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Résumé 

L'énergie est l'une des ressources naturelles les plus importantes dans les sociétés modernes. 

Plus de la moitié des besoins énergétiques dans le monde provient du pétrole et du gaz 

(Randen and Sønneland, 2005). Les demandes croissantes en matière de consommation 

d'énergie dans le monde entier et l'épuisement du pétrole et du gaz de grands réservoirs ont 

abouti à la nécessité d'explorer les gisements de pétrole plus petit et plus complexe. Il en 

résulte des exigences élevées pour les ressources en hydrocarbures et rend leur identification 

et l'extraction plus difficile. Le pétrole et le gaz naturel sont deux des ressources non 

renouvelables dans le monde, et ils sont les principales sources d'énergie au monde. En raison 

du niveau élevé de l'énergie stockée dans l'huile, cette source d'énergie est devenu et est 

actuellement l'un des principaux piliers de nos sociétés industrielles. En raison de leur 

importance, le pétrole et le gaz naturel ont un impact profond dans les économies du monde et 

la politique. Aujourd'hui, le pétrole et le gaz naturel fournissent à plus de 90% dans le monde 

des carburants destinés au transport. Ils sont aussi liés à plusieurs produits que nous utilisons 

dans notre vie quotidienne et les activités. 

Le pétrole est un combustible fossile liquide qui est formé des restes de microorganismes 

marins déposés dans les fonds marins. Après des millions d'années, les dépôts ont terminés 

dans les roches et les sédiments où le pétrole est emprisonné dans des petits espaces (Patel et 

al., 2008). Il peut être extrait part des plateformes de forage. Le pétrole est le combustible 

fossile le plus utilisé. Le gaz naturel est également un combustible fossile gazeux qui est 

polyvalent, abondant et relativement propre en comparaison du charbon et du pétrole. Comme 

le pétrole, il est formé par les restes de microorganismes marins. Il s'agit d'un mélange 

d'hydrocarbures trouvé naturellement sous forme gazeuse. C'est la deuxième source d'énergie 

la plus utilisée dans le monde après le pétrole et son usage se développe rapidement. Le gaz 

naturel est principalement constitué de méthane et peut être trouvé en association avec 
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d'autres combustibles fossiles comme dans les veines de charbon et les clathrates de méthane. 

Le gaz naturel est créé dans deux classes de mécanismes: la création biogénique et la création 

thermogénique (Rojey et al., 1997). Le pétrole produit et le gaz naturel vont migrer vers le 

haut et vont s'accumuler dans les structures réservoirs comme les anticlinaux ou des pièges 

failles. Le pétrole et le gaz naturel sont recherché par trouvant des signes de ces sédimentaires 

ou structures du réservoir. 

Dans la première section, nous décrivons notre motivation et notre problème plus en détail. 

Ensuite, dans la seconde section, nous résumons les contributions principales de notre travail. 

Enfin, nous donnons un aperçu pour le reste de cette thèse dans la dernière section. 

Motivation et description de la problèmatique  

Il existe quatre techniques de levés géophysiques qui sont couramment utilisés dans 

l'exploration du pétrole et du gaz (Ashcroft and Ashcroft, 2011):  

− le levé gravimétrique,  

− le levé aéromagnétique,  

− le levé électromagnétique,  

− le levé sismique. 

Le levé sismique est le programme pour cartographier la structure géologique par 

l'observation des ondes sismiques, notamment par la création des ondes sismiques en utilisant 

des sources artificielles et par l'observation du temps d'arrivée des ondes réfléchies à partir des 

contrastes d'impédance acoustique ou des réfractés par des membres à grande vitesse (Sheriff, 

1978). Le levé sismique a une longue histoire d'utilisation dans le domaine de l'exploration 

pétrolière. Il est un principal outil pour délimiter la structure du sous-sol et détecter la 

présence d'hydrocarbures. Grâce aux données sismiques recueillies avant le forage, on 

pourrait, ainsi, optimiser les lieux de luis en place des forages des échantillons des épaisses 

accumulations de till ou, plus particulièrement, les établir sur le versant des élévations de 

roche en place oriente dans la direction de l'écoulement glaciaire, afin de tirer le maximum de 

chaque sondage. Depuis le premier profile sismique réalisé sur la terre long de la côte, qui a 

été réalisé dans les années 1920 (Bakker, 2002). La méthode de réflexion sismique a joué un 

rôle important dans l'exploration des ressources énergétiques. La méthode sismique est une 

puissante technique de télédétection, on peut imager le sous-sol depuis quelques dizaines de 

mètres jusqu'à quelques dizaines de kilomètres au maximum. Le premier levé sismique 3D a 

été réalisé par Exxon à Friendswood près de Houston au Texas en 1967. Les premiers levés 
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sismiques sont coûteux à acquérir et à traiter. Mais accompagné de progrès technologique, le 

coût, le processus et le temps d'interprétation de sismique 3D baissent. Au début des années 

1980, plusieurs revues scientifiques ont publié un certain nombre d'articles concernant 

l'approche sismique 3D. Les levés sismiques 3D dans les autres zones littorales et de la terre 

sont également développés de plus en plus rapides. La technologie sismique 3D représente 

l'une des introductions technologiques les plus importantes dans les dernières décennies qui a 

permis d'améliorer les efficacités de la prospection de pétrole et de gaz significativement pour 

les compagnies pétrolière et gazière. 

L'exploration sismique peut être divisée en trois principales étapes (Yilmaz and Doherty, 

1987): i) l'acquisition de données (dans la terre et la mer), ii) le traitement (y compris le 

traitement du signal et le traitement de l'image), iii) l'interprétation (l'interprétation de 

structure, l'interprétation de faille, la classification de faciès sismiques, l'identification des 

hydrocarbures réservoirs, etc.). La méthode sismique commence avec l'acquisition qui 

consiste à collecter des données brutes directement à partir des récepteurs. Le but du 

traitement sismique est de traiter les données sismiques acquises dans une image qui peut être 

utilisée pour déduire la structure du sous-sol. Il existe un certain nombre d'étapes impliquées 

depuis l'acquisition de données sismiques jusqu'à l'interprétation de la structure du sous-sol. 

Quelques étapes les plus courantes sont résumées ci-dessous: 

Les principales étapes de l'exploration sismique 

Acquisition Correction statique 

Traitement  

Analyse de la vitesse 

NMO/DMO 

Stacking 

Migration 

Interprétation Les données sismiques à la 

géologique du sous-sol 

Pour travailler en utilisant les étapes ci-dessus, plusieurs opérations de traitement du signal 

sont nécessaires. Par exemple, l'échantillonnage des données, la récupération d'amplitude, la 

correction, la corrélation croisée, l'auto-corrélation, le filtrage, la transformée de Fourier, la 

transformée de Fourier discrète, la transformée Z, la convolution / déconvolution etc. Les 

données sismiques fournissent un outil le plus important pour les géoscientifiques à faire 

l'interprétation structurale. Néanmoins, non seulement ils contiennent des informations très 
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utiles pour l'interprétation structurale, mais ils contiennent ainsi des bruits aléatoires inutiles. 

Il est souhaitable de rehausser les structures et de réduire les bruits aléatoires. Mais, une seule 

donnée sismique ne permet pas de séparer le bruit à partir des caractéristiques sismiques 

réelles. Donc l'utilisation des cartes des attributs sismiques pour l'interprétation structurale 

détaillée a augmenté dans la dernière décennie. La présence de plus d'un levé sismique 

permettra à l'interpréteur d'accroître ses connaissances par les incertitudes dans l'interprétation 

structurale sismique détaillée. L'interprétation sismique exige également beaucoup de 

mathématiques, de la reconstruction des données, et de l'interprétation des données.  

Les attributs sismiques sont des mesures spécifiques de géométrie, de cinématique, de 

dynamique ou de caractéristique statistique dérivé des données sismiques. Donc, il représente 

un sous-ensemble d'information totale (Barnes, 2001). Ils nous aident à mieux de visualiser ou 

de quantifier les caractéristiques d'interprétation (Chopra and Marfurt, 2007). L'application 

des attributs sismiques pour la détection de faille, la détermination de la distribution de 

fractures, l'identification des caractéristiques stratigraphiques et l'interprétation des autres 

événements géologiques est utilisée de plus en plus aujourd'hui en géosciences. Les attributs 

sismiques peuvent être divisés en deux grandes catégories: les attributs qui nous aident à 

quantifier la composante morphologique des données sismiques et les attributs qui nous aident 

à quantifier la composante de réflectivité des données sismiques. Les attributs 

morphologiques permettent d'extraire des informations sur le DIP de réflecteur, l'azimut, la 

forme, et la cessation, qui peuvent, à leur tour, affecter les failles, les canaux, les fractures, les 

karstiques, et les accumulations des carbonates. Les attributs de réflectivité donnent des 

informations sur l'amplitude des réflecteurs, la forme d'onde, et la variation de l'angle 

d'illumination, qui peuvent, à leur tour, influer sur la lithologie, l'épaisseur de réservoir, la 

densité de fracturation et l'azimut de fracturation, et la présence d'hydrocarbures. Dans le 

mode de reconnaissance, les attributs sismiques nous aident à identifier rapidement les 

caractéristiques structurelles et les environnements de dépôt. Dans le mode de caractérisation 

des réservoirs, des attributs sismiques sont étalonnés par rapport aux données réelles et 

simulées du forage pour identifier les accumulations d'hydrocarbures et la compartimentation 

du réservoir. Lors des dernières années, beaucoup d'attentions ont été accordées à la 

prédiction des propriétés réservoirs et à l'extraction d'attributs sismiques pour rehausser la 

valeur de l'interprétation sismique. 

Actuellement, les interprétations sismiques restent basées sur une utilisation intégrée des 

profils sismiques, tel que l'utilisation en ligne (Inline), en ligne transversale (Crossline), 

l'utilisation des tranches de temps (Time Slice), et les attributs des horizons. Le défi 
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aujourd'hui consiste à utiliser pleinement toutes les informations contenues dans les données 

sismiques. Pour cela, l'interpréteur doit combiner les connaissances dans les disciplines 

complexes telles que la géologie et la géophysique. Ce n'est pas une tâche facile, et assez 

souvent, l'absence d'une bonne compréhension géologique conduit le géophysicien à 

interpréter d'une façon erronée les objets géologiques. De même, le géologue peut facilement 

interpréter d'une façon erronée les caractéristiques sismiques. 

L'interprétation sismique conventionnelle est un art qui exige des compétences et des 

expériences approfondies en géologie et en géophysique (Brown, 2004; Coleou et al., 

2003; Linari et al., 2003; Marsh et al., 2005). Ces dernières années, de nombreux aspects 

d’interprétation structurale des données sismiques ont été automatisés. Dorn et al (2010) ont 

introduit un nouveau flux de travail unique qui contient une combinaison de processus 

existants et de processus nouveaux, représentée pour l'interprétation assistée par ordinateur 

des systèmes de dépôt en volumes sismiques 3D. Ce flux de travail unique contient les étapes 

générales suivantes: la charge des donnees sismiques 3D, l'interprétation structurale, la 

transformation du domaine, le raffinement structurel optionnel, l'interprétation stratigraphique, 

l'inversement de la transformation du domaine, et la production de volumes stratigraphiques 

et d'organes stratigraphiques. Les étapes individuelles et les séries des étapes du flux de travail 

peuvent être appliqués récursivement au volume de donnée pour améliorer les résultats du 

processus général. 

Depuis que la première trace sismique a été rendue par l'ordinateur, l'interprétation 

automatique a été la panacée promise de la communauté géoscientifique. Après plusieurs 

années de développement, les développeurs ont encore du mal à proposer une méthodologie 

d'interprétation automatique raisonnable. Les horizons sismiques correspondent à des objets 

géologues stratifiés qui sont créés à travers un ensemble de processus sédimentaire complexe. 

La mesure de faille coupe et déplace des horizons. La reconstruction des structures de faille, 

dans leur espace 3D, est un défi majeur dans la géologie du sous-sol. 

Dans le domaine de l'exploration sismique du sous-sol, l'incertitude et le non-unicité de 

l'interprétation géologique sont deux des problèmes importants à cause de la complexité de la 

géologie du sous-sol et de la dimension limitée des données disponibles. Dans les affichages 

traditionnels en 2D, il y a une limite de nombre de lignes sismiques ou de cartes sismiques, 

mais la technologie de l'imagerie sismique 3D fournit une couverture continue volumétrique 

sismique de la zone du levé qui permet d'étudier la structure sismique, la stratigraphie et des 

réservoirs d'hydrocarbures à partir de perspective 3D. Les données sismiques 3D offrent une 
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possibilité unique pour présenter l'observation et l’interprétation sismique géologique dans 

une espace 3D. Cependant, la plupart des données sismiques 3D sont affichées et interprétées 

en une manière 2D, laissant l'avantage essentiel et la valeur potentielle des données sismiques 

3D non utilisé. Calcul numérique 3D à haut rendement, l'état-de-l'art visualisation de volume 

et les technologies d'interprétation ont joué des rôles importants en facilitant interprétation 

volume sismique 3D de manière interactive. 

Les images sismiques sont caractérisées par des textures spécifiques qui peuvent fournir des 

informations précieuses pour localiser les réservoirs de pétrole potentiels. La texture est 

souvent présentée comme une structure hiérarchique à deux niveaux: le premier concerne les 

primitives, briques à partir desquelles est construite la texture; le second niveau est relatif aux 

arrangements spatiaux des primitives. Un problème essentiel dans le domaine de l'analyse des 

formes est la reconnaissance des objets indépendamment de leurs positions, de leurs tailles et 

de leurs orientations. Identifier ou reconnaître un contenu informatif par le biais de 

l'interprétation d'images implique la mise en oeuvre de mécanismes complexes correspondant 

à de nombreuses modalités visuelles. Parmi l'ensemble de ces modalités, la texture est une des 

plus importantes. Pour l'homme, elle constitue une excitation, source de phénomènes cognitifs 

allant du simple saillance visuelle à ceux plus complexes comme la spatialisation. Les 

descripteurs caractéristiques basés sur les moments ont évolué pour devenir un puissant outil 

pour l'application en analyse d'image.  

Les moments peuvent être appliqués aux images binaires ou aux images en niveaux de gris, 

définies en 2D, en 3D et en dimension supérieure. Ils peuvent être appliqués aussi aux extraits 

de bords et de primitives par une étape prétraitement. Les moments et les fonctions moments 

ont été largement utilisées en analyse d'images pour reconnaissance des formes (Flusser and 

Suk, 1993; Hu, 1962) avec des applications allant de la détection des contours (Luo et al., 

1993), la classification et la segmentation d'image (Yokoya and Levine, 1989), l'analyse de 

texture (Tuceryan, 1994; Tuceryan and Jain, 1998), l'estimation de la cohérence (Li et al., 

2010a), l'identification des invariants (Li et al., 2011; Yang and Dai, 2011; Yang et al., 2011), 

la classification d'objets, le codage d'image (Teague, 1980; Teh and Chin, 1988), la 

reconstruction d'image (Liao and Pawlak, 1996; Yang and Dai, 2012), l'analyse de la scène 

(Jerome, 2009; Sadjadi and Hall, 1978), l'analyse d'objets 3D (Bronstein et al., 2005; Sadjadi 

and Hall, 1980). La description des images avec des moments signifie qu'on utilise les 

propriétés globales de l'image plutôt que ses propriétés locales. 

Les moments géométriques sont apparus les premiers et ont été très utilisés essentiellement 
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pour leur simplicité et leur interprétation géométrique explicite. Néanmoins, les moments 

géométriques ne sont pas orthogonaux, il est alors difficile de reconstruire une image à partir 

de ces moments. Teague (1980) a montré qu'une grande efficacité pouvait être atteinte lorsque 

l'image était analysée par les moments orthogonaux de Legendre et de Zernike. En outre, il a 

été prouvé que les moments de Zernike pouvaient capturer l'information d'une image avec une 

redondance minimale et qu'ils ont la propriété d'invariance en rotation. Puisque les moments 

de Legendre et de Zernike sont tous les deux définis dans le domaine continu, des 

transformations appropriées des coordonnées image sont nécessaires pour l'implémentation de 

ces moments dans le cas discret. Le calcul des moments de Legendre nécessitent de 

transformer les coordonnées image dans l'intervalle [-1, 1]. D'autre part, les polynômes de 

Zernike sont définis seulement sur le disque de rayon unité (Mukundan and Ramakrishnan, 

1998). De plus, l'erreur de discrétisation issue de l'approximation de l'intégral reste inévitable 

lors de leur implémentation, ce qui limite la précision des moments calculés (Liao and Pawlak, 

1996). Liao et Pawlak (1996) ont conduit une analyse théorique sur l'erreur de discrétisation 

des moments continus et ont proposé une approche limitant l'erreur en dessous d'un certain 

niveau selon la règle de Simpson. D'autres travaux de recherche visant à améliorer la 

précision des moments continus se sont focalisés sur les moments géométriques et les 

moments de Legendre (Hosny, 2007a, b). 

La reconnaissance de la forme d'objets dans une scène est facilement réalisée par des 

observations visuelles de l'homme, même si l'objet subit des transformations telles que la 

rotation, le changent d'échelle, la déformation, la vision en perspective etc. La reconnaissance 

invariante des formes est importante à l'homme pour une variété de tâches. Les moments 

invariants sont considérés comme des outils importants dans l'analyse d'images et la 

reconnaissance des formes. Au début des années 60 du siècle dernier, Hu (1962) a présenté 

pour la première fois ses sept fameux moments invariants géométriques. Comme ces 

invariants sont indépendants à la rotation, translation et facteur d'échelle, ils étaient 

rapidement utilisés comme descripteurs efficaces d'objets dans beaucoup d'applications. Par la 

suite, quelques nouveaux invariants de moments, toujours basés sur les moments 

géométriques, ont été développés et utilisés. Abu-Mostafa (1985) a proposé une méthode pour 

dériver des invariants de moments géométriques à partir de moments complexes et a analysé 

leurs propriétés en termes de redondance d'information et de sensibilité au bruit. De même, 

Reddi (1981) a fourni un contexte généralisé pour induire des invariants de type radial et 

angulaire. Un autre type de moments concerne les moments de Zernike à partir desquels des 

invariants en rotation peuvent être facilement dérivés, puisque les polynômes de Zernike sont 

orthogonaux à l'intérieur du disque de rayon unité et sont généralement définis en 
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coordonnées polaires. Les ensembles de type orthogonal et radial tels que les polynômes de 

Zernike ont une propriété spécifique: "forme-invariants" qui détermine directement 

l'invariance en rotation des moments correspondants (Bhatia and Wolf, 1954). Flusser (Flusser 

and Suk, 1993) et Reiss (Reiss, 1991) ont contribué de manière significative à la théorie des 

invariants de moments en corrigeant le théorème fondamental et en dérivant des invariants à 

la transformation affine générale. Malgré cela, un autre type important d'invariants appelé 

"invariant flou", qui est indépendant de la convolution, est aussi introduit à l'analyse d'images 

par le même groupe (Suk and Flusser, 2003). Les invariants flous apportent une contribution 

significative à l'analyse d'images, particulièrement les images de télédétection et aériennes. Il 

est à noter que tous les invariants de moments proposés par Flusser et ses collègues sont basés 

soit sur les moments géométriques ou les moments complexes. Certains travaux relatifs au 

développement d'invariants de moments à partir de moments orthogonaux sont apparus 

graduellement. Chong et al (2003) ont présenté les invariants en translation des moments de 

Zernike qui sont efficaces pour construire des invariants en rotation; et ils ont également 

proposés une méthode permettant de dériver les invariants en translation et en échelle en 

termes de moments de Legendre (Chong et al., 2004). Zhu et al (2007b) ont développés des 

invariants en translation et en échelle en utilisant les moments discrets de Tchebichef. 

Jusqu'ici, tous les moments invariants, qu'ils soient dérivés de moments géométriques, de 

Legendre, voire des moments discrets de Tchebichef, dérivent substantiellement de moments 

géométriques car les fonctions de base de ces moments sont des combinaisons linéaires de 

monômes. Par conséquent, certains invariants de moments peuvent être directement obtenus à 

partir d'invariants de moments géométriques. (Yap et al., 2003; Zhu et al., 2007c). 

Grâce au développement rapide de l'acquisition des données multi-dimensionnelles, il est 

possible de reconnaître directement des objets 3D. Maintenant, les modèles en 3D sont 

devenus de plus en plus populaire. Certaines applications, comme le suivi d'objet et la 

récupération de forme, nous demandent à réfléchir la manière de choix des descripteurs 

caractéristiques de formes 3D et la façon de mesure des similitudes entre les objets 3D. 

Sadjadi et Hall (1980) sont les pionniers du développement des moments invariants 

géométriques 3D à partir des moments 2D, ils ont construit une famille de trois moments 

invariants en utilisant un degré à l'ordre seconde. En utilisant la notion de moments 

complexes, Lo et Don (1989) ont construit une famille de douze moments invariants avec 

ordres à partir du premier degré jusqu'au troisième degré. Dans ces derniers travaux, des 

moments ont été utilisés principalement pour estimer les transformations 3D et leurs 

performances n'ont pas été évaluées pour les tâches de la classification. En outre, n'étant pas 

dérivés d'une famille de fonctions orthogonales, ces moments étaient soumis de la corrélation. 
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Reuze et al (1993) ont décrit une méthode basée sur les moments géométriques 3D pour le 

suivi 3D et la quantification des vaisseaux sanguins à partir de l'angiographie par résonance 

magnétique (ARM). Canterakis (1997) a étendu les moments de Zernike pour le cas 3D, mais 

leurs performances n'ont pas été mises à l'épreuve des moments. Werghi et Xiao (2002) ont 

proposé l'utilisation des coefficients de transformation par ondelettes (WTC). Sommer et al 

(2007) ont proposé une méthode pour comparer les sites de liaison sur les protéines. Ils 

utilisent moments invariants géométriques 3D comme des vecteurs caractéristiques pour la 

description de liaison. Xu et Li (2006a) ont généralisé les courbe des moments 2D dans 

l'espace euclidien 3D, et ont utilisé la méthode géométrique pour dériver les moments 

invariants courbe 3D aux différents ordres en vertu de transformation de similitude. Xu et Li 

(2006b) ont introduit des moments de surface qui peuvent être traité comme un nouveau type 

de descripteurs de forme de surfaces de forme libre et peuvent gérer la situation où la surface 

3D des objets ne sont pas clos. Mademlis et al (2006) ont proposé une nouvelle méthode pour 

la recherche et la récupération basé sur le contenu 3D. Ils ont introduit les moments pondérés 

de Krawtchout 3D pour l'analyse 3D efficace qui conviennent pour la recherche et 

l'application de récupération basée sur le contenu. En utilisant le déplacement et les facteurs 

de l'échelle de polynômes de Legendre pour générer des invariants de la traduction et de 

l'échelle, Ong et al (2007) ont présenté un cadre théorique pour dériver la translation des 

invariants et l'échelle des invariants pour les moments de Legendre 3D. 

Une autre série de moments orthogonaux, c'est les moments de Gauss-Hermite. L'analyse des 

images par les moments de Gauss-Hermite a été proposée par Shen il y a une décennie (Shen, 

1997). Parmi les premiers travaux, on peut distinguer ceux de Shen et Wu sur la détection 

d'objets en mouvement en utilisant des moments de Gauss-Hermite unidimensionnels (Shen et 

al., 2004; Wu and Shen, 2005; Wu et al., 2005), la reconnaissance d'iris (Ma et al., 2004) et la 

classification d'empreintes digitales (Wang and Dai, 2007) basées sur les moments de Gauss-

Hermite bidimensionnels. Cependant, ces applications n’utilisent qu’un filtrage dont le noyau 

est défini avec les fonctions de moments de Gauss-Hermite d'ordre inférieur. Il y a peu de 

recherche globale sur la capacité de représentation de l’image et de description de l’objet par 

les moments de Gauss-Hermite. 

En ce qui concerne les moments orthogonaux, trois aspects importants sont pris en compte 

dans notre étude. Le premier est le calcul ou la mise en œuvre discrète. Le second est la 

reconstruction d'images, à partir de laquelle nous pouvons évaluer la capacité de 

représentation d'images par les moments. Le dernier est le développement des moments 

invariants. C’était sur ces axes que nous travaillions et quelques résultats significatifs ont été 

présentés dans nos publications (Li et al., 2011; Yang and Dai, 2011, 2012; Yang et al., 2011).  
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Contributions  

Bien que la théorie du moment soit bien établie et appliquée largement dans un certain 

nombre de zones d'image numérique, elle reste relativement marginale en imagerie sismique. 

Nous avons appliqué avec succès les moments de Gauss-Hermite à l'analyse d'images 

sismiques. Avec la définition des moments de Gauss-Hermite 3D à partir du cas 2D, une 

nouvelle méthode d'interprétation sismique a été proposée dans la thèse. La recherche pour 

l'interprétation sismique basée sur les moments invariants de Gauss-Hermite a également été 

présentée dans la thèse. La thèse donne, ensuite, les contributions suivantes: 

− Définition des moments de Gauss-Hermite 3D et leur mise en œuvre discrète : 

Une définition des moments orthogonaux de Gauss-Hermite 3D est dérivée des moments 

orthogonaux de Gauss -Hermite 2D et de la définition générale des moments géométriques 

3D. Sur la base de cette définition, les caractéristiques de l'image 3D peuvent être facilement 

réalisées à partir des moments orthonormales de Gauss-Hermite 3D. La mise en œuvre 

discrète de ces moments est détaillée. 

− Dérivation d'invariants 2D/3D par rotation et translation à partir des moments de 

Gauss-Hermite : 

La dérivation d'invariants pour les moments orthogonaux est généralement compliquée. Dans 

cette thèse, la dérivation d'invariants de moments de Gauss-Hermite est basée sur les 

propriétés des polynômes de Gauss-Hermite. Plus précisément, les invariants en translation 

sont construits avec les moments centraux des moments de Gauss-Hermite, dont on peut 

facilement prouver qu'ils ont une invariance en translation; les invariants en rotation, dérivent 

quant à eux d'une propriété des polynômes d'Hermite, ce qui indique que le produit de deux 

polynômes d'Hermite a une forme cohérente et similaire à celle de monômes. Une conclusion 

importante peut alors être émise: les invariants en rotation des moments de Gauss-Hermite ont 

une forme identique à celle des moments géométriques. Sans aucun doute, la combinaison de 

ces deux types d'invariants va générer un invariant de moment qui soit indépendant aussi bien 

de la translation que de la rotation. Quelques expérimentations visant à évaluer le potentiel de 

l'approche en termes de représentation et de classification d'images sont montrées. Les 

résultats confirment la supériorité des invariants des moments de Gauss-Hermite. 

− Applications des moments de Gauss-Hermite à l'analyse d'image et à l'analyse 

d'images sismiques : 
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Nous proposons une application de l'estimation de la cohérence avec les moments de Gauss-

Hermite dans l'espace spectral. L'algorithme présenté estime la cohérence au sein d'une petite 

fenêtre locale dans domaine de Fourier utilisant les moments du premier ordre et du second 

ordre. D'après les résultats, il est constaté que la taille de la fenêtre et la valeur de ı sont 

importants dans la méthode d'estimation de la cohérence par les moments de Gauss-Hermite 

spectral. Plus la taille de fenêtre est grande, mieux les caractéristiques globales sont détectées. 

Nous avons également présenté les moments invariants de Gauss-Hermite dans la 

correspondance de modèles. Dans le calcul des moments de Gauss-Hermite, σ (paramètre 

d'échelle) est paramètre très important. Etant donné un σ (paramètre d'échelle), nous avons pu 

obtenir un ensemble d'invariants. Par conséquent, nous définissons des ensembles différents 

des invariants avec de différent paramètre d'échelle et procédons à une analyse multi échelle 

qui nous permet d'obtenir plus d'informations sur l'image et mieux caractériser l'image. 

− Estimation de la cohérence de Dip Stepwise à Balayage des données sismiques 3D : 

La technologie de cohérence est un outil efficace pour l'interprétation sismique. Il détecte la 

discontinuité de l'événement sismique par analyse des signaux sismiques dans les traces 

adjacentes, afin d'identifier les phénomènes géologiques comme les failles, les objets 

géologique complexes, les formations fluviatiles, etc. La cohérence peut aussi être utilisée 

pour définir les caractéristiques stratigraphiques. Le troisième algorithme est plus robuste au 

bruit avec une meilleure résolution, mais il sera difficile de promouvoir en raison de ses coûts 

énormes de calcul. Nous proposons la procédure de base de l'algorithme de cohérence de Dip 

Stepwise à Balayage basé sur la structure. 

− Horizon 3D d'auto-suivi basée sur les moments, les moments invariants, et l'analyse 

de multi échelle : 

Il est relativement facile à extraire les caractéristiques d'une région locale au sein des données sismiques 

3D à partir des moments géométriques 3D et de la nouvelle définition des moments de Gauss-Hermite 

3D. Guidés par la nécessité impérative d'un outil de suivi fiable basé sur caractéristique locale 3D et des 

résultats très intéressants de travaux effectués dans le passé sur la performance des moments en traitement 

d'image, les moments géométriques 3D et les moments de Gauss-Hermite 3D sont proposés pour le 

suivi automatique d'un horizon 3D. Une approche multi échelle basée sur les moments invariants de 

Gauss-Hermite 3D a également été présentée pour suivre l'horizon sismique. 

− Analyse de faciès sismiques en utilisant les moments de Gauss-Hermite 3D : 
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Pour un interpréteur sismique, l'analyse de faciès sismiques est une tâche monotone et 

fastidieuse car il reste encore à être fait manuellement par balayage des centaines de 

milliers de sections sismiques. Par conséquent, un processus est hautement nécessaire ce qui 

rend cette étape d'interprétation automatique. La description de la forme en 3D a évolué vers 

un domaine de recherche large au cours des dernières années. Les moments 3D permettent 

d'extraire des caractéristiques importantes de volume sismique. Une nouvelle méthode basée 

sur SOM, avec des techniques de visualisation de données Matrice U et le graphique PCP, en 

utilisant les moments de Gauss-Hermite 3D est présentée et utilisée pour l'analyse de 

faciès sismiques

Structuration de la thèse  

. 

Pour exposer nos travaux, nous avons organisé le manuscrit en la façon suivante:  

Le chapitre 1 introduit le sujet de la thèse. Dans la première section, nous décrivons notre 

motivation et notre problème plus en détail. Ensuite, dans la seconde section, nous résumons 

les contributions principales de notre travail. Enfin, nous donnons un aperçu pour le reste de 

cette thèse dans la dernière section. 

Le chapitre 2 donne un aperçu sur les images sismiques ainsi que sur les attributs sismiques. 

Deux aspects sont abordés sur les images sismiques: l'acquisition des données sismiques, le 

traitement de l'image sismique. Tout d'abord, on présente l'acquisition des données sismiques. 

L'objectif de l'acquisition des données sismiques est de proposer des outils qui peuvent mettre 

en évidence des profils croisés. On décrit plusieurs méthodes typiques de traitement d'image 

incluant le lissage structural, le filtrage directionnel et l'analyse de texture. Une partie de ces 

approches relèvent du domaine de la géophysique où le traitement du signal est utilisé à des 

fins de caractérisation de signaux classiquement utilisés en géosciences. L'autre partie des 

méthodes concerne des méthodes proposées par la communauté des traiteurs d'image pour la 

détection de contours. Dans la deuxième partie, nous présentons la description des attributs 

sismiques. Nous introduisons également quelques classifications des attributs sismiques en 

fonction de différents critères, tel que les relations entre les attributs sismiques, les 

caractéristiques de domaine des attributs, les caractéristiques de calcul, et les caractérisations 

des réservoirs. 

Le chapitre 3 présente l'analyse d'image sismique basée sur les moments. Un aperçu sur les 

moments géométriques ainsi que sur les moments orthogonaux a été donné. Cet aperçu est 

abordé à travers quelques moments orthogonaux typiques aussi bien continus que discrets, 
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dont les moments géométriques, les moments orthogonaux de Legendre et les moments de 

Zernike, les moments de Tchebichef discrets, et les moments de Krawtchouk. Nous 

présentons la définition des moments de Gauss-Hermite et quelques discussions sur leur base. 

L'implémentation discrète et le développement des invariants de ces moments sont détaillées. 

Au même temps, quelques applications utilisant les moments et les moments invariants de 

Gauss-Hermite sont exposées comme l'estimation de cohérence et la reconnaissance des 

formes. 

Dans le chapitre 4, nous comparons deux principaux algorithmes qui sont utilisés sur l'attribut 

de cohérence: la cohérence et la différenciation. La méthode de cohérence originale a été 

présentée par Bahorich et Farmer. Marfurt et al ont développé cette méthode. Le troisième 

algorithme est plus robuste au bruit avec une meilleure résolution, mais il sera très difficile de 

promouvoir à cause des calculs coûteux. Nous proposons une procédure de l'algorithme de 

cohérence de Dip Stepwise à Balayage basé sur la structure. 

Au chapitre 5, nous nous focalisons sur les aspects d'interprétation d'horizon sismique en 2D 

et en 3D. Nous présentons d'abord un bref aperçu de l'interprétation d'horizon. L'analyse de 

données sismiques pour l'étude du sous-sol est un travail long et difficile qui s'appuie sur 

l'expertise du géologue. Les interprétations manuelles sont coûteuses et subjectives. Cette 

tâche est heureusement facilitée par des techniques informatisées. En particulier, les méthodes 

de suivi automatique d'horizons sont d'une grande utilité pour l'interprétation structurale des 

données sismiques. Cependant, elles ont aujourd'hui encore de grandes difficultés à suivre 

parfaitement les horizons à travers un certain nombre de discontinuités, plus précisément à 

travers les failles, en raison de la prise en compte inadéquate d'informations locales très 

perturbées. Au cours des trois dernières décennies, un progrès considérable a été réalisé dans 

le domaine de la technique d'interprétation d'horizon. Les méthodes de l'interprétation 

d'horizon sismique incluent l'interprétation manuelle, la méthode d'interpolation, la méthode 

de suivi automatique, la méthode de suivi de voxel, et la tranche de surface. Selon les 

différents types de données sismiques, le suivi d'horizon peut être classé en suivi d'horizon 2D 

et en suivi d'horizon 3D. Dans ce chapitre, nous nous approchons de la méthode basée sur les 

moments géométriques et les moments de Gauss-Hermite pour la tache du suivi d'horizon en 

2D et en 3D. Les comparaisons sont faites entre la méthodologie de la corrélation, les 

statistiques d'ordre supérieur, et la méthode basée sur les moments en 2D et 3D. Nous avons 

également abordé la méthode basée sur les moments invariants de Gauss-Hermite pour 

l'horizon d'auto-suivi. Pendant ce temps, nous discutons l'analyse de multi-échelle basée sur 

les moments invariants de Gauss-Hermite pour l'horizon d'auto-suivi. 
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Le chapitre 6 présente l'analyse de faciès sismiques par les moments de Gauss-Hermite. Il y a 

deux problèmes majeurs dans l'analyse de faciès sismiques: le premier problème est de 

déterminer lesquelles paramètres sismiques sont discriminants pour caractériser les faciès 

sismiques; le deuxième problème est de veiller qu'il y a une liaison entre les paramètres 

sismiques et les faciès géologiques qui est étudiés par l'interpréteur. Dans l'analyse de faciès 

sismiques, il y a trois grandes méthodes de travail: les méthodes supervisées (il y a eu au 

moins un puits), les non-supervisées (sans puits: où les attributs sismiques peuvent être d'une 

grande utilité), et les modélisations (on simule le puits). En fin de ce chapitre, les exemples 

suffisants de la méthode proposée de l'analyse de faciès avec les moments de Gauss-Hermite 

peuvent être également trouvés. 

Au chapitre 7, nous faisons attention à la technologie de traitement parallèle et à la 

technologie de visualisation. En comparant la taille de plusieurs dizaines de giga-octets des 

données sismiques, nous trouvons que la mémoire système et la mémoire de texture sur l'unité 

de traitement graphique restent maigres ressources. Avec la croissance de la taille du volume 

sismique, nous pouvons également constater la diminution rapide des performances du 

système d'application conventionnelle. Les processeurs multi-cœurs peuvent offrir une 

capacité aux développeurs de logiciels pour appliquer à un problème particulier. Pour utiliser 

cette nouvelle performance dans le domaine des données sismiques, nous calculons les 

attributs sismiques et suivons l'horizon avec la programmation parallèle. Donc, il y a eu un 

déclin spectaculaire de coûts de calcul des attributs, et l'interprétation sismique a été efficace. 

La technologie de visualisation de volume et la technologie de l'interprétation de volume 

peuvent aider l'interpréteur à mieux comprendre des données sismiques 3D et à accélérer le 

processus d'interprétation sismique. Dans ce chapitre, nous discutons également l'algorithme 

de rendu de volume basé sur le moteur Open-Scene-Graph qui permet de mieux comprendre 

la structure de données sismiques. 

Finalement, le chapitre conclusion donne un bilan de cette thèse, propose des perspectives de 

travail sur l'interprétation sismique, et propose des perspectives de travail sur l'analyse des 

moments de Gauss-Hermite. 
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1 Introduction  

Energy is one of the most important natural resources in modern societies. Over half of the 

world energy needs come from oil and gas (Randen and Sønneland, 2005). Increasing 

demands in world-wide energy consumption and oil and gas depletion of large reservoirs have 

resulted in the need for exploring smaller and more complex oil reservoirs. This results in 

high demands for hydrocarbon resources and makes their identification and extraction 

economically valuable. Oil and natural gas are two of the non renewable energy resources in 

the world, and they are main sources of the world’s energy. Due to the high level of energy 

stored in oil, this energy source became and currently is one of the main pillars of our 

industrial societies. Because of their importance, Oil and natural gas have a deep impact in the 

world’s economies and politics. Today, oil and natural gas account for 90% of the world’s 

transportation fuels and are linked to many products that we use in our daily lives and 

activities.  

Oil is a fossil fuel, and is created when organic material is deposited and then buried, 

followed by the application of pressure and heat over a long period of time (Patel et al., 2008). 

Natural gas also is a fossil fuel in gaseous state. Natural gas is mostly made up of methane 

and can be found associated with other fossil fuels such as in coal beds and with methane 

clathrates; and it is created in two mechanisms: biogenic creation and thermogenic creation 

(Rojey et al., 1997) . The produced oil and natural gas will migrate upwards and accumulate 

in reservoir structures such as anticlines or fault traps. Oil and natural gas are searched for by 

looking for signs of these depositional or reservoir structures. 

In Section 1.1, we describe our motivation and problem in greater detail. Next, in Section 1.2, 

we summarize the main contributions. Finally, we give an outline for the rest of the 

dissertation in Section 1.3. 
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1.1 Motivation and problem description 

There are four geophysical survey techniques which are commonly used in the exploration for 

oil and gas: gravity survey, aeromagnetic survey, electromagnetic survey and seismic survey 

(Ashcroft and Ashcroft, 2011). Seismic survey is a program for mapping geological structure 

by observation of seismic wave, especially by creating seismic wave with artificial sources 

and observing the arrival time of the waves reflected from acoustic impedance contrasts or 

refracted through high velocity members (Sheriff, 1978). Seismic surveys have a long history 

of use in petroleum exploration and are the primary tool for delineating subsurface structure 

and detecting the presence of hydrocarbons prior to drilling. Since the first land seismic 

surveys along Gulf Coast, performed in the 1920’s (Bakker, 2002), the seismic reflection 

method has played an important role in the exploration of energy resource. The seismic 

method is a powerful remote sensing technique that can image the subsurface over depths 

from tens of meters to tens of kilometres. In 1967, the first 3D seismic survey was shot by 

Exxon over the Friendswood field near Houston in Texas (Robertson, 1989). Early surveys 

were expensive to acquire and process, but as the industry gained familiarity with the needed 

technologies, then costs and processing and interpretation times for 3D seismic came down. 

By the early 1980s, trade journals had a number of articles confirming the 3D seismic 

approach. Likewise, 3D seismic surveying in other offshore areal and on land is growing 

rapidly. 3D seismic technology represents one of the more important technology introductions 

over the past decades in that it has allowed oil and gas companies to dramatically improve 

their oil and gas finding rates. 

Seismic exploration can be divided into three main stages (Yilmaz and Doherty, 1987): data 

acquisition(both in land and in marine), processing (include signal processing and image 

processing), and interpretation (such as structure interpreting, fault interpreting, and seismic 

facies classification, hydrocarbons reservoirs identifying etc). The seismic method starts with 

the acquisition that consists of collecting raw data directly from the receivers. The purpose of 

seismic processing is to manipulate the acquired seismic data into an image that can be used 

to infer the subsurface structure. There are number of steps involved from seismic data 

acquisition to interpretation of subsurface structure. Some of the common steps are 

summarized below: 
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Table 1.1 Main stages of seismic exploration. 

Acquisition Static Correction 

Processing  

Velocity Analysis 

NMO/DMO 

Stacking 

Migration 

Interpretation Seismic data to subsurface geology 

In order to work with above stages, a lot of signal processing operations are needed to 

accomplish the job. Some of them are sampling data, amplitude recovery, correction, cross-

correlation, auto-correlation, filtering, Fourier transform, Discrete Fourier transform, Z-

transform, convolution/deconvolution, and f-k analysis etc. Seismic data provides the 

geoscientist with the most important tool for structural interpretation. However, Seismic data 

often contain both useful structural information and useless random noise. It is desirable to 

enhance the structures and reduce the random noise. Seismic data alone do not allow for 

separating noise from real features. The use of seismic attribute maps for detailed structural 

interpretation has gained increasing popularity in the last decade. The presence of more than 

one seismic survey will allow the interpreter to increase his knowledge on uncertainties 

related to detailed structural interpretation of seismic. Seismic interpretation also requires a 

lot of math and the careful construction and interpretation of data.  

Seismic attributes are specific measurements of geometric, kinematic, dynamic, or statistical 

features derived from seismic data. So it represents a subset of the total information(Barnes, 

2001). They help us better visualize or quantify features of interpretation interest (Chopra and 

Marfurt, 2007). Applying seismic attributes for fault detection, determination of fracture 

distribution, revealing stratigraphic features and interpretation of other geological events is a 

new technology which geoscientists use it overly nowadays. Seismic attributes can be divided 

into two broad categories: those that help us quantify the morphological component of 

seismic data and those that help us quantify the reflectivity component of seismic data. The 

morphological attributes extract information on reflector dip, azimuth, shape, and 

terminations, which can in turn be related to faults, channels, fractures, karst, and carbonate 

buildups. The reflectivity attributes extract information on reflector amplitude, waveform, and 
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variation with illumination angle, which can in turn be related to lithology, reservoir thickness, 

fracture density and azimuth, and the presence of hydrocarbons. In the reconnaissance mode, 

seismic attributes help us to rapidly identify structural features and depositional environments. 

In the reservoir characterization mode, seismic attributes are calibrated against real and 

simulated well data to identify hydrocarbon accumulations and reservoir 

compartmentalization. In the recent years, much attention has been given to the prediction of 

reservoir properties and to the extraction of seismic attributes to enhance the value of seismic 

interpretation. 

Nowadays, most thorough seismic interpretations still remain based on an integrated use of 

seismic inline, cross-line, time slice, random line and horizon attributes. The challenge is to 

fully utilise all information contained in seismic data. To do this, the interpreter needs to 

combine knowledge within the complex disciplines of geology and geophysics. This is not an 

easy task, and quite commonly, the lack of a sound geological understanding leads the 

geophysicist to interpret unrealistic geological geometries. Similarly, the geologist may easily 

interpret features that the geophysicist would rapidly identify as being noise-related. The 

increasing demand for more and better data interpretation force the geoscientist to carry out 

very detailed interpretation without having time for the important and necessary quality 

control. 

Conventional seismic interpretation is an art that requires skill and thorough experience in 

geology and geophysics. In recent years many aspects of the structural interpretation of 

seismic data have become automated and more rapid (Brown, 2004; Coleou et al., 

2003; Linari et al., 2003; Marsh et al., 2005). Dorn et al (2010) introduced a unique new 

workflow, which includes a combination of existing and new novel processes, is presented for 

computer-aided interpretation of depositional systems in 3D seismic volumes. This unique 

workflow includes the following general steps: Load (Input) 3D Seismic Volume, Structural 

Interpretation, Domain Transformation, Optional Structural Refinement, Stratigraphic 

Interpretation, Inverse Domain Transformation, and Output Stratigraphic Volumes and Bodies. 

Individual steps and series of steps of this workflow may be applied recursively to the data 

volume to improve the results of the overall process. 

Since the first seismic trace was computer-rendered, automatic interpretation has been the 

promised panacea of the geoscience community. Many years later, developers are still 

struggling for a reasonable automatic interpretation methodology in structurally challenging 

areas. Seismic horizons are layered rocks which are created through a long time sedimentation 

process. A faulting process cuts and displaces horizons. Reconstructing structure and fault in 
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their accurate 3D space is a major challenge in subsurface geology. Accurate knowledge of 

the kinematics and geometry of the structure is essential for volumetric estimations of 

reservoirs and for the prediction of the orientation, distribution, and density of fractures that 

forms within this structural framework but are below seismic resolution. 3D seismic data has 

become the preferred tool for this task because it allows the interpreter to follow fault and 

folds throughout the seismic volume. 

For subsurface seismic exploration, the uncertainty and nonuniqueness in geologic 

interpretation is one of the major problems because of the complexity of subsurface geology 

and the limited dimension of the data available. In traditional 2D displays there are a limited 

number of seismic lines or maps, often alias the interpretation of tectonic deformation, 

sediment deposition, and fluid flow occurring in three dimensions. 3D seismic imaging 

technology provides a continuous volumetric seismic coverage of the survey area that makes 

it possible to investigate seismic structure, stratigraphy, and hydrocarbon reservoirs from a 3D 

perspective. The 3D seismic data offer a unique opportunity to make seismic observations and 

geologic interpretations in 3D space; however, most 3D seismic data are displayed and 

interpreted in a 2D manner, leaving the critical advantage and potential value of 3D seismic 

data unused. High-performance 3D digital computing and state-of-the-art volume 

visualization and interpretation technologies have played an important role in facilitating 3D 

seismic volume interpretation in an interactive manner. 

An essential issue in the field of pattern analysis is the recognition of objects and characters 

regardless of their positions, sizes, and orientations. Moment based feature descriptors have 

evolved into a powerful tools for image analysis applications. Moments can be applied to 

binary or grey level images, defined in 2D, 3D and higher dimensional space, but also to 

edges and primitives extracted through a pre-processing stage. Moments and functions of 

moments due to their capabilities to extract invariant global features have been extensively 

applied in the field of image processing: image analysis and pattern recognition (Flusser and 

Suk, 1993; Hu, 1962) with applications ranging from edge detection (Luo et al., 1993), image 

understanding, image classification and segmentation (Yokoya and Levine, 1989), texture 

analysis (Tuceryan, 1994; Tuceryan and Jain, 1998), coherency estimation (Li et al., 2010a), 

invariant identification (Li et al., 2011; Yang and Dai, 2011; Yang et al., 2011), target 

identification, object classification, image coding and reconstruction (Teague, 1980; Teh and 

Chin, 1988) , scene analysis (Jerome, 2009; Sadjadi and Hall, 1978), image reconstruction 

(Liao and Pawlak, 1996; Yang and Dai, 2012), and 3D object analysis (Bronstein et al., 

2005; Sadjadi and Hall, 1980). Describing images with moments instead of other more 

commonly used image features means that global properties of the image are used rather than 



 6 

local properties. 

Geometric moments are firstly proposed and have been extensively used due to their 

simplicity and explicit geometric meaning. However, geometric moments are not orthogonal, 

so it is difficult to reconstruct an image from them. Teague showed that great efficiency could 

be acquired when the image was analyzed by orthogonal Legendre and Zernike moments 

(Teague, 1980). Moreover, it was proven that Zernike moments could store image information 

with minimal redundancy and they have the property of being rotation invariants. As we know, 

the computation of Legendre moments needs to transform image coordinates over the interval 

[-1, 1] and Zernike polynomials are only valid inside the unit circle (Mukundan and 

Ramakrishnan, 1998). Besides, the discretization error derived from approximating the 

integral is still inevitable during their implementations, which definitely limits the accuracy of 

computed moments (Liao and Pawlak, 1996). Liao and Pawlak conducted a theoretical 

analysis on the discretization error of continuous moments and they proposed an approach to 

keep the error under certain level according to Simpson’s rule (Liao and Pawlak, 1996). Other 

researches aiming at improving the accuracy of continuous moments are accordingly focused 

on geometric and Legendre moments (Hosny, 2007a, b). 

Recognition of the shape and form of objects in a scene is easily accomplished by human 

visual observations even if the object is translated, rotated, scaled, partially obscured, slightly 

distorted, or viewed in perspective. The invariant recognition of forms is important to humans 

for a variety of tasks, even though variant recognition is also necessary for some tasks as 

illustrated by the differentiation of the characters. Moment invariants are considered as 

important tools in image analysis and pattern recognition. In the early 60's of last century the 

pioneering work of Hu (1962) on moment invariants(his seven famous geometric moment 

invariants), moments and moment functions has opened many applications in the image field. 

Because these invariants are independent of rotation, translation and scaling, they were soon 

used in a lot of applications as efficient object descriptors. Thereafter, some new moment 

invariants, which are still based on geometric moments, have successively been developed 

and used. A large number of papers that have significant contributions to the application of the 

subject appeared afterward. Abu-Mostafa proposed a method to derive geometric moment 

invariants from complex moments and he analyzed their properties in terms of information 

redundancy and noise sensitivity as well (Abu-Mostafa and Psaltis, 1985). Correspondingly, 

Reddi also provided a generalized framework for deriving radial and angular invariants 

(Reddi, 1981). Another kind of moment is Zernike moment from which the rotation invariants 

can be easily derived, since Zernike polynomials are orthogonal inside unit circle and 

generally defined in polar coordinates. The radial orthogonal sets such as Zernike polynomials 
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have an congenital property “invariant in form” which directly determines the rotational 

invariance of corresponding moments (Bhatia and Wolf, 1954). Flusser (Flusser and Suk, 

1993) and Reiss (Reiss, 1991) contributed significantly to the theory of moment invariants by 

correcting the fundamental theorem and deriving invariants to general affine transform. In 

spite of this, another important kind of moment invariant called blur invariant which is 

independent of convolution is also introduced to image analysis by the same group (Suk and 

Flusser, 2003). Blur invariants have the significant meaning to image analysis, especially to 

the analysis of remote sensing and aerial images. It should be noted that all moment invariants 

proposed by Flusser and his colleagues are based on either geometric moments or complex 

moments. Some work with respect to the development of moment invariants from orthogonal 

moments has been gradually introduced. Chong presented the translation invariants of Zernike 

moments which are efficient for constructing rotation invariants (Chong et al., 2003); and he 

also proposed a way to derive the translation and scale invariants in terms of Legendre 

moments (Chong et al., 2004). The researches in moment invariant can be also found in 

discrete orthogonal moments. Zhu has developed the translation and scaling invariants by 

using discrete Tchebichef moments (Zhu et al., 2007b). Hitherto, all moment invariants 

whatever they are derived from geometric moments, or Legendre moments, even or discrete 

Tchebichef moments, we can hold in a sense that they are substantially derived from 

geometric moments because the basis functions of these moments are linear combinations of 

monomials. Consequently, some moment invariants can be indirectly obtained from geometric 

moment invariants (Yap et al., 2003; Zhu et al., 2007c). 

With the rapid development of the acquisition of multi-dimensional data, it is possible to 

recognize 3D objects directly. Now, 3D shape models have become more and more common. 

Applications such as object tracking and shape retrieval require us to consider how to choose 

the feature descriptors of 3D shapes and how to measure the similarities between 3D objects. 

Sadjadi and Hall (1980) pioneered the development of 3D Geometric moment invariants from 

2D moment. They built a family of three invariant moments with a degree up to the second-

order. Using the notion of complex moments Lo and Don (1989) constructed a family of 

twelve invariant moments with orders up to the third degree. In these last works, moments 

were used mainly to estimate 3D transformations and their performances were not evaluated 

for classification tasks. Also, being not derived from a family of orthogonal functions, these 

moments were subject to correlation. Reuze et al (1993) described a method based on the 3D 

geometrical moments for the 3D tracking and the quantification of blood vessels from 

Magnetic Resonance Angiography (MRA). Canterakis (1997) extended Zernike moments to 

the 3D case, but their performances were not put into trial yet. In (Werghi and Xiao, 2002), 
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Werghi and Xiao proposed to investigate the wavelet transform coefficients (WTC). Sommer 

et al proposed a method for comparing protein-binding sites. They use 3D geometric moment 

invariants as feature vectors for the binding description. Xu and Li (2006a) generalized curve 

moments from 2D to 3D Euclidean space, and use geometrical method to derive 3D curve 

moments invariants of different orders under similarity transformation. In (Xu and Li, 2006b), 

the authors introduced the surface moments, a kind of moment can be treated as a new kind of 

shape descriptors of free-form surfaces and can handle the situation where 3D surface objects 

are not closed. Mademlis et al (2006) proposed a novel method for 3D content-based search 

and retrieval. They introduced weighted 3D Krawtchout moments for efficient 3D analysis 

which are suitable for content-based search and retrieval application. Ong et al (2007) present 

a theoretical framework to derive translation and scale invariants for 3D Legendre moments, 

by using generates 3D Legendre invariants from the existing 3D geometric moment invariants 

and eliminates the displacement and scale factors from Legendre polynomials to generate 

translation and scale invariants. 

Another set of orthogonal moments, Gaussian-Hermite moments, was proposed by Shen a 

decade ago (Shen, 1997). However, the researches in this kind of moments are relatively less 

than those in other moments. The related records are countable: Shen and Wu detected 

moving objects by use of one-dimensional Gaussian-Hermite moments (Shen et al., 2004; Wu 

and Shen, 2005; Wu et al., 2005). Meanwhile, these moments were also used in iris 

recognition (Ma et al., 2004) and classification of fingerprint (Wang and Dai, 2007). In fact, 

the above applications are based on image filtering by some kernels defined with Gaussian-

Hermite moment functions of low orders.  

As far as the orthogonal moments are concerned, there are generally three important aspects 

on their study. The first one is the computation or discrete implementation. The second one is 

image reconstruction, from which we can evaluate image representation ability of the 

moments. The last one is the development of moment invariants. In those three aspects by 

Gaussian-Hermite moments, there are few researches about the image representation ability of 

Gaussian-Hermite moments. Some novel approaches are presented by Yang et al in resent 

works (Li et al., 2011; Yang and Dai, 2011, 2012; Yang et al., 2011).  

1.2 Contributions  

Although the moment theory is well established and widely applied in a number of digital 

image areas, it remains relatively marginal in seismic imaging. We have successful applied 
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Gaussian-Hermite moments to seismic image analysis. With definition of Gaussian-Hermite 

moments from 2D case to 3D case, a new method of seismic interpretation has been proposed 

in the thesis. The research for seismic interpretation based on Gaussian-Hermite moment 

invariants has also been presented in the thesis. Taken these aspects into account, the thesis 

then gives the following contributions: 

− Definition of 3D Gaussian-Hermite moments and discrete implementation : 

A definition of 3D orthogonal Gaussian-Hermite moments is derived from orthogonal 2D 

Gaussian-Hermite moments and the general definition of 3D geometric moments. Based on 

this definition, 3D image features can be easily achieved from the orthonormal 3D Gaussian-

Hermite moments. The discrete implementation of such moments is detailed. 

− Derivation of 2D /3D rotation and translation invariants from Gaussian-Hermite 

moments. 

The derivation of moment invariants for orthogonal moments is generally complicated and 

difficult. At present, there are two chief methods for achieving moment invariants of 

orthogonal moments: image normalization and expressing the orthogonal moments by a linear 

combination of geometric moment invariants. Image normalization needs many parameters to 

be computed; the indirect method, on the other hand, is substantially constructing moment 

invariants from geometric moments, which is not based on the property of orthogonal 

moments directly. In this thesis, the derivation of Gaussian-Hermite moment invariants is 

based on the properties of Gaussian-Hermite polynomials. To be more precise, the translation 

invariants are constructed by the central moments of Gaussian-Hermite moments, which can 

be readily proven to have translation invariance; the rotation invariants, on the other hand, are 

derived from a property of Hermite polynomial, which indicates that the product of two 

Hermite polynomials has the consistent and similar forms as that of monomials. A significant 

conclusion can then be drawn that the rotation invariants of Gaussian-Hermite moments have 

the identical forms to those of geometric moments. Undoubtedly, the combination of these 

two kinds of invariants will generate a moment invariant which is independent of both 

translation and rotation. Some experiments for testing feature representation and pattern 

classification ability have been given. The experimentation results confirm the superior ability 

of Gaussian-Hermite moment invariants. 

− Applications of Gaussian-Hermite moments to image analysis and seismic images 

analysis: 
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We have offered application of spectral Gaussian-Hermite moments in coherency estimation. 

We present the way using the moments of the first order and the second order to estimate the 

coherency within a small local window in Fourier domain. From the experiments, it can be 

found that the size of the window and the value of σ  are important in coherency estimation 

method by spectral Gaussian-Hermite moments. As the window size gets larger, more global 

features are detected. 

We have also presented Gaussian-Hermite moment invariants in template matching. Since in 

the computation of Gaussian-Hermite moments, there is an important scale parameter σ . 

Given a σ, we could obtain a set of invariants. Therefore, we define different sets of invariants 

with the different scale parameter and perform a multi-scale analysis that allows us to obtain 

more information of the image and to better characterize the image. 

− Stepwise dip scanning coherency estimation of the 3D seismic data: 

Coherence technology is an effective tool for seismic interpretation. It detects the 

discontinuity of the seismic event by analyzing seismic signals in adjacent traces, so as to 

identify geological phenomena like faults, special lithologic bodies, river courses etc. Also 

coherence can be used to define stratigraphic features. Third algorithm is more robust to noise 

and with a better resolution, but it will be hard to promote due to its huge computational costs. 

We propose the basic procedure of the stepwise dip scanning coherence algorithm based on 

eigenstructure to solve these problems. 

− 3D Seismic horizon auto-tracking based on moments and moment invariants, and 

multi scale analysis approach: 

With 3D geometric moments and the newly defined 3D Gaussian-Hermite moments, it is 

relatively easy to extract features of a local region within 3D seismic data from such moments. 

Guided by the imperative need for a reliable 3D local feature based tracking tool and the very 

interesting results of research work done in the past on the performance of moments in image 

processing, 3D geometric moments and 3D Gaussian-Hermite moments are proposed for 

efficient 3D horizon auto-tracking. 3D Gaussian-Hermite moment invariants also are 

proposed for efficient 3D horizon auto-tracking. A multiscale approach based on 3D 

Gaussian-Hermite moment invariants is presented to track seismic horizon. 

− Seismic facies analysis using 3D Gaussian-Hermite moments : 

For a seismic interpreter, seismic facies analysis is a monotonous and time consuming task 
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because it still has to be done manually by scanning through hundreds to thousands of seismic 

cross sections. Hence, a process is highly required which makes this interpretation step 

automatic. 3D shape description has evolved to a wide research area during the last years. 3D 

moments can extract important features of a volume. A novel method based on SOM, with 

data visualization techniques U-Matrix and PCP graphic, using 3D Gaussian-Hermite 

moments is introduced for seismic facies analysis.  

1.3 Outline 

The organization of this thesis is as follows:  

Chapter 2 reviews two aspects of seismic data study: seismic image and seismic attributes. At 

the first, seismic data acquisition is introduced. The aim of seismic data acquisition and 

processing is to deliver products that mimic cross-sections through the earth. Focusing on the 

seismic image processing, we outline some typical image processing methods which include 

structure smooth, oriented filtering methods (be employed to enhance stratigraphic continuity 

and to preserve fault discontinuity for the applications that do not require actual fault 

surfaces), texture analysis (be used to extract patterns of common seismic signal character). 

The study and interpretation of attributes can provide us with some qualitative information of 

the geometry and the physical parameters of the subsurface. In the second part of this chapter, 

a brief description of seismic attributes is given. We introduce some classifications of seismic 

attributes according to different criteria such as relationship of the attributes, domain 

characteristics of the attributes, computational characteristics, or reservoir characterization. 

Some basic seismic attributes characteristics used in seismic object identifying are also 

introduced at the end of chapter.  

In Chapter 3, we discuss image analysis based on moments. Moments based feature 

descriptors have evolved into a powerful tool for image analysis application. A basic overview 

of various types of moments which are currently in use is provided at the first section. We 

present a new orthogonal Gaussian-Hermite moment and derivation of its rotation and 

translation invariants from geometric moments invariants. Meanwhile, some diverse usages of 

Gaussian-Hermite moments and moment invariants in some applications are exhibited as: 

coherency estimation, pattern recognition. We also discuss seismic image analysis by 

moments in this chapter. It is shown that Gaussian-Hermite moments are effective tools for 

image analysis. 

In chapter 4, we compare two main families of algorithms coherency and differencing used in 
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seismic attribute. Coherency method is firstly introduced by Bahorich and Farmer. Marfurt et 

al developed this method. First coherency method is not very robust to noise. The next 

algorithm is more robust to noise but with lower resolution and higher computational costs 

than first algorithm. Third algorithm is more robust to noise and with a better resolution, but it 

will be hard to promote due to its huge computational costs. To solve these problems, we 

propose the basic procedure of the stepwise dip scanning coherence algorithm based on 

eigenstructure. The dip scanning is conducted in two steps. In the first step, C2 algorithm is 

employed to scan all dip directions; the resulted coherence values are sorted from small ones 

to large ones; dip directions of the larger coherence values will be kept for further use. In the 

second step, C3

In Chapter 5, we specialize in the aspects of 2D and 3D seismic horizon interpretation. A brief 

review of horizon interpretation is firstly given. Over the last three decades, tremendous 

progress has been made in technique of horizon interpretation. These methods include manual 

interpretation, interpolation interpretation, auto-tracking interpretation, voxel tracking, and 

surface slicing. According the different kind of seismic data, the tracking of horizons can be 

classified into 2D horizon tracking and 3D horizon tracking. In this chapter, we approach 

method based on geometric moments and Gaussian-Hermite moments to the task of 2D/3D 

horizon tracking. The comparisons are made under both 2D and 3D conditions of correlation 

method, higher order statistics method, and moments-based method. We also approach 

method based on Gaussian-Hermite moment invariants to the task of 2D/3D horizon tracking. 

Meanwhile, we discuss multi-scale analysis based on Gaussian-Hermite moment invariants 

applying for horizon auto-tracking. 

 algorithm is implemented to search for the best dip directions among the ones 

we kept in the first step. 

Chapter 6 presents the analysis of seismic facies by moments. There are two major problems 

in seismic facies analysis: the first problem is to determine which seismic parameters are 

discriminants for characterizing the seismic facies; the second problem is to be sure that there 

is a link between the seismic parameters and the geological facies which is investigated by 

interpreter. Still, the sufficient experiments of the proposed facies analysis with Gaussian-

Hermite moments can be also found in this chapter. 

In Chapter 7, we pay attention to parallel processing technology and visualization technology. 

Compared to the tens of gigabytes size of the seismic data sets, system memory and texture 

memory on the graphics processing unit remain scarce resources. With size of seismic volume 

increasing, we can also find that performance of conventional application system will decline 

rapidly. Multi-core processors can offer software developers the ability to apply more 
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resources at a particular problem. To take advantage of this new performance in seismic data 

field, we compute the seismic attributes and track the horizon with parallel program. It can be 

seen that there has been a dramatic decline in the calculation of attributes, and interpretation 

has been efficient. Interpreters can save their time and resources into others interesting tasks. 

Volume visualization technology and volume interpretation may help interpreter to insight 

into 3D seismic data and accelerate the interpretation process. In this chapter, we adapt high 

quality volume rendering algorithms based on Open-Scene-Graph (OSG) 3D engine, an open 

source high performance 3D graphics toolkit, to improve application efficiency in the imaging 

and visualization. 

Finally, a chapter of conclusion gives a summary of this thesis and issues the future works and 

perspective study on seismic interpretation and application of Gaussian-Hermite moments. 
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2 Seismic image and seismic attributes 

Seismic exploration can be divided into three main stages: data acquisition, processing (signal 

processing and image processing), and interpretation (structure interpreting, fault interpreting, 

and seismic facies classification, hydrocarbons reservoirs identifying etc). The seismic value 

chain (Berkhout, 2004) shows the procedure of seismic exploration in a conceptual way, 

making it easier to see Figure 2.1. The three nodes in the chain, coupled by a double loop, are 

seismic acquisition, structural imaging, and reservoir characterization. Insight is provided into 

the interactions between these nodes: the arrows in indicate the interactions that take place or 

that should take place between the different nodes. The arrows that point from left to right 

indicate ‘influence on’, and the arrows pointing from right to left indicate ‘imposing 

requirements on’.  

 

Figure 2.1 The seismic value chain. 

One of the primary tasks in exploration seismology is to interpret seismic arrival patterns 

propagated from the source to receiver through the earth, and to map subsurface geological 

structure and stratigraphic features. The recorded seismic waves consist of a series of seismic 

events. The seismic event may be a reflection, refraction, surface wave, random signal, etc, 

which carries information about the earth’s subsurface.  
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2.1 Seismic image 

Seismic imaging is a primary source of information used in the exploration of hydrocarbons. 

Seismic image is the process through which seismograms recorded on the Earth’s surface are 

mapped into representations of its interior properties. Imaging methods are nowadays applied 

to a broad range of seismic observations: from near-surface environmental studies, to oil and 

gal exploration, even to long-period earthquake seismology. The characteristic length scales 

of the features imaged by these techniques range over many orders of magnitude. 

2.1.1 Seismic data acquisition 

In a sense, seismic images can be regarded as the reflections in the forms of image for the 

underground structures (Bakker, 2002; Pouliquen, 2003). The images display the subsurface 

of the earth with geological structures evident in various layers. Figure 2.2 and Figure 2.3 are 

two typical seismic sample images. They are acquired in a certain time by an acoustic wave. 

This filed travels down the subsurface and partly reflects at locations where the acoustic rock 

properties change. Generally, seismic image are 3D images or called 3D block seismic image.  

Seismic data acquisition consists of gathering and recording of continuous seismic signals 

from seismic stations. The aim of seismic data acquisition and processing is to deliver 

products that mimic cross-sections through the earth. In order to do this, the correct amount 

and types of data must be acquired, and processing applied to remove unwanted energy, and 

to place the required events in the correct location. At the same time, a balance needs to be 

struck between cost and timeliness of data, while attaining alse the important objectives of 

safe operations and doing no harm to the environment.  

Initially, seismic data were acquired along straight lines, known as 2D seismic; shooting a 

number of lines across an area gave us the data needed to make a map. Again the process is 

analogous to making a bathymetric map from echo soundings along a number of ship tracks. 

In 1980’, it has been realised that there are big advantages to obtaining very closely spaced 

data. Instead of having to interpolate between sparse 2D lines, the result is very detailed 

information about the subsurface in a 3D cube, known as 3D seismic. 3D seismic can be used 

to improve our understanding of the subsurface. 

2.1.1.1 Seismic wave 

The theory of seismic wave propagation is the basis for seismic imaging. Seismic waves are 

generated when a stress is applied near or at the earth’s surface. The generated seismic waves 
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propagate in all directions from the stress source, and they are governed by the mechanical 

properties of the rocks, such as incompressibility, rigidity, and density. Wave characteristics 

are also affected by the layering of the rocks and physical properties of the surface soil. The 

seismic reflection method deals with seismic waves that propagate through the earth’s interior. 

 

Figure 2.2 2D seismic image. 

 

Figure 2.3 3D seismic image. 

Seismic waves are divided into two types: body waves and surface waves. Body waves 

include P waves and S waves, these are the two types of waves that are used to determine the 
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internal structure of the Earth. Surface waves include Rayleigh waves and Love waves. On 

firing an energy source, a compressional force causes an initial volume decrease of the 

medium which the force acts. The elastic character of rock the caused an immediate rebound 

or expansion, followed by a dilation force. This response of the medium constitutes a primary 

“compressional wave” or P wave. P waves travel as a region of compression. P waves are the 

fastest kind of seismic wave. A longitudinal P wave has the ability to move through solid rock 

and fluid rock, like water or the semi-liquid layers of the earth. While P wave moves through, 

it pushes and pulls the rock in the same way sound waves push and pull the air. Shear strain 

occurs when a sideways force is exerted on a medium. S wave (shear wave) may be generated 

that travels perpendicularly to the direction of the applied force and travels like vibrations in a 

bowl of Jello. S wave is slower than a P wave and only moves through solid rock. This wave 

moves rock up and down, or side-to-side. Because P waves are compression waves, they can 

move through a liquid. However, S waves cannot move through a liquid such as water. This is 

possible because a liquid is not rigid enough to transmit S wave. P waves propagate by 

moving the particles in the medium parallel to the propagation direction while shear waves 

propagate by moving the medium particles perpendicular to the propagation direction. 

The velocity of the seismic ray is described as a function of the elasticity of the medium in 

which the ray is travelling. Any medium that can support wave propagation may be described 

as having impedance. In dense rock, P wave can vary from 2500 to 7000 m/sec, while in 

spongy sand, from 300 to 500 m/sec.  

 

Figure 2.4 Velocity of seismic waves in the Earth versus depth. 
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A propagating seismic wave is understood by using principles from optics: 

− Huygens' Principle: the wave front of a propagating wave of light at any instant 

conforms to the envelope of spherical wavelets emanating from every point on the wave 

front at the prior instant (with the understanding that the wavelets have the same speed as 

the overall wave). each point on a wave front (a seismic wave front is a constant phase 

surface) produces secondary spherical waves (called wavelets). After time t the spherical 

radius of each is V∗ t (Figure 2.5 (a)). Huygens' Principle can be seen as a consequence of 

the isotropy of space. 

− Fermat's Principle: or the principle of least time is the principle that the path taken 

between two points by a ray of light is the path that can be traversed in the least time. This 

principle is sometimes taken as the definition of a ray of light. However, this version of 

the principle is not general; a more modern statement of the principle is that rays of light 

traverse the path of stationary optical length. Fermat's principle can be used to describe 

the properties of light rays reflected off mirrors, refracted through different media, or 

undergoing total internal reflection. It follows mathematically from Huygens' Principle (at 

the limit of small wavelength), and can be used to derive Snell's law of refraction and the 

law of reflection. In a group of paths from source to receive, a seismic ray travels along 

the minimum-time path through the medium (Figure 2.5 (b)). 

These principles help to locate a wave front after a certain time interval. 

 

Figure 2.5 Propagation principle of seismic wave. 
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A change in velocity while a wave traverses through different media results in reflection and 

refraction (Figure 2.6). These events are governed by Snell’s reflection and refraction laws: 

− The law of reflection states that the angle of reflection equals the angle of incidence. 

− The law of refraction relates velocity to the angle of incidence and to the angle of 

refraction,  

( )( )1 1 1

2 2 2

sin

sin

V n

V n

θ
θ = =  

where each ș as the angle measured from the normal, V as the velocity of wave in the 

respective medium (SI units are meters per second, or m/s) and n as the refractive index of 

the respective medium. 

 

Figure 2.6 Snell’s law. 

Reflection and refraction occurs when a seismic wave passes through two media 
having different acoustic impendence. The angle of reflection is the same as the angle 
of incidence, while the angle of refraction is related to the angle of incidence through 
Snell’s law. 

In the seismic imaging theory, the subsurface geology is viewed as a stack of homogeneous 

rock layers with planar upper and lower surfaces. Each homogeneous layer supports wave 

propagation with different impedances. Seismic waves are generated from sources put on the 

surface, and structures are estimated by using travel times of seismic waves which get 

reflected at the boundaries between the layers. The reflections are recorded by recorder 

instruments put on the earth’s surface close to the sources. After the recorder measured the 

precise arrival time of the wave, its velocity is calculated and used to determine the properties 

of the rock layer in which it travels.  
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Details of the seismic imaging theory are found in (Sheriff and Geldart, 1995). For details of 

the seismic wave propagation refer to (Claerbout, 1985; Treitel and Robinson, 1966). Figure 

2.7 illustrates a seismic data acquisition principle. 

The essential features of an exploration seismic data experiment are (Scales, 1997): 

− Using controlled sources of seismic energy 

− Illumination of a subsurface target area with downward propagating waves 

− Reflection and refraction of the seismic waves by subsurface heterogeneities 

− Detection of the reflected seismic energy on recorders on the earth’s surface. 

 

Figure 2.7 Schematic representation of seismic data acquisition principle.  

A seismic wave originated from a source gets reflected and refracted while going 
down. The amplitude and the arrival time of the reflected waves are recorded by 
recorder put on the surface. 

2.1.1.2 Data acquisition 

Subsurface geologic structures containing hydrocarbons are found beneath either land or sea. 

So there are two methods for seismic data acquisition: land data acquisition and marine data 

acquisition. Both two methods have a common goal, imaging the earth. But because the 

environments is different, so each required unique technology and terminology. 
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In land acquisition (Figure 2.8 A), a shot is fired and reflections from the boundaries of 

various Lithological units within the subsurface are recorded at a number of fixed receiver 

stations on the surface. Geophones are used as recorders on land. Generally they work by 

measuring the motion of a magnet relative to a coil attached to a base implanted in the Earth. 

This motion produces a voltage which is proportional to the movement of the surface. These 

geophone stations are usually in-line although the shot source may not be. When the source is 

in-line with the receivers (at either end of the receiver line or positioned in the middle of the 

receiver line) a two-dimensional profile through the earth is generated. If the source moves 

around the receiver line causing reflections to be recorded form points out of the plane of the 

in line profile, then a three-dimensional volume is possible (the third dimension being 

distance, orthogonal to the in-line receiver-line). The majority of land survey effort is 

expended in moving the line equipment along and across farm field or through populated 

communities. Hence, land operations often are conducted only during daylight thus making it 

a slow process. 

 

Figure 2.8 Seismic data acquisition. 

For marine operation (Figure 2.8 B), a ship tows one or more energy sources fastened parallel 

with one or more towed seismic receiver lines. In this case, hydrophones are used to sense the 

instantaneous pressure in the water due to the seismic waves. The vessel moves along and 

fires a shot, with reflections recorded by the streamers. If a single streamer and a single source 

are used, a single seismic profile may be recorded in like manner to the land acquisition. If a 

number of parallel sources and streamers are towed at the same time, the result is a number of 

parallel lines recorded at the same time. If many closely spaced parallel lines are recorded, 

then a three-dimension seismic data volume is recorded. 

Techniques have been developed to use both Geophones and Hydrophones in the surface area 

where the shore line / water edge is likely to migrate toward land and sea depending on the 

tide of sea a day. The combination of such hydrophones / geophones is called a “Dual Sensor”. 

The advantage of why this is to see that either of the receiver of Dual Senor pickups the 

A. data acquisition on land Seismic trace  B. data acquisition in sea 
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surveyed from the slots recorded using a land or marine source and data gaps all along the 

coast within the area of prospect. 

The receivers are deployed in clusters called groups; the signal from each receiver in a group 

is summed so as to: increase the signal to noise ratio and attenuate horizontally propagating 

waves. The individual receiver groups are separated from one another by distances of 

anywhere from a few dozen meters to perhaps 100 meters. The entire seismic line will be 

kilometres or more long. 

Seismic sources come in different shapes and sizes. Sources such as dynamite, weight drops, 

large caliber guns and large resistive masses called vibrators are used on land, while vibrator, 

air guns, electric sparkers and confined propane-oxygen explosions are the most common 

sources for a marine survey (Scales, 1997). 

For surveys related to the exploration of oil and gas, several sources and receivers are placed 

close to each other in order to illuminate the subsurface significantly. Their arrangement is 

guided by geometric and signal processing rules. The typical distance between the sources is 

50-100 meters (m) and the distances between sources and recorders are within the range of 25 

m. Figure 2.9 shows an example of seismic acquisition geometry. In this figure, the recorders 

are put in stations with separation of 3 m. The distance of the first recorder from a shot source 

is 15 m. Additional acquisition geometries are discussed in (Cordsen et al., 2000). 

 

Figure 2.9 An example of 3D seismic acquisition geometry. 

The group of recorders (stations) are placed in interval distances of 25 meters. Within 
the station, recorders are placed at distance of 3 meters from each other. The sources 
are aligned on a cable at distances of 100 meters apart. 

Seismic recordings store geophone’s impulses as functions of time and positions of the source 

and the recorder. Figure 2.10 shows reflections at different layers and their corresponding 

recorded reflection section. Each line of the reflection section is called a seismic trace and 

X
  

Earth surface 

Z
  

Y
  

Source 

Recorder 
interval 

Recorder 

Station 
interval 

Source on a cable 

100m 15m 



 24 

shows a time varying seismic signal recorded by a single receiver. The x-coordinate measures 

the distances of the receivers from the source. Time increases in units of milliseconds 

downwards. The horizontal coordinate for each line represents the amplitude of the recorded 

signal (voltage, in principle). The amplitude provides the change in velocity perturbation at 

the reflector while moving from one media to another. It oscillates indicating changes from a 

lower acoustic impendence to higher and vice versa. 

 

Figure 2.10 Seismic reflections and record. 

   A.  Seismic reflections at different layers. B.  Recorded seismic reflection section. 

The time-series, or seismogram, recorded by each receiver group is called a trace. The set of 

traces recorded by all the receivers for a given source is called a common source gather. 

Seismic traces are sampled in interval time. The sampling interval affects the quality and size 

of the resulting data. A lower sampling interval results in a higher resolution, but also in a 

larger data size. A typical sampling interval is 2 milliseconds for the duration of 6 seconds. A 

seismic survey may have 210 records, each record having 256 traces, resulting in about 230 

time samples. 

As an interpretation of towards to the subsurface earth structures, seismic images are powerful 

tools for us in the understanding the underground. However, in practice, there will be several 

difficulties in achieving this, since the acquisition of the underground scenes and the 

processing of the seismic images are all involved in influences. The first difficulty lies in the 

methods by which we acquire the information underground.  

Over the years Seismic Data Acquisition has become more important then ever for many 

companies and industries around the globe. During the coming years and into the future this 

important work will continue. It is vital for many companies to have an accurate database of 

the most current information on underwater geography. For those industries that use this type 

of information, the accuracy and the quality of this seismic data must be at very high levels. 

Modern technology has made seismic data acquisition quicker, simpler, and more accurate. It 
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is still used for many of the same purposes, including locating oil, natural gas, or valuable 

minerals. The Seismic Data Acquisition information will help the geoscientists to make 

accurate maps of the subsurface both the land and the marine areas. With this information the 

geoscientists can then predict the value of the area and make it more profitable for use in any 

capacity. Recent advances in seismic acquisition will help Apache gather more higher-quality 

data at a lower cost and at a staggeringly faster rate. 

2.1.2 Seismic image processing and analysis 

After the seismic data has been recorded, it is processed through the three main stages of 

deconvolution, stacking, and migration, resulting in a post-processed data volume. 

Deconvolution acts on the data along the time axis and increase temporal resolution by 

filtering and trace correction. Stacking compresses the data volume in the offset direction and 

yields the planes of stacked sections. Migration then moves dipping events to their true 

subsurface positions and collapses diffractions, thus increasing lateral resolution. Figure 2.11 

shows a processing chain of seismic data. 

 

Figure 2.11 Seismic data processing chain. 
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routines to the acquired data guided by the hand of the processing geophysicist. The 

interpreter should be involved at all stages to check that processing decisions do not radically 

alter the interpretability of the results in a detrimental manner. 

The origin of digital signal processing techniques (DSP) can be traced back to the seventeenth 

century when finite difference methods, numerical integration methods and numerical 

interpolation methods were developed to solve physical problems involving contiguous 

variables. Signal processing is the science of extracting, enhancing, storing, and transmitting 

useful information carried by a signal. DSP is the mathematics, the algorithms, and the 

techniques used to manipulate these signals after they have been converted into a digital form. 

Digital signal processing is concerned with the design and application of generic methods for 

representing and manipulating digital signals. 

2.1.2.1 Image processing and analysis 

Image is the major focus of research interest in digital image processing and image 

understanding. Image processing can be defined as the Signal processing of two-dimensional 

signals (Images). This includes a wide variety of goals. Image processing methods have: 

− Image Enhancement; 

− Image Restoration; 

− Image Compression; 

− Image reconstruction; 

− Image Texture analysis; 

− Morphological image processing; 

− Feature extraction and recognition. 

Image enhancement improves the quality of images for human viewing. Removing blurring 

and noise, increasing contrast, and revealing details are examples of enhancement operations. 

For example, an image might be taken of an endothelial cell, which might be of low contrast 

and somewhat blurred. Reducing the noise and blurring and increasing the contrast range 

could enhance the image. The original image might have areas of very high and very low 

intensity, which mask details. An adaptive enhancement algorithm reveals these details. 

Adaptive algorithms adjust their operation based on the image information (pixels) being 
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processed. In this case the mean intensity, contrast, and sharpness (amount of blur removal) 

could be adjusted based on the pixel intensity statistics in various areas of the image.  

In image analysis, the texture analysis is an efficient tool for identifying object and matching 

pattern. Although there is no strict definition of the image texture, it is easily perceived by 

humans and is believed to be a rich source of visual information. Generally speaking, textures 

are complex visual patterns composed of entities, or sub patterns, which have characteristic 

brightness, colour, slope, size, etc. Thus texture can be regarded as a similarity grouping in an 

image (Rosenfeld and Kak, 1982). The local sub pattern properties give rise to the perceived 

lightness, uniformity, density, roughness, regularity, linearity, frequency, phase, directionality, 

coarseness, randomness, fineness, smoothness, granulation, etc., of the texture as a whole 

(Levine, 1985). There are four major issues in texture analysis: 

− Feature extraction: to compute a characteristic of a digital image able to numerically 

describe its texture properties; 

− Texture discrimination: to partition a textured image into regions, each corresponding to a 

perceptually homogeneous texture (leads to image segmentation); 

− Texture classification: to determine to which of a finite number of physically defined 

classes (such as normal and abnormal tissue) a homogeneous texture region belongs; 

− Shape from texture: to reconstruct 3D surface geometry from texture information. 

Feature extraction is the first stage of image texture analysis. Results obtained from this stage 

are used for texture discrimination, texture classification or object shape determination. 

Approaches to texture analysis are usually categorised into structural (Chen and Dougherty, 

1994; Haralick, 1979; Levine, 1985; Serra, 1982), statistical (Julesz, 1975), model-based 

(Cross and Jain, 1983; Strzelecki and Materka, 1997) and transform methods (suck as Fourier, 

Gabor, wavelet transforms).  

Many image processing publications report on methods for analyzing the orientation in 

images. Known methods include Gabor filters, windowed Fourier analysis, the local gradient, 

local Radon (Hough) transform, and correlation techniques. Oriented smoothing as part of 

image processing has been documented only since the 1990s, notably reflecting on a method 

called anisotropic diffusion, pioneered by Weickert (1996) .  

Most people have an intuitive impression of diffusion as a physical process that equilibrates 

concentration differences without creating or destroying mass. This physical observation can 
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be easily cast in a mathematical formulation. The equilibration property is expressed by Fick’s 

law: 

 j D u= − ⋅∇  (2.1) 

This equation states that a concentration gradient u∇ causes a flux j which aims to 

compensate for this gradient. The relation between u∇  and j is described by the diffusion 

tensor D, a positive definite symmetric matrix. 

Diffusion equation is firstly proposed by Koenderink (Koenderink, 1984). It has form as: 
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where I : function of the image; ∇ : gradient; ∆ : Laplacian; div : divergence; c : diffusion 

coefficient. 

If c is constant, it will be isotropic diffusion  
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Otherwise, it will be anisotropic diffusion. 

The image at the instant (t + 1) deduce from the instant t : 
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For the isotropic diffusion (c = constant) : 
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From above equations, we can get diffusion in three cases: 

− 1D diffusion filtering: 
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− 2D diffusion filtering: 
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− 3D diffusion filtering:  
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Based on the anisotropic diffusion, Weickert introduced anisotropic diffusion filtering 

(Weickert, 1998). Using the diffusion tensor to steer the filtering process allows for 

directional, anisotropic smoothing. The eigenvectors of the diffusion tensor define the 

principal directions of smoothing and the corresponding eigenvalues define the amount of 

smoothing. Weickert based the diffusion tensor on the structure tensor (Estepar, 

2005; Weickert, 1997), which describes structures in the image using first order derivative 

information. Therefore the principal directions of smoothing are based on the description of 

the structures.  

Two specializations of anisotropic diffusion were introduced by Weickert, edge-enhancing 

diffusion (EED) and coherence-enhancing diffusion (CED) (Weickert, 1998). Both were 

initially defined in two dimensions. EED was designed to smooth noise while enhancing 

edges and CED was designed to enhance line-like textures. CED is essentially one 

dimensional diffusion (Weickert, 1999), since there is either diffusion in one direction or 

almost no diffusion at all. EED in 3D becomes plate enhancing diffusion, it filters noise from 

homogeneous areas and enhances plate-like structures. 3D CED preserves small structures 
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and enhances tubular structures; we use the ratio between the second and the third eigenvalue 

of the structure tensor to decide whether diffusion should be performed. In tubular structures 

the ratio between these eigenvalues is large, while in small almost spherical structures the 

ratio is small. 

Often image smoothing is a pre-processing step toward image segmentation. Edge preserving 

image smoothing plays an important role in image processing and computer vision. Edge-

preserving oriented smoothing has been implemented in Shell in two fashions. A first 

algorithm extracts a 2D platelet of seismic amplitudes from 3D seismic data, following the 

local structure. Edge-preserving smoothing is then applied to the data of this platelet, writing 

the result back into a 3D output cube. In edge-preservation tests, it was found that simple 

median filters become inadequate when increasing the filter size. Among the oldest ideas in 

edge preserving image smoothing methods is introduced by Graham (1962), pixels corrupted 

by impulse noise were detected and replaced by an estimate based on local average. Since 

then, several solutions have been proposed to limit the effect of untypical or outlier samples in 

the filtering window. Better edge preservation performance was achieved with Kuwahara-type 

methods (Kuwahara et al., 1976). The general idea behind Kuwahara filter is to divide the 

filter kernel into four rectangular sub-regions which overlap by one pixel. The filter response 

is then defined by the mean of a sub-region with minimum variance. A possible edge is 

detected by computing the statistics over a set of sub regions; sub regions showing deviating 

statistics are likely to contain edges and are assigned smaller weights in filtering. Based on 

local area flattening, the Kuwahara filter properly removes details even in a high-contrast 

region, and protects shape boundaries even in low-contrast regions. The Kuwahara filter 

produces clearly noticeable artifacts. The sub-region selection process is unstable if noise is 

present or sub-regions have the same variance.  

The second generation of edge preserving oriented smoothing was developed in 1999. It is 

based on a 3D implementation of the anisotropic diffusion technique and has been called the 

van Gogh filter. The advantage of this method is that it can be carried much further than SOF-

EP filtering. In first instance, filtering suppresses incoherent noise and small stratigraphic 

features. The continuity of events is enhanced while the acuity of faults is preserved or even 

improved. By applying more diffusion steps, the van Gogh filter simplifies the structural 

image: Undulating reflections are gradually straightened and minor fault-like features 

vanish—whether real or not. Ultimately, the structure is simplified to its most rudimentary 

form.  

The recent works in edge preserving oriented smoothing have been made to address the 
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limitations of the Kuwahara filter. Papari et al (2007) defined a new criterion to overcome the 

limitations of the unstable sub-region selection process. Instead of selecting a single sub-

region, the result is defined as the weighted sum of the means of the sub-regions. The weights 

are defined based on the variances of the sub-regions. Even though this improves the output 

quality significantly, clustering artifacts are still noticeable. Kyprianidis et al (2009) presented 

anisotropic Kuwahara filter. It is based on a generalization of the Kuwahara filter that is 

adapted to the local shape of features, derived from the smoothed structure tensor. The 

anisotropic Kuwahara filter replaces the weighting functions defined over sectors of a disc by 

weighting functions defined over ellipses. Due to this adaption of the filter to the local 

structure, directional image features are better preserved and emphasized. In (Kyprianidis et 

al., 2010), the authors presented a modification of the anisotropic Kuwahara filter, a new 

weighting functions that are not based on convolution. The proposed weighting functions are 

parameterizable. The eccentricity and expansion can be adjusted, which allows to control the 

overlapping areas to adjacent sectors. 

2.1.2.2 Seismic image processing and analysis 

The seismic image is one of the most important sources to understand the earth subsurface, 

e.g., the properties and orientation of rock layers, without having to drill it. The image is 

acquired by collecting the reflected sound waves by the rock layers, and stratigraphic 

structures are shown as horizontal line-like flow patterns. 

Seismic data processing routines generally fall into one of the following categories (Seismic 

Data Processing and Interpretation): 

− Enhancing signal at the expense of noise; 

− Providing velocity information; 

− Collapsing diffractions and placing dipping events in their true subsurface locations 

(migration); 

− Increasing resolution. 

Because drilling a well is extremely expensive, seismic image processing and interpretation 

becomes one of the most important processes in the upstream sector of the petroleum industry. 

Seismic image analysis is a complex and subjective process requiring a wide range of 

interdisciplinary knowledge in geology, physics, and engineering. Traditionally, seismic 

image analysis has been done by manual interpretation of processed 2D slices. With the 



 32 

advent of the rapid increasing computational power, direct processing of 3D seismic images 

with the help of computer programs is becoming more practical. 

Seismic images often show patterns with a layered structure due to the depositional nature of 

the subsurface. In image processing a pattern with a certain regularity or structure is called a 

texture. The description of the 'layered' textures in seismic images can be split up in two parts. 

One part is the geometrical description of the structure; the other part is the description of the 

signal perpendicular to the layered structure. Examples of geometrical properties are the 

orientation and the curvature of the layered structure. An example of a property of the 

perpendicular signal is its characteristic frequency. In the case of a seismic image, the 

perpendicular signal is determined by the change in the acoustic impedance of the subsurface 

rock, convolved with the seismic wavelet. This convolved signal is usually described by using 

a time-frequency representation. The main subject of this thesis is the geometrical description 

of the structure of layered textures. 

Seismic data contains both useful structural information and useless random noise. In seismic 

image, from the interpreter’s point of view, there are two types of noise(Chopra and Marfurt, 

2008): noise the interpreter can address through some relatively simple process applied to the 

migrated data volume, and noise that require reprocessing of prestack data. The interpreter 

can address noise spikes, a limited degree of migration operator aliasing, small-velocity errors, 

and backscattered noise that can result in acquisition footprint, as well as overall “random 

noise” through band pass, kx-ky

In image processing, it is desirable to enhance the structures and reduce the random noise. It 

is commonly known that smoothing is an effective way of reducing random noise. Hall 

summarized eight smoothing methods and discusses their effects in the article (

, and structure-oriented filtering. In contrast, significant 

velocity errors will result in overlapping reflector signals, producing discontinuity and tuning 

artifacts that may overwhelm corresponding events associated with the subsurface geology. 

Surface and interbed multiples result in similar strong artifacts. 

Hall, 2007). 

Gaussian and mean filters are structure in-distinguishable and smear the edges and texture 

boundaries. After these filters are applied, the resolution of horizons, faults, and 

unconformities are reduced or even lost. Edge-preserving smoothing, such as the known 

Kuwahara filter, is able to keep edges in 2D, but its 3D counterpart, as described in 

(AlBinHassan et al., 2006), is designed to preserve body segmentation and cannot keep planar 

structures, such as faults. 

To better image and interpret seismic data, two different ways have been approached. The first 
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approach is to improve the signal-to-noise ratio of the seismic data so that the traditional 

horizon-based interpretation method can be better followed. The second approach is to 

highlight specific geologic features that have a 3D extent, and the geometry of which may 

have little in common with the orientation of the 3D grid of seismic data.  

Seismic images are characterised by specific textures which can provide valuable information 

for locating potential oil reservoirs. Figure 2.12 shows an example image of a seismic cross-

section. A non-specialist can easily identify three texture areas in this imafge: parallel, chaotic 

and mixed. An expert may identify several structures of interest in the image, such as a mound 

indicating a carbonate built-up, horizon terminations indicating the location of a prehistoric 

coastline, faults, etc.  

 

Figure 2.12 A seismic section showing three different textures 

Successful application of oriented smoothing to seismic data requires three ingredients: 

− orientation analysis: determination of the local orientation of the reflections 

− edge detection: determination of possible reflection terminations 

− smoothing with edge preservation: smoothing of the data in the direction of the local 

orientation, without filtering across detected edges 

Parallel Texture 

Mixed Texture 
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Each step can be performed in a multitude of ways and has been explored in the academic 

realm, however, without optimization for noise suppression in seismic data. 

Image processing and computer vision play a crucial role in computer-assisted interpretation 

of seismic images. A variety of effective image processing techniques for seismic image 

analysis have been developed in the fields of geophysics, mathematics, and computer science. 

Many geological features produce discontinuous seismic signal across their boundaries, and 

therefore measuring seismic attributes, such as coherence or discontinuity, has been an active 

research area. A seminal work by Bahorich and Farmer (1995) first proposed using coherency 

of pixel intensities to detect faults and other geological features in 3D seismic volumes. In 

(Bahorich and Farmer, 1995), coherency is measured by the geometric mean of maximum 

time-lagged cross-correlation along x and y directions in a 3D volume. Because voxel 

intensities indicate sharp contrasts across fault surfaces, those regions become distinct in the 

coherence cube. Marfurt et al (1998) proposed a robust coherence estimation algorithm based 

on multiple traces with locally adapted similarity (or semblance) measure. Another variant of 

coherence cube, based on eigenanalysis of covariance matrix, is proposed by Gersztenkorn 

and Marfurt (1999). A practical survey of several variants of the coherence cube algorithm can 

be found in (Chopra, 2002). Cohen and Coifman (2002) proposed a more efficient 

discontinuity measure computation method using a normalized trace of a small correlation 

matrix. Lu et al (2005) employed higher-order statistics and a supertrace technique for more 

accurate coherence estimation. A recent survey of state-of-the-art seismic attribute processing 

techniques can be found in (Chopra and Marfurt, 2008). 

Structure tensors have been shown to work well in segmenting and locating structures of 

specific shape. Several books published in the recent years present extensive literature 

reviews on structure tensors and their applications (Bakker, 2002; Bakker et al., 1999; Florack, 

1997; Weickert, 1998). The first and second order structure tensors, simply estimated by 

differencing the image, can be used to quantify the local structure of seismic data and their 

departure from laminar structure. They can be used to distinguish chaotic regions as well as 

regions of interest, like mounds and horizon terminations from stratified regions. This tensor 

is known by many different names: gradient structure tensor, second-moment matrix, scatter 

matrix, interest operator and windowed covariance matrix. It is defined in terms of the first 

derivative of the image and has been introduced for the detection of lines, edges and corners.  

Bakker (2002) detected channels and faults in 2D and 3D seismic images by using the 

gradient structure tensor for detecting the position of these structures. More specifically, the 

author estimated their orientation by using the eigenvectors of the tensor and used steered 
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adaptive anisotropic filters, elongated according to the shape of the structure under 

examination along the estimated orientation. These filters enhanced the structure by noise 

removal without degrading it. Furthermore, the gradient structure tensor was modified into a 

curvature corrected structure tensor, to account for plane-like and line-like curvilinear 

structures. Meanwhile, others have been successfully employed some oriented filtering 

methods to enhance stratigraphic continuity and to preserve fault discontinuity (Bakker et al., 

1999; Fehmers and Hocker, 2003; Weickert, 1999) for the applications that do not require 

actual fault surfaces. Randen et al (1999) measured fault strength using the norm of the 

projected gradient vector onto the local orientation plane computed using a least-square axis 

fitting method(Bigun et al., 1991), which is in fact similar to a structure tensor method 

introduced by Bakker (2002). Gibson et al (2003) also proposed a structure tensor approach, 

but the semblance value, a measure for similarity with neighbor pixels, is estimated using a 

user-defined oriented window. A major difference from (Bakker et al., 1999) is that (Gibson et 

al., 2003) creates 3D polygons instead of binary voxels for the resulting geometry. Pedersen et 

al (2002) proposed a statistical method based on the idea borrowed from the behaviour of a 

group of social insects to enhance fault responses. Jacquemin and Mallet (2005) used a Hough 

transform, one of the traditional feature detection algorithms, to automatically extract 3D fault 

surfaces. Dip-steered mean filters work well on prestack data in which discontinuities appear 

as smooth diffractions, but smear faults and stratigraphic edges on migrated data.  

Dip-steered median and alpha-trimmed mean filters work somewhat better but will still smear 

faults. Fehmers and Hocker (Fehmers and Hocker, 2003; Hocker and Fehmers, 2002) address 

this problem through an “anisotropic diffusion” smoothing algorithm. The anisotropic part is 

so named because the smoothing takes place parallel to the reflector, while no smoothing 

takes place perpendicular to the reflector. The diffusion part of the name implies that the filter 

is applied iteratively, much as an interpreter would apply iterative smoothing to a time-

structure map. Most important, no smoothing takes place if a discontinuity is detected, 

thereby preserving the appearance of major faults and stratigraphic edges. Luo et al (2002) 

proposed a noise-reduction method, edge-preserving smoothing (EPS), that uses a multi-

window (Kuwahara) filter to address the same problem. EPS is also described by Hall (2007). 

In the application of EPS, a set of predefined neighbourhood sub-windows are used and the 

best result, which is usually the one with minimum deviation, is selected for smoothed output. 

Both approaches use a mean or median filter applied to data values that fall within a spatial 

analysis window with a thickness of one sample. In (Jeong et al., 2006), Jeong et al propose a 

semi-automated interactive 3D fault detection method using graphics hardware. The proposed 

method implements the time-consuming computing components entirely on the GPU to 
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extract 3D faults from seismic images at interactive rates.  

Medioni and colleagues used the tensor voting technique in different applications of image 

analysis (Medioni et al., 2000; Tang and Medioni, 2002; Tang et al., 2001; Tong et al., 

2001; Tong et al., 2004). Tensor voting is an approach of extracting salient structures by 

encoding data and corresponding uncertainties in the Hessian matrix. An overall illustration of 

Tensor Voting method(Medioni et al., 2000), summarizing its different components, is shown 

in Figure 2.13. The methodology is grounded on two elements: tensor calculus for data 

representation, and linear tensor voting for data communication. David also used the tensor 

voting technique in seismic image analysis to detect seismic fault (David, 2008).  

Lavialle et al (2007) presented an approach called SFPD (Seismic Fault Preserving Diffusion) 

based on the CED model, dedicated to 3D seismic blocks processing. Their pre-processing 

step based on a non linear diffusion filtering leading to a better detection of seismic faults. 

The non linear diffusion approaches are based on the definition of a partial differential 

equation that allows us to simplify the images without blurring relevant details or 

discontinuities. Computing the structure tensor which provides information on the local 

orientation of the geological layers, authors propose to drive the diffusion along these layers. 

In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes 

into account the regularity of the local seismic structure. The filtering consists in a data pre-

processing method, which takes into consideration the enhancing of relevant discontinuities.  

After obtaining seismic images, the following operation is the interpretation of seismic 

images. Seismic interpretation begins with mapping the large scale structure of the area. This 

structural interpretation mainly consists of creating horizons and fault planes. Horizons are 

surfaces that are created by the interpreter by selecting a reflector and following it over the 

volume (Bakker, 2002). They are important information towards to the structure of 

underground. And the tracing of horizon therefore is still an objective in the analysis of 

seismic image. The creation of horizons will be discontinued when the appearances of faults. 

The faults will cause great difficulties in locating and tracing the horizons. Of course, the 

detection and accurate location of faults is another important task in analysis of seismic 

images.  
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Figure 2.13 Overall approach of Tensor Voting. 

2.2 Seismic attributes 

A seismic attribute is a quantitative measure of a seismic characteristic of interest (Chopra and 

Marfurt, 2005). Analysis of attributes has been integral to reflection seismic interpretation 

since the 1930s when geophysicists started to pick travel times to coherent reflections on 

seismic field records. Seismic attributes are the fundamental pieces of information contained 

within a recorded seismic trace: time, amplitude, frequency, and attenuation (Brown, 2001). 
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The analysis of seismic attributes allows the identification of petrophysical and structural 

aspects of a buried volume of rock that would typically be beneath the resolution of 

traditional seismic amplitude data. In the petroleum industry, seismic attributes are used to 

identify areas of high porosity or permeability, lateral changes in the aspect or dip direction of 

a horizon, continuity of reflectors, stratigraphic pinch-outs, and a multitude of other properties 

of use in petroleum exploration and field development(Siguaw et al., 2001). In the recent 

years, much attention has been given to the prediction of reservoir properties and to the 

extraction of seismic attributes to enhance the value of seismic interpretation. Many new 

signal-processing methods are being developed and entering commercial packages, exploiting 

properties of local curvature, local frequency variability, and seismic textures. 

.  

Figure 2.14 Historical development of the attributes.  
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2.2.1 Introduction of seismic attributes 

Seismic attributes are specific measurements of geometric, kinematic, dynamic, or statistical 

features derived from seismic data. There are now more than 50 different seismic attributes 

generated from a given seismic data set and applied to the interpretation of geologic structure, 

stratigraphy, and rock/pore fluid properties.  

Some of seismic attributes are more sensitive than others to specific reservoir environments, 

some are better at revealing subsurface anomalies not easily detectable, and some have been 

used as direct hydrocarbon indicators. The evolution of seismic attributes is closely linked to 

advances in computer technology. The introduction of colour printers in the early 1970s 

allowed colour displays of reflection strength, frequency, phase, and interval velocity to be 

overlain routinely on black-and-white seismic records. Interpretation workstations in the 

1980s provided interpreters with the ability to interact quickly with data to change scales and 

colors and to easily integrate seismic traces with other information such as well logs. Today, 

very powerful computer workstations capable of integrating large volumes of diverse data and 

calculating numerous seismic attributes are a routine tool used by seismic interpreters seeking 

geologic and reservoir engineering information from seismic data. Historical development of 

seismic attribute is shown in Figure 2.14 (Chopra and Marfurt, 2005). 

2.2.2 Seismic attributes definition and classification 

Seismic attributes describe seismic data and are defined as quantitative derivatives of a basic 

seismic measurement that may be extracted along a seismic trace, a horizons surface, or 

summed over a time window (Brown, 1996). Geometry is probably the most important 

information that seismic data immediately provides after initial processing.  

Attributes can be divided into eight additional categories: pre-stack attributes, post-stack 

attributes, instantaneous attributes, wavelet attributes, physical attributes, geometrical 

attributes, reflective attributes, and transmissive attributes(Taner, 2001). Indeed, any quantity 

calculated from seismic data can be considered an attribute. Consequently, attributes are of 

many types: prestack, inversion, velocity, horizon, multi-component, 4-D, and, the most 

common kind and subject of this review, attributes derived from conventional stacked data 

(showed in Table 2.1) (Barnes, 2001).  
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Table 2.1 Methods for computing post-stack seismic attributes. 

Method 
Representative Attributes 

complex trace 
amplitude, phase, frequency, polarity, response phase, 
response frequency, dip, azimuth, spacing, parallelism 

time-frequency 
dip, azimuth, average frequency, attenuation, spectral 
decomposition 

correlation/covariance 
discontinuity, dip, azimuth, amplitude gradient 

interval 

average amplitude, average frequency, variance, 
maximum, number of peaks, % above threshold, energy 
halftime, arc length, spectral components, waveform 

horizon 
dip, azimuth, curvature 

miscellaneous 
zero-crossing frequency, dominant frequencies, RMS 
amplitude, principal components, signal complexity 

Attributes can be computed effectively from pre-stack and post-stack data, before or after 

time migration. The procedure is the same in all of these cases. Attributes can be classified in 

many different ways. Several authors have given their own classification. Here we give a 

classification based on the domain characteristics of the attributes: 

− Pre-Stack Attributes: Input data are CDP or image gather traces. They will have 

directional (azimuth) and offset related information. These computations generate huge 

amounts of data; hence they are not practical for initial studies. However, they contain 

considerable amounts of information that can be directly related to fluid content and 

fracture orientation. AVO, velocities and azimuthal variation of all attributes are included 

in this class. 

− Post-Stack Attributes: Stacking is an averaging process which eliminates offset and 

azimuth related information. Input data could be CDP stacked or migrated. One should 

note that time migrated data will maintain their time relationships, hence temporal 

variables, such as frequency, will also retain their physical dimensions. For depth 

migrated sections, frequency is replaced by wave number, which is a function of 

propagation velocity and frequency. Post-stack attributes are a more manageable approach 

for observing large amounts of data in initial reconnaissance investigations. For detailed 

studies, pre-stack attributes may be incorporated. 

Attributes may be further classified by their computational characteristics: 
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− Instantaneous Attributes: are computed sample by sample, and represent instantaneous 

variations of various parameters. Instantaneous values of attributes such as trace envelope, 

its derivatives, frequency and phase may be determined from complex traces. 

− Wavelet Attributes: This class comprises those instantaneous attributes that are computed 

at the peak of the trace envelope and have a direct relationship to the Fourier transform of 

the wavelet in the vicinity of the envelope peak. For example, instantaneous frequency at 

the peak of the envelope is equal to the mean frequency of the wavelet amplitude 

spectrum. Instantaneous phase corresponds to the intercept phase of the wavelet. This 

attribute is also called the “response attribute”(Bodine, 1984). 

These attributes may be sub-classified on the basis of the relationship of the attributes to the 

geology: 

− Physical Attributes: relate to physical qualities and quantities. The magnitude of the trace 

envelope is proportional to the acoustic impedance contrast; frequencies relate to bed 

thickness, wave scattering and absorption. Instantaneous and average velocities directly 

relate to rock properties. Consequently, these attributes are mostly used for lithological 

classification and reservoir characterization. 

− Geometrical Attributes: describe the spatial and temporal relationship of all other 

attributes. Lateral continuity measured by semblance is a good indicator of bedding 

similarity as well as discontinuity. Bedding dips and curvatures give depositional 

information. Geometrical attributes are also of use for stratigraphic interpretation since 

they define event characteristics and their spatial relationships, and may be used to 

quantify features that directly assist in the recognition of depositional patterns, and related 

lithology. 

Reservoir characterization is the process of mapping a reservoir's thickness, net-to-gross ratio, 

pore fluid, porosity, permeability and water saturation. Within the past few years, it has 

become possible to make some of these maps using seismic attributes when those attributes 

are calibrated with available well control. Some of these attributes are much better than others 

for reservoir characterization, but there has not been much discussion of this in the 

geophysical literature. One way to organize and understand seismic attributes is to separate 

them into the following categories(Cooke et al., 1999): 

− Qualitative attributes such as coherency - and perhaps instantaneous phase or 

instantaneous frequency - are very good for highlighting spatial patterns such as faults or 
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facies changes. 

− Quantitative attributes: The simplest quantitative attributes are the amplitude (of a peak 

or a trough) on zero phase data, relative impedance data or absolute impedance data. 

These three attributes (zero phase amplitude, relative impedance and absolute impedance) 

are the most useful for quantitative reservoir characterization. 

− Interval attributes are those that are used to quantify a window of seismic data usually 

containing more than one peak or through. Most seismic attributes fall into this category. 

Examples of interval attributes are number of zero crossings, average energy and 

dominant frequency.  

− AVO attributes are those that are generated using a reflection's pre-stack amplitudes. 

 

Figure 2.15 Basic flow chart of seismic pattern recognition (multi-attribute analysis). 

Seismic attributes work also began on seismic pattern recognition or “multi-attribute analysis” 

(Barnes, 2001). It illustrates in Figure 2.15. While the driving force was to automatically 
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Most of the attributes are a function of the characteristics of the reflected seismic wavelet. We 

consider the interfaces between two beds. However, velocity and absorption are measured as 

quantities occurring between two interfaces, or within a bed. Therefore we can divide the 
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wavelet attributes can be included under this category. Pre-stack attributes such as AVO 

are also reflective attributes. 

− Transmissive attributes relate to the characteristics of s bed between two interfaces. 

Interval, RMS and average velocities, Q, absorption and dispersion com under this 

category. 

2.2.3 Some basic attribute characteristics  

The Trace Envelope is a physical attribute and it can be used as an effective discriminator for 

the following characteristics: 

− Mainly represents the acoustic impedance contrast, hence reflectivity, 

− Bright spots, possible gas accumulation, 

− Sequence boundaries, 

− Thin-bed tuning effects 

− Major changes in depositional environment, 

− Spatial correlation to porosity and other lithologic variations, 

− Indicates the group, rather than phase component of the seismic wave propagation. 

For the remainder of the discussion on seismic attribute analysis, let us assume a complex 

seismic trace with a real component.  

 ( ) ( )cos 2g t A t vtπ=  (2.11) 

where A(t) is the amplitude envelope of the signal g(t) and ȣ is the frequency of the seismic 

signal. Application of a Hilbert transform to the above seismic trace yields the quadrature, or 

imaginary component, of the trace. The quadrature of g(t) is given by  

 ( ) ( ) ( )sin 2g t g t A t vtπ⊥↔ =−  (2.12) 

where g
ĵ

(t) is the imaginary component of the complex trace g(t) (Sheriff and Geldart, 

1995; Taner et al., 1979). 
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2.2.3.1 Coherence attribute 

Analysis of horizon attributes began with the examination of coherence values of interpreted 

horizons. Coherence is the measure of the similarity in appearance and shape of waveforms 

between neighboring vertical traces.  

Bahorich and Farmer (1995) introduced the attribute of coherence in 1995. The coherence 

cube calculates localized waveform similarity in both inline and cross-line directions and 

estimates of 3D seismic coherence are obtained. Small regions within the seismic volume 

containing stratigraphic anomalies such as channels have a different seismic character 

compared to the corresponding regions of neighbouring traces. This attribute is given by 

equation: 

 1 31 2

1 1 2 2 1 1 3 3

1

f ff f

f f f f f f f f

CC
c

C C C C
=  (2.13) 

where f1 and f2 are two consecutive tracks the direction and inline f1 and f3 and the direction 

cross-line C f1f2 is the maximum correlation between f1 and f2

To involve a larger number of traces, Marfurt et al (

. 

1999; 1998) introduced the covariance 

matrix of traces. The new attribute of coherence is then given by: 

 
,

2

iji j

iii

C
c

C
=∑∑  (2.14) 

For through reducing the level of noise introduced by the calculation of the covariance matrix 

trace, we can use only the dominant component, which gives us the attribute C3

 

:  

1
3

ii

c
λ
λ=∑  (2.15) 

where Ȝ j is the eigenvalues of C. Ȝ1 is the largest eigenvalue. This measure was presented as 

an estimate of seismic coherency in (Gersztenkorn and Marfurt, 1999).  

The technique of coherent cube is a new technique for seismic interpretation. It has great 

advantages in recognizing faults and fractures, interpreting ancient channels, edge detection of 

oil-gas reservoir, or other discontinuous features, etc. The method of coherent cube may be 

applied in oil exploration, coal exploration and study of natural earthquakes. 
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Figure 2.16 Coherence of inline 350 section. 

2.2.3.2 Average Energy attribute 

The average amplitude of the stacked trace over time window t to t+mǻt is (Sheriff and 

(a)  C2 algorithm 

(b) C3 algorithm 
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Geldart, 1995

 

): 

1

t m t N

ti

t i

A

g

C
t m t

+ ∆

== + ∆
∑ ∑

 (2.16)  

The average energy of a seismic signal is proportional to the sum of the amplitudes of the 

signal squared. Referring to equation (2.16), this can be illustrated for a single trace i as  

 2
AE C=  (2.17) 

where gti

The average provides a measure of reflectivity and allows one to map direct hydrocarbon 

indicators within a zone of interest. 

 is the amplitude of channel i at time t and < E > is average energy. 

 

Figure 2.17 Average energy of inline 350 section. 
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Figure 2.18 Instantaneous phase of inline 350 section. 

 

Figure 2.19 Instantaneous frequency of inline 350 section. 

2.2.3.3 Instantaneous phase attribute 

Instantaneous phase is the angle of lag or lead of the harmonic components of a seismic pulse 
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with respect to a reference. For example, a zero-phase wave would be symmetric whereas a 

90° phase wave would be perfectly asymmetric. Phase is measured from -180° to +180°. After 

Sheriff and Geldart (1995), instantaneous phase is given by:  

 ( ) ( ) ( )12 tan Ht vt g t g tγ π −  = =    (2.18) 

where g(t) is the measured seismic data, and gH

The instantaneous phase, shows in 

(t) is its Hilbert transform. 

Figure 2.18, enhances the continuity of events where 

amplitude information related with the reflection strength can be variable. Often, it makes 

weak coherent events appear more clearly. Instantaneous phase is intrinsically related to 

instantaneous frequency at time t; therefore, phase anomalies should overlap with areas of 

lowered instantaneous frequency and in turn low coherence. Phase displays can be used for 

the regional visualization of stratigraphic features such as faults, angularities, onlaps, and in 

some cases fluid contacts. 

Instantaneous phase attribute is a physical attribute and can be effectively used as a 

discriminator for geometrical shape classifications: 

− Best indicator of lateral continuity; 

− Relates to the phase component of the wave-propagation; 

− Can be used to compute the phase velocity; 

− Has no amplitude information, hence all events are represented; 

− Shows discontinuity, but may not be the best; 

− Sequence boundaries; 

− Detailed visualization of bedding configuration; 

− Used in the computation of instantaneous frequency and acceleration. 

2.2.3.4 Instantaneous frequency attribute 

Instantaneous frequency describes the duration of a seismic pulse and it is commonly 

subequal to the centroid of the power spectrum of the seismic wavelet (Taner, 2001). The 

instantaneous frequency is the time derivative of instantaneous phase if the frequency of the 

seismic energy is not constant but varies slowly over time. Instantaneous frequency of trace i 
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at time t is (Sheriff and Geldart, 1995): 

 ( ) ( )1

2i

d
v t t

dt
γπ=     (2.19) 

where γ (t) is phase. It has been shown that instantaneous frequency (Figure 2.19), computed 

as the time derivative of instantaneous phase, relates to the centroid of the power spectrum of 

the seismic wavelet. 

Instantaneous frequency relates the wave propagation and depositional environment, hence it 

is physical attribute and it can be used as effective discriminator: 

− Corresponds to the average frequency if the power spectrum of the seismic wavelet; 

− Seismic character correlator in lateral direction; 

− Indicates the edges of low impedance thin beds; 

− Hydrocarbon indicator by low frequency anomaly; 

− Fracture zone indicator; 

− Chaotic reflection zone indicator; 

− Bed thickness indicator; 

− Sand/Shale ratio indicator in a clastic environment. 

2.2.3.5 Curvature attributes  

Curvature attributes are a useful set of attributes that provide images of structure and 

stratigraphy that complement those seen by the well-accepted coherence algorithms. Being 

second order derivative measures of surfaces, they can be quite sensitive to noise.  

Curvature attributes are a group of post-stack attributes that are computed from the curvature 

of a specified horizon. These attributes include: magnitude or direction of maximum curvature, 

magnitude or direction of minimum curvature, magnitude of curvature along the horizon's 

azimuth (dip) direction, magnitude of curvature along the horizon's strike direction, 

magnitude of curvature of a contour line along a horizon, and mean curvature (Figure 2.20). 

Instead of using maximum and minimum curvature, or most-positive and most-negative 

curvature, attributes which are intuitively easy to understand, simply the use of principal 

curvatures to image can subtle faults, folds, incised channels, differential compaction, and a 
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wide range of other stratigraphic features (Chopra and Marfurt, 2010). 

 

Figure 2.20 Mean curvature of inline 350 section. 

 

Figure 2.21 Dip azimuth of inline 350 section. 
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2.2.3.6 Dip and Azimuth attributes 

Dip attribute is a post-stack attribute that computes, for each trace, the best fit plane (3D) or 

line (2D) between its immediate neighbour traces on a horizon and outputs the magnitude of 

dip (gradient) of said plane or line measured in degrees. It can be used to create a pseudo 

paleogeologic map on a horizon slice. 

Azimuth attribute, shows in Figure 2.21, is a post-stack attribute that computes, for each trace, 

the best fit plane (3D) between its immediate neighbour traces on a horizon and outputs the 

direction of maximum slope (dip direction) measured in degrees, clockwise from north. This 

is not to be confused with the geological concept of azimuth, which is equivalent to strike and 

is measured 90° counter-clockwise from the dip direction.  

2.3 Conclusion 

This chapter introduces seismic image and seismic attributes. Over the years Seismic Data 

Acquisition has become more important then ever for many companies and industries around 

the globe. During the coming years and into the future this important work will continue. The 

Seismic Data Acquisition information will help the geoscientists to make accurate maps of the 

subsurface both the land and the marine areas. With this information the geoscientists can then 

predict the value of the area and make it more profitable for use in any capacity.  

Analysis of the seismic image is powerful tools for us in the understanding the underground. 

Many methods of image processing and analysis can be used in seismic data; and a lot of new 

signal processing methods have been developed and applied to exploit properties. Some of the 

methods are also presented to enhance the structures and reduce the random noise. 

Seismic attributes describe seismic data. They are specific measurements of geometric, 

kinematic, dynamic, or statistical features derived from seismic data. Hundreds of seismic 

attributes have been invented, computed by a wide variety of methods, including complex 

trace analysis, interval statistics, correlation measures, Fourier analysis, time-frequency 

analysis, wavelet transforms, principal components, and various empirical methods. 

Regardless of the method, attributes are used like filters to reveal trends or patterns, or 

combined to predict a seismic facies or a property such as porosity. With vast array of seismic 

attribute volumes, classification and neural network analysis are natural solutions for 

extraction or identification of seismic objects. 
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3 Seismic image analysis by Gaussian-Hermite 
moments 

An essential issue in the field of pattern analysis is the recognition of objects and characters 

regardless of their positions, sizes, and orientations. Moments and functions of moments due 

to their capabilities to extract invariant global features have been extensively applied in the 

field of image processing: image analysis and pattern recognition (Flusser and Suk, 1993; Hu, 

1962) with applications ranging from edge detection (Luo et al., 1993), image classification 

and segmentation (Yokoya and Levine, 1989), texture analysis (Tuceryan, 1994), coherency 

estimation (Li et al., 2010a), invariant identification (Li et al., 2011; Yang and Dai, 

2011; Yang et al., 2011), target identification, object classification, image coding and 

reconstruction (Teague, 1980; Teh and Chin, 1988) , scene analysis (Jerome, 2009; Sadjadi 

and Hall, 1978), image reconstruction (Liao and Pawlak, 1996; Yang and Dai, 2012), and 3D 

object analysis (Bronstein et al., 2005; Sadjadi and Hall, 1980). 

Generally, global features are invariant under image translation, scale change, and rotation 

only when they are computed from the original non-distorted analog 2D image (Liao and 

Pawlak, 1996). In practice, we observe the digitized, quantized, and often noisy version of the 

image and the invariance properties are satisfied only approximately. Among all kinds of 

moments, geometric moments are firstly proposed and have been extensively used due to their 

simplicity and explicit geometric meaning. However, geometric moments are not orthogonal, 

so it is difficult to reconstruct an image from them. Teague showed that great efficiency could 

be acquired when the image was analyzed by orthogonal Legendre and Zernike moments 

(Teague, 1980). Moreover, it was proven that Zernike moments could store image information 

with minimal redundancy and they have the property of being rotation invariants. Since both 

Legendre and Zernike moments are defined in the continuous domain, the suitable 

transformations of image coordinates are needed when we implement these moments in the 

discrete case. As we know, the computation of Legendre moments needs to transform image 
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coordinates over the interval [-1, 1] and Zernike polynomials are only valid inside the unit 

circle (Mukundan and Ramakrishnan, 1998). Besides, the discretization error derived from 

approximating the integral is still inevitable during their implementations, which definitely 

limits the accuracy of computed moments (Liao and Pawlak, 1996). Liao and Pawlak 

conducted a theoretical analysis on the discretization error of continuous moments and they 

proposed an approach to keep the error under certain level according to Simpson’s rule (Liao 

and Pawlak, 1996). Other researches aiming at improving the accuracy of continuous 

moments are accordingly focused on geometric and Legendre moments (Hosny, 2007a, b). 

Meanwhile, the computational inconvenience of continuous moments encourages the 

researches in the discrete orthogonal moments. Mukundan first introduced a set of moments 

to analyze the image basing on the discrete Tchebichef polynomials (Mukundan et al., 2001). 

Some techniques for efficiently computing this kind of moment were also provided soon after 

(Mukundan, 2004). Another kind of discrete orthogonal moment widely used is Krawtchouk 

moments, which are based on the discrete classical Krawtchouk polynomials (Yap et al., 

2003). Krawtchouk moments can be employed to extract local features of image unlike other 

orthogonal moments which generally capture the global features. More recently, the discrete 

orthogonal Racah and dual Hahn moments were also proposed and introduced to image 

analysis (Zhu et al., 2007a; Zhu et al., 2007c). The computation of discrete orthogonal 

moments does not need any numerical approximations and image coordinates transformations, 

which generally makes the discrete orthogonal moments superior to conventional continuous 

orthogonal moments in terms of image representation ability. 

3.1 Introduction of moments 

The moments have been proposed initially in the theory of statistics. The different orders of 

moment indicate the different statistical features of a piece-wise continuous function. So, as 

far as their definitions are concerned, the moments are the representations of the global 

information of the related function. They are corresponding to the whole information rather 

than the local or the fixed parts of the function. Here, our discussion is conducted when the 

object is limited to 2D images. For a 2D image f(x,y) where the function value denotes the 

intensity at the pixel location (x,y), we assume ȗ is the image region of the x-y plane, or the 

definition domain of image function f(x,y).  

A complete characterization of moment functionals over a class of univariate functions was 

given by Hausdor (1921a, b). These results were extended to the 2D case by Hildebrandt and 
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Schoenberg (1933). The general 2D moment ĭpq of order (p+q) definition, using a moment 

weighting kernel ȥpq

 

(x, y) (also known as the basis function), and an image intensity function 

f(x, y), is given by: 

( , ) ( , ) ,      , 0,1,pq pq x y f x y dxdy p q
ζ
ψΦ = =∫∫   (3.1) 

The indices p, q usually denote the degrees of the coordinates x, y respectively, as defined 

inside the function ȥ. So we can construct a basis set with all of p and q. According to the 

equation (3.1), different basis sets can then define different kinds of moment, such as 

geometric moments, Legendre moments, complex moments, rotational moments, and etc. It is 

clear that the moments can be regarded as the mapping of the original image function into 

moment kernels, and this mapping is global and the information represented by each pixel in 

the function will contribute to the moments. Therefore, the moments can be used to be the 

feature descriptors of the original image or the concerned objects. 

3.1.1 Geometric moments 

Geometric moments are defined with the monomial basis set [xp, yq

 

]. The (p+q) order moment 

of an image with the intensity function f(x,y) has the definition as 

( , )p q

pqm x y f x y dxdy
ζ

= ∫∫  (3.2) 

where ȗ denotes the definition domain of f(x,y). A set of moments up to order N consists of all 

moments mpq

( 1)( 2)

2

N N+ +
 such that 0≤ p+q≤N and if (p,q) are non-negative integers then the set contains 

 elements. Some basic geometric characters can be found in geometric moments. 

The zeroth order moment m00 generally defines the total mass of f(x,y); The two first order 

moments, (M10, M01), provide the position of the center of mass. The second order moments, 

(M20, M11, M02

 

), can be used to determine several useful image features such as the principal 

axes, the image ellipse and the radii of gyration. The centroid coordinates can also be 

represented by the geometric moments of order 0 and 1 as following: 

1 1 1 1
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∑∑ ∑∑  (3.3) 

Another character called radius of gyration which often appears in mechanics can be derived 
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form (m00, m20, m02). It is a description as the distance from the axis to a line where all the 

mass may be assumed to be concentrated (Mukundan and Ramakrishnan, 1998). The central 

moments corresponding to mpq

 

 are defined as follows 

( ) ( ) ( , )
p q

pq x x y y f x y dxdy
ζ

µ = − −∫∫  (3.4) 

The central moments are substantially the regular geometric moments which correspond to 

the moments of the image with the origin being shifted to the centroid. The central moments 

are generally characterized to be translation invariants in general.  

3.1.2 Legendre moment 

Legendre moment is a set of typical continuous orthogonal moments. Since firstly proposed 

by Teague in 1980, this kind of moments has demonstrated several superiorities over the 

traditional geometric moments. It is shown that image reconstruction from Legendre moments 

is much easier than from geometric moments. The kernels of Legendre moments are products 

of Legendre polynomials defined along rectangular image coordinate axes inside a square. 

Legendre moment of order (p+q) is defined as (Mukundan and Ramakrishnan, 1998): 

 
( )( ) ( ) ( ) ( )1 1

1 1

2 1 2 1
,        , 0,1,

4pq p q

p q
L P x P y f x y dxdy p q

− −

+ +== ∫ ∫   (3.5) 

where Pp(x) denotes Legendre polynomial of pth

 

 degree  

( )21
( ) 1

2 !

p
p

p p p

d
P x x

p dx
=−  (3.6) 

Certainly, Legendre polynomial can be also expressed as a series of monomials, which has the 

form as: 
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∑  (3.7) 

3.1.3 Zernike moments 

Teague first proposed Zernike moments basing on the orthogonal functions called Zernike 

polynomials. Though computationally very complicated compared to geometric and Legendre 

moments, Zernike moments have been proved to be superior in terms of their feature 
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representation capability and low noise sensitivity (Teh and Chin, 1988). The kernels of 

Zernike moments are orthogonal Zernike polynomials defined over polar coordinates inside a 

unit circle. The Zernike moments of order p are defined as: 

 
( ) ( ) ( )2 1

*

0 0

1
, , ,   1pq pq

p
Z V r f r rdrd r

π θ θ θπ
+=≤ ∫ ∫  (3.8) 

The equation requires p is a non-negative integer and q satisfies the condition p−|q| is even 

and |q|≤p. Zernike polynomials ( , )pqV r θ of order p are complex functions defined over polar 

coordinate 

 ( ) ( ), iq

pq pqV r R r e θθ =  

where ( )pqR r is a real-valued radial polynomial given by 
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∑  (3.9) 

3.1.4 Discrete Tchebichef moments 

Discrete Tchebichef moments are the first kind of discrete orthogonal moments. This kind of 

moments has been proved to be a powerful tool in image analysis and pattern recognition. The 

discrete Tchebichef polynomials have the explicit expression as (Mukundan et al., 2001) 

 ( )
0

1
! ( 1)   , 0,1, , 1

p
p k

p

k

K k p k x
t x p p x K

p k p k

−
=

− − +   = − = −   −   ∑   (3.10) 

The polynomials satisfy the orthogonality with ȡ(p, K) being defined as 

 ( ) ( ), 2 !
2 1

K p
p K p

p
ρ + =  +   (3.11) 

Mukundan proposed to normalize the polynomials by the magnitude K
p

 

 and still normalize 

ȡ(p,K) by such factor to achieve the orthonormal polynomials as 

( ) ( )

( , )
p

p

t x
t x

p Kβ=  (3.12) 

where ȕ(p, K) is a suitable constant which is independent of x. With the introduction of ȕ(p, K) 

the corresponding changes are necessary in weight function 
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 ( ) 2

( , )
,

( , )

p K
p K

p K

ρρ β=  (3.13) 

Then the Tchebichef moments are subsequently defined as 

 ( ) ( ) ( ) ( ) ( )1 1
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= =
= ∑∑  
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 (3.14) 

3.1.5 Krawtchouk moments 

Compared with discrete Tchebichef moments, another kind of discrete orthogonal moments 

named Krawtchouk moments are widely used. The definition of the p order classical 

Krawtchouk polynomials is defined as 

 ( ) , , 2 1
0

1
; , , , ;

K
k

n k n p

k

K x p K a x F n x K
p=

 = = − − −  ∑  (3.15) 

where x, n=0,1,2,…,K. pę(0,1). 2F1 is hypergeometric function and (a)k

Krawtchouk polynomials form a complete set of discrete basis functions with weight function 

 is Pochhammer 

symbol. 

 ( ) ( ); , 1
K xx

K
w x p K p p

x

− = −    (3.16) 

and the orthogonality can be expressed by the equation 
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With 

 ( ) ( )1 !
; , ( 1)

n

n

n

p n
n p K
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ρ  −= −   −   (3.18) 

Yap firstly introduced Krawtchouk moments which base on a weighted version of 

Krawtchouk polynomials 

 ( ) ( ) ( )( ); ,ˆ ; , ; ,
; ,n n

w x p K
K x p K K x p K

n p Kρ=  (3.19) 

The weighted Krawtchouk polynomials are orthonormal because they satisfy the condition 
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 ( ) ( )
0
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K
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K x p K K x p K δ
=

=∑  (3.20) 

The Krawtchouk moments of order (n+m) in terms of weighted Krawtchouk polynomials, for 

an image with intensity function f(x,y) is defined as: 

 ( ) ( ) ( )1 1

1 2
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ˆˆ ; , 1 ; , 1 ,
K L
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x y

Q K x p K K y p L f x y
− −

= =
= − −∑∑  (3.21) 

3.1.6 Orthogonal Gaussian-Hermite moments 

Gaussian-Hermite moments, which were firstly proposed by Shen(1997), are also a kind of 

orthogonal moments and their applications in image analysis have been also explored in the 

past decade. 

The pth

 

 order of Hermite polynomial defined as: 

2 2( ) ( 1) exp( )( / ) exp( )p p p

pH x x d dx x= − − (3.22) 

Or in a form of series 
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Hermite polynomials are orthogonal with respect to the weight function w(x)=exp(-x
2

 

). Their 

orthogonality is presented by: 

2exp( ) ( ) ( ) 2 !p

p q pqx H x H x dx p πδ∞

−∞
− =∫  (3.24) 

The recursive equation is available for fast computation of the polynomials: 

 1 1( ) 2 ( ) 2 ( )  fo r p 1p p pH x x H x p H x+ −= ⋅ − ⋅ ≥  (3.25) 

with the initial conditions H0(x)=1 and H1

 

(x)=2x. Eq. (3.24) shows that Hermite polynomial is 

orthogonal but not orthonormal. Its weighted form is then proposed as: 

1/2 2ˆ ( ) (2 ! ) exp( / 2) ( )p

p pH x p x H xπ −=−  (3.26) 

According to Equation (3.22), Equation (3.26) is then orthonormal and it is substantially a 

Hermite polynomial modulated by a Gaussian function with the variance equal to 1.0. For a 

general case, Gaussian-Hermite polynomial with scale parameter ı has the following 

http://www.answers.com/topic/orthogonal-polynomials�
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definition: 

 1/2 2 2ˆ ( ; ) (2 ! ) exp( / 2 ) ( / )p

p pH x p x H xσ πσ σ σ−=−  (3.27) 

and it is not difficult to verify that Gaussian-Hermite polynomial keeps the orthogonality 

 ( ) ( )ˆˆ ; ;p q pqH x H x dxσ σ δ∞

−∞
=∫  (3.28) 

The equation indicates that Gaussian-Hermite polynomials are not only orthogonal but also 

orthonormal. Besides the orthonormal property, Gaussian-Hermite polynomial also inherits 

the symmetry property of Hermite polynomial. To the p
th

 

 degree Hermite polynomial, its 

satisfies the symmetry condition 

( ) ( 1) ( )p

p pH x H x− = −  (3.29) 

According Equation(3.29), it is obvious that Gaussian-Hermite polynomial also satisfies the 

corresponding condition 

 ˆˆ ( ; ) ( 1) ( ; )p

p pH x H xσ σ= −  (3.30) 

3.2 Coherency estimation based on spectral Gaussian-Hermite 
moments 

The process of identifying regions with similar texture and separating regions with different 

texture is an essential step towards identifying surfaces and objects. Texture analysis has been 

studied for a long time using various approaches. Various methods perform texture analysis 

directly upon the gray levels in an image. Coherency estimation in local region is one of the 

methods to identify regions. Mihran Tuceryan proposes a method of obtaining texture features 

directly from the gray-level image by computing the geometric moments of the image in local 

regions (Tuceryan, 1994). Some acceptable techniques for measuring coherence are based on 

cross correlation (Bahorich and Farmer, 1995), eigenstructure of the covariance matrix 

techniques (Gersztenkorn and Marfurt, 1999; Marfurt et al., 1999), semblance based 

coherency (Marfurt et al., 1998), gradient structure tensor (Bakker, 2002). These methods, 

however, typically suffer from a lack of robustness, especially when dealing with noisy data 

(Marfurt et al., 1999). Randen et al. address an approach exploiting the spatial derivatives of 

the data. They measure the disorder of the gradient vector field caused by discontinuities 

(Randen et al., 2000). 
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3.2.1 Discrete implementation of Gaussian-Hermite moments  

The Gaussian-Hermite moments of order ( , )p q  can be defined over the domain 

( , )x y−∞ ≤ ≤ ∞  as: 

 ,
ˆˆ ( / ) ( / ) ( , )p q p qH x H y f x y dxdyη σ σ∞ ∞

−∞ −∞
= ∫ ∫  (3.31) 

where ),( yxf  is the image intensity function. 

The Gaussian-Hermite functions are orthogonal over the domain ( , )−∞ ∞ . For a digital image 

( ),I i j  defined over a square [ ]0 , 1i j K≤ ≤ − , in order to choose easily a comparable standard 

variation value σ  for the Gaussian envelope, the image coordinates would be normalized to 

be within [ ]1 , 1x y− ≤ ≤  firstly by  
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x i K K
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= − + − = − + −  (3.32) 

Equation is therefore modified with a scale coefficient ( )1/ 1 / 2K −  as follows: 
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p

p p p

q

q q q

H i K H x K p x H x

H j K H y K q y H y

σ πσ σ σ
σ πσ σ σ

−− −

−− −

  =− ⋅ = − −     =− ⋅ = − − 
 (3.33) 

Given the discrete Gaussian-Hermite moments, Șp,q

 

, of a gray scale image I(i,j) as follows: 

1 1

,
0 0

ˆˆ ( ) ( ) ( , )
K K

p q p q

i j

H i H j I i jη − −

= =
=∑∑  (3.34) 

or 

 
1 1

, 2
0 0

4 ˆˆ ( / ) ( / ) ( , )
( 1)

K K

p q p q

i j

H x H y I i j
K

η σ σ− −

= =
= − ∑∑  (3.35) 

3.2.2 Representation program of 2D Gaussian-Hermite moments 

Computing the discrete version of Gaussian-Hermite polynomials is the key step of discrete 

implementation. When represented by the program, the polynomial computation is illustrated 

by the following pseudo-code.  



 62 

The algorithm for computing the moments is also illustrated by similar pseudo-codes. It 

should be noted that these algorithms can be more efficiently facilitated by matrix form 

supported by the software as MATLAB. 

Table 3.1 Pseudo code of Gaussian-Hermite polynomial computation  

 

Table 3.2 Pseudo code of Gaussian-Hermite moments computation 

 

With the appearance of more powerful computers, it becomes practical to compute and use 

0 1 ( 1) / 2NC Kπσ=−  

For i = 0 to K−1 

  xi =(2i−K+1)/(K−1)/σN  

 2
0 0

ˆ ( ) exp( / 2)iH i C x= ⋅ −  

 1 0
ˆˆ ( ) 2 ( )H i xH i=  

 For p = 2 to N  

  1 2
ˆˆˆ( ) 2 ( ) 2 ( 1) ( )p p pH i xH i p H i− −= − −  

 End for  

End for  

c = 1 

For p = 1 to N  

 / 2c c p=  

 For i = 0 to K−1 

  ˆˆ ( ) ( )p pH i c H i= ⋅  

 End for  

 End for  

For q = 0 to N 

 For i = 0 to K−1 

                Sum = 0.0  

                For j = 0 to K−1 

  Sum = Sum + Img(i, j)× ˆ ( )qH j  

        End for  

                For p = 0 to N 

                       Mom(p, q) = Mom(p, q) + Sum× ˆ ( )pH i  

End for  

End for  

End for  
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the higher order moments. However, the computation of moments, specifically, if the higher 

order moments are involved, is still a time consuming procedure. Moment computation can 

still be efficiently accomplished by separate property of basis functions. For example, when a 

set of moments of order (0,0) up to (N, N) is required, it generally needs a quadruple loop to 

traverse all pixels (0 to K-1) and moment depth (0 to N) in both x and y directions. However, 

the separate property enables us to compute the moment by firstly calculating the moment of 

each row and then obtaining the final moment value from the pixels of each column and the 

weighted moment of each row. Besides, the loop computation for the moments of order 0 to N 

in x direction is independent of that for traversing all pixels (0, K-1) in y direction; so does the 

loop computation of order in y direction and all pixels in x direction. The moment 

computation for all moments of order 0 to N in x direction can be therefore calculated 

cascadely in the same loop degree where the moment of each row is executed. The great 

efficiency is acquired for computing the moments because the method actually needs a triple 

loop instead of quadruple one to accomplish the computation. The moments up to order (N, N) 

can be computed by the algorithm below. 

According to the above algorithms, we can conclude that moment computation has the same 

computational complexity and they generally contain the same number of addition and 

multiplication operations. 

3.2.3 Coherency estimation by spectral Gaussian-Hermite moments 

We regard the intensity image as a function of two variables: I(x,y). For each pixel in the 

image, we select  a small local window around it. The local image is firstly converted from 

spatial domain into frequency domain using 2D discrete fast Fourier transform (FFT) function: 

 ( ) ( ){ }, ,fI u v FFT I x y=  (3.36) 

Energy of Fourier transform can be calculated by: 

 ( ) ( ) 2
, ,fE u v I u v=  (3.37) 

Then the spectrum Gaussian-Hermite central moments is computed as follows: 

 ( ),
ˆˆ ( ) ( ) ,p q p q

u v

H u u H v v E u vη = − −∑∑  (3.38) 

where denote centroid’s coordinates of the image given by: 
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 1,0 0,1

0,0 0,0

,
m m

u v
m m

= =  

Now, we compute the lower order moments 1,1η , 0,2η  2,0ηand . Constructed the spectral 

Gaussian-Hermite moments matrix (SGMM) form as: 

 

( ) ( )
( ) ( )

2

2,0 1,1

2
1,1 0,2

,   ,

, ,
u v u v

u v u v

E u v u E u v u v

C
E u v u v E u v v

η η
η η

 ⋅ ⋅ ⋅   ==   ⋅ ⋅ ⋅    
∑∑ ∑∑
∑∑ ∑∑

 
   (3.39) 

We assume that the eigenvalues of matrix C are ordered, i.e. . We use the following contrast 

coefficient to measure coherency: 

 2

1
cohC

λ
λ=  (3.40) 

It takes value between 0 and 1, meanwhile indicates how much the local data resembles a 

linear structure. The more isotropic a structure becomes ( 1cohC → ), the more difficult it 

becomes to estimate the orientation of that structure. We use Ccoh as the coherency measure of 

the orientation estimation. Since a linear structure can also be viewed of as an anisotropic 

structure, Ccoh

3.2.4 Experimental results  

 is also referred to as the anisotropy. 

We use two synthesized images to test the method. Both two synthesized images we select 

small local window at 9 by 9 and 17 by 17. Meanwhile we contrast the coherency of results 

from based on geometric moments and from based on Gaussian-Hermite moments.  

The scale parameter of Gaussian envelope is selected 0.2681 in small local window at 9 by 9, 

and 0.1468 in another case. Figure 3.1 shows the coherency results of the first synthesized 

image. Then another synthesized image is showed in Figure 3.2. On two synthesized images 

we add noises to test the method. Figure 3.3 (a) and (d) are added zero mean Gaussian white 

noise with variance 0.01. Figure 3.4 (a) and (d) are added zero mean Gaussian white noise 

with variance 0.02. In all the cases we calculate local coherency with window 17 by 17. The 

σ is selected 0.1468. 
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Figure 3.1 Coherency estimation Results for first synthesized block.  

 (a) Original image ;  (b) local window 9*9 and (c) local window 17*17 
are computed the coherency based on geometric moments;  (d) local 
window 9*9 and (e) local window 17*17 are computed the coherency 
based on Gaussian-Hermite moments. 

 

Figure 3.2 Coherency estimation Results for second synthesized block.  

(a) Original image , (b) local window 9*9 and (c) local window 17*17 are computed the 
coherency based on geometric moments ; (d) local window 9*9 and (e) local window 17*17 are 
computed the coherency based on Gaussian-Hermite moments. 

(b) (a) (c) 

(d) (e) 

(b) (a) (c) 

(d) (e) 
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Figure 3.3 Results for synthesized block with zero mean Gaussian white noise with variance 0.01. 

(a) and (d) are added noise, (b) and (e) are Coherency based on geometric moments computing,     
(c) and (f) is Coherency based on Gaussian-Hermite moments computing. 

 

Figure 3.4 Results for synthesized block with zero mean Gaussian white noise with variance 0.02. 

(a) and (d) are added noise , (b) and (e) are Coherency based on geometric moments computing,    
(c) and (f) is Coherency based on Gaussian-Hermite moments computing. 

(b) (a) (c) 

(e) (d) (f) 

(b) (a) (c) 

(e) (d) (f) 
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In this section, we have proposed an approach for estimating the coherency of texture that is 

based on the spectrum Gaussian-Hermite moments. We give an introduction of the Gaussian-

Hermite moments and its discrete implementation. And then present the way using the 

moments of the first order and the second order to estimate the coherency within a small local 

window in Fourier domain. Finally we test the competence of the approach with the 

synthesized images and the images added Gaussian noise. In this new method the size of the 

window and the value of σ  are important. As the window size gets larger, more global 

features are detected. This suggests that the choice of window size could possibly be tied to 

the contents of the image. The images with larger texture tokens would require larger window 

sizes whereas finer textures would require smaller windows. 

3.3 Multi-scale image description with rotation invariants of 
Gaussian-Hermite moments  

Since the early 1960s of the last century, the moment invariants play an important rule in 

image analysis and pattern recognition. As we all know, the 7 famous Hu’s invariants based 

on second and third-order geometric moments are widely used as a good feature set to 

represent an object pattern or an image (Dudani et al., 1977; Hu, 1962; Wong and Hall, 1978). 

So far, the most popular moment invariants are still derived from geometric moments (Li, 

1992; Wong et al., 1995). A few years ago, Flusser has proved how to find the independent 

and complete set of geometric moment invariants corresponding to a given order (Flusser et 

al., 2009). It looks to be an almost perfect answer to the derivation of geometric moment 

invariants. 

The problem of image reconstruction from its statistical moments is particularly interesting to 

researchers in the domain of image processing and pattern recognition. Compared to 

geometric moments, the orthogonal moments offer the ability to recover much more easily the 

image due to their orthogonality, which allows reducing greatly the complexity of 

computation in the phase of reconstruction. Gaussian-Hermite moments is proposed for image 

analysis recently. For example, the image reconstruction from its orthonormal Gaussian-

Hermite moments has already been studied (Wang and Dai, 2007); Yang and Dai focus their 

attention on image reconstruction from the Gaussian–Hermite moment (Yang and Dai, 2012). 

We introduce a new image analysis and representation method by Gaussian-Hermite rotation 

and translation moment invariants from geometric moments (Li et al., 2011; Yang and Dai, 

2011; Yang et al., 2011). It is proved that if we have a rotation invariant derived from the 

geometric moments, we can simply substitute Gaussian-Hermite moments instead of the 
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geometric moments into it and its rotation invariance remains preserved. Moreover, in the 

Gaussian-Hermite moment definition, there is a scale parameter which allows us to perform a 

multi-scale analysis and use more information to represent the object or image. 

Translation, rotation and scaling (TRS) are the simplest transformations of spatial coordinates. 

TRS, sometimes called similarity transform, is a four-parameter transform, which can be 

described as: 

 x  = sR x + t,′ ⋅  (3.41) 

where t is a translation vector, s is a positive scaling factor (note that here we consider 

uniform scaling only, i.e. s is the same, both in horizontal and vertical directions), and R is a 

rotation matrix: 

cos sin

sin cos

θ θ
θ θ

−     

where ș is the angle of rotation. 

Invariance with respect to TRS is required in almost all practical applications, because the 

object should be correctly recognized, regardless of its position and orientation in the scene 

and of the object-to-camera distance. On the other hand, the TRS model is a sufficient 

approximation of the actual image deformation if the scene is flat and perpendicular to the 

optical axis. Therefore, much attention has been paid to TRS invariants. While translation and 

scaling invariants can be derived in an intuitive way, derivation of invariants to rotation is far 

more complicated. 

3.3.1 Central Gaussian-Hermite moments  

From the equation (3.3) and equation (3.35), we could define the central Gaussian-Hermite 

moments of I(i,j) as following by 

 
1 1

2
0 0

4 ˆˆ ( , )
( 1)

K K

pq p q

i j

x x y y
H H I i j

K
η σ σ

− −

= =
− −   =    −    ∑∑  (3.42) 

3.3.2 Rotation Gaussian-Hermite moment invariants 

Given an image rotated by an arbitrary angle, the new Cartesian coordinates after rotation are 

satisfied with the following equation: 
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' cos sin

' sin cos

x x

y y

θ θ
θ θ

−     =            (3.43) 

After this rotation, Gaussian-Hermite moments have the form as: 

 
2 2

2
( , ) ( '/ ) ( '/ ) exp .

2pq p q

x y
M f x y H x H y dxdyθ σ σ σ

∞ ∞

−∞ −∞
 +=−   ∫ ∫  (3.44) 

It should be noted here that the image intensity function remains unchanged during image 

rotation, 2D Gaussian function and integral element also. From (12) and (13), the relation 

between and can be derived. Here we give them only for the 3 first orders: 
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 (3.45) 

The rotation invariants, therefore, can be obtained by eliminating the angle factor θ in the 

combination of above equations. Some invariants can be easily found with simple form such 

as
00M and 2 2

10 01M M+ . Other invariants of order 2 and 3 which we have derived are given as 

follows: 
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 (3.46) 
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From above derivation, we have found an interesting fact: these invariants have the exact 

form of the geometric ones. Is it true for all invariants of all orders? In other words, can we 

replace the geometric moments with the Gaussian-Hermite ones in any geometric moment 

invariant and its rotation invariance remains preserved? The answer is positive and it can be 

proved by mathematical induction (Yang et al., 2011)

 

. The rotation Gaussian-Hermite 

invariants of order 4 are then given as follows:  
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(3.47) 

3.3.3 Translation Gaussian-Hermite moment invariants 

It is well known that under the translation of coordinates on the Cartesian plan 

 
'

   with ,  : constants
'

x x a
a b

y y b

= + = +  (3.48) 

The central moments do not change whatever the basis function of moments. Therefore, if 

a x= −  and ,b y= −  the rotation and translation Gaussian-Hermite moment invariants could be 

easily obtained by use of the central Gaussian-Hermite moments 
pqη  instead of 

pqη  in (3.46) 

and (3.47). 

3.3.4 Multi-scale analysis 

In the computation of Gaussian-Hermite moments, there is an important scale parameter σ . 

Given a σ, we could obtain a set of invariants. Therefore, we can define different sets of 

invariants with the different scale parameter and perform a multi-scale analysis that allows us 

to obtain more information of the image and to better characterize the image. 
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3.3.5 Experimental results  

Figure 3.5 shows the 8 versions of image Mirage2000 rotated by different angles and 

translated in different positions in the background. Their 11 invariants are computed with 

different scale parameter respectively and recorded in Table 3.3. The percentage spread from 

the corresponding means of invariants ȟ/|ȝ| is used to evaluate the numerical stability. Here, ȟ 

and ȝ represent respectively the standard deviation and the mean of the computed values of an 

invariant for different versions of the image. Small value of ȟ/|ȝ| shows the better stability of 

invariants; on the contrary, great value indicates the increment of instability. In this example 

all deviations are less than 5%, the Gaussian- Hermite moment invariants show a good 

stability. 

In Figure 3.6 the two first rows show the reference images of fight planes CY47, F22, F35, 

J10, MIG1.44 and Mirage2000, in the third row, there are three patterns to identify. We try to 

match P1, P2 and P3 respectively on the reference images. Each image is characterized by a 

feature vector composed of its Gaussian-Hermite moment invariants. 

Finally, the weighted Euclidean distance (WED) is used to evaluate the results of matching. 

The WED between two vectors is defined as 

 ( ) ( ) 2

1

( ) ( )
N

k k

n n n

n

d I Iρ
=

′ ′= −∑V ,V  (3.49) 

Where ′V is the feature vector of a pattern to identify, 
k( )V is the feature vector of k-th 

reference image with  

( ) 2 ( )

1 1

/ ( )   and  / ,
K K

k k

n n n n n

k k

K I I I I Kρ
==

= − =∑ ∑  

here N=11 and K=3. The pattern will be identified as a certain fight plane in the reference if 

their WED is the minimum. The different scale parameters ( 0.2, 0.4 and 0.7 σ = ) used in 

Gaussian-Hermite moment computation.  

The matching results are reported in Figure 3.7, from which we know that with three different 

scale parameters, all three patterns are identified correctly as P1 = F22, P2 = J10 and P3 = 

MIG1.44. 
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Figure 3.5 The different rotation versions of image Mirage-2000 

 

Figure 3.6 Reference images (in first and second rows) and patterns to indentify (in third row) 
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Figure 3.7 Weighted Euclidean distances with different scale parameters 
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Table 3.3 The Gaussian-Hermite moment invariants of figure 

 
Figure  (a) (b) (c) (d) (e) (f) (g) (h) /ξ µ  

σ = 0.1 

I 3.0511E+01 1 3.0511E+01 3.0511E+01 3.0509E+01 3.0509E+01 3.0511E+01 3.0511E+01 3.0509E+01 0.00% 

I 2.3875E+00 2 2.3744E+00 2.3859E+00 2.3892E+00 2.3890E+00 2.3803E+00 2.3859E+00 2.3892E+00 0.22% 

I -5.8788E+00 3 -5.8605E+00 -5.8717E+00 -5.8924E+00 -5.9008E+00 -5.8675E+00 -5.8715E+00 -5.8924E+00 0.24% 

I 1.0670E+00 4 1.0339E+00 1.0636E+00 1.0484E+00 1.0408E+00 1.0507E+00 1.0635E+00 1.0484E+00 1.12% 

I -1.1118E+01 5 -1.0871E+01 -1.1077E+01 -1.1021E+01 -1.0972E+01 -1.1030E+01 -1.1078E+01 -1.1021E+01 0.69% 

I -1.2344E+01 6 -1.2424E+01 -1.2366E+01 -1.2516E+01 -1.2497E+01 -1.2385E+01 -1.2367E+01 -1.2516E+01 0.58% 

I 2.1460E+02 7 2.1458E+02 2.1457E+02 2.1457E+02 2.1457E+02 2.1457E+02 2.1457E+02 2.1457E+02 0.01% 

I -3.9057E+01 8 -3.8902E+01 -3.9071E+01 -3.9111E+01 -3.9151E+01 -3.8987E+01 -3.9072E+01 -3.9111E+01 0.20% 

I 2.5349E+00 9 2.3433E+00 2.5146E+00 2.3967E+00 2.3767E+00 2.4571E+00 2.5146E+00 2.3967E+00 3.00% 

I 1.9812E+02 10 1.9787E+02 1.9779E+02 1.9998E+02 2.0008E+02 1.9792E+02 1.9779E+02 1.9998E+02 0.55% 

I -2.9816E+01 11 -2.8545E+01 -2.9666E+01 -2.9198E+01 -2.9053E+01 -2.9221E+01 -2.9663E+01 -2.9198E+01 1.41% 

σ = 0.3 

I -1.5335E+01 1 -1.5330E+01 -1.5330E+01 -1.5330E+01 -1.5329E+01 -1.5334E+01 -1.5330E+01 -1.5330E+01 0.01% 

I 1.9369E+02 2 1.9364E+02 1.9349E+02 1.9374E+02 1.9382E+02 1.9378E+02 1.9349E+02 1.9374E+02 0.07% 

I 4.1696E+03 3 4.1670E+03 4.1646E+03 4.1666E+03 4.1732E+03 4.1691E+03 4.1644E+03 4.1666E+03 0.07% 

I -1.6740E+03 4 -1.6743E+03 -1.6722E+03 -1.6758E+03 -1.6748E+03 -1.6757E+03 -1.6722E+03 -1.6758E+03 0.09% 

I 1.6251E+05 5 1.6228E+05 1.6225E+05 1.6218E+05 1.6270E+05 1.6235E+05 1.6223E+05 1.6218E+05 0.11% 

I -2.9475E+05 6 -2.9465E+05 -2.9424E+05 -2.9504E+05 -2.9495E+05 -2.9505E+05 -2.9423E+05 -2.9504E+05 0.12% 

I -9.7844E+01 7 -9.7834E+01 -9.7826E+01 -9.7817E+01 -9.7833E+01 -9.7793E+01 -9.7826E+01 -9.7817E+01 0.02% 

I -3.7698E+03 8 -3.7651E+03 -3.7619E+03 -3.7628E+03 -3.7753E+03 -3.7679E+03 -3.7618E+03 -3.7628E+03 0.13% 

I 5.7030E+02 9 5.7076E+02 5.7008E+02 5.6938E+02 5.6964E+02 5.7131E+02 5.7011E+02 5.6938E+02 0.12% 

I 1.4350E+06 10 1.4291E+06 1.4325E+06 1.4226E+06 1.4387E+06 1.4279E+06 1.4321E+06 1.4226E+06 0.40% 

I -2.1174E+06 11 -2.1162E+06 -2.1124E+06 -2.1188E+06 -2.1200E+06 -2.1192E+06 -2.1122E+06 -2.1188E+06 0.14% 

σ = 0.5 

I -1.3322E+02 1 -1.3322E+02 -1.3322E+02 -1.3322E+02 -1.3321E+02 -1.3322E+02 -1.3322E+02 -1.3322E+02 0.00% 

I 2.1586E+03 2 2.1581E+03 2.1582E+03 2.1585E+03 2.1580E+03 2.1584E+03 2.1582E+03 2.1585E+03 0.01% 

I 6.3477E+04 3 6.3459E+04 6.3461E+04 6.3464E+04 6.3460E+04 6.3466E+04 6.3460E+04 6.3464E+04 0.01% 

I -3.3988E+03 4 -3.4002E+03 -3.3977E+03 -3.4035E+03 -3.3977E+03 -3.4009E+03 -3.3977E+03 -3.4035E+03 0.07% 

I 8.0571E+06 5 8.0530E+06 8.0543E+06 8.0560E+06 8.0525E+06 8.0552E+06 8.0542E+06 8.0560E+06 0.02% 

I -1.3859E+06 6 -1.3859E+06 -1.3851E+06 -1.3877E+06 -1.3855E+06 -1.3870E+06 -1.3851E+06 -1.3877E+06 0.08% 

I 5.8786E+02 7 5.8782E+02 5.8780E+02 5.8780E+02 5.8779E+02 5.8782E+02 5.8780E+02 5.8780E+02 0.00% 

I -3.8695E+05 8 -3.8682E+05 -3.8682E+05 -3.8682E+05 -3.8686E+05 -3.8686E+05 -3.8682E+05 -3.8682E+05 0.01% 

I 1.9386E+04 9 1.9397E+04 1.9381E+04 1.9414E+04 1.9376E+04 1.9398E+04 1.9381E+04 1.9414E+04 0.08% 

I 6.8459E+08 10 6.8417E+08 6.8425E+08 6.8447E+08 6.8410E+08 6.8437E+08 6.8424E+08 6.8447E+08 0.02% 

I -3.6238E+07 11 -3.6228E+07 -3.6205E+07 -3.6270E+07 -3.6223E+07 -3.6249E+07 -3.6205E+07 -3.6270E+07 0.07% 
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Figure 3.8 Results of matching by using geometric moment invariants 

In order to compare with geometric moment invariants, we give also the results of matching 

by using their geometric moment invariants to constitute the feature vectors of images (Figure 

3.8). The results show that the method by use of Gaussian-Hermite moment invariants has 

almost the same ability of the method by use of geometric moment invariants. In general, the 

numerical stability of the orthogonal moments with respect to the geometric ones increases 

with the order. More precisely, it decreases, but that of the geometric moments decreases 

much faster. Because the 11 first invariants are based on the moments of orders 2−4, this 

advantage is not obvious. 

3.4 Seismic image analysis by moments 

The seismic data can be considered volume with texture. Seismic images are also 

characterised by specific textures which can provide valuable information for locating 

potential oil reservoirs. Texture is an important feature for human perception of visual objects 

along with shape, color, and motion features (du Buf et al., 1990). Various feature 

representations of visual objects and similarity measures based on these descriptors have been 

investigated for texture recognition and similarity-based retrieval applications (Chang and 

Kuo, 1993; Miyamoto et al., 2000; Sim et al., 2004). 

Textures can be classified into two categories: inhomogeneous and homogeneous textures. 

Homogeneous textures such as pictures of wall of bricks or sands have the uniform statistical 

characteristics over the whole area of an image whereas inhomogeneous textures such as 

pictures of clouds or flowers in a vase do not even have a quasi-periodic structure. Usually, a 
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lot of conventional algorithms have focused on investigation of homogeneous textures. On the 

contrary, inhomogeneous textures have been investigated recently. Especially, the Hurst 

parameters of fractal Brownian motion have been used for representation of inhomogeneous 

textures. 

Some properties make it possible to use the moments to be the unique features of image and 

hence represent the image in feature space. Since the moments are uniquely determined by the 

image, the uniqueness of moments will then ensure their discriminative ability. On the other 

hand, the feature is always described as global information which can be also demonstrated 

from the definition of moment. Therefore, the introduction of moments in the feature space to 

represent the image has then become an efficient way in image analysis. We obtain a 

significant reduction of dimensionality without losing important information about the 

original image or object through such feature representation. If the representation is carefully 

chosen, we can obtain the features which are relatively insensitive to noise and occlusion. 

Furthermore, the feature representation with moment-based techniques provides a complete 

object representation which is invariant to some transformations. In pattern recognition, the 

moment invariants are taken as the features which maintain the invariance of some image 

transformations such as rotation, translation and scaling of the original image. This advantage 

is the most important reason for which the moments can be used as good features in image 

analysis. Apart from image analysis, moment-based techniques have been also widely used in 

the fields of computer vision, machine learning and pattern recognition. 

So far, there are several ways for anisotropy detection in an image. The most used method for 

anisotropy detection is based on gradient structure tensor (GST) (Bakker, 2002). The 

information about anisotropy can be well reflected according to the analysis of the 

eigenvalues of GST matrix. The eigenvalues Ȝ of the image structure tensor can be used to 

detect lines, corners or constant grey value regions.  

Table 3.4 Local structure conditions (GST) 

Local Structure Eigenvalues 

constant intensity λ1 ≈λ2 

Linear structure 

≈ 0 

λ1 ≥ 0, λ2 

The underlying structure deviates from the 

linear structure model 

≈ 0 

λ1 ≥ 0, λ2

Here we take a 2D structure tensor as an example. We assume that the eigenvalues are sorted 

 ≥ 0 
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so that Ȝ1>Ȝ2

Contrast independent measures can be constructed dividing the eigenvalues by the total 

energy. The anisotropy or isotropy can be measured by a confidence which is calculated by 

these two eigenvalues: 

. In two dimensions we can distinguish three different cases, corresponding to 

different types of local neighbourhoods. They are given in the table above. 

 1 2

1 2
anC

λ λ
λ λ
−= +  (3.50) 

Another method is still based on matrix analysis; however, unlike with the mentioned above, 

this method uses Fourier transform to extract the desire information. To be more precise, it 

uses the spectral moment instead of the gradient to be the elements of the matrix. Since this 

method is related greatly to the spectral geometric moments, we then call this as spectral 

moment matrix method (SMM) (Miguel, 1995). Likewise, SMM also detects anisotropy or 

isotropy information depending on its two eigenvalues. Since the two eigenvlues are both 

non-negative, a non-negative confidence defined by 

 
( )( )1 2

1 2

min ,

max ,anC
λ λ
λ λ=  (3.51) 

can be used to judge anisotropy or isotropy of the neighbourhood. if Can is great which 

indicates the higher degree of anisotropy; on the other hand, if Can

 

 is little, which shows a 

linear texture of image and the orientation in the region trends to be the same. 

Figure 3.9 Two original images for the SGMM experiments 

          (a) a seismic image with obvious fault;    (b) a seismic image with slight faults. 

Inspired by the SMM, we try to construct the corresponding SMM which is based on 

Gaussian-Hermite moments other than geometric moments. The corresponding SMM is so-

called spectral Gaussian-Hermite moments matrix (SGMM) is has the form equation(3.39) in 

section 2.2.2.2 and a non-negative confidence defined by equation(3.40). 

(b) (a) 
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The experiments are carried out for evaluating the proposed. For comparison, both GST and 

SMM are also used to detect the isotropy. Two experiments are conducted. The first 

experiment is carried out on a real seismic image which is shown in Figure 3.9(a). We can 

observe that this image contains an obvious fault which locates right and passes through 

vertically in the image. Three methods are used for locating this fault. The results are well 

shown in Figure 3.10, (a) and (b) show the result from GST with ıT=2.0 and 4.0 respectively. 

Apparently, ıT=4.0, this parameter setting produces much obvious faults location than the 

first one; (c) and (d) show the results from SMM with different window size 16×16 and 

32×32 pixels respectively. We can observe that small window size causes the unsmooth 

location of faults. From (e) to (h), we can see the results from SGMM. (e) and (f) show the 

results with window size 16×16. The difference lies in the ı selection. ı=4.0 for (e) and 5.0 

for (f). We make an improvement by increasing window size to 32×32. (g) shows the 

detection results with ı=6.0, the result is almost as good as (d) from SMM. When ı is 

increased to 9.0, as can be seen in (h), the clear and obvious location of isotropy is found. We 

can learn from this figure that GST gives a much coarse location of fault. SMM produces a 

much better location when the window size is 32×32. SGMM, on the other hand, shows the 

most clear and obvious location when the bigger window is used, as can be seen from (g) and 

(h), the white parts are relatively narrow and located exactly the place where the fault exists. 

With the increase of ı the influence from other parts on the main fault detection has 

efficiently eliminated.  

 

Figure 3.10 The obvious fault detection for the seismic image. 

(a-b) are the results from GST; 

 (c-d) are the results from SMM; 

    (e-h) are the results from SGMM. 
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Figure 3.11 The slight fault detection for the seismic image. 

(a-b) are the results from GST; 

 (c-d) are the results from SMM; 

    (e-h) are the results from SGMM. 

Figure 3.11 shows the result for Figure 3.9(b) which contains several faults; however, these 

faults are relatively slight so that it is difficult to detect them. The parameter setting is as the 

same as that of Figure 3.10. The figure shows generally lower qualified detection of these faults 

by three methods mentioned above. The main fault located around the center image crossing 

vertically can be successfully detected by both SMM and SGMM. The other faults, as can be 

seen from the figure are slightly stood out. Most of them are even discontinuous. However, 

generally speaking, among three methods, SGMM relatively perform better than other 

methods. This is supported by the (g) and (h) in the figure.  

Finally, it should be noted here that the method based on spectral moments can be used for 

detection isotropy, however, for some texture appears in seismic images, as can be seen from 

the results of Figure 3.11, huge variations have been produced not only in their orientation, 

but also in their frequency, and grey-level. These factors all influence the final results of 

detection. This can be learned from Figure 3.10 and Figure 3.11. Hence, the methods are 

generally used with some pre-processing of the original images so that the certain properties 

can be well stood out. Then the better results can be expected on these pre-processed images. 

3.5 Conclusion 

In this chapter, we introduce the ways of analyzing image by moments, from which the 

advantages of moments are obviously exhibited. The different kinds of moments, the non-

orthogonal moments such as geometric moments and the orthogonal moments, are introduced 
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in the chapter. From the summary of the different kinds of moments, we have learned that 

geometric moments are the simplest ones that can be easily used to develop moment 

invariants. Invariants of Gaussian-Hermite moments are discussed and constructed in this 

chapter. The translation invariants are constructed by the corresponding Gaussian-Hermite 

central moments accordingly. The rotation invariants are derived from a theorem which 

indicates that Hermite polynomials keep the similar linear relations to monomials when image 

coordinates are rotated. Based on this theorem the rotation invariants of Gaussian-Hermite 

moments are achieved and tested by related images. The combined invariants are finally 

introduced which are independent of both translation and rotation. 

We have proposed an approach for estimating the coherency of texture that is based on the 

spectrum Gaussian-Hermite moments in this chapter. We present the way using the moments 

of the first order and the second order to estimate the coherency within a small local window 

in Fourier domain. In this new method the size of the window and the value of σ  are 

important. As the window size gets larger, more global features are detected. This suggests 

that the choice of window size could possibly be tied to the contents of the image. 

The experiments are designed for testing feature representation and pattern classification 

abilities in the chapter. The experimental results show that Gaussian-Hermite moment 

invariants have better feature representation abilities and perform better in the task of pattern 

classification than geometric moment invariants. They are potential tools for image analysis 

and pattern recognition. 

In the end of chapter, we design the experiments for analysis of seismic image. The 

experimental results show that Gaussian-Hermite moments have better representation abilities 

and perform efficiently in the task of coherence estimation. 
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4 Stepwise dip scanning coherency estimation  

Coherence technology is an effective tool for seismic interpretation. It detects the 

discontinuity of the seismic event by analyzing seismic signals in adjacent traces, so as to 

identify geological phenomena like faults, special lithologic bodies, river courses etc. Also 

coherence can be used to define stratigraphic features. 

Seismic trace coherence is a measure of lateral changes in the seismic trace pattern and is 

based on a cross-correlation measurement. Coherence algorithm has been developed rapidly 

since Bahorich and Farmer firstly introduced the coherence technology in 1995. At present, 

there are mainly three types of coherence algorithms, the cross-correlation based the first 

generation of algorithm (C1 algorithm) (Bahorich and Farmer, 1995), multi-trace semblance 

second generation of algorithm (C2 algorithm) (Marfurt et al., 1998), and eigenstructure based 

third generation of algorithm (C3 algorithm) (Gersztenkorn and Marfurt, 1999). The C1 

algorithm is the simplest one with the highest computational efficiency among the three 

algorithms, but it only allows three traces to participate the computation at one time. It’s not 

very robust to noise either. The C2 algorithm is more robust to noise but with lower resolution 

and higher computational costs than C1 algorithm. Compared with C2 algorithm, 

Eigenstructure based C3 algorithm is more robust to noise and with a better resolution. Since 

the original C3 algorithm did not implement dip scanning, it could not provide good 

coherence estimation in areas with strong structural dips. If dip scanning is employed in C3

3D coherent cube is an extremely effective new technique for interpreting seismic data. It has 

obvious advantages in many aspects compared with the conventional 3D data volume, such as 

recognizing faults and fractures, interpreting ancient channels, and edge detection of oil and 

gas reservoir. Coherent cube is to condense and extract information around a certain point in 

 

algorithm, it will be hard to promote due to its huge computational costs.  
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3D data volume, and then highlight the original characteristics of the geologic body at this 

point. Therefore, in terms of its essence, coherent cube is a special seismic attribute cube and 

those points having rather small coherent value are related to the discontinuity of geologic 

body. In practical production, people often interpret horizontal slices or layer slices of 

coherent cube, and this provides advantageous foundations for resolving special problems in 

exploration of oil and gas.  

In normal seismic interpretation, the seismic amplitude data is used. We can use inline, 

crossline, horizontal time slices or layer time slices, and we can also use 3D data volumes. 

Whatever kind of data is used, however, it just shows the information of single point, single 

section and single surface. It is not enough for recognizing and describing some special 

geologic bodies such as faults, fractures and old channels. In coherent cube, with seismic 

traces combined in space, attribute values of each spatial point reveal the information of lines, 

traces and points of initial data volume. The fact is that the common attribute of abnormal 

bodies is embodied on each point. It is a special kind of space weighting. 

In this chapter, the basic procedure of the stepwise dip scanning coherence algorithm based on 

eigenstructure (Li et al., 2010b) is as follows: The dip scanning is conducted in two steps. In 

the first step, C2 algorithm is employed to scan all dip directions; the resulted coherence 

values are sorted from small ones to large ones; dip directions of the larger coherence values 

will be kept for further use. In the second step, C3 algorithm is implemented to search for the 

best dip directions among the ones we kept in the first step. As a matter of application results 

to real data set, the newly proposed algorithm remains a resolution as good as C3 algorithm 

does, while it can also provide good coherence estimation in areas with strong structural dips. 

As the dip scanning is mainly conducted in C2

4.1 Detection of seismic discontinuity 

 algorithm in which we employ a fast algorithm, 

the algorithm proved to be highly efficient. 

Seismic imaging of discontinuities is a relatively geophysical technique. We compare two 

main families of algorithms, coherency (Bahorich and Farmer, 1995; Gersztenkorn and 

Marfurt, 1999; Marfurt et al., 1998) and differencing (Luo et al., 1996). Both of these 

algorithms image discontinuities using different mathematical techniques.  
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4.1.1 Coherency method 

The C1

A


 coherency algorithm utilizes cross-correlation, ȡ(t), between two seismic signals, 

and B


, and is shown mathematically to be:  

 ( ) tt A Bτ ττ
ρ +=∑  (3.52) 

where A and B are vectors containing seismic trace time sequences ( )0 1, , , nA A A A=
  

and ( )0 1, , , nB B B B=
  , and where t is the displacement of B


 relative to A


. The C1 

algorithm computes the cross-correlation of traces in the x direction, denoted by ȡx and the 

cross-correlation of traces in the y direction, denoted by ȡy. The C1 algorithm normalizes 

these cross-correlations with respect to trace energies and then computes the maximum values 

for lags in the x and y directions. The coherency measure ȡxy

 

, is given by the square root of 

these maximum values, that is 

( ) ( )xy x y  max  *max  ρ ρ ρ=  (3.53) 

Bahorich and Farmer (1995) introduced the attribute of coherence in 1995. The coherence 

cube calculates localized waveform similarity in both inline and crossline directions and 

estimates of 3D seismic coherence are obtained. Small regions within the seismic volume 

containing stratigraphic anomalies such as channels have a different seismic character 

compared to the corresponding regions of neighboring traces. This attribute is given by 

equation 

 1 31 2

1 1 2 2 1 1 3 3

1
f ff f

f f f f f f f f

CC
c

C C C C
=  (3.54) 

where f1 and f2 are two consecutive tracks the direction and inline f1 and f3 and the direction 

crossline Cf1f2 is the maximum correlation between f1 and f2. 

To account for the dip, the attribute C1 is computed for several values of the dip, the 

maximum value of C1 corresponds to the proper value of the dip of the reflectors. 

To involve a larger number of traces, Marfurt et al (1999; 1998) introduced the covariance 

matrix of traces following 
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 (3.55) 

where f 0
, f

 1
, ... f

 q 

The new attribute of coherence is then given by: 

are known traces of a vertical window of size 2n + 1. 

 
,

2

iji j

iii

C
c

C
=∑∑  (3.56) 

For through reducing the level of noise introduced by the calculation of the covariance matrix 

trace, we can use only the dominant component, which gives us the attribute C3

 

:  

1
3

ii

c
λ
λ=∑  (3.57) 

where Ȝ j is the eigenvalues of C. Ȝ1 is the largest eigenvalue. This measure was presented as 

an estimate of seismic coherency in (Gersztenkorn and Marfurt, 1999). 

Another method of coherence estimation using the gradient structural tensor(GST) is 

introduced by Bakker (2002). A seismic image of a single constant planar reflector is just a 

stack of isophote planes, and it therefore has a plane-like linear structure. Since the 

confidence value Cplane

 

 of the GST is a measure for the resemblance of an image structure to a 

plane-like linear structure, it can be used as an estimate of coherency as well. The gradient 

structure tensor T is defined as the averaged dyadic product of the gradients g : 

TT gg=  (3.58) 

The eigenvalues of this tensor indicate the gradient energy in the orientations defined by the 

corresponding eigenvectors. In the case of a planar reflector the tensor has only one non-zero 

eigenvalue, and the corresponding eigenvector is the normal vector of the reflector. Any 

deviation of the data from a constant planar reflector leads to an increase of the gradient 

energy in the lateral direction. The coherency of the GST could therefore be estimated by : 

 ( )1
gstc

tr T

λ=  (3.59) 

The eigenvalues of the covariance matrix represent the correlation between seismic traces and 
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the eigenvalues the GST represent the gradient energies of a geometrically ordered set of 

traces. This means that the reflector continuity is measured with the correlation between 

traces by the C3

4.1.2 Difference method 

 method, while the GST method uses the gradient energy in the lateral 

direction as a measurement for continuity.  

The difference method is a simpler technique which subtracts seismic signals (signal A on the 

target trace and signal B on an adjacent trace) and is given by: 

 
A B

d
A B

−= +
 
   (3.60) 

where d


 is the difference at the center sample of the window on the target trace (Luo et al., 

1996).  

In version of the differencing algorithm Carter and Lines (1999) average the absolute 

differences of a grid point and its neighbours. The differencing method is somewhat similar to 

the use of second derivative computations that are used to enhance high wave number 

variations in data. 

Consider the wavefield at some particular time slice and at some specific map location at grid 

(i, j). Denote this wavefield value at some given time by ui,j

 

. It can be shown that this second 

derivative value is closely related to a variation of the differencing algorithm. An average of 

absolute differences with surrounding traces in the differencing algorithm would consider: 

( ), 1, , 1, , , 1 , , 1 ,i j i j i j i j i j i j i j i j i jd u u u u u u u u+ − + −= − + − + − + −  (3.61) 

By comparing the previous two equations, the differencing expression for the second 

derivative map would be equivalent to the expression for the average absolute differences, dij, 

if all the quantities within the absolute value signs of dij were positive. Therefore, differencing 

and second derivative maps have a somewhat similar appearance. Also, both the differencing 

and second derivative measures generally have a higher frequency content than the C1 

coherency algorithm since, in the Fourier domain, differentiation will multiply the Fourier 

transformed wavefield by spatial frequency while producing 90 degree phase shift. 
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4.2 Stepwise dip scanning coherence algorithm based on 
eigenstructure 

The C3 algorithm requires estimating the eigenvalue of the covariance matrix of the data trace 

volume within the analysis window. Therefore, with the increase of the seismic traces in the 

analysis window, the exponent number of the covariance matrix also increase, which would 

lead to a dramatic rise of computational costs. That is the reason why C3 algorithm doesn’t 

implement dip scanning. In contrast, the C2 algorithm includes dip scanning in it and the 

algorithm is robust to noise. Currently commercial software mainly uses C2 algorithm. Both 

theory and practice proves that C3 algorithm has higher horizontal and vertical resolution than 

C2

4.2.1 Method of stepwise dip scanning  

 algorithm has.  

The stepwise dip scanning algorithm we presented in the paper comprehensively combines 

the merits of C2 and C3

 

 algorithm to process coherence estimation. The details of our 

proposed algorithm are as follows. 

Figure 4.1 Dip azimuth layout 

4.2.1.1 Select searching direction  

Set maxd  as the largest estimated value of the stratigraphic dip, if m/25ms.0d max >= , the dip 

azimuth layout of 61 nodes (Figure 4.1(a)) will be employed; if m/25ms.0d max < ,the dip 

azimuth layout of 37 nodes(Figure 4.1 (b)) will be employed. In figure 1, p and q are the 

apparent dips in the x and y directions; maxd is the largest dip value estimated by interpreters. 

Its unit is ms/m. Suppose the position of the ith )q,p( ii node is ,then  

A. 61 nodes (Marfurt et al., 1998)  

 
B. 37 nodes 
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 2 2
i i maxp q d+ ≤  (3.62) 

where i = 0,1,…,60(or i = 0,1,…,36).  

4.2.1.2 Implement C2 algorithm to dip scanning 

Suppose there are J seismic traces included in the analysis window, then we apply the 

following equation to the seismic data u(t,x,y), as well as to the data of each direction )qp( i,i  

 

2
K J

i j i j j j
k K j 1

i i K J 2

i j i j j j
k K j 1

u( k t-p -q y , ,y )

( , p ,q )
J u( k t-p -q y , ,y )

x x

x x

τ
σ τ

τ

+

=− =

=− =

 + ∆  =
 + ∆ 

∑ ∑
∑ ∑  (3.63) 

where K is half length of the vertical length of the analysis window; τ∆= /wK , where τ∆  is 

the sampling interval of the seismic data; then we estimate the average mean similarity of 

2K+1 sampling points. Out of all )q,p,( iiτσ  data, m(3~5) largest ones are selected and 

denoted by )q̂,p̂( ii  i = 1,…,m.  

The 3D seismic data volume is arranged according to traces, and the data volume of each 

trace is arranged according to the sequence of the sampling points. The coherence algorithm 

of 3D seismic data volume is also estimated in accordance with the traces. If we assume: 

 

2
J

i j i j j j
j 1
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i j i j j j
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 (3.64) 

Then from equation (4.12), we have: 

 

K

k K
i i K

k K
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σ τ
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 88 

 

2
K J

i j i j j j
k K j 1

i i K J 2

i j i j j j
k K j 1

K

k K
K

k K

u( (k 1) t-p -q y , ,y )

( t, p ,q )
J u( (k 1) t-p -q y , ,y )

[ ][ ] [ ][ ] [ ][ 1]

J [ ][ ] * [ ][ ] * [ ][ 1]

u u u

d d d

x x

x x

S i k S i K S i K

S i k J S i K J S i K

τ
σ τ

τ

+

=− =

=− =
+

=−+

=−

 + + ∆  + ∆ =
 + + ∆ 

− − + +
=

− − + +

∑ ∑
∑ ∑
∑

∑

 (3.66) 

It is clear that as the estimated results of )q,p,( iiτσ , [ ][ ]uS i k  and [ ][ ]dS i k  can also be used 

in the estimation of )q,p,t( ii∆+τσ , so if we keep and carry on the estimated results of 

)q,p,( iiτσ , the following estimation work of )q,p,t( ii∆+τσ  can be dramatically lessened. 

4.2.1.3 Alogrithm statement 

 if nTraceNum is seismic trace number and nSampleIndex is Index number of the sampling 

points, the method can be written as follow: 

Table 4.1 Pseudo code of dip scanning computation 

 

4.2.1.4 Implement C3 algorithm to dip scanning  

At the position (t,x,y˅, we read the data volume of the Jth

)q̂,p̂( ii

 seismic trace in each dip direction 

 in the analysis window.  

 i j i j i j j j
ˆˆU  u( p x q y , x ,y )τ= − −  (3.67) 

where i = 1, 2, …, m ; j = 1, 2, …, J. Let i i1 i2 iJD [U , U ,..., U ]=  estimate the largest eigenvalue 

of T
i iD D , denoted by imaxλ .  

if˄nSampleIndex ==0˅    //the first sampling point 
{ 
           // DipNum is the number of scanning dips 

For(i=0; i<DipNum; i++)  
{ 

estimate [ ][ ]uS i k ˈ [ ][ ]dS i k ˗ 

estimate the coherence value of the point˗ 
            } 
} 
else  if ( nSampleIndex > 0)  //is not first sampling point 
{ 

 // update the data retention 

estimate [ ][2 ]uS i K  and [ ][2 ]dS i K ˗ 

estimate the coherence value of the point˗ 
} 
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 { }i
i

(t, x, y) max max maxσ λ λ= =  (3.68) 

The complete equation of equation (4.12) is displayed in equation (4.18), where superscript H 

indicates the Hilbert transform of the real seismic trace. During the dip scanning process of 

the proposed algorithm, application results to the real data shows that there are no significant 

change between the calculation results of equation (4.12) and equation (4.18), whereas 

equation (4.12) requires much less calculation time.    
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∑ ∑ (3.69) 

4.2.2 Example result on a real 3D seismic data 

This section illustrates the efficiency of our approach on real seismic blocks. The real seismic 

data is from middle China. The time interval is 4 ms, and inline and cross-line trace spacing 

are 25m.( InLine 700~900,XLine 650~850,Time 0~800 ms). The algorithm is tested with 

environment: cpu: Intel core2 duo P8400, memory: 2G PC. The result of the algorithm is 

showed in Table 4.2. From the coherence slices in Figure 4.2, we can see that the C3 

algorithm leads to higher resolution than C2 algorithm does, as Figure 4.2 (A) and (D) are 

clearer than (B). Because of dip scanning, (D) eliminates the invalid coherence values caused 

by structural dips. In cross-section Figure 4.3, there are two strong structural dips on the blue 

circled area of the vertical cross-section through the original seismic data volume (Figure 4.3 

(A) ).As dip scanning is included in the corresponding algorithms of Figure 4.3 (B) and 

Figure 4.3 (C), the blue circled area has relatively larger coherence value. However, the 

algorithm used in Figure 4.3 (C) doesn't include dip scanning, thus the coherence value of the 

circled area decreases due to the structure dips.  

Although C3 algorithm has higher horizontal and vertical resolution than C2 algorithm, as the 

original C3 algorithm did not implement dip scanning, it could result to distortional coherence 

value in areas with strong structural dips. However, if dip scanning is employed in C3  

algorithm, there is too much time cost, especially when the size of the analysis window 

increases. In our newly proposed stepwise dip scanning coherence algorithm based on 

eigenstructure, dip scanning is mainly done by C2 algorithm, in which we implement its fast 

algorithm to improve the algorithm with higher quality and less time cost. 



 90 

Table 4.2 Experimental results of coherence algorithms 

Coherence algorithm Size of analysis window Time (s) 

C2 3*3*5  algorithm* 230 

C2 5*5*5  algorithm* 335 

C3 3*3*5  algorithm 20 

C3 5*5*5  algorithm  180 

C3 3*3*5  algorithm˄with dip scanning˅ 3360 

C3 5*5*5  algorithm˄with dip scanning˅ 11467 

Algorithm proposed in the thesis 3*3*5 346 

Algorithm proposed in the thesis 5*5*5 831 

*Note˖The fast algorithm proposed in the paper is employed in the C2 algorithm.  

 

Figure 4.2 TimeSlice. (Time = 400ms, analysis window format is 3*3*5) 

 

A. Horizontal slice through the 
original seismic data volume 

 

B. Horizontal slice through 
C2 coherence volume 

C. Horizontal slice without dip scanning 
through C3 coherence volume  

D. Horizontal slice with 61 dip scanning 
through the coherence volume obtained 

by our algorithm volume 
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A. Vertical crosssection through the original seismic data volume 

 
B. Vertical crosssection through C2 coherence volume  

 
C. Vertical crosssection without dip scanning through C3 coherence volume 

 

D. Vertical crosssection with 61 dip scanning through the coherence volume obtained by our algorithm 

Figure 4.3 InLine crosssection (InLine= 800, analysis window format is 3*3*5) 
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4.3 Automatic Fault Detection for 3D Seismic Data 

Seismic data sets typically contain a large number of faults at many different spatial scales. 

Knowledge of the location of the faults is critical to understanding a geological system. One 

effect that faults have, which is of real commercial significance, is that they act as membranes 

to the movement of hydrocarbons. Therefore having a good understanding of the fault 

positions is critical for the effective planning of drilling sites in order to maximize output 

efficiency. However, despite the significant progress in the development of horizon 

autotrackers, computer-aided interpretation of fault surfaces is significantly less advanced 

than horizon interpretation. Fault interpretation is more difficult as it involves especially 

detection of faults and correlation of horizons across faults. Current approaches for picking 

faults are largely manual, and involve laborious handpicking of discontinuities on a slice-by-

slice basis, one fault at a time. This is time consuming resulting in hundreds of man-hours of 

work, performed by trained geologists. It is estimated that for every six months saved in the 

work leading up to the onset of production from a new oilfield, 5% will be saved from the 

total production bill. Hence, there is a strong financial imperative for this work.  

Faults are important subsurface features that are often of interest to the geologist. According 

to conventional techniques, the identification of faults in coherent 3D seismic volumes is 

typically performed by human analysts, through manual identification and interpretation (i.e., 

"picking") of potential faults from seismic amplitude data. Of course, manual fault picking is 

an extremely time consuming process, and is thus quite costly. Additionally, manual 

interpretation is to a large extent dependent upon the skill, experience, and subjectivity of the 

individual analyst, resulting in imprecise results. 

The automatic tracking of seismic horizons has been widely available in commercial software 

since the early 1990s providing first insight into the problem of interpretation automation for 

geologic faults. What is immediately obvious with a horizon auto-tracker is that the tracking 

frequently breaks down at fault boundaries. Depending on the tracker, and the parameter 

settings, we observe gaps in the resulting interpreted surface and possible large time jumps 

where the auto-tracker picks an erroneous event. 

The automated calculation of correlation or coherency values from 3D seismic amplitude data 

is known in the art. According to this approach, geologic discontinuities such as faults are 

directly imaged from non-correlation or non-coherency events in the 3D seismic volume. 

However, this approach and other conventional methods do not provide any sort of automatic 

or quantitative interpretation of faults, but instead simply image the location of discontinuities 
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in the dataset. 

An early effort for semi-automatic fault interpretation came from Simpson and Howard 

(1996). This technique allowed users to begin their fault interpretation task by simply 

“seeding” one or more fault segments (sticks) on a vertical seismic section, and the automatic 

operation would perform a cross-correlation on a series of slanted traces derived parallel to 

the seeded fault segment. The method could be used for both tracking, where no previous 

fault interpretation existed, and snapping, where an existing fault interpretation would be 

corrected based on the slant trace cross-correlation algorithm. Each fault surface extracted 

would need an initial seed point.  

Coherence measures such as cross correlation(Bahorich and Farmer, 1995) semblance 

(Marfurt et al., 1998), or eigenstructure-based(Gersztenkorn and Marfurt, 1999) are applied to 

seismic data for imaging geological discontinuities like faults or stratigraphic features. . 

However, they produce only potential fault pixels, but do not generate the actual fault lines or 

surfaces. There exist methods for fault autotracking which use the same basic approach as 

horizon trackers, but with limited success. 

Gibson et al (2003) introduced a method has been presented to tackle the difficult and 

resource consuming task of fault detection in 3D seismic datasets. Based on a multi-stage 

approach, it first detects points of horizon discontinuity, and progressively groups these points 

into larger surfaces. The final surface representation is a combined parametric and residual 

field model, which allows for a highly flexible surface representation. Comparative results 

with manually labelled faults show promising results. 

Crawford and Medwedeff (1999) described an automated method of processing a fault 

enhanced 3D seismic volume to locate and interpret faults. The method includes processing of 

individual lateral slices of the 3D seismic volume wherein for each lateral slice, stripe artifacts 

are eliminated by adjusting pixel values to account for lines that are unduly bright or dim (and 

thus artifacts of processing). The linear features are enhanced by applying a modified Gumey-

Vanderburg algorithm, such that the intensity value of each pixel is enhanced according to the 

extent to which the pixels reside in a line. Detection of lines in the enhanced lateral slice is 

then performed by summing pixel intensities over a window at varying directions, and 

associating, with a center pixel, an amplitude value corresponding to the maximum sum and a 

direction value associated with this sum. The amplitude and direction values are then used to 

trace lines in the data. The tracing of lines is performed by locating a maximum pixel and 

examining adjacent pixels of high amplitude in directions similar to the direction values of 
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locally maximum amplitude values. The resulting vectors are then linked among lateral slices 

into surfaces that are representative of geologic faults. 

Neff et al (2000b) described another method related to a computer implemented method and 

apparatus for automatically picking faults in a recorded three-dimensional seismic trace data 

volume. The method employs test planes, which are mathematically inserted into the seismic 

data volume to approximate dip and azimuth of a potential fault plane surface. A large number 

of data points, which are selected points on the seismic traces, are defined within the seismic 

volume, such that each test plane positioned in the seismic volume contains data points 

corresponding to at least a significant portion of a trace. The method then determines a factor 

for each data point which is representative of the probability that the point resides on a fault 

plane. This probability is based on planar discontinuity and average amplitude difference 

between corresponding traces in adjacent parallel test planes. The method selects locations, in 

an x, y grid, of a strip of locations having high probability of residing on a fault surface. The 

strip of the selected locations is smoothed to a line and used to construct fault lineament 

displays in seismic sections or time slices. The fault lineaments are stored in a computer data 

file, and conventional, stratigraphically enhanced, or other seismic data enhanced for seismic 

attributes is merged with the fault lineament files to create consolidated displays to aid 

interpretation of the data volume. 

Neff et al (2000b) introduced a method that uniquely combine many of these elements by 

estimating a probability factor that a fault exists at a specific spatial location using parallel 

estimation planes within the seismic volume, and then following this procedure with an 

orientation and extraction method based on linear feature detection on time slices. 

Randen et al (2000) proposed a seismic signal feature, exploiting its spatial and temporal 

derivatives. He proposed measuring the gradient vector field disorder caused by the fault 

crossing. The disorder of the gradient vector field attribute evaluates the local disorder in 

seismic data based on the orientation and magnitude of the gradient vector field. Areas 

without faults have a smooth gradient vector field, whereas areas with faults give a disrupted 

gradient vector field. The disorder of the gradient vector field attribute is obtained using the 

eigenvalue properties of the structure tensor. Explicitly, a strong variation of the eigenvalue 

magnitude shows the variation of spectral density projected on both the principal direction 

and the orthogonal ones. For faults and stratigraphic features, eigendecomposition of the 

structure tensor gives very close eigenvalues, so the attribute is near to one. In contrast, for 

layered zones, it tends towards zero. 
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Pedersen et al (2002) introduced a method known as ant-tracking, based on artificial swarm 

intelligence. The Ant Tracking algorithm follows an analogy of ants finding the shortest path 

between their nest and their food source by communicating using pheromones, a chemical 

substance that attracts other ants. The shortest path will be marked with more pheromones 

than the longest path and so the next ant is more likely to choose the shortest route, and so on. 

The idea is to distribute a large number of these electronic "ants" in a seismic volume; and let 

each ant move along what appears to be a fault surface while emitting "pheromone." Ants 

deployed along a fault should be able to trace the fault surface for some distance before being 

terminated. Surfaces meeting expectations will be strongly marked by "pheromone." Surfaces 

unlikely to be faults will be unmarked or weakly marked. It is important to note that the ant-

tracking attribute will not only enhances faults in the data; other discontinuities, like 

processing effects, acquisition foot prints, channel boundaries , chaotic responses and internal 

reflector amplitude variations, will also be enhanced. The Ant Tracking workflow consists of 

four independent steps: 

− Enhance the spatial discontinuities in seismic data using any edge detection algorithm 

(variance, chaos, edge detection) 

− Generate the Ant Track Cube and extract the fault patches 

− Validate and edit the fault patches 

− Create final fault interpretation model 

Goff et al (2003) described a method for extracting geologic faults from a 3D seismic attribute 

cube. The present method is directed to a semi-automated process for interpreting faults from 

a fault-enhanced 3D seismic attribute cube. The process operates in three dimensions on 

groups of time or horizontal slices throughout the 3D seismic cube. The faults in the input 

data are represented by either the high or the low end of the seismic attribute range. The 

general process for interpreting faults from a fault-enhanced 3D seismic attribute cube has 

five distinct processing steps. The first four steps are automatic. The last step is semi-

automatic. The steps are as follows: 

− Calculate a minimum path value at each voxel of the input 3D seismic cube to enhance the 

local strength of the geologic faults and to determine the local azimuthally trend of any 

fault passing through that voxel; 

− Extract a fault network skeleton from the 3D seismic attribute cube by utilizing the 
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minimum path value at each voxel together with the input seismic attribute 3D cube; 

− Flood fill individual fault networks, label them, and create a vector description of the fault 

network skeletons; 

− Subdivide the fault network skeletons into the smallest, non-intersecting, non-bifurcating 

patches that lie on only one geologic fault; 

− Correlate the individual fault patches into realistic representations of geologic faults.  

 

Figure 4.4 Workflow chart for the new fault detector. 

In (Donias et al., 2007), Donias et al. presented a steered data-analysis approach to measure 

coherence for fault detection. In contrast with conventional coherence, which detects 

discontinuities without distinction, their approach aims to identify faults only. Assuming the 

local linearity of fault geometry, the method performs a continuity test using a steered data-

analysis window over a set of dip/azimuth directions. A robust, selective directional continuity 
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test is achieved by combining measures of coherence computed from a few aligned, steered 

windows. Finally, fault detection consists of finding the maximum directional response and 

accumulating it into an attribute volume. The workflow of this approach is showed as Figure 

4.4. 

Seismic signal process advanced rapidly during the 1990s, allowing us to approach the 

problem of fault interpretation automation in a similar vein as we attack horizon interpretation. 

Advances in edge-detection algorithm have allowed direct illumination of faulting and 

seismically detectable fracture. Thee techniques improve manual interpretation. For some 

geologic plays, re-sampling of the enhanced edge attribute into a geologic model property is a 

simple and effective method of un-biased automated fault interpretation. Explicit methods to 

extract fault surfaces can utilize an automatically picked horizon indirectly through analysis 

of “non-picks” and gradient trend, followed by spatial correlation for vertical connectivity. 

Alternatively, using the familiar techniques of seeded auto-tracking, on an edge volume, 

shows great promise. 

4.4 Conclusion 

In this chapter, we propose a method of stepwise dip scanning coherence algorithm based on 

eigenstructure. The dip scanning of the method is conducted in two steps. In the first step, C2 

algorithm is employed to scan all dip directions; the resulted coherence values are sorted from 

small ones to large ones; dip directions of the larger coherence values will be kept for further 

use. In the second step, C3 algorithm is implemented to search for the best dip directions 

among the ones we kept in the first step. As a matter of application results to real data set, the 

newly proposed algorithm remains a resolution as good as C3 algorithm does, while it can 

also provide good coherence estimation in areas with strong structural dips. As the dip 

scanning is mainly conducted in C2

 

 algorithm in which we employ a fast algorithm, the 

algorithm is proved to be highly efficient. 
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5 3D moments-based horizon auto-tracking 

Energy resources are becoming more difficult to find and develop. It has been recognized for 

many years that the majority of new oil and gas reserves are a function of a complex 

combination of geological, structural and stratigraphic elements. While the problems of 

exploration and the efficient development of hydrocarbon reserves have become more 

difficult, the volume of data to be interpreted for each project has become orders of magnitude 

greater over the past 30 years. Simultaneously, both the number of interpreters and the time 

allowed for interpretation have been substantially reduced. This drives the need for more 

advanced computer-aided processes that can support the interpreter by enabling more efficient, 

precise and effective interpretation of 3D seismic data volumes.  

Visually, a seismic array is a layered image, as it reflects the stratiform structure of the earth’s 

crust (Blinov and Petrou, 2005). The Earth subsurface consists of material layers with distinct 

mineral densities and porosity characteristics. The interfaces between these layers are called 

horizons. They are seen as bright or dark lines in gray-level reflection data and are central 

structures for interpretation. Other structures such as faults, channels, salt bodies, and gas 

chimneys are mainly identifiable by their interaction with horizons. Faults are generally sub-

vertical fractures which have shifted horizons on either side; they are thus identified as 

discontinuity in horizons. Salt bodies are homogeneous units of salt. Due to the high seismic 

wave velocity of homogeneous salt, such structures can have strong reflections at their 

boundaries and low or no internal reflections. Areas void of horizons can thus indicate the 

presence of salt bodies having the property of shadowing the underlying seismic. Subsurface 

leakages of gas, called gas chimneys, can be indicated by the up-bulging of horizons around 

them and the fragmentation of the horizons in their path. A reservoir in a porous rock 

formation can be accurately pinpointed by identifying its upper and lower boundary. The 

different rock materials at the boundaries give rise to horizons in the reflection data. Therefore 
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horizons can be central in delineating reservoirs. In addition to these descriptive properties of 

horizons, horizons are perhaps the most easily identifiable objects in the seismic volume and 

thus of the most important objects during interpretation. As opposed to most other seismic 

structures, horizons can directly be identified with image processing techniques such as ridge 

and valley detection. 

Strong reflection events visible in seismic images indicate boundaries between rock 

formations or strata while faults are discrete fractures across which there is measurable 

displacement of rock layering. Reflection seismic data images consist of adjacent time series 

indicating the arrival of artificially created sound waves reflected from interfaces between 

rock formations with differing physical properties. By analysing these traces, hypotheses 

about the underground structure can be developed which should merge into a consistent 

subsurface model.  

Interpretation of horizons and faults are the backbone of seismic data interpretation. 

Computer-aided structural interpretation of 3D seismic data volumes has been embodied in 

tools in interactive seismic interpretation for a number of years. Since the early 1980s, 

horizon autotracking tools have been available to help increase the speed and consistency of 

horizon interpretation in 3D seismic surveys(Dorn, 1998). More recently, techniques have 

been developed to provide computer-aided interpretation of horizons and automatic tracking 

horizon. 

In this chapter, a general approach for seismic horizon auto-tracking by moments is proposed. 

We describe the methods in 2D case and in 3D case. The method in 2D Case is similar to 

cross-correlation. In 3D case, the 3D moments based method of horizon interpreting approach 

makes use of a two-step process: first step is computation 3D properties of the region around 

seed selected; second step an optimization tracking algorithm is designed for the horizon 

auto-tracking. The approach offers an alternative to structural methods for seismic horizon 

description and recognition. Experimental results are provided to illustrate the method. 

5.1 A review of horizon interpretation 

Horizon tracking with traditional tools can be a very time consuming task since conventional 

autotrackers can’t jump across faults and other discontinuities and need reseeding. A seismic 

attribute based seismic pattern can be learnt by a neural network in order to track horizons 

across faults. Alberts et al (2000) use seismic attributes like instantaneous amplitude or 

variance to compute characteristic patterns for the horizons which interpreters are interested 
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in. then a neural network is trained to distinguish these patterns and work as a classifier. 

Intelligent search methods exclude is classifications from the result in order to track the 

desired horizon. The method can track several horizons simultaneously and works on 3D 

seismic data. 

Over the last three decades, tremendous progress has been made in technique of horizon 

interpretation. Most of the approaches to horizon picking have concentrated in the past on 

treating the seismic data as 2D images (BondÁR, 1992; Maroni et al., 2001). These are 

largely edge linking algorithms. Maroni et al use a multi-resolution approach based on 

wavelet analysis, followed by edge linking. There are some works done on the simultaneous 

3D seismic horizon picking (Bienati and Spagnolini, 1998; Keskes et al., 1983; Lavest and 

Chipot, 1993). Lavest and Chipot (1993) built the 3D horizons by refining an initial 

triangulation representation. In (Bienati and Spagnolini, 1998) horizon estimation is 

performed by integration of local time shifts (dips) along the 3D volume. The integration 

procedure is simple with no global correction of accumulated error and in (Lomask et al., 

2006) it is performed either in the Fourier or in the real domain. The Fourier-based approach 

was found to be inadequate. The problem of noise reduction as a preprocessing step of 3-D 

data analysis is considered in (Fehmers and Hocker, 2003). The authors use filtering based on 

anisotropic diffusion in order to reduce noise. 

Most of the ideas in identifying the horizons in seismic data are based on the hypothesis that 

the seismic signal is repeated from trace to trace with only slight changes. In this case the 

procedure of horizon extraction consists of finding similar fragments of the signal along 

neighbouring traces. These methods include manual interpretation, interpolation interpretation, 

auto-tracking interpretation, voxel tracking, and surface slicing.  

5.1.1 Manual interpretation 

Traditionally, picking was done manually by drawing with pencils on paper. Manual picking 

is simply the manual interpretation of horizons on lines, cross-lines, time slices, and traverses. 

On a noisy background Human eyes have a strong capability to recognize seismic events. This 

is the technique with which we are all most familiar. It is also, by far, the least efficient 

horizon interpretation technique in terms of interpreter time and effort. While interpreting 

manually, the interpreter is looking for some degree of local continuity in the data, and local 

similarity of character to identify the event to be picked. However, manual picking has the 

disadvantage of being inaccurate in estimating the parameters of events, and is inefficient and 

expensive. 
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Figure 5.1 Manual interpretation 

5.1.2 Interpolation interpretation 

Interpolation interpretation, or semi-automated interpretation, is a horizon picking technique 

that is somewhat more efficient than manual interpretation. When discussing manual 

interpretation of horizons, the reference is to traditional line-by-line interpretation in which 

the interpreter is picking on specific inlines sections or cross-lines sections, usually at some 

specific interval (e.g. every 10 line or 20 line), as shown in Figure 5.2. Within a 3D survey, 

arbitrary lines may also be defined and be interpreted to get a better image of a given feature. 

Picks on time slices are also part of the manual interpretation process. Along with larger data 

volumes and better computing resources, interpretation tools have evolved to improve the 

reliability and speed of manual interpretation. These advances include bilinear interpolation 

techniques, the use of seed lines as input for various auto-pickers, and the auto-tessellation of 

horizon surfaces during the interpretation process. While these tools improve speed, there are 

still the same issues associated with manual interpretation. Each of these techniques is 

susceptible to error due to sampling, obliquity, intersections, relays and curved structures. 

Bilinear interpolation of horizons merely interpolates values between picked seed lines, and 

can fail to honour faults or subtle geological changes if sampled too coarsely.  
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Figure 5.2 Lines interpretation before Interpolation interpretation 

 

Figure 5.3 Map views of interpolation interpretation 

The interpolation process can be improved if the interpreter is able to snap to the event 
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(minimum, maximum, zero-crossing, etc.) during the interpolation process, but behaviour at 

fault intersections can still be problematic. The same is true of auto- picking tools using seed 

lines as input. Mispicks on the initial seed lines cause erroneous surfaces, which can be 

difficult or time-consuming to edit. Figure 5.3 shows the result of interpolation process from 

Figure 5.2. Although the use of auto-tessellation to build solid surfaces while moving through 

the volume is valuable, it faces the same sampling issues and resultant accuracy problems 

between picked lines. The auto-tessellation performed in 3D visualization applications can 

reduce errors associated with increment sampling. For example, when interpreting faults the 

interpreter adjusts the line sampling as the character or orientation of the fault changes, rather 

than interpreting lines at a set increment. 

The use of interpolation, however, assumes that the horizon is locally very smooth, and 

perhaps linear (or planar in two dimensions) between control points. If this assumption is 

violated between control points (e.g., there is a fault between the interpreted lines), then the 

results will be poor. 

5.1.3 Auto-tracking interpretation 

Since the early 1980s, auto-tracking is the most commonly employed technique for horizon 

tracking and has been around in interactive interpretation systems. The concept behind auto-

picking is simple. A similar feature is searched on a neighbouring trace; if the feature has been 

found in specified constraints, the tracker moves on to the neighbouring trace. 

In one prior art automatic system for tracking a horizon in a substantially horizontal direction 

through a 3D volume of data, a user selected at least one "seed point", which then "expanded" 

in all four directions within the 3D data volume until it reached the boundaries of a user 

specified zone. Users had the option of tracking seismic data in one of two modes.  

A "seed point" is specified by its x and y location and its time or depth. It is also specified by 

a characteristic or attribute of the reflection at that point. Such characteristic is usually the 

maximum amplitude of the reflection at that location in the volume of the data. Other 

attributes or characteristics, such as minimum amplitude, phase, frequency, etc., of the 

reflection at the x, y, z point may be used. Non-iterative tracking searched the seismic traces 

adjacent seed points for similar amplitude values, picked the best one, then proceeded to the 

next available trace without double-checking the accuracy of the pick.  

An iterative picking mode verified an adjacent trace as a pick by cross-referencing the 

previous trace. Once verified, the adjacent trace was treated as a seed point and the picking of 
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adjacent traces from it proceeded. Verification means that if the amplitude of the picked trace 

is within the limits of tolerance set by the user, the pick is accepted. Users could specify (on a 

scale of 1-10) the degree of amplitude similarity they would allow. If a pick did not pass this 

acceptance test, it was designated "dead" until at least one directly adjacent trace matched 

sufficiently to accept it. 

Most automatic horizon tracking applications include cross-correlation or waveform based 

tracking algorithms to capture the seismic character over a user controlled window length. 

These methods also compute a “quality factor” attribute associated with the horizon pick 

position. Feature trackers and correlation trackers are two major classes of auto-tracking 

(Dorn, 1998).  

− Feature trackers: the feature tracker will search for a similar configuration of samples 

within the dip window but does not perform any correlations between traces. It simply 

tries to track a configuration of samples on the seismic trace that defines a peak, trough, 

zero crossing, etc., from trace to trace. 

− Correlation trackers: a correlation-based auto-tracker takes a portion of the seismic trace 

around the seed pick and correlates it with a neighbouring trace through a set of lag times 

that are constrained by the specified dip search window. If a lag time is found with an 

acceptable correlation quality factor, then the pick on the new trace is accepted, and the 

picker moves on to the next trace. Clearly the correlation auto-picker is much more 

computationally intensive than the feature tracker; it is also typically more robust in its 

picking. 

The most effective way to detect a known signal embedded in a time series is by means of a 

correlation detector (Anstey, 1964). In such a detector, the signal template is correlated with 

the continuous data stream and at any sample where the correlation coefficient is sufficiently 

high, a detection is declared. Note that such detections are also classifications. The source that 

produced the detection must be substantially similar in location and mechanism to the source 

used to create the template. The auto-correlation function of a waveform is a graph of the 

similarity between the waveform and a time-shifted version of itself, as a function of this 

time-shift; and the cross-correlation function of two waveforms is a graph of the similarity 

between the two waveforms as a function of the time shift between them (Anstey, 1964). 

Cross-correlation is a linear operation, so that when it is associated with other linear 

operations the order in which these operations are performed does not affect the final result.  

In signal processing, the cross-correlation is a measure of similarity of two signals, commonly 
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used to find features in an unknown signal by comparing it to a known one. Cross-correlation 

is essentially the same process but instead of comparing a sequence with a time shifted 

version of itself, it compares two different sequences. The cross-correlation function (CCF) of 

two sequences x[n] and y[n], and the cross-covariance function are defined in terms of time 

averages by 

 [ ] [ ] [ ]{ }xy m E x n y n mφ =+  (4.1) 

 [ ] [ ]( ) [ ] [ ]( ){ }xy E x n x n y n m y nγ = − + −  (4.2) 

Both of these functions are second-order measures, with the CCF providing a statistical 

comparison of two sequences as a function of the time-shift between them. Cross-covariance 

is the same as the CCF, except that the mean values of the two sequences are removed. The 

CCF reflects the various frequency components held in common between the two sequences 

x[n] and y[n]. In addition, it also holds vital information about the relative phases of shared 

frequency components. Unfortunately, when the cross-correlation of two sequences is 

performed, sometimes the fine detail of the shared frequency components is hard to interpret. 

If a detailed spectral analysis of the signals is required then it is better to use the cross-

spectrum approach. However from a practical point of view there is one situation where the 

CCF is useful – namely when there are timing differences between two sequences. For 

example, suppose that x[n] and y[n] are identical white noise sequences which differ only in 

the time origin. Their CCF will then be zero for all values of m, except the one which 

corresponds to the timing difference. 

Now let us suppose that the two signals x[n] and y[n], are completely uncorrelated with each 

other. From Equation(5.1), it can be shown that their CCF is a product of the expectation of 

each signal, as illustrated below. 

 [ ] [ ]{ } [ ]{ }xy m E x n E y n mφ = ⋅ +  (4.3) 

In an autocorrelation, which is the cross-correlation of a signal with itself, there will always 

be a peak at a lag of zero. Sometimes it is preferable to express the cross correlation of two 

signals in terms of the cross-correlation coefficient (Oliver, 2011). It is calculated by 

normalizing the cross-correlation of the two signals with the power of the two signals i.e. by 

setting m = 0, as illustrated in Equation(5.1). The cross-correlation coefficient lies between -1 

and +1, with zero indicating no correlation between the two signals. 
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In order to make a simple implementation of cross-correlation method, we should firstly study 

Figure 5.4, in which the tracking principle is well shown.  

 

Figure 5.4 Matching process of seed. 

We assume that the selected “seed” in the figure can be expressed by a k dimension vector. 

“k=2w” is also actually the window size of seed. In different seismic profile, generally from 

the next one to the profile from which the seed is selected, the tracking is commencing. Given 

a search window, whose size is generally bigger than that of seed, a processing of matching is 

then scanned from the entire search window. 
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If search window has the size of “l”, in order to look through all elements in the search 

window, it is necessary to calculate “l-k+1” number of cross-correlation. Among all these “l-

k+1” cross-correlations, the maximum will be taken as the potential point which have the 

huge possibility of being derived from the same horizon. This processing is repeated to the 

next profile and continued; finally we can obtain a complete horizon tracking which appears a 

curve determined by the seed. An example shows the result of auto-tracking horizon by cross-

correlation method in Figure 5.5. 

Seed Window

Searching Window
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Figure 5.5 Map views of a horizon auto-tracking interpretation based on cross-correlation. 

 

Figure 5.6 Map views of a horizon auto-tracking interpretation based on higher order statistics. 
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Another method recently introduced to the tracking of horizon is higher order statistics (HOS). 

High order statistics is widely used in system identification and the analysis of time delay etc. 

The horizon tracking can be therefore regarded as issue with time delay of adjacent channels 

which brings due to the different kinds of seismic structure. Then high order statistics can be 

consistent in this task. Once the time delay between the adjacent channels, we can then locate 

the corresponding potential points which are in fact in the same horizon.  

Assume x(t) and y(t) are respective the statistic descriptions for “seed” and for the candidate 

seeds in search window: 

 1

2

( ) ( ) ( )

( ) ( ) ( )

x t s n w n

y t s n d w n

= +
= − +  (4.6) 

In Equation (5.6) s(n) is original signal, d represents the time delay. w1(n), w2(n) are the noise. 

The seismic horizon tracking, therefore, is reduced to a problem to evaluate time delay d 

according to x(t) and y(t). The function based on the fourth order cumulant is then used for 

computing the time delay d. The desire d is generally make the function produce the 

maximum (Tugnait, 1993; Zhang, 1996). 
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these equations seem to be complicated, in actual implementation, we just take x(i) as the 

“seed” and y(j) as the search window, then set d parameter for adjusting the location of 

counterpart of x(i) in y(j). The d which makes Equation (5.7) give the maximum value will be 

the desire one. Figure 5.6 shows an example of auto-tracking of horizon by HOS. 

Interpretation algorithms for horizons are typically semi-automatic and require a detailed and 

time consuming user involvement. User steered horizon growing is a standard method. The 

user manually places a seed point on a horizon in a seismic slice and adjusts growing 

parameters before starting a growing process of the horizon. This method is not fully 
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interactive due to the need to set parameters and to wait for the growing to finish. 

The main disadvantage of auto-tracking algorithms is that they are unable to track horizons 

across discontinuities. A lateral change in polarity within an event will not be recognized 

during auto-tracking. Also, in areas of poor signal-to-noise ratio or where a single event splits 

into a doublet, the auto-picking may fail to track the correct horizon. Whenever any of the 

search criteria are not met, the auto-tracker stops at that trace. However, an auto-tracking can 

be more efficient and accurate if the interpreter holds tight control over the track. This 

requires user-machine interaction. 

5.1.4 Surface-slice interpretation 

Surface slice is a technique that is a conventional approach to interpreting seismic horizons. 

This technique involves visualizing and interpreting really finite portions of horizons on time 

slice slabs of the data. The slab thickness used is a weak function of the bandwidth of the data 

and a stronger function of the dip of the reflections. 

Surface slice approach is described in Stark (Stark, 1991, 1996), Surface-slice interpretation is 

an automated approach in which the analyst selects a thin slab of the seismic volume, for 

example at a selected depth or time, in which the automated computer system identifies 

potential reflective events. For example, seismic signal amplitudes above a certain threshold 

may be identified as reflective events. Reflective events are then similarly identified in the 

next incremental slab in time or depth, and are "joined" to those reflective events in the 

previous slice that can be considered as part of the same horizon. A set of surfaces are thus 

generated through the repetition of this process; for example, an anticline would appear as a 

set of concentric shells. The surface-slice interpretation system is often referred to as "2.5-

dimensional", due to its linking of events from two-dimensional slices. While the surface-slice 

interpretation approach is somewhat more efficient than the volume autotracking approach, 

this process can be time-consuming and difficult when the geologic structure is complex or 

when the seismic signal is weak. In addition, discontinuities and faults encountered in 

complex geology can also result in ambiguities when interpreted by the surface-slice method. 

A lightweight representation of volumetric data is often necessary for real-time rendering, for 

the segmentation of interpreted data, and for reducing visual clutter. A new Surface Wrapping 

technique has also been developed in accordance with an exemplary embodiment of this 

invention, and is described herein. For example, it allows, for example, the user to create a 3D 

polygonal mesh that conforms to the exterior boundary of geobodies (such as stream channels) 
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that offers significant improvements over existing techniques.  

An inspiration for this Surface Wrapping approach was the Surface Draping algorithm(Dorn, 

1999), which allows a polygonal mesh to be defined that reflects the geometry of an 

interpreted horizon. The surface draping algorithm is based on the metaphor of laying an 

elastic sheet over a contoured surface: gravity pulls the sheet down, causing it to conform to 

the surface beneath it, and the tension of the elastic material allows the sheet to smoothly 

cover small gaps in the surface while preserving the important features.  

Dorn's Surface Draping allows the user to view seismic data and define a series of points 

slightly above the desired horizon. These points define the initial shape of the 3D mesh, which 

corresponds to the elastic sheet described above. When the user has completed this stage, the 

actual mesh is computed, generally using one vertex per voxel. These vertices are then 

iteratively “dropped” onto the horizon. At each step, the value of the voxel at each vertex's 

position is compared to a range that corresponds to the values found in an interpreted horizon. 

If the value falls within that range, the vertex is fixed in place.  

The Surface Draping concept would have benefits if adapted to work on geobodies and other 

3D volumes. Other approaches have been used to define a mesh that surrounds and conforms 

to the shape of a volume. Acosta et al (2006a, 2006b) propose a technique where the bounding 

surface is defined slice-by-slice by a user as a set of spline curves or general polylines that are 

then connected in 3D. Kobbelt et al (1999) describes a technique based on successive 

subdivision of an initially simple mesh that completely surrounds the volume. the above 

algorithms work by moving each vertex to the nearest point in the volume.  

The Dorn's method comprising the steps of:  

− retrieving digital data from memory corresponding to the seismic survey signals, and 

arranged as a plurality of traces, each trace associated with a surface location of the survey 

and representative of a plurality of values of at least one attribute along a depth-related 

dimension;  

− displaying the plurality of traces as a survey representation;  

− receiving inputs corresponding to a first initial surface in the survey representation;  

− for each of the plurality of traces, evaluating the attribute at a plurality of points in the 

depth-related dimension near the first initial surface relative to a selected draping criterion;  
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− responsive to the evaluated attribute at one of the plurality of points meeting the draping 

criterion, setting a first interpreted horizon point along the depth-related dimension for 

each of the plurality of traces; and  

− Outputting an interpreted survey representation including the first interpreted horizon 

points for each of the plurality of traces. 

5.1.5 Voxel-based tracking 

In general, auto-pickers are sensitive to variations in signal-to-noise ratio in the data; assume 

that the data are locally continuous, smooth, and consistent. The type of control the interpreter 

picks in the volume prior to auto-picking should in part be dependent on the type of algorithm 

being used and the path it follows through the data. A technique called voxel tracking has 

become available with the advent of volume rendering and visualization. (A voxel is a 

“volume element.” In a 3D seismic volume, it is a sample). Voxel tracking is conceptually 

related to auto-picking in the sense that an “event” or feature is tracked through the volume 

starting from seed control points which are picked by the interpreter. Voxel trackers, however, 

tend to follow a true three-dimensional path through the data. Starting at the seed voxel, the 

voxel tracker will search for connected voxel that satisfy the search criteria specified by the 

user. The search is typically conducted in line, cross-line, and time directions. 

Like auto-picking, voxel tracking assumes that the data are locally continuous, consistent, and 

connected or smooth. The interpreter needs to choose the technique that will allow the best 

interpretation to be achieved in the most efficient manner possible. In terms of interpretive 

efficiency, techniques would typically be ordered, from most efficient to least efficient: voxel 

tracking, surface slicing, auto-picking, interpolating, and manual interpretation. 

5.2 Moments-based method for horizon interpretation  

As we have reviewed in section 5.1, the most commonly employed technique for horizon 

tracking is the so called auto-tracking or auto-picking (Dorn, 1998). These algorithms require 

manually selected seed points and search for similar features on neighbouring traces. The 

main disadvantage of auto-tracking algorithms is that they are unable to track horizons across 

discontinuities (Aurnhammer and Tonnies, 2002). The reason for this is the difficulty involved 

in locating non-ambiguous local correlation features as a result of the small amount of local 

information contained in seismic reflection images. When implement these algorithms, it is 
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necessary to select some primitive information which is called “seeds”. Once the “seeds” are 

chosen, the second step is tracing the horizons by the computer in the windows with the fixed 

sizes. The tracking is conducted according to the information of “seeds”. This processing can 

substantially described as a matching processing. The tracking is achieved by matching the 

“seeds” in each of potential points in the searching windows. 

 

Figure 5.7 The conventional workflow chart of 2D horizon tracking. 

According the different kind of seismic data, the tracking of horizons can be classified into 

2D horizon tracking and 3D horizon tracking. 2D tracking, as the name suggests, is tracking 

horizons in a 2D image which is the slice of original 3D seismic data. The track of horizons 

finally appears to be a curve in the 2D image; 3D tracking, on the other hand, is tracking a 
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curved surface in the 3D seismic data. In this section, we mainly discuss 2D horizon tracking 

and introduce Gaussian-Hermite moments to this task. The conventional workflow chart for 

2D horizon tracking is denoted in Figure 5.7. As can be seen from this figure, 2D horizon 

tracking in fact is a loop operation which repeats the seeking of the potential point with huge 

relation to the seeds in the different seismic profiles. The introduction of 3D horizon 

propagation brings numerous advantages over traditional horizon interpretation techniques. 

The most recognizable advantage is speed. Another benefit is a much higher degree of 

accuracy in the interpretation. A third benefit, and a very important one for mapping and solid 

model building, is a much sharper definition of fault edges.  

The moments are features of the object, which allow a geometrical reconstruction of the 

object. They do not have a direct understandable geometrical meaning, but usual geometrical 

parameters can be derived from them. The moment features have been extensively used in 

image analysis and description. Moments and moment functions have been widely used in 

image analysis and pattern recognition (Flusser and Suk, 1993; Hu, 1962) with applications 

ranging from edge detection (Luo et al., 1993), image segmentation (Yokoya and Levine, 

1989), texture analysis (Tuceryan, 1994), invariant identification, object classification, image 

coding and reconstruction (Teague, 1980; Teh and Chin, 1988) to computer vision(Abu-

Mostafa and Psaltis, 1984; Lo and Don, 1989).  

With the rapid development of the acquisition of multi-dimensional data, it is possible to 

recognize 3D objects directly. Now, 3D shape models have become more and more common. 

Applications such as object tracking and shape retrieval require us to consider how to choose 

the feature descriptors of 3D shapes and how to measure the similarities between 3D objects. 

In early works, moments were used mainly to estimate 3D transformations and their 

performances were not evaluated for classification tasks. Also, being not derived from a 

family of orthogonal functions, these moments were subject to correlation. Reuze et al (1993) 

described a method based on the 3D geometrical moments for the 3D tracking and the 

quantification of blood vessels from Magnetic Resonance Angiography (MRA). Canterakis 

(1997) extended Zernike moments to the 3D case, but their performances were not put into 

trial yet. In (Werghi and Xiao, 2002), Werghi and Xiao proposed to investigate the wavelet 

transform coefficients (WTC). The authors suggest the WTC as 3D shape descriptors of the 

Human body posture. Integrated within a Bayesian classification framework and compared 

with other standard moments, the WTC showed great capabilities in discriminating between 

close postures. Xu and Li (2006a) generalized curve moments from 2D to 3D Euclidean space, 

and use geometrical method to derive 3D curve moments invariants of different orders under 

similarity transformation. In (Xu and Li, 2006b) the authors introduced the surface moments, 
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a kind of moment can be treated as a new kind of shape descriptors of free-form surfaces and 

can handle the situation where 3D surface objects are not closed. 

5.2.1 2D Auto-Tracking of seismic horizon 

It is well-known that moments have been widely used in pattern recognition and image 

processing, especially in various shape-based applications. Here, Gaussian-Hermite moments 

are used for feature representation due to their mathematical orthogonality and effectiveness 

for characterizing local details of the signal (Shen et al., 2000). They provide an effective way 

to quantify the signal variation. We will introduce geometrical moments and Gaussian-

Hermite moments to the task of horizon tracking. The principle of the usage of moments set in 

the task is alike as the cross-correlation. Given a seed, we compute its feature represented by 

geometrical moments or Gaussian-Hermite moments, of course, since the seed here is a vector; 

geometrical moments or Gaussian-Hermite moments used are 1D dimension. Taking the 

seed’s feature as the reference, we then search the most matched template in the search 

window for each seismic profile. As we know, the processing is sustainably a template 

matching in the search window. The matching result is determined by the minimum of 

Euclidean distance.  

Here, we should present the 1D geometrical moments  
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and the 1D Gaussian-Hermite moments 
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We first define a metric to describe the feature of each sample with a 1D vector by several 

order of moment. We should take the seed size into account when select moment to construct 

the feature. When seed window is small such as 7 or 9 pixels, the moment with order greater 

than the number is meaningless. In the actual implementation, before we use geometrical 

moments or Gaussian-Hermite moments, we should construct the feature vector to represent 

the original seed or the seeds in the search window. The feature vector is constructed by 

 0 1 2, , , , pη η η η =  V   (4.12) 

Of course, it is not necessary to construct the feature vector with all order of moments. We 
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can arbitrarily select the moment with certain orders however, different order of moment 

constructing the feature vector, the different representation ability will exhibit. Finally, we can 

get a distance for each sample region i: 
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5.2.2 The workflow for 2D horizon tracking using moments 

Figure 5.8 illustrates a workflow chart of 2D horizon tracking using moments. The workflow 

begins with initial horizon surface placement process. Once the initial horizon surface is 

complete, horizon tracking by moments process is performed to iteratively move each point of 

the surface toward a reflective event. Firstly an initial seismic section is selected. In this 

seismic section, a first trace T(x, y)

We compute the feature vector by geometrical moments or Gaussian-Hermite moments, and 

push the potential candidates from neighbour traces of the initial trace T

 of the survey upon which the searching is to take place, 

where the values of the indices x and y indicate the position of the trace in the x and y surface 

directions in the survey. Following initial trace process, one pattern “seed point” is selected 

from human analysis. The “seed point” is also specified by a characteristic or attribute of the 

reflection at that point. In order to match pattern, we define a queue to store the candidate 

“seed”.  

(x, y)

 

 in this section. 

Then we pop a candidate “seed” from seed queue. In the range of searching window, we can 

evaluate a serial of features upon determination of the candidate “seed”. By Equation (5.13) 

we get the Euclidean distance between the feature of the pattern “seed” and each feature. The 

candidate with lowest value is draped as potential candidate “seed”. If this “seed” is verified 

and satisfied, it is recorded in horizon surface and pushed to seed queue. Verification means 

that if the matching result is within the limits of tolerance set by the interpreter, the tracking is 

accepted. We continue “pop-evaluate-push” process until the queue of the candidate seeds is 

empty. 
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Figure 5.8 The workflow chart of 2D horizon tracking using moments. 

When the seed queue is empty, another decision is performed to determine if the horizon 

tracking is final in the seismic section. If tracking is not over the section, another initial trace 
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5.2.3 Definition of 3D moments 

With the rapid development of the acquisition of three-dimensional information, it is possible 

for us to recognize the shapes of 3D objects directly. Applications such as object tracking and 

shape retrieval require us to consider how to choose the feature descriptors of 3D shapes and 

how to measure the similarities between 3D objects. Although recognition of objects from 1D 

projection (i.e. seismic trace correlation) and 2D projections has been widely studied among 

the horizon auto-tracking, little research has been devoted to recognition using 3D 

information.  

5.2.3.1 3D geometric moments 

In order to describe the 3D geometric moments algorithm we are interested in here, we first 

reformulate the 2D version of the geometric moments and then proceed to its 3D 

generalization. The definition of the geometric moments mpq

 

 in equation (3.2) of a 2D discrete 

field f(i,j) is: 
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For any non-negative integers p, q and r, the 3D moments of order p + q + r of a density 

distribution function f(x, y, z) are defined in terms of the Riemann integrals as: 

 ( , , ) .p q r

pqr

xyz

M x y z f x y z dxdydz= ∫∫∫  (4.16) 

It is assumed that f(x, y, z) is a piecewise continuous and therefore bounded and it is non-zero 

only in a finite part of R3 space, moments of all orders exist and their sequence Mpqr is 

uniquely determined by f(x, y, z). In the same way f(x, y, z) is uniquely determined by Mpqr 

(Sadjadi and Hall, 1980). 

The moment generating function for 3D moments may be defined as 
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which can be expanded into a power series, 
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Their formulation in the discrete case is: 
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where Nx, Ny, Nz

 

, ∆x, ∆y, ∆z define the 3D local region. The centroid of the 3D region can 

be determined from the zeroth and the first-order moments by 
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Then 3D central geometric moments are defined as: 
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Trivially, when the center of mass ( ,   ,   )x y z  is at the origin, the raw moments become the 

central moments. 

5.2.3.2 3D Gaussian-Hermite moments 

In order to describe the 3D Gaussian-Hermite moments algorithm, we also proceed 2D 

definition to its 3D generalization. From the 2D Gaussian-Hermite moments defined in 

section 3.2.1, the 3D Gaussian-Hermite moments for solids of order p+q+r of a 3D density 

function are defined by Riemann integrals 
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If the density function is piecewisely continuous and bounded in a finite region in 3D 

Euclidean space, then moments of all orders exist. Their formulation in the discrete case is: 
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where Nx, Ny, Nz

 

, ∆x, ∆y, ∆z define the 3D local region. Then 3D central Gaussian-Hermite 

moments are defined as: 
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where ,   ,   x y z  is defined in equation (5.20) and discrete case has form: 
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5.2.4 3D moments-Based estimation of local features  

The local characteristics of the structure are expressed in terms of geometry and intensity 

information. They are computed from the 3D moments up to the order 2 inside a cube 

window centred on the point of interest. 

It is possible to compute from the ten moments up to order 2(M000, M100, M010, M001, M110, 

M101, M011, M200, M020, M002

− the position of the centre of the local region:  

): 

 ( ,   ,   ).C x y z=  (4.27) 

− two angles, Į, ȕ, as angles maximizing the Z inertia and minimizing the X and Y inertia of 

the cube windows rotated first by Į around the OZ axis and then by ȕ around the OY axis:  
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5.2.5 Representation program of 3D moments 

The algorithm for computing the 3D geometric moments is illustrated by pseudo-codes in 

Table 5.1. Computing the discrete version of Gaussian-Hermite polynomials and 2D 

Gaussian-Hermite moments are given in section 3.2.2. 2D Gaussian-Hermite moments are 



 121 

easily extended to the 3D case. The moments up to order (M, N, L) can be computed by the 

algorithm in Table 5.2. 

Table 5.1 Pseudo code of 3D geometric moments computation. 

 

Table 5.2 Pseudo code of 3D Gaussian-Hermite moments computation. 

 

According to the algorithms, we can get the 3D moments parameters of the local region 

around the seed sample. 

For p = 0 to M 

For q = 0 to N 

For r = 0 to L 

For x = 0 to Nx−1 

For y = 0 to Ny−1 

For z = 0 to Nz−1 

Mom(p, q, r)  + = Img(x,y,z)* ˆ ( , )H p x  * ˆ ( , )H q y * ˆ ( , )H r z  

End for 

End for  

End for  

End for  

End for  

End for  

 

For p = 0 to M 

For q = 0 to N 

For r = 0 to L 

For x = 0 to Nx−1 

For y = 0 to Ny−1 

For z = 0 to Nz−1 

Mom(p, q, r)  + = Img(x,y,z)*xp *yq*zr
 

End for 

End for  

End for  

End for  

End for  

End for  
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5.2.6 Pattern matching algorithm of seismic horizon 

Tracking of seismic horizon is initiated interactively, selecting a point, Pt

The matching, between the referent region centred on P

, on the seismic 

volume. An iterative multi-resolution algorithm is applied to adjust this position on the 

seismic track. The local characteristics of region are then estimated accurately. 

t and each region centred on point 

around Pt

 

, is performed using the characteristic of the second order moments. We can get a 

distance for each region i: 

, 1 1 12(1) 2(1) 2(2) 2(2)
1 2

0.5 0.5
( , )+ ( , ).

t t t t

i i i

e t e tD D P P D P Pµ µ µ µα α+ + +=  (4.30) 

where De is the Euclidean distance, Į1, Į2 are normalization coefficients, ȝ2(1) designates the 

second order moments ȝ110, ȝ101, and ȝ011, and ȝ2(2) designates the second order moments ȝ200, 

ȝ020, and ȝ002

Among the candidates 

. the second order moments are split in two groups because their stand 

deviations differ.  

1t

iP+  , the point with lower value of 
, 1t t

iD + , is selected as potential 

candidate: 

 
, 1 , 1

ˆ min{ }   1 i
t t t t

i iP D K+ += ≤ ≤  (4.31) 

where K is difference between the searching windows and the sample windows. 

5.2.7 The workflow for 3D horizon tracking using moments 

3D seismic interpretation often involves the picking of horizon surface to characterize the 

subsurface for the delineation of underground features relevant to the exploration, 

identification and production of hydrocarbons. The workflow begins with initial horizon 

surface placement process. Once the initial horizon surface is complete, 3D horizon tracking 

by moments process is performed to iteratively move each point of the surface toward a 

reflective event.  

Firstly an initial trace T(x, y) of the survey upon which the searching is to take place, where the 

values of the indices x and y indicate the position of the trace in the x and y surface directions 

in the survey. Following initial trace process, one pattern “seed point” at time or depth s is 

selected from human analysis. 
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 The difficulty for automatic horizon extraction exists at least in two fold:  

− the selection of picks in a trace usually ignores lateral continuity; 

− the trace traversal order can result in significantly different horizons so that the resulting 

picks in the same horizon often conflict with each other.  

So the selections of initial “seed point” and initial trace are important to achieve a desired 

result of 3D horizon tracking. As shown (Figure 5.9), among several candidate seeds, Seed B 

or C is an optimal initial candidate.  

In order to match pattern, we define a queue to store the candidate “seed point”. We compute 

the feature vector by geometrical moments or Gaussian-Hermite moments, and push the 

“seed” to queue. candidates from eight initial trace T(x, y)

 

 in this section.  

Figure 5.9 An example of selecting initial “seed point”. 

Then we sort the queue in ascending order upon the distance value and pop first candidate 

“seed” from the queue. For each of eight neighbour traces of the trace which candidate seed is 

within, we can evaluate a serial of features upon determination of the candidate “seed” in the 

range of searching window. By Equation (5.30) we get the Euclidean distance between the 

feature of the pattern “seed” and each feature. The candidate with lowest value is selected as 

potential candidate “seed”. If this candidate “seed” is verified and satisfied, it is recorded in 
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horizon surface and pushed to queue. We continue “pop-evaluate-push” process until the 

queue of candidate seeds is empty. 

  

Figure 5.10 The workflow chart of 3D horizon tracking using moments. 

Select initial trace 
 

Push pattern “seed” to queue. 

Sort the queue in ascending order by value. 
Pop the first node to candidate. 

 

queue is empty? 

End 

Final the seismic volume? 

Start  

Initial horizon surface placement 

Locate a pattern “seed”.  
Compute the local feature of the pattern. 

N 

N 

Y 

Y 

For eight neighbour traces of the candidate do: 

 

Compute the K feature of candidate by moments. 
Compute Euclidean distance (pattern, candidate) 

Candidate satisfied? 

Select candidate with lowest value. 

Record candidate. 
Push the candidate to queue. 

N 

Y 

Next neighbour trace. 
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When the seed queue is empty, another decision is performed to determine if the horizon 

tracking is final in the seismic volume. If tracking is not over the volume, another initial trace 

is selected to continue; otherwise the tracking end. The workflow chart shows in Figure 5.10. 

5.3 Horizon auto-tracking in real seismic data sets 

The described algorithm was tested on 2D seismic images and 3D seismic volume from 3D 

seismic data. 2D seismic images include one without fault and another with some seismic 

faults. Auto-tracking within 3D volume we also test two different environments, one has few 

of faults and another has much faults.  

5.3.1 2D horizon tracking tasks  

Two seismic images extracted from a 3D seismic slice data are used for horizon tracking task. 

These two images are extracted from the different regions in which the definitely different 

geologic properties are exhibited.  

The first image is shown in Figure 5.11. We can observe that some horizons in the image are 

very obvious and most of them are continuous, because there are no faults, horizon tracking in 

this image will be more satisfy. Cross-correlation, and higher order statistics, geometrical 

moments, and Gaussian-Hermite moments are carried out for such aim. The two horizons are 

tracked. The results are respectively shown as follows. Auto-tracking starts with selection of 

initial seed. Two seeds are manually selected for the tracking mission. These seeds are derived 

from either “peak” or “through” and they are taken from the different regions of the image. In 

our experiment, we give an obvious mark on these seeds; a black cross in a little circle is used 

to stand out these seeds. The tracked horizons are labelled by the green lines.  

The parameters for this experiment are: 9 pixels for seed window and 15 pixels for search 

window. The threshold is 80%. For geometrical moments and Gaussian-Hermite moments, ı 

is set to 0.5, the feature is represented by the vector [Ș0 , Ș1 , Ș2, Ș3 , Ș4 , Ș5 , Ș6

As can be seen from the 

].  

Figure 5.12 to Figure 5.15, for the top one and the bottom one, four 

methods all give the relatively satisfactory tracking results. It should be noted here that for the 

seed located in the bottom of the image, cross-correlation and higher order statistics give the 

few smoothing tracking lines, because the tracking lines have the apparent echelonments.  
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Figure 5.11 First real seismic image for 2D horizon tracking. 

 

Figure 5.12 2D horizon tracking by correlation method in first seismic image. 
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Figure 5.13 2D Horizon tracking by higher order statistics in first seismic image. 

 

Figure 5.14 2D Horizon tracking by geometrical moments in first seismic image.  
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Figure 5.15 2D Horizon tracking by Gaussian-Hermite moments in first seismic image. 

We can observe from these four figures, compared with correlation higher order statistic, and 

geometrical moments, Gaussian-Hermite moments gives a more exactly tracking than those 

from the other two methods. They offer more reasonable tracking around the discontinuous 

areas, which can be learned from the two discontinuations located in the left and the middle of 

the images. 

The second experiment is carried out on a seismic image which contains a obvious fault. In 

general, horizon tracking can be hardly continued when the faults are in presence. So, under 

this condition, the tracking results also reflect the performance of the proposed methods. As 

can be seen in Figure 5.16, both the fault and the other influences make the horizons 

discontinuous and obscuring. And the effects have the different degrees in the different 

locations. The corresponding tracking results are shown in Figure 5.17 to Figure 5.20.  

The parameters are updated for this task: seed window has 9 pixels and the search has 15 

pixels. For Gaussian-Hermite method, all parameters are the same as those in the first 

experiment. From up to bottom, the first seed is selected clearly in the horizons with the faults. 

The seed has the narrow discontinuation which means the relatively easy tracking of this 

horizon. All methods show the correct tracking for the first seed. The second seed located in 

the bottom of the image distinguish four methods greatly.  
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Figure 5.16 Second real seismic image for 2D horizon tracking. 

 

Figure 5.17 2D Horizon tracking by correlation method in second seismic image. 
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Figure 5.18 2D Horizon tracking by higher order statistics in second seismic image. 

 

Figure 5.19 2D Horizon tracking by geometrical moments in second seismic image. 
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Figure 5.20 2D Horizon tracking by Gaussian-Hermite moments in second seismic image. 

As can be seen from the figure, correlation outputs a wrong tracing as the seed across the fault; 

higher order statistics outputs a slight jitter tracing as the seed across the fault; geometrical 

moments and Gaussian-Hermite moments direct a reasonable tracking for this seed. Since it is 

much obscuring for the areas near to the fault, the tracking can be hardly judged correctly or 

wrongly for this seed; however, it still can be seen from the images, geometrical moments and 

Gaussian-Hermite moments give a directly opposite tracking, they track down after the fault 

compared with correlation and higher order statistics which track with a up tendency. 

We have discussed the tracking results of the methods mention above. On the whole, 

Gaussian-Hermite moments show better tracking results than the other three. Here, it should 

also consider the complexity and time for implement the methods. According to equation (5.5) 

and equation (5.7), the detailed multiplication and addition involved in both correlation and 

high order statistic can be well evaluated. As for geometric moments and Gaussian-Hermite 

moments, it should generate the moment kernel first. The moment kernel is independent of 

the image as long as the size of seed window does not change, and need to be computed alone 

and be saved for the future usage. From this viewpoint, the implementation of moments in 

horizon tracking is neither expensive in complexity nor in time. 
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5.3.2 3D horizon tracking tasks  

A seismic cube clipped from a seismic survey, the map of volume is 190*200 and samples are 

200, is used for 3D horizon tracking tasks. We have tracked two horizons in different regions 

the different regions in which the definitely different geologic properties are exhibited. 3D 

scene is shown in Figure 5.21. We can observe that first horizon in the seismic cube is very 

obvious is continuous, because there are no faults, or the obvious faults in the image. 

However, another horizon is discontinuous due to faults and noises. So, 3D auto-tracking of 

second horizon will have different degree of difficulties. Correlation, higher order statistics, 

1D and 3D geometric moments, 1D and 3D Gaussian-Hermite moments are carried out for 

such aim. The horizons both continuous and discontinuous are tracked. The results are 

respectively shown as follows. The one seed are manually selected for first tracking task. The 

two seed are manually selected for the second tracking mission. The parameters for this 

experiment are: 7 pixels for seed window and 13 pixels for search window. For 1D geometric 

moments and 1D Gaussian-Hermite moments, ı is set to 0.26 and the feature is represented by 

the vector [Ș0 , Ș1 , Ș2, Ș3 , Ș4 , Ș5 , Ș6].  

 

Figure 5.21 3D horizon tracking tasks. 
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Figure 5.22 Moment feature vector around of First horizon seed.  
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Figure 5.23 Moment feature vectors around of 1st

 

 seed for second horizon. 
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Table 5.3 Normalization coefficients of moments for Euclidean distance. 

Sample 

First horizon 1st

3D 

 seed for second horizon 

Geometric moments 
3D Gaussian-Hermite 

moments 
3D 

Geometric moments 
3D Gaussian-Hermite 

moments 

ȝ2(1) ȝ2(2) ȝ2(1) ȝ2(2) ȝ2(1) ȝ2(2) ȝ2(1) ȝ2(2) 

s1 656.0484 11933.79 82.78578 157.1305 505.548 2752.087 58.15642 70.31799 

s2 873.9117 8346.73 87.40634 158.5337 595.6392 1561.919 49.64861 61.78954 

s3 1328.942 8268.353 101.7338 176.6714 925.4215 5581.73 115.3388 149.6921 

s4 1769.343 11576.48 129.6953 224.1641 1354.413 13625.88 229.4904 296.5337 

s5 1978.8 17589.36 166.0376 294.1668 1617.457 21568.39 341.3592 436.778 

s6 1665.842 23509.7 197.1896 358.141 1511.127 25229.54 398.7338 505.4634 

s7 1466.003 26621.42 204.8446 377.4947 1058.353 22572.97 371.3921 467.4836 

s8 1021.029 23952.48 176.2552 327.778 533.7764 14836.57 267.8384 333.582 

s9 608.5076 15120.51 118.1316 217.65 340.4485 5860.587 131.7096 160.72 

s10 285.1359 5152.872 51.36725 90.10923 287.0669 114.3869 25.06592 29.29059 

s11 138.5426 2715.864 11.22943 15.30023 420.8425 5715.62 70.16843 94.5703 

s12 230.8524 10762.06 23.52634 48.35215 856.5953 14138.07 202.6078 264.5249 

s13 482.392 20671.69 80.26422 158.3518 1209.121 20896.07 333.8664 427.7165 

s14 820.8292 26786.18 135.1579 261.9816 1416.361 22609.95 403.189 508.6147 

s15 1311.034 26807.61 166.5868 312.7529 1410.845 18857.68 385.1117 478.4419 

s16 1550.185 23602.19 165.0176 299.0088 1127.455 12343.96 298.6395 366.4859 

s17 1940.713 18145.37 138.4664 243.8963 674.6505 7033.07 193.2338 237.6673 

s18 1702.462 12653.36 103.7029 182.6132 400.8251 5175.655 121.0874 152.3962 

s19 1118.925 9836.074 76.25389 140.1605 386.3826 7649.424 106.9565 140.4654 

Average 1244.827 17687.34 128.5241 234.8007 978.9866 14355.89 250.8843 316.6506 

 

For 3D geometric moments and 3D Gaussian-Hermite moments, ı is also set to 0.26 and the 

feature is represented by the vector [M000, M100, M010, M001, M110, M101, M011, M200, M020, 

M002]. We take local region which size is 7*7*7 for computing 3D moments of the seed sample. We 

calculate Geometric moments and Gaussian-Hermite moments values of 19 samples around seed under in 

1D case and in 3D case.  
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Figure 5.24 3D horizon tracking with first seed. 

(a) Correlation method;                         (b) Higher order statistics method 

(c) 1D Geometric moments method;     (d) 1D Gaussian-Hermite moments method 

(e) 3D Geometric moments method;     (f) 3D Gaussian-Hermite moments method 

(b) (a) 

(c) (d) 

(e) (f) 
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Figure 5.25 Map views of 3D horizon tracking with second seed. 

(a) Correlation method;                        (b) Higher order statistics method; 

(c) 1D Geometric moments method;   (d) 1D Gaussian-Hermite moments method; 

(e) 3D Geometric moments method;   (f) 3D Gaussian-Hermite moments method. 

(b) (a) 

(c) (d) 

(e) (f) 
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Figure 5.26 3D horizon tracking with second seed. 

(a) Correlation method;                       (b) Higher order statistics method; 

(c) Geometric moments method;         (d) Gaussian-Hermite moments method; 

(e) 3D Geometric moments method;   (f) 3D Gaussian-Hermite moments method. 

(b) (a) 

(c) (d) 

(e) (f) 
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Figure 5.27 Map views of 3D horizon tracking with second seed. 

(a) Correlation method;                       (b) Higher order statistics method; 

(c) Geometric moments method;         (d) Gaussian-Hermite moments method; 

(e) 3D Geometric moments method;   (f) 3D Gaussian-Hermite moments method. 

(b) (a) 

(c) (d) 

(e) (f) 
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Figure 5.22 and Figure 5.23 show the values. In 3D case auto-tacking by geometric moments 

and Gaussian-Hermite moments, we need to estimate the two normalization coefficients 

parameters Į1 and Į2 in the equation(5.30). With data from the Figure 5.22 and Figure 5.23, 

those two parameters can be get. Table 5.3 shows the computation result. The parameter Į1 is 

ȝ2(1) and Į2 is ȝ2(2) which lies line ‘Average’. Two examples of auto-tracking have been 

shows From Figure 5.24 to Figure 5.27. 

As can be seen from Figure 5.24 and Figure 5.25, first horizon tracks more efficient. Some 

regions couldn’t be tracked over by correlation method, HOS method 1D geometric moments 

method, and 1D Gaussian-Hermite moments method. We can find that correlation method has 

similarity result with HOS method. Many of those regions are different among first two 

methods and other four methods. It can be seen from Figure 5.24(f), 3D Gassian-Hermite 

moments method has a perfect tracking. 

Figure 5.26 and Figure 5.27 show the tracking result of second horizon. Because there are 

much faults in this horizon. Tracking result is poor efficient at all of six methods. Result 

shows that correlation method maybe unsuitable to track horizon through much faults. It also 

can be seen from Figure 5.27 (f), 3D Gassian-Hermite moments method has an acceptable 

tracking.  

Two experiments show that 3D Gassian-Hermit moments method is a powerful tools for 

horizon tracking. It can be done well in both smooth horizon and discontinue horizon. The 

performance results of six methods are shown in Table 5.4 and Table 5.5. The time value of 

the methods in the tables is an average of five times. Because of much discontinuity in second 

horizon, there are increasing values of tracking in methods 3D geometric moments and 1D / 

3D Gaussian-Hermite moments. But the number of samples matched is less than first horizon. 

Table 5.4 Computation result of 3D horizon tracking with first seed. 

Method Samples matched Time(s) 

Cross-correlation       36240 6.475 

Higher order statistics    36412 6.803 

1D Geometric moments       34877 12.796 

1D Gaussian-Hermite moments   35861 61.719 

3D Geometric moments     35990 89.219 

3D Gaussian-Hermite moments 37962 121.171 
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Table 5.5 Performance result of 3D horizon tracking with second seed 

Method Samples matched Time(s) 

Cross-correlation       31780 5.328 

Higher order statistics    33903 5.938 

1D Geometric moments       32130 10.796 

1D Gaussian-Hermite moments   34265 63.906 

3D Geometric moments     34896 91.578 

3D Gaussian-Hermite moments 34992 119.422 

 

5.4 3D Gaussian-Hermite moment invariants-based approach for 
horizon interpretation  

The problem of tracking horizon is highly relevant, and there are no established ‘gold 

standards’ yet to which new methods can be compared to. As described in the previous 

Section 5.2 and 5.3, for each sample from seismic data volume we compute its feature vector 

based on geometric moments and Gaussian-Hermite moments when searching within 3D 

volume.  

Because seismic data can be considered volume with texture and seismic images are also 

characterised by specific textures which can provide valuable information for locating 

potential oil reservoirs, we track the seismic horizon follow the texture. In Figure 5.28, it can 

be seen that two regions ‘a’ and ‘b’ have different texture orientations. However, we desire 

calculate feature vectors of region b using 3D moments as in Figure 5.29. Thus the feature 

vector of region ‘b’ is similar to feature vector of region ‘a’.  

Moment invariants are rational functions of the moments that remain constant in value when 

the density is subjected to transformation. Moment invariants are well established for 

character recognition in 2D image analysis (Hu, 1962), and have been extended for 3D pattern 

only much later (Flusser et al., 2003; Mamistvalov, 1998; Sadjadi and Hall, 1980) and have 

not been applied to problems in structural seismic yet. In comparison with a huge number of 

papers on 2D moment invariants, only few papers on 3D and n-D invariants have been 

published. Sadjadi and Hall (1980) pioneered the development of 3D Geometric moment 

invariants from 2D moment. They built a family of three invariant moments with a degree up 

to the second-order. Using the notion of complex moments Lo and Don (1989) constructed a 



 142 

family of twelve invariant moments with orders up to the third degree. Rothe et al (1996) 

presented the normalization method to determine invariants . Xu and Li (2006a) generalized 

curve moments from 2D to 3D Euclidean space, and use geometrical method to derive 3D 

curve moments invariants of different orders under similarity transformation. Xu and Li (2007) 

also generalized projective moment invariants from 2D to 3D space, and select permutation 

invariant cores for generation of 3-D projective moment invariants. Ong et al (2007) present a 

theoretical framework to derive translation and scale invariants for 3D Legendre moments, by 

using generates 3D Legendre invariants from the existing 3D geometric moment invariants 

and eliminates the displacement and scale factors from Legendre polynomials to generate 

translation and scale invariants. 

 

Figure 5.28 Calculation feature vector two region using moments in a case. 

 

Figure 5.29 Calculation feature vector two region using moments in rotational case. 

In this section, we will present the 3D Gaussian-Hermite moment invariants from 3D 

geometric moment invariants and apply these properties into horizon auto-tracking. This 

approach is motivated by the excellent performance of the moment invariants. If we replace 

(b) (a) 

(b) (a) 
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moments by central or normalized moments in these relations, we obtain invariants not only 

to rotation but also to translation and/or scaling, which also ensures invariance to rotation 

around an arbitrary point. However, once we have the formulas, the proof of rotation 

invariance is easy. 

5.4.1 3D Gaussian-Hermite moment invariants 

5.4.1.1 3D Gaussian-Hermite moment invariants to translation 

The central moments do not change under the translation of coordinates, if 

 

x x

y y

z z

α
β
γ

′ = +
′ = +
′ = +

 (4.32) 

Then  

 ( , , ) ( , , )pqr pqrx y z x y zη η′ ′ ′ ′ =  (4.33) 

where Į, ȕ, Ȗ are constants. 

5.4.1.2 3D Gaussian-Hermite moment invariants to rotation 

3D rotation moment invariants were first introduced in 1980 by Sadjadi and Hall (1980), who 

employed the results of the theory of algebraic invariants and derived invariants to a rotation 

around the origin. They presented two invariants of the second order. Xu and Li (Xu and Li, 

2008) presented six typical moment invariants consist of 1 second and fourth-order, 2 third-

order and 3 fourth-order moment invariants. Some of these invariants have already existed in 

former literature. There are 6 third-order and 3 second- and third-order moment invariants in 

Lo and Don’s paper (1989).  

From those invariants, we can derive following Gaussian-Hermite moment invariants of the 

second order. 

 3
1 200 020 002

DI µ µ µ= + +  (4.34) 

 ( )3 2 2 2
3 200 020 002 110 101 011 002 110 020 101 200 0112DI µ µ µ µ µ µ µ µ µ µ µ µ= + − + +  (4.35) 

 ( )3 2 2 2
2 200 002 020 002 200 020 110 101 011

DI µ µ µ µ µ µ µ µ µ= + + − + +  (4.36) 
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 3 2 2 2 2 2 2
4 200 020 002 110 101 0112( )DI m m m m m m= + + + + +  (4.37) 

 
3 3 3 3
5 200 020 002 110 101 011

2 2 2 2 2 2
200 110 200 101 020 110 020 011 002 101 002 011

6

3( )

DI m m m m m m

m m m m m m m m m m m m

= + + +
+ + + + + +  (4.38) 

These moment invariants characterize the density of an object independently from the object's 

position or orientation. The particular functions are not invariant to scale. Since moments are 

continuous, the employed invariant functions of the moments are continuous as well. Slight 

changes in the density correspond to slight changes in the moment invariants. Similar density 

functions can be identified by identifying similar moment invariants. Thus, a feature vector of 

moment invariants can serve to describe densities independently from their position and 

orientation in 3D space. 

5.4.1.3 3D Gaussian-Hermite moment invariants to contrast changes 

So far, we have considered invariants to spatial transformations only. However, in practice the 

features used in a recognition system should also be invariant to gray level or colour changes. 

In this section we consider contrast stretching only, which is a very simple gray level 

transform given by 

 ( , , ) ( , , )f x y z a f x y z′ = ⋅  (4.39) 

where a is a positive stretching factor. Therefore, we can get moment invariants as: 
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5.4.2 3D Gaussian-Hermite moment invariants-based method for horizon 

auto-tracking 

We have described a workflow based on moments for 3D horizon tracking in previous Section 

5.2.7. Here, we replaced the modular "Compute the K feature of candidate by moments" with 

"Compute the K feature of candidate by Gaussian-Hermite moment invariants". Then we test 

our method with real seismic data set used in section 5.3.2. We process horizon track in real 

seismic data volume under local sub-volume with size 7*7*7. The result is shown in Figure 

5.30 and Figure 5.31. It can be found that moment invariants method is more robust for 

horizon tracking across fault. 

5.4.3 Multi-scale approach based on 3D Gaussian-Hermite moment 

invariants 

In preview section 5.4.2, we use local sub-volume with size 7*7*11. In this section, we will 

track the horizon under different scale. The experiment task is divided two parts: single scale 

and combining scale. 

In the single scale mode, we perform horizon tracking in real seismic data volume under local 

sub-volume with size 5*5*5. Next, we perform horizon auto-tracking in real seismic data 

volume under local sub-volume with another size 9*9*9.  

Figure 5.32and Figure 5.33 show the result of scale sub-volume size 5*5*5. Figure 5.34 and 

Figure 5.35 show the result of scale sub-volume size 9*9*9. From Figure 5.30 to Figure 5.35, 

we notice that an appropriate scale can be efficiently performed over discontinuous areas.  

Finally, we construct a combination of feature vector from the feature vectors under the three 

scales. The result is shown in Figure 5.36 and Figure 5.37. Combination scale mode has a few 

advantages than single scale mode. 
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Figure 5.30 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 7*7*7. 

 

Figure 5.31 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 7*7*7. 
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Figure 5.32 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 5*5*5. 

 

Figure 5.33 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 5*5*5. 
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Figure 5.34 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 9*9*9. 

 

Figure 5.35 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under scale 9*9*9. 
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Figure 5.36 3D horizon tracking based on Gaussian-Hermite moment invariants under combining scale. 

 

Figure 5.37 Maps for 3D horizon tracking based on Gaussian-Hermite moment invariants under combining scale. 
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5.5 Horizon self overlaps 

It is advantageous in seismic data processing and interpretation to reduce a seismic data 

volume to its internal reflection-based surfaces or horizons. Collectively, these surfaces form 

the skeleton of the seismic volume. Many methods have been described to extract or track one 

horizon or surface at a time through a volume of seismic data. Most of these methods create 

surfaces that eventually overlap themselves. Thus, the same surface may have multiple depths 

(or reflection times) associated with the same spatial position. Figure 5.38 illustrates three 

surfaces across a fault. In region A, surface H1 has two different reflection times. There is 

same phenomenon to surface H2 in region B and surface H3

 

 in region C.  

Figure 5.38 Some surfaces with multiple reflection times. 

Some methods prevent multi-valued surfaces by discarding all but one value per location. 

Typically, as shown in Figure 5.39, they store only the first one encountered during the 

execution of the process and simply do not record later ones. Moreover, if multiple surfaces 

are tracked, one surface may overlay another surface at one same location, while the opposite 

relationship occurs at another location. Collectively, these situations may be termed 

topologically inconsistent. The published approaches to date, some of which are summarized 

below, largely ignore topological consistency.  

Cheng and Lu described a method to extract the seismic skeleton from two dimensional data. 

Problems introduced by the third dimensions are neither discussed nor resolved in (Cheng and 

Lu, 1989). The procedure uses an iterative approach where strong horizons are tracked 

initially, while weaker ones are tracked in later iterations. At any iteration, the tracking is 

confined to areas delineated by horizons already tracked in earlier iterations. Tracking is 

preformed by correlating multiple neighbouring traces simultaneously. Combining the two 

approaches allows incorporation of the geologic fabric into the results. This method is also 

described by Lu and Cheng in (Lu and Cheng, 1990).  
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Figure 5.39 Tracking result of single reflection time. 

In (Li et al., 1997),Li et al disclosed the utility of using the seismic skeleton for the 

interpretation of seismic data. The seismic skeleton is two dimensional, and when a horizon 

splits, the decision regarding which branch to follow is not geologically motivated. Instead, 

the method attempts to correlate events across three neighboring traces in such a way that dip 

changes are minimized. The method includes only iterative growing of horizons. Further, 

Vasudevan et al continued of their earlier work, realizing that skeletonization has geoscience 

applications beyond seismic processing and interpretation in (Vasudevan et al., 2005).  

Huang(1990) described a two dimensional method of horizon growth allowing horizons to 

cross and penetrate each other, which violates the stratigraphic paradigm that geologic strata 

do not cross. The method reveals only the generation of horizons by picking events, peaks for 

example, building a tree of all potential linkages between these events, and then selecting the 

ones which yield the most linear horizons. Branches of the linage tree are chosen to minimize 

a cost function of horizon nonlinearity. 

Dunn and Czernuszenko (2006) described a three-dimensional geobody picker and analyzer. 

In this patent, a few select geobodies are picked, which may include geobodies having 

attribute values within a specified range or geobodies adjacent to certain attribute values. 

During picking, the geobodies are analyzed using a map view criteria to detect and eliminate 

self-overlapping geobodies, and yielding composite geobodies instead. The composite 

geobodies satisfy at least the topological condition of no self overlaps, but the boundaries 

between geobodies are determined by the order in which the voxels are detected. 

James (2008) described a seismic autopicker that generates single valued horizons and often 

takes the correct branch when horizons split. The interpreter initializes the method by 
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manually selecting one or multiple seed points in a 3D seismic data volume. The algorithm 

uses first seed point for picking a set of secondary points from neighboring traces which are 

then treated as new seed points and repeats the algorithm procedure. The algorithm assigns an 

iteration number corresponding to the number of times the algorithm repeated to each of the 

seed points. Secondary picks that led to self overlap are rejected, but topological consistency 

with other horizons is not revealed. The algorithm is basically based on controlled marching. 

Imhof et al (2011) described a method for merging surfaces identified in a seismic volume or 

seismic attribute data volume to form larger surfaces representing subterranean geologic 

structure or geophysical state of matter, comprising merging neighbouring surfaces in a 

topologically consistent way. In this patent, reflection-based surfaces may be automatically 

created in a topologically consistent manner where individual surfaces do not overlap 

themselves and sets of multiple surfaces are consistent with stratigraphic superposition 

principles. Initial surfaces are picked from the seismic data, and then broken into smaller parts 

that are predominantly topologically consistent, whereupon neighbouring patches are merged 

in a topologically consistent way to form a set of surfaces that are extensive and consistent. 

Surfaces or geobodies thus extracted may be automatically analyzed and rated based on a 

selected measure such as one or more direct hydrocarbon indications. Topological consistency 

for one or more surfaces may be defined as no self overlap plus local and global consistency 

among multiple surfaces.  

To resolver the self overlaps, we define a structure to store point information of horizon map 

in our moments based method. The structure includes information:  

− Location information: x, y; 

− Tracking list of result information: time, Euclidean distance value.  

We modify the “Record candidate” process in the workflow chat of 3D horizon tracking by 

moments at the Figure 5.10 in section 5.2.7 to “Record candidate information, update tracking 

list of the candidate” and “Update the candidate queue”. This modified workflow chart is 

shown in Figure 5.40. In contrast, new structure for the tracking method can employ a diverse 

set of techniques to achieve good performance, including taking different searching order. For 

each of eight neighbour traces of the current trace in which candidate seed is, we can evaluate 

a serial of features upon determination of the candidate “seed” in the range of searching 

window.  
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Figure 5.40 The modified workflow chart of 3D horizon tracking by moments 
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Figure 5.41 A real horizon auto-tracking has some self overlaps. 

 

Figure 5.42 The horizon auto-tracking by modified workflow. 

After evaluating feature, we can get the Euclidean distance between the feature of the pattern 

“seed” and each feature by Equation(5.30). The candidate with lowest value is selected as 

potential candidate “seed”. If this candidate “seed” is verified and satisfied, it is recorded in 

horizon surface map. At the same time this matching information is compared to the tracking 

list. If an existing node with same information has been searched, the matching information is 

ignoring; otherwise the matching information is inserted to tracking list. Then we update the 

seed queue. We repeat “pop-evaluate-push” process until the queue of candidate seeds is 

empty. When the seed queue is empty, another decision is performed to determine if the 

horizon tracking is final in the seismic volume. If tracking is not over the volume, another 

initial trace is selected to continue until the process is completed. For result in Figure 5.41, we 

can get the tracking result as be shown in Figure 5.42. 

Finally, we process visualization of the tracking result. Before changing the structure of point 

information of horizon map, the display is very simple. We construct a cell polygon using 
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four neighbour points. In this case, the same surface has only one depth (or reflection time) 

associated with the same spatial position. We inquire four neighbour point positions for a 

point position. If the value difference between points is beyond a threshold, the cell polygon 

is ignored. With new structure, however, situation is changed. Now the same surface may 

have multiple depths (or reflection times) associated with the same spatial position. To 

construct a cell polygon using four neighbour points, we have to choice a suitable value from 

the tracking list of the point. It is also depend on value difference whether the cell polygon is 

ignored. According to neighbour cell polygons the current cell polygon is merged to a larger 

surface. Finishing surface tracking, the tracking result with multiple surfaces is visualized to 

interpreter. 

5.6 Conclusion 

In this chapter, we try to concern the researches of interpreting seismic horizon based on 

moments, which are the important study on the exploration, identification and production of 

hydrocarbons. Auto-pickers, as Dorn (1998) pointed out, are all sensitive to noise, and the 

path which the auto-picker follows should be considered carefully. Moments of images 

provide efficient local descriptors and have been used extensively in image analysis 

applications. We approach method based on geometrical moments and Gaussian-Hermite 

moments to the task of 2D/3D horizon auto-tracking. With moments, the feature vector is then 

constructed by several order of moment. After obtaining feature vector, a matching algorithm 

based on Euclidean distance, between the referent feature vector of seed and feature vector of 

each candidate seeds, is performed to choice a candidate with the lowest value distance. The 

comparisons are made under both 2D and 3D conditions of correlation method, higher order 

statistics method, and moments-based method. Some visualization examples are also 

illustrated. The experiments show that the moments-based method is an efficient tool for 

horizon auto-tracking.  

3D Gaussian-Hermite moment invariants are presented here as horizon tracking technique. 

Compared to other horizon tracking techniques, moment invariants have some drawbacks and 

some advantages. Like some other horizon tracking techniques, e.g. correlation-based method, 

the computation heavily depends on a seed point. The moment invariant feature vector 

continuously varies when rotational transforming the density with respect to the seed point. 

Moment invariant methods successfully detect similarities of features conserved in detail. 

Finally we propose a modified tracking method to solve the horizon self overlaps, which are 

very common in horizon auto-tracking. 
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6 Seismic facies analysis using 3D moments 

Most of the hydrocarbons (gas and oil) occur in sedimentary rocks that were generated in 

different depositional environments (for example: river channels, delta systems, submarine 

fans, carbonate mounds and reefs). Seismic waves penetrating into and reflected within 

sedimentary rock bodies yield a seismic image of their external shape and of their internal 

texture. Therefore, the analysis of the external shape of seismic bodies and its internal textures, 

which is called seismic facies analysis (Mitchum et al., 1977), helps to specify the 

depositional environment of the investigated sedimentary rocks. An analysis of the seismic 

facies is a must in seismic interpretation to determine the depositional environment and to 

locate potential reservoirs, especially in complex oilfields. Generally, different sedimentary 

rocks yield different seismic facies. The seismic facies of a buried carbonate mound or reef, 

for example, differs significantly from a submarine fan or a delta system. Hence, each 

depositional system has its particular seismic facies (Schlaf et al., 2005). 

To recognize and analyze seismic facies with regard to the geologic environment is one of the 

goals of seismic stratigraphy (Dumay and Fournier, 1988). There are two major problems in 

seismic facies analysis: the first is to determine which seismic parameters are discriminants 

for characterizing the seismic facies; the second is to be sure that there is a link between the 

seismic parameters and the geological facies which is investigated by interpreter. To define 

the seismic facies, it is important to take into account all the information contained in the 

seismic traces. Thus, interpreter need to study simultaneously a large number of seismic 

parameters computed from the traces. Then interpreter have to determine which variables, 

among all those interpreter could compute, discriminate facies in each case being studied. The 

most efficient way to deal with these two requirements is to carry out multivariate analyses of 

the seismic parameters extracted from traces.  
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Nowadays, automatic seismic facies analysis techniques have been growing as an important 

interpretation tool for the oil exploration industry. Depending on the reservoir knowledge, the 

seismic facies analysis could be supervised by a priori geological information, or could be 

unsupervised, when there are not enough data to guide the analysis. For a seismic interpreter, 

seismic facies analysis still is a monotonous and time consuming task. Hence, a process is 

highly required which makes this interpretation step automatic.  

6.1 Seismic Facies Analysis 

Seismic facies originally were defined based on qualitative but objective descriptions of the 

seismic trace shape (Mitchum et al., 1977) . The seismic facies correspond to amplitude, 

phase, and frequency variations along and between traces in a specific interval of a seismic 

data. In every seismic facies analysis system it is a must to find out in what kind of 

depositional environment the investigated rocks were generated. If the depositional 

environment of a sedimentary rock is known then further exploration and production 

strategies can be refined and optimized (Stoker et al., 1997).  

Seismic facies analysis is a tool to describe depositional environments out of seismic data. It 

applies certain techniques that can help to specify depositional environments. Seismic facies 

analysis technique is mostly based on (Schlaf et al., 2005): 

− the external shapes of seismic bodies;  

− boundary relationships between those bodies; 

− the internal texture of those bodies. 

The external form and areal association of seismic facies units provides information on gross 

depositional environments, sediment source and geological setting. In seismic facies analysis, 

some basic types of external shapes can be differentiated. Those individual units or sequences 

includes sheet, sheet drape, wedge, bank, lens, mound, fan, and fill (channel fill, slope-front 

fill and basin fill) (Mitchum et al., 1977) . 
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Figure 6.1 3D shapes of seismic facies units. 

The boundaries between different shapes are reflection terminations. The identification of any 

of these shapes can only be established from a 2D grid of seismic profiles which allows the 

geometry of the sequence to be buildup in a quasi-three-dimensional manner. The mapping of 

reflection terminations is the key to seismic facies analysis. Problems in mapping reflection 

terminations can arise when terminations laterally pass into concordant relationships.  

The recognition of these features on a seismic profile is based on a number of seismic 

reflection parameters of which character of the single reflection, configuration of reflections 

within sequences, and external form of facies units or sequences are the most obvious and 

directly analysed parameters. The main features of these parameters are summarized below. 

Most general terms used to describe these parameters, is shown in the Figure 6.1, were 

originally defined by Mitchum et al (1977). 

In seismic interpretation, clustering seismic data can be used to extract more information 

about structures and geology of underground units. Waveform classification is a popular 

method. It has been successfully applied to oil and gas reservoir prediction. In waveform 

classification, seismic waveforms are classified using clustering analysis technology. In this 

method, the number of classes is a key parameter. Choosing this parameter is difficult as the 

geological characters vary from field to field. In fact, a good understanding of geology and 

seismic data is required to correctly determine the number of seismic facies. In field 

application, the number of classes usually varies 5 to 15 depending on the complexity of the 

seismic signal and the time thickness of the reservoir. The result of classification would be too 
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smooth if the number of classes is very small. On the contrary, the result would be too 

detailed to be interpreted if the number of classes is too great. Regardless of pattern 

recognition or neural network, the result is better if the distances between clusters are larger 

and the distances between samples in each cluster are smaller. This criterion is used to 

determine the number of classes in our method. 

In the classification process, it is assumed that two samples are in the same facies class if they 

are characterized by similar values in all input seismic attribute volumes, and therefore 

probably correspond to similar geologic environments. To automatically subdivide a seismic 

cube into shapes and textures, a certain strategy should be applied. It is recommended to 

follow the proposal of Mitchum and Vail (1977). They propose two steps: (1) subdivide a 

seismic data set into bodies (sequences) that have a certain external shape and that are 

separated by surfaces of discontinuity, called sequence boundaries, and, (2) to analyze the 

texture of those bodies. 

There are two primary categories of classification methods applied in seismic facies analysis: 

Unsupervised and Supervised. An unsupervised classification gives the interpreter insight by 

showing how a waveform is changing within the survey. Aside from defining an analysis 

interval, unsupervised classification does not use any a priori information to determine how a 

seismic trace is classified, and the results are entirely data driven. A neural network quantifies 

the changes in waveform into discrete segments and the different character types can be 

displayed as colour variations on a map or profile. The unsupervised seismic facies 

classification is usually applied in the preliminary phase, when the reservoir properties should 

be estimated almost exclusively with the seismic data. Another classification is supervised 

facies classification. Within this type of classification method, the a priori information is 

usually obtained through well logs data and its associated petrophysics analysis, which is 

always punctual compared to the large seismic volume density. Seismic modelling can 

provide interpreters a way to improve their understanding of the possible seismic responses 

observed in the classification process. Experience and geologic knowledge of the reservoirs 

make it easier to encompass all possible variations in terms of structural and petrophysical 

changes and to relate the lateral variations of seismic facies to possible reservoir parameter 

changes. This is sometimes an ambiguous and interpretative process. 

Independent of whether seismic facies analysis is supervised or not, it can be implemented 

using the workflow shown in Figure 6.2 (Johann et al., 2001). 
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Figure 6.2 Workflow for general seismic facies analysis. 

For a better understanding of the method employed in seismic facies analysis it is necessary to 

introduce some important concepts applied in this approach. 

6.1.1 Principal component analysis 

Principal component analysis (PCA) is probably the oldest and best known of the techniques 

of multivariate analysis. The origins of statistical techniques are often difficult to trace. 

However, it is generally accepted that the earliest descriptions of the technique now known as 

PCA were given by Pearson (1901), and developed independently by Hotelling (1933). PCA 

is a statistical technique for performing dimension reduction (Gurney and Gurney, 

1997; Mardia et al., 2000). The central idea of PCA is to reduce the dimensionality of a data 

set consisting of a large number of interrelated variables, while retaining as much as possible 

of the variation present in the data set (Jolliffe, 2002). This is achieved by transforming to a 

new set of variables, the principal components, which are uncorrelated, and which are ordered 

so that the first few retain most of the variation present in all of the original variables. PCA is 

a mathematical procedure that finds principal directions in a multidimensional data and 

determines the optimal shift and rotation of the data, so that it is expressed in those principal 

directions. PCA is a way of identifying patterns in data, and expressing the data in such a way 

as to highlight their similarities and differences (Smith, 2002). Since patterns in data can be 

hard to find in data of high dimension, where the luxury of graphical representation is not 

available, PCA is a powerful data-driven tool for that describes the relationships between 
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multiple variables and their classification as homogenous sets. The other main advantage of 

PCA is that once these patterns have been found in the data, and the data is compressed, for 

instance by reducing the number of dimensions, without much loss of information.  

To increase the information available for seismic facies classification, multiple post-stack 

seismic attribute volumes derived from original seismic data are used in seismic facies 

classification study. Seismic samples from input volumes are projected into a 

multidimensional plot in which the number of dimensions corresponds to the number of input 

volumes. Then, the main data trends (principal axes) are found in the data cloud. The data 

samples are projected on the principal axes. The output of this procedure is a set of new 3D 

volumes named PCA components.  

Hagen (1982) employed principal component analysis to study the lateral differences in 

porosity, Dumay and Fournier (1988) employed both the principal component analysis and the 

discriminant factor analysis to identify the seismic facies. Analysis of the PCA results was 

based on eigenvalues, contribution, and cumulated inertia. Only the first several components 

were selected as input for the hierarchical classification. These components contributed more 

than 85% to the data and contained important information about the main data trends. The 

noise and redundant data were adsorbed by the fourth component. The PCA analysis also 

helped understand the relationship between the PCA components and the input attributes. For 

example, the first PCA component happened to be mostly affected by the amplitude envelope 

with a minor contribution from fluid factor. However, all four input volumes have contributed 

to the definition of this PCA component. Therefore, it is difficult to relate the results back to 

the input attributes using cross-plots. The interpretation of the results of the classification with 

PCA still can be achieved using the calibration to well data and detailed analysis of 

morphologic patterns on vertical seismic sections, horizon and proportional slices, and 3D 

views. 

6.1.2 The K-means clustering 

K-means clustering algorithm uses an iterative algorithm that minimizes the sum of distances 

from each sample to its cluster centroid over all clusters (Seber, 1984). This algorithm moves 

samples between clusters until the sum cannot be decreased further. The result is a set of 

clusters that are as compact and well-separated as possible.  

An optimal clustering algorithm should minimize the distance between the elements of each 

group and, at the same time, maximize the distance between the different clusters.  
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K-means clustering algorithm can be done by the following steps (Sabeti and Javaherian, 

2009): 

− Start with K random cluster centroids. 

− Assign each new samples to the cluster with the closest centroid. After all samples have 

been assigned the new centroid for each cluster is calculated.  

− Repeat second step until new centroids are not changed. 

There are several ways of measuring distance (Theodoridis and Koutroumbas, 1999); Sabeti 

and Javaherian use Equation (6.1) to compute the distance between the elements of each 

group. 
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where E represents the sum of square-errors for all samples in the dataset, xij is the jth sample 

in the ith cluster, mi is the center or mean of the ith cluster, ni is the number of samples in the 

cluster, k is the number of clusters and d is the Euclidian distance which is defined by the 

following equation (Shen et al., 2005): 
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For simplicity, Matos (2007)use the Euclidian norm. To compute the distance between the 

elements of each group, they use the average distance Sk between each element xi and its 

group centroid ck
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where Nk

 

 is the number of elements in the group. The distance between the k and l groups is 

computed as the distance between their centroids: 

kl k ld c c= −  (5.4) 

The partitive clustering algorithm divides the data set into a predefined number of clusters, 

trying to minimize some error function, with the number of groups chosen and verified 

through SOM visualization. To automate the classification process, Matos use the index DBI 
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(Davies and Bouldin, 1979) as a means of evaluating the results of the K-means partitioning. 

The best clustering corresponds to the minimum DBI given by: 
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where K is the number of groups, Sk and Sl are defined by equation (6.3), and dkl

6.1.3 Statistical analyses 

 is defined by 

equation (6.4). DBI values smaller than unity represent separate groups, whereas values larger 

than unity represent groups that may overlap. 

A useful automatic seismic facies mapping tool has to combine information about shapes and 

textures within these shapes. Only a combination of shapes and textures enables a meaningful 

seismic facies analysis fulfilling the requirements of seismic stratigraphy. Mapping of seismic 

bodies has to be done on the basis of reflection terminations. As soon as a seismic data set is 

subdivided into different shapes, texture analysis within each of the shapes can be achieved. 

Statistical analyses have been applied to seismic data in order to characterize a seismic facies 

related to a geologic environment. The techniques which have been used are conventional or 

multidimensional statistics. Most of the previous works use multidimensional data analyses 

because the techniques take a large number of seismic parameters into account simultaneously. 

Conticini (1984) carried out conventional statistical analyses (cross-plots, star diagrams) on 

attributes of the traces such as continuity, instantaneous frequency, and analytical signal 

modulus. His aim was to identify the different facies encountered in fluviatile deposits. 

Mathieu and Rice (1969) studied lateral variations in sand-shale ratio for a reservoir 

formation. They analyzed trace amplitudes by means of discriminant factor analyses and 

pointed out the possibility of grouping the traces (either synthetic seismograms computed 

from well data or real traces) with respect to the prevailing lithology. Hagen (1982) studied 

real seismic traces at a reservoir level in order to emphasize lateral variations of the formation 

porosity. He took into account frequencies estimated at the reservoir level. A principal 

components analysis reduced the number of parameters used to describe each trace. Then the 

new parameters, the principal components, were used in a clustering algorithm to group traces 

that correspond to porosity areas. 

Khattri and Gir (1976), Khattri et al (1979) Sinvhal and Khattri (1983) Sinvhal et al (1984) 

studied real and synthetic traces simultaneously. They generated synthetic sedimentary 
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sequences by means of first-order Markov chains or by Monte Carlo simulations. Only a few 

lithologies were used in the studies, i.e., binary sequences with sand and shale or shale and 

coal. The impulse response was computed and analyzed with variables estimated from the 

autocorrelation function and from the power spectrum. Conventional and multidimensional 

analysts (histograms, Kolmogorov-Smirnov tests, discriminant factor analyses) on the 

variables permitted trace classification with regard to the sedimentary sequence type. The 

study of real seismic data, in formations with lateral sand-shale ratio variation, corroborated 

the value of applying discriminant analyses to the computed variables. 

Bois (1980, 1981, 1982) developed two techniques based on pattern recognition: one with and 

one without prior learning. Bois’ techniques were tested on a reservoir formation in order to 

define facies limits. Bois computed, on the portion of each seismic trace at the level of the 

reservoir. the first three coefficients of an autoregressive adjustment of the traces. After 

defining a pseudo-distance based on these coefficients Bois applied clustering techniques. The 

process with prior learning calibrated seismic facies (traces) to a nearby well. If the studied 

traces were near the learning traces (as defined by the pseudo-distance), the seismic facies 

were classified with the corresponding calibrated facies. 

Matlock and Asimakopoulos (1986) characterized the rapid facies variations in a 150 ms thick 

reservoir formation. Parameters were related to the frequency characteristics of the traces and 

seismic traces classified by comparison to reference traces located near wells where reservoir 

facies were found. Multidimensional statistical techniques clearly defined the limits between 

the different erent facies on the two seismic lines studied. 

Dumay and Fournier (1988) described a methodology for automatic facies recognition. The 

methodology for automatic facies recognition used two types of multidimensional analyses: 

clustering techniques and factor analyses. The methodology based upon two steps. First is a 

learning step beginning with computation of seismic parameters for the learning traces. 

Learning is followed by multidimensional analyses and a predictive step which allows an 

automatic facies classification. The automatic recognition is reliable and fast; the facies map 

obtained combines several discriminant parameters simultaneously. The most important 

problem remaining is to make the connection between the seismic facies interpreter has 

characterized and the geologic facies interpreter is trying to characterize. The physical 

meaning of some of the chosen discriminant variables is not entirely clear. A modelling step 

sometimes helps relate the geologic variations to the measured seismic parameters, but this 

step is not always sufficient. There are problems with the way we evaluate some of the 

seismic parameters; for example, the parameters computed from the spectrum. Indeed, it is 
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very difficult to estimate the frequency characteristics of a signal for a very short time interval. 

Second is a predictive step which allows automatic facies recognition. In this step, authors 

compute the previously chosen discriminant parameters on unknown seismic traces and 

classify the unknown traces with regard to the learning traces.  

Pennington et al (2001) developed a algorithm based on modified cross-correlation model for 

seismic facies analysis. The algorithm can:  

− realign a mistracked horizon; 

− discern subtle changes in seismic trace patterns; 

− easily perform pattern recognition for user-specified traces over a survey; 

− provide continuous output values; 

− combine and visualize the results for multiple trace pattern analysis (posterior-

classification). 

The algorithm is a modified cross-correlation model, which is a standard method for 

estimating the degree to which two series are correlated. Consider two series of signals X(i) 

and Y(i) where i = 1, 2, … N. The cross-correlation, R, at delay d is defined as 
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where Xm and Ym are the means of the corresponding series and d is the time window for 

possible horizon mistracking. The denominator in the expressions above serves to normalize 

the correlation coefficients such that it ranges from –1 to 1. A value of one indicates 

maximum correlation while zero indicates no correlation. A high negative correlation exhibits 

a high correlation but of the inverse of one of the series. However, this cross-correlation is 

focused on the relative similarity of patterns between two time series rather than absolute 

similarity. Hence, this expression was modified such that it can judge the difference in 

absolute values within the shape. The modified expression is written below, showing an 

additional factor that computes for similarity of amplitude on an absolute value: 



 167 

 

( ) ( )( )
( )( ) ( )( )

( )
( )1/2 1/2

2 2

( )
N N

m m

i i

N
N N

m m
i

i i

X i X Y i d Y Y i

R

X iX i X Y i d Y

   − − −      =       − − −           

∑ ∑
∑∑ ∑  (5.7) 

This algorithm, as implemented, can also correct for possible horizon mistracking by 

searching an amount of time (d samples specified by the user) in order to find the highest 

value for R. The output values for R are continuous from –1 to 1 and provide a value at every 

trace. 

6.1.4 Structure of Artificial Neural Networks 

The perceptron (Rosenblatt, 1958) is the most used artificial neuron in neural network 

configurations and is based on the nonlinear model proposed by McCulloch and Pitts (1943). 

Artificial Neural Networks (ANNs) are a mathematical model that tries to simulate the 

structure and functionalities of biological neural networks. ANNs derive their computing 

power from their distributed massively parallel structure and their ability to learn and 

generalize, making possible the resolution of complex problems in different knowledge areas. 

The number of types of ANNs and their uses is very high. Since the first neural model by 

McCulloch and Pitts (1943) there have been developed hundreds of different models 

considered as ANNs. The differences in them might be the functions, the accepted values, the 

topology, the learning algorithms, etc. 

The artificial neuron is the information processing unit—the fundamental element for the 

operation of the ANN—but still primitive if compared to those found in the brain. The 

artificial neurons, as well as the biological neurons, have input connections, output 

connections and an internal process that generates an output signal in response to the input 

signal. The artificial neurons, shown in Figure 6.3, are formed by (Veronez et al., 2011): 

− Input signals (x1, x2 and xm

− A set of weights (w

) or input  information, which might come from the 

environment or from the activation of other neurons. 

k1, wk2, wkm

− Sum function (Ȉ), which represents the summation of the input signals multiplied by their 

respective weights, constituting a linear combiner. 

), which describe the connection forces; that can be 

positive, representing excitatory junctions; or negative, inhibiting the activation of the 

neuron. When there is no connection between two neurons the synaptic weight is null. 
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− Activation function [ĳ(.)], which restricts the output amplitude of the neuron, in an 

interval normalized between [0;1] or [-1,1]. 

− Output signal (yk

 

), which is the result generated by the neuron. 

Figure 6.3 Structure of artificial neurons 

Every piece of input information has an associated weight, also known as the synaptic weight, 

which mathematically represents its degree of importance for that neuron. The input signals of 

the neurons are multiplied by their synaptic weight, and the summation of this result added to 

the bias forms the input information of the neuron. The three most common activation 

functions are hardlimit function, linear function, and sigmoid function. 

 

Figure 6.4 Structure of multilayer artificial neurons. 

Among the different ANN models, the Multilayer Perceptron Model (MLP), shown in Figure 

6.4, is particularly popular. In the MLP there is an input layer, one or more intermediary 

layers, and the output layer which provides the network result. 
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The great potential for parallelism is one interesting aspect of some neural networks. 

Parallelism allows processing huge amounts of data without excessive memory requirements. 

Generally, the design of a neural network is composed by three main steps (Haykin, 1999):  

− Configuration - how layers are organized and connected; 

− Learning - how information is stored; 

− Generalization -- how neural network produces reasonable outputs for inputs not found 

in the training.  

For several decades, artificial ANNs have been used successfully in a variety of different 

application areas. In most cases an ANN is an adaptive system that changes its structure based 

on external or internal information that flows through the network during the learning phase. 

The operation of ANNs is inspired by the human brain. Modern neural networks are non-

linear statistical data modelling tools. Due to their non-linear structure, ANNs can represent 

more complex features from data, which are not always possible using statistical techniques 

or traditional deterministic methods. The major advantage of ANNs over conventional 

methods is that there is no need to know the intrinsic theory of the problem, nor the necessity 

to analyze the relationships that are not fully known among the variables involved in 

modelling. 

ANNs have assisted in data reduction processes through classifications applied to a wide 

spectrum of aspects (from traffic solutions and medicinal purposes to geophysical 

interpretations). In the geosciences area, ANNs have been used to model complex phenomena 

involving variables difficult to obtain. However some ANN applications involve easily 

obtainable variables for the solution of problems, but which are usually difficult to solve using 

conventional mathematical methods. In evapotranspiration and surface temperature modeling; 

geophysics in lithological classification(Bhatt, 2002; Yang et al., 2004); soil science 

(Zacharias and Wessolek, 2007). In the case of seismic data mining, Strecker and Uden (2002) 

used an unsupervised approach where the neural network is free to search, to recognize, and 

to classify structural patterns in an n-dimensional vector field spanning the entire 3D input 

seismic attribute data set. Within the data set, each data sample is defined by a unique 

combination of physical, geometric, and hybrid attributes and is treated as an n-dimensional 

vector. 
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6.1.5 Self-Organizing Maps 

Kohonen defined the self-organizing process in its most fundamental in his early researches 

(Kohonen, 1981, 1982, 1984) . The Self-Organizing Map (SOM) is an unsupervised-learning 

(adaptive) algorithm in the neural-network category. It means that the representations of 

information are determined automatically from the metric relationships between the data 

items; no `teacher’ is needed, i.e. no input -output relations are defined a priori. The SOM 

forms a nonlinear projection from a high-dimensional data manifold onto a regular, usually 

two-dimensional, grid. Thereby it carries out clustering, visualization and abstraction of the 

multidimensional input data. 

The SOM algorithm computes the collection of the models so that it optimally describes the 

domain of (discrete or continuously distributed) observations. The models are automatically 

organized in a meaningful two-dimensional order so that similar models become closer to 

each other in the grid than the more dissimilar ones. In this sense the SOM is a similarity 

graph and a clustering diagram. Its computation is a non-parametric, recursive regression 

process. These three subprocesses, broadcasting of the input, selection of the winner and 

adaptation of the models in the spatial neighbourhood of the winner, seem to be sufficient, in 

the general case, to define a self-organization process that then results in the emergence of the 

topographically organized 'maps'. It has to be emphasized, however, that the mathematical 

theory is extremely difficult and its development is still in progress. Proofs exist only for the 

simplest cases by Cottrell (1998). 

The Self-Organizing Map is intended as a viable alternative to more traditional neural 

network architectures. Its analytical description has already been developed further in the 

technical than in the biological direction. A large number of scientific publications on the 

SOM have been written, The main application areas are: 

− statistical analysis at large, in particular data mining and knowledge discovery in 

databases; 

− analysis and control of industrial processes and machines; 

− new methods in telecommunications, especially optimization of telephone traffic and 

demodulation of digital signals; 

− medical and biological applications. 

The SOM is closely related to vector quantization methods. It is currently one of the most 
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important tools for the nonsupervised seismic facies analysis (Coleou et al., 2003).  

 

Figure 6.5 Workflow for nonsupervised seismic facies analysis based on SOM 
clustering using waveform attributes. 

Poupon et al (1999) demonstrated SOM usefulness in seismic facies analysis. Basically, in 

this scheme, each of the model classes corresponds to a discrete class of patterns and the 

problem then becomes a decision process. All model classes are “self-organized” and updated 

at each iteration. The final classes are assigned to each trace, each of them is labeled with the 

corresponding model classes or colours. Notice that changing the time of first sample in the 

series, due to horizon mistracking, can significantly alter the vector value. 

To obtain a more quantitative clustering of data properties, SOM groups could be visualized 

using the U-matrix and chosen manually. However, the manual selection of the clusters could 

be tedious and imprecise. Agglomerative, or partitive, SOM clustering or U-matrix 

segmentation using image processing algorithms (Costa and de, 1999) provides an automated 

means of clustering. Matos et al (2007) use a K-means partitive clustering algorithm. In 

contrast to conventional K-means, they cluster the prototype vectors instead of the original 

data (Vesanto and Alhoniemi, 2000). In this manner, large data sets formed by the SOM 

prototype vectors can be indirectly grouped. The proposed method not only provides a better 

understanding about the group formations, but it is also computationally efficient (Vesanto et 

Windowing of 3D seismic traces along the interpreted horizon 

Classification of each seismic attribute vectors to the closest 
prototype vector and, thus, to each seismic facies 

Generation of the SOM with a larger number of prototype vectors 
than the expected number of seismic facies 
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SOM U-matrix visualization 

Clustering and labeling of the SOM prototype vectors using the    
K-means partitive algorithm 

Selection of appropriate seismic attributes 

Construction and interpretation of the seismic facies maps 
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al., 1999

6.2 3D moments-based approach for seismic facies analysis  

). Another benefit of this methodology is noise reduction because the prototype 

vectors represent local averages of the original data without any loss of resolution. The 

flowchart in Figure 6.5 shows the proposed methodology for nonsupervised seismic facies 

analysis based on the SOM clustering by Matos. 

In section 5.2.3, we have introduced the definition of 3D geometric moments and have 

proposed the definition of 3D Gaussian-Hermite moments. We have also discussed the 3D 

moments-based estimation features of local volume in section 5.2.4. 

6.2.1 3D Feature extraction of seismic traces 

The local characteristics of the structure are expressed in terms of geometry and intensity 

information. They are computed from the 3D moments up to the order 2 inside a cube 

window centred on the point of interest seismic trace. Then we define a metric to describe the 

feature of each cube windows with a 1D vector by several order of moment: 

 [ ]0 1 2, , , , nη η η η=V   (5.8) 

Of course, it is not necessary to construct the feature vector with all order of moments. We 

can arbitrarily select the moment with certain orders however, different order of moment 

constructing the feature vector, the different representation ability will exhibit. Here, we 

construct the feature from the 12 moments up to order 3 (M000, M100, M010, M001, M110, M101, 

M011, M200, M020, M002, M003, M005

6.2.2 The workflow for seismic facies using 3D moments attribute 

). 

The flowchart in Figure 6.6 shows the proposed methodology for nonsupervised seismic 

facies analysis based on the SOM clustering using 3D moments attribute. The flowchart starts 

with getting data of the seismic traces data within a subvolume along the interpreted horizon. 

Then we extract the feature vector using 3D moments algorithm. In nonsupervised seismic 

facies analysis, the estimation of the number of existing seismic facies in the feature vector 

data is typically determined in an empirical way. We estimate the number of seismic facies 

through SOM visualization. We begin by choosing a number for the SOM prototype vectors 

that is larger than the number of expected groups in the data. Even though only qualitative 
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information is generated, by using concepts of geomorphology, this procedure can be a quite 

powerful interpretation tool.  

 

Figure 6.6 Workflow for seismic facies analysis based on SOM clustering using 3D moments attribute 

To obtain a more quantitative clustering of data properties, SOM groups could be chosen 

manually or be visualized using visual tools. However, the manual selection of the clusters 

could be tedious and imprecise. The clustering output of SOM can be represented using three 

visual techniques: 

− The first is the unified distance matrix, or U-matrix (Ultsch, 1993; Ultsch and Siemon, 

1990). In this display, the distances between the patterns are represented in a 2D 

hexagonal grid with gray shading. A cluster is an area of the SOM map represented by 

light shading, whereas borders between clusters appear as dark edges. Another visual 

component on the U-matrix display is the size of the dot in each node, representing the 

number of hits in that node. In the U-matrix image, the intensity of each pixel corresponds 

to the respective estimated distance. Therefore, the U-matrix not only shows the average 

distance between each element, it also shows the gradient between them. 

− The second visual display is the multi-dimensional visualization of the patterns discovered 

with a parallel coordinate plot, PCP (Inselberg, 1985), using a nested-means scaling 

Windowing of 3D seismic traces along the interpreted horizon 

Classification of each feature vectors to the closest prototype vector 
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Generation of the SOM with a larger number of prototype vectors 
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Estimation of the number of seismic facies based on the DBI and 
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Clustering and labelling of the SOM prototype vectors using the    
K-means partitive algorithm 

Computing feature vectors of the seismic traces using 3D moments 

Construction and interpretation of the seismic facies maps 
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procedure. This visualization tool can be used to investigate the presence of 

multidimensional clusters (Wegman and Luo, 1997). The PCP adaptation in the visual 

strategy displays the weight vector of each SOM node as polygonal segments, the colour 

and thickness of which come from the U-matrix display. 

− The third display is a geographic map view of the patterns discovered, where the seismic 

traces are displayed according to their x- and y coordinates with a colour coding from the 

U-matrix display. More detailed descriptions of each of the graphic components are 

presented in (Marroquín et al., 2009). 

After SOM learning, the partitive clustering algorithm will divide the data set into a 

predefined number of clusters, trying to minimize some error function, with the number of 

groups chosen and verified through SOM visualization. To automate the classification process, 

we also use the index DBI (Davies and Bouldin, 1979) as a means of evaluating the results of 

the K-means partitioning. The best clustering corresponds to the minimum DBI given by 

equation(6.5). 

Then, we classify each feature vectors to the closest prototype vector and to each seismic 

facies. Finally we construct the seismic facies maps.  

6.3 Example of seismic facies analysis 

We selected a sub-volume from a 3D seismic survey located in the middle of China. The sub-

volume coves an area of 190*200(interval 30m) and a 4-ms sampling rate. We now apply the 

proposed methodology to this sub-volume. Before seismic facies analysis, We use auto-

tracking method based on 3D Gaussian-Hermite moments to interpret a seismic horizon. 

Figure 6.7 shows the result in case inline section and in case crossline section. The map is 

shown in Figure 6.8.  

Then, we compute feature vectors of the seismic traces using 3D moments, and cluster facies 

using SOM with a larger number of prototype vectors than the expected number of seismic 

facies. The analysis results with the proposed algorithm along the interpreted horizon are 

shown from Figure 6.9 to Figure 6.13. Figure 6.9 shows the U-matrixIn this example, six 

groups or facies are easily identified from the U-matrix, and the classification result was 

excellent. In contrast to the U-matrix display, the PCP graphic display shown in Figure 6.10 

suggests the presence of six distinctive associations of seismic facies. Figure 6.11 shows the 

automatic classification of six groups. Finally, the classification with six groups is shown in 
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Figure 6.12 and Figure 6.13. 

 

Figure 6.7 The interpretation of horizon for facies analysis. 

 

Figure 6.8 The map of horizon for facies analysis 

(a) inline 770 section 

(b) crossline 680 section 
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Figure 6.9 The U-matrix display. 

 

Figure 6.10 The PCP graphic display. 



 177 

 

 
Figure 6.11  Automatic classification of U-matrix. 

(a) First class;                  (b) Second class; 

(c) Third class;                (d) fourth class; 

(e)  Fifth class;                (f) Sixth class. 

(b) (a) 

(c) (d) 

(e) (f) 



 178 

 

 
Figure 6.12 The result of seismic facies analysis. 

 

Figure 6.13 The map result of seismic facies analysis  

(a) inline 770 section 

(b) crossline 680 section 
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6.4 Conclusion 

Seismic facies analysis is one important task of the seismic interpretations. Automatic seismic 

facies analysis techniques can be applied in seismic exploration to improve our efficiency and 

to reduce costs. Clustering is the organization of patterns in such way that all patterns in a 

single cluster have a natural relation, and patterns not in the same clusters are in some way 

different. However, clustering is a subjective process because the same data set can be 

partitioned differently depending on the specific criterion used for clustering. Therefore, it is 

important to investigate the characteristics of the problem of interest with the objective to 

select an appropriate clustering strategy. SOM is a technology that visual-based data mining 

approach combines a clustering process. With data visualization techniques (e.g., U-Matrix, 

PCP graphic and geographic mapping displays), it can provide an environment for exploring 

patterns in the data sets. 

In this chapter, we have reviewed some different clustering algorithms applied to automated 

seismic facies analysis. We present an approach based on 3D Gaussian-Hermite moments to 

extract the feature vectors of the seismic data traces. Then we use unsupervised clustering 

algorithms (SOM) and visualization tools (U-Matrix, PCP) to cluster those feature vectors. 

The integrated environment for visual-based data mining approach using SOM gives the best 

performance in interpreting the correct cluster structure in seismic data sets. Offering 

information for interactive visual exploration of data sets, this visual-based strategy enhances 

user interpretation. The excellent result of the seismic facies analysis suggests that the method 

proposed in this work is an important tool for seismic exploration because it is more robust to 

interpretation errors. 
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7 Parallel processing and Volume visualization 

Today Seismic volumes are typically tens of gigabytes, and hundreds of gigabytes are not 

uncommon. 64-bit operating systems have enabled much larger system memory, but both 

system memory and texture memory on the graphics processing unit (GPU) remain scarce 

resources compared to the size of the data sets. 

In the past decades, applications enjoyed an automatic increase in performance as CPU 

vendors competed to increase the clock speed in each new generation of chips (Heck, 2006). 

With these advances seismic data interpretation can be migrated from big machine to PC. 

However physical limitations such as power consumption and heat dissipation have largely 

ended this era. The CPU vendors are now competing to increase the number of "cores" in 

each new generation of chips. Dual-core and quad-core chips are already common, with 

higher - core chips coming soon. Multi-core processors offer software developers the ability 

to apply more resources at a particular problem. These additional resources can be employed 

to offer two types of advantages, improved turnaround time or solving larger problem 

domains. To take advantage of this new performance in seismic interpretation, software 

developers will need to embrace multithreading technology. 

In the area of the exploration and production, visualization technology plays a critical role in 

gaining insight from data. The process of interpreting a seismic survey data begins with a 

broad view of the seismic data. Seismic section or slice movies and volume rendering are 

particularly useful in developing an initial understanding of the structural and stratigraphic 

context of the reservoir. In volume rendering, an entire volume is displayed on the screen, and 

the interpreter has control of the viewpoint and the opacity of the volume. In the extreme case, 

where the opacity is set to one, the rendered volume looks like a solid cube. By changing the 

opacity of the data, the interpreter can view into the seismic volume. It is possible to see the 
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3D structure of reflections and to begin to understand the relationships between horizons and 

faults prior to any interpretation. With advances in multi-core threading programming, 

seismic data management, efficient computing and GPU based rendering, great progresses 

can be achieved in volume visualization and volume interpretation. 

7.1 Parallel processing 

In many cases, taking advantage of the performance benefits requires developers to thread 

their applications. Effectively threading an application is a nontrivial task that requires 

domain knowledge in multi-core architecture, parallelism fundamentals, and a threading 

development process. In order to operate on large 3D data sets in a cost-effective manner, 

applications for seismological analysis and visualization use some new computer techniques, 

such as multithreads, or computer clusters, to do analysis computations. 

7.1.1 General introduction of computer architecture 

Flynn (1972) presented four classifications of computer architectures defined are based upon 

the number of concurrent instruction (or control) and data streams available in the architecture: 

Single Instruction, Single Data stream (SISD); Single Instruction, Multiple Data streams 

(SIMD); Multiple Instruction, Single Data stream (MISD); Multiple Instruction, Multiple 

Data streams (MIMD).Visually, these four architectures are shown below where each "PU" is 

a processing unit. For many years, the microprocessor community has translated Moore's Law 

of transistor density into a direct doubling of single-threaded performance every 18 months 

(Moore, 1965). Applications ran faster on each new processor version, and new versions were 

released frequently. Today, the era of single processor systems is over. The multi- and many- 

core systems world is here. Developers are entering a phase where taking full advantage of 

the power of multi-core processors is critical for customers to continue to accelerate 

innovation and to improve their business success.  

A multi-core processor is a single computing component with two or more independent actual 

processors (called "cores"), which are the units that read and execute program instructions 

(TechTarget, 2004). The data in the instruction tells the processor what to do. The instructions 

are very basic things like reading data from memory or sending data to the user display, but 

they are processed so rapidly that human perception experiences the results as the smooth 

operation of a program. An example of such a processor is the Intel Core Duo processor 

which is comprised of two similar processor cores in the same die (Figure 7.2). 
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Figure 7.1 Four classifications of computer architectures by Flynn. 

 

Figure 7.2 Dual-core processor architecture. 

Multi-core processors are widely used across many application domains including general-

purpose, embedded, network, digital signal processing (DSP), and graphics. The improvement 
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in performance gained by the use of a multi-core processor depends very much on the 

software algorithms used and their implementation. In particular, possible gains are limited by 

the fraction of the software that can be parallelized to run on multiple cores simultaneously. In 

the best case, so-called embarrassingly parallel problems may realize speedup factors near the 

number of cores, or even more if the problem is split up enough to fit within each core's cache, 

avoiding use of much slower main system memory. Most applications, however, are not 

accelerated so much unless programmers invest a prohibitive amount of effort in re-factoring 

the whole problem. 

A computer cluster consists of a set of loosely connected computers that work together so that 

in many respects they can be viewed as a single system (wikipedia, 2011). Clusters are 

usually deployed to improve performance and availability over that of a single computer, 

while typically being much more cost-effective than single computers of comparable speed or 

availability (Bader and Pennington, 2001). 

7.1.2 Typical threaded model 

In computer science, a thread is the entity within a process that can be scheduled for execution. 

All threads of a process share its virtual address space and system resources (MSDN, 2011). It 

generally results from a fork of a computer program into two or more concurrently running 

tasks. On a single processor, multithreading generally occurs by time-division multiplexing 

(as in multitasking): the processor switches between different threads. This context switching 

generally happens frequently enough that the user perceives the threads or tasks as running at 

the same time. On a multiprocessor or multi-core system, the threads or tasks will actually run 

at the same time, with each processor or core running a particular thread or task. Threads 

differ from traditional multitasking operating system processes in that (Kumar, 2010): 

− Processes are typically independent, while threads exist as subsets of a process. 

− Processes carry considerable state information, whereas multiple threads within a process 

share state as well as memory and other resources. 

− Processes have separate address spaces, whereas threads share their address space. 

− Processes interact only through system-provided inter-process communication 

mechanisms. 

− Context switching between threads in the same process is typically faster than context 
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switching between processes. 

There are two typical threaded models: single threading model and multiple threaded model. 

A typically single threaded model is showed in Figure 7.3. 

 

Figure 7.3 Single threaded model 

Multithreading as a widespread programming and execution model allows multiple threads to 

exist within the context of a single process. These threads share the process' resources but are 

able to execute independently. The threaded programming model provides developers with a 

useful abstraction of concurrent execution. However, perhaps the most interesting application 

of the technology is when it is applied to a single process to enable parallel execution on a 

multiprocessor system. A typically multiple threaded model is showed in Figure 7.4. 

In a multi-threaded operation, all threads in a single process exist in the same address space 

and share all the resources belonging to the process. The .NET Framework supports a multi-

threaded operation in developing .NET applications. Multiple threads within a single process 

can manage the multi-tasks of an application. As compared to multiple processes, multiple 

threads can increase the throughput of an application and simplify program structure. In a 

multi-threaded operation, the application does not require any special mechanism to 

communicate between its tasks, and less system resources are needed for context switching 

between the tasks.  

Multiple threads can accomplish various tasks while working in a single application domain. 

They can communicate to a Web server and a database over a network. They can perform 

operations that are time taking and can distinguish various tasks of varying priority. Multiple 

threads also enable the user interface to be more responsive during the time allocation of 

background tasks. However, one should avoid using multiple threads in a single application 

domain, as the consumption of operating-system resources can be minimized and the 

application performance enhanced. The frequent use of threads can cause the computer to 

consume more memory. 
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Figure 7.4 Multiple threaded model 

7.1.3 Parallel programming in seismic interpretation 

The basic unit of scheduling is generally the thread (Goetz, 2002); if a program has only one 

active thread, it can only run on one processor at a time. If a program has multiple active 

threads, then multiple threads may be scheduled at once. In a well-designed program, using 

multiple threads can improve program throughput and performance.  

Development of parallel software has traditionally been thought of as time and effort 

intensive (Grama, 2003). This can be largely attributed to the inherent complexity of 

specifying and coordinating concurrent tasks, a lack of portable algorithms, standardized 

environments, and software development toolkits. 

Parallel processing is also called parallel computing (Almasi and Gottlieb, 1989). Parallel 

processing is the method of breaking large problems down into smaller constituent 

components, tasks or calculations that are solvable in parallel. In computers, parallel 

processing is the processing of program instructions by dividing them among multiple 

processors with the objective of running a program in less time. In the earliest computers, 

Message Reader 

Message 
Processor 

Input  
Messages 

Program 
Messages Pool 

Persistent 
Store 

 

Message 
Processor 

Message 
Processor 



 187 

only one program ran at a time. An early form of parallel processing allowed the interleaved 

execution of two programs together. In a multiprogramming system, multiple programs 

submitted by users were each allowed to use the processor for a short time. To users it 

appeared that all of the programs were executing at the same time. 

Traditionally, software has been written for serial computation. During the past 20 years, the 

trends indicated by ever faster networks, distributed systems, and multi-processor computer 

architectures (even at the desktop level) clearly show that parallelism is the future of 

computing. Main reasons of using parallel processing are following: 

− Save time; 

− Solve larger problems; 

− Provide concurrency; 

− Cost savings; 

− Use of non-local resources; 

− Overcoming memory constraints; 

− Limits to serial comput ing. 

There are several parallel programming models in common use: shared memory, threads, 

message passing, data parallel, and hybrid. Parallel programming models exist as an 

abstraction above hardware and memory architectures. Parallel programming techniques can 

benefit from multiple cores directly. Some existing parallel programming models such as 

Cilk++, OpenMP, OpenHMPP, FastFlow, Skandium, and MPI can be used on multi-core 

platforms. Intel introduced a new abstraction for C++ parallelism called TBB. Other research 

efforts include the Codeplay Sieve System, Cray's Chapel, Sun's Fortress, and IBM's X10. 

In developing applications, Large-scale scientific problem solving involves three interactive 

disciplines as shown in following figure (Morrison, 2003). As shown in figure, theoretical 

scientists develop mathematical models that computer engineers solve numerically; the 

numerical results may then suggest new theories. Experimental science provides data for 

computational science, and the latter can model processes that are hard to approach in the 

laboratory. 
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Figure 7.5 Interaction among Experiment, Theory and Computation 

For designing parallel programs, we should pay attention to following steps (Barney, 2009): 

− Undoubtedly, the first step in developing parallel software is to first understand the 

problem that we wish to solve in parallel. If we are starting with a serial program, this 

necessitates understanding the existing code also. 

− Before spending time in an attempt to develop a parallel solution for a problem, determine 

whether or not the problem is one that can actually be parallelized.  

− Identify the program's hotspots. 

− Identify bottlenecks in the program 

− Identify inhibitors to parallelism; 

− Investigate other algorithms if possible. 

− Break the problem into discrete "chunks" of work that can be distributed to multiple tasks. 

This is known as decomposition or partitioning (domain decomposition and functional 

decomposition). 

− Process communications between multiple tasks. 
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Scientific applications often demand more performance than a single processor can deliver. 

Therefore applications have to conduct computations in parallel. A considerable problem in 

the seismic processing field is the fact that seismic data are large and require a 

correspondingly large memory size and processing time. In seismic field, parallel processing 

algorithms deliver high performance calculations in multiple aspects such as seismic horizon 

tracking, seismic facies analysis, attribute computations, and interactive volume visualization.  

Matthas et al (1998) achieved Fortran performance within a factor of at most four with a 

parallel Java implementation of a basic geophysical algorithm on to major system platforms, 

both on a shared memory and a distributed memory parallel computer. They implemented the 

high resolution velocity analysis operator using the JavaParty. 

Thomson et al (2006) proposed using overlapping, tapered windows to process seismic data in 

parallel. Thomson’s method consists of numerically tight linear operators and adjoints that are 

suitable for use in iterative algorithms and is also highly scalable and makes parallel 

processing of large seismic data sets feasible. With definition of the Parallel Windowed Fast 

Discrete Curvelet Transform (PWFDCT), the authors apply it to a seismic data interpolation 

algorithm. Alhashim (2009) proposed a parallel approach based windowing operator that 

divides large seismic data into smaller more manageable data sets that can fit in memory so 

that it is possible to apply the Bayesian separation process in parallel with minimal harm to 

the image quality and data integrity. 

Leif (Leif, 2007) discusses how algorithms involving discretized polygon surfaces can 

efficiently utilize the parallelism provided by clusters. In his work, Leif provides a general 

framework for representing polygonal structures used for computations over seismic volume 

data on clusters and, supporting dynamic operations. The framework consists of three main 

parts: 1) efficient caching and transfer of voxels between cluster nodes, 2) efficient 

discretization or voxelization of polygon surfaces, and 3) efficient load-balancing. 

7.1.3.1 Computing seismic attributes in parallel programming 

A task could be processed parallel if it has features: 

− The serial program calculates one element at a time in sequential order; 

− The calculation of elements is independent of one another - leads to anembarrassingly 

parallel situation; 

− The problem should be computationally intensive; 
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− Independent calculation of array elements insures there is no need for communication 

between tasks. 

− Each task executes the portion of the loop corresponding to the data it owns. 

− Notice that only the outer loop variables are different from the serial solution.  

Seismic data volume could be represented by Figure 7.6. As we have introduced in section 2.1, 

seismic attribute is a quantitative measure of a seismic characteristic of interest. There are a 

lot of complex calculations in extracting many attributes. Interpreters have to spend much 

time on waiting result of calculation. Calculation of most attributes is corresponding to local 

regional data. Therefore, calculation performance can be improved in parallel programming.  

 

Figure 7.6 Representing 3D seismic data by grid. 

For parallelization calculation, we modify the representation of seismic data volume. Figure 

7.7 illustrates the modification. This modification is corresponding to the power of parallel 

computing, where N is numbers of threads according to CPU cores.  

We will take multi-threading technique to implement our method. The threads are designed 

two classes: master thread and worker thread. The master thread initializes environment 

parameters, creates and destroys worker thread, blocks edge of seismic data for worker 
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threads, schedulers communication and synchronization, and collects results from worker 

thread. The worker thread receives information, performs its share of computation and send 

results to master.  

 

Figure 7.7 Representing 3D seismic data by multiple subvolume. 

 

Figure 7.8 Parallelization using multi-threading. 

We construct the structure of parallelization using multi- threading as shown in Figure 7.8. 
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thread execution flow.The pseudo codes of master thread and worker thread illustrate in Table 

7.1and Table 7.2. 

Table 7.1 Pseudo code of master thread for attribute computation. 

 

Table 7.2 Pseudo code of worker thread for attribute computation. 

 

The previous solution adopts static load balancing scheme. But this scheme has some 
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amount of work on identical machines. 

In case having a load balance problem (some tasks work faster than others), we may benefit 

by using a "thread pool pattern" scheme to solve it. This scheme has the structure as shows in. 

In computer programming, the thread pool pattern is where a number of threads are created to 

perform a number of tasks, which are usually organized in a queue. Typically, there are many 

more tasks than threads. As soon as a thread completes its task, it will request the next task 

from the queue until all tasks have been completed. The thread can then terminate, or sleep 

until there are new tasks available. The number of threads used is a parameter that can be 

tuned to provide the best performance. Additionally, the number of threads can be dynamic 

based on the number of waiting tasks. 

 

Figure 7.9 Parallelization using multi-threading with thread pool pattern. 

We also design two classes thread. First is employed Master thread: 

− Holds pool of tasks for worker processes to do 

− Sends worker a task when requested 

− Collects results from workers 
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Figure 7.10 The workflow chart of 3D horizon tracking using moments attribute volume. 

7.1.3.2 Auto-tracking seismic horizon in parallel programming 

We have presented our methods of 3D moments-based horizon auto-tracking in section 5.2. In 
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this methodology, we need compute 3D moments feature vectors of local regions. If we 

frequent track different horizons, pre-computing moments features is a nice idea. Therefore, 

we can take parallel processing to create an attribute volume. Then we will directly match the 

feature using the attribute. The modification method is shown in Figure 7.10. 

7.2 Volume visualization and volume interpretation 

The seismic data volume ultimately has to be interpreted by geologists and geophysicists 

(Neff et al., 2000a). The quality of their interpretation depends on their experience and 

knowledge, but it is also dependent on how the data volume is presented to them. The 

conventional approach for interpreting 3D seismic data is usually confined to a 2D or 2.5D 

environment. Recent advancements in computing and visualization technologies allow 

interpreters to visualize, interpret and integrate full 3D seismic attributes into their 

geophysical interpretation.  

For geovolume visualization interpretation (GVI) , recognition, colour, motion, and isolation 

are the four main techniques (Sheffield et al., 2000). 

− Recognition refers to determining the distinguishing characteristics of an event to be 

mapped, then processing the data to enhance those characteristics for the purpose of 

visualization and geobody mapping. In this step, the choice of attributes is made. The 

ability to calculate and examine many attributes with no penalty for wrong choices is 

critical for fast recognition of anomalies. By examining many attributes, the best set of 

attributes for characterizing the event can be selected.  

− Colour refers to the selection of an optimum colour scheme for visualizing the property of 

interest.  

− Motion is one of the most critical aspects of GVI; it is motion that taps the human sub-

conscious and allows interpreters to see relationships between data in space and time.  

− Isolation is the ability to separate the events of interest from other data, and is another key 

feature of GVI. 

3D volume visualization is a method of seismic interpretation in which the geo-physicist 

directly evaluates the seismic reflectivity of the subsurface in 3D space by applying various 

levels of transparency to the data. The technology and philosophy of 3D-volume visualization 

differ dramatically from conventional line-based interpretation and includes new 
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interpretation strategies and methodologies.  

There are two basic types of visualization: 

− Map-based (surface visualization) 

− Volume-based (volume visualization). 

Surface visualization results from mapping individual horizons and faults, and then 

reinterpreting them collectively therefore its position in the workflow follows surface 

mapping. Volume visualization is based on an entirely different attribute of the data 

transparency. It represents a major paradigm shift in 3D seismic data interpretation.  

Volume interpretation assumes that the seismic reflectivity of the subsurface is an "in situ" 3D 

model of the subsurface which, by its nature, consists of integrated structural, stratigraphic, 

and amplitude features in 3D space. The purpose of volume interpretation is to see the details 

of that "untouched" in situ model, and to formulate an accurate concept.  

Therefore, its position in the work flow should proceed illustrating or mapping that concept. 

In summary, the general interpretation workflow is as follows: 

− Formulate the concept via volume interpretation 

− Illustrate that concept via maps and surfaces 

− Perform surface visualization to evaluate the surfaces in 3D space. 

Volume visualization work flows must include interpretation strategies for a wide variety of 

problems. The volume interpretation workflow is designed to address flat intervals of strata, 

dipping units, and individual targets such as bright amplitudes. 

The work flow begins by performing quality control measures specifically for visualization 

sensitivities, then obtaining overviews of the data where regional and specific objectives are 

identified. Depending on the nature of the objective, a "focusing strategy" either time 

windowed, detection, or horizon-keyed (sculpting) is chosen to isolate the objective in 

preparation for the application. 
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Figure 7.11 Surface visualization 

 

Figure 7.12 Volume visualization 
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Volume interpretation provides a method for geoscientists to quickly evaluate complex 

structural and stratigraphic and amplitudes in 3D space. The demand for fast detailed 

interpretation can be accomplished utilizing visualization strategies. The challenge of 

interpreting the growing number of large 3D volumes is now more manageable. As volume-

interpretation skills increase, so will the efficiency of obtaining more answers without 

mapping, thus reducing the time for the 3D interpretation phase of the project. 

 

Figure 7.13 Volume visualization and interpretation workflow. 

In this section, we adapt high quality volume rendering algorithms from the computer 

graphics industry based on Open-Scene-Graph (OSG) engineer to improve the imaging. The 

OSG is an open source high performance 3D graphics toolkit, used by application developers 

in fields such as visual simulation, games, virtual reality, and scientific visualization and 

modelling. Written entirely in Standard C++ and OpenGL it runs on all Windows platforms, 

OSX, GNU/Linux, IRIX, Solaris, HP-Ux, AIX and FreeBSD operating systems. The OSG is 

now well established as the world leading scene graph technology, used widely in the vis-sim, 

space, scientific, oil-gas, games and virtual reality industries. OSG improves the applications 

efficiency using the capabilities of the recent programmable graphics hardware. 

We present a formal framework for the design of modular software systems. The framework 

is shown in Figure 7.14. The data manager modular provides data to interpretation for 

attributes computation, horizon tracking, fault extracting, and facies analysis.  
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All results of interpretation are stored back to data manager modular. All data can be 

displayed by visualization modular. Also, the visualization modular could provide advices for 

interpretation algorithms. In many methods of interpretation, some visualization techniques is 

employed to offer information for interactive visual exploration. In addition, we will present a 

versatile multimodal volume rendering system that enables the efficient co-visualization of 

several volumes. 

 

Figure 7.14 Framework for the design of modular software system. 

Various display methods are shown in Figure 7.15 and Figure 7.16. Trough adjusting the 

parameters in Figure 7.17, the objects which interpreters are interesting in will be more 

clearly represented. Figure 7.18 shows this adjusting. 
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Figure 7.15 An example of mapping display. 

 

Figure 7.16 A result of control alpha for volume visualization. 
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Figure 7.17 Parameters adjustment of volume visualization. 

 

Figure 7.18 Another result of control alpha for volume visualization. 

As the use of 3D seismic interpretation continues to become part of the main stream work process 

with the industry, visualization techniques also continue to evolve as software and hardware improves. In 

the past ten years, volume rendering tools have been progressively adopted by the geophysical community 

as the emergence of high-end graphics workstations with 3D texture capabilities made real-time volume 

rendering possible. Many interactive volume rendering packages are now available for seismic 

interpretation. However, interpretation is still mostly done in 2D. Using classical volume rendering with 

high spatial frequencies of seismic data make it very difficult to produce meaningful volume images and 

often results in cluttered useless images. 
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7.3 Conclusion 

Multi-core processors can offer software developers the ability to apply more resources at a 

particular problem. The software threads are executed on a single processor or on many 

processors simultaneously. Taking advantage of those new performances into seismic data 

field, we compute the seismic attributes and track the horizon with parallel programming. It 

can be seen that both computation and interpretation have been efficient. Interpreters can save 

their time and resources into others interesting tasks. Volume visualization technology and 

volume interpretation may help interpreter to insight into 3D seismic data and accelerate the 

interpretation process. In the our research, we adapt high quality volume rendering algorithms 

based on Open-Scene-Graph (OSG) 3D engine to improve application efficiency in the 

imaging and visualization. 
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8 Conclusion 

Seismic attributes are a descriptive and quantifiable characteristic of seismic data sets, and so 

they represent subsets of the total information contained in the original seismic data sets. The 

advance in seismic attribute technology has led to the use of seismic attributes as feature 

vectors of seismic interpretation and predictors of reservoir properties. Especial coherence 

attribute, it has great advantages in recognizing faults and fractures, interpreting ancient 

channels, edge detection of oil-gas reservoir, or other discontinuous features, etc. In the thesis, 

we proposed a method of stepwise dip scanning coherence algorithm based on eigenstructure. 

The algorithm proved to be highly efficient. 

In this thesis, we have introduced Gaussian-Hermite moments. We made a profound study on 

invariant moments and 3D case about this kind of moments. 

Because of their capabilities to extract invariant global features, moments and functions of 

moments have been extensively applied in the field of image processing: image analysis and 

pattern recognition, with applications ranging from edge detection, image classification and 

segmentation, texture analysis, coherency estimation, invariant identification, target 

identification, object classification, image coding and reconstruction, scene analysis, image 

reconstruction, and 3D object analysis. In the thesis, we presented the definition of 3D 

orthogonal Gaussian-Hermite moments derived from orthogonal 2D Gaussian-Hermite 

moments and the general definition of 3D geometric moments. We have also derived 2D 

rotation and translation invariants from Gaussian-Hermite moments.  

From the present study we have concluded that the moments approach, special Gaussian-

Hermite moments approach, for seismic image analysis and seismic interpretation has many 

advantages over the conventional methods. Moments of images provide efficient local 

descriptors and have been used extensively in image analysis applications. Some diverse 
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usages of Gaussian-Hermite moments and moment invariants in some applications are 

exhibited as: coherency estimation, pattern recognition. We also discuss seismic image 

analysis by moments. Applications are shown that Gaussian-Hermite moments are effective 

tools for image analysis. The 3D moments provide an efficient power to extract features of 

local sub-volume within 3D seismic data volume. With these feature extracted, the property 

vector is constructed to estimate difference between two patterns.  

After studying many auto-tracking methods of seismic horizon, we have found that they are 

mostly depended on the information of single seismic trace. Our method, based on 3D 

geometric moments and 3D Gaussian-Hermite moments, is depended on the information of 

local sub-volume. After obtaining feature vector, a matching algorithm based on Euclidean 

distance, between the referent feature vector of seed and feature vector of each candidate 

seeds, is performed to choice a candidate with the lowest value distance. The experiments 

show that the moments-based method is an efficient tool for horizon auto-tracking. 3D 

Gaussian-Hermite moment invariants are also presented in the thesis as horizon tracking 

technique. Compared to other horizon tracking techniques, moment invariants have some 

drawbacks and some advantages. Like some other horizon tracking techniques, e.g. 

correlation-based method, the computation heavily depends on a seed point. The moment 

invariant feature vector continuously varies when rotational transforming the density with 

respect to the seed point. Moment invariant methods successfully detect similarities of 

features conserved in detail. Because the same surface may have multiple depths (or reflection 

times) associated with the same spatial position, we propose a modified tracking method to 

solve the horizon self overlaps. 

The problem of identification of seismic facies is solved by reducing the multiclass 

classification problem to a two-class classification problem using the modular neural network 

system. It is important to investigate the characteristics of the problem of interest with the 

objective to select an appropriate clustering strategy. Popular networks that use unsupervised 

learning are Kohonen feature maps (Kohonen, 1984). SOM is a technology that visual-based 

data mining approach combines a clustering process. We have approached method of seismic 

facies analysis. Our approach starts with extracting feature vectors by 3D Gaussian-Hermite 

moments. Then we cluster the feature vectors through SOM algorithm with data visualization 

techniques U-Matrix and PCP graphic. It can be learnt that method provides an environment 

for exploring patterns in the data sets. 

Today, there is tremendous progress in computer technology. Chip multi-threading (CMT) 

brings to hardware the concept of multi-threading, similar to software multi-threading. Multi-
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core processors can offer software developers the ability to apply more resources at a 

particular problem. The software threads are executed on a single processor or on many 

processors simultaneously. Taking advantage of those new performances into seismic data 

field, we compute the seismic attributes and track the horizon with parallel programming. It 

can be seen that both computation and interpretation have been efficient. Interpreters can save 

their time and resources into others interesting tasks. Volume visualization technology and 

volume interpretation may help interpreter to insight into 3D seismic data and accelerate the 

interpretation process. In the our research, we adapt high quality volume rendering algorithms 

based on Open-Scene-Graph (OSG) 3D engine to improve the imaging and visualization. 

The study on Gaussian-Hermite moments is not complete. Its 3D invariant moments is still 

needed to study. In future we plan to automatically track seismic fault surface. Seismic data 

sets typically contain a large number of faults at many different spatial scales. Faults are 

important subsurface features that are often of interest to the geologist. Knowledge of the 

location of the faults is critical to understanding a geological system. The analogy of the 

moments to mechanical moments allows a deeper understanding of the central moments of 

second order ȝ2,0, ȝ0,2 and ȝ1,1. They contain terms, in which the gray value function f(x, y), 

i.e. the density ȡ(x, y) of the object is multiplied with the square of the distance from the 

center of gravity (xc, yc

 

). Exactly the same terms are available in the inertial tensor, known 

from physical mechanics. The three central moments of second order build the components of 

the inertial tensor of the rotation of the object about its centre of gravity: 

2,0 1,1

1,1 0,2

J
µ µ
µ µ
 =     

Using the inertial tensor analogy several further parameters could be derived from the central 

moments of second order. 

− The main inertial axis could be derived by calculating the eigenvalues of the inertial 

tensor:  

 ( ) ( )22
1,2 2,0 0,2 1,1 2,0 0,2

1
4

2
λ µ µ µ µ µ= ∗ + ± ∗ − −  

− The orientation of the object is defined as the tilt angle between the x-axes and the axis, 

around which the object can be rotated with minimal inertia. This corresponds to the 

eigenvector with minimal eigenvalue. In this direction the object has its biggest extension. 

It is calculated as follows:  
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With those parameters, we can calculate the coherency attribute form the seismic data. Then 

we shall develop auto-tracking methodology for extracting seismic fault surface. 

In our approach of horizon auto-tracking, we only involve one seismic attribute. Multiple 

attributes also can be used in this approach. Therefore, next step we will study horizon auto-

tracking on multi-attribute. This research work maybe takes new advantages. For multi-scale 

approach based on 3D Gaussian-Hermite moment invariants, we will discuss the effects of 

selecting different ı. 

In our approach of parallel processing, we only involve the multiple threading based on single 

computer. However, today’s seismic volumes are achieving terabytes. It is impossible to treat 

such volume based on a single PC. Computer clusters can be usually deployed to improve 

performance and availability over that of a single computer. We plan to use of computer 

clusters for processing huge seismic data volume and auto-tracking horizon. 
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Notations 

 ȥpq

 m

(x,y)  Basis function of general moment 

pq   

 ȝ

Geometric moment of order (p+q) 

pq   

 m

Central moment of order (p+q) 

pqr   

 ȝ

3D Geometric moment of order (p+q+r) 

pqr   

 P

3D Central moment of order (p+q+r) 

p

 L

(x)  Legendre polynomial of degree p 

pq   

 V

Legendre moment of order (p+q) 

pq  

 Z

Zernike polynomial of degree p 

pq  

 R

Zernike moment of order p 

pq  

 

Radial polynomial corresponding to Zernike polynomial 

( )pt x   Scaled discrete Tchebichef polynomial of degree p 

 Tpq  

 

Discrete Tchebichef moment of order (p, q) 

ˆ ( ; , )nK x p K   Weighted Krawtchouk polynomial of degree n 

  Qnm  

 

Krawtchouk moment of order (n, m) 

ˆ ( ; )pH x σ   Gaussian-Hermite polynomial of degree p 

 ( , ; )pH i K σ   Discrete version of the pth

 Ș

 degree Gaussian-Hermite polynomial 

pq  

 

Gaussian-Hermite moment of order (p, q) 

pqη   Gaussian-Hermite central moment of order (p, q) 

 
pI   Rotation invariants of Gaussian-Hermite moment 

 Șpqr  

 

3D Gaussian-Hermite moment of order (p, q,r) 

pqrη   3D Gaussian-Hermite central moment of order (p, q,r) 

 
3D

pI   3D Rotation invariants of Gaussian-Hermite moment 

 
anC   Confidence of anisotropy or isotropy; 

 1C   Cross-correlation based coherence algorithm; 
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 2C   Multi-trace semblance based coherence algorithm; 

 3C   Eigenstructure based coherence algorithm; 

 ,i jd   Average of absolute difference in the differencing coherence 

algorithm; 

 C(t)  Cross-correlation coefficient 

 JHOS

 

(d)  Higher order statictics coefficient 

, 1t t

iD +   Euclidean distance between pattern samples 

 
, 1

ˆ
t t

iP +   Sample selected among potential candidates 

 DBI  Davies and Bouldin index of clustering 

 Vf

 

  Feature vector of moments  
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