
HAL Id: tel-00732874
https://theses.hal.science/tel-00732874

Submitted on 11 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representations and Cohomology of Groups – Topics in
algebra and topology

Pierre Guillot

To cite this version:
Pierre Guillot. Representations and Cohomology of Groups – Topics in algebra and topology. Alge-
braic Topology [math.AT]. Université de Strasbourg, 2012. �tel-00732874�

https://theses.hal.science/tel-00732874
https://hal.archives-ouvertes.fr





INSTITUT DE
RECHERCHE

MATHÉMATIQUE
AVANCÉE

UMR 7501

Strasbourg

www-irma.u-strasbg.fr

Habilitation à diriger des recherches

Université de Strasbourg
Spécialité MATHÉMATIQUES

Pierre Guillot

Representations and Cohomology of Groups

Soutenue le 2 octobre 2012
devant la commission d’examen

Hans-Werner Henn, garant
Alejandro Ádem, rapporteur

Fabien Morel, rapporteur
Pierre Vogel, rapporteur

Vladimir Fock, examinateur



Contents

Foreword 2

1 Steenrod operations & Stiefel-Whitney classes 4
1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Example: algebraic cycles . . . . . . . . . . . . . . . . . . . . . . . 4
3 Position of the problem . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 K-theory, real and Milnor 10
1 The operations θn . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 The ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Real K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Graded representation rings . . . . . . . . . . . . . . . . . . . . . 13
5 Application to Milnor K-theory . . . . . . . . . . . . . . . . . . . 14
6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 A link invariant with values in a Witt ring 16
1 Witt rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Maslov indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Cohomology of Hopf algebras 23
1 Sweedler cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Lazy cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Rationality questions . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Higher degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendices 30

A Bundles, torsors, and classifying spaces 31

B Braids and R-matrices 42

C Algebraic cycles and classifying spaces 51
1 Symmetric groups & Chevalley groups . . . . . . . . . . . . . . . 51
2 The group Spin7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Cohomological invariants . . . . . . . . . . . . . . . . . . . . . . . 52

1



Foreword

What is this document?

The habilitation, for some, is the occasion to write up a survey of one’s area of
expertise, perhaps with a personal perspective. Though I have always kept an
eye on algebraic topology, my own research has taken me into various direc-
tions since it started about ten years ago, and I feel that there is not a single
subject which is what I do. As a result I have not found it appropriate to write
this thesis in the state-of-the-art style.

If I have had a guiding principle during the preparation of this document,
it was one of usefulness. That is, to a reader who is interested in learning about
my research, this work is supposed to be useful, and a time-saver. (Likewise,
reading this introductory words to the end should help.)

With this purpose in mind, I have decided to group the chapters according
to the technical tools that they require the reader to know. Chapter 1 and
chapter 2 have, all in all, very different objectives; however since they both
involve Steenrod operations, I can imagine the reader, after brushing up on
these, willing to read them in succession. Likewise chapter 3 on links will
discreetly guide the reader towards R-matrices, which show up in the final
chapter for considerably different reasons. Hopefully such an organization will
give this document, which was running the danger of becoming a collection of
unrelated results, some of the marabout-bout de ficelle-selle de cheval harmony.

Let me add that you will find in the text a certain number of paragraphs
reproduced from my papers with little or no changes. To me for example chap-
ter 3 looks very much like the paper [CG] with all proofs removed. For some
other sections, the presentation differs significantly from that in the original
sources. Again, the goal is efficiency, and the motto is read this first.

How are the chapters organized?

My different papers are not given equal consideration in this thesis. Priority
has been given to the more recent ones. In order to discuss this it will be
helpful to have the list of my publications at hand, with the journals and other
useful details relegated to the bibliography.

[Gui04] Chow rings and cobordism of Chevalley groups, 2004.
[Gui05] Steenrod operations on the Chow ring of a classifying space, 2005.
[Gui07a] The Chow rings of G2 and Spin7, 2007.
[Gui07c] The representation ring of a simply connected Lie group as a λ-ring,

2007.
[Gui07b] Geometric methods for cohomological invariants, 2007.
[Gui10] The computation of Stiefel-Whitney classes, 2009.
[GK10] (with C. Kassel) Cohomology of invariant Drinfeld twists on group

algebras, 2010.
[GKM12] (with C. Kassel and A. Masuoka) Twisting algebras using non com-

mutative torsors, 2012.
[CG] (with G. Collinet) A link invariant with values in the Witt ring, to ap-

pear.
[GM] (with J. Mináč) Milnor K-theory and the graded representation ring,

preprint.
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[Gui12] Examples of quantum algebra in positive characteristic, preprint.

This document has four numbered chapters, each dedicated to the descrip-
tion of a single paper, namely [Gui10], [GM], [CG], [GK10], in this order. Chap-
ter 4 also incorporates the improvements obtained recently in [Gui12].

In addition, there are two appendices giving background information (on
classifying spaces and braids, respectively). These are not specifically related
to my own work, and are here for convenience.

What about the other papers?

My early research dealt with Chow rings of classifying spaces. I have virtually
turned away from that subject completely, and did not feel the desire to de-
scribe it in detail. Instead, they form the subject of the third appendix. Also in
chapter 1 we mention [Gui05] briefly.

The paper [GKM12] is presented in appendix A. This special treatment is
justified, in my view, by the high technicality of the main result in that arti-
cle. Rather than indulge in the details, I have included an explicit example of
application, which fitted well together with the material in this appendix.

Finally it seems that [Gui07c] has been entirely left out. Let me explain its
main point:

Theorem 0.1 – The representation ring of a compact Lie group is generated, as−→
a λ-ring, by as many generators as there are branches in the Dynkin diagram.

For example E8 has the following Dynkin diagram:

So R(E8) has three generators as a λ-ring, and more precisely the result in loc.
cit. specifies that

R(E8) = Z[α,λ2α,λ3αλ4α,β,λ2β,γ,δ] ,

where δ can be taken to be any of λ5α, λ3β, or λ2γ .

What are the arrows for?

Some statements, such as theorem 0.1 above, are decorated with an arrow in
the left margin. This is an indication that the result in question was obtained
by myself, possibly in collaboration with a coauthor. The aim is to distinguish
my own work from the background material, which is abundant.
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Chapter 1

Steenrod operations &
Stiefel-Whitney classes

In this chapter we describe the paper [Gui10]. We begin with a review of
Steenrod operations, which are also intensively used in the next chapter. From
the point of view of loc. cit., that is, explicit computations, they are intimately
related to Stiefel-Whitney classes.1

The reader may wish to consult appendix A for recollections on Stiefel-
Whitney classes and classifying spaces.

§1. Background

Let us write H ∗(X) for the mod 2 cohomology H ∗(X,F2) of the topological
space X. Then H ∗(X) is not just a commutative algebra, but also a module
over the Steenrod algebra A (at the prime 2). This is the quotient of the free
F2-algebra on generators Sq1,Sq2, . . ., subject to the Ádem relations:

SqiSqj =
[i/2]∑
k=0

(
j − k − 1
i − 2k

)
Sqi+j−kSqk (for i < 2j) .

For example the action of Sq1 : H ∗(X)→ H ∗+1(X) is the map coming from the
long exact sequence induced by the short exact sequence of coefficients

0 −→Z/2 −→Z/4 −→Z/2 −→ 0 .

In general Sqi raises degrees by i.
In a senseA is as large as possible, for it can be shown that any natural oper-

ation on mod 2 cohomology which commutes with the isomorphismH ∗+1(SX) �
H ∗(X) (where SX is the suspension of X) is in fact given by a Steenrod oper-
ation. Let us also mention that there is a Steenrod algebra Ap related to the
mod p cohomology of spaces, but we shall barely mention it in this work.

This extra structure on mod 2 cohomology is a powerful tool. It is a classical
example that S2∨S4 has the same cohomology as P2(C) (with any coefficients),
but that the Steenrod operations allow us to distinguish between these two
spaces. Combined with a description of P2(C) as a 4-ball attached to a 2-sphere
via the Hopf map, this leads to an easy proof that all the suspensions of the
Hopf map are homotopically non-trivial, so thatπn+1(Sn) , 0 for n ≥ 2 ([Bre97],
corollary 15.4).

§2. Example: algebraic cycles

Let us digress to describe briefly an application of Steenrod operations which
made its appearance in my early paper [Gui05]. It seems reasonably typical

1This, independently of the possible definition of Stiefel-Whitney classes from the Steenrod
operations as in [Bre97], Definition 17.1.
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of the type of things one can do with the extra information provided by the
operations.

Whenever X is a complex variety, there is a cycle map

CH ∗X −→H ∗(X,Z)

sending a subvariety of X to the cohomology class that is Poincaré dual to its
fundamental class (in Borel-Moore homology). Computing the image of the
cycle map is nothing but the natural question of describing which cohomology
classes have a geometrical interpretation.

Steenrod operations are instrumental in describing the corresponding map
CH ∗X ⊗ F2 → H ∗(X) modulo 2. Indeed, from the description of Sq1 given
above, we can at least see that cohomology classes coming from the reduction
mod 2 of integral classes – that is classes in H ∗(X,Z), including those coming
from CH ∗X – must be killed by Sq1. Much more is true, however, since Bros-
nan has shown ([Bro03]) that CH ∗X ⊗F2 is also a module over A, in a way that
is compatible with the cycle map. For the formulae to work out, one has to
see CHnX ⊗ F2 as being in cohomological degree 2n, and the Steenrod opera-
tions of odd degree must vanish. In turn, a Steenrod operation has odd degree
if and only if it belongs to the two-sided ideal generated by Sq1 in A.

In summary, we have the following observation.

Lemma 1.1 – Let α ∈ H ∗(X) be a cohomology class in the image of the cycle−→
map CH ∗X ⊗ F2 −→ H ∗(X). Then α is killed by the Steenrod operations in the
two-sided ideal generated by Sq1.

In [Gui10] we prove in fact that this condition is equivalent to demanding
thatQi(α) = 0 for all i ≥ 1, whereQi is the i-th “Milnor derivation”. This makes
it obvious that the classes identified by the lemma form a ring.

The standard notation for the ring of even-degree cohomology classes killed
by odd-degree Steenrod operations is ÕH ∗(X) (the functor Õ(−) is adjoint to the
forgetful functor, fromA-modules concentrated in even degrees toA-modules;
so one has to assume that the letter O comes from the French “oubli”).

Example 1.2 – Let X = BG where G = (Z/2)n is elementary abelian. Then−→

H ∗(BG) = F2[t1, . . . , tn] ,

while
CH ∗BG⊗F2 = ÕH ∗(BG) = F2[t21 , . . . , t

2
n] .

However ÕH ∗(BG) is not the even-degree part of H ∗(BG) (which contains extra
classes such as t1t2).

In [Gui05] we prove the following.

Theorem 1.3 – Let Sn denote the symmetric group on n letters. Then−→

CH ∗BSn ⊗F2 � ÕH ∗(BSn) .

The analogous statement at odd primes also holds.

The same paper contains results about Chevalley groups which are similar
to this one, when properly understood, but they are also harder to state. See
appendix C for more on this.

§3. Position of the problem

We turn to the description of the paper [Gui10].
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Goal. One of the motivations behind the paper is to address the following
question: how are we to compute the effect of Sqi on the ring H ∗(X), con-
cretely? The usual definitions of Steenrod operations are too complicated to
allow a direct approach; in §6 below we comment on this. Simple-minded as
this will seem, we shall rely entirely on Wu’s formula instead, which gives the
answer in the case X = BOn. Recall that

H ∗(BOn) = F2[w1, . . . ,wn] ;

one has then:

Sqi(wj ) =
i∑
t=0

(
j + t − i − 1

t

)
wi−twj+t .

(See [MS74], Problem 8-A.) This formula is universal in the sense that it tells
us something about the cohomology of any space. Indeed, if E is a real vector
bundle of rank n over X, then it is classified by a map f : X → BOn, and the
map f ∗ is compatible with the Steenrod operations. Thus if we write wi(E) =
f ∗(wi) as is traditional, we have

Sqi(wj (E)) =
i∑
t=0

(
j + t − i − 1

t

)
wi−t(E)wj+t(E) .

So the action of the Steenrod algebra is easy to determine on the subring
ofH ∗(X) generated by Stiefel-Whitney classes (there are simple expressions for
the action of Sqi on a product or a sum). Fortunately, there are many spaces
for which the entire cohomology ring is generated by such classes. Thus we
should look for a way to compute concretely the Stiefel-Whitney classes, and
our original problem will be to a large extent solved.

This is the official goal of [Gui10]. Our emphasis is on a calculation method
which would be algorithmic, so that we could trust a computer to carry it out
for us on dozens of spaces, and perhaps unsurprisingly we would like to start
with classifying spaces of finite groups.

Cohomology and computers. It has been known for a while that comput-
ers could deal with the cohomology of finite groups in finite time ([Car99],
[Car01], [Ben04]). They can produce a presentation in terms of generators and
relations, from which of course one can determine the nilradical, the Krull di-
mension, etc. However, Stiefel-Whitney classes are usually not computed, nor
are Steenrod operations, and this makes the output a little different than that
which would be produced by a human.

To illustrate this discussion, let us focus on the example of Q8, the quater-
nion group of order 8. On Jon Carlson’s webpage, or David Green’s or Simon
King’s, one will find that H ∗(BQ8) is an algebra on generators z,y,x of degree
1,1,4 respectively, subject to the relations z2 + y2 + zy = 0 and z3 = 0. On
the other hand, if we look at the computation by Quillen of the cohomology
of extraspecial groups (see [Qui71]), one finds in the case of Q8 (with a little
rewriting):

Proposition 1.4 – There are 1-dimensional, real representations r1 and r2 of Q8,
and a 4-dimensional representation∆, such thatH ∗(BQ8,F2) is generated byw1(r1),
w1(r2) and w4(∆). The ideal of relations is generated by R = w1(r1)2 +w1(r2)2 +
w1(r1)w1(r2) and Sq1(R).

Finally, Sq1(∆) = Sq2(∆) = Sq3(∆) = 0.

(Recall that the action of the Steenrod algebra on w1(ri) need not be spelled
out, for we always have Sq1(x) = x2 and Sqi(x) = 0 for i > 1, whenever x is a
cohomology class of degree 1.)

Clearly this is better. Note also that Stiefel-Whitney classes give some geo-
metric or representation-theoretic meaning to the relations in the cohomology
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of a group, in good cases. In the case ofQ8 thus, there is a relation between the
representations mentioned in proposition 1.4, namely:

λ2(∆) = r1 + r2 + r1 ⊗ r2 + 3

(here “+3” means three copies of the trivial representation, and λ2 means the
second exterior power). There are formulae expressing the Stiefel-Whitney
classes of a direct sum, a tensor product, or an exterior power. In the present
case, they give w2(r1 + r2 + r1 ⊗ r2 + 3) = w1(r1)2 +w1(r2)2 +w1(r1)w1(r2), while
w2(λ2(∆)) = 0. The latter takes into account the fact that w1(∆) = w2(∆) =
w3(∆) = 0, which in turn is a formal consequence of the fact that ∆ carries a
structure of H-module, where H is the algebra of quaternions. Putting all this
together, we get an “explanation” for the relation R = 0 based on representation
theory.

§4. Strategy

Our goal is thus the computation of Stiefel-Whitney classes, and of Steenrod
operations as a result. Again we point out that a direct approach using the
definitions is hardly possible (see §6), so we are looking for an alternative way
to get at the answer. Here is now an outline of the method which we describe
in [Gui10].

Given a group G, we shall always assume that we have a presentation of
H ∗(BG) as a ring available. We shall then define a ringWF(G) as follows. As a
graded F2-algebra, WF(G) is to be generated by formal variables wj (ri) where
the ri ’s are the irreducible, real representations of G. Then we impose all the
relations between these generators which the theory of Stiefel-Whitney classes
predicts: relations coming from the formulae for tensor products and exterior
powers, rationality conditions, and so on. (It is perhaps more accurate to say
that we impose all the relations that we can think of.)

Then one has a map2 a : WF(G) → H ∗(BG) sending wi(rj ) to the element
with the same name in H ∗(BG). This map has good properties: namely, it is
an isomorphism in degree 1, and turns the cohomology of G into a finitely
generated module overWF(G). The key point is that, in fact, there are very few
maps between these two rings having such properties (in practice, there are so
many relations inWF(G) that there are few well-defined maps out of this ring
anyway).

The slight twist here is that, unlike what you might expect, we do not com-
pute the effect of the map a. Rather, we write down an exhaustive list of all the
mapsWF(G)→H ∗(BG) having the same properties as a, and it turns out, most
of the time, that all these maps have the same kernel and “essentially” the
same image. More often than not, all the maps are surjective; let us assume in
this outline that it is so for a given G, ignoring the more difficult cases. Since
a is among these maps (without our knowing which one it is!), we know its
kernel, and we have a presentation of H ∗(BG) as a quotient ofWF(G), that is a
presentation in terms of Stiefel-Whitney classes. The computation of Steenrod
operations becomes trivial.

As a toy example, we may come back to G =Q8. In this case one has

WF(G) =
F2[w1(r1),w1(r2),w4(∆)]

(R,Sq1(R))

where R = w1(r1)2 + w1(r2)2 + w1(r1)w2(r2). It is apparent that WF(G) is ab-
stractly isomorphic with H ∗(G); Quillen’s theorem states much more specifi-
cally that the map a is an isomorphism. Our approach, reducing to something
trivial here, is to note that there are only two classes in degree 4 in the coho-
mology ring, namely 0 and an element x which generates a polynomial ring.
If the image under a of the Stiefel-Whitney class w4(∆) were 0, then H ∗(G,F2)

2The letter a was for “actual”, but I regret this choice now.
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could not be of finite type over WF(G). Thus a(w4(∆)) = x. Since a is an iso-
morphism in degree 1, it must be surjective; for reasons of dimensions it is an
isomorphism. In this fashion we recover Quillen’s result from a presentation
of the cohomology ring and a simple game with WF(G), and this (in spirit if
not in details) is what our program will do. Now, describingWF(G) explicitly
is extremely long if one proceeds manually, but it is straightforward enough
that a computer can replace us.

§5. Overview of results

The paper has a companion, in the form of a computer program. The source
and the results of the computer runs can be consulted on my webpage. We
encourage the reader to have a look at this page now; indeed, our main result
is this very page.

It is in the nature of our algorithm that it does not work in all cases, but
our basic method can be adjusted for specific groups and made to work in
new cases by small, taylored improvements. Our original goal however was
to constitute, if not a “database”, at least a significant collection of examples
(rather than deal with a handful of important groups). Let us try to condense
some of it into a theorem.

Theorem 1.5 – For the 5 groups of order 8, for 13 of the 14 groups of order 16, for−→
28 of the 51 groups of order 32, and for 61 of the 267 groups of order 64, the subring
of the cohomology ring generated by Stiefel-Whitney classes is entirely described. All
Stiefel-Whitney classes and Chern classes are given.

There are only 13 of these groups for which this subring is not the whole coho-
mology ring. In all these cases, elements are explicitly given which are not combi-
nations of Stiefel-Whitney classes.

For the remaining 107 − 13 = 94 groups, the Steenrod operations are entirely
described.

In other words, for 107 groups we have a statement similar to proposi-
tion 1.4, proved by a computer and located on my webpage.

Whenever we know the effect of the Steenrod operations, we can in princi-
ple compute the subring ÕH ∗(G), as in §2. In practice though, the computation
sometimes just takes too long.

Theorem 1.6 – For 62 of the above groups, the ring ÕH ∗(G) is completely computed.−→
In 38 cases the classes in this ring are combinations of Chern classes, and it follows
that the image of

CH ∗BG⊗F2→H ∗(BG)

is precisely ÕH ∗(G).

Having this little collection of cohomology rings at your disposal, it be-
comes possible to test your conjectures, or simply observe. For example, note
the following.

Theorem 1.7 – There exist two finite groups, one isomorphic to a semi-direct prod-−→
uct Z/8oZ/4 and the other isomorphic to a semi-direct product Z/4oZ/8, and an
isomorphism between their cohomology rings which is compatible with the Steenrod
operations.

(In other parlance, these rings are isomorphic “as unstable algebras”.) So
even with the help of Steenrod operations, these two groups cannot be distin-
guished by their mod 2 cohomology rings.

Examining the intermediate ring WF(G) can be instructive, too. The rela-
tions which hold in this ring are certain to also hold in any ring for which we
have a theory of Stiefel-Whitney classes satisfying the usual axioms. In the
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next chapter this will be used with the ring grR(G), related to the represen-
tation ring. More precisely, the following rather technical statement revealed
the feasibility of the whole of chapter 2, although the connection will seem to
appear only at the very end of our presentation.

Lemma 1.8 – Consider the dihedral group D4 of order 8. Let r1 and r2 be the non-−→
trivial 1-dimensional real representations of D4 whose Stiefel-Whitney classes sat-
isfy

w1(r1)w1(r2) = 0 . (*)

Then (*) holds inWF(D4). Thus it also holds in the ring grR(D4) of the next chapter,
when w1(ri) is understood in this ring.

§6. Open questions

Problem. Is it possible to identify more formal properties of the Stiefel-Whitney
classes which, incorporated in the construction of W ∗F(G), make the natural map
to H ∗(BG) injective?

My guess is that the answer is no; in other words, that there are more re-
lations in the cohomology ring, even just among Stiefel-Whitney classes, than
can be formally predicted from representation theory. This is a difficult ques-
tion.

Here is an obvious problem, which will appeal to the mathematician with
an inclination for programming:

Problem. Can you compute algorithmically the Stiefel-Whitney classes in the coho-
mology of any finite group?

Here we ask for a complete computation, say providing explicit cocycle
representatives.

In the appendix to [Gui10] we study this problem. In particular we estab-
lish that the computation can be carried over in finite time, and propose several
angles of attack: the Evens norm and formulae for the Stiefel-Whitney classes
of an induced representation; a combinatorial version of the Thom isomor-
phism; the use of representations over finite fields and lifts to characteristic 0.
We describe these with quite a lot of details.

Thus the answer to the question is yes in principle, but in practice the im-
plementation is a challenge.
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Chapter 2

K-theory, real and Milnor

Let us turn to [GM]. At the heart of this paper is a result in algebraic topol-
ogy, which states that the mod 2 cohomology of any space X has a canonical
subquotient, to be denoted by W ∗(X)/IX in this chapter. This subquotient is
the target of a map defined on a ring related to the real K-theory of X, and
the situation is analogous, in a sense to be made precise, to that of the classical
Chern character.

With this new tool at our disposal, we are able to compute certain graded
rings associated to the representation rings of finite groups. Considering an
absolute Galois group (which is profinite), we obtain an object which appears
to be related to Milnor K-theory.

§1. The operations θn

We start with a question which on the surface appears to be purely computa-
tional. Let E be a real vector bundle over a space X. It has Stiefel-Whitney
classes w1(E), w2(E), . . . , wn(E) ∈ H ∗(X). We have not yet mentioned the fact
that H1(X) = H1(X,F2) = [X,P∞(R)] = the group of line bundles over X, up
to isomorphism. If t ∈ H1(X), and if L is the corresponding line bundle, one
has w1(L) = t, essentially by definition.

Here is a simple question: if L1, . . . ,Ln correspond to t1, . . . , tn respectively,
and if

ρ = (L1 − 1) · · · (Ln − 1) ,

what are the Stiefel-Whitney classes of ρ, at least in low degrees? Here ρ lives
in K(X), the real K-theory of X, of which more later.

Example 2.1 – Here are some examples for small values of n. For n = 1 we
have w1(L1 − 1) = w1(L) = t1. For n = 2, let ρ = (L1 − 1)(L2 − 1), then w1(ρ) = 0
and w2(ρ) = t1t2.

For n = 3, let ρ = (L1 − 1)(L2 − 1)(L3 − 1), then w1(ρ) = w2(ρ) = w3(ρ) = 0 and

w4(ρ) = t21t2t3 + t1t
2
2t3 + t1t2t

2
3 = Sq1(t1t2t3) .

For n = 4, let ρ = (L1 − 1)(L2 − 1)(L3 − 1)(L4 − 1), then wi(ρ) = 0 for 1 ≤ i ≤ 7
and

w8(ρ) = t41t
2
2t3t4 + t21t

4
2t3t4 + t41t2t

2
3t4 + t1t

4
2t

2
3t4 + t21t2t

4
3t4+

t1t
2
2t

4
3t4 + t41t2t3t

2
4 + t1t

4
2t3t

2
4 + t21t

2
2t

2
3t

2
4 + t1t2t

4
3t

2
4+

t21t2t3t
4
4 + t1t

2
2t3t

4
4 + t1t2t

2
3t

4
4

= (Sq3Sq1 + Sq4)(t1t2t3t4) .

These examples should make the following result plausible.

Theorem 2.2 – The Stiefel-Whitney classes of ρ = (L1−1) · · · (Ln−1) satisfywi(ρ) = 0−→

10



for 1 ≤ i < 2n−1, and

w2n−1(ρ) =
∑

2r1 +···+2rn=2n−1

t2
r1

1 · · · t
2rn
n .

In [GM] this is theorem 2.1 combined with lemma 2.5. Incidentally the
proof of this lemma is one of my favourites.

Corollary 2.3 – For n ≥ 1 there exists a Steenrod operation θn, of degree 2n−1 −n,−→
such that

w2n−1((L1 − 1) · · · (Ln − 1)) = θn(t1t2 · · · tn) .

To see that the corollary follows from the theorem, we are going to rely on
Milnor’s description of the dual A∗ of the Steenrod algebra, see [Mil58]. Recall
that

(1) A∗ is polynomial on variables ζi in degree 2i − 1.
(2) For any space X, there is a map of rings

λ∗ : H ∗(X)→H ∗(X)⊗A∗ ,

such that, for any Steenrod operation θ and element x ∈ H ∗X, we can re-
cover θx by evaluating λ∗(x) at θ.

(3) For X = BZ/2, whose cohomology is F [t], one has

λ∗(t) =
∑

t2
i
⊗ ζi .

This allows the computation of λ∗(t1 · · · tn) in our situation. If we define

Sq(i1, i2, . . . , ik)

to be the Steenrod operation dual to ζi11 · · ·ζ
ik
k , we may put

θn =
∑

Sq(i1, . . . , ik)

where the sum runs over all the elements which have the right degree, that
is 2n−1 −n. It is clear that the corollary then holds.

It is apparent that the operations θn are not uniquely defined by the re-
quirement of the corollary. However, these particular operations were consid-
ered in a different context in the work [BF91] by Benson and Franjou (see also
the computations by Adams [Ada92]). Furthermore, we want to point out the
following alternative description. The Steenrod algebra A is a Hopf algebra,
and is equipped with an antipode c : A→A. It turns out that

θn = c(Sq2n−1−n) ,

see §7, corollary 6 in [Mil58].

§2. The ideal

We need a piece of notation to describe the most important consequence of the
last theorem and corollary. Let W ∗(X) denote the subring of H ∗(X) generated
by all the Stiefel-Whitney classes of real vector bundles over X. When X = BG,
we see that W ∗(BG) is the image of the “formal” ring W ∗F(G) described earlier
in the previous chapter (there is a little something to prove here, which was
done in lemma 3.9 (1) in [GM]).

Theorem 2.4 – Define−→

IX = {x ∈W ∗(X) : θ|x| x = 0} ,

where |x| is the degree of x. Then IX is an ideal inW ∗(X).

11



See corollary 2.8 in [GM]

Example 2.5 – Let X = BG where G = (Z/2)n. Then H ∗(BG) = W ∗(BG) and−→
this ring is polynomial on classes t1, t2, . . . , tn in degree 1. Then IX is the ideal
generated by the elements

t2i tj = tit
2
j .

Example 2.6 – The ideal IX is described in the case of−→

X = BO∞ ×BO∞ × · · · ×BO∞ .

This yields universal relations belonging to IX for any space X (proposition
2.11 in loc. cit.). For example, let E be any real vector bundle over X, and let n
be an integer. Write n in base 2 as

n =
∑
s

as2
s .

Then one has
wn(E) =

∏
s

w2s (E)as mod IX .

For instance as 5 = 1 + 4 one always has

w5(E) = w1(E)w4(E) mod IX .

§3. Real K-theory

The importance of the subquotient W ∗(X)/IX will be exposed when we relate
it to real K-theory. Let us start however with a few recollections of classical
results. As a reference for these, see [FL85].

Let KU (X) be the complex K-theory of the spaceX. Complex vector bundles
have Chern classes. By taking a suitable combination of these, one constructs
the Chern character

Ch : KU (X) −→H2∗(X,Q) ,

which is a ring homomorphism.
When X is nice enough (eg when X is finite CW-complex, or an algebraic

variety), the Chern character induces an isomorphism KU (X)⊗Q �H2∗(X,Q).
However this does not hold for X = BG for a finite group G, for example. Be-
sides, since we have H ∗(BG,Q) = 0 in degrees ∗ > 0 in this case, this ring is
uninteresting.

We will define an analogous map using real vector bundles, Stiefel-Whitney
classes and mod 2 cohomology. Its target will be W ∗(X)/IX . However, the
source will not quite be K(X) = KO(X), but a certain associated graded ring.

To describe it, start with any λ-ring K . Thus K has operations λn : K → K ,
typically defined using exterior powers. We are of course thinking of the exam-
ple K = K(X), but we shall also be dealing with K = R(G,K), the representation
ring of the finite group G over the field K.

Grothendieck has introduced another set of operations, with many good
properties. Put

γn(x) = λn(x+n− 1) .

Also, define Γ n ⊂ K to be the abelian group generated by all the elements

γ i1(x1) · · ·γ is (xs) with
∑
k

ik ≥ n,

where xi has rank 0. It is easy to show that each Γ n is an ideal in K . The
associated graded ring grK is defined to be

grK = Γ 0/Γ 1 ⊕ Γ 1/Γ 2 ⊕ Γ 2/Γ 3 ⊕ · · ·

12



The source of our map will be grK(X). In order to convince the reader that
we are not straying far from the complex case, let us resume our review of the
classical theory.

The algebraic Chern classes of x ∈ K are defined by

ci(x) = γ i(x − ε(x)) ∈ gri K = Γ i /Γ i+1 .

Here ε(x) is the rank of x. The axioms for the λ-operations have the following
easy-to-remember consequence: the classes ci obey the same rules as the usual
(topological) Chern classes.

A classical theorem of Grothendieck’s states that, under familiar assump-
tions on K , the algebraic Chern classes can be combined into a ring homomor-
phism

Ch : K ⊗Q −→ grK ⊗Q ,
which is an isomorphism, also called the Chern character. Appealing to both
Chern characters, we see that there is an isomorphism

grKU (X)⊗Q→H2∗(X,Q)

in good cases, and it sends ci(E) ∈ grKU (X)⊗Q to the element with the same
name in H2∗(X,Q). Our own map is an analog of that.

Theorem 2.7 – Let K(X) = KO(X) be the real K-theory of X. There exists a ring−→
homomorphism

ω : grK(X)⊗F2 −→W ∗(X)/IX
which sends the algebraic Chern class ci(x) to the Stiefel-Whitney class wi(x).

See theorem 3.6 in [GM].

§4. Graded representation rings

In most applications, we shall exploit the natural map

R(G,R) −→ K(BG) ,

sending a representation ρ : G → On to the vector bundle whose classifying
map is Bρ : BG→ BOn. As it is a map of λ-rings, we eventually get maps

grR(G,R)⊗F2 −→ grK(BG)⊗F2
ω−→W ∗(BG)/IBG .

Let us comment that it would be unrealistic to hope for more, that is, to try
and construct a reasonable map of rings from grR(G,R) (or even from R(G,R)
itself) into H ∗(BG). Indeed, Quillen has shown that the 2-rank of G, that is the
maximal r such that (Z/2)r ⊂ G, is equal to the Krull dimension of H ∗(BG). As
a result, the cohomology ring is considerably larger than grR(G,R), for which
every graded piece has dimension less than the number of irreducible, real
representations of G (corollary 3.3 in [GM]). So quotienting out by IBG is nec-
essary (to avoid trivialities).

Example 2.8 – When G = (Z/2)r , one has−→

grR(G,R)⊗F2 =
F2[c1(ρ1), . . . , c1(ρr )]

c1(ρi)2c1(ρj ) = c1(ρi)c1(ρj )2 ,

where the ρi ’s are the “obvious” 1-dimensional representations. (The result
holds with R replaced by any field of char , 2.) Indeed, it is elementary to
check that the relations hold; what is more, the target of the “character” ω fits
the description above, as we have seen in example 2.5. We conclude that ω is
an isomorphism. There seems to be no proof avoiding use of the “character”.

From this example one can deal with many others by studying elementary
subgroups; the dihedral groupD4 of order 8, which plays a special role in what
follows, can be studied in this fashion (proposition 3.12 in loc. cit.).
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The rings grR(G,K) seem to have independent interest (that is, indepen-
dent from the application to Milnor K-theory which follows). They depend
finely on the field K, too. Let us briefly digress into the following example.

Example 2.9 – When G is cyclic, one has−→

grR(G,C) �H2∗(G,Z) ,

while
grR(G,R)⊗F2 �H

∗(G,F2) .

So over the complex numbers, the graded representation ring looks like in-
tegral cohomology, with degrees doubled; over the reals, it looks like mod 2
cohomology, with no doubling!

There very few, if any, computations available in the literature regarding
these objects. Dealing with a cyclic group when K = Q is a challenge.

§5. Application to Milnor K-theory

The (mod 2) Milnor K-theory of the field F (always assumed to have charac-
teristic , 2) is a certain graded ring k∗(F) defined by generators and relations
(see [Mil70]). First, let k1(F) denote the F2-vector space F×/(F×)2, written ad-
ditively. The canonical map

` : F×/(F×)2 −→ k1(F)

satisfies thus `(ab) = `(a) + `(b). Next, let T ∗(k1(F)) be the tensor algebra, and
let M denote the ideal generated by the “Matsumoto relations”:

`(a)`(b) = 0 for a+ b = 1 .

Finally k∗(F) = T ∗(k1(F))/M. One can show that it is commutative.

Example 2.10 – Let F = R. Then k1(R) = R
×/(R×)2 = F2, so in this case T ∗(k1(R)) =

F2[t].
When a + b = 1, one of a or b is > 0, and so it is a square. Thus one of `(a)

or `(b) is 0, and the relation `(a)`(b) = 0 is trivial. In the end k∗(R) = F2[t].

There were two conjectures by Milnor, both theorems now ([Voe03], [Voe11]).
Let G = Gal(F̄/F) be the absolute Galois group of F (it is profinite). The first
states that there is an isomorphism

k∗(F)
�−→H ∗(G,F2) .

To state the second conjecture/theorem, letW (F) be the Witt ring of F (defined
in terms of quadratic forms over F, and a central player in a subsequent chap-
ter). Let I be its fundamental ideal, and let grW (F) denote the graded ring
associated to the filtration by powers of I . Then there is an isomorphism

k∗(F)
�−→ grW (F) .

Let us offer a variant.

Theorem 2.11 – Let K be a field of char , 2, typically K = Q. There is a natural−→
map

k∗(F) −→ grR(G,K)⊗F2

sending `(a) to the 1-dimensional representation of G = Gal(F̄/F) given by

σ 7→ σ (
√
a)/
√
a = ±1 .
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This is theorem 4.1 in [GM]. The proof requires computing grR(Z/4,K)
and grR(D4,K). Studying this map requires more of the previous machinery.

Instead ofG = Gal(F̄/F), there is an easier group to study, which contains all
the information we want. Following [MS96], let E be the extension of F which
is the compositum of all the extensions F′/F such that Gal(F′/F) is either Z/2,
Z/4 or D4; and then let G = Gal(E/F). The group G is a quotient of G, and

H ∗(G) =H ∗(G)dec (= k∗(F)) .

(See [AKM99].) Thus the cohomological information is there within G, but the
point is that G has a “simple” structure. For example when F×/(F×)2 is finite,
the group G is also finite. Consider that when F is a finite field, we have G = Ẑ,
while G = Z/4.

Theorem 2.12 – There is a natural map−→

k∗(F) −→ (grR(G,K)⊗F2)dec

which is an isomorphism in degrees ≤ 2.

For K = Q at least, the map in the theorem is an isomorphism in all degrees
when:

• F is finite,

• F is formally real (eg R∩ Q̄),

• F is local (eg Qp),

• F is global (eg a number field),

• . . .

Proving these results always involves the character ω defined above. Note that
there is no example yet for which this map is not an isomorphism.

§6. Open questions

Problem. Is the map in theorem 2.11 always an isomorphism?
It would be satisfactory to to know the answer in the case of number fields,

for example.

Problem. Is the map in theorem 2.12 always an isomorphism?
For example we would like to be able to treat the case of fields whose W -

group is (Z/4)n (which we can deal with up to n = 3).

Problem. Is there an analog of the above maps at an odd prime p?
The prime 2 is of course special with respect to Milnor K-theory (which can

be reduced mod p for any prime), or at least this is what is currently believed.
Indeed, the isomorphism between Milnor K-theory and the graded Witt ring
does not have an analog with p odd. Thus an answer to this last question
would be exciting. Note that we have to look further than the representation
ring, since we are after a graded commutative ring, rather than a graded ring
which is commutative.

Problem. Does the character ω have any analogs at all at odd primes?

Problem. Compute grR(Z/n,Q) for all n.
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Chapter 3

A link invariant with values
in a Witt ring

In this chapter we give an overview of [CG], in which we define an isotopy
invariant for oriented links by constructing a Markov function. We assume
that the reader is familiar with braid groups and Markov functions; for conve-
nience we propose a summary in appendix B. We use freely the notation from
the appendix, which is standard, for example Bn, σi and β̂ denote the braid
group on n strands, the i-th standard generator, and the closure of the braid β
respectively.

Since our invariant takes its values in a Witt ring, it is fit to start with a
review of some classic definitions.

§1. Witt rings

A reference for all the results in this section is [MH73]. Let K be a field with
involution σ . The definitions which follow can be adapted to any field, and
indeed even to the case when K is a ring, but for simplicity in this document
we throw in the extra assumption that K is a field of characteristic , 2.

Hermitian spaces in this context are K-vector spaces with a non-degenerate
binary form h which is linear in one variable and satisfies h(y,x) = σ (h(x,y)).

Let G(K) be the Grothendieck ring of this category. A hyperbolic space is
by definition a hermitian space of the form (V ,h)⊕ (V ,−h). Hyperbolic spaces
form an ideal I in G(K).

Definition 3.1 – The hermitian Witt ring of K is WH(K,σ ) = G(K)/I . When σ is
the identity, we write simply W (K). �

Remark that in the Witt ring, there is no ambiguity in writing −V : it is both
the class of V with the opposite Hermitian form, and the opposite of the class
of V . In symbols −[(V ,h)] = [(V ,−h)].

Example 3.2 – Over R, any bilinear form can be diagonalized with ±1 on the
diagonal. Moreover the form whose matrix is(

1 0
0 −1

)
is hyperbolic. As a result W (R) ' Z, the isomorphism being given by the sig-
nature.

Example 3.3 – As is turns out, the inclusion Z→ R induces an isomorphism
W (Z) 'W (R).

Example 3.4 – Let σ denote the usual conjugation in C. Then one can show
WH(C,σ ) 'W (R).
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Example 3.5 – One has

W (Fp) =


Z/2 for p = 2 ,
Z/2×Z/2 for p ≡ 1(4) ,
Z/4 otherwise .

Example 3.6 – There is a split exact sequence

0 −→W (Z) −→W (Q) −→
⊕
p

W (Fp) −→ 0 .

More generally there is an analogous exact sequence with Z replaced by any
principal ideal domain and Q by its field of fractions (and a 4-term exact se-
quence for any Dedekind domain). For example there is an exact sequence

0 −→W (Q[t]) −→W (Q(t)) −→
⊕

P irreducible

W (Q[t]/(P )) −→ 0 .

Moreover one can show W (Q[t]) =W (Q).
Eventually the link invariant which we are about to define will take its val-

ues in the ringW (Q(t)), and more precisely in the subringWH(Q(t),σ ) where σ
is the involution with σ (t) = t−1.

Note that the general statement is thatWH(K,σ ) injects intoW (k) where k =
Kσ is the fixed subfield (as in example 3.4). In the case K = Q(t), we have k =
Q(u) with u = t + t−1, so that k and K happen to be isomorphic.

§2. Maslov indices

Let V be a vector space over K . A map h : V ×V → K is called an anti-hermitian
form when it is linear in one variable and satisfies h(y,x) = −σ (h(x,y)). The
form h is called non-degenerate when the determinant of the corresponding
matrix (in any basis) is non-zero.

Let V be anti-hermitian. A lagrangian is a subspace ` ⊂ V such that ` = `⊥.
We say that V is hyperbolic when it is the direct sum of two lagrangians. (We
could have taken this as the definition of “hyperbolic” in the hermitian case,
too.)

Given a hyperbolic, non-degenerate, anti-hermitian space V with form h
and three lagrangians `1, `2 and `3, we shall now describe their Maslov index,
which is a certain element

τ(`1, `2, `3) ∈WH(K,σ ) .

Namely, the Maslov index τ(`1, `2, `3) is the non-degenerate space correspond-
ing to the following hermitian form on `1 ⊕ `2 ⊕ `3:

H(v,w) = h(v1,w2 −w3) + h(v2,w3 −w1) + h(v3,w1 −w2) .

(In other words, if this hermitian form is degenerate, we consider the non-
degenerate space obtained by an appropriate quotient.) Historically the first
example considered was with W (R) = Z, so that the Maslov “index” was origi-
nally an integer.

This construction enjoys the following properties:
(i) Dihedral symmetry:

τ(`1, `2, `3) = −τ(`3, `2, `1) = τ(`3, `1, `2) .

(ii) Cocycle condition:

τ(`1, `2, `3) + τ(`1, `3, `4) = τ(`1, `2, `4) + τ(`2, `3, `4) .

(iii) Additivity: if `1, `2 and `3 are lagrangians in V , while `′1, `
′
2 and `′3 are

lagrangians in V ′ , then `i⊕`′i is a lagrangian in the orthogonal direct sum V ⊕V ′
and we have

τ(`1 ⊕ `′1, `2 ⊕ `′2, `3 ⊕ `′3) = τ(`1, `2, `3) + τ(`′1, `
′
2, `
′
3) .
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(iv) Invariance: for any g ∈U(V ) (the unitary group), one has

τ(g · `1, g · `2, g · `3) = τ(`1, `2, `3) .

The term “cocycle condition” is employed because the map

c : U(V )×U(V ) −→WH(K,σ )

defined by c(g,h) = τ(`, g ·`, gh·`) is then a 2-cocycle on the unitary group U(V ),
for any choice of lagrangian `. There is a corresponding central extension :

0 −→WH(K,σ ) −→˜U(V ) −→U(V ) −→ 1 ,

in which the group ˜U(V ) can be seen as the set U(V )×WH(K,σ ) endowed with
the twisted multiplication

(g,a) · (h,b) = (gh,a+ b+ c(g,h)) .

We conclude these definitions with a simple trick. The constructions above,
particularly the definition of the two-cocycle, involve choosing a lagrangian
in an arbitrary fashion. Moreover, the anti-hermitian space V needs to be
hyperbolic, while many spaces arising naturally are not. Thus it is useful to
note the following. Starting with any anti-hermitian space (V ,h), put D(V ) =
(V ,h)⊕(V ,−h), where the sum is orthogonal. ThenD(V ) is non-degenerate if V
is, and it is automatically hyperbolic. Indeed, for any g ∈ U(V ), let Γg denote
its graph. Then Γg is a lagrangian in D(V ), and in fact D(V ) = Γ1 ⊕ Γ−1. From
now on, we will see Γ1 as our preferred lagrangian. Note that there is a natural
homomorphism U(V )→U(D(V )) which sends g to 1× g.

§3. The main result

We are now in position to state the main result of [CG]. Start with the Burau
representation

rn : Bn −→ GLn(Z[t, t−1]) ,

which is described in example B.4. Now apply to the matrix coefficients a
map α : Z[t, t−1]→ K , where K is a field with involution σ . The ring Z[t, t−1]
possesses the involution t 7→ t−1, and we assume that α is compatible with the
involutions. The examples to keep in mind are K = Q or R or a finite field, with
trivial involution and α(t) = −1 on the one hand, and K = Q(t) with σ (t) = t−1

and α(t) = t on the other.
The following lemma is crucial.

Lemma 3.7 – The action of Bn via the Burau representation preserves the anti-
hermitian form whose matrix is

H =



0 t−1 − 1 t−1 − 1 · · · t−1 − 1
1− t 0 t−1 − 1 · · · t−1 − 1
1− t 1− t 0 · · · t−1 − 1
...

...
...

. . .
...

1− t 1− t 1− t · · · 0


.

This form is non-denenerate for infinitely many values of n.

(In this statement we supress α from the notation.)
We end up with a map Bn → U(Vn), where Vn is the anti-hermitian space

over K described in the lemma. Compose with the map U(Vn) → U(D(Vn))
already mentioned, to obtain the representations

ρn : Bn −→U(D(Vn))

which appear in the statement of our main theorem.
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Theorem 3.8 – The two-cocycle on U(D(Vn)) afforded by the Maslov index, when−→
pulled-back to Bn via ρn, is a coboundary. As a result, there is a homomorphism

Bn −→ ˜U(D(Vn))

and so also a map fn : Bn→WH(K,σ ).
The collection (fn)n≥2 is a Markov function, and thus defines a link invariant

with values in WH(K,σ ).

We should probably spell out this result in detail. We have defined a link
invariant, which we write ΘK . If L = β̂ is the closure of the braid β ∈ Bn, then
the invariant ΘK (L) can be computed as fn(β), where fn is defined inductively
as follows. One has fn(σi) = 0, and for β,γ ∈ Bn there is the relation

fn(βγ) = fn(β) + fn(γ) + τ(Γ1, Γr(β), Γr(βγ)) . (*)

Here r = rn : Bn → U(Vn) is the Burau representation after applying α to the
matrix coefficients, and as above Γg is the graph of g. Should this appear a little
heavy to compute, we add that we have made a Sage script available which can
take care of all the calculations (it returns a list of elements of K which are the
entries of a diagonal matrix representing ΘK (L) in the ring WH(K,σ )).

§4. Examples

Signatures. Let us start with the example of K = R, with trivial involu-
tion, and α(t) = −1. The above procedure yields a link invariant with values
in W (R) �Z.

However, Gambaudo and Ghys have proved in [GG05] that the invariant
which is classically called the signature of a link is in fact given by a Markov
function satisfying the relation (*) above (right after the statement of theo-
rem 3.8). By uniqueness, Θ

R
(L) must always coincide with the signature of L.

An obvious refinement is obtained by taking K = Q (and still α(t) = −1).
The invariant Θ

Q
(L) lives in W (Q). Recall the exact sequence

0 −→W (Z) −→W (Q) −→
⊕
p

W (Fp) −→ 0 .

Theorem 3.9 – For each oriented link L, there is a set of primes which is an invariant−→
of L, namely the set of those p for which Θ

Q
(L) maps to a non-zero element via the

residue map W (Q)→W (Fp). For each p the value in W (Fp) is also an invariant.

It may be useful to point out that, even though the Burau representation
at t = −1 only involves integer entries, the form given in lemma 3.7 does not
have determinant 1, and the invariant we define does not come from W (Z).

We need not restrict ourselves to the case α(t) = −1, however. For exam-
ple we may take K = C with the usual complex conjugation, and α(t) = ω, a
complex number of module 1. All of the above generalizes. We obtain a link
invariant with values in WH(C) �Z, whose value on L will be written Θω(L).

When ω is a root of unity at least, Gambaudo and Ghys also prove in loc.
cit. that the so-called Levine-Tristram signature of a link is again given by a
Markov function satisfying (*), so that it must agree with Θω(L). However we
can obtain another refinement. Whenever ω is algebraic, the field K = Q(ω) is
a number field. There is an exact sequence

0 −→W (O) −→W (K) −→
⊕
p

W (O/p) ,

where O is the ring of integers in K , and the direct sum runs over the prime
ideals p.
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Theorem 3.10 – Let K = Q(ω) as above, and let O denote its ring of integers. For−→
each oriented link L, there is a set of prime ideals in O which is an invariant of L.
For each p the value in W (O/p) is also an invariant.

Note that O/p is a finite field.
The paper by Gambaudo and Ghys cited twice just above has been tremen-

dously influencial for us, and this was somewhat obfuscated by the angle of
development which we have chosen in this chapter. For a little more, see the
introduction to [CG].

The case K = Q(t). Our favorite example is that of K = Q(t) with σ (t) = t−1

and α(t) = t; in some sense we shall be able recover the signatures of the pre-
vious examples from this one. We shall go into more computational consid-
erations than above. The reader who wants to know more about the techni-
cal details should consult the accompanying Sage script, available on the au-
thors’ webpages. Conversely, this section is a prerequisite for understanding
the code.

In condensed form, we are going to describe the following.

Theorem 3.11 – There is an oriented link invariantΘ
Q(t) with values in the hermi-−→

tian Witt ring WH(Q(t),σ ), where σ is the involution satisfying σ (t) = t−1.
From Θ

Q(t)(L) we can construct a palindromic Laurent polynomial, as well as
a diagram in the shape of a camembert which summarizes the values of the various
signatures of L.

Consider β = σ3
1 ∈ B2 as a motivational example. Here L = β̂ is the familiar

trefoil knot (see the pictures on page 44).
When computing Θ

Q(t)(L) we are led to perform additions in WH(Q(t),σ ).
Since a hermitian form can always be diagonalized, we can represent any el-
ement in the hermitian Witt ring by a sequence of scalars. In turn, these are
in fact viewed in k×/N (K×), where as above k = Kσ and N : K → k is the norm
map x 7→ xx̄. Summing two elements amounts to concatenating the diagonal
entries.

Let us turn to the example of the trefoil knot. We relax the notation, and
write f for fn when n is obvious or irrelevant, and we write c for the two-
cocycle c(β,γ) = τ(Γ1, Γr(β), Γr(βγ)), so we have the formula f (βγ) = f (β) + f (γ) +
c(β,γ). Now:

Θ
Q(t)(L) = f (σ3

1 ) = f (σ1) + f (σ2
1 ) + c(σ1,σ

2
1 )

= f (σ1) + (f (σ1) + f (σ1) + c(σ1,σ1)) + c(σ1,σ
2
1 )

= 0 + 0 + 0 + c(σ1,σ1) + c(σ1,σ
2
1 ) .

Thus Θ
Q(t)(L) is the sum of two Maslov indices, and direct computation shows

that it is represented by [
−1,1,

2t2 − 2t + 2
t

,−1,1,−2
]
.

Now, the hermitian form given by the matrix(
−1 0

0 1

)
is hyperbolic and so represents the trivial element in the Witt ring. We con-
clude that Θ

Q(t)(L) is represented by the form whose matrix is(
2t2−2t+2

t 0
0 −2

)
.
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Comparing elements in the Witt ring can be tricky. For example, we need
to be able to tell quickly whether this last form is actually 0 or not. In general,
link invariants need to be easy to compute and compare.

To this end, we turn to the construction of a Laurent polynomial invariant.
There is a well-known homomorphism D :WH(K,σ )→ k×/N (K×) given by the
signed determinant : given a non-singular, hermitian n×n-matrixA representing
an element in the Witt ring, then D(A) = (−1)n+1 det(A). This defines a link
invariant with values in k×/N (K×), and for the trefoil we have

D(Θ
Q(t)(L)) =

t2 − t + 1
t

.

(Note how we got rid of the factor 4 =N (2).) This happens to be the Alexander-
Conway polynomial of L.

For definiteness, we rely on the following lemma.

Lemma 3.12 – Any element in k×/N (K×) can be represented by a fraction of the
form

D(t)
td

,

where D(t) is a polynomial in t, of degree 2d, not divisible by t, and which is also
palindromic.

What is more, if D has minimal degree among such polynomials, then it is
uniquely defined up to a square in Q

×.

Here is another simple invariant deduced from Θ
Q(t). Suppose θ is a real

number such that eiθ is not algebraic (all real numbers but countably many
will do). The assignment t 7→ eiθ gives a field homomorphism Q(t)→ C which
is compatible with the involutions (on the field of complex numbers we use the
standard conjugation). There results a map

WH(Q(t),σ ) −→WH(C) �Z ,

which we call the θ-signature.
Looking at the trefoil again, we obtain the form over C(

4cos(θ)− 2 0
0 −2

)
whose signature is 0 if 0 < θ < π

3 and −2 if π
3 < θ < π (the diagonal entries

are always even functions of θ, so we need only consider the values between 0
and π.) We may present this information with the help of a camembert :

This figure is a link invariant.
We may get rid of the restriction on θ. Given an element in WH(Q(t)), pick

a diagonal matrix as representative, and arrange to have Laurent polynomials
as entries. Now substitute eiθ for t, obtaining a hermitian form over C, and
consider the function which to θ assigns the signature of this form. This is a
step function s, which is even and 2π-periodic.

Now, whenever θ is such that eiθ is not algebraic, then s(θ) is intrinsically
defined by the procedure above, and thus does not depend on the choice of
representative. Since such θ are dense in R, the following is well-defined:

ŝ(θ) = lim
α→θ,α>θ

s(α) .
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It is clear by construction that ŝ(θ) agrees with the eiθ-signature of the link,
presented above, for almost all θ.

To give a more complicated example, take σ3
1 σ
−1
2 σ2

1 σ
1
3 σ

3
2 σ

1
3 ∈ B4. The braid

looks as follows:

The signed determinant is

3t6 − 9t5 + 15t4 − 17t3 + 15t2 − 9t + 3
t3

,

where the numerator has minimal degree.
The camembert is

0 -2 -4 -6

On my webpage the reader will find many examples of links for which the
corresponding camemberts and polynomials are given.

§5. Open questions

Problem. Generalize the construction to coloured links.
Recall that a coloured link is one for which the connected components are

distinguished. The above problem involves braid groupoids rather than braid
groups, and is more technical as a result. Partial results indicate that a gener-
alization is possible, though.

Problem. Generalize the construction to K = Z[ 1
2 , t, t

−1] rather than a field.
Again this would be more technical. There is a reward: such an invariant

would specialize to give all the other invariants ΘK whenever K is a field of
characteristic , 2. It is already apparent from the above that our invariants
unify many others; a construction over Z[ 1

2 , t, t
−1] would push this even fur-

ther.
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Chapter 4

Cohomology of Hopf algebras

In this chapter we turn to the paper [GK10], and the complements to it
afforded by [Gui12]. Briefly, given a Hopf algebra H, we are going to study
a certain cohomology group H2

` (H); on the one hand, it generalizes familiar
cohomological constructions, while on the other hand it is closely related to R-
matrices, and thus in principle with braids. Note that we assume familiarity
with the theory of R-matrices; see appendix B for a review if needed.

§1. Sweedler cohomology

Sweedler cohomology was defined in [Swe68]. Given a cocommutative Hopf
algebra H and a commutative H-module algebra A, Sweedler defines groups
which we write Hn

sw(H,A) for n ≥ 0.
How does one verify if a definition of a cohomology theory is sound? A first,

shallow answer is that Sweedler’s cohomology is built by imitating the classical
bar construction, which in all its guises is known to produce interesting results.
Also, there are long exact sequences available (and a relative version).

Perhaps more seriously, Sweedler proves that H2
sw(H,A) classifies the ex-

tensions of H by A, suitably defined (note that in [Swe68] Sweedler calls them
extensions of A by H, which is confusing). This is of course a desirable prop-
erty of any cohomology theory.

Finally, in the case whenH = k[G] is the group algebra of the finite groupG,
one has H ∗sw(H, k) = H ∗(G,k×) (there is a similar result for a general A and one
may recover the usual cohomology of G with any coefficients by using relative
Sweedler cohomology). Likewise when g is a Lie algebra and H = U (g), the
universal enveloping algebra, one has H ∗sw(H, k) = H ∗(g, k). So Sweedler coho-
mology unifies this two classical theories. It is interesting however to note that,
both in the group algebra case and the universal enveloping algebra case, the
cohomology groups are Ext functors, and so depend only on the algebraH, and
not on the comultiplication. Sweedler’s cohomology groups on the other hand
are altered if H is, say, isomorphic to k[G] as an algebra but is endowed with a
different comultiplication.

The details of the definition can be given quite compactly, so let us do so in
the case A = k, viewed as anH-module algebra via the augmentation map. (We
shall not mention other examples for A from now on.) For each integer n ≥ 1,
we form the coalgebraH⊗n and define faces and degeneracies by the following
formulae:

di(x0 ⊗ · · · ⊗ xn) =

x0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn for i < n,
x0 ⊗ · · · ⊗ xn−1ε(xn) for i = n,

and
si(x0 ⊗ · · · ⊗ xn) = x0 ⊗ · · · ⊗ xi ⊗ 1⊗ xi+1 ⊗ · · · ⊗ xn .
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We are thus in the presence of a simplicial coalgebra. We may consider
the monoid Hom(H⊗n, k), equipped with the “convolution product”, which
contains the group Rn(H) = Reg(H⊗n, k) (comprised of all the invertible ele-
ments in Hom(H⊗n, k)). Since Reg(−, k) is a functor, we obtain a cosimplicial
group R∗(H) (sometimes written R∗ for short in what follows).

Whenever H is cocommutative, R∗ is a cosimplicial abelian group. Thus it
gives rise to a cochain complex (R∗,d) whose differential is

d =
n+1∑
i=0

(−1)idi

in additive notation, or (as we shall also encounter it)

d =
n+1∏
i=0

(di)(−1)i = d0(d1)−1d2(d3)−1 · · ·

in multiplicative notation.
The cohomology H ∗(R∗,d) is by definition the Sweedler cohomology of the

cocommutative Hopf algebra H with coefficients in k, denoted by H ∗sw(H) for
short.

Now suppose thatH is a finite-dimensional Hopf algebra. Then its dualK =
H∗ is again a Hopf algebra. In this situation, the cosimplicial group associated
toH by Sweedler’s method may be described purely in terms ofK, and is some-
times easier to understand when we do so.

In fact, let us start with any Hopf algebra K at all. We may construct a
cosimplicial group directly as follows. Let An(K) = (K⊗n)× and let the cofaces
and codegeneracies be defined by

di =


1⊗ id⊗n for i = 0 ,
id⊗(i−1) ⊗∆⊗ id⊗(n−i) for i = 1, . . . ,n− 1 ,
id⊗n ⊗ 1 for i = n,

and

si =


ε⊗ id⊗(n−1) for i = 0 ,
id⊗(i−1) ⊗ ε⊗ id⊗(n−i) for i = 1, . . . ,n− 1 ,
id⊗(n−1) ⊗ ε for i = n.

When K is commutative, then A∗(K) is a cosimplicial abelian group, giving
rise to a cochain complex (A∗,d) in the usual way. Its cohomology H ∗(A∗,d)
is what we call the twist cohomology of K, written H ∗tw(K). This terminology
comes from the description of elements of degree 2, and will be justified below
(see equation (†)).

Coming back to the case K =H∗ for a finite-dimensional Hopf algebraH, it
is straightforward to check that R∗(H) can be identified with A∗(K) (see Theo-
rem 1.10 and its proof in [GK10] for some help; in degree 2 we have given the
correspondence explicitly on page 41).

In this chapter we are chiefly interested in computing the Sweedler coho-
mology of O(G), the algebra of k-valued functions on the finite group G. This
is cocommutative only when G is abelian, but we explain below what we can
do with the general case. By the above, we need to look at the cosimplicial
group R∗(O(G)), which is the same as A∗(k[G]). It turns out to be easier to work
with the latter.

§2. Lazy cohomology

WhenH is not cocommutative Sweedler’s cohomology is not defined, but there
is a general definition of low-dimensional groups H i

`(H) for i = 1,2, called the
lazy cohomology groups of H, for any Hopf algebra H: this definition is origi-
nally due to Schauenburg and is systematically explored in [BC06]. Of course
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when H happens to be cocommutative, then H i
`(H) =H i

sw(H). This is perfectly
analogous to the construction of the non-abelian H1 in Galois cohomology
– note that H2

` (H) may be non-commutative, which is one of the highlights
of [GK10].

When H is finite-dimensional, there is again a description of H i
`(H) in

terms of the dual Hopf algebra K. Since this is the case of interest for us, we
only give the details of the definition in this particular situation (using results
from [GK10], §1). Quite simply, H1

` (H) is the (multiplicative) group of central
group-like elements in K. The group H2

` (H) is defined as a quotient. Consider
first the group Z2 of all invertible elements F ∈ K⊗K satisfying

∆(a)F = F∆(a)

(here ∆ is the diagonal of K – one says that F is invariant), and

(F ⊗ 1)(∆⊗ id)(F) = (1⊗F)(id ⊗∆)(F) (†)

(which says that F is a Drinfeld twist, as encountered in appendix A, see
page 41). The group Z2 contains the central subgroup B2 of so-called triv-
ial twists, that is elements of the form F = (a ⊗ a)∆(a−1) for a central in K.
Then H2

` (H) = Z2/B2.
The main topic of this chapter is the computation of the group H2

` (O(G))
for a finite group G. There are relatively few examples of calculations with
lazy cohomology in the literature, so O(G) for non-abelian G seemed the most
natural example of a non-cocommutative Hopf algebra. Before we explain our
results though, we wish to say a word about Drinfeld twists, to put things in
perspective.

In addition to the “torsor” point of view considered in appendix A, invert-
ible elements F ∈ K⊗K satisfying (†) were introduced by Drinfeld in the context
of R-matrices. The basic observation is that, if K is a Hopf algebra with R-
matrix R, and if F is a Drinfeld twist, then one has another Hopf algebra KF
which also carries an R-matrix; one defines KF to be K as an algebra, but en-
dows it with the comultiplication

∆F(x) = F∆(x)F−1 .

Then if we put
RF = τK,K(F)RF−1 ,

one checks that RF is an R-matrix for KF .
Whenever F is invariant in the above sense, one has KF = K as Hopf alge-

bras, but RF will still be different from R in general, and indeed it will mostly
determine F in H2

` (H), at least when H = O(G). We will expand on this in the
rest of the chapter. For the time being, note the following: forK = k[G], we may
take R = 1⊗ 1 so that RF = F21F

−1 (with F21 the standard shorthand); then it is
clear that RF = 1⊗1 whenever F is “trivial”, as above, and indeed that RF = RF′
if F and F′ represent the same class in Z2/B2. There is some sort of converse to
this, as we will see.

Example 4.1 – Let us illustrate the above definitions in the case of an abelian
group G, and for k = C. Suppose we wish to compute the second Sweedler
cohomology group of O(G) or the second twist cohomology group of C[G],
which is the same. Then we may use the discrete Fourier transform, which is the
isomorphism of Hopf algebras given by

C[G]
�−→O(Ĝ) , g 7→

(
χ 7→ χ(g−1)

)
.

Here Ĝ = Hom(G,C×) is the Pontryagin dual of G. Applied to the group Ĝ,
the discrete Fourier transform gives also an isomorphism C[Ĝ] � O(G), and we
conclude at once that

H2
tw(C[G]) =H2

sw(O(G)) �H2
sw(C[Ĝ]) �H2(Ĝ,C×) . (*)
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(For the last isomorphism, recall that Sweedler cohomology of a group algebra
is regular cohomology.)

However we can make things more explicit. Indeed a direct computa-
tion (rather than an abstract argument) shows that a twist F ∈ C[G] ⊗ C[G]
is the same thing as a two-cocycle c on Ĝ under the Fourier transform for
the group G × G; two twists define the same element in “twist cohomology”
if and only if the corresponding two-cocycles differ by a coboundary. This
gives (*) at once. But it gets better: an R-matrix on C[G]⊗C[G] corresponds to
a bilinear form Ĝ × Ĝ → C

×, as is also observed in example B.8. The passage
from F to RF = F21F

−1, in turn, corresponds to c 7→ bc, where bc is the bilinear
form bc(σ,τ) = c(τ,σ )c(σ,τ)−1 measuring the commutativity default of c.

This we can tie up with classical results in group cohomology. When A is
finite and abelian, one has

H2(A,Z) �Λ2
Z

(A) ,

so that Hom(H2(A,Z),B) is the set of alternating, bilinear forms on A with val-
ues in the arbitrary abelian group B. What is more, for B = C

× the universal
coefficients theorem gives

H2(A,C×) �Hom(Λ2
Z

(A),C×) . (**)

It is classical that a two-cocycle c on the left-hand side of (**) corresponds to
the bilinear form bc defined precisely as above – note that the latter is indeed
alternating.

To sum up what we have learned from the abelian case: the class of a
twist F ∈ C[G] ⊗C[G] in H2

tw(C[G]) determines, and is determined by, a cer-
tain alternating bilinear form on the Pontryagin dual of G. Under the Fourier
transform, this bilinear form is the R-matrix RF . These remarks motivate our
main theorem.

§3. The main result

We are encouraged to consider the map F 7→ RF , which is well-defined on the
group H2

tw(k[G]). Our main theorem describes its image and fibres.
So let G be a finite group. Let B(G) denote the set of all pairs (A,b) where A

is an abelian, normal subgroup of G of order prime to the characteristic of k,
and b : Â×Â→ k× is an alternating bilinear form on Âwhich is non-degenerate
and G-invariant. The set B(G) has a distinguished element written 1, corre-
sponding to A = {1}.

Next, let Intk(G) denote the group of automorphisms of G which are in-
duced by conjugation by elements of the normalizer of G within k[G]×. The
group Intk(G)/ Inn(G) is a subgroup of Out(G) = Aut(G)/ Inn(G).

Theorem 4.2 – Let G be any finite group, and let k be an algebraically closed field.−→
There is a map of sets

Θ : H2
tw(k[G]) −→ B(G)

such that

1. The pre-image Θ−1(1) is a normal subgroup isomorphic to Intk(G)/ Inn(G).

2. The fibres of Θ are the cosets of Intk(G)/ Inn(G).

3. The image of Θ contains at least all the pairs (A,b) for which the order of A is
odd. In particular Θ is surjective if either G has odd order or k has character-
istic 2.

The consequences of this Theorem will be explored in the next section,
though we cannot delay the following
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Corollary 4.3 – The group H2
tw(k[G]) is finite.−→

Proof. The image and the fibres of Θ are finite.

Let us say a word about the proof. The construction of Θ goes along the
following steps (of course the details are to be found in [GK10]):

• To each twist F we associate the R-matrix RF . This is well-defined.

• By a Theorem of Radford’s on R-matrices ([Rad93]), there is an abelian,
normal subgroup A of G such that RF ∈ k[A]⊗ k[A].

• By the abelian case already considered, RF corresponds to a bilinear
form b on Â. Choosing A minimal in the previous step garantees that b
is non-degenerate. It is obviously G-invariant.

• Consideration of the Drinfeld element of RF shows that b is alternating.

Thus we can setΘ(F) = (A,b). In example 4.1, we have seen that RF , and in-
deed any R-matrix for k[A], must correspond to a twist J ∈ k[A]⊗k[A]. However
this element need not be G-invariant even if the R-matrix is. This accounts for
the non-surjectivity of Θ in general. When A has odd order, we can use a trick
to define c from bc (in the notation of example 4.1).

Now let us consider the fibres ofΘ. The prime question is: what can we say
of F when RF = 1⊗ 1, that is when F is symmetric (F21 = F) ? The answer is in
the following Lemma, which is due to Etingof.

Lemma 4.4 – Let k be an algebraically closed field, and let F ∈ k[G] ⊗ k[G] be a
symmetric twist. Then F = (a⊗ a)∆(a)−1 for some a ∈ k[G].

Sketch. Consider the functor F from the symmetric monoidal category of k[G]-
modules to that of k-vector spaces, which is defined as follows: F is the identity
on objects and morphisms, but it sends the usual symmetry map V ⊗W →
W ⊗V (defined by v ⊗w 7→ w⊗ v) to the map v ⊗w 7→ Fw⊗ v.

Since F is symmetric, the functor F is a symmetric monoidal functor, and
indeed it is what Deligne calls a “fibre functor on the Tannakian category
of k[G]-modules”. Such functors form a G-torsor. Since k is algebraically
closed, any torsor must be trivial. An isomorphism from F to the forgetful
functor then yields the element a when all definitions are spelled out.

We hasten to add that the element a in the Lemma needs not be central. So
in case F is an invariant twist representing an element of H2

tw(k[G]), we cannot
quite infer from RF = 1⊗1 that F is “trivial”. The group Intk(G)/ Inn(G) appears
precisely as a measure of this subtlety.

The attentive reader will have noticed a couple of improvements in the
statement of the Theorem as we have just given it, compared to the origi-
nal in [GK10]. The first is the remark that N = Intk(G)/ Inn(G) is a normal
subgroup. In loc. cit. this was left out, though we did establish the hard
part, which is the fact that the fibres of Θ are the left cosets of N ; that is
if Θ(J1) = Θ(J2) then J2 = FJ1 for F ∈ N . However a trivial calculation shows
that RJF = J21RFJ

−1, from which it follows that RJF = RJ if F ∈ N . As a result,
the right cosets of N are included in left cosets, and N must be normal.

A little more serious is the fact that subgroups A whose order is not prime
to p can be discarded in the construction of B(G). This was proved in [Gui12],
and follows from:

Theorem 4.5 – Let k be a field of characteristic p, and let A be a finite abelian p-−→
group. Then the only R-matrix for the Hopf algebra k[A] is R = 1⊗ 1.

Ultimately the proof relies on the fact that k[A] is indecomposable under
the stated assumptions.
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§4. Examples

The group Intk(G)/ Inn(G) appearing in the main theorem is a delicate thing.
To see how tricky it is to find a group G such that Intk(G)/ Inn(G) is non-
trivial, think of the case k = C, and consider to elements g and h of G such
that h = α(g) for some α ∈ Intk(G). By definition, this means that h = xgx−1

for some x ∈ C[G]×. It follows that g and h are conjugate in any representation
of G, and so have the same trace there. In other words, the characters of G can-
not distinguish between g and h, and the classical theory tells us that g and h
are conjugate within G: for some c = cg ∈ G, we have h = cgc−1.

For α to be non-trivial in Intk(G)/ Inn(G), it must not be inner, even though
it is given by a conjugation “element-wise”. Clearly a group G with such auto-
morphisms is not so easy to find.

There are some general results. For example, when G is simple, or a sym-
metric group, then Intk(G)/ Inn(G) = 1: this follows mostly from [FS89], as ex-
plained in §7.1 of our paper. (Clearly this also holds when G is abelian, by the
way.) The following is then an almost immediate consequence of Theorem 4.2.

Proposition 4.6 – Let G be a simple group, or a symmetric group. Then−→

H2
` (O(G)) = 1 .

On the other hand, Intk(G)/ Inn(G) has been much studied by group theo-
rists. In [Sah68] , it is proved that there exists a group G of order 215 such that
Intk(G)/ Inn(G) is non-abelian. As a result:

Proposition 4.7 – There exists a Hopf algebraHwithH2
` (H) non-abelian. Namely,−→

one can take H = O(G) where G is Sah’s group.

In between these extreme cases, there are examples for which H2
` (O(G))

can be worked out explicitly. The following is deduced from Theorem 4.2 with
some specific work in each case.

Proposition 4.8 – Let k = C.−→
1. Let G be a wreath product Z/p oZ/p, for an odd prime p. Then

H2
` (O(G)) = (Z/p)

p−1
2 .

2. LetG be the wreath product Z/2oZ/2 (which is also the dihedral group). Then

H2
` (O(G)) = 1 .

3. Let G = A4 be the alternating group on 4 letters. Then

H2
` (O(G)) = Z/2 .

We point out that Theorem 4.2 guides us towards an explicit description
of H2

` (O(G)). Consider the case G = A4 above. We are led to pay attention
to the normal subgroup V = Z/2 ×Z/2 and to the non-trivial alternating, bi-
linear forms on its Pontryagin dual: there is just one, which is essentially the
determinant (a pair of elements of V̂ being considered as a 2 × 2 matrix over
the field with two elements). Then one looks for a cocycle c whose associated
bilinear form is precisely this one, and which is A4-invariant. This is straight-
forward with the help of a computer, and we can give a representative F for
the non-zero element in H2

` (O(A4)), namely:

4F = 1⊗ 1− (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)

+ (1⊗ e1 + e1 ⊗ 1) + (1⊗ e2 + e2 ⊗ 1) + (1⊗ e3 + e3 ⊗ 1)

+ (e1 ⊗ e2 − e2 ⊗ e1) + (e2 ⊗ e3 − e3 ⊗ e2) + (e3 ⊗ e1 − e1 ⊗ e3) .

(Here the elements of V = Z/2×Z/2 are 1, e1, e2, e3 and this equation is in k[V ]⊗
k[V ].) This is the F considered in appendix A during our discussion of torsors
(on pp. 39–40).
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§5. Rationality questions

Theorem 4.2 is about algebraically closed fields. The following extends the
result to the case of splitting fields for G: restricting the discussion to fields of
characteristic 0 for simplicity, a field k is a splitting field for G when all the
complex representations of G can in fact be realized over k. For example any
field is a splitting field for G = Z/2, since we only need ±1 to realize all the
irreducible modules in this case. The same is true for the dihedral group of
order 8, by inspection. It is a harder result, but a beautiful one, that any field
at all is a splitting field for the symmetric group Sn. In general a splitting
field may be obtained from any field k by adjoining some m-th roots of unity,
where m is the exponent of G.

Theorem 4.9 – Let k be a splitting field for G of characteristic zero. Then there is−→
an exact sequence

1 −→H1(k,Z(G)) −→H2
` (Ok(G)) −→H2

` (Ok̄(G)) −→ 1 ,

where Z(G) is the centre of G.

This is Theorem 6.3 in [GK10].

Example 4.10 – Let G = Z/2 and k = Q. It follows from Theorem 4.2 that
H2
` (O

Q̄
(G)) = 1, so that

H2
` (O

Q
(Z/2)) �H1(Q,Z/2) = Q

×/(Q×)2 .

§6. Higher degrees

When G is commutative, the algebra Ok(G) is cocommutative, so the groups
Hn
sw(Ok(G)) are defined for all n ≥ 1. As we have indicated in example 4.1,

when k is algebraically closed of characteristic 0 the Fourier transform gives
an isomorphism Ok(G) � k[Ĝ], and the Sweedler cohomology groups of group
algebras are known. However when k has positive characteristic the Fourier
transform is not available.

In [Gui12] we investigate the the groupG = Z/2. Over any field k of charac-
teristic zero or p > 2, we have O(Z/2) � k[Z/2], so Hn

sw(O(Z/2)) = Hn(Z/2, k×).
The latter is k×/(k×)2 when n is even, and {±1} when n is odd. When k has
characteristic 2, by contrast, we obtain the following result.

Theorem 4.11 – Let k be a field of characteristic 2. The Sweedler cohomology−→
of Ok(Z/2), is given by

Hn
sw(Ok(Z/2)) =


0 for n ≥ 3 ,

k/{x+ x2 | x ∈ k} for n = 2 ,

Z/2 for n = 1 .

In particular when k is algebraically closed then these groups vanish in degrees ≥ 2.

Of course the fact that H2
sw(Ok(G)) = 0 when k is algebraically closed was

predicted by theorem 4.2.

§7. Open questions

The most obvious challenge is the following.

Problem. Give a version of theorem 4.2 for other classes of Hopf algebras (universal
enveloping algebras, Drinfeld-Jimbo quantum groups, compact quantum groups in
the sense of Woronowicz, quantum permutation groups. . . ).

29



It seems interesting also to generalize “lazy cohomology” to higher degrees.

Problem. For any Hopf algebra H, give a definition of cohomology groups Hn
` (A)

for n ≥ 1 which agree with Sweedler’s cohomology groups wheneverH is cocommu-
tative, and which generalize the above definitions for n = 1,2.

As we have seen in §1, things come down to associating cohomology groups
to any cosimplicial group, generalizing the usual construction for cosimplicial
abelian groups. One can show that such a theory could not exist if we required
it to enjoy the usual properties, such as that of providing long exact sequences
in cohomology given a short exact sequence of cosimplicial groups1; so we will
have to settle for less.

We point out that, in the same way that for n = 2 the groupHn
` (H) is related

to Drinfeld twists (on the dual Hopf algebra), a putative candidate for H3
` (H)

would be related to Drinfeld associators (you may see this by inspection of the
cosimplicial group A∗(K) of §1). And just as Drinfeld twists were not expected
to form a group when they were first defined, and indeed do not form a group
unless you restrict to invariant ones, Drinfeld associators are not traditionally
thought of as the elements of a group.

1This was pointed out to me by Tom Goodwillie on the MathOverFlow website.
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Appendix A

Bundles, torsors, and
classifying spaces

In this appendix we review the three terms in the title in various contexts: alge-
braic topology, algebraic geometry, and non-commutative geometry (in a very
elementary sense). Many readers will skip a good deal of these prerequisites,
but presumably they will also find something new in some section or other
(and they may enjoy the pictures).

The first objective is to motivate the use of classifying spaces of finite
groups as the prime examples of topological spaces in the text. Second, the
section on algebraic geometry is useful preparation for appendix C. Finally,
the torsors in the non-commutative setting also show up in chapter 4, or rather
the devices with which one can define them easily (two-cocycles, Drinfeld
twists). We felt it most natural to introduce them here next to their classical
counterparts.

On the other hand almost all of the material in this appendix is needed to
appreciate [GKM12], of which we can finally say a word.

Topology

Basics. When G is a topological group, a G-principal bundle is a quotient
map p : Y −→ X = Y /G of the nicest possible type. Namely, it is required
that p be locally trivial in the sense that X is covered by open sets U such
that p−1(U ) � U ×G, so that p corresponds to the projection onto U ; the tran-
sitions between two such trivializations are assumed to be given on each fibre
by a translation by an element of G. In particular, the action of G on Y must
be free.

For example, a GLn(C)-principal bundle is essentially the same thing as a
complex vector bundle of rank n over X (replace U ×GLn(C) by U ×Cn and
glue these trivial pieces with the given transition maps to get a complex vec-
tor bundle in the classical sense). Likewise, there is a one-one correspondence
between GLn(R)-principal bundles and real vector bundles of rank n over the
same base. Moreover, the use of Riemannian metrics (when the base is reason-
able, say paracompact) shows that GLn(R)-principal bundles are in bijection
with On-principal bundles.

The word torsor is seldom used in topology (at least in the sense which
follows). We define a torsor for G to be a principal bundle over the space
reduced to a single point. So a G-torsor is simply a topological space with
a G-action which is homeomorphic to G with the translation action on itself
(say on the left), but no such homeomorphism is specified; two choices differ by
a self-homeomorphism of G given by a translation (on the right). In other
contexts the notion is more interesting (it is certainly the case, with our current
definitions, that there is only one G-torsor up to isomorphism!). Note that
for GLn(C) it is apparent that choosing a torsor amounts to choosing a complex
vector space of dimension n, with no preferred basis.
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Universal objects. A map f : X1→ X2 allows us to pull-back any G-principal
bundle Y2 → X2 into f ∗(Y2) → X1. One can show that the bundle f ∗(Y2) de-
pends only on the homotopy class of f , up to isomorphism (we abuse notation
and refer to a bundle by the name of its “total space”). A universal G-principal
bundle is one of the form EG → BG with the property that any G-principal
bundle over any reasonable space X is uniquely a pull-back of EG, that is, is
isomorphic to a bundle of the form f ∗(EG) for some map f : X → BG, unique
up to homotopy; in other words, we require that the isomorphism classes of
bundles over X be in one-one correspondence with [X,BG]. From this we see
that a G-principle bundle, if it exists at all, must be unique. The space BG,
which is then well-defined up to homotopy, is called the classifying space of G.

Existence is of course a classical result (see [Ste99]). In fact one can show
that a bundle Y → X is universal if and only if the total space Y is contractible.
It follows that, given a universal bundle for G and a subgroup H ⊂ G, one
can consider the map Y → Y /H to get a universal principal bundle for H ; the
local triviality will be guaranteed if the map G→ G/H is itself locally trivial.
One can thus directly treat the case of GLn(C) using Grassmann manifolds
(see [MS74], §5 and §14), and thereby establish the existence of a universal
principal bundle for any compact Lie group.

Also note that whenever G is discrete, the fact that EG is contractible com-
bined with the long exact homotopy sequence of a fibration shows thatπn(BG) =
0 for n , 1 while π1(BG) = G; conversely these conditions on a space BG imply
that the universal cover EG is contractible and may be taken as the total space
of a universal G-bundle. One can construct BG directly by “killing homotopy
groups”, and we shall come back to this.

Nowadays though, topologists like to prove the existence of a classifying
space with one sentence: take the nerve of the (topological) category with one
object, and whose arrows are the elements of G. Should you look for a defi-
nition of EG, you can be told to take the nerve of the obvious category whose
objects and arrows are both given by the elements of G (see [DH01], Part I,
§5.9). Below we will draw some pictures.

Classifying spaces play an important rôle in what follows. Whenever we
need a topological space to illustrate a result, we tend to pick BG for some
group G. Why are these spaces so popular?

The first answer commonly heard is algebraic. Assume that G is discrete,
and that EG and BG are CW-complexes. Then the cellular complex of EG is
really a complex of free Z[G]-modules (on a basis which is in bijection with
the cells of BG). Since EG is contractible, this complex is exact, ie we get a
resolution of Z by Z[G]-modules, which is what the algebraist requires in order
to compute the cohomology of G. If you take for granted that the cohomology
of groups is an important matter, for your own algebraic reasons, then you see
the point of understanding spaces of the form BG. In particular H ∗(BG,k) =
H ∗(G,k) for any ring k.

Another answer takes a more topological viewpoint, though the crux of the
matter is still that the group cohomology of G can be “realized” as that of a
space. Leaving aside the hope of writing down explicit chain complexes, we
can make the following remark. If X is any space with a G-action, the Borel
construction on X is the formation of the space XG = (EG × X)/G. There is a
fibration

X −→ XG −→ BG

and a map
XG −→ X/G

whose fibres are classifying spaces of stabilizers of points of X. The various
spectral sequences at our disposal (namely the Leray, and the Leray-Serre,
spectral sequences) give strong constrains on the action, involving the coho-
mology of G and its subgroups as well as that of X. For example such con-
siderations have led to the proof that whenever a finite group acts freely on a
sphere, then all the Sylow subgroups must be cyclic (or generalized quaternion
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at p = 2), see [AM04]. These applications show the relevance of the above fi-
brations, and thus demonstrate that classifying spaces appear naturally when
studying G-actions.

Before you think that group theory can be swallowed by topology via the
classifying space construction, consider the following: for any topological
space X there exists a discrete group G and a map BG→ X which is an isomor-
phism in homology (this is the Kan-Thurston Theorem, see [KT76]). So as far
as the eyes of homology can see (and that is quite far), topology is subsumed
by group theory. More seriously, this result indicates that, in principle at least,
restricting attention to classifying spaces is hardly a restriction. Note that this
Theorem was explicitly used, for example by Dwyer in [Dwy96] to construct a
transfer map for fibrations, so it is more than a curiosity.

Characteristic classes. By definition, a characteristic class α for G-bundles
assigns an element α(Y ) ∈ H ∗(X) to each principal bundle Y → X (the coho-
mology may be taken with various coefficients). The assignment is required
to be natural with respect to pull-backs. It is then tautological that charac-
teristic classes form a ring which is identified with H ∗(BG). Experience shows
that these classes are very useful in the study of G-bundles. For example, it is
well-known that

H ∗(BGLn(C),Z) = Z[c1, c2, . . . , cn] ,

with ci of degree 2i. This gives rise to the Chern classes of complex vector
bundles. Likewise

H ∗(BOn,F2) = F2[w1,w2, . . . ,wn] ,

with wi of degree i, giving rise to the theory of Stiefel-Whitney classes which are
important in the sequel.

Recreation: Cayley graphs

Is it possible to draw pictures of classifying spaces? Well, we can do the fol-
lowing. Let G be a discrete group. Suppose we try to attach cells together so
as to form a space X with π1(X) = G and πn(X) = 0 for n , 1. Then X will have
the homotopy type of BG, as indicated above, and even though this will not be
the most functorial construction it will have the advantage of using few cells
and thereby allow us to visualize the situation a little better.

Suppose we are given a presentation of G, that is a set of generators S, as-
sumed finite for simplicity, and a set R of words in the free group F (S) on S,
such that G is isomorphic to F (S)/〈R〉 (here 〈R〉 is the normal subgroup gener-
ated by R).

Then we can start building BG by taking a single point, to which we attach
a bouquet of circles in bijection with S; call this X1. Then we attach a 2-cell for
each relation in R, which dictates the “attaching map” of the cell. The resulting
complex X2 has π1(X2) = G (say, by Van Kampen’s Theorem).

The rest of the construction would involve glueing more cells to kill succes-
sively the higher homotopy groups, but let us stop here. Eventually we would
take EG to be the universal cover of BG, and we can at once describe E1 and E2,
the pre-images of X1 and X2 respectively in EG.

We note that E1 is really (the topological space underlying) a directed,
coloured graph, called the Cayley graph of (G,S) (it does not depend on R).
The space E2 is sometimes called the Cayley complex, or presentation com-
plex, of (G,S,R). So the Cayley graph of (G,S) has one vertex for each element
of G, and for each s ∈ S it has one edge coloured by s from g to sg. Better
pictures are obtained when we choose S containing at most one of s, s−1 for
each s ∈ G; assuming this, the only “back-and-forth paths” between two ver-
tices are obtained for generators s satisfying s = s−1, in which case we usually
draw just one edge with a double arrow.

Let us try a few groups of order 8. When G = Z/8, with S = {1}, the Cayley
graph looks as follows.
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If we consider now G = Z/4 ×Z/2, with S = {(1,0), (0,1)}, we obtain the
following picture.

Notice the difference between this and the Cayley graph for the dihedral
group of order 8, that is G = 〈r, s : r4 = s2 = 1, s−1rs = r−1〉 with S = {r, s}:

Of course the last two graphs are identical as undirected, uncoloured graphs,
though the extra decorations tell you something about the action of G (which
can be recovered as the group of directed, coloured graph automorphisms). On
this last picture, to get the Cayley complex you would glue eight discs corre-
sponding to r4 = 1, four on each “red face”, with a quarter of a turn between
them, and eight more discs corresponding to r2 = 1, paired around the dou-
ble green edges (recall that the edges with double arrows are really two edges
each).

Here is the picture for the quaternion group G = 〈i, j,k : i2 = j2 = k2 = ijk =
−1〉 and S = {i, j}:
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One may be disappointed that the Z/3 symmetry is hard to see on this
picture. You may prefer the choice S = {i, j,k}:

Infinite groups can also be considered. Particularly when G is finitely pre-
sented (that is when S andR are both finite) then all relevant information about
the graph can be seen on a finite portion. It does not matter which, since the
Cayley graph has a transitive group of automorphisms, namely G itself. Below
we picture G = SL2(Z).
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We have chosen three generators, the green one corresponding to −Id. Quo-
tienting by the central subgroup {±Id} yields the group P SL2(Z), whose Cay-
ley graph is obtained from the above by identifying two nodes when they are
joined by a green arrow. It is then visible that P SL2(Z) is a free product of Z/2
and Z/3.

Algebraic geometry

Basics. Now let G be an affine algebraic group over a field k. Again a map
of varieties p : Y → X will be called a G-principal bundle when X = Y /G in
some sense and p is nice enough. Let us be more precise. The first requirement
is that the map G × Y → Y × Y given by (g,y) 7→ (y,g · y) should be a closed
immersion.

We state the second condition in the case when k is algebraically closed
first. We require that (1) the fibres of p are the orbits of G; (2) p is surjective
and open; (3) if U is open in Y , the map p induces an isomorphism between
OX(p(U )) and the set of f ∈ OY (U ) which are constant on the fibres of p.

For a general field k, we require that the above condition hold after ex-
tending the scalars to the algebraic closure k̄. One can show that this property
descends, in the sense that if one checks the condition with the scalars extended
to some algebraically closed field K containing k, then it holds for any such field
(see [Mum65], §2, remark 8 and proof of Proposition 0.9).

In this context, a torsor is a principal bundle over Spec(k). Two other defi-
nitions are equivalent. A torsor can be defined to be a variety T with an action
of G such that the map G × T → T × T is an isomorphism (of course this is the
above definition, somewhat cleaned up). Or, one can define a torsor to be a
variety T with an action of G, which becomes isomorphic to G itself with its
translation action when the scalars are extended to k̄.

Example – Let G = O(q0) denote the orthogonal group of the non-degenerate
quadratic form q0 defined over the k-vector space V . Given another non-
degenerate quadratic form q defined on V , consider the variety T of all isome-
tries from (V ,q) to (V ,q0). (The forms q0 and q must become isometric when
scalars are extended to k̄; if they are not isometric over k, then the variety T
has no k-rational points, but is still well-defined.) The isomorphisms in T may
be post-composed with the automorphisms in G, so T is a G-variety (on the
right). It is in fact a G-torsor. Moreover all the G-torsors are of this form: there
is a one-one correspondence between non-degenerate quadratic forms defined
on V and G-torsors ([Ser02], III, §1.2, Proposition 4).

Whenever G is the automorphism group of some type of algebraic struc-
ture, it is frequently possible to show that G-torsors are in bijection with the
isomorphism classes of that structure.

Example – Let K/k be a finite, Galois extension of fields, and let G = Gal(K/k).
The finite group G is thought of as an algebraic group over k, with coordi-
nate ring Ok(G). The algebra K is a G-algebra, or an Ok(G)-comodule algebra,
so Spec(K) is a G-variety (here we use the letter G for Spec(Ok(G)), of course).

Let n denote the order of G. Write K = k[P ]/(P ) where P is a separable,
irreducible polynomial of degree n over k. The groupG acts simply transitively
on the roots of P .

When we form K ⊗k k̄ = k̄[P ]/(P ), the Chinese Remainder Theorem tells us
that the ring we have is a product of n copies of k̄. Inspecting the G-action,
we see that K ⊗k k̄ is really Ok̄(G), the coordinate ring of Gk̄ . So Spec(K) is
a G-torsor.

This example explains the terminology Galois object which is sometimes
used in lieu of torsor.

Universal objects. Universal bundles and classifying spaces, at first sight,
seem not to exist. There exists a larger category than that of algebraic vari-
eties in which we can mimick the topological construction (see [MV99]), but
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we will stick to elementary methods and describe Totaro’s construction (taken
from [Tot99]).

This is the observation that, given G as above, there exists a representa-
tion V such that the action of G is free outside of a Zariski closed subset S
of arbitrary large codimension. Thus V r S is an approximation of EG, and
(V r S)/G is an approximation of BG. We think of “BG in algebraic geometry”
as being the colimit, somehow, of all the varieties (V r S)/G imaginable.

This collection of varieties is well-behaved. For starters, if Y → X is any
G-principal bundle, one can find a variety X ′ with a map X ′→ X whose fibres
are affine spaces, such that the bundle Y ′ → X ′ obtained by pull-back is also a
pull-back of a bundle of the form V r S −→ (V r S)/G, for some V and S. This
is of course analogous to the universality of BG in topology.

Another nice property of Totaro’s varieties is as follows. Consider a “good”
functor F∗ from varieties to graded groups. What we need is that F∗(E) � F∗(B)
when E → B is a vector bundle, and that the F∗-theory comes equipped with
some long exact sequences whenever we consider a closed subset of a vari-
ety. The examples to keep in mind are étale cohomology, ordinary cohomology
when k = C, and the Chow ring CH ∗. Then Totaro’s “double fibration argu-
ment” shows that Fn((V r S)/G) is independent of the choice of V and S, as
long as the codimension of S in V is large enough. The common value is de-
noted Fn(BG). Note that when k = C and we consider ordinary cohomology,
one can show that this trick gives the “right” cohomology for BG.

Combining the remarks of the last two paragraphs, we see for example
that CH ∗BG is the ring of characteristic classes (with values in the Chow ring)
for G-principal bundles. Computing CH ∗BG explicitly on examples was a ma-
jor theme in my early research. See appendix C for more on this.

Cohomological invariants. When discussing characteristic classes, we have
so far considered all G-principal bundles involving varieties over a fixed
field k. Many authors have investigated the following alternative class of ob-
jects. Let us focus attention on bundles over Spec(K), for K a field containing k;
more precisely, let us consider the class of all GK -torsors, for all fields K con-
taining k, where GK is G with scalars extended to K . (Note that K may well
not be finitely generated over k, so that Spec(K) is not a “variety over k” un-
der everyone’s definition.) Then, consider the characteristic classes for these
objects, with values in étale cohomology: they are the so-called cohomological
invariants of G. Of course the étale cohomology of Spec(K) is just the Galois
cohomology of K , written H ∗(K) (with various coefficients available).

In more compact notation, the situation is as follows. Write H1(K,G) for
the (pointed) set of all GK -torsors (a notation which will be discussed later).
Then a cohomological invariant is a transformation of functors

H1(−,G) −→H ∗(−)

(again we do not specify coefficients). Such invariants form a graded ring writ-
ten Inv(G).

One may ask the question of universality in this context. Let us announce at
once that there is no universal torsor yielding all the others by pull-back; and
there is no field K such that Inv(G) =H ∗(K). However, the following holds. Let

p : (V r S)→ (V r S)/G

be one of Totaro’s varieties, with S of codimension at least 2. Then any torsor
over Spec(K) is obtained as a fibre of p, that is a pull-back over some map

Spec(K) −→ (V r S)/G .

There is no uniqueness statement regarding this map, and this is probably the
reason why p is called versal (that is, universal without uniqueness).

Now let Ω be the field of rational functions on the variety (V r S)/G.
Then Inv(G) can be identified with a certain subring of H ∗(Ω). For more
information see [GMS03].
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I have contributed to the theory of cohomological invariants in [Gui07b].
Salient points are summarized in appendix C.

Non-commutative geometry

Basics. Suppose all the varieties in the previous section are taken to be affine.
Then most results can be stated in terms of coordinate rings, which are com-
mutative. It is natural curiosity to study the situation with all commutativity
requirements removed.

There are in facts several ways to write down the definitions (just like in
algebraic geometry there are several definitions of “quotient”). We shall give
just one example. The group G will be replaced by a Hopf algebra H over k
(think of H = O(G)), the variety Y will be replaced by an H-comodule algebra,
and the quotient X = Y /G will be replaced by

B = Aco−H = {a ∈ A | ∆A(a) = a⊗ 1} ,

where ∆A : A→ A⊗H is the map giving the coaction. Then the inclusion B ⊂ A
is called Galois when the map

A⊗B A→ A⊗k H , a⊗ b 7→ (a⊗A)∆A(b)

is an isomorphism. This mimicks the fact that, in the classical case, the
map (g,y) 7→ (y,g · y) gives an isomorphism G ×Y � Y ×X Y .

Then we further call the extension B ⊂ A a quantum H-principal bundle
when B is contained in the centre of A, and A is faithfully flat as a B-module
(this is the definition taken in [Kas04]).

We do not claim that this definition reduces to the classical one when ap-
plied to commutative algebras (rather, it seems to refer to a slightly larger
class of objects). In some situations one may use alternative definitions. How-
ever, there is an agreement on the usefulness of the following rather technical
requirement, which is automatically satisfied in the commutative case. The
extension B ⊂ A as above is called cleft when there exists a map of right H-
comodules γ : H → A (the “cleaving map”) which has a convolution inverse
in Homk(H,A).

Cleft quantum principal bundles with B = k are definitely what we should
call torsors for H, although the usually accepted terminology is cleft Galois ob-
jects for H.

To give just a little bit of intuition for the “cleft” condition, we mention that
Kassel in [Kas04] proves for certain Hopf algebras, and conjectures for many
Hopf algebras, that the cleftness of B ⊂ A is equivalent to the existence of an
isomorphism of this extension with B ⊂ B ⊗H after a finite, étale extension
and a homotopy (in some elementary sense). In algebraic geometry a torsor
becomes trivial in a finite extension of the base field (since it is enough to find
one rational point), so it certainly satisfies Kassel’s condition.

The question of the existence of a universal principal bundle is not settled
in the “quantum” world. Kassel and Aljadeff in [AK08] have studied versal
bundles, on the other hand; see also the appendix to [GKM12]. Essentially for
any torsor T in the above sense, there exists a quantum bundle whose fibres
are torsors becoming isomorphic to T when the scalars are extended to a large
enough field, and such that conversely all such torsors can be obtained as fi-
bres. In the classical case all torsors become trivial over algebraically closed
fields, so the versal bundles considered in the previous section are actually of
this form, with T = G trivial. The novelty in the quantum realm resides in the
existence of non-trivial “torsors” over non-algebraically closed fields.

Examples. We would like to show non-commutative torsors in action. Rather
than a torsor itself, we shall illustrate the associated twisting procedure. Recall
the classical case. Given a torsor T for G, and a G-variety X, one may form

XT =
T ×X
G

.
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When T = G is the trivial torsor, we have XT = X; as a result, the twisting is
always trivial over algebraically closed fields, and we see that XT is another
form of X.

Studying the analogous construction in the context of Hopf algebras and
non-commutative geometry is the subject matter of [GKM12], in which we seek
to give generators and relations for the algebra corresponding to XT . Our main
Theorem says that things are as simple as possible, in the sense that certain
“obvious” relations in this algebra are in fact sufficient. The statement un-
fortunately is rather technical, and we shall be content with an example. As
promised, it will show that there are non-trivial non-commutative torsors even
over algebraically closed fields.

Let us work with the algebra of functions on the algebraic group SL2, play-
ing the rôle of X. We consider H = O(G) for G = Z/2×Z/2 = 〈e1, e2〉 acting on
the algebra

A = SL(2) = k[a,b,c,d]/(ad − bc − 1)

by

e1 ·
(
a b
c d

)
=

(
d c
b a

)
and e2 ·

(
a b
c d

)
=

(
a −b
−c d

)
.

(Each matrix identity is shorthand for four identities in A.)
We need to pick a torsor for H. In the next section we shall explain how

to do this “combinatorially” (or at least computationally). Namely, to define a
torsor it is sufficient to exhibit a Drinfeld twist as we have met them in chap-
ter 4. More precisely let us take the twist F given on page 28. We denote the
corresponding torsor also by the letter F.

By the procedure detailed in [GKM12], it defines a twisted algebra AF ,
which we also denote by SLF(2). Let us give a presentation of the latter.

Set x = (a+ d)/2, y = (a− d)/2, z = (b + c)/2 and t = (b − c)/2. These elements
are eigenvectors for the action of G, and we have

SL(2) = k[x,y,z, t]/(x2 − y2 − z2 + t2 − 1) .

From our main Theorem in loc. cit. it is an exercise to show the following.

Proposition – The algebra SLF(2) has a presentation with four generators X, Y , Z,
T subject to the seven relations

XY = YX , XZ = ZX , XT = TX ,

YZ = −YZ , Y T = −T Y , ZT = −TZ ,
X2 +Y 2 +Z2 − T 2 = 1 .

As an illustration, we may take k = R and describe the setHomalg (SLF(2),R)
of R-points, which we denote by SLF(2,R).

Corollary – The set SLF(2,R) consists of two circles and a hyperbola, all intersect-
ing in two points.
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The algebra SL(2) is a Hopf algebra with coproduct ∆ : SL(2) → SL(2) ⊗
SL(2) given by

∆(x) = xx′ + yy′ + zz′ − tt′ , ∆(y) = xy′ + yx′ − zt′ + tz′ ,

∆(z) = xz′ + yt′ + zx′ − ty′ , ∆(t) = xt′ + yz′ − zy′ + tx′ ,

where x is identified with x ⊗ 1 and x′ with 1⊗ x (similarly for the other vari-
ables).

The twisted algebra SLF(2) is a Hopf algebra “in the braided sense”. That is,
if we denote (SL(2)⊗SL(2))F by SLF(2,2) for short, one can show that SLF(2,2)
is the “tensor product” of SLF(2) with itself in some monoidal category, and
there is a map SLF(2)→ SLF(2,2).

Proposition – The algebra SLF(2,2) is generated by eight generators X, Y , Z, T ,
X ′ , Y ′ , Z ′ , T ′ subject to the following relations:

• the “left relations”, which are as in the previous Proposition,

• the “right relations”, which are obtained from the left relations by applying
the substitutions X 7→ X ′ , Y 7→ Y ′ , Z 7→ Z ′ , T 7→ T ′ ,

• the “composability conditions”, namelyX andX ′ commute with all other gen-
erators, and

YZ ′ = −Z ′Y , Y T ′ = −T ′Y , ZT ′ = −T ′Z ,

Y ′Z = −ZY ′ , Y ′T = −T Y ′ , Z ′T = −TZ ′ .

The map ∆ : SLF(2)→ SLF(2,2) is given by the following formulas:

∆(X) = XX ′ −YY ′ −ZZ ′ + T T ′ , ∆(Y ) = XY ′ +YX ′ −ZT ′ − TZ ′ ,

∆(Z) = XZ ′ −YT ′ +ZX ′ − T Y ′ , ∆(T ) = XT ′ +YZ ′ +ZY ′ + TX ′ .

When R is a commutative algebra, then the set SL(2,R) = Homalg (SL(2),R)
is a group; for a general algebra R however, the set SL(2,R) has only a partially
defined group law (essentially, one can only multiply two matrices if all the
coordinates commute). A similar statement holds for SLF(2): two points of
SLF(2,R) = Homalg (SLF(2),R) are composable if and only if they satisfy the
composability conditions of the Proposition.

We are now in position to describe the partially defined group law on the
set SLF(2,R) of real points of SLF(2). Let C1, C2 denote the two circles and H
the hyperbola.

Corollary – Two points of SLF(2,R) can be composed if and only if they both
belong to one of C1, C2 or H. The groups C1 and C2 are isomorphic to the group of
complex numbers of modulus 1, while H is isomorphic to the multiplicative group
of non-zero real numbers.

Combinatorial descriptions

We have written H1(k,G) for the set of G-torsors over the field k. Let us recall
briefly a few definitions from [Ser02] which justify this otherwise surprising
notation.

If A is any group with an action of Gal(k̄/k) by group automorphisms, a 1-
cocycle is a continuous map Gal(k̄/k)→ A of the form s 7→ as with the property
that ast = as s·at . Two 1-cocycles a and a′ are cohomologous if there exists b ∈ A
such that a′s = b−1as s ·b. The set of 1-cocycles modulo cohomology is writ-
ten H1(k,A). When A is abelian, the set H1(k,A) is a group and is indeed the
first cohomology group of G with coefficients in A (that is, it is an Ext in an
appropriate category).
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It is then a theorem that for A = G(k̄) the set H1(k,G(k̄)), more commonly
written H1(k,G), is in bijection with the set of G-torsors over k. Briefly, given a
cocycle a one starts with the trivial torsor, namely G itself or rather G(k̄), and
changes the Galois action to

s ∗ x = as s ·x . (x ∈ G(k̄), s ∈ Gal(k̄/k))

This defines a new structure of k-variety on G, and this is the required torsor.
In the quantum setting there is also a combinatorial description of the tor-

sors. We sketch this here and refer to [GKM12] for details. A two-cocycle for a
Hopf algebra H over k is a convolution-invertible bilinear form σ : H×H→ k
satisfying (in Sweedler’s notation)∑

(x),(y)

σ (x1, y1)σ (x2y2, z) =
∑

(y),(z)

σ (y1, z1)σ (x,y2z2)

for all x,y,z ∈ H. Given such a σ , we may endow H with a new multiplication
defined by

x ∗ y =
∑

(x),(y)

σ (x1, y1)x2y2 .

The algebra H with this twisted multiplication is a torsor (cleft Galois object)
for H, and all torsors are of this form. The two-cocycles σ and τ define the
same torsor if and only if there is a convolution-invertible map λ : H→ k such
that

τ(x,y) =
∑

(x),(y)

λ(x1)λ(y1)σ (x2, y2)λ−1(x3y3) ,

for all x,y ∈ H. One says that they are equivalent.
Now suppose thatH is finite-dimensional, so that its dualK is again a Hopf

algebra. A bilinear map σ on H×H defines a tensor F ∈ K⊗K via the require-
ment 〈F,x⊗ y〉 = σ (x,y). It is easily checked that σ is a two-cocycle if and only
if F satisfies

(F ⊗ 1)(∆⊗ id)(F) = (1⊗F)(id ⊗∆)(F)

inK⊗K⊗K. One says that F is a Drinfeld twist. Drinfeld twists appear in chap-
ter 4 in another context. Also, two twists F and F′ correspond to equivalent
two-cocycles if and only if

F′ = (a⊗ a)F∆(a−1)

for some invertible a ∈ K; one says that they are gauge equivalent. Again, this
condition will pop up in chapter 4.
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Appendix B

Braids and R-matrices

Braids, links and the apparatus of Markov functions are directly relevant to
chapter 3, and we include a general discussion here. It turns out that the rep-
resentations of the braid groups, much sought after in this theory, can be pro-
duced with the machinery of R-matrices on Hopf algebras. Since R-matrices
will appear in chapter 4 (even if the relationship to braids will not be explicit
then), it is convenient to introduce them in this appendix. We shall finish with
a word about the Reshetikhin-Turaev Theorem, definitely not needed in the
rest of this work but particularly enlightening at this point.

Braids

(A reference for the facts given without proof in the beginning of this appendix
is [KT08].)

A geometric braid is something like what you see on the following picture.
It is to be taken quite literally. The individual strands are homeomorphic to the
unit interval [0,1], and the scene takes place in R

3. We think of such a braid
as going “down” from n fixed starting points (n = 4 on the picture) to n end
points, also fixed once and for all. The strands are not allowed to turn back up
on their way down (if they did, they would be “tangles”, to be described later).

There is a composition law on the set of geometric braids, which briefly is
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“stack on top and rescale”. In other words composed with

gives:

If we look at braids up to isotopy, then this composition gives a group law, with
identity given by the “straight” braid, and inverses given by vertical mirror-
images. The group formed by the isotopy classes of braids on n strands form
the braid group Bn.

Let us give Artin’s presentation of the braid group. First we introduce the
braid σi ∈ Bn:

Theorem B.1 – The group Bn is generated by the σi ’s. The relations between these
all follow from σiσj = σjσj when |i − j | > 1, and σiσi+1σi = σi+1σiσi+1.

For example here is why σ1σ2σ1 = σ2σ1σ2:
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Links

Any braid β gives an oriented link β̂ in R
3 obtained by glueing its top and

bottom, and called its closure. For example

gives

Alexander’s celebrated Theorem is particularly easy to state:

Theorem B.2 – Any oriented link L in Euclidean 3-space is obtained as the closure β̂
of some braid β.

It would take a serious lack of curiosity not to ask: given two braids β and γ ,
when are β̂ and γ̂ isotopic ? This may well happen with β ∈ Bn and γ ∈ Bm
with n ,m.

For one thing, we have the formula ̂αβα−1 = β̂, which is illustrated below.

=⇒

Another simple observation is that ̂ι(β)σ±n = β̂, where ι : Bn → Bn+1 is the
obvious inclusion (which adds a straight strand).
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=⇒

These are called the Markov moves, in reference to Markov’s theorem, which
is the following.

Theorem B.3 – The two Markov moves generate the equivalence relation on
∐
nBn

which relates two braids when they have the same closure up to isotopy.
In other words, let f = (fn)n≥2 :

∐
Bn → S be any map to a set S. When f

satisfies

1. fn(γβγ−1) = fn(β),

2. fn+1(ι(β)σ±1
n ) = fn(β) for β ∈ Bn,

and only in this case, then f (β) depends only on the closure β̂.

The collection (fn)n≥2 is called a Markov function. Thus defining a Markov
function is tantamount to producing an isotopy invariant for oriented links in
Euclidean 3-space.

A typical strategy to achieve this aim, on which we will expand quite a bit,
is to look for representations Bn→ GL(Vn) and define fn to be a familiar func-
tion on the matrix group GL(Vn) which is known to be conjugation-invariant,
such as the trace or determinant. There remains to check condition (2) above,
which is a requirement on the way one passes from the module Vn to Vn+1.

Example B.4 – Perhaps the most famous family of representations of the braid
groups is the Burau representation (note that “Burau” is a German name whose
pronounciation is nowhere near that of “bureau”). This is given by the the
homomorphism rn : Bn→ GLn(Z[t, t−1]) defined by

ρn(σi) =


Ii−1 0 0 0

0 1− t 1 0
0 t 0 0
0 0 0 In−i−1

 .
The determinant dn(β) = det(ρn(β) − Id) is an element of Z[t, t−1] for each
braid β ∈ Bn. We writeDn(β) ∈Z[s, s−1] for this determinant evaluated at t = s2.

If we put then

fn(β) = (−1)n+1 s
−〈β〉(s − s−1)
sn − s−n

Dn(β) ,
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then one can show that (fn)n≥2 is a Markov function; here β 7→ 〈β〉 ∈ Z is the
length map, the only homomorphism Bn→ Z taking the value 1 on the gener-
ators σi . The associated link invariant is the Alexander-Conway polynomial.

R-matrices

In the next chapter we will define a link invariant following the strategy out-
lined above, and there are no further prerequisites for this chapter. However
in chapter 4, we will refer to the machinery of R-matrices, which are best un-
derstood in view of their relations to braids. Thus this is the natural place to
give an overview of this theory (although braids are not themselves mentioned
in chapter 4).

Hopf algebras and R-matrices, in short, will show that there is a wealth
of representations of the braid groups, and a systematic way of constructing
them. A reference is [Kas95].

Definition B.5 – Let A be a Hopf algebra over the field k. A (universal) R-
matrix for A is an invertible element R ∈ A⊗A such that

1. ∆op(x) = R∆(x)R−1 for all x ∈ A,

2. (∆⊗ id)(R) = R13R23,

3. (id ⊗∆)(R) = R13R12,

where the following notation is used. The map ∆ : A → A ⊗ A is the comul-
tiplication (or diagonal) of A. For any A-modules V and W , we write τV ,W
for the flip V ⊗W → W ⊗ V sending v ⊗w to w ⊗ v, and then ∆op = τA,A ◦∆.
Finally R13 = (τA,A ⊗ id)(1⊗R), while R12 = R⊗ 1 and R23 = 1⊗R. �

In order to illustrate what the axioms mean, we must at once introduce the
maps

cV ,W : V ⊗W −→W ⊗V

(one for each pair V ,W of A-modules) defined by

cV ,W (v ⊗w) = τV ,W (Rv ⊗w) .

The reader will observe that if we see V ⊗W and W ⊗ V as A-modules in the
usual way, then cV ,W is a map of A-modules (from the first axiom). To get a
feeling for the other two axioms, the best is to state the following.

Theorem B.6 – Let A be a Hopf algebra with universal R-matrix. Then for any A-
module V , the braid group Bn acts on V ⊗n by automorphisms of A-modules. The
action of σi is given by

id ⊗ id ⊗ · · · ⊗ id ⊗ cV ,V ⊗ id · · · ⊗ id ,

where cV ,V acts on the i-th and i + 1-st factors.

In particular, on V ⊗V ⊗V we have σ1 acting as R⊗ id and σ2 acting as id⊗
R, in such a way that σ1σ2σ1 = σ2σ1σ2. If one chooses a basis for V as a k-
vector space and writes the above in terms of matrices, then one recovers the
classical definition ofR-matrices in terms of the “Yang-Baxter equation” (hence
the name “universal R-matrix” for the element R ∈ A⊗A).

Example B.7 – Whenever A is cocommutative (meaning ∆ = ∆op), one can
take R = 1⊗ 1. In this situation the action on V ⊗n is particularly simple.

Note that there is a morphism of groups Bn→ Sn, where Sn is the symmetric
group on n letters: simply assign to a braid the associated permutation of the
end points. The kernel of this map is generated by the elements σ2

i (observe
that σi corresponds to the transposition (i, i + 1)). It follows that an action
of Bn on V ⊗n factors through Sn if and only if τA,A(R) = R−1. (This is usually
perceived as disappointing when it occurs, although in positive characteristic
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the representations of Sn are difficult to study and this procedure may very
well give non-trivial results).

In the very particular case when R = 1⊗ 1, the action of Sn is the obvious
one, permuting the factors.

Example B.8 – Examples of Hopf algebras are, of course, provided by the al-
gebras of functions (smooth, regular. . . ), on a group (Lie, algebraic. . . ). Let us
stick to the simplest case and consider a finite group G and the algebra A =
O(G) of all k-valued functions on it.

The elements of A⊗A are thus functions on G ×G. It is fun to check that
an R-matrix in this situation is given by a map

G ×G −→ k×

which is bilinear.
In a similar vein, consider the case when A is commutative. Then the first

axioms states that A must be cocommutative as well (for example A = k[G],
the group algebra of an abelian group G). We can then consider the group
scheme G defined by G(K) =Homk−alg (A,K) for any k-algebra K (we hasten to
add that we shall not use anything from the theory of group schemes in the ar-
gument that follows, beyond Yoneda’s Lemma). Then an R-matrix corresponds
to a map

G×G −→Gm ,

where Gm is the multiplicative group, that is Gm(K) = K×, which is again bilin-
ear in an appropriate sense.

The Reshetikhin-Turaev Theorem

We have now described all the material needed to read chapters 3 and 4. How-
ever, at this stage when we know how to produce lots of representations of the
braid groups, the reader probably wonders whether one can go further and
produce Markov functions from an appropriate Hopf algebra. The positive an-
swer is given by the beautiful Theorem by Reshetikhin and Turaev stated be-
low. This result is definitely not used in the following chapters, and we include
it for fun. More details can be found in [KRT97] and the references therein.1

We need to switch to a categorical language. At the heart of the Theorem be-
low is the definition of a ribbon category. Postponing a more formal definition,
this is a monoidal category satisfying some simple-looking, linear-algebra-like
axioms. The main point is the realization that, in spite of this modest initial
description, such categories are intimately related to braids and links, in the
following sense: given a collection of objects, there is a “free” ribbon category
on those objects, and the latter is defined explicitly in terms of tangles (which
generalize simultaneously braids and links).

Crucial to the applications is the fact that the category C of A-modules over
a “nice” Hopf algebra A is ribbon. Thus there is a functor from the free ribbon
category on the objects of C to C itself, and when we spell out what this means,
we discover many (framed) link invariants (and much more).

Definition B.9 – A ribbon category is a category C equipped with a monoidal
structure written ⊗, and endowed with the following extra structure.

1. Commutativity constraint. For any pair V ,W of objects of C, there is a
natural map

cV ,W : V ⊗W −→W ⊗V ,
which is required to satisfy

cU⊗V ,W = (cU,W ⊗ idV )(idU ⊗ cV ,W ) ,

cU,V⊗W = (idV ⊗ cU,W )(cU,V ⊗ idW ) .

1Let us point out that the very general result to be described deals in fact with framed links (of
which we say a word in the text), so it is a slight abuse of language to speak of Markov functions
and so on. It is not our concern to discuss the details of this.
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2. Duality. For each object V in C, there is an associated object V ∗ and maps

bV : 1 −→ V ⊗V ∗ , dV : V ∗ ⊗V −→ 1 ,

such that
(idV ⊗ dV )(bV ⊗ idV ) = idV ,

(dV ⊗ idV ∗ )(idV ∗ ⊗ bV ) = idV ∗ .

(Here for simplicity we have suppressed from the first equation the asso-
ciativity isomorphism between (V ⊗V ∗)⊗V and V ⊗ (V ∗ ⊗V ). It holds as
stated when C is strict.)

3. Twisting. For any object V of C, we have a natural morphism

θV : V −→ V ,

such that
θV⊗W = cW,V cV ,W (θV ⊗θW ) .

Moreover, we require the following compatibility condition: for any object V
of C, one must have

(θV ⊗ idV ∗ )bV = (idV ⊗θV ∗ )bV .

�

Notice how the “twisting” axiom says that the composition cW,V ◦ cV ,W ,
while not equal to the identity, is a sort of coboundary.

Example B.10 – Let C denote the category of finite-dimensional vector spaces
over the field k, equipped with the usual tensor product. Define the commuta-
tivity constraint to be the usual flip v ⊗w→ w⊗ v. The dual of V is its dual in
the elementary sense. There are canonical identifications of V ⊗V ∗ and V ∗⊗V
with Hom(V ,V ); under these, the map bV is λ 7→ λidV and dV is the trace. Fi-
nally, take the twisting map θV to be the identity. Then C is a ribbon category.

Example B.11 – Let A be a Hopf algebra with R-matrix R, and let C be the cat-
egory of finite-dimensional A-modules. Define the tensor product and duality
in the traditional sense for Hopf algebras, with bV and dV as in the previous
example. Define the commutativity constraint using the R-matrix, as we did
just before Theorem B.6.

In this situation, one can show that C can be turned into a ribbon category
provided that A satisfy the following simple extra assumption: there exists θ ∈
A which is central and verifies

∆(θ) = (τA,A(R)R)−1(θ ⊗θ) , ε(θ) = 1, and S(θ) = θ .

(Here ε is the augmentation of A, while S is the antipode.) The map θV is then
multiplication by θ−1. The existence of such an element θ is even necessary in
the case when A is finite-dimensional.

In the very simple case envisaged in example B.7, that is when τA,A(R) = R−1

and the actions of Bn factor through Sn, one may take θ = 1⊗ 1.

We turn to the definition of the “free” ribbon categories. Fix n points in the
plane P1 = {z = 1} in R

3, and m points in the plane P0 = {z = 0}. An (n,m)-tangle
is a 1-manifold with boundary, embedded in R

3 between P0 and P1, and whose
boundary is made of (all of) our selected points. Tangles here are also assumed
to be oriented, and to have a normal vector field; one may speak of framed
tangles for emphasis, or indeed, of ribbons. So braids in Bn are special (n,n)-
tangles, while links are (0,0)-tangles.2 More possibilities are now allowed, as
on the picture of a (1,3)-tangle below.

2this holds provided you endow them with a framing, which can be done canonically for braids
and non-canonically in general; we will mostly ignore these technicalities in what follows. See
previous footnote.
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The isotopy classes of (n,m)-tangles can be seen as the morphisms be-
tween n and m in the category T , whose objects are the natural numbers.
Composition is defined by stacking and rescaling, as for braids.

Finally, given any category C, we define TC to be the category whose ob-
jects are finite sequences (V1, ε1, . . . ,Vn, εn) of objects of C and signs εi = ±1,
and whose morphisms are isotopy classes of C-coloured tangles. The latter are
tangles with an object of C decorating each connected component. (We need
a compatibility between the signs and the orientations, for example we may
agree that near a boundary point corresponding to a −1 sign the orientation is
going up.) The composition law should be obvious.

We are going to state shortly that TC is ribbon. Let us briefly indicate that
the duality on objects reverses the order and the signs. The picture below
shows the twist, as a morphism k → k in T , as well as the maps b : 0 → 2k
and d : 2k→ 0.

Here is finally the Reshetikhin-Turaev Theorem, whose proof can be found
in [Tur10].

Theorem B.12 – The category TC is the free ribbon category on the objects of C, for
any category C.

More precisely, TC is ribbon, and if C is itself ribbon, then there exists a unique
functor

F : TC −→ C

compatible with the ribbon structures.

Let us indicate at once the following consequences. Assume that C is the
category of A-modules for a Hopf algebra A over a field k as in example B.11;
such a C is ribbon. Pick any (framed) link L, and decorate all its connected
components with an arbitrary object V of C. Then L can be seen as a morphism
in TC between the empty sequence and itself, so F(L) is a morphism k→ k (in C
the “unit” for the tensor product is the object k). As a result F(L) defines an
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element of k which is a (framed) link invariant. (Framed links may be replaced
by plain links when the element θ in example B.11 is 1.)

The famous examples of quantum groups are Hopf algebras over k = C(q)
satisfying the above conditions. The celebrated Jones polynomial of a link L is
an element of C(q) which may be constructed in this fashion (for the reader fa-
miliar with the notation, for the Jones polynomial one takes A =Uq(sl2) and V
is the unique 2-dimensional irreducible module).

It is also important to realize that Theorem B.12 implies Theorem B.6 for
the corresponding Hopf algebras. Indeed, pick a braid β in Bn, decorate all its
connected components with the object V , and view the result as a morphism
between the object (V ,+1, . . . ,V ,+1) (appearing n times) and itself, in TC . Now
apply F, and get a morphism V ⊗n→ V ⊗n which is that of Theorem B.6.

Finally, from this Theorem we get a new, more satisfying outlook on the op-
eration of closure. Indeed, a braid β and its closure β̂, appropriately decorated,
are both morphisms in TC , and there does exist a general ribbon-theoretic con-
struction that specializes to the operation β 7→ β̂ (no matter how geometric the
latter seems). This is the quantum trace (so nominated in order to distinguish
it from the usual trace, which in many examples of ribbon categories is also
available; in the case considered in example B.10, the quantum trace is just the
trace, but the two are distinct already in example B.11). In a general ribbon
category for which the unit object for the monoidal structure is written 1, the
quantum trace of f : V → V is

T rq(f ) = dV cV ,V ∗ ((θV f )⊗ idV ∗ ) bV : 1 −→ 1 .

It is amusing to check that the quantum trace of a braid β is indeed β̂.
In a category of modules C over a Hopf algebra as above, the quantum trace

of the morphism F(β) : V ⊗n → V ⊗n defines an element of k, and it is a conse-
quence of the Theorem that the functions fn : Bn → k mapping β to T rq(F(β))
form a Markov function. We conclude by adding that in the case of quantum
groups, the quantum trace is well-understood: there is a distinguished ele-
ment K ∈ A such that the quantum trace of any morphism f : V → V in C is the
usual trace of Kf .
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Appendix C

Algebraic cycles and
classifying spaces

In this appendix we collect some of my early results on Chow rings of classify-
ing spaces. In contrast with the other chapters of this document, we give little
background information.

Very briefly, the situation is as follows. One considers an algebraic group G
over C, for example a finite group. The object is to study the cycle map

CH ∗BG −→H ∗(BG,Z)

or the variant
CH ∗BG⊗

Z
Fp −→H ∗(BG,Fp) .

(See appendix A on how BG can be considered as an algebraic variety.) Some-
times one is able to compute CH ∗BG, sometimes only the image Ch∗BG of the
cycle map is described.

Recall also Totaro’s factorization of the cycle map as follows:

CH ∗BG −→MU ∗(BG)⊗MU ∗ Z −→H ∗(BG,Z) .

Here MU is the complex cobordism spectrum.

§1. Symmetric groups & Chevalley groups

The results in this section complete those of §2, of which we use the notation.

Theorem C.1 – Let Sn denote the symmetric group on n letters, and let p be a prime−→
number. There are isomorphisms

CH ∗BSn ⊗Z Fp �MU
∗(BSn)⊗MU ∗ Z � ÕH ∗(BSn,Fp) .

Moreover
CH ∗BSn ⊗Z Fp � lim

E
CH ∗BE ⊗

Z
Fp

where E runs through the elementary abelian p-groups of Sn.

See [Gui05].

Theorem C.2 – Let G be a Chevalley group, let p be a prime number such that−→
H ∗(G(C),Z) does not have p-torsion, and let k be a finite field of characteristic , p
containing the p-th roots of unity. Then there is an isomorphism

MU ∗(BG(k))⊗MU ∗ Z �H ∗(BG(C),Fp) ,

and this ring injects into H ∗(BG(k),Fp).
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Assume moreover that G is semi-simple and that p > 7. Then the image of the
above ring is precisely the image of the cycle map, and

Ch∗(BG(k)) =Ch∗(BT (k))W

where T is a split maximal torus and W is the Weyl group.
Finally when G is one of GLn, SLn, Spn, Spinn, SLn for p prime to n, or an

exceptional group, or a product of groups in this list, then the cycle map is injective.

See [Gui04] and again [Gui05] (where the relation between this theorem
and Steenrod operations is explained).

§2. The group Spin7

The cohomology ring H ∗(BSpin7,F2) is polynomial (see the computation by
Quillen in [Qui71]). By contrast, the Chow ring of the same group is much
more involved. Here is a description of CH ∗BSpin7 ⊗ZZ(2).

Theorem C.3 – One has−→

CH ∗(BSpin7)(2) =
Z(2)[c′2, c4, c

′
4, c6, c

′
6, c7, c

′
8,ζ]

I

where I is the ideal generated by the following relations (with δi = 0 or 1 (i = 1,2)):

2ζ = 0, 2c7 = 0

ζ2
3 = 0, ζ3c7 = 0, ζ3c

′
4 = ζ3c4

ζ3c
′
6 = ζ3c6, ζ3c

′
2 = 0

c′2c
′
6 − c

′
2c6 =

2
3
c4(c′4 − c4) + 16c′8

c′2c7 = δ1c6ζ3

c′4(c′4 − c4) = c4(c′4 − c4) + 36c′8
c′4(c′6 − c6) = c4(c′6 − c6) + 6c′2c

′
8

c′4c7 − c4c7 = δ2c8ζ3

(c′2)2 − 4c4 =
8
3

(c′4 − c4)

c′6(c′6 − c6) = c6(c′6 − c6) + c′8(
8
3
c′4 +

4
3
c4)

c′2c
′
4 − c

′
2c4 = 6(c′6 − c6)

c′6c7 = c6c7 .

Moreover one has an isomorphism

CH ∗(BSpin7)(2) �MU
∗(BSpin7)⊗MU ∗ Z(2) .

See [Gui07a].

Theorem C.4 – There is a finite subgroup G of Spin7 such that the ring CH ∗BG is−→
not generated by Chern classes and transfers of Chern classes.

This is a counter-example to a conjecture of Totaro’s (formulated in [Tot99]).
We prove this theorem in [Gui08].

§3. Cohomological invariants

In appendix A we have introductedCH ∗BG, the cycle map toH ∗(BG), and Inv(G).
These are related to one another via the following spectral sequence.
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Theorem C.5 (Rost, Bloch, Ogus) – Let k be algebraically closed. There exists a
spectral sequence

Er,s2 = Ar (BG,H s−r ) =⇒H r+s
et (BG) .

In particular the E2 page is zero under the first diagonal, and the resulting map

An(BG,H0) = CHn(BG)⊗
Z
Fp −→Hn

et(BG)

is the cycle map.

A word of explanation is in order. Here we write A∗(X,H ∗) for Rost’s
Chow groups with coefficients in Galois cohomology, at the implicit prime p,
see [Ros96]. This is a bigraded ring, and A∗(X,H0) = CH ∗(X) ⊗ Fp, while
A0(BG,H ∗) = Inv(G). Also, H ∗et(X) is the étale cohomology of X with coeffi-
cients in Fp (when k = C this is the ordinary cohomology of X).

This is the classical Bloch & Ogus spectral sequence, as reinterpreted by
Rost in terms of his Chow groups. In [Gui07b] (to which we refer for more
details and references) we have explained how to apply it to BG instead of
a plain algebraic variety. Surprisingly, the spectral sequence had never been
explicitly applied to the computations of cohomological invariants. In loc. cit.
we note the following.

Proposition C.6 – There is a map−→

H ∗et(BG) −→ Inv(G)

which vanishes (for ∗ > 0) on the image of the cycle map.
In particular there are isomorphisms

Inv1(G) �H1
et(BG)

and

Inv2(G) �
H2
et(BG)

Ch1(BG)
.

For k = C this yields
Inv1(G) �Hom(π0(G),Fp)

and
Inv2(G) = p-torsion in H3(BG,Z) .

Finally, any non-zero element in the kernel of the cycle map

CH2(BG)⊗
Z
Fp −→H4

et(BG)

determines a non-zero cohomological invariant in Inv3(G).

The main point in [Gui07b] however is to show how the “stratification
method”, originally introduced by Vezzozi and already employed in my own
computation of CH ∗BSpin7, could be put to good use with cohomological in-
variants. A possible application is as follows.

Theorem C.7 – There is an exact sequence−→

0 −→ Inv(Spin2n) −→ Inv(Z/2× Spin2n−1)
r−→ Inv(Spin2n−2) .

Moreover the image of r contains the image of the restriction map Inv(Spin2n)→
Inv(Spin2n−2).

The cohomological invariants of Spinn are only known for small values of n
(up to n = 14 to the best of my knowledge).
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