corresponds to BCS calculations;

• weak pairing that goes beyond BCS calculations including in-medium effects, with
a gap that is ∼ a third of the BCS gap.

These two pairing models correspond to two limiting cases and the real pairing gap is
expected to be in between them.

4.2.4 Influence of the clusters on the critical temperature

The inner crust is a non-uniform system as shown on figure 4.1, where the density is
very different in the center of the nuclear clusters and in the transition zone between
two clusters. In particular, in the framework of HFB approach at zero temperature or at
finite temperature, the presence of the nuclear clusters was shown to have an influence
on the neutron pairing gap and specific heat (Sandulescu et al., 2004; Sandulescu, 2004).
Extending the study of Sandulescu (2004) to the low-density region in the inner crust for
a temperature of 0.1 MeV1, Monrozeau et al. (2007) estimated the impact of the clusters
on the cooling time of the crust with a simple model of heat transport.

In Fortin et al. (2010) are reported new calculations of the critical temperature and
specific heat of the superfluid neutrons in the framework of HFB calculations at finite
temperature in the Negele & Vautherin cells. Figure 4.2 shows the variation of the criti-
cal temperature for the weak and strong pairing including or not (NC) the effects of the

1The megaelectron volt, MeV, is a unit of energy that is commonly used by nuclear physicists : 1 MeV
≃ 1.16× 1010 K.
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Figure 4.2: Critical temperatures for the weak (red) and strong (blue) pairings. The NC
curves (dashed lines) correspond to calculations where the effects of the clusters were
not taken into account.

clusters, after the interpolation of the results obtained in the different cells. The critical
temperature is higher for the strong pairing than for the weak pairing since the former
corresponds to BCS calculations that do not include the effects of the clusters. Except at
low densities, taking into account the presence of the nuclear clusters in the calculations
reduces the critical temperature.

4.2.5 Neutron specific heat in uniform matter

Levenfish & Yakovlev (1994) calculated the specific heat of superfluid neutrons in uni-
form neutron matter and derived an approximate formula for the reduction factor Rc

that enters the equation (see also section 3.5.1.4) :

C
pair
V (T ) = Rc(T/Tc)× Cnorm

V (T ) (4.5)

with Cpair
V andCnorm

V the specific heat of the superfluid and normal baryons, respectively.
They obtained for T ≥ Tc :

RYL
c (u) =

[

0.4186 +
√

1.0072 + (0.501u)2
]5/2

× e1.456−
√
1.4562+u2

, (4.6)

u(x) =
√
1− x

[

1.456− 0.157√
x

+
1.764

x

]

, (4.7)

x = T/Tc. (4.8)

and for T < Tc, RYL
c (u) = 1.
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In the following, the NC curves correspond to calculations for uniform matter, ie.
using the prescription for the reduction factor from Levenfish & Yakovlev (1994) and the
critical temperatures presented in the previous section when the effects of the clusters
are not included.

4.2.6 Neutron specific heat in non-uniform matter

4.2.6.1 Results

Figures 4.3 and 4.4 show the variation of the specific heat of the free neutrons with the
temperature. They have been calculated in the different Wigner-Seitz cells defined in
table 4.1 in non-uniform matter, ie. when the effects of the clusters are included. The
values are very different for the two pairing scenarios and the temperature dependence
of the cells also varies. For strong pairing, at low density, the specific heat exhibits a
transition from the superfluid to the normal phases in the cells 6-8 (it is not visible for
the cells 9 and 10 though it is present). However at high density, in the cells 1-5, the
specific heat is in the superfluid regime. For the weak pairing, only in the first two cells,
the neutron specific heat is typical of superfluid matter. Moreover for the first cell, the
transition from the quantum to the classical regime is visible at T ≃ 0.22 MeV. Note
finally that for the cells 1-5 the specific heat increases when the density decreases. The
behavior is the opposite for the cells 6-10.

4.2.6.2 Parametrization

In order to implement these new calculations for the specific heat of the superfluid neu-
trons in the NSCool code, a parametrization in terms of the temperature and density of
the neutron specific heat obtained in the different cells has been derived. The transition
from the quantum to the classical regimes and from the superfluid to the normal phases
are taken into account.

Quantum regime
The specific heat of the non-superfluid neutrons in the quantum regime at low tem-

perature is :

Cq
V(T, ρn, N,RWS) =

1

6

(

2m∗
n

~2

)3/2

ε
1/2
F T ×

[

1− 7

40

(

πT

εF

)2

− 155

896

(

πT

εF

)4
]

, (4.9)

where ρ0n is the number density of the neutron gas at zero temperature given in table 4.1,
m∗

n the neutron effective mass and εF = ~
2k2F/2m

∗
n the Fermi energy at zero temperature

with kF(ρn) the Fermi momentum. This expression is valid for εF < T .
The effective mass m∗

n of a neutron takes into account the effects of the medium on
the neutron : the more local is an interaction, the bigger is the effective mass. In the
present calculations, it depends on the density according to the Skyrme SLy4 nuclear
interaction.
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Figure 4.3: Neutron specific heats in various
Wigner-Seitz cells for strong pairing. The
effects of the clusters are included. The spe-
cific heat is given in units of the Boltzmann
constant kB.
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Figure 4.4: Neutron specific heats in various
Wigner-Seitz cells for weak pairing. The ef-
fects of the clusters are included. The spe-
cific heat is given in units of the Boltzmann
constant kB.

Superfluid phase
The reduction factor describes the reduction of the specific heat due to the superflu-

idity. It is parametrized by the following form :

Rc = RYL
c (u)f1(T,∆0, a0, a1, a3) (1− f2(T,∆0, a0, a2, a3)) , (4.10)

with RYL
c the reduction factor derived by Levenfish & Yakovlev (1994) (see equation

(4.8)) and the f1 and f2 functions given by :

f1(T,∆0, a0, a1, a3) =

(

1 + e−a1a0∆0/a3
)

(1 + e(T−a1a0∆0)/a3)
, (4.11)

f2(T,∆0, a0, a2, a3) =

(

1 + e−a2a0∆0/a3
)

(1 + e(T−a2a0∆0)/a3)
. (4.12)
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Weak Strong
cell a0 a1 a2 a3 ∆0 a0 a1 a2 a3 ∆0

[MeV] [MeV]
10 0.567 1.0 1.0 0.001 0.00 0.5 1.0 1.0 0.005 0.02
9 0.567 1.0 1.0 0.001 0.01 0.5 1.0 1.0 0.005 0.03
8 0.567 1.0 1.0 0.001 0.01 0.5 1.0 1.0 0.005 0.08
7 0.567 1.1 1.1 0.001 0.05 0.567 1.0 1.0 0.015 0.15
6 0.4 1.4 1.4 0.001 0.09 0.567 1.1 1.1 0.025 0.36
5 0.567 0.9 0.78 0.005 0.30 0.60 1.0 1.0 0.025 0.87
4 0.567 0.83 0.75 0.01 0.45 0.62 1.0 1.0 0.025 1.18
3 0.567 0.84 0.7 0.01 0.69 0.567 0.97 0.91 0.02 1.75
2 0.567 0.89 0.8 0.01 1.24 0.53 0.93 0.86 0.015 3.10
1 0.567 0.84 0.72 0.01 1.86 0.54 0.935 0.88 0.015 3.95

Table 4.2: The parameters (a0, a1, a2, a3) which define the fitting functions employed in
equation (4.10) for the weak and strong pairings. In the last column are given also the
neutron pairing gaps in the gas region at zero temperature.

∆0 is the pairing energy gap in the neutron gas at T=0 and the critical temperature is
given by the equation TC = a0∆0.

The parameters (a0, a1, a2, a3) are adjusted to reproduce the specific heat of neutrons
determined in the framework of HFB approach at finite temperature. Their values to-
gether with the ones of∆0 are given in table 4.2 for the weak and strong pairing scenar-
ios.

Classical regime
The classical regime is reached when T ≫ εF and the specific heat is given by :

Ccl
V(T, ρn, N,RWS) =

3

2
ρgas(T, ρn, N,RWS), (4.13)

where ρgas is the number density of the neutron gas, ie. in the outer region of the cell at
the temperature T . When increasing the temperature, the thermal excitations enable the
neutrons to drip from the cluster to the gas. Therefore, the neutron gas number density
varies with the temperature and is given by the formulas :

• for T ≤ Tgas = 5.5 MeV,

ρgas(T, ρn, N,RWS) = ρn(T = 0) +
T

Tgas
(ρmax(N,RWS)− ρn(T = 0)) , (4.14)

• for T > Tgas,
ρgas(T, ρn, N,RWS) = ρmax(N,RWS), (4.15)
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Transition from the quantum to the classical regime
We describe the transition from the quantum to the classical regime by the following

function :
xcl =

(

1 + e
5(πT

εF
−1)
)−1

. (4.16)

Specific heat of the free neutrons in the inner crust
Finally, the specific heat of the free neutrons in the inner crust Cn

V is :

Cn
V = xclRC

q
V + (1− xcl)C

cl
V . (4.17)

4.2.7 Total specific heat in the crust

Figure 4.5 shows the different contributions to the total specific heat for a temperature
T = 109 K. In the outer crust, the specific heat of the ions dominates the one of the
electrons. In the inner crust, the main contribution comes from the free neutrons if they
are non-superfluid. Otherwise, in the denser parts of the crust, their contribution is so
reduced because of the pairing that the contribution of the ions dominates again. Note
that the reduction extends for a larger range of density for strong pairing than for the
weak one.

In figure 4.6 are plotted the specific heat of the free neutrons for the different pre-
scriptions used in the following, for T = 109 K. Note that the inclusion of the effects
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of the clusters strongly affects the specific heat of the superfluid neutrons : the transi-
tion to superfluid occurs at higher density when they are included in the calculations.
Therefore, one expects the thermal evolution of a young isolated neutron star to be also
influenced.

4.3 Cooling simulations

4.3.1 Neutron star model

In this study, the following equations of state are used :

• for the core : the model by Douchin & Haensel (2001), (hereafter called DH) based
on the SLy4 nuclear interaction (Chabanat et al., 1997) for a npeµ composition;

• for the inner-crust : the calculations by Negele & Vautherin (1973) which are not
based a Skyrme interaction.

The maximum mass is 2.034 M⊙ and the DUrca process is opened forM ≥ 2.024M⊙.
The cooling calculations are performed for a 1.6 M⊙ neutron star. Its properties are

obtained by solving the TOV equations (2.12) and are :

• the total radius R = 11.49 km;

• the central density ρc = 4.06 ρ0;

• the inner crust (for ρND ≤ ρ < ρ0/2) extends from the core radius RC = 10.72 km
to 11.19 km and has thus a thickness of 0.47 km.

4.3.2 Microphysics input

Superfluidity
In addition to the 1S0 pairing of the neutrons in the crust described in the previous

section, the superfluid properties in the core are also taken into account :

• for neutron 3P2 pairing, the gap by Takatsuka (1973) with a maximum critical tem-
perature Tcn ∼ 3× 109 K is used;

• for proton 1S0 pairing, the gap "a" from Page et al. (2004) with Tcp ∼ 109 K is
employed.

Specific heat
As shown on figure 4.7, the contributions from the superfluid neutrons and protons

and from the electrons to the core specific heat are included in the calculations. They
are calculated from the formula (4.10) with the reduction factorRc calculated in uniform
matter (Levenfish & Yakovlev, 1994).
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Thermal conductivity
In the crust, only the contribution of electrons to the thermal conductivity is included,

with the electron-ion scattering from the reference Gnedin et al. (2001) and the electron-
electron scattering from Shternin & Yakovlev (2006). The contribution from the electron-
impurity scattering is neglected owing to its uncertainty.

In the core, the contribution from the leptons (electrons and muons) that dominates
and is very sensitive to the proton superfluidity is taken from the reference Shternin
& Yakovlev (2007). The contribution from the nucleons (neutrons and protons) is also
included following Baiko et al. (2001).

The variation of the total thermal conductivity with the density is plotted in figure
4.8, for three different temperatures T = 107, 108, 109 K.

Neutrino emissivity
Figure 4.9 shows the different contributions to the total neutrino emissivity. In the

core the MUrca and the bremsstrahlung processes are included. In the fast cooling sce-
nario, the DUrca process is artificially switched on for densities ρ ≥ 5 × 1014 g cm−3.
In the crust, the plasmon decay and the electron-ion, electron-electron and neutron-
neutron bremsstrahlung processes are taken into account. The suppression of the neu-
trino emission due to the superfluidity and the PBF processes (see section 3.5.1.4) are
included following Leinson & Pérez (2006b).

Envelope
The relation between the surface temperature and the temperature Tb at the density
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ρb = 1010 g cm−3 is provided by the model for a nonaccreted envelope presented in the
reference Potekhin et al. (1997).

4.3.3 Fast cooling scenario

4.3.3.1 Thermal evolution

The heat equation (3.3) is solved with the NSCool code for an initial constant tempera-
ture T (r, t = 0) = Ti with the model described previously.

In order to study the thermalization of the crust in the fast cooling scenario, the
DUrca process is artificially triggered for densities ρ ≥ 5× 1014 g cm−3.

The evolution of the effective temperature of 1.6 M⊙ neutron star is shown in figure
4.10, for an initial temperature Ti = 5× 109 K. The results are similar for Ti = 3× 109 K.

First one can notice that the evolution of the effective temperature is nearly inde-
pendent of the initial temperature. As expected, since the specific heat is reduced when
nucleons are paired and thus the temperature decreases faster, the superfluidity fastens
the cooling. Including the clusters in the calculations has a non-trivial influence on the
cooling. While there are almost no effects for the model of strong pairing, the neutron
star cools faster for weak pairing.

The evolution of the redshifted temperature profiles in the crust of a 1.6 M⊙ neutron
star for an initial temperature Ti = 5×109 K and for the three pairingmodels is displayed
in the right plot of figure 4.11.

During the first year, the heat transport does not play a significant role and the ther-
mal evolution is driven by the equation :

CV
∂T

∂t
= −Qνe

φ. (4.18)
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Therefore, ∂T/∂t ∝ Qν/CV. The superfluidity does not affect much the neutrino emis-
sivity in the crust since only the neutron-neutron bremsstrahlung is affected. However,
the neutron specific heat is significantly reduced when the neutrons are paired in the
crust. In this case, the main contribution to the specific heat is provided by the ions
and the electrons but the total specific heat is smaller. Therefore, the cooling is much
faster when the neutrons are paired, as can be seen in figure 4.11 for the first 0.1 years.
Afterwards, the heat transport smoothes the temperature profiles and they are similar
for the three pairing scenarios.

After one year, the heat transport plays an important role and the thermal evolution
is driven by the equation :

∂

∂r

[

√

1− 2Gm/c2rκr2eφ
∂

∂r

(

T eφ
)

]

=
r2eφ

√

1− 2Gm/c2r
CV

∂T

∂t
(4.19)

Therefore, ∂T/∂t ∝ κ/CV. As a consequence, the strength of the pairing plays an im-
portant role in the thermal evolution. The cooling is faster when the pairing is stronger
since the total specific heat is more reduced in agreement with Gnedin et al. (2001).

4.3.3.2 Cooling time

Let us now estimate the cooling time tw. Following Lattimer et al. (1994), it is defined
at the time when the cooling curve has the most negative slope. Figure 4.12 plots the
cooling time as a function of the mass of the neutron star. For the fast cooling scenario
(lower points), the cooling time decreases with the mass. In fact a more massive neutron
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star has a thinner crust and it takes less time to the cooling wave to propagate from the
core to the surface. The cooling is faster when the pairing correlations are stronger.

Lattimer et al. (1994) andGnedin et al. (2001) noticed that tw scaleswith the parameter

α =

(

lcrust
1km

)2(

1− 2GM

c2R

)−3/2

(4.20)

that depends only on the global properties of the neutron star (mass, radius and thick-
ness of the crust). One can also define the normalized time t1 that depends solely on the
microscopic properties of the crust :

tw = αt1. (4.21)

This scaling relation can be easily understood in the framework of the so-called in-
dependent layers model. It is based on two assumptions :
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• since the thickness of the crust is small compared to the radius of a neutron star,
one can approximate the spherical geometry by a planar one. Thus, the model
consists in studying the heat diffusion through a one-dimensional crust;

• the crust is divided into N layers of thickness li. In each of these layers i, the
density, the thermal conductivity κi and the specific heat C i

V are considered to be
constant.

In each layer, one considers that

∂

∂x
∼ 1

li
, (4.22)

∂

∂t
∼ 1

τi
, (4.23)

(4.24)

with τi the cooling time scale of the layer i.
Let us define the function

Γ(r) =

(

1− 2Gm(r)

rc2

)−1/2

(4.25)

that enters equation the relativistic heat equation (3.3).
As a first approximation, in the crust,

φ(r) ∼ φ(R) (4.26)

and thus
e−φ(r) ∼ Γ(R). (4.27)
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Neglecting the neutrino losses in the crust, a dimensional analysis of equation (3.3)
gives

τi =
Γ3(R)C i

Vl
2
i

κi
. (4.28)

The total cooling time scale τth of a crust divided into N layers is defined by :

τth =

[

N
∑

i

√
τ i

]2

. (4.29)

The definition makes the cooling time scale independent of the number of shells in
the crust contrary the mere sum of the τi.

Therefore, since
∑N

i li = lcrust, one gets

τth ∝ l2crustΓ
3(R), (4.30)

∝ l2crust(1− 2Gm/c2R)−3/2, (4.31)
∝ α. (4.32)

This scaling relation was checked for the three pairing scenarios : unpaired neutrons,
weak and strong pairing, for neutron stars masses ranging from 1.4 to 2 M⊙ and for an
initial temperature Ti = 5× 109 K, as shown on figure 4.13. Two fits of the cooling times
tw were derived : a linear fit and a better fit with a fractional power of α. The derived
normalized times are displayed in table 4.3.

In table 4.4 are given the values of the cooling time tw and the normalized time t1
obtained for a 1.5M⊙ neutron star (α = 1.15). The normalized times t1 values are 2 to 3
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Model of neutron superfluidity t1 (yr)
No pairing 68.9

Weak pairing 39.3
Strong pairing 22.3

Table 4.3: Normalized times t1 for the three pairing scenarios for the neutrons in the
inner crust, for the fast cooling scenario.

Model of neutron superfluidity tw (yr) t1 (yr) tGnedin
1 (yr)

No superfluidity 76.3 66.4 28.8
Weak pairing 43.1 37.4 12.2
Strong pairing 30.6 26.6 5.9

Table 4.4: Cooling times tw and normalized times t1 for a 1.5 M⊙ neutron star and for
three models for the neutron superfluidity in the inner crust in the fast cooling scenario.
For comparison are indicated the normalized times tGnedin

1 obtained by Gnedin et al.
(2001).

times larger than the ones obtained by Gnedin et al. (2001). These differences could be
explained by the effects of the nuclear clusters on the neutron specific heat, disregarded
in Gnedin et al. (2001), and by different neutrino processes and thermal conductivities
in the core matter used in the two calculations.

In a nutshell, the crust thermalization is strongly influenced by the pairing scenario
and by the cluster structure of the inner crust. These results were published in the paper
Fortin et al. (2010).

4.3.4 Slow cooling scenario

4.3.4.1 Thermal evolution

Let us now consider the thermal evolution of a neutron star in the slow cooling scenario,
when the very efficient DUrca neutrino process is not triggered.

In this case, the cooling is expected to be slower since the neutrino losses are smaller
than for the fast cooling scenario. This is visible when comparing figure 4.14 for the
slow cooling with figure 4.10 for the fast one. The results are more sensitive to the initial
temperature and contrary to the previous scenario, the inclusion of the clusters slows
down the thermal evolution. The results for the different models of neutron pairing are
much closer for the slow cooling.

Figure 4.15 compares the evolution of the temperature profile in an entire 1.6 M⊙
neutron star with non-superfluid neutrons for the two cooling scenario. In the fast cool-
ing scenario, the triggering of the DUrca makes the neutrino emissivity so high that the
core is cooler than the crust. On the contrary, when considering slow cooling, figure
4.9 shows that neutrino emissivity is higher in the crust than in the core. Therefore, the
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Figure 4.14: Evolution of the effective temperature of a 1.6 M⊙ neutron star for the initial
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core stays hot while the crust temperature decreases (figure 4.15). As a consequence, the
surface temperature evolution is driven by the cooling of the core.

4.3.4.2 Cooling time

The cooling time tw was determined for neutron star with masses between 1.4 and 2.0
M⊙ and for Ti = 5×109 K and displayed in figure 4.12 (upper part). The cooling is faster
when the neutrons are more strongly paired. Contrary to the fast cooling, the cooling
time increases with the mass. In fact, a more massive neutron star has thinner crust and
a bigger core. Since the thermal evolution is driven by the core, a more massive star
cools slower than a lighter one.

Figure 4.16 plots the cooling time as a function of the parameter α. The variation is
different than for the fast cooling scenario : the cooling time decreases when the factor
α increases.

For this scenario the scaling relation tw ∝ α does not hold since the neutrino losses
that enter equation (3.3) can not be neglected. The best fits are obtained for a fractional
power of α indicated on figure 4.16.

4.3.4.3 Dependence on the symmetry energy

Contrary to the conclusion presented above, note that, for the slow cooling scenario,
Gnedin et al. (2001) obtained a decrease of the cooling time with the mass of the neutron
star. In their calculations, the APR equation of state (Akmal et al., 1998) was used for the
core.

Let us define the so-called asymmetry :

δ =
nn − np

nn + np
(4.33)
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with nn, np the neutron and proton number densities respectively. When δ = 0, the
matter is symmetric ie. there is an equal number of neutrons and protons and when
δ = 1, the matter is exclusively composed of neutrons.

The energy per nucleon can be written as a function of the asymmetry :

E = E0(ρ) + S(ρ)δ2 (4.34)

with E0 the energy of symmetric nuclear matter. S is the nuclear symmetry energy that
measures the increase in the energy per nucleon due to a small change of the proton and
neutron number densities, ie. of the asymmetry.

The symmetry energy can be further decomposed :

S(ρ) = S(ρ0) + L
ρ− ρ0
3ρ0

+
Ksym

2

(

ρ− ρ0
3ρ0

)2

, (4.35)

with L and Ksym are the slope and curvature parameters. While the value of S(ρ0)
is quite well constrained : S(ρ0) ∼ 30 − 34 MeV, L and Ksym are poorly known. In
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APR DH
S(ρ0) 32.78 32.00
L 59.63 45.94

Table 4.5: Parameters of the expansion of the symmetry energy in equation (4.35) for
the APR and DH equations of state (from Akmal et al. (1998) and Douchin & Haensel
(2001), respectively). Data from Ducoin et al. (2011).

particular, experimental data from heavy-ion collisions give L = 88 ± 25 MeV. These
parameters can be calculated for each equation of state and are shown in table 4.5 for
the APR and DH equations of state. A higher value for the L parameter results in a
higher proton fraction. Accordingly, for the APR equation of state, the matter is more
proton-rich than for the DH one, as shown on figure 4.17.

The APR equation of state assumes npeµ composition and gives a higher proton,
electron andmuon fractions and a lower neutron fraction than the DH equation of state.
Figure 4.18 shows, for non-superfluid matter and a temperature T = 109 K, the different
contributions to the neutrino emissivity in the core from the MUrca and bremsstrahlung
processes involving the neutrons and protons. The total neutrino emissivity is higher
for the APR equation of state than for the DH one. Comparison with the left plot of
figure 4.9 then demonstrates that the neutrino losses are larger in the core than in the
crust. Therefore, the core cools faster than the crust and a more massive neutron star
cools faster than a low mass one.

In conclusion, the symmetry energy alters the thermal evolution of young neutron
stars since it affects the core neutrino emissivity.
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4.4 Perspectives

4.4.1 Modeling

The model presented previously is almost entirely based on a Skyrme type nuclear in-
teraction. Only the properties of the cells in the inner-crust from Negele & Vautherin
(1973) were not calculated for such an interaction. Moreover the influence of the pairing
correlations on the properties of the cells (A,Z,RWS, . . . ) was not taken into account.

However, Grill et al. (2011) recalculated the properties of the Wigner-Seitz in the
inner crust for the Skyrme type interaction and in the framework of HFB approach,
including therefore the effects of the pairing. Grill et al. now recalculate the specific
heat of the superfluid neutrons in the inner crust and in the near future that I plan to
perform new cooling calculations to study how the microphysics properties of the crust
influence the thermal evolution for a model of neutron star fully based on the same
nuclear interaction : the Skyrme one.

4.4.2 Observations

Eventually, the observation of a young neutron star with an age . 100 years, ideally a
cool one, may enable to constrain the properties of the matter in the crust. However so
far, none was observed.

In 1987, a type II supernova explosion, SN 1987A, in the LargeMagellanic Cloudwas
observed, the closest since SN 1604 which occurred in the Milky Way itself. Approxi-
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mately three hours before the supernova was visible on the Earth, a burst of neutrinos
was observed at three separate neutrino observatories consistently with the theoretical
supernova models (see section 1.2). This was the first time neutrinos from a supernova
had been detected directly and it marked the beginning of neutrino astronomy. The
supernova remnant has been monitored since then but so far, despite intensive obser-
vations, X-ray satellites failed to detect the flux from the central compact object (Weber
et al., 2007). The neutron star may be still obscured by the supernova remnant or a black
hole may have been formed in the late stages of the explosion (Weisskopf et al., 2007).
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The modeling of the thermal evolution of neutron star can not only be confronted
with the observations of isolated neutron stars. Accreting neutron stars constitute also
an interesting test for the models. The different types of observed accreting neutron
stars are presented in section 5.1 and the origin of the quiescent emission after accre-
tion stops in the framework of the deep crustal heating scenario is explained in section
5.2. The equations for the heat transport that include the heat that is released by the
reactions the accreted matter undergoes when sinking into the crust under the weight
of the newly accreted material are derived in section 5.3. The observations of the soft
X-ray transients that show short accretion episodes lasting weeks to months are then
confronted with the theoretical modeling in section 5.4 and put constraints on the prop-
erties of the matter inside neutron stars. Section 5.5 details the models that are been
developed to simulate the thermal relaxation of the quasi-persistent X-ray transients,
that are neutron stars which accreted matter during years to decades before accretion
stopped. They enable to understand the physical properties of the matter in accreting
neutron stars, in particular in their crust. A new preliminary model, developed during
my thesis in collaboration with Leszek Zdunik and Paweł Haensel, is presented. It en-
ables to simulate for the first time the thermal relaxation of all quasi-persistent X-ray
transients and is of particular interest since the monitoring of the relaxation of a normal
transient that opens new and exciting perspectives.

5.1 Observations of accreting neutron stars

In a low-mass X-ray binary, a neutron star accretes matter from its companion star, with
a mass below one solar mass, by Roche-lobe overflow (more details in section 9.1). An
accretion disk is formed and the photons emitted by the accreted matter heats the inner
edge of the accretion disk to temperatures ∼ 107 K. This is the origin of the observed
X-ray emission (Wijnands, 2004).

Among the low-mass X-ray binaries are transient sources. They are systems that
have usually a low luminosity ∼ 1032−1034 erg s−1 but sometimes exhibit a sudden rise
of their luminosity ∼ 1036 − 1038 erg s−1. These phenomena that are called outbursts are
believed to originate from an abrupt increase of the accretion rate and last for weeks to
months before the accretion is strongly reduced or suppressed with a low luminosity.
The systems are then said to have turned into quiescence. Figure 5.1 shows light curves
obtained with RXTE for three different transients. The sources clearly exhibit a variabil-
ity : only one outburst is observed for XTE J1806−246 andMXB 1730−335 is a recurrent
transient. Some of these systems have been observed with RXTE during the outbursts
and with XMM-Newton and Chandra during the quiescence phase.

In the accretion phase, some sources exhibit so called type I X-ray bursts that are ob-
served as a sharp rise of the luminosity followed by a slow and gradual decrease. They
are thermonuclear explosions at the surface of accreting neutron stars can be observed.
They are believed to originate from the explosive burning of helium that accumulates
as the result of the stable burning of the accreted hydrogen.
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XTE J1806-246

MXB 1730-335

MXB 1659-29

Figure 5.1: RXTE light curves for three different X-ray transients. FromWijnands (2004).

There exists a class of transient binaries, that are active not during weeks or months
but during years or decade, like MXB 1659− 29 in figure 5.1. They are called the quasi-
persistent X-ray transients (see section 5.5).

5.2 Quiescent state of X-ray transients

5.2.1 Nature of the quiescent emission

Several theoretical models were proposed to explain the quiescent emission of the X-ray
transients such as the interaction between the pulsar wind and the surrounding matter,
residual accretion or accretion stopped on the magnetosphere because of the neutron
star magnetic field (Campana et al., 1998).

The hypothesis that the residual emission originates from the thermal emission from
the cooling neutron star was initially rejected since (Yakovlev et al., 2003) :

• the fit of the quiescent spectra with a blackbody gave a size for the emitting region
much smaller than the radius of a neutron star;

• the neutron star internal temperature was thought to be lower than the observed
one.

5.2.2 Deep crustal heating scenario

In their seminal paper, Brown et al. (1998) presented the so-called deep crustal heating
scenario.
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If one assumes that the observed quiescent emission originates from the neutron star
thermal radiation, then the derived core temperature is ∼ 108 K. Thermal equilibrium
between the neutrino and photon emissions from a neutron star with such temperature
and the unstable burning of hydrogen and helium in the outer shells requires an accre-
tion rate Ṁ ∼ 10−11−10−9 M⊙ yr−1 Hanawa & Fujimoto (1984). However, for this value
of the accretion rate, the heat released by the outer shell reactions hardly diffuses inside
the neutron star and heats up the core. Therefore, there must be some additional source
of heating.

The catalyzed matter in the crust of an accreting neutron star is slowly compressed
and sinks deeper under the weight of the accreted material. It undergoes a series of
nuclear reactions that release heat proportionally to the accretion rate which propagates
into the whole neutron star, particularly in the core, and heats it up. When the accretion
stops, a heat wave propagates from the core up to the surface and is radiated away. This
is the origin of the quiescence luminosity.

The crustal reactions triggered by the compression of matter have been in Haensel
& Zdunik (1990, 2003); Gupta et al. (2007); Haensel & Zdunik (2008). They consist of :

• in the outer crust, electron captures in two steps :

(A,Z) + e− → (A,Z − 1) + νe, (5.1)
(A,Z − 1) + e− → (A,Z − 2) + νe + ǫj , (5.2)

with ǫj the energy release (in MeV per accreted nucleon);

• in the inner crust, electron captures that trigger neutron emission :

(A,Z) + e− → (A,Z − 1) + νe, (5.3)
(A,Z − 1) + e− → (A− k, Z − 2) + kn+ νe + ǫj (5.4)

for densities below the density threshold for the pycnonuclear reactions ρpyc. The
exact value of ρpyc is very uncertain : ρpyc ∼ 1012 − 1013 g cm−3;

• for ρ > ρpyc, pycnonuclear fusions :

(A,Z − 2) + (A,Z − 2) → (2A, 2Z − 4) + ǫj,1, (5.5)
(2A, 2Z − 4) → (2A− k′, 2Z − 4) + k′ + ǫj,2, (5.6)

. . . → . . .+ ǫj,3 (5.7)

where the . . . are a chain of electrons captures and neutron emissions that release
energy. In total the energy release is ǫj = ǫj,1 + ǫj,2 + ǫj,3.

As a consequence, this series of reaction also determines the composition of the matter
in the crust of an accreting neutron star, ie. the crustal equation of state.

In Haensel & Zdunik (2008) are presented the series of reactions and the heat release
assuming that the accreted matter that underwent burning during the X-ray bursts has
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Figure 5.2: Heat sources in the crust for the model by Haensel & Zdunik (2008) for an
initial 56Fe composition.

two initial compositions 56Fe and 106Pd. Figure 5.2 illustrates the different heat sources
that originates from the reactions in the crust of an accreting neutron star for an initial
56Fe composition that will be adopted in the following.

Note however that the rate of pycnonuclear reactions together with the density
threshold for these reactions to occur are known with large uncertainties but Haensel &
Zdunik (2008) show that this does not affect the amount of total heat release which is of
ǫnuc ≃ 2 MeV per accreted nucleon.

Brown et al. (1998) estimated that the averaged luminosity in quiescence due to this
deep crustal heating is

Lq ∼
ǫnuc
mu

〈Ṁ〉 (5.8)

where 〈Ṁ〉 is the time-averaged accretion rate, ǫnuc the total heat release and mu the
atomic mass unit. With ǫnuc ∼ 1.5 MeV (Haensel & Zdunik, 1990), they got :

Lq ∼ 6× 1032
〈Ṁ〉

10−11M⊙ yr
erg s−1, (5.9)

which is in fact consistent with most of the observations of quiescent transients. More-
over, this model provides a simple explanation for the slow decrease of the luminosity
of Aql X-1, that originates from the thermal relaxation of the crust, followed by a steady
quiescent luminosity with no short-term fluctuations (Brown et al. (1998) and references
therein).

5.2.3 Atmosphere models

Brown et al. (1998) also argued that accurate models for an hydrogen atmosphere in-
stead of blackbody models have to be used when performing the fits of the spectra. In
fact, in ∼ 1 − 100 s after the end of accretion, the heavy elements move from the enve-
lope down to the surface of the neutron star because of the gravitational force and the
star will be left with a pure hydrogen atmosphere Romani (1987). Motivated by this
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idea, Rutledge et al. (1999, 2000) have reperformed the analysis of the X-ray emission
of several transients and conclude that in fact, fits with a blackbody underestimate the
size of the emitting region and overestimate the surface temperature. Fits with realistic
hydrogen atmosphere models give a size for the emitting region that is comparable to
the typical size of a neutron star.

However, the model of hydrogen atmosphere fails explain the hard power-law tail
in the spectra of Aql X-1 and Cen X-4 that may originate from residual accretion.

5.3 Heat equation

The set of equations (3.1) and (3.2) has to be modified to include the heat release from
the deep crustal heating Qdch :

d

dr

(

Le2φ
)

= − 4πr2eφ
√

1− 2Gm/c2r

(

CV
dT

dt
+ eφQν − eφQdch

)

(5.10)

d

dr

(

T eφ
)

= −1

κ

L

4πr2
eφ

√

1− 2Gm/c2r
(5.11)

with

Qdch =
ǫnuc
δV

Ṁ

mu
. (5.12)

For a given source, the heat is not considered to be released at a single density but
instead in an infinitesimal shell with a volume δV .

5.4 Soft X-ray transients

5.4.1 Thermal evolution of a soft X-ray transient

Soft X-ray transients undergo short episodes of accretion that last few weeks or months.
Colpi et al. (2001) modeled the thermal evolution of accreting neutron stars. The

figure 5.3 shows the evolution of the core and surface temperature as a function of the
time since accretion started. They consider three heating cases :

• an initially cold neutron star that undergoes intense cycles of accretion lasting
tout = 30 days every trec = 150 days ≫ tout. The total accreted mass during one
episode is ∆M = Ṁtout = 6 × 10−11 M⊙. The lower solid lines in figure 5.3 shows
its thermal evolution;

• an initially hot neutron star that undergoes similar accretion episodes. Its thermal
evolution is shown by the upper solid lines in figure 5.3;
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Figure 5.3: Core temperature Tcore and effective surface temperature at infinity as func-
tions of the time t since the neutron star started undergoing accretion episodes. See text
for details. From Colpi et al. (2001).

• a cold neutron star that accretes matter at a constant rate 〈Ṁ〉 = ∆M/trec. The
dot-dashed line in figure 5.3 shows the evolution of the temperature.

The three cases show that neutron stars reach thermal equilibrium ∼ 104 years after
accretion started. This time scale is much shorter than the time scales related to the
evolution of binary systems. The steady-state is reached when the neutrino and photon
losses are balanced by the deep crustal heating.

The figure also shows that the thermal equilibrium is sensitive to the time-averaged
accretion rate :

〈Ṁ〉 = ∆M

trec
=
Ṁtout
trec

, (5.13)

and not to its transient properties.

5.4.2 A toy model

5.4.2.1 Heat equation

By analogy with Yakovlev et al. (2003), let us study the thermal evolution of an accreting
neutron star in the steady-state approximation.

Integrating the heat equation over the whole star, one gets :

Ctot
V

dT eφ

dt
= L∞

dch(Ṁ)− L∞
ν (T eφ)− L∞

γ (Ts), (5.14)
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withCtot
V the total heat capacity of the star, L∞

γ the photon surface luminosity as detected
by a distant observer, L∞

ν the redshifted neutrino luminosity, and L∞
dch the redshifted

power of the deep crustal heating.
The temperature inside the neutron star T eφ is assumed to be constant and therefore

in the steady state approximation equation 5.14 gives :

L∞
dch

(

〈Ṁ〉
)

= L∞
ν (Ti) + L∞

γ (Ts) (5.15)

with Ti = T eφ. Thus the thermal state of the neutron depends only on the time-averaged
accretion rate 〈Ṁ〉. Note that contrary to the toy-model presented in section 3.3, this
model is independent of the heat capacity. The solution of this equation provides the

relation T∞
e

(

〈Ṁ〉
)

or L∞
γ

(

〈Ṁ〉
)

that defines a so-called heating curve.

Photon emission
Assuming a black-body emission from the surface, the photon surface luminosity as

detected by a distant observer is :

L∞
γ = 4πσT 4

s R
2e2φ, (5.16)

= 4πσ (T∞
e )4 (R∞)2 , (5.17)

One gets :
L∞
γ = 4.16× 1032T 4

s6 erg s−1 (5.18)

with Ts6 the surface temperature in units of 106 K.

Neutrino emission
The redshifted neutrino luminosity is given by :

L∞
ν = 4π

∫ R

0

r2Qνe
2φ

√

1− 2Gm/(c2r)
dr, (5.19)

with Qν the neutrino emissivity (in erg cm−3 s−1).
Neglecting the relativistic effects and for a constant temperature, the neutrino lumi-

nosity Lν is given :

Lν = 4π

∫ R

0

r2Qνdr, (5.20)

=
4

3
πR3Q̄ν . (5.21)

Since the gravitational potential is regarded as constant in the crust, one gets :

L∞
ν = Lνe

φ(R), (5.22)

=
4

3
πR3eφ(R)Q̄ν . (5.23)
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For the slow cooling scenario, introducing Q̄s
ν21 = Q̄s

ν/(10
21 erg s−1 cm−3) :

L∞
ν = 3.20× 1039Q̄s

ν21T
8
i9 erg s−1 (5.24)

and for the fast cooling scenario, with Q̄f
ν27 = Q̄f

ν/(10
27 erg s−1 cm−3) :

L∞
ν = 3.20× 1045Q̄f

ν27T
6
i6 erg s−1 (5.25)

Deep crustal heating
Similarly, the power due to the deep crustal heating is :

Ldch = ǫdch
〈Ṁ〉
mu

, (5.26)

and :
L∞
dch = Ldche

φ(R), (5.27)

According to Haensel & Zdunik (2008), ǫdch = 1.9MeV= 3.04× 10−6 erg. Thus,

L∞
dch = 6.74× 1033〈Ṁ〉10 erg s−1 (5.28)

with 〈Ṁ〉10 = 〈Ṁ〉/(10−10 M⊙ yr−1).

Envelope model
Considering the relation Ts − T i between the surface temperature and the internal

temperature derived by Potekhin et al. (1997) for a neutron star with a fully accreted
envelope, one gets :

T 4
s6 = g14 (18.1Ti9)

2.42 (5.29)

with g14 the surface gravity in units of 1014 cm s−2. This relation is valid for temperatures
Ti ≤ 108 K.

5.4.2.2 Analytical solutions of the thermal steady state

Photon emission regime
When the neutron star is cold enough, the neutrino luminosity becomes negligible as

compared to the photon luminosity : L∞
ν ≪ L∞

γ . The heat released by the deep crustal
heating reactions propagates up to the surface and is emitted in the form of photons.
Equation (5.15) becomes :

L∞
dch(〈Ṁ〉) = L∞

γ (Ts). (5.30)

Using the previous results, one can calculate the surface temperature as a function of
the mean accretion rate.

The solution is :
Ts6 = 2.01

(

〈Ṁ〉10
)0.25

K. (5.31)
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Using the Ts − Ti relation of Potekhin et al. (1997), one gets :

Ti8 = 1.21
(

〈Ṁ〉10
)0.41

K, (5.32)

with Ti8 = Ti/10
8 K.

Neutrino emission regime
When the temperature is high enough, most of the heat released by deep crustal heat-

ing reaches the core and is emitted in the form of neutrinos. The neutrino emissivity is
then dominant over the photon luminosity : L∞

γ ≪ L∞
ν and the steady state equation

(5.15) becomes :
L∞
dch(〈Ṁ〉) = L∞

ν (Ti). (5.33)

The dominant neutrino processes depend on the mass of the neutron star :

• In low-mass NSs, the density is not high enough to allow fast neutrino emission.
Therefore, slow neutrinos processes dominate. The solution is then :

Ti8 = 1.95

(

〈Ṁ〉10
Qs

ν21

)0.125

K. (5.34)

The Ts − Ti relation of Potekhin et al. (1997) gives:

Ts6 = 2.68

(

〈Ṁ〉10
Qs

ν21

)0.076

K. (5.35)

The transition from the photon emission regime to the neutrino emission regime
occurs when :

Ts6 = 3.04/ (Qs
ν21)

0.52 K, (5.36)

ie. for :
〈Ṁ〉10 = 5.34/ (Qs

ν21)
0.44 . (5.37)

• in high-mass neutron stars, the main neutrino processes are the fast ones.

One gets :

Ti8 = 0.113

(

〈Ṁ〉10
Qf

ν27

)0.169

K. (5.38)

With the Ts − Ti relation of Potekhin et al. (1997) :

Ts6 = 0.478

(

〈Ṁ〉10
Qf

ν27

)0.10

K. (5.39)
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The transition from the photon emission regime to the neutrino emission stage
takes place when :

Ts6 = 0.25/
(

Qf
ν27

)0.169
(5.40)

ie. for :

〈Ṁ〉10 = 5.87× 10−5/
(

Qf
ν27

)0.69
. (5.41)

Comparing with the results for low mass neutron stars, the transition from the
photon cooling stage to the neutrino cooling regime occurs for lower temperatures
and for much lower values of the mean accretion rate.

5.4.3 Observations & constraints on microphysics

The heating curves for different compositions of the core of neutron stars and/or lead-
ing neutrino processes in the core can be compared with the observations of low-mass
X-ray transients. L∞

γ is the quiescent thermal luminosity (Yakovlev et al., 2003). The
mean accretion rate is defined by 〈Ṁ〉 = ∆M/∆t where ∆M is the total accreted time
during a "long enough" time∆t, including both the quiescent and accreting phases. The
quantities 〈Ṁ〉 and L∞

γ have been estimated for few sources but suffer from uncertain-
ties.

Levenfish &Haensel (2007) confronted in particular the observations of both isolated
and accreting neutron stars in soft X-ray transients with models of superfluid neutron
stars. As explained in section 3.5.1, the neutrino processes are affected by the superfluid
properties of the interior.

They tested the minimal cooling scenario with the observations, presented in section
3.6.5 including the effects of superfluidity on the thermal properties. They showed that
it is inconsistent with the thermal state of the coolest soft X-ray transients 1H 1905+000
and SAX 1808.4-3658 as plotted in figure 5.4.

Figure 5.5 shows the results for the model of neutron stars whose thermal states
reproduce all the available observational data for isolated and accreting neutron stars.
This model is based on the the APR equation of state (Akmal et al., 1998), allowing for
DUrca process in the inner core, with strong proton superfluidity in the outer core with
a maximum of the critical temperature Tcp & 109 K. The hotter sources correspond to
slowly cooling low-mass neutron stars and the colder ones to high-mass neutron stars
with different masses.

Therefore observations of both isolated neutron stars and soft X-ray transients, in
particular the very cold ones 1H 1905+000 and SAX 1808.4-3658, test the same physics
and enable to constrain the properties of the core of neutron stars.
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Figure 5.4: Models of superfluid neutron stars in the framework of the minimal cooling
paradigm confronted with the observations of isolated neutron stars (left) and neutron
stars in soft X-ray transients. The cooling and heating curves of neutron stars with
masses ranging from 1 M⊙ to the maximal allowable mass correspond to the hatched
regions. Figure from Levenfish & Haensel (2007).

5.5 Quasi-persistent X-ray transients

The Quasi-persistent X-ray transients are X-ray transients that accreted matter during
years to decades. So far, only four of them have been observed to turn to quiescence
with a careful monitoring after accretion stopped.

5.5.1 Observations

5.5.1.1 KS 1731-260

KS 1731-260 is a quasi-persistent neutron star X-ray transient which was first detected
in active state in August 1989 by the Kvant X-ray observatory, attached to the Mir space
station. It was in retrospect seen to be already in outburst in October 1988 (Syunyaev
et al., 1990). The source remained active for 12.5 years until its last detection on January
21, 2001 with the Rossi X-ray Timing Explorer (RXTE). The source was first seen in
quiescence with Chandra X-ray telescope on March 27, 2001 by Wijnands et al. (2001)
and observed since then several times during ∼ 5 years, by the Chandra and XMM-
Newton telescopes as reported by Cackett et al. (2006). Cackett et al. (2010) presented
an additional Chandra observational point in May 2009 and consistently reanalyze the
previous observations. The latter suggest that the source is still cooling and did not
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Figure 5.5: Thermal states for the model of neutron stars for confront the best with the
observational data. See text for details. Figure from Levenfish & Haensel (2007).

reach thermal equilibrium in May 2009. Figure 5.6 shows the effective temperatures in
quiescence of this object.

Following Cackett et al. (2006), t0, the last day when the source was detected in active
state is set to Modified Julian Day (MJD) t0 = 51930.5 and the duration of the accretion
cycle to ∆t= 12.5 years.

5.5.1.2 MXB 1659-29

After its discovery in October 1976 by Lewin et al., MXB 1659-29 was identified as an
X-ray transient and observed several times between October 1976 and September 1978.
The source was undetected by the Hakucho satellite in July 1979 (Cominsky et al., 1983).
It returned to an active state after ∼ 21 years in quiescence, when it was detected in
outburst on April 2, 1999 by BeppoSAX (in ’t Zand et al., 1999). MXB 1659-29 remained
active during 2.5 years, until September 2001. The final detection in outburst of the
source was on September 4, 2001 and the first in quiescence on September 14, 2001.
Cackett et al. (2006, 2008) reported several observations in quiescence since then by the
Chandra and XMM-Newton telescopes spreading over ∼ 7 years, as shown in figure
5.6.

In agreement with Cackett et al. (2006), t0 = 52159.5 and∆t= 2.5 years.

5.5.1.3 EXO 0748-676

EXO 0748-676 was discovered with EXOSAT in February 1985 and in retrospect, had
already been detected by accident in May 1980 by the Einstein satellite (Parmar et al.,
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Figure 5.6: Observations of the four QPXRT with best-fit exponential decay curves 2−σ
error bars.

1985; Reynolds et al., 1999). After ∼ 24 − 26 years of active state, RXTE and Swift X-
ray telescope showed that in August-September 2008 the X-ray flux of the source was
declining indicating a transition to quiescence (Wolff et al., 2008). Degenaar et al. (2011b)
reported several observations of the source in quiescence with the Chandra, Swift and
XMM-Newton telescopes, as presented in figure 5.6.

Based on the joint analysis of the Eddington limit, the gravitational redshift of nar-
row width absorption lines and the emitting surface area from X-ray observations of
EXO 0748-676, Özel (2006) claimed that the mass and radius of the source are 2.10±0.28
M⊙ and 13.8 ± 1.8 km respectively. However, the determination of the 552 Hz spin pe-
riod of the neutron star through the analysis of oscillations in the RXTE observations of
two bursts in 2007 releaved that the neutron star spins rapidly (Galloway et al., 2010).
This seems inconsistent with the narrow width of the absorption lines, as confirmed by
Lin et al. (2010). Zhang et al. (2011) fitted an XMM-Newton observation of EXO 0748-676
in quiescence with two neutron-star atmosphere models and find a mass of 1.55 ± 0.12
M⊙ and a radius of 16.0+0.7

−1.3 km.

In the following, the values t0 = 54714 and∆t= 26 years, consistently with Degenaar
et al. (2011b), are used.
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5.5.1.4 XTE J1701-462

RXTE discovered XTE J1701-462 in January 2006 in outburst (Remillard et al., 2006). In
retrospect previous observations showed that the outburst started between 2005 De-
cember 27 and 2006 January 4 (Homan et al., 2007). After∼ 1.6 years in active state with
very high luminosities indicating near-Eddington accretion rates the source turned to
quiescence in early August 2007. The source was then observed during∼ 800 days with
Chandra and XMM-Newton (Fridriksson et al., 2010). XTE J1701-462 exhibits a large
increase in the temperature and luminosity in the sixth and seventh observations (see
figure 5.6), inconsistent with the decreasing temperature expected from a cooling neu-
tron star. These observations will be excluded from the subsequent analysis and may
originate from a spurt of accretion.

Consistently with the observations of the source by Fridriksson et al. (2010), t0 =
54322.13 and ∆t= 1.607 years.

5.5.1.5 Other sources

There exists other sources that were observed to accrete during long periods of time be-
fore accretion stopped. Unfortunately, their thermal relaxation was not observed (Wij-
nands (2004) and references therein). Among them are :

• X 1732-304 located in the globular cluster Terzan 1. It has been observed to steadily
accrete during ∼ 12 years before accretion stopped in 1999. Wijnands et al. (2002b)
performed subsequent observations with Chandra failed to detect even the qui-
escent emission from the source. Therefore, they suggested that the outburst du-
ration is typical for the source and if the source is in quiescence for few decades,
then enhanced neutrino emission may be required to explain the low temperature
of the neutron star;

• 4U 2129+47 was repeatedly observed between 1972 and 1983, until EXOSAT failed
to detect it. It was observed in quiescence with EXOSAT and Chandra. If the
duration of the outburst and of the quiescent phases are typical for this source,
then its low temperature may be consistent with enhanced neutrino emission in
the core of the neutron star;

• XB 1905+000 was detected in the accretion phase from 1974 to the mid-1980s and
was not observed since then (Jonker et al., 2007).

5.5.2 Previous modelings of the thermal relaxation

5.5.2.1 KS 1731-260

Since KS 1731-260 underwent a long accretion phase of∼ 12 years, Rutledge et al. (2002)
suggested that the crust of the neutron star was heated up by the deep crustal reactions
while the temperature of the core was not affected. The crust is much hotter than the
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core of the neutron star and the quiescent luminosity is dominated by the emission from
the cooling crust and not from the core. So the temperature decrease after the accretion
stops is due to the thermal relaxation of the crust. Rutledge et al. (2002) predicted that
the thermal equilibrium between the core and the crust is reached in 1 − 30 yr. Thus,
monitoring the temperature evolution after the accretion stopped in quasi-persistent X-
ray transients enable to put constraint on the properties of the matter in neutron stars,
in particular in the crust.

Rutledge et al. (2002) presented different cooling scenarios for various core and crust
microphysics inputs that were compared with observations of KS 1731-260 by Cackett
et al. (2006). The latter concluded that the core undergoes enhanced neutrino emission
due to DUrca processes and that the crust has a high thermal conductivity due to the
absence or a low fraction of impurities. In fact, the hydrogen and helium burning in the
outer layers of neutron stars produce a mixture of elements that then enters the crust.
The nuclear reactions that matter undergoes while sinking into the crust then reduce the
number of different elements. At a given density, a single type of elements dominates as
predicted by the crustal equation of state. However, there might still be a small fraction
of other elements that are called the impurities. The impurity parameter :

Qimp =

∑

i ni (Zi − 〈Z〉)2
∑

i ni

(5.42)

with ni and Zi the density and charge number of the ith species and the mean ionic
charge number :

〈Z〉 =
∑

i niZi
∑

i ni

. (5.43)

The impurity parameter measures the distribution of the nuclide charge numbers and
therefore the presence of impurities.

Shternin et al. (2007) reported new and precise calculations of the thermal relaxation
of KS 1731-260. They tested in particular different crustal equations of state (catalyzed
or accreted), thermal conductivities and superfluidities in the crust and neutron star
models (mass, equations of state, Urca processes). For a given model, they obtained
the values for the surface temperature before accretion started and for the accretion rate
that best reproduce the observations. Note that the accretion rate is constrained by the
observations : Ṁ . 5 × 10−9 M⊙ yr−1 (Wijnands et al., 2002a; Yakovlev et al., 2003). The
accretion rate is assumed to be constant with a value Ṁ in the active phase and to switch
to a null value in the quiescent phase. Shternin et al. (2007) showed that the observations
are best modeled for a neutron star with :

• a thin crust ie. a massive neutron star : a thicker crust implies a longer thermal
relaxation;

• with crustal neutron superfluidity : since a superfluid crust has a smaller heat
capacity, the thermal relaxation is fastened;



5.5. QUASI-PERSISTENT X-RAY TRANSIENTS 131

?

6

?
q
q

qqq
q

Surface

Envelope
(Ts − Tb) relation

ρ [g cm−3]

ρb = 1010

ρ0/2

FeTb

Ts

Ṁ
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• with a low fraction of impurities in the crust : the presence of impurities decreases
the thermal conductivity and slows down the relaxation;

• with moderate neutrino emission : DUrca process makes the neutron star too cold
too fast and thus requires a too high accretion rate which is not consistent with the
observations.

They also predict that the thermal relaxation is not over.
Brown & Cumming (2009) reperformed cooling simulation of the thermal relaxation

of KS 1731-260. Their conclusions are in agreement with the ones from Shternin et al.
(2007). However, they find that the observations are consistent with Qimp ∼ 1.

5.5.2.2 MXB 1659-29

Simulations of the thermal relaxation of MXB 1659-29 were also presented by Brown &
Cumming (2009). They obtained conclusions similar to the ones for KS 1731-260 and an
impurity parameter Qimp ∼ 5.

5.5.2.3 Simulations with the NSCool code

I have also modeled the thermal relaxations of KS 1731-260 and MXB 1659-29 with the
NSCool code. The latter was adapted to simulate accreting neutron stars.

The model that has been used is schematically represented in figure 5.7. The pre-
scription by Potekhin et al. (1997) for an accreted envelope is used. Heat sources due to
deep crustal heating are included following Haensel & Zdunik (2008). The equation of
state for the crust is derived from the same reference and for the core from Akmal et al.
(1998). Superfluidity is taken into account : neutron 1S0 pairing from Schwenk et al.
(2003), proton 1S0 pairing from Page et al. (2004) (gap a) and neutron 3P2 pairing from
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Takatsuka (1973). All the relevant neutrino processes are included in the core and in the
crust. The PBF processes are implemented following Leinson & Pérez (2006a).

Starting from an initially flat temperature profile, the neutron star undergoes accre-
tion, described by a step-like function at a given rate Ṁ and for a given duration ∆t.

The result for KS 1731-260 is presented in figure 5.8 where the temperature as seen
by an observer at infinity is plotted as a function of the time since accretion stopped :
t = 0 corresponds to the end of the accretion period and the beginning of the quiescent
phase. I have got conclusions similar to the ones by Shternin et al. (2007); Brown &Cum-
ming (2009) and noticed that I need not a non-zero impurity parameter to reproduce the
observations.

Performing simulations forMXB 1659-29, I have observed that the thermal relaxation
of a neutron star with a null impurity parameter is too fast to reproduce the observa-
tional data. Figure 5.9 shows that the relaxation is properly simulated for an impurity
parameter Qimp ∼ 1− 5.

5.5.2.4 Other sources

There exists two more sources whose thermal relaxation has been observed : EXO 0748-
676 and XTE J1701-462, as plotted on figure 5.6. However, their modeling is a real chal-
lenge and it has not been reported so far in the literature.
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Source τr
(days)

KS 1731-260 537 ± 125
MXB 1659-29 465 ± 35
EXO 0748-676 232 ± 63
XTE J1701-462 95 ± 16

Table 5.1: Thermal relaxation time scales τr of the four quasi-persistent X-ray transients.
For XTE J1701-462, the measurements showing a temperature increase due to residual
accretion were excluded from the fit.

The solid lines in figure 5.6 are the best fits by an exponential decay of the thermal
relaxation of the four quasi-persistent x-ray transients :

T∞
e (t) = (Tout − Teq) exp

(−(t−t0)/τr)+Teq (5.44)

with Tout, Teq the temperature before accretion stopped and when thermal equilibrium
between the core and the crust is reached, respectively and τr the thermal relaxation
time scale. Table 5.1 shows the value of this time scale for the four sources.

KS 1731-260 and MXB 1659-29 have relaxation time scales of the same order : ∼ 500
days. Their thermal relaxation can be successfully modeled within the framework of
the deep crustal heating scenario as presented in the previous paragraph.

The time scale of EXO 0748-676 is twice smaller and the relaxation is much faster.
Therefore only a neutron star model with a very high mass (that has therefore a thin
crust) can reproduce the observations. In particular, as shown on figure 5.10, I have
managed to reproduce the relaxation with the NSCool for neutron stars with a mass
M = 1.8− 2.0M⊙. However, note that such modeling is inconsistent since the tempera-
ture measurements for EXO 0748-676 were obtained when considering a 1.4M⊙ neutron
star. Moreover, Zhang et al. (2011) obtained a mass of 1.55 ± 0.12 M⊙ when fitting an
XMM-Newton observation in quiescence with two neutron-star atmosphere models.

Finally, my simulations have shown that the thermal relaxation of XTE J1701-462,
with a time scale of only ∼ 100 days, is too fast to be modeled, even when DUrca pro-
cesses are switched on.

XTE J1701-462 also exhibit a sudden increase in temperature ∼ 225 days after the
end of the outburst. This is believed to originate from residual accretion that is not
taken into account in the calculations.

In conclusion the model presented in this section to reproduce the thermal relaxation
of the quasi-persistent X-ray transients within the framework of the deep crustal heating
scenario has inherent limitations that do not enable to simulate the observations.
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5.5.3 Newmodel for an accreting neutron star

5.5.3.1 Microphysics input

The short thermal relaxation time scales of both EXO 0748-676 and XTE J1701-462 sug-
gest that there exists heat sources at densities lower than the ones that have been con-
sidered so far. Moreover, the spurt of accretion at the origin of the temperature increase
that XTE J1701-462 exhibits ∼ 225 days after accretion stopped shows that residual ac-
cretion has to be taken into account in the models.

Figure 5.7 schematically shows the models that used so far (Shternin et al., 2007;
Brown & Cumming, 2009) to simulate the thermal relaxation. Heat sources due to deep
crustal heating are included for densities ranging from ρb = 1010 to 1014 g cm−3. The
model of accreted envelope provides the relation between Tb, the temperature at the
density ρb and the surface temperature Ts. However, it is not possible with such models
to include heat sources at densities ρ ≤ ρb.

In collaboration with Leszek Zdunik and Paweł Haensel, I have developed a new
preliminary model for accreting neutron stars as presented in figure 5.11, following the
seminal works by Miralda-Escude et al. (1990); Zdunik et al. (1992). First, we consider
that only one half of the accreted matter effectively enters the atmosphere and releases
at the surface a photon luminosity Lgrav = GMṀ/2R. Then, below the envelope, the
accreted hydrogen burns into helium at a density of 105 g cm−3, releasing ǫH = 5 MeV
per accreted nucleon. At a density of 106 g cm−3, the helium burning is unstable and
occurs during bursts whose time scales are very short. Therefore, we do not include
helium burning in the model. Finally a layer of iron extends up for densities between
106 g cm−3 and ρb, at the outer boundary of the accreted crust.
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The analytical model of atmosphere developed by Hernquist & Applegate (1984)
provides the relation between the temperature Tb at ρb and the surface temperature.
With their equation (3.12) in the non-degenerate and non-relativistic regime, when pho-
tons dominate the heat transport, one gets :

Ts = 6.7× 10−5

(

g14
A3

Z4

T 6.5
b

ρ2b

)1/4

K, (5.45)

with g14 the surface gravity of the star, A and Z the mass and charge numbers respec-
tively. For an hydrogen layer (A = Z = 1), one gets Ts = 6.7× 10−7 (g14T

6.5
b )

1/4 K.
The microphysics properties in the layer extending for densities between 104 and

1010 g cm−3 that is composed of a fully ionized nonideal electron-ion plasma are accu-
rately calculated :

• equation of state and specific heat : the code eos10.f1 provides the pressure and
specific heat according to Potekhin & Chabrier (2010);

• thermal conductivity : the code condint.f2, based on the calculations presented
in Potekhin (1999); Potekhin et al. (1999) is used;

• neutrino emission : according to Itoh et al. (1996), the neutrino emissivity at a
density ρ = 105 g cm−3 is Qν ∼ 1 − 1010 erg cm−3 s−1 ≪ QH the heat release from
the hydrogen burning : QH ∼ 6 × 1020Ṁ10 erg cm−3 s−1. Therefore, the neutrino
emission can be neglected.

1available online : http://www.ioffe.ru/astro/EIP/index.html
2available online : http://www.ioffe.ru/astro/conduct/index.html

http://www.ioffe.ru/astro/EIP/index.html
http://www.ioffe.ru/astro/conduct/index.html
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Figure 5.12: KS 1731-260 : modeling of the thermal relaxation for a 1.4 M⊙ neutron star
with Qimp = 0 and superfluidity in the crust for various sources of heat release : no heat
source (solid line), only deep crustal heating (DCH - long dashed line), only hydrogen
burning (Hburning - short dashed line) and both deep crustal heating and hydrogen
burning (dotted line), for Ṁ = 2× 10−9 M⊙ yr−1.

5.5.3.2 Preliminary results

Influence of the inclusion of hydrogen burning
Figure 5.12 shows the influence of the model of heat release on the thermal relaxation

curve for KS 1731-260. When sources are included in the crust, the photon and neutrinos
losses are balanced the heat release in the crust. Therefore, the decrease in temperature
after accretion stops is smoother. Hydrogen burning releases heat at a single density of
105 g cm−3 compared to deep crustal heating where the heat sources extend for densities
between 109 and 1014 g cm−3. Therefore, the smoothness of the curve in the case of deep
crustal heating originate from the propagation of the heat from the various sources in
the crust. The decrease in temperature is stiffer when considering only hydrogen burn-
ing than for deep crustal heating and as a consequence the thermal relaxation time scale
is shorter. The inclusion of both hydrogen burning and deep crustal heating enables to
reproduce the thermal relaxation of KS 1731-260.

Modeling of the four sources
Figures 5.13 and 5.14 compare the preliminary results of the newmodel with the ones

of the old model for the thermal relaxation of KS 1731-260 and MXB 1659-29, respec-
tively for a 1.4 M⊙ neutron star. The main difference comes from the much higher tem-
perature in the accretion phase for the new model. This originates from the inclusion of
the gravitational luminosity Lgrav at the surface of the neutron star that does not heats
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the interior of the neutron star. The new model enables to reproduce the observations
for reasonable values of the accretion rate and, in particular for MXB 1659-29, with a
null impurity parameter.

The results of themodeling of the thermal relaxation of EXO 0748-676 and XTE J1701-
462 for a 1.4 M⊙ neutron star are presented in figures 5.15 and 5.16 respectively.

For the latter source, the observations that show a substantial temperature increase
due to residual accretion (in black in the figure) are excluded. The accretion rate is
modeled by two step-like functions :

• a first one with a constant accretion rate Ṁ1 that is the origin of the thermal relax-
ation;

• a second one with a rate Ṁ2 corresponding to the residual accretion that triggers
the short temperature increase.

The new model enables to reproduce the observations of EXO 0748-676 and XTE
J1701-462 for a 1.4 M⊙ neutron star although they have a shorter relaxation time scale.

For the first time, the thermal relaxation of all the four quasi-persistent X-ray tran-
sients are successfully modeled.
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5.5.3.3 Perspectives

The new model for the thermal evolution of accreting neutron stars is still in progress.
In the near future, a realistic model for hydrogen and helium burnings and their sta-

bility that include the temperature and density dependences will be used. Indeed figure
5.17 shows the influence on the thermal relaxation curve of the model of hydrogen and
helium burnings by varying the amount of hydrogen heat release ǫH and burning densi-
ties ρH and ρHe for hydrogen and helium respectively. Clearly, different models enable to
reproduce the temperature evolution. It is therefore of major importance to take into ac-
count accurately the hydrogen and helium burnings in order to eventually model type
I X-ray bursts and also constrain the microphysics properties of the crust of accreting
neutron stars.

In collaboration with Agata Różańska (N. Copernicus Astronomical Center, War-
saw), a realistic model for the atmosphere of accreting neutron stars is being developed.
Eventually, it will provides not only the relation Ts − Tb but also the spectral properties
of the emission. As a consequence, the model will be constrained not only by the tem-
perature decrease but also by the observed spectra. Therefore, the influence of residual
accretion on the thermal evolution will be assessed.

The new model presented in this thesis will describe for the first the thermal evolu-
tion in the whole neutron star, from the very center to the top of the envelope and will
enable to reproduce both the thermal and spectral evolutions.
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Figure 5.17: KS 1731-260 : modeling of the thermal relaxation for a 1.4 M⊙ neutron star
with Qimp = 0 and superfluidity in the crust for a given accretion rate : Ṁ = 2 × 10−9

M⊙ yr−1 and for various models of hydrogen and helium burning, varying the amount
of heat released by the hydrogen burnings ǫH and the density of the burning ρH and ρHe

for hydrogen and helium respectively.

5.5.3.4 An exciting new source : IGR J17480-2446

In October 2010, an X-ray activity in the globular cluster Ter 5 located 5.5 kpc from
the Earth was observed by Integral (Bordas et al., 2010) and subsequent observations
confirmed that the source is an accreting neutron star IGR J17480− 2446 (Strohmayer &
Markwardt, 2010). It had in fact already been observed in the past with Chandra but
with a low-luminosity (Heinke et al., 2006). The source in fact turned on in October 2010.
The timing of the X-ray pulsations showed that the neutron star orbits a ∼ 0.4 − 1.5
M⊙ companion star from which it accretes matter, in ∼ 21 h (Papitto et al., 2011). In
December 2010, the source turned to quiescence after ∼ 10 weeks of active phase and
Degenaar & Wijnands (2011) reported one observation during the thermal relaxation.
Moreover from past observations, the pre-accretion temperature is known and is likely
to be the quiescent temperature the source will reach when its thermal relaxation ends.
An additional observation is presented in Degenaar et al. (2011a). In agreement with the
observations reported in Degenaar et al. (2011a), ∆t= 0.17 years. Figure 5.18 shows the
evolution of the surface temperature of IGR J17480-2446, compared with the four quasi
persistent X-ray transients.

The thermal relaxation time scale of IGR J17480-2446= τr, defined in equation (5.44)
and presented in table 5.2, when fitting the observations with an exponential decay can
be determined : τr ∼ 200. It is of the same order as the time scale obtained for EXO
0748-676 and clearly shows that heat sources at densities ρ ≤ 1010 g cm−3 have to be
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Source τr
(days)

KS 1731-260 537 ± 125
MXB 1659-29 465 ± 35
EXO 0748-676 232 ± 63
XTE J1701-462 95 ± 16
IGR J17480-2446 197

Table 5.2: Thermal relaxation time scales τr of the five sources.

included in the models. However since the source accreted during a very short period
0.17 years, the modeling of the thermal relaxation is highly sensitive to the description
of the hydrogen burning and is beyond the scope of the preliminary model presented
in this thesis. Therefore, a precise model for the hydrogen and helium burning has to
be included.

This source is the first normal transient whose thermal relaxation has been moni-
tored despite the short duration of the outburst. It opens a new window on the thermal
evolution of accreting neutron stars. In the near future, the relaxation of other normal
transients may be observed by the present or next generation of X-ray satellites and
enable to constrain the properties of accreting neutron stars.

In conclusion, modeling the thermal evolution of isolated and accreting neutron
stars enable to understand the properties of the matter inside them. The models that
have been developed so far take into account many aspects of the microphysics inside
neutron stars as described in chapter 3 : superfluidity, neutrino emission processes, spe-
cific heat, thermal conductivity, envelope composition and properties.

The cooling of young neutron stars is sensitive to the properties of the crust which
have to be precisely calculated. In particular, the influence of the cluster structure of the
crust on the cooling has been shown to be non-negligible and non-trivial in chapter 4.

Finally, the theoretical modeling has to be consistently confronted with the observa-
tions of both isolated and accreting neutron stars (chapter 5). The soft X-ray transients
provide information on the neutrino processes in the core and the thermal relaxation
after a long accretion phase exhibited by the quasi-persistent X-ray transients constrain
the properties of the crust.

In the near future, the models are expected to be further contrained by the observa-
tions from the next generation of X-ray satellites.
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Introduction

Neutron stars rotate with periods ranging from few seconds to milliseconds and the
effect of rotation on their properties has to be taken into account.

Chapter 6 presents the relativistic calculations for equilibrium configurations of rigidly
rotating neutron stars, in a stationary, axisymmetric and circular spacetime, with an in-
terior modeled by a perfect fluid. After discussing the 3+1 decomposition of spacetime
and the formalism for stationary and axisymmetric configurations in section 6.1 and
6.2, section 6.3 introduces the Einstein equations for rotating stars. The latter are then
derived in the special case when the interior of neutron stars is described as a perfect
and rigidly rotating fluid in section 6.4. Section 6.5 presents a further slicing of space-
time, the 2+1+1 formalism and section 6.6, the Nrotstar code of the LORENE library
that is used to compute equilibrium configurations of rotating neutron stars. Section 6.7
assesses the constraints that can be put on the microphysical properties by the observa-
tions of rotating neutron stars.

However, as explained in chapter 7, sudden changes in the rotation of neutron stars,
that are called glitches have been observed and suggest that solid phases exist in neu-
tron stars (section 7.1). These solid parts undergo elastic deformations that are not in-
cluded in the perfect fluid description. After a short presentation of the Newtonian
formalism for elasticity in section 7.2 and its application to the modeling of glitches, sec-
tion 7.3 focuses on the relativistic formalism in particular the one developed by Carter
& Quintana and its applications.

Chapter 8 presents the derivation of the relativistic equations for rotating neutron
stars with a solid interior. After explaining how to describe the elastic deformations
of rotating star in section 8.1, section 8.2 shows the generalization of the formalism de-
veloped in chapter 6 for a perfect fluid to a solid phase with elastic properties. The
Newtonian limit is derived in section 8.3 and the numerical resolution of the relativistic
equation for a solid interior that is currently in progress is presented in section 8.4 to-
gether with future perspectives in section 8.5.

This study of rotating neutron stars was performed in collaboration with Éric Gour-
goulhon and Philippe Grandclément. Based on a preliminary study by E. Gourgoulhon
fifteen years ago (Gourgoulhon, 1995a,b), I have derived the Einstein and equilibrium
equations for a solid rotating neutron stars undergoing elastic deformations. I have cre-
ated a new class called Elastar in the LORENE library and the numerical resolution of
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the equations for equilibrium is now in progress.

In the following, Greek indices (α, β, . . .) run in {0, 1, 2, 3}, Latin indices (i, j, . . .) in
{1, 2, 3} and indices (a, b, . . .) in {1, 2}. The Einstein summation convention on repeated
indices is used. The vectors are noted ~v, the forms u and the other tensors T . The
constants G and c that are respectively Newton gravitational constant and the speed of
light are put to 1 :

G = 1 and c = 1.
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This chapter focuses on single rotating neutron stars with a fluid interior. The prob-
lem was first studied by Hartle (1967a); Hartle & Thorne (1968) for slow rotation, as a
perturbation of spherically symmetric configurations. The work presented in this part
is based on the formulation by Bonazzola et al. (1993), that first derived a system of four
elliptic equations for an arbitrary rotation, and makes big use of the lecture notes of the
2010 Compstar school (Gourgoulhon, 2010) and of the review and book : Gourgoulhon
(2007, 2012).

In particular are considered in the following stationary, axisymmetric and circular
configurations in rigid rotation. 3+1 formalism, stationary, axisymmetric and circular
spacetime and the derived Einstein equations are presented in sections 6.1, 6.2 and 6.3,
respectively. The specific case of perfect fluid is developed in section 6.4. Section 6.5
introduces a further slicing of spacetime, the 2+1+1 formalism. Basics about the numer-
ical resolution of the equations with Nrotstar code of the LORENE library for circular
axisymmetric stationary configurations of rigidly rotating neutron stars are explained
in section 6.6. Finally section 6.7 summarizes the constraints that can be put on the
equation of state of dense matter from the observations of rotating neutron stars.

6.1 3+1 formalism

6.1.1 Spacetime foliation

Consider a spacetime (M , g)with M a C∞ manifold of dimension 4 and g a Lorentzian
metric on M , of signature (−,+,+,+). Let ∇ be the Levi-Civita connection associated
with the metric g.

The spacetimes generated by rotating stars have the property that they can be foli-
ated by a family of spacelike hypersurfaces (Σt)t∈R (they are indeed globally hyperbolic,
see Gourgoulhon (2007) for a discussion), as shown on figure 6.1. An hypersurface Σt

which is a submanifold of M of dimension 3 is said to be spacelike if any vector ~v
tangent to (Σt) is spacelike. The foliation is such that it covers M ie. :

M =
⋃

t∈R
Σt. (6.1)

The parameter t labels the hypersurfaces Σt and is in fact some coordinate time. The
vector ~∇t associated to its gradient ∇t by the metric duality is normal to Σt.

Let ~n be the unit 4-vector orthogonal to Σt. Since the latter is spacelike, ~n is timelike.
It can be future-oriented ie. oriented in the direction of increasing t. As a consequence,
the two vectors ~∇t and ~n are colinear and one can write :

~n = −N ~∇t. (6.2)

with N the so-called the lapse function. The minus sign originates from the condition
that N ≥ 0 for increasing t.



150 CHAPTER 6. ROTATINGNEUTRON STARS

Figure 6.1: Spacetime foliation by a familly of spacelike hypersurfaces. Figure from
Gourgoulhon (2007).

6.1.2 Induced metric

Let h be the 3-metric induced by g on the hypersurface Σt. It is in fact the restriction of
g to the hypersurface and corresponds to the projection tensor onto Σt :

hαβ = gαβ + nαnβ. (6.3)

Since Σt is spacelike, h is positive definite.
Let 3

∇ be the covariant derivative associated with the metric h on the hypersurface
Σt. For any tensor T of type (p, q), it is given by the formula :

3∇ρT
α1...αp

β1...βq
= hα1

µ1
· · ·hαp

µp
hν1β1

· · ·hνqβq
hσ ρ ∇σT

µ1...µp

ν1...νq . (6.4)

6.1.3 Eulerian observer

An observer whose 4-velocity is ~n is called an Eulerian observer or zero-angular mo-
mentum observer.

According to equation (6.2), the proper time τ of such an observer is given by :

dτ = Ndt. (6.5)

The 4-acceleration of an Eulerian observer, which is tangent to Σt, is :

~a = ∇~n~n (6.6)
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Figure 6.2: Decomposition (6.8) of time vector ~∂t. Figure from Gourgoulhon (2007).

and can be expressed as :
~a = 3

∇ lnN. (6.7)

6.1.4 Adapted coordinates

Let (xα) be a coordinate system on M . The system is said to be adapted to the foliation
if and only if (xα) = (t, x1, x2, x3). Then (xi) = (x1, x2, x3) constitute a coordinate system
on each hypersurface Σt and are called the spatial coordinates.

The basis vector ~∂t can be then decomposed into two parts : a part along ~n and a
part orthogonal to it, ie. tangent to Σt. Therefore, one can write :

~∂t = N~n+ ~β with ~n · ~β = 0, (6.8)

with ~β a spacelike vector called the shift vector. It identifies the points with identical
spatial coordinates on neighboring hypersurfaces as shown on figure 6.2. It is by defi-
nition tangent to Σt, so one can write ~β = βi ~∂i.

Therefore, with equation (6.8) and (6.2) :

nα =

(

1

N
,−β

1

N
,−β

2

N
,−β

3

N

)

, (6.9)

nα = (−N, 0, 0, 0) . (6.10)

Finally, the components of the spacetime and induced metrics, g and h respectively,
are related by the relation :

gαβ dx
α dxβ = −N2dt2 + hij(dx

i + βidt)(dxj + βjdt). (6.11)
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6.1.5 Extrinsic curvature

The extrinsic curvature tensor K of the hypersurface Σt is :

K = −1

2
L~n h. (6.12)

It is a symmetric tensor (Gourgoulhon, 2010) that is related to the variation of ~n when
moving on the hypersurface. In other words, it describes the embedding of the hyper-
surface Σt into the spacetime (M , g) (see the clear examples in Gourgoulhon (2007)).

It can be reexpressed :
Kαβ = −∇βnα − aαnβ. (6.13)

One can show that :
Kαβ = −hσ

β∇σnα, (6.14)

showing therefore that K is tangent to the hypersurface Σt.
The trace of the extrinsic curvature tensor K is :

K = −∇ · n. (6.15)

6.1.6 3+1 decomposition of the stress-energy tensor

Let us define first the projector ⊥ onto the 3-dimensional vector space Eu orthogonal to
~u :

⊥α
β = δαβ + uαuβ. (6.16)

By definition ⊥α
βu

β = 0.
Let T be the stress-energy tensor of the matter. The energy density E measured an

observer with the 4-velocity ~u is :

E = Tµν u
µuν . (6.17)

Its momentum density p is :
pα = −Tµν uν⊥µ

α (6.18)

and its stress tensor S :
Sαβ = Tµν⊥µ

α⊥ν
β. (6.19)

The energymomentum tensor T measured by an Eulerian observer can be calculated
by putting ~u = ~n and⊥ = ~h in equations (6.17-6.19). One gets :

E = Tµνn
µnν (6.20)

pα = −Tµν uνhµα (6.21)
Sαβ = Tµνh

µ
αh

ν
β. (6.22)

Therefore the 3+1 decomposition of the energy-momentum tensor is :

Tαβ = E nα nβ + pα nβ + nα pβ + Sαβ. (6.23)

The trace of S with respect to the metric h is S = hijSij .
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6.1.7 3+1 Einstein equations

The Einstein equation is :

R− 1

2
R g =

8πG

c4
T , (6.24)

with R the Ricci tensor associated with the Levi-Civita connection ∇ and its trace with
respect to the metric is : g R = gµνRµν .

The projection of the Einstein equation twice onto Σt, twice along ~n and once onto
Σt and once along ~n gives (Gourgoulhon, 2012, 2010) :

∂Kij

∂t
−L~βKij = − 3∇i

3∇jN +N
{

3Rij +KKij − 2KikK
k
j + 4π [(S −E)hij − 2Sij]

}

(6.25)
3R +K2 −KijK

ij = 16πE (6.26)
3∇jK

j
i −3 ∇iK = 8πpi. (6.27)

with E, pi and Sij measured by an Eulerian observer, given in equations (6.20)-(6.22).
Equations (6.26) and (6.27) are called the Hamiltonian and the momentum con-

straints, respectively.
L~β K, the Lie derivative of the tensor K along the vector ~β is :

L~βKij = βk ∂Kij

∂xk
+Kkj

∂βk

∂xi
+Kik

∂βk

∂xj
. (6.28)

The Ricci tensor and scalar curvature of h are :

3Rij =
∂ 3Γk

ij

∂xk
− ∂ 3Γk

ik

∂xj
+ 3Γk

ij
3Γl

kl − 3Γl
ik

3Γk
lj (6.29)

3R = hij 3Rij . (6.30)

The components ofK are :

Kij = − 1

2N

(

∂γij
∂t

− L~β γij

)

(6.31)

6.2 Circular, axisymmetric and stationary spacetimes

6.2.1 Stationarity and axisymmetry

In the following a spacetime (M , g) that is stationary, axisymmetric and asymptotically
flat will be considered. Axisymmetry is relevant for a star with a fluid interior. Indeed,
if it was non-axisymmetric, it would emit gravitational waves and would no longer be
stationary.

For such a spacetime there exists two Killing vectors ~ξ and ~χ associated with station-
arity and axisymmetry, respectively. Asymptotic flatness means that, at spatial infinity,
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~ξ · ~ξ → −1 so that the parameter t is in fact the proper time of an inertial observer at
infinity at rest with respect to the source. The Killing vector ~χ vanishes on the so-called
axis of symmetry, which is a timelike 2-surface, is spacelike otherwise and has closed
orbits (Gourgoulhon, 2010). At spatial infinity, ~χ · ~χ → +∞ and ~ξ · ~χ → 0.

Carter (1970) showed that the two Killing vectors commute :

[~ξ, ~χ] = 0, (6.32)

with the commutator :
[~ξ, ~χ]α = ξµ∇µχ

α − χµ∇µξ
α. (6.33)

Therefore a possible choice of the two Killing vectors ~ξ and ~χ is :

~ξ = ~∂t, (6.34)
~χ = ~∂ϕ. (6.35)

The scalar function ω = ω(r, θ) is defined by :

ω = −
~ξ · ~χ
~χ · ~χ . (6.36)

For a rotating star, ω ≥ 0.

6.2.2 Circular spacetime

In addition, the stationary and axisymmetric spacetime is assumed to be circular. This
is equivalent to suppose the absence of convective motion and that there is only circular
motion around the axis of symmetry. This is in particular relevant for a perfect fluid
interior rotating around the axis of symmetry.

One can distinguish two families of 2-surfaces (Gourgoulhon, 2010) :

• the surfaces of transitivity, each of them corresponding to fixed values of r and θ.
Both Killing vectors ~ξ and ~χ are everywhere tangent to them;

• the meridional surfaces, each having t and ϕ fixed on them.

Carter (1969) showed that for a circular space-time, the surfaces of transitivity are ev-
erywhere orthogonal to the meridional surfaces. This implies that the components gtr,
gtθ, gϕr and gϕθ of the metric g are null.

The generalized Papapetrou theorem (Papapetrou, 1966; Carter, 1969) states that a
stationary and axisymmetric spacetime ruled by the Einstein equation is circular if and
only if the energy-momentum tensor T obeys to :

ξµT [α
µ ξβχγ] = 0 (6.37)

χµT [α
µ ξβχγ] = 0, (6.38)
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where the square brackets denote a full antisymmetrization.
Defining two vectors ~V and ~W by :

V α = ξµT α
µ , (6.39)

W α = χµT α
µ (6.40)

the equations (6.37) and (6.38) are equivalent to

~V ∈ Vect(~ξ, ~χ) (6.41)
~W ∈ Vect(~ξ, ~χ), (6.42)

denoting that these vectors belong the vector plane generated by the two Killing vectors.

6.2.3 Metric

The adapted coordinates are chosen so that the components gtr, gtθ, gϕr and gϕθ of the
metric g are zero and such that :

gab dx
adxb = A2(r, θ)(dr2 + r2dθ2), (6.43)

with A(r, θ) a scalar function.
Let the function B be defined by :

B2(r, θ) =
gϕϕ

r2 sin2 θ
. (6.44)

All in all, the components of the metric g for a stationary and axisymmetric and
circular spacetime are :

gαβ dx
α dxβ = −N2dt2 + A2(dr2 + r2dθ2) +B2r2 sin2 θ(dϕ− ωdt)2, (6.45)

with N , A, B and ω four functions of (r, θ).
The comparison with the 3+1 form implies that :

• N is the lapse function,

• the shift vector ~β is :
βi = (0, 0,−ω), (6.46)

and thus

nα =

(

1

N
, 0, 0,

ω

N

)

, (6.47)

nα = (−N, 0, 0, 0) , (6.48)

• the induced metric h writes :

hij dx
idxj = A2(dr2 + r2dθ2) +B2r2 sin2 θ dϕ2, (6.49)

• equation (6.8) becomes :
~ξ = N~n− ω~χ. (6.50)
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6.2.4 Maximal slicing

The components of the extrinsic curvature tensorK and its traces can then be calculated
(Gourgoulhon, 2010) :

Krϕ = Kϕr = −B
2r2 sin2 θ

2N

∂ω

∂r
, (6.51)

Kθϕ = Kϕθ = −B
2r2 sin2 θ

2N

∂ω

∂θ
, (6.52)

and the other components are equal to zero.
Since the trace of K : K = 0, the foliation of the spacetime by a family of spacelike

hypersurfaces (Σt)t∈R is called a maximal slicing.

6.3 Einstein equations for rotating stars

The system of elliptic partial differential equations, with the quantities E, pϕ, Sr
r, S

θ
θ

and Sϕ
ϕ evaluated for an Eulerian observer is (Gourgoulhon, 2010) :

∆3ν = 4πA2(E + S) +
B2r2 sin2 θ

2N2
∂ω∂ω − ∂ν∂(ν + lnB) , (6.53)

∆̃3(ωr sin θ) = −16π
NA2

B2

pϕ
r sin θ

+ r sin θ ∂ω∂(ν − 3 lnB) , (6.54)

∆2 [(NB − 1)r sin θ] = 8πNA2Br sin θ(Sr
r + Sθ

θ) , (6.55)

∆2(lnA+ ν) = 8πA2Sϕ
ϕ +

3B2r2 sin2 θ

4N2
∂ω∂ω − ∂ν∂ν , (6.56)

with :

ν = lnN (6.57)

∆2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
(6.58)

∆3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
(6.59)

∆̃3 = ∆3 −
1

r2 sin2 θ
(6.60)

∂u∂v =
∂u

∂r

∂v

∂r
+

1

r2
∂u

∂θ

∂v

∂θ
. (6.61)

∆2 is the Laplacian in a 2-dimensional flat space with the polar coordinates (r, θ) and
∆3 the 3-dimensional axisymmetric Laplacian in a flat space.
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Under the assumption of asymptotic flatness ie. that at infinity the metric g equals
the Minkowski metric η :

ηαβ dx
α dxβ = −dt2 + dr2 + r2dθ2 + r2 sin2 θ dϕ2. (6.62)

the boundary conditions for the Einstein equations are, when r → +∞ :

N → 1, (6.63)
A → 1, (6.64)
B → 1, (6.65)
ω → 0. (6.66)

6.4 Perfect fluid

Let us consider now that the matter can be modeled by a perfect fluid. This consists in
neglecting the shear stresses, the viscosity and the heat conduction.

The energy-momentum tensor of a perfect fluid with a 4-velocity ~u is :

T = (ε+ p)u⊗ u+ p g, (6.67)

with ε and p the energy density and the pressure, respectively, both in the fluid frame.
For an observer comoving with the fluid :

E = ε, pα = 0, , ϕα = 0, Sαβ = p⊥αβ . (6.68)

6.4.1 Circularity

The left-hand side of the circularity conditions (6.37) and (6.38) is (Gourgoulhon, 2010) :

ξµT [α
µ ξβχγ] = (ε+ p)ξµuµ u

[αξβχγ], (6.69)

χµT [α
µ ξβχγ] = (ε+ p)χµuµ u

[αξβχγ]. (6.70)

Since ~ξ and ~u being both timelike and ξµuµ 6= 0, the circularity conditions impose :

u[αξβχγ] = 0. (6.71)

In other words,
~u ∈ Vect(~ξ, ~χ). (6.72)

Therefore, one can write
~u = ut

(

~ξ + Ω~χ
)

, (6.73)

with
Ω =

uϕ

ut
=
dϕ

dt
. (6.74)

This describes a pure circular motion around the rotation axis of the star.
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6.4.2 Decomposition of the fluid velocity

With equation (6.50), equation (6.73) can be rewritten :

~u = (Nut)

[

~n+
1

N
(Ω− ω)~χ

]

, (6.75)

= Γ
(

~n+ ~U
)

(6.76)

with Γ the Lorentz factor of the fluid with respect to an Eulerian observer

Γ = Nut. (6.77)

The fluid 3-velocity, that is a spacelike vector orthogonal to ~n, with respect to the
same observer is :

~U =
1

N
(Ω− ω)~χ. (6.78)

Defining

U =
B

N
(Ω− ω)r sin θ , (6.79)

since
Γ = −~n · ~u, (6.80)

one gets the usual relation :

Γ =
(

1− U2
)−1/2

. (6.81)

6.4.3 Energy-momentum tensor

With equation (6.75), the quantities E, pϕ, Sr
r, S

θ
θ and Sϕ

ϕ of the energy-momentum
tensor T given in equations (6.17-6.19) can be calculated :

E = Γ2(ε+ p)− p , (6.82)

pϕ = B(E + p)Ur sin θ , (6.83)

Sr
r = p , (6.84)

Sθ
θ = p , (6.85)

Sϕ
ϕ = p+ (E + p)U2 , (6.86)

S = 3p+ (E + p)U2 . (6.87)
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6.4.4 Fluid equilibrium

6.4.4.1 Euler equation

Assuming a zero temperature, the equation of state can be written as :

ε = ε(nb) (6.88)
p = p(nb), (6.89)

with nb the baryon number density in the fluid frame.
For a perfect fluid, a relativistic version of the Euler equation can be obtained :

uµ∇µ(huα) +∇αh = 0, (6.90)

with the enthalpy per baryon :

h =
ε+ p

nb
. (6.91)

6.4.4.2 Bernoulli theorem

Contracting the Euler equation with ξα, one gets the relativistic generalization of the
classical Bernoulli theorem :

∇~u(h~u · ~ξ) = 0. (6.92)

It can be reexpressed in the form :

H + ν + lnΓ + ln
(

1 +
ω

N
~χ · ~U

)

= constant along a fluid line, (6.93)

where H is the log-enthalpy :

H = ln

(

h

mb

)

, (6.94)

withmb the mean baryon mass : mb ≃ 1.66× 10−27 kg.

6.4.4.3 First integral of motion

Rewritting the fluid 4-velocity
~u = ut~k, (6.95)

with
~k = ~ξ + Ω~χ, (6.96)

one gets :

∇ ln(−h~u · ~k)− ~u · ~χ
~u · ~k

∇Ω = 0. (6.97)

In the following, rigid rotation will be considered ie. Ω = constant. Equation (6.97)
then becomes :

ln(−h~u · ~k) = constant. (6.98)
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which is equivalent to the first integral of motion :

H + ν − ln Γ = constant. (6.99)

Hc and νc being the values ofH and ν at the center of the star, the previous equation
becomes :

H = Hc + νc − ν + lnΓ , (6.100)

The surface of the star is defined by the condition :

p = 0. (6.101)

6.4.5 Global properties

6.4.5.1 Total baryon number

The total number of baryons in the star is :

N =

∫

Σt

ΓnbA
2Br2 sin θ dr dθ dϕ (6.102)

and the total baryon mass of the star :

Mb = mbN . (6.103)

6.4.5.2 Gravitational mass

The gravitational mass of the star can be calculated from the equation :

M =

∫

Σt

[N(E + S) + 2ωB(E + p)Ur sin θ]A2Br2 sin θ dr dθ dϕ. (6.104)

6.4.5.3 Angular momentum

The angular momentum for a perfect fluid rotating star is given by the following for-
mula :

J =

∫

Σt

(E + p)UA2B2r3 sin2 θ dr dθ dϕ. (6.105)

For a rigidly rotating star, one defines the moment of inertia :

I =
J

Ω
. (6.106)
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6.4.5.4 Radius

Let req be the radius at the equator, for θ = π/2.
One can also define the circumferential radius :

Rcirc = B(req, π/2) req, (6.107)

which is independent of the coordinate system. In particular Rcirc ≥ req.
The equatorial radius of spinning neutron stars is larger than their polar radius rp

(see figure 6.4). This reflects the expected polar flattening and the oblateness of rotating
stars.

6.4.5.5 Innermost stable circular orbit

Consider a test particle of mass m orbiting the star in the equatorial plane : θ = π/2. Its
4-momentum is :

pα =

(

m
dt

dτ
,m

dr

dτ
, 0, m

dϕ

dτ

)

, (6.108)

with τ is the proper time of the test particle.
Since ~ξ and ~χ are two Killing vectors, there exists two conserved quantities :

E = −~ξ · ~p = −pt = constant (6.109)
L = ~χ · ~p = pϕ = constant. (6.110)

with E the particle energy and L its angular momentum measured both by an Eulerian
observer.

The equation of the test particle is given by the equation :

1

2

(

dr

dτ

)2

+ V(r, Ē, L̄) = 0, (6.111)

with

Ē =
E

m
= constant, (6.112)

L̄ =
L

m
= constant, (6.113)

V(r, Ē, L̄) = 1

2A2

[

1− 1

N2

(

Ē − ωL̄
)2

+
L̄2

B2r2

]

, (6.114)

with V(r, Ē, L̄) an effective potential.
A circular orbit corresponds to r = constant, ie. to :

dr

dτ
= 0 and

d2r

dτ 2
= 0, (6.115)
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which is equivalent to

V = 0 and
dV
dr

= 0, (6.116)

in other words to an extremum of the potential (6.114).
A circular orbit is stable if and only if the extremum of the potential is a minimum

ie. :
∂2V
∂r2

> 0. (6.117)

Such an orbit is called the innermost-stable circular orbit (ISCO), or marginally stable
orbit and its location is given by the equation (Gourgoulhon, 2010) :

∂2ν

∂r2
− 2

(

∂ν

∂r

)2

+
V Br

N

(

∂2ω

∂r2
− 4

∂ν

∂r

∂ω

∂r

)

+V 2

[

−∂
2β

∂r2
+

4

r

∂β

∂r
+ 2

(

∂β

∂r

)2

+
3

r2

]

− V 2B2r2

N2

(

∂ω

∂r

)2

= 0, (6.118)

with the potential evaluated in θ = π/2 and :

V =

Br
N

∂ω
∂r

±
√

B2r2

N2

(

∂ω
∂r

)2
+ 4∂ν

∂r

(

∂β
∂r

+ 1
r

)

2
(

∂β
∂r

+ 1
r

) . (6.119)

It in fact an equation in r and its solution is the radius of the ISCO, rISCO. One can
distinguish two cases : if rISCO > req, then the ISCO exists. Otherwise, it is located
inside the star and the stable orbits extend down to its surface.

6.5 (2+1)+1 formalism

In order to study magnetized neutron stars, Gourgoulhon & Bonazzola (1993) devel-
oped a formalism for noncircular axisymmetric and stationary spacetimes, that they
called (2+1)+1 formalism. It consists in further foliating the spacetime : the hypersur-
faces Σt themselves are foliated. In the following, the study will restrict to the (2+1)+1
foliation of axisymmetric and stationary spacetimes, that are circular.

6.5.1 Foliation of the Σt hypersurfaces

Let Σtϕ be the 2-surface at the intersection between the Σt hypersurface and the hyper-
surface defined by ϕ = constant : Σϕ. In the case of circular spacetime, the Σtϕ surfaces
are in fact the meridional surfaces and both Killing vectors ~ξ and ~χ are orthogonal to
them.
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Let ~m be the unit 4-vector tangent to the hypersurfaces Σt and orthogonal to the 2-
surfaces Σtϕ, oriented in the direction of increasing ϕ. It is by a construction a spacelike
vector that is colinear to the Killing vector ~χ and one can write :

~χ =M ~m, (6.120)

with M a coefficient such thatM ≥ 0.
Therefore with the metric (6.45), one gets :

mα =

(

0, 0, 0,
1

M

)

, (6.121)

mα = (−Mω, 0, 0,M) . (6.122)

6.5.2 Induced metric

By analogy with the (3+1) decomposition, let k be the 2-metric induced by g on the
2-surface Σtϕ. It is in fact the projector tensor onto Σtϕ :

kαβ = gαβ + nαnβ −mαmβ , (6.123)
= hαβ −mαmβ. (6.124)

k is positive definite.
Let 2

∇ be the covariant derivative associated with the metric k on the 2-surface Σtϕ.
For any tensor T of type (p, q), it is given by the formula :

2∇ρT
α1...αp

β1...βq
= kα1

µ1
· · · kαp

µp
kν1β1

· · ·kνqβq
kσ ρ ∇σT

µ1...µp

ν1...νq . (6.125)

Note that the covariant derivatives 2
∇ and 3

∇ are related :

2∇ρT
α1...αp

β1...βq
= kα1

µ1
· · ·kαp

µp
kν1β1

· · · kνqβq
kσ ρ

3∇σT
µ1...µp

ν1...νq
. (6.126)

By analogy with the definition of ~a as the 4-acceleration of ~n, let us define ~b the
projection onto Σt of the acceleration of ~m :

bα = hαν m
σ
∇σm

ν , (6.127)
= mσ 3

∇σm
α, (6.128)

= − 2
∇

α lnM. (6.129)

6.5.3 Adapted coordinates

According to equation (6.124), the components of the spacetime and induced metrics, g
and k respectively are related by the relation :

gαβ dx
α dxβ = −N2dt2 + kab dx

a dxb +M2(dϕ− ωdt)2. (6.130)
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Comparing with the metric (6.45), one gets :

krr = A2, (6.131)
kθθ = A2r2, (6.132)
kθr = 0, (6.133)
kθr = 0, (6.134)
M = Br sin θ, (6.135)

and the metric writes :

gαβ dx
α dxβ = −N2dt2 + A2

(

dr2 + r2dθ2
)

dxa dxb +B2r2 sin2 θ(dϕ− ωdt)2. (6.136)

6.5.4 Extrinsic curvature

By analogy with K, one can define L the extrinsic curvature tensor that describes the
embedding of the 2-surface Σtϕ into the 3-manifold Σt :

Lαβ = −1

2
3L ~m kαβ, (6.137)

with 3L ~m the Lie derivative along the vector field ~m in the 3-manifold Σt. It is a sym-
metric tensor.

It can reexpressed as :
Lαβ = − 3∇βmα + bαmβ, (6.138)

One can show that :
Lαβ = −k σ

β
3∇σmα, (6.139)

showing therefore that L is tangent to the 2-surface Σtϕ.
The trace of L is :

L = − 3
∇ ·m. (6.140)

For a circular, axisymmetric and stationary spacetime, Lαβ = 0.
The extrinsic curvature tensor of the hypersurface Σt, K can be decomposed for a

circular spacetime :
Kαβ = mακβ + καmβ, (6.141)

with

κα = k ν
α Kνσm

σ, (6.142)

= −M

2N
2∇α

ω

M
. (6.143)

6.6 Numerical resolution with LORENE

Several codes have been developed over the last twenty years by different groups (Ster-
gioulas, 2003). Among them is the Nrotstar code (Bonazzola et al., 1993, 1998; Gour-
goulhon et al., 1999) which is based on the LORENE library.
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Figure 6.3: The different domains in the nrotstar code. From Gourgoulhon (2010).

6.6.1 Spectral methods

The equations to be solved to compute axisymmetric stationary configurations of rigidly
rotating neutron stars can be divided into two groups :

• the Einstein equations (6.53)-(6.56) are Poisson-like, non-linear elliptic equations ;

• the other equations (6.82)-(6.87),(6.79) and (6.100) are algebraic.

The Einstein equations have to be solved in the whole space since their sources ex-
tend to infinity. They are solved by the mean of the multi-domain spectral methods
(Bonazzola et al., 1998). The all space is divided into three domains (or more), as shown
in figure 6.3 :

• the non-spherical nucleus which corresponds to the interior of the star,

• an intermediate shell up to few equatorial radii, which includes the regions with
a strong field,

• an external compactified domain covering the rest of the space up to infinity.

The spectral methods (Bonazzola et al., 1999) consist in transforming a partial dif-
ferential equation into an algebraic one. This is obtained by a series expansion of the
solution on a complete basis. The choice of the basis depends on the problem and for
the present study, Chebyshev polynomials in r and Legendre ones in θ (Gourgoulhon
et al., 1999) are used. Spectral methods reduce the number of grid points compared to
finite differences and can achieve a high numeric precision.
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6.6.2 LORENE library

LORENE, from the French "Langage Objet pour la RElativité NumériquE" (object-oriented
language for numerical relativity) is a C++ library initiated by Jean-Alain Marck in 1997
at LUTh, in Meudon Observatory (France). It is a freely available software1. It uses a
set of classes for each physical or mathematical object and makes a big use of derived
classes.

6.6.3 Block diagram of the Nrotstar code

Figure 6.5 schematically shows the structure of the Nrotstar code, developed by Éric
Gourgoulhon in 2010, based on the LORENE library. It is based on the so-called self-
consistent-field method.

The accuracy of the Nrotstar calculations can be checked by evaluating two Gen-
eral Relativistic Virial identities : a 3-dimensional one, GRV3, presented in Gourgoulhon
& Bonazzola (1994) and a 2D one, GRV2 (Bonazzola & Gourgoulhon, 1994).

6.6.4 An example

Figure 6.4 shows the results obtained with Nrotstar for a 1.4 M⊙ neutron star rotating
at the frequency f = 716 Hz, which is the highest observed for a pulsar (Hessels et al.,
2006). For the core the equation of state APR by Akmal et al. (1998) is used and for
the crust the SL one by Douchin & Haensel (2001). The neutron star has a moderate
oblateness. In particular the radius at the pole rp is ∼ 88% the one at the equator req.

6.7 Constraints on the equation of state for dense matter

6.7.1 Observations of millisecond pulsars

The first observed millisecond pulsar PSR B1937+214 (Backer et al., 1982) was the fastest
rotating neutron star (P = 1.556 ms, f = 641 Hz) until the discovery of PSR J1748-
2446ad with P = 1.396 ms (f = 716 Hz) (Hessels et al., 2006). Note that so far, there has
been no confirmed observation of submillisecond pulsars. The optical observation of a
half-millisecond pulsar in the supernova 1987A (Middleditch et al., 1989) was in fact an
artifact from the telescope devices. Recently, Kaaret et al. (2007) reported the observation
of oscillations at the frequency f = 1122 Hz (P = 0.89 ms) in an X-ray burst from the
X-ray transient XTE J1739-285. These may be interpreted as the rotational frequency of
the neutron. However this observation was not confirmed.

1http://www.lorene.obspm.fr/
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Figure 6.4: Isocontours of the proper energy density ε for a 1.4 M⊙ neutron star rotating
716 Hz. The plot is made in the meridional plane ϕ = 0. The surface of the star corre-
sponds to the thick line. The coordinates (x, z) are defined by x = r sin θ and z = r cos θ.
From Gourgoulhon (2010).

6.7.2 Maximum rotational frequency

The mass-shedding is an upper limit on neutron star rotational frequencies f . For a
rigid sphere, one gets (Lattimer & Prakash, 2004) :

fMS = 1.83

(

M

M⊙

)1/2(
R

10 km

)−3/2

kHz, (6.144)

with fMS the mass-shedding rotational frequency andM andR the radius of the rotating
neutron star.

A formula for the Keplerian frequency of neutron star was obtained for a set of equa-
tions of state (Haensel et al., 2009) :

fMS ≃ 1.08

(

M

M⊙

)1/2(
R(M)

10 km

)−3/2

kHz, (6.145)

withM is the gravitational mass of rotating star and R(M) the circumferential radius of
the non-rotating neutron star with a massM . This is valid for masses ranging form 0.5
M⊙ to 0.9MNR

max withMNR
max the maximum mass for a non-rotating star with a given EoS.

Haensel et al. (1995) derived a formula for the absolute maximum value of the ro-
tational frequency fmax

MS , obtained for a set of subluminal equations of state, with an
accuracy of 5% :

fmax
MS ≃ 1.22

(

MNR
max

M⊙

)1/2(
RNR

max

10 km

)−3/2

kHz, (6.146)
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Choose :
• an EoS : ε = ε(H), p = p(H),
• H0(r = 0) = Hc,
• Ω = constant.

Assume values for N,ω,A,B.

Initialize:
• U=0,
• H0(r) = Hc

(

1− r2/R2
)

,
• k = 0.

Calculate the source terms E, pϕ, Sr
r, S

θ
θ and Sϕ

ϕ

with equations (6.82)-(6.87).

Solve the Einstein equations (6.53)-(6.56).

Calculate U(r, θ) with equation (6.79).

Calculate Hk(r, θ) with the first integral of motion (6.100).

Calculate ε = ε(Hk), p = p(Hk) via the EoS.

Hk+1(r, θ)−Hk(r, θ) < ǫ ?

End of the program.

Yes

k = k + 1

No

Figure 6.5: Schematic view of the Nrotstar code using the self-consistent fieldmethod.
k is the step of the calculations, Hk(r, θ) the value of the log-enthalpy at the step k and ǫ
the threshold for the convergence of the code.
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Figure 6.6: Gravitational mass M versus the equatorial radius Req for stable neutron
stars configurations with different spin frequencies for the Douchin & Haensel (2001)
equation of state. See text for details. From Haensel et al. (2009).

with RNR
max the radius of a non-rotating neutron star with the maximum attainable mass.

This relation is of particular interest to assess the constraints put by the fastest rotating
neutron stars on the equation of state of dense matter (see below).

By analogy with equation (2.18), one can derive an upper limit for the maximum
mass of rotating neutron stars, that is reached when a neutron star rotates near the
mass-shedding limit (Haensel et al., 2007) :

M rot
max ≤ 3.89

√

5× 1014 g cm−3

ρu
M⊙, (6.147)

ie., with ρu . 2ρ0 the density belowwhich the equation of state is assumed to be known,

Mmax . 3.89 M⊙. (6.148)

This value is 30% higher than for non-rotating configurations. This shows that the cen-
trifugal force produced by rotation counteracts, together with the internal pressure, the
gravitational pull and that therefore, higher masses are attainable for rotating neutron
stars than for non-rotating ones.
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6.7.3 Influence of rotation of theM − R diagram

Figure 6.6 shows the M − Req relation with Req the equatorial radius for stable neu-
tron stars configurations for the Douchin & Haensel (2001) equation of state. The re-
lations are plotted a non-rotating neutron star (S line), stars rotating at the frequencies
f = 641, 716 and 1122Hz, corresponding to PSR B1937+214, PSR J1748-2446ad and XTE
J1739-285 (unconfirmed), respectively. The K line corresponds to Keplerian configura-
tions. The points Smax and Kmax are the configurations with the maximum attainable
mass for non-rotating and Keplerian neutron stars, respectively. As expected, the max-
imum mass increases with the rotational frequency. For a given mass, the equatorial
radius also increases with the frequency.

The point K0
max is the Keplerian configuration with Mb = MNR

b,max the baryon mass
of the maximum mass non-rotating neutron star. Neutron stars with configurations in
the region located between the points Smax, Kmax and K0

max are so-called supermassive
and owe their existence to rotation. Note that a supermassive neutron star spinning
down due to the loss of angular momentum collapses into a black hole. Finally, figure
6.7 is a M − R diagram for different equations of state. The rotation frequencies of
PSR B1937+214 and PSR J1748-2446ad hardly constrain the equation of state for dense
matter. A very strong constraint would be given by the observation of a neutron star
with at least a submillisecond period. Note that a half-millisecond period would rule
out all the plotted equations of state for dense matter. This would suggest that the object
is not a neutron star but a strange star (see eg. Haensel et al. (2007)).

This chapter focuses on rigidly rotating neutron stars, with Ω = constant. However,
one may also consider differential rotation for which Ω = Ω(r sin θ). This effect is ex-
pected to increase the maximum attainable mass for stable configurations. In particular,
Morrison et al. (2004) showed that for nuclear equations of state, the maximum mass is
∼ 50% higher than for non-rotating stars.

In this chapter, the Einstein equations for stationary, axisymmetric and circular con-
figurations of rigidly rotating neutron stars with a fluid interior were considered. How-
ever, some parts of neutron stars, the crust for example, is expected to be solid and thus
to undergo elastic deformations. These elastic properties are not taken into account in
the fluid description presented in this chapter but further considered in the next two
chapters.
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Figure 6.7: M −R diagram for a set of representative equations of state for non-rotating
neutron stars. The dashed lines correspond to the constraint resulting from different
rotational frequency given by equation (6.146). The labels of the lines correspond to
spin periods P in ms. Courtesy of J. L. Zdunik.
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Chapter 7

Newtonian and relativistic elasticity
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This chapter aims at presenting general aspects concerning elasticity in neutron
stars. In section 7.1 are discussed the glitch phenomenon and the state of matter in
neutron stars, showing that the crust is likely to be solid while the core may be liquid
or solid. The solid parts of neutron stars undergo elastic deformations and the Newto-
nian formalism for the elasticity is presented in section 7.2, together with some simple
models of (partly) solid neutron stars and of glitches. Section 7.3 reviews the different
formalisms that have been developed to describe elasticity in the framework of Gen-
eral Relativity, with a special attention to the one by Carter & Quintana, that is extend-
edly used in the next chapter. The chapter concludes by a simple relativistic model for
glitches.

7.1 Solid phases in neutron stars

7.1.1 Glitches

Radio pulsars are extremely stable rotators and are the most stable existing clocks in
the long term compared with modern atomic clocks that are more stable in the short
one. They exhibit a regular spin-down, ie. an increase of their rotational frequency
f , that originates from the loss of rotational energy by the emission of electromagnetic
radiation (see also section 1.3).

However, two types of irregularities have been observed in the timing of the rotation
of pulsars (Lyne & Graham-Smith, 2005; Chamel & Haensel, 2008) :

• the timing noise that is observed random deviations in the pulse times of arrival.
Its origin is not well understood;

• the glitches that are sudden jumps in the rotational frequency followed by an ex-
ponential recovery to the pre-glitch frequency, lasting from days to years (figure
7.1). They are rare events, occurring mostly in young pulsars.

Shortly after the discovery of radio pulsars, the first glitches were detected from the
Vela and the Crab pulsars (Radhakrishnan & Manchester, 1969; Boynton et al., 1969).
Since then, ∼ 100 glitches were observed from ∼ 40 pulsars, one third of them from the
Crab and Vela pulsars. The glitches of these two objects have the following properties :

• Vela pulsar (PSR B0833-45) : glitches occur every∼ 3 years with relative frequency
jumps ∆ν/ν ∼ 10−6;

• Crab pulsar (PSR B0531+21) : every several years, giant glitches are observed with
∆ν/ν ∼ 10−8.

PSR J1806-2125 exhibited the strongest glitch ever : ∆ν/ν ∼ 2 × 10−5 (Hobbs et al.,
2002).

Note that glitches have been observed in X-rays in a millisecond pulsar, an accreting
one and an Anomalous X-ray pulsar (Marshall et al., 2004; Galloway et al., 2004; Kaspi
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Figure 7.1: Evolution of the frequency residual ∆ν = ν − ν0, with ν0 the pre-glitch
rotational frequency for a small glitch (∆ν/ν ∼ 9 × 10−9) on December 30, 1997 from
the Crab pulsar. The glitch is followed by an exponential decay with a timescale of 2.9
days. Figure from Wong et al. (2001).

& Gavriil, 2003).

The glitches and their exponential recovery originate from sudden adjustments of
the neutron star structure during the spin-down and show neutron stars are made of
two parts with at least a solid one. In fact, several models have been proposed to explain
the glitch phenomenon (see also section 3.5.1 and Chamel & Haensel (2008)) :

• starquakes, that will be detailed in the following. A neutron star is made oblate by
its rotation. As it slows down, its ellipticity decreases and the solid crust adjusts
its structure by cracking and the neutron star becomes more spherical (Ruderman,
1969). The exponential recovery is due to the presence of superfluid matter in the
interior (Baym et al., 1969);

• interaction between two components. The observed exponential recovery sug-
gests that neutron stars do not rotate as a single body but that they are made of
two components which are loosely coupled : a solid crust that spins down due to
magnetic braking and a superfluid component that does not and can rotate at a
different rate. Only the crust slows down with the neutron star. However, the two
components are coupled by superfluid vortices. When the difference in rotation is
too important, a collective unpinning of superfluid vortices occurs, the coupling
stops and a sudden angular momentum transfer between the two components
occurs : the superfluid spins down and the crust spins up (Baym et al., 1969).

Theoretical modeling is still in progress but glitches also may ultimately enable us
to probe the properties of the interior of neutron stars (Chamel & Haensel, 2008).
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7.1.2 Solid crust

Shortly after its birth, a neutron star cools down by emission of neutrinos to a tempera-
ture T ∼ 109 K (see section 3.4). Then the influence of temperature on the composition
of the crust can be neglected since kBT ≪ εF with εF the Fermi energy. Therefore, the
composition of the crust, called the ground state composition, can be calculated from
the minimization of the energy : it is a body-centered cubic lattice of nuclei (A,Z) sur-
rounded by a gas of electrons and above neutron drip also by a gas of neutrons (see
section 2.1.1). Let a = (4πn/3)−1/3 be the ion sphere radius with n is the ion number
density and Acell be the number of nucleons in the Wigner-Seitz cell of the lattice (see
also section 4.2.1).

The temperature determines the state of matter in the crust, if it is in a solid or liquid
phase (Haensel, 1997). The crystallization of matter is due to attractive forces between
the different components, in the case of the crust, to Coulomb forces. The state of mat-
ter is determined by the ratio of the thermal energy and of the Coulomb energy. The
importance of the Coulomb energy over the thermal one for an ion (A,Z) is determined
by the so-called Coulomb coupling parameter :

Γ =
Z2e2

akBT
. (7.1)

The ions form a crystal if Γ > Γm, where Γm ≃ 175 is the melting value of Γ deter-
mined by calculations (Haensel et al., 2007). In other words, crystallization occurs at the
melting temperature Tm, at a given density ρ :

Tm =
Z2e2

akBΓm

, (7.2)

≃ 1.3× 105Z2

(

1

Acell

ρ

106 g cm−3

)1/3
175

Γm
K. (7.3)

Figure 7.2 shows the melting curve ie. the variation of the melting temperature with
the density for two models of crust : for the ground state and for an accreted crust (see
section 5.2.2). Above the curve, for T > Tm the matter is in a liquid phase and below the
curve, when T < Tm, the matter solidifies. Note the significant differences between the
two composition for densities ρ ≥ 109 g cm−3.

7.1.3 Liquid or solid core ?

A solid core may exist in neutron stars if the minimum of energy is obtained not for an
homogeneous liquid but for a crystalline structure. Several models of solid neutron star
cores have been proposed (Haensel, 1997; Haensel et al., 2007) :

• In the 1970’s the possible existence of a pure neutron solid core due to strong
repulsive short range interaction was studied by eg. Canuto & Chitre (1974) but
was excluded by subsequent calculations of the nuclear interaction (Takemori &
Guyer, 1975; Clark & Sandler, 1975).
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Figure 7.2: Melting temperature as a function of the density for the crust ground state
composition and for accreted crust composition. See text for details. Figure from
Haensel (1997).

• The appearance of solid structures in pion condensates was investigated in the
mid 1970’s, matter forming a three-dimensional cubic lattice of nucleons (Smith &
Pandharipande, 1976) or a one-dimensional solid crystal of neutrons (Takatsuka
et al., 1978).

• Kutschera & Wójcik (1995) and Pérez García et al. (2002) suggested that protons
in pure neutron matter or in hyperonic matter, respectively, could be treated as
impurities in neutron matter. Their properties are determined by their interaction
with the neutrons that becomes more repulsive with increasing density. This may
results in a decrease of the density around the impurities where these can become
localized. These localized protons could then form a crystal.

• Rajagopal & Sharma (2006) investigated the formation of crystals in color super-
conducting quark matter.

Note that models of solid cores are rather speculative though interesting from a the-
oretical point of view, the actual consensus being that the core is liquid.

7.1.4 Observational consequences

Contrary to liquid phases, solid phases can support shear and be the site of elastic strain
as explained in the following.
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Apart from glitches, the presence of solid phases in neutron stars could manifest
themselves in different phenomena (Haensel, 1997; Haensel et al., 2007; Karlovini &
Samuelsson, 2003) :

• mountains : elastic strain may cause neutron stars to be deformed and non ax-
isymmetric. Permanent mountains at the surface may be sustained by a thermal
or magnetic gradient (Bildsten, 1998; Haskell et al., 2006; Priymak et al., 2011). Con-
sider such a neutron star rotating at the angular frequencyΩ around the z-axis and
let ǫ be the oblateness parameter describing the asymmetry in the principal mo-
ments of inertia : ǫ = (Ixx − Iyy)/Izz. This star emits gravitational waves at the
frequency twice its angular frequency and the mean power is (Shapiro & Teukol-
sky, 1983) :

ĖGW =
32

5

G

c5
I2zzǫ

2Ω6; (7.4)

• precession : consider a rotating neutron star with a solid crust and a solid core
and let ~nΩ be the unit vector of its axis of rotation. Let ~n0 be the unit vector of
the symmetry axis of the non-rotating neutron star, that is deformed by the elastic
stresses in the solid phase. In general the vectors ~nΩ and ~n0 will not be identical
because of magnetic torques, tidal forces or crustquakes that have changed the
orientation of ~n0 with respect to ~nΩ. The vector ~nΩ will rotate around ~n0 : this is
the so-called precession. This phenomenon was observed from the pulsar B1828-
11 (Stairs et al., 2000), where modulations with periods of 511 and 256 days of the
radio emission have been detected. Link & Epstein (2001) showed that the first
periodicity originates from precession and the second one from an harmonic of
the latter. This would be therefore the direct evidence of the existence of solid
crust in neutron stars. According to Cutler et al. (2003), the observed periods are
not consistent with a relaxed configuration for the crust of PSR B1828-11 : its crust
is significantly stressed.

• the properties of the so-called quasi normal modes, that are associated with non-
radial perturbations of neutron stars are modified by the presence of a solid crust.

Therefore, the modeling of the elastic properties of the solid phases in neutron stars
may enable through the observations of the aforementioned phenomena to probe the
properties of neutron stars.

7.2 Newtonian models of elastic neutron star

7.2.1 Newtonian elasticity in a nutshell

Let us now quickly summarize the basics of the theory of elasticity in the Newto-
nian framework (Landau & Lifshit’s, 1959). The summation rule on repeated indices
is adopted.
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The elastic properties of matter were first studied by Robert Hooke and his work
was published in 1678.

7.2.1.1 Displacement

Let A be a point with coordinates xi of a solid body. The solid becomes deformed under
the action of applied forces. Let x′i be the coordinates the point A after the deformation.
They depend on the original (unperturbed) location of the point A : x′i(xi).

The displacement vector ~ζ describes the displacement of the point A due to the de-
formation of the body :

ζi(xi) = x′i − xi. (7.5)

7.2.1.2 Strain tensor

Consider now two points A and B, infinitesimally close one to each other. The vector
joining them before the deformation is ~dr with the coordinates dxi and after the de-
formation ~dr′ with the coordinates dx′i = dxi + dζi. The distance between the points
is :

• before the deformation :

dl2 =

3
∑

i=1

(dxi)
2 ; (7.6)

• after the deformation :

dl′2 =
3
∑

i=1

(dx′i)
2
=

3
∑

i=1

(dxi + dζi)
2 . (7.7)

Therefore, to the first order in the deformation, the change in the distance between
the two points can be rewritten :

dl′2 = dl2 + 2uikdxidxk (7.8)

with uik the strain tensor :

uik =
1

2

(

∂ζi
∂xk

+
∂ζk
∂xi

)

. (7.9)

It is a symmetric tensor that can be therefore diagonalized at a given point and the
change in the length in the direction i is

dli = dx′i − dxi =
√
1 + 2uiidxi − dxi = uiidxi. (7.10)

Therefore the uii are the relative changes in the distance in the direction i.
Let us consider an infinitesimal element of volume dV =

∏3
i=1 dxi. After the de-

formation, its volume is dV ′ =
∏3

i=1 dx
′
i. Since dx′i = (1 + uii)dxi, to the first order,

dV ′ = dV (1 +
∑3

i=1 uii). Therefore the sum of the uii gives the relative change in the
volume due to the deformation.
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7.2.1.3 Stress tensor

A solid body that is deformed tends to return to equilibrium because of so-called inter-
nal stresses. In a non-deformed body, the internal stresses are null. Let ~F be the force
per unit volume due to the internal stresses. The total force acting on a volume V in the
direction i is by definition :

∫

FidV =

∫

∂σik
∂xk

dV =

∮

σikdnk (7.11)

with σik the stress tensor and d~n the outward pointing unit vector normal to the surface
enclosing the volume. The component ik of the stress tensor σ is the i-th component
of the force per unit area perpendicular to the xk-axis. Note that the force acting on
the surface area in the direction i is −

∮

σikdnk. It can be shown that the stress tensor is
symmetric (Landau & Lifshit’s, 1959).

Consider a solid body undergoing static compression due to some pressure p. The
latter exerts a pressure force on the body : -pdni in the direction i. In response, the
internal stresses exert a force σikdnk. The balance between them gives :

− pdni = −pδikdnk = σikdnk (7.12)

and thus σik = −pδik. The non-zero components of the stress tensor are equal to a
pressure. The non-diagonal components of the stress tensor correspond to a tangential
force on the surface, at the origin of shear.

7.2.1.4 Thermodynamics

Consider a small deformation of an already deformed body. This results in a small
change δζi of the displacement vector ζi. Let δW be the work done per unit volume
by the internal stresses during this small deformation. One can show that (Landau &
Lifshit’s, 1959) :

δW = −σikδuik. (7.13)

An infinitesimal change in the internal energy dU of the deformed body is given by :

dU = TdS − dW = TdS + σikδuik. (7.14)

The free energy is then :
dF = −SdT + σikδuik. (7.15)

7.2.1.5 Hooke’s law

Let us now consider an isotropic body and that both the original and deformed states
are at the same temperature. Then the free energy of the deformed body can be written
:

F = F0 +
1

2
λu2ii + µu2ik, (7.16)
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with F0 the free energy of the original state and in the following F0 = 0. Note that in the
previous expression and in the following, u2ii stands for the square of the quantity uii.
The coefficients λ and µ are the Lamé coefficients.

Pure shear is a deformation in which the volume of the body remains unchanged, ie.
∑

uii=0, but its shape is changed. Hydrostatic compression corresponds to the contrary
with uik ∝ δik.

It can be shown that any transformation can be decomposed into the sum of a pure
shear and an hydrostatic compression (Landau & Lifshit’s, 1959). Then the free energy
can be rewritten as :

F = µ(uik −
1

3
δikull)

2 +
1

2
Ku2ll. (7.17)

K is the bulk modulus or modulus of compression and µ the shear modulus or modulus
of rigidity. Both coefficients are positive and one has :

K = λ+ 2/3µ. (7.18)

With the previous coefficients, the stress tensor can be written :

σik = Kullδik + 2µ(uik −
1

3
ullδik). (7.19)

If the deformation is pure shear, then it is driven by the modulus of rigidity and if it is
pure hydrostatic compression, by the bulk modulus.

Alternatively, one gets :

uik =
1

9K
δikσll +

1

2µ

(

σik −
1

3
δikσll

)

, (7.20)

where the strain tensor that describes the deformation is a function of the stress tensor
that describes the applied forces. This is the so-called Hooke’s law.

7.2.2 Models of neutron stars with a (partially) solid interior

Let us now present some simple models of neutron stars with a (partially) solid interior.
They provide limiting cases against which numerical simulations can be tested.

7.2.2.1 Incompressible interior

In the slow rotation approximation, considering a relaxed state spherically symmetric
with zero angular velocity, Gourgoulhon (1995a) derived the flattening of an incom-
pressible neutron star with a solid crust and liquid core, as shown figure 7.3, with con-
stant density ρ0 andmodulus of rigidity µ. For small elastic deformations, the equations
for the surface and the interface are :

R(θ) = R0 (1 +NP2(cos θ)) , (7.21)
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b
a

Liquid core

Solid crust

Figure 7.3: Schematic structure for the model of incompressible star.

with R0 = a at the surface and R0 = b at the interface, P2 the second-order Legendre
polynomials andN a factor depending on the model adopted for the body, as described
in the following. Let us define κ = b/a and :

Ξ =
3µ

8πGρ20a
2
. (7.22)

At the surface :

N surf
inc = − 5Ω2

8πGρ

1

∆

[

1 + κ + κ2 +
8

3
(κ3 + κ4 + κ5 + κ6) +

19

24
(κ7 + κ8 + κ9)

]

(7.23)

with

∆ = (1+19Ξ)(1+κ+κ2)+8(
1

3
−7Ξ)(κ3+κ4)+8(

1

3
+7Ξ)(κ5+κ6)+19(

1

24
−Ξ)(κ7+κ8+κ9).

(7.24)
At the interface between the liquid core and the crust :

N inte
inc = − 5Ω2

8πGρ

1

∆

[

1 + κ+
43

64
(κ2 + κ3 + κ4) + κ5 + κ6

]

. (7.25)
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For an entirely fluid interior, when κ = 1 or µ = 0, one gets :

Nfluid
inc = − 5Ω2

8πGρ
(7.26)

ie. the flattening of MacLaurin ellipsoid.

For an entirely solid interior, for κ = 0 :

N solid
inc = − 5Ω2

8πGρ
NLove

inc , (7.27)

with NLove
inc the factor derived by A. E. H. Love in the framework of geodynamics (Love

(1911, 1944)) :

NLove
inc =

1

1 + 19Ξ
. (7.28)

7.2.2.2 Baym & Pines model

Ruderman (1969) proposed that glitches are starquakes originating from the crack of the
solid crust of slowing-down neutron stars and Baym& Pines (1971) further investigated
this idea. They presented a simple one-parameter Newtonian model. The idea is that
the crust of neutron stars is formed relatively oblate. As the neutron star slows down,
the centrifigual forces decrease and the crust tends to a less oblate shape, that is how-
ever prevented by its rigidity. The crust is therefore stressed, up to a point when the
maximum stress it can sustain is reached. The crust then cracks, reducing its oblateness
and moment of inertia and increasing the rotation rate of the whole star by conserva-
tion of the angular momentum. Baym & Pines (1971) supposed that not all the stress
is released during a glitch that the crust is still stressed after it and considered incom-
pressible deformations.

Consider a slowly rotating liquid neutron star with an the angular velocity Ω. Due
to rotation, its shape is deformed with respect to a non-rotating and thus spherically
symmetric configuration. Let Ic be the moment of inertia of the crust of a rotating star
and Ic0 the one for a non-rotating star. The deviation from the spherical configuration
due to the rotation can be described by the oblateness parameter ǫ defined as follow :

ǫ =
Ic − Ic0
Ic0

. (7.29)

For ǫ≪ 1, the energy of a rotating fluid star can be written as :

E = E0 +
L2

2I
+ Aǫ2 (7.30)

with E0 the energy of the non-rotating star, L and I the total angular momentum and
moment of inertia, respectively of the rotating star with L = ΩI . The parameter A is
model-dependent.
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The value of the oblateness of the liquid star rotating with an angular velocity Ω0 at
equilibrium is determined by minimizing the energy :

ǫ0 =
Ω0

4A

∂I

∂ǫ
. (7.31)

Consider now that a liquid star rotating at the angular velocity Ω0 solidifies at least
partly and has at that moment an oblateness ǫ0. As the star slows down to a velocity Ω
at rate Ω̇, its oblateness decreases and the solid part is strained. The strain energy of the
latter is :

Estrain = B (ǫ− ǫ0)
2 , (7.32)

with B a model-dependent parameter.
The total energy of the star with a solid part is then :

E = E0 +
L2

2I
+ Aǫ2 +B (ǫ− ǫ0)

2 (7.33)

and thus the value of the oblateness at equilibrium is :

ǫ =
Ω

4(A+B)

∂I

∂ǫ
+

B

B + A
ǫ0. (7.34)

The mean stress in the solid part, that is considered to be isotropic, is then defined
by :

σ = µ (ǫ− ǫ0) , (7.35)

with µ the mean shear modulus of the solid part : µ = 2B/Vs with Vs the volume of the
latter.

The strain increases as the neutron star slows down and the star is assumed to un-
dergo only purely elastic quasi-stationary deformations between rigidly rotating equi-
librium configurations. The star eventually reaches a critical value σg of the mean stress
for the velocity Ωg. The solid part then cracks and the reference oblateness ǫ0 is changed
by an amount ∆ǫ0. The oblateness gets reduced by an amount ∆ǫg and according to
equation (7.34) :

∆ǫg =
B

A+B
∆ǫ0. (7.36)

The rotational frequency increases by an amount ∆Ωg given by :

∆Ωg

Ωg
= −∆ǫg. (7.37)

This is the origin of the observed glitches. The quake releases a stress :

∆σ = µ(∆ǫ0 −∆ǫg) = µ
A

B
∆ǫg. (7.38)
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Considering that Ω0 ∼ 2Ωg, the energy release in the glitch is

Eg ≈ 4

(

I0Ω
2
g

2

)

∆ǫg. (7.39)

The next glitch will take place after a time :

tg ≈
2A2

B (∂I/∂ǫ)ǫg

Ωg

Ω̇2
|∆ǫg|. (7.40)

Subsequent publications (Pines & Shaham, 1972; Pines et al., 1972) using the model
by Baym & Pines (1971) concluded that the hypothesis that the glitches of the Crab
pulsar originate from the crack of its crust is consistent with the observations. Nev-
ertheless, it is not the case for the Vela, whose time intervals between two glitches is
too small compared to the model predictions assuming sole crust cracks and therefore
suggesting that they are due to both the cracks of the crust and of the core, the latter
being solid. Heintzmann et al. (1973) examined the idea of crustquakes and corequakes
for the Vela pulsar and used a semi-relativistic treatment, considering relativistic effects,
via the TOV equations (see section 2.1.1), on the structure of the fluid core before it gets
solidified. Note that they assume perfect rigidity. They showed that the observations
of the glitches of the Vela pulsars, in particular the large ones are consistent with the
hypothesis of a solid core that undergoes large quakes.

Note however that several works have shown that large glitches such as the ones
exhibited by the Vela pulsar, are unlikely to originate from corequakes (Alpar & Baykal,
1994; Alpar, 1995). In particular, the energy that can be released in a large glitch by a
corequake exceeds its observed thermal X-ray luminosity of the Vela pulsar. However,
the small glitches of the Crab pulsar can be explained by crust cracks together with
vortex unpinning.

Finally, Cutler et al. (2003) and Zdunik et al. (2008) have reconsidered the model by
Baym & Pines (1971) with more realistic microphysics input and for a solid crust and
liquid core. In particular, they used a different definition for the oblateness parameter ǫ.
Assuming that the star rotates around the z-axis, they write the moment of inertia of the
whole deformed star (and not only the crust) Ixx = Iyy = I0(1− ǫ/2) and Izz = I0(1 + ǫ)
with I0 the moment of inertia of the relaxed non-rotating configuration. The oblateness
parameter is then :

ǫ =
Izz − I0
I0

. (7.41)

Using axisymmetric and stationary configurations of rotating neutron stars calculated
by the mean of the LORENE library for different equations of state for the crust and core,
Zdunik et al. (2008) calculated the A and B parameters and approximate formulas for
these quantities.
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7.3 Elasticity in General Relativity

7.3.1 Previous formulations

Attempts to develop a suitable formalism for elasticity in the framework of General
Relativity started only in the 1950’s. Such works aimed at describing the interaction of
gravitational waves with elastic solid matter, motivated by the design of a gravitational
waves detector by Weber (1960) that consisted of aluminum cylinders. The subsequent
formalisms were either unsuccessful (Synge, 1959) or incomplete (Rayner, 1963; Ben-
noun, 1965). More details in Carter & Quintana (1972); Carter (1980).

7.3.2 Carter & Quintana formalism

The first successful theory of elasticity was formulated by Carter & Quintana (1972) and
developed in series of subsequent papers : Carter & Quintana (1972), Carter (1973) and
Carter & Quintana (1975b), that are the basis of the following exposure.

7.3.2.1 Material space and canonical projection

Consider a spacetime (M , g)with M a C∞ manifold of dimension 4 and g a Lorentzian
metric on M ie. of signature (−,+,+,+).

Let X be a C∞ manifold of dimension 3, the so-called material space. Its points
represent the idealized matter particles of the elastic medium and the local coordinates
on this manifold are (X i) with i = 1, 2, 3. Tensors on X are called material tensors and
the ones of M , spacetime tensors.

On X , let nijk be a totally antisymmetric pseudo-tensor representing the canonical
measure of the number density of matter particles, such that

dN =
1

3!
nijkdX

i ∧ dXj ∧ dXk (7.42)

is the number of particles in the element of volume dX i ∧ dXj ∧ dXk.
Let P be the canonical differential projection (figure 7.4) :

P : M
′ → X (7.43)

with M ′ ⊂ M an open submanifold, that projects the world lines of the particles in M ′

onto their corresponding points in X . It defines a field of so-called unit flow vectors
uα, that are tangent to the world lines in M (uαuα = −1) and an orthogonal projection
tensor :

γαβ = gαβ + uαuβ. (7.44)

γ, the so-called Cauchy strain tensor, determines the distances between the particles in
their rest frame and describes the local state of strain of the medium.
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Figure 7.4: Schematic representation of the projection P from the spacetime manifold
M onto the material space X . The arrows on the world lines in M ′ indicate the direc-
tion of the flow vector uα. Figure from Carter & Quintana (1972).

An orthogonal spacetime tensor on M is such that its contractions with the flow
vector ~u all vanish.

A materially constant orthogonal tensor T is such that, for any point x ∈ M , the
projection in X of its value T (x) at the point X = P(x) does not depend on the choice
of x.

The projection P induces an isomorphism between the materially constant orthog-
onal tensors on M and the material tensors on X .

A medium is said to have a rigid motion or equivalently to be in constant strain state
if the projection tensor γ is materially constant, ie. if it does not depend on the point
x ∈ M . γ is then a Riemannian metric on X .

The metric g also normalizes the antisymmetric 4-volume measure tensor ǫαβγδ on
M and the number density of particles of the medium per unit metric volume nb is
given by :

nijk = P
(

nbǫαβγδu
δ
)

. (7.45)

7.3.2.2 Perfect elasticity

A material is said to behave perfectly elasticly (or hyperelasticly) if it undergoes defor-
mations that are reversible.

Adiabatic or frictionless gas, liquid or solid can be considered as perfectly elastic. A
material is not perfectly elastic if it undergoes deformations whose characteristic length-
scales are of the order of the ones determining the structure of the material or if it is
subject of so high gravitational field that the inertial forces between the particles are of
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the same order as the interactions that determine the properties of the material. This is
not the case for our problem.

The energy-momentum tensor of a perfectly elastic material is then given by the
equation :

T αβ = εuαuβ + pαβ (7.46)

where ε is the energy density and pαβ is the symmetric pressure tensor, the projections
on X of both quantities being functions of the projection of γ.

In the following perfectly elastic materials will be considered.
One defines the average mass per particle :

m = nbε. (7.47)

7.3.2.3 Hookean and quasi-Hookean approximations

The Hookean approximation holds if there exists a so-called unstrained state, a fully
relaxed state for which the projection tensor of the material γ take the value σ such that
the energy per particlem is minimum. σ is then called the unstrained reference tensor.

Under such conditions, one can define the relative strain tensor :

eαβ =
1

2
(γαβ − σαβ) . (7.48)

For some materials, an unstrained state may not even exist. This is the case in par-
ticular for matter in the crust of neutron stars whose crystalline structure only exist
because of high pressure.

Then, one can defined an unsheared state as being not for the absolute minimum of
the energy per particle but for a minimum of m for a given constant particle number
density nb : m̌(nb). The value of the projection tensor γ is then labeled η(nb) and of the
density ρ̌(nb).

One can define a constant volume shear tensor for a fixed particle number nb :

sαβ =
1

2
(γαβ − ηαβ) (7.49)

and by definition the shear is everywhere zero for an unsheared state.

7.3.2.4 Perfect solid

Aperfect solid is such that its structure is cubically symmetric and isotropic with respect
to its unsheared state.

Following Carter & Quintana (1975b), the subsequent calculations will limit to the
first order in the shear tensor and therefore the perfect solid can be considered as quasi-
Hookean whose properties are given by two functions that are the same in the whole
material : the relaxed energy density ε = ε(nb) and rigidity µ = µ(nb).
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The density and the pressure tensor are then :

ε = ε̌(nb) +O(s2), (7.50)
pαβ = p̌(nb)γαβ − 2µsαβ +O(s2). (7.51)

Therefore according to equation (7.46) andwith equation (7.44), the energy-momentum
tensor of a solid fluid is :

Tαβ = (ε+ p)uαuβ + pgαβ − 2µsαβ, (7.52)

with for simplicity : ε = ε̌ and p = p̌.
Note that one recovers the fluid limit by putting µ = 0, showing that this formulation

enables to describe both solid and liquid media.

7.3.3 Karlovini & Samuelsson formalism

Several works have reconsidered the general relativistic elasticity formalism such as
Magli & Kijowski (1992); Beig & Schmidt (2005), compared by Frauendiener & Kabobel
(2007) and Brito et al. (2011b,a) who extended the study by Magli & Kijowski.

In particular, Karlovini & Samuelsson (2003) revisited the formalism by Carter &
Quintana (1972) and applied it to the study of different types of perturbations in elas-
tic neutron stars in a series of subsequent papers (Karlovini et al., 2004; Karlovini &
Samuelsson, 2004, 2007).

Following Carter & Quintana (1972), they considered the projection between the
spacetime manifold and the material space but viewed in terms of push-forward and
pull back. Moreover, the energy density is written as a function of the spacetime metric
instead of the Cauchy strain tensor as in Carter & Quintana (1972). They derived an
interesting form of the Euler equations for elastic matter and used a different formula
for the shear.

7.3.4 Relativistic formulation of starquakes

Following their seminal work in 1972, Carter (1975) and Carter & Quintana (1975a)
revisited the semi-Newtonian models by Baym & Pines (1971) and Heintzmann et al.
(1973) of neutron starquakes in the framework of the theory of relativistic elasticity and
accounting for finite compressibility and rigidity. The only limitation is that the model
restricts to axisymmetric configurations.

A configuration is said to be relaxable if there exists a value of the angular velocity
for which the equilibrium state of the rotation star is relaxed, ie. unsheared.

The key point is that the parameters in the equations describing the structure of a
rotating star, whether the star is relaxable or not, can be derived by considering the slow-
rotation of a relaxable structure when the unsheared state is obtained for no rotation.
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Assuming that the solid matter in the neutron star is isotropic and perfectly elastic
for small deformations, Carter & Quintana (1975a) considered relaxable neutron stars
made of a perfect solid.

Let I∗ and Z∗ be the constant moment of inertia and so-called solidity constant of
the non-rotating (and thus spherical) relaxed state. The total moment of inertia I of a
relaxed state with an angular velocity Ω̌ is, expanding in terms of the angular velocity
Ω̌ up to the second order, which fully determines a relaxable configuration :

I = I∗ +
1

2
Z∗Ω̌

2. (7.53)

Thus, the total energy at equilibrium of the star with a relaxable structure and an
angular velocity Ω, to the second order is (Carter & Quintana, 1975a) :

E =
1

8
Z∗Ω̌

2 +
1

2

(

I∗ +
1

2
Z∗Ω̌

2

)

Ω2 +
3

8
P∗Ω

4. (7.54)

Following Baym & Pines (1971); Cutler et al. (2003); Zdunik et al. (2008), let us con-
sider the oblateness parameter :

ǫ =
I − I∗
I∗

. (7.55)

Comparing equation (7.54) with equation (7.33), one gets

P∗ =
I∗

2(A+B)
and Z∗ =

BI∗
2A(A +B)

. (7.56)

Finally, the values of the two constants P∗ and Z∗ can be explicitly calculated from
the papers Carter & Quintana (1975b); Quintana (1976).

In conclusion, the glitch phenomenon suggests that there exist some solid parts in
neutron stars, in particular the crust that becomes solid shortly after the neutron star
birth. There is no clear consensus for state of the core and models with solid core have
been developed since the 1970’s. The starquake model provides a reasonable explana-
tion for Crab-like glitches but not for Vela-like ones.

The relativistic formalism for elasticity by Carter & Quintana (1972) presented in this
chapter will be used in the next chapter to compute neutron star configurations with a
solid interior.
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In this chapter is presented the derivation of the equations for stationary and ax-
isymmetric configurations of neutron stars including the elastic properties of the solid
phases. For simplicity a fully solid interior is assumed but the calculations can be gen-
eralized for a partly solid one. The formalism for elasticity in the framework of Gen-
eral Relativity developed by Carter & Quintana (1972) and presented in the previous
chapter is used. How to take into account elastic deformations of a rotating star is de-
veloped in section 8.1. In section 8.2 the formalism and the derivation of the Einstein
and equilibrium equations for stationary axisymmetric and circular configurations of
rigidly rotation neutron stars with a solid interior are explained. The Newtonian limit
of the latter developed in section 8.3 and their numerical resolution currently in progress
is presented in section 8.4. Finally, possible applications of this study are indicated in
section 8.5.

8.1 Elastic deformation of rotating stars

In the following, a small elastic deformation of an homogeneous perfect solid whose
unperturbed (original) state has zero shear tensor will be considered. Its relaxed energy
density and rigidity are then functions of the baryon number density : ε = ε(nb) and
µ = µ(nb). An asterisk ∗will be used to distinguish the symbols referring to the original
state from the ones of the perturbed state. The original state is also assumed to have a
rigid motion that implies that the Cauchy strain tensor is constant along the worldlines.

8.1.1 Small deformations

Let γ be the Cauchy strain tensor.
The fixed strain reference tensor σ is defined such that the relative strain tensor :

eαβ =
1

2
(γαβ − σαβ) , (8.1)

is of the same order as the shear :

eαβ = O(s) = O(e). (8.2)

The choice of σ consists in considering small perturbations to the unperturbed state.
The shear reference tensor η is then :

ηαβ =

(

nb

nb0

)−2/3

σαβ , (8.3)

with nb0 the particle number density when γ = σ.
To the first order in the relative strain (Carter & Quintana, 1975b),

nb = nb0(1− e α
α ) +O(e2), (8.4)
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and equation (8.3) becomes

ηαβ =

(

1− 2

3

nb − nb0

nb

)

σαβ +O(e2). (8.5)

sαβ = eαβ −
1

3
e α
α γαβ +O(e2). (8.6)

8.1.2 Eulerian variation

In the following the perturbed and the original states are assumed to differ by a small
Eulerian variation δ. This implies in particular that there exists a coordinate system, as
explained in the following, in which the points on M before and after the perturbation
have the same coordinates.

Let us require that in the original state:

n∗
b0 = n∗

b. (8.7)

This is equivalent to the choice :

σ∗
αβ = η∗αβ . (8.8)

This condition uniquely defines the relative strain tensor e and implies that :

e∗ α
α = O(e2). (8.9)

8.1.3 Lagrangian variation

The Lagrangian variation of a field, denoted by∆, consists in comparing the field before
and after the perturbation at a given point whose coordinates are transported by the
medium.

Let P∗ be the projection from M to X in the original state, xα be the Eulerian coor-
dinates of a point x in M and xα − ξα of the point x−∆x. The Lagrangian coordinates
xα − ξα of the point x are given by the requirement that :

P
∗(x−∆x) = P(x). (8.10)

The definition (8.7) of the original state gives :

nb − nb0 = ∆nb. (8.11)
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8.1.4 Semi-Lagrangian variation

In the following, the Lagrangian displacement ~ξ is not postulated to be small. It is
nevertheless the related semi-Lagrangian displacement ~ζ that is supposed to be small
ie. ζα = O(e).

Let us denote the semi-Lagrangian variation of a field byD. Let x′ = x−Dx and x′′ =
x−∆x be the results of the semi-Lagrangian and Lagrangian transport of x respectively.
The condition that ~ζ is small is equivalent to the requirement that the points x′ and x′′ lie
on the same surface of transitivity determined by the invariance group of the stationary
and axisymmetric spacetime, in this case a fixed ring of particles.

One can then write for a given tensor T (Carter & Quintana, 1975b) :

DT = δT + L~ζ T +O(e2). (8.12)

For a scalar field, like the particle number density n :

Dn = ∆n, (8.13)
∆n = δn +∇αζ

α +O(e2). (8.14)

In particular
δgαβ = gαβ − g∗αβ (8.15)

is the change in the metric due to the elastic perturbation.

In the case of a fluid region, the semi-Lagrangian displacement is determined by
imposing that :

• ~ζ is the gradient of a scalar in a fluid region,

• the normal component of ~ζ is continuous at each solid-liquid interface, at the first
order in e.

Therefore the elastic displacement ~ζ introduced previously enables to describe con-
sistently both elastic and fluid phases. This is therefore a generalization of the perfect
fluid model.

8.2 Stationary and axisymmetric configurations of rotat-

ing stars

8.2.1 Metrics

Let us consider now that :

1. the original state, with the angular velocity Ω∗, is asymptotically flat, stationary,
axisymmetric and circular,
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2. the original state is relaxed : s∗ = 0.

3. the perturbed state, with the angular velocity Ω, is asymptotically flat, stationary,
axisymmetric and circular.

Therefore, Papapetrou coordinates (t, x1, x2, ϕ) and the following metrics on M ,
given by equation (6.136) can be used :

• for the original state :

gαβ dx
α dxβ = −N∗2dt2 + k∗ab dx

a dxb +M∗2(dϕ− ω∗dt)2; (8.16)

• for the perturbed state

gαβ dx
α dxβ = −N2dt2 + kab dx

a dxb +M2(dϕ− ωdt)2. (8.17)

8.2.2 Quasi-isotropic coordinates

Since one expects the elastic deformations to be small, the axisymmetric and stationary
spacetime will be consider as circular in the following (section 6.2.2).

Therefore, the isotropic coordinates (t, r, θ, ϕ) can be adopted and in the perturbed
state the metric kab in each 2-surfaceMtϕ writes :

kab = A2(r, θ)
(

dr2 + r2dθ2
)

(8.18)

and similarly for the metric k∗ab in the unperturbed state.
Then the metrics (8.16) and (8.17) on M can be rewritten :

• for the original state :

gαβ dx
α dxβ = −N∗2dt2 + A∗2 (dr2 + r2dθ2

)

dxa dxb +M∗2(dϕ− ω∗dt)2; (8.19)

• for the perturbed state :

gαβ dx
α dxβ = −N2dt2 + A2

(

dr2 + r2dθ2
)

dxa dxb +M2(dϕ− ωdt)2, (8.20)

withM = Br sin θ.

8.2.3 Strain tensors

Let us introduce for convenience the comoving angle coordinate :

ψ = ϕ− Ωt (8.21)

(and its equivalent for the original state).
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The projection P∗ in the original state is :

P
∗ : M → X (8.22)

(t, x1, x2, ϕ) 7→ X1 = x1 (8.23)
X2 = x2 (8.24)
X3 = ψ∗ = ϕ− Ω∗t. (8.25)

In the perturbed state, the projection P is :

P : M → X (8.26)
(t, x1, x2, ϕ) 7→ X1 = x1 − ζ1 (8.27)

X2 = x2 − ζ2 (8.28)
X3 = ψ = ϕ− Ωt. (8.29)

In fact the symmetry of the problem imposes that ζ3 is independent of x1 and x2 and
can be taken equal to zero (Carter & Quintana, 1975b).

According to equation (7.44), the strain tensor on M is :

γαβ = gαβ + uαuβ. (8.30)

The flow vector is given by equation (6.75) and since ~χ =M ~m (equation 6.120),

~u = Γ

[

~n +
M

N
(Ω− ω) ~m

]

. (8.31)

Therefore, the strain tensor on M writes :

γαβ dx
α dxβ = Γ2M2 (dϕ− Ωdt)2 + kab dx

a dxb, (8.32)
= ̟2dψ2 + kab dx

a dxb (8.33)

with ̟ = ΓM the proper circumferential radius.
The strain tensor on X is :

γij dX
i dXj = ̟2(dX3)2 + kab dX

a dXb, (8.34)

The strain reference tensor on X in the original state is such that σ∗
ij = γ∗ij and thus :

σ∗
ij = ̟∗2(X1, X2)(dX3)2 + k∗ab(X

1, X2) dXa dXb, (8.35)
= σij (8.36)

By reversing the projection P , the strain reference tensor on M in the perturbed
state is :

σαβ = ̟∗2(x1 − ζ1, x2 − ζ2)dψ2 + k∗ab(x
1 − ζ1, x2 − ζ2) d(x1 − ζ1) d(x2 − ζ2). (8.37)
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8.2.4 Relative strain tensor

The relative strain tensor (in the perturbed state) defined in equation (8.1) is :

eαβ dx
α dxβ =

1

2

{[

̟2(x1, x2)−̟∗2(x1 − ζ1, x2 − ζ2)
]

(dϕ− Ωdt)2+ (8.38)
[

kab(x
1, x2)− k∗ab(x

1 − ζ1, x2 − ζ2)
]

dxadxb
}

, (8.39)

=
1

2
D̟2 (dϕ− Ωdt)2 +

1

2
Dkabdx

adxb. (8.40)

One can show (sections A.2 and A.4) that :

Dkab = δgab +
2∇aζb +

2∇bζa, (8.41)
D̟2 = δ̟2 + 2̟2Γ2

(

−bα − U2aα + 2Uσα
)

. (8.42)

The trace of the relative strain tensor is (section A.5) :

e α
α = 2∇aζ

a +
1

2
kabδgab +

1

2

D̟2

̟2
(8.43)

8.2.5 Shear tensor

The shear tensor defined in equation (8.6) is (section A.6) :

sαβdx
αdxβ =

[

2∇(a ζ b) −
1

3

(

2∇cζ
c
)

kab +
1

2

(

δgab −
1

3
kcdδgcdkab

)

−1

6

D̟2

̟2
kab

]

dxa dxb

−1

3

[

̟2

(

2∇cζ
c +

1

2
kcdδgcd

)

−D̟2

]

(dϕ− Ωdt)2 (8.44)

where the parentheses denotes full symmetrization.

8.2.6 Energy momentum tensor of an elastic fluid

According to equations (7.52), the energy momentum tensor of an elastic fluid can be
written in the following way :

Tαβ = T perf
αβ + T elas

αβ , (8.45)

with T perf
αβ the usual contribution to the energy-momentum tensor from the perfect fluid

and T elas
αβ the one from the elastic fluid :

T perf
αβ = (p+ ε)uαuβ + pgαβ, (8.46)

T elas
αβ = −2µsαβ . (8.47)
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8.2.7 Circularity condition

Apriori the axisymmetric and stationary spacetime for an elastic medium is not circular.
In a non-circular spacetime (Gourgoulhon & Bonazzola, 1993), the Killing vectors ~ξ

and ~χ, for stationary and axisymmetry respectively, are :

ξα = Nnα −Nα with Nα = (0, N1, N2, ω) (8.48)
χα = Mmα −Mα with Mα = (0,M1,M2, 0) (8.49)

nα =
1

N

(

1, N1, N2, ω
)

and nα = (−N, 0, 0, 0) (8.50)

mα =
1

M

(

0,M1,M2, 1
)

and mα = (−Mω, 0, 0,M) . (8.51)

According to the Generalized Papapetrou theorem, assuming a circular spacetime is
equivalent to the two following conditions on the energy-momentum tensor T (section
6.2.2) :

ξµT [α
µ ξβχγ] = 0 (8.52)

χµT [α
µ ξβχγ] = 0, (8.53)

Let us write the (2+1)+1 decomposition of shear tensor s (Gourgoulhon, 1995b) :

sαβ = ¯̄sαβ +mα ¯̄sβ +mβ ¯̄sα +mαmβ ¯̄s+ nαs̄β + nβ s̄α + nαmβ s̄+ nβmαs̄+ nαnβs. (8.54)

The left-hand side of the equations (8.52-8.53) are given in section A.7 and can not
be further simplified.

However one can assume that the spacetime is circular since the elastic deformations
are expected to be small.

Therefore, one can write, following section 6.4.2, :

~u = Γ
(

~n+ ~U
)

. (8.55)

8.2.8 Einstein equations

In a circular spacetime, one can show that s̄α = 0 and ¯̄sα = 0. Therefore the shear tensor
writes (Gourgoulhon, 1995b) :

sαβ = ¯̄sαβ +mαmβ ¯̄s+ nαmβ s̄+ nβmαs̄ + nαnβs, (8.56)

with

¯̄sαβ = ¯̄sab, (8.57)

¯̄s = −1

3
Γ2Q, (8.58)

s̄ = −1

3
Γ2UQ = U ¯̄s, (8.59)

s = −1

3
Γ2U2Q = U2 ¯̄s, (8.60)
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where

Q = 2∇aζ
a +

1

2
kabδgab −

D̟2

̟2
. (8.61)

Therefore the quantities E, pϕ, Sr
r, S

θ
θ and S

ϕ
ϕ of the energy-momentum tensor can

then be decomposed into two contributions : the one from the perfect fluid part, given
by equations (6.82-6.87) and the one from the elastic part, given by equations (A.31-
A.37).

All in all, one gets :

E = Γ2(ε+ p)− p− 2µU2 ¯̄s , (8.62)

pϕ = B(E + p)Ur sin θ + 2µBr sin θU
(

U2 − 1
)

¯̄s , (8.63)

Sr
r = p− 2µ¯̄srr , (8.64)

Sθ
θ = p− 2µ¯̄sθθ , (8.65)

Sϕ
ϕ = p+ (E + p)U2 + 2µ

(

U4 − 1
)

¯̄s , (8.66)

S = 3p+ (E + p)U2 − 2µ
[(

1− U4
)

+ ¯̄srr + ¯̄sθθ
]

. (8.67)

8.2.9 Equation for equilibrium

The equation (6.100) for the equilibrium of a rotating star and that is used in the Nrotstar
code of the LORENE library (figure 6.5) has been derived for a fluid interior and thus can
be not be used for an elastic one.

According to the Einstein equation and Bianchi identity, the divergence of the energy-
momentum tensor is :

∇σT
σ
α = 0. (8.68)

In the case of elastic matter, this condition is equivalent to (Gourgoulhon, 1995b) :

(ε+ p)uσ∇σu− α +∇αp− 2µ∇σs
σ

α − 2s σ
α ∇σµ = 0, (8.69)

since in a circular spacetime, uσ∇σε = uσ∇σp = 0 and ∇σu
σ = 0.

With (section A.9),

uσ∇σuα = 3∇α ln
N

Γ
+ Γ2Umαm

β 3∇βU, (8.70)

where Γ is the Lorentz factor, one gets :

3∇α

[

H + ln
N

Γ

]

− 2µ

ε+ p
∇σs

σ
α − 2

ε+ p
sσα∇σµ+ Γ2Umαm

β 3∇βU = 0, (8.71)

defining the log-enthalpy H :

H(n) =

∫ n

0

p(n′)

ε(n′) + p(n′)
dn′. (8.72)
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Since (section A.10) :

∇σs
σ
α = 3∇σ ¯̄s

σ
α + ¯̄sσαaσ −

1

3
Γ2Q

(

bα − 2Uκα + U2aα
)

, (8.73)

the equation for equilibrium is :

3∇α

[

H + ln
N

Γ

]

− 2µ

ε+ p

[

3∇σ ¯̄s
σ
α + ¯̄sσαaσ −

1

3
Γ2Q

(

bα − 2Uκα + U2aα
)

]

(8.74)

− 2

ε+ p
¯̄sσα∇σµ+ Γ2Umαm

β 3∇βU = 0. (8.75)

Writing ¯̄sσα with equation (8.44) and calculating its divergence, one gets an equation
of the form :

3∇a

[

H + ln
N

Γ

]

= λa. (8.76)

Taking the divergence of this latter expression leads to :

∆3

[

H + ln
N

Γ
− 2µ

ε+ p
(Θ− F )

]

= Λ, (8.77)

with Λ a source term given in section A.11 and

Θ = 2∇aζ
a, (8.78)

F =
1

3
Q− ζaba + Γ2Uζc 2∇cU +

1

2

δ̟2

̟2
. (8.79)

Rewritting Λ = ∆3Ψ, equation (8.77) gives :

H + ln
N

Γ
= Ψ +

2µ

ε+ p
(Θ− F ) . (8.80)

One can then reformulate equation (8.76) :

∆3ζa +
1

3
3∇Θ = S(Ψ, F ), (8.81)

with the source term given in section A.12.

All in all, the equilibrium equations are, with Λ = ∆3Ψ :

∆3

[

H + ln
N

Γ
− 2µ

ε+ p
(Θ− F )

]

= Λ , (8.82)

∆3ζa +
1

3
3∇aΘ = S(Ψ, F ) . (8.83)
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8.2.10 Boundary conditions

At the surface of the star, the boundary conditions are, since the pressure is null (Landau
& Lifshit’s, 1959) :

SijN
j = 0 (8.84)

with Sij the stress tensor and N j the normal vector to the surface.
The components of the stress tensor are :

Srr = p− 2µ¯̄srr Srθ = −2µ¯̄srθ (8.85)
Sθθ = p− 2µ¯̄sθθ Sθϕ = 0 (8.86)
Sϕϕ = (ε+ p)Γ2U2 − 2µ¯̄s Srϕ = 0, (8.87)

with :
¯̄sab =

1

2
δgab +

1

2
2∇aζb +

1

2
2∇bζa

1

6

(

3Θ−Q+
3

2
kcdδgcd

)

. (8.88)

The surface can be parametrized by the equation r = Rs(θ) and the components of
~N are :

N r =
1

A
N θ = − 1

A

d
dθ

lnRs(θ). (8.89)

Therefore, the boundary conditions write :

r-component : ¯̄srr −
d
dθ

lnRs(θ)¯̄srθ = 0, (8.90)

θ-component : ¯̄srθ −
d
dθ

lnRs(θ)¯̄sθθ = 0 (8.91)

and are functions of the derivatives of the displacement ~ζ.
The regularity condition at the center for the displacement writes

ζa(r = 0) = 0. (8.92)

8.3 Newtonian limit

8.3.1 Equation for equilibrium

Let us now derive the equation for equilibrium in the framework of Newtonian gravity.
Consider stationary and axisymmetric configurations. The metric is :

hijdx
idxj = dr2 + r2dθ2 + r2 sin2 θdϕ2. (8.93)

For an elastic medium, writing H = H = p/ε the specific enthalpy, one gets :

∇i

[

H + Φg −
1

2
Ω2r2 sin2 θ

]

− 1

3ρ
∇i (µΘ)− µ

ρ
∆3ζi −

1

ρ

(

∇iζ
j +∇jζi

)

∇jµ+
Θ

ρ
∇iµ = 0

(8.94)
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with Θ = ∇iζi and the Poisson equation for the gravitational potential Φg :

∆3Φg = 4πGρ, (8.95)

where

∆3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
. (8.96)

8.3.2 Boundary conditions

At the center, regularity imposes ζ i = 0.
At the surface,

σikN
k = 0 (8.97)

with σik the stress tensor and Nk the normal to the surface.
With

σik = −2µsik (8.98)

since the pressure is null at the surface, and with the shear tensor

sik =
1

2
(∇iζj +∇jζi)−

1

3
ejjhik (8.99)

the condition at the surface is :

sikN
k = 0. (8.100)

Since the equation of the surface is r − Rs(θ) = 0 with Rs the radius of the star at a
given angle θ, the vector Nk normal to the surface is given by :

Nk = ∇k [r −Rs (θ)] . (8.101)

8.4 Numerical resolution

8.4.1 Block diagram of the Elastar code in LORENE

A new class called Elastar, derived from the Starrot class and the Nrotstar code
has been created in LORENE and is currently in progress. Figure 8.1 schematically shows
how the code may proceed.

All the modifications to the perfect fluid case have been implemented. The key point
of the calculation lie in the loop to solve the equations for equilibrium (8.82-8.83).
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Choose :
• an EoS : ε = ε(H), p = p(H), µ = µ(H),
• H0(r = 0) = Hc,
• Ω = constant.

Assume values for N,ω,A,B.

Initialize:
• U = 0,
• ζa = 0,
• H0(r) = Hc

(

1− r2/R2
)

,
• k = 0.

Calculate :
• the shear tensor sαβ with equation (8.44),
• the source terms E, pϕ, Sr

r, S
θ
θ and Sϕ

ϕ

with equations (8.62)-(8.67).

Solve the Einstein equations (6.53)-(6.56).

Solve equation (8.82)

Solve equation (8.83)

Calculate ε = ε(Hk), p = p(Hk), µ = µ(Hk) via the EoS.

Hk+1(r, θ)−Hk(r, θ) < ǫ ?

End of the program.

Yes

k = k + 1

No

Until convergence

Figure 8.1: Schematic view of the Elastar code adapted from the Nrotstar one. k is
the step of the calculations, Hk(r, θ) the value of the log-enthalpy at the step k and ǫ the
threshold for the convergence of the code.
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8.4.2 KADATH

Investigations are currently in progress to solve the vectorial Poisson equation (8.83)
with KADATH, a new C++ library solving equations by the mean of spectral meth-
ods, developed by Philippe Grandclément at LUTh (Grandclément, 2010). Contrary
to LORENE, KADATH is suitable for solving equations with boundary conditions such
as equations (8.90-8.91) that are functions of the derivatives of the displacement.

Philippe Grandclément has adapted KADATH to solve the equations for an elastic
rotating object in Newtonian gravity as presented in section 8.3 and their numerical
resolution is currently in progress.

In the near future, the possibility to perform all the calculations detailed in figure 8.1
with KADATH will also be investigated.

8.5 Perspectives

In the near future, exact calculations of equilibrium configurations of rotating neutron
stars with a solid crust and a liquid core and both solid crust and core will be performed.
Different models of solid cores will be included. Among the applications is the study of
the glitch phenomenon.

In the continuation of the study by Penner et al. (2011), a long term perspective is
to calculate neutron star configurations with a (partly) solid interior in a binary system
after generalizing the formalism for binary neutron stars to include the elastic properties
of the solid phases.

One may also take into account the possible crystallization or melting in the inte-
rior and its consequences on the rotation by solving both the relativistic equations for
elasticity and the heat equation (see also part II).

This chapter presented the derivation of the equations for stationary, axisymmetric
and circular configurations of rigidly rotating neutron stars with a solid interior, tak-
ing into account the elastic properties of the latter. The formalism of elasticity in the
framework of General Relativity introduced by Carter & Quintana (1972) and devel-
oped in subsequent papers : Carter (1973); Carter & Quintana (1975b); Quintana (1976)
is used. The source terms in the Einstein equations and the equations for equilibrium
have been derived. Their numerical resolution with the LORENE and KADATH libraries
is currently in progress.
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Introduction

The P − Ṗ diagram reveals that there exist two distinct populations of pulsars : the
normal pulsars and the millisecond pulsars (see section 1.4). These millisecond pulsars
have a period P . 30 milliseconds and a characteristic age τPSR & 109 − 1010 years
whereas ordinary pulsars have τPSR . 107 years. Since they have a period derivative
Ṗ . 10−18 s s−1, their magnetic field is BPSR ∼ 108 G, four orders of magnitude smaller
than for the normal pulsars and they can be observed as radio pulsars during a longer
time than normal pulsars.

According to the standard theory of neutron star evolution, millisecond pulsars are
rejuvenated neutron stars. A normal pulsar is born in a supernova explosion, spins
down from a period of few tens of milliseconds to few seconds and becomes radio-
quiet or undetectable. A millisecond pulsar is a radio-dead pulsar that was spun-up
to millisecond periods by the accretion of matter from its companion star during ∼ 109

years (Alpar et al., 1982; Radhakrishnan & Srinivasan, 1982).

Chapter 9 introduces general aspects concerning the accretion process (section 9.1)
and the different evolutionary scenarios that lead to the formation of millisecond pul-
sars in neutron star binaries (section 9.2).

In chapter 10, a simple model for the rotational evolution of an accreting neutron
star is presented (section 10.1). The influence of the magnetic field of the neutron star
on the accretion process is included (section 10.2) together with the accretion-induced
magnetic field decay as explained in section 10.3. The model considers configurations
of rotating neutron stars, for different equations of state, with an increasing mass as a
result of the accretion process and a varying rotational frequency (section 10.4).

Applications of the model to the recycling scenario are developed in chapter 11. In
particular, are studied the spin-up of the puzzling pulsar J1903+0327 in section 11.1 and
of the less and most massive millisecond pulsars observed in a binary, J0751+1807 and
J1614-2230, respectively (section 11.2).

This project concerning the rotational evolution of accreting neutron stars is a col-
laboration with Michał Bejger, Paweł Haensel and Leszek Zdunik. I have been in-
volved in the development of the Evol code, with a particular attention to the mod-
els of accretion-induced magnetic field decay. I have looked for interesting millisecond
pulsars that could be studied with our model. I have performed calculations for the

209



210

various pulsars addressed in the chapter 11 that enable to constrain the properties of
the progenitor neutron stars.
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A millisecond pulsar is thought to be an old neutron star that has been recycled
when undergoing accretion from its companion in a binary system (Alpar et al., 1982;
Radhakrishnan & Srinivasan, 1982). The system is observed as an X-ray binary during
the recycling phase and by the end of it, the pulsar becomes an X-ray millisecond pulsar
(Wijnands& van der Klis, 1998). When accretion stops, the X-ray pulsar becomes a radio
millisecond pulsar. This scenario is in agreement with the radio pulsar statistics and is
a very efficient mechanism in globular clusters due to the interactions and exchanges
between the neutron stars and the other stars.

The chapters aim to give some general ideas about the evolution of neutron stars
in binaries and the formation of millisecond pulsars. However the binary evolution in
a globular cluster is complex and it will not be considered in the following. For more
information see the review by Verbunt & Lewin (2004).

Section 9.1 explains how a neutron star can accrete matter from its companion star.
General aspects concerning the Robe lobe overflow of the companion, the formation of
an accretion disk around the neutron star and the spin-up of the latter are addressed.
In section 9.2, the different types of neutron star X-ray binaries and the end product of
their evolution are presented.

9.1 Accretion in binary systems

9.1.1 Roche-lobe overflow

Consider a binary system consisting of two stars ofmass and radius (M1, R1) and (M2, R2)
respectively, separated by a distance a (Frank et al., 2002). This problem was addressed
by the French mathematician Édouard Roche (1820-1883) in the context of planetary
sciences. It studies the orbit of a test particle in the gravitational potential of a binary
system. It is assumed that R1,2 ≪ a and that the orbits of the two stars are circular.
The latter assumption is reasonable in binaries since the tidal forces between the stars
circularize the orbit and synchronize the rotation of the stars.

The binary separation a between the two stars is given by Kepler law :

4π2a3 = G(M1 +M2)P
2
b (9.1)

with Pb the binary period and the system orbits its center of mass with an angular
velocity :

Ω =

√

G (M1 +M2)

a3
. (9.2)

In the frame of reference rotating with the binary system, the Euler equation for a
gas flow between the two stars, with a density ρ, pressure P and velocity ~v is :

∂~v

∂t
+
(

~v. ~∇
)

~v = − ~∇ΦR − 2~Ω× ~v − 1

ρ
~∇P, (9.3)
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Figure 9.1: Cross-sections in the orbital plane of the Roche potential for q = 0.25. The
numbers 1-7 correspond to increasing values of the Roche potential. Are shown the
center of mass (CM) of the binary system and the Lagrange points L1 − L5. See text for
details. From Frank et al. (2002).

where ~Ω = Ω~e with ~e a unit vector normal to the orbital plane and ΦR the so-called
Roche potential :

ΦR(~r) = − GM1

|~r − ~r1|
− GM2

|~r − ~r2|
− 1

2

(

~Ω× ~r
)2

. (9.4)

The shape of the equipotentials of the Roche potential is governed by the mass ratio
q = M2/M1 and the scale is given by the binary separation a. Figure 9.1 shows sections
in the orbital plane of the Roche equipotentials. The potential has two valleys centered
on each star that are called the Roche lobes. In a given lobe, the dynamics is dominated
by the gravitational attraction of the star at its center. When moving from the bottom of
the valley to its top, the equipotentials are less circular and have with a tear-drop shape.
The Roche lobes join at the inner Lagrange point L1.

A Roche lobe is not spherical and one defines an average radius RL
1,2 for a given

Roche lobe so that a sphere of radius RL
1,2 has the same volume as the lobe, as shown on

figure 9.2. An approximate analytic formula derived by Eggleton (1983) is :

RL
2

a
=

0.49q2/3

0.6q2/3 + ln (1 + q1/3)
(9.5)

and RL
1 is given by replacing q by q−1 in the previous formula.
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Figure 9.2: Schematic representation of the Roche lobes. See text for details. From Frank
et al. (2002).

Paczyński (1971) derived a simpler form for 0.1 . q . 0.8 :

RL
2

a
=

2

34/3

(

q

1 + q

)1/3

= 0.462

(

M2

M1 +M2

)1/3

. (9.6)

9.1.2 Mass transfer dynamics

Consider now the surface of one of the stars of the binary. By definition ~v = 0 and
P = 0 so that according to equation (9.3), the star has an almost spherical shape given
by the Roche potential (9.4). In a given lobe the gravitational pull of the star at the center
dominates and there is no tendency for the matter of one star to be accreted by the other.
The binary system is said to be detached. Accretion can proceed only if matter is ejected
from a star by a stellar wind and captured by the second star.

Suppose that, as a result of stellar evolution, the star 2 extends and fills its Roche
lobe. In this case, according to equation (9.3), its surface is not spherical but has a tear-
drop shape. The matter of the star 2 lies near the inner Lagrange point. If perturbed, by
pressure forces for example, the matter passes by the L1 point, reaches the Roche lobe
of the star 1 and is captured by the latter. The system is said to be semi-detached and
an efficient mass transfer between star 2 and star 1 settles as long as the star 2 fills its
Roche lobe. The phenomenom is called a Roche-lobe overflow.

Since the star 2 losses matter, its mass decreases and the mass ratio q changes. There-
fore, mass transfer affects the dynamics of the system (Frank et al., 2002).

The orbital angular momentum J is given by :

J =
(

M1a
2
1 +M2a

2
2

)

Ω (9.7)

with the distances from the center of mass to the center of the stars :

a1 =

(

M2

M1 +M2

)

a and a2 =

(

M1

M1 +M2

)

a. (9.8)
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From (9.1), one gets :

J =M1M2

(

Ga

M1 +M2

)1/2

. (9.9)

Assuming that the mass lost by the star 2 is accreted by the star 1, Ṁ1+Ṁ2 = 0. Since
the star 2 losses matter, Ṁ2 < 0.

Differentiating equation (9.9), one gets :

ȧ

a
=

2J̇

J
− 2Ṁ2

M2

(

1− M2

M1

)

. (9.10)

If one supposes that the mass and the angular momentum of the binary is conserved,
ie. for a conservative mass transfer, then J̇ = 0. Therefore, equation (9.10) gives :

ȧ

a
=

2
(

−Ṁ2

)

M2

(

1− M2

M1

)

. (9.11)

If the more massive star accretes from the less massive star, ȧ > 0 and the binary
extends. Physically, there is more mass near the center of mass of the system, so that
the lighter star moves to a wider orbit to conserve the system angular momentum. If
accretion proceeds from the more massive to the less massive, the binary separation
decreases.

Differentiating equation (9.6) gives :

ṘL
2

RL
2

=
ȧ

a
+

Ṁ2

3M2

, (9.12)

and with equation (9.10),

ṘL
2

RL
2

=
2J̇

J
+

2
(

−Ṁ2

)

M2

(

5

6
− M2

M1

)

. (9.13)

For q < 5/6, the Roche lobe expands for a conservative mass transfer and the mass
transfer may continue if angular momentum is lost by wind for example or if the star
expands, for giant or subgiant stars for example.

Therefore, the stability of the overflow depends on the complex evolution of the
radius of the donor star and of the Roche lobe radius. More information can be found
in Tauris & van den Heuvel (2006).

9.1.3 Disk formation

Consider now a particle of the flow that passes through the L1 point. It has a high spe-
cific angular momentum and thus cannot be accreted directly by the mass-capturing
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star. In particular, in a non-rotating frame, the component of the flow velocity perpen-
dicular to the lines joining the center of the two stars is v⊥ ∼ b1Ω with b1 the distance
between the center of accreting star and the L1 point. However, the velocity component
parallel to the line of centers is v‖ . cs ≪ v⊥ with cs the sound speed in the envelope of
the mass-losing star (Frank et al., 2002). As a consequence, the stream of matter is su-
personic when crossing the L1 point and is even more accelerated by the gravitational
potential of the accreting star.

A test particle of the flow released from the L1 point and falling in the gravitational
potential of the mass-gaining star has an elliptic orbit in the plane of the binary and its
trajectory slowly precesses due to the influence of the second star. Thus, since matter
continuously passes the L1 point, a particle of the flow undergoes shocks which dissi-
pate its energy. Since the angular momentum of the particle is conserved, it moves to
the orbit of lowest energy for a given angular momentum, that is a circular orbit. In con-
clusion, the matter that passes through L1 orbits the accreting star in the binary plane
with a radius Rcirc such that the angular momentum that it had at the L1 is conserved :

Rcircv⊥ (Rcirc) = b21Ω (9.14)

with

v⊥ (Rcirc) =

(

GM1

Rcirc

)1/2

, (9.15)

ie.,
Rcirc

a
= (1 + q)

(

b1
a

)4

. (9.16)

Plavec & Kratochvil (1964) fitted to a good accuracy the distance b1 from the L1 point
to the center of the star 1 by the equation :

b1
a

= 0.500− 0.227 log q, (9.17)

so that equation (9.16) writes :

Rcirc

a
= (1 + q) (0.500− 0.227 log q)4 . (9.18)

Rcirc is called the circularization radius. It is always smaller than the Roche lobe radius
RL. The inflowing matter orbits the star inside the Roche lobe unless the radius of the
star is larger than the circularization radius which is never the case when the accreting
object is a compact object such as a neutron star.

Therefore, the flow of matter forms a ring of radius at the radius r = Rcirc to the
center of the accreting star. However, because of dissipative processes such as collisions,
shocks, viscosity, . . . , the matter in the flow is heated and radiates energy. It loses energy
and therefore moves to an orbit closer to the star. All in all, the infalling matter spirals
inwards the accreting star in the orbital plane and this results in the formation of an
accretion disc.
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If the accreting star is a compact object, the radius of the marginally stable orbit (see
section 6.4.5.5) may be larger than the radius of the star. In this case, the accretion disk
does not extend up to the surface of the star but up to the radius of the marginally stable
orbit. The magnetic field of the accreting object, which is very strong for neutron stars in
particular, has also an influence on the location of the innermost radius of the accretion
disk.

The details of the dynamics in the accretion disk is far beyond the scope of this thesis
(for more details see eg. Frank et al. (2002); Balbus (2007)).

9.1.4 Neutron star recycling

Consider a binary star system with at least one high-mass star (M > 10 M⊙). The
initially more massive star, star 1, forms a neutron star after a supernova explosion at
the end of its life (cf section 1.2). On the one hand, if the binary disrupts due to the
asymmetry of the explosion and/or the neutron star kick velocity received (∼ 100-1000
km s−1) at birth, it produces a neutron star with a large velocity and a runway star. On
the other hand, if the binary system survives the explosion, the eccentricity is likely to be
large. During ∼ 107 − 108 years, the neutron star spins down and may be observed as a
radio pulsar. When the energy is low enough, the radio emission stops. Meanwhile, the
companion star, star 2, evolves and eventually overflows its Roche lobe. An accretion
disk is formed and the neutron star accretes matter from its companion. An accreted
particle from the disk transfers its angular momentum to the mass-gaining star, ie. to a
neutron star. Therefore, the latter gains not only mass but is also spun-up. This process
is believed to recycle the radio-dead pulsars to millisecond pulsars.

9.2 Evolution of neutron star binaries

9.2.1 The population of millisecond pulsars

About 200 of the known millisecond radio pulsars are in a binary with a companion
star. The figure 9.3 shows the nature of their companion. One can roughly distinguish
four different populations (Tauris, 2011) :

• the fully recycled millisecond pulsars : they have a period P . 10 ms and are in
a binary mainly with helium white dwarf companions or ultra light companions
such as brown dwarfs;

• the mildly recycled millisecond pulsars, with 10 ms . P . 100 ms and with
carbon-oyxgen white dwarf or neutron star companions;

• the millisecond pulsars in globular clusters : the interactions and exchanges be-
tween the neutron stars and the other stars are believed efficiently produce mil-
lisecond pulsars;
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Figure 9.3: P − Ṗ of the ∼ 100 binary radio pulsars and the nature
of the companion star. He and CO WD stand for Helium and Carbon-
Oxygen White Dwarf and MS star for Main-Sequence star. Figure from
Tauris (2011) based on the ATNF Pulsar Catalogue (Manchester et al., 2005,
http://www.atnf.csiro.au/research/pulsar/psrcat).

• the pulsars in a binary with a main-sequence star. They have large spin periods
and are not recycled.

Note that there also exists isolated millisecond pulsars.
Figure 9.4 shows the orbital period Porb of the binary as a function of the mass of the

companion starM2. Depending on the location in the Porb−M2 plan, one can distinguish
classes of binaries that will be explained in the following. These correspond to differ-
ent evolutionary processes in binary systems that lead to the formation of millisecond
pulsars.

9.2.2 The different cases of Roche lobe overflows

Figure 9.5 shows the evolution of the radius of a 5 M⊙ star during its different evolu-
tionary stages :

i. in the long-lasting main sequence stage (point 1 to 2), hydrogen burns in the core
of the star;

http://www.atnf.csiro.au/research/pulsar/psrcat
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Figure 9.4: Orbital period Porb as a function of the companion massM2 for ∼ 200 binary
radio pulsars. The boundaries between the different classes are schematic. Figure from
Tauris (2011).

ii. in the red giant branch (RGB), there is no more hydrogen at the center (point 3)
and the hydrogen burning proceeds in a shell around the helium core. Then the
helium core ignites (point 4);

iii. when the star exhausts the helium in its core, the helium burns in a shell around a
carbon core and the star enters the asymptotic giant branch (AGB).

Following Tauris (2011), one can define three classes of Roche lobe overflow depend-
ing on the onset of the mass transfer. If the distance between the accretor and the donor
is such that overflow starts in the phase (i), (ii) or (iii) then it is called a case A, B or
C Roche lobe overflow, respectively. The cases B and C cover a large range of radii
and thus orbital periods according to figure (9.5). Once the mass transfer has started it
continues until the mass-donor star no longer fills its Roche lobe.

The endpoint of the evolution of a binary system depends on the initial mass of the
donor star and on the onset and nature of mass-transfer, as explained in the following.
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Figure 9.5: Evolution of the radius of a 5 M⊙ star. The different cases of Roche lobe
overflow are indicated. From Tauris & van den Heuvel (2006).

9.2.3 Neutron star X-ray binaries & millisecond pulsars

9.2.3.1 The different neutron star X-ray binaries

There are observational evidence that the X-ray binaries harbor not only neutron stars
but also black holes. However, only neutron stars binaries will be considered in the
following.

One can define three types of X-ray binaries depending on the mass of the compan-
ion starM2.

• High-Mass X-ray Binaries (HMXB) : M2 > 10 M⊙. The companion star is an
evolved (sub)giant star that is massive enough to have a strong stellar wind (Ṁ ∼
10−6 M⊙ yr−1) or to undergo atmospheric Roche-lobe overflow (figure 9.6). The
outgoing matter is accreted by the neutron star and powers a bright X-ray emis-
sion for 105 − 106 years. Ultimately, the companion star is massive enough to also
explode in a supernova and to form a second neutron star. If the binary survives
the second explosion, then a double neutron star system is formed with a partly
recycled millisecond pulsar. Nine such systems are known so far (Lorimer, 2008;
Kiziltan et al., 2010);

• Low-Mass X-ray Binaries (LMXB) : M2 . 1 − 2 M⊙. The neutron star accretes
matter (Ṁ ∼ 10−10 − 10−8 M⊙ yr−1) via the accretion disk that originates from the
companion star overflowing its Roche lobe, during ∼ 108 − 109 years (figure 9.6).
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Figure 9.6: Schematic representation of a HMXB and a LMXB. From Tauris & van den
Heuvel (2006).

At the end of the accretion phase, the companion becomes a white dwarf orbiting
a millisecond neutron star;

• Intermediate-Mass X-ray Binaries (IMXB) : 1 − 2 . M2 < 10 M⊙. The compan-
ion star in these systems is not massive enough to produce efficient wind that can
trigger strong X-ray emission. Therefore, the mass transfer originates from the
companion Roche lobe overflow. However, since the companion star is more mas-
sive than in a LMXB, the overflow lasts only ∼ 1000 years with an accretion rate
∼ 10−4 M⊙ yr−1. For such high accretion rate, the X-ray emission is likely to be
absorbed by the surrounding gas. Therefore, IMXBs are not easily observable.

9.2.3.2 The evolution of the Low-Mass X-ray Binaries

In a LMXB, the companion star of the neutron star has a mass . 1 − 2 M⊙. The subse-
quent evolution and the endpoint depend on the orbital period of the binary :

• for Porb 6 1 day, ie. for a close binary, the Roche lobe overflow starts while the
companion is still on the main-sequence. It is thus a case A overflow. A low-mass
helium white dwarf is then formed and the neutron star is spun-up to millisecond
periods. However the white dwarf may evaporate under the irradiation from first
the X-ray emission of the accreting neutron star and then the pulsar wind. This
leads either to the formation of a single millisecond pulsar, for example the Black
Widow pulsar B1937+21 (Fruchter et al., 1988), or to a system with ultra light,
substellar companions, such as planets as observed around the pulsar B1257+12
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(Wolszczan & Frail, 1992). If the binary survives, it has a short orbital period . 1
day;

• for Porb > 1 day, the system is a wide binary and therefore, the onset of the over-
flow requires a large increase of the radius of the companion. The star fills its
Roche lobe when it has evolved reaching the red giant branch. This a case B over-
flow and the result is a binary system composed of an helium white dwarf with a
mass 0.2 6 M2 6 0.46 M⊙ and a fully recycled neutron star, with a large range of
possible orbital periods ∼ 1− 1000 days.

These two scenarios are consistent with the figure 9.4 where millisecond pulsar bi-
nary systems originating from Low-Max X-ray Binaries are indicated, for the case A and
B Roche lobe overflows.

9.2.3.3 The evolution of the Intermediate-Mass X-ray Binaries

The companion star in a IMXB has a mass 1 − 2 ≤ M2 ≤ 10 M⊙. The three cases
of Roche lobe overflow are encountered in the IMXBs, which correspond to the three
groups indicated on the figure 9.4 :

• for Porb 6 2.5 day, a stable mass transfer is initiated by a case A overflow and lasts
∼ 107 years. The neutron star is therefore fully recycled and a Carbon-Oxygen
white dwarf, or an helium white dwarf if the system is very close, is formed. The
resulting binary system has an orbital period of 3− 20 days;

• for 2.5 6 Porb 6 10 days, for a companion star which has just left the main se-
quence, ie. for a case B overflow, most of the matter accreted by the neutron star
is ejected in a jet. This stabilizes the mass transfer but moderately spins up the
neutron star. This results in the formation a system with a carbon-oxygen white
dwarf and a partially recycled pulsar with 1 6 Porb 6 50 days;

• for Porb = 100 − 1000 days, ie. a wide system, a case C overflow starts when the
companion is on the asymptotic giant branch. This results in a short common
envelope phase where the companion stellar envelope engulfs the neutron star.
During this phase, the orbital period may be strongly reduced. The envelope is
then ejected and the neutron star is later recycled either by the wind or by a case
B overflow from the companion star. The result is a carbon-oxygen white dwarf
orbiting a partially recycled neutron star with a short orbital period (3− 20 days).

In conclusion, the end product of the evolution of a binary and the recycling of a
neutron star to millisecond periods depend on the mass of the companion star and on
the orbital period before the overflow starts. One should note however that modeling
the evolution of an X-ray binary is complex since many factors concerning the evolution
of the companion star, the mass-transfer process and its stability, the accretion of matter
onto the neutron star, . . . have to be taken into account all together.
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A model for the spin evolution of an accreting magnetized neutron star is presented
in chapter 10 and is applied to the study of the spin-up of neutron stars to millisecond
periods in chapter 11.
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Consider a binary system consisting of a young radio pulsar and a low-mass main-
sequence companion. As explained in the previous chapter, the neutron star evolves
independently of its companion at first and spins down by magnetic dipole braking
down to the period of a few seconds in few million years. Finally, it crosses the radio
pulsar death line and disappears as a pulsar (see also chapter 1.4).

In the recycling scenario, after several billion years, the low-mass companion enters
the red giant phase and fills its Roche lobe. An accretion disk is then formed and accre-
tion onto the neutron star starts. The binary system becomes a Low Mass X-ray Binary
(LMXB). During ∼ 108− 109 yrs, the accretion process increases the mass of the neutron
star, accelerate its rotation and induces its magnetic field decay.

The spin-up of an accreting neutron star can be modeled by a sequence of stellar con-
figurations with increasing mass and rotational frequency. This study may ultimately
enable to determine the mass that the neutron star has accreted to reach its current ob-
served millisecond period, within a reasonable time interval. Constraints may also be
put on the accretion rate and on the progenitor neutron star properties (mass, magnetic
field, equation of state, . . . )

The spin-up of an accreting neutron star was first modeled by Kluźniak & Wagoner
(1985) considering slowly rotating neutron stars configurations, based on the work by
Hartle (1967b). Cook et al. (1994) extended the model to stationary rigidly rotating neu-
tron stars. The influence of the magnetic field was first included by Burderi et al. (1999)
in a semi-analytical model based on the results by Cook et al. (1994).

Zdunik et al. (2002) studied the recycling of strange stars to millisecond period and
considered accretion from the innermost stable circular orbit (see also section 6.4.5.5).
They used stationary axisymmetric rigidly rotating neutron star configurations calcu-
lated by the mean of the Rotstar class in LORENE (for details, see section 6.6). They
did not include the influence of the magnetic field and of the accretion disk.

The last part of this thesis is in the continuation of Zdunik et al. (2002). This chapter
aims to provide a description of the model and formulas that are originally presented
in Bejger et al. (2011). The location of the inner boundary of the accretion disk, from
which accretion takes place, is calculated for a model of thin magnetized accretion disk
as described in section 10.2. Indeed, the accretion radius is moved from the radius
of the innermost stable orbit to a larger one by the neutron magnetic field. Moreover,
the accretion-induced magnetic field decay is modeled by an observationally-motivated
though simplistic prescription, detailed in section 10.3. The properties of the stationary
rotating configurations of neutron stars are summarized in section 10.4. Finally, section
10.5 presents a schematic view of the Evol code that is used to model the spin-evolution
of an accreting neutron stars.
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10.1 Spin-up modeling

Consider a neutron star of mass M , radius R, rotational period P , spin frequency f =
1/P , rotation frequency ωs = 2πf and surface magnetic field B. It has a total baryon
massMb.

10.1.1 Mass increase and accretion rate

Let ti be the instant when accretion starts. The increase of baryon mass ∆Mb(t) at a
given time t is :

∆Mb(t) =

∫ t

ti

Ṁb(t
′)dt′. (10.1)

where Ṁb(t) is the accretion rate at the time t as measured by a distant observer.
Since the evolution of the accretion rate is unknown, as a first approximation, Ṁb

can be considered as constant, so that ∆Mb(t) ≈ Ṁb(t− ti).
Observations do not provide a measurement ofMb but of the gravitational massM

(see also section 2.2.2.2). By definition the increase of the latter is :

∆M(t) =

∫ t

ti

Ṁ(t′)dt′. (10.2)

The two quantities∆M and∆Mb are related by the equation (see e.g., Friedman et al.
1988) :

dM = ΩdJ + utdMb, (10.3)

where J is the total angular momentum and ut the time component of fluid 4-velocity
as measured by a distant observer.

10.1.2 Angular momentum evolution

Assuming that the increase of the angular momentum of the star J is related to the
accreted mass, one can write :

dJ = xlltotdMb. (10.4)

Zdunik et al. (2002) considered accretion from the marginally stable orbit (the so-
called ISCO, section 6.4.5.5) and thus write :

ltot = lms, (10.5)

where lms is the specific angular momentum of a particle at the ISCO. In the new model
presented here, the radius r0 at which accretion takes place is calculated precisely for
a model of magnetized accretion disk based on the paper by Kluźniak & Rappaport
(2007), that includes both the angular momentum transfered to the star by the infalling
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matter l(r0) and the effect of the interaction between the magnetic field of the neutron
star and the accretion disk, lmag. Therefore, one writes ltot = ltot(Mb, f, B) ie.

ltot = l(r0) + lmag . (10.6)

The parameter xl (0 ≤ xl ≤ 1) is the fraction of ltot that is effectively transfered to the
star. In the following, we consider that xl ≃ 1, in accordance with recent numerical
simulations (Beckwith et al., 2008).

Therefore, for a star accreting at the rate Ṁb, the time evolution of the total angular
momentum J equation is :

dJ

dMb
= ltot (10.7)

Finally, the equation for the evolution of the accretion rate ∆M(t) is :

∆M(t) =

∫ t

ti

Ṁb(u
t + ltotΩ)dt

′. (10.8)

10.2 Accretion disk model

In the following the spin-up by accretion from a thin magnetized accretion disk is mod-
eled using the magnetic-torque disk-pulsar coupling presented in Kluźniak & Rappa-
port (2007) in Newtonian gravity. However this formulation is modified to include the
existence of the marginally stable orbit in General Relativity.

10.2.1 Magneto-hydrodynamic equation

Consider a steady thin axisymmetric magnetized disk around a neutron star having a
dipole moment aligned with its rotation axis. In the following, the index i ranges from
1 to 3 and we use the cylindrical coordinates (x1 = r, x2 = ϕ, x3 = z) and the Einstein
summation convention on repeated indices. We assume that the accretion disk is thin,
ie. H (r) /r ≪ 1 with H(r) the height of the disk at a distance r of the neutron star.

10.2.1.1 Mass conservation

The steady-state mass conservation equation reads :

∂i
(

ρvi
)

= 0 (10.9)

with ρ is the density and the fluid velocity components vi = (vr, vϕ, vz). Neglecting a
vertical outflow from the axisymmetric disc, one gets

1

r

∂

∂r
(rρvr) = 0 (10.10)
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and integrating over the thickness of the disk :

1

r

∂

∂r
(rΣvr) = 0 (10.11)

with Σ(t, r) =
∫ H

−H
ρ(r, t) dz. Therefore rΣvr is conserved and there is a constant inflow

of mass through each point of the disk. The accretion rate corresponding to this inflow
is :

Ṁ(r, t) = −2πrΣ(r, t)vr(r), (10.12)

since vr < 0.

10.2.1.2 Angular momentum transport

The steady-state Navier-Stokes equation is :

ρvi∂iv
j = −∂jP − ρ∂jΦ+ ∂it

ij (10.13)

with P the thermal pressure, ϕ the gravitational potential and tij the stress tensor. The
latter can be decomposed into two contributions :

tij = tijvis + tijMax (10.14)

with the tijvis the viscous stress-energy tensor and tijMax the Maxwell stress tensor :

tijMax =
1

4π

(

EiEj +BiBj − 1

2
(E2 +B2)δij

)

(10.15)

withB andE the magnetic and electric fields respectively and δij the Kronecker symbol.
In the non-relativistic part of the flow, E ∼ v/cB ≪ B and can therefore be neglected.

The ϕ-component of equation (10.13) reads (Tessema & Torkelsson, 2010) :

ρ
vr

r

∂

∂r
(rvϕ) =

1

r

∂

∂r
(rtrϕMax) +

∂

∂z
(tzϕMax) +

1

r

∂

∂r
(rtrϕvis) . (10.16)

From equation (10.15),

1

r

∂

∂r
(rtrϕMax) =

1

4π

1

r

∂

∂r
(rBrBϕ) , (10.17)

∂

∂z
(tzϕMax) =

1

4π

∂

∂z
(BzBϕ) . (10.18)

The ratio of the rϕ-component of the magnetic stress tensor over its zϕ-component is
∼
∣

∣

Br

Bz

∣

∣

(

H
r

)

≪ 1 if |Br/Bz| ≪ r/H which is valid for the small disk conductivities that
are encountered in this problem. Therefore the rϕ-component of the magnetic stress
tensor can be neglected.
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Integrating equation (10.16) over the thickness of the disc and multiplying by r, one
gets :

Σvr
∂

∂r
(rvϕ) =

r

4π
BzBϕ +

∂

∂r
(rT rϕ

vis ) (10.19)

where the magnetic field is evaluated at z = H and T ij
vis the height-integrated viscous

tensor.
Since vϕ = rΩ, with Ω the local orbital frequency of the disk material, the height-

averaged angular momentum equation is :

− Ṁ

4πHr

∂

∂r

(

rΩ2
)

= Γvis + ΓB, (10.20)

with

Γvis =
1

2H

∂

∂r
(rT rϕ

vis) , (10.21)

ΓB =
r

4πH
BzBϕ. (10.22)

10.2.1.3 Prescription for the azimuthal component of the magnetic field

Following Kluźniak & Rappaport (2007), a simple analytical model for the azimuthal
component of the magnetic field Bϕ at z = H is used :

Bϕ ≃ Bz

(

1− Ω

ωs

)

(10.23)

with Bz > 0. This prescription assumes that the magnetic field penetrates the accretion
for a large range of radii. The magnetic torque then vanishes when Ω = ωs. For large
distances, Bϕ ∼ Bz, which ensures the stability and equilibrium of the field above the
disk plane (Rappaport et al., 2004).

10.2.1.4 Height-averaged momentum transport equation

Since the magnetic dipole is assumed to be aligned with the rotation axis, Bz = µ/r3.
Therefore, with the equations (10.23) and (10.20) and since l = rΩ2, one gets the

height-averaged momentum transport equation :

− Ṁ

4πHr

∂

∂r

(

rΩ2
)

=
1

2H

∂

∂r
(rT rϕ

vis ) +
1

4πH

µ2

r5

(

1− Ω

ωs

)

. (10.24)

10.2.2 Inner radius of the accretion disk

Kluźniak &Rappaport (2007) assume that the viscous torque vanishes at a certain radius
r0 and that the disk is Keplerian for r ≥ r0. At the radius r0, the angular momentum is
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removed by the high magnetic stresses at the rate needed to sustain the accretion rate.
Since the magnetic stresses increase inward for r < r0, the viscous torque also vanishes
in this region.

Therefore the equation for r0, the inner radius of the accretion rate, reads :

dl
dr

= − µ2

Ṁr4

(

1− ω−1
)

, (10.25)

where l is the specific angular momentum of a particle of the accretion disk and ω =
ωs/ΩK(r0) is the fastness parameter with the Keplerian angular frequency

ΩK(r) = (GM/r3)1/2. (10.26)

Defining the corotation radius rc as the radius where the Keplerian angular frequency
is equal to the rotation frequency of the central star, one can write :

rc =

(

GM

ω2
s

)1/3

. (10.27)

In particular,

ω = (r0/rc)
3/2 . (10.28)

10.2.3 Relativistic specific angular momentum

The calculations by Kluźniak & Rappaport (2007) are restricted to the non-relativistic
limit and, in particular, do not include the existence of the marginally stable orbit of
radius rms. The model is valid for r0 ≫ rms.

Since the relativistic effects can be important for rotating neutron stars, in particular
near the mass-shedding limit and for massive stars, the original formalism needs to
be modified. Therefore a relativistic formula for the specific angular momentum l(r0)
transfered by a particle accreted at r0 is used.

Bejger et al. (2010) reported a simple analytical formula approximating the specific
angular momentum for a particle in circular orbit around a neutron star. It is checked
for several equations of state and for rigidly rotating axisymmetric and stationary con-
figurations of neutron stars in General Relativity and describes exact results with a high
accruracy. By this method, the existence of the marginally stable orbit is included. They
got :

l(r) = r
v

√

1− v2/c2
(10.29)

with

v =
r

√

1− 2GM/(rc2)

(

√

GM

r3
− 2GJ

r3c2

)

. (10.30)
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One defines a non-dimensional function fms by :

fms(r) =
2

Ωr

dl
dr
. (10.31)

In the Newtonian framework as described in Kluźniak & Rappaport (2007), fms = 1.
Equations (10.29) and (10.30) give :

fms(r0) =
1− α/r̄3/2

(1− v2/c2)3/2
√

1− 1/r̄

(

r̄ − 2

r̄ − 1
− 2

v2

c2
+

3α

r̄3/2 − α

)

, (10.32)

with α = Jc/(
√
2GM2), β = rc/rs and r̄ = r0/rs = βω2/3 with rs = 2GM/c2 the

Schwarzschild radius. The radius of the marginally stable orbit rms corresponds to

dl
dr

∣

∣

∣

∣

r=rms

= 0 ie. fms(rms) = 0. (10.33)

Finally, the radius of the inner boundary of the accretion disk r0 is given by :

1

2
fms(r0) =

(

rm
r0

)7/2
(
√

r3c
r30

− 1

)

, (10.34)

or
1

2
fms(r0) =

ξ7/2

ω10/3

(

1− ω−1
)

(10.35)

with the magnetospheric radius, for which the magnetic pressure balances the pres-
sure of the matter accreted at the rate Ṁb (Elsner & Lamb, 1977) :

rm = (GM)−1/7 Ṁ
−2/7
b µ4/7 (10.36)

and
ξ =

rm
rc

. (10.37)

Note that in the seminal model for magnetized accretion disk by Ghosh & Lamb
(1979), ξ has a fixed value.

10.2.4 Magnetic torque

According to equation (10.24), the total magnetic torque acting on the star is :

τB = −
∫ ∞

r0

µ2

r4
(

1− ω−1
)

dr (10.38)

= − µ2

9r30

(

3− 2

√

r3c
r30

)

. (10.39)
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10.2.5 Total angular momentum equation

The right-hand side of equation (10.6) reads :

ltot(Mb, f, B) = l0 +
τB

Ṁb
(10.40)

where l0 = l(r0) describes the transfer of specific angular momentum by the accreted
matter, calculated from equation (10.29) and τB the magnetic torque given in equation
(10.39). So

lmag = − µ2

Ṁb9r
3
0

(

3− 2

√

r3c
r30

)

. (10.41)

Finally, the equation for the evolution of the total angular momentum is :

dJ

dMb

= l0 −
µ2

9r30Ṁb

(

3− 2

√

r3c
r30

)

(10.42)

with µ = BzR3. In the following, Bz = Bp the polar surface magnetic field, ie. :

µ = BpR
3 . (10.43)

According to equation (10.42), the spin evolution of the neutron star results from the
interplay between the spin-up resulting from the accreted matter and the spin-down
caused by the magnetic field torque.

An additional equation for the evolution of the magnetic field of the star under the
influence of the accreted matter is needed.

10.2.6 Degeneracy parameter

Note that the set of equations (10.34) and (10.42) depends only on the quantity :

κ = B2/Ṁ, (10.44)

via the magnetospheric radius in equation (10.36) and not on B and Ṁ separately.
Therefore, the model is degenerate with respect to the constant κ.

This property is extensively used in the numerical simulations presented in the next
chapter.

10.3 Magnetic field evolution of accreting neutron stars

The P − Ṗ diagram (cf chapter 1.4) clearly shows that there exists two distinct popula-
tions of neutron stars : the "normal" ones with B ∼ 1011 − 1013 G and the millisecond
with a magnetic field about four times weaker : B ∼ 108 G.
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Bhattacharya et al. (1992) reported that the observations of "normal" pulsars are con-
sistent with no magnetic field decay or decay over the time scale higher than the one
needed for a neutron star to stop being a pulsar, ie. ∼ 108 yr.

10.3.1 Accretion-induced magnetic field decay

While the normal pulsars are isolated objects, most of the millisecond pulsars are in
binary systems with a degenerate companion and thus interacted with their companion
star in the past.

Different models propose to explain the magnetic field decay at the origin of the low
field in millisecond pulsars (Colpi et al., 2001) :

• decay of the crustal magnetic field :
the Ohmic decay of the magnetic field is due to both the heating of crust, resulting
from the accretion, that reduces the conductivity and to the transport of matter
and currents deeper into the crust toward the core. The core may either expel the
crust magnetic field (Geppert & Urpin, 1994) or assimilate and retain it (Konar &
Bhattacharya, 1997);

• screening of the magnetic field by accreted matter :
Bisnovatyi-Kogan & Komberg (1974) originally suggested that the magnetic field
decays since it is buried and screened by the accreted matter. The screening may
happen either within the neutron star, the field being buried under a mountain
of accreted plasma channelled onto the magnetic poles (Payne & Melatos, 2004)
or within the magnetosphere due to the electric current of the infalling plasma
(Lovelace et al., 2005; Wette et al., 2010);

• spin-driven scenario :
the neutron superfluid vortices migrate in the outer crust during the spin-down
and drag the proton magnetic flux tubes because of the strong interpinning that
exists between them (Srinivasan et al., 1990; Konar & Bhattacharya, 1999). This
results in the expulsion of the magnetic flux from the superconducting core and in
the decay of the magnetic field due to the ohmic dissipation in the crust.

The evolution of the magnetic field in accreting neutron stars is the subject of active
research but, so far, no scenario with precise microphysics and magneto-hydrodynamic
modeling has emerged.

Therefore, in the following, simple phenomenological and observationally-motivated
models will be adopted.

10.3.2 Model of magnetic field decay
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Taam & van den Heuvel (1986) noticed a possible inverse correlation between the polar
surface magnetic field Bp and the estimated amount of accreted material for a set of
LMXBs of different age, later confirmed by van den Heuvel & Bitzaraki (1995).

Shibazaki et al. (1989) proposed the following ad-hoc formula for the evolution of the
magnetic field :

Bp(∆Mb) =
Bi

1 + ∆Mb/mB
, (10.45)

where Bi is initial (ie. pre-accretion) magnetic field, Bp(∆Mb) the magnetic field after
the neutron star accreted ∆Mb = Ṁbt and mB a constant. The value mB ∼ 10−4 M⊙ is
consistent with the observed or estimated P,B and∆M of binary and isolated millisec-
ond radio pulsars and the prescription (10.45) reproduces the inverse correlation noted
by Taam & van den Heuvel (1986).

The equation (10.45) is stated for a subset of accreting neutron stars and is obviously
too simplistic to describe the magnetic-field decay in all of them. Wijers (1997) showed
in particular that a decay lawBp ∝ 1/∆Mb is inconsistent with a broader set of available
data on accreting neutron stars in both X-ray binaries and recycled millisecond pulsars
and suggests an additional dependence on the accretion rate.

Wijers (1997) proposed another observationally-motivated formula :

Bp(∆Mb) =
Bi

(1 + ∆Mb/mB)
2 , (10.46)

but with a lower value ofmB ∼ 10−2 M⊙.
Kiel et al. (2008) and Osłowski et al. (2011) used an exponential decay for Bp in their

population synthesis codes :

Bp = (Bi − Bmin) exp(−∆Mb/mB) +Bmin, (10.47)

with Bmin the assumed minimal residual magnetic field. Osłowski et al. (2011) found
that the values Bmin = 108 G andmB = 0.05 M⊙ are consistent with the observed P − Ṗ
distribution.

Figure 10.1 compares the evolution of the magnetic field with the amount of accreted
matter ∆Mb for the three magnetic field prescriptions : equation (10.45) from Shibazaki
et al. (1989), equation (10.46) fromWijers (1997) and equation (10.47) from Osłowski et al.
(2011). The accretion-induced decay is more pronounced for the Shibazaki et al. (1989)
prescription, but asymptotically, for a large accreted mass, the three prescriptions give
the same value of the magnetic field. In fact the parameters of each of the formulas have
been chosen so that the final value for the magnetic field after accretion of few tens of
solar masses equals the typical observed magnetic field for millisecond pulsars : 108 G.

Despite its limitations, the prescription (10.45) proposed by Shibazaki et al. (1989)
will be adopted in the following. Nevertheless, the results with the prescriptions (10.46)
and (10.47) will be compared to assess the dependence of the results on the model of
accretion-induced magnetic field decay.
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Figure 10.1: Variation of the magnetic field Bp with the amount of accreted matter ∆Mb

for the three different magnetic field prescriptions. See text for details.

10.4 Models of neutron stars

The detailed modeling of the spin-up of an accreting neutron stars requires the knowl-
edge of the structure of the neutron star. The latter is determined by the equation of
state (EoS) (see also section 2.1.1.1). Moreover, the effect of rotation on this structure
should be taken into account (cf. section 6.7).

10.4.1 Equations of state

Three equations of state based on different microphysical models are used. For the two
first ones, the matter is assumed to be only composed neutrons, protons, electrons, and
muons in β-equilibrium :

• non-relativistic equation of state by Douchin & Haensel (2001) - DH in the follow-
ing. It is based on the SLy4 nuclear interaction and offers a unified description of
the core and the crust. It has a maximum massMmax = 2.05M⊙.

• model A18 + δv + UIX∗ by Akmal et al. (1998) - APR in the following. Some rela-
tivistic corrections are included in this non-relativistic model. Themaximummass
isMmax = 2.21M⊙.

• relativistic equation of state from Bednarek et al. (2011), with minor changes - BM
in the following. It includes a high-density softening due to the appearance of
hyperons. The maximum massMmax is 2.03M⊙.
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Figure 10.2: Mass-radius diagram for the three equations of the state considered in this
model together with PSR J1614-2230 mass constraint.

Figure 10.2 shows the mass-radius diagram for the equations of state. All the three
of them are consistent by the recent mass measurement of PSR J1614-2230 by Demorest
et al. (2010)M = 1.97± 0.04 M⊙ (cf section 11.2.2).

10.4.2 Rotating neutron star configurations

The spin evolution of an accreting neutron star is described by a sequence of stationary
rotating configurations of neutron stars with increasing baryon mass, resulting from the
accretion of matter, and varying spin frequency, depending of the torque acting on the
neutron star and on the angular momentum transfer of the infalling matter.

In order to take into account the effects of rotation on the structure of neutron stars,
the models of rotating neutron stars are computed with the Nrotstar code based on
the LORENE library (see also section 6.6). For a given central enthalpy hc, the baryon
mass MB, gravitational mass M , equatorial radius Requ, total stellar angular momen-
tum J of neutron stars with increasing rotational frequency are computed, up to the
mass-shedding limit with the frequency fK. The evolution of the accreting star, ie. the
changes of the angular momentum J and of the baryon mass Mb are calculated using
the equation 10.42.

10.5 Block diagram of the Evol code

The figure 10.3 schematically shows the structure of the Evol code, developed in col-
laboration with Michał Bejger, Paweł Haensel and Leszek Zdunik.



238 CHAPTER 10. MODEL OF ACCRETINGMAGNETIZED NEUTRON STARS

For a given equation of state and magnetic field prescription, the code determines
the parameters, including the magnetic field, of a neutron star rotating at a given fmax.
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Ṁ, r0, rc

)

and ltot;

• ∆Mb = M step
acc Jk/ltot.

Increment :
• Mk+1

b = Mk
b +∆kMb;

• Mk+1
acc = Mk

acc +∆kMb;
• Jk+1 = Jk +∆kMbltot.

Calculate :

• hk+1
c

(

Mk+1
b , Jk+1

)

and fk+1
(

Mk+1
b , Jk+1

)

;

• the stellar parameters via the EoS :
Rk+1

equ , M
k+1;

f = fk+1
max or/and fk+1 = fK ?

End of the program.

Yes

k = k + 1

No

Figure 10.3: Schematic view of the Evol code. M step
acc and fmax are respectively the given

step in the accreted mass and the given maximum rotational frequency of the accreting
star. k is the step in the calculation.
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The model for the evolution of the rotational frequency of accreting neutron stars
presented in the previous chapter enables to study in details the recycling process that
currently observed millisecond pulsars underwent. Constraints on the progenitor neu-
tron star and on the accretion rate are derived for the pulsar J1903+0327 which has an
unusually high eccentricity (section 11.1) and for the lowest and highest millisecond
pulsars in a binary in the section 11.2. Further application to the formation of submil-
lisecond pulsars is presented in section 11.3.

11.1 PSR J1903+0327

This section aims to show the direct application of the model presented in the previ-
ous chapter to the pulsar J1903+0327. At the beginning of my Ph.D. studies in 2009, it
was the most massive observed Galatic millisecond pulsar with an accurately measured
mass ofM = 1.667± 0.021M⊙. However, the pulsar J1614-2230 has been reported with
a higher mass : M = 1.97± 0.04 M⊙ in 2010 (Demorest et al., 2010).

The mass of the pulsar J1903+0327 and its magnetic field, via its period and period
derivative (equation 1.21), are known. Constraints on the progenitor neutron star and
on the average accretion mass can be put. The model, approach and results are pub-
lished in Bejger et al. (2011).

11.1.1 An eccentric millisecond pulsar

The pulsar J1903+0327 was discovered with a 2.15 ms period while performing a pulsar
survey of the Galactic plane with Arecibo radiotelscope in October 2005 (Champion
et al., 2008). The highly eccentric binary orbit of the pulsar was later noticed in follow-
up observations with Arecibo, Green Bank andWesterbrook Telescopes. Measurements
of the advance in periastron and the detection of the Shapiro delay in the ∼ 1.5 years
timing of the pulsar constrained the mass of the pulsarM1 = 1.74 ± 0.04 M⊙ and of its
companion M2 = 1.051 M⊙. Nevertheless, the short span of the timing did not enable
to take into account the proper motion of the pulsar in these measurements, though it
may affect them.

The mass of the companion suggests that it may be a neutron star, a white dwarf
or a main-sequence star. No pulsations from the companion were detected in Arecibo
observations. A main-sequence star, a possible companion of the pulsar, was identified
with the optical and ground-accessible infrared Gemini North telescope in 2007. No
eclipse of the pulsar by the stellar wind of the main-sequence or strong irradiation of
the companion by the pulsar relativistic wind were detected in multifrequency observa-
tions. Champion et al. (2008) suggested a triple system scenario : a non-observed white
dwarf may be in a close binary with the neutron star, the main-sequence star being in a
much wider orbit around this inner binary.

Freire et al. (2011) presented new observations of the binary. The optical observations
with the Very Large Telescope confirmed that the companion of the pulsar is the main-
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Parameter Value
Distance d (kpc) 6.4± 1.0
Spin period P (ms) 2.15
Spin frequency f (Hz) 465
Spin period derivative Ṗ (s s−1) 1.88× 10−20

Dipolar magnetic field B (G) 2.0× 108

Orbital eccentricity e 0.44
Orbital inclination angle 78(2)◦

Orbital period Pb (days) 95.17
Pulsar massMPSR (M⊙) 1.667(21)
Companion star Main-sequence star
Companion massMC (M⊙) 1.029(8)

Table 11.1: Parameters of PSR J1903+0327 with 1 − σ uncertainties from Freire et al.
(2011). The mass measurements are given with 99.7% confidence limits. Bsurf is calcu-
lated with the formula (1.21) for a neutron star with R = 10 km and I = 1045 g cm−2.

sequence star, with an age ∼ 4 − 7 Gyr. This rules out the triple system scenario. The
new and longer (∼ 4-years) radio timing of the pulsar with Arecibo and Green Bank
radiotelescopes gave more precise measurements of the binary properties, as presented
in table 11.1. In fact the advance in periastron together with a very clear Shapiro delay
were detected. In particular, the mass of the pulsar is 1.67 M⊙. Stellar winds or tidal
forces acting on the companion are negligible.

On the one hand, PSR J1903+0327 has period and period derivative that are typi-
cal of a millisecond pulsar. On the other hand, the large orbital eccentricity and the
main-sequence companion of this pulsar located in the Galactic plane are not consistent
with the conventional binary evolution scenarios presented in the chapter 9 making PSR
J1903+0327 a puzzling pulsar.

11.1.2 Formation scenarios

Four different scenarios were presented so far to explain the origin of PSR J1903+0327
systemwith amillisecond spin period but a large orbital eccentricity and amain-sequence
companion.

11.1.2.1 Rapid rotation at birth

Champion et al. (2008) proposed that the neutron star was not recycled. It was born
spinning rapidly in a core-collapse supernova in a binary system in the Galactic disk,
with a main-sequence companion.

According to Liu & Li (2009), the supernova kick made the orbit strongly eccen-
tric. The new-born neutron star underwent hyperaccretion from the fallback disk with
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a mean rate of ∼ 10−4 M⊙ yr−1 during the supernova. This spun up the pulsar to a
frequency of 465 Hz and resulted in the decay of the magnetic field to its current value
∼ 108 G. The accretion then stopped and the radio emission started.

Nevertheless, as noted by Champion et al. (2008); Freire et al. (2011); Portegies Zwart
et al. (2011), this scenario is really unlikely. In fact, the spin period of the pulsar, its
low magnetic field, its wide orbit and its high mass are typical of a millisecond pulsar,
which are thought to originate from a normal neutron star that accreted matter from a
companion. No pulsar with these properties was observed in the∼ 50 young supernova
remnants.

11.1.2.2 Formation in a globular cluster and ejection

In globular clusters, the interactions between the neutron stars and the other stars ef-
ficiently produce millisecond pulsars and, for a fraction of them, in eccentric binaries.
Therefore, Champion et al. (2008) proposed that the pulsar was spun-up in a globular
cluster. The star that spun-up the neutron star was exchangedwith amain sequence star
with an eccentric orbit by the stellar interactions in the cluster. But there is no known
globular cluster in the vicinity of the pulsar and no new globular cluster was detected.
Therefore the same interaction that exchanged the companion must have ejected the
binary system from the globular cluster into the Galactic plane.

This scenario is also unlikely. Freire et al. (2011) simulated the present and past
trajectory of the binary in the Galaxy and concluded that the binary always lay near
the Galactic plane although most of the globular clusters reside outside of this plane.

11.1.2.3 Hierarchical triple system

As suggested byChampion et al. (2008), the pulsarmay be in a hierarchical triple system.
The inner binary evolves independently of the third star : the pulsar was spun up by its
companion leaving a recycled pulsar and a white dwarf in a wide orbit, which was not
detected. The third star in the outer binary is the main sequence star that is observed.
The Kozai resonance (Kozai, 1962) between the inner and outer binaries caused the high
orbital eccentricity of the pulsar.

Freire et al. (2011) ruled out this scenario. In fact, optical observations confirmed that
themain sequence star is the companion of the pulsar, consistently with the radio timing
of the pulsar. This exclude the existence of an inner binary composed of the pulsar and
a white dwarf. Kozai resonance in a hierarchical triple system leads to a exponential
growth of the eccentricity (Gopakumar et al., 2009), which is also not consistent with the
radio timing in Freire et al. (2011) which shows that the eccentricity is time-independent.

11.1.2.4 Tertiary system with two main-sequence stars

This scenario was recently proposed by Freire et al. (2011); Portegies Zwart et al. (2011).
Consider a tertiary system composed of a massive star and two main-sequence stars of
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different masses. The massive star collapses and gives birth to a pulsar but the tertiary
system is left bound. The initially more massive main sequence star evolves and spins
up the pulsar to millisecond periods in a Low Mass X-Ray binary. This star is then
removed to the system. This may originate from :

• the ablation of the star by the neutron star radiation. Such a phenomena is ob-
served in the Black Widow PSR B1957+20 binary, where the neutron star radiation
reduced the companion mass to 0.025 M⊙ (Fruchter et al., 1988; Kluzniak et al.,
1988). Nevertheless, the time scale for this ablation can be longer than the Hubble
time (Levinson & Eichler, 1991).

• the ejection of the donor star from the system because of chaotic 3-body interac-
tions (Freire et al., 2011). The observed 1.03 M⊙ main-sequence star is then the
third member of the tertiary system. Portegies Zwart et al. (2011) studied the evo-
lution and dynamics of a tertiary system in this scenario. The triple system may
become eventually dynamically unstable due to the mass transfer from the donor
star to the neutron star. This results in either a single millisecond pulsar, if the
latter is ejected or in a binary system such as J1903+0327. The observation of a
low-mass main-sequence star orbiting a low-mass X-ray binary would strengthen
this scenario.

Only the last of the aforementioned scenarios is not ruled out by the observations
and properties of PSR J1903+0327 binary, but it lacks solid quantitative basis. Never-
theless, PSR J1903+0327 has been clearly recycled to millisecond period after accreting
from a companion star. This spinning-up phase is studied in the following section.

11.1.3 Results

In the following, the model that is presented in chapter 10 is applied to the study of the
spin-up due to accretion of the progenitor neutron star of PSR J1903+0327.

If not stated otherwise, the figures show the results obtained for the equation of state
by Douchin & Haensel (2001) -DH. In what follows, the magnetic field Bp is denoted by
B and the spin frequency by f .

After discussing the spin evolution of an accretion neutron star, the importance of the
relativistic effects and the dependence of the model on the magnetic field prescription
are assessed. Then by imposing step by step the final spin frequency, mass andmagnetic
field to be equal to the ones of PSR J1903+0327, evolutionary tracks are calculated and
the properties of the progenitor neutron star of the pulsar are determined together with
constraints on the average accretion rate and the equation of state.

11.1.3.1 Spin evolution during accretion

The figure 11.1 shows, for a constant accretion rate Ṁ = 10−9 M⊙/yr, the evolution of
the rotational frequency of the pulsar as a function of the accretion time or equivalently
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Figure 11.1: Spin frequency evolution for
initial spin frequencies f = 0 and 50Hz and
for initial magnetic fields Bi = 1011 G and
1012 G as a function of the accreted mass
(upper axis) or time (lower axis) calculated
for constant accretion rate Ṁ = 10−9 M⊙/yr.
Note the logarithmic scale on the x-axis.

Figure 11.2: Spin frequency evolution for
initial frequencies f = 0 and 50 Hz as a
function of stellar mass of the accreting neu-
tron star. Three different values of the ac-
cretion rate (in M⊙/yr) for the initial mag-
netic fields Bi = 1012 G (solid line), 1011 G
(dashed line) are shown.

of the accreted mass. The initial mass isM = 1.4 M⊙ and the initial frequency is set to
fi = 0Hz and 50Hz which corresponds to a typical frequency expected for newly-born
pulsars (Faucher-Giguère & Kaspi, 2006) and the initial magnetic field to Bi = 1012 G
and 1011 G.

The configurations with non-zero initial frequencies undergo spin-down before spin-
up. In fact, when accretion starts, the magnetic torque dominates over the material
torque resulting from accretion because of the high value of the magnetic field. There-
fore the neutron star spins down as shown in equation (10.42). Then, the accretion-
induced decay of the magnetic field reduces the magnetic torque and the star under-
goes a spin-up phase. The minimal value of the spin frequency corresponds to the exact
balance between the angular momentum l0(r0) at the accretion disk edge r0 and the
magnetic torque.

For Bi ∼ 1012 G, the spin-down dominates the rotational evolution for ∼ 103 yrs be-
fore the spin-up starts. Since, according to equation (10.42), the magnetic torque varies
withB2, the braking time scale is two orders of magnitude smaller forBi = 1011 G. After
the braking phase, for a given value of the initial magnetic field, the spin evolution does
not depend on the initial frequency. The amount of accreted material varies strongly
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Figure 11.3: Spin frequency evolution for the three prescriptions for the accretion-
induced decay of the magnetic field, with Bi = 1012 G and Ṁ = 10−9 M⊙/yr.

with the strength of the initial magnetic field. Comparing two initial magnetic field
configurations, a neutron star with a lower magnetic field is spun-down for a longer
time but it undergoes a faster spin-up since its magnetic torque becomes smaller faster.

In the figure 11.2 is plotted the rotational frequency as a function of the mass of
the accreting neutron star for two initial frequency fi = 0 and 50 Hz, three different
accretion rates : Ṁ = 10−9, 10−10 and 3 × 10−11 M⊙/yr and two initial values for the
magnetic field Bi = 1011 and 1012 G.

Since, as figure 11.1 shows, the spin-up time scale is by many order of magnitude
longer than the braking time scale, evolutionary tracks with different initial frequen-
cies are indistinguishable. For Bi = 1012 G, for accretion rates lower than Ṁ = 3 ×
10−11 M⊙/yr, the instability with respect to axisymmetric perturbations is reached be-
fore the neutron star is spun-up to 465 Hz.

For a given initial magnetic field, a neutron star with a lower accretion rate needs to
accrete more mass to reach the rotational frequency of 465 Hz. In agreement with the
previous figure, the accretion rates being equal, configurations with a lower magnetic
field accrete less mass to reach a given rotational frequency and therefore are recycled
faster.

11.1.3.2 Effect of the magnetic field prescription

Figure 11.3 shows the spin evolution for the three different magnetic field decay pre-
scriptions presented in section 10.3, for Bi = 1012 G and Ṁ = 10−9 M⊙/yr.
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Figure 11.4: Mass-radius relation for accreting stars with Mi = 1.4 M⊙ spun-up to the
frequency of 465 Hz. The solid black curve denotes static configurations. Evolutionary
tracks (arrows mark the direction of evolution) correspond to the following initial pa-
rameters (Bi [G], Ṁ [M⊙/yr]) : a: (1012, 3× 10−11), b: (1012, 10−10), c: (1012, 10−9), d: (1011,
10−11), e: (1011, 10−9).

The accreted mass and the time needed to spin-up the neutron star to f = 465 Hz
appears to be almost independent of the magnetic field prescription. The spin-up phase
starts earlier for the Shibazaki et al. (1989) prescription, in agreement with the figure 10.1
that shows that the accretion-induced decay is more pronounced for the latter. How-
ever, since the value of the magnetic field for a large accreted matter is chosen to be
the same for the three prescriptions, the differences between them become negligible as
more and more mass is accreted. Therefore, the results of the model presented here-
after are expected to be similar for the three models of magnetic field accretion-induced
decay.

11.1.3.3 Final frequency f = 465 Hz

The figure 11.4 shows the mass-radius relation of an accreting neutron star for different
values of the accretion rate Ṁ and of the initial magnetic field Bi. The initial mass is
fixed toMi = 1.4 M⊙ and each curve ends at the final frequency, f = 465 Hz.

In agreement with the figures 11.2 and 11.1, the neutron star accretes more matter
to reach to final frequency f = 465 Hz when the accretion rate is smaller, for a given
magnetic field.

Since the model is degenerate with respect to the quantity κ = B2/Ṁ , introduced in
section 10.2.6, the tracks c and d coincide since κc = κd.
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Figure 11.5: Final magnetic field Bf as a
function of the gravitational mass M for
configurations rotating at f = 465 Hz with
DH equation of state for different accretion
rates.

Figure 11.6: Final magnetic field Bf versus
gravitational mass M for a star rotating at
f = 465 Hz, with an accretion rate of Ṁ =
3 × 10−10 M⊙/yr for the different equations
of state.

The figure 11.5 shows the variation of the final magnetic field with the mass of the
neutron star for a final frequency of 465 Hz and for different accretion rates. Each curve
corresponds to a given initial mass (or initial central density) and along it the magnetic
field increases upward. The black error-bar shows the the 3 − σ measurement of the
mass of PSR J1903+0327 : M = 1.667± 0.021 M⊙.

With the equation (10.44), one can estimate the maximum value of a lower bound on
the accretion to reach the final value Bf = 2 × 108 G andMf = 1.67 M⊙. According to
figure 11.5, for DH equation of state, for Ṁ = 10−10 M⊙/yr and M = 1.67 M⊙, Bmax =
1.16× 108 G. Therefore, from equation (10.44) :

Bmax(Ṁ) = Bmax

(

10−10 M⊙/yr
)

(

Ṁ

10−10M⊙/yr

)1/2

. (11.1)

Since Bf < Bmax, one gets :

Ṁ >

(

Bf

Bmax (10−10 M⊙/yr)

)2
(

Ṁ

10−10M⊙/yr

)

= 3× 10−10 M⊙/yr. (11.2)

For this lower limit on the accretion rate : Ṁ = 3 × 10−10 M⊙/yr, figure 11.6 shows
the dependence of final magnetic field as a function of the mass of the neutron star
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Figure 11.7: Final magnetic field Bf as a function of the initial gravitational massMi for
a star with final parameters Mf = 1.67 M⊙ and f = 465 Hz, for the three equations of
state and for the accretion rates Ṁ = 10−10 and Ṁ = 10−9 M⊙/yr.

on the three different equations of state : DH from Douchin & Haensel (2001), APR
from Akmal et al. (1998) and BM from Bednarek & Manka (2009). By construction, the
results for the DH equation of state are marginally consistent with the requirements that
Mf = 1.67M⊙ and Bf = 2× 108 G. The differences between the APR and DH equations
of state are small, but the BM one gives significantly lower values for the final magnetic
field thus requires a higher accretion rate to have Bf = 2 × 108 G. In fact, for a given
mass, the stellar moment of inertia I(M) is 25% higher for the BM equation of state than
for the DH andAPR ones, since BM is stiffer. Therefore, to reach to same final frequency,
a larger angular momentum is necessary and thus a larger accreted mass. Nevertheless,
the latter induces a larger decay of the magnetic field. Therefore, configurations with
the BM equation of state have a smaller Bf compared to the ones obtained for APR and
DH equations, for a given final frequency.

11.1.3.4 Final f = 465 Hz and M = 1.67 M⊙

The figure 11.7 shows the variation of the final magnetic fieldBf with the initial gravita-
tional massMi for configurations with a final frequency f = 465Hz andMf = 1.67M⊙.
Results are shown for accretion rates of Ṁ = 10−9 and 10−10 M⊙/yr and for the three
equations of state.
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Neutron star model B (×108 G)
Simple model 2.0
DH 1.72
APR 1.83
BM 1.25

Table 11.2: Values of the surface magnetic field B of PSR J1903+0327 calculated with
equation (1.21) for the three equations of state considered in this study. The "simple
model" considers that R = 10 km and I = 1045 g cm−2.

According to equation (10.44) :

Bf

(

10−9M⊙/yr
)

= Bf

(

10−10M⊙/yr
)

(

10−9

10−10

)1/2

, (11.3)

=
1√
10
Bf

(

10−10M⊙/yr
)

. (11.4)

This scaling is effectively observed in the figure 11.7.
In agreement with the figure 11.6, the values of the final magnetic field Bf for the

BM equation of state are smaller compared with the two other equations of state, for a
given mass.

11.1.3.5 From a progenitor NS to PSR J1903+0327 : f = 465 Hz, M = 1.67 M⊙ and
B = 2× 10

8 G

The final values of the frequency, mass andmagnetic field are now all fixed to the values
that are been obtained from radio observations for the pulsar J1903+0327. This approach
enables to constrain the parameters of the progenitor neutron star and the accretion rate.

The value of magnetic field B presented in the table 11.1 is calculated with the for-
mula (1.21) with the approximation that the neutron star has a radius R = 10 km and
a moment of inertia I = 1045 g cm−2. However, for consistency, the exact value of B
has to be accurately calculated for each equation of state for a 1.67 M⊙ neutron star. The
results are presented in the table 11.2.

The figure 11.8 shows spin-up tracks leading to PSR J1903+0327 configuration for
the DH equation of state with a final magnetic field value consistently calculated : B =
1.72 × 108 G, for selected sets of mean accretion rate Ṁ and initial magnetic field Mi.
The dotted line shows the tracks when the effects of the magnetic field on accretion is
neglected as in Zdunik et al. (2002), ie. when accretion takes place from the marginally
stable orbit.

For the non-magnetic model, only ≃ 0.1 M⊙ is needed to reach the observed fre-
quency of 465 Hz and the progenitor neutron star has a high mass of 1.58 M⊙. The
spin-up when the magnetic field is neglected is more efficient than when it is taken into
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Figure 11.8: Spin-up tracks of an accreting neutron star with the final parameters f =
465 Hz, M = 1.67 M⊙ and B = 1.72 × 108 G, for the DH equation of state. Curves are
labeled by the average accretion rate (in M⊙/yr) and the initial value of the magnetic
field (in G). For comparison, the spin-up for B = 0 (dotted line) ie. for accretion from
marginally stable orbit, is shown.

account. In fact, in the latter case, the progenitor mass is ∼ 1.3 M⊙ and the accretion of
more mass is needed to reach the final configuration.

In the model presented in the previous chapter, the accretion efficiency parameter
xl is maximum ie., xl = 1. Nevertheless, if the latter were smaller, more accreted mass
would be needed to spin up the star in the non-magnetic configuration (Zdunik et al.,
2002).

The figures 11.9 and 11.10 show the variation of the accretion rate Ṁ with the initial
mass Mi to reach the final configurations for the three equations of state and for the
three magnetic field prescriptions, respectively. The values of the final magnetic field
are consistently calculated for the three equations of state and are given by the table
11.2.

The lower limit on the accretion rate depends, as expected, on the equation of state :
∼ 2.1 × 10−10 M⊙/yr for DH and APR and ∼ 3.25 × 10−10 M⊙/yr for BM. On the one
hand, if the neutron star accretes more than 0.2 M⊙, the accretion rate required to reach
the final configuration depends weakly on the initial mass. On the other hand, there is
a strong dependence of the accretion rate on the initial mass if the neutron star accretes
less than 0.2 M⊙.

The results depend less on the magnetic field prescription than on the equation of
state as shown in figure 11.10. The variation of the accretion rate with the initial mass
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Figure 11.9: Average accretion rate Ṁ as
a function of the initial mass Mi for PSR
J1903+0327 final configuration for the three
equations of state.

Figure 11.10: Average accretion rate Ṁ as
a function of the initial mass Mi for PSR
J1903+0327 final configuration for the three
magnetic field prescriptions, for the DH
equation of state.

is qualitatively similar for the three prescriptions, though the needed accretion rate is
quantitatively higher for the Wijers (1997) prescription. The lower limit of the accretion
rate is ∼ 2.1 − 2.6 × 10−10 M⊙/yr. The accretion rate hardly depends on the initial
mass for the Osłowski et al. (2011) model. For the latter, it is possible to reach the final
configuration for a high initial mass M ∼ 1.55 M⊙ and a moderate accretion rate Ṁ ∼
2.05× 10−10 M⊙/yr.

Since ∆Mb = Ṁbt, one can calculate the time needed to spin up the star to its
presently observed frequency. The results are presented in figure 11.11 for the three
equations of state and in figure 11.12 for the different magnetic field prescriptions.

A progenitor neutron star with a mass close to the final mass requires to accrete a
small amount of matter to reach the final configuration, as shown in figure 11.9 and
thus its spin-up time is short. This corresponds to the left part of figures 11.11 and
11.12. On average, a neutron star with the BM equation of state or for the Wijers (1997)
prescription accretes more matter in less time, ie. has a larger accretion rate, than for
DH or APR equation of state or the two others magnetic field models.
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Figure 11.11: Accretion rate versus time of
accretion needed to reach PSR J1903+0327
final configuration for the three different
equations of state.

Figure 11.12: Accretion rate versus time of
accretion needed to reach PSR J1903+0327
final configuration for the three different
magnetic field prescription, for the DH
equation of state.

11.1.3.6 Relativistic effects in the recycling process

The original model by Kluźniak & Rappaport (2007) is derived in Newtonian dynamics
and therefore does not include relativistic aspects such as the existence of themarginally
stable orbit. That is why the fms function has been introduced in the equation (10.32).

The figure 11.13 shows three characteristic radii of the problem : the inner radius of
the accretion disk r0, the stellar radius R and the radius of the marginally stable orbit
rms, calculated along a spin-up evolutionary track. For the final configuration (f = 465
Hz, M = 1.67 M⊙, B = 2 × 108 G), when r0 reaches its minimum value, r0/rms ≃ 2.
Comparing the value of r0 when the relativistic effects are included and in the original
model (fms = 1), the difference in the values of r0 are∼ 200m, i.e., 0.7%. Therefore in the
case of PSR J1903+0327, taking into account the existence of the marginally stable orbit
is not necessary. Nevertheless, for very massive and/or fastly rotating configurations
relativistic effects can be important as shown in the next sections.

11.1.4 Conclusions

Finally, the model presented in chapter 10 enables to estimate the parameters of the
progenitor neutron star of PSR J1903+0327 that underwent accretion and was spun-
up to millisecond periods. The results depend to some extent on the equation of state
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Figure 11.13: Spin-up tracks of an accreting neutron star leading to presently observed
PSR J1903+0327 parameters on radius-spin frequency plane. Are plotted the character-
istic radii relevant for the considered problem : stellar radius (solid curves), radius of
a marginally stable orbit (dotted curves), and radius of the inner boundary of accretion
disk (dashed curves).

of dense matter. In particular, the mean accretion rate Ṁ required to reach the final
configuration is constrained to be larger than (2.1−3.25)×10−10 M⊙/yrwith the highest
value for the stiffest EOS.

The results hardly depend on the magnetic field prescription and the relativistic ef-
fects are negligible.

For neutron stars with a low initial mass ofMi = 1.0−1.4 M⊙, the required accretion
is independent of the initial mass. Therefore, contrary to the non-magnetic model pre-
sented in Zdunik et al. (2002), no constraint can be put on the progenitor mass. Simula-
tions neglecting the influence of themagnetic field give a high value for the lower bound
of the progenitor mass : M > 1.55M⊙ for the BM equation of state andM > 1.58M⊙ for
the DH and APR. In fact, the magnetic field torque limits the efficiency of the angular
momentum transfer and therefore decreases the spin-up rate.

Thus, taking into account the magnetic field is crucial and has a non-trivial influence
on the evolution of the spin of a neutron star in the recycling scenario.

11.2 The extreme-mass millisecond pulsars

11.2.1 The less massive millisecond pulsar : PSR J0751+1807
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Parameter Value Reference
Distance d (kpc) 2.0± 0.4 Lundgren et al. (1995)
Spin period P (ms) 3.48 Nice et al. (2005)
Spin frequency f (Hz) 287 Nice et al. (2005)
Spin period derivative Ṗ (s s−1) 7.79× 10−21 Nice et al. (2005)
Dipolar magnetic field B (G) 1.67× 108 Nice et al. (2005)
Orbital eccentricity e 7.1× 10−7 Nice et al. (2005)
Orbital period Pb 0.26 days = 6.32 hrs Nice et al. (2005)
Pulsar massMPSR (M⊙) 1.26± 0.14 Nice et al. (2008)
Companion star HeliumWhite dwarf Lundgren et al. (1995);

Bassa et al. (2006)
Companion massMWD (M⊙) 0.12± 0.02 Nice et al. (2008)

Table 11.3: Parameters of PSR J0751+1807. 1 − σ error bars. Bsurf is calculated with the
formula (1.21) for a neutron star with R = 10 km and I = 1045 g cm−2.

Lundgren et al. (1995) discovered the binary millisecond pulsar J0751+1807 in their their
search for radio pulsars with Arecibo radiotelescope among the 12 unidentified γ-ray
sources in Egret all-sky survey in 1991-1992. The estimated rotational energy of the
source is not high enough to power the γ-ray emission observed by EGRET. Follow-up
γ-ray observations failed to detect the source again. Therefore, the millisecond pulsar
was discovered by chance in the error box of a marginal EGRET source ! It has a short
orbital period Pb and a small eccentricity e as a consequence of a Low-Mass X-ray binary
phase (section 9.2.3.2). The mass function, the low eccentricity, the absence of eclipses
or orbital variability are consistent with a low-mass helium white dwarf companion
(Lundgren et al., 1995).

Nice et al. (2005) reported 11 years (1993-2004) of high precision timing observations
of the pulsar with Arecibo and Effelsberg radiotelescopes. The measurements of three
post-Keplerian parameters : the rate of change of in orbital period Ṗb and the shape s
and range r of the Shapiro delay, implied a pulsarmassM = 2.1±0.2M⊙ andmade it the
most massive pulsar observed by then. Nevertheless, 2-months Arecibo observations in
2006 led to a significant refinement of Ṗb which is consistent with a pulsar mass M =
1.26 ± 0.14 M⊙ (Nice et al., 2008). The discrepancy originates from the too short time
baseline that did not enable to detect properly Ṗb.

Bassa et al. (2006) presented optical and near-infrared observations of the binary at
the Keck observatory. The color of the companion is consistent with a white dwarf with
a pure helium atmosphere or an helium atmosphere with mixed hydrogen, with a very
low temperature ∼ 3500− 4300 K. This composition is a puzzle since it is not consistent
with the evolutionary models that predict an atmosphere made of hydrogen. Future
deeper observations in infrared could enable to determine whether hydrogen is present
or not in the atmosphere.

Table 11.2.1 summarizes the properties of PSR J0751+1807 binary.
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Parameter Value
Distance d (kpc) 1.2
Spin period P (ms) 3.15
Spin frequency f (Hz) 317
Spin period derivative Ṗ (s s−1) 9.62× 10−21

Dipolar magnetic field B (G) 1.8× 108

Orbital eccentricity e 1.3× 10−6

Orbital inclination angle 89.17◦

Orbital period Pb (days) 8.69
Pulsar massMPSR (M⊙) 1.97± 0.04
Companion star Helium-carbon-oxygen white-dwarf
Companion massMWD (M⊙) 0.500± 0.006

Table 11.4: Parameters of PSR J1614-2230 from Demorest et al. (2010). 1 − σ error bars.
Bsurf is calculated with the formula (1.21) for a neutron star withR = 10 km and I = 1045

g cm−2.

PSR J0751+1807 is a millisecond pulsar and has therefore undergone accretion from
its companion in the past that increased its mass. Its properties are consistent with a
formation scenario in a Low-Mass X-ray binary. However, its very low mass (see also
section 2.2.2.2) is therefore a puzzle.

11.2.2 The most massive pulsar : PSR J1614-2230

PSR J1614-2230 was discovered in 2002 when pulsations were searched from 56 uniden-
tified mid-latitude EGRET γ-ray sources, using Parkes radiotelescope. It has a 3.15
ms spin-period and is in a binary system with a short (8.7 days) orbital period and a
high-mass companion (> 0.4 M⊙), which is unusual for fully-recycled pulsars (section
9.2.3.2) (Hessels et al., 2005; Crawford et al., 2006). The companion star may be a CNO
white dwarf or a low-mass denegerate dwarf. Pulsations from PSR J1614-2230 were
successfully searched in the 2008-2009 Fermi Large Area Telescope data using rotation
ephemerides from the radio observations (Abdo & et al., 2009).

Demorest et al. (2010) reported dense observations of the pulsar with the Green Bank
radiotelescope, through one complete orbital orbit. They observed a strong Shapiro
delay and measured a high mass (0.5 M⊙) for the pulsar companion, consistent with
an helium-carbon-oxygen white dwarf. The system is nearly edge-on and is the most
inclined one observed so far. The combination of the Shapiro delay and the standard
Keplerian parameters enabled to determine the mass of the pulsar : M = 1.97±0.04M⊙
which the highest mass measured at present.

Table 11.2.2 summarizes some of the properties of PSR J1614-2230 binary system.
The high mass of PSR J1614-2230 raises the question of whether the progenitor neu-

tron star was born massive. The nature of its companion suggests that the pulsar binary
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Neutron star model J0751+1807 J1614-2230
Simple model 1.67 1.80
DH 1.08 1.98
APR 1.19 1.96
BM 0.80 1.57

Table 11.5: Values of the surface magnetic field B in units of 108 G for the two pulsars
PSR J0751+1807 and J1614-2230 calculated with equation (1.21) for the three equations
of state considered in this study. The "simple model" considers that R = 10 km and
I = 1045 g cm−2.

originates from an Intermediate-Mass X-ray Binary (section 9.2.3.2).

Some evolutionary formation scenarios of the PSR J1614-2230 binary : high-mass
pulsar and 0.50 M⊙ CO white dwarf, have been recently studied by Tauris et al. (2011)
and Lin et al. (2011). The pulsar is thought to originate from an Intermediate-Mass X-
ray binary composed of a massive (> 1.6 M⊙) neutron star and a ∼ 4 M⊙ donor star.
The pulsar accreted at a near-Eddington rate for 5-10 Myrs, when the companion star
became a red giant, overflowing its Roche lobe. The companion then formed a carbon-
oxygen white-dwarf with an helium envelope. The recycling time scale was therefore
much shorter than for standard Low-Mass X-ray binary systems for which it lasts few
Gyrs.

Bhalerao & Kulkarni (2011) reported optical observations of the companion white
dwarf of PSR J1614-2230 and concluded that its magnitude and mass are consistent
with the cooling of a 2.2 Gyr helium-carbon-oxygen white dwarf.

The evolutionary scenarios studied by Tauris et al. (2011) put a strong constraint
on the duration of the accretion phase tacc < 100 Myr that will be considered in the
following.

11.2.3 Modeling

The spin-up by accretion of the millisecond pulsars J0751+1807 and J1614-2230 has been
modeled and a paper is currently is preparation. The magnetic field values are consis-
tently calculated and given in table 11.5.

11.2.3.1 PSR J0751+1807

Let us first present results for the millisecond pulsar with the lowest mass. Figure 11.14
plots the accretion time needed to spin-up a neutron star to the observed properties of
the pulsar PSR J0751+1807 as a function of the accreted mass, for the three equations of
state. Note that, in agreement with the results of the previous section, the APR and DH
equations give similar results. As expected, it takes longer time to accrete more matter.
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Figure 11.14: Time needed to spin-up the
progenitor neutron star to the observed
properties of the pulsar PSR J0751+1807 as a
function of the accretion mass, for the three
equations of state.

Figure 11.15: Accretion rate versus time of
accretion needed to reach PSR J0751+1807
final configuration for the three equations of
state.

Figure 11.15 shows the average accretion rate as a function of the accretion time needed
to spin-up the progenitor neutron star. For a given total accreted mass, since the average
accretion rate is higher for the BM equation of state, the accretion time is shorter than
for the two others.

Four spin-up tracks for the BM equation of state for different initial magnetic fields
and average accretion rates are plotted in figure 11.16. The accretion times τ are also in-
dicated. A very-low mass progenitor neutron star (M. 1 M⊙) needs to accrete more
matter than the low-mass one and thus the accretion rate and time are larger. The
accretion-induced magnetic field decay implies then that its initial magnetic field is
higher.

11.2.3.2 PSR J1614-2230

Figures 11.17, 11.18 and 11.19 are the analogs for the most massive millisecond pul-
sar PSR J1614-2230 of figures 11.14-11.16 and lead to similar conclusions. The first two
figures shows results for the DH and BM equations of state only since conclusions are
similar for the APR and DH ones. For the BM equation of state the calculations have
been performed for three values of the final mass of the millisecond pulsar correspond-
ing to the error bar in the mass determination : M=1.93, 1.97 and 2.01 M⊙. The results
hardly depends on the final mass.
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Figure 11.16: Spin-up tracks of an accreting neutron star with the final parameters of
PSR J0751+1807 for the BM equation of state. Curves are labeled by the average accre-
tion rate (in M⊙/yr), the initial value of the magnetic field (in G) and the duration of
accretion phase (in Gyr).

Note that the accretion times in figures 11.14 and 11.17 are similar for the less and
most massive millisecond pulsars, in particular for low values of the accreted mass.

An interesting constraint is put by the evolutionary model developed by Tauris et al.
(2011) : the accretion phase lasted less than 100 Myr. Figure 11.17 then shows that the
progenitor neutron star accreted a mass :

Macc ≤ 0.05 M⊙ (11.5)

therefore indicating that the neutron star was born very massive. This is of particular
interest for supernova simulations for which such a high value for the mass of a newly
born neutron star has never been obtained and therefore constrain the supernova mech-
anism.

According to figures 11.18, one can then derive a lower limit on the average accretion
rate experienced by the progenitor neutron star :

Ṁ ≥ 5× 10−10 M⊙ yr−1. (11.6)

Finally figure 11.19 shows spin-up tracks for PSR J1614-2230 for BM equation of state
and different initial models of neutron star.

Therefore, these two pulsars that are the less and most massive ones observed so far
indicate that neutron stars are born with very different initial mass that have to obtained
in supernova simulations.



11.3. PERSPECTIVE : SUB-MILLISECOND PULSARS 261

Figure 11.17: Time needed to spin-up the
progenitor star to the observed properties
of the pulsar PSR J1614-2230 as a function
of the accretion mass, for the DH and BM
equations of state. For the latter are plotted
results for a final mass M = 1.97 M⊙ (solid
line) and for the lower and upper values of
the mass error bar : M = 1.93 M⊙ (dotted
line),M = 2.01M⊙ (dashed line).

Figure 11.18: Accretion rate versus time of
accretion needed to reach PSR J1614-2230 fi-
nal configuration for the DH and BM equa-
tions of state.

11.3 Perspective : sub-millisecond pulsars

A natural continuation, that is currently in progress, of the modeling of the spin-up of
accreting neutron stars deals with sub-millisecond pulsars with a period, as their name
indicates, less than one millisecond. So far, none of them have been detected. Therefore,
there might exist a mechanism that prevents sub-millisecond to be formed in binary
systems.

White & Zhang (1997) suggested that the equilibrium period of accreting neutron
stars which determined by the balance between the magnetic and the accretion torques
is higher than one millisecond. Bildsten (1998) proposed that the emission of gravita-
tional waves by accreting neutron stars inhibits their spin-up to high frequencies. In the



262 CHAPTER 11. APPLICATION TO THE SPIN-UP OF NEUTRON STARS

Figure 11.19: Spin-up tracks of an accreting neutron star with the parameters of PSR
J1614-2230 for the BM equation of state. Curves are labeled by the average accretion
rate (inM⊙/yr), the initial value of themagnetic field (in G) and the duration of accretion
phase.

continuation of the work by Burderi et al. (1999), the model for the spin-up of accreting
neutron stars presented in this thesis enables to test such scenarios.

In conclusion, the model for the rotational evolution of an accreting magnetized neu-
tron star presented in chapter 10 enables to study various aspects of the recycling pro-
cess that is thought to be at the origin of millisecond pulsars. Constraints can be put
on the progenitor neutron star properties of currently observed millisecond pulsars, as
presented in sections 11.1 and 11.2. The spin-up of neutron stars to sub-millisecond
pulsars, that is currently in progress, can be also be assessed (section 11.3).
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During my Ph.D. studies I investigated different aspects of the dynamics and evolu-
tion of neutron stars, with a particular attention to the influence of the microphysics on
the macrophysical properties.

I modeled the thermal evolution of both isolated and accreting neutron stars. Specif-
ically, I studied the influence of the superfluid properties of the neutrons in the inner-
crust on the evolution of the temperature of slow and fast cooling neutron stars. I
showed that precise calculations of the specific heat of the neutrons are necessary to
describe the cooling of young neutron stars. I also developed a new model for the evo-
lution of the temperature of neutron stars that accreted matter during long periods of
time and whose interior therefore underwent substantially heating. Preliminary results
are encouraging and the precise description of the hydrogen and helium burnings and
of the atmosphere will be included in the model in the very near future. Confronting
the models for the thermal evolution with the observations has already enabled to put
constraints on the properties of matter in the interior of neutron stars. The current and
the next generation of X-ray satellites are expected to provide more measurements of
the temperature of neutron stars and offers exciting perspectives.

Glitches suggest that the crust of neutron stars is most likely to be solid and models
of solid core have also been developed. So far, the relativistic models of rotating neutron
stars used a perfect fluid description for their interior and therefore did not include the
elastic properties of the solid parts. I derived the equations for stationary, axisymmet-
ric and rigidly rotating neutron star configurations with a relativistic description of the
elasticity in the (partly) solid interior. The numerical resolution by the mean of spec-
tral methods is currently in progress and the model will enable to investigate the glitch
phenomenon. In the longer term, I would like to perform calculations of binary neutron
star systems, including the effects of the elasticity in the solid parts and to investigate
the elasto-thermal evolution of neutron stars, in order to take into account the possible
melting or crystallization of the interior and the effects on the rotation.

I studied the evolution of the rotation and of the magnetic field of an accreting neu-
tron star. This is of particular interest to model the rotational evolution of old neutron
stars that are spun-up by accretion of matter from a companion in a binary and become
millisecond pulsars. A relativistic description for a magnetized thin accretion disk that
includes the magnetic-torque disk-pulsar coupling and the existence of the marginally
stable orbit is used together with a prescription for the accretion-induced decay of the
neutron star magnetic field. Calculations were performed for three different millisec-
ond pulsars : the two most massive and lest massive ones and enabled to constrain the
properties of their progenitor neutron star. The modeling shows in particular that the
mass of newly-born neutron stars is not uniquely determined and that both heavy and
light neutron stars are formed in supernovæ constraining their simulations. The model
is currently applied to assess whether accreting neutron stars can be spun-up to submil-
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lisecond periods.

In the future, I plan to continue investigating how the properties of the matter inside
neutron stars influence their evolution and dynamics and to focus in particular on the
emission of gravitational waves and neutrinos from isolated or binary neutron stars.
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Equations for elastic rotating neutron
stars
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A.1 Expression of∇αζβ

One can show in a circular spacetime that (Gourgoulhon, 2007) :

∇βnα = −καmβ − κβmα − aαnβ, (A.1)
∇βmα = −bαmβ − nβmαn

σ∇σ − nακβ . (A.2)

Writing
2∇αζβ = k µ

α k
ν

β ∇µζν , (A.3)

one gets,

∇αζβ = 2∇αζβ − ζσ [aσnαnβ + κσ (nαmβ + nβmα) + bσmαmβ ] . (A.4)

Thus,
∇aζb =

2∇aζb (A.5)

A.2 Expression of Dkab

With equation (8.12),

Dkab = Dgab (A.6)
= δgab +∇aζb +∇bζa (A.7)
= δgab +

2∇aζb +
2∇bζa. (A.8)

A.3 Expression of 2∇αU

Since U = M
N
(Ω− ω),

2∇αU = −Uaα − Ubα + 2κα (A.9)

with ~a,~b and ~κ defined in equations (6.7,6.129,6.143).

A.4 Expression of D̟2

According to equation (8.12),

D̟2 = δ̟2 + ζα∇α̟
2, (A.10)

= δ̟2 + ζα 2∇α̟
2. (A.11)

With ̟ = ΓM and ∇αΓ = ΓU∇αU , one gets :
2∇α̟

2 = 2̟2
(

2∇α lnM + Γ2U 2∇αU
)

, (A.12)
= 2̟2Γ2

(

−bα − U2aα + 2Uκα
)

(A.13)

Thus
D̟2 = δ̟2 + 2̟2Γ2

(

−bα − U2aα + 2Uκα
)

(A.14)
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A.5 Trace of the relative strain tensor

The trace of the relative strain tensor given in equation (8.40) is :

e α
α =

1

2

[

kabDkab +
D̟2

̟2

]

, (A.15)

= 2∇aζ
a +

1

2
kabδgab +

1

2

D̟2

̟2
(A.16)

A.6 Shear tensor

According to equation (8.6) and (8.40),

sαβ dx
α dxβ = eαβ dx

α dxβ − 1

3
e α
α γαβ dx

α dxβ, (A.17)

=

(

1

2
Dkabdx

adxb − 1

3
e α
α kab

)

dxa dxb (A.18)

+

(

1

2
D̟2 − 1

3
̟2e α

α

)

(dϕ− Ωdt)2 (A.19)

With equations (A.8), (A.16) and (A.14), one gets :

sαβdx
αdxβ =

[

2∇(a ζ b) −
1

3

(

2∇cζ
c
)

kab +
1

2

(

δgab −
1

3
kcdδgcdkab

)

(A.20)

−1

6

D̟2

̟2
kab

]

dxa dxb (A.21)

−1

3

[

̟2

(

2∇cζ
c +

1

2
kcdδgcd

)

−D̟2

]

(dϕ− Ωdt)2 (A.22)

A.7 Circularity condition

The energy-momentum tensor T for an elastic medium writes :

Tαβ = T perf
αβ + T elas

αβ (A.23)

with
T elas
αβ = −2µsαβ . (A.24)

The fluid contribution T fluid to the energy-momentum tensor is, according to equa-
tion (6.4.1) :

ξνT fluid [α
ν ξβχγ] = (ε+ p)ξνuν u

[αξβχγ], (A.25)
χνT fluid [α

ν ξβχγ] = (ε+ p)χνuν u
[αξβχγ]. (A.26)
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The elastic contribution T elas to the energy-momentum tensor gives

ξνT elas [α
ν ξβχγ] = −2µ

(

s̄
Mω −N

N
+ s

)

N [αξβχγ]

+2µ

(

2

M
Nβ ¯̄sβ + ¯̄sω

)

M [αξβχγ] (A.27)

χνT elas [α
ν ξβχγ] = −2µs̄

M − 1

N
N [αξβχγ] − 2µ¯̄s

M − 1

M
M [αξβχγ]. (A.28)

Thus the circularity conditions write :

ξνT [α
ν ξ

βχγ] = (ε+ p)ξνuν u
[αξβχγ] − 2µ

(

s̄
Mω −N

N
+ s

)

N [αξβχγ]

+2µ

(

2

M
Nβ ¯̄sβ + ¯̄sω

)

M [αξβχγ] (A.29)

χνT [α
ν ξ

βχγ] = (ε+ p)χνuν u
[αξβχγ] − 2µs̄

M − 1

N
N [αξβχγ]

−2µ¯̄s
M − 1

M
M [αξβχγ]. (A.30)

A.8 Energy-momentum tensor from an elastic fluid

With the equation (8.56), the contribution from the elastic fluid to the quantities E, pϕ,
Sr

r, S
θ
θ and S

ϕ
ϕ is :

Eelas = T elas
αβ n

αnβ = −2µsnαnβn
αnβ

= −2µs; (A.31)

pelasϕ = −T elas
αβ n

αhβϕ = s̄mαn
αmνh

ν
α

= −s̄M ; (A.32)

Selas α
β = −T elas

γδ hγαhδβ = −2µ¯̄sγδh
γαhδβ − 2µ¯̄smγh

γαmδh
δ
β

= −2µ¯̄s βα +−2µ¯̄smαmβ, (A.33)

Selas r
r = −2µ¯̄srr, (A.34)

Selas θ
θ = −2µ¯̄sθθ, (A.35)

Selas ϕ
ϕ = −2µ¯̄s; (A.36)

Selas = Srelas
r + Sθelas

θ + Sϕelas
ϕ

= −2µ
(

¯̄s+ ¯̄srr + ¯̄sθθ
)

. (A.37)
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A.9 Equation for uσ∇σuα

With equations (8.55) and (Gourgoulhon, 2007) :

mβ∇βmα = bα (A.38)
mβ∇βnα = −κα (A.39)
nβ∇βmα = κα (A.40)
nβ∇βnα = aα (A.41)

(A.42)

one gets :
uσ∇σuα = Γ2

(

aα + U2bα − 2Uκα
)

. (A.43)

Then writing 3∇α ln Γ, one gets :

uσ∇σuα = 3∇α ln
N

Γ
+ Γ2Umαm

β 3∇βU. (A.44)

A.10 Calculation of ∇σs
σ
α

With equations (8.56) and (A.38-A.41), one can write :

∇σs
σ
α = ∇σ ¯̄s

σ
α − 1

3
Γ2Q

(

bα − 2Uκα + U2aα
)

. (A.45)

Writing 3∇σ ¯̄s
σ
α with equation (A.1), this latter expression can be rewritten :

∇σs
σ
α = 3∇σ ¯̄s

σ
α + ¯̄sσαaσ −

1

3
Γ2Q

(

bα − 2Uκα + U2aα
)

. (A.46)

A.11 Source term Λ

Λ =
2µ

ε+ p

[

1

2
3∇a 3∇cδgac +

1

2
ab
(

3∇bΘ+∆3ζ
b
)

+ 3∇(aζ
b) 3∇aab +

1

2
3∇a (acδgac)

− 3∇ (Faa)−
1

3
3∇a

(

Γ2Q
[

ba − 2Uκa + U2aa
])

]

+ 3∇
(

2µ

ε+ p

)[

1

2
3∇aΘ+

1

2
∆3ζa +

1

2
3∇cδgac − 3∇aF + ab

3∇(aζ
b)

+
1

2
acδgac − Faa −

1

3
Γ2Q

[

ba − 2Uκa + U2aa
]

− 2
(

3∇aΘ− 3∇aF
)

]

+2 3∇a

(

3∇bµ

ε+ p

)[

3∇(aζ
b) +

1

2
kbcδgac − Fk b

a

]

+
2

ε+ p
3∇bµ

[

1

2
3∇bΘ+

1

2
∆3ζ

b +
1

2
3∇a

(

kbcδgac
)

− 3∇bF

]

. (A.47)
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A.12 Source term S

S =
ε+ p

µ
3∇a

[

Ψ+
2µ

ε+ p
(Θ− F )

]

−2

[

1

2
3∇cδgac − 3∇aI + ab

3∇(cζ
b) +

1

2
acδgac

−aa
(

1

3
Θ + I

)

− 1

3
Γ2Q

[

ba − 2Uκa + U2aa
]

]

−2 3∇b lnµ

[

3∇(aζ
b) +

1

2
kbcδgac − Fk b

a

]

, (A.48)

with
F =

1

3
Θ + I. (A.49)
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tion synthesis of double neutron stars. MNRAS, 413, 461–479.

ÖZEL, F. (2006). Soft equations of state for neutron-star matter ruled out by EXO 0748 -
676. Nature, 441, 1115–1117.
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