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un travail effectué durant ces quatre dernières années au

iii Résumé L'énergie est l'une des ressources naturelles les plus importantes dans les sociétés modernes.

Plus de la moitié des besoins énergétiques dans le monde provient du pétrole et du gaz [START_REF] Randen | Atlas of 3D Seismic Attributes, Mathematical Methods and Modelling in Hydrocarbon Exploration and Production[END_REF]. Les demandes croissantes en matière de consommation d'énergie dans le monde entier et l'épuisement du pétrole et du gaz de grands réservoirs ont abouti à la nécessité d'explorer les gisements de pétrole plus petit et plus complexe. Il en résulte des exigences élevées pour les ressources en hydrocarbures et rend leur identification et l'extraction plus difficile. Le pétrole et le gaz naturel sont deux des ressources non renouvelables dans le monde, et ils sont les principales sources d'énergie au monde. En raison du niveau élevé de l'énergie stockée dans l'huile, cette source d'énergie est devenu et est actuellement l'un des principaux piliers de nos sociétés industrielles. En raison de leur importance, le pétrole et le gaz naturel ont un impact profond dans les économies du monde et la politique. Aujourd'hui, le pétrole et le gaz naturel fournissent à plus de 90% dans le monde des carburants destinés au transport. Ils sont aussi liés à plusieurs produits que nous utilisons dans notre vie quotidienne et les activités.

Le pétrole est un combustible fossile liquide qui est formé des restes de microorganismes marins déposés dans les fonds marins. Après des millions d'années, les dépôts ont terminés dans les roches et les sédiments où le pétrole est emprisonné dans des petits espaces [START_REF] Patel | The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data[END_REF]. Il peut être extrait part des plateformes de forage. Le pétrole est le combustible fossile le plus utilisé. Le gaz naturel est également un combustible fossile gazeux qui est polyvalent, abondant et relativement propre en comparaison du charbon et du pétrole. Comme le pétrole, il est formé par les restes de microorganismes marins. Il s'agit d'un mélange d'hydrocarbures trouvé naturellement sous forme gazeuse. C'est la deuxième source d'énergie la plus utilisée dans le monde après le pétrole et son usage se développe rapidement. Le gaz naturel est principalement constitué de méthane et peut être trouvé en association avec d'autres combustibles fossiles comme dans les veines de charbon et les clathrates de méthane.

Le gaz naturel est créé dans deux classes de mécanismes: la création biogénique et la création thermogénique [START_REF] Rojey | Natural gas: production, processing, transport[END_REF]. Le pétrole produit et le gaz naturel vont migrer vers le haut et vont s'accumuler dans les structures réservoirs comme les anticlinaux ou des pièges failles. Le pétrole et le gaz naturel sont recherché par trouvant des signes de ces sédimentaires ou structures du réservoir.

Dans la première section, nous décrivons notre motivation et notre problème plus en détail.

Ensuite, dans la seconde section, nous résumons les contributions principales de notre travail.

Enfin, nous donnons un aperçu pour le reste de cette thèse dans la dernière section.

Motivation et description de la problèmatique

Il existe quatre techniques de levés géophysiques qui sont couramment utilisés dans l'exploration du pétrole et du gaz [START_REF] Ashcroft | A Petroleum Geologist'S Guide To Seismic Reflection: PART I Basic topics and 2D interpretation[END_REF]:

le levé gravimétrique, le levé aéromagnétique, le levé électromagnétique, le levé sismique.

Le levé sismique est le programme pour cartographier la structure géologique par l'observation des ondes sismiques, notamment par la création des ondes sismiques en utilisant des sources artificielles et par l'observation du temps d'arrivée des ondes réfléchies à partir des contrastes d'impédance acoustique ou des réfractés par des membres à grande vitesse [START_REF] Sheriff | A first course in geophysical exploration and interpretation[END_REF]. Le levé sismique a une longue histoire d'utilisation dans le domaine de l'exploration pétrolière. Il est un principal outil pour délimiter la structure du sous-sol et détecter la présence d'hydrocarbures. Grâce aux données sismiques recueillies avant le forage, on pourrait, ainsi, optimiser les lieux de luis en place des forages des échantillons des épaisses accumulations de till ou, plus particulièrement, les établir sur le versant des élévations de roche en place oriente dans la direction de l'écoulement glaciaire, afin de tirer le maximum de chaque sondage. Depuis le premier profile sismique réalisé sur la terre long de la côte, qui a été réalisé dans les années 1920 [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF]. La méthode de réflexion sismique a joué un rôle important dans l'exploration des ressources énergétiques. La méthode sismique est une puissante technique de télédétection, on peut imager le sous-sol depuis quelques dizaines de mètres jusqu'à quelques dizaines de kilomètres au maximum. Le premier levé sismique 3D a été réalisé par Exxon à Friendswood près de Houston au Texas en 1967. Les premiers levés v sismiques sont coûteux à acquérir et à traiter. Mais accompagné de progrès technologique, le coût, le processus et le temps d'interprétation de sismique 3D baissent. Au début des années 1980, plusieurs revues scientifiques ont publié un certain nombre d'articles concernant l'approche sismique 3D. Les levés sismiques 3D dans les autres zones littorales et de la terre sont également développés de plus en plus rapides. La technologie sismique 3D représente l'une des introductions technologiques les plus importantes dans les dernières décennies qui a permis d'améliorer les efficacités de la prospection de pétrole et de gaz significativement pour les compagnies pétrolière et gazière.

L'exploration sismique peut être divisée en trois principales étapes [START_REF] Yilmaz | Seismic data processing[END_REF]: i) l'acquisition de données (dans la terre et la mer), ii) le traitement (y compr is le traitement du signal et le traitement de l'image), iii) l'interprétation (l'interprétation de structure, l'interprétation de faille, la classification de faciès sismiques, l'identification des hydrocarbures réservoirs, etc.). La méthode sismique commence avec l'acquisition qui consiste à collecter des données brutes directement à partir des récepteurs. Le but du traitement sismique est de traiter les données sismiques acquises dans une image qui peut être utilisée pour déduire la structure du sous-sol. Il existe un certain nombre d'étapes impliquées depuis l'acquisition de données sismiques jusqu'à l'interprétation de la structure du sous-sol. Il est souhaitable de rehausser les structures et de réduire les bruits aléatoires. Mais, une seule donnée sismique ne permet pas de séparer le bruit à partir des caractéristiques sismiques réelles. Donc l'utilisation des cartes des attributs sismiques pour l'interprétation structurale détaillée a augmenté dans la dernière décennie. La présence de plus d'un levé sismique permettra à l'interpréteur d'accroître ses connaissances par les incertitudes dans l'interprétation structurale sismique détaillée. L'interprétation sismique exige également beaucoup de mathématiques, de la reconstruction des données, et de l'interprétation des données.

Les attributs sismiques sont des mesures spécifiques de géométrie, de cinématique, de dynamique ou de caractéristique statistique dérivé des données sismiques. Donc, il représente un sous-ensemble d'information totale [START_REF] Barnes | Seismic attributes in your facies[END_REF]. Ils nous aident à mieux de visualiser ou de quantifier les caractéristiques d'interprétation [START_REF] Chopra | Seismic attributes for prospect identification and reservoir characterization[END_REF]. L'application des attributs sismiques pour la détection de faille, la détermination de la distribution de fractures, l'identification des caractéristiques stratigraphiques et l'interprétation des autres événements géologiques est utilisée de plus en plus aujourd'hui en géosciences. Les attributs sismiques peuvent être divisés en deux grandes catégories: les attributs qui nous aident à quantifier la composante morphologique des données sismiques et les attributs qui nous aident à quantifier la composante de réflectivité des données sismiques. Les attributs morphologiques permettent d'extraire des informations sur le DIP de réflecteur, l'azimut, la forme, et la cessation, qui peuvent, à leur tour, affecter les failles, les canaux, les fractures, les karstiques, et les accumulations des carbonates. Les attributs de réflectivité donnent des informations sur l'amplitude des réflecteurs, la forme d'onde, et la variation de l'angle d'illumination, qui peuvent, à leur tour, influer sur la lithologie, l'épaisseur de réservoir, la L'interprétation sismique conventionnelle est un art qui exige des compétences et des expériences approfondies en géologie et en géophysique [START_REF] Brown | Interpretation of three-dimensional seismic data[END_REF][START_REF] Coleou | Interpreter's Corner---Unsupervised seismic facies classification: A review and comparison of techniques and implementation[END_REF][START_REF] Linari | Seismic facies analysis based on 3D multiattribute volume classification, La Palma Field, Maracaibo, Venezuela[END_REF][START_REF] Marsh | Role of Automated Techniques in Improving Volumebased Structural Interpretation[END_REF]. Ces dernières années, de nombreux aspects d'interprétation structurale des données sismiques ont été automatisés. [START_REF] Dorn | Texture feature performance for image segmentation[END_REF] ont introduit un nouveau flux de travail unique qui contient une combinaison de processus existants et de processus nouveaux, représentée pour l'interprétation assistée par ordinateur des systèmes de dépôt en volumes sismiques 3D. Ce flux de travail unique contient les étapes générales suivantes: la charge des donnees sismiques 3D, l'interprétation structurale, la transformation du domaine, le raffinement structurel optionnel, l'interprétation stratigraphique, l'inversement de la transformation du domaine, et la production de volumes stratigraphiques et d'organes stratigraphiques. Les étapes individuelles et les séries des étapes du flux de travail peuvent être appliqués récursivement au volume de donnée pour améliorer les résultats du processus général.

Depuis que la première trace sismique a été rendue par l'ordinateur, l'interprétation automatique a été la panacée promise de la communauté géoscientifique. Après plusieurs années de développement, les développeurs ont encore du mal à proposer une méthodologie d'interprétation automatique raisonnable. Les horizons sismiques correspondent à des objets géologues stratifiés qui sont créés à travers un ensemble de processus sédimentaire complexe.

La mesure de faille coupe et déplace des horizons. La reconstruction des structures de faille, dans leur espace 3D, est un défi majeur dans la géologie du sous-sol.

Dans le domaine de l'exploration sismique du sous-sol, l'incertitude et le non-unicité de l'interprétation géologique sont deux des problèmes importants à cause de la complexité de la géologie du sous-sol et de la dimension limitée des données disponibles. Dans les affichages traditionnels en 2D, il y a une limite de nombre de lignes sismiques ou de cartes sismiques, mais la technologie de l'imagerie sismique 3D fournit une couverture continue volumétrique sismique de la zone du levé qui permet d'étudier la structure sismique, la stratigraphie et des réservoirs d'hydrocarbures à partir de perspective 3D. Les données sismiques 3D offrent une possibilité unique pour présenter l'observation et l'interprétation sismique géologique dans une espace 3D. Cependant, la plupart des données sismiques 3D sont affichées et interprétées en une manière 2D, laissant l'avantage essentiel et la valeur potentielle des données sismiques 3D non utilisé. Calcul numérique 3D à haut rendement, l'état-de-l'art visualisation de volume et les technologies d'interprétation ont joué des rôles importants en facilitant interprétation volume sismique 3D de manière interactive.

Les images sismiques sont caractérisées par des textures spécifiques qui peuvent fournir des informations précieuses pour localiser les réservoirs de pétrole potentiels. La texture est souvent présentée comme une structure hiérarchique à deux niveaux: le premier concerne les primitives, briques à partir desquelles est construite la texture; le second niveau est relatif aux arrangements spatiaux des primitives. Un problème essentiel dans le domaine de l'analyse des formes est la reconnaissance des objets indépendamment de leurs positions, de leurs tailles et de leurs orientations. Identifier ou reconnaître un contenu informatif par le biais de l'interprétation d'images implique la mise en oeuvre de mécanismes complexes correspondant à de nombreuses modalités visuelles. Parmi l'ensemble de ces modalités, la texture est une des plus importantes. Pour l'homme, elle constitue une excitation, source de phénomènes cognitifs allant du simple saillance visuelle à ceux plus complexes comme la spatialisation. Les descripteurs caractéristiques basés sur les moments ont évolué pour devenir un puissant outil pour l'application en analyse d'image.

Les moments peuvent être appliqués aux images binaires ou aux images en niveaux de gris, définies en 2D, en 3D et en dimension supérieure. Ils peuvent être appliqués aussi aux extraits de bords et de primitives par une étape prétraitement. Les moments et les fonctions moments ont été largement utilisées en analyse d'images pour reconnaissance des formes [START_REF] Flusser | Pattern recognition by affine moment invariants[END_REF][START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] avec des applications allant de la détection des contours [START_REF] Luo | A moment-based threedimensional edge operator[END_REF], la classification et la segmentation d'image [START_REF] Yokoya | Range image segmentation based on differential geometry: a hybrid approach[END_REF], l'analyse de texture [START_REF] Tuceryan | Moment based texture segmentation[END_REF][START_REF] Tuceryan | Texture Analysis[END_REF], l'estimation de la cohérence (Li et al., 2010a), l'identification des invariants [START_REF] Li | Multi-scale image description with rotation invariants of Gaussian-Hermite moments[END_REF]Yang and Dai, 2011;Yang et al., 2011), la classification d'objets, le codage d'image [START_REF] Teague | Image analysis via the general theory of moments[END_REF][START_REF] Teh | On Image Analysis by the Methods of Moments[END_REF], la reconstruction d'image [START_REF] Liao | On image analysis by moments[END_REF][START_REF] Yang | Image reconstruction from continuous Gaussian-Hermite moments implemented by discrete algorithm[END_REF], l'analyse de la scène [START_REF] Jerome | Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval[END_REF][START_REF] Sadjadi | Numerical computation of moment invariants for scene analysis[END_REF], l'analyse d'objets 3D [START_REF] Bronstein | Three-Dimensional Face Recognition[END_REF][START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF]. La description des images avec des moments signifie qu'on utilise les propriétés globales de l'image plutôt que ses propriétés locales.

Les moments géométriques sont apparus les premiers et ont été très utilisés essentiellement ix pour leur simplicité et leur interprétation géométrique explicite. Néanmoins, les moments géométriques ne sont pas orthogonaux, il est alors difficile de reconstruire une image à partir de ces moments. [START_REF] Teague | Image analysis via the general theory of moments[END_REF] a montré qu'une grande efficacité pouvait être atteinte lorsque l'image était analysée par les moments orthogonaux de Legendre et de Zernike. En outre, il a été prouvé que les moments de Zernike pouvaient capturer l'information d'une image avec une redondance minimale et qu'ils ont la propriété d'invariance en rotation. Puisque les moments de Legendre et de Zernike sont tous les deux définis dans le domaine continu, des transformations appropriées des coordonnées image sont nécessaires pour l'implémentation de ces moments dans le cas discret. Le calcul des moments de Legendre nécessitent de transformer les coordonnées image dans l'intervalle [-1, 1]. D'autre part, les polynômes de Zernike sont définis seulement sur le disque de rayon unité [START_REF] Mukundan | Moment functions in image analysis Theory and applications[END_REF]. De plus, l'erreur de discrétisation issue de l'approximation de l'intégral reste inévitable lors de leur implémentation, ce qui limite la précision des moments calculés [START_REF] Liao | On image analysis by moments[END_REF]. [START_REF] Liao | On image analysis by moments[END_REF] ont conduit une analyse théorique sur l'erreur de discrétisation des moments continus et ont proposé une approche limitant l'erreur en dessous d'un certain niveau selon la règle de Simpson. D'autres travaux de recherche visant à améliorer la précision des moments continus se sont focalisés sur les moments géométriques et les moments de Legendre (Hosny, 2007a, b).

La reconnaissance de la forme d'objets dans une scène est facilement réalisée par des observations visuelles de l'homme, même si l'objet subit des transformations telles que la rotation, le changent d'échelle, la déformation, la vision en perspective etc. La reconnaissance invariante des formes est importante à l'homme pour une variété de tâches. Les moments invariants sont considérés comme des outils importants dans l'analyse d'images et la reconnaissance des formes. Au début des années 60 du siècle dernier, [START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] a présenté pour la première fois ses sept fameux moments invariants géométriques. Comme ces invariants sont indépendants à la rotation, translation et facteur d'échelle, ils étaient rapidement utilisés comme descripteurs efficaces d'objets dans beaucoup d'applications. Par la suite, quelques nouveaux invariants de moments, toujours basés sur les moments géométriques, ont été développés et utilisés. [START_REF] Abu-Mostafa | Image normalization by complex moments[END_REF] a proposé une méthode pour dériver des invariants de moments géométriques à partir de moments complexes et a analysé leurs propriétés en termes de redondance d'information et de sensibilité au bruit. De même, [START_REF] Reddi | Radial and angular moment invariants for image identification[END_REF] a fourni un contexte généralisé pour induire des invariants de type radial et angulaire. Un autre type de moments concerne les moments de Zernike à partir desquels des invariants en rotation peuvent être facilement dérivés, puisque les polynômes de Zernike sont orthogonaux à l'intérieur du disque de rayon unité et sont généralement définis en x coordonnées polaires. Les ensembles de type orthogonal et radial tels que les polynômes de Zernike ont une propriété spécifique: "forme-invariants" qui détermine directement l'invariance en rotation des moments correspondants [START_REF] Bhatia | On the circle polynomials of Zernike and related orthogonal sets[END_REF]. Flusser [START_REF] Flusser | Pattern recognition by affine moment invariants[END_REF] et Reiss [START_REF] Reiss | The revised fundamental theorem of moment invariants[END_REF] ont contribué de manière significative à la théorie des invariants de moments en corrigeant le théorème fondamental et en dérivant des invariants à la transformation affine générale. Malgré cela, un autre type important d'invariants appelé "invariant flou", qui est indépendant de la convolution, est aussi introduit à l'analyse d'images par le même groupe [START_REF] Suk | Combined blur and affine moment invariants and their use in pattern recognition[END_REF]. Les invariants flous apportent une contribution significative à l'analyse d'images, particulièrement les images de télédétection et aériennes. Il est à noter que tous les invariants de moments proposés par Flusser et ses collègues sont basés soit sur les moments géométriques ou les moments complexes. Certains travaux relatifs au développement d'invariants de moments à partir de moments orthogonaux sont apparus graduellement. [START_REF] Chong | Translation invariants of Zernike moments[END_REF] ont présenté les invariants en translation des moments de Zernike qui sont efficaces pour construire des invariants en rotation; et ils ont également proposés une méthode permettant de dériver les invariants en translation et en échelle en termes de moments de Legendre [START_REF] Chong | Translation and scale invariants of Legendre moments[END_REF]. Zhu et al (2007b) ont développés des invariants en translation et en échelle en utilisant les moments discrets de Tchebichef.

Jusqu'ici, tous les moments invariants, qu'ils soient dérivés de moments géométriques, de Legendre, voire des moments discrets de Tchebichef, dérivent substantiellement de moments géométriques car les fonctions de base de ces moments sont des combinaisons linéaires de monômes. Par conséquent, certains invariants de moments peuvent être directement obtenus à partir d'invariants de moments géométriques. [START_REF] Yap | Image analysis by Krawtchouk moments[END_REF]Zhu et al., 2007c).

Grâce au développement rapide de l'acquisition des données multi-dimensionnelles, il est possible de reconnaître directement des objets 3D. Maintenant, les modèles en 3D sont devenus de plus en plus populaire. Certaines applications, comme le suivi d'objet et la récupération de forme, nous demandent à réfléchir la manière de choix des descripteurs caractéristiques de formes 3D et la façon de mesure des similitudes entre les objets 3D. [START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF] sont les pionniers du développement des moments invariants géométriques 3D à partir des moments 2D, ils ont construit une famille de trois moments invariants en utilisant un degré à l'ordre seconde. En utilisant la notion de moments complexes, Lo et Don (1989) ont construit une famille de douze moments invariants avec ordres à partir du premier degré jusqu'au troisième degré. Dans ces derniers travaux, des moments ont été utilisés principalement pour estimer les transformations 3D et leurs performances n'ont pas été évaluées pour les tâches de la classification. En outre, n'étant pas dérivés d'une famille de fonctions orthogonales, ces moments étaient soumis de la corrélation.

xi [START_REF] Reuze | A 3D Moment Based Approach for Blood Vessel Detection and Quantification in MRA[END_REF] ont décrit une méthode basée sur les moments géométriques 3D pour le suivi 3D et la quantification des vaisseaux sanguins à partir de l'angiographie par résonance magnétique (ARM). [START_REF] Canterakis | Fast 3D Zernike Moments and Invariants[END_REF] a étendu les moments de Zernike pour le cas 3D, mais leurs performances n'ont pas été mises à l'épreuve des moments. We rg hi et [START_REF] Werghi | Wavelet Moments for Recognizing Human Body Posture from 3D Scans[END_REF] ont proposé l'utilisation des coefficients de transformation par ondelettes (WTC). [START_REF] Sommer | Moment invariants as shape recognition technique for comparing protein binding sites[END_REF] ont proposé une méthode pour comparer les sites de liaison sur les protéines. Ils utilisent moments invariants géométriques 3D comme des vecteurs caractéristiques pour la description de liaison. Xu et Li (2006a) ont généralisé les courbe des moments 2D dans l'espace euclidien 3D, et ont utilisé la méthode géométrique pour dériver les moments invariants courbe 3D aux différents ordres en vertu de transformation de similitude. Xu et Li (2006b) ont introduit des moments de surface qui peuvent être traité comme un nouveau type de descripteurs de forme de surfaces de forme libre et peuvent gérer la situation où la surface 3D des objets ne sont pas clos. [START_REF] Mademlis | 3D contentbased search based on 3D Krawtchouk moments[END_REF] ont proposé une nouvelle méthode pour la recherche et la récupération basé sur le contenu 3D. Ils ont introduit les moments pondérés de Krawtchout 3D pour l'analyse 3D efficace qui conviennent pour la recherche et l'application de récupération basée sur le contenu. En utilisant le déplacement et les facteurs de l'échelle de polynômes de Legendre pour générer des invariants de la traduction et de l'échelle, [START_REF] Ong | An approach to 3-D object recognition using Legendre moment invariants[END_REF] ont présenté un cadre théorique pour dériver la translation des invariants et l'échelle des invariants pour les moments de Legendre 3D.

Une autre série de moments orthogonaux, c'est les moments de Gauss-Hermite. L'analyse des images par les moments de Gauss-Hermite a été proposée par Shen il y a une décennie [START_REF] Shen | Orthogonal Gaussian-Hermite moments for image characterization[END_REF]. Parmi les premiers travaux, on peut distinguer ceux de Shen et Wu sur la détection d'objets en mouvement en utilisant des moments de Gauss-Hermite unidimensionnels [START_REF] Shen | Orthogonal moments and their application to motion detection in image sequences[END_REF]Wu and Shen, 2005;Wu et al., 2005), la reconnaissance d'iris [START_REF] Ma | Local intensity variation analysis for iris recognition[END_REF] et la classification d'empreintes digitales [START_REF] Wang | Application of a new type of singular points in fingerprint classification[END_REF] basées sur les moments de Gauss-Hermite bidimensionnels. Cependant, ces applications n'utilisent qu'un filtrage dont le noyau est défini avec les fonctions de moments de Gauss-Hermite d'ordre inférieur. Il y a peu de recherche globale sur la capacité de représentation de l'image et de description de l'objet par les moments de Gauss-Hermite.

En ce qui concerne les moments orthogonaux, trois aspects importants sont pris en compte dans notre étude. Le premier est le calcul ou la mise en oeuvre discrète. Le second est la reconstruction d'images, à partir de laquelle nous pouvons évaluer la capacité de représentation d'images par les moments. Le dernier est le développement des moments invariants. C'était sur ces axes que nous travaillions et quelques résultats significatifs ont été présentés dans nos publications [START_REF] Li | Multi-scale image description with rotation invariants of Gaussian-Hermite moments[END_REF]Yang andDai, 2011, 2012;Yang et al., 2011).

xii

Contributions

Bien que la théorie du moment soit bien établie et appliquée largement dans un certain nombre de zones d'image numérique, elle reste relativement marginale en imagerie sismique.

Nous avons appliqué avec succès les moments de Gauss-Hermite à l'analyse d'images sismiques. Avec la définition des moments de Gauss-Hermite 3D à partir du cas 2D, une nouvelle méthode d'interprétation sismique a été proposée dans la thèse. La recherche pour l'interprétation sismique basée sur les moments invariants de Gauss-Hermite a également été présentée dans la thèse. La thèse donne, ensuite, les contributions suivantes:

-Définition des moments de Gauss-Hermite 3D et leur mise en oeuvre discrète :

Une définition des moments orthogonaux de Gauss-Hermite 3D est dérivée des moments orthogonaux de Gauss -Hermite 2D et de la définition générale des moments géométriques 3D. Sur la base de cette définition, les caractéristiques de l'image 3D peuvent être facilement réalisées à partir des moments orthonormales de Gauss-Hermite 3D. La mise en oeuvre discrète de ces moments est détaillée.

- -Estimation de la cohérence de Dip Stepwise à Balayage des données sismiques 3D :

La technologie de cohérence est un outil efficace pour l'interprétation sismique. Il détecte la discontinuité de l'événement sismique par analyse des signaux sismiques dans les traces adjacentes, afin d'identifier les phénomènes géologiques comme les failles, les objets géologique complexes, les formations fluviatiles, etc. La cohérence peut aussi être utilisée pour définir les caractéristiques stratigraphiques. Le troisième algorithme est plus robuste au bruit avec une meilleure résolution, mais il sera difficile de promouvoir en raison de ses coûts énormes de calcul. Nous proposons la procédure de base de l'algorithme de cohérence de Dip

Stepwise à Balayage basé sur la structure.

-Horizon 3D d'auto-suivi basée sur les moments, les moments invariants, et l'analyse de multi échelle :

Il est relativement facile à extraire les caractéristiques d'une région locale au sein des données sismiques 3D à partir des moments géométriques 3D et de la nouvelle définition des moments de Gauss-Hermite 3D. Guidés par la nécessité impérative d'un outil de suivi fiable basé sur caractéristique locale 3D et des résultats très intéressants de travaux effectués dans le passé sur la performance des moments en traitement d'image, les moments géométriques 3D et les moments de Gauss-Hermite 3D sont proposés pour le suivi automatique d'un horizon 3D. Une approche multi échelle basée sur les moments invariants de

Gauss-Hermite 3D a également été présentée pour suivre l'horizon sismique.

-Analyse de faciès sismiques en utilisant les moments de Gauss-Hermite 3D :

xiv Pour un interpréteur sismique, l'analyse de faciès sismiques est une tâche monotone et fastidieuse car il reste encore à être fait manuellement par balayage des centaines de milliers de sections sismiques. Par conséquent, un processus est hautement nécessaire ce qui rend cette étape d'interprétation automatique. La description de la forme en 3D a évolué vers un domaine de recherche large au cours des dernières années. Les moments 3D permettent d'extraire des caractéristiques importantes de volume sismique. Une nouvelle méthode basée sur SOM, avec des techniques de visualisation de données Matrice U et le graphique PCP, en utilisant les moments de Gauss-Hermite 3D est présentée et utilisée pour l'analyse de faciès sismiques

Structuration de la thèse

.

Pour exposer nos travaux, nous avons organisé le manuscrit en la façon suivante:

Le chapitre 1 introduit le sujet de la thèse. Dans la première section, nous décrivons notre motivation et notre problème plus en détail. Ensuite, dans la seconde section, nous résumons les contributions principales de notre travail. Enfin, nous donnons un aperçu pour le reste de cette thèse dans la dernière section.

Le chapitre 2 donne un aperçu sur les images sismiques ainsi que sur les attributs sismiques.

Deux aspects sont abordés sur les images sismiques: l'acquisition des données sismiques, le traitement de l'image sismique. Tout d'abord, on présente l'acquisition des données sismiques.

L'objectif de l'acquisition des données sismiques est de proposer des outils qui peuvent mettre en évidence des profils croisés. On décrit plusieurs méthodes typiques de traitement d'image incluant le lissage structural, le filtrage directionnel et l'analyse de texture. Une partie de ces approches relèvent du domaine de la géophysique où le traitement du signal est utilisé à des fins de caractérisation de signaux classiquement utilisés en géosciences. L'autre partie des méthodes concerne des méthodes proposées par la communauté des traiteurs d'image pour la détection de contours. Dans la deuxième partie, nous présentons la description des attributs sismiques. Nous introduisons également quelques classifications des attributs sismiques en fonction de différents critères, tel que les relations entre les attributs sismiques, les caractéristiques de domaine des attributs, les caractéristiques de calcul, et les caractérisations des réservoirs.

Le chapitre 3 présente l'analyse d'image sismique basée sur les moments. 
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Introduction

Energy is one of the most important natural resources in modern societies. Over half of the world energy needs come from oil and gas [START_REF] Randen | Atlas of 3D Seismic Attributes, Mathematical Methods and Modelling in Hydrocarbon Exploration and Production[END_REF]. Increasing demands in world-wide energy consumption and oil and gas depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. This results in high demands for hydrocarbon resources and makes their identification and extraction economically valuable. Oil and natural gas are two of the non renewable energy resources in the world, and they are main sources of the world's energy. Due to the high level of energy stored in oil, this energy source became and currently is one of the main pillars of our indus trial societies. Because of their importance, Oil and natural gas have a deep impact in the world's economies and politics. Today, oil and natural gas account for 90% of the world's transportation fuels and are linked to many products that we use in our daily lives and activities.

Oil is a fossil fuel, and is created when organic material is deposited and then buried, followed by the application of pressure and heat over a long period of time [START_REF] Patel | The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data[END_REF].

Natural gas also is a fossil fuel in gaseous state. Natural gas is mostly made up of methane and can be found associated with other fossil fuels such as in coal beds and with methane clathrates; and it is created in two mechanisms: biogenic creation and thermogenic creation [START_REF] Rojey | Natural gas: production, processing, transport[END_REF] . The produced oil and natural gas will migrate upwards and accumulate in reservoir structures such as anticlines or fault traps. Oil and natural gas are searched for by looking for signs of these depositional or reservoir structures.

In Section 1.1, we describe our motivation and problem in greater detail. Next, in Section 1.2, we summarize the main contributions. Finally, we give an outline for the rest of the dissertation in Section 1.3.

Motivation and problem description

There are four geophysical survey techniques which are commonly used in the exploration for oil and gas: gravity survey, aeromagnetic survey, electromagnetic survey and seismic survey [START_REF] Ashcroft | A Petroleum Geologist'S Guide To Seismic Reflection: PART I Basic topics and 2D interpretation[END_REF]. Seismic survey is a program for mapping geological structure by observation of seismic wave, especially by creating seismic wave with artificial sources and observing the arrival time of the waves reflected from acoustic impedance contrasts or refracted through high velocity members [START_REF] Sheriff | A first course in geophysical exploration and interpretation[END_REF]. Seismic surveys have a long history of use in petroleum exploration and are the primary tool for delineating subsurface structure and detecting the presence of hydrocarbons prior to drilling. Since the first land seismic surveys along Gulf Coast, performed in the 1920's [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF], the seismic reflection method has played an important role in the exploration of energy resource. The seismic method is a powerful remote sensing technique that can image the subsurface over depths from tens of meters to tens of kilometres. In 1967, the first 3D seismic survey was shot by Exxon over the Friendswood field near Houston in Texas [START_REF] Robertson | Reservoir management using 3-D seismic data[END_REF]. Early surveys were expensive to acquire and process, but as the industry gained familiarity with the needed technologies, then costs and processing and interpretation times for 3D seismic came down.

By the early 1980s, trade journals had a number of articles confirming the 3D seismic approach. Likewise, 3D seismic surveying in other offshore areal and on land is growing rapidly. 3D seismic technology represents one of the more important technology introductions over the past decades in that it has allowed oil and gas companies to dramatically improve their oil and gas finding rates.

Seismic exploration can be divided into three main stages [START_REF] Yilmaz | Seismic data processing[END_REF]: data acquisition(both in land and in marine), processing (include signal processing and image processing), and interpretation (such as structure interpreting, fault interpreting, and seismic facies classification, hydrocarbons reservoirs identifying etc). The seismic method starts with the acquisition that consists of collecting raw data directly from the receivers. The purpose of seismic processing is to manipulate the acquired seismic data into an image that can be used to infer the subsurface structure. There are number of steps involved from seismic data acquisition to interpretation of subsurface structure. Some of the common steps are summarized below: In order to work with above stages, a lot of signal processing operations are needed to accomplish the job. Some of them are sampling data, amplitude recovery, correction, crosscorrelation, auto-correlation, filtering, Fourier transform, Discrete Fourier transform, Ztransform, convolution/deconvolution, and f-k analysis etc. Seismic data provides the geoscientist with the most important tool for structural interpretation. However, Seismic data often contain both useful structural information and useless random noise. It is desirable to enhance the structures and reduce the random noise. Seismic data alone do not allow for separating noise from real features. The use of seismic attribute maps for detailed structural interpretation has gained increasing popularity in the last decade. The presence of more than one seismic survey will allow the interpreter to increase his knowledge on uncertainties related to detailed structural interpretation of seismic. Seismic interpretation also requires a lot of math and the careful construction and interpretation of data.

Seismic attributes are specific measurements of geometric, kinematic, dynamic, or statistical features derived from seismic data. So it represents a subset of the total information [START_REF] Barnes | Seismic attributes in your facies[END_REF]. They help us better visualize or quantify features of interpretation interest [START_REF] Chopra | Seismic attributes for prospect identification and reservoir characterization[END_REF]. Applying seismic attributes for fault detection, determination of fracture distribution, revealing stratigraphic features and interpretation of other geological events is a new technology which geoscientists use it overly nowadays. Seismic attributes can be divided into two broad categories: those that help us quantify the morphological component of seismic data and those that help us quantify the reflectivity component of seismic data. The morphological attributes extract information on reflector dip, azimuth, shape, and terminations, which can in turn be related to faults, channels, fractures, karst, and carbonate buildups. The reflectivity attributes extract information on reflector amplitude, waveform, and variation with illumination angle, which can in turn be related to lithology, reservoir thickness, fracture density and azimuth, and the presence of hydrocarbons. In the reconnaissance mode, seismic attributes help us to rapidly identify structural features and depositional environments.

In the reservoir characterization mode, seismic attributes are calibrated against real and simulated well data to identify hydrocarbon accumulations and reservoir compartmentalization. In the recent years, much attention has been given to the prediction of reservoir properties and to the extraction of seismic attributes to enhance the value of seismic interpretation.

Nowadays, most thorough seismic interpretations still remain based on an integrated use of seismic inline, cross-line, time slice, random line and horizon attributes. The challenge is to fully utilise all information contained in seismic data. To do this, the interpreter needs to combine knowledge within the complex disciplines of geology and geophysics. This is not an easy task, and quite commonly, the lack of a sound geological understanding leads the geophysicist to interpret unrealistic geological geometries. Similarly, the geologist may easily interpret features that the geophysicist would rapidly identify as being noise-related. The increasing demand for more and better data interpretation force the geoscientist to carry out very detailed interpretation without having time for the important and necessary quality control.

Conventional seismic interpretation is an art that requires skill and thorough experience in geology and geophysics. In recent years many aspects of the structural interpretation of seismic data have become automated and more rapid [START_REF] Brown | Interpretation of three-dimensional seismic data[END_REF][START_REF] Coleou | Interpreter's Corner---Unsupervised seismic facies classification: A review and comparison of techniques and implementation[END_REF][START_REF] Linari | Seismic facies analysis based on 3D multiattribute volume classification, La Palma Field, Maracaibo, Venezuela[END_REF][START_REF] Marsh | Role of Automated Techniques in Improving Volumebased Structural Interpretation[END_REF] An essential issue in the field of pattern analysis is the recognition of objects and characters regardless of their positions, sizes, and orientations. Moment based feature descriptors have evolved into a powerful tools for image analysis applications. Moments can be applied to binary or grey level images, defined in 2D, 3D and higher dimensional space, but also to edges and primitives extracted through a pre-processing stage. Moments and functions of moments due to their capabilities to extract invariant global features have been extensively

applied in the field of image processing: image analysis and pattern recognition [START_REF] Flusser | Pattern recognition by affine moment invariants[END_REF][START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] with applications ranging from edge detection [START_REF] Luo | A moment-based threedimensional edge operator[END_REF], image understanding, image classification and segmentation [START_REF] Yokoya | Range image segmentation based on differential geometry: a hybrid approach[END_REF], texture analysis [START_REF] Tuceryan | Moment based texture segmentation[END_REF][START_REF] Tuceryan | Texture Analysis[END_REF], coherency estimation (Li et al., 2010a), invariant identification [START_REF] Li | Multi-scale image description with rotation invariants of Gaussian-Hermite moments[END_REF]Yang and Dai, 2011;Yang et al., 2011), target identification, object classification, image coding and reconstruction [START_REF] Teague | Image analysis via the general theory of moments[END_REF][START_REF] Teh | On Image Analysis by the Methods of Moments[END_REF] , scene analysis [START_REF] Jerome | Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval[END_REF][START_REF] Sadjadi | Numerical computation of moment invariants for scene analysis[END_REF], image reconstruction [START_REF] Liao | On image analysis by moments[END_REF][START_REF] Yang | Image reconstruction from continuous Gaussian-Hermite moments implemented by discrete algorithm[END_REF], and 3D object analysis [START_REF] Bronstein | Three-Dimensional Face Recognition[END_REF][START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF]. Describing images with moments instead of other more commonly used image features means that global properties of the image are used rather than local properties.

Geometric moments are firstly proposed and have been extensively used due to their simplicity and explicit geometric meaning. However, geometric moments are not orthogonal, so it is difficult to reconstruct an image from them. Teague showed that great efficiency could be acquired when the image was analyzed by orthogonal Legendre and Zernike moments [START_REF] Teague | Image analysis via the general theory of moments[END_REF]. Moreover, it was proven that Zernike moments could store image information with minimal redundancy and they have the property of being rotation invariants. As we know, the computation of Legendre moments needs to transform image coordinates over the interval [-1, 1] and Zernike polynomials are only valid inside the unit circle [START_REF] Mukundan | Moment functions in image analysis Theory and applications[END_REF]. Besides, the discretization error derived from approximating the integral is still inevitable during their implementations, which definitely limits the accuracy of comput ed moments [START_REF] Liao | On image analysis by moments[END_REF]. Liao and Pawlak conducted a theoretical analysis on the discretization error of continuous moments and they proposed an approach to keep the error under certain level according to Simpson's rule [START_REF] Liao | On image analysis by moments[END_REF]. Other researches aiming at improving the accuracy of continuous moments are accordingly focused on geometric and Legendre moments (Hosny, 2007a, b).

Recognition of the shape and form of objects in a scene is easily accomplished by human visual observations even if the object is translated, rotated, scaled, partially obscured, slightly distorted, or viewed in perspective. The invariant recognition of forms is important to humans for a variety of tasks, even though variant recognition is also necessary for some tasks as illustrated by the differentiation of the characters. Moment invariants are considered as important tools in image analysis and pattern recognition. In the early 60's of last century the pioneering work of [START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] on moment invariants(his seven famous geometric moment invariants), moments and moment functions has opened many applications in the image field.

Because these invariants are independent of rotation, translation and scaling, they were soon used in a lot of applications as efficient object descriptors. Thereafter, some new moment invariants, which are still based on geometric moments, have successively been developed and used. A large number of papers that have significant contributions to the application of the subject appeared afterward. Abu-Mostafa proposed a method to derive geometric moment inva riants from complex moments and he analyzed their properties in terms of information redundancy and noise sensitivity as well [START_REF] Abu-Mostafa | Image normalization by complex moments[END_REF]. Correspondingly,

Reddi also provided a generalized framework for deriving radial and angular invariants [START_REF] Reddi | Radial and angular moment invariants for image identification[END_REF]. Another kind of moment is Zernike moment from which the rotation inva riants can be easily derived, since Zernike polynomials are orthogonal inside unit circle and generally defined in polar coordinates. The radial orthogonal sets such as Zernike polynomials have an congenital property "invariant in form" which directly determines the rotational invariance of corresponding moments [START_REF] Bhatia | On the circle polynomials of Zernike and related orthogonal sets[END_REF]. Flusser [START_REF] Flusser | Pattern recognition by affine moment invariants[END_REF] and Reiss [START_REF] Reiss | The revised fundamental theorem of moment invariants[END_REF] contributed significantly to the theory of moment invariants by correcting the fundamental theorem and deriving invariants to general affine transform. In spite of this, another important kind of moment invariant called blur invariant which is independent of convolution is also introduced to image analysis by the same group [START_REF] Suk | Combined blur and affine moment invariants and their use in pattern recognition[END_REF]. Blur invariants have the significant meaning to image analysis, especially to the analysis of remote sensing and aerial images. It should be noted that all moment invariants proposed by Flusser and his colleagues are based on either geometric moments or complex moments. Some work with respect to the development of moment invariants from orthogonal moments has been gradually introduced. Chong presented the translation invariants of Zernike moments which are efficient for constructing rotation invariants [START_REF] Chong | Translation invariants of Zernike moments[END_REF]; and he also proposed a way to derive the translation and scale invariants in terms of Legendre moments [START_REF] Chong | Translation and scale invariants of Legendre moments[END_REF]. The researches in moment invariant can be also found in discrete orthogonal moments. Zhu has developed the translation and scaling invariants by using discrete Tchebichef moments (Zhu et al., 2007b). Hitherto, all moment invariants whatever they are derived from geometric moments, or Legendre moments, even or discrete Tchebichef moments, we can hold in a sense that they are substantially derived from geometric moments because the basis functions of these moments are linear combinations of monomials. Consequently, some moment invariants can be indirectly obtained from geometric moment invariants [START_REF] Yap | Image analysis by Krawtchouk moments[END_REF]Zhu et al., 2007c).

With the rapid development of the acquisition of multi-dimensional data, it is possible to recognize 3D objects directly. Now, 3D shape models have become more and more common.

Applications such as object tracking and shape retrieval require us to consider how to choose the feature descriptors of 3D shapes and how to measure the similarities between 3D objects. [START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF] pioneered the development of 3D Geometric moment invariants from 2D moment. They built a family of three invariant moments with a degree up to the secondorder. Using the notion of complex moments Lo and Don (1989) constructed a family of twelve invariant moments with orders up to the third degree. In these last works, moments were used mainly to estimate 3D transformations and their performances were not evaluated for classification tasks. Also, being not derived from a family of orthogonal functions, these moments were subject to correlation. [START_REF] Reuze | A 3D Moment Based Approach for Blood Vessel Detection and Quantification in MRA[END_REF] described a method based on the 3D geometrical moments for the 3D tracking and the quantification of blood vessels from Magnetic Resonance Angiography (MRA). [START_REF] Canterakis | Fast 3D Zernike Moments and Invariants[END_REF] extended Zernike moments to the 3D case, but their performances were not put into trial yet. In [START_REF] Werghi | Wavelet Moments for Recognizing Human Body Posture from 3D Scans[END_REF],

Werghi and Xiao proposed to investigate the wavelet transform coefficients (WTC). Sommer et al proposed a method for comparing protein-binding sites. They use 3D geometric moment invariants as feature vectors for the binding description. Xu and Li (2006a) generalized curve moments from 2D to 3D Euclidean space, and use geometrical method to derive 3D curve moments invariants of different orders under similarity transformation. In (Xu and Li, 2006b), the authors introduced the surface moments, a kind of moment can be treated as a new kind of shape descriptors of free-form surfaces and can handle the situation where 3D surface objects are not closed. [START_REF] Mademlis | 3D contentbased search based on 3D Krawtchouk moments[END_REF] proposed a novel method for 3D content-based search and retrieval. They introduced weighted 3D Krawtchout moments for efficient 3D analysis which are suitable for content-based search and retrieval application. [START_REF] Ong | An approach to 3-D object recognition using Legendre moment invariants[END_REF] present a theoretical framework to derive translation and scale invariants for 3D Legendre moments, by using generates 3D Legendre invariants from the existing 3D geometric moment invariants and eliminates the displacement and scale factors from Legendre polynomials to generate translation and scale invariants.

Another set of orthogonal moments, Gaussian-Hermite moments, was proposed by Shen a decade ago [START_REF] Shen | Orthogonal Gaussian-Hermite moments for image characterization[END_REF]. However, the researches in this kind of moments are relatively less than those in other moments. The related records are countable: Shen and Wu detected moving objects by use of one-dimensional Gaussian-Hermite moments [START_REF] Shen | Orthogonal moments and their application to motion detection in image sequences[END_REF]Wu and Shen, 2005;Wu et al., 2005). Meanwhile, these moments were also used in iris recognition [START_REF] Ma | Local intensity variation analysis for iris recognition[END_REF] and classification of fingerprint [START_REF] Wang | Application of a new type of singular points in fingerprint classification[END_REF]. In fact, the above applications are based on image filtering by some kernels defined with Gaussian-Hermite moment functions of low orders.

As far as the orthogonal moments are concerned, there are generally three important aspects on their study. The first one is the computation or discrete implementation. The second one is image reconstruction, from which we can evaluate image representation ability of the moments. The last one is the development of moment invariants. In those three aspects by Gaussian-Hermite moments, there are few researches about the image representation ability of Gaussian-Hermite moments. Some novel approaches are presented by Yang et al in resent works [START_REF] Li | Multi-scale image description with rotation invariants of Gaussian-Hermite moments[END_REF]Yang andDai, 2011, 2012;Yang et al., 2011).

Contributions

Although the moment theory is well established and widely applied in a number of digital image areas, it remains relatively marginal in seismic imaging. We have successful applied

Gaussian-Hermite moments to seismic image analysis. With definition of Gaussian-Hermite moments from 2D case to 3D case, a new method of seismic interpretation has been proposed in the thesis. The research for seismic interpretation based on Gaussian-Hermite moment invariants has also been presented in the thesis. Taken these aspects into account, the thesis then gives the following contributions:

-Definition of 3D Gaussian-Hermite moments and discrete implementation :

A definition of 3D orthogonal Gaussian-Hermite moments is derived from orthogonal 2D

Gaussian-Hermite moments and the general definition of 3D geometric moments. Based on this definition, 3D image features can be easily achieved from the orthonormal 3D Gaussian-Hermite moments. The discrete implementation of such moments is detailed.

-Derivation of 2D /3D rotation and translation invariants from Gaussian-Hermite moments.

The derivation of moment invariants for orthogonal moments is generally complicated and difficult. At present, there are two chief methods for achieving moment invariants of orthogonal moments: image normalization and expressing the orthogonal moments by a linear combination of geometric moment invariants. Image normalization needs many parameters to be computed; the indirect method, on the other hand, is substantially constructing moment invariants from geometric moments, which is not based on the property of orthogonal moments directly. In this thesis, the derivation of Gaussian-Hermite moment invariants is based on the properties of Gaussian-Hermite polynomials. To be more precise, the translation invariants are constructed by the central moments of Gaussian-Hermite moments, which can be readily proven to have translation invariance; the rotation invariants, on the other hand, are derived from a property of Hermite polynomial, which indicates that the product of two Hermite polynomials has the consistent and similar forms as that of monomials. A significant conclusion can then be drawn that the rotation invariants of Gaussian-Hermite moments have the identical forms to those of geometric moments. Undoubtedly, the combination of these two kinds of invariants will generate a moment invariant which is independent of both translation and rotation. Some experiments for testing feature representation and pattern classification ability have been given. The experimentation results confirm the superior ability of Gaussian-Hermite moment invariants.

-Applications of Gaussian-Hermite moments to image analysis and seismic images analysis:

We have offered application of spectral Gaussian-Hermite moments in coherency estimation.

We present the way using the moments of the first order and the second order to estimate the coherency within a small local window in Fourier domain. From the experiments, it can be found that the size of the window and the value of σ are important in coherency estimation method by spectral Gaussian-Hermite moments. As the window size gets larger, more global features are detected.

We have also presented Gaussian-Hermite moment invariants in template matching. Since in the computation of Gaussian-Hermite moments, there is an important scale parameter σ .

Given a σ, we could obtain a set of invariants. Therefore, we define different sets of invariants with the different scale parameter and perform a multi-scale analysis that allows us to obtain more information of the image and to better characterize the image.

-Stepwise dip scanning coherency estimation of the 3D seismic data:

Coherence technology is an effective tool for seismic interpretation. It detects the discontinuity of the seismic event by analyzing seismic signals in adjacent traces, so as to identify geological phenomena like faults, special lithologic bodies, river courses etc. Also coherence can be used to define stratigraphic features. Third algorithm is more robust to noise and with a better resolution, but it will be hard to promote due to its huge computational costs.

We propose the basic procedure of the stepwise dip scanning coherence algorithm based on eigenstructure to solve these problems.

-3D Seismic horizon auto-tracking based on moments and moment invariants, and multi scale analysis approach:

With 3D geometric moments and the newly defined 3D Gaussian-Hermite moments, it is relatively easy to extract features of a local region within 3D seismic data from such moments.

Guided by the imperative need for a reliable 3D local feature based tracking tool and the very interesting results of research work done in the past on the performance of moments in image processing, 3D geometric moments and 3D Gaussian-Hermite moments are proposed for efficient 3D horizon auto-tracking. 3D Gaussian-Hermite moment invariants also are proposed for efficient 3D horizon auto-tracking. A multiscale approach based on 3D

Gaussian-Hermite moment inva riants is presented to track seismic horizon.

-Seismic facies analysis using 3D Gaussian-Hermite moments :

For a seismic interpreter, seismic facies analysis is a monotonous and time consuming task because it still has to be done manually by scanning through hundreds to thousands of seismic cross sections. Hence, a process is highly required which makes this interpretation step automatic. 3D shape description has evolved to a wide research area during the last years. 3D moments can extract important features of a volume. A novel method based on SOM, with data visualization techniques U-Matrix and PCP graphic, using 3D Gaussian-Hermite moments is introduced for seismic facies analysis.

Outline

The organization of this thesis is as follows:

Chapter 2 reviews two aspects of seismic data study: seismic image and seismic attributes. At the first, seismic data acquisition is introduced. The aim of seismic data acquisition and processing is to deliver products that mimic cross-sections through the earth. Focusing on the seismic image processing, we outline some typical image processing methods which include structure smooth, oriented filtering methods (be employed to enhance stratigraphic continuity and to preserve fault discontinuity for the applications that do not require actual fault surfaces), texture analysis (be used to extract patterns of common seismic signal character).

The study and interpretation of attributes can provide us with some qualitative information of the geometry and the physical parameters of the subsurface. In the second part of this chapter, a brief description of seismic attributes is given. We introduce some classifications of seismic attributes according to different criteria such as relationship of the attributes, domain characteristics of the attributes, computational characteristics, or reservoir characterization.

Some basic seismic attributes characteristics used in seismic object identifying are also introduced at the end of chapter.

In Chapter 3, we discuss image analysis based on moments. Moments based feature descriptors have evolved into a powerful tool for image analysis application. A basic overview of various types of moments which are currently in use is provided at the first section. We present a new orthogonal Gaussian-Hermite moment and derivation of its rotation and translation inva riants from geometric moments inva riants. Meanwhile, some diverse usages of Gaussian-Hermite moments and moment invariants in some applications are exhibited as: coherency estimation, pattern recognition. We also discuss seismic image analysis by moments in this chapter. It is shown that Gaussian-Hermite moments are effective tools for image analysis.

In chapter 4, we compare two main families of algorithms coherency and differencing used in seismic attribute. Coherency method is firstly introduced by Bahorich and Farmer. Marfurt et al developed this method. First coherency method is not very robust to noise. The next algorithm is more robust to noise but with lower resolution and higher comput ational costs than first algorithm. Third algorithm is more robust to noise and with a better resolution, but it will be hard to promote due to its huge computational costs. To solve these problems, we propose the basic procedure of the stepwise dip scanning coherence algorithm based on eigenstructure. The dip scanning is conducted in two steps. In the first step, C 2 algorithm is employed to scan all dip directions; the resulted coherence values are sorted from small ones to large ones; dip directions of the larger coherence values will be kept for further use. In the second step, C 3

In Chapter 5, we specialize in the aspects of 2D and 3D seismic horizon interpretation. A brief review of horizon interpretation is firstly given. Over the last three decades, tremendous progress has been made in technique of horizon interpretation. These methods include manual interpretation, interpolation interpretation, auto-tracking interpretation, voxel tracking, and surface slicing. According the different kind of seismic data, the tracking of horizons can be classified into 2D horizon tracking and 3D horizon tracking. In this chapter, we approach method based on geometric moments and Gaussian-Hermite moments to the task of 2D/3D horizon tracking. The comparisons are made under both 2D and 3D conditions of correlation method, higher order statistics method, and moments-based method. We also approach method based on Gaussian-Hermite moment invariants to the task of 2D/3D horizon tracking.

Meanwhile, we discuss multi-scale analysis based on Gaussian-Hermite moment inva riants applying for horizon auto-tracking.

algorithm is implemented to search for the best dip directions among the ones we kept in the first step.

Chapter 6 presents the analysis of seismic facies by moments. There are two major problems in seismic facies analysis: the first problem is to determine which seismic parameters are discriminants for characterizing the seismic facies; the second problem is to be sure that there is a link between the seismic parameters and the geological facies which is investigated by interpreter. Still, the sufficient experiments of the proposed facies analysis with Gaussian-Hermite moments can be also found in this chapter.

In Chapter 7, we pay attention to parallel processing technology and visualization technology.

Compared to the tens of gigabytes size of the seismic data sets, system memory and texture memory on the graphics processing unit remain scarce resources. With size of seismic volume increasing, we can also find that performance of conventional application system will decline rapidly. Multi-core processors can offer software developers the ability to apply more resources at a particular problem. To take advantage of this new performance in seismic data field, we compute the seismic attributes and track the horizon with parallel program. It can be seen that there has been a dramatic decline in the calculation of attributes, and interpretation has been efficient. Interpreters can save their time and resources into others interesting tasks.

Volume visualization technology and volume interpretation may help interpreter to insight into 3D seismic data and accelerate the interpretation process. In this chapter, we adapt high quality volume rendering algorithms based on Open-Scene-Graph (OSG) 3D engine, an open source high performance 3D graphics toolkit, to improve application efficiency in the imaging and visualization.

Finally, a chapter of conclusion gives a summary of this thesis and issues the future works and perspective study on seismic interpretation and application of Gaussian-Hermite moments.

Seismic image and seismic attributes

Seismic exploration can be divided into three main stages: data acquisition, processing (signa l processing and image processing), and interpretation (structure interpreting, fault interpreting, and seismic facies classification, hydrocarbons reservoirs identifying etc). The seismic value chain [START_REF] Berkhout | The data-driven seismic value chain, providing a business context for the velocity[END_REF] shows the procedure of seismic exploration in a conceptual way, making it easier to see One of the primary tasks in exploration seismology is to interpret seismic arrival patterns propagated from the source to receiver through the earth, and to map subsurface geological structure and stratigraphic features. The recorded seismic waves consist of a series of seismic events. The seismic event may be a reflection, refraction, surface wave, random signal, etc, which carries information about the earth's subsurface. 

Seismic image

Seismic imaging is a primary source of information used in the exploration of hydrocarbons.

Seismic image is the process through which seismograms recorded on the Earth's surface are mapped into representations of its interior properties. Imaging methods are nowadays applied to a broad range of seismic observations: from near-surface environmental studies, to oil and gal exploration, even to long-period earthquake seismology. The characteristic length scales of the features imaged by these techniques range over many orders of magnitude.

Seismic data acquisition

In a sense, seismic images can be regarded as the reflections in the forms of image for the underground structures [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF][START_REF] Pouliquen | Operateurs discrets pour l'estimation adaptative et optimale de l'orientation application à l'imagerie sismique[END_REF]. The images display the subsurface of the earth with geological structures evident in various layers. This filed travels down the subsurface and partly reflects at locations where the acoustic rock properties change. Generally, seismic image are 3D images or called 3D block seismic image.

Seismic data acquisition consists of gathering and recording of continuous seismic signals from seismic stations. The aim of seismic data acquisition and processing is to deliver products that mimic cross-sections through the earth. In order to do this, the correct amount and types of data must be acquired, and processing applied to remove unwanted energy, and to place the required events in the correct location. At the same time, a balance needs to be struck between cost and timeliness of data, while attaining alse the important objectives of safe operations and doing no harm to the environment.

Initially, seismic data were acquired along straight lines, known as 2D seismic; shooting a number of lines across an area gave us the data needed to make a map. Again the process is analogous to making a bathymetric map from echo soundings along a number of ship tracks.

In 1980', it has been realised that there are big advantages to obtaining very closely spaced data. Instead of having to interpolate between sparse 2D lines, the result is very detailed information about the subsurface in a 3D cube, known as 3D seismic. 3D seismic can be used to improve our understanding of the subsurface.

Seismic wave

The theory of seismic wave propagation is the basis for seismic imaging. Seismic waves are generated when a stress is applied near or at the earth's surface. The generated seismic waves propagate in all directions from the stress source, and they are governed by the mechanical properties of the rocks, such as incompressibility, rigidity, and density. Wave characteristics are also affected by the layering of the rocks and physical properties of the surface soil. The seismic reflection method deals with seismic waves that propagate through the earth's interior. Seismic waves are divided into two types: body waves and surface waves. Body waves include P waves and S waves, these are the two types of waves that are used to determine the internal structure of the Earth. Surface waves include Rayleigh waves and Love waves. On firing an energy source, a compressional force causes an initial volume decrease of the medium which the force acts. The elastic character of rock the caused an immediate rebound or expansion, followed by a dilation force. This response of the medium constitutes a primary "compressional wave" or P wave. P waves travel as a region of compression. P waves are the fastest kind of seismic wave. A longitudinal P wave has the ability to move through solid rock and fluid rock, like water or the semi-liquid layers of the earth. While P wave moves through, it pushes and pulls the rock in the same way sound waves push and pull the air. Shear strain occurs when a sideways force is exerted on a medium. S wave (shear wave) may be generated that travels perpendicularly to the direction of the applied force and travels like vibrations in a bowl of Jello. S wave is slower than a P wave and only moves through solid rock. This wave moves rock up and down, or side-to-side. Because P waves are compression waves, they can move through a liquid. However, S waves cannot move through a liquid such as water. This is possible because a liquid is not rigid enough to transmit S wave. P waves propagate by moving the particles in the medium parallel to the propagation direction while shear waves propagate by moving the medium particles perpendicular to the propagation direction.

The velocity of the seismic ray is described as a function of the elasticity of the medium in which the ray is travelling. Any medium that can support wave propagation may be described as having impedance. In dense rock, P wave can vary from 2500 to 7000 m/sec, while in spongy sand, from 300 to 500 m/sec. 
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A propagating seismic wave is understood by using principles from optics:

-Huygens' Principle: the wave front of a propagating wave of light at any instant conforms to the envelope of spherical wavelets emanating from every point on the wave front at the prior instant (with the understanding that the wavelets have the same speed as the overall wave). each point on a wave front (a seismic wave front is a constant phase surface) produces secondary spherical waves (called wavelets). After time t the spherical radius of each is V * t (Figure 2.5 (a)). Huygens' Principle can be seen as a consequence of the isotropy of space.

-Fermat's Principle: or the principle of least time is the principle that the path taken between two points by a ray of light is the path that can be traversed in the least time. This principle is sometimes taken as the definition of a ray of light. However, this version of the principle is not general; a more modern statement of the principle is that rays of light traverse the path of stationary optical length. Fermat's principle can be used to describe the properties of light rays reflected off mirrors, refracted through different media, or undergoing total internal reflection. It follows mathematically from Huygens' Principle (at the limit of small wavelength), and can be used to derive Snell's law of refraction and the law of reflection. In a group of paths from source to receive, a seismic ray travels along the minimum-time path through the medium (Figure 2.5 (b)).

These principles help to locate a wave front after a certain time interval. V*(t 1 ,-t 2 ) A change in velocity while a wave traverses through different media results in reflection and refraction (Figure 2.6). These events are governed by Snell's reflection and refraction laws:

-The law of reflection states that the angle of reflection equals the angle of incidence.

-The law of refraction relates velocity to the angle of incidence and to the angle of refraction, ( ) ( )

1 11 2 22 sin sin Vn Vn θ θ = =
where each as the angle measured from the normal, V as the velocity of wave in the respective medium (SI units are meters per second, or m/s) and n as the refractive index of the respective medium. Reflection and refraction occurs when a seismic wave passes through two media having different acoustic impendence. The angle of reflection is the same as the angle of incidence, while the angle of refraction is related to the angle of incidence through Snell's law.

In the seismic imaging theory, the subsurface geology is viewed as a stack of homogeneous rock layers with planar upper and lower surfaces. Each homogeneous layer supports wave propagation with different impedances. Seismic waves are generated from sources put on the surface, and structures are estimated by using travel times of seismic waves which get reflected at the boundaries between the layers. The reflections are recorded by recorder instruments put on the earth's surface close to the sources. After the recorder measured the precise arrival time of the wave, its velocity is calculated and used to determine the properties of the rock layer in which it travels.
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Refracted wave i i r Details of the seismic imaging theory are found in [START_REF] Sheriff | Exploration Seismolgoy (2nd)[END_REF]. For details of the seismic wave propagation refer to [START_REF] Claerbout | Imaging the Earth's Interior[END_REF][START_REF] Treitel | Seismic wave propagation in layered media in terms of communication theory[END_REF]. Figure 2.7 illustrates a seismic data acquisition principle.

The essential features of an exploration seismic data experiment are [START_REF] Scales | Theory of Seismic Imaging[END_REF]:

-Using controlled sources of seismic energy -Illumination of a subsurface target area with downward propagating waves -Reflection and refraction of the seismic waves by subsurface heterogeneities -Detection of the reflected seismic energy on recorders on the earth's surface. A seismic wave originated from a source gets reflected and refracted while going down. The amplitude and the arrival time of the reflected waves are recorded by recorder put on the surface.

Data acquisition

Subsurface geologic structures containing hydrocarbons are found beneath either land or sea.

So there are two methods for seismic data acquisition: land data acquisition and marine data acquisition. Both two methods have a common goal, imaging the earth. But because the environments is different, so each required unique technology and terminology. surveyed from the slots recorded using a land or marine source and data gaps all along the coast within the area of prospect.
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The receivers are deployed in clusters called groups; the signal from each receiver in a group is summed so as to: increase the signal to noise ratio and attenuate horizontally propagating waves. The individual receiver groups are separated from one another by distances of anywhere from a few dozen meters to perhaps 100 meters. The entire seismic line will be kilometres or more long.

Seismic sources come in different shapes and sizes. Sources such as dynamite, weight drops, large caliber guns and large resistive masses called vibrators are used on land, while vibrator, air guns, electric sparkers and confined propane-oxygen explosions are the most common sources for a marine survey [START_REF] Scales | Theory of Seismic Imaging[END_REF].

For surveys related to the exploration of oil and gas, several sources and receivers are placed As an interpretation of towards to the subsurface earth structures, seismic images are powerful tools for us in the understanding the underground. However, in practice, there will be several difficulties in achieving this, since the acquisition of the underground scenes and the processing of the seismic images are all involved in influences. The first difficulty lies in the methods by which we acquire the information underground.

Over the years Seismic Data Acquisition has become more important then ever for many companies and industries around the globe. During the coming years and into the future this important work will continue. It is vital for many companies to have an accurate database of the most current information on underwater geography. For those industries that use this type of information, the accuracy and the quality of this seismic data must be at very high levels.

Modern technology has made seismic data acquisition quicker, simpler, and more accurate. It
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Reflection is still used for many of the same purposes, including locating oil, natural gas, or valuable minerals. The Seismic Data Acquisition information will help the geoscientists to make accurate maps of the subsurface both the land and the marine areas. With this information the geoscientists can then predict the value of the area and make it more profitable for use in any capacity. Recent advances in seismic acquisition will help Apache gather more higher-quality data at a lower cost and at a staggeringly faster rate.

Seismic image processing and analysis

After the seismic data has been recorded, it is processed through the three main stages of deconvolution, stacking, and migration, resulting in a post-processed data volume.

Deconvolution acts on the data along the time axis and increase temporal resolution by filtering and trace correction. Stacking compresses the data volume in the offset direction and yields the planes of stacked sections. Migration then moves dipping events to their true subsurface positions and collapses diffractions, thus increasing lateral resolution. Figure 2.11

shows a processing chain of seismic data. The purpose of seismic processing is to manipulate the acquired data into an image that can be used to infer the sub-surface structure. Only minimal processing would be required if we had a perfect acquisition system. Processing consists of the application of a series of computer routines to the acquired data guided by the hand of the processing geophysicist. The interpreter should be involved at all stages to check that processing decisions do not radically alter the interpretability of the results in a detrimental manner.

The origin of digital signal processing techniques (DSP) can be traced back to the seventeenth century when finite difference methods, numerical integration methods and numerical interpolation methods were developed to solve physical problems involving contiguous variables. Signal processing is the science of extracting, enhancing, storing, and transmitting useful information carried by a signal. DSP is the mathematics, the algorithms, and the techniques used to manipulate these signals after they have been converted into a digital form.

Digital signal processing is concerned with the design and application of generic methods for representing and manipulating digital signals.

Image processing and analysis

Image is the major focus of research interest in digital image processing and image understanding. Image processing can be defined as the Signal processing of two-dimensional signals (Images). This includes a wide variety of goals. Image processing methods have: For example, an image might be taken of an endothelial cell, which might be of low contrast and somewhat blurred. Reducing the noise and blurring and increasing the contrast range could enhance the image. The original image might have areas of very high and very low intensity, which mask details. An adaptive enhancement algorithm reveals these details.

Adaptive algorithms adjust their operation based on the image information (pixels) being processed. In this case the mean intensity, contrast, and sharpness (amount of blur removal) could be adjusted based on the pixel intensity statistics in various areas of the image.

In image analysis, the texture analysis is an efficient tool for identifying object and matching pattern. Although there is no strict definition of the image texture, it is easily perceived by humans and is believed to be a rich source of visual information. Generally speaking, textures are complex visual patterns composed of entities, or sub patterns, which have characteristic brightness, colour, slope, size, etc. Thus texture can be regarded as a similarity grouping in an image [START_REF] Rosenfeld | Digital Picture Processing[END_REF]. The local sub pattern properties give rise to the perceived lightness, uniformity, density, roughness, regularity, linearity, frequency, phase, directionality, coarseness, randomness, fineness, smoothness, granulation, etc., of the texture as a whole [START_REF] Levine | Vision in man and machine[END_REF]. There are four major issues in texture analysis:

-Feature extraction: to compute a characteristic of a digital image able to numerically describe its texture properties; -Texture discrimination: to partition a textured image into regions, each corresponding to a perceptually homogeneous texture (leads to image segmentation); -Texture classification: to determine to which of a finite number of physically defined classes (such as normal and abnormal tissue) a homogeneous texture region belongs;

-Shape from texture: to reconstruct 3D surface geometry from texture information.

Feature extraction is the first stage of image texture analysis. Results obtained from this stage are used for texture discrimination, texture classification or object shape determination.

Approaches to texture analysis are usually categorised into structural [START_REF] Chen | Grey-Scale Morphological Granulometric Texture Classification[END_REF][START_REF] Haralick | Statistical and structural approaches to texture[END_REF][START_REF] Levine | Vision in man and machine[END_REF][START_REF] Serra | Image analysis and mathematical morphology[END_REF], statistical [START_REF] Julesz | Experiments in the visual perception of texture[END_REF], model-based [START_REF] Cross | Markov Random Field Texture Models[END_REF][START_REF] Strzelecki | Markov Random Fields as Models of Textured Biomedical Images[END_REF] and transform methods (suck as Fourier, Gabor, wavelet transforms).

Many image processing publications report on methods for analyzing the orientation in images. Known methods include Gabor filters, windowed Fourier analysis, the local gradient, local Radon (Hough) transform, and correlation techniques. Oriented smoothing as part of image processing has been documented only since the 1990s, notably reflecting on a method called anisotropic diffusion, pioneered by [START_REF] Weickert | Anisotropic difiusion in image processing[END_REF] .

Most people have an intuitive impression of diffusion as a physical process that equilibrates concentration differences without creating or destroying mass. This physical observation can be easily cast in a mathematical formulation. The equilibration property is expressed by Fick's law:

j Du = -⋅∇ (2.1)
This equation states that a concentration gradient u ∇ causes a flux j which aims to compensate for this gradient. The relation between u ∇ and j is described by the diffusion tensor D, a positive definite symmetric matrix.

Diffusion equa tion is firstly proposed by Koenderink [START_REF] Koenderink | The structure of images[END_REF]. It has form as:
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where I : function of the image; ∇ : gradient; ∆ : Laplacian; div : divergence; c : diffusion coefficient.

If c is constant, it will be isotropic diffusion

I cI t ∂ = ∆ ∂ (2.3)
Otherwise, it will be anisotropic diffusion.
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For the isotropic diffusion (c = constant) :
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From above equations, we can get diffusion in three cases:
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Based on the anisotropic diffusion, Weickert introduced anisotropic diffusion filtering [START_REF] Weickert | Anisotropic diffusion in image processing[END_REF]. Using the diffusion tensor to steer the filtering process allows for directional, anisotropic smoothing. The eigenvectors of the diffusion tensor define the principal directions of smoothing and the corresponding eigenvalues define the amount of smoothing. Weickert based the diffusion tensor on the structure tensor [START_REF] Estepar | Local Structure Tensor for Multidimensional Signal Processing[END_REF][START_REF] Weickert | A review of nonlinear diffusion filtering[END_REF], which describes structures in the image using first order derivative information. Therefore the principal directions of smoothing are based on the description of the structures.

Two specializations of anisotropic diffusion were introduced by Weickert, edge-enhancing diffusion (EED) and coherence-enhancing diffusion (CED) [START_REF] Weickert | Anisotropic diffusion in image processing[END_REF]. Both were initially defined in two dimensions. EED was designed to smooth noise while enhancing edges and CED was designed to enhance line-like textures. CED is essentially one dimensional diffusion [START_REF] Weickert | Coherence-Enhancing Diffusion Filtering[END_REF], since there is either diffusion in one direction or almost no diffusion at all. EED in 3D becomes plate enhancing diffusion, it filters noise from homogeneous areas and enhances plate-like structures. 3D CED preserves small structures and enhances tubular structures; we use the ratio between the second and the third eigenvalue of the structure tensor to decide whether diffusion should be performed. In tubular structures the ratio between these eigenvalues is large, while in small almost spherical structures the ratio is small. Often image smoothing is a pre-processing step toward image segmentation. Edge preserving image smoothing plays an important role in image processing and computer vision. Edgepreserving oriented smoothing has been implemented in Shell in two fashions. A first algorithm extracts a 2D platelet of seismic amplitudes from 3D seismic data, following the local structure. Edge-preserving smoothing is then applied to the data of this platelet, writing the result back into a 3D output cube. In edge-preservation tests, it was found that simple median filters become inadequate when increasing the filter size. Among the oldest ideas in edge preserving image smoothing methods is introduced by [START_REF] Graham | Snow removal--A noise-stripping process for picture signals[END_REF], pixels corrupted by impulse noise were detected and replaced by an estimate based on local average. Since then, several solutions have been proposed to limit the effect of untypical or outlier samples in the filtering window. Better edge preservation performance was achieved with Kuwahara-type methods [START_REF] Kuwahara | Processing of RIangiocardiographic images[END_REF]. The general idea behind Kuwahara filter is to divide the filter kernel into four rectangular sub-regions which overlap by one pixel. The filter response is then defined by the mean of a sub-region with minimum variance. A possible edge is detected by computing the statistics over a set of sub regions; sub regions showing deviating statistics are likely to contain edges and are assigned smaller weights in filtering. Based on local area flattening, the Kuwahara filter properly removes details even in a high-contrast region, and protects shape boundaries even in low-contrast regions. The Kuwahara filter produces clearly noticeable artifacts. The sub-region selection process is unstable if noise is present or sub-regions have the same variance.

The second generation of edge preserving oriented smoothing was developed in 1999. It is based on a 3D implementation of the anisotropic diffusion technique and has been called the van Gogh filter. The advantage of this method is that it can be carried much further than SOF-EP filtering. In first instance, filtering suppresses incoherent noise and small stratigraphic features. The continuity of events is enhanced while the acuity of faults is preserved or even improved. By applying more diffusion steps, the van Gogh filter simplifies the structural image: Undulating reflections are gradually straightened and minor fault-like features vanish-whether real or not. Ultimately, the structure is simplified to its most rudimentary form.

The recent works in edge preserving oriented smoothing have been made to address the limitations of the Kuwahara filter. [START_REF] Papari | Artistic Edge and Corner Enhancing Smoothing[END_REF] defined a new criterion to overcome the limitations of the unstable sub-region selection process. Instead of selecting a single subregion, the result is defined as the weighted sum of the means of the sub-regions. The weights are defined based on the variances of the sub-regions. Even though this improves the output quality significantly, clustering artifacts are still noticeable. [START_REF] Kyprianidis | Image and Video Abstraction by Anisotropic Kuwahara Filtering[END_REF] presented anisotropic Kuwahara filter. It is based on a generalization of the Kuwahara filter that is adapted to the local shape of features, derived from the smoothed structure tensor. The anisotropic Kuwahara filter replaces the weighting functions defined over sectors of a disc by weighting functions defined over ellipses. Due to this adaption of the filter to the local structure, directional image features are better preserved and emphasized. In [START_REF] Kyprianidis | Anisotropic Kuwahara Filtering with Polynomial Weighting Functions[END_REF], the authors presented a modification of the anisotropic Kuwahara filter, a new weighting functions that are not based on convolution. The proposed weighting functions are parameterizable. The eccentricity and expansion can be adjusted, which allows to control the overlapping areas to adjacent sectors.

Seismic image processing and analysis

The seismic image is one of the most important sources to understand the earth subsurface, e.g., the properties and orientation of rock layers, without having to drill it. The image is acquired by collecting the reflected sound waves by the rock layers, and stratigraphic structures are shown as horizontal line-like flow patterns.

Seismic data processing routines generally fall into one of the following categories (Seismic Data Processing and Interpretation):

-Enhancing signal at the expense of noise; -Providing velocity information;

-Collapsing diffractions and placing dipping events in their true subsurface locations (migration); -Increasing resolut ion.

Because drilling a well is extremely expensive, seismic image processing and interpretation becomes one of the most important processes in the upstream sector of the petroleum industry. Seismic image analysis is a complex and subjective process requiring a wide range of interdisciplinary knowledge in geology, physics, and engineering. Traditionally, seismic image analysis has been done by manual interpretation of processed 2D slices. With the advent of the rapid increasing computational power, direct processing of 3D seismic images with the help of computer programs is becoming more practical.

Seismic images often show patterns with a layered structure due to the depositional nature of the subsurface. In image processing a pattern with a certain regularity or structure is called a texture. The description of the 'layered' textures in seismic images can be split up in two parts.

One part is the geometrical description of the structure; the other part is the description of the signal perpendicular to the layered structure. Examples of geometrical properties are the orientation and the curvature of the layered structure. An example of a property of the perpendicular signal is its characteristic frequency. In the case of a seismic image, the perpendicular signal is determined by the change in the acoustic impedance of the subsurface rock, convolved with the seismic wavelet. This convolved signal is usually described by using a time-frequency representation. The main subject of this thesis is the geometrical description of the structure of layered textures.

Seismic data contains both useful structural information and useless random noise. In seismic image, from the interpreter's point of view, there are two types of noise [START_REF] Chopra | Emerging and future trends in seismic attributes[END_REF]: noise the interpreter can address through some relatively simple process applied to the migrated data volume, and noise that require reprocessing of prestack data. The interpreter can address noise spikes, a limited degree of migration operator aliasing, small-velocity errors, and backscattered noise that can result in acquisition footprint, as well as overall "rando m noise" through band pass, k x -k y

In image processing, it is desirable to enhance the structures and reduce the random noise. It is commonly known that smoothing is an effective way of reducing random noise. Hall summarized eight smoothing methods and discusses their effects in the article ( , and structure-oriented filtering. In contrast, significant velocity errors will result in overlapping reflector signals, producing discontinuity and tuning artifacts that may overwhelm corresponding events associated with the subsurface geology.

Surface and interbed multiples result in similar strong artifacts. [START_REF] Hall | Smooth operator: Smoothing seismic interpretations and attributes[END_REF].

Gaussian and mean filters are structure in-distinguishable and smear the edges and texture boundaries. After these filters are applied, the resolution of horizons, faults, and unconformities are reduced or even lost. Edge-preserving smoothing, such as the known Kuwahara filter, is able to keep edges in 2D, but its 3D counterpart, as described in [START_REF] Albinhassan | 3D edge-preserving smoothing and applications[END_REF], is designed to preserve body segmentation and cannot keep planar structures, such as faults.

To better image and interpret seismic data, two different ways have been approached. The first approach is to improve the signal-to-noise ratio of the seismic data so that the traditional horizon-based interpretation method can be better followed. The second approach is to highlight specific geologic features that have a 3D extent, and the geometry of which may have little in common with the orientation of the 3D grid of seismic data.

Seismic images are characterised by specific textures which can provide valuable information for locating pot ential oil reservoirs. Each step can be performed in a multitude of ways and has been explored in the academic realm, however, without optimization for noise suppression in seismic data.

Image processing and computer vision play a crucial role in computer-assisted interpretation of seismic images. A variety of effective image processing techniques for seismic image analysis have been developed in the fields of geophysics, mathematics, and computer science.

Many geological features produce discontinuous seismic signal across their boundaries, and therefore measuring seismic attributes, such as coherence or discontinuity, has been an active research area. A seminal work by [START_REF] Bahorich | 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube[END_REF] first proposed using coherency of pixel intensities to detect faults and other geological features in 3D seismic volumes. In [START_REF] Bahorich | 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube[END_REF], coherency is measured by the geometric mean of maximum time-lagged cross-correlation along x and y directions in a 3D volume. Because voxel intensities indicate sharp contrasts across fault surfaces, those regions become distinct in the coherence cube. [START_REF] Marfurt | 3-D seismic attributes using a semblance-based coherency algorithm[END_REF] proposed a robust coherence estimation algorithm based on multiple traces with locally adapted similarity (or semblance) measure. Another variant of coherence cube, based on eigenanalysis of covariance matrix, is proposed by [START_REF] Gersztenkorn | Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[END_REF]. A practical survey of several variants of the coherence cube algorithm can be found in [START_REF] Chopra | Coherence cube and beyond[END_REF]. [START_REF] Cohen | Local discontinuity measures for 3-D seismic data[END_REF] proposed a more efficient discontinuity measure computation method using a normalized trace of a small correlation matrix. [START_REF] Lu | Higher-order-statistics and supertrace-based coherence-estimation algorithm[END_REF] employed higher-order statistics and a supertrace technique for more accurate coherence estimation. A recent survey of state-of-the-art seismic attribute processing techniques can be found in [START_REF] Chopra | Emerging and future trends in seismic attributes[END_REF].

Structure tensors have been shown to work well in segmenting and locating structures of specific shape. Several books published in the recent years present extensive literature reviews on structure tensors and their applications [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF][START_REF] Bakker | Edge preserving orientation adaptive filtering[END_REF][START_REF] Florack | Image structure[END_REF][START_REF] Weickert | Anisotropic diffusion in image processing[END_REF]. The first and second order structure tensors, simply estimated by differencing the image, can be used to quantify the local structure of seismic data and their departure from laminar structure. They can be used to distinguish chaotic regions as well as regions of interest, like mounds and horizon terminations from stratified regions. This tensor is known by many different names: gradient structure tensor, second-moment matrix, scatter matrix, interest operator and windowed covariance matrix. It is defined in terms of the first derivative of the image and has been introduced for the detection of lines, edges and corners. [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF] detected channels and faults in 2D and 3D seismic images by using the gradient structure tensor for detecting the position of these structures. More specifically, the author estimated their orientation by using the eigenvectors of the tensor and used steered adaptive anisotropic filters, elongated according to the shape of the structure under examination along the estimated orientation. These filters enhanced the structure by noise removal without degrading it. Furthermore, the gradient structure tensor was modified into a curvature corrected structure tensor, to account for plane-like and line-like curvilinear structures. Meanwhile, others have been successfully employed some oriented filtering methods to enhance stratigraphic continuity and to preserve fault discontinuity [START_REF] Bakker | Edge preserving orientation adaptive filtering[END_REF][START_REF] Fehmers | Fast structural interpretation with structure-oriented filtering[END_REF][START_REF] Weickert | Coherence-Enhancing Diffusion Filtering[END_REF] for the applications that do not require actual fault surfaces. [START_REF] Randen | Image processing tools for geologic unconformity extraction[END_REF] measured fault strength using the norm of the projected gradient vector onto the local orientation plane computed using a least-square axis fitting method [START_REF] Bigun | Multidimensional orientation estimation with applications to texture analysis and optical flow[END_REF], which is in fact similar to a structure tensor method introduced by [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF]. [START_REF] Gibson | Automatic Fault Detection for 3D Seismic Data[END_REF] also proposed a structure tensor approach, but the semblance value, a measure for similarity with neighbor pixels, is estimated using a user-defined oriented window. A major difference from [START_REF] Bakker | Edge preserving orientation adaptive filtering[END_REF] is that [START_REF] Gibson | Automatic Fault Detection for 3D Seismic Data[END_REF] creates 3D polygons instead of binary voxels for the resulting geometry. [START_REF] Pedersen | Automatic fault extraction using artificial ants[END_REF] proposed a statistical method based on the idea borrowed from the behaviour of a group of social insects to enhance fault responses. [START_REF] Jacquemin | Automatic faults extraction using double hough transform[END_REF] used a Hough transform, one of the traditional feature detection algorithms, to automatically extract 3D fault surfaces. Dip-steered mean filters work well on prestack data in which discontinuities appear as smooth diffractions, but smear faults and stratigraphic edges on migrated data. Dip-steered median and alpha-trimmed mean filters work somewhat better but will still smear faults. Fehmers and Hocker [START_REF] Fehmers | Fast structural interpretation with structure-oriented filtering[END_REF][START_REF] Hocker | Acquisition/Processing---Fast structural interpretation with structure-oriented filtering[END_REF] address this problem through an "anisotropic diffusion" smoothing algorithm. The anisotropic part is so named because the smoothing takes place parallel to the reflector, while no smoothing takes place perpendicular to the reflector. The diffusion part of the name implies that the filter is applied iteratively, much as an interpreter would apply iterative smoothing to a timestructure map. Most important, no smoothing takes place if a discontinuity is detected, thereby preserving the appearance of major faults and stratigraphic edges. [START_REF] Luo | Acquistion Processing---Edgepreserving smoothing and applications[END_REF] proposed a noise-reduction method, edge-preserving smoothing (EPS), that uses a multiwindow (Kuwahara) filter to address the same problem. EPS is also described by [START_REF] Hall | Smooth operator: Smoothing seismic interpretations and attributes[END_REF].

In the application of EPS, a set of predefined neighbourhood sub-windows are used and the best result, which is usually the one with minimum deviation, is selected for smoothed output.

Both approaches use a mean or median filter applied to data values that fall within a spatial analysis window with a thickness of one sample. In [START_REF] Jeong | Interactive 3d seismic fault detection on the graphics hardware[END_REF], Jeong et al propose a semi-automated interactive 3D fault detection method using graphics hardware. The proposed method implements the time-consuming computing components entirely on the GPU to extract 3D faults from seismic images at interactive rates.

Medioni and colleagues used the tensor voting technique in different applications of image analysis [START_REF] Medioni | Tensor Voting: Theory and Applications[END_REF][START_REF] Tang | Curvature-Augmented Tensor Voting for Shape Inference from Noisy 3D Data[END_REF][START_REF] Tang | N-Dimensional Tensor Voting and Application to Epipolar Geometry Estimation[END_REF][START_REF] Tong | First order tensor voting and application to 3-D scale analysis[END_REF][START_REF] Tong | First Order Augmentation to Tensor Voting for Boundary Inference and Multiscale Analysis in 3D[END_REF]. Tensor voting is an approach of extracting salient structures by encoding data and corresponding uncertainties in the Hessian matrix. An overall illustration of Tensor Voting method [START_REF] Medioni | Tensor Voting: Theory and Applications[END_REF], summarizing its different components, is shown in Figure 2.13. The methodology is grounded on two elements: tensor calculus for data representation, and linear tensor voting for data communication. David also used the tensor voting technique in seismic image analysis to detect seismic fault [START_REF] David | Détection d'hétérogénéités linéaires dans les textures directionnelles : application à la détection de failles en sismique de réflexion[END_REF]. [START_REF] Lavialle | Seismic fault preserving diffusion[END_REF] presented an approach called SFPD (Seismic Fault Preserving Diffusion) based on the CED model, dedicated to 3D seismic blocks processing. Their pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults.

The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, authors propose to drive the diffusion along these layers.

In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. The filtering consists in a data preprocessing method, which takes into consideration the enhancing of relevant discontinuities.

After obtaining seismic images, the following operation is the interpretation of seismic images. Seismic interpretation begins with mapping the large scale structure of the area. This structural interpretation mainly consists of creating horizons and fault planes. Horizons are surfaces that are created by the interpreter by selecting a reflector and following it over the volume [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF]. They are important information towards to the structure of underground. And the tracing of horizon therefore is still an objective in the analysis of seismic image. The creation of horizons will be discontinued when the appearances of faults.

The faults will cause great difficulties in locating and tracing the horizons. Of course, the detection and accurate location of faults is another important task in analysis of seismic images.

Figure 2.13 Overall approach of Tensor Voting.

Seismic attributes

A seismic attribute is a quantitative measure of a seismic characteristic of interest [START_REF] Chopra | Seismic attributes ---A historical perspective[END_REF]. Analysis of attributes has been integral to reflection seismic interpretation since the 1930s when geophysicists started to pick travel times to coherent reflections on seismic field records. Seismic attributes are the fundamental pieces of information contained within a recorded seismic trace: time, amplitude, frequency, and attenuation [START_REF] Brown | Understanding seismic attributes[END_REF]. The analysis of seismic attributes allows the identification of petrophysical and structural aspects of a buried volume of rock that would typically be beneath the resolution of traditional seismic amplitude data. In the petroleum industry, seismic attributes are used to identify areas of high porosity or permeability, lateral changes in the aspect or dip direction of a horizon, continuity of reflectors, stratigraphic pinch-outs, and a multitude of other properties of use in petroleum exploration and field development [START_REF] Siguaw | An integrated 3-D reservoir characterization at Riverton Dome Field, Wyoming[END_REF]. In the recent years, much attention has been given to the prediction of reservoir properties and to the extraction of seismic attributes to enhance the value of seismic interpretation. Many new signal-processing methods are being developed and entering commercial packages, exploiting properties of local curvature, local frequency variability, and seismic textures.

. 

Introduction of seismic attributes

Seismic attributes are specific measurements of geometric, kinematic, dynamic, or statistical features derived from seismic data. There are now more than 50 different seismic attributes generated from a given seismic data set and applied to the interpretation of geologic structure, stratigraphy, and rock/pore fluid properties.

Some of seismic attributes are more sensitive than others to specific reservoir environments, some are better at revealing subsurface anomalies not easily detectable, and some have been 

Seismic attributes definition and classification

Seismic attributes describe seismic data and are defined as quantitative derivatives of a basic seismic measurement that may be extracted along a seismic trace, a horizons surface, or summed over a time window [START_REF] Brown | Seismic attributes and their classification[END_REF]. Geometry is probably the most important information that seismic data immediately provides after initial processing.

Attributes can be divided into eight additional categories: pre-stack attributes, post-stack attributes, instantaneous attributes, wavelet attributes, physical attributes, geometrical attributes, reflective attributes, and transmissive attributes [START_REF] Taner | Seismic attributes[END_REF]. Indeed, any quantity calculated from seismic data can be considered an attribute. Consequently, attributes are of many types: prestack, inversion, velocity, horizon, multi-component, 4-D, and, the most common kind and subject of this review, attributes derived from conventional stacked data (showed in Table 2.1) [START_REF] Barnes | Seismic attributes in your facies[END_REF]. Attributes can be computed effectively from pre-stack and post-stack data, before or after time migration. The procedure is the same in all of these cases. Attributes can be classified in many different ways. Several authors have given their own classification. Here we give a classification based on the domain characteristics of the attributes:

-Pre-Stack Attributes: Input data are CDP or image gather traces. They will have directional (azimuth) and offset related information. These computations generate huge amounts of data; hence they are not practical for initial studies. However, they contain considerable amounts of information that can be directly related to fluid content and fracture orientation. AVO, velocities and azimuthal variation of all attributes are included in this class.

-Post-Stack Attributes: Stacking is an averaging process which eliminates offset and azimuth related information. Input data could be CDP stacked or migrated. One should note that time migrated data will maintain their time relationships, hence temporal variables, such as frequency, will also retain their physical dimensions. For depth migrated sections, frequency is replaced by wave number, which is a function of propagation velocity and frequency. Post-stack attributes are a more manageable approach for observing large amounts of data in initial reconnaissance investigations. For detailed studies, pre-stack attributes may be incorporated.

Attributes may be further classified by their computational characteristics:

-Instantaneous Attributes: are computed sample by sample, and represent instantaneous variations of various parameters. Instantaneous values of attributes such as trace envelope, its derivatives, frequency and phase may be determined from complex traces.

-Wavelet Attributes: This class comprises those instantaneous attributes that are computed at the peak of the trace envelope and have a direct relationship to the Fourier transform of the wavelet in the vicinity of the envelope peak. For example, instantaneous frequency at the peak of the envelope is equal to the mean frequency of the wavelet amplitude spectrum. Instantaneous phase corresponds to the intercept phase of the wavelet. This attribute is also called the "response attribute" [START_REF] Bodine | Waveform analysis with seismic attributes[END_REF].

These attributes may be sub-classified on the basis of the relationship of the attributes to the geology:

-Physical Attributes: relate to physical qualities and quantities. The magnitude of the trace envelope is proportional to the acoustic impedance contrast; frequencies relate to bed thickness, wave scattering and absorption. Instantaneous and average velocities directly relate to rock properties. Consequently, these attributes are mostly used for lithological classification and reservoir characterization.

-Geometrical Attributes: describe the spatial and temporal relationship of all other attributes. Lateral continuity measured by semblance is a good indicator of bedding similarity as well as discontinuity. Bedding dips and curvatures give depositional information. Geometrical attributes are also of use for stratigraphic interpretation since they define event characteristics and their spatial relationships, and may be used to quantify features that directly assist in the recognition of depositional patterns, and related lithology.

Reservoir characterization is the process of mapping a reservoir's thickness, net-to-gross ratio, pore fluid, porosity, permeability and water saturation. Within the past few years, it has become possible to make some of these maps using seismic attributes when those attributes are calibrated with available well control. Some of these attributes are much better than others for reservoir characterization, but there has not been much discussion of this in the geophysical literature. One way to organize and understand seismic attributes is to separate them into the following categories [START_REF] Cooke | What is the best seismic attribute for quantitative seismic reservoir characterization[END_REF]:

-Qualitative attributes such as coherency -and perhaps instantaneous phase or instantaneous frequency -are very good for highlighting spatial patterns such as faults or facies changes.

-Quantitative attributes: The simplest quantitative attributes are the amplitude (of a peak or a trough) on zero phase data, relative impedance data or absolute impedance data.

These three attributes (zero phase amplitude, relative impedance and absolute impedance) are the most useful for quantitative reservoir characterization.

-Interval attributes are those that are used to quantify a window of seismic data usually containing more than one peak or through. Most seismic attributes fall into this category.

Examples of interval attributes are number of zero crossings, average energy and dominant frequency.

-AVO attributes are those that are generated using a reflection's pre-stack amplitudes. Seismic attributes work also began on seismic pattern recognition or "multi-attribute analysis" [START_REF] Barnes | Seismic attributes in your facies[END_REF]. It illustrates in Figure 2.15. While the driving force was to automatically determine seismic facies, there also arose the curious idea that attributes might somehow make sense in combination even if they didn't make any sense individually.

Most of the attributes are a function of the characteristics of the reflected seismic wavelet. We consider the interfaces between two beds. However, velocity and absorption are measured as quantities occurring between two interfaces, or within a bed. Therefore we can divide the attribute into basis categories based on their origin:

-Reflective attributes correspond to the characteristics of interfaces. All instantaneous and -Tran smissive attributes relate to the characteristics of s bed between two interfaces.

Interval, RMS and average velocities, Q, absorption and dispersion com under this category.

Some basic attribute characteristics

The Trace Envelope is a physical attribute and it can be used as an effective discriminator for the following characteristics:

-Mainly represents the acoustic impedance contrast, hence reflectivity, For the remainder of the discussion on seismic attribute analysis, let us assume a complex seismic trace with a real component.

-
( ) ( )cos 2 g t A t vt π = (2.11)
where A(t) is the amplitude envelope of the signal g(t) and is the frequency of the seismic signal. Application of a Hilbert transform to the above seismic trace yields the quadrature, or imaginary component, of the trace. The quadrature of g(t) is given by

( ) ( ) ( )sin 2 g t g t A t vt π ⊥ ↔= - (2.12)
where g n (t) is the imaginary component of the complex trace g(t) [START_REF] Sheriff | Exploration Seismolgoy (2nd)[END_REF][START_REF] Taner | Complex seismic trace analysis[END_REF].

Coherence attribute

Analysis of horizon attributes began with the examination of coherence values of interpreted horizons. Coherence is the measure of the similarity in appearance and shape of waveforms between neighboring vertical traces. [START_REF] Bahorich | 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube[END_REF] introduced the attribute of coherence in 1995. The coherence cube calculates localized waveform similarity in both inline and cross-line directions and estimates of 3D seismic coherence are obtained. Small regions within the seismic volume containing stratigraphic anomalies such as channels have a different seismic character compared to the corresponding regions of neighbouring traces. This attribute is given by equation:

13 12 11 2 2 11 3 3 1 ff ff ff f f ff ff C C c CC CC = (2.13)
where f 1 and f 2 are two consecutive tracks the direction and inline f 1 and f 3 and the direction cross-line C f1f2 is the maximum correlation between f 1 and f 2 To involve a larger number of traces, [START_REF] Marfurt | Coherency calculations in the presence of structural dip[END_REF]1998) introduced the covariance matrix of traces. The new attribute of coherence is then given by: , 2

ij ij ii i C c C = ∑ ∑ (2.14)
For through reducing the level of noise introduced by the calculation of the covariance matrix trace, we can use only the dominant component, which gives us the attribute C 3 :

1 3 i i c λ λ = ∑ (2.15)
where j is the eigenvalues of C. 1 is the largest eigenvalue. This measure was presented as an estimate of seismic coherency in [START_REF] Gersztenkorn | Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[END_REF].

The technique of coherent cube is a new technique for seismic interpretation. It has great advantages in recognizing faults and fractures, interpreting ancient channels, edge detection of oil-gas reservoir, or other discontinuous features, etc. The method of coherent cube may be applied in oil exploration, coal exploration and study of natural earthquakes. 

Average Energy attribute

The average amplitude of the stacked trace over time window t to t+m t is (Sheriff and Geldart, 1995 ):

1 t mt N ti ti A g C t mt +∆ = = +∆ ∑∑ (2.16)
The average energy of a seismic signal is proportional to the sum of the amplitudes of the signal squared. Referring to equation (2.16), this can be illustrated for a single trace i as 2 A EC =

(2.17)

where g ti

The average provides a measure of reflectivity and allows one to map direct hydrocarbon indicators within a zone of interest.

is the amplitude of channel i at time t and < E > is average energy. 

Instantaneous phase attribute

Instantaneous phase is the angle of lag or lead of the harmonic components of a seismic pulse with respect to a reference. For example, a zero-phase wave would be symmetric whereas a 90° phase wave would be perfectly asymmetric. Phase is measured from -180° to +180°. After [START_REF] Sheriff | Exploration Seismolgoy (2nd)[END_REF], instantaneous phase is given by:

( ) ( ) ( ) 1 2 tan H t vt g t g t γπ - = =  (2.18)
where g(t) is the measured seismic data, and g H

The instantaneous phase, shows in (t) is its Hilbert transform.

Figure 2.18, enhances the continuity of events where amplitude information related with the reflection strength can be variable. Often, it makes weak coherent events appear more clearly. Instantaneous phase is intrinsically related to instantaneous frequency at time t; therefore, phase anomalies should overlap with areas of lowered instantaneous frequency and in turn low coherence. Phase displays can be used for the regional visualization of stratigraphic features such as faults, angularities, onlaps, and in some cases fluid contacts.

Instantaneous phase attribute is a physical attribute and can be effectively used as a discriminator for geometrical shape classifications:

-Best indicator of lateral continuity;

-Relates to the phase component of the wave-propagation;

-Can be used to compute the phase velocity;

-Has no amplitude information, hence all events are represented;

-Shows discontinuity, but may not be the best;

-Sequence boundaries;

-Detailed visualization of bedding configuration;

-Used in the computation of instantaneous frequency and acceleration.

Instantaneous frequency attribute

Instantaneous frequency describes the duration of a seismic pulse and it is commonly subequal to the centroid of the power spectrum of the seismic wavelet [START_REF] Taner | Seismic attributes[END_REF]. The instantaneous frequency is the time derivative of instantaneous phase if the frequency of the seismic energy is not constant but varies slowly over time. Instantaneous frequency of trace i at time t is [START_REF] Sheriff | Exploration Seismolgoy (2nd)[END_REF]:

( ) ( )
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where γ (t) is phase. It has been shown that instantaneous frequency (Figure 2.19), computed as the time derivative of instantaneous phase, relates to the centroid of the power spectrum of the seismic wavelet.

Instantaneous frequency relates the wave propagation and depositional environment, hence it is physical attribute and it can be used as effective discriminator:

-Corresponds to the average frequency if the power spectrum of the seismic wavelet;

-Seismic character correlator in lateral direction;

-Indicates the edges of low impedance thin beds;

-Hydrocarbon indicator by low frequency anomaly;

-Fracture zone indicator;

-Chaotic reflection zone indicator;

-Bed thickness indicator;

-Sand/Shale ratio indicator in a clastic environment.

Curvature attributes

Curvature attributes are a useful set of attributes that provide images of structure and stratigraphy that complement those seen by the well-accepted coherence algorithms. Being second order derivative measures of surfaces, they can be quite sensitive to noise.

Curvature attributes are a group of post-stack attributes that are computed from the curvature of a specified horizon. These attributes include: magnitude or direction of maximum curvature, magnitude or direction of minimum curvature, magnitude of curvature along the horizon's azimuth (dip) direction, magnitude of curvature along the horizon's strike direction, magnitude of curvature of a contour line along a horizon, and mean curvature (Figure 2.20).

Instead of using maximum and minimum curvature, or most-positive and most-negative curvature, attributes which are intuitively easy to understand, simply the use of principal curvatures to image can subtle faults, folds, incised channels, differential compaction, and a

Dip and Azimuth attributes

Dip attribute is a post-stack attribute that computes, for each trace, the best fit plane (3D) or line (2D) between its immediate neighbour traces on a horizon and outputs the magnitude of dip (gradient) of said plane or line measured in degrees. It can be used to create a pseudo paleogeologic map on a horizon slice.

Azimuth attribute, shows in Figure 2.21, is a post-stack attribute that computes, for each trace, the best fit plane (3D) between its immediate neighbour traces on a horizon and outputs the direction of maximum slope (dip direction) measured in degrees, clockwise from north. This is not to be confused with the geological concept of azimuth, which is equivalent to strike and is measured 90° counter-clockwise from the dip direction.

Conclusion

This chapter introduces seismic image and seismic attributes. Over the years Seismic Data Acquisition has become more important then ever for many companies and industries around the globe. During the coming years and into the future this important work will continue. The Seismic Data Acquisition information will help the geoscientists to make accurate maps of the subsurface both the land and the marine areas. With this information the geoscientists can then predict the value of the area and make it more profitable for use in any capacity.

Analysis of the seismic image is powerful tools for us in the understanding the underground.

Many methods of image processing and analysis can be used in seismic data; and a lot of new signal processing methods have been developed and applied to exploit properties. Some of the methods are also presented to enhance the structures and reduce the random noise.

Seismic attributes describe seismic data. They are specific measurements of geometric, kinematic, dynamic, or statistical features derived from seismic data. Hundreds of seismic attributes have been invented, computed by a wide variety of methods, including complex trace analysis, interval statistics, correlation measures, Fourier analysis, time-frequency analysis, wavelet transforms, principal components, and various empirical methods.

Regardless of the method, attributes are used like filters to reveal trends or patterns, or combined to predict a seismic facies or a property such as porosity. With vast array of seismic attribute volumes, classification and neural network analysis are natural solutions for extraction or identification of seismic objects.

Seismic image analysis by Gaussian-Hermite moments

An essential issue in the field of pattern analysis is the recognition of objects and characters regardless of their positions, sizes, and orientations. Moments and functions of moments due to their capabilities to extract invariant global features have been extensively applied in the field of image processing: image analysis and pattern recognition [START_REF] Flusser | Pattern recognition by affine moment invariants[END_REF][START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] with applications ranging from edge detection [START_REF] Luo | A moment-based threedimensional edge operator[END_REF], image classification and segmentation [START_REF] Yokoya | Range image segmentation based on differential geometry: a hybrid approach[END_REF], texture analysis [START_REF] Tuceryan | Moment based texture segmentation[END_REF], coherency

estimation (Li et al., 2010a), inva riant identification [START_REF] Li | Multi-scale image description with rotation invariants of Gaussian-Hermite moments[END_REF]Yang and Dai, 2011;Yang et al., 2011), target identification, object classification, image coding and reconstruction [START_REF] Teague | Image analysis via the general theory of moments[END_REF][START_REF] Teh | On Image Analysis by the Methods of Moments[END_REF] , scene analysis [START_REF] Jerome | Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval[END_REF][START_REF] Sadjadi | Numerical computation of moment invariants for scene analysis[END_REF], image reconstruction [START_REF] Liao | On image analysis by moments[END_REF][START_REF] Yang | Image reconstruction from continuous Gaussian-Hermite moments implemented by discrete algorithm[END_REF], and 3D object analysis [START_REF] Bronstein | Three-Dimensional Face Recognition[END_REF][START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF].

Generally, global features are invariant under image translation, scale change, and rotation only when they are computed from the original non-distorted analog 2D image [START_REF] Liao | On image analysis by moments[END_REF]. In practice, we observe the digitized, quantized, and often noisy version of the image and the invariance properties are satisfied only approximately. Among all kinds of moments, geometric moments are firstly proposed and have been extensively used due to their simplicity and explicit geometric meaning. However, geometric moments are not orthogonal, so it is difficult to reconstruct an image from them. Teague showed that great efficiency could be acquired when the image was analyzed by orthogonal Legendre and Zernike moments [START_REF] Teague | Image analysis via the general theory of moments[END_REF]. Moreover, it was proven that Zernike moments could store image information with minimal redundancy and they have the property of being rotation invariants. Since both Legendre and Zernike moments are defined in the continuous domain, the suitable transformations of image coordinates are needed when we implement these moments in the discrete case. As we know, the computation of Legendre moments needs to transform image coordinates over the interval [-1, 1] and Zernike polynomials are only valid inside the unit circle [START_REF] Mukundan | Moment functions in image analysis Theory and applications[END_REF]. Besides, the discretization error derived from approximating the integral is still inevitable during their implementations, which definitely limits the accuracy of computed moments [START_REF] Liao | On image analysis by moments[END_REF]. Liao and Pawlak conducted a theoretical analysis on the discretization error of continuous moments and they proposed an approach to keep the error under certain level according to Simpson's rule [START_REF] Liao | On image analysis by moments[END_REF]. Other researches aiming at improving the accuracy of continuous moments are accordingly focused on geometric and Legendre moments (Hosny, 2007a, b).

Meanwhile, the computational inconvenience of continuous moments encourages the researches in the discrete orthogonal moments. Mukundan first introduced a set of moments to analyze the image basing on the discrete Tchebichef polynomials [START_REF] Mukundan | Image analysis by Tchebichef moments[END_REF].

Some techniques for efficiently computing this kind of moment were also provided soon after [START_REF] Mukundan | Some computational aspects of discrete orthonormal moments[END_REF]. Another kind of discrete orthogonal moment widely used is Krawtchouk moments, which are based on the discrete classical Krawtchouk polynomials [START_REF] Yap | Image analysis by Krawtchouk moments[END_REF]. Krawtchouk moments can be employed to extract local features of image unlike other orthogonal moments which generally capture the global features. More recently, the discrete orthogonal Racah and dual Hahn moments were also proposed and introduced to image analysis (Zhu et al., 2007a;Zhu et al., 2007c). The computation of discrete orthogonal moments does not need any numerical approximations and image coordinates transformations, which generally makes the discrete orthogonal moments superior to conventional continuous orthogonal moments in terms of image representation ability.

Introduction of moments

The A complete characterization of moment functionals over a class of univariate functions was given by Hausdor (1921a, b). These results were extended to the 2D case by [START_REF] Hildebrandt | On Linear Functional Operations and the Moment Problem for a Finite Interval in One or Several Dimensions[END_REF]. The general 2D moment pq of order (p+q) definition, using a moment weighting kernel pq (x, y) (also known as the basis function), and an image intensity function f(x, y), is given by: (, ) (, ) , , 0 , 1 , pq pq x y f x y dxdy p q

ζ ψ Φ = = ∫∫  (3.1)
The indices p, q usually denote the degrees of the coordinates x, y respectively, as defined inside the function . So we can construct a basis set with all of p and q. According to the equation (3.1), different basis sets can then define different kinds of moment, such as geometric moments, Legendre moments, complex moments, rotational moments, and etc. It is clear that the moments can be regarded as the mapping of the original image function into moment kernels, and this mapping is global and the information represented by each pixel in the function will contribute to the moments. Therefore, the moments can be used to be the feature descriptors of the original image or the concerned objects.

Geometric moments

Geometric moments are defined with the monomial basis set [x p , y q ]. The (p+q) order moment of an image with the intensity function f(x,y) has the definition as such that 0≤ p+q≤N and if (p,q) are non-negative integers then the set contains elements. Some basic geometric characters can be found in geometric moments.

The zeroth order moment m 00 generally defines the total mass of f(x,y); The two first order moments, (M 10 , M 01 ), provide the position of the center of mass. The second order moments, (M 20 , M 11 , M 02 ), can be used to determine several useful image features such as the principal axes, the image ellipse and the radii of gyration. The centroid coordinates can also be represented by the geometric moments of order 0 and 1 as following: Another character called radius of gyration which often appears in mechanics can be derived form (m 00 , m 20 , m 02 ). It is a description as the distance from the axis to a line where all the mass may be assumed to be concentrated [START_REF] Mukundan | Moment functions in image analysis Theory and applications[END_REF]. The central moments corresponding to m pq are defined as follows ( ) ( ) (, ) p q pq x x y y f x y dxdy
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The central moments are substantially the regular geometric moments which correspond to the moments of the image with the origin being shifted to the centroid. The central moments are generally characterized to be translation invariants in general. where P p (x) denotes Legendre polynomial of p th degree ( )

Legendre moment

2 1 () 1 2! p p p pp d Px x p dx = - (3.6)
Certainly, Legendre polynomial can be also expressed as a series of monomials, which has the form as:
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Zernike moments

Teague first proposed Zernike moments basing on the orthogonal functions called Zernike polynomials. Though computationally very complicated compared to geometric and Legendre moments, Zernike moments have been proved to be superior in terms of their feature representation capability and low noise sensitivity [START_REF] Teh | On Image Analysis by the Methods of Moments[END_REF]. The kernels of Zernike moments are orthogonal Zernike polynomials defined over polar coordinates inside a unit circle. The Zernike moments of order p are defined as:

( ) ( ) ( ) 21 * 00 1 , , , 1 
pq pq p Z V r f r rdrd r π θθθ π + = ≤ ∫∫ (3.8)
The equation requires p is a non-negative integer and q satisfies the condition p-|q| is even and |q|≤p. Zernike polynomials (, ) pq Vr θ of order p are complex functions defined over po lar coordinate ( ) ( ) 
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Discrete Tchebichef moments

Discrete Tchebichef moments are the first kind of discrete orthogonal moments. This kind of moments has been proved to be a powerful tool in image analysis and pattern recognition. The discrete Tchebichef polynomials have the explicit expression as [START_REF] Mukundan | Image analysis by Tchebichef moments[END_REF] ( )
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The polynomials satisfy the orthogonality with (p, K) being defined as The weighted Krawtchouk polynomials are orthonormal because they satisfy the condition
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The Krawtchouk moments of order (n+m) in terms of weighted Krawtchouk polynomials, for an image with intensity function f(x,y) is defined as:
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Orthogonal Gaussian-Hermite moments

Gaussian-Hermite moments, which were firstly proposed by [START_REF] Shen | Orthogonal Gaussian-Hermite moments for image characterization[END_REF], are also a kind of orthogonal moments and their applications in image analysis have been also explored in the past decade.

The p th order of Hermite polynomial defined as: 22 ( ) ( 1) exp( )( / ) exp( )

p pp p H x x d dx x = --(3.22)
Or in a form of series
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Hermite polynomials are orthogonal with respect to the weight function w(x)=exp(-x 2 ). Their orthogonality is presented by:

2 exp( ) ( ) ( ) 2 ! p p q pq x H x H x dx p πδ ∞ -∞ -= ∫ (3.24)
The recursive equation is available for fast computation of the polynomials:
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with the initial conditions H 0 (x)=1 and H 1 (x)=2x. Eq. (3.24) shows that Hermite polynomial is orthogonal but not orthonormal. Its weighted form is then proposed as: and it is not difficult to verify that Gaussian-Hermite polynomial keeps the orthogonality ( ) ( )

ˆˆ;; p q pq H x H x dx σ σδ ∞ -∞ = ∫ (3.28)
The equation indicates that Gaussian-Hermite polynomials are not only orthogonal but also orthonormal. Besides the orthonormal property, Gaussian-Hermite polynomial also inherits the symmetry property of Hermite polynomial. To the p th degree Hermite polynomial, its satisfies the symmetry condition 

Coherency estimation based on spectral Gaussian-Hermite moments

The process of identifying regions with similar texture and separating regions with different texture is an essential step towards identifying surfaces and objects. Texture analysis has been studied for a long time using various approaches. Various methods perform texture analysis directly upon the gray levels in an image. Coherency estimation in local region is one of the methods to identify regions. Mihran Tuceryan proposes a method of obtaining texture features directly from the gray-level image by computing the geometric moments of the image in local regions [START_REF] Tuceryan | Moment based texture segmentation[END_REF]. Some acceptable techniques for measuring coherence are based on cross correlation [START_REF] Bahorich | 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube[END_REF], eigenstructure of the covariance matrix techniques [START_REF] Gersztenkorn | Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[END_REF][START_REF] Marfurt | Coherency calculations in the presence of structural dip[END_REF], semblance based coherency [START_REF] Marfurt | 3-D seismic attributes using a semblance-based coherency algorithm[END_REF], gradient structure tensor [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF]. These methods, however, typically suffer from a lack of robustness, especially when dealing with noisy data [START_REF] Marfurt | Coherency calculations in the presence of structural dip[END_REF]. Randen et al. address an approach exploiting the spatial derivatives of the data. They measure the disorder of the gradient vector field caused by discontinuities [START_REF] Randen | Three-dimensional texture attributes for seismic data analysis[END_REF].

Discrete implementation of Gaussian-Hermite moments

The Gaussian-Hermite moments of order (,) pq can be defined over the domain ( 2 1) / ( 1)

x iK K y jK K = -+ -   = -+ -  (3.32)
Equation is therefore modified with a scale coefficient ( ) 

1/ 1 / 2 K - as follows: [ ] ( ) [ ] ( )
σ πσ σ σ σ πσ σ σ - - - - - -   = -⋅ = - -      = -⋅ = - -   (3.33)
Given the discrete Gaussian-Hermite moments, p,q , of a gray scale image I(i,j) as follows: 

KK pq p q ij H x H y Ii j K η σσ -- = = = -∑∑ (3.35) ( 1) 

Representation program of 2D Gaussian-Hermite moments

Computing the discrete version of Gaussian-Hermite polynomials is the key step of discrete implementation. When represented by the program, the polynomial computation is illustrated by the following pseudo-code.

The algorithm for computing the moments is also illustrated by similar pseudo-codes. It should be noted that these algorithms can be more efficiently facilitated by matrix form supported by the software as MATLAB. 

For i = 0 to K-1 x i =(2i-K+1)/(K-1)/σ N 2 00 ˆ( ) exp( / 2) i Hi C x = ⋅- 10 ˆˆ() 2 () H i xH i = For p = 2 to N 12 ˆˆˆ( ) 2 () 2( 1 ) () pp p H i xH i p H i -- = --

End for

End for c = 1

For p = 1 to N /2 cc p = For i = 0 to K-1 ˆˆ() () pp Hi c Hi = ⋅

End for

End for

For q = 0 to N

For i = 0 to K-1 Sum = 0.0 For j = 0 to K-1 Sum = Sum + Img(i, j)× ˆ() q Hj
End for For p = 0 to N Mom(p, q) = Mom(p, q) + Sum× ˆ() p Hi

End for

End for

End for the higher order moments. However, the computation of moments, specifically, if the higher order moments are involved, is still a time consuming procedure. Moment comput ation can still be efficiently accomplished by separate property of basis functions. For example, when a set of moments of order (0,0) up to (N, N) is required, it generally needs a quadruple loop to traverse all pixels (0 to K-1) and moment depth (0 to N) in both x and y directions. However, the separate property enables us to compute the moment by firstly calculating the moment of each row and then obtaining the final moment value from the pixels of each column and the weighted moment of each row. Besides, the loop computation for the moments of order 0 to N in x direction is independent of that for traversing all pixels (0, K-1) in y direction; so does the loop computation of order in y direction and all pixels in x direction. The moment computation for all moments of order 0 to N in x direction can be therefore calculated cascadely in the same loop degree where the moment of each row is executed. The great efficiency is acquired for computing the moments because the method actually needs a triple loop instead of quadruple one to accomplish the computation. The moments up to order (N, N) can be computed by the algorithm below.

According to the above algorithms, we can conclude that moment computation has the same computational complexity and they generally contain the same number of addition and multiplication operations.

Coherency estimation by spectral Gaussian-Hermite moments

We regard the intensity image as a function of two variables: I(x,y). For each pixel in the image, we select a small local window around it. The local image is firstly converted from spatial domain into frequency domain using 2D discrete fast Fourier transform (FFT) function:

( ) ( ) { } ,, f I u v FFT I x y = (3.36)
Energy of Fourier transform can be calculated by:

( ) ( ) 2 ,, f E uv I uv = (3.37)
Then the spectrum Gaussian-Hermite central moments is computed as follows:

( )

, ˆˆ( )( ) , pq p q uv H u u H v v E uv η = -- ∑∑  (3.38)
where denote centroid's coordinates of the image given by: 
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We assume that the eigenvalues of matrix C are ordered, i.e. . We use the following contrast coefficient to measure coherency: 

Experimental results

is also referred to as the anisotropy.

We use two synthesized images to test the method. Both two synthesized images we select small local window at 9 by 9 and 17 by 17. Meanwhile we contrast the coherency of results from based on geometric moments and from based on Gaussian-Hermite moments.

The scale parameter of Gaussian envelope is selected 0.2681 in small local window at 9 by 9, and 0.1468 in another case. Figure 3.1 shows the coherency results of the first synthesized image. Then another synthesized image is showed in Figure 3.2. On two synthesized images we add noises to test the method. In this section, we have proposed an approach for estimating the coherency of texture that is based on the spectrum Gaussian-Hermite moments. We give an introduction of the Gaussian-Hermite moments and its discrete implementation. And then present the way using the moments of the first order and the second order to estimate the coherency within a small local window in Fourier domain. Finally we test the competence of the approach with the synthesized images and the images added Gaussian noise. In this new method the size of the window and the value of σ are important. As the window size gets larger, more global features are detected. This suggests that the choice of window size could possibly be tied to the contents of the image. The images with larger texture tokens would require larger window sizes whereas finer textures would require smaller windows.

Multi-scale image description with rotation invariants of Gaussian-Hermite moments

Since the early 1960s of the last century, the moment invariants play an important rule in image analysis and pattern recognition. As we all know, the 7 famous Hu's invariants based on second and third-order geometric moments are widely used as a good feature set to represent an object pattern or an image [START_REF] Dudani | Aircraft identification by moment invariants[END_REF][START_REF] Hu | Visual pattern recognition by moment invariants[END_REF][START_REF] Wong | Scene matching with invariant moments[END_REF].

So far, the most popular moment invariants are still derived from geometric moments [START_REF] Li | Reforming the theory of invariant moments for pattern recognition[END_REF][START_REF] Wong | Generation of moment invariants and their uses for character recognition[END_REF]. A few years ago, Flusser has proved how to find the independent and complete set of geometric moment invariants corresponding to a given order [START_REF] Flusser | Moments and moment invariants in pattern recognition[END_REF]. It looks to be an almost perfect answer to the derivation of geometric moment invariants.

The problem of image reconstruction from its statistical moments is particularly interesting to researchers in the domain of image processing and pattern recognition. Compared to geometric moments, the orthogonal moments offer the ability to recover much more easily the image due to their orthogonality, which allows reducing greatly the complexity of computation in the phase of reconstruction. Gaussian-Hermite moments is proposed for image analysis recently. For example, the image reconstruction from its orthonormal Gaussian-Hermite moments has already been studied [START_REF] Wang | Application of a new type of singular points in fingerprint classification[END_REF]; Yang and Dai focus their attention on image reconstruction from the Gaussian-Hermite moment [START_REF] Yang | Image reconstruction from continuous Gaussian-Hermite moments implemented by discrete algorithm[END_REF].

We introduce a new image analysis and representation method by Gaussian-Hermite rotation and translation moment invariants from geometric moments [START_REF] Li | Multi-scale image description with rotation invariants of Gaussian-Hermite moments[END_REF]Yang and Dai, 2011;Yang et al., 2011). It is proved that if we have a rotation invariant derived from the geometric moments, we can simply substitute Gaussian-Hermite moments instead of the geometric moments into it and its rotation invariance remains preserved. Moreover, in the Gaussian-Hermite moment definition, there is a scale parameter which allows us to perform a multi-scale analysis and use more information to represent the object or image.

Translation, rotation and scaling (TRS) are the simplest transformations of spatial coordinates.

TRS, sometimes called similarity transform, is a four-parameter transform, which can be described as:

x = sR x + t, ′ ⋅ (3.41)
where t is a translation vector, s is a positive scaling factor (note that here we consider uniform scaling only, i.e. s is the same, both in horizontal and vertical directions), and R is a rotation matrix:

cos sin sin cos θθ θθ -   
where is the angle of rotation.

Invariance with respect to TRS is required in almost all practical applications, because the object should be correctly recognized, regardless of its position and orientation in the scene and of the object-to-camera distance. On the other hand, the TRS model is a sufficient approximation of the actual image deformation if the scene is flat and perpendicular to the optical axis. Therefore, much attention has been paid to TRS invariants. While translation and scaling invariants can be derived in an intuitive way, derivation of invariants to rotation is far more complicated.

Central Gaussian-Hermite moments

From the equation (3. 

KK pq p q ij xx yy H H Ii j K η σσ -- = = --    =    -    ∑∑  (3.42) ( 1) 

Rotation Gaussian-Hermite moment invariants

Given an image rotated by an arbitrary angle, the new Cartesian coordinates after rotation are satisfied with the following equation:

' cos sin ' sin cos xx yy θθ θθ -      =           (3.43)
After this rotation, Gaussian-Hermite moments have the form as: The rotation invariants, therefore, can be obtained by eliminating the angle factor θ in the combination of above equations. Some invariants can be easily found with simple form such as 00 M and 22 10 01 MM +

. Other invariants of order 2 and 3 which we have derived are given as follows: 

( ) ( ) ( )( )( ) ( )( ) ( ) ( ) 
1
, 33 From above derivation, we have found an interesting fact: these invariants have the exact form of the geometric ones. Is it true for all invariants of all orders? In other words, can we replace the geometric moments with the Gaussian-Hermite ones in any geometric moment invariant and its rotation invariance remains preserved? The answer is positive and it can be proved by mathematical induction (Yang et al., 2011) . The rotation Gaussian-Hermite invariants of order 4 are then given as follows: 
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Translation Gaussian-Hermite moment invariants

It is well known that under the translation of coordinates on the Cartesian plan 

Multi-scale analysis

In the computation of Gaussian-Hermite moments, there is an important scale parameter σ .

Given a σ, we could obtain a set of invariants. Therefore, we can define different sets of invariants with the different scale parameter and perform a multi-scale analysis that allows us to obtain more information of the image and to better characterize the image. In Figure 3.6 the two first rows show the reference images of fight planes CY47, F22, F35, J10, MIG1.44 and Mirage2000, in the third row, there are three patterns to identify. We try to match P1, P2 and P3 respectively on the reference images. Each image is characterized by a feature vector composed of its Gaussian-Hermite moment invariants.

Experimental results

Finally, the weighted Euclidean distance (WED) is used to evaluate the results of matching.

The WED between two vectors is defined as

() () 2 1 () ( ) N kk nn n n d II ρ = ′′ = - ∑ V,V (3.49)
Where ′ V is the feature vector of a pattern to identify, ) used in Gaussian-Hermite moment comput ation.

The matching results are reported in Figure 3.7, from which we know that with three different scale parameters, all three patterns are identified correctly as P1 = F22, P2 = J10 and P3 = MIG1.44. -5.8605E+00 -5.8717E+00 -5.8924E+00 -5.9008E+00 -5.8675E+00 -5.8715E+00 -5.8924E+00 0.24% In order to compare with geometric moment invariants, we give also the results of matching by using their geometric moment invariants to constitute the feature vectors of images (Figure 3.8). The results show that the method by use of Gaussian-Hermite moment invariants has almost the same ability of the method by use of geometric moment invariants. In general, the numerical stability of the orthogonal moments with respect to the geometric ones increases with the order. More precisely, it decreases, but that of the geometric moments decreases much faster. Because the 11 first invariants are based on the moments of orders 2-4, this advantage is not obvious.

I 1.0670E+00 1.0339E+00 1.0636E+00 1.0484E+00 1.0408E+00 1.0507E+00 1.0635E+00 1.0484E+00 1.12% I -1.1118E+01 -1.0871E+01 -1.1077E+01 -1.1021E+01 -1.0972E+01 -1.1030E+01 -1.1078E+01 -1.1021E+01 0.69% I -1.2344E+01 -1.2424E+01 -1.2366E+01 -1.2516E+01 -1.2497E+01 -1.2385E+01 -1.2367E+01 -1.2516E+01 0.58% I 2.1460E+02 2.1458E+02 2.1457E+02 2.1457E+02 2.1457E+02 2.1457E+02 2.1457E+02 2.1457E+02 0.01% I -3.9057E+01 -3.8902E+01 -3.9071E+01 -3.9111E+01 -3.9151E+01 -3.8987E+01 -3.9072E+01 -3.9111E+01 0.20% I 2.5349E+00 2.3433E+00 2.5146E+00 2.3967E+00 2.3767E+00 2.4571E+00 2.5146E+00 2.3967E+00 3.00% I 1.9812E+02 1.9787E+02 1.9779E+02 1.9998E+02 2.0008E+02 1.9792E+02 1.9779E+02 1.9998E+02 0.55% I -2.9816E+01 11 -2.8545E+01 -2.9666E+01 -2.9198E+01 -2.9053E+01 -2.9221E+01 -2.9663E+01 -2.9198E+01 1.41% σ = 0.3 I -1.5335E+01 -1.5330E+01 -1.5330E+01 -1.5330E+01 -1.5329E+01 -1.5334E+01 -1.5330E+01 -1.5330E+01 0.01% I 1.9369E+02 1.9364E+02 1.9349E+02 1.9374E+02 1.9382E+02 1.9378E+02 1.9349E+02 1.9374E+02 0.07% I 4.1696E+03 4.1670E+03 4.1646E+03 4.1666E+03 4.1732E+03 4.1691E+03 4.1644E+03 4.1666E+03 0.07% I -1.6740E+03 -1.6743E+03 -1.6722E+03 -1.6758E+03 -1.6748E+03 -1.6757E+03 -1.6722E+03 -1.6758E+03 0.09% I 1.6251E+05 1.6228E+05 1.6225E+05 1.6218E+05 1.6270E+05 1.6235E+05 1.6223E+05 1.6218E+05 0.11% I -2.9475E+05 -2.9465E+05 -2.9424E+05 -2.9504E+05 -2.9495E+05 -2.9505E+05 -2.9423E+05 -2.9504E+05 0 

Seismic image analysis by moments

The seismic data can be considered volume with texture. Seismic images are also characterised by specific textures which can provide valuable information for locating pot ential oil reservoirs. Texture is an important feature for human perception of visual objects along with shape, color, and motion features (du Buf et al., 1990). Various feature representations of visual objects and similarity measures based on these descriptors have been investigated for texture recognition and similarity-based retrieval applications [START_REF] Chang | Texture analysis and classification with tree-structured wavelet transform[END_REF][START_REF] Miyamoto | Texture analysis and classification using bottom-up tree-structured wavelet transform[END_REF][START_REF] Sim | Invariant texture retrieval using modified Zernike moments[END_REF].

Textures can be classified into two categories: inhomogeneous and homogeneous textures.

Homogeneous textures such as pictures of wall of bricks or sands have the uniform statistical characteristics over the whole area of an image whereas inhomogeneous textures such as pictures of clouds or flowers in a vase do not even have a quasi-periodic structure. Usually, a lot of conventional algorithms have focused on investigation of homogeneous textures. On the contrary, inhomogeneous textures have been investigated recently. Especially, the Hurst parameters of fractal Brownian motion have been used for representation of inhomogeneous textures.

Some properties make it possible to use the moments to be the unique features of image and hence represent the image in feature space. Since the moments are uniquely determined by the image, the uniqueness of moments will then ensure their discriminative ability. On the other hand, the feature is always described as global information which can be also demonstrated from the definition of moment. Therefore, the introduction of moments in the feature space to represent the image has then become an efficient way in image analysis. We obtain a significant reduction of dimensionality without losing important information about the original image or object through such feature representation. If the representation is carefully chosen, we can obtain the features which are relatively insensitive to noise and occlusion.

Furthermore, the feature representation with moment-based techniques provides a complete object representation which is invariant to some transformations. In pattern recognition, the moment invariants are taken as the features which maintain the invariance of some image transformations such as rotation, translation and scaling of the original image. This advantage is the most important reason for which the moments can be used as good features in image analysis. Apart from image analysis, moment-based techniques have been also widely used in the fields of computer vision, machine learning and pattern recognition.

So far, there are several ways for anisotropy detection in an image. The most used method for anisotropy detection is based on gradient structure tensor (GST) [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF]. The information about anisotropy can be well reflected according to the analysis of the eigenvalues of GST matrix. The eigenvalues of the image structure tensor can be used to detect lines, corners or constant grey value regions. Linear structure ≈ 0

λ 1 ≥ 0, λ 2
The underlying structure deviates from the linear structure model ≈ 0

λ 1 ≥ 0, λ 2
Here we take a 2D structure tensor as an example. We assume that the eigenvalues are sorted ≥ 0 so that 1 > 2 Contrast independent measures can be constructed dividing the eigenvalues by the total energy. The anisotropy or isotropy can be measured by a confidence which is calculated by these two eigenvalues:

. In two dimensions we can distinguish three different cases, corresponding to different types of local neighbourhoods. They are given in the table above. Another method is still based on matrix analysis; however, unlike with the mentioned above, this method uses Fourier transform to extract the desire information. To be more precise, it uses the spectral moment instead of the gradient to be the elements of the matrix. Since this method is related greatly to the spectral geometric moments, we then call this as spectral moment matrix method (SMM) [START_REF] Miguel | Segmentation d'images à partir d'opérateurs de cohérence[END_REF]. Likewise, SMM also detects anisotropy or isotropy information depending on its two eigenvalues. Since the two eigenvlues are both non-negative, a non-negative confidence defined by Inspired by the SMM, we try to construct the corresponding SMM which is based on Gaussian-Hermite moments other than geometric moments. The corresponding SMM is socalled spectral Gaussian-Hermite moments matrix (SGMM) is has the form equation(3.39) in section 2.2.2.2 and a non-negative confidence defined by equation (3.40).

(b) (a)

The experiments are carried out for evaluating the proposed. For comparison, both GST and SMM are also used to detect the isotropy. Two experiments are conducted. The first experiment is carried out on a real seismic image which is shown in Figure 3.9(a). We can observe that this image contains an obvious fault which locates right and passes through vertically in the image. Three methods are used for locating this fault. The results are well shown in Figure 3.10, (a) and (b) show the result from GST with T =2.0 and 4.0 respectively. Apparently, T =4.0, this parameter setting produces much obvious faults location than the first one; (c) and (d) show the results from SMM with different window size 16×16 and 32×32 pixels respectively. We can observe that small window size causes the unsmooth location of faults. From (e) to (h), we can see the results from SGMM. (e) and (f) show the results with window size 16×16. The difference lies in the selection. =4.0 for (e) and 5.0 for (f). We make an improvement by increasing window size to 32×32. (g) shows the detection results with =6.0, the result is almost as good as (d) from SMM. When is increased to 9.0, as can be seen in (h), the clear and obvious location of isotropy is found. We can learn from this figure that GST gives a much coarse location of fault. SMM produces a much better location when the window size is 32×32. SGMM, on the other hand, shows the most clear and obvious location when the bigger window is used, as can be seen from (g) and (h), the white parts are relatively narrow and located exactly the place where the fault exists.

With the increase of the influence from other parts on the main fault detection has efficiently eliminated. Finally, it should be noted here that the method based on spectral moments can be used for detection isotropy, however, for some texture appears in seismic images, as can be seen from the results of Figure 3.11, huge variations have been produced not only in their orientation, but also in their frequency, and grey-level. These factors all influence the final results of detection. This can be learned from Figure 3.10 and Figure 3.11. Hence, the methods are generally used with some pre-processing of the original images so that the certain properties can be well stood out. Then the better results can be expected on these pre-processed images.

Conclusion

In this chapter, we introduce the ways of analyzing image by moments, from which the advantages of moments are obviously exhibited. The different kinds of moments, the nonorthogonal moments such as geometric moments and the orthogonal moments, are introduced in the chapter. From the summary of the different kinds of moments, we have learned that geometric moments are the simplest ones that can be easily used to develop moment We have proposed an approach for estimating the coherency of texture that is based on the spectrum Gaussian-Hermite moments in this chapter. We present the way using the moments of the first order and the second order to estimate the coherency within a small local window in Fourier domain. In this new method the size of the window and the value of σ are important. As the window size gets larger, more global features are detected. This suggests that the choice of window size could possibly be tied to the contents of the image.

The experiments are designed for testing feature representation and pattern classification abilities in the chapter. The experimental results show that Gaussian-Hermite moment invariants have better feature representation abilities and perform better in the task of pattern classification than geometric moment invariants. They are potential tools for image analysis and pattern recognition.

In the end of chapter, we design the experiments for analysis of seismic image. The experimental results show that Gaussian-Hermite moments have better representation abilities and perform efficiently in the task of coherence estimation.

Stepwise dip scanning coherency estimation

Coherence technology is an effective tool for seismic interpretation. It detects the discontinuity of the seismic event by analyzing seismic signals in adjacent traces, so as to identify geological phenomena like faults, special lithologic bodies, river courses etc. Also coherence can be used to define stratigraphic features.

Seismic trace coherence is a measure of lateral changes in the seismic trace pattern and is based on a cross-correlation measurement. Coherence algorithm has been developed rapidly since Bahorich and Farmer firstly introduced the coherence technology in 1995. At present, there are mainly three types of coherence algorithms, the cross-correlation based the first generation of algorithm (C 1 algorithm) [START_REF] Bahorich | 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube[END_REF], multi-trace semblance second generation of algorithm (C 2 algorithm) [START_REF] Marfurt | 3-D seismic attributes using a semblance-based coherency algorithm[END_REF], and eigenstructure based third generation of algorithm (C 3 algorithm) [START_REF] Gersztenkorn | Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[END_REF]. The C 1 algorithm is the simplest one with the highest computational efficiency among the three algorithms, but it only allows three traces to participate the computation at one time. It's not very robust to noise either. The C 2 algorithm is more robust to noise but with lower resolut ion and higher computational costs than C 1 algorithm. Compared with C 2 algorithm, Eigenstructure based C 3 algorithm is more robust to noise and with a better resolut ion. Since the original C 3 algorithm did not implement dip scanning, it could not provide good coherence estimation in areas with strong structural dips. If dip scanning is employed in C 3 3D coherent cube is an extremely effective new technique for interpreting seismic data. It has obvious advantages in many aspects compared with the conventional 3D data volume, such as recognizing faults and fractures, interpreting ancient channels, and edge detection of oil and gas reservoir. Coherent cube is to condense and extract information around a certain point in algorithm, it will be hard to promote due to its huge computational costs.

3D data volume, and then highlight the original characteristics of the geologic body at this point. Therefore, in terms of its essence, coherent cube is a special seismic attribute cube and those points having rather small coherent value are related to the discontinuity of geologic body. In practical production, people often interpret horizontal slices or layer slices of coherent cube, and this provides advantageous foundations for resolving special problems in exploration of oil and gas.

In normal seismic interpretation, the seismic amplitude data is used. We can use inline, crossline, horizontal time slices or layer time slices, and we can also use 3D data volumes.

Whatever kind of data is used, however, it just shows the information of single point, single section and single surface. It is not enough for recognizing and describing some special geologic bodies such as faults, fractures and old channels. In coherent cube, with seismic traces combined in space, attribute values of each spatial point reveal the information of lines, traces and points of initial data volume. The fact is that the common attribute of abnormal bodies is embodied on each point. It is a special kind of space weighting.

In this chapter, the basic procedure of the stepwise dip scanning coherence algorithm based on eigenstructure (Li et al., 2010b) is as follows: The dip scanning is conducted in two steps. In the first step, C 2 algorithm is employed to scan all dip directions; the resulted coherence values are sorted from small ones to large ones; dip directions of the larger coherence values will be kept for further use. In the second step, C 3 algorithm is implemented to search for the best dip directions among the ones we kept in the first step. As a matter of application results

to real data set, the newly proposed algorithm remains a resolution as good as C 3 algorithm does, while it can also provide good coherence estimation in areas with strong structural dips.

As the dip scanning is mainly conducted in C 2

Detection of seismic discontinuity

algorithm in which we employ a fast algorithm, the algorithm proved to be highly efficient.

Seismic imaging of discontinuities is a relatively geophysical technique. We compare two main families of algorithms, coherency [START_REF] Bahorich | 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube[END_REF][START_REF] Gersztenkorn | Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[END_REF][START_REF] Marfurt | 3-D seismic attributes using a semblance-based coherency algorithm[END_REF] and differencing [START_REF] Luo | Edge detection and stratigraphic analysis using 3D seismic data[END_REF]. Both of these algorithms image discontinuities using different mathematical techniques.

Coherency method

The where f 1 and f 2 are two consecutive tracks the direction and inline f 1 and f 3 and the direction crossline C f1f2 is the maximum correlation between f 1 and f 2 .

To account for the dip, the attribute C 1 is computed for several values of the dip, the maximum value of C 1 corresponds to the proper value of the dip of the reflectors.

To involve a larger number of traces, [START_REF] Marfurt | Coherency calculations in the presence of structural dip[END_REF]1998) where f 0 , f 1 , ... f q

The new attribute of coherence is then given by: are known traces of a vertical window of size 2n + 1.

, 2

ij ij ii i C c C = ∑ ∑ (3.56)
For through reducing the level of noise introduced by the calculation of the covariance matrix trace, we can use only the dominant component, which gives us the attribute C 3 :

1 3 i i c λ λ = ∑ (3.57)
where j is the eigenvalues of C. 1 is the largest eigenvalue. This measure was presented as an estimate of seismic coherency in [START_REF] Gersztenkorn | Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[END_REF].

Another method of coherence estimation using the gradient structural tensor(GST) is introduced by [START_REF] Bakker | Image structure analysis for seismic interpretation[END_REF]. A seismic image of a single constant planar reflector is just a stack of isophote planes, and it therefore has a plane-like linear structure. Since the confidence value C plane of the GST is a measure for the resemblance of an image structure to a plane-like linear structure, it can be used as an estimate of coherency as well. The gradient structure tensor T is defined as the averaged dyadic product of the gradients g :

T T gg = (3.58)
The eigenvalues of this tensor indicate the gradient energy in the orientations defined by the corresponding eigenvectors. In the case of a planar reflector the tensor has only one non-zero eigenvalue, and the corresponding eigenvector is the normal vector of the reflector. Any deviation of the data from a constant planar reflector leads to an increase of the gradient energy in the lateral direction. The coherency of the GST could therefore be estimated by :

( )

1 gst c tr T λ =  (3.59)
The eigenvalues of the covariance matrix represent the correlation between seismic traces and

Stepwise dip scanning coherence algorithm based on eigenstructure

The C 3 algorithm requires estimating the eigenvalue of the covariance matrix of the data trace volume within the analysis window. Therefore, with the increase of the seismic traces in the analysis window, the exponent number of the covariance matrix also increase, which would lead to a dramatic rise of computational costs. That is the reason why C 3 algorithm doesn't implement dip scanning. In contrast, the C 2 algorithm includes dip scanning in it and the algorithm is robust to noise. Currently commercial software mainly uses C 2 algorithm. Both theory and practice proves that C 3 algorithm has higher horizontal and vertical resolution than C 2

Method of stepwise dip scanning

algorithm has.

The stepwise dip scanning algorithm we presented in the paper comprehensively combines the merits of C 2 and C 3 algorithm to process coherence estimation. The details of our proposed algorithm are as follows. ,the dip azimuth layout of 37 nodes(Figure 4.1 (b)) will be employed. In figure 1, p and q are the apparent dips in the x and y directions; max d is the largest dip value estimated by interpreters.

Its unit is ms/m. Suppose the position of the i th ) q , p ( i i node is ,then where i = 0,1,…,60(or i = 0,1,…,36).

Implement C2 algorithm to dip scanning

Suppose there are J seismic traces included in the analysis window, then we apply the following equation to the seismic data u(t,x,y), as well as to the data of each direction

) q p ( i , i 2 KJ ij i j j j k K j1 ii KJ 2 ij i j j j k K j1
u( k t-p -q y , ,y ) ( ,p ,q ) J u( k t-p -q y , ,y )

xx xx τ στ τ + = -= = -=  +∆   =  +∆  ∑∑ ∑∑ (3.63)
where K is half length of the vertical length of the analysis window;

τ ∆ = / w K
, where τ ∆ is the sampling interval of the seismic data; then we estimate the average mean similarity of

2K+1 sampling points. Out of all ) q , p , ( i i τ σ
data, m(3~5) largest ones are selected and denoted by ) q , p (

i i i = 1,…,m.
The 3D seismic data volume is arranged according to traces, and the data volume of each trace is arranged according to the sequence of the sampling points. The coherence algorithm of 3D seismic data volume is also estimated in accordance with the traces. If we assume: Then from equation (4.12), we have: 
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Alogrithm statement

if nTraceNum is seismic trace number and nSampleIndex is Index number of the sampling points, the method can be written as follow: 

Implement C3 algorithm to dip scanning

At the position (t,x,y , we read the data volume of the J th ) q , p ( i i seismic trace in each dip direction in the analysis window. ij i j i j j j ˆÛ u( p x q y , x ,y ) The complete equation of equation ( 4.12) is displayed in equation (4.18), where superscript H indicates the Hilbert transform of the real seismic trace. During the dip scanning process of the proposed algorithm, application results to the real data shows that there are no significant change between the calculation results of equation ( 4.12) and equation ( 4.18), whereas equation ( 4.12) requires much less calculation time.
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Example result on a real 3D seismic data

This section illustrates the efficiency of our approach on real seismic blocks. The real seismic data is from middle China. The time interval is 4 ms, and inline and cross-line trace spacing are 25m.( InLine 700~900,XLine 650~850,Time 0~800 ms). The algorithm is tested with environment: cpu: Intel core2 duo P8400, memory: 2G PC. The result of the algorithm is showed in Table 4.2. From the coherence slices in Figure 4.2, we can see that the C3 algorithm leads to higher resolut ion than C2 algorithm does, as Although C 3 algorithm has higher horizontal and vertical resolution than C 2 algorithm, as the original C 3 algorithm did not implement dip scanning, it could result to distortional coherence value in areas with strong structural dips. However, if dip scanning is employed in C 3 algorithm, there is too much time cost, especially when the size of the analysis window increases. In our newly proposed stepwise dip scanning coherence algorithm based on eigenstructure, dip scanning is mainly done by C 2 algorithm, in which we implement its fast algorithm to improve the algorithm with higher quality and less time cost. 

Automatic Fault Detection for 3D Seismic Data

Seismic data sets typically contain a large number of faults at many different spatial scales.

Knowledge of the location of the faults is critical to understanding a geological system. One effect that faults have, which is of real commercial significance, is that they act as membranes to the movement of hydrocarbons. Therefore having a good understanding of the fault positions is critical for the effective planning of drilling sites in order to maximize output efficiency. However, despite the significant progress in the development of horizon autotrackers, computer-aided interpretation of fault surfaces is significantly less advanced than horizon interpretation. Fault interpretation is more difficult as it involves especially detection of faults and correlation of horizons across faults. Current approaches for picking faults are largely manual, and involve laborious handpicking of discontinuities on a slice-byslice basis, one fault at a time. This is time consuming resulting in hundreds of man-hours of work, performed by trained geologists. It is estimated that for every six months saved in the work leading up to the onset of production from a new oilfield, 5% will be saved from the total production bill. Hence, there is a strong financial imperative for this work.

Faults are important subsurface features that are often of interest to the geologist. According to conventional techniques, the identification of faults in coherent 3D seismic volumes is typically performed by human analysts, through manual identification and interpretation (i.e.,

"picking") of potential faults from seismic amplitude data. Of course, manual fault picking is an extremely time consuming process, and is thus quite costly. Additionally, manual interpretation is to a large extent dependent upon the skill, experience, and subjectivity of the individual analyst, resulting in imprecise results.

The automatic tracking of seismic horizons has been widely available in commercial software since the early 1990s providing first insight into the problem of interpretation automation for geologic faults. What is immediately obvious with a horizon auto-tracker is that the tracking frequently breaks down at fault boundaries. Depending on the tracker, and the parameter settings, we observe gaps in the resulting interpreted surface and possible large time jumps where the auto-tracker picks an erroneous event.

The automated calculation of correlation or coherency values from 3D seismic amplitude data is known in the art. According to this approach, geologic discontinuities such as faults are directly imaged from non-correlation or non-coherency events in the 3D seismic volume.

However, this approach and other conventional methods do not provide any sort of automatic or quantitative interpretation of faults, but instead simply image the location of discontinuities in the dataset.

An early effort for semi-automatic fault interpretation came from [START_REF] Simpson | Method and apparatus for identifying fault curves in seismic data[END_REF]. This technique allowed users to begin their fault interpretation task by simply "seeding" one or more fault segments (sticks) on a vertical seismic section, and the automatic operation would perform a cross-correlation on a series of slanted traces derived parallel to the seeded fault segment. The method could be used for both tracking, where no previous fault interpretation existed, and snapping, where an existing fault interpretation would be corrected based on the slant trace cross-correlation algorithm. Each fault surface extracted would need an initial seed point.

Coherence measures such as cross correlation [START_REF] Bahorich | 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube[END_REF] semblance [START_REF] Marfurt | 3-D seismic attributes using a semblance-based coherency algorithm[END_REF], or eigenstructure-based [START_REF] Gersztenkorn | Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[END_REF]) are applied to seismic data for imaging geological discontinuities like faults or stratigraphic features. .

However, they produce only potential fault pixels, but do not generate the actual fault lines or surfaces. There exist methods for fault autotracking which use the same basic approach as horizon trackers, but with limited success. Neff et al (2000b) introduced a method that uniquely combine many of these elements by estimating a probability factor that a fault exists at a specific spatial location using parallel estimation planes within the seismic volume, and then following this procedure with an orientation and extraction method based on linear feature detection on time slices. [START_REF] Randen | Three-dimensional texture attributes for seismic data analysis[END_REF] proposed a seismic signal feature, exploiting its spatial and temporal derivatives. He proposed measuring the gradient vector field disorder caused by the fault crossing. The disorder of the gradient vector field attribute evaluates the local disorder in seismic data based on the orientation and magnitude of the gradient vector field. Areas without faults have a smooth gradient vector field, whereas areas with faults give a disrupted gradient vector field. The disorder of the gradient vector field attribute is obtained using the eigenvalue properties of the structure tensor. Explicitly, a strong variation of the eigenvalue magnitude shows the variation of spectral density projected on both the principal direction and the orthogonal ones. For faults and stratigraphic features, eigendecomposition of the structure tensor gives very close eigenvalues, so the attribute is near to one. In contrast, for layered zones, it tends towards zero.

Pedersen et al ( 2002) introduced a method known as ant-tracking, based on artificial swarm intelligence. The Ant Tracking algorithm follows an analogy of ants finding the shortest path between their nest and their food source by communicating using pheromones, a chemical substance that attracts other ants. The shortest path will be marked with more pheromones than the longest path and so the next ant is more likely to choose the shortest route, and so on.

The idea is to distribute a large number of these electronic "ants" in a seismic volume; and let each ant move along what appears to be a fault surface while emitting "pheromone." Ants deployed along a fault should be able to trace the fault surface for some distance before being terminated. Surfaces meeting expectations will be strongly marked by "pheromone." Surfaces unlikely to be faults will be unmarked or weakly marked. It is important to note that the anttracking attribute will not only enhances faults in the data; other discontinuities, like processing effects, acquisition foot prints, channel boundaries , chaotic responses and internal reflector amplitude variations, will also be enhanced. The Ant Tracking workflow consists of four independent steps:

-Enhance the spatial discontinuities in seismic data using any edge detection algorithm In [START_REF] Donias | New fault attribute based on robust directional scheme[END_REF], Donias et al. presented a steered data-analysis approach to measure coherence for fault detection. In contrast with conventional coherence, which detects discontinuities without distinction, their approach aims to identify faults only. Assuming the local linearity of fault geometry, the method performs a continuity test using a steered dataanalysis window over a set of dip/azimuth directions. A robust, selective directional continuity Seismic signal process advanced rapidly during the 1990s, allowing us to approach the problem of fault interpretation automation in a similar vein as we attack horizon interpretation.

Advances in edge-detection algorithm have allowed direct illumination of faulting and seismically detectable fracture. Thee techniques improve manual interpretation. For some geologic plays, re-sampling of the enhanced edge attribute into a geologic model property is a simple and effective method of un-biased automated fault interpretation. Explicit methods to extract fault surfaces can utilize an automatically picked horizon indirectly through analysis of "non-picks" and gradient trend, followed by spatial correlation for vertical connectivity.

Alternatively, using the familiar techniques of seeded auto-tracking, on an edge volume, shows great promise.

Conclusion

In this chapter, we propose a method of stepwise dip scanning coherence algorithm based on eigenstructure. The dip scanning of the method is conducted in two steps. In the first step, C 2 algorithm is employed to scan all dip directions; the resulted coherence values are sorted from small ones to large ones; dip directions of the larger coherence values will be kept for further use. In the second step, C 3 algorithm is implemented to search for the best dip directions among the ones we kept in the first step. As a matter of application results to real data set, the newly proposed algorithm remains a resolution as good as C 3 algorithm does, while it can also provide good coherence estimation in areas with strong structural dips. As the dip scanning is mainly conducted in C 2 algorithm in which we employ a fast algorithm, the algorithm is proved to be highly efficient.

3D moments-based horizon auto-tracking

Energy resources are becoming more difficult to find and develop. It has been recognized for many years that the majority of new oil and gas reserves are a function of a complex combination of geological, structural and stratigraphic elements. While the problems of exploration and the efficient development of hydrocarbon reserves have become more difficult, the volume of data to be interpreted for each project has become orders of magnitude greater over the past 30 years. Simultaneously, both the number of interpreters and the time allowed for interpretation have been substantially reduced. This drives the need for more advanced computer-aided processes that can support the interpreter by enabling more efficient, precise and effective interpretation of 3D seismic data volumes.

Visually, a seismic array is a layered image, as it reflects the stratiform structure of the earth's crust [START_REF] Blinov | Reconstruction of 3-D Horizons From 3-D Seismic Datasets[END_REF]. The Earth subsurface consists of material layers with distinct mineral densities and porosity characteristics. The interfaces between these layers are called Computer-aided structural interpretation of 3D seismic data volumes has been embodied in tools in interactive seismic interpretation for a number of years. Since the early 1980s, horizon autotracking tools have been available to help increase the speed and consistency of horizon interpretation in 3D seismic surveys [START_REF] Dorn | Modern 3-D seismic interpretation[END_REF]. More recently, techniques have been developed to provide computer-aided interpretation of horizons and automatic tracking horizon.

In this chapter, a general approach for seismic horizon auto-tracking by moments is proposed.

We describe the methods in 2D case and in 3D case. The method in 2D Case is similar to cross-correlation. In 3D case, the 3D moments based method of horizon interpreting approach makes use of a two-step process: first step is computation 3D properties of the region around seed selected; second step an optimization tracking algorithm is designed for the horizon auto-tracking. The approach offers an alternative to structural methods for seismic horizon description and recognition. Experimental results are provided to illustrate the method.

A review of horizon interpretation

Horizon tracking with traditional tools can be a very time consuming task since conventional autotrackers can't jump across faults and other discontinuities and need reseeding. A seismic attribute based seismic pattern can be learnt by a neural network in order to track horizons across faults. [START_REF] Alberts | Artificial neural networks for simultaneous multi Horizon tracking across discontinuities[END_REF] use seismic attributes like instantaneous amplitude or variance to compute characteristic patterns for the horizons which interpreters are interested in. then a neural network is trained to distinguish these patterns and work as a classifier.

Intelligent search methods exclude is classifications from the result in order to track the desired horizon. The method can track several horizons simultaneously and works on 3D seismic data.

Over the last three decades, tremendous progress has been made in technique of horizon interpretation. Most of the approaches to horizon picking have concentrated in the past on treating the seismic data as 2D images [START_REF] Bondár | Seismic horizon detection using image processing algorithms[END_REF][START_REF] Maroni | Horizon Picking on Subbottom Profiles Using Multiresolution Analysis[END_REF]. These are largely edge linking algorithms. Maroni et al use a multi-resolution approach based on wavelet analysis, followed by edge linking. There are some works done on the simultaneous 3D seismic horizon picking [START_REF] Bienati | Traveltime picking in 3D data volumes[END_REF][START_REF] Keskes | Automatic extraction of 3-D seismic horizons[END_REF][START_REF] Lavest | Building complex horizons for 3-D seismic[END_REF]. [START_REF] Lavest | Building complex horizons for 3-D seismic[END_REF] built the 3D horizons by refining an initial triangulation representation. In [START_REF] Bienati | Traveltime picking in 3D data volumes[END_REF] horizon estimation is performed by integration of local time shifts (dips) along the 3D volume. The integration procedure is simple with no global correction of accumulated error and in [START_REF] Lomask | Flattening without picking[END_REF] it is performed either in the Fourier or in the real domain. The Fourier-based approach was found to be inadequate. The problem of noise reduction as a preprocessing step of 3-D data analysis is considered in [START_REF] Fehmers | Fast structural interpretation with structure-oriented filtering[END_REF]. The authors use filtering based on anisotropic diffusion in order to reduce noise.

Most of the ideas in identifying the horizons in seismic data are based on the hypothesis that the seismic signal is repeated from trace to trace with only slight changes. In this case the procedure of horizon extraction consists of finding similar fragments of the signal along neighbouring traces. These methods include manual interpretation, interpolation interpretation, auto-tracking interpretation, voxel tracking, and surface slicing.

Manual interpretation

Traditionally, picking was done manually by drawing with pencils on paper. Manual picking is simply the manual interpretation of horizons on lines, cross-lines, time slices, and traverses.

On a noisy background Human eyes have a strong capability to recognize seismic events. This is the technique with which we are all most familiar. It is also, by far, the least efficient horizon interpretation technique in terms of interpreter time and effort. While interpreting manually, the interpreter is looking for some degree of local continuity in the data, and local similarity of character to identify the event to be picked. However, manual picking has the disadvantage of being inaccurate in estimating the parameters of events, and is inefficient and expensive. 

Interpolation interpretation

Interpolation interpretation, or semi-automated interpretation, is a horizon picking technique that is somewhat more efficient than manual interpretation. When discussing manual interpretation of horizons, the reference is to traditional line-by-line interpretation in which the interpreter is picking on specific inlines sections or cross-lines sections, usually at some specific interval (e.g. every 10 line or 20 line), as shown in Figure 5.2. Within a 3D survey, arbitrary lines may also be defined and be interpreted to get a better image of a given feature.

Picks on time slices are also part of the manual interpretation process. Along with larger data volumes and better comput ing resources, interpretation tools have evolved to improve the reliability and speed of manual interpretation. These advances include bilinear interpolation techniques, the use of seed lines as input for various auto-pickers, and the auto-tessellation of horizon surfaces during the interpretation process. While these tools improve speed, there are still the same issues associated with manual interpretation. Each of these techniques is susceptible to error due to sampling, obliquity, intersections, relays and curved structures.

Bilinear interpolation of horizons merely interpolates values between picked seed lines, and can fail to honour faults or subtle geological changes if sampled too coarsely. The interpolation process can be improved if the interpreter is able to snap to the event (minimum, maximum, zero-crossing, etc.) during the interpolation process, but behaviour at fault intersections can still be problematic. The same is true of auto-picking tools using seed lines as input. Mispicks on the initial seed lines cause erroneous surfaces, which can be difficult or time-consuming to edit. Figure 5.3 shows the result of interpolation process from Figure 5.2. Although the use of auto-tessellation to build solid surfaces while moving through the volume is valuable, it faces the same sampling issues and resultant accuracy problems between picked lines. The auto-tessellation performed in 3D visualization applications can reduce errors associated with increment sampling. For example, when interpreting faults the interpreter adjusts the line sampling as the character or orientation of the fault changes, rather than interpreting lines at a set increment.

The use of interpolation, however, assumes that the horizon is locally very smooth, and perhaps linear (or planar in two dimensions) between control points. If this assumption is violated between control points (e.g., there is a fault between the interpreted lines), then the results will be poor.

Auto-tracking interpretation

Since the early 1980s, auto-tracking is the most commonly employed technique for horizon tracking and has been around in interactive interpretation systems. The concept behind autopicking is simple. A similar feature is searched on a neighbouring trace; if the feature has been found in specified constraints, the tracker moves on to the neighbouring trace.

In one prior art automatic system for tracking a horizon in a substantially horizontal direction through a 3D volume of data, a user selected at least one "seed point", which then "expanded" in all four directions within the 3D data volume until it reached the boundaries of a user specified zone. Users had the option of tracking seismic data in one of two modes.

A "seed point" is specified by its x and y location and its time or depth. It is also specified by a characteristic or attribute of the reflection at that point. Such characteristic is usually the maximum amplitude of the reflection at that location in the volume of the data. Other attributes or characteristics, such as minimum amplitude, phase, frequency, etc., of the reflection at the x, y, z point may be used. Non-iterative tracking searched the seismic traces adjacent seed points for similar amplitude values, picked the best one, then proceeded to the next available trace without double-checking the accuracy of the pick.

An iterative picking mode verified an adjacent trace as a pick by cross-referencing the previous trace. Once verified, the adjacent trace was treated as a seed point and the picking of adjacent traces from it proceeded. Verification means that if the amplitude of the picked trace is within the limits of tolerance set by the user, the pick is accepted. Users could specify (on a scale of 1-10) the degree of amplitude similarity they would allow. If a pick did not pass this acceptance test, it was designated "dead" until at least one directly adjacent trace matched sufficiently to accept it.

Most automatic horizon tracking applications include cross-correlation or waveform based tracking algorithms to capture the seismic character over a user controlled window length.

These methods also compute a "quality factor" attribute associated with the horizon pick position. Feature trackers and correlation trackers are two major classes of auto-tracking [START_REF] Dorn | Modern 3-D seismic interpretation[END_REF].

-Feature trackers: the feature tracker will search for a similar configuration of samples within the dip window but does not perform any correlations between traces. It simply tries to track a configuration of samples on the seismic trace that defines a peak, trough, zero crossing, etc., from trace to trace.

-Correlation trackers: a correlation-based auto-tracker takes a portion of the seismic trace around the seed pick and correlates it with a neighbouring trace through a set of lag times that are constrained by the specified dip search window. If a lag time is found with an acceptable correlation quality factor, then the pick on the new trace is accepted, and the picker moves on to the next trace. Clearly the correlation auto-picker is much more computationally intensive than the feature tracker; it is also typically more robust in its picking.

The most effective way to detect a known signal embedded in a time series is by means of a correlation detector [START_REF] Anstey | Correlation techniques -A review[END_REF]. In such a detector, the signal template is correlated with the continuous data stream and at any sample where the correlation coefficient is sufficiently high, a detection is declared. Note that such detections are also classifications. The source that produced the detection must be substantially similar in location and mechanism to the source used to create the template. The auto-correlation function of a waveform is a graph of the similarity between the waveform and a time-shifted version of itself, as a function of this time-shift; and the cross-correlation function of two waveforms is a graph of the similarity between the two waveforms as a function of the time shift between them [START_REF] Anstey | Correlation techniques -A review[END_REF].

Cross-correlation is a linear operation, so that when it is associated with other linear operations the order in which these operations are performed does not affect the final result.

In signal processing, the cross-correlation is a measure of similarity of two signals, commonly [
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In an autocorrelation, which is the cross-correlation of a signal with itself, there will always be a peak at a lag of zero. Sometimes it is preferable to express the cross correlation of two signals in terms of the cross-correlation coefficient [START_REF] Oliver | Digital Signal Processing Resources Available[END_REF] In order to make a simple implementation of cross-correlation method, we should firstly study We assume that the selected "seed" in the figure can be expressed by a k dimension vector.

"k=2w" is also actually the window size of seed. In different seismic profile, generally from the next one to the profile from which the seed is selected, the tracking is commencing. Given a search window, whose size is generally bigger than that of seed, a processing of matching is then scanned from the entire search window.

( If search window has the size of "l", in order to look through all elements in the search window, it is necessary to calculate "l-k+1" number of cross-correlation. Among all these "l-k+1" cross-correlations, the maximum will be taken as the potential point which have the huge possibility of being derived from the same horizon. This processing is repeated to the next profile and continued; finally we can obtain a complete horizon tracking which appears a curve determined by the seed. An example shows the result of auto-tracking horizon by crosscorrelation method in Figure 5.5. Another method recently introduced to the tracking of horizon is higher order statistics (HOS).
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Seed Window

High order statistics is widely used in system identification and the analysis of time delay etc.

The horizon tracking can be therefore regarded as issue with time delay of adjacent channels which brings due to the different kinds of seismic structure. Then high order statistics can be consistent in this task. Once the time delay between the adjacent channels, we can then locate the corresponding potential points which are in fact in the same horizon.

Assume x(t) and y(t) are respective the statistic descriptions for "seed" and for the candidate seeds in search window: The seismic horizon tracking, therefore, is reduced to a problem to evaluate time delay d according to x(t) and y(t). The function based on the fourth order cumulant is then used for computing the time delay d. The desire d is generally make the function produce the maximum [START_REF] Tugnait | Time delay estimation with unknown spatially correlated Gaussian noise[END_REF][START_REF] Zhang | Time series analysis-High order statistics method[END_REF]. 
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these equations seem to be complicated, in actual implementation, we just take x(i) as the "seed" and y(j) as the search window, then set d parameter for adjusting the location of counterpart of x(i) in y(j). The d which makes Equation (5.7) give the maximum value will be the desire one. Interpretation algorithms for horizons are typically semi-automatic and require a detailed and time consuming user involvement. User steered horizon growing is a standard method. The user manually places a seed point on a horizon in a seismic slice and adjusts growing parameters before starting a growing process of the horizon. This method is not fully interactive due to the need to set parameters and to wait for the growing to finish.

The main disadvantage of auto-tracking algorithms is that they are unable to track horizons across discontinuities. A lateral change in polarity within an event will not be recognized during auto-tracking. Also, in areas of poor signal-to-noise ratio or where a single event splits into a doublet, the auto-picking may fail to track the correct horizon. Whenever any of the search criteria are not met, the auto-tracker stops at that trace. However, an auto-tracking can be more efficient and accurate if the interpreter holds tight control over the track. This requires user-machine interaction.

Surface-slice interpretation

Surface slice is a technique that is a conventional approach to interpreting seismic horizons.

This technique involves visualizing and interpreting really finite portions of horizons on time slice slabs of the data. The slab thickness used is a weak function of the bandwidth of the data and a stronger function of the dip of the reflections.

Surface slice approach is described in Stark [START_REF] Stark | Surface slices:'' Interpretation using surface segments instead of line segments[END_REF][START_REF] Stark | Surface slice generation and interpretation: A review[END_REF], Surface-slice interpretation is an automated approach in which the analyst selects a thin slab of the seismic volume, for example at a selected depth or time, in which the automated computer system identifies potential reflective events. For example, seismic signal amplitudes above a certain threshold may be identified as reflective events. Reflective events are then similarly identified in the next incremental slab in time or depth, and are "joined" to those reflective events in the previous slice that can be considered as part of the same horizon. A set of surfaces are thus generated through the repetition of this process; for example, an anticline would appear as a set of concentric shells. The surface-slice interpretation system is often referred to as "2.5dimensional", due to its linking of events from two-dimensional slices. While the surface-slice interpretation approach is somewhat more efficient than the volume autotracking approach, this process can be time-consuming and difficult when the geologic structure is complex or when the seismic signal is weak. In addition, discontinuities and faults encountered in complex geology can also result in ambiguities when interpreted by the surface-slice method.

A lightweight representation of volumetric data is often necessary for real-time rendering, for the segmentation of interpreted data, and for reducing visual clutter. A new Surface Wrapping technique has also been developed in accordance with an exemplary embodiment of this invention, and is described herein. For example, it allows, for example, the user to create a 3D polygonal mesh that conforms to the exterior boundary of geobodies (such as stream channels)

that offers significant improvements over existing techniques.

An inspiration for this Surface Wrapping approach was the Surface Draping algorithm [START_REF] Dorn | Method and system for horizon interpretation of seismic surveys using surface draping U[END_REF], which allows a polygonal mesh to be defined that reflects the geometry of an interpreted horizon. The surface draping algorithm is based on the metaphor of laying an elastic sheet over a contoured surface: gravity pulls the sheet down, causing it to conform to the surface beneath it, and the tension of the elastic material allows the sheet to smoothly cover small gaps in the surface while preserving the important features.

Dorn's Surface Draping allows the user to view seismic data and define a series of points slightly above the desired horizon. These points define the initial shape of the 3D mesh, which corresponds to the elastic sheet described above. When the user has completed this stage, the actual mesh is computed, generally using one vertex per voxel. These vertices are then iteratively "dropped" onto the horizon. At each step, the value of the voxel at each vertex's position is compared to a range that corresponds to the values found in an interpreted horizon.

If the value falls within that range, the vertex is fixed in place.

The Surface Draping concept would have benefits if adapted to work on geobodies and other 3D volumes. Other approaches have been used to define a mesh that surrounds and conforms to the shape of a volume. Acosta et al (2006aAcosta et al ( , 2006b) ) propose a technique where the bounding surface is defined slice-by-slice by a user as a set of spline curves or general polylines that are then connected in 3D. [START_REF] Kobbelt | A Shrink Wrapping Approach to Remeshing Polygonal Surfaces[END_REF] describes a technique based on successive subdivision of an initially simple mesh that completely surrounds the volume. the above algorithms work by moving each vertex to the nearest point in the volume.

The Dorn's method comprising the steps of:

retrieving digital data from memory corresponding to the seismic survey signals, and arranged as a plurality of traces, each trace associated with a surface location of the survey and representative of a plurality of values of at least one attribute along a depth-related dimension;

displaying the plurality of traces as a survey representation;

receiving inputs corresponding to a first initial surface in the survey representation;

for each of the plurality of traces, evaluating the attribute at a plurality of points in the depth-related dimension near the first initial surface relative to a selected draping criterion;

responsive to the evaluated attribute at one of the plurality of points meeting the draping criterion, setting a first interpreted horizon point along the depth-related dimension for each of the plurality of traces; and

-Outputting an interpreted survey representation including the first interpreted horizon points for each of the plurality of traces.

Vox el-based tracking

In general, auto-pickers are sensitive to variations in signal-to-noise ratio in the data; assume that the data are locally continuous, smooth, and consistent. The type of control the interpreter picks in the volume prior to auto-picking should in part be dependent on the type of algorithm being used and the path it follows through the data. A technique called voxel tracking has become available with the advent of volume rendering and visualization. (A voxel is a "volume element." In a 3D seismic volume, it is a sample). Voxel tracking is conceptually related to auto-picking in the sense that an "event" or feature is tracked through the volume starting from seed control points which are picked by the interpreter. Voxel trackers, however, tend to follow a true three-dimensional path through the data. Starting at the seed voxel, the voxel tracker will search for connected voxel that satisfy the search criteria specified by the user. The search is typically conducted in line, cross-line, and time directions.

Like auto-picking, voxel tracking assumes that the data are locally continuous, consistent, and connected or smooth. The interpreter needs to choose the technique that will allow the best interpretation to be achieved in the most efficient manner possible. In terms of interpretive efficiency, techniques would typically be ordered, from most efficient to least efficient: voxel tracking, surface slicing, auto-picking, interpolating, and manual interpretation.

Moments-based method for horizon interpretation

As we have reviewed in section 5.1, the most commonly employed technique for horizon tracking is the so called auto-tracking or auto-picking [START_REF] Dorn | Modern 3-D seismic interpretation[END_REF]. These algorithms require manually selected seed points and search for similar features on neighbouring traces. The main disadvantage of auto-tracking algorithms is that they are unable to track horizons across discontinuities [START_REF] Aurnhammer | Image processing algorithm for matching horizons across faults in seismic data[END_REF]. The reason for this is the difficulty involved in locating non-ambiguous local correlation features as a result of the small amount of local information contained in seismic reflection images. When implement these algorithms, it is necessary to select some primitive information which is called "seeds". Once the "seeds" are chosen, the second step is tracing the horizons by the computer in the windows with the fixed sizes. The tracking is conducted according to the information of "seeds". This processing can substantially described as a matching processing. The tracking is achieved by matching the "seeds" in each of potential points in the searching windows. The most recognizable advantage is speed. Another benefit is a much higher degree of accuracy in the interpretation. A third benefit, and a very important one for mapping and solid model building, is a much sharper definition of fault edges.

The moments are features of the object, which allow a geometrical reconstruction of the object. They do not have a direct understandable geometrical meaning, but usual geometrical parameters can be derived from them. The moment features have been extensively used in image analysis and description. Moments and moment functions have been widely used in image analysis and pattern recognition [START_REF] Flusser | Pattern recognition by affine moment invariants[END_REF][START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] with applications ranging from edge detection [START_REF] Luo | A moment-based threedimensional edge operator[END_REF], image segmentation [START_REF] Yokoya | Range image segmentation based on differential geometry: a hybrid approach[END_REF], texture analysis [START_REF] Tuceryan | Moment based texture segmentation[END_REF], invariant identification, object classification, image coding and reconstruction [START_REF] Teague | Image analysis via the general theory of moments[END_REF][START_REF] Teh | On Image Analysis by the Methods of Moments[END_REF] to computer vision [START_REF] Abu-Mostafa | Recognitive aspects of moment invariants[END_REF]Lo and Don, 1989).

With the rapid development of the acquisition of multi-dimensional data, it is possible to recognize 3D objects directly. Now, 3D shape models have become more and more common.

Applications such as object tracking and shape retrieval require us to consider how to choose the feature descriptors of 3D shapes and how to measure the similarities between 3D objects.

In early works, moments were used mainly to estimate 3D transformations and their performances were not evaluated for classification tasks. Also, being not derived from a family of orthogonal functions, these moments were subject to correlation. [START_REF] Reuze | A 3D Moment Based Approach for Blood Vessel Detection and Quantification in MRA[END_REF] described a method based on the 3D geometrical moments for the 3D tracking and the quantification of blood vessels from Magnetic Resonance Angiography (MRA). [START_REF] Canterakis | Fast 3D Zernike Moments and Invariants[END_REF] extended Zernike moments to the 3D case, but their performances were not put into trial yet. In [START_REF] Werghi | Wavelet Moments for Recognizing Human Body Posture from 3D Scans[END_REF], Werghi and Xiao proposed to investigate the wavelet transform coefficients (WTC). The authors suggest the WTC as 3D shape descriptors of the Human body posture. Integrated within a Bayesian classification framework and compared with other standard moments, the WTC showed great capabilities in discriminating between close postures. Xu and Li (2006a) generalized curve moments from 2D to 3D Euclidean space, and use geometrical method to derive 3D curve moments invariants of different orders under similarity transformation. In (Xu and Li, 2006b) the authors introduced the surface moments, a kind of moment can be treated as a new kind of shape descriptors of free-form surfaces and can handle the situation where 3D surface objects are not closed.

2D Auto-Trac king of seismic horizon

It is well-known that moments have been widely used in pattern recognition and image processing, especially in various shape-based applications. Here, Gaussian-Hermite moments are used for feature representation due to their mathematical orthogonality and effectiveness for characterizing local details of the signal [START_REF] Shen | On geometric and orthogonal moments[END_REF]. They provide an effective way to quantify the signal variation. We will introduce geometrical moments and Gaussian-Hermite moments to the task of horizon tracking. The principle of the usage of moments set in the task is alike as the cross-correlation. Given a seed, we compute its feature represented by geometrical moments or Gaussian-Hermite moments, of course, since the seed here is a vector; geometrical moments or Gaussian-Hermite moments used are 1D dimension. Taking the seed's feature as the reference, we then search the most matched template in the search window for each seismic profile. As we know, the processing is sustainably a template matching in the search window. The matching result is determined by the minimum of Euclidean distance.

Here, we should present the 1D geometrical moments ()

w p p w x f x dx η - = ∫ (4.10)
and the 1D Gaussian-Hermite moments ( )
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We first define a metric to describe the feature of each sample with a 1D vector by several order of moment. We should take the seed size into account when select moment to construct the feature. When seed window is small such as 7 or 9 pixels, the moment with order greater than the number is meaningless. In the actual implementation, before we use geometrical moments or Gaussian-Hermite moments, we should construct the feature vector to represent the original seed or the seeds in the search window. The feature vector is constructed by 012 ,, , ,
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Of course, it is not necessary to construct the feature vector with all order of moments. We can arbitrarily select the moment with certain orders however, different order of moment constructing the feature vector, the different representation ability will exhibit. Finally, we can get a distance for each sample region i:

, 

The workflow for 2D horizon tracking using moments

Figure 5.8 illustrates a workflow chart of 2D horizon tracking using moments. The workflow begins with initial horizon surface placement process. Once the initial horizon surface is complete, horizon tracking by moments process is performed to iteratively move each point of the surface toward a reflective event. Firstly an initial seismic section is selected. In this seismic section, a first trace T (x, y)

We compute the feature vector by geometrical moments or Gaussian-Hermite moments, and push the potential candidates from neighbour traces of the initial trace T of the survey upon which the searching is to take place, where the values of the indices x and y indicate the position of the trace in the x and y surface directions in the survey. Following initial trace process, one pattern "seed point" is selected from human analysis. The "seed point" is also specified by a characteristic or attribute of the reflection at that point. In order to match pattern, we define a queue to store the candidate "seed".

(x, y) in this section. Then we pop a candidate "seed" from seed queue. In the range of searching window, we can evaluate a serial of features upon determination of the candidate "seed". By Equation (5.13) we get the Euclidean distance between the feature of the pattern "seed" and each feature. The candidate with lowest value is draped as potential candidate "seed". If this "seed" is verified and satisfied, it is recorded in horizon surface and pushed to seed queue. Verification means that if the matching result is within the limits of tolerance set by the interpreter, the tracking is accepted. We continue "pop-evaluate-push" process until the queue of the candidate seeds is empt y. When the seed queue is empty, another decision is performed to determine if the horizon tracking is final in the seismic section. If tracking is not over the section, another initial trace is selected to continue; otherwise a new seismic section is checked out to continue process. 

Definition of 3D moments

With the rapid development of the acquisition of three-dimensional information, it is possible for us to recognize the shapes of 3D objects directly. Applications such as object tracking and shape retrieval require us to consider how to choose the feature descriptors of 3D shapes and how to measure the similarities between 3D objects. Although recognition of objects from 1D projection (i.e. seismic trace correlation) and 2D projections has been widely studied among the horizon auto-tracking, little research has been devoted to recognition using 3D information.

3D geometric moments

In order to describe the 3D geometric moments algorithm we are interested in here, we first reformulate the 2D version of the geometric moments and then proceed to its 3D generalization. The definition of the geometric moments m pq in equation ( 3.2) of a 2D discrete field f(i,j) is:
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For any non-negative integers p, q and r, the 3D moments of order p + q + r of a density distribution function f(x, y, z) are defined in terms of the Riemann integrals as: (, ,) . It is assumed that f(x, y, z) is a piecewise continuous and therefore bounded and it is non-zero only in a finite part of R 3 space, moments of all orders exist and their sequence M pqr is uniquely determined by f(x, y, z). In the same way f(x, y, z) is uniquely determined by M pqr [START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF].

The moment generating function for 3D moments may be defined as ( ) , ) . which can be expanded into a power series, ( ) ( ) Their formulation in the discrete case is:
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). where N x , N y , N z , ∆x, ∆y, ∆z define the 3D local region. The centroid of the 3D region can be determined from the zeroth and the first-order moments by Trivially, when the center of mass ( , , ) xyz is at the origin, the raw moments become the central moments.

3D Gaussian-Hermite moments

In order to describe the 3D Gaussian-Hermite moments algorithm, we also proceed 2D definition to its 3D generalization. From the 2D Gaussian-Hermite moments defined in section 3.2.1, the 3D Gaussian-Hermite moments for solids of order p+q+r of a 3D density function are defined by Riemann integrals ˆˆˆ( /) (/) (/)( ,,) .

pqr p q r H x H y H z f x y z dxdydz η σσσ ∞∞∞ -∞ -∞ -∞ = ∫∫∫ (4.22)
If the density function is piecewisely continuous and bounded in a finite region in 3D

Euclidean space, then moments of all orders exist. Their formulation in the discrete case is:
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ˆˆˆ( /) ( /) ( /)( , , ) . where N x , N y , N z , ∆x, ∆y, ∆z define the 3D local region. Then 3D central Gaussian-Hermite moments are defined as: ,) .
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where , , xyz is defined in equation ( 5.20) and discrete case has form:

1 1 1 0 00 8 ( 1) ( 1)( 1) 
ˆˆˆ( / ) ( / ) ( / )( , , )

y x z pqr xyz N N N pqr i jk NNN H x xH y yH z z f x y z η σσσ - - - = = = = ⋅ --- ∆ - ∆ - ∆ - ∆∆∆ ∑∑∑  (4.26)

3D moments-Based estimation of local features

The local characteristics of the structure are expressed in terms of geometry and intensity information. They are computed from the 3D moments up to the order 2 inside a cube window centred on the point of interest.

It is possible to compute from the ten moments up to order 2(M 000 , M 100 , M 010 , M 001 , M 110 , M 101 , M 011 , M 200 , M 020 , M 002

the position of the centre of the local region:

):

( , , ).

C xyz =

(4.27)

two angles, , , as angles maximizing the Z inertia and minimizing the X and Y inertia of the cube windows rotated first by around the OZ axis and then by around the OY axis: 

Representation program of 3D moments

The algorithm for computing the 3D geometric moments is illustrated by pseudo-codes in Gaussian-Hermite moments are given in section 3.2.2. 2D Gaussian-Hermite moments are easily extended to the 3D case. The moments up to order (M, N, L) can be computed by the algorithm in Table 5.2. According to the algorithms, we can get the 3D moments parameters of the local region around the seed sample. For y = 0 to N y -1

For z = 0 to N z -1

Mom(p, q, r) + = Img(x,y,z)*x p *y q *z r

End for

End for

End for

End for

End for End for

Pattern matching algorithm of seismic horizon

Tracking of seismic horizon is initiated interactively, selecting a point, P t

The matching, between the referent region centred on P , on the seismic volume. An iterative multi-resolution algorithm is applied to adjust this position on the seismic track. The local characteristics of region are then estimated accurately.

t and each region centred on point around P t , is performed using the characteristic of the second order moments. We can get a distance for each region i: where K is difference between the searching windows and the sample windows.
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The workflow for 3D horizon tracking using moments

3D seismic interpretation often involves the picking of horizon surface to characterize the subsurface for the delineation of underground features relevant to the exploration, identification and production of hydrocarbons. The workflow begins with initial horizon surface placement process. Once the initial horizon surface is complete, 3D horizon tracking by moments process is performed to iteratively move each point of the surface toward a reflective event.

Firstly an initial trace T (x, y) of the survey upon which the searching is to take place, where the values of the indices x and y indicate the position of the trace in the x and y surface directions in the survey. Following initial trace process, one pattern "seed point" at time or depth s is selected from human analysis.

123

The difficulty for automatic horizon extraction exists at least in two fold:

the selection of picks in a trace usually ignores lateral continuity;

the trace traversal order can result in significantly different horizons so that the resulting picks in the same horizon often conflict with each other.

So the selections of initial "seed point" and initial trace are important to achieve a desired result of 3D horizon tracking. As shown (Figure 5.9), among several candidate seeds, Seed B or C is an optimal initial candidate.

In order to match pattern, we define a queue to store the candidate "seed point". We compute the feature vector by geometrical moments or Gaussian-Hermite moments, and push the "seed" to queue. candidates from eight initial trace T (x, y) in this section.

Figure 5.9 An example of selecting initial "seed point".

Then we sort the queue in ascending order upon the distance value and pop first candidate "seed" from the queue. For each of eight neighbour traces of the trace which candidate seed is within, we can evaluate a serial of features upon determination of the candidate "seed" in the range of searching window. By Equation ( 5.30) we get the Euclidean distance between the feature of the pattern "seed" and each feature. The candidate with lowest value is selected as potential candidate "seed". If this candidate "seed" is verified and satisfied, it is recorded in horizon surface and pushed to queue. We continue "pop-evaluate-push" process until the queue of candidate seeds is empty. When the seed queue is empty, another decision is performed to determine if the horizon tracking is final in the seismic volume. If tracking is not over the volume, another initial trace is selected to continue; otherwise the tracking end. The workflow chart shows in Figure 5.10.

Horizon auto-tracking in real seismic data sets

The described algorithm was tested on 2D seismic images and 3D seismic volume from 3D seismic data. 2D seismic images include one without fault and another with some seismic faults. Auto-tracking within 3D volume we also test two different environments, one has few of faults and another has much faults.

2D horizon tracking tasks

Two seismic images extracted from a 3D seismic slice data are used for horizon tracking task.

These two images are extracted from the different regions in which the definitely different geologic properties are exhibited.

The first image is shown in Figure 5.11. We can observe that some horizons in the image are very obvious and most of them are continuous, because there are no faults, horizon tracking in this image will be more satisfy. Cross-correlation, and higher order statistics, geometrical moments, and Gaussian-Hermite moments are carried out for such aim. The two horizons are tracked. The results are respectively shown as follows. Auto-tracking starts with selection of initial seed. Two seeds are manually selected for the tracking mission. These seeds are derived from either "peak" or "through" and they are taken from the different regions of the image. In our experiment, we give an obvious mark on these seeds; a black cross in a little circle is used to stand out these seeds. The tracked horizons are labelled by the green lines.

The parameters for this experiment are: 9 pixels for seed window and 15 pixels for search windo w. The threshold is 80%. For geometrical moments and Gaussian-Hermite moments, is set to 0.5, the feature is represented by the vector [ 0 , 1 , 2 , 3 , 4 , 5 , 6

As can be seen from the ].

Figure 5.12 to Figure 5.15, for the top one and the bottom one, four methods all give the relatively satisfactory tracking results. It should be noted here that for the seed located in the bottom of the image, cross-correlation and higher order statistics give the few smoothing tracking lines, because the tracking lines have the apparent echelonments. We can observe from these four figures, compared with correlation higher order statistic, and geometrical moments, Gaussian-Hermite moments gives a more exactly tracking than those from the other two methods. They offer more reasonable tracking around the discontinuous areas, which can be learned from the two discontinuations located in the left and the middle of the images.

The second experiment is carried out on a seismic image which contains a obvious fault. In general, horizon tracking can be hardly continued when the faults are in presence. So, under this condition, the tracking results also reflect the performance of the proposed methods. As can be seen in Figure 5.16, both the fault and the other influences make the horizons discontinuous and obscuring. And the effects have the different degrees in the different locations. The corresponding tracking results are shown in Figure 5.17 to Figure 5.20.

The parameters are updated for this task: seed window has 9 pixels and the search has 15 pixels. For Gaussian-Hermite method, all parameters are the same as those in the first experiment. From up to bottom, the first seed is selected clearly in the horizons with the faults.

The seed has the narrow discontinuation which means the relatively easy tracking of this horizon. All methods show the correct tracking for the first seed. The second seed located in the bottom of the image distinguish four methods greatly. As can be seen from the figure, correlation outputs a wrong tracing as the seed across the fault; higher order statistics outputs a slight jitter tracing as the seed across the fault; geometrical moments and Gaussian-Hermite moments direct a reasonable tracking for this seed. Since it is much obscuring for the areas near to the fault, the tracking can be hardly judged correctly or wrongly for this seed; however, it still can be seen from the images, geometrical moments and Gaussian-Hermite moments give a directly opposite tracking, they track down after the fault compared with correlation and higher order statistics which track with a up tendency.

We have discussed the tracking results of the methods mention above. On the whole, Gaussian-Hermite moments show better tracking results than the other three. Here, it should also consider the complexity and time for implement the methods. According to equation (5.5) and equation (5.7), the detailed multiplication and addition involved in both correlation and high order statistic can be well evaluated. As for geometric moments and Gaussian-Hermite moments, it should generate the moment kernel first. The moment kernel is independent of the image as long as the size of seed window does not change, and need to be computed alone and be saved for the future usage. From this viewpoint, the implementation of moments in horizon tracking is neither expensive in complexity nor in time.

3D horizon tracking tasks

A seismic cube clipped from a seismic survey, the map of volume is 190*200 and samples are 200, is used for 3D horizon tracking tasks. We have tracked two horizons in different regions the different regions in which the definitely different geologic properties are exhibited. 3D scene is shown in Figure 5.21. We can observe that first horizon in the seismic cube is very obvious is continuous, because there are no faults, or the obvious faults in the image.

However, another horizon is discontinuous due to faults and noises. So, 3D auto-tracking of second horizon will have different degree of difficulties. Correlation, higher order statistics, 1D and 3D geometric moments, 1D and 3D Gaussian-Hermite moments are carried out for such aim. The horizons both continuous and discontinuous are tracked. The results are respectively shown as follows. The one seed are manually selected for first tracking task. The two seed are manually selected for the second tracking mission. The parameters for this experiment are: 7 pixels for seed window and 13 pixels for search window. For 1D geometric moments and 1D Gaussian-Hermite moments, is set to 0.26 and the feature is represented by the vector [ 0 , 1 , 2, 3 , 4 , 5 , 6]. As can be seen from Figure 5.24 and Figure 5.25, first horizon tracks more efficient. Some regions couldn't be tracked over by correlation method, HOS method 1D geometric moments method, and 1D Gaussian-Hermite moments method. We can find that correlation method has similarity result with HOS method. Many of those regions are different among first two methods and other four methods. It can be seen from Figure 5.24(f), 3D Gassian-Hermite moments method has a perfect tracking. shows that correlation method maybe unsuitable to track horizon through much faults. It also can be seen from Figure 5.27 (f), 3D Gassian-Hermite moments method has an acceptable tracking.

Two experiments show that 3D Gassian-Hermit moments method is a powerful tools for horizon tracking. It can be done well in both smooth horizon and discontinue horizon. The performance results of six methods are shown in Table 5.4 and Table 5.5. The time value of the methods in the tables is an average of five times. Because of much discontinuity in second horizon, there are increasing values of tracking in methods 3D geometric moments and 1D / 3D Gaussian-Hermite moments. But the number of samples matched is less than first horizon. 

3D Gaussian-Hermite moment invariants-based approach for horizon interpretation

The problem of tracking horizon is highly relevant, and there are no established 'gold standards' yet to which new methods can be compared to. As described in the previous Section 5.2 and 5.3, for each sample from seismic data volume we compute its feature vector based on geometric moments and Gaussian-Hermite moments when searching within 3D volume.

Because seismic data can be considered volume with texture and seismic images are also characterised by specific textures which can provide valuable information for locating pot ential oil reservoirs, we track the seismic horizon follow the texture. In Figure 5.28, it can be seen that two regions 'a' and 'b' have different texture orientations. However, we desire calculate feature vectors of region b using 3D moments as in Figure 5.29. Thus the feature vector of region 'b' is similar to feature vector of region 'a'.

Moment invariants are rational functions of the moments that remain constant in value when the density is subjected to transformation. Moment invariants are well established for character recognition in 2D image analysis [START_REF] Hu | Visual pattern recognition by moment invariants[END_REF], and have been extended for 3D pattern only much later [START_REF] Flusser | Moment Forms Invariant to Rotation and Blur in Arbitrary Number of Dimensions[END_REF][START_REF] Mamistvalov | n-Dimensional Moment Invariants and Conceptual Mathematical Theory of Recognition n-Dimensional Solids[END_REF][START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF] and have not been applied to problems in structural seismic yet. In comparison with a huge number of papers on 2D moment invariants, only few papers on 3D and n-D invariants have been published. [START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF] pioneered the development of 3D Geometric moment invariants from 2D moment. They built a family of three invariant moments with a degree up to the second-order. Using the notion of complex moments Lo and Don (1989) constructed a family of twelve invariant moments with orders up to the third degree. [START_REF] Rothe | The Method of Normalization to Determine Invariants[END_REF] presented the normalization method to determine invariants . Xu and Li (2006a) generalized curve moments from 2D to 3D Euclidean space, and use geometrical method to derive 3D curve moments invariants of different orders under similarity transformation. [START_REF] Xu | 3-D projective moment invariants[END_REF] also generalized projective moment invariants from 2D to 3D space, and select permutation invariant cores for generation of 3-D projective moment invariants. [START_REF] Ong | An approach to 3-D object recognition using Legendre moment invariants[END_REF] In this section, we will present the 3D Gaussian-Hermite moment invariants from 3D geometric moment invariants and apply these properties into horizon auto-tracking. This approach is motivated by the excellent performance of the moment inva riants. If we replace
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moments by central or normalized moments in these relations, we obtain invariants not only to rotation but also to translation and/or scaling, which also ensures invariance to rotation around an arbitrary point. However, once we have the formulas, the proof of rotation invariance is easy. where , , are constants.

3D Gaussian-Hermite moment invariants to rotation

3D rotation moment invariants were first introduced in 1980 by [START_REF] Sadjadi | Three-Dimensional Moment Invariants[END_REF], who employed the results of the theory of algebraic invariants and derived invariants to a rotation around the origin. They presented two invariants of the second order. Xu and Li [START_REF] Xu | Geometric moment invariants[END_REF] presented six typical moment invariants consist of 1 second and fourth-order, 2 thirdorder and 3 fourth-order moment invariants. Some of these invariants have already existed in former literature. There are 6 third-order and 3 second-and third-order moment invariants in Lo and Don's paper (1989).

From those invariants, we can derive following Gaussian-Hermite moment invariants of the second order. These moment invariants characterize the density of an object independently from the object's position or orientation. The particular functions are not invariant to scale. Since moments are continuous, the employed invariant functions of the moments are continuous as well. Slight changes in the density correspond to slight changes in the moment invariants. Similar density functions can be identified by identifying similar moment invariants. Thus, a feature vector of moment invariants can serve to describe densities independently from their position and orientation in 3D space.

3D Gaussian-Hermite moment invariants to contrast changes

So far, we have considered invariants to spatial transformations only. However, in practice the features used in a recognition system should also be invariant to gray level or colour changes.

In this section we consider contrast stretching only, which is a very simple gray level transform given by (, ,) (, ,)

f xyz a f xyz ′ = ⋅ (4.39)
where a is a positive stretching factor. Therefore, we can get moment invariants as:

( ) 

3D Gaussian-Hermite moment invariants-based method for horizon auto-tracking

We have described a workflow based on moments for 3D horizon tracking in previous Section 5.2.7. Here, we replaced the modular "Compute the K feature of candidate by moments" with "Compute the K feature of candidate by Gaussian-Hermite moment invariants". Then we test our method with real seismic data set used in section 5.3.2. We process horizon track in real seismic data volume under local sub-volume with size 7*7*7. The result is shown in Figure 5.30 and Figure 5.31. It can be found that moment invariants method is more robust for horizon tracking across fault.

Multi-scale approach based on 3D Gaussian-Hermite moment invariants

In preview section 5. 

Horizon self overlaps

It is advantageous in seismic data processing and interpretation to reduce a seismic data volume to its internal reflection-based surfaces or horizons. Collectively, these surfaces form the skeleton of the seismic volume. Many methods have been described to extract or track one horizon or surface at a time through a volume of seismic data. Most of these methods create surfaces that eventually overlap themselves. Thus, the same surface may have multiple depths (or reflection times) associated with the same spatial position. Some methods prevent multi-valued surfaces by discarding all but one value per location.

Typically, as shown in Figure 5.39, they store only the first one encountered during the execution of the process and simply do not record later ones. Moreover, if multiple surfaces are tracked, one surface may overlay another surface at one same location, while the opposite relationship occurs at another location. Collectively, these situations may be termed topologically inconsistent. The published approaches to date, some of which are summarized below, largely ignore topological consistency.

Cheng and Lu described a method to extract the seismic skeleton from two dimensional data.

Problems introduced by the third dimensions are neither discussed nor resolved in [START_REF] Cheng | The Binary Consistency Checking Scheme and Its Applications to Seismic Horizon Detection[END_REF]. The procedure uses an iterative approach where strong horizons are tracked initially, while weaker ones are tracked in later iterations. At any iteration, the tracking is confined to areas delineated by horizons already tracked in earlier iterations. Tracking is preformed by correlating multiple neighbouring traces simultaneously. Combining the two approaches allows incorporation of the geologic fabric into the results. This method is also described by [START_REF] Lu | An iterative approach to seismic skeletonization[END_REF]. In [START_REF] Li | Seismic skeletonization: A new approach to interpretation of seismic reflection data[END_REF],Li et al disclosed the utility of using the seismic skeleton for the interpretation of seismic data. The seismic skeleton is two dimensional, and when a horizon splits, the decision regarding which branch to follow is not geologically motivated. Instead, the method attempts to correlate events across three neighboring traces in such a way that dip changes are minimized. The method includes only iterative growing of horizons. Further, Vasudevan et al continued of their earlier work, realizing that skeletonization has geoscience applications beyond seismic processing and interpretation in [START_REF] Vasudevan | Adaptation of seismic skeletonization for other geoscience applications[END_REF]. [START_REF] Huang | Branch and bound search for automatic linking process of seismic horizons[END_REF] described a two dimensional method of horizon growth allowing horizons to cross and penetrate each other, which violates the stratigraphic paradigm that geologic strata do not cross. The method reveals only the generation of horizons by picking events, peaks for example, building a tree of all potential linkages between these events, and then selecting the ones which yield the most linear horizons. Branches of the linage tree are chosen to minimize a cost function of horizon nonlinearity. [START_REF] Dunn | Method for performing stratigraphically-based seed detection in a 3-D seismic data volume[END_REF] described a three-dimensional geobody picker and analyzer.
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In this patent, a few select geobodies are picked, which may include geobodies having attribute values within a specified range or geobodies adjacent to certain attribute values.

During picking, the geobodies are analyzed using a map view criteria to detect and eliminate self-overlapping geobodies, and yielding composite geobodies instead. The composite geobodies satisfy at least the topological condition of no self overlaps, but the boundaries between geobodies are determined by the order in which the voxels are detected. [START_REF] James | System and Method for Displaying Seismic Horizons with Attributes[END_REF] described a seismic autopicker that generates single valued horizons and often takes the correct branch when horizons split. The interpreter initializes the method by Fault manually selecting one or multiple seed points in a 3D seismic data volume. The algorithm uses first seed point for picking a set of secondary points from neighboring traces which are then treated as new seed points and repeats the algorithm procedure. The algorithm assigns an iteration number corresponding to the number of times the algorithm repeated to each of the seed points. Secondary picks that led to self overlap are rejected, but topological consistency with other horizons is not revealed. The algorithm is basically based on controlled marching. [START_REF] Imhof | Seismic Horizon Skeletonization[END_REF] described a method for merging surfaces identified in a seismic volume or seismic attribute data volume to form larger surfaces representing subterranean geologic structure or geophysical state of matter, comprising merging neighbouring surfaces in a topologically consistent way. In this patent, reflection-based surfaces may be automatically created in a topologically consistent manner where individual surfaces do not overlap themselves and sets of multiple surfaces are consistent with stratigraphic superposition principles. Initial surfaces are picked from the seismic data, and then broken into smaller parts that are predominantly topologically consistent, whereupon neighbouring patches are merged in a topologically consistent way to form a set of surfaces that are extensive and consistent.

Surfaces or geobodies thus extracted may be automatically analyzed and rated based on a selected measure such as one or more direct hydrocarbon indications. Topological consistency for one or more surfaces may be defined as no self overlap plus local and global consistency among multiple surfaces.

To resolver the self overlaps, we define a structure to store point information of horizon map in our moments based method. The structure includes information:

-Location information: x, y;

-Tracking list of result information: time, Euclidean distance value. We modify the "Record candidate" process in the workflow chat of 3D horizon tracking by moments at the Figure 5.10 in section 5.2.7 to "Record candidate information, update tracking list of the candidate" and "Update the candidate queue". This modified workflow chart is shown in Figure 5.40. In contrast, new structure for the tracking method can employ a diverse set of techniques to achieve good performance, including taking different searching order. For each of eight neighbour traces of the current trace in which candidate seed is, we can evaluate a serial of features upon determination of the candidate "seed" in the range of searching window. After evaluating feature, we can get the Euclidean distance between the feature of the pattern "seed" and each feature by Equation (5.30). The candidate with lowest value is selected as potential candidate "seed". If this candidate "seed" is verified and satisfied, it is recorded in horizon surface map. At the same time this matching information is compared to the tracking list. If an existing node with same information has been searched, the matching information is ignoring; otherwise the matching information is inserted to tracking list. Then we update the seed queue. We repeat "pop-evaluate-push" process until the queue of candidate seeds is empt y. When the seed queue is empty, another decision is performed to determine if the horizon tracking is final in the seismic volume. If tracking is not over the volume, another initial trace is selected to continue until the process is completed. For result in Figure 5.41, we can get the tracking result as be shown in Figure 5.42.

Finally, we process visualization of the tracking result. Before changing the structure of point information of horizon map, the display is very simple. We construct a cell polygon using four neighbour points. In this case, the same surface has only one depth (or reflection time) associated with the same spatial position. We inquire four neighbour point positions for a point position. If the value difference between points is beyond a threshold, the cell polygon is ignored. With new structure, however, situation is changed. Now the same surface may have multiple depths (or reflection times) associated with the same spatial position. To construct a cell polygon using four neighbour points, we have to choice a suitable value from the tracking list of the point. It is also depend on value difference whether the cell polygon is ignored. According to neighbour cell polygons the current cell polygon is merged to a larger surface. Finishing surface tracking, the tracking result with multiple surfaces is visualized to interpreter.

Conclusion

In this chapter, we try to concern the researches of interpreting seismic horizon based on moments, which are the important study on the exploration, identification and production of hydrocarbons. Auto-pickers, as [START_REF] Dorn | Modern 3-D seismic interpretation[END_REF] pointed out, are all sensitive to noise, and the path which the auto-picker follows should be considered carefully. Moments of images provide efficient local descriptors and have been used extensively in image analysis applications. We approach method based on geometrical moments and Gaussian-Hermite moments to the task of 2D/3D horizon auto-tracking. With moments, the feature vector is then constructed by several order of moment. After obtaining feature vector, a matching algorithm based on Euclidean distance, between the referent feature vector of seed and feature vector of each candidate seeds, is performed to choice a candidate with the lowest value distance. The comparisons are made under both 2D and 3D conditions of correlation method, higher order statistics method, and moments-based method. Some visualization examples are also illustrated. The experiments show that the moments-based method is an efficient tool for horizon auto-tracking. 3D Gaussian-Hermite moment invariants are presented here as horizon tracking technique.

Compared to other horizon tracking techniques, moment invariants have some drawbacks and some advantages. Like some other horizon tracking techniques, e.g. correlation-based method, the computation heavily depends on a seed point. The moment invariant feature vector continuously varies when rotational transforming the density with respect to the seed point.

Moment invariant methods successfully detect similarities of features conserved in detail.

Finally we propose a modified tracking method to solve the horizon self overlaps, which are very common in horizon auto-tracking.

Seismic facies analysis using 3D moments

Most of the hydrocarbons (gas and oil) occur in sedimentary rocks that were generated in different depositional environments (for example: river channels, delta systems, submarine fans, carbonate mounds and reefs). Seismic waves penetrating into and reflected within sedimentary rock bodies yield a seismic image of their external shape and of their internal texture. Therefore, the analysis of the external shape of seismic bodies and its internal textures, which is called seismic facies analysis (Mitchum et al., 1977 ), helps to specify the depositional environment of the investigated sedimentary rocks. An analysis of the seismic facies is a must in seismic interpretation to determine the depositional environment and to locate potential reservoirs, especially in complex oilfields. Generally, different sedimentary rocks yield different seismic facies. The seismic facies of a buried carbonate mound or reef, for example, differs significantly from a submarine fan or a delta system. Hence, each depositional system has its particular seismic facies [START_REF] Schlaf | Introduction to Seismic Texture[END_REF].

To recognize and analyze seismic facies with regard to the geologic environment is one of the goals of seismic stratigraphy [START_REF] Dumay | Multivariate statistical analyses applied to seismic facies recognition[END_REF]. There are two major problems in seismic facies analysis: the first is to determine which seismic parameters are discriminants for characterizing the seismic facies; the second is to be sure that there is a link between the seismic parameters and the geological facies which is investigated by interpreter. To define the seismic facies, it is important to take into account all the information contained in the seismic traces. Thus, interpreter need to study simultaneously a large number of seismic parameters computed from the traces. Then interpreter have to determine which variables, among all those interpreter could compute, discriminate facies in each case being studied. The most efficient way to deal with these two requirements is to carry out multivariate analyses of the seismic parameters extracted from traces.

Nowadays, automatic seismic facies analysis techniques have been growing as an important interpretation tool for the oil exploration industry. Depending on the reservoir knowledge, the seismic facies analysis could be supervised by a priori geological information, or could be unsupervised, when there are not enough data to guide the analysis. For a seismic interpreter, seismic facies analysis still is a monotonous and time consuming task. Hence, a process is highly required which makes this interpretation step automatic.

Seismic Facies Analysis

Seismic facies originally were defined based on qualitative but objective descriptions of the seismic trace shape (Mitchum et al., 1977 ) . The seismic facies correspond to amplitude, phase, and frequency variations along and between traces in a specific interval of a seismic data. In every seismic facies analysis system it is a must to find out in what kind of depositional environment the investigated rocks were generated. If the depositional environment of a sedimentary rock is known then further exploration and production strategies can be refined and optimized [START_REF] Stoker | Seismic methods and interpretation[END_REF].

Seismic facies analysis is a tool to describe depositional environments out of seismic data. It applies certain techniques that can help to specify depositional environments. Seismic facies analysis technique is mostly based on [START_REF] Schlaf | Introduction to Seismic Texture[END_REF]:

the external shapes of seismic bodies;

boundary relationships between those bodies; the internal texture of those bodies.

The external form and areal association of seismic facies units provides information on gross depositional environments, sediment source and geological setting. In seismic facies analysis, some basic types of external shapes can be differentiated. Those individual units or sequences includes sheet, sheet drape, wedge, bank, lens, mound, fan, and fill (channel fill, slope-front fill and basin fill) (Mitchum et al., 1977 ) . The boundaries between different shapes are reflection terminations. The identification of any of these shapes can only be established from a 2D grid of seismic profiles which allows the geometry of the sequence to be buildup in a quasi-three-dimensional manner. The mapping of reflection terminations is the key to seismic facies analysis. Problems in mapping reflection terminations can arise when terminations laterally pass into concordant relationships.

The recognition of these features on a seismic profile is based on a number of seismic reflection parameters of which character of the single reflection, configuration of reflections within sequences, and external form of facies units or sequences are the most obvious and directly analysed parameters. The main features of these parameters are summarized below.

Most general terms used to describe these parameters, is shown in the Figure 6.1, were originally defined by Mitchum et al (1977).

In seismic interpretation, clustering seismic data can be used to extract more information about structures and geology of underground units. Waveform classification is a popular method. It has been successfully applied to oil and gas reservoir prediction. In waveform classification, seismic waveforms are classified using clustering analysis technology. In this method, the number of classes is a key parameter. Choosing this parameter is difficult as the geological characters vary from field to field. In fact, a good understanding of geology and seismic data is required to correctly determine the number of seismic facies. In field application, the number of classes usually varies 5 to 15 depending on the complexity of the seismic signal and the time thickness of the reservoir. The result of classification would be too smooth if the number of classes is very small. On the contrary, the result would be too detailed to be interpreted if the number of classes is too great. Regardless of pattern recognition or neural network, the result is better if the distances between clusters are larger and the distances between samples in each cluster are smaller. This criterion is used to determine the number of classes in our method.

In the classification process, it is assumed that two samples are in the same facies class if they are characterized by similar values in all input seismic attribute volumes, and therefore probably correspond to similar geologic environments. To automatically subdivide a seismic cube into shapes and textures, a certain strategy should be applied. It is recommended to follow the proposal of Mitchum and Vail (1977). They propose two steps: (1) subdivide a seismic data set into bodies (sequences) that have a certain external shape and that are separated by surfaces of discontinuity, called sequence boundaries, and, (2) to analyze the texture of those bodies.

There are two primary categories of classification methods applied in seismic facies analysis: Unsupervised and Supervised. An unsupervised classification gives the interpreter insight by showing how a waveform is changing within the survey. Aside from defining an analysis interval, unsupervised classification does not use any a priori information to determine how a seismic trace is classified, and the results are entirely data driven. A neural network quantifies the changes in waveform into discrete segments and the different character types can be displayed as colour variations on a map or profile. The unsupervised seismic facies classification is usually applied in the preliminary phase, when the reservoir properties should be estimated almost exclusively with the seismic data. Another classification is supervised facies classification. Within this type of classification method, the a priori information is usually obtained through well logs data and its associated petrophysics analysis, which is always punctual compared to the large seismic volume density. Seismic modelling can provide interpreters a way to improve their understanding of the possible seismic responses observed in the classification process. Experience and geologic knowledge of the reservoirs make it easier to encompass all possible variations in terms of structural and petrophysical changes and to relate the lateral variations of seismic facies to possible reservoir parameter changes. This is sometimes an ambiguous and interpretative process. Independent of whether seismic facies analysis is supervised or not, it can be implemented using the workflow shown in Figure 6.2 [START_REF] Johann | Reservoir Geophysics: Seismic Pattern Recognition Applied to Ultra-Deepwater Oilfield in Campos Basin, Offshore Brazil[END_REF]. For a better understanding of the method employed in seismic facies analysis it is necessary to introduce some important concepts applied in this approach.

Principal component analysis

Principal component analysis (PCA) is probably the oldest and best known of the techniques of multivariate analysis. The origins of statistical techniques are often difficult to trace. However, it is generally accepted that the earliest descriptions of the technique now known as PCA were given by [START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF], and developed independently by [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF]. PCA is a statistical technique for performing dimension reduction [START_REF] Gurney | An introduction to neural networks[END_REF][START_REF] Mardia | Multivariate analysis[END_REF]. The central idea of PCA is to reduce the dimensionality of a data set consisting of a large number of interrelated variables, while retaining as much as possible of the variation present in the data set [START_REF] Jolliffe | Principal component analysis[END_REF]. This is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. PCA is a mathematical procedure that finds principal directions in a multidimensional data and determines the optimal shift and rotation of the data, so that it is expressed in those principal directions. PCA is a way of identifying patterns in data, and expressing the data in such a way as to highlight their similarities and differences [START_REF] Smith | A tutorial on Principal Components Analysis[END_REF]. Since patterns in data can be hard to find in data of high dimension, where the luxury of graphical representation is not available, PCA is a powerful data-driven tool for that describes the relationships between PCA is that once these patterns have been found in the data, and the data is compressed, for instance by reducing the number of dimensions, without much loss of information.

To increase the information available for seismic facies classification, multiple post-stack seismic attribute volumes derived from original seismic data are used in seismic facies classification study. Seismic samples from input volumes are projected into a multidimensional plot in which the number of dimensions corresponds to the number of input volumes. Then, the main data trends (principal axes) are found in the data cloud. The data samples are projected on the principal axes. The output of this procedure is a set of new 3D volumes named PCA components. [START_REF] Hagen | The application of principal components analysis to seismic data sets[END_REF] employed principal component analysis to study the lateral differences in porosity, [START_REF] Dumay | Multivariate statistical analyses applied to seismic facies recognition[END_REF] employed both the principal component analysis and the discriminant factor analysis to identify the seismic facies. Analysis of the PCA results was based on eigenvalues, contribution, and cumulated inertia. Only the first several components were selected as input for the hierarchical classification. These components contributed more than 85% to the data and contained important information about the main data trends. The noise and redundant data were adsorbed by the fourth component. The PCA analysis also helped understand the relationship between the PCA components and the input attributes. For example, the first PCA component happened to be mostly affected by the amplitude envelope with a minor contribution from fluid factor. However, all four input volumes have contributed to the definition of this PCA component. Therefore, it is difficult to relate the results back to the input attributes using cross-plots. The interpretation of the results of the classification with PCA still can be achieved using the calibration to well data and detailed analysis of morphologic patterns on vertical seismic sections, horizon and proportional slices, and 3D views.

The K-means clustering

K-means clustering algorithm uses an iterative algorithm that minimizes the sum of distances from each sample to its cluster centroid over all clusters [START_REF] Seber | Multivariate observations[END_REF]. This algorithm moves samples between clusters until the sum cannot be decreased further. The result is a set of clusters that are as compact and well-separated as possible.

An optimal clustering algorithm should minimize the distance between the elements of each group and, at the same time, maximize the distance between the different clusters.

K-means clustering algorithm can be done by the following steps [START_REF] Sabeti | Seismic Facies Analysis Based on K-means Clustering Algorithm Using 3D Seismic Attributes[END_REF]):

-Start with K rando m cluster centroids.

-Assign each new samples to the cluster with the closest centroid. After all samples have been assigned the new centroid for each cluster is calculated.

-Repeat second step until new centroids are not changed.

There are several ways of measuring distance [START_REF] Theodoridis | Pattern Recognition[END_REF]; Sabeti and Javaherian use Equation (6.1) to compute the distance between the elements of each group.
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where E represents the sum of square-errors for all samples in the dataset, x ij is the j th sample in the i th cluster, m i is the center or mean of the i th cluster, n i is the number of samples in the cluster, k is the number of clusters and d is the Euclidian distance which is defined by the following equation [START_REF] Shen | Determination of cluster number in clustering microarray data[END_REF]:

( ) ( )( ) , T ij i ij i ij i d x m xmxm = -- (5.2)
For simplicity, [START_REF] Matos | Unsupervised seismic facies analysis using wavelet transform and self-organizing maps[END_REF]use the Euclidian norm. To compute the distance between the elements of each group, they use the average distance S k between each element x i and its group centroid c k :
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where N k is the number of elements in the group. The distance between the k and l groups is computed as the distance between their centroids:
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The partitive clustering algorithm divides the data set into a predefined number of clusters, trying to minimize some error function, with the number of groups chosen and verified through SOM visualization. To automate the classification process, Matos use the index DBI [START_REF] Davies | A Cluster Separation Measure. Pattern Analysis and Machine Intelligence[END_REF] as a means of evaluating the results of the K-means partitioning.

The best clustering corresponds to the minimum DBI given by: Bois (1980,1981,1982) Learning is followed by multidimensional analyses and a predictive step which allows an automatic facies classification. The automatic recognition is reliable and fast; the facies map obtained combines several discriminant parameters simultaneously. The most important problem remaining is to make the connection between the seismic facies interpreter has characterized and the geologic facies interpreter is trying to characterize. The physical meaning of some of the chosen discriminant variables is not entirely clear. A modelling step sometimes helps relate the geologic variations to the measured seismic parameters, but this step is not always sufficient. There are problems with the way we evaluate some of the seismic parameters; for example, the parameters computed from the spectrum. Indeed, it is very difficult to estimate the frequency characteristics of a signal for a very short time interval.

Second is a predictive step which allows automatic facies recognition. In this step, authors compute the previously chosen discriminant parameters on unknown seismic traces and classify the unknown traces with regard to the learning traces.

Pennington et al ( 2001) developed a algorithm based on modified cross-correlation model for seismic facies analysis. The algorithm can:

realign a mistracked horizon;

discern subtle changes in seismic trace patterns;

easily perform pattern recognition for user-specified traces over a survey;

provide continuous output values;

combine and visualize the results for multiple trace pattern analysis (posteriorclassification).

The algorithm is a modified cross-correlation model, which is a standard method for estimating the degree to which two series are correlated. Consider two series of signals X(i) and Y(i) where i = 1, 2, … N. The cross-correlation, R, at delay d is defined as
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where X m and Y m are the means of the corresponding series and d is the time window for possible horizon mistracking. The denominator in the expressions above serves to normalize the correlation coefficients such that it ranges from -1 to 1. A value of one indicates maximum correlation while zero indicates no correlation. A high negative correlation exhibits a high correlation but of the inverse of one of the series. However, this cross-correlation is focused on the relative similarity of patterns between two time series rather than absolute similarity. Hence, this expression was modified such that it can judge the difference in absolute values within the shape. The modified expression is written below, showing an additional factor that computes for similarity of amplitude on an absolute value:
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This algorithm, as implemented, can also correct for possible horizon mistracking by searching an amount of time (d samples specified by the user) in order to find the highest value for R. The output values for R are continuous from -1 to 1 and provide a value at every trace.

Structure of Artificial Neural Networks

The perceptron [START_REF] Rosenblatt | The Perceptron: A probabilistic model for information storage and organization in the brain[END_REF] is the most used artificial neuron in neural network configurations and is based on the nonlinear model proposed by [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF].

Artificial Neural Networks (ANNs) are a mathematical model that tries to simulate the structure and functionalities of biological neural networks. ANNs derive their computing power from their distributed massively parallel structure and their ability to learn and generalize, making possible the resolution of complex problems in different knowledge areas.

The number of types of ANNs and their uses is very high. Since the first neural model by [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF] there have been developed hundreds of different models considered as ANNs. The differences in them might be the functions, the accepted values, the topology, the learning algorithms, etc.

The artificial neuron is the information processing unit-the fundamental element for the operation of the ANN-but still primitive if compared to those found in the brain. The artificial neurons, as well as the biological neurons, have input connections, output connections and an internal process that generates an output signal in response to the input signal. The artificial neurons, shown in Figure 6. ), which describe the connection forces; that can be positive, representing excitatory junctions; or negative, inhibiting the activation of the neuron. When there is no connection between two neurons the synaptic weight is null.

-Activation function [ (.)], which restricts the output amplitude of the neuron, in an interval normalized between [0;1] or [-1,1].

-Output signal (y k ), which is the result generated by the neuron. Among the different ANN models, the Multilayer Perceptron Model (MLP), shown in Figure 6.4, is particularly popular. In the MLP there is an input layer, one or more intermediary layers, and the output layer which provides the network result. 
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The great potential for parallelism is one interesting aspect of some neural networks.

Parallelism allows processing huge amounts of data without excessive memory requirements.

Generally, the design of a neural network is composed by three main steps [START_REF] Haykin | Neural networks: a comprehensive foundation[END_REF]:

-Configuration -how layers are organized and connected;

-Learning -how information is stored;

-Generalization --how neural network produces reasonable outputs for inputs not found in the training.

For several decades, artificial ANNs have been used successfully in a variety of different application areas. In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network during the learning phase.

The operation of ANNs is inspired by the human brain. Modern neural networks are nonlinear statistical data modelling tools. Due to their non-linear structure, ANNs can represent more complex features from data, which are not always possible using statistical techniques or traditional deterministic methods. The major advantage of ANNs over conventional methods is that there is no need to know the intrinsic theory of the problem, nor the necessity to analyze the relationships that are not fully known among the variables involved in modelling.

ANNs have assisted in data reduction processes through classifications applied to a wide spectrum of aspects (from traffic solutions and medicinal purposes to geophysical interpretations). In the geosciences area, ANNs have been used to model complex phenomena involving variables difficult to obtain. However some ANN applications involve easily obtainable variables for the solution of problems, but which are usually difficult to solve using conventional mathematical methods. In evapotranspiration and surface temperature modeling; geophysics in lithological classification [START_REF] Bhatt | Reservoir Properties from Well Logs Using Neural Networks[END_REF][START_REF] Yang | Quantitative assessment of mudstone lithology using geophysical wireline logs and artificial neural networks[END_REF]; soil science [START_REF] Zacharias | Excluding organic matter content from pedotransfer predictors of soil water retention[END_REF]. In the case of seismic data mining, [START_REF] Strecker | Data mining of 3D poststack seismic attribute volumes using Kohonen self-organizing maps[END_REF] used an unsupervised approach where the neural network is free to search, to recognize, and to classify structural patterns in an n-dimensional vector field spanning the entire 3D input seismic attribute data set. Within the data set, each data sample is defined by a unique combination of physical, geometric, and hybrid attributes and is treated as an n-dimensional vector.
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3D moments-based approach for seismic facies analysis

). Another benefit of this methodology is noise reduction because the prototype vectors represent local averages of the original data without any loss of resolution. The flowchart in Figure 6.5 shows the proposed methodology for nonsupervised seismic facies analysis based on the SOM clustering by Matos.

In section 5.2.3, we have introduced the definition of 3D geometric moments and have proposed the definition of 3D Gaussian-Hermite moments. We have also discussed the 3D moments-based estimation features of local volume in section 5.2.4.

3D Feature extraction of seismic traces

The local characteristics of the structure are expressed in terms of geometry and intensity information. They are computed from the 3D moments up to the order 2 inside a cube window centred on the point of interest seismic trace. Then we define a metric to describe the feature of each cube windows with a 1D vector by several order of moment:
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Of course, it is not necessary to construct the feature vector with all order of moments. We can arbitrarily select the moment with certain orders however, different order of moment constructing the feature vector, the different representation ability will exhibit. Here, we construct the feature from the 12 moments up to order 3 (M 000 , M 100 , M 010 , M 001 , M 110 , M 101 , M 011 , M 200 , M 020 , M 002, M 003, M 005

The workflow for seismic facies using 3D moments attribute

).

The flowchart in Figure 6.6 shows the proposed methodology for nonsupervised seismic facies analysis based on the SOM clustering using 3D moments attribute. The flowchart starts with getting data of the seismic traces data within a subvolume along the interpreted horizon.

Then we extract the feature vector using 3D moments algorithm. In nonsupervised seismic facies analysis, the estimation of the number of existing seismic facies in the feature vector data is typically determined in an empirical way. We estimate the number of seismic facies through SOM visualization. We begin by choosing a number for the SOM prototype vectors that is larger than the number of expected groups in the data. Even though only qualitative procedure. This visualization tool can be used to investigate the presence of multidimensional clusters [START_REF] Wegman | High Dimensional Clustering Using Parallel Coordinates and the Grand Tour[END_REF]. The PCP adaptation in the visual strategy displays the weight vector of each SOM node as polygonal segments, the colour and thickness of which come from the U-matrix display.

-The third display is a geographic map view of the patterns discovered, where the seismic traces are displayed according to their x-and y coordinates with a colour coding from the U-matrix display. More detailed descriptions of each of the graphic components are presented in [START_REF] Marroquín | A visual data-mining methodology for seismic facies analysis: Part 1 ---Testing and comparison with other unsupervised clustering methods[END_REF].

After SOM learning, the partitive clustering algorithm will divide the data set into a predefined number of clusters, trying to minimize some error function, with the number of groups chosen and verified through SOM visualization. To automate the classification process, we also use the index DBI [START_REF] Davies | A Cluster Separation Measure. Pattern Analysis and Machine Intelligence[END_REF] as a means of evaluating the results of the K-means partitioning. The best clustering corresponds to the minimum DBI given by equation(6.5).

Then, we classify each feature vectors to the closest prototype vector and to each seismic facies. Finally we construct the seismic facies maps.

Example of seismic facies analysis

We selected a sub-volume from a 3D seismic survey located in the middle of China. The subvolume coves an area of 190*200(interval 30m) and a 4-ms sampling rate. We now apply the proposed methodology to this sub-volume. Before seismic facies analysis, We use autotracking method based on 3D Gaussian-Hermite moments to interpret a seismic horizon.

Figure 6.7 shows the result in case inline section and in case crossline section. The map is shown in Figure 6.8.

Then, we compute feature vectors of the seismic traces using 3D moments, and cluster facies using SOM with a larger number of prototype vectors than the expected number of seismic facies. The analysis results with the proposed algorithm along the interpreted horizon are shown from Figure 6.9 to Figure 6.13. Figure 6.9 shows the U-matrixIn this example, six groups or facies are easily identified from the U-matrix, and the classification result was excellent. In contrast to the U-matrix display, the PCP graphic display shown in Figure 6.10 suggests the presence of six distinctive associations of seismic facies. Figure 6.11 shows the automatic classification of six groups. Finally, the classification with six groups is shown in In this chapter, we have reviewed some different clustering algorithms applied to automated seismic facies analysis. We present an approach based on 3D Gaussian-Hermite moments to extract the feature vectors of the seismic data traces. Then we use unsupervised clustering algorithms (SOM) and visualization tools (U-Matrix, PCP) to cluster those feature vectors.

The integrated environment for visual-based data mining approach using SOM gives the best performance in interpreting the correct cluster structure in seismic data sets. Offering information for interactive visual exploration of data sets, this visual-based strategy enhances user interpretation. The excellent result of the seismic facies analysis suggests that the method proposed in this work is an important tool for seismic exploration because it is more robust to interpretation errors.

Parallel processing and Volume visualization

Today Seismic volumes are typically tens of gigabytes, and hundreds of gigabytes are not uncommon. 64-bit operating systems have enabled much larger system memory, but both system memory and texture memory on the graphics processing unit (GPU) remain scarce resources compared to the size of the data sets.

In the past decades, applications enjoyed an automatic increase in performance as CPU vendors competed to increase the clock speed in each new generation of chips [START_REF] Heck | 3D Visualization for Oil and Gas Evolves[END_REF].

With these advances seismic data interpretation can be migrated from big machine to PC.

However physical limitations such as power consumption and heat dissipation have largely ended this era. The CPU vendors are now competing to increase the number of "cores" in each new generation of chips. Dual-core and quad-core chips are already common, with higher -core chips coming soon. Multi-core processors offer software developers the ability to apply more resources at a particular problem. These additional resources can be employed to offer two types of advantages, improved turnaround time or solving larger problem domains. To take advantage of this new performance in seismic interpretation, software developers will need to embrace multithreading technology.

In the area of the exploration and production, visualization technology plays a critical role in gaining insight from data. The process of interpreting a seismic survey data begins with a broad view of the seismic data. Seismic section or slice movies and volume rendering are particularly useful in developing an initial understanding of the structural and stratigraphic context of the reservoir. In volume rendering, an entire volume is displayed on the screen, and the interpreter has control of the viewpoint and the opacity of the volume. In the extreme case, where the opacity is set to one, the rendered volume looks like a solid cube. By changing the opacity of the data, the interpreter can view into the seismic volume. It is possible to see the 3D structure of reflections and to begin to understand the relationships between horizons and faults prior to any interpretation. With advances in multi-core threading programming, seismic data management, efficient computing and GPU based rendering, great progresses can be achieved in volume visualization and volume interpretation.

Parallel processing

In many cases, taking advantage of the performance benefits requires developers to thread their applications. Effectively threading an application is a nontrivial task that requires domain knowledge in multi-core architecture, parallelism fundamentals, and a threading development process. In order to operate on large 3D data sets in a cost-effective manner, applications for seismological analysis and visualization use some new computer techniques, such as multithreads, or computer clusters, to do analysis computations. of transistor density into a direct doubling of single-threaded performance every 18 months [START_REF] Moore | Cramming more components onto integrated circuits[END_REF]. Applications ran faster on each new processor version, and new versions were released frequently. Today, the era of single processor systems is over. The multi-and manycore systems world is here. Developers are entering a phase where taking full advantage of the power of multi-core processors is critical for customers to continue to accelerate innovation and to improve their business success.

General introduction of computer architecture

A multi-core processor is a single computing component with two or more independent actual processors (called "cores"), which are the units that read and execute program instructions (TechTarget, 2004). The data in the instruction tells the processor what to do. The instructions are very basic things like reading data from memory or sending data to the user display, but they are processed so rapidly that human perception experiences the results as the smooth operation of a program. An example of such a processor is the Intel Core Duo processor which is comprised of two similar processor cores in the same die (Figure 7.2). in performance gained by the use of a multi-core processor depends very much on the software algorithms used and their implementation. In particular, possible gains are limited by the fraction of the software that can be parallelized to run on multiple cores simultaneously. In the best case, so-called embarrassingly parallel problems may realize speedup factors near the number of cores, or even more if the problem is split up enough to fit within each core's cache, avoiding use of much slower main system memory. Most applications, however, are not accelerated so much unless programmers invest a prohibitive amount of effort in re-factoring the whole problem.

A computer cluster consists of a set of loosely connected computers that work together so that in many respects they can be viewed as a single system (wikipedia, 2011). Clusters are usually deployed to improve performance and availability over that of a single computer, while typically being much more cost-effective than single computers of comparable speed or availability [START_REF] Bader | Cluster Computing: Applications[END_REF].

Typical threaded model

In computer science, a thread is the entity within a process that can be scheduled for execution.

All threads of a process share its virtual address space and system resources (MSDN, 2011). It generally results from a fork of a computer program into two or more concurrently running tasks. On a single processor, multithreading generally occurs by time-division multiplexing (as in multitasking): the processor switches between different threads. This context switching generally happens frequently enough that the user perceives the threads or tasks as running at the same time. On a multiprocessor or multi-core system, the threads or tasks will actually run at the same time, with each processor or core running a particular thread or task. Threads differ from traditional multitasking operating system processes in that [START_REF] Kumar | Concept of threads used in different operation system[END_REF]:

-Processes are typically independent, while threads exist as subsets of a process.

-Processes carry considerable state information, whereas multiple threads within a process share state as well as memory and other resources.

-Processes have separate address spaces, whereas threads share their address space.

-Processes interact only through system-provided inter-process communication mechanisms.

-Context switching between threads in the same process is typically faster than context switching between processes.

There are two typical threaded models: single threading model and multiple threaded model.

A typically single threaded model is showed in Figure 7.3. Multithreading as a widespread programming and execution model allows multiple threads to exist within the context of a single process. These threads share the process' resources but are able to execute independently. The threaded programming model provides developers with a useful abstraction of concurrent execution. However, perhaps the most interesting application of the technology is when it is applied to a single process to enable parallel execution on a multiprocessor system. A typically multiple threaded model is showed in Figure 7.4.

In a multi-threaded operation, all threads in a single process exist in the same address space and share all the resources belonging to the process. The .NET Framework supports a multithreaded operation in developing .NET applications. Multiple threads within a single process can manage the multi-tasks of an application. As compared to multiple processes, multiple threads can increase the throughput of an application and simplify program structure. In a multi-threaded operation, the application does not require any special mechanism to communicate between its tasks, and less system resources are needed for context switching between the tasks.

Multiple threads can accomplish various tasks while working in a single application domain.

They can communicate to a Web server and a database over a network. They can perform operations that are time taking and can distinguish various tasks of varying pr iority. Multiple threads also enable the user interface to be more responsive during the time allocation of background tasks. However, one should avoid using multiple threads in a single application domain, as the consumption of operating-system resources can be minimized and the application performance enhanced. The frequent use of threads can cause the computer to consume more memory.
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Parallel programming in seismic interpretation

The basic unit of scheduling is generally the thread [START_REF] Goetz | Introduction to Java threads[END_REF]; if a program has only one active thread, it can only run on one processor at a time. If a program has multiple active threads, then multiple threads may be scheduled at once. In a well-designed program, using multiple threads can improve program throughput and performance.

Development of parallel software has traditionally been thought of as time and effort intensive [START_REF] Grama | Introduction to parallel computing[END_REF]. This can be largely attributed to the inherent complexity of specifying and coordinating concurrent tasks, a lack of portable algorithms, standardized environments, and software development toolkits.

Parallel processing is also called parallel computing [START_REF] Almasi | Highly parallel computing[END_REF] only one program ran at a time. An early form of parallel processing allowed the interleaved execution of two programs together. In a multiprogramming system, multiple programs submitted by users were each allowed to use the processor for a short time. To users it appeared that all of the programs were executing at the same time.

Traditionally, software has been written for serial comput ation. During the past 20 years, the trends indicated by ever faster networks, distributed systems, and multi-processor computer architectures (even at the desktop level) clearly show that parallelism is the future of computing. Main reasons of using parallel processing are following:

-Save time;

-Solve larger problems; In developing applications, Large-scale scientific problem solving involves three interactive disciplines as shown in following figure [START_REF] Morrison | Cluster Computing -Architectures, Operating Systems, Parallel Processing & Programming Languages[END_REF]. As shown in figure, theoretical scientists develop mathematical models that computer engineers solve numerically; the numerical results may then suggest new theories. Experimental science provides data for computational science, and the latter can model processes that are hard to approach in the laboratory. For designing parallel programs, we should pay attention to following steps [START_REF] Barney | Introduction to Parallel Computing: Part 2 Designing and implementing parallel programs[END_REF]:

-
-Undoubtedly, the first step in developing parallel software is to first understand the problem that we wish to solve in parallel. If we are starting with a serial program, this necessitates understanding the existing code also.

-Before spending time in an attempt to develop a parallel solution for a problem, determine whether or not the problem is one that can actually be parallelized.

-Identify the program's hotspots.

-Identify bottlenecks in the program -Identify inhibitors to parallelism; -Investigate other algorithms if possible.

-Break the problem into discrete "chunks" of work that can be distributed to multiple tasks. This is known as decomposition or partitioning (domain decomposition and functional decomposition).

-Process communications between multiple tasks. Scientific applications often demand more performance than a single processor can deliver.

Therefore applications have to conduct computations in parallel. A considerable problem in the seismic processing field is the fact that seismic data are large and require a correspondingly large memory size and processing time. In seismic field, parallel processing algorithms deliver high performance calculations in multiple aspects such as seismic horizon tracking, seismic facies analysis, attribute computations, and interactive volume visualization. [START_REF] Matthas | Large-scale parallel geophysical algorithms in Java: a feasibility study[END_REF] achieved Fortran performance within a factor of at most four with a parallel Java implementation of a basic geophysical algorithm on to major system platforms, both on a shared memory and a distributed memory parallel computer. They implemented the high resolution velocity analysis operator using the JavaParty. [START_REF] Thomson | A parallel windowed fast discrete curvelet transform applied to seismic processing[END_REF] proposed using overlapping, tapered windows to process seismic data in parallel. Thomson's method consists of numerically tight linear operators and adjoints that are suitable for use in iterative algorithms and is also highly scalable and makes parallel processing of large seismic data sets feasible. With definition of the Parallel Windowed Fast Discrete Curvelet Transform (PWFDCT), the authors apply it to a seismic data interpolation algorithm. [START_REF] Alhashim | Seismic Data Processing with the Parallel Windowed Curvelet Transform Seismic Data Processing with the Parallel Windowed Curvelet Transform[END_REF] proposed a parallel approach based windowing operator that divides large seismic data into smaller more manageable data sets that can fit in memory so that it is possible to apply the Bayesian separation process in parallel with minimal harm to the image quality and data integrity.

Leif [START_REF] Leif | Framework for Polygonal Structures Computations on Clusters[END_REF] discusses how algorithms involving discretized polygon surfaces can efficiently utilize the parallelism provided by clusters. In his work, Leif provides a general framework for representing polygonal structures used for computations over seismic volume data on clusters and, supporting dynamic operations. The framework consists of three main parts: 1) efficient caching and transfer of voxels between cluster nodes, 2) efficient discretization or voxelization of polygon surfaces, and 3) efficient load-balancing.

Computing seismic attributes in parallel programming

A task could be processed parallel if it has features:

-The serial program calculates one element at a time in sequential order;

-The calculation of elements is independent of one another -leads to anembarrassingly parallel situation;

-The problem should be comput ationally intensive;

-Independent calculation of array elements insures there is no need for communication between tasks.

-Each task executes the portion of the loop corresponding to the data it owns.

-Notice that only the outer loop variables are different from the serial solut ion.

Seismic data volume could be represented by Figure 7.6. As we have introduced in section 2.1, seismic attribute is a quantitative measure of a seismic characteristic of interest. There are a lot of complex calculations in extracting many attributes. Interpreters have to spend much time on waiting result of calculation. Calculation of most attributes is corresponding to local regional data. Therefore, calculation performance can be improved in parallel programming. For parallelization calculation, we modify the representation of seismic data volume. Figure 7.7 illustrates the modification. This modification is corresponding to the power of parallel computing, where N is numbers of threads according to CPU cores.

We will take multi-threading technique to implement our method. The threads are designed 7.1and Table 7.2. The previous solution adopts static load balancing scheme. But this scheme has some disadvantages:

-Each task has a fixed amount of work to do; -May be significant idle time for faster or more lightly loaded processors -slowest tasks determines overall performance; -Static load balancing is not usually a major concern if all tasks are performing the same In case having a load balance problem (some tasks work faster than others), we may benefit by using a "thread pool pattern" scheme to solve it. This scheme has the structure as shows in.

In computer programming, the thread pool pattern is where a number of threads are created to perform a number of tasks, which are usually organized in a queue. Typically, there are many more tasks than threads. As soon as a thread completes its task, it will request the next task from the queue until all tasks have been completed. The thread can then terminate, or sleep until there are new tasks available. The number of threads used is a parameter that can be tuned to provide the best performance. Additionally, the number of threads can be dynamic based on the number of waiting tasks. 

Auto-tracking seismic horizon in parallel programming

We have presented our methods of 3D moments-based horizon auto-tracking in section 5.2. In this methodology, we need compute 3D moments feature vectors of local regions. If we frequent track different horizons, pre-computing moments features is a nice idea. Therefore, we can take parallel processing to create an attribute volume. Then we will directly match the feature using the attribute. The modification method is shown in Figure 7.10.

Volume visualization and volume interpretation

The seismic data volume ultimately has to be interpreted by geologists and geophysicists (Neff et al., 2000a). The quality of their interpretation depends on their experience and knowledge, but it is also dependent on how the data volume is presented to them. The conventional approach for interpreting 3D seismic data is usually confined to a 2D or 2.5D environment. Recent advancements in computing and visualization technologies allow interpreters to visualize, interpret and integrate full 3D seismic attributes into their geophysical interpretation.

For geovolume visualization interpretation (GVI) , recognition, colour, motion, and isolation are the four main techniques [START_REF] Sheffield | Geovolume visualization interpretation: A lexicon of basic techniques[END_REF].

-Recognition refers to determining the distinguishing characteristics of an event to be mapped, then processing the data to enhance those characteristics for the purpose of visualization and geobody mapping. In this step, the choice of attributes is made. The ability to calculate and examine many attributes with no penalty for wrong choices is critical for fast recognition of anomalies. By examining many attributes, the best set of attributes for characterizing the event can be selected.

-Colour refers to the selection of an optimum colour scheme for visualizing the property of interest.

-Motion is one of the most critical aspects of GVI; it is motion that taps the human subconscious and allows interpreters to see relationships between data in space and time.

-Isolation is the ability to separate the events of interest from other data, and is another key Volume interpretation assumes that the seismic reflectivity of the subsurface is an "in situ" 3D model of the subsurface which, by its nature, consists of integrated structural, stratigraphic, and amplitude features in 3D space. The purpose of volume interpretation is to see the details of that "untouched" in situ model, and to formulate an accurate concept.

Therefore, its position in the work flow should proceed illustrating or mapping that concept.

In summary, the general interpretation workflow is as follows:

-Formulate the concept via volume interpretation -Illustrate that concept via maps and surfaces -Perform surface visualization to evaluate the surfaces in 3D space.

Volume visualization work flows must include interpretation strategies for a wide variety of problems. The volume interpretation workflow is designed to address flat intervals of strata, dipping units, and individual targets such as bright amplitudes.

The work flow begins by performing quality control measures specifically for visualization sensitivities, then obtaining overviews of the data where regional and specific objectives are identified. Depending on the nature of the objective, a "focusing strategy" either time windowed, detection, or horizon-keyed (sculpting) is chosen to isolate the objective in preparation for the application. Volume interpretation provides a method for geoscientists to quickly evaluate complex structural and stratigraphic and amplitudes in 3D space. The demand for fast detailed interpretation can be accomplished utilizing visualization strategies. The challenge of interpreting the growing number of large 3D volumes is now more manageable. As volumeinterpretation skills increase, so will the efficiency of obtaining more answers without mapping, thus reducing the time for the 3D interpretation phase of the project. In this section, we adapt high quality volume rendering algorithms from the computer graphics industry based on Open-Scene-Graph (OSG) engineer to improve the imaging. The OSG is an open source high performance 3D graphics toolkit, used by application developers in fields such as visual simulation, games, virtual reality, and scientific visualization and modelling. Written entirely in Standard C++ and OpenGL it runs on all Windows platforms, OSX, GNU/Linux, IRIX, Solaris, HP-Ux, AIX and FreeBSD operating systems. The OSG is now well established as the world leading scene graph technology, used widely in the vis-sim, space, scientific, oil-gas, games and virtual reality industries. OSG improves the applications efficiency using the capabilities of the recent programmable graphics hardware.

We present a formal framework for the design of modular software systems. The framework is shown in Figure 7.14. The data manager modular provides data to interpretation for attributes computation, horizon tracking, fault extracting, and facies analysis. All results of interpretation are stored back to data manager modular. All data can be displayed by visualization modular. Also, the visualization modular could provide advices for interpretation algorithms. In many methods of interpretation, some visualization techniques is employed to offer information for interactive visual exploration. In addition, we will present a versatile multimodal volume rendering system that enables the efficient co-visualization of several volumes. 

Conclusion

Multi-core processors can offer software developers the ability to apply more resources at a particular problem. The software threads are executed on a single processor or on many processors simultaneously. Taking advantage of those new performances into seismic data field, we compute the seismic attributes and track the horizon with parallel programming. It can be seen that both computation and interpretation have been efficient. Interpreters can save their time and resources into others interesting tasks. Volume visualization technology and volume interpretation may help interpreter to insight into 3D seismic data and accelerate the interpretation process. In the our research, we adapt high quality volume rendering algorithms based on Open-Scene-Graph (OSG) 3D engine to improve application efficiency in the imaging and visualization. usages of Gaussian-Hermite moments and moment invariants in some applications are exhibited as: coherency estimation, pattern recognition. We also discuss seismic image analysis by moments. Applications are shown that Gaussian-Hermite moments are effective tools for image analysis. The 3D moments provide an efficient power to extract features of local sub-volume within 3D seismic data volume. With these feature extracted, the property vector is constructed to estimate difference between two patterns.

After studying many auto-tracking methods of seismic horizon, we have found that they are mostly depended on the information of single seismic trace. Our method, based on 3D geometric moments and 3D Gaussian-Hermite moments, is depended on the information of local sub-volume. After obtaining feature vector, a matching algorithm based on Euclidean distance, between the referent feature vector of seed and feature vector of each candidate seeds, is performed to choice a candidate with the lowest value distance. The experiments show that the moments-based method is an efficient tool for horizon auto-tracking. 3D Gaussian-Hermite moment invariants are also presented in the thesis as horizon tracking technique. Compared to other horizon tracking techniques, moment invariants have some drawbacks and some advantages. Like some other horizon tracking techniques, e.g. correlation-based method, the computation heavily depends on a seed point. The moment invariant feature vector continuously varies when rotational transforming the density with respect to the seed point. Moment invariant methods successfully detect similarities of features conserved in detail. Because the same surface may have multiple depths (or reflection times) associated with the same spatial position, we propose a modified tracking method to solve the horizon self overlaps.

The problem of identification of seismic facies is solved by reducing the multiclass classification problem to a two-class classification problem using the modular neural network system. It is important to investigate the characteristics of the problem of interest with the objective to select an appropriate clustering strategy. Popular networks that use unsupervised learning are Kohonen feature maps [START_REF] Kohonen | Self-organisation and associative memory[END_REF]. SOM is a technology that visual-based data mining approach combines a clustering process. We have approached method of seismic facies analysis. Our approach starts with extracting feature vectors by 3D Gaussian-Hermite moments. Then we cluster the feature vectors through SOM algorithm with data visualization techniques U-Matrix and PCP graphic. It can be learnt that method provides an environment for exploring patterns in the data sets.

Today, there is tremendous progress in computer technology. Chip multi-threading (CMT) brings to hardware the concept of multi-threading, similar to software multi-threading. Multi-core processors can offer software developers the ability to apply more resources at a particular problem. The software threads are executed on a single processor or on many processors simultaneously. Taking advantage of those new performances into seismic data field, we compute the seismic attributes and track the horizon with parallel programming. It can be seen that both computation and interpretation have been efficient. Interpreters can save their time and resources into others interesting tasks. Volume visualization technology and volume interpretation may help interpreter to insight into 3D seismic data and accelerate the interpretation process. In the our research, we adapt high quality volume rendering algorithms based on Open-Scene-Graph (OSG) 3D engine to improve the imaging and visualization.

The study on Gaussian-Hermite moments is not complete. Its 3D invariant moments is still needed to study. In future we plan to automatically track seismic fault surface. Seismic data sets typically contain a large number of faults at many different spatial scales. Faults are important subsurface features that are often of interest to the geologist. Knowledge of the location of the faults is critical to understanding a geological system. The analogy of the moments to mechanical moments allows a deeper understanding of the central moments of second order 2,0 , 0,2 and 1,1 . They contain terms, in which the gray value function f(x, y), i.e. the density (x, y) of the object is multiplied with the square of the distance from the center of gravity (x c , y c ). Exactly the same terms are available in the inertial tensor, known from physical mechanics. The three central moments of second order build the components of the inertial tensor of the rotation of the object about its centre of gravity: -The orientation of the object is defined as the tilt angle between the x-axes and the axis, around which the object can be rotated with minimal inertia. This corresponds to the eigenvector with minimal eigenvalue. In this direction the object has its biggest extension.

It is calculated as follows:

1,1 2,0 0,2 2 1 arctan 2 µ θ µµ

= -

With those parameters, we can calculate the coherency attribute form the seismic data. Then we shall develop auto-tracking methodology for extracting seismic fault surface.

In our approach of horizon auto-tracking, we only involve one seismic attribute. Multiple attributes also can be used in this approach. Therefore, next step we will study horizon autotracking on multi-attribute. This research work maybe takes new advantages. For multi-scale approach based on 3D Gaussian-Hermite moment invariants, we will discuss the effects of selecting different .

In our approach of parallel processing, we only involve the multiple threading based on single computer. However, today's seismic volumes are achieving terabytes. It is impossible to treat such volume based on a single PC. Computer clusters can be usually deployed to improve performance and availability over that of a single computer. We plan to use of computer clusters for processing huge seismic data volume and auto-tracking horizon. 

Notations

  Quelques étapes les plus courantes sont résumées ci-dessous:Les principales étapes de lutilisant les étapes ci-dessus, plusieurs opérations de traitement du signa l sont nécessaires. Par exemple, l'échantillonnage des données, la récupération d'amplitude, la correction, la corrélation croisée, l'auto-corrélation, le filtrage, la transformée de Fourier, la transformée de Fourier discrète, la transformée Z, la convolution / déconvolution etc. Les données sismiques fournissent un outil le plus important pour les géoscientifiques à faire l'interprétation structurale. Néanmoins, non seulement ils contiennent des informations très vi utiles pour l'interprétation structurale, mais ils contiennent ainsi des bruits aléatoires inutiles.

  densité de fracturation et l'azimut de fracturation, et la présence d'hydrocarbures. Dans le mode de reconnaissance, les attributs sismiques nous aident à identifier rapidement les caractéristiques structurelles et les environnements de dépôt. Dans le mode de caractérisation des réservoirs, des attributs sismiques sont étalonnés par rapport aux données réelles et simulées du forage pour identifier les accumulations d'hydrocarbures et la compartimentation du réservoir. Lors des dernières années, beaucoup d'attentions ont été accordées à la prédiction des propriétés réservoirs et à l'extraction d'attributs sismiques pour rehausser la valeur de l'interprétation sismique. Actuellement, les interprétations sismiques restent basées sur une utilisation intégrée des profils sismiques, tel que l'utilisation en ligne (Inline), en ligne transversale (Crossline), l'utilisation des tranches de temps (Time Slice), et les attributs des horizons. Le défi vii aujourd'hui consiste à utiliser pleinement toutes les informations contenues dans les données sismiques. Pour cela, l'interpréteur doit combiner les connaissances dans les disciplines complexes telles que la géologie et la géophysique. Ce n'est pas une tâche facile, et assez souvent, l'absence d'une bonne compréhension géologique conduit le géophysicien à interpréter d'une façon erronée les objets géologiques. De même, le géologue peut facilement interpréter d'une façon erronée les caractéristiques sismiques.

  La dérivation d'invariants pour les moments orthogonaux est généralement compliquée. Dans cette thèse, la dérivation d'invariants de moments de Gauss-Hermite est basée sur les propriétés des polynômes de Gauss-Hermite. Plus précisément, les invariants en translation sont construits avec les moments centraux des moments de Gauss-Hermite, dont on peut facilement prouver qu'ils ont une invariance en translation; les invariants en rotation, dérivent quant à eux d'une propriété des polynômes d'Hermite, ce qui indique que le produit de deux polynômes d'Hermite a une forme cohérente et similaire à celle de monômes. Une conclusion importante peut alors être émise: les invariants en rotation des moments de Gauss-Hermite ont une forme identique à celle des moments géométriques. Sans aucun doute, la combinaison de ces deux types d'invariants va générer un invariant de moment qui soit indépendant aussi bien de la translation que de la rotation. Quelques expérimentations visant à évaluer le potentiel de l'approche en termes de représentation et de classification d'images sont montrées. Les résultats confirment la supériorité des invariants des moments de Gauss-Hermite. -Applications des moments de Gauss-Hermite à l'analyse d'image et à l'analyse d'images sismiques : xiii Nous proposons une application de l'estimation de la cohérence avec les moments de Gauss-Hermite dans l'espace spectral. L'algorithme présenté estime la cohérence au sein d'une petite fenêtre locale dans domaine de Fourier utilisant les moments du premier ordre et du second ordre. D'après les résultats, il est constaté que la taille de la fenêtre et la valeur de sont importants dans la méthode d'estimation de la cohérence par les moments de Gauss-Hermite spectral. Plus la taille de fenêtre est grande, mieux les caractéristiques globales sont détectées. Nous avons également présenté les moments invariants de Gauss-Hermite dans la correspondance de modèles. Dans le calcul des moments de Gauss-Hermite, σ (paramètre d'échelle) est paramètre très important. Etant donné un σ (paramètre d'échelle), nous avons pu obtenir un ensemble d'invariants. Par conséquent, nous définissons des ensembles différents des invariants avec de différent paramètre d'échelle et procédons à une analyse multi échelle qui nous permet d'obtenir plus d'informations sur l'image et mieux caractériser l'image.
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 21 The three nodes in the chain, coupled by a double loop, are seismic acquisition, structural imaging, and reservoir characterization. Insight is provided into the interactions between these nodes: the arrows in indicate the interactions that take place or that should take place between the different nodes. The arrows that point from left to right indicate 'influence on', and the arrows pointing from right to left indicate 'imposing requirements on'.
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 21 Figure 2.1 The seismic value chain.

  Figure 2.2 and Figure 2.3 are two typical seismic sample images. They are acquired in a certain time by an acoustic wave.

Figure 2

 2 Figure 2.2 2D seismic image.

Figure 2 . 3

 23 Figure 2.3 3D seismic image.
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 24 Figure 2.4 Velocity of seismic waves in the Earth versus depth.
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 25 Figure 2.5 Propagation principle of seismic wave.
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 26 Figure 2.6 Snell's law.
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 27 Figure 2.7 Schematic representation of seismic data acquisition principle.

  (Figure 2.8 A), a shot is fired and reflections from the boundaries of various Lithological units within the subsurface are recorded at a number of fixed receiver stations on the surface. Geophones are used as recorders on land. Generally they work by measuring the motion of a magnet relative to a coil attached to a base implanted in the Earth. This motion produces a voltage which is proportional to the movement of the surface. These geophone stations are usually in-line although the shot source may not be. When the source is in-line with the receivers (at either end of the receiver line or positioned in the middle of the receiver line) a two-dimensional profile through the earth is generated. If the source moves around the receiver line causing reflections to be recorded form points out of the plane of the in line profile, then a three-dimensional volume is possible (the third dimension being distance, orthogonal to the in-line receiver-line). The majority of land survey effort is expended in moving the line equipment along and across farm field or through populated communities. Hence, land operations often are conducted only during daylight thus making it a slow process.
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 28 Figure 2.8 Seismic data acquisition.

  close to each other in order to illuminate the subsurface significantly. Their arrangement is guided by geometric and signal processing rules. The typical distance between the sources is 50-100 meters (m) and the distances between sources and recorders are within the range of 25 m. Figure2.9 shows an example of seismic acquisition geometry. In this figure, the recorders are put in stations with separation of 3 m. The distance of the first recorder from a shot source is 15 m. Additional acquisition geometries are discussed in[START_REF] Cordsen | Planning Land 3-D Seismic Surveys[END_REF].
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 29 Figure 2.9 An example of 3D seismic acquisition geometry. The group of recorders (stations) are placed in interval distances of 25 meters. Within the station, recorders are placed at distance of 3 meters from each other. The sources are aligned on a cable at distances of 100 meters apart. Seismic recordings store geophone's impulses as functions of time and positions of the source and the recorder.Figure 2.10 shows reflections at different layers and their corresponding

  Figure 2.10 shows reflections at different layers and their corresponding recorded reflection section. Each line of the reflection section is called a seismic trace and varying seismic signal recorded by a single receiver. The x-coordinate measures the distances of the receivers from the source. Time increases in units of milliseconds downwards. The horizontal coordinate for each line represents the amplitude of the recorded signal (voltage, in principle). The amplitude provides the change in velocity perturbation at the reflector while moving from one media to another. It oscillates indicating changes from a lower acoustic impendence to higher and vice versa.
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 2 Figure 2.10 Seismic reflections and record. A. Seismic reflections at different layers. B. Recorded seismic reflection section. The time-series, or seismogram, recorded by each receiver group is called a trace. The set of traces recorded by all the receivers for a given source is called a common source gather. Seismic traces are sampled in interval time. The sampling interval affects the quality and size of the resulting data. A lower sampling interval results in a higher resolution, but also in a larger data size. A typical sampling interval is 2 milliseconds for the duration of 6 seconds. A seismic survey may have 210 records, each record having 256 traces, resulting in about 230 time samples.
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 2 Figure 2.11 Seismic data processing chain.

--

  Feature extraction and recognition. Image enhancement improves the quality of images for human viewing. Removing blurring and noise, increasing contrast, and revealing details are examples of enhancement operations.

  Figure 2.12 shows an example image of a seismic crosssection. A non-specialist can easily identify three texture areas in this imafge: parallel, chaotic and mixed. An expert may identify several structures of interest in the image, such as a mound indicating a carbonate built-up, horizon terminations indicating the location of a prehistoric coastline, faults, etc.

Figure 2 .

 2 Figure 2.12 A seismic section showing three different textures

Figure 2 .

 2 Figure 2.14 Historical development of the attributes.

  used as direct hydrocarbon indicators. The evolution of seismic attributes is closely linked to advances in computer technology. The introduction of colour printers in the early 1970s allowed colour displays of reflection strength, frequency, phase, and interval velocity to be overlain routinely on black-and-white seismic records. Interpretation workstations in the 1980s provided interpreters with the ability to interact quickly with data to change scales and colors and to easily integrate seismic traces with other information such as well logs. Today, very powerful computer workstations capable of integrating large volumes of diverse data and calculating numerous seismic attributes are a routine tool used by seismic interpreters seeking geologic and reservoir engineering information from seismic data. Historical development of seismic attribute is shown in Figure2.14[START_REF] Chopra | Seismic attributes ---A historical perspective[END_REF].

Figure 2 .

 2 Figure 2.15 Basic flow chart of seismic pattern recognition (multi-attribute analysis).

  Bright spots, possible gas accumulation, -Sequence boundaries, -Thin-bed tuning effects -Major changes in depositional environment, -Spatial correlation to porosity and other lithologic variations, -Indicates the group, rather than phase component of the seismic wave propagation.
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 2 Figure 2.16 Coherence of inline 350 section.

Figure 2 .

 2 Figure 2.17 Average energy of inline 350 section.

Figure 2 .

 2 Figure 2.18 Instantaneous phase of inline 350 section.

Figure 2 .

 2 Figure 2.19 Instantaneous frequency of inline 350 section.

  moments have been proposed initially in the theory of statistics. The different orders of moment indicate the different statistical features of a piece-wise continuous function. So, as far as their definitions are concerned, the moments are the representations of the global information of the related function. They are corresponding to the whole information rather than the local or the fixed parts of the function. Here, our discussion is conducted when the object is limited to 2D images. For a 2D image f(x,y) where the function value denotes the intensity at the pixel location (x,y), we assume is the image region of the x-y plane, or the definition do main of image function f(x,y).

  definition domain of f(x,y). A set of moments up to order N consists of all moments m

  Legendre moment is a set of typical continuous orthogonal moments. Since firstly proposed by[START_REF] Teague | Image analysis via the general theory of moments[END_REF] kind of moments has demonstrated several superiorities over the traditional geometric moments. It is shown that image reconstruction from Legendre moments is much easier than from geometric moments. The kernels of Legendre moments are products of Legendre polynomials defined along rectangular image coordinate axes inside a square.Legendre moment of order (p+q) is defined as[START_REF] Mukundan | Moment functions in image analysis Theory and applications[END_REF]:

  normalize the polynomials by the magnitude K p and still normalize (p,K) by such factor to achieve the orthonormal polynomials as where (p, K) is a suitable constant which is independent of x. With the introduction of (p, K) the corresponding changes are necessary in weight function Compared with discrete Tchebichef moments, another kind of discrete orthogonal moments named Krawtchouk moments are widely used. The definition of the p order classical Krawtchouk polynomials is defined as x, n=0,1,2,…,K. pR(0,1). 2 F 1 is hypergeometric function and (a) k Krawtchouk polynomials form a complete set of discrete basis functions with weight

  to Equation(3.22), Equation(3.26) is then orthonormal and it is substantially a Hermite polynomial modulated by a Gaussian function with the variance equal to 1.0. For a general case, Gaussian-Hermite polynomial with scale parameter has the

  3.29), it is obvious that Gaussian-Hermite polynomial also satisfies

  in order to choose easily a comparable standard variation value σ for the Gaussian envelope, the image coordinates would be normalized to be within [ ]

  moments matrix (SGMM) form as:

  between 0 and 1, meanwhile indicates how much the local data resembles a linear structure. The more isotropic a structure becomes ( 1 coh C → ), the more difficult it becomes to estimate the orientation of that structure. We use C coh as the coherency measure of the orientation estimation. Since a linear structure can also be viewed of as an anisotropic structure, C coh

Figure 3 .

 3 3 (a) and (d) are added zero mean Gaussian white noise with variance 0.01.

Figure 3 .

 3 4 (a) and (d) are added zero mean Gaussian white noise with variance 0.02. In all the cases we calculate local coherency with window 17 by 17. The σ is selected 0.1468.
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 31 Figure 3.1 Coherency estimation Results for first synthesized block.(a) Original image ; (b) local window 9*9 and (c) local window 17*17 are computed the coherency based on geometric moments; (d) local window 9*9 and (e) local window 17*17 are computed the coherency based on Gaussian-Hermite moments.

Figure 3 . 2 Figure 3 . 3

 3233 Figure 3.2 Coherency estimation Results for second synthesized block.(a) Original image , (b) local window 9*9 and (c) local window 17*17 are computed the coherency based on geometric moments ; (d) local window 9*9 and (e) local window 17*17 are computed the coherency based on Gaussian-Hermite moments.

  (a) and (d) are added noise, (b) and (e) are Coherency based on geometric moments computing, (c) and (f) is Coherency based on Gaussian-Hermite moments computing.

Figure 3 . 4

 34 Figure 3.4 Results for synthesized block with zero mean Gaussian white noise with variance 0.02.

  (a) and (d) are added noise , (b) and (e) are Coherency based on geometric moments computing, (c) and (f) is Coherency based on Gaussian-Hermite moments computing.

  3) and equation(3.35), we could define the central Gaussian-Hermite moments of I(i,j)

  noted here that the image intensity function remains unchanged during image rotation, 2D Gaussian function and integral element also. From (12) and (13), the relation between and can be derived. Here we give them only for the 3 first orders:

  do not change whatever the basis function of moments. Therefore, if ax = -and , by =the rotation and translation Gaussian-Hermite moment invariants could be easily obtained by use of the central Gaussian-Hermite moments pq η instead of pq η in (3.46) and (3.47).

Figure 3 .

 3 Figure 3.5 shows the 8 versions of image Mirage2000 rotated by different angles and translated in different positions in the background. Their 11 invariants are computed with different scale parameter respectively and recorded in Table 3.3. The percentage spread from the corresponding means of invariants /| | is used to evaluate the numerical stability. Here, and represent respectively the standard deviation and the mean of the computed values of an invariant for different versions of the image. Small value of /| | shows the better stability of invariants; on the contrary, great value indicates the increment of instability. In this example all deviations are less than 5%, the Gaussian-Hermite moment invariants show a good stability.

  and K=3. The pattern will be identified as a certain fight plane in the reference if their WED is the minimum. The different scale parameters (

Figure 3 . 5

 35 Figure 3.5 The different rotation versions of image Mirage-2000

  to judge anisotropy or isotropy of the neighbourhood. if C an is great which indicates the higher degree of anisotropy; on the other hand, if C an is little, which shows a linear texture of image and the orientation in the region trends to be the same.
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 39 Figure 3.9 Two original images for the SGMM experiments (a) a seismic image with obvious fault; (b) a seismic image with slight faults.

Figure 3 .

 3 Figure 3.10 The obvious fault detection for the seismic image. (a-b) are the results from GST; (c-d) are the results from SMM; (e-h) are the results from SGMM.

Figure 3 .

 3 Figure 3.11 The slight fault detection for the seismic image. (a-b) are the results from GST; (c-d) are the results from SMM; (e-h) are the results from SGMM.

Figure 3 .

 3 Figure 3.11 shows the result for Figure 3.9(b) which contains several faults; however, these faults are relatively slight so that it is difficult to detect them. The parameter setting is as the same as that of Figure 3.10. The figure shows generally lower qualified detection of these faults by three methods mentioned above. The main fault located around the center image crossing vertically can be successfully detected by both SMM and SGMM. The other faults, as can be seen from the figure are slightly stood out. Most of them are even discontinuous. However, generally speaking, among three methods, SGMM relatively perform better than other methods. This is supported by the (g) and (h) in the figure.

  invariants. Invariants of Gaussian-Hermite moments are discussed and constructed in this chapter. The translation invariants are constructed by the corresponding Gaussian-Hermite central moments accordingly. The rotation invariants are derived from a theorem which indicates that Hermite polynomials keep the similar linear relations to monomials when image coordinates are rotated. Based on this theorem the rotation invariants of Gaussian-Hermite moments are achieved and tested by related images. The combined invariants are finally introduced which are independent of both translation and rotation.

  cross-correlation of traces in the x direction, denoted by x and the cross-correlation of traces in the y direction, denoted by y . The C 1 algorithm normalizes these cross-correlations with respect to trace energies and then computes the maximum values for lags in the x and y directions. The coherency measure xy , is given by the square root of these maximum values, that is (1995) introduced the attribute of coherence in 1995. The coherence cube calculates localized waveform similarity in both inline and crossline directions and estimates of 3D seismic coherence are obtained. Small regions within the seismic volume containing stratigraphic anomalies such as channels have a different seismic character compared to the corresponding regions of neighboring traces. This attribute is given

Figure 4

 4 Figure 4.1 Dip azimuth layout

Figure 4 .

 4 2 (A) and (D) are clearer than (B). Because of dip scanning, (D) eliminates the invalid coherence values caused by structural dips. In cross-section Figure 4.3, there are two strong structural dips on the blue circled area of the vertical cross-section through the original seismic data volume (Figure 4.3 (A) ).As dip scanning is included in the corresponding algorithms of Figure 4.3 (B) and

Figure 4 . 3 (

 43 Figure 4.3 (C), the blue circled area has relatively larger coherence value. However, the algorithm used in Figure 4.3 (C) doesn't include dip scanning, thus the coherence value of the circled area decreases due to the structure dips.

  algorithm proposed in the paper is employed in the C 2 algorithm.

Figure 4 .Figure 4 . 3

 443 Figure 4.2 TimeSlice. (Time = 400ms, analysis window format is 3*3*5)

Gibson

  et al(2003) introduced a method has been presented to tackle the difficult and resource consuming task of fault detection in 3D seismic datasets. Based on a multi-stage approach, it first detects points of horizon discontinuity, and progressively groups these points into larger surfaces. The final surface representation is a combined parametric and residual field model, which allows for a highly flexible surface representation. Comparative results with manually labelled faults show promising results.[START_REF] Crawford | Automated extraction of fault surfaces from 3-D seismic prospecting data[END_REF] described an automated method of processing a fault enhanced 3D seismic volume to locate and interpret faults. The method includes processing of individual lateral slices of the 3D seismic volume wherein for each lateral slice, stripe artifacts are eliminated by adjusting pixel values to account for lines that are unduly bright or dim (and thus artifacts of processing). The linear features are enhanced by applying a modified Gumey-Vanderburg algorithm, such that the intensity value of each pixel is enhanced according to the extent to which the pixels reside in a line. Detection of lines in the enhanced lateral slice is then performed by summing pixel intensities over a window at varying directions, and associating, with a center pixel, an amplitude value corresponding to the maximum sum and a direction value associated with this sum. The amplitude and direction values are then used to trace lines in the data. The tracing of lines is performed by locating a maximum pixel and examining adjacent pixels of high amplitude in directions similar to the direction values of locally maximum amplitude values. The resulting vectors are then linked among lateral slices into surfaces that are representative of geologic faults.Neff et al (2000b) described another method related to a computer implemented method and apparatus for automatically picking faults in a recorded three-dimensional seismic trace data volume. The method employs test planes, which are mathematically inserted into the seismic data volume to approximate dip and azimuth of a potential fault plane surface. A large number of data points, which are selected points on the seismic traces, are defined within the seismic volume, such that each test plane positioned in the seismic volume contains data points corresponding to at least a significant portion of a trace. The method then determines a factor for each data point which is representative of the probability that the point resides on a fault plane. This probability is based on planar discontinuity and average amplitude difference between corresponding traces in adjacent parallel test planes. The method selects locations, in an x, y grid, of a strip of locations having high probability of residing on a fault surface. The strip of the selected locations is smoothed to a line and used to construct fault lineament displays in seismic sections or time slices. The fault lineaments are stored in a computer data file, and conventional, stratigraphically enhanced, or other seismic data enhanced for seismic attributes is merged with the fault lineament files to create consolidated displays to aid interpretation of the data volume.

(

  variance, chaos, edge detection) -Generate the Ant Track Cube and extract the fault patches -Validate and edit the fault patches -Create final fault interpretation model Goff et al (2003) described a method for extracting geologic faults from a 3D seismic attribute cube. The present method is directed to a semi-automated process for interpreting faults from a fault-enhanced 3D seismic attribute cube. The process operates in three dimensions on groups of time or horizontal slices throughout the 3D seismic cube. The faults in the input data are represented by either the high or the low end of the seismic attribute range. The general process for interpreting faults from a fault-enhanced 3D seismic attribute cube has five distinct processing steps. The first four steps are automatic. The last step is semiautomatic. The steps are as follows: -Calculate a minimum path value at each voxel of the input 3D seismic cube to enhance the local strength of the geologic faults and to determine the local azimuthally trend of any fault passing through that voxel; -Extract a fault network skeleton from the 3D seismic attribute cube by utilizing the minimum path value at each voxel together with the input seismic attribute 3D cube; -Flood fill individual fault networks, label them, and create a vector description of the fault network skeletons; -Subdivide the fault network skeletons into the smallest, non-intersecting, non-bifurcating patches that lie on only one geologic fault; -Correlate the individual fault patches into realistic representations of geologic faults.

Figure 4 . 4

 44 Figure 4.4 Workflow chart for the new fault detector.

  by combining measures of coherence computed from a few aligned, steered windows. Finally, fault detection consists of finding the maximum directional response and accumulating it into an attribute volume. The workflow of this approach is showed as Figure4.4.

  horizons. They are seen as bright or dark lines in gray-level reflection data and are central structures for interpretation. Other structures such as faults, channels, salt bodies, and gas chimneys are mainly identifiable by their interaction with horizons. Faults are generally subvertical fractures which have shifted horizons on either side; they are thus identified as discontinuity in horizons. Salt bodies are homogeneous units of salt. Due to the high seismic wave velocity of homogeneous salt, such structures can have strong reflections at their boundaries and low or no internal reflections. Areas void of horizons can thus indicate the presence of salt bodies having the property of shadowing the underlying seismic. Subsurface leakages of gas, called gas chimneys, can be indicated by the up-bulging of horizons around them and the fragmentation of the horizons in their path. A reservoir in a porous rock formation can be accurately pinpointed by identifying its upper and lower boundary. The different rock materials at the boundaries give rise to horizons in the reflection data. Therefore horizons can be central in delineating reservoirs. In addition to these descriptive properties of horizons, horizons are perhaps the most easily identifiable objects in the seismic volume and thus of the most important objects during interpretation. As opposed to most other seismic structures, horizons can directly be identified with image processing techniques such as ridge and valley detection. Strong reflection events visible in seismic images indicate boundaries between rock formations or strata while faults are discrete fractures across which there is measurable displacement of rock layering. Reflection seismic data images consist of adjacent time series indicating the arrival of artificially created sound waves reflected from interfaces between rock formations with differing physical properties. By analysing these traces, hypotheses about the underground structure can be developed which should merge into a consistent subsurface model. Interpretation of horizons and faults are the backbone of seismic data interpretation.
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 51 Figure 5.1 Manual interpretation
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 52 Figure 5.2 Lines interpretation before Interpolation interpretation

  used to find features in an unknown signal by comparing it to a known one. Cross-correlation is essentially the same process but instead of comparing a sequence with a time shifted version of itself, it compares two different sequences. The cross-correlation function (CCF) of two sequences x[n] and y[n], and the cross-covariance function are defined in terms of functions are second-order measures, with the CCF providing a statistical comparison of two sequences as a function of the time-shift between them. Cross-covariance is the same as the CCF, except that the mean values of the two sequences are removed. The CCF reflects the various frequency components held in common between the two sequences x[n] and y[n]. In addition, it also holds vital information about the relative phases of shared frequency components. Unfortunately, when the cross-correlation of two sequences is performed, sometimes the fine detail of the shared frequency components is hard to interpret.If a detailed spectral analysis of the signals is required then it is better to use the crossspectrum approach. However from a practical point of view there is one situation where the CCF is useful -namely when there are timing differences between two sequences. For example, suppose that x[n] and y[n] are identical white noise sequences which differ only in the time origin. Their CCF will then be zero for all values of m, except the one which corresponds to the timing difference. Now let us suppose that the two signals x[n] and y[n], are completely uncorrelated with each ot her. From Equation(5.1), it can be shown that their CCF is a product of the expectation of each signal, as illustrated below.

  . It is calculated by normalizing the cross-correlation of the two signals with the power of the two signals i.e. by setting m = 0, as illustrated in Equation(5.1). The cross-correlation coefficient lies between -1 and +1, with zero indicating no correlation between the two signals.
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 54 Figure 5.4, in which the tracking principle is well shown.
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 54 Figure 5.4 Matching process of seed.
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 55 Figure 5.5 Map views of a horizon auto-tracking interpretation based on cross-correlation.

Figure 5 .

 5 Figure 5.6 Map views of a horizon auto-tracking interpretation based on higher order statistics.

  5.6) s(n) is original signal, d represents the time delay. w 1 (n), w 2 (n) are the noise.

Figure 5 .

 5 6 shows an example of auto-tracking of horizon by HOS.
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 57 Figure 5.7 The conventional workflow chart of 2D horizon tracking.
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 58 Figure 5.8 The workflow chart of 2D horizon tracking using moments.

  vector of the pattern. Push the sample of left and right trace to seed queue. Select initial trace Compute the K feature vector of candidate by moments Compute Euclidean distance between pattern and candidate Selected candidate satisfied? Select candidate with lowest value. Record candidate. Push the candidate of left and right trace to seed queue.

For p = 0

 0 to M For q = 0 to N For r = 0 to L For x = 0 to N x -1 For y = 0 to N y -1 For z = 0 to N z -1 Mom(p, q, r) + = Img(x,y,z)* ˆ(,)H px * ˆ(, )For q = 0 to N For r = 0 to L For x = 0 to N x -1
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 5 Figure 5.10 The workflow chart of 3D horizon tracking using moments.
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 5 Figure 5.11 First real seismic image for 2D horizon tracking.
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 5 Figure 5.12 2D horizon tracking by correlation method in first seismic image.
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 5 Figure 5.13 2D Horizon tracking by higher order statistics in first seismic image.
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 5 Figure 5.14 2D Horizon tracking by geometrical moments in first seismic image.
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 5 Figure 5.15 2D Horizon tracking by Gaussian-Hermite moments in first seismic image.
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 5 Figure 5.16 Second real seismic image for 2D horizon tracking.
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 5 Figure 5.17 2D Horizon tracking by correlation method in second seismic image.

Figure 5 .

 5 Figure 5.18 2D Horizon tracking by higher order statistics in second seismic image.

Figure 5 .

 5 Figure 5.19 2D Horizon tracking by geometrical moments in second seismic image.
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 5 Figure 5.20 2D Horizon tracking by Gaussian-Hermite moments in second seismic image.
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 55 Figure 5.21 3D horizon tracking tasks.
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 5 Figure 5.23 Moment feature vectors around of 1 st seed for second horizon.

Figure 5 .

 5 Figure 5.24 3D horizon tracking with first seed.

Figure 5 .

 5 Figure 5.25 Map views of 3D horizon tracking with second seed.

Figure 5 .

 5 Figure 5.26 3D horizon tracking with second seed.

Figure 5 .Figure 5 .

 55 Figure 5.27 Map views of 3D horizon tracking with second seed.(a) Correlation method; (b) Higher order statistics method; (c) Geometric moments method; (d) Gaussian-Hermite moments method;(e) 3D Geometric moments method; (f) 3D Gaussian-Hermite moments method.
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 5 Figure 5.26 and Figure 5.27 show the tracking result of second horizon. Because there are much faults in this horizon. Tracking result is poor efficient at all of six methods. Result

  present a theoretical framework to derive translation and scale invariants for 3D Legendre moments, by using generates 3D Legendre invariants from the existing 3D geometric moment invariants and eliminates the displacement and scale factors from Legendre polynomials to generate translation and scale invariants.
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 5 Figure 5.28 Calculation feature vector two region using moments in a case.

Figure 5 .

 5 Figure 5.29 Calculation feature vector two region using moments in rotational case.

  4.2, we use local sub-volume with size 7*7*11. In this section, we will track the horizon under different scale. The experiment task is divided two parts: single scale and combining scale. In the single scale mode, we perform horizon tracking in real seismic data volume under local sub-volume with size 5*5*5. Next, we perform horizon auto-tracking in real seismic data volume under local sub-volume with another size 9*9*9.
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 55 Figure 5.32and Figure 5.33 show the result of scale sub-volume size 5*5*5. Figure 5.34 and Figure 5.35 show the result of scale sub-volume size 9*9*9. From Figure 5.30 to Figure 5.35,we notice that an appropriate scale can be efficiently performed over discontinuous areas.

Figure 5 .

 5 Figure 5.30 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 7*7*7.

Figure 5 .

 5 Figure 5.31 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 7*7*7.

Figure 5 .

 5 Figure 5.32 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 5*5*5.

Figure 5 .

 5 Figure 5.33 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 5*5*5.

Figure 5 .

 5 Figure 5.34 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 9*9*9.

Figure 5 .

 5 Figure 5.35 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 9*9*9.
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 5 Figure 5.36 3D horizon tracking based on Gaussian-Hermite moment invariants under combining scale.
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 5 Figure 5.37 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under combining scale.
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 5 38 illustrates three surfaces across a fault. In region A, surface H1 has two different reflection times. There is same phenomenon to surface H 2 in region B and surface H 3 in region C.
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 5 Figure 5.38 Some surfaces with multiple reflection times.
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 25 Figure 5.39 Tracking result of single reflection time.
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 5 Figure 5.40 The modified workflow chart of 3D horizon tracking by moments
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 5 Figure 5.41 A real horizon auto-tracking has some self overlaps.
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 5 Figure 5.42 The horizon auto-tracking by modified workflow.
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 6 Figure 6.1 3D shapes of seismic facies units.
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 62 Figure 6.2 Workflow for general seismic facies analysis.

  Windowing of 3D seismic traces along the interpreted horizon Choice of the number of classes, facies, or patterns that will be used by the algorithm Training and classification of the selected attributes using an appropriate statistical or neural network tool Construction and interpretation of the seismic facies maps and Validation using nonseismic data when they are available Selection of appropriate seismic attributes multiple variables and their classification as homogenous sets. The other main advantage of

  the number of groups, S k and S l are defined by equation (6.3), and d kl values smaller than unity represent separate groups, whereas values larger than unity represent groups that may overlap.A useful automatic seismic facies mapping tool has to combine information about shapes and textures within these shapes. Only a combination of shapes and textures enables a meaningful seismic facies analysis fulfilling the requirements of seismic stratigraphy. Mapping of seismic bodies has to be done on the basis of reflection terminations. As soon as a seismic data set is subdivided into different shapes, texture analysis within each of the shapes can be achieved.Statistical analyses have been applied to seismic data in order to characterize a seismic facies related to a geologic environment. The techniques which have been used are conventional or multidimensional statistics. Most of the previous works use multidimensional data analyses because the techniques take a large number of seismic parameters into account simultaneously.[START_REF] Conticini | Seismic facies quantitative analysis: New tool in stratigraphic interpretation[END_REF] carried out conventional statistical analyses (cross-plots, star diagrams) on attributes of the traces such as continuity, instantaneous frequency, and analytical signal modulus. His aim was to identify the different facies encountered in fluviatile deposits.[START_REF] Mathieu | Multivariate analysis used in the detection of stratigraphic anomalies from seismic data[END_REF] studied lateral variations in sand-shale ratio for a reservoir formation. They analyzed trace amplitudes by means of discriminant factor analyses and pointed out the possibility of grouping the traces (either synthetic seismograms computed from well data or real traces) with respect to the prevailing lithology.[START_REF] Hagen | The application of principal components analysis to seismic data sets[END_REF] studied real seismic traces at a reservoir level in order to emphasize lateral variations of the formation porosity. He took into account frequencies estimated at the reservoir level. A principal components analysis reduced the number of parameters used to describe each trace. Then the new parameters, the principal components, were used in a clustering algorithm to group traces that correspond to porosity areas.[START_REF] Khattri | A Study Of The Seismic Signatures Of Sedimentation Models Using Synthetic Seismograms[END_REF],[START_REF] Khattri | Seismic Discriminants Of Stratigraphy Derived From Monte Carlo Simulation Of Sedimentary Formations[END_REF] [START_REF] Sinvhal | Application of seismic reflection data to discriminate subsurface lithostratigraphy[END_REF] [START_REF] Sinvhal | Seismic indicators of stratigraphy[END_REF] studied real and synthetic traces simultaneously. They generated synthetic sedimentary sequences by means of first-order Markov chains or by Monte Carlo simulations. Only a few lithologies were used in the studies, i.e., binary sequences with sand and shale or shale and coal. The impulse response was computed and analyzed with variables estimated from the autocorrelation function and from the power spectrum. Conventional and multidimensional analysts (histograms, Kolmogorov-Smirnov tests, discriminant factor analyses) on the variables permitted trace classification with regard to the sedimentary sequence type. The study of real seismic data, in formations with lateral sand-shale ratio variation, corroborated the value of applying discriminant analyses to the computed variables.

  developed two techniques based on pattern recognition: one with and one without prior learning. Bois' techniques were tested on a reservoir formation in order to define facies limits. Bois computed, on the portion of each seismic trace at the level of the reservoir. the first three coefficients of an autoregressive adjustment of the traces. After defining a pseudo-distance based on these coefficients Bois applied clustering techniques. The process with prior learning calibrated seismic facies (traces) to a nearby well. If the studied traces were near the learning traces (as defined by the pseudo-distance), the seismic facies were classified with the corresponding calibrated facies.[START_REF] Matlock | Can seismic stratigraphy problems be solved using automated pattern analysis and recognition?[END_REF] characterized the rapid facies variations in a 150 ms thick reservoir formation. Parameters were related to the frequency characteristics of the traces and seismic traces classified by comparison to reference traces located near wells where reservoir facies were found. Multidimensional statistical techniques clearly defined the limits between the different erent facies on the two seismic lines studied.[START_REF] Dumay | Multivariate statistical analyses applied to seismic facies recognition[END_REF] described a methodology for automatic facies recognition. The methodology for automatic facies recognition used two types of multidimensional analyses: clustering techniques and factor analyses. The methodology based upon two steps. First is a learning step beginning with computation of seismic parameters for the learning traces.

  3, are formed by[START_REF] Veronez | Regional Mapping of the Geoid Using GNSS (GPS) Measurements and an Artificial Neural Network[END_REF]:-Input signals (x 1 ,x 2 and x m -A set o f weig hts (w ) or input information, which might come from the environment or from the activation of other neurons. k1 , w k2 , w km -Sum function ( ), which represents the summation of the input signals multiplied by their respective weights, constituting a linear combiner.
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 63 Figure 6.3 Structure of artificial neurons
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 64 Figure 6.4 Structure of multilayer artificial neurons.
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 6 Figure 6.12 and Figure 6.13.
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 67 Figure 6.7 The interpretation of horizon for facies analysis.
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 68 Figure 6.8 The map of horizon for facies analysis
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 6 Figure 6.10 The PCP graphic display.
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 6 Figure 6.11 Automatic classification of U-matrix.

  Figure 6.12 The result of seismic facies analysis.

Figure 6 . 4 Conclusion

 64 Figure 6.13 The map result of seismic facies analysis

Flynn ( 1972 )

 1972 presented four classifications of computer architectures defined are based upon the number of concurrent instruction (or control) and data streams available in the architecture: Single Instruction, Single Data stream (SISD); Single Instruction, Multiple Data streams (SIMD); Multiple Instruction, Single Data stream (MISD); Multiple Instruction, Multiple Data streams (MIMD).Visually, these four architectures are shown below where each "PU" is a processing unit. For many years, the microprocessor community has translated Moore's Law
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 71 Figure 7.1 Four classifications of computer architectures by Flynn .

Figure 7 .

 7 Figure 7.2 Dual-core processor architecture.Multi-core processors are widely used across many application domains including generalpurpose, embedded, network, digital signal processing (DSP), and graphics. The improvement
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 73 Figure 7.3 Single threaded model
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 74 Figure 7.4 Multiple threaded model

-

  Provide concurrency; Cost savings; -Use of non-local resources; -Overcoming memory constraints; -Limits to serial comput ing. There are several parallel programming models in common use: shared memory, threads, message passing, data parallel, and hybrid. Parallel programming models exist as an abstraction above hardware and memory architectures. Parallel programming techniques can benefit from multiple cores directly. Some existing parallel programming models such as Cilk++, OpenMP, OpenHMPP, FastFlow, Skandium, and MPI can be used on multi-core platforms. Intel introduced a new abstraction for C++ parallelism called TBB. Other research efforts include the Codeplay Sieve System, Cray's Chapel, Sun's Fortress, and IBM's X10.

Figure 7 . 5

 75 Figure 7.5 Interaction among Experiment, Theory and Computation

Figure 7 . 6

 76 Figure 7.6 Representing 3D seismic data by grid.

  two classes: master thread and worker thread. The master thread initializes environment parameters, creates and destroys worker thread, blocks edge of seismic data for worker communication and synchronization, and collects results from worker thread. The worker thread receives information, performs its share of computation and send results to master.

Figure 7 .

 7 Figure 7.7 Representing 3D seismic data by multiple subvolume.
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 78 Figure 7.8 Parallelization using multi-threading.

  Receive information from master thread Receive block information from master thread Calculate block attribute Send results to master thread Wait command to destroy self from master thread Destroy itself Get the numbers of threads according to CPU cores Initialize the environment parameters Calculate information for worker threads Block information of the seismic data for each worker thread Create worker thread Send each worker thread information Send each worker thread block information Receive from each worker thread results Send destroy command to worker thread Compose results from each worker thread Destroy itself amount of work on identical machines.

Figure 7 . 9 -

 79 Figure 7.9 Parallelization using multi-threading with thread pool pattern.

  seed" to queue.Sort the queue in ascending order by value.Pop the first node to candidate.

  feature of GVI. 3D volume visualization is a method of seismic interpretation in which the geo-physicist directly evaluates the seismic reflectivity of the subsurface in 3D space by applying various levels of transparency to the data. The technology and philosophy of 3D-volume visualization differ dramatically from conventional line-based interpretation and includes new interpretation strategies and methodologies. There are two basic types of visualization: -Map-based (surface visualization) -Volume-based (volume visualization). Surface visualization results from mapping individual horizons and faults, and then reinterpreting them collectively therefore its position in the workflow follows surface mapping. Volume visualization is based on an entirely different attribute of the data transparency. It represents a major paradigm shift in 3D seismic data interpretation.
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 7 Figure 7.11 Surface visualization
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 7 Figure 7.13 Volume visualization and interpretation workflow.
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 7 Figure 7.14 Framework for the design of modular software system.

Figure 7 .

 7 Figure 7.16 A result of control alpha for volume visualization.

Figure 7 .

 7 Figure 7.17 Parameters adjustment of volume visualization.

Figure 7 .

 7 Figure 7.18 Another result of control alpha for volume visualization.

  Using the inertial tensor analogy several further parameters could be derived from the central moments of second order.-The main inertial axis could be derived by calculating the eigenvalues of the inertial tensor:
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 1 central moment of order (p, q,r) 3D p I 3D Rotation invariants of Gaussian-Hermite moment an C Confidence of anisotropy or isotropy; Cross-correlation based coherence algorithm;

  

  

  

  

  

  

  

  

  géométriques, les moments orthogonaux de Legendre et les moments de Zernike, les moments de Tchebichef discrets, et les moments de Krawtchouk. Nous présentons la définition des moments de Gauss-Hermite et quelques discussions sur leur base. L'implémentation discrète et le développement des invariants de ces moments sont détaillées. Au même temps, quelques applications utilisant les moments et les moments invariants de Gauss-Hermite sont exposées comme l'estimation de cohérence et la reconnaissance des formes. Dans le chapitre 4, nous comparons deux principaux algorithmes qui sont utilisés sur l'attribut de cohérence: la cohérence et la différenciation. La méthode de cohérence originale a été présentée par Bahorich et Farmer. Marfurt et al ont développé cette méthode. Le troisième algorithme est plus robuste au bruit avec une meilleure résolution, mais il sera très difficile de

Un aperçu sur les moments géométrique s ains i que sur les moments orthogonaux a été donné. Cet aperçu est abordé à travers quelques moments orthogonaux typiques aussi bien continus que discrets, xv dont les moments promouvoir à cause des calculs coûteux. Nous proposons une procédure de l'algorithme de cohérence de Dip Stepwise à Balayage basé sur la structure. Au chapitre 5, nous nous focalisons sur les aspects d'interprétation d'horizon sismique en 2D et en 3D. Nous présentons d'abord un bref aperçu de l'interprétation d'horizon. L'analyse de données sismiques pour l'étude du sous-sol est un travail long et difficile qui s'appuie sur l'expertise du géologue. Les interprétations manuelles sont coûteuses et subjectives. Cette tâche est heureusement facilitée par des techniques informatisées. En particulier, les méthodes de suivi automatique d'horizons sont d'une grande utilité pour l'interprétation structurale des données sismiques. Cependant, elles ont aujourd'hui encore de grandes difficultés à suivre parfaitement les horizons à travers un certain nombre de discontinuités, plus précisément à travers les failles, en raison de la prise en compte inadéquate d'informations locales très perturbées. Au cours des trois dernières décennies, un progrès considérable a été réalisé dans le domaine de la technique d'interprétation d'horizon. Les méthodes de l'interprétation d'horizon sismique incluent l'interprétation manuelle, la méthode d'interpolation, la méthode de suivi automatique, la méthode de suivi de voxel, et la tranche de surface. Selon les différents types de données sismiques, le suivi d'horizon peut être classé en suivi d'horizon 2D et en suivi d'horizon 3D. Dans ce chapitre, nous nous approchons de la méthode basée sur les moments géométrique s et les moments de Gauss-Hermite pour la tache du suivi d'horizon en 2D et en 3D. Les comparaisons sont faites entre la méthodologie de la corrélation, les statistiques d'ordre supérieur, et la méthode basée sur les moments en 2D et 3D. Nous avons également abordé la méthode basée sur les moments invariants de Gauss-Hermite pour l'horizon d'auto-suivi. Pendant ce temps, nous discutons l'analyse de multi-échelle basée sur les moments invariants de Gauss-Hermite pour l'horizon d'auto-suivi.

xvi Le chapitre 6 présente l'analyse de faciès sismiques par les moments de Gauss-Hermite. Il y a deux problèmes majeurs dans l'analyse de faciès sismiques: le premier problème est de déterminer lesquelles paramètres sismiques sont discriminants pour caractériser les faciès sismiques; le deuxième problème est de veiller qu'il y a une liaison entre les paramètres sismiques et les faciès géologiques qui est étudiés par l'interpréteur. Dans l'analyse de faciès sismiques, il y a trois grandes méthodes de travail: les méthodes supervisées (il y a eu au moins un puits), les non-supervisées (sans puits: où les attributs sismiques peuvent être d'une grande utilité), et les modélisations (on simule le puits). En fin de ce chapitre, les exemples suffisants de la méthode proposée de l'analyse de faciès avec les moments de Gauss-Hermite peuvent être également trouvés. Au chapitre 7, nous faisons attention à la technologie de traitement parallèle et à la technologie de visualisation. En comparant la taille de plusieurs dizaines de giga-octets des données sismiques, nous trouvons que la mémoire système et la mémoire de texture sur l'unité de traitement graphique restent maigres ressources. Avec la croissance de la taille du volume sismique, nous pouvons également constater la diminution rapide des performances du système d'application conventionnelle. Les processeurs multi-coeurs peuvent offrir une capacité aux développeurs de logiciels pour appliquer à un problème particulier. Pour utiliser cette nouvelle performance dans le domaine des données sismiques, nous calculons les attributs sismiques et suivons l'horizon avec la programmation parallèle. Donc, il y a eu un déclin spectaculaire de coûts de calcul des attributs, et l'interprétation sismique a été efficace.

La technologie de visualisation de volume et la technologie de l'interprétation de volume peuvent aider l'interpréteur à mieux comprendre des données sismiques 3D et à accélérer le processus d'interprétation sismique. Dans ce chapitre, nous discutons également l'algorithme de rendu de volume basé sur le moteur Open-Scene-Graph qui permet de mieux comprendre la structure de données sismiques.
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Table 1 .

 1 1 Main stages of seismic exploration.

	Acquisition	Static Correction
		Velocity Analysis
		NMO/DMO
	Processing	
		Stacking
		Migration
	Interpretation	Seismic data to subsurface geology

Table 2 .

 2 1 Methods for computing post-stack seismic attributes.

	Method	Representative Attributes
	complex trace	amplitude, phase, frequency, polarity, response phase, response frequency, dip, azimuth, spacing, parallelism
	time-frequency	dip, azimuth, average frequency, attenuation, spectral decomposition
	correlation/covariance	discontinuity, dip, azimuth, amplitude gradient
		average amplitude, average frequency, variance,
	interval	maximum, number of peaks, % above threshold, energy halftime, arc length, spectral components, waveform
	horizon	dip, azimuth, curvature
	miscellaneous	zero-crossing frequency, dominant frequencies, RMS amplitude, principal components, signal complexity

Table 3 .

 3 1 Pseudo code of Gaussian-Hermite polynomial computation Table 3.2 Pseudo code of Gaussian-Hermite moments computationWith the appearance of more powerful computers, it becomes practical to compute and use

	0 CK πσ 1 ( N = -	1) / 2

Table 3 .

 3 3 The Gaussian-Hermite moment invariants of figure

	Figure	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	/ ξµ
	I	3.0511E+01	3.0511E+01	3.0511E+01	3.0509E+01	3.0509E+01	3.0511E+01	3.0511E+01	3.0509E+01	0.00%
	I	2.3875E+00	2.3744E+00	2.3859E+00	2.3892E+00	2.3890E+00	2.3803E+00	2.3859E+00	2.3892E+00	0.22%
	I	-5.8788E+00								
	σ = 0.1									

Table 3 .

 3 

	4 Local structure conditions (GST)
	Local Structure	Eigenvalues
	constant intensity	λ 1 ≈λ 2

Table 4 .

 4 1 Pseudo code of dip scanning computation

Table 4 .

 4 2 Experimental results of coherence algorithms

		Coherence algorithm	Size of analysis window	Time (s)
	C 2	algorithm*	3*3*5	230
	C 2	algorithm*	5*5*5	335

  )

		tt ii t et D D PP ++ =		(4.13)
	Among the candidates sample	t P	1 + i	, the point with lowest value of	,1 tt i D + , is selected as
	potential candidate:				
			,1 ˆmin{ tt ii ,1 tt PD ++ =	}	(4.14)

Table 5 .

 5 

1. 

Computing the discrete version of Gaussian-Hermite polynomials and 2D

Table 5 .

 5 1 Pseudo code of 3D geometric moments computation.

Table 5

 5 

.2 Pseudo code of 3D Gaussian-Hermite moments computation.

  D e is the Euclidean distance, 1 , 2 are normalization coefficients, 2(1) designates the second order moments 110 , 101 , and 011 , and 2(2) designates the second order moments 200 ,

		tt i D	2) ii 12 0.5 0.5 ( , )+ ( , t t et e t D PP D P P µµ µµ α α ++ + =	).	(4.30)
	020 , and 002	. the second order moments are split in two groups because their stand
	deviations differ.			
	Among the candidates	t P	1 + i	, the point with lower value of	,1 tt i D + , is selected as potential
	candidate:				
			,1 ˆmin{ tt ii ,1 tt PD ++ = ≤≤	} 1 i	K	(4.31)

where

Table 5 .

 5 3 Normalization coefficients of moments for Euclidean distance.

			First horizon		1 st	seed for second horizon
	Sample	3D Geometric moments	3D Gaussian-Hermite moments	3D Geometric moments	3D Gaussian-Hermite moments
		2(1)	2(2)	2(1)	2(2)	2(1)	2(2)	2(1)	2(2)

Table 5 .

 5 4 Computation result of 3D horizon tracking with first seed.

	Method	Samples matched	Time(s)
	Cross-correlation	36240	6.475
	Higher order statistics	36412	6.803
	1D Geometric moments	34877	12.796
	1D Gaussian-Hermite moments	35861	61.719
	3D Geometric moments	35990	89.219
	3D Gaussian-Hermite moments	37962	121.171

  . Parallel processing is the method of breaking large problems down into smaller constituent components, tasks or calculations that are solvable in parallel. In computers, parallel processing is the processing of program instructions by dividing them among multiple processors with the objective of running a program in less time. In the earliest computers,

		Input	
		Messages	
		Message Reader	
		Program	
		Messages Pool	
	Message	Message	Message
	Processor	Processor	Processor
		Persistent	
		Store	

Table 7 .

 7 1 Pseudo code of master thread for attribute computation. Table 7.2 Pseudo code of worker thread for attribute computation.

Figure 3.7 Weighted Euclidean distances with different scale parameters

Model real processes, suggest experiments, analyse data, control apparatus Provide equations, interpret results. Accurate calculation, large-scale calculations, suggest theory.

Remerciements

wide range of other stratigraphic features [START_REF] Chopra | Integration of coherence and volumetric curvature images[END_REF]. the eigenvalues the GST represent the gradient energies of a geometrically ordered set of traces. This means that the reflector continuity is measured with the correlation between traces by the C 3 4.1.2 Difference method method, while the GST method uses the gradient energy in the lateral direction as a measurement for continuity.

The difference method is a simpler technique which subtracts seismic signals (signal A on the target trace and signal B on an adjacent trace) and is given by:

where d  is the difference at the center sample of the window on the target trace [START_REF] Luo | Edge detection and stratigraphic analysis using 3D seismic data[END_REF].

In version of the differencing algorithm [START_REF] Carter | Fault imaging of Hibernia 3-D seismic data using edgedetection and coherency measures[END_REF] average the absolute differences of a grid point and its neighbours. The differencing method is somewhat similar to the use of second derivative computations that are used to enhance high wave number variations in data.

Consider the wavefield at some particular time slice and at some specific map location at grid (i, j). Denote this wavefield value at some given time by u i,j . It can be shown that this second derivative value is closely related to a variation of the differencing algorithm. An average of absolute differences with surrounding traces in the differencing algorithm would consider:

By comparing the previous two equations, the differencing expression for the second derivative map would be equivalent to the expression for the average absolute differences, d ij , if all the quantities within the absolute value signs of d ij were positive. Therefore, differencing and second derivative maps have a somewhat similar appearance. Also, both the differencing and second derivative measures generally have a higher frequency content than the C 1 coherency algorithm since, in the Fourier domain, differentiation will multiply the Fourier transformed wavefield by spatial frequency while producing 90 degree phase shift.

Self-Organizing Maps

Kohonen defined the self-organizing process in its most fundamental in his early researches [START_REF] Kohonen | Automatic Formation of Topological Maps of Patterns in a Self-Organizing System[END_REF][START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF][START_REF] Kohonen | Self-organisation and associative memory[END_REF] . The Self-Organizing Map (SOM) is an unsupervised-learning (adaptive) algorithm in the neural-network category. It means that the representations of information are determined automatically from the metric relationships between the data items; no `teacher' is needed, i.e. no input -output relations are defined a priori. The SOM forms a nonlinear projection from a high-dimensional data manifold onto a regular, usually two-dimensional, grid. Thereby it carries out clustering, visualization and abstraction of the multidimensional input data.

The SOM algorithm computes the collection of the models so that it optimally describes the domain of (discrete or continuously distributed) observations. The models are automatically organized in a meaningful two-dimensional order so that similar models become closer to each other in the grid than the more dissimilar ones. In this sense the SOM is a similarity graph and a clustering diagram. Its computation is a non-parametric, recursive regression process. These three subprocesses, broadcasting of the input, selection of the winner and adaptation of the models in the spatial neighbourhood of the winner, seem to be sufficient, in the general case, to define a self-organization process that then results in the emergence of the topographically organized 'maps'. It has to be emphasized, however, that the mathematical theory is extremely difficult and its development is still in progress. Proofs exist only for the simplest cases by [START_REF] Cottrell | Theoretical aspects of the SOM Algorithm[END_REF].

The Self-Organizing Map is intended as a viable alternative to more traditional neural network architectures. Its analytical description has already been developed further in the technical than in the biological direction. A large number of scientific publications on the SOM have been written, The main application areas are:

statistical analysis at large, in particular data mining and knowledge discovery in databases;

analysis and control of industrial processes and machines;

new methods in telecommunications, especially optimization of telephone traffic and demodulation of digital signals;

medical and biological applications.

The SOM is closely related to vector quantization methods. It is currently one of the most important tools for the nonsupervised seismic facies analysis [START_REF] Coleou | Interpreter's Corner---Unsupervised seismic facies classification: A review and comparison of techniques and implementation[END_REF]. To obtain a more quantitative clustering of data properties, SOM groups could be visualized using the U-matrix and chosen manually. However, the manual selection of the clusters could be tedious and imprecise. Agglomerative, or partitive, SOM clustering or U-matrix segmentation using image processing algorithms [START_REF] Costa | Cluster analysis using self-organizing maps and image processing techniques[END_REF] provides an automated means of clustering. [START_REF] Matos | Unsupervised seismic facies analysis using wavelet transform and self-organizing maps[END_REF] use a K-means partitive clustering algorithm. In contrast to conventional K-means, they cluster the prototype vectors instead of the original data [START_REF] Vesanto | Clustering of the self-organizing map[END_REF]. In this manner, large data sets formed by the SOM prototype vectors can be indirectly grouped. The proposed method not only provides a better understanding about the group formations, but it is also computationally efficient (Vesanto et Windowing of 3D seismic traces along the interpreted horizon Classification of each seismic attribute vectors to the closest prototype vector and, thus, to each seismic facies Generation of the SOM with a larger number of prototype vectors than the expected number of seismic facies Estimation of the number of seismic facies based on the DBI and SOM U-matrix visualization

Clustering and labeling of the SOM prototype vectors using the K-means partitive algorithm

Selection of appropriate seismic attributes

Construction and interpretation of the seismic facies maps information is generated, by using concepts of geomorphology, this procedure can be a quite powerful interpretation tool. To obtain a more quantitative clustering of data properties, SOM groups could be chosen manually or be visualized using visual tools. However, the manual selection of the clusters could be tedious and imprecise. The clustering output of SOM can be represented using three visual techniques:

-The first is the unified distance matrix, or U-matrix [START_REF] Ultsch | Knowledge Extraction from Self-Organizing Neural Networks[END_REF][START_REF] Ultsch | Kohonen's Self Organizing Feature Maps for Exploratory Data Analysis[END_REF]. In this display, the distances between the patterns are represented in a 2D hexagonal grid with gray shading. A cluster is an area of the SOM map represented by light shading, whereas borders between clusters appear as dark edges. Another visual component on the U-matrix display is the size of the dot in each node, representing the number of hits in that node. In the U-matrix image, the intensity of each pixel corresponds to the respective estimated distance. Therefore, the U-matrix not only shows the average distance between each element, it also shows the gradient between them.

-The second visual display is the multi-dimensional visualization of the patterns discovered with a parallel coordinate plot, PCP [START_REF] Inselberg | The plane with parallel coordinates[END_REF], using a nested-means scaling The algorithm proved to be highly efficient.

In this thesis, we have introduced Gaussian-Hermite moments. We made a profound study on invariant moments and 3D case about this kind of moments.

Because of their capabilities to extract inva riant global features, moments and functions of moments have been extensively applied in the field of image processing: image analysis and pattern recognition, with applications ranging from edge detection, image classification and segmentation, texture analysis, coherency estimation, invariant identification, target identification, object classification, image coding and reconstruction, scene analysis, image reconstruction, and 3D object analysis. In the thesis, we presented the definition of 3D orthogonal Gaussian-Hermite moments derived from orthogonal 2D Gaussian-Hermite moments and the general definition of 3D geometric moments. We have also derived 2D rotation and translation invariants from Gaussian-Hermite moments.

From the present study we have concluded that the moments approach, special Gaussian-Hermite moments approach, for seismic image analysis and seismic interpretation has many advantages over the conventional methods. Moments of images provide efficient local descriptors and have been used extensively in image analysis applications. Some diverse