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Graph Coloring and Graph Convexity

Abstract: In this thesis, we study several problems of Graph Theory concerning
Graph Coloring and Graph Convexity. Most of the results contained here are related
to the computational complexity of these problems for particular graph classes.

In the �rst and main part of this thesis, we deal with Graph Coloring which is one
of the most studied areas of Graph Theory. We �rst consider three graph coloring
problems called Greedy Coloring, Weighted Coloring and Weighted Improper Col-
oring. Then, we deal with a decision problem, called Good Edge-Labeling, whose
de�nition was motivated by the Wavelength Assignment problem in optical net-
works.

The second part of this thesis is devoted to a graph optimization parameter
called (geodetic) hull number. The de�nition of this parameter is motivated by an
extension to graphs of the notions of convex sets and convex hulls in the Euclidean
space.

Finally, we present in the appendix other works developed during this thesis,
one about Eulerian and Hamiltonian directed hypergraphs and the other concerning
distributed storage systems.

Keywords: Graph Theory, Computational Complexity, Coloring, Convexity.



Coloration et convexité dans les graphes

Résumé : Dans cette thèse, nous étudions plusieurs problèmes de théorie des
graphes concernant la coloration et la convexité des graphes. La plupart des résultats
�gurant ici sont liés à la complexité de calcul de ces problèmes pour certaines classes
de graphes.

Dans la première, et principale, partie de cette thèse, nous traitons de coloration
des graphes qui est l'un des domaines les plus étudiés de théorie des graphes. Nous
considérons d'abord trois problèmes de coloration appelés coloration gloutone, col-
oration pondérée et coloration pondérée impropre. Ensuite, nous traitons un prob-
lème de décision, appelé bon étiquetage de arêtes, dont la dé�nition a été motivée
par le problème d'a�ectation de longueurs d'onde dans les réseaux optiques.

La deuxième partie de cette thèse est consacrée à un paramètre d'optimisation
des graphes appelé le nombre enveloppe (géodésique). La dé�nition de ce paramètre
est motivée par une extension aux graphes des notions d'ensembles et d'enveloppes
convexes dans l'espace Euclidien.

En�n, nous présentons dans l'annexe d'autres travaux développées au cours de
cette thèse, l'un sur les hypergraphes orientés Eulériens et Hamiltoniens et l'autre
concernant les systèmes de stockage distribués.

Mots clés : Théorie des Graphes, Complexité, Coloration, Convexité.



Coloração e convexidade em grafos

Resumo: Nesta tese, estudamos vários problemas de teoria dos grafos relativos
à coloração e convexidade em grafos. A maioria dos resultados contidos aqui são
ligados à complexidade computacional destes problemas para classes de grafos par-
ticulares.

Na primeira, e principal, parte desta tese, discutimos coloração de grafos que é
uma das áreas mais importantes de teoria dos grafos. Primeiro, consideramos três
problemas de coloração chamados coloração gulosa, coloração ponderada e coloração
ponderada imprópria. Em seguida, discutimos um problema de decisão, chamado
boa rotulagem de arestas, cuja de�nição foi motivada pelo problema de atribuição
de frequências em redes óticas.

A segunda parte desta tese é dedicada a um parâmetro de otimização em grafos
chamado de número de fecho (geodético). A de�nição deste parâmetro é motivada
pela extensão das noções de conjuntos e fecho convexos no espaço Euclidiano.

Por �m, apresentamos em anexo outros trabalhos desenvolvidos durante esta
tese, um em hipergrafos dirigidos Eulerianos e Hamiltonianos e outro sobre sistemas
de armazenamento distribuído.

Palavras-chave: Teoria de grafos, complexidade computacional, coloração,
convexidade.
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In this thesis, we present new contributions in two areas of Graph Theory: Graph
Coloring and Graph Convexity. Due to the four color problem [AH77] and the
modeling of several applications, Graph Coloring is one of the most studied areas
of Graph Theory [JT95, MR01, CZ08]. It consists in assigning colors to the vertices
or edges of an input graph under various constraints. Graph Convexity studies
parameters motivated by the notion of convex sets in the Euclidian space. We refer
to Rockafellar [Roc70] as a classical book on convexity in the Euclidian space.

The results presented in this thesis concern the study of various parameters
related to the topics above. We study their structural properties with emphasis on
the algorithmic aspects. We also consider the parameters for several classes of graphs
like graphs without induced P4 (path on 4 vertices), bipartite graphs, grids, etc.
According to the class of graphs, we present either polynomial-time algorithms or
show NP-completeness results; in this last case we present approximation algorithms,
�xed-parameter tractable algorithms, exponential exact algorithms or heuristics.

For basic de�nitions on Graph Theory, Algorithms and Computational Com-
plexity we refer to classical books like [BM08a, Ber76, CLRS01, GJ90].

In what follows, we summarize each subject, its motivation and the obtained
results.

1.1 Graph Coloring

Vertex Coloring is an important problem in Graph Theory. Many vari-
ants of this problem have been considered in the literature like List Color-

ing [Viz76, ERT80], L(p1, . . . , pq)-labeling [Cal06], b-Coloring [IM99] and Star
(also known as Circular) Coloring [Vin88]. A book on variations of Vertex
Coloring is the one by Jensen and Toft [JT95]. In the �rst part of this thesis, we
study other variants of Vertex Coloring. In order to de�ne them and describe
our results, we need to �rst introduce some de�nitions and notations.
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Let G = (V,E) be a graph. A (vertex) k-coloring of G is a function c : V →

{1, . . . , k}. The coloring c is proper if uv ∈ E implies c(u) 6= c(v). Observe that
a proper k-coloring can also be seen as a partition c = (S1, . . . , Sk) of the vertex
set V (G) into color classes that are the independent sets (also called stable sets)
Si, i ∈ {1, . . . , k}, i.e. sets of pairwise non-adjacent vertices. If G admits a k-
coloring, it is called k-colorable. The chromatic number of G, denoted by χ(G), is
the minimum integer k such that G admits a proper k-coloring. The goal of the
Vertex Coloring problem is to determine χ(G) for a given graph G. It is a
well-known NP-hard problem [Kar72].

We now describe in more details our contribution.

Greedy Coloring Let G = (V,E) be a graph and θ = v1, . . . , vn be an order
over V (G). The greedy (also known as �rst-�t) algorithm for Vertex Coloring

problem follows the order θ and assigns to vi (1 ≤ i ≤ n) the smallest positive integer
that was not assigned to one of its already colored neighbors inN(vi)∩{v1, . . . , vi−1}.
The Grundy number of a given graph G = (V,E), denoted by Γ(G), is the maximum
number of colors that the greedy algorithm may use to color G over all possible
orderings θ of V (G) [Gru39, CS79].

Observe that the greedy algorithm is an on-line heuristic since it colors vi by only
considering the information about G[{v1, . . . , vi−1}], i.e. the subgraph of G induced
by the vertices v1, . . . , vi−1. Thus, the study on the Grundy number is motivated
by On-line Coloring problem as it gives an upper bound for it [Kie98, KPT94].

It is known in the literature that the Greedy Coloring problem can be
solved in polynomial-time for P4-free graphs [GL88] and it is NP-hard for P5-
free graphs [Zak05]. We present, in Chapter 2, a polynomial-time algorithm to
compute the Grundy number of fat-extended P4-laden graphs by using their modu-
lar decomposition. This graph class is a generalization of the extended P4-laden
graphs [Gia96]. A graph G is extended P4-laden if, for all H ⊆ G such that
|V (H)| ≤ 6, the following statement is true: if H contains more than two induced
P4's, then H is a pseudo-split graph, where a pseudo-split graph is a {C4, C̄4}-free
graph.

The fat-extended P4-laden graphs properly contain the class of P4-free graphs,
also known as cographs, and consequently intersect the class of P5-free graphs. This
result was obtained in a joint work with Cláudia Linhares Sales [AL09, AL12].

Weighted Coloring Given a graph G = (V,E), a weight function w : V (G)→

R∗+, and a k-coloring c = (S1, . . . , Sk) of G, let us de�ne the weight of a color Si

as w(Si) = maxv∈Si
w(v), for every i ∈ {1, . . . , k}, and the weight of coloring c

as w(c) =
∑k

i=1w(Si). The goal of the Weighted Coloring problem consists,
for a given graph G and weight function w, in determining the weighted chromatic
number of (G,w), denoted as χw(G), which is the minimum weight of a proper
coloring of (G,w) [GZ97]. This problem generalizes Vertex Coloring because,
in the particular case of unitary weights, we have χ(G) = χw(G).

Weighted Coloring was de�ned by Guan and Zhu [GZ97] in order to model
an improvement over a distributed dual bus network media access control protocol.
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These authors also cite as motivation for Weighted Coloring the dynamic stor-
age allocation problem. Weighted Coloring is also closely related to Greedy
Coloring as the maximum number of colors of an optimal weighted coloring of
(G,w), over all weight functions w, is Γ(G) [GZ97].

In Chapter 3, we �rst show an extension of the Hajós' Theorem [Haj61] for
Weighted Coloring. Hajós' Theorem shows a necessary and su�cient condi-
tion for the chromatic number of a graph G be greater than k: it must contain a
k-constructible subgraph. The class of k-constructible graphs is obtained from com-
plete graphs on k vertices by recursively applying two well-de�ned operations. We
thus de�ne the class of weighted k-constructible graphs and show that χw(G) ≥ k

if, and only if, G contains a weighted k-constructible subgraph. This result was also
developed together with Claudia Linhares Sales [AL07].

The Weighted Coloring problem, as the previous one, can be solved in
polynomial-time for the class of cographs [DdWMP02] and it is NP-hard for the
class of P5-free graphs [MPdW+04]. In the second part of Chapter 3, we extend
the result for cographs by showing that a subclass of P4-sparse graphs that properly
contains the cographs and that is properly contained in the P5-free graphs admits
a polynomial-time algorithm to compute the weighted chromatic number. A graph
G is P4-sparse if, for every V ′ ⊆ V (G) such that |V ′| ≤ 5, then G[V ′] has at most
one induced P4 [Hoà85]. We also present a 2-approximation algorithm for the class
of P4-sparse graphs.

This result is a joint work with Cláudia Linhares Sales and Ignasi Sau [ALS10].
Weighted Improper Coloring We also studied an extension of the Vertex
Coloring problem for edge-weighted graphs motivated by the design of satellite
antennas for multi-spot MFTDMA satellites [AAG+05]. Given a graph G = (V,E)

and a function w : E(G) → R+, a weighted t-improper k-coloring of (G,w) is a
k-coloring c of G such that, for every vertex v ∈ V (G), the following inequality
holds:

∑

{u|u∈N(v) and c(u)=c(v)}
w(uv) ≤ t.

We de�ne and study two new, up to our best knowledge, parameters that we call
weighted t-improper chromatic number and minimum k-threshold of (G,w). Given
(G,w) and a positive real value t, the weighted t-improper chromatic number of
(G,w), denoted by χt(G,w), is the minimum value k such that (G,w) has a weighted
t-improper k-coloring. On the other hand, the minimum k-threshold corresponds to
the minimum value t such that (G,w) admits a weighted t-improper k-coloring, for
a given k.

In a joint work with J-.C. Bermond, F. Giroire, F. Havet, D. Mazauric and
R. Modrzejewski [ABG+11a, ABG+11b, ABG+12], we presented general upper
bounds for both parameters; in particular we show a generalization of Lovász's The-
orem [Lov66] for the weighted t-improper chromatic number. We then show how
to transform an instance for determining the minimum k-threshold into another
equivalent one where the weights are either 1 or M , for a su�ciently large M . Mo-
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tivated by the original application, we study a special interference model on various
grids (square, triangular, hexagonal) where a vertex produces a noise of intensity 1
for its neighbors and a noise of intensity 1/2 for the vertices at distance 2. Con-
sequently, the problem consists in determining the weighted t-improper chromatic
number when G is the square of a grid and the weights of the edges are 1 if their end-
vertices are adjacent in the grid, and 1/2 if their end-vertices are linked in the square
of the grid, but not in the grid. Finally, we model the problem using integer linear
programming. We also propose and compare heuristic and exact Branch-and-Bound
algorithms on random cell-like graphs, namely the Poisson-Voronoi tessellations.

These results are presented in Chapter 4.

Good Edge-labeling In theWavelength Division Multiplexing (WDM)
problem, the input is a set of paths P in a network G and the goal is to assign
wavelengths to these paths in such a way that if two paths share an edge e ∈ E(G),
then they must receive disjoint wavelengths [Muk97, RS95, BS91]. Given a set of
paths P, the load of an edge e ∈ E(G) is the number of paths that contain e.
Observe that the WDM problem corresponds to Vertex Coloring in the con�ict
graph G(P), where the con�ict graph G(P) has one vertex for each path in P and
two vertices are linked if the corresponding paths share an edge. Bermond, Cosnard
and Pérennes [BCP09], when studying the WDM problem over particular directed
networks in which for any pair of vertices u, v there is most one directed uv-path,
de�ned a problem called Good Edge-labeling. They used good edge-labelings
to show that, even in these particular networks, under the assumption that the
maximum load of an edge is two, it might be necessary to use an arbitrarily large
number of wavelengths in the WDM problem.

Given a graph G, a good edge-labeling of G is a function l : E(G)→ R that asso-
ciates labels to the edges of G satisfying the following property: for any two vertices
u, v ∈ V (G), there do not exist two {u, v}-paths with non-decreasing labels. Given
a graph G, the Good Edge-labeling problem consists in determining whether G
admits or not a good edge-labeling. We say that G is good (resp. bad) if G admits
(resp. does not admit) a (resp. any) good edge-labeling.

In Chapter 5, we present the results obtained in collaboration with N. Co-
hen, F. Giroire and F. Havet about Good Edge-labeling [ACGH09a, ACGH09b,
ACGH12]. Bermond et al. asked whether C3 and K2,3 are the unique bad graphs.
We answer this question in the negative by showing an in�nite class of graphs that
do not admit a good edge-labeling. Then we prove that Good Edge-labeling is
NP-complete even for bipartite graphs and introduce some classes of good graphs
like C3-free outerplanar graphs, planar graphs of girth at least 6, subcubic graphs.
Recall that a graph is planar if it admits an embedding in the plane without edge
crossings. An outerplanar graph is a planar graph which all vertices can be drawn
in the unbounded face. A subcubic graph G is any graph with maximum degree at
most 3. The proof that these are classes of good graphs relies in the observation
that critical bad graphs, i.e. bad graphs such that any of its proper subgraphs is
good, cannot contain matching-cuts, i.e. a set of pairwise non-incident edges that
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disconnects the graph. A result of Farley and Proskurowski [FP84] implies that a
critical graph G has at least 3

2 |V (G)| − 3
2 edges (otherwise, G has a matching-cut).

Bonsma [Bon05] proved that the graphs G with no matching-cut and satisfying
|E(G)| = 3

2 |V (G)| − 3
2 are the ABC- graphs. We also show that {C3,K2,3}-free

ABC-graphs are good.

1.2 Graph Convexity

One of the basic notions of Geometry in the d-dimensional Euclidian space Ed is
the one of convex set. A set of points S ⊆ Ed is convex if, for any pair of points
p1, p2 ∈ S, the points in straight line segment from p1 to p2 are included in S. For
a given set S ⊆ Ed, the convex hull of S is the smallest convex set that contains all
points in S. These notions are extremely well-known and studied in Geometry and
have several applications [Roc70].

The concepts of convex sets were translated to graphs [FJ86]. The principle is
the same: a set of vertices S ⊆ V (G) in a graph G is convex if the internal vertices
of any uv-path, where u, v ∈ S, are also in S. Depending on the kind of paths we
consider, we study di�erent graph convexities. For example, in case S is convex if
the internal vertices of any shortest uv-path are also in S, then we are studying
the geodetic convexity, which is the graph convexity we consider in this thesis. If
we consider induced paths instead of shortest paths, we talk about monophonic
convexity [DPS10]. Another example of graph convexity is the P3-convexity, in
which one just considers paths on three vertices [CM99].

For each graph convexity, several parameters are de�ned in the literature. For
example, the size of a maximum convex set that is properly contained in V (G) is
known as the convexity number of G [CWZ02]. Another parameter is the geodetic
(resp. monophonic, P3, etc. depending on the convexity) number of G, that is the
size of a minimum set S of G such that, for every w ∈ V (G), either w ∈ S or
w is an internal node of a shortest (resp. monophonic, P3, etc.) uv-path where
u, v ∈ S [CHZ02].

The parameter we study in Chapter 6 is called hull number and is the minimum
size of a set S whose convex hull equals V (G). More formally, for a given graph
G = (V,E), the closed interval I[u, v] of two vertices u, v ∈ V (G) is the set of vertices
that belong to some shortest (u, v)-path. For any S ⊆ V , let I[S] =

⋃

u,v∈S I[u, v].
A subset S ⊆ V is convex if I[S] = S. Given a subset S ⊆ V , the convex hull Ih[S]

of S is the smallest convex set that contains S. We say that S is a hull set of G if
Ih[S] = V . The size of a minimum hull set of G is the hull number of G, denoted by
hn(G). The Hull Number problem is to decide whether hn(G) ≤ k, for a given
graph G and an integer k [ES85].

In a joint work with V. Campos, F. Giroire, N. Nisse, L. Sampaio and R.
Soares [ACG+11b, ACG+11a, ACG+12], we answer an open question of Dourado
et al. [DGK+09] by showing that computing this parameter is an NP-hard problem
for bipartite graphs. We then present polynomial-time algorithms for several graph
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classes: cacti, complements of bipartite and (q, q − 4)-graphs. We also present new
upper bounds for this parameter in the general case and also for particular graph
classes like triangle-free graphs, graphs of girth at least 6 and regular graphs.

1.3 Other works

In the appendix, we present other works and techniques that we have used during
the period of this thesis.

Eulerian and Hamiltonian de Bruijn Dihypergraphs Together with J-C.
Bermond, we supervised the internship of G. Duco�e in MASCOTTE project about
Eulerian and Hamiltonian Dihypergraphs. A directed hypergraph, or simply dihy-
pergraph is a pair H = (V(H), E(H)) where V(H) is a non-empty set of elements,
called vertices, and E(H) is a collection of ordered pairs of subsets of V(H), called
hyperarcs. Each hyperarc is represented as E = (E−, E+) and E− and E+ are,
respectively, the in-set and out-set of E.

The notions of Eulerian and Hamiltonian dihypergraphs are simple extensions of
these well-known concepts for (directed) graphs. H is Eulerian (resp. Hamiltonian)
if there is a directed cycle in H where each hyperarc (resp. vertex) of H appears
exactly once. A directed cycle in H is simply a sequence v0E0 . . . vkEkv0 where
vi ∈ V(H) and Ei ∈ E(H), vi ∈ E

−
i and vi+1 (mod k) ∈ E

+
i , for every i ∈ {1, . . . , k}.

We �rst show that, in general, it is NP-complete to determine whether H is
Eulerian. Then, we present several results concerning Eulerian and Hamiltonian
properties for dihypergraphs, specially the case of regular uniform dihypergraphs.
Finally, we focus on generalized de Bruijn and Kautz dihypergraphs [BDE97] and
we show several results about when these dihypergraphs have a complete Berge
cycle, i.e. a cycle that is Eulerian and Hamiltonian. These results can be found in
Appendix A.

Distributed Storage Systems We also worked on a completely di�erent topic in
collaboration with F. Giroire and J. Monteiro [AGM11]. We studied di�erent erasure
coding schemes for distributed storage systems. In such systems, we want to backup
data into di�erent servers in a network, but, in order to keep the data safe from disk
failures, we introduce redundant data in the network. There are di�erent erasure
coding schemes already proposed in the literature to introduce this redundancy, each
of them having its own advantages and disadvantages. We propose one new scheme
and compare its performance with some other schemes that are well-known in the
literature. In order to evaluate these schemes, we model them by Markov Chain
Models and, from the stationary state of the chains, we are able to present closed
form formulas to estimate the system behavior under certain conditions. This study
is presented in Appendix B.

1.4 Publications

We now list the publications that are included in this thesis.
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The Vertex Coloring problem has its on-line version, in which the vertices
of the input graph are presented to a coloring algorithm one at a time in some
arbitrary order. The algorithm must choose a color for each vertex, based only on
the colors assigned to the already-processed vertices. The on-line chromatic number
of a graph G is the minimum number of colors needed to color on-line the vertices of
G when they are given in the worst possible order [GL88, GL90]. There are several
works in the literature concerning the on-line chromatic number [Kie98, KPT94,
GL88, GL90, HS94].

The most popular on-line coloring algorithm is the greedy algorithm. Given a
graph G = (V,E) and an order θ = v1, . . . , vn over V , the greedy algorithm assigns
to vi the minimum positive integer that was not already assigned to its neighborhood
in the set {v1, . . . , vi−1}. A greedy coloring is a coloring obtained by this algorithm.
The maximum number of colors required by the greedy algorithm to color a graph
G, over all the orders θ of V (G), is the Grundy number of G and it is denoted
by Γ(G). Observe that the Grundy number of a graph is an upper bound for its
chromatic number as well as its on-line chromatic number.

Determining the Grundy number is NP-hard even for bipartite graphs [HS10]
and for complements of bipartite graphs [GV97b, Zak05]. Since every complement
of a bipartite graph is P5-free, the hardness of this problem also holds for P5-free
graphs. Given a graph G and an integer r, it is a coNP -complete problem to decide
if Γ(G) ≤ χ(G) + r, or if Γ(G) ≤ r × χ(G), or if Γ(G) ≤ c× ω(G) [AHL08, Zak05],
where ω(G) stands for the size of a maximum clique of G, i.e. a set of pairwise
adjacent vertices.

There are polynomial-time algorithms to determine the Grundy number of, for
example, the following classes of graphs: P4-free graphs [GL88], trees [HHB82], k-
partial trees [TP97], hypercubes [JT99] and (q, q − 4)-graphs [CLM+11]. This last
result implies a Fixed Parameter Tractable (FPT) algorithm for this problem when
the parameter is the number of induced P4's of the input graph. Another result
concerning the Parameterized Complexity of Greedy Coloring shows that the
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parameterized dual of this problem, i.e., to determine whether Γ(G) ≥ |V (G)| − k

when k is the parameter, is an FPT problem.
By using the notion of k-atoms, Zaker showed that, given a graph G = (V,E)

and an integer k, there is an algorithm to determine if Γ(G) ≥ k with complexity
O(n2k−1

) [Zak06].
Here, we introduce a new class of graphs, the fat-extended P4-laden graphs, and

we present a polynomial-time algorithm to calculate the Grundy number of any
graph of this class by using its modular decomposition. Our class intersects the
class of the P5-free graphs class and strictly contains the class of P4-free graphs.
More precisely, our result implies that the Grundy number can be determined in
polynomial time for any graph of the following classes: P4-reducible, extended P4-
reducible, P4-sparse, extended P4-sparse, P4-extendible, P4-lite, P4-tidy, P4-laden
and extended P4-laden, which are all strictly contained in the fat-extended P4-laden
class.

The remaining of this chapter is organized as follows. In Section 2.1, we intro-
duce some basic concepts related to modular decomposition, besides other simple
de�nitions. In Section 2.2, we recall the de�nition of extended P4-laden graphs
and we de�ne our new class of graphs. We present the algorithm and we prove
its correctness and complexity in Section 2.3. Finally, we comment the results in
Section 2.4.

2.1 Preliminaries

Let G = (V,E) be a graph and S a subset of V (G). We denote by G[S] the subgraph
of G induced by S and denote by NG(v) the set of neighbors of a vertex v in G (or
just N(v) when G is clear in the context).

We say that M ⊆ V (G) is a module of a graph G if, for every vertex w of
V \M , either w is adjacent to all the vertices ofM or w is adjacent to none of them.
The sets V and {x}, for every x ∈ V , are trivial modules, the latest being called a
singleton module.

A graph is prime if all its modules are trivial. We say thatM is a strong module
of G if, for every module M ′ of G, either M ′ ∩M = ∅ or M ⊂ M ′ or M ′ ⊂ M .
The modular decomposition of a graph G is a decomposition of G that associates
with G a unique modular decomposition tree T (G). The modular decomposition tree
of G, T (G), is a rooted tree where the leaves are the vertices of G, and such that
any maximal set of its leaves having the same least common ancestor v is a strong
module of G, which is denoted by M(v).

Let r be an internal node of T (G) and V (r) = {r1, . . . , rk} be the set of children
of r in T (G). If G[M(r)] is disconnected, then r is called a parallel node and
G[M(r1)], . . . , G[M(rk)] are its components. If Ḡ[M(r)] is disconnected then r is
called a series node and Ḡ[M(r1)], . . . , Ḡ[M(rk)] are the components of Ḡ[M(r)].
Finally, if both graphs G[M(r)] and Ḡ[M(r)] are connected, then r is called a
neighborhood node and {M(r1), . . . ,M(rk)} is the unique set of maximal strong
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submodules of M(r).
The quotient graph of G[M(r)], denoted by G(r), is G[{v1, . . . , vk}], where vi ∈

M(ri), for 1 ≤ i ≤ k. We say that r is a fat node, ifM(r) is not a singleton module.
More informations about the modular decomposition of graphs can be found

in [MS99].

Figure 2.1: examples of thin (G1) and thick (G2) spiders with partition S =

{s1, s2, s3, s4}, K = {k1, k2, k3, k4} and R = {r}.

A graph is a spider (see Figure 2.1) if its vertex set can be partitioned into three
sets S, K and R in such a way that S is a stable set, K is a clique, all the vertices
of R are adjacent to all the vertices of K and to none of the vertices of S and there
exists a bijection f : S → K such that, for all s ∈ S, either N(s) = f(s) (and it
is a thin spider) or N(s) = K − f(s) (and it is a thick spider). Observe that, by
de�nition, the unique non-trivial maximal strong sub-module of a spider is exactly
the set R.

A graph G = (V = S ∪K,E) is split if its vertex set can be partitioned into a
stable set S and a clique K. Observe that the spiders of Figure 2.1 are also split
graphs, since R is a clique and by consequence V = (S,K ∪ R) is a partitioning of
the vertices of both spiders into a stable set and a clique. Alternately, the vertices
of a split graph G = (V = S ∪K,E) can also be partitioned into three disjoint sets
S′(G), K ′(G) and R′(G), such that every vertex of S which looses at least one vertex
in K belongs to S′(G), K ′(G) ⊆ K is the neighborhood of the vertices in S′(G) and
R′(G) = V \S′(G)∪K ′(G) (see Figure 2.2). It is well-known that a graph is split if,
and only if, it is {C5, C4, C̄4}-free [FH77]. A pseudo-split graph is a {C4, C̄4}-free
graph.

Figure 2.2: example of split graph G with partitioning S′(G) = {s1, s2}, K ′(G) =

{k1, k2} and R′(G) = {s3, s4, k3, k4}.
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2.2 Fat extended P4-laden graphs

Giakoumakis [Gia96] de�ned a graph G as extended P4-laden graph if, for all H ⊆ G
such that |V (H)| ≤ 6, the following statement is true: if H contains more than two
induced P4's, then H is a pseudo-split graph. It follows that an extended P4-laden
graph can be completely characterized by its modular decomposition tree, as follows:

Theorem 1. [Gia96] Let G = (V,E) be a graph, T (G) be its modular decomposition
tree and r be any neighborhood node of T (G), with children r1, . . . , rk. Then G is
extended P4-laden if and only if G(r) is isomorphic to:

1. a P5 or a P̄5 or a C5, and each M(ri), 1 ≤ i ≤ k, is a singleton module; or

2. a spider H = (S ∪ K ∪ R,E) and each M(ri), 1 ≤ i ≤ k, is a singleton
module, except the one corresponding to R and occasionally another one which
may have exactly two vertices; or

3. a split graph H = (S ∪K,E), whose modules corresponding to the vertices of
S are independent sets and the ones corresponding to the vertices of K are
cliques.

We say that a graph is fat-extended P4-laden if its modular decomposition
satis�es Theorem 1, except in the �rst case, where G(r) is isomorphic to a P5 or
a P̄5 or a C5, but the maximal strong modules M(ri), 1 ≤ i ≤ 5, of M(r) are not
necessarily singleton modules.

Observe that the class of fat-extended P4-laden graphs contains the class of
extended P4-laden graphs. Figure 2.3 shows us an example of a fat-extended P4-
laden graph that is not an extended P4-laden graph.

Figure 2.3: Example of a fat-extended P4-laden graph which is not an extended
P4-laden graph.

Consequently, the class of fat-extended P4-laden graphs strictly contains all the
following classes of graphs: P4-reducible, extended P4-reducible, P4-sparse, extended
P4-sparse, P4-extendible, P4-lite, P4-tidy, P4-laden and extended P4-laden. Notice
that these classes are all contained in the class of extended P4-laden graphs [Ped07].
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2.3 Grundy number on fat-extended P4-laden graphs

Let G = (V,E) be a fat-extended P4-laden graph and T (G) be its modular decom-
position tree. Since T (G) can be found in linear time [TCHP08], we propose an
algorithm to determine Γ(G) that uses a bottom-up strategy. We know that the
Grundy number of the leaves of T (G) is equal to one and we show in this section
how to determine the Grundy number of G[M(v)], for each inner node v of T (G),
based on the Grundy number of its children.

First, observe that for every series node r of T (G), with children r1, . . . , rk,
the Grundy number of G[M(r)] is equal to the sum of the Grundy numbers of its
children, i.e., Γ(G[M(r)]) = Γ(G[M(r1)]) + . . . + Γ(G[M(rk)]). However, if r is
a parallel node, the Grundy number of G[M(r)] is the maximum Grundy number
among its children, i.e., Γ(G[M(r)]) = max(Γ(G[M(r1)]), . . . ,Γ(G[M(rk)])) [GL88].

Thus, it remains to prove that the Grundy number of G[M(r)] can be found in
polynomial-time when r is a neighborhood node of T (G). The following de�nition
will be useful:

De�nition 1. Given two graphs G and H, we say that G′ is obtained from G by
replacing a vertex v ∈ V (G) by H if V (G′) = {V (G)\{v}} ∪ V (H) and E(G′) =

{E(G)\{uv | u ∈ NG(v)}} ∪ E(H) ∪ {uh | u ∈ NG(v) and h ∈ H}.

The following result and its proof are a simple generalization of a result due to
Asté et al. [AHL08] for the Grundy number of the lexicographic product of graphs.

Proposition 1. Let G, H1, . . . ,Hn be disjoint graphs. Let V (G) = {v1, . . . , vn} and
G′ be the graph obtained by replacing vi ∈ V (G) by Hi, 1 ≤ i ≤ n. Then, for every
greedy coloring of G′, at most Γ(Hi) colors appear in G′[V (Hi)].

Proof. Consider a greedy coloring c of G′ and let c1, . . . , cp be the colors occurring
in G′[V (Hk)], for some k ∈ {1, . . . , n}. Denote by Si, 1 ≤ i ≤ p, the stable set
formed by the vertices of G′[V (Hk)] colored ci. Let ui be a vertex of Si. Since c is
a greedy coloring, ui has at least one neighbor w colored cj , for all 1 ≤ j < i ≤ p.

Now, we claim that w ∈ G′[V (Hk)]. By contradiction, suppose that w /∈

G′[V (Hk)]. So, w ∈ V (G′)\V (Hk). Let uj ∈ G′[V (Hk)] be a vertex colored
cj . By De�nition 1, once uiw is an edge, so is ujw, contradicting the assump-
tion that c is a proper coloring. Therefore, w ∈ G′[V (Hk)]. It means that c re-
stricted to G′[V (Hk)], with p colors, is a greedy coloring of G′[V (Hk)] and hence
p ≤ Γ(G′[Hk]) ≤ Γ(Hk).

Let G = (H1 ∪ . . . ∪H5, E) be a graph isomorphic to one of the neighborhood
nodes depicted in Figure 2.4. In order to simplify the notation, denote G[V (Hi)]

by Hi, Γ(G[Hi]) by Γi and, by θi, an order that leads the greedy algorithm to the
generation of a greedy coloring of G[Hi] with Γ(G[Hi]) colors, i ∈ {1, . . . , 5}.

Without loss of generality, we consider, in what follows, that the adjacency
between the fat nodes are as depicted in Figure 2.4.
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C∗5

Figure 2.4: Fat neighborhood nodes.

Lemma 1. Given the Grundy numbers of the graphs H1, . . . ,H5, the Grundy number
of a P ∗5 = (H1 ∪ . . . ∪H5, E) can be found in constant time.

Proof. Suppose that S = (S1, . . . , Sk) is a greedy coloring of a P ∗5 with Γ(P ∗5 )

colors. So, by de�nition, each vertex v ∈ Si has a neighbor u ∈ Sj , for all j < i,
i, j ∈ {1, . . . , k}. Let us check all the possible locations of a vertex v colored Γ(G) =

k in a greedy coloring of G with the maximum number of colors.

1. If there is a vertex v ∈ H1 colored k, then Γ(P ∗5 ) = Γ1 + Γ2.

In this case, since N(v) ⊆ V (H1) ∪ V (H2) and N(v) intersects all the stable
sets S1, . . . , Sk−1, we have that Γ(P ∗5 ) colors occur in G[V (H1) ∪ V (H2)].
Therefore, by Proposition 1, k = Γ(P ∗5 ) ≤ Γ1 + Γ2. On the other hand, any
ordering over V (P ∗5 ) that starts by θ1, followed immediately by θ2, makes the
greedy algorithm generate a greedy coloring of P ∗5 with at least Γ1 +Γ2 colors.

2. If there is a vertex v ∈ V (H5) colored k, then Γ(P ∗5 ) = Γ4 + Γ5.

This case is analogous to the previous one.

3. If there is a vertex v ∈ V (H2) colored k, then

Γ(P ∗5 ) =







Γ1 + Γ2 + Γ3 , if Γ1 ≤ Γ4

Γ1 + Γ2 , if Γ1 > Γ4 and Γ3 ≤ s1
Γ2 + Γ3 + Γ4 , if Γ1 > Γ4 and Γ3 > s1

where s1 = Γ1 − Γ4.

As before, since N(v) ⊆ V (H1) ∪ V (H2) ∪ V (H3) and N(v) intersects all the
stables sets S1, . . . , Sk−1, we have that Γ(P ∗5 ) colors occur in H1 ∪ H2 ∪ H3.
Therefore, by Proposition 1, k = Γ(P ∗5 ) ≤ Γ1 + Γ2 + Γ3.

If Γ4 ≥ Γ1, then we claim that Γ(P ∗5 ) = Γ1 + Γ2 + Γ3. Observe that there
are no edges between V (H1) and V (H4) and all the edges between V (H3) and
V (H4). Therefore, an ordering over the vertices of P ∗5 that starts by θ4, θ1,
θ3 and θ2, consecutively in this order, produces a greedy coloring of P ∗5 with
at least Γ1 + Γ2 + Γ3 colors, since the colors used by the greedy algorithm to
color H4 are reused to color H1, and all the colors occurring in H3 have to be
di�erent from the colors occurring in H4, and hence, in H1. The result follows.
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Otherwise, if Γ4 < Γ1, let s1 = Γ1 − Γ4. We study two subcases. At �rst,
if Γ3 ≤ s1, then we prove that Γ(P ∗5 ) = Γ1 + Γ2. In order to prove this,
consider an ordering over V (P ∗5 ) that starts by θ1, θ4, θ3 and θ2, consecutively
in this order. We claim the greedy algorithm over this ordering uses at least
Γ1 + Γ2 colors. Indeed, since there are no edges between H1 and H4, clearly
Γ4 colors occurring in H1 will be reused to color H4. The other s1 colors in
H1, more precisely Γ3 out of them, will be su�cient to color H3, and a total
of Γ1 colors will have been used thus far. Since all the edges between H1 and
H2 belong to our P ∗5 , another Γ2 previously unused colors will be necessary
to color H2. We now claim that there is no greedy coloring with more than
Γ1 + Γ2 colors under these hypothesis. Suppose, by contradiction, that there
exists an ordering that makes the greedy algorithm generate a greedy coloring
S ′ = {S′1, . . . , S

′
p} of P

∗
5 with p > Γ1 + Γ2 colors. By Proposition 1 and by

the remark that all the colors occur in H1 ∪H2 ∪H3, there exists at least one
color i that occurs in H3 and does not occur in H1 and in H2.

Recall that, by hypothesis, Γ3 + Γ4 ≤ Γ1, i.e., S ′ has at least Γ2 + Γ3 + Γ4 + 1

colors. Since all the colors of S ′ occur inH1∪H2∪H3 and Γ4 < Γ1, there exists
at least one color j that occurs in H1 and does not occur in H2∪H3∪H4. This
is a contradiction, because the vertices of S′i in H3 have no neighbor colored j
and the vertices of S′j in H1 have no neighbor colored i.

Now suppose that Γ3 > s1. We claim that Γ(P ∗5 ) = Γ1 + Γ2 + Γ3 − s1.
Intuitively, if the colors of H1 not used in H4 are not enough to color H3,
then all the s1 colors of H1 are used in H3. Consider an ordering over V (P ∗5 )

that starts by θ1, θ4, θ3 and θ2, consecutively in this order. Since there is
no edge between V (H1) and V (H4), then all, but s1, colors occurring in H1

will be reused to color H4. All these s1 colors will be necessarily used to
partially color H3. To complete the coloring of H3, at least Γ3− s1 new colors
will be used. Since there all the edges between V (H1) and V (H2), this order
leads the greedy algorithm to the generation of a greedy coloring with at least
Γ1 + Γ2 + Γ3 − s1 colors.

To prove that Γ(P ∗5 ) ≤ Γ1+Γ2+Γ3−s1, we use the same idea as in the previous
case. Suppose, by contradiction, that there exists a greedy coloring S ′ of P ∗5
with more than Γ1 + Γ2 + Γ3 − s1 colors. Observe that there exist at least
Γ3−s1+1 colors that occur in H3 and do not occur in H1∪H2. Let i be one of
these colors. By hypothesis, S ′ has at least Γ1+Γ2+Γ3−s1+1 = Γ2+Γ3+Γ4+1

colors. Then, there is a color j that occurs in H1 and does not occur in
H2 ∪H3 ∪H4. The existence of colors i and j leads to a contradiction by the
same argument used in the preceding case.

4. If there is a vertex v ∈ V (H4) colored k, then

Γ(P ∗5 ) =







Γ5 + Γ4 + Γ3 , if Γ5 ≤ Γ2

Γ5 + Γ4 , if Γ5 > Γ2 and Γ3 ≤ s5
Γ2 + Γ3 + Γ4 , if Γ5 > Γ2 and Γ3 > s5
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where s5 = Γ5 − Γ2.

The proof of this case is analogous to the previous one.

5. If there is a vertex v ∈ V (H3) colored k, then

Γ(P ∗5 ) =







Γ2 + Γ3 + Γ4 , if Γ1 ≥ Γ4 or Γ5 ≥ Γ2

Γ1 + Γ2 + Γ3 , if Γ1 < Γ4, Γ5 < Γ2 and Γ2 − s4 ≥ Γ5

Γ3 + Γ4 + Γ5 , if Γ1 < Γ4, Γ5 < Γ2 and Γ2 − s4 < Γ5

where s4 = Γ4 − Γ1.

Again, by Proposition 1 and the fact that there is a vertex colored k ∈ V (H3),
we have that Γ(P ∗5 ) ≤ Γ2 + Γ3 + Γ4.

Suppose �rst that Γ1 ≥ Γ4 or Γ5 ≥ Γ2. We will prove that Γ(P ∗5 ) = Γ2 + Γ3 +

Γ4. In the case Γ1 ≥ Γ4, consider any ordering that starts by θ1, θ4, θ2 and θ3,
in this sequence. Alternatively, if Γ5 ≥ Γ2, consider any ordering that starts
by θ5, θ2, θ4 and θ3, in this sequence. In both cases, these orderings produce
a greedy coloring of P ∗5 with at least Γ2 + Γ3 + Γ4 colors and the proposition
follows.

Now, we de�ne s2 = Γ2 − Γ5. Assume �rst that Γ1 < Γ4 and Γ5 < Γ2.
Since Γ1 < Γ4, an ordering that starts by θ1, θ4, θ2 and θ3, makes the greedy
algorithm generate a coloring with at least Γ4 + Γ3 + Γ2 − s4 colors. Using
the hypothesis that Γ5 < Γ2, an ordering that starts by θ5, θ2, θ4 and θ3,
consecutively in this order, leads the greedy algorithm to the generation of a
greedy coloring with at least Γ2 + Γ3 + Γ4 − s2 colors.

Now, we need to prove, case by case, that these bounds are also upper bounds.
Consider �rst that Γ2 − s4 ≥ Γ5. We claim that Γ(P ∗5 ) = Γ2 + Γ3 + Γ4 − s4.
To prove this equality we need only to verify that Γ(P ∗5 ) ≤ Γ4 + Γ3 + Γ2 − s4.
Suppose, by contradiction, that there is a greedy coloring S ′ of P ∗5 with more
than Γ4 + Γ3 + Γ2 − s4 colors. By Proposition 1 and by hypothesis that
v ∈ V (H3), there are at least Γ2 − s4 + 1 colors that occur in H2 and do not
occur in H3 ∪ H4. Since, by hypothesis, Γ5 < Γ2 − s4 + 1, there is at least
one color i in H2 that does not occur in H3 ∪H4 ∪H5. On the other hand,
Γ2 + Γ3 + Γ4 − s4 + 1 = Γ1 + Γ2 + Γ3 + 1, i.e., there is a color j in H4 that
does not occur in H1 ∪H2 ∪H3. This is a contradiction, because neither the
vertices of Si in H2 have a neighbor colored j nor the vertices of Sj in H4 have
a neighbor colored i.

Finally, suppose that Γ2 − s4 < Γ5. We will prove that Γ(P ∗5 ) = Γ2 + Γ3 +

Γ4 − s2. To do this, we use again the symmetry of P ∗5 . In the analysis of the
previous case, we considered the hypothesis of using the colors of H4 that do
not appear in H1 to color H2 and we concluded that if the number of colors
of H2 that do not occur in H4 is at least Γ5, we know how to determine the
Grundy number of P ∗5 .
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Using the same idea, we can analogously conclude the following fact: if Γ4 −

s2 ≥ Γ1, then Γ(P ∗5 ) = Γ4 + Γ3 + Γ2 − s2. Under this hypothesis, using the
symmetry, we �nd the result we needed. However, we can easily verify that
Γ4 − s2 ≥ Γ1 if, and only if, Γ2 − s4 < Γ5, the proof of this complementary
case is analogous to the previous case.

By hypothesis, we know the values of Γ1, . . . ,Γ5. Then, the value of Γ(P ∗5 ) can
be determined by outputting the maximum value found between among all the cases
above. Since we have a constant number of cases, the value of Γ(P ∗5 ) can be found
in constant time. Observe that since all the possibilities to place a vertex with the
greatest color were checked, Γ(P ∗5 ) is correctly computed.

Lemma 2. Given the Grundy numbers of H1, . . . ,H5, the Grundy number of P̄ ∗5 =

(H1 ∪ . . . ∪H5, E) can be determined in constant time.

Proof. Suppose that S = (S1, . . . , Sk) is a greedy coloring of P̄ ∗5 with Γ(P̄ ∗5 ) colors.
Analogously to Lemma 1, let us check all the possible cases:

1. There is a vertex v ∈ H1 colored k, then Γ(P̄ ∗5 ) = Γ1 + Γ2 + Γ3.

This case can be easily solved because any ordering over V (P̄ ∗5 ) that contains
suborderings θ1, θ2 and θ3 produces a greedy coloring with at least Γ1+Γ2+Γ3

colors, since all the colors used in H1 ∪H2 ∪H3 must be distinct. Moreover,
Γ1+Γ2+Γ3 is also an upper bound because of Proposition 1 and the hypothesis
that v ∈ V (H1).

2. If there is a vertex v ∈ H2 colored k, then:

Γ(P̄ ∗5 ) =















Γ1 + Γ2 + Γ3 , if Γ4 ≤ Γ3

Γ1 + Γ2 + Γ4 , if Γ4 > Γ3 and Γ1 ≤ Γ5

Γ2 + Γ4 + Γ5 , if Γ4 > Γ3, Γ1 > Γ5 and Γ4 − s1 ≥ Γ3

Γ1 + Γ2 + Γ3 , if Γ4 > Γ3, Γ1 > Γ5 and Γ4 − s1 < Γ3

where s1 = Γ1 − Γ5.

Consider �rst that Γ4 ≤ Γ3. We will prove that Γ(P̄ ∗5 ) = Γ1+Γ2+Γ3. Observe
that Γ(P̄ ∗5 ) ≥ Γ1 + Γ2 + Γ3, because of an ordering over V (P̄ ∗5 ) that starts by
θ1, θ2 and θ3 leads the greedy algorithm to the generation of a greedy coloring
with at least Γ1 + Γ2 + Γ3 colors.

On the other hand, suppose, by contradiction, that there exists a greedy color-
ing S ′ = {S′1, . . . , S

′
p} of P̄

∗
5 with p ≥ Γ1+Γ2+Γ3+1 colors. As a consequence

of Proposition 1, there is a color i such that S′i ⊆ V (H4). Since Γ4 ≤ Γ3, we
conclude that S ′ has at least Γ1 + Γ2 + Γ4 + 1 colors. Thus, there is a color
j such that S′j ⊆ V (H3). Consequently, there is no vertex of H4 colored i

adjacent to some vertex of H3 colored j, i.e., there is no vertex of S′i adjacent
to some vertex of S′j . This is a contradiction because S ′ is a greedy coloring.
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Therefore, we can assume that Γ4 > Γ3 and set s4 = Γ4 − Γ3. We study two
subcases. At �rst, if Γ5 ≥ Γ1, then we claim that Γ(P̄ ∗5 ) = Γ1 +Γ2 +Γ4. Using
the hypothesis that Γ5 ≥ Γ1, we can easily conclude that Γ(P̄ ∗5 ) ≥ Γ1+Γ2+Γ4,
because an ordering over the vertices of P̄ ∗5 starting by θ5, θ1, θ4 and θ2,
consecutively in this order, makes the greedy algorithm generate a greedy
coloring with at least Γ1 + Γ2 + Γ4 colors.

To show that this value is also an upper bound, suppose, by contradiction,
that P̄ ∗5 admits a greedy coloring S ′ = {S′1, . . . , S

′
p} with p ≥ Γ1 + Γ2 + Γ4 + 1

colors. By Proposition 1 and by the hypothesis that v ∈ V (H2), there is
a color i such that S′i ⊆ V (H3) (observe that S′i ∩ V (H3) 6= ∅ implies that
S′i ∩ V (H5) = ∅). Since Γ4 > Γ3, S ′ has at least Γ1 + Γ2 + Γ3 + 2 colors.
Thus, there are at least two colors S′j and S

′
l such that S′j ∪S

′
l ⊆ V (H4). This

contradicts the hypothesis that S ′ is a greedy coloring, because neither S′j nor
S′l has a vertex with some neighbor colored i.

As a consequence, we can suppose that Γ5 < Γ1, and if Γ4− s1 ≥ Γ3, then we
will prove that Γ(P̄ ∗5 ) = Γ1 +Γ2 +Γ4− s1. Using the hypothesis that Γ4 > Γ3

and Γ5 < Γ1, we can easily check that an ordering over V (P̄ ∗5 ) starting by θ1,
θ5, θ4 and θ2, consecutively in this order, produces a greedy coloring with at
least Γ1 + Γ2 + Γ4 − s1 colors.

Suppose, by contradiction, there exists a greedy coloring S ′ = {S′1, . . . , S
′
p} of

P̄ ∗5 with p ≥ Γ1 +Γ2 +Γ4−s1 +1 colors. Since v ∈ V (H2), we use Proposition
1 to verify that there are at least Γ4−s1 +1 colors that occur only in H3∪H4.
Since, by hypothesis, Γ4 − s1 ≥ Γ3, there is at least one color i from these
Γ4−s1 +1 colors that occurs only in H4. Moreover, since s1 = Γ1−Γ5, S ′ has
at least Γ1 +Γ2 +Γ4− s1 +1 = Γ2 +Γ4 +Γ5 +1 colors. Again, the hypothesis
that v ∈ V (H2) and Proposition 1 imply that there is at least one color j that
only occur in H1 ∪ H3. This contradicts the hypothesis that S ′ is a greedy
coloring because of there are no edges from S′i to S

′
j .

The last case is when Γ5 < Γ1 and Γ4 − s1 < Γ3. In this case, Γ(P̄ ∗5 ) =

Γ1 + Γ2 + Γ4 − s4. In order to prove this, observe that Γ4 − s1 < Γ3 if, and
only if, Γ1 − s4 > Γ5. Therefore, in order to simplify the proof of this case,
we will prove that if Γ1 − s4 > Γ5, then Γ(P̄ ∗5 ) = Γ1 + Γ2 + Γ4 − s4. To see
that Γ(P̄ ∗5 ) ≥ Γ1 + Γ2 + Γ4 − s4, observe that an ordering over V (P̄ ∗5 ) started
by θ4, θ3, θ1 and θ2, consecutively in this order, makes the greedy algorithm
generate a greedy coloring with at least Γ1 + Γ2 + Γ4 − s4 colors.

Suppose, by contradiction, that there is a greedy coloring S ′ = {S′1, . . . , S
′
p} to

P̄ ∗5 with p ≥ Γ1 +Γ2 +Γ4−s4 +1 colors. Once v ∈ V (H2) and the Proposition
1 holds, there are at least Γ4 − s4 + 1 colors occurring only in H1 ∪H3 ∪H5.
Since Γ1 − s4 > Γ5, there is at least one color i exclusive to H1 ∪H3. Recall
that S ′ has at least Γ1 +Γ2 +Γ4−s4 +1 = Γ1 +Γ2 +Γ3 +1 colors. Then, since
v ∈ V (H2) and by Proposition 1, there exists a color j such that S′j ⊆ V (H4).
This is a contradiction because of the same previous arguments.
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3. If there is a vertex v ∈ V (H3) colored k, then

Γ(P̄ ∗5 ) =















Γ1 + Γ3 + Γ2 , if Γ5 ≤ Γ2

Γ1 + Γ3 + Γ5 , if Γ5 > Γ2 and Γ1 ≤ Γ4

Γ3 + Γ4 + Γ5 , if Γ5 > Γ2, Γ1 > Γ4 and Γ5 − s1 ≥ Γ2

Γ1 + Γ2 + Γ3 , if Γ5 > Γ2, Γ1 > Γ4 and Γ5 − s1 < Γ2

where s1 = Γ1 − Γ4.

The proof of this case is analogous to the previous one, taking s5 = Γ5 − Γ2

to play the role of s4.

4. If there is a vertex v ∈ V (H4) colored k, then

Γ(P̄ ∗5 ) =







Γ2 + Γ4 + Γ5 , if Γ1 ≥ Γ5

Γ4 + Γ5 , if Γ1 < Γ5 and s5 ≥ Γ2

Γ1 + Γ2 + Γ4 , if Γ1 < Γ5 and s5 < Γ2

where s5 = Γ5 − Γ1.

Again, observe that, by Proposition 1, the Grundy number in this case is
bounded by Γ2 + Γ4 + Γ5.

First, suppose that Γ1 ≥ Γ5. Let us prove that Γ(P̄ ∗5 ) = Γ2 + Γ4 + Γ5.

In this case, notice that an ordering over V (P̄ ∗5 ) started by θ1, θ5, θ2 and θ4
leads the greedy algorithm to the generation of a greedy coloring of P̄ ∗5 with
Γ2 + Γ4 + Γ5 colors.

Now, assume that Γ1 < Γ5. We have to study two cases. In the �rst case,
consider that s5 ≥ Γ2. Then, we claim that Γ(P̄ ∗5 ) = Γ4 + Γ5. To prove this
fact, observe that the same ordering over V (P̄ ∗5 ) of the previous case produces
a greedy coloring with at least Γ4 + Γ5 colors.

In order to show that this is also an upper bound, suppose, by contradiction,
that there exists a greedy coloring S ′ = {S′1, . . . , S

′
p} of P̄

∗
5 with p ≥ Γ4+Γ5+1

colors. Since v ∈ V (H4) and Proposition 1 holds, there is a color i that occurs
in H2 and does not occur in H4∪H5. Now, the hypothesis that s5 ≥ Γ2 implies
that S ′ has at least Γ1 + Γ2 + Γ4 + 1 colors. As a consequence, there are at
least Γ1 + 1 colors that occur in H5 and that do not occur in H2 ∪ H4. By
Proposition 1, there is at least one color j from these Γ1 + 1 colors such that
S′j ⊆ V (H5). The fact that there are no edges between S′i and S

′
j contradicts

the assumption that S ′ is a greedy coloring.

In the complementary case, we have that Γ1 < Γ5 and s5 < Γ2. We have to
prove now that Γ(P̄ ∗5 ) = Γ4 +Γ5 +Γ2− s5. Observe that the same ordering of
the previous case, together with these hypothesis, leads the greedy algorithm
to the generation of a greedy coloring of P̄ ∗5 with at least Γ4 + Γ5 + Γ2 − s5
colors. To verify that this is an upper bound, suppose, by contradiction, that
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there is a greedy coloring S ′ = {S′1, . . . , S
′
p} with p ≥ Γ4 + Γ5 + Γ2 − s5 + 1

colors. The hypothesis that v ∈ V (H4) and the Proposition 1 imply that there
are at least Γ2 − s5 + 1 colors exclusive to H2. Assume that i is one of these
colors. Since Γ4 + Γ5 + Γ2 − s5 + 1 = Γ4 + Γ2 + Γ1 + 1, there is also a color
j exclusive to H5. Again, the fact that there are no edges between S′i and S

′
j

contradicts the assumption that S ′ is a greedy coloring.

5. If there is a vertex v ∈ H5 colored k, then

Γ(P̄ ∗5 ) =







Γ3 + Γ5 + Γ4 , if Γ1 ≥ Γ4

Γ5 + Γ4 , if Γ1 < Γ4 and s4 ≥ Γ3

Γ1 + Γ3 + Γ5 , if Γ1 < Γ4 and s4 < Γ3

where s4 = Γ4 − Γ1.

The proof of this case is analogous to the previous one.

Since there is a �xed number of cases to be checked and the calculus to be made
in each of them can be also done in constant time, the Grundy number of P̄ ∗5 , given
Γ1, . . . ,Γ5, can be determined in constant time.

Lemma 3. Given the Grundy numbers of H1, . . . ,H5, the Grundy number of C∗5 =

(H1 ∪ . . . ∪H5, E) can be determined in constant time.

Proof. Suppose that S = (S1, . . . , Sk) is a greedy coloring of C∗5 with Γ(C∗5 ) colors.
It is enough to prove the Lemma for the case where there is a vertex v ∈ V (H1)

colored k, since all the other cases follow by symmetry. Therefore, suppose that this
is the case. Then:

Γ(C∗5 ) =







Γ1 + Γ2 + Γ3 , if Γ5 ≥ Γ2 or Γ4 ≥ Γ3

Γ1 + Γ2 + Γ4 , if Γ5 < Γ2, Γ4 < Γ3 and Γ2 − s3 ≥ Γ5

Γ1 + Γ3 + Γ5 , if Γ5 < Γ2, Γ4 < Γ3 and Γ2 − s3 < Γ5

where s3 = Γ3 − Γ4.
By Proposition 1 and the hypothesis that v ∈ V (H1), Γ(C∗5 ) ≤ Γ1 + Γ2 + Γ3.
Assume �rst that Γ5 ≥ Γ2 or Γ4 ≥ Γ3. We claim that Γ(C∗5 ) = Γ1 + Γ2 + Γ3.

To prove this, observe that if Γ5 ≥ Γ2, an ordering over V (C∗5 ) that starts by θ5,
θ2, θ3 and θ1, consecutively in this order, makes the greedy algorithm generate a
greedy coloring with exactly Γ1 + Γ2 + Γ3 colors and the upper bound is achieved.
On the other hand, if Γ4 ≥ Γ3, an ordering over V (C∗5 ) that starts by θ4, θ3, θ2
and θ1, consecutively in this order, produces a greedy algorithm coloring of C∗5 with
Γ1 + Γ2 + Γ3 colors and, again, the upper bound is achieved.

As a consequence, we can assume that Γ5 < Γ2 and Γ4 < Γ3. Let us set
s2 = Γ2 − Γ5 and consider the following subcases. At �rst, if Γ2 − s3 ≥ Γ5, then
we prove thatΓ(C∗5 ) = Γ1 + Γ2 + Γ3 − s3. Observe that an ordering over V (C∗5 )

started by θ3, θ4, θ2 and θ1, consecutively in this order, makes the greedy algorithm
generate a greedy coloring of C∗5 having at least Γ1 + Γ2 + Γ3 − s3 colors.
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Suppose by contradiction that there is a greedy coloring S ′ = {S′1, . . . , S
′
p} of

C∗5 with p ≥ Γ1 + Γ2 + Γ3 − s3 + 1 colors. By the hypothesis that v ∈ V (H1) and
Proposition 1, there are at least Γ2−s3 +1 colors that occur in H2 and do not occur
in H1 ∪ H3. One of them, let us say i, does not occur in H5, since Γ2 − s3 ≥ Γ5.
Moreover, as Γ1 + Γ2 + Γ3 − s3 + 1 = Γ1 + Γ2 + Γ4 + 1, we observe that at least
Γ4 + 1 colors occur in H3 and that do not occur in H1 ∪H2. Among them, at least
one, j also does not occur in H4. These facts contradict the assumption that S ′ is
a greedy coloring, since there are no edges between S′i and S

′
j .

As the last subcase, suppose that Γ2 − s3 < Γ5. We claim that Γ(C∗5 ) = Γ1 +

Γ2 + Γ3 − s2. Notice that Γ2 − s3 < Γ5 if, and only if, Γ3 − s2 > Γ4 and, since if
Γ3 − s2 > Γ4, then Γ3 − s2 ≥ Γ4. Therefore, the proof of this case is similar to the
proof of the previous one up to symmetry, because we can analogously prove that
if Γ3 − s2 ≥ Γ4, then Γ(C∗5 ) = Γ1 + Γ2 + Γ3 − s2.

Again, since there is a �xed number of cases to be checked and the calculus to
be made in each of them can be also done in constant time, the Grundy number of
C∗5 given Γ1, . . . ,Γ5 can be determined in constant time.

In what follows, the two remaining possible types of neighborhood nodes are
treated. Recall that G is a fat-extended P4-laden graph and that T (G) corresponds
to its modular decomposition tree.

Lemma 4. Let v be a neighborhood node of T (G) such that G(v) is isomorphic to
a split graph H = (S′(H) ∪K ′(H) ∪ R′(H), E). Given Γ(G′[R]), then the Grundy
number of G[M(v)] can be determined in linear time.

Proof. At �rst, recall that the partition of the vertices of H into sets S′(H), K ′(H)

and R′(H) can be found in O(V (H)) [HS81]. Suppose that S = (S1, . . . , Sk) is a
greedy coloring of G[M(v)] with the maximum number of colors.

Since the strong modules represented by the vertices of S′(H) and K ′(H) are
stable sets and cliques, respectively, we denote by S∗(H) (K∗(H)) the subgraph of
G[M(v)] induced by the union of all the modules represented by the vertices of S′(H)

(resp., K ′(H)). Observe that the subgraph of G[M(v)] induced by V (S∗(H)) ∪

V (K∗(H)) is a split graph and the vertices of R′(H) are adjacent to all the vertices
of K∗(H) and to none of S∗(H).

Notice that for any ordering θ over M(v), the greedy algorithm would never
assign distinct colors i and j to the vertices of S∗(H), such that Si ∪ Sj ⊆ S∗(H),
since S∗(H) is a stable set and so no vertex of Si would be adjacent to some vertex
of Sj . As there is at most one color exclusive to S∗(H), if R′(H) is empty, then
Γ(M(v)) ≤ |K∗(H)| + 1. Moreover, an ordering over V (M(v)) such that all the
vertices of S∗(H) appear before the ones of K∗(H) produces a greedy coloring with
|K∗(H)|+ 1 colors, because of K ′(H) is exactly the neighborhood of S′(H).

On the other hand, if R′(H) is not empty, then any greedy coloring of G[M(v)],
in particular, S, should assign distinct colors to the vertices of R′(H) and K∗(H),
because there are all the edges between the vertices of both sets. Let j be any color
occurring in R′(H). If there is a color i such that Si ⊆ S

∗(H), no vertex of Si would
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have a neighbor in Sj , contradicting the assumption that S is a greedy coloring.
Consequently, Γ(M(v)) = |K∗(H)|+ Γ(R′(H)). As a consequence, Γ(M(v)) can be
computed in linear time following the equation:

Γ(M(v)) =

{

|K∗(H)|+ Γ(R′(H)) , if R′(H) 6= ∅

|K∗(H)|+ 1 , otherwise.

Lemma 5. Let v be a neighborhood node of T (G) such that G(v) isomorphic to a
spider H = (S ∪K ∪R,E), fr be its child corresponding to R, f2 be its child corre-
sponding to the module which has eventually two vertices and Γ(R) be the Grundy
number of G[M(fr)]. Then Γ(G[M(v)]) can be determined in linear time.

Proof. Suppose that S = (S1, . . . , Sk) is a greedy coloring of G[M(v)] with
Γ(G[M(v)]) colors. If f2 is trivial, or if f2 belongs to S and its vertices are not
adjacent, or if f2 belongs to K and its vertices are adjacent, then the Grundy num-
ber of G[M(v)] can be found by using the same arguments of Lemma 4, by replacing
S, K and R by S′(G), K ′(G) and R′(G), respectively.

For otherwise, let x and w be the vertices of f2. Again, we denote by S∗ (K∗)
the subgraph of G[M(v)] induced by the union of all the modules represented by
the vertices of S (resp., K). We have to check the following cases:

• f2 belongs to S and x and w are adjacent.

We claim that for any greedy coloring of G[M(v)], in particular for S, there
are no two distinct colors i and j such that Si ∪ Sj ⊆ S∗. To show this
fact, suppose the contrary. By similar arguments to those used in the proof
of Lemma 4, colors i and j must be assigned to x and w. Without loss of
generality, suppose that x ∈ Si and w ∈ Sj . Since x and w belong to a same
module and because of the de�nition of a spider, there is at least a vertex
y ∈ K∗ which is adjacent to none of x and w. Let us suppose that y ∈ Sl.
Observe that (K∗ ∪R) ∩ Sl = {y}. Now, let u be any other vertex of S∗. So,
u has to be assigned to either a color of a non-neighbor in K ∪ R or to the
smallest between i and j, say i. These facts imply that there is only one vertex
of S∗, which is w, colored j and so (S∗ ∪K∗) ∩ Sj = {w}. As a consequence,
none of w and y has a neighbor colored l and j, respectively. This contradicts
the fact that S is a greedy coloring.

Therefore, any greedy coloring of G[M(v)] has at most one color containing
only vertices of S∗, and then its Grundy number can be determined in linear
time by using similar arguments to those used in Lemma 4.

• f2 belongs to K and x and w are not adjacent.

We claim that there are no distinct colors i and j, such that x ∈ Si and
w ∈ Sj . For otherwise, since x and w are not adjacent and the belong to the
same module, either w would not have a neighbor colored i or x would not
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have a neighbor colored j. Therefore, by similar arguments to those used in
the proof of Lemma 4, we can conclude that the Grundy number of G[M(v)]

can be found in linear time.

Theorem 2. If G = (V,E) is a fat-extended P4-laden graph and |V | = n, then
Γ(G) can be found in O(n3).

Proof. The algorithm computes Γ(G) by traversing the modular decomposition tree
of G in a post-order way and determining the Grundy of each inner node of T (G)

based on the Grundy number of its children. The modular decomposition tree can
be found in linear time [TCHP08], the post-order traversal can be done in O(n2)

and the Grundy number of each inner node can be found in linear time, because
of Lemmas 1, 2, 3, 4 and 5, and because of the results of Gyárfás and Lehel for
cographs [GL88].

Corollary 1. Let G be a graph that belongs to one of the following classes: P4-
reducible, extended P4-reducible, P4-sparse, extended P4-sparse, P4-extendible, P4-
lite, P4-tidy, P4-laden and extended P4-laden. Then, Γ(G) can be determined in
polynomial time.

Proof. According to the de�nition of these classes [Ped07], they are all strictly con-
tained in the fat-extended P4-laden graphs and so the corollary follows.

2.4 Conclusions

We extended the previously known result that states that the Grundy number can
be determined in polynomial time for cographs [GL88], which are exactly the P4-free
graphs, to a greater class of graphs that we called fat-extended P4-laden graphs. In
fact, by observing that every complement of a bipartite graph is P5-free, the result
of Zaker [Zak05] implies that determining the Grundy number for a P5-free graph
is also NP -hard.

The problems of �nding a minimum vertex coloring, a minimum clique cover,
a maximum clique and a maximum independent set can be solved in polynomial
time for extended P4-laden graphs [Gia96, CHMDW87]. We remark that these
results can be easily extended to fat-extended P4-laden graphs. Even though the
vertex coloring problem can be solved in polynomial time for fat-extended P4-laden
graphs, the study of the Grundy number also provides bounds to other problems,
likeWeighted Coloring, whose complexity is not determined even for a subclass
of extended P4-laden graphs called P4-sparse graphs [GZ97, ALS10] as we present
in Chapter 3.

Finally, we observe that, since Lemmas 1, 2 and 3 are proved without the as-
sumption that we are dealing with fat-extended P4-laden graphs, those results can
be useful for any class of graphs whose modular decomposition contains fat neigh-
borhood nodes.
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As mentioned in Chapter 1, there are many variations of the Vertex Coloring
problem that are studied in the literature. In this chapter, we study one that is
de�ned on vertex-weighted graphs.

Let G = (V,E) be a graph and w : V (G) → R∗+ be a weight function over the
vertices of G. Given a k-coloring c = (S1, . . . , Sk) of G, we de�ne the weight of a
color Si as

w(Si) = max
v∈Si

w(v), for every i ∈ {1, . . . , k}.

The weight of coloring c is:

w(c) =

k
∑

i=1

w(Si).

The goal of Weighted Coloring problem is, for a given graph G and weight
function w, determine the weighted chromatic number of (G,w), denoted as χw(G),
which is the minimum weight of a proper coloring of (G,w) [GZ97].

It is important to remark that an optimal weighted coloring of (G,w) might not
use χ(G) colors (see Figure 3.1). However, the maximum number of colors of an
optimal weighted coloring of (G,w) is Γ(G) [GZ97]. This is the main relationship
between Greedy Coloring and Weighted Coloring.

4114

Figure 3.1: Optimal coloring of this weighted P4 has weight 6 and uses 3 colors: the
endpoints must be in the same color class.
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The Weighted Coloring problem generalizes Vertex Coloring because,
in the particular case of w : V (G)→ {1}, we have that χ(G) = χw(G). Weighted

Coloring was de�ned to improve the Distributed Dual Bus Network Media Access
Control Protocol, which is a standard IEEE802.6 for metropolitan networks [GZ97].

The complexity of this problem was further studied in some previous works.
Weighted Coloring is NP -hard for bipartite graphs [DdWMP02], split
graphs [DdWMP02], planar graphs [dWDE+05] and interval graphs [EMP06].

It was shown that χw(G) can be computed in polynomial-time whenever G is a
bipartite graph and the image of w has only two di�erent weights [DdWMP02], or
G is a P5-free bipartite graph [dWDE+05], or G is a cograph [DdWMP02].

Approximation algorithms for the Weighted Coloring problem were also
proposed when the input graph belongs to di�erent graph classes [DdWMP02,
dWDE+05, EMP06].

In Section 3.1, we present an extension of the Hajós' Theorem [Haj61] for
Weighted Coloring, i.e. we give a necessary and su�cient condition for
χw(G) ≥ k. Then, in Section 3.2, we address to complexity results in the class
of P4-sparse graphs.

3.1 Hajós-like Theorem for Weighted Coloring

The characterization of the k-chromatic graphs, i.e., graphs G such that χ(G) = k,
has been a challenging problem for many years. In 1961, Hajós [Haj61] gave a
characterization of graphs with chromatic number at least k by proving that they
must contain a k-constructible subgraph. In order to present the de�nition of the
class of k-constructible graphs and this characterization, we need to recall some
de�nitions. The identi�cation of two vertices a and b of a graph Gmeans the removal
of a and b followed by the inclusion of a new vertex a◦ b adjacent to NG(a)∪NG(b).
A graph G = (V,E) is complete if it is simple and if, for every pair of vertices u, v
of G, uv ∈ E(G). We denote by Kn the complete graph with n vertices.

De�nition 2. The set of k-constructible graphs is de�ned recursively as follows:

1. The complete graph with k vertices is k-constructible.

2. Hajós' Sum: If G1 and G2 are disjoint k-constructible graphs, a1b1 ∈ E(G1)

and a2b2 ∈ E(G2), then the graph G obtained from G1 ∪G2 by removing a1b1
and a2b2, identifying a1 with a2, and adding the edge b1b2, is a k-constructible
graph (see Figure 3.2).

3. Identi�cation: If G is k-constructible and a and b are two non-adjacent
vertices of G, then the graph obtained by the identi�cation of a and b is a
k-constructible graph.

Theorem 1 (Hajós [Haj61]). χ(G) ≥ k if, and only if, G is a supergraph of a
k-constructible graph.
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G1

b2b1

a2a1

G2 G
b2b1

a1 ◦ a2

Figure 3.2: Hajós' Sum.

The Hajós' Theorem determines a set of operations that we can use to ob-
tain, from complete graphs with k vertices, all k-chromatic graphs, including the
k-critical ones. A graph H is k-critical if χ(H) ≥ k and for every proper subgraph I
of H, χ(I) < k. Clearly, for a given graph G, the di�culty of determining whether
χ(G) ≥ k is equivalent to the di�culty of determining if G contains a k-critical
subgraph H. Thanks to the Hajós' Theorem, we know that all the k-critical graphs
can be built from complete graphs on k vertices by successive applications of Hajós'
Sum and identi�cation of vertices. Because of this, it has been subject of interest
to obtain Hajós-like Theorem for several variations of the classical coloring prob-
lem. Gravier [Gra96] proved an extension of Hajós' Theorem for List Coloring.
Král [Kra04] gave a simpli�ed proof of Gravier's result. Zhu [Zhu03] found an exten-
sion of this theorem for circular chromatic number. Mohar [Moh05] demonstrated
two new versions of the referred theorem for circular chromatic number and an ex-
tension of Hajós' Theorem for the channel assignment problem, i.e., a coloring of
edge-weighted graphs.

We now show an extension of Hajós' Theorem for Weighted Coloring.
We deal with simple (vertex-)weighted graphs. We denote by G = (V,E,w) a

vertex-weighted graph G = (V,E) together with its weight function w : V → R∗+.

Notation 1. The in�nite family of complete weighted graphs G = (V,E,w) with
order n = |V (G)| and such that

∑

v∈V w(v) = k is denoted by Kk
n.

Notation 2. Given a weighted graph G = (V,E,w) and a proper coloring c of G,
we choose as the representative of the color i in c, repc(i), a unique arbitrary
vertex v ∈ V satisfying the inequality w(v) ≥ w(x), for all x ∈ V such that c(x) =

c(v) = i.

De�nition 3. Given two weighted graphs G = (V,E,w), H = (V ′, E′, w′), we say
that H ⊆ G (H is a subgraph of G) if V ′ ⊆ V , E′ ⊆ E, and, for all v ∈ V ′, we
have w′(v) ≤ w(v).

Now, we rede�ne the Hajós' construction for the weighted case:

De�nition 4. The set of weighted k-constructible graphs is de�ned recursively as
follows:

1. The graphs in
⋃

i∈N
Kk

i are weighted k-constructible.
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2. Weighted Hajós' Sum: If G1 and G2 are disjoint weighted k-constructible
graphs, a1b1 ∈ E(G1) and a2b2 ∈ E(G2), then the graph G obtained from
G1∪G2 by removing a1b1 and a2b2, identifying a1 with a2 into a vertex a1◦a2,
such that w(a1 ◦ a2) = max{w(a1), w(a2)}, and adding the edge b1b2 is a
weighted k-constructible graph.

3. Weighted Identi�cation: If G is weighted k-constructible and a and b are
two non-adjacent vertices of G, then the graph obtained by the identi�cation of
a and b into a vertex a◦b, such that w(a◦b) = max{w(a), w(b)}, is a weighted
k-constructible graph.

The main result of this section is:

Theorem 2. Let G = (V,E,w) be a weighted graph and k be a positive real. Then,
χw(G) ≥ k if, and only if, G has a weighted k-constructible subgraph H.

Proof. We prove �rst that if χw(G) ≥ k, then G has a weighted k-constructible
subgraph H. Suppose, by contradiction, that there exists a counter-example G =

(V,E,w) with a maximal number of edges. It means that χw(G) ≥ k, G does not
contain any weighted k-constructible subgraph and, for any pair of non-adjacent
vertices of G, let us say u, v, G′ = G + uv contains a weighted k-constructible
subgraph.

We claim that G is not isomorphic to a complete multipartite graph. Suppose
the contrary and let p be the number of stable sets in the partition P of V (G).
For each color class Ci of an optimal weighted coloring c of G, there is no pair of
vertices of Ci in distinct sets of P, since there is an edge between any two vertices
of distinct parts. Moreover, we cannot have more than one color class in one stable
set. As a matter of fact, suppose by contradiction that there are two color classes,
say Ci and Cj , whose vertices belong to the same stable set in the partition P of
V (G). Without loss of generality, suppose that w(repc(i)) ≥ w(repc(j)). Then a
coloring c′, obtained from c by the union of the color classes Ci and Cj , has cost
exactly χw(G)− w(repc(j)), and this contradicts the optimality of c.

Consequently, vertices with the greatest weight in every part are exactly the
representatives of each color class. Observe that the subgraph induced by the rep-
resentatives is an element of the set Kk

p , because χw(G) ≥ k and p ∈ N. This
contradicts the hypothesis that G has no weighted k-constructible subgraph.

Therefore, the counter-example G is not a complete multipartite graph. Thus,
there are at least three vertices in G, let us say a, b and c, such that ab, bc /∈ E(G)

and ac ∈ E(G). Consider now the graphs G1 = G+ab and G2 = G+bc. Because of
the maximality of G, G1 and G2 have each a weighted k-constructible subgraph H1

and H2, respectively. Obviously, the edges ab and bc belong, respectively, to H1 and
H2. Consider then the application of Hajós' Sum to two disjoint graphs isomorphic
to H1 and H2, respectively. Let us choose edge ab of H1 and bc of H2 to remove
and let us identify the vertices labeled b. Finally, identify all the vertices in H1 with
their corresponding vertices in H2, if they exist. Observe that a graph isomorphic
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to a subgraph of G is obtained at the end of this sequence of operations. Then, G
has a weighted k-constructible subgraph, a contradiction.

We prove now that, if G has a weighted k-constructible subgraph H, then
χw(G) ≥ k. First, observe that χw(G) ≥ χw(H). Then, we just have to show
that χw(H) ≥ k. The proof is by induction on the number of Hajós' operations
applied to obtain H.

If H is isomorphic to a graph Kk
i ∈ K

k
i , for some i ∈ N, then its weighted

chromatic number is trivially k, since it is a complete graph whose sum of weights
is equal to k.

Suppose then that H was obtained by the Weighted Identi�cation of two non-
adjacent vertices a and b of a weighted k-constructible graph H ′ into a vertex a ◦ b.
By induction hypothesis, H ′ has a weighted chromatic number at least k. Suppose,
by contradiction, that χw(H) < k and let c be an optimal weighted coloring of H.
Then, a coloring c′ of H ′ can be obtained from c, by assigning to a and b the color
assigned to a ◦ b in c, and letting all the other vertices of H ′ be assigned to the
same color they have been assigned in c. Observe that, except the color i of a ◦ b,
for all the other colors j, repc′(j) = repc(j). For the color i, the vertex repc(i) has
weight greater than or equal to the weight of a ◦ b, that is greater than or equal to
the weight of a and b. Therefore, the coloring c′ has weight equal to the coloring c,
that is less than k. This contradicts the hypothesis of χw(H ′) ≥ k.

Finally, suppose that H was obtained from weighted k-constructible graphs H1

and H2 using the Weighted Hajós' Sum on the edges (a1, b1) and (a2, b2) from H1

and H2, respectively. Let a1 ◦a2 be the vertex of H obtained by the identi�cation of
a1 e a2. Suppose, by contradiction, that χ(H) < k, while χ(H1) ≥ k and χ(H2) ≥ k.
Consider an optimal weighted coloring c of H. Observe that either c(a1 ◦a2) 6= c(b1)

or c(a1 ◦ a2) 6= c(b2) (because b1 and b2 are adjacent). Without loss of generality,
suppose that c(a1 ◦ a2) 6= c(b1). Then, consider now the restriction c′ of c to H1,
assigning to a1 the color of a1 ◦ a2. We have that, for all color class Cj of c′, the
weight of repc′(j) ≤ repc(j) (including the color class of a1, because the weight of
a1 is less than or equal to the weight of a1 ◦ a2). Consequently, w(c′) ≤ w(c) < k,
contradicting the hypothesis that χw(H1) ≥ k.

Ore [Ore67] has proved that the Hajós construction can be simpli�ed. He has
shown that by using only a single operation that collapses the two Hajós operations,
one may construct any k-colorable graph from complete graphs of order k.

The same simpli�cation can be done for the weighted case. It is necessary to use
the same adaptation we did whenever two vertices u and v are identi�ed, i.e., the
weight of the new vertex must be the maximum value between the weight of u and
the weight of v.

Moreover, following Urquhart [Urq97] for the non-weighted case, it is also not
hard to establish the equivalence between the class of the weighted k-constructible
graphs and the class obtained by using the adapted Ore's operation described above.

Finally, there is a well-known problem that is to study the complexity of the
construction of k-chromatic graphs of a given size by Hajós operations [MW82,
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HRT86, JT95]. Since the Vertex Coloring Problem is a particular case of
Weighted Coloring, it is obvious that the complexity of this problem in the
weighted case is as hard as in the non-weighted one and can also be left as open
question.

3.2 P4-sparse graphs

In the beginning of this chapter, we commented that the Weighted Coloring

problem is NP-hard for split graphs, which is a subclass of P5-free graphs, but can
be solved in polynomial-time for cographs, that are exactly the P4-free graphs. In
this section, we study the Weighted Coloring problem in the class of P4-sparse
graphs that strictly contains the cographs and that are strictly contained in the
P5-free graphs.

A graph G is P4-sparse if every subset of �ve vertices of V (G) induces at most
one P4 [Hoà85]. The structural properties of this class of graphs were well studied
by Jamison and Olariu [JO92b, JO92a, JO95, LO98].

Several optimization problems can be solved in polynomial-time on P4-sparse
graphs [JO95]. The algorithms that solve these problems usually compute the de-
sired parameter in a simple post-order traversal in the modular decomposition tree
of the graph, as the algorithm we presented for computing the Grundy number of
fat-extended P4-laden graphs in Chapter 2. We use here the same approach to de-
termine the weighted chromatic number of graphs in a subclass of P4-sparse graphs
that properly contains the cographs. Thus, we need to know the structure of the
neighborhood nodes of the modular decomposition tree of P4-sparse graphs.

Theorem 3 ([GV97a]). G is a P4-sparse graph if, and only if, the quotient graph
of each neighborhood node of its modular decomposition tree T (G) is isomorphic to
a spider H = (S ∪K ∪R,E).

Recall that we de�ned modular decomposition and spider graphs in Section 2.1.
In the sequel, we present a polynomial-time algorithm to compute the weighted

chromatic number of graphs that are contained in the class of P4-sparse graphs.
After that we show that there exists a 2-approximation algorithm for Weighted

Coloring on P4-sparse graphs by using another characterization of this graph class.

3.2.1 Polynomial-Time Algorithm

Let G = (V,E) be a P4-sparse graph, w : V (G) → R∗+ be a function and T (G)

be its modular decomposition tree. As announced, we propose an algorithm to
determine χw(G) that uses a bottom-up traversal in T (G). We know that the
weighted chromatic number of the leaves of T (G) is equal to one. We show in
this section how to determine the weighted chromatic number of G[M(v)], for each
series or neighborhood inner node v of T (G). This computation is based on the
weighted chromatic number of v's children, i.e., of the subgraphs induced by its
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maximal strong submodules. The algorithm also keeps an optimal weighted coloring
of G[M(v)], for every node v ∈ T (G).

By combining these results with the polynomial-time algorithm for
cographs [DdWMP02], we are able to present a polynomial-time algorithm to com-
pute the weighted chromatic number of a subclass of P4-sparse graphs that strictly
contains the cographs. In the end of the section, we discuss the di�culty of com-
puting the weighted chromatic number in the parallel node's case. First, observe
that:

Remark 1. For every series node v ∈ T (G), with children v1, . . . , vp,
χwv(G[M(v)]) =

∑p
i=1 χwvi

(G[M(vi)]), where wv is the function w restricted to
the descendant leafs of v. Moreover, an optimal weighted coloring of G[M(v)] is
obtained by optimal weighted colorings of (G[M(vi)], wvi

), for every i ∈ {1, . . . , p}.

Remark 1 implies that it is easy to deal with the series nodes in T (G). The rest
of this section is dedicated to the neighborhood nodes (spiders) and parallel nodes
(disjoint union) of P4-sparse graphs.

3.2.1.1 Spiders

Consider that G = (V = S ∪K ∪R,E) is always a spider graph in this subsection.
Thus, we many times refer to the sets S, K and R without explicitly repeating they
correspond to the sets that de�ne a partition of the vertex set of G, whenever the
spider G is clear in the context. Moreover, we always refer to a coloring c as a set
of stable sets (color classes), instead of considering c as a function.

As we observed in Section 2.1, the unique non-trivial maximal strong sub-module
of a spider is exactly the set R. Thus, the goal of this section is to extend an
optimal weighted coloring of (G[R], wR) to an optimal weighted coloring of (G,w)

in polynomial-time, for any weight function w : V (G) → R∗+ and wR being the
restriction of w to the elements of R.

De�nition 5. Let H ⊆ G and cG = {S1, . . . , Sk} (resp. cH = {S′1, . . . , S
′
l}) be

coloring of G (resp. H). We say that cG is an extension of cH if there is an injective
function f : {1, . . . , l} → {1, . . . , k} such that S′i ⊆ Sf(i), for every i ∈ {1, . . . , l}.

This notion is commonly used in the Precoloring Extension prob-
lem [Mar05, Mar06].

Since K is a clique, in any proper k-coloring c = {S1, . . . , Sk} of G, we have
k disjoint colors that appear in the vertices of K. By the de�nition of a spider, if
u ∈ K and v ∈ R, then uv ∈ E(G). Consequently, no color class Si ∈ c contains
vertices from both K and R. Thus, we de�ne two sets of colors CK(c) and CR(c)

such that if Sj∩K 6= ∅ (resp. Sj∩R 6= ∅), then Sj ∈ CK(c) (resp. Sj ∈ CR(c)). We
refer to these sets CK(c) and CR(c) as colors of K and colors of R in the coloring
c. Now, we study in which color classes the vertices of S may appear.

Intuitively, we �rst prove that it is not necessary to care about vertices in S

that have a heavier non-neighbor. Formally, denote by SL ⊆ S the set of vertices
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s ∈ S such that s has a non-neighbor u in K ∪ R satisfying w(u) ≥ w(s). Observe
that any optimal weighted coloring c of G[V (G)\SL] can be extended to a coloring
c′ of G by assigning to each vertex in s ∈ SL the color c(u) of its non-neighbor
u ∈ K ∪ R satisfying w(u) ≥ w(s). By the de�nition of SL, we conclude that
w(c) = w(c′). Since G[V (G)\SL] is a subgraph of G and c is an optimal weighted
coloring of G[V (G)\SL], we conclude that c′ is an optimal weighted coloring of G.
Consequently, we consider, with a slight abuse of notation, that:

Remark 2. If s ∈ S, u ∈ K ∪R and su /∈ E(G), then w(s) > w(u).

Lemma 6. Let (G,w) be a weighted spider and c = {S1, . . . , Sk} be an optimal
weighted coloring of (G,w), then:

1. if R = ∅, then there exists at most one color class Si ∈ c, such that Si /∈ CK(c);

2. otherwise,

(a) c = CK(c) ∪ CR(c);

(b) there exists at most one color class Sj ∈ c that intersects both S and R;

(c) if such color Sj exists, then it contains a vertex r∗ ∈ R ∩ Sj satisfying
w(r∗) = maxr∈R w(r).

Proof. By contradiction, if R = ∅ and there are two disjoint colors Si and Sj in c
that just contain vertices of S, the coloring c′ obtained from c by just merging Si

and Sj would satisfy w(c′) < w(c) and this would be a contradiction. This proves 1.
Now consider that R 6= ∅. Suppose, by contradiction, that there is a color

Si ⊆ S. Since R 6= ∅, there exists a color Sj 6= Si such that Sj ∈ CR(c). Thus, one
could merge Si and Sj and obtain a proper coloring c′ satisfying w(c′) < w(c) and
it contradicts the optimality of c. We derive Statement 2a.

To prove Statement 2b, suppose once more by contradiction that there are two
disjoint colors from CR(c). Let these colors be Sj and S′j , such that Sj and S′j
contain vertices of S. Moreover, without loss of generality, suppose that w(Sj) ≥

w(S′j). By Remark 2, the vertices with the greatest weight in each color class Sj

and S′j belong to S. Thus, the coloring c′ obtained from c by recoloring all the
vertices in S ∩ S′j with the color Sj would have weight strictly smaller than w(c)

and it would again be a contradiction to the optimality of c. Thus, there is at most
one color Sj ∈ c containing vertices from both S and R, in case R 6= ∅.

If such a color exists and c is an optimal coloring of G, observe that it must
contain a vertex r∗ of maximum weight in R. Otherwise, if we recolor all the vertices
in S∩Sj with the color of a maximum weight vertex r∗, we obtain a coloring c′ that
would satisfy w(c′) < w(c), by Remark 2, a contradiction.

By Lemma 6, we denote by the color of S, or simply cS(c), the unique possible
color class which does not belong to CK(c) in an optimal weighted coloring c of a
spider, whenever R = ∅.
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Lemma 7. If R 6= ∅, then, for any optimal weighted coloring cR of (G[R], wR), there
exists an optimal weighted coloring c of (G,w) that is an extension of cR, where wR

is the function w restricted to R.

Proof. Without loss of generality, consider that cR = {Sr
1 , . . . , S

r
t } has a vertex r∗

of maximum weight w(r∗) = maxr∈R w(r) in Sr
1 .

Let c′ = {S′1, . . . , S
′
y} be an optimal weighted coloring of G. By Lemma 6, c′ =

CK(c′) ∪ CR(c′). Without loss of generality, assume that CK(c′) = {S′1, . . . , S
′
x}

and that CR(c′) = {S′x+1, . . . , S
′
y}, for some x ∈ {1, . . . , y}. Moreover, let S′x+1 be

the color class of CR(c′) that possibly contains vertices of S, according to Lemma 6.
To prove the lemma, we now create another optimal weighted coloring c from

c′ that is an extension of cR. Let c = {S1, . . . , Sx+t} be a coloring of G such that
Si = S′i, for every i ∈ {1, . . . , x}, Sx+1 = Sr

1 ∪ {S
′
x+1\R} and Sx+j = Sr

j , for every
j ∈ {2, . . . , t}.

Since cR is an optimal weighted coloring of G[R], observe that c is an opti-
mal weighted coloring to G, because in both colorings c′ and c, the color classes of
CK(c) are the same as CK(c′), w(Sx+1) = w(S′x+1) and the sum of the remain-
ing colors Sx+2, . . . , Sx+t is minimized as cR is an optimal coloring of (G[R], wR).
Consequently, w(c) ≤ w(c′), and thus c is optimal and extends cR.

Recall that we have all the edges from a vertex of K to a vertex in R and thus
K and R receive disjoint colors. Lemma 7 shows us that we can extend any optimal
weighted coloring of (G[R], wR) in order to �nd an optimal weighted coloring of
(G,w). Now, we study which colors the vertices in the stable set S can receive.

Suppose now, without loss of generality, that the vertices of S are labeled S =

{s1, . . . , sm} satisfying w(s1) ≤ . . . ≤ w(sm). Let S(j)− (resp. S(j)+) be the set
{s1, . . . , sj−1} (resp. {sj , . . . , sm}). Denote by k∗ (resp. r∗) a heaviest vertex of K
(resp. R) and by k∗∗ a second heaviest vertex of K. If G is thin, then denote by s∗

the only neighbor of k∗ and by ki the neighbor si, for every ki ∈ K, ki 6= k∗.

Lemma 8. From any optimal weighted coloring of a spider G, we can obtain another
optimal weighted coloring c of G by just recoloring vertices in S such that, for some
j ∈ {1, . . . ,m+ 1}, c satis�es:

1. each vertex S(j)− is in the color cS(c) (if R = ∅) or in the color of r∗; and

2. each vertex S(j)+ is in the color of one of its non-neighbors in K. Moreover,
if G is thin, we have that either:

(a) each vertex in S(j)+\{s∗} has the color of k∗ and if s∗ ∈ S(j), then it
has the color of k∗∗; or

(b) for some vertex ki ∈ K, each vertex in S(j)+\{si} has the color of ki 6= k∗

and if si ∈ S(j)+, then it has the color of k∗.

Proof. Consider an optimal weighted coloring c′′ of G. By Lemma 6, let j − 1 be
the highest index of a heaviest vertex of S that is colored either with a color of r∗ or
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with the color cS(c′) (consider that if j − 1 = 0, then there is no vertex with these
colors). Observe that we can obtain a coloring c′ from c′′ such that w(c′) ≤ w(c′′)
by assigning to all s1, . . . , sj−1 the same color as sj . This proves the statement 1.

Consequently, we know that c′ is an optimal weighted coloring of G and that
each vertex sj , . . . , sm is in the color of one of its non-neighbors in K. If G is a thick
spider, the lemma is proved as we can choose c′ = c.

Consider then that G is a thin spider. We now construct another optimal
weighted coloring c from c′ satisfying the remaining statements of the lemma de-
pending on the following cases.

First, consider that c′(sm) = c′(k∗). Let c be the coloring obtained from c′

by recoloring all the vertices in {sj , . . . , sm}\{s
∗} with the color c′(k∗) = c′(sm).

Observe that all the vertices {sj , . . . , sm}\{s
∗} are not adjacent to a vertex with

color c(k∗), thus c is proper. Moreover, w(c′(k∗)) = w(c(k∗)), because sm is a
heaviest vertex of S and by hypothesis c′(sm) = c′(k∗). We also know that all the
other color classes do not have a bigger weight in c, because they have just lost some
vertices compared to c′. Then, w(c) ≤ w(c′). If s∗ /∈ {sj , . . . , sm} or c(s∗) = c(k∗∗),
then c satis�es the lemma. Otherwise, one may observe that we can recolor sj with
the color of k∗∗ without increasing the weight of c, thanks to Remark 2.

From now on, consider then that c′(sm) 6= c′(k∗). If sm 6= s∗, we change the
coloring c′ by recoloring sm with the color of k∗ and we do not increase the weight
of the coloring c′, since sm is the heaviest vertex of S and Remark 2 holds. Then,
we are again in the previous case in which c′(sm) = c′(k∗) and we can �nd a coloring
satisfying the lemma. So, Statement 2a of this lemma holds.

Finally, suppose that sm = s∗ and c′(s∗) = c′(sm) = c′(ki), for some ki 6= k∗. In
this case, the coloring c obtained from c′ by assigning to all the vertices in the set
{sj , . . . , sm}\{si} the color of c′(sm) and to si, in case it belongs to {sj , . . . , sm},
the color of k∗ satis�es w(c) ≤ w(c′) and also the lemma's conditions.

We can �nally state the main result of this section:

Proposition 2. Let G = (S ∪K ∪R,E) be a spider, w : V (G)→ R∗+ be a function
and cR be an optimal weighted coloring of (G[R], wR), where wR is the restriction of
w to R. Then an optimal weighted coloring of (G,w) can be found in O(n3)-time.

Proof. We know, by Lemma 7, that any optimal weighted coloring cR of R can be
extended to an optimal weighted coloring c of G. If we apply to c Lemma 8, we
know that there is an optimal weighted coloring c′ that extends cR and for which
the vertices in S satisfy the statements of Lemma 8.

Thus, the algorithm we propose (see Algorithm 1) to �nd an optimal weighted
coloring of a spider G, provided an optimal weighted coloring cR of G[R], re-
turns, among all the possible colorings that extend cR and satisfy the statements of
Lemma 8, the one of minimum weight.

The correctness of the algorithm follows from Lemmas 7 and 8. The vertices of
S can be ordered by their weights in O(n log n) and the vertices of K and R can
be colored in linear-time, provided we are given an optimal weighted coloring cR of
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Algorithm 1: Weighted Coloring of spiders

Input: Spider G = (S ∪K ∪R, E) and an optimal weighted coloring cR of G[R]
Output: Optimal weighted coloring of G

m← |S|;
Create arti�cial vertices s0 and sm+1 in S and order them such that w(s0) ≤ . . . ≤ w(sm+1);

Choose k∗, k∗∗ and r∗ and de�ne c, c′ ← ∅;
foreach r ∈ R do

c′(r) := cR(r);

foreach k ∈ K do

c′(k) := a color among the |K| colors of K;

for j = 1, . . . , m + 1 do

for i = 0, . . . , j − 1 do

if R 6= ∅ then
c′(si)← c′(r∗);

else

c′(si)← cS;

if G is thick then

for i = j, . . . , m do

c′(si)← the color of its non-neighbor in K (c′(f(si)));

if w(c′) < w(c) then
c← c′;

else

for i = j, . . . , m do

if (si, k
∗) /∈ E(G) then

c′(si)← c′(k∗);

else

c′(si)← c′(k∗∗);

if w(c′) < w(c) then
c← c′;

foreach ki ∈ K\{k∗} do
for i = j, . . . , m do

if (si, ki) /∈ E(G) then
c′(si)← c′(ki);

else

c′(si)← c′(k∗);

if w(c′) < w(c) then
c← c′;

Result: c
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G[R]. However, to color the vertices of S, we have to try all the colorings satisfying
Lemma 8 and this can take O(n3)-time in the case we have a thin spider.

Corollary 2. Let (G,w), w : V (G) → R∗+, be a weighted P4-sparse graph whose
modular decomposition tree T (G) satis�es the following statement: if T (G) contains
a parallel node v, then M(v) is a cograph. Then, an optimal weighted coloring of
(G,w) can be found in O(n3) time.

Proof. At �rst, the modular decomposition tree of G, T (G), can be found in linear
time [TCHP08]. Then, we do a pre-order traversal in T (G) computing χw(G[M(v)])

at each node parallel node v. Since G[M(v)] is a cograph, this can be done by using
the already known algorithm for cographs [DdWMP02] whose complexity is O(n2).
Finally, we visit T (G) in a post-order way and use Remark 1 and Proposition 2 to
determine χw(G[M(v)]) at each series or neighborhood node v of T (G).

Observe that in Corollary 2, we present an algorithm to solve the Weighted

Coloring problem for a subclass of P4-sparse graphs which strictly contains
cographs, since its modular decomposition tree may have modules whose quotient
graphs are isomorphic to spiders.

3.2.1.2 Disjoint Union

We know study the parallel nodes v of the tree decomposition T (G) of a P4-sparse
graph G. By de�nition, M(v) is a disconnected P4-sparse graph and its connected
components correspond to its maximal strong submodules. If we could obtain, from
optimal weighted colorings of the components ofM(v) an optimal weighted coloring
of M(v), then the algorithm we presented in the last section could be extended to
the class of P4-sparse graphs. However, this is not a trivial task.

To illustrate the problem tackled in this section, consider the P4-sparse graph
G = A ∪ B of Figure 3.3. An optimal coloring cA = {S1, . . . , S4} of A with weight
5 is given by S1 = {k1}, S2 = {k2}, S3 = {k3}, and S4 = {s1, s2, s3}. An obvious
optimal coloring cB = {S′1, S

′
2, S
′
3} of B with weight 6 is given by S′1 = {u1},

S′2 = {u2}, and S′3 = {u3}.
One simple algorithm to �nd an optimal weighted coloring of G would be to

combine both colorings cA and cB by merging the color classes according to their
weights.

If we apply this algorithm for our example in Figure 3.3, we obtain a coloring
of G with weight 7. However, there exists a better coloring cG of G with weight 6

given by S′′1 = {s1, k1, u1}, S′′2 = {s2, k2, u2}, and S′′3 = {s3, k3, u3}. Observe that
this optimal coloring cG of G, when restricted to A, it is not an optimal weighted
coloring of A because it has weight 6, which is strictly greater than the weight of
cA.

The previous example shows that an optimal weighted coloring of a disconnected
graph is not given by optimal weighted colorings of its components.
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Figure 3.3: An optimal weighted coloring of a disjoint union is not given by merging
an optimal weighted colorings of each component.

For the next result, we do another slight abuse of notation and consider that the
weight of an empty stable set is equal to zero. We now prove that there exists an
optimal weighted coloring c of any disconnected weighted graph (G,w) where the
i-th heaviest stable set in the coloring c of G is also the i-th heaviest color when
we restrict c to each connected component of G. Recall that the weight of a color
(stable set) is the maximum weight of a vertex in this color and that a color may
appear in di�erent connected components. Formally, we have:

Proposition 3. Let (G,w) be a disconnected weighted graph such that w : V (G)→

R∗+ and G = G1 ∪ . . . ∪ Gm, where each Gi is a connected component of G. There
exists an optimal weighted coloring c = {S1, . . . , Sk} of (G,w) such that the coloring
cGi

= {Si
1, . . . , S

i
k} of Gi, where Si

j = V (Gi) ∩ Sj and j ∈ {1, . . . , k}, satis�es
w(Si

1) ≥ . . . ≥ w(Si
k), for every i ∈ {1, . . . ,m}.

Proof. Let c′ = {S′1, . . . , S
′
k} be an arbitrary proper k-coloring of G. We prove now

that we can obtain a coloring c = {S1, . . . , Sk} from c′ such that w(c) ≤ w(c′) and c
satis�es the proposition. Thus, the proof is completed by considering the particular
case in which c′ is an optimal weighted coloring.

Without loss of generality, assume that w(S′1) ≥ . . . ≥ w(S′k). Let S
i
j = V (Gi)∩

S′j , for every j ∈ {1, . . . , k} and i ∈ {1, . . . ,m}. Observe that S
′
j is the j-th heaviest

stable set of (G,w) thanks to the maximum weight a vertex in this set. Consequently,
Si

j is not necessarily the j-th heaviest stable set in Gi, i.e. in c′Gi
= {Si

j | j ∈

{1, . . . , k}}.
We now order the set c′Gi

by the weights of its elements, thus we de�ne Ri
j as

the j-th heaviest element of the set {Si
j | j ∈ {1, . . . , k}}, for every i ∈ {1, . . . ,m}.

Claim 1. For every j ∈ {1, . . . , k}, we have:

w(S′j) ≥ max
i∈{1,...,m}

w(Ri
j)

For j = 1 the claim is true, since the weight of S′1 is given by the weight of a
heaviest vertex in G, which equals max{w(R1

1), . . . , w(Rm
1 )}. Suppose that the claim

is not true for some j > 2, i.e., w(S′j) < max{w(R1
j ), . . . , w(Rm

j )}. Suppose, without
loss of generality, that max{w(R1

j ), . . . , w(Rm
j )} = w(R1

j ). Then, by hypothesis:
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w(Sj) < w(R1
j ) ≤ w(R1

j−1) ≤ . . . ≤ w(R1
p) ≤ . . . ≤ w(R1

1). (3.1)

For p = 1, . . . , j, let Sqp ∈ {S
′
1, . . . , S

′
k} be the stable set of c containing R1

p.
Observe that, by de�nition, all these sets Sqp are distinct. Then,

w(R1
p) ≤ w(Sqp), p = 1, . . . , j. (3.2)

Combining Equations (3.1) and (3.2) we deduce that w(Sj) < w(Sqp), for each
p = 1, . . . , j. In other words, there exist j color classes with weight strictly greater
than w(S′j) in c

′, a contradiction to the hypothesis that w(S′1) ≥ . . . ≥ w(S′k). Thus,
claim follows.

De�ne then a coloring c with color classes S1, . . . , Sk as follows:

Sj := R1
j ∪ . . . ∪R

m
j , j = 1, . . . , k.

By the claim, c satis�es the proposition.

We �nish this section by proposing the following conjecture:

Conjecture 1. There is a polynomial-time algorithm to solve the Weighted Col-

oring problem on P4-sparse graphs.

3.2.2 Approximation Algorithm

In the last section, we were not able to present an exact polynomial-time algorithm
to compute the weighted chromatic number of any P4-sparse graph. However, we
know a 2-approximation algorithm for this class. The idea is simple, but to present
it, let us �rst consider the special partition of P4-sparse graphs given by Jamison
and Olariu [JO95, LO98]:

De�nition 6. A graph G has a special partition if there exists a family Σ =

{S1, . . . , Sq} of disjoint stable sets of G with q ≥ 1 and |Si| ≥ 2, for all i ∈ {1, . . . , q},
and there exists an injection f :

⋃q
i=1 Si −→ V −

⋃q
i=1 Si such that the following

occurs:

1. Ki = {z | z = f(s) for some s ∈ Si} is a clique, for all i ∈ {1, . . . , q};

2. A set of vertices A induces a P4 in G if, and only if, there exists a subscript
i ∈ {1, . . . , q} and distinct vertices x, y ∈ Si such that A = {x, y, f(x), f(y)}.

Let us de�ne S =
⋃q

i=1 Si and K = V −
⋃q

i=1 Si. Observe that the graphs induced
by S and K are cographs and their weighted chromatic number can be determined
in polynomial time [DdWMP02].

Theorem 3 ([JO92b]). A graph is a P4-sparse graph if, and only if, it is a cograph
or it has a special partition.
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Then, we can state the following:

Proposition 4. There exists a polynomial-time approximation algorithm for
Weighted Coloring on P4-sparse graphs with approximation ratio bounded above
by 2.

Proof. Observe that if H ⊆ G, then χw(H) ≤ χw(G). Let G be a P4-sparse graph
that is not a cograph. By Theorem 3, G contains a special partition (Σ, f). By de�-
nition, G[S] and G[K] are cographs. Consequently, our algorithm color the cographs
G[S] and G[K] with disjoint sets of colors by using the polynomial-time algorithm
for cographs [DdWMP02]. As χw(G[S]) ≤ χw(G) and χw(G[K]) ≤ χw(G), the proof
is completed.

3.3 Conclusions

In this chapter, we presented new results on the Weighted Coloring problem.
First, we showed a necessary and su�cient condition for a weighted graph (G,w)

to have weighted chromatic number at least k. Then we give complexity results for
P4-sparse graphs.

The computational complexity of computing the weighted chromatic number of
a weighted P4-sparse graph remains open.

The authors in [EMP06] propose a polynomial-time approximation scheme for
partial k-trees. One interesting question related to this result that, up to our best
knowledge, remains unsolved is: what is the computational complexity of determin-
ing χw(T ), when T is a tree?
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A k-coloring c is l-improper if |{v ∈ N(u) | c(v) = c(u)}| ≤ l, for all u ∈ V .
Given a non-negative integer l, the l-improper chromatic number of a graph G,
denoted by χl(G), is the minimum integer k such that G admits an l-improper
k-coloring. Given a graph G and an integer l, the Improper Coloring problem
consists in determining χl(G) and is also NP-hard [Woo90, CHS09]. Indeed, if l = 0,
observe that χ0(G) = χ(G). Consequently, Vertex Coloring is a particular case
of Improper Coloring.

In this chapter, we de�ne and study a new variation of the Improper Coloring
problem for edge-weighted graphs. An edge-weighted graph is a pair (G,w) where
G = (V,E) is a graph and w : E → R∗+. Given an edge-weighted graph (G,w) and
a coloring c of G, the interference of a vertex u in this coloring is de�ned by

Iu(G,w, c) =
∑

{v∈N(u)|c(v)=c(u)}
w(u, v).

For any non-negative real number t, called threshold, we say that c is a weighted
t-improper k-coloring of (G,w) if c is a k-coloring of G such that Iu(G,w, c) ≤ t,
for all u ∈ V .

Given a threshold t ∈ R∗+, the minimum integer k such that the graph G admits
a weighted t-improper k-coloring is the weighted t-improper chromatic number of
(G,w), denoted by χt(G,w). Given an edge-weighted graph (G,w) and a threshold
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t ∈ R∗+, determining χt(G,w) is the goal of the Weighted Improper Coloring

problem. Note that if t = 0 then χ0(G,w) = χ(G), and if w(e) = 1 for all e ∈ E, then
χl(G,w) = χl(G) for any positive integer l. Therefore, the Weighted Improper

Coloring problem is clearly NP-hard since it generalizes Vertex Coloring and
Improper Coloring.

On the other hand, given a positive integer k, we de�ne theminimum k-threshold
of (G,w), denoted by Tk(G,w) as the minimum real t such that (G,w) admits a
weighted t-improper k-coloring. Then, for a given edge-weighted graph (G,w) and
a positive integer k, the Threshold Improper Coloring problem consists in de-
termining Tk(G,w). The Threshold Improper colouring problem is also NP-
hard. This fact follows from the observation that determining whether χl(G) ≤ k is
NP-complete, for every l ≥ 2 and k ≥ 2 [CCW86, CGJ95, CHS09]. Consequently,
in particular, it is a NP-complete problem to decide whether a graph G admits a
weighted t-improper 2-coloring when all the weights of the edges of G are equal to
one, for every t ≥ 2.

Our initial motivation to these problems was the design of satellite antennas for
multi-spot MFTDMA satellites [AAG+05]. In this technology, satellites transmit
signals to areas on the ground called spots. These spots form a grid-like structure
which is modeled by an hexagonal cell graph. To each spot is assigned a radio
channel or color. Spots are interfering with other spots having the same channel
and a spot can use a color only if the interference level does not exceed a given
threshold t. The level of interference between two spots depends on their distance.
The authors of [AAG+05] introduced a factor of mitigation γ and the interference
of remote spots are reduced by a factor 1 − γ. When the interference level is too
low, the nodes are considered to not interfere anymore. Considering such types of
interference, where nodes at distance at most i interfere, leads to the study of the
i-th power of the graph modeling the network and a case of special interest is the
power of grid graphs (see Section 4.2).

Our problems are particular cases of the Frequency Assignment problem
(FAP). FAP has several variations that were already studied in the literature
(see [AvHK+07] for a survey). In most of these variations, the main constraint
to be satis�ed is that if two vertices (mobile phones, antennas, spots, etc.) are
close, then the di�erence between the frequencies that are assigned to them must
be greater than some function which usually depends on their distance.

There is a strong relationship between most of these variations and the
L(p1, . . . , pd)-labeling problem [Yeh06]. In this problem, the goal is to �nd a col-
oring of the vertices of a given graph G, in such a way that the di�erence between
the colors assigned to vertices at distance i is at least pi, for every i = 1, . . . , d.

In some other variants, for each non-satis�ed interference constraint a penalty
must be paid. In particular, the goal of theMinimum Interference Frequency

Assignment problem (MI-FAP) is to minimize the total penalties that must be
paid, when the number of frequencies to be assigned is given. This problem can
also be studied for only co-channel interference, in which the penalties are applied
only if the two vertices have the same frequency. However, MI-FAP under these
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constraints does not correspond to Weighted Improper Coloring, because we
consider the co-channel interference, i.e. penalties, just between each vertex and its
neighborhood.

The two closest related works we found in the literature are [MS03]
and [FLM+00]. However, they both apply penalties over co-channel interference, but
also to the adjacent channel interference, i.e. when the colors of adjacent vertices
di�er by one unit. Moreover, their results are not similar to ours. In [MS03], they
propose an enumerative algorithm for the problem, while in [FLM+00] a Branch-
and-Cut method is proposed and applied over some instances.

In this work, we study both parameters χt(G,w) and Tk(G,w). We �rst present
general bounds; in particular we show a generalization of Lovász's Theorem for
χt(G,w). We after show how to transform an instance of Threshold Improper

colouring into an equivalent one where the weights are either one or M , for a
su�ciently large M .

Motivated by the original application, we then study a special interference model
on various grids (square, triangular, hexagonal) where a node produces a noise of
intensity 1 for its neighbors and a noise of intensity 1/2 for the nodes that are at
distance two. We derive the weighted t-improper chromatic number for all possible
values of t.

Finally, we propose a heuristic and a Branch-and-Bound algorithm to solve
Threshold Improper colouring for general graphs. We compare them to an
integer linear programming formulation on random cell-like graphs, namely Voronoi
diagrams of random points of the plan. These graphs are classically used in the
literature to model telecommunication networks [BKLZ97, GK00, HAB+09].

4.1 General Results

In this section, we present some results for Weighted Improper colouring and
Threshold Improper colouring for general graphs and general interference
models.

4.1.1 Upper bounds

Let (G,w) be an edge-weighted graph with positive real weights given by w :

E(G) → Q∗+. For any vertex v ∈ V (G), its weighted degree is dw(v) =
∑

u∈N(v)w(u, v). The maximum weighted degree of G is ∆(G,w) = maxv∈V dw(v).
Given a k-coloring c : V → {1, . . . , k} of G, we de�ne, for every vertex v ∈

V (G) and color i = 1, . . . , k, di
w,c(v) =

∑

{u∈N(v)|c(u)=i}(u, v). Note that dc(v)
w,c (v) =

Iv(G,w, c). We say that a k-coloring c of G is w-balanced if c satis�es the following
property:

For any vertex v ∈ V (G), Iv(G,w, c) ≤ d
j
w,c(v), for every j = 1, . . . , k.

We denote by gcd(w) the greatest common divisor of the weights of w (observe
that gcd(w) > 0 because we just consider positive weights). We use here the gener-
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alization of the gcd to non-integer numbers (e.g. in Q) where a number x is said to
divide a number y if the fraction y/x is an integer. The important property of gcd(w)

is that the di�erence between two interferences is a multiple of gcd(w); in particular,
if for two vertices v and u, di

w,c(v) > dj
w,c(u), then di

w,c(v) ≥ d
j
w,c(u) + gcd(w).

If t is not a multiple of the gcd(w), that is, there exists an integer a ∈ Z such
that a gcd(w) < t < (a+ 1)gcd(w), then χw

t (G) = χw
a gcd(w)(G).

Proposition 5. Let (G,w) be an edge-weighted graph. For any k ≥ 2, there exists
a w-balanced k-coloring of G.

Proof. Let us colorG = (V,E) arbitrarily with k colors and then repeat the following
procedure: if there exists a vertex v colored i and a color j such that di

w,c(v) >

dj
w,c(v), then recolor v with color j. Observe that this procedure neither increases

(we just move a vertex from one color to another) nor decreases (a vertex without
neighbor on its color is never moved) the number of colors within this process.
Let W be the sum of the weights of the edges having the same color in their end-
vertices. In this transformation, W has increased by dj

w,c(v) (edges incident to v
that previously had color j in its endpoint opposite to v), but decreased by di

w,c(v)

(edges that previously had color i in both of their end-vertices). So,W has decreased
by di

w,c(v) − d
j
w,c(v) ≥ gcd(w). As W ≤ |E|maxe∈E w(e) is �nite, this procedure

�nishes and produces a w-balanced k-coloring of G.

The existence of a w-balanced coloring gives easily some upper bounds on the
weighted t-improper chromatic number and the minimum k-threshold of an edge-
weighted graph (G,w). It is a folklore result that χ(G) ≤ ∆(G) + 1, for any graph
G. Lovász [Lov66] extended this result for Improper Coloring problem using
w-balanced coloring. He proved that χl(G) ≤ ⌈∆(G)+1

l+1 ⌉. In what follows, we extend
this result to weighted improper coloring.

Theorem 4. Let (G,w) be an edge-weighted graph with w : E(G) → Q∗+, and t a
multiple of gcd(w). Then

χt(G,w) ≤

⌈

∆(G,w) + gcd(w)

t+ gcd(w)

⌉

.

Proof. If t, ω, and G are such that χt(G,ω) = 1, then the inequality is trivially
satis�ed. Thus, consider that χt(G,ω) > 1.

Observe that, in any w-balanced k-coloring c of a graph G, the following holds:

dw(v) =
∑

u∈N(v)

w(u, v) ≥ kdc(v)
w,c (v). (4.1)

Let k∗ =
⌈

∆(G,w)+gcd(w)
t+gcd(w)

⌉

≥ 2 and c∗ be a w-balanced k∗-coloring of G. We

claim that c∗ is a weighted t-improper k∗-coloring of (G,w).
By contradiction, suppose that there is a vertex v in G such that c∗(v) = i and

that di
w,c(v) > t. Since c∗ is w-balanced, dj

w,c(v) > t, for all j = 1, . . . , k∗. By the
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de�nition of gcd(w) and as t is a multiple of gcd(w), it leads to dj
w,c(v) ≥ t+gcd(w)

for all j = 1, . . . , k∗. Combining this inequality with Inequality (4.1), we obtain:

∆(G,w) ≥ dw(v) ≥ k∗(t+ gcd(w)),

giving
∆(G,w) ≥ ∆(G,w) + gcd(w),

a contradiction. The result follows.

Note that when all weights are unit, we obtain the bound for the improper
coloring derived in [Lov66]. Brooks [Bro41] proved that for a connected graph
G, χ(G) = ∆(G) + 1 if, and only if, G is complete or an odd cycle. One could
wonder for which edge-weighted graphs the bound we provided in Theorem 4 is
tight. However, Correa et al. [CHS09] already showed that it is NP-complete to
determine if the improper chromatic number of a graph G attains the upper bound
of Lovász, which is a particular case of Weighted Improper colouring, i.e. of
the bound of Theorem 4.

We now show that w-balanced colorings also yield upper bounds for the minimum
k-threshold of an edge-weighted graph (G,w). When k = 1, then all the vertices
must have the same color, and T1(G,w) = ∆(G,w). This may be generalized as
follows, using w-balanced colorings.

Theorem 5. Let (G,w) be an edge-weighted graph with w : E(G)→ R∗+, and let k
be a positive integer. Then

Tk(G,w) ≤
∆(G,w)

k
.

Proof. Let c be a w-balanced k-coloring of G. Then, for every vertex v ∈ V (G):

kTk(G,w) ≤ kdc(v)
w,c (v) ≤ dw(v) =

∑

u∈N(v)

w(u, v) ≤ ∆(G,w)

Because T1(G,w) = ∆(G,w), Theorem 5 may be restated as kTk(G,w) ≤ . . . ≤

T1(G,w). This inequality may be generalized as follows.

Theorem 6. Let (G,w) be an edge-weighted graph with w : E(G)→ R+, and let k
and p be two positive integers. Then

Tkp(G,w) ≤
Tp(G,w)

k
.

Proof. Set t = Tp(G,w). Let c be a t-improper p-coloring of (G,w). For i = 1, . . . , p,
let Gi be the subgraph of G induced by the vertices colored i by c. By de�nition
of improper coloring ∆(Gi, w) ≤ t for all 1 ≤ i ≤ p. By Theorem 5, each (Gi, w)

admits a t/k-improper k-coloring ci with colors {(i− 1)k+ 1, . . . , ik}. The union of
the ci's is then a t/k-improper kp-coloring of (G,w).
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Theorem 6 and its proof suggest that to �nd a kp-coloring with small impropriety,
it may be convenient to �rst �nd a p-coloring with small impropriety and then to
re�ne it. In addition, such a strategy allows to adapt dynamically the re�nement.
In the above proof, the vertex set of each part Gi is again partitioned into k parts.
However, sometimes, we shall get a better kp-coloring by partitioning each Gi into
a number of ki parts, with

∑p
i=1 ki = kp. Doing so, we obtain a T -improper kp-

coloring of (G,w), where T = max{∆(Gi,w)
ki

, 1 ≤ i ≤ p}.

One can also �nd an upper bound on the minimum k-threshold by considering
�rst the k − 1 edges of largest weight around each vertex. Let (G,w) be an edge-
weighted graph, and let v1, . . . , vn be an ordering of the vertices of G. The edges of
G may be ordered in increasing order of their weight. Furthermore, to make sure
that the edges incident to any particular vertex are totally ordered, we break ties
according to the label of the second vertex. Formally, we say that vivj ≤w vivj′ if
either w(vivj) < w(vivj′) or w(vivj) = w(vivj′) and j < j′. With such a partial order
on the edge set, the set Ek

w(v) of min{|N(v)|, k − 1} greatest edges (according to
this ordering) around a vertex is uniquely de�ned. Observe that every edge incident
to v and not in Ek

w(v) is smaller than an edge of Ek(v) for ≤w.
Let Gk

w be the graph with vertex set V (G) and edge set
⋃

v∈V (G)E
k
w(v). Observe

that every vertex of Ek
w(v) has degree at least min{|N(v)|, k− 1}, but a vertex may

have an arbitrarily large degree. For if any edge incident to v has a greater weight
than any edge not incident to v, the degree of v in Gk

w is equal to its degree in G.
However we now prove that at least one vertex has degree k − 1.

Proposition 6. If (G,w) is an edge-weighted graph, then Gk
w has a vertex of degree

at most k − 1.

Proof. Suppose for a contradiction, that every vertex has degree at least k, then
for every vertex x there is an edge xy in E(Gk

w) \ Ek
w(x), and so in Ek

w(y) \ Ek
w(x).

Therefore, there must be a cycle (x1, . . . , xr) such that, for all 1 ≤ i ≤ r, xixi+1 ∈

Ek
w(xi+1) \ E

k
w(xi) (with xr+1 = x1). It follows that x1x2 ≤w x2x3 ≤w · · · ≤w

xrx1 ≤w x1x2. Hence, by de�nition, w(x1x2) = w(x2x3) = · · · = w(xrx1) =

w(x1x2). Let m be the integer such that xm has maximum index in the ordering
v1, . . . , vn. Then there exists j and j′ such that xm = vj and xm+2 = vj′ . By
de�nition of m, we have j > j′. But this contradicts the fact that xmxm+1 ≤w

xm+1xm+2.

Corollary 3. If (G,w) is an edge-weighted graph, then Gk
w has a proper k-coloring.

Proof. By induction on the number of vertices. By Proposition 6, Gk
w has a vertex x

of degree at most k−1. Trivially, Gk
w−x is a subgraph of (G−x)k

w. By the induction
hypothesis, (G − x)k

w has a proper k-coloring, which is also a proper k-coloring of
Gk

w − x. This coloring can be extended in a proper k-coloring of Gk
w, by assigning

to x a color not assigned to any of its k − 1 neighbors.

Corollary 4. If (G,w) is an edge-weighted graph, then Tk(G,w) ≤ ∆(G\E(Gk
w), w).
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11

u v

u’K Kv’

w’(u,v)=w(u,v)−1

u v

Figure 4.1: Construction of G′ from G using edge uv ∈ E(G) and k = 4 colors.
Dashed edges represent edges of weight M .

4.1.2 Transformation

In this section, we prove that the Threshold Improper Coloring problem can
be transformed into a problem mixing proper and improper coloring. More precisely,
we prove the following:

Theorem 7. Let (G,w) be an edge-weighted graph where w is an integer-valued
function, and let k be a positive integer. We can construct an edge-weighted graph
(G∗, w∗) such that w∗(e) ∈ {1,M} for any e ∈ E(G∗), satisfying Tk(G,w) =

Tk(G
∗, w∗), where M = 1 +

∑

e∈E(G)w(e).

Proof. Consider the function f(G,w) =
∑

{e∈E(G)|w(e) 6=M}(w(e)− 1).

If f(G,w) = 0, all edges have weight either one or M and G has the desired
property. In this case, G∗ = G. Otherwise, we construct a graph G′ and a function
w′ such that Tk(G

′, w′) = Tk(G,w), but f(G′, w′) = f(G,w)− 1. By repeating this
operation f(G,w) times we get the required edge-weighted graph (G∗, w∗).

In case f(G,w) > 0, there exists an edge e = uv ∈ E(G) such that 2 ≤ w(e) <

M . G′ is obtained from G by adding two complete graphs on k− 1 vertices Ku and
Kv and two new vertices u′ and v′. We join u and u′ to all the vertices of Ku and
v and v′ to all the vertices of Kv. We assign weight M to all these edges. Note
that, u and u′ (v and v′) always have the same color, namely the remaining color
not used in Ku (resp. Kv).

We also add two edges uv′ and u′v both of weight 1. The edges of G keep their
weight in G′, except the edge e = uv whose weight is decreased by one unit, i.e.
w′(e) = w(e)− 1. Thus, f(G′, ω′) = f(G,ω)− 1 as we added only edges of weights
1 and M and we decreased the weight of e by one unit.

Now consider a weighted t-improper k-coloring c of (G,w). We produce a
weighted t-improper k-coloring c′ of (G′, w′) as follows: we keep the colors of all
the vertices in G, we assign to u′ (v′) the same color as u (resp. v), and we assign
to Ku (resp. Kv) the k − 1 colors di�erent from the one used in u (resp. v).

Conversely, from any weighted improper k-coloring c′ of (G′, w′), we get a
weighted improper k-coloring c of (G,w) by just keeping the colors of the vertices
that belong to G.

For such colorings c and c′ we have that Ix(G,w, c) = Ix(G′, w′, c′), for any
vertex x of G di�erent from u and v. For x ∈ Ku ∪ Kv, Ix(G′, w′, c′) = 0. The
neighbors of u with the same color as u in G′ are the same as in G, except pos-
sibly v′ which has the same color of u if, and only if, v has the same color of u.
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Let ε = 1 if v has the same color as u, otherwise ε = 0. As the weight of uv
decreases by one and we add the edge uv′ of weight 1 in G′, we get Iu(G′, w′, c′) =

Iu(G,w, c) − ε + w′(u, v′)ε = Iu(G,w, c). Similarly, Iv(G′, w′, c′) = Iv(G,w, c). Fi-
nally, Iu′(G′, w′, c′) = Iv′(G′, w′, c′) = ε. But Iu(G′, w′, c′) ≥ (w(u, v) − 1)ε and
so Iu′(G′, w′, c′) ≤ Iu(G′, w′, c′) and Iv′(G′, w′, c′) ≤ Iv(G

′, w′, c′). In summary, we
have

max
x

Ix(G′, w′, c′) = max
x

Ix(G,w, c)

and therefore Tk(G,w) = Tk(G
′, w′).

In the worst case, the number of vertices of G∗ is n + m(wmax − 1)2k and the
number of edges of G∗ is m + m(wmax − 1)[(k + 4)(k − 1) + 2] with n = |V (G)|,
m = |E(G)| and wmax = maxe∈E(G)w(e).

In conclusion, this construction allows to transform the Threshold Improper

Coloring problem into a problem mixing proper and improper coloring. Therefore
the problem consists in �nding the minimum l such that a (non-weighted) l-improper
k-coloring of G∗ exists with the constraint that some subgraphs of G∗ must admit a
proper coloring. The equivalence of the two problems is proved here only for integers
weights, but it is possible to adapt the transformation to prove it for rational weights.

4.2 Squares of Particular Graphs

As mentioned in the introduction, Weighted Improper colouring is motivated
by networks of antennas similar to grids [AAG+05]. In these networks, the noise
generated by an antenna undergoes an attenuation with the distance it travels. It
is often modeled by a decreasing function of d, typically 1/dα or 1/(2d−1).

Here we consider a simpli�ed model where the noise between two neighboring
antennas is normalized to 1, between antennas at distance two is 1/2 and 0 when the
distance is strictly greater than two. Studying this model of interference corresponds
to study the Weighted Improper colouring of the square of the graph G,
that is the graph G2 obtained from G by joining every pair of vertices at distance
two, and to assign weights w2(e) = 1, if e ∈ E(G), and w2(e) = 1/2, if e ∈
E(G2) \ E(G). Observe that in this case the interesting threshold values are the
non-negative multiples of 1/2.

Figure 4.2 shows some examples of coloring for the square grid. In Figure 4.2(b),
each vertex x has neither a neighbor nor a vertex at distance two colored with its
own color, so Ix(G2, w2, c) = 0 and G2 admits a weighted 0-improper 5-coloring. In
Figure 4.2(c), each vertex x has no neighbor with its color and at most one vertex
of the same color at distance 2. So Ix(G2, w2, c) = 1/2 and G2 admits a weighted
0.5-improper 4-coloring.

For any t ∈ R+, we determine the weighted t-improper chromatic number for
the square of in�nite paths, square grids, hexagonal grids and triangular grids under
the interference model w2. We also present lower and upper bounds for χt(T

2, w2),
for any tree T and any threshold t.
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4.2.1 In�nite paths and trees

In this section, we characterize the weighted t-improper chromatic number of the
square of an in�nite path, for all positive real t. Moreover, we present lower and
upper bounds for χt(T

2, w2), for a given tree T .

Theorem 8. Let P = (V,E) be an in�nite path. Then,

χt(P
2, w2) =















3, if 0 ≤ t < 1;

2, if 1 ≤ t < 3;

1, if 3 ≤ t.

Proof. Let V = {vi | i ∈ Z} and E = {(vi−1, vi) | i ∈ Z}. Each vertex of P
has two neighbors and two vertices at distance two. Consequently, the equivalence
χt(P

2, ω2) = 1 if, and only if, t ≥ 3 holds trivially.
There is a 2-coloring c of (P 2, w2) with maximum interference 1 by just coloring

vi with color (i mod 2) + 1. So χt(P
2, w2) ≤ 2 if t ≥ 1. We claim that there is

no weighted 0.5-improper 2-coloring of (P 2, w2). By contradiction, suppose that c
is such a coloring. If c(vi) = 1, for some i ∈ Z, then c(vi−1) = c(vi+1) = 2 and
c(vi−2) = c(vi+2) = 1. This is a contradiction because vi would have interference 1.

Finally, the coloring c(vi) = (i mod 3)+1, for every i ∈ Z, is a feasible weighted
0-improper 3-coloring.

Theorem 9. Let T = (V,E) be a (non-empty) tree. Then,
⌈

∆(T )−⌊t⌋
2t+1

⌉

+ 1 ≤

χt(T
2, w2) ≤

⌈

∆(T )−1
2t+1

⌉

+ 2.

Proof. The lower bound is obtained by two simple observations. First, χt(H,w) ≤

χt(G,w), for any H ⊆ G. Let T be a tree and v be a node of maximum degree in
T . Then, observe that the weighted t-improper chromatic number of the subgraph
of T 2 induced by v and its neighborhood is at least ⌈∆(T )−⌊t⌋

2t+1 ⌉+1. Indeed, the color
of v can be assigned to at most ⌊t⌋ vertices on its neighborhood. Any other color
used in the neighborhood of v cannot appear in more than 2t + 1 vertices because
each pair of vertices in the neighborhood of v is at distance two.

Let us look now at the upper bound. Choose any node r ∈ V to be the root
of T . Color r with color 1. Then, by a breadth-�rst traversal in the tree, for each
visited node v color all the children of v with the ⌈∆(T )−1

2t+1 ⌉ colors di�erent from
the ones assigned to v and to its parent in such a way that at most 2t + 1 nodes
have the same color. This is a feasible weighted t-improper k-coloring of T 2, with
k ≤ ⌈∆(T )−1

2t+1 ⌉ + 2, since each vertex interferes with at most 2t vertices at distance
two which are children of its parent.

For a tree T and the weighted function w2, Theorem 9 provides upper and
lower bounds on χt(T

2, w2), but we do not know the computational complexity of
determining χt(T

2, w2).
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4.2.2 Grids

In this section, we show the optimal values of χt(G
2, w2), whenever G is an in�nite

square, hexagonal or triangular grid, for all the possible values of t.

4.2.2.1 Square Grid

The square grid is the graph S in which the vertices are all integer linear combina-
tions ae1 + be2 of the two vectors e1 = (1, 0) and e2 = (0, 1), for any a, b ∈ Z. Each
vertex (a, b) has four neighbors: its down neighbor (a, b−1), its up neighbor (a, b+1),
its right neighbor (a+ 1, b) and its left neighbor (a− 1, b) (see Figure 4.2(a)).

Theorem 10.

χt(S
2, w2) =



































5, if t = 0;

4, if t = 0.5;

3, if 1 ≤ t < 3;

2, if 3 ≤ t < 8;

1, if 8 ≤ t.

(a)

5

3

1

4

2

5

1

4

2

5

3

1

2

5

3

1

4

2

3

1

4

2

5

3

4

2

5

3

1

4

5

3

1

4

2

5

1

4

2

5

3

1

2

5

3

1

4

2

3

1

4

2

5

3

4

2

5

3

1

4

(b)

4

4

1

1

2

2

3

3

4 1 2 3

4 1 2 3

4 1

4 1

4 1 2 3

4 1 2 3

4 1 2 3

4 1 2

4 1 2 34 1 2 3

4 1 2 34 1 2 32 3

1 2 3

2 3

43

(c)

1

2 2

22 2 2

22

2 2

22

2 2

2212 2

22 11

11

11

11

11

11

11
(d)

Figure 4.2: Optimal colorings of (S2, w2): (b) weighted 0-improper 5-coloring of
(S2, w2), (c) weighted 0.5-improper 4-coloring of (S2, w2), and (d) weighted 3-
improper 2-coloring of (S2, w2).
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Figure 4.3: Lower bounds for the square grid: (a) if t ≤ 0.5 and k ≤ 3, there is
no weighted t-improper k-coloring of (S2, w2); (b) the �rst case when t ≤ 2.5 and
k ≤ 2, and (c) the second case.

Proof. If t = 0, then the color of vertex (a, b) must be di�erent from the ones used
on its four neighbors. Moreover, all the neighbors have di�erent colors, as each pair
of neighbors is at distance two. Consequently, at least �ve colors are needed. The
following construction provides a weighted 0-improper 5-coloring of (S2, w2): for
0 ≤ j ≤ 4, let Aj = {(j, 0)+a(5e1)+ b(2e1 +1e2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 4, assign
the color j + 1 to all the vertices in Aj (see Figure 4.2(b)).

When t = 0.5, we claim that at least four colors are needed to color (S2, w2).
The proof is by contradiction. Suppose that there exists a weighted 0.5-improper
3-coloring of it. Let (a, b) be a vertex colored 1. None of its neighbors is colored 1,
otherwise (a, b) has interference 1. If three neighbors have the same color, then each
of them will have interference 1. So two of its neighbors have to be colored 2 and
the two other ones 3 (see Figure 4.3(a)). Now consider the four nodes (a− 1, b− 1),
(a− 1, b+ 1), (a+ 1, b− 1) and (a+ 1, b+ 1). For all con�gurations, at least two of
these four vertices have to be colored 1 (the ones indicated by a * in Figure 4.3(a)).
But then (a, b) will have interference at least 1, a contradiction. A weighted 0.5-
improper 4-coloring of (S2, w2) can be obtained as follows (see Figure 4.2(c)): for
0 ≤ j ≤ 3, let Bj = {(j, 0) + a(4e1) + b(3e1 + 2e2) | ∀a, b ∈ Z} and B′j = {(j +

1, 2) + a(4e1) + b(3e1 + 2e2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 3, assign the color j + 1 to all
the vertices in Bj and in B′j .

If t = 1, there exists a weighted 1-improper 3-coloring of (S2, w2) given by the
following construction: for 0 ≤ j ≤ 2, let Cj = {(j, 0) + a(3e1) + b(e1 + e2) | ∀a, b ∈

Z}. For 0 ≤ j ≤ 2, assign the color j + 1 to all the vertices in Cj .
Now we prove by contradiction that for t = 2.5 we still need at least three colors
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in a weighted 2.5-improper coloring of (S2, w2). Consider a weighted 2.5-improper
2-coloring of (S2, w2) and let (a, b) be a vertex colored 1. Vertex (a, b) has at most
two neighbors of color 1, otherwise it will have interference 3. We distinguish three
cases:

1. Exactly one of its neighbors is colored 1; let (a−1, b) be this vertex. Then, the three
other neighbors are colored 2 (see Figure 4.3(b)). Consider the two sets of vertices
{(a− 1, b− 1), (a+ 1, b− 1), (a, b− 2)} and {(a− 1, b+ 1), (a+ 1, b+ 1), (a, b+ 2)}

(these sets are surrounded by dotted lines in Figure 4.3(b)); each of them has at
least two vertices colored 1, otherwise the vertex (a, b − 1) or (a, b + 1) will have
interference 3. But then (a, b) having four vertices at distance two colored 1 has
interference 3, a contradiction.

2. Two neighbors of (a, b) are colored 1.

(a) These two neighbors are opposite, say (a − 1, b) and (a + 1, b) (see Figure 4.3(c)
left). Consider again the two sets {(a − 1, b − 1), (a + 1, b − 1), (a, b − 2)} and
{(a− 1, b+ 1), (a+ 1, b+ 1), (a, b+ 2)} (these sets are surrounded by dotted lines
in Figure 4.3(c) left); they both contain at least one vertex of color 1 and therefore
(a, b) will have interference 3, a contradiction.

(b) The two neighbors of color 1 are of the form (a, b−1) and (a−1, b) (see Figure 4.3(c)
right). Consider the two sets of vertices {(a + 1, b − 1), (a + 1, b + 1), (a + 2, b)}

and {(a + 1, b + 1), (a − 1, b + 1), (a, b + 2)} (these sets are surrounded by dotted
lines in Figure 4.3(c) right); these two sets contain at most one vertex of color 1,
otherwise (a, b) will have interference 3. Moreover, each of these sets cannot be
completely colored 2, otherwise (a+1, b) or (a, b+1) will have interference at least
3. So vertices (a + 1, b − 1), (a + 2, b), (a, b + 2) and (a − 1, b + 1) are of color 2
and the vertex (a + 1, b + 1) is of color 1. But then (a − 2, b) and (a − 1, b − 1)

are of color 2, otherwise (a, b) will have interference 3. Thus, vertex (a− 1, b) has
exactly one neighbor colored 1 and we are again in Case 1.

3. All neighbors of (a, b) are colored 2. If one of these neighbors has itself a neighbor
(distinct from (a, b)) of color 2, we are in Case 1 or 2 for this neighbor. Therefore,
all vertices at distance two from (a, b) have color 1 and the interference in (a, b) is
4, a contradiction.

A weighted 3-improper 2-coloring of (S2, w2) can be obtained as follows: a vertex
of the grid (a, b) is colored with color (

⌊

a
2

⌋

+
⌊

b
2

⌋

(mod 2)) + 1, see Figure 4.2(d).
Finally, since each vertex has four neighbors and eight vertices at distance two,

there is no weighted 7.5-improper 1-coloring of (S2, w2) and, whenever t ≥ 8, one
color su�ces.

4.2.2.2 Hexagonal Grid

There are many ways to de�ne the system of coordinates of the hexagonal grid.
Here, we use grid coordinates as shown in Figure 4.4. The hexagonal grid graph is



4.2. Squares of Particular Graphs 53

then the graph H whose vertex set consists of pairs of integers (a, b) ∈ Z2 and where
each vertex (a, b) has three neighbors: (a− 1, b), (a+ 1, b), and (a, b+ 1) if a+ b is
odd, or (a, b− 1) otherwise.

Theorem 11.

χt(H
2, w2) =























4, if 0 ≤ t < 1;

3, if 1 ≤ t < 2;

2, if 2 ≤ t < 6;

1, if 6 ≤ t.
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4 1 2 3 4 12 3
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Figure 4.4: Weighted 0-improper 4-coloring of (H2, w2). Left: Graph with coordi-
nates. Right: Corresponding hexagonal grid in the euclidean space.
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(a) t = 1, k = 3

2

1

2 2

2

1

2

2

1

2

1

1 1

1

2

1

2

2

2

1

1

2

1

1

(b) t = 2, k = 2

Figure 4.5: (a) weighted 1-improper 3-coloring of (H2, w2) and (b) weighted 2-
improper 2-coloring of (H2, w2).

Proof. Note �rst, that when t = 0, at least four colors are needed to color the grid,
because a vertex and its neighborhood in H form a clique of size four in H2. The
same number of colors are needed if we allow a threshold t = 0.5. To prove this fact,
let A be a vertex (a, b) of H and B = (a− 1, b), C = (a, b− 1) and D = (a+ 1, b) be
its neighbors in H. Denote by G = (a− 2, b), E = (a− 1, b− 1), F = (a− 2, b− 1),
H = (a + 1, b − 1), I = (a + 2, b − 1) and J = (a + 1, b − 2) (see Figure 4.6(a)).
By contradiction, suppose there exists a weighted 0.5-improper 3-coloring of H2.
Consider a node A colored 1. Its neighbors B, C, D cannot be colored 1 and they
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cannot all have the same color. W.l.o.g., suppose that two of them B and C have
color 2 and D has color 3. Then E, F and G cannot be colored 2 because of the
interference constraint in B and C. If F is colored 3, then G and E are colored 1,
creating interference 1 in A. So F must be colored 1 and G and E must be colored
3. Then, H can be neither colored 2 (interference in C) nor 3 (interference in E).
So H is colored 1. The vertex I is colored 3, otherwise the interference constraint
in H or in C is not satis�ed. Then, J can receive neither color 1, because of the
interference in H, nor color 2, because of the interference in C, nor color 3, because
of the interference in I.

There exists a construction attaining this bound and the number of colors, i.e. a
0-improper 4-coloring of (H2, w2) as depicted in Figure 4.4. We de�ne for 0 ≤ j ≤ 3

the sets of vertices Aj = {(j, 0)+a(4e1)+b(2e1 +e2)|∀a, b ∈ Z}. We then assign the
color j+1 to the vertices in Aj . This way no vertex experiences any interference as
vertices of the same colors are at distance at least three.

For t = 1.5 it is not possible to color the grid with less than three colors. By
contradiction, suppose that there exists a weighted 1.5-improper 2-coloring. Con-
sider a vertex A colored 1. If all of its neighbors are colored 2, they have already
interference 1, so all the vertices at distance two from A need to be colored 1; this
gives interference 3 in A. Therefore one of A's neighbors, say D, has to be colored 1

and consider that the other two neighbors B and C are colored 2. B and C have at
most one neighbor of color 2. It implies that A has at least two vertices at distance
two colored 1. This is a contradiction, because the interference in A would be at
least 2 (see Figure 4.6(b)).

Figure 4.5(a) presents a weighted 1-improper 3-coloring of (H2, w2). To obtain
this coloring, let Bj = {(j, 0)+a(3e1)+ b(e1 + e2) | ∀a, b ∈ Z}, for 0 ≤ j ≤ 2. Then,
we color all the vertices in the set Bj with color j + 1, for every 0 ≤ j ≤ 2.

For t < 6, it is not possible to color the grid with one color. As a matter of
fact, each vertex has three neighbors and six vertices at distance two in H. Using
one color leads to an interference equal to 6. There exists a 2-improper 2-coloring
of the hexagonal grid as depicted in Figure 4.5(b). We de�ne for 0 ≤ j ≤ 1 the sets
of vertices Cj = {(j, 0) + a(2e1) + be2|∀a, b ∈ Z}. We then assign the color j + 1 to
the vertices in Cj .

4.2.2.3 Triangular Grid

The triangular grid is the graph T whose vertices are all the integer linear combina-
tions af1+bf2 of the two vectors f1 = (1, 0) and f2 = (1

2 ,
√

3
2 ). Thus we may identify

the vertices with the ordered pairs (a, b) of integers. Each vertex v = (a, b) has six
neighbors: its right neighbor (a + 1, b), its right-up neighbor (a, b + 1), its left-up
neighbor (a − 1, b + 1), its left neighbor (a − 1, b), its left-down neighbor (a, b − 1)

and its right-down neighbor (a+ 1, b− 1) (see Figure 4.8(a)).



4.2. Squares of Particular Graphs 55

E

CF

H

AG

B

I

D

J

(a)

1

2

1

2

(b)

Figure 4.6: Lower bounds for the hexagonal grid. (a) when t ≤ 0.5 and k ≤ 3, there
is no weighted t-improper k-coloring of (H2, w2); (b) vertices colored 2 force a vertex
colored 1 in each ellipse, leading to interference 2 in central node.

Theorem 12.

χt(T
2, w2) =























































7, if t = 0;

6, if t = 0.5;

5, if t = 1;

4, if 1.5 ≤ t < 3;

3, if 3 ≤ t < 5;

2, if 5 ≤ t < 12;

1, if 12 ≤ t.

Proof. If t = 0, there is no weighted 0-improper 6-coloring of (T2, w2), since in
T2 there is a clique of size seven induced by each vertex and its neighborhood.
There is a weighted 0-improper 7-coloring of (T2, w2) as depicted in Figure 4.7(a).
This coloring can be obtained by the following construction: for 0 ≤ j ≤ 6, let
Aj = {(j, 0)+a(7f1)+ b(2f1 + f2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 6, assign the color j+1

to all the vertices in Aj .
In what follows, we denote by V0 a vertex colored 1; by N0, N1, N2, N3, N4,

N5 the six neighbors of V0 in T be in a cyclic order. Let Γ2 be the set of twelve
vertices at distance two of V0 in T; more precisely Ni(i+1) denotes the vertex of Γ2

adjacent to both Ni and Ni+1 and by Nii the vertex of Γ2 joined only to Ni, for
every 0 ≤ i ≤ 5, i+ 1 is taken modulo 6 (see Figure 4.8(b)) and we denote by Nijk

the vertex at distance three from V0 adjacent to both Nij and Njk .
We claim that there is no weighted 0.5-improper 5-coloring of (T2, w2). We prove

it by contradiction, thus let c be such a coloring. No neighbor of V0 can be colored
1, otherwise IV0(T

2, w2, c) ≥ 1. As two consecutive neighbors are adjacent, they
cannot have the same color. Furthermore, there cannot be three neighbors with the
same color (each of them will have an interference at least 1). As there are four
colors di�erent from 1, exactly two of them, say 2 and 3, are repeated twice among
the six neighbors. So, there exists a sequence of three consecutive neighbors the �rst



56 Chapter 4. Weighted Improper Coloring

1 2 3 4 5 61 2 3 4 5 6
1 2 31 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 64 5 6
1 2 3 4 5 6

4 5 6
6

1 2 3 4

1 2 3

2 3 4 5 6

1

1 2 3 4 5 6

3 4 5 6 1 2 3 4 5

1

6 1 2 3 4 5 6

7
7

7

7
7

7
7

7

7
7

7

7

7

7 7

(a)

2 1 4 3 6 55 1 2 3 4 5 6
2 1 45 1 2 3 4 5 6

5 1 2 3 4 5 6

2 1 4 3 6 53 4 5 6
2 1 4 3 6 56

5 1 2 32 1 4 3 66

1 2 3 4
1 2

4 3 6 5 1 2 3 4

4 3 61
3 6

52 1 4 3 664 5

5 6
5 1 2 3 4 5 6 2 1

(b)

1 2 3 4 5 1 2 3 4 5 1 2 3
4 5 1 2 3 4 5 1 2 3 4 5
2 3 4 5 1 2 3 4 5 1 2

3 4 5 1 2 3 4 5 1

4 5 1 2 3 4 5 1 2 3 4 5

5 1 2 3 4 5 1 2 3 4

5 1 2 3 4 5 1 2 3 4

2 3 4 5 1 2 3 4 5 1 2

3 4 5 1 2 3 4 5 1
(c)

4
4

2
2
3
3
1

1

42
2 3

1

3

4
4

2 1
1

4
4

2
2
3
3
1

1
3

4
4

2 1
1

4
4

2
2
3
3
1

1
3

4
4

2 1
1

4
4

2
2
3
3
1

1

4
2 3

1

3

4
4

1
1

4
4

2
2
3
3
1

1

42
2 3
3

4
4

2
1

1

1
1

3
3

2
2
3

4
2

2
3
3 2

3
3

(d)

1 2 3 1 2 3 1 2 3 1 2 3 1
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2
1 2 3 1 2 3 1 2 3 1
1 2 3 1 2 3 1 2 3

2 3 1 2 3 1 2 3 1 2 3 1
3 1 2 3 1 2 3 1 2 3 1
1 2 3 1 2 3 1 2 3 1
2 3 1 2 3 1 2 3 1

(e)

1 2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2

(f)

Figure 4.7: Optimal colorings of (T2, w2): (a) weighted 0-improper 7-coloring, (b)
weighted 0.5-improper 6-coloring, (c) weighted 1-improper 5-coloring, (d) weighted
1.5-improper 4-coloring, (e) weighted 3-improper 3-coloring, and (f) weighted 5-
improper 2-coloring.
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(a) (b)

Figure 4.8: Notations used in proofs: (a) of existence, and (b) of non-existence; of
weighted improper colorings of (T2, w2).

one with a color di�erent from 2 and 3 and the two others colored 2 and 3. W.l.o.g.,
let c(N5) = 4, c(N0) = 2, c(N1) = 3.

Note that the vertices colored 2 and 3 have already an interference of 0.5, and
so none of their vertices at distance two can be colored 2 or 3. In particular, let
A = {N50, N00, N01, N11, N12}; the vertices of A cannot be colored 2 or 3. At most
one vertex in Γ2 can be colored 1, otherwise IV0(T

2, w2, c) ≥ 1. If there is no vertex
colored 1 in A, we have a contradiction as we cannot have a sequence of �ve vertices
uniquely colored 4 and 5 (indeed colors should alternate and the vertex in the middle
N01 will have interference at least 1). Suppose N4 is colored 3, then N45 and N55 can
only be colored 1 and 5; but, as they have di�erent colors, one is colored 1 and so
there is no vertex colored 1 in A. So the second vertex colored 3 in the neighborhood
of V0 is necessarily N3 (it cannot be N2 neighbor of N1 colored 3). Then, N4 cannot
be also colored 5, otherwise N45 is colored 1 and again there is no vertex colored
1 in A. In summary c(N4) = 2, c(N3) = 3 and the vertex of Γ2 colored 1 is in A.
But then the �ve consecutive vertices A′ = {N23, N33, N34, N44, N45} can only be
colored 4 and 5. A contradiction as IN34(T

2, w2, c) ≥ 1.
A weighted 0.5-improper 6-coloring of (T2, w2) can be obtained by the following

construction (see Figure 4.7(b)): for 0 ≤ j ≤ 11, let Bj = {(j, 0)+a(12f1)+ b(2f1 +

f2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 5, assign the color j + 1 to all the vertices in Bj , B6

with color 2, B7 with color 1, B8 with color 4, B9 with color 3, B10 with color 6 and
B11 with color 5.

Now we prove that (T2, w2) does not admit a weighted 1-improper 4-coloring.
Again, by contradiction, suppose that there exists a weighted 1-improper 4-coloring
c of (T2, w2). We analyze some cases:

1. There exist two adjacent vertices in T with the same color.

Let V0 and one of its neighbors be both colored 1. Note that no other neighbor of V0,
nor the vertices at distance two from V0 are colored 1 (otherwise, IV0(T

2, w2, c) > 1).
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We use intensively the following facts:

Fact 1. There do not exist three consecutive vertices with the same color (otherwise
the vertex in the middle would have interference at least 2).

Fact 2. In a path of �ve vertices there cannot be four of the same color (otherwise
the second or the fourth vertex in this path would have interference at least 1.5).

One color other than 1 should appear at least twice in the neighborhood of V0. Let
this color be denoted 2 (the other colors being denoted 3 and 4).

(a) Two neighbors of V0 colored 2 are consecutive, say N0 and N1. By Fact 1, N2 is
colored 3 w.l.o.g. None of N05, N00, N01, N11, N12, N22 and N23 can be colored 2,
otherwise IN1(T

2, w2, c) > 1. One of N12, N22 and N23 is colored 3, otherwise we
contradict Fact 1 with color 4 and at most one of N01, N11, N12, N22 and N23 is
colored 3, otherwise IN2(T

2, w2, c) > 1; but we have a contradiction with Fact 2.

(b) Two neighbors of V0 colored 2 are at distance two, say N0 and N2. Then
N50, N00 and N01 (respectively N12, N22 and N23) are not colored 2, other-
wise IN0(T

2, w2, c) > 1 (respectively IN2(T
2, w2, c) > 1). One of N3 and N5 is

not colored 1, say N3. It is not colored 2, otherwise IN3(T
2, w2, c) > 1. Let

c(N3) = 3. If N4 or N11 is colored 2, then N33 and N34 are not colored 2, oth-
erwise IN2(T

2, w2, c) > 1 and we have a sequence of �ve vertices N12, N22, N23,
N33 and N34 contradicting Fact 2 as four are of color 4 (indeed, at most one is
colored 3 due to interference in color 3 with N3 or N22). So N11 is colored 3 or
4. If N1 also is colored 3 or 4, we have a contradiction with Fact 2 applied to
the �ve vertices N00, N01, N11, N12 and N22, by the same previous argument.
So c(N1) = 1; furthermore N4 is not colored 1 (at most one neighbor colored 1),
nor 2 as we have seen above, nor 3, otherwise we are in the case (a). Therefore
c(N4) = 4 and c(N5) = 3, by the same reason. But then c(N23) = 4, otherwise the
interference in V0 or N2 or N3 is greater than 1. N33 and N34 can be only colored
2, otherwise V0, N3, N4 or N23 will have interference strictly greater than 1, but
N33 has interference greater than 1, a contradiction.

(c) Two neighbors of V0 colored 2 are at distance three say N0 and N3. Then
N50, N00 and N01 (respectively N23, N33 and N34) are not colored 2, otherwise
IN0(T

2, w2, c) > 1 (respectively IN3(T
2, w2, c) > 1). W.l.o.g., let N1 be the vertex

colored 1. Among the four vertices N12, N22, N44 and N45 at most one is colored 2,
otherwise IN3(T

2, w2, c) > 1. So, w.l.o.g, we can suppose N44 and N45 are colored
3 or 4; but we have a set of �ve consecutive vertices N23, N33, N34, N44, N45,
contradicting Fact 2 (indeed at most one can be of the color of N4).

2. No color appears in two adjacent vertices of T.

Let V0 be colored 1. No color can appear four or more times among the neighbors
of V0, otherwise there are two adjacent neighbors with the same color.
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(a) One color appears three times among the neighbors of V0, say c(N0) = c(N2) =

c(N4) = 2. W.l.o.g., let c(N1) = 3. No vertex at distance two can be colored 2.
N01, N11 and N12 being neighbors of N1 cannot be colored 3 and they cannot be
all colored 4. So one of N01, N11, N12 is colored 1. Similarly one of N23, N33, N34

is colored 1 (same reasoning with N3 instead of N1) and one of N45, N55, N50 is
colored 1, so IV0(T

2, w2, c) > 1.

(b) The three colors appear each exactly twice in the neighborhood of V0.

i. The same color appears in some Ni and Ni+2, 0 ≤ i ≤ 3. W.l.o.g., let c(N0) =

c(N2) = 2 and c(N1) = 3. Then, c(N3) = c(N5) = 4 and c(N4) = 3. Then,
c(N50) = 1 or 3, c(N01) = 1 or 4. If c(N50) = 3 and c(N01) = 4, then c(N00) = 1.
Among N50, N00, N01, at least one has color 1. Similarly one of N12, N22, N23 has
color 1. So IV0(T

2, w2, c) ≥ 1 and c(N34) = c(N45) = 2. Consequently, no matter
the color of N44 some vertex will have interference greater than 1.

ii. We have c(N0) = c(N3) = 2, c(N1) = c(N4) = 3 and c(N2) = c(N5) = 4. Here we
�nd in each of the sets {N50, N00, N01} ,{N12, N22, N23} and {N34, N44, N45} a
vertex colored 1. Therefore IV0(T

2, w2, c) > 1, a contradiction.

To obtain a weighted 1-improper 5-coloring of (T2, w2), for 0 ≤ j ≤ 4, let
Cj = {(j, 0)+a(5f1)+ b(2f1 + f2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 4, assign the color j+1

to all the vertices in Cj . See Figure 4.7(c).
(T2, w2) has a weighted 1.5-improper 4-coloring as depicted in Figure 4.7(d).

Formally, this coloring can be obtained by the following construction: for 0 ≤ j ≤ 3,
let Dj = {(j, 0) + a(4f1) + b(f1 + 2f2) | ∀a, b ∈ Z}; then assign color 4 to all the
vertices in D0, 1 to all the vertices in D1, 3 to all the vertices in D2 and 2 to all the
vertices inD3. Now, for 0 ≤ j ≤ 3, letD′j = {(j, 1)+a(4f1)+b(f1+2f2) | ∀a, b ∈ Z}.
Then, for 0 ≤ j ≤ 3, assign color j + 1 to all the vertices in D′j .

Let us prove that (T2, w2) does not admit a weighted 2.5-improper 3-coloring.
Suppose, by contradiction, that there exists a weighted 2.5-improper 3-coloring c of
(T2, w2). A vertex can have at most two neighbors of the same color as it. Suppose
again, w.l.o.g., that c(V0) = 1. We use the following facts:

Fact 3. No vertex has three neighbors of the same color.

Fact 4. If a vertex has two neighbors of the same color, then it has at most one
vertex at distance two with its color.

Fact 5. There is no path of �ve vertices of the same color.

We say that a vertex v is saturated, if we know that Iv(T2, w2, c) ≥ 2.5.
Let us analyze now each of these cases.

Case: V0 has exactly two neighbors colored 1.

We assume, w.l.o.g., that N0 is colored 1. We subdivide this case into three
subcases according to the position of the second neighbor of V0 colored 1. Due to
the symmetry, we analyze the three possible cases where respectively N1, N2 or N3

is colored 1.
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1. Subcase c(N1) = 1.

We now show that no coloring is feasible, for all possible di�erent colorings of the
vertices N2, N3, N4 and N5 (up to symmetries). We can have all these vertices of
the same color (Case 1a) or three of the same color, say 2, and the other of color 3
(Cases 1b and 1c) and two of color 2 and two of color 3 (Cases 1d, 1e and 1f).

(a) Suppose that c(N2) = c(N3) = c(N4) = c(N5) = 2. Observe that c(N12) =

c(N50) = 3, thanks to Facts 3 and 5. Since N3 and N4 are saturated, we get that
all the vertices N22, N23, N33, N34, N44, N45 and N55 cannot be colored 2. At
most one of these vertices is colored 1, due to the interference in V0. W.l.o.g, we
can then consider that c(N22) = c(N23) = c(N33) = 3. But then, since N23 and
N3 are saturated, we conclude that N223, N233, N333, N334 and N34 must be all
colored 1. This is a contradiction to Fact 5.

(b) Now consider the case in which c(N2) = c(N3) = c(N4) = 2 and c(N5) = 3.
Observe that N12 cannot be colored 1. Let us study the two other cases:

i. Now consider the case in which N12 is colored 2. We observe that N2 and N3 are
saturated.
In case N44 is colored 1, we also have that V0 is saturated and thus all the vertices
N22, N23, N33 and N34 must be colored 3. Consequently, as N23 and N33 are
saturated, we reach a contradiction to Fact 5 as all the vertices N222, N223, N233,
N333 and N334 must be colored 1. Thus, N44 is colored 3 (it cannot be colored 2
due to Fact 5).
In case N33 is colored 1, we have that V0 is saturated and all the vertices N23,
N34 and N45 are colored 3. As N34 is saturated, the vertices N233, N333 and N334

must be colored 1. This contradicts Fact 3. Consequently, N33 is colored 3. N34

cannot be colored 3, because it would imply that c(N45) = 1 and, consequently,
V0 is saturated and the vertices N22 and N23 should be colored 3 and we would
have a contradiction to Fact 5. Thus, N34 is colored 1. Consequently, N22, N23

and N45 are colored 3. The vertices N334 and N344 must then be colored 1 due to
the interference constraints on the vertices N3, N33 and N44. However, we reach
a contradiction as no color is feasible to vertex N233 (and N333).

ii. So we conclude that c(N12) = 3.

• Consider �rst the case c(N22) = 1 (and thus V0 is saturated). We have that
N23, N33 and N34 must be colored 3, thanks to the Facts 3 and 4 and V0 being
saturated. N44 cannot be colored 3 as we would have IN34(T

2, w2, c) ≥ 3. Since
V0 is also saturated, it implies that c(N44) = 2. Therefore, N4 is saturated and
so c(N45) = c(N55) = c(N50) = 3, but then IN5(T

2, w2, c) ≥ 3.

• Thus, consider the case c(N22) = 2. Then, N2 and N3 are saturated. One of the
vertices N33, N34, N44 and N45 is colored 1, thanks to Fact 5. So V0 is saturated
and c(N01) = c(N11) = c(N23) = 3. Then, N112 and N122 cannot be colored 3,
otherwise IN12(T

2, w2, c) ≥ 3; they cannot be colored 2 as N2 is saturated; so
c(N112) = c(N122) = 1, but then we reach a contradiction as IN1(T

2, w2, c) ≥ 3.
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• We then conclude that c(N22) = 3. Due to Facts 3 and 5, at least one of the
vertices N23, N33 and N34 is colored 1 and the two others are colored 3. Conse-
quently, V0 is saturated. In case N44 is colored 2, then N4 is saturated and the
vertices N45, N55 and N50 are colored 3, contradicting Fact 3. Thus, c(N44) = 3.

� If N45 is colored 2, N3 and N4 are saturated and then, N55 and N50 are colored
3 and it implies that N5 is saturated. Consequently, N34 is colored 1 and N23

and N33 are colored 3.
Thus, N23 is saturated and the vertices N223, N233, N333 and N334 are colored 1,
contradicting Fact 5.

� Thus, N45 is also colored 3 and we obtain c(N55) = 2. N23 cannot be colored
1, otherwise N33 and N34 being colored 3, we would contradict Fact 5. If N34 is
colored 3, N44 is saturated and then N50 must be colored 2 and N4 is saturated.
In this case, we get a contradiction to Fact 5 because all the vertices N334, N344,
N444 and N445 must be colored 1.
So c(N23) = c(N33) = 3, c(N34) = 1 and c(N11) = 2.
If N01 is colored 2, we have that N2 is saturated and, since N22 is saturated, we
have that the vertices N112, N122, N222, N223 and N233 must be all colored 1,
contradicting Fact 5. Thus, N01 is colored 3 and then N50 must be colored 2,
due to the interference constraint in N5.
Consequently, N4 is saturated and all the vertices N344, N444, N445 and N455

must be colored 1, due to the interference constraints in N4, N44 and N45. This
contradicts Fact 5.

(c) Let us consider now the case c(N2) = c(N3) = c(N5) = 2 and c(N4) = 3. Recall
that N12, N11, N01, N00 and N50 cannot be colored 1.

i. Let us study the case c(N12) = 2. In this case, N2 is saturated and thus N01 and
N11 must be colored 3.

• In case N34 is colored 1, the vertices N22, N23 and N33 must be colored 3 as
V0 and N2 are saturated. Consequently, N23 is also saturated. It implies that
the vertices N122, N222, N223 and N233 must be all colored 1. By Fact 5, we
conclude thatN333 must be colored 2 and thenN3 is also saturated. Consequently,
c(N44) = c(N45) = 3, but then N4 has interference at least 3, a contradiction.

• Thus we conclude that N34 is colored 3, as it cannot be colored 2 thanks to the
interference constraint on N2. Observe that none of the vertices N44 and N45 can
be colored 1, as it would imply that V0 is saturated and that the vertices N22,
N23 and N33 should be all colored 3, leading to a contradiction to Fact 5. N44

and N45 can neither be both colored 2 nor 3, due to interference constraints in
N3 and N4, respectively.
In case c(N44) = 2 and c(N45) = 3, observe that among N23 and N33 we have one
vertex colored 1 and the other is colored 3. Consequently, V0 and N4 are both
saturated and N55 and N50 must be colored 2. But then IN5(T

2, w2, c) ≥ 3, a
contradiction.
In case c(N44) = 3 and c(N45) = 2, we conclude that N33 is colored 1, thanks to
Fact 3, and thus V0 is saturated; consequently, c(N23) = 3 and N4 is saturated,
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but then c(N55) = c(N50) = 2 and IN5(T
2, w2, c) ≥ 3.

ii. Then consider that N12 is colored 3. We claim that neither N22 nor N23 can
receive color 2. For otherwise, suppose the case where at least one of these vertices
would be colored 2. As N2 would be saturated, the vertices N01 and N11 should
be both colored 3. This would imply that N112 and N122 should be colored 1
and 3, respectively, due to Fact 3 and the interference constraint in N1 and N2.
Consequently, as N1 and N12 would be both saturated, N22 and N23 should be
both colored 2, a contradiction to Fact 3. Observe that N22 and N23 cannot be
both colored 1 due to the interference in V0. Let us study the three remaining
cases:

• c(N22) = 1 and c(N23) = 3. At most one of the vertices N33 and N34 is colored 2,
due to Fact 3. If exactly one of them is colored 2 (and thus the other is colored
3 thanks to the interference in V0), as N3 is saturated, N44 and N45 must be
colored 3. This is a contradiction as IN4(T

2, w2, c) ≥ 3. Thus, N33 and N34 are
both colored 3 and it implies that N44 and N45 are both colored 2, because of
Facts 3 and 5. As N45 is saturated, N55 and N50 are both colored 3 and we reach
a contradiction as IN4(T

2, w2, c) ≥ 3.

• c(N22) = 3 and c(N23) = 1. If N33 is colored 2, we observe that N3 is saturated
and N34, N44 and N45 must be all colored 3. This contradicts Fact 3.
We conclude that c(N33) = 3. If N34 is colored 2, N3 is saturated and N44 and
N45 are both colored 3. Then, N4 is saturated and c(N55) = c(N50) = 2. This is a
contradiction as IN5(T

2, w2, c) ≥ 3. Then, c(N34) = 3 and then N44 is colored 2.
If N45 is colored 3, N4 is saturated and then N55 and N50 must be both colored 2.
This is a contradiction as IN5(T

2, w2, c) ≥ 3. So c(N45) = 2 and N5 is saturated.
As a consequence, we get c(N55) = c(N50) = c(N00) = c(N01) = 3. This is
another contradiction as IN50(T

2, w2, c) ≥ 3.

• c(N22) = 3 and c(N23) = 3. N33 cannot be colored 3 thanks to the interference
constraint in N23.

� If c(N33) = 2, then N3 is saturated. In this case, N34, N44 and N45 cannot
be all colored 3 (Fact 3). So one of them is colored 1 and the two others are
colored 3 implying that V0 and N4 are saturated and N55 and N50 are both
colored 2. This is a contradiction as IN5(T

2, w2, c) ≥ 3.

� If c(N33) = 1, then V0 is saturated. In case N34 is colored 2, N3 is also saturated
and N44 and N45 must be both colored 3. Then N4 is saturated and N55 and
N50 are both colored 2. This is a contradiction as IN5(T

2, w2, c) ≥ 3.
Thus we know that c(N34) = 3. In case N44 is colored 3, N4 is saturated
and N45, N55 and N50 should be all colored 2. This contradicts Fact 3. Then
c(N44) = 2. So N44 is colored 2 and we know that N23 is saturated. Then,
among N233, N333 and N334 there is exactly one vertex colored 2, due to Fact 3
and to the interference in N3. As N3 is saturated, we conclude that c(N45) = 3.
But N4 is saturated, N55 and N50 must be colored 2 and we �nd a contradiction
as IN5(T

2, w2, c) ≥ 3.

(d) Now, we study the case c(N2) = c(N3) = 2 and c(N4) = c(N5) = 3. Observe that
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colors 2 and 3 are symmetric under these hypothesis. In order to use this symmetry,
let us consider the possible colorings of N23 and N45 (up to the symmetries):

i. In case c(N23) = 2 and c(N45) = 3, observe that N34 is necessarily colored 1,
thanks to Fact 3. Consequently, V0 is saturated, N33 is colored 3 and N44 is
colored 2. It implies that N3 and N4 are also saturated and that N334 and N344 are
both colored 1. As N34 is also saturated, N233 and N333 are colored 3. Moreover,
N22 is also colored 3 as V0 and N3 are saturated. This is a contradiction as
IN33(T

2, w2, c) ≥ 3.

ii. Now consider that c(N23) = 2 and c(N45) = 2. Since N3 is saturated and Fact 3
holds, among N34 and N44 we have one vertex colored 1 and the other is colored 3.
So V0 is saturated, N33 is colored 3 and N4 is then saturated. Consequently, N334

and N344 are colored 1 and N55 and N50 are colored 2. N444 can neither be colored
3 as N4 is saturated, nor 1 as IN344(T

2, w2, c) ≥ 3. So c(N45) is saturated and N445

and N455 are both colored 1. This is a contradiction as either IN34(T
2, w2, c) ≥ 3

or IN44(T
2, w2, c) ≥ 3.

iii. Let us study the case c(N23) = 2 and c(N45) = 1. So, c(N33) = c(N34) = 3

and c(N44) = 2. As N3, N4 and N34 are saturated, N233, N333, N334 and N344

are colored 1. As N3 is saturated, c(N12) = c(N22) = 3. N4 and N34 saturated
imply that N233, N333, N334 and N344 are colored 1. So, by Fact 5, c(N233) = 3

and N22 is saturated. Consequently, c(N11) = 2 and N2 is saturated. Therefore,
c(N112) = c(N122) = 1, but we have a contradiction as IN1(T

2, w2, c) ≥ 3.

iv. We now deal with the case c(N23) = 1 and c(N45) = 2. Observe that N33 cannot
be colored 2, because in this case V0 and N3 are saturated and we would have a
contradiction to Fact 3 as N34 and N44 should be both colored 3. Consequently,
N33 is colored 3. In case N34 is colored 3, N4 is saturated and then N45, N55 and
N50 are colored 2. This is a contradiction as IN45(T

2, w2, c) ≥ 3. So c(N34) = 2

and N3 is saturated. As a consequence, N44 is colored 3 and N4 is also saturated
and the vertices N55 and N50 must be colored 2. It implies that N45 is saturated
and c(N344) = c(N444) = c(N445) = c(N455) = 1. As N3 and N4 are saturated,
N334 should be also colored 1, but this contradicts Fact 5.

v. We now deal with the last subcase in which c(N23) = 3 and c(N45) = 2 (Recall
that colors 2 and 3 are once more symmetric).

• If c(N33) = 2, N3 is saturated. Then N34 and N44 cannot receive color 2, cannot
be both colored 1 (Fact 4 with V0) and cannot be both colored 3 (Fact 4 with
N4).

� In case c(N34) = 1 and c(N44) = 3, N4 and V0 are saturated. Consequently,
c(N334) = c(N344) = 1 and N34 is also saturated. Thus, c(N12) = c(N22) =

c(N233) = c(N333) = 3. This is a contradiction to Fact 5.

� So c(N34) = 3 and c(N44) = 1. One more V0, N3 and N4 are saturated. It
implies that c(N12) = c(N22) = 3 and then N23 is also saturated. Consequently,
the vertices N233, N333, N334 and N344 must be all colored 1. This contradicts
Fact 5.
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As c(N33) 6= 2, by symmetry, we conclude that c(N44) 6= 3. We use this informa-
tion in the following subcase.

• If c(N33) = 3, observe that N34 cannot be colored 3, thanks to Fact 5. Recall
that N44 is either colored 1 or 2, by symmetry. Moreover, N34 and N44 cannot
be both colored 2 due to Fact 5.

� In case c(N34) = 2 and c(N44) = 1, V0 and N3 are saturated. This implies that
c(N12) = c(N22) = 3. This is a contradiction as IN23(T

2, w2, c) ≥ 3.

� So c(N34) = 1 and c(N44) = 2. N55 and N50 cannot be both colored 2, otherwise
IN45(T

2, w2, c) ≥ 3. So one is colored 3 and N4 is saturated. Similarly, N12

and N22 cannot be both colored 3, otherwise IN23(T
2, w2, c) ≥ 3. Thus, one of

them is colored 2 and N3 is saturated. Then, c(N334) = c(N344) = 1 and N34 is
saturated. Since N3 is also saturated, we have that c(N233) = c(N333) = 3, but
then IN33(T

2, w2, c) ≥ 3, a contradiction.

As N33 cannot be colored 3, again by symmetry we conclude that N44 cannot be
colored 2. Thus, we have a contradiction to Fact 4 in V0 as c(N33) = c(N44) = 1.

(e) Let us consider now that c(N2) = c(N4) = 2 and c(N3) = c(N5) = 3. By Facts 3
and 4, there is at most one vertex in Γ2 colored 1. By symmetry, we consider
w.l.o.g. that this vertex is in {N22, N23, N33, N34}. So we know that N44, N45 and
N55 are not colored 1.

i. c(N34) = 1 (and then V0 is saturated).

• c(N44) = c(N45) = 2. In this case, N4 is saturated. So, c(N23) = c(N33) =

c(N55) = c(N50) = 3 and N3 and N5 are saturated. We then reach a contradiction
because c(N334) = c(N344) = c(N445) = 1 and then IN34(T

2, w2, c) ≥ 3.

• c(N44) = c(N45) = 3. So N45 is saturated and c(N55) = c(N50) = 2. Observe that
N23 and N33 cannot be both colored 3, otherwise IN3(T

2, w2, c) ≥ 3. If both N23

and N33 are colored 2, then N4 is also saturated and then N334, N444, N445 and
N455 are all colored 1, contradicting Fact 5. So among N23 and N33 we have one
vertex colored 2 and the other is colored 3 and, consequently, N3 is saturated. So
N12 and N22 are colored 1 and we have a contradiction as IN2(T

2, w2, c) ≥ 3.

• Either c(N44) = 2 and c(N45) = 3, or c(N44) = 3 and c(N45) = 2. In this case,
N23 and N33 cannot be both colored 3, otherwise IN3(T

2, w2, c) ≥ 3. Similarly,
N55 and N50 cannot be both colored 3, otherwise IN5(T

2, w2, c) ≥ 3. At most
two among N23, N33, N55 and N50 are colored 2, otherwise IN4(T

2, w2, c) ≥ 3.
Consequently, one vertex among N23 and N33 is colored 2 and the other is colored
3, the same happens for vertices N55 and N50 and, then, N4 is saturated. N12

and N22 cannot be both colored 2, otherwise IN2(T
2, w2, c) ≥ 3. So one of them

is colored 1 and N3 is saturated, implying that c(N334) = c(N344) = 1 and N34 is
saturated.
If c(N45) = 3, then N5 is saturated and c(N445) = 1, but then IN34(T

2, w2, c) ≥

3. If c(N45) = 2, we have that c(N44) = 3. N444 and N445 cannot be both
colored 3, otherwise IN44(T

2, w2, c) ≥ 3. So one of them is colored 3 and again
IN34(T

2, w2, c) ≥ 3.
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ii. c(N34) = 2. Recall that N44, N45 and N55 are not colored 1. Observe that, by
Fact 3, at most one of N44 and N45 is colored 2. If one of these vertices is col-
ored 2, N4 is saturated and N55 and N50 must be both colored 1. It implies a
contradiction as IN5(T

2, w2, c) ≥ 3. Consequently, N44 and N45 are both colored
3 and N45 is saturated. So N55 and N50 are colored 2 and N4 is also saturated
implying that c(N344) = c(N444) = c(N445) = c(N455) = 1. Since N444 is sat-
urated, N334 must be colored 3 and then N23 and N33 cannot receive color 3,
otherwise IN3(T

2, w2, c) ≥ 3. We obtain a contradiction because N23 and N33 are
both colored 1 and IV0(T

2, w2, c) ≥ 3.
iii. c(N34) = 3. Observe that N44 and N45 cannot be both colored 3, due to Fact 5.
• c(N44) = c(N45) = 2. In this case, N4 is saturated and then N55 and N50 must
be colored 3. This is a contradiction because IN5(T

2, w2, c) ≥ 3.
• c(N44) = 2 and c(N45) = 3. Due to the interference in N5, we have that c(N55) =

c(N50) = 2 and then N4 is saturated. However, the vertices N23 and N33 cannot
receive color 3, due to the interference in N3, and so they are both colored 1 and
we have a contradiction as IV0(T

2, w2, c) ≥ 3.
• c(N44) = 3 and c(N45) = 2. In this case, N34 is saturated. If N23 and N33 are
both colored 2, N4 is saturated and N55 and N50 must be colored 3 and we get
IN5(T

2, w2, c) ≥ 3. So among N23 and N33 we have one vertex colored 1 and the
other is colored 2.
N55 and N50 can neither be both colored 3, otherwise IN5(T

2, w2, c) ≥ 3, nor
both colored 2, otherwise IN4(T

2, w2, c) ≥ 3. So one is colored 2, the other 3
and N4 and N5 are saturated. We then get a contradiction to Fact 5 because
c(N334) = c(N344) = c(N444) = c(N445) = c(N455) = 1.

(f) Now consider that c(N2) = c(N5) = 2 and c(N3) = c(N4) = 3. As in Case 1e, we
consider w.l.o.g. that N44, N45 and N55 are not colored 1. Observe that N44 and
N45 cannot be both colored 3, otherwise IN4(T

2, w2, c) ≥ 3.

i. Consider �rst that c(N44) = c(N45) = 2. Consequently, c(N55) = c(N50) = 3 due
to the interference constraints in N45 and N5. If N00 is colored 3, N50 is saturated
and then N01 must be colored 2. As a consequence, N5 is also saturated and N550

and N500 must be both colored 1. This is a contradiction as IN0(T
2, w2, c) ≥ 3.

So N00 is colored 2 and N5 is saturated. Thus, c(N01) = 3 and N550 and N500

cannot receive color 2 (interference in N5) or 3 (interference in N50). So, c(N550) =

c(N500) = 1, but them IN0(T
2, w2, c) ≥ 3.

ii. Either c(N44) = 2 and c(N45) = 3, or c(N44) = 3 and c(N45) = 2. In this case,
observe that N55 and N50 can neither be both colored 2 (interference in N5) nor 3
(interference in N4). So one is colored 2, the other is colored 3 and N4 is saturated.

• If c(N44) = 3 and c(N45) = 2, thenN5 is also saturated andN34 must be colored 1.
Consequently, V0 is saturated and c(N23) = c(N33) = 2 and c(N00) = c(N01) = 3.
Due to the interference in N2, N12 and N22 must be colored 3 and then, by Fact 5,
N11 must be colored 2. So N2 is also saturated and then, due to the interference
in N12, N112 and N122 must be both colored 1. This is a contradiction because
IN1(T

2, w2, c) ≥ 3.
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• So c(N44) = 2 and c(N45) = 3. Observe that N33 and N34 cannot be both colored
2, otherwise IN34(T

2, w2, c) ≥ 3. So one of them is colored 1 and the other is
colored 2. Thus, V0 is saturated and N23 must be colored 2. If c(N33) = 1

and c(N34) = 2, N34 is saturated and then c(N334) = c(N344) = c(N444) =

c(N445) = 1, contradicting Fact 5. So c(N33) = 2 and c(N34) = 1. Due to the
interference in N2, we have that N12 and N22 are colored 3 and then N3 is also
saturated. Then, N334 must be colored 1 due to the interference in N3 and N33. If
N344 is colored 2, N33 is saturated and we have a contradiction to Fact 5 because
c(N223) = c(N233) = c(N333) = 1. So we get c(N344) = 1 and N34 saturated. This
is a contradiction because N333 must be colored 2 and then IN33(T

2, w2, c) ≥ 3.

2. Subcase c(N2) = 1.

W.l.o.g., let c(N1) = 2. We deal with the subcases according to the coloring of N3,
N4 and N5: they are all colored 2 (Case 2a), two of them are colored 2 (Cases 2b
and 2c), only one of them is colored 2 (Cases 2d and 2e) or they are all colored 3
(Case 2f).

(a) Consider �rst the subcase c(N3) = c(N4) = c(N5) = 2. In this case, N4 is saturated
and all the vertices N23, N33, N34, N44, N45, N55 and N50 cannot be colored 2.
Since at most one vertex in Γ2 is colored 1, this vertex cannot belong to the set
{N23, N33, N55, N50} as it would imply a contradiction to Facts 5 in color 3. So all
the vertices in this set are colored 3, exactly one vertex among N34, N44 and N45

is colored 1 and V0 is saturated. By symmetry, we can consider that N45 is colored
3.

If N01 is colored 2, N1 is also saturated and all the vertices N11, N12 and N22 must
be colored 3. This is a contradiction to Fact 5. So c(N01) = 3.

In order to avoid a P5 of vertices colored 3, N00 must be colored 2. Then, N11 and
N12 must be colored 3, due to the interference constraint in N1. Thanks to Fact 5,
N22 must be colored 2 and so N1 and N3 are saturated. The vertices N112 and
N233 cannot be colored 3 as we would be in Case 1, then they are both colored 1
and N2 is also saturated. Consequently, N122 must be colored 3 and we reach a
contradiction as IN12(T

2, w2, c) ≥ 3.

(b) Let us now suppose that c(N3) = c(N4) = 2 and c(N5) = 3. We show that there
is no feasible color to N44 by examining the three possible cases:

i. Suppose �rst that N44 is colored 2. So N4 is saturated and then, if c(N55) = 3, as
either N45 or N50 must be colored 3, we are in Case 1. Thus, N55 is colored 1, V0

is saturated and N23, N33, N34, N45 and N50 are colored 3. Consequently, N5 is
saturated and so N00 and N01 are colored 2. Thus, N1 is saturated and N12 and
N22 must be colored 3, contradicting Fact 5.

ii. Now consider that c(N44) = 1. Thus, V0 is saturated and N34 is colored 3, other-
wise we would be in Case 1.

• Suppose that at one of the vertices N23 or N33 is colored 2. Then, N3 is saturated
and the vertices N12, N22 and N45 must be all colored 3. So N55 is colored 2, as
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we are no longer in Case 1, and it implies that N4 is saturated. As a consequence,
N50 is colored 3 and N5 is also saturated. Thus, N00 and N01 must be colored
2, N1 is saturated and N11 is colored 3. Observe that N112 and N122 are both
colored 1, otherwise we are in Case 1. So N2 is also saturated and no feasible
color remains to color N223.

• So N23 and N33 are both colored 3.

� If N22 is colored 3, N12 is colored 2 (Fact 5), N11 is colored 3 (as we are not in
Case 1) and N01 is also colored 3 (interference in V0 and N1).
If c(N00) = 3, N01 is saturated and then N50 is colored 2. It implies that N1

is saturated and N001 and N011 must be both colored 1. Consequently, N0 is
saturated and N000 and N500 are both colored 2. Thus, N50 is also saturated and
the vertices N45 and N55 should be both colored 3. But then we are in Case 1.
So N00 is colored 2 and N1 is saturated. Consequently, N50 is colored 3 and
N55 must be colored 2 as we are no longer in Case 1. But then no feasible color
remains to color N45.

� Thus, we have c(N22) = 2. If N12 is colored 2, N1 is saturated and we have a
contradiction to Fact 5, because all the vertices N50, N00, N01 and N11 must be
colored 3. So, we conclude that c(N12) = 3.
If N01 or N11 are colored 2, N1 is saturated and N50 and N00 must be colored 3.
In this case, N45 and N55 cannot receive color 3, due to the interference in N5.
So they are both colored 2 and we reach a contradiction as IN4(T

2, w2, c) ≥ 3.
Consequently, N01 and N11 are both colored 3. Observe that N45 is also col-
ored 3, otherwise N4 is saturated, N50 and N00 are colored 3 and we are in
Case 1. Consequently, N55 and N50 are colored 2, as we are no longer in Case 1
and we cannot violate the interference constraint in N5. Moreover, N00 is also
colored 2, otherwise IN01(T

2, w2, c) ≥ 3. But then we have a contradiction as
IN50(T

2, w2, c) ≥ 3.

iii. We conclude that N44 must be colored 3. Recall that N34 cannot be colored 2 as
we would be in Case 1.

• Consider �rst the case in which c(N34) = 1 and thus V0 is saturated. If N45 is
colored 2, N4 is saturated and N50 and N00 should be both colored 3. But then
we are in Case 1. So N45 is colored 3 and N55 must be colored 2.
Observe that N23 and N33 cannot be both colored 2, due to Fact 3. In case one
of these vertices is colored 2 and the other is colored 3, observe that N3 and N4

are saturated. Consequently, N50 is colored 3 and N45 and N5 are also saturated.
We then reach a contradiction to Fact 5 as all the vertices N344, N444, N445 and
N455 must be colored 1. So we conclude that N23 and N33 must be both colored
3.
If N50 is colored 3, N5 is saturated. Then, N00 and N01 must be colored 2, then
N1 is saturated and we reach a contradiction to Fact 5 as N11, N12 and N22 must
be all colored 3. So N50 is colored 2 and N4 is saturated. Consequently, N344 and
N444 are both colored 1, due to the interference constraints in N4 and N44. Thus,
N34 is also saturated and N445 must be colored 3. But then we are in Case 1.
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• We deduce that c(N34) = 3. We now study the possible colorings of N45.

� If c(N45) = 2, N4 is saturated. The interference constraints in V0 and N5 lead
us to the conclusion that among N55 and N50 we have one vertex colored 1 and
the other is colored 3. Consequently, V0 is saturated and N23 and N33 are both
colored 3. This is a contradiction as IN34(T

2, w2, c) ≥ 3.

� Now consider that c(N45) = 1 (V0 is saturated). The vertices N23 and N33 cannot
be both colored 2, due to Fact 3. They cannot also be both colored 3, because
of the interference constraint in N34. So among N23 and N33 we have one vertex
colored 2 and the other is colored 3 and N3 is saturated.
The vertices N55 and N50 can neither be both colored 2, because of the interfer-
ence in N4, nor 3, as we are not in Case 1. So one of them is colored 2 and the
other is colored 3. Thus, N4 is also saturated.
Similarly, we can conclude that among N444 and N445 we have one vertex colored
1 and the other is colored 3 (recall that these vertices cannot receive color 2 as
N4 is saturated). Consequently, N44 is saturated and the vertices N344 and N455

must be colored 1. This is a contradiction as IN45(T
2, w2, c) ≥ 3.

� So we have c(N45) = 3. Consequently, N33, N55 and N50 cannot receive color 3.
We thus conclude that two of these vertices are colored 2 and the other is colored
1, by considering the interference in V0 and N4. We then obtain that N334, N344,
N444, N445 and N455 are all colored 1. This contradicts Fact 5.

(c) We now treat the case c(N3) = c(N5) = 2 and c(N4) = 3. Let us consider the
possible colors of N23.

i. Suppose �rst that N23 is colored 1. In this case, V0 and N2 are saturated.

• In case N33 is colored 2, N34 must be colored 3 and N44 must be colored 2,
otherwise we would be in Case 1. So N3 is also saturated and N45 must be
colored 3. Since N2 and N3 are both saturated, N12, N22, N223 and N233 must
be all colored 3 and then N22 is saturated. It implies that N11, N112, N122 are
colored 2 and then we reach a contradiction as IN1(T

2, w2, c) ≥ 3.

• We conclude that N33 must be colored 3. Observe that N44 and N45 cannot be
both colored 3, as we are no longer in Case 1. Thus, at least one of these vertices
is colored 2. If N34 is colored 2, N3 is saturated. Then, the vertices N12, N22,
N223 and N233 must be all colored 3. This contradicts Fact 5. Consequently,
N34 is colored 3 and N44 must be colored 2, otherwise we would be in Case 1.
Observe that N45 cannot be colored 2, because, otherwise N5 will be saturated,
c(N55) = c(N50) = c(N00) = c(N01) = 3 and IN50(T

2, w2, c) ≥ 3. So N45 is
colored 3, N4 is saturated and N55 and N50 are both colored 2. However, we are
in Case 1 with N5.

ii. Now consider that c(N23) = 2. Observe that neither N33 nor N34 are colored 2
due to the interference in N3.

• Suppose �rst that c(N33) = 1. It implies that V0 is saturated and that N34 is
colored 3. Consequently, N44 must be colored 2, otherwise we are in Case 1, and
then N3 is saturated. So, N12, N22 and N45 are colored 3. Observe that among
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N55 and N50, we must have one vertex colored 2 and the other must be colored
3 (due to Fact 5 and to the hypothesis that we are not in Case 1). So N4 is also
saturated and it implies that N334 and N344 are colored 1. We conclude that N33

is saturated and that the vertices N223, N233 and N333 should be all colored 3.
This contradicts Fact 5.

• Now consider the case in which c(N33) = 3 and c(N34) = 1. So V0 is saturated
and we can see that N44 and N45 can neither be both colored 2 (interference in
N3) nor 3 (Case 1 with N4). Thus, one is colored 2 and the other is colored 3.
Consequently, N3 is saturated and N12 and N22 are both colored 3. Furthermore,
both N334 and N344 cannot be colored 1 (Case 1 with N34). One of them at least
is colored 3. Then N55 and N50 can neither be both colored 2 (Case 1 with N5)
nor 3 (otherwise IN4(T

2, w2, c) ≥ 3). So among N55 and N50 we have one vertex
colored 2 and the other is colored 3. We conclude that N5 is saturated, N00 and
N01 are colored 3 and, due to Fact 5, N11 is colored 2. It implies that N1 is
saturated and N122 must be colored 1 (it cannot be colored 3, otherwise we would
be in Case 1 with N12). So N2 is also saturated and N223 and N233 must be both
colored 3. This contradicts Fact 5.

• We obtain that N33 and N34 are both colored 3. Consequently, N44 cannot be
colored 3 (Fact 3 with N34).

� Suppose �rst that N44 is colored 1. If c(N45) = 3, N4 is saturated and we are
in Case 1 with N5 instead of V0, because N55 and N50 must be both colored 2.
So N45 is colored 2 and it implies that N55 and N50 must be both colored 3, due
to the interference constraint in V0 and N5. Thus, N4 is saturated. Since N3 is
also saturated, we get that N334 and N344 are both colored 1. The vertices N444

and N445 can neither receive color 1, due to the interference in N44, nor color
3, since N4 is saturated. Thus, they are both colored 2. But then we have a
contradiction as IN45(T

2, w2, c) ≥ 3.

� So we get that c(N44) = 2 and then N3 is saturated. Neither N12, nor N22 can
be colored 1, otherwise N2 would also be saturated and it would imply that N223

and N233 should be colored 3, leading to a contradiction to Fact 5. So we get that
c(N12) = c(N22) = 3. Consequently, c(N233) = c(N333) = c(N334) = c(N344) =

1, due to interference constraints in N3, N33 and N34. So c(N223) = 3 and N33

is also saturated. It implies that N22 is saturated and then N11 can either be
colored 1 or 2. In case it is colored 1, N2 is saturated, N112, N122 and N222 must
be colored 2 and we have a contradiction as IN122(T

2, w2, c) ≥ 3. If N11 is colored
2, N1 is saturated and then N112 and N122 must be colored 1. However, we get
that IN2(T

2, w2, c) ≥ 3.

iii. We conclude that N23 is colored 3.

• Suppose �rst that c(N33) = 1. Consequently, V0 is saturated.

� Let us �rst consider the subcase in which N34 is colored 2. Then, N44 and N45

can neither be both colored 2, due to the interference in N3, nor 3, since we are
no longer in Case 1. So among N44 and N45 we have one vertex colored 2 and
the other is colored 3. It implies that N3 is saturated. Due to the interference in
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V0 and N5, we conclude that c(N55) = c(N50) = 3. So N4 is saturated implying
N334 and N344 must be both colored 1. But then N33 is also saturated, N22 and
N223 are be both colored 3 and we are in Case 1 with vertex N23.

� We conclude that c(N34) = 3. Since we are no longer in Case 1, we get that
c(N44) = 2. N45 and N55 can neither be both colored 2 (Fact 3 with N45),
nor 3 (interference in N4). So one of these vertices is colored 2 and the other
is colored 3, implying that N5 is saturated and then that c(N50) = c(N00) =

c(N01) = 3. However, we get a contradiction as neitherN45 is colored 3, otherwise
IN4(T

2, w2, c) ≥ 3, nor N55 is colored 3, otherwise IN50(T
2, w2, c) ≥ 3.

• Let us consider now the case c(N33) = 2. Observe that N34 cannot be also colored
2, due to the interference constraint in N3.

� In case c(N34) = 1, we have that V0 is saturated and then N44 and N45 can
neither be both colored 2 (interference in N3) nor 3 (Case 1 with N4). So among
N44 and N45 we �nd one vertex colored 2 and the other is necessarily colored 3.
Consequently, N3 is saturated, N12 and N22 are colored 3 and then N223 must
be colored 1. So N2 is also saturated and N233 must be colored 3. This is a
contradiction as IN23(T

2, w2, c) ≥ 3.

� We conclude that N34 must be colored 3. Consequently, N44 cannot be colored
3, as we are not in Case 1. Let us check the possible colorings of N44.
If N44 is colored 1, V0 is saturated. Then, if N45 is colored 3, N4 is saturated and
N55 and N50 are forced to be colored 2. But then we are in Case 1 with N5. So
N45 is colored 2, N3 is saturated and the vertices N55 and N50 must be colored
3, due to the interference in N5. As a consequence, N4 is also saturated and the
vertices N334 and N344 must be colored 1. As we are no longer in Case 1, N444

must be colored 2. Due to the interference constraints in N4 and N45, we get
that N445 and N455 must be both colored 1. This is a contradiction to Fact 5.
So N44 must be colored 2 and then N3 is saturated. Observe that exactly one of
the vertices N45, N55 and N50 must be colored 1, otherwise N45 must be colored 3
(interference in N3) and N55 and N50 must be colored 2 (interference in N4) and
we are in Case 1. Then, as N3 and V0 are saturated we have c(N12) = c(N22) = 3,
implying that N23 is saturated and so c(N223) = c(N233) = c(N333) = c(N334) =

1. However, we have that IN233(T
2, w2, c) ≥ 3.

• So we have that c(N33) = 3. Let us now check the possible colorings of c(N34).

� First consider that c(N34) = 1. Observe that V0 is saturated.

∗ If c(N44) = 3, we get that c(N45) = 2 and, consequently, c(N55) = c(N50) = 3

(otherwise, IN5(T
2, w2, c) ≥ 3). However, observe that IN4(T

2, w2, c) ≥ 3.

∗ So c(N44) = 2. If c(N45) = 2, N45 and N5 are both saturated implying that N55,
N50, N00 and N01 must be all colored 3. But then we have a contradiction as
IN50(T

2, w2, c) ≥ 3.
So N45 is colored 3. N55 and N50 can neither be both colored 2 (otherwise,
Case 1 with N5), nor 3 (otherwise, IN4(T

2, w2, c) ≥ 3). So one of these vertices
is colored 2 and the other is colored 3. Thus, N4 and N5 are saturated and
then N00 and N01 must be colored 3 and the vertices N445 and N455 must be
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colored 1. In case c(N50) = 3, N50 is saturated and the vertices N555, N550 and
N500 must be colored 1, contradicting Fact 5. So, we get that c(N55) = 3 and
c(N50) = 2. Observe that N555 and N550 can neither receive color 2 (since N5 is
saturated) nor 3 (otherwise, IN55(T

2, w2, c) ≥ 3). Thus, they are both colored 1
and, consequently, N500 is colored 3. It implies that N00 is saturated and then
we get that N11 must be colored 2. As a consequence, N1 is saturated and N12

and N22 are both colored 3. However, we get that IN23(T
2, w2, c) ≥ 3.

� Now consider that c(N34) = 2. Let us check the possible colorings of N44.

∗ First suppose that c(N44) = 1. If N45 is colored 2, then N3 is saturated and we
have that N12 and N22 are colored 3. This is a contradiction as IN23(T

2, w2, c) ≥

3. So N45 is colored 3. The vertices N55 and N50 can neither be both colored
2 (otherwise, Case 1 with N5) nor 3 (otherwise, IN4(T

2, w2, c) ≥ 3). So one is
colored 2 and the other is colored 3. As a consequence, N4 and N5 are both
saturated implying that N445 and N455 are colored 1 and then that N444 is
colored 2. But then N334 and N344 must be both colored 1 (interference in N34)
and we have a contradiction to Fact 5.

∗ Now let c(N44) = 2. Observe that N3 and N34 are saturated and that N12 and
N22 cannot be both colored 3, otherwise IN23(T

2, w2, c) ≥ 3. So among N12 and
N22 we have one vertex colored 1 and the other is colored 3. It implies that V0

is saturated. Observe also that the vertices N45, N55 and N50 cannot receive
color 2 due to the interference constraint in N5. Then, we have a contradiction
as N45, N55 and N50 are all colored 3 and we get IN4(T

2, w2, c) ≥ 3.

∗ We conclude that c(N44) = 3. If c(N45) = 1, V0 is saturated. In this case,
N55 and N50 can neither be both colored 2 (otherwise, Case 1 with N5) nor 3
(otherwise, IN4(T

2, w2, c) ≥ 3). So one of these vertices is colored 2, the other is
colored 3 and we get that N4 and N5 are saturated. Thus, N445 and N455 must
be colored 1 and we are in Case 1 for N45.
N45 cannot be colored 3 as we are no longer in Case 1, so its color is 2 and N3

and N5 are both saturated. N55 and N50 cannot be both colored 3, otherwise
IN4(T

2, w2, c) ≥ 3. So one of these vertices is colored 1 implying that V0 is satu-
rated. Consequently, N12 and N22 are both colored 3 and we get a contradiction
as IN23(T

2, w2, c) ≥ 3.

� So we conclude that N33 and N34 are both colored 3 and both saturated. If
the vertices N12, N44 and N45 are not colored 1, they must be all colored 2 and
we have that N3 is saturated and so c(N223) = c(N233) = c(N333) = c(N334) =

c(N344) = 1, contradicting Fact 5. So one of these vertices is colored 1 and V0 is
saturated. In case N12 is colored 1, N44 and N45 must be colored 2 and N45 is
saturated. Consequently, N55 and N50 are colored 3 and we have a contradiction
as IN4(T

2, w2, c) ≥ 3.
Then, either N44 or N45 is colored 1 (the other being colored 2) and N12 is
colored 2. If N44 is colored 1, then N55 and N50 are not colored 2, otherwise
IN5(T

2, w2, c) ≥ 3. So they are both colored 3, but then IN4(T
2, w2, c) ≥ 3.

So we have that N44 is colored 2 and N45 is colored 1. Consequently, N55 and N50
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can neither be both colored 2 (interference in N5) nor 3 (interference in N4). So
one is colored 2 and the other is colored 3 implying that N4 and N5 are saturated.
Therefore, c(N445) = c(N455) = 1 and we are in Case 1.

(d) We now study the case c(N3) = 2 and c(N4) = c(N5) = 3. Observe that N45

cannot be colored 3, otherwise we are in Case 1.

i. First consider that c(N45) = 1 (V0 is saturated). If N55 is colored 3, N50 must be
colored 2 and we are in Case 2b with central vertex N5. So N55 is colored 2.

• In case N44 is colored 3, N34 must be colored 2 and then N33 must be colored
3, because we are not in Case 1. Thus, N4 is saturated, N23 and N50 must be
colored 2 and N3 is also saturated. Consequently, N334 and N344 are both colored
1.
If N00 is colored 2, N50 is saturated and then N455 must be colored 1, N45 is also
saturated and N01 is colored 3. Since N555 and N550 must be both colored 3, we
reach a contradiction as IN5(T

2, w2, c) ≥ 3.
So we conclude that c(N00) = 3. Recall that N3 is saturated and thus, N12 and
N22 must be both colored 3. N01 andN11 can neither be both colored 2 (otherwise,
Case 1) nor 3 (Fact 5). So one is colored 2 and the other is colored 3. Thus, N1

is saturated and N122 must be colored 1, since we are not in Case 1. The vertices
N223 and N233 cannot receive color 2 as N3 is saturated, cannot be both colored
3, thanks to Fact 5, and cannot be both colored 1, due to the interference in N2.
So one of these vertices is colored 1 and the other is colored 3; N2 is saturated
and N112 must be colored 3. Consequently, N11 is colored 2 and N01 is colored 3.
We then observe that N01 and N5 are saturated and that N001 and N011 must be
both colored 1. It leads to a contradiction as IN0(T

2, w2, c) ≥ 3.

• We conclude that N44 is colored 2.

� Suppose �rst that c(N34) = 2. In this case, N23 and N33 are both colored 3 due to
the interference in N3. Observe that N12 and N22 can neither be both colored 2
(interference inN3) nor 3 (interference inN23). So one is colored 2 and the other is
colored 3. It implies that N3 is saturated. Thus, N223 and N233 are both colored
1, due to the interference in N23. So N2 is also saturated. The vertices N333

and N334 can neither be both colored 1 (otherwise, IN233(T
2, w2, c) ≥ 3) nor 3

(Fact 3). So one of them is colored 1 and the other is colored 3. As a consequence,
N23 is saturated, N22 is colored 2 and N12 is colored 3. But then N122 and N222

must be colored 2 and we have a contradiction as IN22(T
2, w2, c) ≥ 3.

� We obtain that c(N34) = 3. N23 andN33 can neither be both colored 2 (otherwise,
Case 1 with N3) nor 3 (Fact 5). So one of them is colored 2 and the other is
colored 3. It implies that N4 is saturated and N55 and N50 must be colored 2.
If c(N00) = 2, N50 is saturated and thusN01 must be colored 3. Observe thatN550

and N500 can neither be both colored 1 (interference in N0) nor 3 (interference
in N5). So one of these vertices is colored 1 and the other is colored 3. It implies
that N0 and N3 are both saturated and thus that N000 and N001 must be both
colored 3. Then, N11 and N011 cannot receive color 1 (N0 is saturated) neither
3 (otherwise, IN01(T

2, w2, c) ≥ 3). So they are both colored 2 and we reach a
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contradiction as IN1(T
2, w2, c) ≥ 3.

We conclude that N00 must be colored 3. If N01 is colored 3, N5 is saturated.
In this case, N550 and N500 can neither be both colored 1 (interference in N0)
nor 2 (Fact 3). So one of them is colored 1 and the other is colored 2 and, as
a consequence, N0 and N50 are saturated. Thus, N000 and N001 must be both
colored 3 and we reach a contradiction to Fact 3.
So we have that N01 must be colored 2 and c(N11) = c(N12) = 3, otherwise
IN1(T

2, w2, c) ≥ 3. In this case, N550 and N500 cannot receive color 2 (inter-
ference in N50). They can neither be both colored 1 (interference in N0) nor 3
(interference in N5). Thus, one of these vertices is colored 1, the other is col-
ored 3 and N0 and N5 are saturated. It implies that one of the vertices N000 or
N001 must be colored 2 and the other is colored 3, because they can neither be
both colored 2 (interference in N01) nor 3 (interference in N00). But then, N00

is saturated and it implies that c(N011) = 2. This leads to a contradiction as
IN01(T

2, w2, c) ≥ 3.

ii. We then conclude that c(N45) = 2. Let us study the possible colorings of N44.

• Suppose now that c(N44) = 3. Observe that N34 cannot be colored 3, by Fact 3.
If c(N34) = 2, then we are in Case 2b with N4.
So N34 is colored 1 and V0 is saturated. Observe that N23 and N33 can neither be
both colored 2 (otherwise, Case 1 with N3) nor 3 (interference in N4). So one of
them is colored 2, the other is colored 3 and N4 is saturated. It implies that N55

and N50 must be colored 2 and, due to the interference in N45, that N445 must be
colored 1. Moreover, N334 and N344 can neither be both colored 1 (interference
in N34) nor 2 (interference in N3). Thus, one of them is colored 1 and the other
is colored 2. As a consequence, N3 and N45 are saturated. We obtain that N233

and N333 are both colored 3. So N33 cannot be colored 3, as we are not in Case 1
and then c(N23) = 3 and c(N33) = 2. Recall that N3 is saturated and thus N12

and N22 must be both colored 3. This is a contradiction to Fact 5.

• Suppose now that c(N44) = 1 (and thus that V0 is saturated).

� If c(N34) = 3, then N23 and N33 can neither be both colored 2 (interference
in N3) nor 3 (Fact 5). So one of them is colored 2 and the other is colored 3,
implying that N4 is saturated. Consequently, N55 and N50 must be colored 2 and
then that N445 and N455 must be both colored 1 (otherwise, IN45(T

2, w2, c) ≥ 3).
Thus, N344 and N444 are both colored 2, due to the interference in N44. However,
we get that IN45(T

2, w2, c) ≥ 3.

� We conclude that N34 is colored 2 and thus that N23 and N33 must be both
colored 3, due to the interference in N3.

∗ If c(N22) = 3, then N23 is saturated and c(N12) = 2, implying that N3 is also
saturated. So N223 and N233 are both colored 1 and N2 is saturated. Con-
sequently, N122 and N222 are both colored 2 and we have a contradiction as
IN12(T

2, w2, c) ≥ 3.

∗ We obtain that c(N22) = 2, and then N3 is saturated and N12 must be colored
3. Consequently, N223 and N233 must be both colored 1 (interference in N45)
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and N2 is also saturated. Since N122 and N222 cannot be both colored 2 as we
are not in Case 1, we conclude that at least one of these vertices is colored 3 and
that N23 is saturated. But then we get that c(N333) = c(N334) = 1 and we have
a contradiction as IN233(T

2, w2, c) ≥ 3.

• So we have that N44 must be colored 2. Let us now check the possible colorings
of N34.

� In case c(N34) = 2, N3, N34 and N44 are all saturated. One of N12, N22,
N23 and N33 must be colored 1, otherwise they are all colored 3 and we have
IN23(T

2, w2, c) ≥ 3. So V0 is also saturated and then N55 must be colored 3.
Thus, N50 is colored 2, by Fact 3, and N45 is also saturated.
If both N23 and N33 are colored 3, N4 is saturated and then we have a contra-
diction to Fact 5, because N334, N344, N444, N445 and N455 should be all colored
1.
So among N23 and N33 we have one vertex colored 1, the other is colored 3 and
then N12 and N22 must be colored 3.
If N23 is colored 1 (and then N33 is colored 3), we have that N2 is saturated
and then N223 and N233 must be colored 3. But then we have a contradiction to
Fact 5.
So N33 must be colored 1 (and then N23 is colored 3). By Fact 3, we have that
N223 is colored 1 and then N2 is also saturated. Consequently, N233 must be
colored 3 and we have a contradiction as IN23(T

2, w2, c) ≥ 3.

� Suppose now that c(N34) = 1 (so V0 is saturated).

∗ If c(N33) = 2, N3 is also saturated and thenN12, N22 and N23 must be all colored
3. However, N223 and N233 must be colored 1, due to interference constraints in
N22, N23 and N3, which is a contradiction as IN2(T

2, w2, c) ≥ 3.

∗ So c(N33) = 3. Let us check the possible colorings of N23.
If N23 is colored 2, N3 is saturated and then N12 and N22 are both colored 3.
N223 and N233 can neither be both colored 1 (interference in N2) nor 3 (Fact 5).
So one of them is colored 1, the other is colored 3 and N2 is saturated. If N223 is
colored 3 (and then c(N233) = 1), N22 is also saturated. In this case, the vertices
N11, N112, N122 and N222 must be all colored 2, contradicting Fact 5.
So we conclude that N223 is colored 1 and N233 is colored 3. Consequently,
N333 and N334 must be colored 1 (interference in N3 and N33) and then N34

is saturated. Thus, N344 and N445 must be colored 3. It implies that N4 is
saturated and then N55 and N50 are both colored 2. This is a contradiction as
IN45(T

2, w2, c) ≥ 3.
We conclude that N23 is colored 3. If N22 is also colored 3, N23 is saturated and
then N12 is colored 2. N223 and N233 can neither be both colored 1 (interference
in N2) nor 2 (interference in N3). So one of them is colored 1, the other is colored
2 and N2 and N3 are both saturated. It implies that N334 and N344 are both
colored 1, N34 is saturated and then N344 must be colored 3. But then N4 is
saturated, N445 must be colored 2 and we are in Case 1.
SoN22 must be colored 2. If c(N12) = 2, thenN3 is saturated. N223 andN233 can
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neither be both colored 1 (interference inN2), nor 3 (Fact 3). Thus, one is colored
1, the other is colored 3 and N2 and N23 are both saturated. Consequently, N12,
N122 andN222 must be all colored 2, contradicting Fact 3. Therefore, c(N12) = 3,
but then N223 and N233 cannot be colored 3 (otherwise, IN23(T

2, w2, c) ≥ 3). So
they are colored 1 and IN2(T

2, w2, c) ≥ 3, a contradiction.

� We conclude that c(N34) = 3. Let us study the possible colorings of N55.
∗ Suppose �rst that c(N55) = 3. So N4 and N5 are saturated. N23 and N33 can
neither be both colored 1 (interference in V0) nor 2 (we are not in Case 1). So
one of them is colored 1, the other is colored 2 and V0 and N3 are also saturated.
It implies that N334 and N344 must be both colored 1 and that N50 and N00

must be colored 2. Observe then that N445 and N455 cannot receive color 2
(interference in N45) and 3 (N4 is saturated). So they are both colored 1 and, by
Fact 5, N444 must be colored 2. Since N45 is also saturated, N555 and N550 must
be colored 1. But then we have a contradiction because N500 cannot receive
color 1 (Fact 5), 2 (we are not in Case 1) or 3 (N5 is saturated).
∗ Now consider that c(N55) = 2. Observe that N45 is saturated. If N50 is colored
3, N4 and N5 are also saturated and we have a contradiction to Fact 5, because
N344, N444, N445, N455, N555 and N550 are all colored 1.
So N50 is colored 1 and V0 and N0 are saturated. N23 and N33 can neither be
both colored 2 (we are not in Case 1) nor 3 (Fact 5). So one is colored 2, the
other is colored 3 and we have that N3 and N4 are both saturated. This leads
to a contradiction to Fact 5, because N334, N344, N444, N445 and N455 are all
colored 1.
∗ We then conclude that N55 must be colored 1 (and V0 is saturated). Again
N23 and N33 can neither be both colored 2 nor 3. One of them is colored 2
and the other is colored 3 implying that N3 and N4 are both saturated. As a
consequence, N334 and N344 are colored 1 and N50 is colored 2. Thus, N445 and
N455 are both colored 1, due to the interference in N4 and N45. So N444 must
be colored 2 and N45 is saturated. Consequently, N555 and N550 must be both
colored 3 due to the interference in N45 and N55. We obtain that N5 is also
saturated and then that N00 and N01 are both colored 2 and both saturated and
N1 is also saturated. So N23 is colored 3 and N33 is colored 2. Furthermore,
N500 is colored 1 and N0 is saturated. But then N011, N11, N12 and N22 are
colored 3, contradicting Fact 5.

(e) Let us now consider the case c(N4) = 2 and c(N3) = c(N5) = 3. We study now
the subcases concerning the color of N45.

i. First consider that c(N45) = 1. Recall that V0 is saturated.
• In caseN44 is colored 2, N34 is colored 3 andN33 is colored 2, as we are no longer in
Case 1. N55 and N50 can neither be both colored 2, otherwise IN4(T

2, w2, c) ≥ 3,
nor 3, otherwise we would be in Case 1 with N5. So one of these vertices is colored
2, the other is colored 3 and N4 is saturated. But then N23 is colored 3 and we
are in Case 2d with central vertex N3.
• We conclude that N44 is colored 3.
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� If N34 is colored 3, N34 is saturated and c(N23) = c(N33) = 2. Then, N22

is colored 3, otherwise IN23(T
2, w2, c) ≥ 3, implying that N3 is saturated. So

c(N12) = 2 and N23 is also saturated. Thus, N223 and N233 are both colored 1,
N2 is saturated, which implies that N122 and N222 must be colored 3. Then, we
are in Case 1.

� So N34 must be colored 2. In case N33 is also colored 2, then we are in one of
the cases from 2a to 2d with central vertex N34. Thus, N33 must be colored
3 implying that N23 is colored 2. N12 and N22 can neither be both colored 2
(otherwise, IN23(T

2, w2, c) ≥ 3) nor 3 (otherwise, IN3(T
2, w2, c) ≥ 3). So one

is colored 2, the other is colored 3, N3 is saturated and c(N223) = c(N233) = 1

(otherwise, IN23(T
2, w2, c) ≥ 3).

Thus, N2 is also saturated. N55 and N50 cannot be both colored 3, as we are
not in Case 1. Consequently, (exactly) one of these vertices is colored 2 and N4

is saturated. It implies that N334 and N344 are colored 1 and then N333 must
be colored 2. Thus, N23 is saturated and N22 must be colored 3 (otherwise,
IN23(T

2, w2, c) ≥ 3). However, N122 and N222 must be colored 3 and we are in
Case 1 with vertex N22.

By symmetry, we conclude that c(N34) 6= 1.

ii. Suppose now that N45 is colored 2. Observe that N44 cannot be colored 2 as we
are no longer in Case 1.

• Consider �rst the case c(N44) = 1 (V0 is saturated). If N34 is colored 2, N4 is
saturated, N23 and N33 are both colored 3 and we are in Case 1 with N3. So N34

is colored 3 and N33 must be colored 2 (otherwise, Case 1 with N3). N55 and N50

cannot be both colored 3 (otherwise, Case 1 with N5). So (exactly) one is colored
2, N4 is saturated and N23 must be colored 3. However, we are in Case 2d with
central vertex N3.

• We conclude that N44 must be colored 3. Recall that c(N34) 6= 1. In case N34

is colored 2, we are in Case 2c with N4 instead of V0. So N34 is colored 3 and
it is saturated. So c(N23) 6= 3, c(N33) 6= 3, among N23, N33, N55 and N50 at
most one vertex is colored 1 (interference in V0) and at most two are colored 2
(interference in N4). Moreover, at most one of the vertices N55 and N50 is colored
3, otherwise we are in Case 1 with N5. So, exactly one of the vertices N55 and
N50 is colored 3 and N5 is saturated; exactly two of the vertices N23, N33, N55

and N50 are colored 2 and N4 is saturated. But then we �nd a contradiction to
Fact 5 as N334, N344, N444, N445 and N455 are all colored 1.

iii. We then conclude that c(N45) = 3 and by symmetry that c(N34) = 3. N44 cannot
be colored 3 by Fact 5.

• Suppose �rst that N44 is colored 1 (V0 is saturated). Consequently, N23, N33,
N55 and N50 must be colored 2 due to the interference constraints in N3 and N5.
So N4 is saturated and N334, N344, N445 and N455 must be colored 1 due to the
interference in N34 and N45. This is a contradiction to Fact 5.

• We obtain that N44 must be colored 2. Among N23, N33, N55 and N50 at most one
vertex is colored 1 (interference in V0) and none of them is colored 3 (interference
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in N3 and N5). So at least 3 of them are colored 2 and we get a contradiction as
IN4(T

2, w2, c) ≥ 3.

(f) Now consider that c(N3) = c(N4) = c(N5) = 3. By Fact 3, we know that N34,
N44 and N45 are not colored 3. These vertices are also not colored 1, otherwise we
would be in one of the cases from 2a to 2e with vertex N4 replacing of V0. So N34,
N44 and N45 are all colored 2. Let us check the possible colorings of N55.

i. First consider that N55 is colored 3. If N50 is colored 2, then we are in Case 2d
with N5 instead of V0. So N50 is colored 1 and V0 are saturated. However, we
obtain that N23 and N33 are both colored 2 and we have a contradiction to Fact 5.

ii. Suppose now that c(N55) = 2. Observe that N50 cannot be colored 2, by Fact 5.
If c(N50) = 1, V0 is saturated and as N44 is saturated we conclude that N33 is
colored 3. But then N3 and N4 are saturated and we have a contradiction to
Fact 5, because all the vertices N334, N344, N444, N445 and N455 must be colored
1.
So N50 is colored 3 and N4, N5, N44 and N45 are saturated. Consequently, we �nd
a contradiction to Fact 5 as N344, N444, N445, N455 and N555 are all colored 1.

iii. We conclude that c(N55) = 1 and V0 is saturated. N23 and N33 can neither be
both colored 2, nor 3, due to Facts 5 and 3, respectively. If N23 is colored 3 and
N33 is colored 2, we have that N4, N34 and N44 are saturated. Thus, N334, N344,
N444, N445 and N455 must be all colored 1, contradicting Fact 5. Consequently,
c(N23) = 2 and c(N33) = 3. But then we are in Case 2d with vertex N3 replacing
V0.

3. Subcase c(N3) = 1.

Observe that the vertices N01, N23, N34 and N50 cannot be colored 1, otherwise we
would be in Case 2. Up to symmetries, we study the possible colorings of N1, N2,
N4 and N5: four of the same color (Case 3a), three of the same color (Case 3b) or
two of the same color (Cases 3c and 3d).

(a) Let us consider �rst the case c(N1) = c(N2) = c(N4) = c(N5) = 2. In this case,
N01, N23, N34 and N50 must be colored 3, due to interference constraints in N1,
N2, N4 and N5, respectively. By symmetry, we consider that if there exists a vertex
colored 1 in Γ2, then it is in the set {N33, N44, N45, N55}. Thus, the vertices N11

and N12 must be colored 3 and we are in Case 2 with respect to N11.

(b) Now let c(N1) = c(N2) = c(N4) = 2 and c(N5) = 3. Observe that the vertices N11,
N12 and N22 cannot be colored 2, otherwise we would be in the previous Cases 1
or 2. If these vertices are all colored 3, N01 and N23 cannot receive color 3 as
we would be in Case 2. So N01 and N23 must be both colored 2 and we reach a
contradiction as IN2(T

2, w2, c) ≥ 3. So one of the vertices N11, N12 and N22 is
colored 1 and V0 is saturated.

i. If c(N11) = 1, N12 and N22 must be colored 3. So N23 is colored 2 (it cannot be
colored 3 as we would be in Case 2) and then N2 is saturated. Consequently, N33
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and N34 are colored 3. Observe that N44 and N45 can neither be both colored 2
(Fact 4 with N4) nor 3 (Fact 5). So N4 is saturated and N55 and N50 are both
colored 3. Then we �nd a contradiction as we are in Case 1 with vertex N5.

ii. In case N22 is colored 1 and c(N11) = c(N12) = 3, we have that N01 is colored 2.
So N1 is saturated, N00 and N50 must be colored 3 and we are in Case 2 with N50.

iii. So we have that c(N12) = 1 and c(N11) = c(N22) = 3. If c(N23) = 2, we have that
N2 is saturated, N33 and N34 must be colored 3 and among the vertices N44 and
N45 we have one vertex colored 2 and the other is colored 3. Consequently, N55

and N50 must be colored 3 and we are in Case 1. So c(N23) = 3.
Observe that among N34, N44 and N45 we have at most one vertex colored 2,
otherwise we would be in one of the Cases 1 or 2. Similarly, at most one of the
vertices N45, N55 and N50 is colored 3. In case there is a vertex colored 2 among
N34 and N44, due to two vertices colored 2 in the set {N45, N55, N50}, we have a
contradiction as IN4(T

2, w2, c) ≥ 3. Observe that we cannot have all the vertices
N34, N44 and N45 colored 3 as we would be in Case 2. So, N34 and N44 are colored
3 and N45 is colored 2. Since that there is a vertex in N55 and N50 colored 2, we
conclude that N4 is saturated and then N33 is colored 3. This is a contradiction
to Fact 5.

(c) We now study the case c(N1) = c(N2) = 2 and c(N4) = c(N5) = 3. By symmetry,
we consider that the vertices N00, N01, N11, N12, N22 and N23 are not colored
1. Then, the vertices N11, N12 and N22 must colored 3, otherwise we would be
in Cases 1 or 2. By the same reason, N01 and N12 must be colored 2. As N1 is
saturated, N00 is colored 3. Consequently, we can neither color N50 with colors 1 or
3, because we would be in Case 2, nor color it with color 2, due to the interference
in N1.

(d) Let us consider now that c(N1) = 2, c(N2) = 3 and that among N4 and N5 we
have one vertex colored 2 and the other is colored 3. By symmetry, we can once
more consider that the vertices N00, N01, N11, N12, N22 and N23 are not colored
1.

i. In case N12 is colored 3, all the vertices N11, N22 and N23 must be colored 2,
otherwise we would be in Cases 1 or 2. So N1 is saturated and N00 and N01 must
be colored 3. Then, as in Case 3c no feasible color remains to color N50.

ii. Thus N12 is colored 2. It implies that c(N01) = c(N11) = c(N22) = 3, otherwise
we would be in Cases 1 or 2. Consequently, N2 is saturated, N23 and N34 are
colored 2, and thus N33 must be colored 1. So N3 is also saturated and N223 and
N233 must be colored 2. Then we are in Case 1 with N23.

Case: V0 has exactly one neighbor colored 1.

We also consider that no vertex v has two neighbors with its own color, otherwise
we can consider that v is V0 and we are in the previous case. This fact is extensively
used in this proof and many times it is omitted. W.l.o.g, let N0 be the only neighbor
of V0 colored 1 and let c(N1) = 2.
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1. Suppose �rst that c(N2) = 2. Consequently, c(N3) = 3, otherwise N2 would have
two neighbors colored 2. We have three cases to analyze:

(a) In case c(N4) = c(N5) = 2, we claim that c(N01) = c(N50) = 3. In fact, if not,
one of the vertices N0, N1 or N5 would have two neighbors with their colors. By
the same reason, we conclude N00 = 2. At this point, observe that N1 and N5 are
saturated, thanks to the set {N1, N2, N4, N5, N00}. Consequently, the vertices N11

and N12 cannot receive color 2 and they cannot be both colored 3 as N11 would
have two neighbors with its color. Similarly, we can conclude that at least one
vertex of N22 and N33 is colored 1 and also one of N34 and N44 and one of N45

and N55. This is a contradiction because IV0(T
2, w2, c) ≥ 3.

(b) Suppose now that c(N4) = 2 and c(N5) = 3. Observe that c(N01) = 3. By the
hypothesis that no vertex has two neighbors with the same color, we conclude that
among the vertices N11 and N12 at least one of them is colored 1, none of them
can receive color 2 and they cannot be both colored 3. The same is valid for the
vertices N22 and N23. Observe also that these four vertices cannot be all colored 1,
otherwise IV0(T

2, w2, c) ≥ 3. Then consider that three of these vertices are colored
1. Thus, since V0 is saturated, we must be able color the remaining vertices of Γ2

with colors 2 and 3. If we consider that c(N33) = 2, then all the other colors of
vertices in Γ2 are �xed by the hypothesis that each vertex has no two neighbors
with its color. One may check that, in this case, c(N44) = c(N55) = c(N50) = 2.
Thus, IN4(T

2, w2, c) ≥ 3, a contradiction. In case we color N33 with color 3, one
can check that there is no feasible color for N45. Consequently, we conclude that
among N11 and N12 there is one vertex colored 1 and the other is colored 3; and
the same holds for vertices N22 and N23.
We now show by contradiction that no color is feasible to N55.

i. First suppose that N55 = 1. Thus, we already know that V0 is saturated and we
can no longer use color 1 to color vertices in Γ2. If we suppose that c(N45) = 2, we
observe that we cannot color the vertices N34 and N44 with colors 2 and 3. Thus,
let c(N45) = 3. In this case, c(N50) = c(N44) = 2, c(N34) = 3 and c(N33) = 2. We
observe that IN4(T

2, w2, c) ≥ 3, a contradiction.
ii. Suppose now that c(N55) = 2. Observe that N45 cannot be colored 2. Suppose

then that c(N45) = 1. Again V0 is saturated and we cannot have color 1 in the
remaining vertices of Γ2. If c(N44) = 2, then c(N33) = 2 and IN4(T

2, w2, c) ≥ 3,
a contradiction. Thus, let c(N44) = 3. In this case c(N34) = 2 and c(N33) = 3.
Consequently, N3 and N4 are saturated. It implies that c(N334) = c(N344) = 1.
As a consequence, c(N444) = 3, c(N445) = 1 and, since N4 is saturated, no color
is feasible to color N455.
We must consider then the case in which c(N45) = 3. As a consequence we have
c(N50) = 2. Since IN4(T

2, w2, c) ≥ 2, we conclude that c(N44) = 1, c(N34) = 3 and
c(N33) = 2. We obtain that N3 and N4 are saturated. Consequently, c(N334) =

c(N344) = 1, but then N444 has two neighbors colored 1, a contradiction.
iii. The last subcase to consider is the one in which c(N55) = 3. Observe that it

implies c(N50) = 2 and that N45 cannot be colored 3. In case c(N45) = 1, V0
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is saturated and then N44 cannot be colored 1. Suppose �rst that c(N44) = 2.
Observe that N4 is saturated and that c(N34) = 3. Consequently, no feasible color
remains to color N33. Then consider that c(N44) = 3. Consequently, c(N34) = 2

and N4 and N5 are saturated. This is a contradiction as the vertices N445 and
N455 should be both colored 1, as they are at distance two from N4 and N5, but
then N45 would have two neighbors with the same color. Thus, c(N45) = 2 and
N4 is saturated. If N44 is colored 1, then N33 and N34 should be both colored
3, a contradiction. Consequently, c(N44) = 3. In this case, we get c(N33) = 3,
c(N34) = 1 and N3 is saturated. However, N334 and N344 should be both colored
1, a contradiction since c(N34) = 1.

(c) Now suppose that c(N4) = 3 and c(N5) = 2. First observe that c(N01) = 3 and
c(N23) = 1, thanks to the hypothesis that no vertex has two neighbors with the
same color. By the same hypothesis, we can conclude that N11 and N12 cannot
receive color 2 and at most one of them is colored 3. By the same reasoning, we
can conclude that at least one of the vertices N44 and N45 is colored 1. Thus,
V0 is saturated and no other vertex at distance two from V0 can receive color 1.
Consequently, by using this information combined with the hypothesis that no
vertex has two neighbors with its color we conclude that c(N33) = c(N34) = 2.
Thus, we conclude that c(N44) = 1 and c(N45) = 2. Since c(N45) = c(N5) = 2,
we obtain that c(N55) = c(N50) = 3. This implies that c(N00) = 2. However,
IN5(T

2, w2, c) ≥ 3, thanks to the vertices N1, N2, N00, N34 and N45.

(d) Finally, if c(N4) = c(N5) = 3, then N4 has two neighbors with its own color and
we are in the previous case.

2. Suppose then that c(N2) = 3. We consider the possible colorings of N3, N4 and
N5:

(a) First, it is not possible to have c(N3) = c(N4) = c(N5) = 2 as N4 would have two
neighbors with its color.

(b) Then, consider the case in which c(N3) = c(N4) = 2 and c(N5) = 3. Once more
we know that N50, N00 and N01 cannot be colored 1, otherwise N0 would have two
neighbors with its own color. Similarly, none of the vertices N23, N33, N34, N44

and N45 can receive color 2, otherwise N3 or N4 would have two neighbors colored
2. We prove now that no color is feasible for N55.

i. First, consider that c(N55) = 1.
• Suppose also that c(N45) = 1. Consequently, we get c(N44) = 3, otherwise N45

has two neighbors with color 1. In case N34 is colored 1, V0 is saturated and
we reach a contradiction, because c(N23) = c(N33) = 3 and N23 would have two
neighbors colored 3. Thus, suppose that c(N34) = 3. It implies that c(N33) = 1

and c(N23) = 3. As a consequence, c(N12) = c(N22) = 2, because V0 is saturated
and c(N23) = 3. We then get a contradiction since N12 has two neighbors colored
2.
• We conclude then that N45 is colored 3. Since c(N5) = 3, we obtain that c(N44) =

1. In case c(N34) = 1, we have that V0 is saturated and both N23 and N33 should
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be colored 3. This would be a contradiction as N23 would have two neighbors
colored 3. Consequently, c(N34) = 3. If N33 is colored 1, we have c(N23) = 3.
Once more c(N12) = c(N22) = 2 and we have a contradiction as N12 has two
neighbors colored 2. So c(N33) = 3 and, consequently, c(N23) = 1. Since V0

is saturated and no vertex has two neighbors with its own color, either we have
c(N11) = c(N22) = 2 and c(N12) = 3 or we have c(N11) = c(N22) = 3 and
c(N12) = 2. In the �rst case, we have a contradiction as IN1(T

2, w2, c) ≥ 3 and
in the latter case we also have a contradiction as IN2(T

2, w2, c) ≥ 3 (recall that
c(N50) = 2 and in the set {N00, N01} we have one vertex colored 2 and the other
colored 3).

ii. Suppose then that c(N55) = 2. We distinguish three cases.

• c(N44) = c(N45) = 1, we have that c(N34) = 3. In case c(N33) = 1, we have that
c(N23) = 3 and V0 is saturated. This is a contradiction as N12 and N22 have no
feasible coloring. Then consider the case c(N33) = 3. Observe that c(N344) = 2,
otherwise N34 or N44 have two neighbors with their color. Consequently, N4 is
saturated and all the vertices N444, N445 and N455 should be colored 3, as they
all have two adjacent neighbors colored 1 and they are all at distance two from
N4. This is a contradiction as N455 would have two neighbors with its own color.

• c(N45) = 1 and c(N44) = 3. Suppose that c(N33) = c(N34) = 1. Thus, V0 is
saturated and c(N23) = 3. Once more we get a contradiction as N12 and N22

should be both colored 2. Thus, consider now that c(N33) = 3 and c(N34) = 1.
Observe that c(N23) = 1 and V0 is saturated. If c(N22) = 2, we get that c(N12) =

3 and c(N11) = 2. Since at least one of the vertices N50 and N00 must be colored
2, we reach a contradiction as IN1(T

2, w2, c) ≥ 3. In case c(N22) = 3, we get that
c(N12) = 2 and c(N11) = 3. Since N2 is saturated, we conclude that c(N01) = 2.
Once more we obtain a contradiction as IN1(T

2, w2, c) ≥ 3. Let us now study the
case c(N33) = 1 and c(N34) = 3. In case c(N50) = 2, N4 is saturated and we
obtain a contradiction as all the vertices N334, N344 and N444 should be colored
1. Thus, consider that c(N50) = 3. In this case, N5 is saturated and we get a
contradiction as N00 and N01 should be both colored 2. Since we do not have the
case c(N33) = 3 and c(N34) = 3 as N34 would have two neighbors with its color,
we conclude that c(N45) = 3.

• So c(N45) = 3, then we get that c(N44) = 1 (otherwise N45 has two neighbors
of the same color), c(N50) = 2 and c(N00) = 3. In this case, we easily obtain a
contradiction as N4 is saturated and the vertices N445 and N455 have no feasible
coloring.

iii. We conclude that c(N55) = 3. As a consequence, we get c(N45) = 1 and c(N50) =

2. If c(N44) = 1, then c(N455) = 2 and N4 is saturated. But then all the vertices
N34, N344, N444 and N445 should be colored 3. This would be a contradiction.
Consequently, c(N44) = 3. In this case, in the set {N00, N01} there is exactly one
vertex colored 2 and the other is colored 3, thanks to the interference constraint
in vertex N5 and to the hypothesis that no vertex has two neighbors with its own
color. Similarly, we can conclude that in the set {N445, N455} there is exactly
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one vertex colored 1 and the other is colored 2. Since N5 is saturated, we get
c(N34) = 1. So, N45 is saturated and both vertices N555 and N550 should be
colored 2. This would be a contradiction as N550 would have two neighbors colored
2.

(c) Now let c(N3) = c(N5) = 2 and c(N4) = 3. We show now that no color is feasible
to N55.

i. Suppose �rst that c(N55) = 1.

• First consider that c(N45) = 1. Then N44 cannot be colored 1 because we would
have IN45(T

2, w2, c) ≥ 3.

� Then, suppose that N44 is colored 2 and N34 is colored 1. Since V0 is saturated,
all the remaining vertices in Γ2 are not colored 1. In case N33 is colored 2, we
have that N3 is saturated and thus c(N22) = c(N23) = 3. This is a contradiction
to the hypothesis that no vertex has two neighbors with its color as c(N2) = 3. In
case N33 is colored 3, we have that c(N23) = 2, then c(N22) = 3 and c(N12) = 2.
But then, IN3(T

2, w2, c) ≥ 3, a contradiction.

� Consequently, if N44 is colored 2, N34 must be colored 3 (observe it cannot be
colored 2 as it would have two neighbors N3 and N44 colored 2). If N50 is colored
2, N5 is saturated and the vertices N445, N455 and N555 should be all colored 3
(as N45 and N55 are both colored 1). This is a contradiction as N455 has two
neighbors with its own color. Consequently, we have c(N50) = 3. Observe that
among the vertices N445 and N455 at least one of them is colored 3. Thus, N4

is saturated and in the set {N23, N33} we have exactly one vertex colored 1 (due
to the interference constraint in V0) and the other is colored 2. Since V0 and
N3 are saturated, the vertices N12 and N22 should be both colored 3. This is a
contradiction as c(N2) = 3.

� Thus, c(N44) = 3 and N34 can be either colored 1 or 2. If c(N34) = 1, we get
that V0 is saturated. If N33 is colored 2, N23 is necessarily colored 3 and N12

and N22 should be both colored 2. This is a contradiction as N12 would have
two neighbors colored 2. Thus N33 is colored 3. It implies that c(N23) = 2, then
c(N22) = 3, c(N12) = 2 and c(N01) = c(N11) = 3. This is a contradiction as
IN2(T

2, w2, c) ≥ 3.

� We conclude that c(N44) = 3 and c(N34) = 2. Observe that c(N344) = 1 and
c(N445) = 2, thanks to the hypothesis that no vertex has two neighbors with its
color. Since we get that N45 is saturated, we have c(N444) = 2 and, consequently,
c(N455) = 3. Observe now that N34 and N4 are saturated (because among N33

and N334 we have exactly one vertex colored 1 and the other is colored 3). As
a consequence, c(N23) = 1 and c(N50) = 2. At this point the colors of the
remaining vertices in Γ2 are �xed as V0 is saturated. We have c(N00) = c(N01) =

c(N12) = 3 and c(N11) = c(N22) = 2. Thus we observe that IN1(T
2, w2, c) ≥ 3, a

contradiction.

• Then, consider now that N45 is colored 2. It implies that c(N50) = 3 and that
among N00 and N01 we have exactly one vertex colored 2 and the other is colored
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3. Consequently, N5 is saturated and among N555 and N550 we have exactly
one vertex colored 1 and one vertex colored 3. In case N44 is colored 1, N55 is
saturated. Thus, N445, N455 and N500 are all colored 3. This is a contradiction
as IN50(T

2, w2, c) ≥ 3. If c(N44) = 3, we obtain that c(N445) = 1 and that
c(N455) = 3. Consequently, N55 is saturated and c(N500) = 3. Once more we
have a contradiction as IN50(T

2, w2, c) ≥ 3.

• Suppose then that c(N45) = 3.

� If c(N50) = 2, we have that c(N00) = 3. Since IN5(T
2, w2, c) ≥ 2 and c(N4) =

c(N45) = 3, we conclude that among N34, N44 and N445 we have exactly two
vertices colored 1 and the other is colored 2. Consequently, we get N5 is saturated
and thus c(N01) = 3. This implies that c(N500) = 1 and then N55 is saturated.
Thus, we get a contradiction as we have no feasible coloring for the vertices N455

and N555.

� So c(N50) = 3. If c(N34) = c(N44) = 1, we observe that V0 is saturated and
that among N23 and N33 we have exactly one vertex colored 2 and one colored
3. Consequently, N4 is saturated and we reach a contradiction as no coloring is
feasible to the vertices N334, N344 and N444.
In case N44 is colored 1, then N34 is colored 2, we observe that among N23 and
N33 we have one vertex colored 1 and the other is colored 3. As a consequence,
we get that V0 and N4 are saturated. Since c(N334) = 1, no coloring is feasible
for the vertex N344. If N44 is colored 2 (and so N34 is colored 1), observe that
N5 is saturated, since there is a vertex colored 2 and another colored 3 in the
set {N00, N01} and we also �nd a vertex colored 1 and another colored 2 among
vertices N445 and N455. Consequently, the vertices N555 and N550 receive colors
1 and 3 (in some order). Thus, N55 is saturated and then c(N500) = 3. This is
a contradiction as IN50(T

2, w2, c) ≥ 3. Since no other coloring is feasible for N34

and N44 as we cannot assign them the color 3, we conclude that the color of N55

cannot be 1.

ii. Let us consider now the case c(N55) = 2. It implies that c(N50) = 3 and, con-
sequently, the vertices N00 and N01 receive colors 2 and 3 in some order. Thus,
N5 is saturated. In case N44 and N45 are both colored 1, the vertices N34, N445

and N455 must be all colored 3. This is a contradiction as IN4(T
2, w2, c) ≥ 3. In

case c(N44) = 1 and c(N45) = 3, no coloring is feasible to the vertices N445 and
N455. If c(N44) = 3 and c(N45) = 1, observe that c(N34) = c(N445) = 1 and
that one vertex among N555 and N550 is colored 1. Thus, IN45(T

2, w2, c) ≥ 3, a
contradiction.

iii. We then conclude that the only possible color for N55 is the color 3. Recall N50

cannot be colored 1 as N0 would have two neighbors with its own color.

• Let us �rst consider the case in which c(N50) = 2. As a consequence, we obtain
c(N00) = 3 and c(N45) = 1.

� If c(N01) = 2, we can easily check that N1 and N5 are saturated. Observe
also that N0 is saturated as N0 has a neighbor, the vertex V0, colored 1 and 3
other vertices at distance two also colored 1 which are N45, one vertex in the
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set {N11, N12} and another in the set {N550, N500}. Consequently, we reach a
contradiction as N001 and N011 should be both colored 3, but then N001 would
have two neighbors with color 3.

� Thus, c(N01) = 3 in this case. It implies that c(N500) = 1 and that the color 3
does not appear in the vertices N000, N001 and N011. These three vertices can also
not be all colored 1 or 2, as N001 would have two neighbors of the same color. We
cannot have two of these vertices colored 1 as we would have IN0(T

2, w2, c) ≥ 3.
Consequently, in the set {N000, N001, N011} we have one vertex colored 1 and two
vertices colored 2. This implies that N0 and N1 are saturated. We then reach a
contradiction as no feasible color remains to assign to N11.

• Then, we conclude that N50 must be colored 3 and then we get c(N00) = 2 and
c(N01) = 3. Observe that if c(N45) = 2, we have a contradiction asN5 is saturated
and all the vertices N555, N550 and N500 should be colored 1. Thus we have that
c(N45) = 1. Observe that the vertices N11 and N12 cannot be both colored the
same, as we would either violate the interference constraint in N0 (recall that
there is one vertex colored 1 in the set {N550, N500}) or we would have a vertex
with two neighbors of the same color. In case N11 and N12 are colored 1 and 2, in
any order, observe that since N0 and N1 are saturated, no coloring is feasible for
the vertices N001 and N011. We also have no feasible coloring for these vertices in
case N12 is colored 1 (and then N0 is saturated) or 2 (in this case N1 is saturated)
and the vertex N11 is colored 3.
Thus, c(N12) = 3 and suppose �rst that c(N11) = 1. Since N0 is saturated,
the vertices N000, N001 and N011 can be just colored 2 or 3. In case c(N000) =

2, we obtain that c(N001) = 3 and c(N011) = 2. We reach a contradiction as
IN00(T

2, w2, c) ≥ 3 (observe that one vertex among N550 and N500 is colored 2).
If c(N000) = 3, we have that c(N001) = 2 and c(N011) = 3. Then, we also �nd a
contradiction as IN01(T

2, w2, c) ≥ 3.
Consequently, c(N11) = 2 and N1 is saturated. In this case, no coloring is feasible
for the vertices N122, N22 and N23 and we complete the proof of this case as no
color is feasible for the vertex N55.

(d) In case we have c(N3) = 2 and c(N4) = c(N5) = 3, we are in a symmetric case
to 1b.

(e) If c(N3) = 3 and c(N4) = c(N5) = 2, we obtain a symmetric case to 1c.

(f) The case c(N3) = c(N5) = 3 and c(N4) = 2 is symmetric to 2a.

(g) Finally, it is not possible to have c(N3) = c(N4) = 3 as N3 would have two
neighbors, N2 and N4, with its own color.

Case: V0 has no neighbor colored 1.

Now we consider that no vertex has a neighbor with its own color, otherwise we
are in the previous case. W.l.o.g, we may conclude that c(N0) = c(N2) = c(N4) = 2

and c(N1) = c(N3) = c(N5) = 3. Thus, we obtain c(N01) = c(N12) = c(N23) =

c(N34) = c(N45) = c(N50) = 1. This is a contradiction as IV0(T
2, w2, c) ≥ 3.
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Now we present the coloring providing the corresponding upper bound.
For a weighted 3-improper 3-coloring of (T2, w2) set, for 0 ≤ j ≤ 2, Ej =

{(j, 0) + a(3f1) + b(f2) | ∀a, b ∈ Z}. Then, for 0 ≤ j ≤ 2, assign the color j + 1 to
all the vertices in Ej . See Figure 4.7(e).

Now we prove that (T2, w2) does not admit a weighted 4.5-improper 2-coloring.
Again, by contradiction, suppose that there exists a weighted 4.5-improper 2-
coloring c of (T2, w2) with the interference function w2. A vertex can have at most
four neighbors of the same color as it. We analyze some cases:

1. There exists a vertex V0 with four of its neighbors colored with its own color, say
1. Therefore among the vertices of Γ2 at most one is colored 1. Consider the two
neighbors of V0 colored 2. First, consider the case in which they are adjacent and
let them be N0 and N1. In Γ2, N0 has three neighbors and four vertices at distance
two; since at most one being of color 1, these vertices produce in N0 an interference
equal to 4 and as N1 is also of color 2, then IN0(T

2, w2, c) ≥ 5, a contradiction. In
case the two neighbors of V0 colored 2 are non adjacent, let them be Ni and Nj . At
least one of them, say Ni has its three neighbors in Γ2 colored 2 and it has also at
least three vertices at distance two in Γ2 colored 2; taking into account that Nj is
colored 2 and at distance two from Ni, we get INi

(T2, w2, c) ≥ 5, a contradiction.

2. No vertex has four neighbors with its color and there exists at least one vertex V0

colored 1 that has three neighbors of the same color 1.

(a) The three other neighbors of V0 colored 2 are consecutive and let them be N0,
N1 and N2. N34, N44 and N45 are all colored 2, otherwise N4 would have four
neighbors colored 1 and we would be in Case 1. At most one of N01, N11 and N12

has color 2, otherwise N1 would have four neighbors colored 2 and we would be
again in Case 1.

i. N11 is colored 2. Then c(N01) = c(N12) = 1. As already IV0(T
2, w2, c) ≥ 4,

there is at most another vertex in Γ2 colored 1. So either the three vertices N22,
N23 and N33 or the three vertices N00, N50 and N55 are all colored 2 and then
IN2(T

2, w2, c) ≥ 5 or IN5(T
2, w2, c) ≥ 5, a contradiction.

ii. N01 is colored 2 (the case N12 is symmetric). Then, c(N11) = c(N12) = 1. One
of N00 and N50 is of color 1 otherwise, N0 has four neighbors of color 2. But
then IV0(T

2, w2, c) ≥ 4.5 so all the other vertices of Γ2 are colored 2. Therefore,
IN2(T

2, w2, c) ≥ 5, a contradiction.

iii. N01, N11 and N12 all have color 1. In that case IV0(T
2, w2, c) ≥ 4.5. Therefore all

the other vertices of Γ2 are colored 2 and IN0(T
2, w2, c) ≥ 4.5. So the other vertices

at distance two of N0 are colored 1 and then IN01(T
2, w2, c) ≥ 5, a contradiction.

(b) Among the three vertices of color 2, only two are consecutive. W.l.o.g., let the three
vertices of color 2 be N0, N1 and N3. At least one vertex of N50, N00, N01 is colored
1, otherwise N0 has four neighbors of the same color as it and we would be in the
previous case. Similarly at least one vertex of N01, N11, N12 is colored 1, otherwise
N1 has four neighbors with its color and we would be in the previous case. At
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least one vertex of N23, N33, N34 is colored 1, otherwise N3 has three consecutive
neighbors of the same color as it and we are in the previous case. Suppose N01 is
colored 2, then IV0(T

2, w2, c) ≥ 4.5 and exactly one of N50, N00 and one of N11,
N12 is colored 1 and N45, N55 are colored 2, otherwise IV0(T

2, w2, c) ≥ 5. Then
IN0(T

2, w2, c) ≥ 5, a contradiction. So, c(N01) = 1. If both N50, N00 are colored 2,
then IN0(T

2, w2, c) ≥ 5 with three neighbors colored 2 and at least four vertices at
distance two colored 2, namely N3 and three vertices among N45, N55, N11, N12 (at
most one vertex of these could be of color 1, otherwise IV0(T

2, w2, c) ≥ 5). So, one
of N50, N00 is colored 1 and all the other vertices in {N11, N12, N22, N44, N45, N55}

are colored 2 implying that IN3(T
2, w2, c) ≥ 5, a contradiction.

(c) No two vertices of color 2 are consecutive. W.l.o.g, let these vertices be N0, N2, N4.
The three neighbors of N0 (resp. N1, N2) in Γ2 that are not neighbors of V0 cannot
be all colored 2, otherwise we are in Case (a). So exactly one neighbor of N0,
N1, N2 in Γ2 is colored 1, otherwise IV0(T

2, w2, c) ≥ 5. Furthermore all the other
vertices of Γ2 are colored 2. Then, if c(N12) = c(N45) = 2, we conclude that
IN0(T

2, w2, c) ≥ 5, a contradiction. Consequently, w.l.o.g., suppose that c(N12) =

1. In this case, N23 has at least three neighbors colored 2 and we are in some
previous case.

3. No vertex has three neighbors colored with its own color, but there exists at least
one vertex, say V0, of color 1 that has two neighbors colored 1.

(a) These two neighbors are consecutive say N0 and N1. The neighbors of N3 and N4

in Γ2 are all colored 1, otherwise they would have at least three neighbors with
the same color. Similarly, at least one of N12 and N22 is colored 1, otherwise N2

would have at least three neighbors also colored 2. Then, IV0(T
2, w2, c) ≥ 5, a

contradiction.

(b) These two neighbors are of the form Ni and Ni+2, for some 0 ≤ i ≤ 3. W.l.o.g.,
let these neighbors be N0 and N2. Thus, the three neighbors of N4 in Γ2, N34,
N44 and N45 are colored 1 and at least one vertex of N23 and N33 (resp. N55 and
N50) is colored 1. Moreover, at least one vertex of N01, N11 and N12 must be
colored 1, otherwise N1 would have three neighbors with its color. Consequently,
IV0(T

2, w2, c) ≥ 5, a contradiction.

(c) These two neighbors are of the form Ni and Ni+3, for some 0 ≤ i ≤ 2. W.l.o.g.,
let these neighbors be N0 and N3. Again, at least three vertices among N01, N11,
N12, N22 and N23 and at least three other vertices among N34, N44, N45, N55 and
N50 are colored 1. Consequently, IV0(T

2, w2, c) ≥ 5, a contradiction.

4. No vertex has two neighbors of the same color. Suppose V0 is colored 1 and has
only one neighbor N0 colored 1. Then, its other �ve neighbors are colored 2 and
N2 has two neighbors of the color 2, a contradiction.

A weighted 5-improper 2-coloring of (T2, w2) is obtained as follows: for 0 ≤ j ≤

1, let Fj = {(j, 0) + a(2f1) + b(f1 + 2f2) | ∀a, b ∈ Z} and F ′j = {(j− 1, 1) + a(2f1) +
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b(f1 +2f2) | ∀a, b ∈ Z}. Then, for 0 ≤ j ≤ 1, assign the color j+1 to all the vertices
in Fj and in F ′j . See Figure 4.7(f).

Since each vertex has six neighbors and twelve vertices at distance two in T,
there is no weighted t-improper 1-coloring of (T2, w2), for any t < 12. Obviously,
there is a weighted 12-improper 1-coloring of T2.

4.3 Integer Linear Programming Formulations, Algo-

rithms and Results

In this section, we look at how to solve the Weighted Improper colouring

and Threshold Improper colouring for general instances inspired by the prac-
tical motivation. We present integer linear programming models for both prob-
lems. These models can be solved exactly for small sized instances using solvers like
CPLEX1. For larger instances, the solvers can take a prohibitive time to provide
exact solutions. It is usually possible to obtain a sub-optimal solution stopping the
solver after a limited time. If the time is too short, the quality of the solution may
be unsatisfactory. Thus, we introduce two algorithmic approaches to �nd good solu-
tions for Threshold Improper colouring in a short time: a simple polynomial-
time greedy heuristic and an exact Branch-and-Bound algorithm. We compare the
three methods on di�erent sets of instances, among them Poisson-Voronoi tessella-
tions as they are good models of antenna networks [BKLZ97, GK00, HAB+09].

4.3.1 Integer Linear Programming Models

Given an edge-weighted graph G = (V,E,w), w : E → R∗+, and a positive real
threshold t, we model Weighted Improper Coloring by using two kinds of
binary variables. Variable xip indicates if vertex i is colored p and variable cp
indicates if color p is used, for every 1 ≤ i ≤ n and 1 ≤ p ≤ l, where l is an upper
bound for the number of colors needed in an optimal weighted t-improper coloring
of G. l can be trivially chosen of value n, but a better value may be given by the
results of Section 4.1. The model follows:

min
∑l

p=1 cp
subject to

∑

ij∈E and j 6=iw(i, j)xjp ≤ t+M(1− xip) ∀i ∈ V, 1 ≤ p ≤ l

cp ≥ xip ∀i ∈ V, 1 ≤ p ≤ l
∑l

p=1 xip = 1 ∀i ∈ V

xip ∈ {0, 1} ∀i ∈ V, 1 ≤ p ≤ l

cp ∈ {0, 1} 1 ≤ p ≤ l

where M is a large integer. For instance, it is su�cient to choose M >
∑

uv∈E w(u, v).

1http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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For Threshold Improper Coloring, given an edge-weighted graph G =

(V,E,w), w : E → R∗+, and a number of possible colors k ∈ N∗, the model we
consider is:

min t

subject to
∑

ij∈E and j 6=iw(i, j)xjp ≤ t+M(1− xip) ∀i ∈ V, 1 ≤ p ≤ l
∑k

p=1 xip = 1 ∀i ∈ V

xip ∈ {0, 1} ∀i ∈ V, 1 ≤ p ≤ l

We give directly these models to the ILP solver CPLEX without using any
preprocessing or any other technique to speed the search for an optimal solution.

4.3.2 Algorithmic approach

In this section, we show a Branch-and-Bound algorithm and a randomized greedy
heuristic to tackle Threshold Improper colouring. Both are based on common
procedures to determine the order in which vertices are colored and colors are tried
for a single vertex. Although, the Branch-and-Bound needs an ordering of the
vertices to be colored as input while the heuristic colors the vertices at the same
time the order is being processed.

4.3.2.1 Order of vertices and colors

The order in which the vertices are chosen to be colored follows essentially the same
idea as the DSATUR algorithm, created by Daniel Brélaz [Bré79].

Consider a graph G = (V,E,w), w : E → R∗+ and a partial coloring c : U →

{1, . . . , k}, where U ⊆ V . We say that vertex v is colored if v ∈ U , otherwise it is
uncolored. We de�ne the total potential interference in vertex v to be:

Itot
c,v =

∑

{u∈V |uv∈E and v/∈U}
w(u, v),

which is the sum of interferences for all colors induced in v by all its already colored
neighbors.

The idea for both algorithms is to �rst color vertices with highest total potential
interference. Whenever more than one vertex has the highest total potential inter-
ference, one of them is chosen at random. At the beginning, when all vertices have
Itot
c,v = 0, one of the highest weighted degree is chosen instead.

Consider the following steps:

1. Color a random vertex with maximal sum of incoming weights.

2. Color a random vertex with maximal total potential interference.

3. If all vertices all colored, stop. Otherwise, repeat step 2.
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Note that the total potential interference does not depend on the actual colors
assigned to the vertices. Thus, in order to decide which is the next vertex to be
colored, both algorithms, Branch-and-Bound and heuristic, use these three steps.
However, the Branch-and-Bound algorithm needs an order to color the vertices as
input. So, we decide which order to give to the Branch-and-Bound algorithm as
input by running these three steps and using a single color.

The procedure above speci�es the order of vertices. For the order of colors to
try, we de�ne the potential interference in vertex v for color x as:

Ic,v,x =
∑

{u∈V |uv∈E and c(v)=x}
w(u, v)

Anytime one of our algorithms colors a vertex, it tries the colors in order of increasing
potential interference.

4.3.2.2 Branch-and-Bound Algorithm

Having an ordering procedure for both vertices and colors, we construct a simple
Branch-and-Bound algorithm using them. The order of vertices to color is �xed
before running the algorithm, following the procedure in Section 4.3.2.1. Then, the
ordered vertices are colored by a recursive function that tries all the possible colors
for each vertex as far as no interference constraint is violated. The order in which
the colors are tried is also presented in the previous section. Our algorithm outputs
all the feasible colorings it �nds and, as all the possible colors are tried, the one
using the minimum number of colors is an optimal one.

Here you have a pseudo code for the algorithm:

Algorithm 2: Branch&Bound
input : edge-weighted graph (G,w), number of colors k, partial coloring c,

upper bound t and corresponding coloring c̃, order in which vertices
should be colored O

output: new upper bound t' and corresponding coloring c̃'

if maxv∈V Iv(G,w, c) ≥ t then
return t and c̃

if all vertices are colored in c then
return (maxv∈V Iv(G,w, c) and c)

v = next vertex uncolored in c according to O
for x ∈ possible colors in order of increasing Ic,v,x do

(t and c̃) = Branch&Bound(G, k, c ∩ (v ← x), t, c̃, O)
return t and c̃

Where by c∩ (v ← x) we mean a partial coloring where color of vertex v (which was
uncolored in c) is set to x, and colors of all other vertices are as in c. The algorithm
is �rst called with all vertices uncolored and t =∞.

This algorithm displays a problematic behavior. Imagine the partial coloring of
the �rst few vertices yields good results locally, but implies a suboptimal interference
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at a more distant part of the graph. As the solution search takes exponential time
in number of vertices, it is easy to envision that the time required to change the
coloring of �rst vertices can be prohibitively long.

4.3.2.3 Greedy Heuristic

Here we propose a randomized greedy heuristic that, repeated multiple, but not
exponentially many times, �nds similar solutions to the above Branch-and-Bound
without the mentioned problem. On the other hand, there are some solutions that
are impossible to �nd with it, no matter the number of tries. An example of such
an unobtainable solution is the optimal coloring of in�nite square grid with 2 colors.

Algorithm 3: Leveling Heuristic
input : edge-weighted graph (G,w), number of colors k, upper bound t
output: failed or a coloring c

c(v) = ∅ ∀v ∈ V

for i ∈ {1, . . . , |V |} do
v = next, in order of increasing Itot

c,v , vertex uncolored in c
for x ∈ possible colors in order of increasing Ic,v,x do

if coloring v with x does not cause maxv∈V Iv(G,w, c) ≥ t then
c(v) = x

break the inner loop

if c(v) = ∅ then
return failed

return c

Note that there is substantial randomness in this algorithm. The �rst vertex is
the one of the ones with highest weighted degree. In the extreme case of regular
graphs, this already means any vertex at random. If we use the simple interference
function de�ned in Section 4.2, then the second vertex is a random neighbor of the
�rst vertex. Any time there are multiple vertices with maximum total potential
interference, we choose one at random. Similarly, the choice of colors is also random
in case of equal potential interference.

Above algorithm is �rst called with t = ∞. Whenever it returns a coloring, we
set t = maxv∈V Iv(G,w, c) for further iterations. It is repeated for a given number
of times, or until a time limit is reached. In all instances in the following sections
the program is constrained by a time limit. This means that the algorithm is called
for an unknown, but probably big number of times (e.g. for a 6-regular grid of
1024 vertices the program performs on average over 500 runs of the algorithm per
second).

As a randomized greedy coloring heuristic, it has to be ran multiple times to
achieve satisfactory results. This is not a practical issue due to low computational
cost of each run. The local immutable coloring decision is taken in time O(k∆).
Then, after each such decision, the interference has to be propagated, which takes
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linear time in the vertex degree. This gives a computational complexity bound
O(kn∆)-time.

4.3.3 Validation

(a) Example Delaunay graph, dotted lines de-
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(c) Over time
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Erdös-Rényi graph, N=500 vertices, L=120 sec

Branch & Bound

Heuristic

IP

(f) Over colors

Figure 4.9: Results comparison for Leveling heuristic, Branch-and-Bound algorithm
and Integer Linear Programming Formulation.

In this section we validate our algorithmic approaches atThreshold Improper

colouring, by examining performance of their implementations. Tests cover a wide
range of parameters, mostly on Delaunay graphs (see section 4.3.3.2).
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4.3.3.1 Implementation

The ILP model is constructed out of the input graph and given directly to the
CPLEX ILP solver. Branch-and-Bound algorithm is implemented in a straightfor-
ward way in the Python programming language. The greedy heuristic has a highly
optimized implementation in the Cython programming language2.

In results displayed below, all programs are run simultaneously on the same
quad-core enterprise-grade CPU. Both the Branch-and-Bound and greedy heuristic
are limited to a single core. CPLEX is allowed to both the remaining cores.

4.3.3.2 Graphs

We consider random Delaunay graphs (dual of Voronoi diagram). This kind of
graphs is an intuitive approximation of a network of irregular cells. To obtain a
graph in this class, take a set of random points uniformly distributed over a square.
These represent the vertices of the graph. To obtain the edges, compute a Delaunay
triangulation. This can be done e.g. with Fortune's algorithm described in [For87]
in O(n log n) time.

See Figure 4.9(a) for a depiction of a fragment of such graph. Vertices are
arranged according to the positions of original random points. Dotted lines delimit
corresponding Voronoi diagram cells. Only edges between vertices visible on the
illustration are displayed.

Note that, to follow the model of the physical motivation, we are dealing with
very sparse graphs. The average degree in Delaunay graph G converges to six
(this results follows from the observation that G is planar and triangulated, thus
|E(G)| = 3|V (G)| − 6 by Euler's formula). To get an idea about the proposed
algorithms' performance in denser graphs, we also run some tests on Erdös-Rényi
graphs with expected degree equal to 50.

The interference model we consider in all experiments is the one described in
Section 4.2: adjacent nodes interfere by 1 and nodes at distance two interfere by
1/2.

4.3.3.3 Results

Figure 4.9 shows a performance comparison of the above-mentioned algorithms. For
all the plots, each data point represents an average over a number (between 24 and
100) of di�erent graphs. The experiment procedure is as follows. For each graph size
considered in an experiment, a number of graphs is generated. Each of those graphs
is transformed into a set of instances, one for each desired number of allowed colors.
All the programs are run on each instance, once for each desired value of time limit.
Finally, a data point is created with results and all the parameters, averaged over
the number of graphs.

Figures 4.9(b) and 4.9(c) plot how results for a problem instance get enhanced
with increasing time limits. Plot 4.9(d) shows how well all the programs scale with

2This is the faster implementation envisioned in [ABG+11c].
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increasing graph sizes. Plots 4.9(e) and 4.9(f) show decreasing interference along
increasing the number of colors allowed.

One immediate observation about both the heuristic and Branch-and-Bound
algorithm is that they provide good solutions in relatively short time. On the other
hand, with limited time, they fail to improve up to optimal results, especially with
a low number of allowed colors. An example near-optimal solution found in around
three minutes was not improved by Branch-and-Bound in over six days.

The heuristic, is able to provide good results in sub-second times and scales
better with increasing graph sizes than the Branch-and-Bound. It is also not prone
to spending a lot time exploring a sub-optimal branch of a decision tree. Still, in
many cases it is unable to obtain optimal results and displays a worse end result
than an integer linear program, given enough time.

Solving the ILP does not scale with increasing graph sizes as well as our simple
algorithms. Furthermore, Figure 4.9(e) reveals one problem speci�c to ILP. When
increasing the number of allowed colors, obtaining small interferences gets easier.
But this introduces additional constraints in the formulation, thus increasing the
complexity for a solver.

Proposed algorithms also work well for denser graphs. Figure 4.9(f) plots in-
terferences for di�erent numbers of colors allowed found by the programs for an
Erdös-Rényi graph with n = 500 and p = 0.1. This gives us an average degree
equal to 50. Both Branch-and-Bound and heuristic programs achieve acceptable,
and nearly identical, results. But the large number of constraints makes the integer
linear programming formulation very ine�cient.

4.4 Conclusion, Open Problems and Future Directions

In this work, we introduced and studied a new coloring problem, Weighted Im-

proper Coloring. This problem is motivated by the design of telecommunication
antenna networks in which the interference between two vertices depends on di�er-
ent factors and can take various values. For each vertex, the sum of the interferences
it receives should be less than a given threshold value.

We �rst give general bounds on the weighted-improper chromatic number. We
then study the particular case of in�nite paths, trees and grids: square, hexagonal
and triangular. For these graphs, we provide their weighted-improper chromatic
number for all possible values of t.

Finally, we propose a heuristic and a Branch-and-Bound algorithm to �nd good
solutions of the problem. We compare their results with the one of an integer linear
programming formulation on cell-like networks, Poisson-Voronoi tessellations.

Many problems remain to be solved:

• The study of the grid graphs, we considered a speci�c function where vertices
at distance one interfere by 1 and vertices at distance two by 1/2. Other
weight functions should be considered. e.g. 1/d2 or 1/(2d−1), where d is the
distance between vertices.
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• Other families of graphs could be considered, for example hypercubes.

• We showed that the Threshold Improper Coloring problem can be trans-
formed into a problem with only two possible weights on the edges 1 and ∞,
that is a mix of proper and improper coloring. This simplify the nature of
the graph interferences but at the cost of an important increase of instance
sizes. We want to further study this. In particular, let G = (V,E,w) be
an edge-weighted graph where the weights are all equal to 1 or M . Let GM

be the subgraph of G induced by the edges of weight M ; is it true that if

∆(GM ) << ∆(G), then χt(G,w) ≤ χt(G) ≤
⌈

∆(G,w)+1
t+1

⌉

? A similar result for

L(p, 1)-labeling [HRS08] suggests it could be true.

Note that the problem can also be solved algorithmically for other classes of
graphs and for other functions of interference. We started looking in this direction
in [ABG+11a]. The problem can be expressed as a linear program and then be
solved exactly using solvers such as CPLEX or Glpk3 for small instances of graphs.
For larger instances, we propose a heuristic algorithm inspired by DSATUR [Bré79]
but adapted to the speci�cs of our coloring problem. We used it to derive coloring
with few colors for Poisson-Voronoi tessellations as they are good models of antenna
networks [BKLZ97, GK00, HAB+09]. We plan to further investigate the algorithmic
side of our coloring problem.

3http://www.gnu.org/software/glpk/
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A classical and widely studied problem in WDM (Wavelength Division Multi-
plexing) networks is the Routing and Wavelength Assignment (RWA) prob-
lem [Muk97, RS95, BS91]. It consists in �nding routes, and their associated wave-
length as well, to satisfy a set of tra�c requests while minimizing the number of
used wavelengths. This is a di�cult problem which is, in general, NP-hard. Thus,
it is often split into two distinct problems: First, routes are found for the requests.
Then, in a second step, these routes are taken as an input. Wavelengths must be as-
sociated to them in such a way that two routes using the same �ber do not have the
same wavelength. The last problem can be reformulated as follows: Given a digraph
and a set of dipaths, corresponding to the routes for the requests, �nd the minimal
number of wavelengths w needed to assign di�erent wavelengths to dipaths sharing
an edge. This problem can be seen as a coloring problem of the con�ict graph which
is de�ned as follows: It has one vertex per dipath and two vertices are linked by
an edge if their corresponding dipaths share an edge. In [BCP09], Bermond et al.
studied the RWA problem for UPP-DAG which are acyclic digraphs (or DAG) in
which there is at most one dipath from one vertex to another. In such digraph the
routing is forced and thus the unique problem is the wavelength assignment one.

In their paper, they introduce the notion of good edge-labeling. An edge-labeling
of a graph G is a function φ : E(G)→ R. A path is increasing if the sequence of its
edge labels is non-decreasing. An edge-labeling of G is good if, for any two distinct
vertices u, v, there is at most one increasing (u, v)-path. Bermond et al. [BCP09]
showed that the con�ict graph of a set of dipaths in a UPP-DAG has a good edge-
labeling. Conversely, for any graph admitting a good edge-labeling one can exhibit
a family of dipaths on a UPP-DAG whose con�ict graph is precisely this graph.
Bermond et al. [BCP09] then use the existence of graphs with a good edge-labeling
and large chromatic number to prove that there exist sets of requests on UPP-DAGs
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with load 2 (an edge is shared by at most two paths) requiring an arbitrarily large
number of wavelengths.

To obtain other results on this problem, it may be useful to identify the good
graphs which admit a good edge-labeling and the bad ones which do not. Bermond
et al. [BCP09] noticed that C3 and K2,3 are bad. J.-S. Sereni [Ser06] asked whether
every {C3,K2,3}-free graph (i.e., with no C3 nor K2,3 as a subgraph) is good. In
Section 5.2, we answer this question in the negative. We give an in�nite family of
bad graphs none of which is the subgraph of another.

Furthermore, in Section 5.3, we prove that determining if a graph has a good
edge-labeling is NP-complete using a reduction from Not-All-Equal 3-SAT.

In Section 5.4, we show large classes of good graphs: forests, C3-free outerplanar
graphs, planar graphs of girth at least 6. To do so, we use the notion of critical graph
which is a bad graph such that every proper subgraph of which is good. Clearly, a
good edge-labeling of a graph induces a good edge-labeling of all its subgraphs. So
every bad graph must contain a critical subgraph. We establish several properties
of critical graphs. In particular, we show that they have no matching-cut. Hence,
a result of Farley and Proskurowski [FP84, BFP11] (Theorem 15) implies that a
critical graph G has at least 3

2 |V (G)| − 3
2 edges.

In Section 5.5, we use the characterization of graphs with no matching-cut and
⌈

3
2 |V (G)| − 3

2

⌉

edges given by Bonsma [Bon06, BFP11] to slightly improve this
result. We show that a critical graph G has at least 3

2 |V (G)| − 1
2 edges unless G is

C3 or K2,3.
Finally, we present avenues for future research.

5.1 Preliminaries

In this section, we give some technically useful propositions. Their proofs are
straightforward and left to the reader.

A path is decreasing if the sequence of its edge labels is non-increasing. Then,
a path u1u2 . . . uk is decreasing if and only if its reversal ukuk−1 . . . u1 is increasing.
Hence an edge-labeling is good if and only if for any two distinct vertices u, v, there
is at most one decreasing (u, v)-path. Equivalently, an edge-labeling is good if and
only if for any two distinct vertices u, v, there is at most one increasing (u, v)-path
and at most one decreasing (u, v)-path.

Let x and y be two vertices of G. Two distinct (x, y)-paths P and Q are inde-
pendent if V (P ) ∩ V (Q) = {x, y}. Observe that in an edge-labeled graph G, there
are two vertices u, v with two increasing (u, v)-paths if and only if there are two
vertices u′, v′ with two increasing independent (u′, v′)-paths. Hence the de�nition
of good edge-labeling may be expressed in terms of independent paths.

Proposition 7. An edge-labeling is good if and only if for any two distinct vertices
u and v, there are no two increasing independent (u, v)-paths.

As above the de�nition may also be in terms of decreasing independent paths.
In this work, we sometimes use Proposition 7 without referring explicitly to it.
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Let φ be a good edge-labeling of a graph G. If φ(E(G)) ⊂ A then for every
strictly increasing function f : A→ B, f◦φ is a good edge-labeling into B. Moreover
if φ is not injective, one can transform it into an injective one by recursively adding
a tiny ε to one of the edges having the same label. Hence we have the following.

Proposition 8. Let G be a graph and A an in�nite set in R ∪ {−∞,+∞}. Then
G admits a good edge-labeling if and only if it admits an injective good edge-labeling
into A.

Let φ be an injective good edge-labeling into an in�nite set in R ∪ {−∞,+∞}

of a graph G. Observe that an injective good edge-labeling φ′ of G into R can be
easily found by just replacing the label −∞ (+∞) by the smaller (resp., greater)
label assigned by φ minus (resp., plus) some ε > 0.

5.2 Bad graphs

A path of length one is both increasing and decreasing, and a path of length two
is either increasing or decreasing. So C3 has clearly no good edge-labeling. Also
K2,3 does not admit a good edge-labeling since there are three paths of length two
between the two vertices of degree 3. Hence, in any edge-labeling, two of them are
increasing or two of them are decreasing.

Extending this idea, we now construct an in�nite family of bad graphs, none of
which is the subgraph of another. The construction of this family is based on the
graphs Hk de�ned below. These graphs play the same role as a path of length two
because they have two vertices u and v such that any good edge-labeling of Hk has
either a (u, v)-increasing path or a (v, u)-increasing path.

For any integer k ≥ 3, let Hk be the graph de�ned by

V (Hk) = {u, v} ∪ {ui | 1 ≤ i ≤ k} ∪ {vi | 1 ≤ i ≤ k},

E(Hk) = {uui | 1 ≤ i ≤ k} ∪ {uivi | 1 ≤ i ≤ k} ∪ {viv | 1 ≤ i ≤ k},

∪{viui+1 | 1 ≤ i ≤ k}

with uk+1 = u1. See Figure 5.1.
Observe that the graph Hk has no K2,3 as a subgraph, and for i 6= k, Hi is not

a subgraph of Hk.

Proposition 9. Let k ≥ 3. For every good edge-labeling, the graph Hk has either
an increasing (u, v)-path or an increasing (v, u)-path.

Proof. Suppose, by way of contradiction, that Hk has a good edge-labeling φ having
no increasing (u, v)-path and no increasing (v, u)-path. By Proposition 8, we may
assume that φ is injective.

A key component in this proof is the following observation which follows easily
from the fact that φ is good.

Observation 1. Suppose x1x2x3x4x1 is a 4-cycle. Then, either



98 Chapter 5. Good Edge-Labeling

u u

u u

u u

u u

u u

u u

u u

r

r

r

r

r

r
u v

v1

v2

v3

vk−1

vk−2

vk

u1

u2

u3

uk−1

uk−2

uk

Figure 5.1: Graph Hk

• φ(x4x1) < φ(x1x2), φ(x2x3) < φ(x1x2), φ(x2x3) < φ(x3x4) and φ(x1x4) <

φ(x3x4); or

• all those inequalities are reversed.

By symmetry, we may assume that φ(uu1) < φ(u1v1). By Observation 1,
φ(v1u2) < φ(u1v1), φ(v1u2) < φ(uu2) and φ(uu1) < φ(uu2). Then, since vv1u2u is
not increasing, φ(u2v1) < φ(v1v). Again by Observation 1, φ(v2v) < φ(u2v2). Thus
since uu2v2v is not increasing φ(uu2) < φ(u2v2).

Applying the same reasoning, we obtain that φ(uu2) < φ(uu3) and φ(uu3) <

φ(u3v3) and so on, iteratively, φ(uu1) < φ(uu2) < · · · < φ(uuk) < φ(uu1), a
contradiction.

For convenience we denote by H2 the path of length 2 with end vertices u and
v. Let i, j, k be three integers greater than 1. The graph Ji,j,k is the graph obtained
from disjoint copies of Hi, Hj and Hk by identifying the vertices u of the three
copies and the vertices v of the three copies.

Proposition 10. Let i, j, k be three integers greater than 1. Then Ji,j,k is bad.

Proof. Suppose, by way of contradiction, that Ji,j,k admits a good edge-labeling.
By Proposition 9, in each of the subgraphs Hi, Hj and Hk, there is either an
increasing (u, v)-path or an increasing (v, u)-path. Hence in Ji,j,k, there are either
two increasing (u, v)-paths or two increasing (v, u)-paths, a contradiction.

5.3 NP -completeness

In this section, we prove that it is an NP -complete problem to decide if a bipartite
graph admits a good edge-labeling. We give a reduction from the NOT-ALL-
EQUAL (NAE) 3-SAT Problem [Sch78] which is de�ned as follows:
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Instance: A set V of variables and a collection C of clauses over V such that
each clause has exactly 3 literals.

Question: Is there a truth assignment such that each clause has at least one
true and at least one false literal?

For sake of clarity, we �rst present the NP-completeness proof for general graphs.

Theorem 13. The following problem is NP-complete.
Instance: A graph G.
Question: Does G have a good edge-labeling?

Proof. Given a graph G and an injective edge-labeling φ into R, one can check
in polynomial time if φ is good or not using the following algorithm where
(u1v1, . . . , umvm) is an ordering of the edges of G in increasing order according
to their labels.

foreach u ∈ V (G) do
Set V (T ) := {u}, E(T ) := ∅;
foreach i=1 to m do

if {ui, vi} ⊂ V (T ) then
return �bad edge-labeling�;

if ui ∈ V (T ) (and vi /∈ V (T )) then
V (T ) := V (T ) ∪ {vi} and E(T ) := E(T ) ∪ {uivi};

return �good edge-labeling�;

Indeed, for each vertex u, the above algorithm grows the tree T of increasing
paths from u: at each step i, T is the tree of increasing paths from u with arcs
with labels less than φ(uivi). In particular, there is an increasing (u, v)-path Pv

for every v ∈ V (T ). Hence if ui ∈ V (T ) and vi ∈ V (T ) then Pvi
and Pui

+ uivi

are two increasing (u, vi)-paths, so the edge-labeling is not good. If ui ∈ V (T ) and
vi /∈ V (T ), then Pui

+ uivi is a new increasing path that must be included into T .
Finally, if ui /∈ V (T ) and vi /∈ V (T ), then uivi will not be in any increasing path
from u as the edges to be considered after it have larger labels.

Hence the considered problem is in NP.

To prove that the problem is NP-complete, we will reduce the NAE 3-SAT Prob-
lem without repetition (i.e. a variable appears at most once in each clause) which
is equivalent to NAE 3-SAT Problem (with repetition) to it. (For each repeated
variable x, we introduce two other variables y and z. Then the second (third) oc-
currence of x in a clause is replaced by y (z). Then, x, y, z are forced to have the
same truth assignment by adding x̄∨ y ∨ z, x∨ ȳ ∨ z, x∨ y ∨ z̄, x̄∨ ȳ ∨ z, x̄∨ y ∨ z̄,
and x ∨ ȳ ∨ z̄ to the instance.)

Let V = {x1, . . . , xn} and C = {C1, . . . , Cm} be an instance I of the NAE 3-
SAT Problem without repetition. We shall construct a graph GI in such a way
that I has an answer yes for the NAE 3-SAT Problem if and only if GI has a good
edge-labeling.
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For each variable xi, 1 ≤ i ≤ n, we create a variable graph V Gi de�ned as
follows (See Figure 5.2.):

V (V Gi) = {vi,j
k | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {ri,j

k | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}

∪{si,j
k | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}.

E(V Gi) = {vi,j
k vi,j

k+1 | 1 ≤ j ≤ m, 1 ≤ k ≤ 3} ∪ {vi,j
4 vi,j+1

1 | 1 ≤ j ≤ m− 1}

∪{vi,j
k ri,j

k | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {vi,j
k si,j

k | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}

∪{vi,j
4 ri,j

1 | 1 ≤ j ≤ m} ∪ {v
i,j+1
k ri,j

k+1 | 1 ≤ j ≤ m− 1, 1 ≤ k ≤ 3}

∪{vi,j
4 si,j

1 | 1 ≤ j ≤ m} ∪ {v
i,j+1
k si,j

k+1 | 1 ≤ j ≤ m− 1, 1 ≤ k ≤ 3}.

... ...
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Figure 5.2: The variable graph V Gi

For each clause Cj = l1 ∨ l2 ∨ l3, 1 ≤ j ≤ m, we create a clause graph CGj

de�ned as follows (See Figure 5.3.):

V (CGj) = {cj , bj1, b
j
2, b

j
3};

E(CGj) = {cjbj1, c
jbj2, c

jbj3}.

bj
2bj

1

cj

bj
3

Figure 5.3: The clause graph CGj .

Now, for each literal lk, 1 ≤ k ≤ 3, if lk is the non-negated variable xi, we identify
bjk, c

j and bjk+1 (index k is taken modulo 3) with vi,j
1 , vi,j

2 and vi,j
3 , respectively.

Otherwise, if lk is the negated variable x̄i, we identify bjk, c
j and bjk+1 with vi,j

3 , vi,j
2

and vi,j
1 , respectively.
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Let us �rst show that, if GI has a good edge-labeling φ, then there is a truth
assignment such that each clause of I has at least one true literal and at least one
false literal.

By Proposition 8, we may assume that φ is injective.

Claim 2. Let 1 ≤ i ≤ n. If φ(vi,1
1 vi,1

2 ) < φ(vi,1
2 vi,1

3 ) then φ(vi,j
1 vi,j

2 ) < φ(vi,j
2 vi,j

3 ) for
all 1 ≤ j ≤ m.

Proof. By induction on j. A path of length two is necessarily increasing or de-
creasing. Now vi,j

1 is joined to vi,j
4 by two paths of length two via ri,j

1 and si,j
1 .

Since φ is good, one of these two paths is increasing and the other one is decreas-
ing. In addition, the path vi,j

1 vi,j
2 vi,j

3 vi,j
4 is neither increasing nor decreasing so

φ(vi,j
2 vi,j

3 ) > φ(vi,j
3 vi,j

4 ).
Applying three times this reasoning, we derive φ(vi,j

3 vi,j
4 ) < φ(vi,j

4 vi,j+1
1 ),

φ(vi,j
4 vi,j+1

1 ) > φ(vi,j+1
1 vi,j+1

2 ) and �nally φ(vi,j+1
1 vi,j+1

2 ) < φ(vi,j+1
2 vi,j+1

3 ).

Hence we de�ne the truth assignment Λ by Λ(xi) = true if φ(vi,1
1 vi,1

2 ) <

φ(vi,1
2 vi,1

3 ) and Λ(xi) = false otherwise.
Let us show that each clause Cj has at least one true literal or one false literal.

Set Cj = l1 ∨ l2 ∨ l3. First observe that, by construction, for all 1 ≤ k ≤ 3, lk is true
if φ(bjkc

j) < φ(bjk+1c
j) and lk is false otherwise. Now the three literals are not all

true otherwise, φ(bj1c
j) < φ(bj2c

j) < φ(bj3c
j) < φ(bj1c

j), a contradiction. And they
are not all false, otherwise φ(bj1c

j) > φ(bj2c
j) > φ(bj3c

j) > φ(bj1c
j), a contradiction.

Hence Cj has at least one true literal and one false literal.

Conversely, let us now show that if there is a truth assignment Λ such that each
clause of I has at least one true literal and at least one false literal, then GI has a
good edge-labeling.

The idea is to �nd a good edge-labeling φ satisfying the following property (⋆):
If Λ(xi) = true, φ(vi,j

1 vi,j
2 ) < φ(vi,j

2 vi,j
3 ) for all 1 ≤ j ≤ m and if Λ(xi) = false,

φ(vi,j
1 vi,j

2 ) > φ(vi,j
2 vi,j

3 ) for all 1 ≤ j ≤ m.
Let Cj = l1 ∨ l2 ∨ l3 be clause. To satisfy (⋆), we must label the edges of V Gj

such that φ(bjkc
j) < φ(bjk+1c

j) if lk is true and φ(bjkc
j) > φ(bjk+1c

j) if lk is false. As
Cj has at least one true and one false literal, there is a unique way to label the three
edges cjbjk, 1 ≤ k ≤ 3, with {−1, 0,+1} such that the condition (⋆) is ful�lled.

Let us now extend this edge-labeling to the remaining edges of each of the
variable graphs V Gi. First, for all 1 ≤ j ≤ m and 1 ≤ k ≤ 4, assign −3 and
+3 alternatingly on the edges of the cycle of length four containing both ri,j

k and
si,j
k such that φ(vi,j

k ri,j
k ) = −3. Then, if Λ(xi) = true, set φ(vi,j

3 , vi,j
4 ) = −2 and

φ(vi,j
4 , vi,j+1

1 ) = 2 for all 1 ≤ j ≤ m, and, if Λ(xi) = false, set φ(vi,j
3 , vi,j

4 ) = 2 and
φ(vi,j

4 , vi,j+1
1 ) = −2 for all 1 ≤ j ≤ m.

We claim that φ is a good edge-labeling of GI . Suppose, by way of contradiction,
that there is a pair of vertices (x, y) such that two independent increasing (x, y)-
paths P1 and P2 exist.
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A set of two independent paths starting at a vertex of R = {ri,j
k | 1 ≤ j ≤ m, 1 ≤

k ≤ 4}∪{si,j
k | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} contains one increasing path (the one starting

with the edge labeled −3) and one decreasing path (the one starting with the edge
labeled 3). Hence x and y are not in R.

In addition, the union of P1 and P2 cannot be one of the four-cycles formed by
the edges incident to ri,j

k and si,j
k for some i,j and k.

Without loss of generality, we may assume that P1 is at least as long as P2. As
cycles formed by two graphs GVi and GVj are of length at least 6, P1 has length at
least 3. Now one can see that P1 may not contain any vertex of R because every path
of length at least 3 with internal vertices in R is not increasing (nor decreasing).

Hence P1 must contain at least three consecutive edges on one of the paths
Qi = V Gi −R. So P1 is not increasing, a contradiction.

Observe that the graph GI constructed in the above proof is not bipartite. How-
ever, with a slight modi�cation, we can transform it into a bipartite graph and obtain
the following theorem.

Theorem 14. The following problem is NP-complete.
Instance: A bipartite graph G.
Question: Does G have a good edge-labeling?

Proof. Let G′I be the graph obtained from GI (described in the proof of Theorem 13)
by replacing each path vi,j

k , ri,j
k , vi,j

k+3 and each path vi,j
k , si,j

k , vi,j
k+3, by copies of a

graphHk′ de�ned in Section 5.3, for some k′ ≥ 3 and for all i = 1, . . . , n, j = 1, . . . ,m

and k = 1, . . . , 4 (k + 3 is taken modulo 4).
By Proposition 9, it is not di�cult to verify that G′I admits a good edge-labeling

if, and only if, G′I also does. Moreover, each Hk′ admits a proper 2-coloring such
that the vertices u and v have disjoint colors. Thus, G′I is bipartite, since it admits
a proper 2-coloring where all the vertices vi,j

1 and vi,j
3 belong to the same color class,

for all i = 1, . . . , n and j = 1, . . . ,m.

5.4 Classes of good graphs

Recall that a graph G is critical if it is bad but each of its proper subgraphs is good.
To prove that every graph in a class C closed under taking subgraphs has a good
edge-labeling, it su�ces to prove that C contains no critical graph.

Lemma 9. Let G be a graph with a cutvertex x, C1, . . . , Ck be the components of
G − x and Gi = G〈Ci ∪ {x}〉, 1 ≤ i ≤ k. Then G is good if and only if all the Gi

are good.

Proof. Necessity is obvious since a good edge-labeling of G induces a good edge-
labeling on each subgraph Gi.

Su�ciency follows from the fact that there are two independent (u, v)-paths in
G only if there exists i, 1 ≤ i ≤ k, such that u and v are in V (Gi). Hence the union
of good edge-labelings of all the Gi is a good edge-labeling of G.
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Corollary 5. Every critical graph is 2-connected.

Corollary 6. Every forest F admits a good edge-labeling.

Proof. No forest contains a non-trivial 2-connected subgraph, and so contains no
critical subgraph.

Let G = (V,E) be a graph. A K2-cut of G is a set of two adjacent vertices u
and v such that the graph G − {u, v} (obtained from G by removing u and v and
their incident edges) has more connected components than G.

Lemma 10. Let G be a connected graph and {u, v} a K2-cut in G such that G −
{u, v} has two connected components C1 and C2. If G1 = G〈C1 ∪ {u, v}〉 and
G2 = G〈C2 ∪ {u, v}〉 have a good edge-labeling then G has a good edge-labeling.

Proof. Let φ1 and φ2 be good edge-labelings of G〈C1 ∪ {u, v}〉 and G〈C2 ∪ {u, v}〉

respectively such that φ1(uv) = φ2(uv).
Then the union of φ1 and φ2 is a good edge-labeling of G. Indeed, suppose

by way of contradiction, that there exists x and y and two independent increasing
(x, y)-paths P1 and P2 in G. W. l. o. g., we may assume that x ∈ V (G1). At least
one of the paths, say P1, contains at least one edge e1 in E(G2) \ {uv} since φ1 is
good.

Assume �rst that y ∈ V (G1). Then P1 must go through u and v. Let Q2 be
the shortest (u, v)-subpath of P1 containing e1. Then Q2 is either increasing or
decreasing. Hence since uv is both increasing and decreasing, there are either two
increasing paths or two decreasing paths in G2. This contradicts the fact that φ2 is
good.

Assume now that y ∈ C2. Then since P1 and P2 are independent without loss of
generality, P1 goes through u and P2 goes through v. Let Q1 be the (x, u)-subpath
of P1, R1 be the (u, y)-subpath of P1, let Q2 be the (x, v)-subpath of P2 and R2 be
the (v, y)-subpath of P2.

If φ(uv) is larger than the label of the last edge of Q1, then Q1uv and Q2 are
two increasing (x, v)-paths in G1, a contradiction. If not φ(uv) is smaller than the
label of the �rst edge of R1 and vuR1 and R2 are two increasing (v, y)-paths in G2,
a contradiction.

Let G = (V,E) be a graph. An edge-cut is a non-empty set of edges between
a set of vertices S and its complement S. Formally, for any S ⊂ V , the edge-cut
[S, S] is the set {uv ∈ E | u ∈ S and v ∈ S). An edge cut which is also a matching
is called a matching-cut.

Lemma 11. Let G be a graph and [S, S] a matching-cut in G. If G〈S〉 and G〈S〉
have a good edge-labeling then G has a good edge-labeling.

Proof. Let φ1 be a good edge-labeling of G〈S〉 and φ2 be a good edge-labeling of
G〈S〉 (in R). Then the edge-labeling φ of G de�ned by φ(e) = φ1(e) if e ∈ E(G〈S〉),
φ(e) = φ2(e) if e ∈ E(G〈S〉) and φ(e) = +∞ if e ∈ [S, S] is good.
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Indeed, suppose by way of contradiction, that it is not good. Then there exist
two vertices u and v and two independent increasing (u, v)-paths P1 and P2. Since
φ1 and φ2 are good, then without loss of generality, we may assume that u ∈ S and
v ∈ S. For i = 1, 2, the path Pi contains an edge of uivi in [S, S]. Now, since u1v1
and u2v2, are labeled +∞ and incident to no edges labeled +∞, u1v1 must be the
last edge of P1 and u2v2 the last edge of P2. So v1 = v = v2, which is impossible as
[S, S] is a matching.

Corollary 7. A critical graph has no matching-cut.

Corollary 8. Every C3-free outerplanar graph admits a good edge-labeling.

Proof. An easy result of Eaton and Hull [EH99] states that a C3-free outerplanar
graph has either a vertex of degree 1 or two adjacent vertices of degree 2. This
implies that it has a matching-cut. Hence by Corollary 7 no C3-free outerplanar
graph is critical, which yields the result.

A graph is subcubic if every vertex has degree at most three.

Lemma 12. Every subcubic {C3,K2,3}-free graph has a matching-cut.

Proof. Let G be a subcubic graph {C3,K2,3}-free. If G has no cycle, then every
edge forms a matching-cut. Suppose now that G has a cycle. Let C be a cycle of
smallest length in G. If C is a connected component of G (in particular if C = G)
then any pair of non-adjacent edges of C forms a matching-cut.

If not, let us show that [V (C), V (C)] is a matching-cut. Let e1 = x1y1 and
e2 = x2y2 be two distinct edges in [V (C), V (C)] with x1, x2 ∈ V (C). Then x1 6= x2

because these two vertices have degree (at most) 3 and they have two neighbors
in V (C). Suppose by way of contradiction that y1 = y2. Then x1 and x2 are not
adjacent since G is C3-free. Furthermore, there are the two (x1, x2)-paths along C
are of length at most 2 otherwise C would not be a smallest cycle. Hence C is a cycle
of length 4 and the graph induced by V (C) ∪ {y1} is a K2,3, a contradiction.

Corollary 7 and Lemma 12 immediately imply that the sole subcubic critical
graphs are C3 and K2,3.

Corollary 9. Every subcubic {C3,K2,3}-free graph has a good edge-labeling.

Farley and Proskurowski [FP84, BFP11] proved that every (multi)graph G on n
vertices with less than 3

2(n− 1) edges has a matching-cut.

Theorem 15 (Farley and Proskurowski [FP84, BFP11]). Let G be a multigraph. If
|E(G)| < 3

2 |V (G)| − 3
2 then G has a matching-cut.

Corollary 7 and Theorem 15 yield immediately the following.

Corollary 10. Every critical graph has at least
⌈

3
2 |V (G)| − 3

2

⌉

edges.

An easy and well-known consequence of Euler's Formula states that every planar
graph with girth at least 6 has at most 3

2 |V (G)| − 3 edges and so is not critical.

Corollary 11. Every planar graph of girth at least 6 has a good edge-labeling.
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5.5 Good edge-labeling of ABC-graphs

Corollary 10 states that every critical graph has at least
⌈

3
2 |V (G)| − 3

2

⌉

edges. This
is tight since if G is C3 or K2,3 then |E(G)| =

⌈

3
2 |V (G)| − 3

2

⌉

. We will now show
that those two graphs are the unique critical ones satisfying this equality.

Farley and Proskurowski [FP84, BFP11] constructed a class of multigraphs G
(called ABC-graphs) having

⌈

3
2 |V (G)| − 3

2

⌉

edges with no matching-cut. The de�-
nition of ABC-graphs is based on the following three operations:

• An A-operation on vertex u introduces vertices v and w and edges uv, uw and
vw.

• A B-operation on edge uv introduces vertices w1 and w2 and edges uw1, vw1,
uw2 and vw2, and removes edge uv.

• A C-operation on vertices u and v (u = v is allowed) introduces vertex w and
edges uw and vw.

Note that the C-operation is the only operation that can introduce parallel edges.
An ABC-graph is a graph that can be obtained from K1 with a sequence of A-

and B-operations and at most one C-operation.
It is easy to check that ABC-graphs have no matching-cut. In addition, solving

a conjecture of Farley and Proskurowski, Bonsma [Bon06, BFP11] showed that they
are the unique extremal examples, i.e., satisfying |E(G)| =

⌈

3
2 |V (G)| − 3

2

⌉

.

Theorem 16 (Bonsma [Bon06, BFP11]). Let G be a graph such that |E(G)| =
⌈

3
2 |V (G)| − 3

2

⌉

. Then G has no matching-cut if and only if G is an ABC-graph.

Our aim is to prove that every {C3,K2,3}-free ABC-graph is good. It is easy to
check that every 2-connected component of an ABC-graph is an ABC-graph, so by
Lemma 9, it su�ces to prove it for 2-connected ABC-graphs.

Observe that the C-operation is the only one that changes the parity of the
order. Hence an ABC-graph with an odd number of vertices is obtained from K1

with a sequence of A- and B-operations and no C-operation.
Let G be a graph obtained from a graph H by a B-operation on some edge uv.

Let φ be an edge-labeling of H. Let φ0 and φ∞ be the edge-labelings of G de�ned
by:

φ0(e) = φ∞(e) = φ(e) for all e ∈ E(H) \ {uv},

φ0(uw1) = φ0(w2v) = 1/2,

φ0(uw2) = φ0(w1v) = −1/2,

φ∞(uw1) = φ∞(w2v) = +∞,

φ∞(uw2) = φ∞(w1v) = −∞

Proposition 11. Let G be a graph obtained from a graph H by a B-operation on
some edge uv and φ be a good edge-labeling of H.



106 Chapter 5. Good Edge-Labeling

(i) If φ is injective integer-valued and φ(uv) = 0, then φ0 is a good edge-labeling
of G.

(ii) If φ is real-valued, then φ∞ is a good edge-labeling of G.

Proof. (i) By contradiction, suppose that φ0 is not a good edge-labeling of G. Then
there exist two increasing independent (x, y)-paths P1 and P2 on G, for some x, y ∈
V (G).

Since φ is a good edge-labeling of H, by the de�nition of φ0 at least one edge of
the set E′ = {uw1, uw2, vw1, vw2} belongs to some of the paths P1 or P2. Observe
also that an increasing path in H cannot contain more than two edges of E′.

Suppose then that exactly one of the paths, say P1, contains a non-empty in-
tersection with the set E′. In this case, there would be two increasing paths in the
edge-labeling φ of H. To prove this fact, let P ′1 be the path obtained from P1 by
replacing the edges of the set E′ ∩ E(P1) by the edge uv. Observe that P ′1 and P2

would be two increasing paths of H under the edge-labeling φ, since φ(uv) = 0.
Hence the paths P1 and P2 both contain some edge of the set E′. Suppose �rst

that P1 and P2 contain exactly one edge of E′ each. As P1 and P2 are independent,
we assume that uw1 ∈ E(P1) and vw1 ∈ E(P2), without loss of generality. If w1 = y,
then the last edge of the (x, u)-subpath of P1 has a label smaller than 0 (since φ is
injective) and the same happens for the last edge of the (x, v)-subpath of P2 (observe
that at least one of these subpaths must be non-empty). Consequently, there would
be two increasing paths (x, u)-paths or (x, v)-paths in H under the edge-labeling φ.
Similarly, one may conclude that if w1 = x, then there would also be two increasing
paths on φ. It is just necessary to verify that the �rst edges of the (u, y)-subpath
of P1 and of the (v, y)-subpath of P2 are greater than 0 (at least one of these edges
exist) and that there would be two increasing (u, y)-paths or (v, y)-paths in H.

Finally, P1 and P2 cannot have both two edges from E′ because they are inde-
pendent.

(ii) The proof that φ∞ is a good edge-labeling of G is similar to the proof of (i).
In this case, P1 and P2 cannot contain just one edge of E′. Consequently, either
E(P1) ⊂ E′ or E(P2) ⊂ E′. In any case, there would be and increasing (u, v)-path
or an increasing (v, u)-path, which is a contradiction because there would be two
increasing paths in H.

Corollary 12. If G is a graph obtained from a good graph by a B-operation, then
G is good.

Proof. It follows directly from Proposition 11.

Lemma 13. Let G be a 2-connected ABC-graph with an odd number of vertices. If
G /∈ {C3,K2,3} then G is good.

Proof. By contradiction, suppose that G is a counter-example to the statement. As
every A-operation (with the exception of the transition K1 → C3) creates a cut-
vertex, by Lemma 9, we may assume that G is obtained from C3 with a sequence
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of B-operations. However a B-operation on C3 at any edge creates a K2,3 and a
B-operation on K2,3 at any edge creates the graph G1 depicted in Figure 5.4. If
G /∈ {C3,K2,3} then it is obtained from G1 with a sequence of B-operations. Now
this graph G1 admits a good edge-labeling (See Figure 5.4). Hence an easy induction
and Corollary 12 imply that G has a good edge-labeling, a contradiction.

�

� � � �

� � � �

Figure 5.4: The graph G1 and a good edge-labeling.

Since 2-connected components of an ABC-graph with an odd number of vertices
are ABC-graphs with an odd number of vertices, we have the following:

Corollary 13. Every {C3,K2,3}-free ABC-graph with an odd number of vertices is
good.

We now would like to prove an analogous statement to the one of Corollary 13
but for ABC-graphs with an even number of vertices.

Let G be a graph and x, y be two distinct vertices of G. An (x, y)-better edge-
labeling of G is a good edge-labeling of G such that there is no increasing (x, y)-path.
Clearly, if x and y are adjacent or if x and y have two neighbors in common then G
has no (x, y)-better edge-labeling. A graph is friendly if it has a good edge-labeling
and for any pair (x, y) of non-adjacent vertices with at most one neighbor in common
there exists an (x, y)-better edge-labeling.

Let G1 be a graph whose vertex set is {v1, v2, v3, v4, w, y1, y2} and whose edge
set is

⋃4
i=1{(w, vi)} ∪ {(v1, y1), (v2, y1), (v3, y2), (v4, y2)} ∪ {y1, y2} (See Figure 5.4.).

Lemma 14. G1 is friendly.

Proof. Let φ be the edge-labeling of G1 in Figure 5.4. Then φ is good.
Let us now prove that for every pair p = (a, b) of two distinct non-adjacent

vertices a and b in G1 such that a and b have at most one common neighbor, there
is a better (a, b)-edge-labeling of G1.

First, observe that the vertex w of G1 cannot be in such a pair because, for any
other vertex of G1, either w is adjacent to it or they have two common neighbors.

Suppose now that the vertex y1 ∈ p. Then the other vertex of p must be v3
or v4. But φ is (v3, y1)-better and (y1, v4)-better, and so −φ is (y1, v3)-better and
(v4, y1)-better. Hence in any case, there is a better p-edge-labeling of G1.

By symmetry, if y2 is a vertex of p, there exists a p-better edge-labeling.
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Suppose that v1 ∈ p. Then the other vertex of p is v3 or v4. φ is (v1, v4)-better
and exchanging the labels of y2v3 and y2v4 and also the labels of v3w and v4w we
obtain a (v1, v3)-better edge-labeling φ′. Thus −φ′ and −φ are respectively (v3, v1)-
better and (v4, v1)-better. Hence in any case, there is a better p-edge-labeling of
G1.

By symmetry, if v2, v3 or v4 is a vertex of p, there exists a p-better edge-
labeling.

Proposition 12. Let G be a graph obtained from a graph H by a B-operation on
some edge uv. If H is friendly then G is friendly.

Proof. Let w1, w2 be the vertices created by the B-operation. Let x and y be two
non-adjacent vertices of G having at most one neighbor in common. Then |{x, y} ∩
{w1, w2}| ≤ 1.

• Suppose �rst that {x, y}∩{w1, w2} = ∅. Then x and y are not adjacent in H.

Assume �rst that x and y have at most one common neighbor inH. Let φ be an
injective integer-valued (x, y)-better edge-labeling of H such that φ(uv) = 0.
Then φ0 is a good edge-labeling of G by Proposition 11-(i). Moreover it is
easy to check that there is no increasing (x, y)-path in G. Hence φ0 is an
(x, y)-better edge-labeling of G.

Assume now that x and y have two common neighbors in H. As they do not
have two common neighbors in G, we can suppose w.l.o.g. that x = u and
N(x) ∩N(y) = {v, w}, for some vertex w. Let φ be a real-valued good edge-
labeling of H. Free to consider −φ, we may assume that uvy is an increasing
path. Hence inH\uv there is no increasing (u, y)-path. By Proposition 11-(ii),
φ∞ is a good edge-labeling of G. Moreover it is an (x, y)-better edge-labeling,
because there is no increasing (u, y)-path in H \ uv and the unique increasing
paths containing w1 and w2 are uw2 and uw2v.

• Suppose now that |{x, y} ∩ {w1, w2}| = 1. Without loss of generality, we may
assume that x = w1 and y is not adjacent to v.

Assume �rst that v and y have at most one common neighbor in H. Let φ
be a (v, y)-better edge-labeling of H. By Proposition 8, we may assume that
φ is real-valued. By Proposition 11-(ii), φ∞ is a good edge-labeling of G.
Moreover, there is no increasing (w1, y)-path, through u since φ(uw1) = +∞,
nor through v since there is no increasing (v, y)-path in H. Hence φ∞ is a
(w1, y)-better edge-labeling of G.

Assume now that v and y have two common neighbors in H.

� Suppose that y is adjacent to u. Let φ be an injective integer-valued good
edge-labeling of H such that φ(uv) = 0. Free to consider −φ, we may
assume that φ(uy) < 0 and so φ(uy) ≤ −1. By Proposition 11-(i), φ0

is a good edge-labeling of G. Moreover it has no increasing (w1, y)-path
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and so is (w1, y)-better. Indeed suppose for a contradiction that there is
an increasing (w1, y)-path P :

∗ If u is the second vertex of P then P−w1 is an increasing (u, y)-path.
Since φ(uy) ≤ −1, P −w1 is not (u, y). So P −w1 and (u, y) are two
increasing (u, y)-paths in H a contradiction.

∗ If v is the second vertex of P then the path Q in H obtained from P

by replacing w1 with u is an increasing (u, y)-path because the labels
of the edges of P − w1 are positive. Thus Q and (u, y) are distinct
increasing (u, y)-paths, a contradiction.

� Suppose that y is not adjacent to u. Let t1 and t2 be the two com-
mon neighbors of v and y. Let φ be an injective integer-valued good
edge-labeling of H such that φ(uv) = 0. Without loss of generality, we
may assume that (v, t1, y) is increasing and (v, t2, y) is decreasing. By
Observation 1, φ(vt1) < φ(vt2). Thus, if φ(vt1) > 0 then φ(vt2) > 0.
So with respect to −φ, (v, t2, y) is increasing and −φ(vt2) < 0. Hence,
free to consider −φ (and swap the names of t1 and t2), we may assume
that φ(vt1) < 0 and so φ(vt1) ≤ −1. By Proposition 11-(i), φ0 is a
good edge-labeling of G. Moreover it has no increasing (w1, y)-path and
so is (w1, y)-better. Indeed suppose for a contradiction that there is a
increasing (w1, y)-path P :

∗ If v is the second vertex of P then P − w1 is an increasing (v, y).
Since φ(vt1) ≤ −1, P−w1 is not (v, t1, y). So there are two increasing
(v, y)-paths in H, a contradiction.

∗ If u is the second vertex of P then the path P ′ in H obtained from P

by replacing w1 with v is an increasing (v, y)-path because the labels
of the edges of P − w1 are positive. P ′ is distinct from (v, t1, y), a
contradiction.

One can now generalize Lemma 13.

Lemma 15. Let G be a 2-connected ABC-graph with an odd number of vertices. If
G /∈ {C3,K2,3} then G is friendly.

Proof. Similarly as in the proof of Lemma 13, combining Lemma 14 and Proposi-
tion 12 yield the result by induction.

Corollary 14. Every {C3,K2,3}-free ABC-graph with an odd number of vertices is
friendly.

Proof. Let x and y be two non-adjacent vertices of G having at most one common
neighbor.

Assume �rst that x and y are in a same connected 2-component C. By
Lemma 15, C has an (x, y)-better edge-labeling and, by Corollary 13, G \ E(C)
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has a good edge-labeling. The union of these two edge-labelings is clearly an (x, y)-
better labeling of G.

Suppose now that the 2-connected components containing x do not contain y.
Let G1 be the graph induced by the union of the 2-connected components containing
x and G2 = G \ E(G1). By Corollary 13, the two graphs G1 and G2 admit good
edge-labelings φ1 and φ2, respectively. Free to add a huge number to all the labels
of φ1, we may assume that min{φ1(e) | e ∈ E(G1)} > max{φ2(e) | e ∈ E(G2)}.
Then the union of φ1 and φ2 is an (x, y)-better labeling of G.

Lemma 16. Let G be a 2-connected ABC-graph with an even number of vertices.
If G is {C3,K2,3}-free, then G is good.

Proof. We prove this lemma by induction on the number of vertices (or equivalently
the number of A-, B- or C-operations). An even ABC-graph is obtained from K1

with a sequence of A- and B-operations and exactly one C-operation. Since G is
2-connected, no A-operation can be made after a C-operation. Consider a sequence
of operations such that the C-operation is done as late as possible. Let u and v be
the vertices on which the C-operation is done and w the introduced vertex.

• Suppose that the C-operation is the ultimate one. Note that u 6= v since G has
no multiple edges. Since G is {C3,K2,3}-free then u and v are not adjacent
and u and v have at most one neighbor in common. Hence by Corollary 14,
G−w admits a (u, v)-better edge-labeling φ (in R). Setting φ(uw) = −∞ and
φ(wv) = +∞ we obtain a good edge-labeling of G.

• If the C-operation is the penultimate one, then it is followed by a B-operation
on one of the introduced edges, because the C-operation is applied as late as
possible and G is C3-free. These two operations together may be seen as a
single one on u and v that introduces the vertices t1, t2 and w and the edges
ut1, ut2, t1w, t2w and wv.

Note that u and v are not adjacent since G is K2,3-free. Assume �rst that u
and v have at most one neighbor in common. By Corollary 14, G−{t1, t2, w}
admits a (u, v)-better edge-labeling φ. Let M be the maximum value of φ.
Then setting φ(ut1) = φ(t2w) = −∞, φ(ut2) = φ(t1w) = M + 1 and φ(vw) =

M + 2, we obtain a good edge-labeling of G.

Assume now that u and v have at least two common neighbors. Since G is
K2,3-free, then u and v have exactly two common neighbors x1 and x2. By
Corollary 13, G−{t1, t2, w} admits a good edge-labeling φ. By Proposition 8,
we may assume that φ is injective and real-valued. Without loss of generality,
we may suppose that φ(vx1) > φ(vx2). Let us set φ(ut1) = φ(t2w) = +∞,
φ(ut2) = φ(t1w) = −∞ and φ(vw) = 1

2(φ(vx1)+φ(vx2)). We claim that φ is a
good edge-labeling ofG. Indeed suppose, by way of contradiction, that it is not
the case. Then there exist two vertices a and b and two independent increasing
(a, b)-paths P1 and P2. Since φ is a good edge-labeling of G − {t1, t2, w} one
of these two paths, say P1 must go through w. Moreover since φ(t1w) = −∞
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and φ(t2w) = +∞ and d(w) = 3, then either wt1 (or t1w) is the �rst edge of
P1 or t2w (or wt2) is the last edge of P1. Free to consider −φ instead of φ, we
may assume that we are in the �rst case.

Two cases may occur. Either (a) P1 starts in t1 or (b) P1 starts in w.

(a) In this case, P2 = (t1, u) and the third vertex of P1 is v. Then Q1 =

P1 − {t1, w} is an increasing (v, u)-path. So by Observation 1 and the
assumption that φ(vx1) > φ(vx2), Q1 = vx2u (We recall the reader that
another increasing (v, u)-path not going through x2 cannot exist as φ is
a good edge-labeling of G− {t1, t2, w}). This is a contradiction because
φ(wv) > φ(vx2).

(b) In this case, P1 = (w, t1, u), because φ(ut1) = +∞. Now the �rst edge of
P2 is wv. Hence Q2 = P2 −w is an increasing (v, u)-path and vx2 is not
the �rst edge of Q2 since φ(wv) > φ(vx2). Note that by Observation 1,
vx2u is increasing because φ(vx1) > φ(vx2). So, in G− {t1, t2, w}, there
are two distinct increasing (v, u)-paths. This contradicts the fact that φ
is a good edge-labeling of G− {t1, t2, w}.

• If there are exactly two B-operations after the C-operation, and if u and v are
not adjacent then by the induction hypothesis and Corollary 12, G has a good
edge-labeling. If u and v are adjacent, then uv is a K2-cut. Let C1 be the
component of G−{u, v} containing w (i.e., the set of vertices added with the
C-operation and the following B-operations). Let G1 = G〈C1 ∪ {u, v}〉 and
G2 = G〈V (G) \ C1〉. Note that G1 is obtained from a triangle by performing
two B-operations and thus is the graph G1 depicted Figure 5.4 which has a
good edge-labeling. Similarly, G2 is the graph G taken before performing the
C-operation has a good edge-labeling. Hence by Lemma 10, G has a good
edge-labeling.

• If there are at least three B-operations after the C-operation, then by the
induction hypothesis and Corollary 12, G has a good edge-labeling.

Lemma 13 and Lemma 16 imply that every 2-connected {C3,K2,3}-free ABC-
graph is good. Since 2-connected components of an ABC-graph are ABC-graphs,
we have the following.

Corollary 15. Every {C3,K2,3}-free ABC-graph is good.

In turn, this corollary, together with Corollary 7, Theorems 15 and 16, yield the
following.

Theorem 17. Let G be a critical graph. If G /∈ {C3,K2,3} then |E(G)| ≥ 3
2 |V (G)|−

1
2 .
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5.6 Conclusions and further research

We have shown that it is NP-complete to decide if a graph has a good edge-labeling,
even for the class of bipartite graphs. It would be nice to �nd large classes of graphs
for which it is polynomial-time decidable. For graphs with treewidth 1, which are
the forests, it is the case. But is it also the case for graphs with treewidth at most
k?

Problem 1. Let k ≥ 2 be a �xed integer. Does there exist a polynomial-time
algorithm that decides if a given graph of treewidth at most k has a good edge-
labeling?

We also do not know what is the complexity of the problem when restricted to
planar graphs.

Problem 2. Does there exist a polynomial-time algorithm that decides if a given
planar graph has a good edge-labeling?

We do not even know if there are planar critical graphs distinct from C3 and
K2,3.

Problem 3. Does there exist a {C3,K2,3}-free planar graph which is bad?

If there is no such graphs or only a �nite number of them then the answer to
Problem 2 will be yes.

Corollary 11 implies that, with the additional condition of girth at least 6, the
answer to Problem 3 is no. It would be nice to solve the above problems for planar
graphs of smaller girth. In particular, we do not know if there is a planar graph
with girth 5 which is bad.

Problem 4. Does every planar graph of girth at least 5 have a good edge-labeling?

Bonsma [Bon09] showed that it is NP-complete to decide if a planar graph of
girth at least 5 has a matching-cut. In particular, there are in�nitely many planar
graphs of girth at least 5 without matching-cut. However, for all such graphs we
looked at, we were able to �nd a good edge-labeling.

The average degree of a graph G is Ad(G) =
P

v∈V (G) d(v)

|V (G)| = 2|E(G)|
|V (G)| .

Theorem 17 implies that for any c < 3 there is a �nite number of critical graphs
with average degree at most c. Actually, we conjectured that the only ones are C3

and K2,3.

Conjecture 2. Let G be a critical graph. Then Ad(G) ≥ 3 unless G ∈ {C3,K2,3}.

However, the authors of [BFT11] recently communicated us that they found a
counter-example for Conjecture 2 that is depicted in Figure 5.5.

More generally for any c < 4, we conjecture the following.
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Figure 5.5: Counter-example for Conjecture 2.

Conjecture 3. For any c < 4, there exists a �nite list of graphs L such that if G
is a critical graph with Ad(G) ≤ c then G ∈ L.

The constant 4 in the above conjecture would be tight. Indeed, for all k, the
graph J2,2,k de�ned in Section 5.2 is critical: it is bad according to Proposition 10.
Moreover one can easily show that for any edge e, Hk \ e has a good edge-labeling
with no (u, v)-increasing path and no (v, u)-increasing (just follow the constraint as
in the proof of Proposition 9). Extending this labeling by labeling the two H2 with
−∞ and +∞ such that one of them is an increasing (u, v)-path and the other one
an increasing (v, u)-path we obtain a good edge-labeling of J2,2,k \ e. Furthermore
Ad(J2,2,k) = 8k+8

2k+4 = 4 − 4
k+2 . Last, one can easily see that if k 6= k′ then J2,2,k is

not a subgraph of J2,2,k′ .

Theorem 17 says that if a graph has no dense subgraphs then it has a good edge-
labeling. On the opposite direction one may wonder what is the minimum density
ensuring a graph to be bad. Or equivalently,

Problem 5. What is the maximum number g(n) of edges of a good graph on n

vertices?

Clearly we have g(n) = ex(n, C) where C is the set of critical graphs. As K2,3 is
critical then g(n) ≤ ex(n,K2,3) = 1√

2
n3/2 +O(n4/3) by a result of Füredi [Für96].

The hypercubes show that g is super-linear. Indeed the hypercubeHk is obtained
from two disjoints copies ofHk−1 by adding a perfect matching between them. Hence
an easy induction and Lemma 11 shows that Hk has a good edge-labeling. Since
Hk has 2k vertices and 2k−1k edges, g(2k) ≥ 2k−1k, so g(n) ≥ 1

2n log n.
Some works were recently published with further results on good edge-

labeling [BFT11, Meh11]. They show some advances related to Conjecture 2 and
Problem 5.
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A classical example of convexity is the one de�ned in Euclidean spaces. In an
Euclidean space E, a set S ⊆ E is said convex if for any two points x and y of S,
[x, y] ⊆ S, i.e., the set of points lying in the straight line segment between x and y
also belongs to S. Note that if two convex sets X,Y ⊆ E contain a given set S ⊆ E
of points, then their intersection X ∩ Y is also a convex set of E containing S.
Hence, we can de�ne the convex hull of S as the minimum convex set that contains
S. Reciprocally, given a convex set S of E, a hull set of S is any subset S′ of S
such that S is the convex hull of S′. A naive way to compute the convex hull H of
a set S consists in starting with H = S and, while it is possible, adding [x, y] to H
for any x, y ∈ H. However there exist more e�cient algorithms. For instance, for
any set S of a d-dimensional euclidean space, the gift wrapping algorithm computes
the convex hull and a minimum hull set of S in polynomial-time in the size of S
(d being �xed). For more results concerning the convexity in Euclidean spaces, we
refer to [Roc70].

In order to capture the abstract notion of convexity, [FJ86] de�nes an alignment
over a set X as a family C of subsets of X that is closed under intersection and
that contains both X and the empty set. The members of C are called the convex
sets of X. The pair (X, C) is then called an aligned space. An example of aligned
space (E, C) is the one where E is an euclidean space and C = {H ⊆ E : ∀x, y ∈

H, [x, y] ⊆ H}. Given an aligned space (X, C), the de�nitions of convex hull and
hull set are generalized as follows. For any S ⊆ X, the convex hull of S is the
smallest member of C containing S. For any S ∈ C, a hull set of S is a set S′ ⊆ S

such that S is the convex hull of S′.
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Various notions of convexity can be de�ned in graphs as speci�c alignments over
the set of vertices. This chapter is devoted to the study of the geodetic convexity
of graphs. Let G = (V,E) be a connected undirected graph. For any u, v ∈ V , let
the closed interval I[u, v] of u and v be the the set of vertices that belong to some
shortest (u, v)-path. The closed interval of a set of vertices can be seen as an analog
to segments in Euclidian spaces. For any S ⊆ V , let I[S] =

⋃

u,v∈S I[u, v]. A subset
S ⊆ V is geodesically convex if I[S] = S. In this chapter convexity refers to the
geodesical variant. In other words, a subset S is convex if, for any u, v ∈ S and
for any shortest (u, v)-path P , V (P ) ⊆ S. That is, the geodetic convexity can be
de�ned as the alignment C over V where C = {S ⊆ V : I[S] = S}.

Given a subset S ⊆ V , the convex hull Ih[S] of S is the smallest convex set
that contains S. We say that S is a hull set of G if Ih[S] = V . That is, S is a
hull set of G if, starting from the vertices of S and successively adding in S the
vertices in some shortest path between two vertices in S, we eventually obtain V .
The size of a minimum hull set of G is the hull number of G, denoted by hn(G).
The Hull Number problem is to decide whether hn(G) ≤ k, for a given graph
G and an integer k [ES85]. This problem is known to be NP-complete in general
graphs [DGK+09]. In this chapter, we consider the problem of the complexity to
compute minimum hull set of a graph in several graph classes.

Our results. We �rst answer an open question of Dourado et al. [DGK+09] by
showing that the Hull Number problem is NP-hard even when restricted to the
class of bipartite graphs (Section 6.2). Then, we design polynomial time algorithms
to solve the Hull Number problem in several graph classes. In Section 6.3, we deal
with the class of complements of bipartite graphs. In Section 6.4 we generalize some
results in [ACG+11b] to the class of (q, q − 4)-graphs. Section 6.5 is devoted to the
class of cacti. Finally, we prove tight upper bounds on the hull number of graphs
in Section 6.6. In particular, we show that the hull number of an n-node graph G
without simplicial vertices is at most 1 + ⌈3(n−1)

5 ⌉ in general, at most 1 + ⌈n−1
2 ⌉ if

G is regular or has no triangle, and at most 1 + ⌈n−1
3 ⌉ if G has girth at least 6.

Related work. In the seminal work [ES85], the authors present some upper and
lower bounds on the hull number of general graphs and characterize the hull number
of some particular graphs. The corresponding minimization problem has been shown
to be NP-complete [DGK+09]. Dourado et al. also proved that the hull number
of unit interval graphs, cographs and split graphs can be computed in polynomial
time [DGK+09]. Bounds on the hull number of triangle-free graphs are shown
in [DPRS10]. The hull number of the cartesian and the strong product of two
connected graphs is studied in [CCJ04, CHM+10]. In [HJM+05], the authors have
studied the relationship between the Steiner number and the hull number of a given
graph. An oriented version of the Hull Number problem is studied in [CFZ03,
Far05].

Other parameters related to the geodetic convexity have been studied in [CHZ02,
CWZ02]. Variations of graph convexity have been further proposed and studied. For
instance, themonophonic convexity that deals with induced paths instead of shortest
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paths is studied in [FJ86, DPS10]. Another example is the P3-convexity where just
paths of order three are considered [FJ86, CM99]. Other variants of graph convexity
and other parameters are mentioned in [CMS05].

6.1 Preliminaries

Otherwise stated, all graphs considered in this work are simple, undirected and
connected. Let G = (V,E) be a graph. Given a vertex v ∈ V , N(v) denotes the
(open) neighborhood of v, i.e., the set of neighbors of v. Let N [v] = N(v) ∪ {v}

be the closed neighborhood of v. A vertex v is universal if N [v] = V . A vertex is
simplicial if N [v] induces a complete subgraph in G. Finally, a subgraph H of G is
isometric if, for any u, v ∈ V (H), the distance distH(u, v) between u and v in H
equals distG(u, v).

This section is devoted to basic lemmas on hull sets. These lemmas will serve as
cornerstone of most of the results presented in this chapter.

Lemma 17 ([ES85]). For any hull set S of a graph G, S contains all simplicial
vertices of G.

Lemma 18 ([DGK+09]). Let G be a graph which is not complete. No hull set of G
with cardinality hn(G) contains a universal vertex.

Lemma 19 ([DGK+09]). Let G be a graph, H be an isometric subgraph of G and
S be any hull set of H. Then, the convex hull of S in G contains V (H).

Lemma 20 ([DGK+09]). Let G be a graph and S a proper and non-empty subset
of V (G). If V (G)\S is convex, then every hull set of G contains at least one vertex
of S.

6.2 Bipartite graphs

In this section, we answer an open question of Dourado et al. [DGK+09] by showing
that the Hull Number Problem is NP-complete in the class of bipartite graphs. Since
the Hull Number Problem is in NP, as proved in [DGK+09], it only remains to prove
the following theorem:

Theorem 18. The Hull Number problem is NP-hard in the class of bipartite
graphs.

Proof. To prove this theorem, we adapt the proof presented in [DGK+09]. We
reduce the 3-SATis�ability Problem to the Hull Number problem in bipartite
graphs. Let us consider the following instance of 3-SAT. Given a formula in the
conjunctive normal form, let F ={C1, C2, . . . , Cm} be the set of its 3-clauses and
X ={x1, x2, . . . , xn} the set of its boolean variables. We may assume that m = 2p,
for a positive integer p ≥ 1, since it is possible to add dummy variables and clauses
without changing the satis�ability of F and such that the size of the instance is
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Figure 6.1: Subgraph of the bipartite instance G(F) containing the gadget of a
variable xi that appears positively in clauses C1 and C2, and negatively in C8. If xi

appears positively in Cj , link a5
i to cj through yj

i . If it appears negatively, we use
b5i instead of a5

i .

at most twice the size of the initial instance. Moreover, we also assume, without
loss of generality, that each variable xi and its negation appear at least once in F
(otherwise the clauses where xi appeared could always be satis�ed).

Let us construct the bipartite graph G(F) as follows. First, let T be a full
binary tree of height p rooted in r with m = 2p leaves, and let L ={c1, c2, . . . , cm}
be the set of leaves of T . We then construct a graph H as follows. First, let us
add a vertex u that is adjacent to every vertex in L. Then, any edge {u, v} ∈ E(T )

with u the parent of v is replaced by a path with 2h(v) edges, where h(v) is the
distance between v and any of its descendent leaves. Note that, in H, the distance
between r and any leaf is

∑p−1
i=0 2i = 2p − 1 = m − 1. Moreover, it is easy to see

that |V (H)| = O(m · logm).
The following claims are proved in [DGK+09].

Claim 3. Let v, w ∈ V (T )\{r}. The closed interval of v, w in H contains the
parents of v in T if and only if v and w are siblings in T .

Claim 4. The set L is a minimal hull set of H.

Then, let H ′ be obtained by adding a one degree vertex u′ adjacent to u in H.
Finally, we build a graph G(F) from H ′ by adding, for any variable xi, i ≤ n, the
gadget de�ned as follows.

Let us start with a cycle {a1
i , a

2
i , v

1
i , b

2
i , b

1
i , b

3
i , b

4
i , v

2
i , a

4
i , a

3
i } plus the edge {v

2
i , v

1
i }.

Then, add the vertex v3
i as common neighbor of v2

i and u. Add a neighbor b5i (resp.,
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a5
i ) adjacent to b

3
i (resp., a3

i ) and a path of length 2h(r) − 3 = m− 3 edges between
b5i (resp., a5

i ) and r. Let D be the set of internal vertices of all these 2n paths
between a5

i , resp., b
5
i , and r, i ≤ n. Finally, for any clause Cj in which xi appears,

if xi appears positively (resp., negatively) in Cj then add a common neighbor yj
i

between cj and a5
i (resp., b5i ). See an example of such a gadget in Figure 6.1. Note

that |V (G(F))| = O(m · (n+ logm)).

Lemma 21. G(F) is a bipartite graph.

Proof. Let us present a proper 2-coloring c of G(F). Let c(r) = 1, and for each
vertex w in V (H), de�ne c(w) as 1 if w is in an even distance from r, and 2 otherwise.
Clearly, c is a partial proper coloring of G(F) and moreover we have c(u) = 1 and
c(cj) = 2, for any j ∈{1, . . . ,m} (Indeed, any ci is at distance m − 1 (odd) of r in
H). Let c(u′) = 2. For every i ∈{1, . . . , n} and for any j such that xi ∈ Cj , let
c(yj

i ) = 1. For any i ≤ n, for any x ∈ {b5i , a
5
i , v

3
i , b

4
i , a

4
i , b

1
i , v

1
i , a

1
i }, c(x) = 2.

c(b5i ) = c(a5
i ) = c(v3

i ) = 2. Again, this partial coloring of G(F)

is proper. One can easily verify that this coloring can be extended to
{a1

i , a
2
i , v

1
i , b

2
i , b

1
i , b

3
i , b

4
i , v

2
i , a

4
i , a

3
i } for any i ≤ n. Moreover, since c(r) = 1 and

c(a5
i ) = 2 (c(b5i ) = 2), for every i ∈{1, . . . , n}, and since the path that we add in

G(F) between r and a5
i (b5i ) is of odd length m− 3, one can completely extend c in

order to get a proper 2-coloring of G(F). ⋄

Claim 5. The set V (G(F))\{a1
i , a

2
i , v

1
i , b

1
i , b

2
i } is convex, for any i ∈{1, . . . , n}.

Proof. Denote Wi ={a1
i , a

2
i , v

1
i , b

1
i , b

2
i }, for some i ∈ {1, . . . , n}, and W ′i =

{a3
i , b

3
i , v

2
i }. By contradiction, suppose that there exists an (x, y)-shortest path

containing a vertex of Wi, for some x, y ∈ V (G(F))\Wi. Observe that it implies
that that there are x′, y′ ∈ W ′i such that I[x′, y′] contains a vertex of Wi, since W ′i
contains all the neighbors of Wi in V (G(F))\Wi. However, it is easy to verify that
for any pair x, y ∈W ′i , I[x, y] contains no vertex of Wi. This is a contradiction. ⋄

Lemma 22. hn(G(F)) ≥ n+ 1.

Proof. Let S be any hull set of G(F). Clearly u′ ∈ S, because u′ is a simplicial vertex
of G(F) (Lemma 17). Furthermore, Claim 5 and Lemma 20 imply that S must
contain at least one vertex wi of the set {a1

i , a
2
i , v

1
i , b

1
i , b

2
i }, for every i ∈{1, . . . , n}.

Hence, |S| ≥ n+ 1. ⋄

The main part of the proof consists in showing:

Lemma 23. F is satis�able if and only if hn(G(F)) = n+ 1.

First, consider that F is satis�able. Given an assignment A that turns F true,
de�ne a set S as follows. For 1 ≤ i ≤ n, if xi is true in A add a1

i to S, otherwise
add b1i to S. Finally, add u′ to S. Note that |S| = n + 1. We show that S is a
hull set of G(F). First note that a5

i , cj ∈ I[a
1
i , u
′], for every clause Cj containing

the positive literal of xi. Similarly, observe that b5i , cj ∈ I[b
1
i , u
′], for every clause

Cj containing the negative literal of xi. Since A satis�es F , it follows L ⊆ Ih[S].
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Therefore, H being an isometric subgraph of G(F), Lemma 19 and Claim 5 imply
that V (H) ⊆ Ih[S]. Furthermore, the shortest paths between r and u have length
m, which implies that all vertices a5

i , b
5
i , y

j
i (i ≤ n) and all vertices in D are included

in Ih[S]. It remains to observe that Ih[a5
i , b

5
i , w, u

′], where w ∈ {a1
i , b

1
i }, contains the

variable subgraph of xi. Therefore we have that S is a hull set of G(F).
We prove the su�ciency by contradiction. Suppose that G(F) contains a hull

set S with n+ 1 vertices and that F is not satis�able.
Recall that, by Lemma 17, u′ ∈ S. For any i ≤ n, let Wi as de�ned in Claim 5.

Recall also that there must be a vertex wi ∈ Wi ∩ S, for any i ≤ n. Since v1
i ∈

I[u′, a1
i ], v

1
i ∈ I[u

′, b1i ], a
2
i ∈ I[u

′, a1
i ] and b

2
i ∈ I[u

′, b1i ], we can assume, without loss
of generality, that wi ∈ {a

1
i , b

1
i }, for every i ∈{1, . . . , n} (indeed, if wi ∈ {v

1
i , a

2
i }, it

can be replaced by a1
i , and if wi = b2i , it can be replaced by b1i ). Therefore S de�nes

the following truth assignment A to F . If wi = a1
i set xi to true, otherwise set xi to

false. As F is not satis�able, there exists at least one clause Cj not satis�ed by A.
Using the hypothesis that F is not satis�able, we complete the proof by showing

that there is a non empty set U such that V (G(F))\U is a convex set and U∩S = ∅.
That is, we show that Ih[S] ⊆ V (G(F))\U for some U 6= ∅, contradicting the fact
that S is a hull set.

For any clause Cj , let us de�ne the subset Uj of vertices as follows. Let Pj be
the path in T between cj and r, let Xj be the p vertices in V (T ) \ V (Pj) that are
adjacent to some vertex in Pj . Then, Uj is the union of the vertices that are either
in Pj or that are internal vertices of the paths resulting of the subdivision of the
edges {x, y} where x, y ∈ Pj ∪Xj . Another way to build the set Uj is to start with
the set of vertices of the (unique) shortest path between cj and r in H and then
add successively to this set, the vertices of V (H) \ (V (T ) ∪ {u}) that are adjacent
to some vertex of the current set.

Now, let U ′ = ∪j∈JUj where J is the (non empty) set of clauses that are not
satis�ed by A. Note that r ∈ U ′.

For any i ≤ n, let Zi be de�ned as follows. If wi = a1
i (xi assigned to true by A),

then Zi is the union of {bℓi : ℓ ≤ 5} with the set of the yk
i that are adjacent to b5i .

Otherwise, wi = b1i (xi assigned to false by A), then Zi is the union of {aℓ
i : ℓ ≤ 5}

with the set of the yk
i that are adjacent to a5

i .
Finally, let U = U ′ ∪ (

⋃

i≤n Zi) ∪D. In Figure 6.1, U is depicted by the white
vertices, assuming that clause C2 is false and that xi is set to false by A. Observe
that U ∩ S = ∅.

It remains to prove that V (G(F))\U is a convex set. Consider the partition
{A1, A2, A3} of V (G(F))\U where A1 = V (H)\(U ∪ {u}), A2 ={u, u′} and A3 =

V (G(F))\(U ∪ A1 ∪ A2). To prove that V (G(F))\U is convex, let w ∈ Ai and
w′ ∈ Aj for some i, j ∈ {1, 2, 3}. We show that I[w,w′]∩U = ∅ considering di�erent
cases according to the values of i and j. Recall that V (H) \ {u} induces a tree T ′

rooted in r and that, if a vertex of T ′ is in A1, then, by de�nition of U ′, all its
descendants in T ′ are also in A1 (i.e., if v ∈ U ∩ V (T ′), then all ancestors of v in T ′

are in U). It is important to note that, for any vertex v in A1, the shortest path in
G(F) from v to any leaf ℓ of T ′ is the path from v to ℓ in T ′ (in particular, such a
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shortest path does not pass through r and any vertices in D).

• The case i = j = 2, i.e., m,m′ ∈ {u, u′}, is trivial;

• First, let us assume that w ∈ A1 = V (H)\(U ∪ {u}) and w′ ∈ A2 = {u, u′}.
If w′ = u (resp., if w′ = u′) then Ih[w,w′] consists of the subtree of T ′ rooted
in w union u (resp., union u and u′). Hence, Ih[w,w′] ∩ U = ∅ because no
descendants of w in T ′ are in U .

• Second, let w,w′ ∈ A1. If one of them, say w, is an ancestor of the other in T ′,
then Ih[w,w′] consists of the path between them in T ′ (remember that r ∈ U so
w 6= r). Since no descendants of w in T ′ are in U , Ih[w,w′]∩U = ∅. Otherwise,
there are three cases: (1) either Ih[w,w′] consists of the path P between w and
w′ in T ′, or (2) Ih[w,w′] consists of the union of the subtree R of T ′ rooted in
w, the subtree R′ of T ′ rooted in w′ and u, or (3) Ih[w,w′] = R∪R′∪P ∪{u}.
Again, (R∪R′∪{u})∩U = ∅ because no descendants of w and w′ in T ′ are in
U . Hence, it only remains to prove that when P ⊆ Ih[w,w′] then P ∩ U = ∅.
It is easy to check that P ⊆ Ih[w,w′] only in the following case: there exist
x, y, z ∈ V (T ) such that x is the parent of y and z in T , and w (resp., w′)
is a vertex of the path resulting from the subdivision of {x, y} (resp., {x, z}).
In this case, it means that all clause-vertices that are descendants of y and z
are not in U . Therefore x /∈ U and hence no descendants of x are in U . In
particular, P ∩ U = ∅.

• Assume now that w ∈ A3. Let i ≤ n such that w belongs to the gadget Gi

corresponding to variable xi. Let us assume that wi = b1i . The case wi = a1
i

can be handled in a similar way by symmetry. Then, by de�nition, U contains
{a1

i , · · · , a
5
i } and the yj

i 's adjacent to a
5
i . With this setting, xi is set to false

in the assignment A. If there is a vertex yj
i adjacent to b5i , let Cj be the other

neighbor of jj
i . By de�nition, it means that clause Cj contains the negation

of variable xi. Since xi is set to false, it means that clause Cj is satis�ed and
so Cj /∈ U .

Let x ∈ V (Gi) \ U . Then, any shortest path P from w to x either passes
through V (Gi) \ U or, there is yj

i adjacent to b5i such that P passes through
yj

i , Cj , u and v3
i (the latter case may occur if a ∈ {yj

i , b
5
i } and b = v3

i , or a = yj
i

and b ∈ {v3
i , v

2
i } where {a, b} = {x,w}). Hence, such a path P avoid U , and

the result holds if x = w′ ∈ A3 ∩Gi.

Similarly, if x ∈ {u, u′}, then, any shortest path P from w to x either passes
through V (Gi) \ U or through yj

i , Cj , u with yj
i adjacent to b5i . In particular,

if x = w′ ∈ {u, u′} = A2, then the result holds.

Now, let x = Cj′ be a leaf of T ′ that is not in U . Then, any shortest path P
from w to x either passes through u or through yj

i , Cj and, if j 6= j′, through
u. In any case, P avoids U . If w′ ∈ A3 \ Gi, any path between w and w′

passes through u or through one or two leaves that are not in U . Finally, if
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w′ ∈ A1, let R be the subtree of T ′ rooted in w′. V (R) ⊆ Ih[w,w′]. Moreover,
any shortest path from w to w′ path through a leaf of R, i.e., a leaf not in U .
By previous remarks, in all these cases, the shortest paths between w and w′

avoid u, and Ih[w,w′] are disjoint from U .

We conclude this section by showing one approximability result. Let IG(G) be
the incidence graph of G, obtained from G by subdividing each edge once. That is,
let us add one vertex suv, for each edge uv ∈ E(G), and replace the edge uv by the
edges usuv, suvv.

Proposition 13. hn(IG(G)) ≤ hn(G) ≤ 2hn(IG(G)).

Proof. Let IG(G) be the incidence graph of G. Observe that any hull set of G
is a hull set of IG(G), since for any shortest path, P = {v1, . . . , vk} in G there
is a shortest path P ′ = {v1, sv1v2 , v2, . . . , svk−1vk

, vk} in IG(G) (the edges were
subdivided). Consequently, hn(IG(G)) ≤ hn(G). However, given a hull set Sh

of IG(G), one may �nd a hull set of G by simply replacing each vertex of Sh that
represents an edge ofG by its neighbors (vertices ofG). Thus, hn(G) ≤ 2hn(IG(G)).

Corollary 16. If there exists a k-approximation algorithm B to compute the hull
number of bipartite graphs, then B is a 2k-approximation algorithm for any graph.

6.3 Complement of bipartite graphs

A graph G = (V,E) is a complement of a bipartite graph if there is a partition
V = A ∪ B such that A and B are cliques. In this section, we give a polynomial-
time algorithm to compute a hull set of G with size hn(G). We start with some
notations.

Given the partition (A,B) of V , we say that an edge uv ∈ E is a crossing-edge if
u ∈ A and v ∈ B. Denote by S the set of simplicial vertices of G, by SA = S∩A and
by SB = S ∩ B. Let U be the set of universal vertices of G. Note that, if G is not
a clique, U ∩ S = ∅. Let H be the graph obtained from G by removing the vertices
in S and U , and removing the edges intra-clique, i.e., V (H) = V \ (U ∪ S) and
E(H) = {{u, v} ∈ E : u ∈ A ∩ V (H) and v ∈ B ∩ V (H)}. Let C = {C1, · · · , Cr}

(r ≥ 1) denote the set of connected components Ci of H. Observe that, if G is
neither one clique nor the disjoint union of A and B, H is not empty and each
connected component Ci has at least two vertices, for every i ∈ {1, . . . , r}. Indeed,
any vertex in A \ SA (resp., in B \ SB) has a neighbor in B ∩ V (H) (resp. in
A ∩ V (H)).

Theorem 19. Let G = (A ∪ B,E) be the complement of a bipartite n-node graph.
There is an algorithm that computes hn(G) and a hull set of this size in time O(n7).
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Proof. We use the notations de�ned above. Recall that, by Lemma 17, S is contained
in any hull set of G. In particular, if G is a clique or G is the disjoint union of two
cliques A and B, then hn(G) = n. From now on, we assume it is not the case. By
Lemma 18, no vertices in U belong to any minimal hull set of G. Now, several cases
have to be considered.

Claim 6. If U = ∅, SA 6= ∅ and SB 6= ∅, then S is a minimum hull set of G and
thus hn(G) = |S|.

Proof. Since G has no universal vertex, a simplicial vertex in SA (in SB) has no
neighbor in B (resp., in A). Since G is not the disjoint union of two cliques, every
vertex u ∈ A\SA has a neighbor v ∈ B\SB and vice-versa. Thus, sauvsb is a
shortest (sa, sb)-path, for any sa ∈ A and sb ∈ B, and then u, v ∈ Ih[S].

Hence, from now on, let us assume that U 6= ∅ or, w.l.o.g., SB = ∅.
Again, if there is some simplicial vertex in G, i.e., if SA 6= ∅, all the vertices of

S belong to any hull set of G and thus hn(G) ≥ |S|. In fact, for each connected
component of H, we prove that it is necessary to choose at least one of its vertices
to be part of any hull set of G.

Claim 7. If U 6= ∅ or SB = ∅ or SA = ∅, then hn(G) ≥ |S|+ r.

Proof. Again, all vertices of S belong to any hull set of G. We show that, for any
1 ≤ i ≤ r, V \Ci is a convex set. Thus, by Lemma 20, any hull set of G contains at
least one vertex of Ci for any i ≤ r.

It is su�cient to show that no pair u, v ∈ V (G)\Ci can generate a vertex vi of Ci.
By contradiction, suppose that there exists a pair of vertices u, v ∈ V (G)\Ci such
that there is a shortest (u, v)-path P containing a vertex vi of Ci. Consequently,
u and v must not be adjacent and we consider that u ∈ A and v ∈ B. If U = ∅,
then, w.l.o.g., SB = ∅ and v is not simplicial and has at least one neighbor in A.
Hence, since U 6= ∅ or Sb = ∅, u and v are at distance two. Consequently, P = uviv.
However, if vi ∈ A, v belongs to Ci, because of the crossing edge viv, otherwise,
u ∈ Ci. In both cases we reach a contradiction.

Now, two cases remain to be considered. We recall that U 6= ∅ or SB = ∅.

1. If r ≥ 2, then hn(G) = |S| + r, and we can build a minimum convex hull by
taking the vertices in S, one arbitrary vertex in A ∩ Ci for all i < r and one
arbitrary vertex in B ∩ Cr.

Let R = {v1, . . . , vr} such that vi ∈ Ci ∩A for any i < r and vr ∈ Cr ∩B.

Claim 8. S ∪R is a hull set of G.

Proof. Since all vertices in U are generated by v1 and vr (that are not adjacent,
since they are in di�erent components), it is su�cient to show that S ∪ R
generates all the vertices in Ci, for any i ∈ {1, . . . , r}. Actually, we show that
R generates all the vertices in Ci.
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By contradiction, suppose that there is a vertex z /∈ Ih[R]. Let i ≤ r such that
z ∈ Ci. Because Ci contains one vertex in R and is connected, we can choose
z and w ∈ Ci ∩ Ih[R] linked by a crossing edge. We will show that z ∈ Ih[R]

(a contradiction), hence, w.l.o.g., we may assume that z ∈ A. If i = r, then
v1zw is a shortest (v1, w)-path and z ∈ Ih[R].

Otherwise, recall that N(vr)∩A∩Cr 6= ∅ and, for any i < r, N(vi)∩B∩Ci 6= ∅

because vi is not simplicial for any i ≤ r. Let x ∈ N(vr) ∩ A ∩ Cr and
yi ∈ N(vi) ∩B ∩ Ci. Note that x ∈ Ih[R] because v1xvr is a shortest (vr, v1)-
path, and yi ∈ Ih[R] because viyivr is a shortest (vr, vi)-path. Hence, since
xzyi is a shortest (x, yi)-path, we have z ∈ Ih[R].

As |R| = r, we conclude by Claim 7 that hn(G) = |S|+ r.

2. If r = 1, then hn(G) ≤ |S| + 4, and any minimum convex hull contains at
most 4 vertices not in S.

Again, S is included in any hull set of G by Lemma 17, and no vertices in
U belong to some hull set by Lemma 18. In this case, when H has just one
connected component C1 = C, one vertex of C may not su�ce to generate
this component, as in the previous case. However, we prove that at most 4
vertices in C are needed.

(a) If SA 6= ∅ and SB 6= ∅ (and thus U 6= ∅ because Claim 6 applies other-
wise), then hn(G) = |S|+ 1.

By Claim 7, we know that hn(G) ≥ |S|+1. Let v be an arbitrary vertex of
C. We claim that S ∪ {v} is a minimum hull set of G. By contradiction,
let z /∈ Ih[S ∪ {v}]. Since C is a connected component of H, we may
choose z such that there is w ∈ N(z) ∩ C ∩ Ih[S ∪ {v}]. Moreover, we
may assume w.l.o.g. that z ∈ A, and thus w ∈ B. In that case, since
SA 6= ∅, there is vA ∈ SA and as vAw /∈ E(G) (indeed, any vertex in
N(vA) ∩ B must be universal because vA is simplicial, which is not the
case since w is not universal because it belongs to C), z is generated by
vA and w.

(b) If SA 6= ∅ and SB = ∅, then hn(G) ≤ |S|+ 2.

Let vA ∈ A ∩ C be such that |N(vA) ∩ B ∩ C| is maximum. Since vA is
not universal in G, there exists x ∈ B such that vAx /∈ E(G). Note that
x ∈ C since x is not universal and SB = ∅. Let R = {vA, x}. Observe
that N(vA) ∩B ∩ C ⊆ Ih[R ∪ S] since vAx /∈ E.

By contradiction, assume V (G)\Ih[R ∪ S] 6= ∅. Let z ∈ V (G)\Ih[R ∪ S].
First, suppose that z ∈ A. Since C is connected in H, we may assume
that z has a neighbor w ∈ Ih[R ∪ S] ∩ B ∩ C. As SA 6= ∅, there is
v ∈ SA and as vw /∈ E(G) (because otherwise w would be universal
in G and not in C), z is generated by v and w. Now suppose that
z ∈ B, and now it has a neighbor w ∈ Ih[R ∪ S] ∩ A ∩ C. Observe that
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Ih[R ∪ S] ∩ B ⊆ N(w), otherwise z would be in Ih[R ∪ S]. However,
since N(vA) ∩ B ∩ C ⊂ (N(vA) ∩ B ∩ C)∪{x}⊆ Ih[R ∪ S] ∩ B, we get
that N(vA) ∩ B ∩ C ⊂ N(w) ∩ B ∩ C, contradicting the maximality of
|N(vA) ∩B ∩ C|.

(c) If SA = ∅ and SB = ∅, then hn(G) ≤ 4.

Let vA ∈ A∩C be such that |N(vA)∩B∩C| is maximum and vB ∈ B∩C

be such that |N(vB) ∩ A ∩ C| is maximum. Since vA is not universal in
G and SB = ∅, there exists y ∈ C ∩B \N(va), and similarly there exists
x ∈ C ∩ A \N(vB). Let R = {vA, vB, x, y}. Observe that N(vA) ∩ B ⊆

Ih[R] and N(vB) ∩A ⊆ Ih[R], since vAy /∈ E and vBx /∈ E.

By contradiction, assume V (G)\Ih[R] 6= ∅. Let z ∈ V (G)\Ih[R]. First,
suppose that z ∈ A. As in the previous case, since C is connected in
H, we may assume that z has a neighbor w ∈ Ih[R] ∩ B ∩ C. Observe
that Ih[R] ∩ A ∩ C ⊆ N(w), otherwise z would be in Ih[R]. However,
since N(vB) ∩ A ∩ C ⊂ (N(vB) ∩ A ∩ C)∪{x}⊆ Ih[R] ∩ A ∩ C, we get
that N(vB) ∩ A ∩ C ⊂ N(w) ∩ A ∩ C, contradicting the maximality of
|N(vB) ∩A ∩ C|.

Whenever z ∈ B, one can use the same arguments to reach a contradic-
tion on the maximality of |N(vA) ∩B ∩ C|.

Since |S| + 1 ≤ hn(G) ≤ |S| + 4, S is included in any hull set of G and no
vertices in U belong to some hull set, there exist a subset R of at most 4

vertices in C such that S ∪R is a minimum hull set of G. There are O(|V |4)

subsets to be tested and, for each one, its convex hull can be computed in
O(|V ||E|) time [DGK+09]. This leads to the announced result.

6.4 Graphs with few P4's

A graph G = (V,E) is a (q, q−4)-graph, for a �xed q ≥ 4, if for any S ⊆ V , |S| ≤ q,
S induces at most q − 4 paths on 4 vertices [BO95]. Observe that cographs and
P4-sparse graphs are the (q, q − 4)-graphs for q = 4 and q = 5, respectively. The
hull number of a cograph can be computed in polynomial time [DGK+09]. This
result is improved in [ACG+11b] to the class of P4-sparse graphs. In this section,
we generalize these results by proving that for any �xed q ≥ 4, computing the hull
number of a (q, q−4)-graph can be done in polynomial time. Our algorithm runs in
time O(2qn2) and is therefore a Fixed Parameter Tractable for any graph G, where
the number of induced P4's of G is the parameter.

6.4.1 De�nitions and brief description of the algorithm

The algorithm that we present in this section uses the canonical decomposition of
(q, q− 4)-graphs, called Primeval Decomposition. For a survey on Primeval Decom-
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position, the reader is referred to [BO99]. In order to present this decomposition of
(q, q − 4)-graphs, we need the following de�nitions.

Let G1 and G2 be two graphs. G1∪G2 denotes the disjoint union of G1 and G2.
G1 ⊕ G2 denotes the join of G1 and G2, i.e., the graph obtained from G1 ∪ G2 by
adding an edge between any two vertices v ∈ V (G1) and w ∈ V (G2). Recall that a
spider G = (S,K,R,E) is a graph with vertex set V = S ∪K ∪ R and edge set E
such that

1. (S,K,R) is a partition of V and R may be empty;

2. the subgraph G[K∪R] induced by K and R is the join K⊕R, and K separates
S and R, i.e., any path from a vertex in S to a vertex in R contains a vertex
in K;

3. S is a stable set, K is a clique, |S| = |K| ≥ 2, and there exists a bijection
f : S → K such that, either N(s) ∩K = K − {f(s)} for all vertices s ∈ S, or
N(s)∩K = {f(s)} for all vertices s ∈ S. In the latter case or if |S| = |K| = 2,
G is called thin, otherwise G is thick.

A graph G = (S,K,R,E) is a pseudo-spider if it satis�es only the �rst two
properties of a spider. A graph G = (S,K,R,E) is a q-pseudo-spider if it is a
pseudo-spider and, moreover, |S ∪K| ≤ q. Note that q-pseudo-spiders and spiders
are pseudo-spiders.

We now describe the decomposition of (q, q − 4)-graphs.

Theorem 20 ([BO95]). Let q ≥ 0 and let G be a (q, q− 4)-graph. Then, one of the
following holds:

1. G is a single vertex, or

2. G = G1 ∪G2 is the disjoint union of two (q, q − 4)-graphs G1 and G2, or

3. G = G1 ⊕G2 is the join of two (q, q − 4)-graphs G1 and G2, or

4. G is a spider (S,K,R,E) where G[R] is a (q, q − 4)-graph if R 6= ∅, or

5. G is a q-pseudo-spider (H2, H1, R,E) where G[R] is a (q, q−4)-graph if R 6= ∅.

Theorem 20 leads to a tree-like structure T (G) (the primeval tree) which repre-
sents the Primeval Decomposition of a (q, q − 4)-graph G. T (G) is a rooted binary
tree where any vertex v corresponds to an induced (q, q− 4)-subgraph Gv of G and
the root corresponds to G itself. Moreover, the vertices of subgraphs correspond-
ing to the leaves of T (G) form a partition of V (G), i.e., {V (Gℓ)}ℓ leaf of T (G) is a
partition of V (G).

For any leaf ℓ of T (G), Gℓ is either a spider (S,K, ∅, E), or has at most q
vertices. Moreover, any internal vertex v has its label following one of the four cases
in Theorem 20 corresponds to Gv. More precisely, let v be an internal vertex of
T (G) and let u and w be its two children. v is a parallel node if Gv = Gu ∪ Gw.
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v is a series node if Gv = Gu ⊕ Gw. v is a spider node if u is a leaf with Gu

is a spider (S,K, ∅, F ) and Gv is the spider (S,K,R,E) where Gv[R] = Gw and
Gv[S ∪K] = Gu. Finally, v is a small node if u is a leaf with |V (Gu)| ≤ q and Gv

is the q-pseudo-spider (S,K,R,E) where Gv[R] = Gw and Gv[S ∪K] = Gu.
This tree can be obtained in linear-time [BO99].
We compute hn(G) by a post-order traversal in T (G). More precisely, given

v ∈ V (T (G)), let Hv be an optimal hull set of Gv and let H∗v be an optimal hull
set of G∗v, the graph obtained by adding a universal vertex to Gv. We show in next
subsection that we can compute (Hℓ, H

∗
ℓ ) for any leaf ℓ of T (G) in time O(2qn).

Moreover, for any internal vertex v of T (G), we show that we can compute (Hv, H
∗
v )

in time O(2qn), using the information that was computed for the children and grand
children of v in T (G).

Theorem 21. Let q ≥ 0 and let G be a n-node (q, q − 4)-graph. An optimal hull
set of G can be computed in time O(2qn2).

Before going into the details of the algorithm in next subsection, we prove some
useful lemmas.

Lemma 24 ( [ACG+11b]). Let G = (S,K,R,E) be a pseudo-spider with R neither
empty nor a clique. Then any minimum hull set of G contains a minimum hull set
of the subgraph G[K ∪R].

Proof. Let H be a minimum hull set of G. Let HS = H ∩S and HR = H \HS . We
prove that HR is a minimum hull set of G[K ∪R].

Let H ′ be any minimum hull set of G[K ∪ R]. Note that H ′ ⊆ R because K is
a set of universal vertices in G[K ∪R] and by Lemma 18. Moreover, By Lemma 19,
because G[K∪R] is an isometric subgraph of G, the convex hull of H ′ in G contains
G[K ∪R]. Hence, HS ∪H

′ is a hull set of G and hn(G) ≤ |HS |+ hn(G[K ∪R]).
Now it remains to prove thatHR is a hull set of G[K∪R]. Clearly, ifHR generate

all vertices of R in G[K ∪ R] then HR is a hull set of G[K ∪ R] since there are at
least two non adjacent vertices in R and any vertex in K is adjacent to all vertices
in R. For purpose of contradiction, assume HR does not generate R in G[K ∪ R].
This means that there is a vertex v ∈ R, that is generated in G by a vertex in S∪K,
i.e., v ∈ R is an internal vertex of a shortest path between s ∈ S ∪ K and some
other vertex, which is not possible, since we have all the edges between K and R.
Hence, hn(G[K ∪R]) ≤ |HR|.

Therefore, |HS | + |HR| = hn(G) ≤ |HS | + hn(G[K ∪ R]) ≤ |HS | + |HR|. So,
hn(G[K ∪ R]) = |HR|, i.e., HR is a minimum hull set of G[K ∪ R] contained in
H.

The next lemma is straightforward by the use of isometry.

Lemma 25. Let G be a graph which is not complete and that has a universal vertex.
Let H obtained from G by adding some new universal vertices. A set is a minimum
hull set of G if, and only if, it is a minimum hull set of H.
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6.4.2 Dynamic programming and correctness

In this section, we detail the algorithm presented in previous section and we prove
its correctness. Let v ∈ V (T (G)), which may therefore be either a leaf, a parallel
node, a series node, a spider node or a small node. For each of these �ve cases, we
describe how to compute (Hv, H

∗
v ), in time O(2qn).

Let us �rst consider the case when v is a leaf of T (G).
If Gv is a singleton {w}, then Hv = V (Gv) = {w} and H∗v = V (G∗v). If Gv is a

spider (S,K, ∅, E) then Hv = S since S is a set of simplicial vertices (so it has to
be included in any hull set by Lemma 17) and it is su�cient to generate Gv. One
may easily check that if Gv is a thick spider, S is also a minimum hull set of G∗v,
i.e., S = H∗v . However, in case Gv is a thin spider, S does not su�ce to generate G∗v
and in this case it is easy to see that this is done by taking any extra vertex k ∈ K,
in which case we have H∗v = S ∪ {k}. Finally, if Gv has at most q vertices, Hv and
H∗v can be computed in time O(2q) by an exhaustive search.

Now, let v be an internal node of T (G) with children u and w.
If v is a parallel node, then Gv = Gu ∪Gw. Then, (Hv, H

∗
v ) can be computed in

time O(1) from (Hu, H
∗
u) and (Hw, H

∗
w) thanks to Lemma 26.

Lemma 26 ([DGK+09]). Let Gv = Gu∪Gw. Then (Hv, H
∗
v ) = (Hu∪Hw, H

∗
u∪H

∗
w).

Proof. The fact that Hu ∪Hw is an optimal hull set for Gv is trivial. The second
part comes from the fact that H∗u (resp., H∗w) is an isometric subgraph of H∗v and
from Lemma 19.

Now, we consider the case when v is a series node.

Lemma 27. If Gv = Gu ⊕ Gw, then (Hv, H
∗
v ) can be computed from the sets

(Hx, H
∗
x) of the children or grand children x of v in T (G), in time O(2qn).

Proof. If Gu and Gw are both complete, then Gv is a clique and (Hv, H
∗
v ) =

(V (Gv), V (G∗v)).
If Gu and Gw are both not complete, let x, y be any two non adjacent vertices

in Gu. Then, we claim that Hv = H∗v = {x, y}. Indeed, in Gv, x and y generate
all vertices in V (Gw) (resp., of G∗w). In particular, two non adjacent vertices z, r ∈
V (Gw) are generated. Symmetrically, z, r generate all vertices in V (Gu) (resp., in
V (G∗u)).

Without loss of generality, we suppose now that Gu is a complete graph and that
Gw is a non-complete (q, q − 4)-graph. First, observe that no vertex of Gu belongs
to any minimum hull set of Gv, since they are universal (Lemma 18). Note also
that, by Lemma 25 and since Gv is not a clique and has universal vertices, we can
make Hv = H∗v . Hence, in what follows, we consider only the computation of Hv.
Let us consider all possible cases for w in T (G).

• w is a series node. Gw is the join of two graphs. We claim that Hv = Hw.
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In this case, Gw is an isometric subgraph of Gv. Thus, by Lemma 19, any
minimum hull set of Gw generates all vertices of V (Gw) in Gv. Finally, since
Gw has two non-adjacent vertices they generate all vertices of Gu in Gv.

• w is a parallel node. Gw is the disjoint union of two graphs. Let x and y the
children of w in T (G). Then Gw = Gx∪Gy. Let X = H∗x if Gx is not a clique
and X = V (Gx), otherwise, let Y = H∗y if Gy is not a clique and Y = V (Gy),
otherwise. We claim that Hv = X ∪ Y .

Clearly, if Gx (resp., Gy) is a clique, all its vertices are simplicial in Gv and
then must be contained in any hull set by Lemma 17. Moreover, recall that,
by Lemma 18, no vertex of Gu belongs to any minimum hull set of G.

Now, let z ∈ {x, y} such that Gz is not complete. It remains to show that it
is necessary and su�cient to also include any minimum hull set H∗z of G∗z, in
any minimum hull set of G.

The necessity can be easily proved by using Lemma 24 to every Gz that is not
a complete graph.

The su�ciency follows again from the fact that Gu is generated by two non
adjacent vertices of Gw and since, in all cases, X ∪ Y contains at least one
vertex in Gx and one vertex in Gy, all vertices in Gu will be generated.

• w is a spider node and Gw is a thin spider (S,K, ∅, E′). Then, Hv = S∪{k} =

G∗w where k is any vertex in K.

All vertices in S are simplicial in Gv, hence any hull set of Gv must contain
S by Lemma 17. Now, in Gv, the vertices in S are at distance two and no
shortest path between two vertices in S passes through a vertex in K, since
there is a join to a complete graph. Therefore, S is not a hull set of Gv.
However, since |S| ≥ 2, it is easy to check that adding any vertex k ∈ K to S
is su�cient to generate all vertices in Gv. So S ∪ {k} is a minimum hull set
of Gv.

Note that, in that way, Hv = S ∪ {k} = G∗w

• w is a spider node and Gw is a spider (S,K,R,E′) that is either thick or R 6= ∅
and R induces a (q, q − 4)-graph. Then, Hv = Hw.

If R = ∅, then Gw is thick. In this case, it is easy to check that the only
minimum hull set of Gw is S (because it consists of simplicial vertices) and it
is also a minimum hull set for Gv. Hence, Hv = Hw = S.

IfR 6= ∅, then by Lemma 17 any minimum hull set ofGw contains S. Moreover,
by Lemma 24 any minimum hull set of Gw contains a minimum hull set of
K ∪R which is composed by vertices of R.

By the same lemmas, a minimum hull set of Gw is a minimum hull set of Gv

since, by Lemma 18, no vertex of Gu belongs to any minimum hull set of Gv

and Gu is generated by non-adjacent vertices of Gw.
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• w is a small node. Gw is a q-pseudo-spider (H2, H1, R,E
′) and R induces a

(q, q − 4)-graph.

If R = ∅, Gv is the join of a clique Gu with a graph Gw that has at most q
vertices. No vertex of Gu belongs to any minimum hull set of Gv, since they
are universal. Thus, Hv can be computed in time O(2q) by testing all the
possible subsets of vertices of Gw.

Similarly, if R is a clique, all vertices in R are simplicial in Gv so they must
belong to any hull set of Gv. Moreover, no vertices in Gu belong to any
minimum hull set of Gv. So Hv can be computed in time O(2q) by testing all
the possible subsets of vertices of H1 ∪H2 and adding R to them.

In case R 6= ∅ nor a clique, two cases must be considered. By de�nition of the
decomposition, there exists a child r of w in T (G) such that V (Gr) = R.

� If G[H1] is a clique, then, Gv = (H2, H1∪V (Gu), R,E) is a pseudo-spider
that satis�es the conditions in Lemma 24. Hence, any minimum hull set
of Gv contains a minimum hull set of P = G[H1 ∪ V (Gu)∪R]. Let Z be
a minimum hull set of Gv and let Z ′ = Z ∩H2. By Lemma 24, we have
|Z ′| ≤ hn(Gv)− hn(P ).

By Lemma 25, H∗r is a minimum hull set of G[H1 ∪ V (Gu) ∪ R]. Now,
G[H1∪V (Gu)∪R] is an isometric subgraph of Gv. Hence, by Lemma 19,
H∗r generates all vertices of G[H1∪V (Gu)∪R] in Gv. Therefore, H∗r ∪Z

′

will generate all vertices of Gv. Since |H∗r | = hn(P ), we get that |H∗r ∪
Z ′| ≤ hn(Gv) and then H∗r ∪ Z

′ is a minimum hull set of Gv.

So, we have shown that there exists a minimum hull set for Gv that
can be obtained from H∗r by adding some vertices in H1 ∪ H2. Since
|H1 ∪H2| ≤ q, such a subset of H1 ∪H2 can be found in time O(2q).

� In case G[H1] is not a clique, let x and y be two non adjacent vertices
of H1. We claim in this case that there exists a minimum hull set of Gv

containing at most one vertex of R. Let S be a minimum hull set of Gv

containing at least two vertices in R. Observe that S′ = (S\R) ∪ {x, y}

is also a hull set of Gv since x and y are su�cient to generate all vertices
in R. Consequently, |S′| ≤ |S| and S′ is minimum.

Since no hull set of Gv contains a vertex in V (Gu), there always exists a
minimum hull set of Gv that consists of only vertices in H1 ∪H2 plus at
most one vertex in R. Therefore an exhaustive search can be performed
in time O(n2q).

Now, we consider the case when v is a spider node or a small node. That is
Gv = (S,K,R,E). If R 6= ∅, let r be the child of v such that V (Gr) = R.

Lemma 28. Let Gv = (S,K,R,E) be a spider such that R induces a (q, q−4)-graph.
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Then, Hv = H∗v = S∪H∗r if R 6= ∅ and R is not a clique, and Hv = H∗v = S∪R,
otherwise.

Proof. Since all the vertices in S are simplicial vertices in Gv and in G∗v, we apply
Lemma 17 to conclude that they are all contained in any hull set of Gv (resp., of
G∗v).

By the structure of a spider, every vertex of K (and the universal vertex in G∗v)
belongs to a shortest path between two vertices in S and are therefore generated by
them in any minimum hull set of Gv (resp., of G∗v). Consequently, if R = ∅, S is a
minimum hull set of Gv (resp., of G∗v). If R is a clique, S ∪R is the set of simplicial
vertices of Gv (resp., of G∗v) and also a minimum hull set of Gv (resp., of G∗v).

Finally, if R 6= ∅ and R is not a clique, then Gv is a pseudo-spider satisfying the
conditions of Lemma 24. Similarly, G∗v is a pseudo-spider (by including the universal
vertex in K). Then, by Lemma 24, any hull set of Gv (resp., of G∗v) contains a
minimum hull set of G[K ∪R] (resp., of G∗v \ S. Moreover, any hull set contains all
vertices in S since they are simplicial. Hence, hn(Gv) = hn(G∗v) = |S|+hn(G[K∪R])

(recall that, by Lemma 25, hn(G[K ∪ R]) = hn(G∗v \ S)). Finally, since G[K ∪ R])

is an isometric subgraph of Gv, then H∗r (which is a minimum hull set of G[K ∪R]

by Lemma 25) generates G[K ∪R] in Gv (resp., in G∗v).
Hence, S∪H∗r is a hull set of Gv and G∗v. Moreover, it has size |S|+hn(G[K∪R]),

so it is optimal.

Lemma 29. Let Gv = (H2, H1, R,E) be a q-pseudo-spider such that R is a (q, q−4)-
graph. Then, Hv and H∗v can be computed in time O(2qn).

Proof. All the arguments to prove this lemma are in the proof of Lemma 27. More-
over, the following arguments hold both for Gv and G∗v: they allow to compute both
Hv and H∗v .

If R = ∅, Gv has at most q vertices, for a �xed positive integer q. Thus, its hull
number can be computed in O(2q)-time.

Otherwise, if H1 is a clique, by Lemma 24, any minimum hull set of Gv contains
a minimum hull set of G[H1∪R]. Moreover, by the same arguments as in Lemma 27,
we can show that there is an optimal hull set for Gv that can be obtained from H∗r
(minimum hull set of G[H1 ∪R]) and some vertices in H2.

If H1 is not a clique, two non-adjacent vertices of H1 can generate R. Thus,
we conclude that there exists a minimum hull set of Gv containing at most one
vertex of R. Then, a minimum hull set of Gv can be found in O(2qn)-time, where
n = |V (Gv)|.

6.5 Hull Number via 2-connected components

In this section, we introduce a generalized variant of the hull number of a graph.
Let G = (V,E) be a graph and S ⊆ V . Let hn(G,S) denote the minimum size of a
set U ⊆ V \ S such that U ∪ S is a hull set for G. We prove that to compute the
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hull number of a graph, it is su�cient to compute the generalized hull number of
its 2-connected components (or blocks). This extends a result in [ES85].

Theorem 22. Let G be a graph and G1, . . . , Gn be its 2-connected components. For
any i ≤ n, let Si ⊆ V (Gi) be the set of cut-vertices of G in Gi. Then,

hn(G) =
∑

i≤n

hn(Gi, Si).

Proof. Clearly, the result holds if n = 1, so we assume n > 1.
A block Gi is called a leaf-block if |Si| = 1. Note that, for any leaf-block Gi,

G[V \ (V (Gi) \ Si)] is convex, so by Lemma 20, any hull set of G contains at least
one vertex in V (Gi) \ Si. Moreover,

Claim 9. For any minimum hull set S of G, S ∩ (∪i≤nSi) = ∅.

Proof. For purpose of contradiction, let us assume that a minimum hull set S of G
contains a vertex v ∈ Si for some i ≤ n. Note that there exist two leaf-blocks G1

and G2 such that v is on a shortest path between vertices in V (G1) and V (G2) or
{v} = V (G1)∩V (G2). By the remark above, there exist x ∈ (V (G1)\S1)∩S and y ∈
(V (G2)\S2)∩S. Hence, v is on a shortest (x, y)-path, i.e., v ∈ I[x, y] ⊆ Ih[S \{v}].
Hence, V ⊆ Ih[S] ⊆ Ih[S \ {v}] and S \ {v} is a hull set of G, contradicting the
minimality of S. ⋄

Claim 10. Let S be a hull set of G. Then S′ = (S ∩V (Gi))∪Si is a hull set of Gi.

Proof.
For purpose of contradiction, assume that Ih[S′] = V (Gi) \X for some X 6= ∅.

Then, there is v ∈ X ∩ I[a, b] for some a ∈ V (G) \ V (Gi) and b ∈ V (G) \X. Then,
there is a shortest (a, b)-path P containing v. Hence, there is u ∈ Si such that u is
on the subpath of P between a and v. Moreover, let w = b if b ∈ Gi, and else let w
be a vertex of Si on the subpath of P between v and b. Hence, v ∈ I[u,w] ⊆ Ih[S′],
a contradiction.

⋄

Let X be any minimum hull set of G. By Claim 9, X ∩ (∪i≤nSi) = ∅, hence we
can partition X = ∪i≤nXi such that Xi ⊆ V (Gi)\Si and Xi∩Xj = ∅ for any i 6= j.
Moreover, by Claim 10, Xi ∪ Si is a hull set of Gi, i.e., |Xi| ≥ hn(Gi, Si). Hence,
hn(G) = |X| =

∑

i≤n |Xi| ≥
∑

i≤n hn(Gi, Si).
It remains to prove the reverse inequality. For any i ≤ n, letXi ⊆ V (Gi)\Si such

that Xi ∪ Si is a hull set of Gi and |Xi| = hn(Gi, Si). We prove that S = ∪i≤nXi is
a hull set for G. Indeed, for any v ∈ Si, there are two leaf-blocks G1, G2 such that v
is on a shortest path between G1 and G2 or {v} = V (G1) ∩ V (G2). So, there exist
x ∈ X1 and y ∈ X2 such that v is on a shortest (x, y)-path, i.e., v ∈ I[x, y] ⊆ Ih[S].
Hence, ∪i≤nSi ⊆ Ih[S] and therefore, V = ∪i≤nIh[Xi ∪ Si] ⊆ Ih[∪i≤n(Xi ∪ Si)] ⊆

Ih[∪i≤n(Xi)] = Ih[S].
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A cactus G is a graph in which every pair of cycles have at most one common
vertex. This de�nition implies that each block of G is either a cycle or an edge. By
using the previous result, one may easily prove that:

Corollary 17 ([ACG+11b]). In the class of cactus graphs, the hull number can be
computed in linear time.

6.6 Bounds

In this section, we use the same techniques as presented in [ES85, DGK+09] to prove
new bounds on the hull number of several graphs classes. These techniques mainly
rely on a greedy algorithm for computing a hull set of a graph and that consists
of the following: given a connected graph G = (V,E) and its set S of simplicial
vertices, we start with H = S or H = {v} (v is any vertex of V ) if S = ∅, and
C0 = Ih[H]. Then, at each step i ≥ 1, if Ci−1 ⊂ V , the algorithm greedily chooses
a subset Xi ⊆ V \ Ci−1, add Xi to H and set Ci = Ih[H]. Finally, if Ci = V , the
algorithm returns H which is a hull set of G.

Claim 11. If for every i ≥ 1, |Ci \ (Ci−1 ∪Xi)| ≥ c · |Xi|, for some constant c > 0,

then |H| ≤ max{1, |S|}+
⌈

|V |−max{1,|S|}
1+c

⌉

.

In the following, we keep the notation used to describe the algorithm.

Claim 12. Let G be a connected graph. Then, before each step i ≥ 1 of the algo-
rithm, for any v ∈ V \Ci−1, N(v)∩Ci−1 induces a clique. Moreover, any connected
component induced by V \ Ci−1 has at least 2 vertices.

Proof. Let v ∈ V \ Ci−1 and assume v has two neighbors u and w in Ci−1 that are
not adjacent. Then, v ∈ I[u,w] ⊆ Ci−1 because Ci−1 is convex, a contradiction.
Note that, at any step i ≥ 1 of the algorithm, V \ Ci−1 contains no simplicial
vertex. By previous remark, if v has only neighbors in Ci−1, then v is simplicial, a
contradiction.

Claim 13. If G is a connected C3-free graph, then, at every step i ≥ 1 of the
algorithm, a vertex in V \ Ci−1 has at most one neighbor in Ci−1.

Proof. Assume that v ∈ V \ Ci−1 has two neighbors u,w ∈ Ci−1. {u,w} /∈ E

because G is triangle-free. This contradicts Claim 12.

Lemma 30. For any C3-free connected graph G and at step i ≥ 1 of the algorithm,
either Ci−1 = V or there exists Xi ⊂ V \ Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

Proof. If there is v ∈ V \ Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and
the result clearly holds. Otherwise, let v be any vertex in V \ Ci−1. By Claim 12,
v has a neighbor u in V \ Ci−1. Moreover, because no vertices of V \ Ci−1 are at
distance at least 2 from Ci−1, v and u have some neighbors in Ci−1. Finally, u and
v have no common neighbors because G is triangle-free. Hence, by taking Xi = {v},
we have u ∈ Ci and the result holds.
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Recall that the girth of a graph is the length of its smallest cycle.

Lemma 31. Let G connected with girth at least 6. Before any step i ≥ 1 of the
algorithm when Ci−1 6= V , there exists Xi ⊂ V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥

2|Xi|.

Proof. If there is v ∈ V \ Ci−1 at distance at least 3 from Ci−1, let Xi = {v} and
the result clearly holds. Otherwise, let v be a vertex in V \ Ci−1 at distance two
from any vertex of Ci−1. Let w ∈ V \ Ci−1 be a neighbor of v that has a neighbor
z ∈ Ci−1. Since v is not simplicial, v has another neighbor u 6= w in V \ Ci−1. If
u is at distance two from Ci−1, let y ∈ V \ Ci−1 be a neighbour of u that has a
neighbor x ∈ Ci−1. In this case, since the girth of G is at least six, z 6= x and, there
is a shortest (v, z)-path containing w and a shortest (v, x)-path containing u and y.
Consequently, by setting Xi = {v} we obtain the desired result. The same happens
in case u has a neighbor x ∈ Ci−1. One may use again the hypothesis that the girth
of G is at least six to conclude that, by setting Xi = {v} we obtain that w, u ∈ Ci.

Finally, we claim that no vertex remains in V \Ci−1. By contradiction, suppose
that it is the case and that there are in V \Ci−1 and all these vertices have a neighbor
in Ci−1. Let v be a vertex in V \Ci−1 that has a neighbor z in Ci−1. Again, v has a
neighbor u ∈ V \Ci−1, since it is not simplicial. The vertex u must have a neighbor
x in Ci−1. Observe that x and z are at distance 3, since the girth of G is at least
six. Consequently, v and u are in a shortest (x, z)-path should not be in V \ Ci−1,
that is a contradiction.

Lemma 32. Let G be a connected graph. Before any step i ≥ 1 of the algorithm
when Ci−1 6= V , there exist Xi ⊂ V \ Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ 2|Xi|/3.

Moreover, if G is k-regular (k ≥ 1), there exist Xi ⊂ V \ Ci−1 such that |Ci \

(Ci−1 ∪Xi)| ≥ |Xi|.

Proof. By Claim 12, all connected component of V \Ci−1 contains at least one edge.

• If there is v ∈ V \ Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and
|Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

• Now, assume all vertices in V \ Ci−1 are adjacent to some vertex in Ci−1. If
there are two adjacent vertices u and v in V \Ci−1 such that there is z ∈ Ci−1∩

N(u)\N(v), then letXi = {v}. Therefore, u ∈ Ci and |Ci\(Ci−1∪Xi)| ≥ |Xi|.
So, the result holds.

• Finally, assume that for any two adjacent vertices u and v in V \Ci−1, N(u)∩

Ci−1 = N(v) ∩ Ci−1 6= ∅.

We �rst prove that this case actually cannot occur if G is k-regular. Let
v ∈ V \Ci−1. By Claim 12, K = N(v) ∩Ci−1 induces a clique. Moreover, for
any u ∈ N(v)\Ci−1, N(u)∩Ci−1 = K. Note that k = |K|+ |N(v)\Ci−1|. Let
w ∈ K. Then, A = (K ∪N(v)∪ {v}) \ {w} ⊆ N(w) and since |A| = k, we get
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that A = N(w). Moreover, N [u] cannot induce a clique since V \Ci−1 contains
no simplicial vertices, i ≥ 1. Hence, there are x, y ∈ N(v) \ Ci−1 such that
{x, y} /∈ E. BecauseG is k-regular, there is z ∈ N(x)\(N(v)∪Ci−1). However,
N(z) ∩ Ci−1 = N(x) ∩ Ci−1 = K. Hence, z ∈ N(w) \A, a contradiction.

Now, assume that G is a general graph. Let v be a vertex of minimum degree
in V \Ci−1. Recall that, by Claim 12, N(v) ∩Ci−1 induces a clique. Because
any neighbor u ∈ V \ Ci−1 of v has the same neighborhood as v in Ci−1

and because v is not simplicial, then there must be u,w ∈ N(v) \ Ci−1 such
that {u,w} /∈ E. Now, by minimality of the degree of v, there exists y ∈
N(u)\(N(v)∪Ci−1) 6= ∅. Similarly, there exists z ∈ N(w)\(N(v)∪Ci−1) 6= ∅.
Let us set Xi = {v, z, y}. Hence, u,w ∈ Ci \ (Ci−1 ∪Xi) and the result holds.

Theorem 23. Let G be a connected n-node graph with s simplicial vertices. All
bounds below are tight:

• hn(G) ≤ max{1, s}+
⌈

3(n−max{1,s})
5

⌉

;

• If G is C3-free or k-regular (k ≥ 1), then hn(G) ≤ max{1, s}+
⌈

n−max{1,s}
2

⌉

;

• If G has girth ≥ 6, then hn(G) ≤ max{1, s}+
⌈

1(n−max{1,s})
3

⌉

.

Proof. First statement follows from Claim 11 and �rst statement in Lemma 32. The
second statement follows from Claim 11 and Lemma 30 (case C3-free) and second
part of Lemma 32 (case regular graphs) . Last statement follows from Claim 11 and
Lemma 31.

All bounds are reached in case of complete graphs. In case with no simplicial
vertices: the �rst bound is reached by the graph obtained by taking several disjoint
C5 and adding a universal vertex, the second bound is obtained for a C5, and the
third one is reached by a C7.

The �rst statement of the previous theorem improves another result in [ES85]:

Corollary 18. If G is a graph with no simplicial vertex, then:

lim sup
|V (G)|→∞

hn(G)

|V (G)|
=

3

5
.

It it important to remark that the second statement of Theorem 23 is closely
related to a bound of Everett and Seidman proved in Theorem 9 of [ES85]. However,
the graphs they consider do not have simplicial vertices and, consequently, they do
not have vertices of degree one, which is not a constraint for our result.
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6.7 Conclusions

We simpli�ed the reduction of Dourado et al. [DGK+09] to answer a question they
asked about the complexity of computing the hull number of bipartite graphs. We
presented polynomial-time algorithms for computing the hull number of cobipartite
graphs, (q, q− 4)-graphs and cactus graphs. Finally, we presented upper bounds for
general graphs and two particular graph classes.

The result in Section 6.4 provides an FPT algorithm where the parameter is the
number of induced P4's in the input graph. It would be nice to know about the
paramerized complexity of Hull Number when the parameter is the size of the
hull set.

Another question of Dourado et al. [DGK+09], concerning the complexity of this
problem for interval graphs and chordal graphs, remains open. Up to the best of our
knowledge, determining the complexity of the Hull Number problem on planar
graphs is also an open problem.



Chapter 7

Conclusions and further research

In this thesis, we (mainly) studied the computational complexity of di�erent prob-
lems related to Graph Coloring and Graph Convexity for particular graph classes.
We here brie�y describe the obtained results and several open questions for further
research.

In Chapter 2, we showed a polynomial-time algorithm to compute the Grundy
number of fat extended P4-laden graphs. This result extends a previous one con-
cerning the Grundy number of cographs. There are several bounds on the Grundy
number for particular graph classes, but only few complexity results. For instance,
the computational complexity of computing the Grundy number for interval graphs
and planar graphs is still not determined. Moreover, the parameterized complexity
of determining whether the Grundy number of a graph is at least k, where k is the
parameter, is also unknown.

We studied, in Chapter 3, the weighted chromatic number of a given vertex-
weighted graph. For this problem, we �rst presented a generalization of the Hajós'
Theorem by showing a necessary and su�cient condition for a weighted graph (G,w)

to have weighted chromatic number at least k. Then, we studied the computational
complexity of determining this parameter for P4-sparse graphs. We �rst presented a
polynomial-time algorithm to compute the weighted chromatic number for a subclass
of P4-sparse graphs that properly contains the cographs. Then, we gave a simple
2-approximation algorithm for the class of P4-sparse graphs. For this problem, we
mention two open problems that are the computational complexity of determining
the weighted chromatic number of a P4-sparse graph and of a tree.

After studying vertex-weighted graphs, in Chapter 4 we dealt with a new, up to
our best knowledge, variation of the Vertex Coloring problem for edge-weighted
graphs. We showed general bounds for both parameters we have introduced and
then we studied a particular weight function based on a practical motivation. For
that particular weight function, we �rst computed the weighted improper chro-
matic number of in�nite paths and grids (square, hexagonal and triangular) and we
gave upper and lower bounds on this parameter for trees. Finally, we implemented
an integer programming formulation on a solver called CPLEX, a heuristic and a
branch-and-bound algorithm. Then, we executed these three implementations over
instances of practical interest and compared the obtained results. For this problem,
it would be interesting to study the computational complexity of computing the
weighted improper chromatic number of trees, for the particular weight function we
de�ned. Moreover, it would be useful to deal with more general weight functions
for particular graph classes.
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In Chapter 5, we studied the good edge-labeling problem. We showed that this
problem is NP-complete even for bipartite graphs; then we presented an in�nite
family of bad graphs (graphs with no good edge-labeling) and showed some families
of good graphs. We let open questions in the conclusion of this chapter and we
want to emphasize that there is a lot of research that can be done in this topic.
For instance, the computational complexity of determining whether a graph is good
is an open problem for many particular graph classes like planar graphs, chordal
graphs, graphs of bounded tree-width, etc.

Finally, in Chapter 6, we studied a Graph Convexity parameter called (geodetic)
hull number. We answered some open questions in the literature by showing that de-
termining the hull number of a graph is NP-hard even for bipartite graphs. Then, we
presented several polynomial-time algorithms for di�erent classes of graphs: cacti,
complements of bipartite graphs, (q, q − 4)-graphs. Finally, we gave upper bounds
for general graphs and for particular graph classes. An open question, pointed
in [DGK+09] that we still do not know how to answer, concerns the computational
complexity of determining the hull number for interval graphs or, more generally,
for chordal graphs. Up to our best knowledge, no similar result is known for planar
graphs. It would also be nice to study the parameterized complexity of determining
whether the hull number of a graph is at least k, when k is the parameter. It is also
not known in the literature any exponential exact algorithm of complexity better
than O(2n) to compute the hull number of a graph.

state of these chains, we evaluate their average behavior.
We used in this thesis many di�erent techniques: reduction for NP-hardness

proofs, integer linear programming, Markov chains, etc. We intend to apply these
tools to the open problems pointed in this thesis and, more generally, to other
problems on graph theory.



Appendix A

Eulerian and Hamiltonian

Dicycles in Directed Hypergraphs

A.1 Introduction

Eulerian and Hamiltonian dicycles are well-known concepts in Graph Theory. An
Eulerian dicycle in a digraph D is a dicycle C such that each arc of D appears
exactly once in C. Similarly, a Hamiltonian dicycle is a dicycle C such that each
vertex of D appears exactly once in C (see [BJG10, BM08b]).

We generalize these concepts to directed hypergraphs, called shortly dihyper-
graphs. Informally, the di�erence between an usual digraph D and a dihypergraph
H is that (hyper)arcs in H may have multiple heads and multiple tails. Formally, a
dihypergraph H is a pair (V(H), E(H)), where V(H) is a non-empty set of elements,
called vertices, and E(H) is a collection of ordered pairs of subsets of V(H), called
hyperarcs. It is Eulerian (resp. Hamiltonian) if there is a dicycle containing each
hyperarc (resp. each vertex) exactly once.

Eulerian and Hamiltonian (undirected) hypergraphs have already been de�ned
and studied in a similar way [Ber73, LN10]. In fact, if Hamiltonian hypergraphs
have received some attention (see [Ber78, KKMO11, KMO10]), Eulerian hyper-
graphs seem to have been considered in their full generality only recently in [LN10].
A particular case of Eulerian cycles in 3-uniform hypergraphs (called triangulated
irregular networks) has been considered in [AHMS94, BG04a, BG04b] motivated by
applications in geographic systems or in computer graphics. However, to our best
knowledge, Hamiltonian and Eulerian dihypergraphs have not been considered.

Note that there are other de�nitions of Hamiltonian hypergraphs in the litera-
ture. For example, an undirected hypergraph H is called Hamiltonian if there exists
a Hamiltonian-l cycle C in H, that is a cycle C where any two consecutive (hy-
per)edges intersect themselves in exactly l vertices and every vertex of H belongs
to exactly one of those intersections [DAR12, KKMO11, KMO10]. Such a notion
can also be generalized to dihypergraphs. However, we choose the general de�nition
as otherwise there would be no more a clear connexion between the Eulerian and
the Hamiltonian dihypergraphs (with our de�nition the dual of an Eulerian dihy-
pergraph is Hamiltonian). Furthermore, we are mainly interested in Hamiltonian
line dihypergraphs, whose de�nition is given later, and, in this case, both of these
de�nitions of a Hamiltonian dihypergraph are equivalent.

It is well-known that a strongly connected digraph is Eulerian if, and only if,
every vertex has equal in-degree and out-degree. Therefore, deciding whether a
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digraph is Eulerian can be done in polynomial time; but deciding whether it is
Hamiltonian is an NP-complete problem.

In the �rst part of the chapter, we show that for dihypergraphs the situation is
di�erent from that of digraphs. For example, deciding whether a dihypergraph is Eu-
lerian is an NP-complete problem. We show nonetheless that some results about the
Eulerian digraphs can be generalized, in the case where the studied dihypergraphs
are uniform and regular. As example, we prove that if H is a weakly-connected,
d-regular, s-uniform dihypergraph, then, for every k ≥ 1, Lk(H) is Eulerian and
Hamiltonian. In the second part, we study the Eulerian and Hamiltonian properties
of special families of regular uniform dihypergraphs, the generalized de Bruijn and
Kautz dihypergraphs [BDE97].

The so called de Bruijn digraphs were introduced to show the existence of de
Bruijn sequences, that is circular sequences of dD elements, such that any subse-
quence of length D appears exactly once. To prove the existence of such sequences,
it was proved that de Bruijn digraphs are both Eulerian and Hamiltonian. These di-
graphs have been rediscovered many times and their properties have been well stud-
ied (see, for example, the survey [BP89]) in particular for the design of interconnec-
tion networks. Various generalizations of de Bruijn digraphs have been introduced,
like the generalized de Bruijn digraphs (also named Reddy-Pradhan-Kuhl digraphs)
presented in [II81, RPK80]. These digraphs are based on arithmetical properties
and they exist for any number of vertices. Other generalizations like Kautz di-
graphs, generalized Kautz digraphs (also called Imase and Itoh digraphs [II81]) and
consecutive digraphs [DHH93] have been proposed in the literature.

One generalization concerns hypergraphs and dihypergraphs which are used in
the design of optical bus networks [SB99]. In particular, de Bruijn and Kautz di-
hypergraphs and their generalizations, that were introduced in [BDE97], have sev-
eral properties that are bene�cial in the design of large, dense, robust networks.
They have been proposed as the underlying physical topologies for optical net-
works, as well as dense logical topologies for Logically Routed Networks (LRN)
because of ease of routing, load balancing and congestion reduction, that are prop-
erties inherent in de Bruijn and Kautz networks. In 2009, J-J. Quisquater brought
to our attention the web site (http://punetech.com/building-eka-the-worlds-fastest-
privately-funded-supercomputer/ ) where it is explained how these hypergraphs and
the results of [BE96] were used for the design of the supercomputer EKA in 2007
(http://en.wikipedia.orwiki/EKA_(supercomputer)).

Connectivity properties of generalized de Bruijn dihypergraphs have been stud-
ied in [BES11, FP02a, FP02b], but, to our best knowledge, their Hamiltonian and
Eulerian properties have not been studied.

More precisely, we �rst determine when generalized de Bruijn and Kautz di-
hypergraphs are Hamiltonian and Eulerian. Then, we study the case where their
number of hyperarcs is equal to their number of vertices. In that case, we almost
characterize when these dihypergraphs have a complete Berge dicycle, i.e. a dicycle
both Hamiltonian and Eulerian; in particular, we have a complete characterization
when the out-degree of each vertex is equal to the out-size of each hyperarc.
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A.2 De�nitions and Notations

A.2.1 Dihypergraphs

A directed hypergraph, or simply dihypergraph is a pair (V(H), E(H)) where V(H)

is a non-empty set of elements, called vertices, and E(H) is a collection of ordered
pairs of subsets of V(H), called hyperarcs. We denote by n(H) (resp. m(H)) the
number of vertices (resp. hyperarcs) of H. Whenever H is clear in the context, we
use shortly n and m. We suppose, to avoid trivial cases, that n > 1 and m > 1.

Let H be a dihypergraph and E = (E−, E+) be a hyperarc in E(H). Then,
the vertex sets E− and E+ are called the in-set and the out-set of the hyperarc
E, respectively. The sets E− and E+ do not need to be disjoint and they may be
empty. The vertices of E− are said to be incident to the hyperarc E and the vertices
of E+ are said to be incident from E.

If E is a hyperarc in a dihypergraph H, then |E−| is the in-size and |E+| is the
out-size of E. Themaximum in-size and themaximum out-size ofH are respectively:

s−(H) = max
E∈E(H)

|E−| and s+(H) = max
E∈E(H)

|E+|.

Note that a digraph is a dihypergraphD = (V(D), E(D)) with s−(D) = s+(D) =

1.
Let v be a vertex in H. The in-degree of v is the number of hyperarcs that

contain v in their out-set and it is denoted by d−H(v). Similarly, the out-degree of
vertex v is the number of hyperarcs that contain v in their in-set and it is denoted
by d+

H(v) .
The bipartite representation R(H) of a dihypergraph H is the bipartite digraph

R(H) = (V1(R) ∪ V2(R), E(R)) where V1 = V(H), V2 = E(H) and E(R) = {viEj |

vi ∈ E
−
j } ∪ {Ejvi | vi ∈ E

+
j }. This representation digraph is useful for drawing di-

hypergraphs. To make each �gure more readable, we duplicate the vertices and we
put in the left part the arcs from V1 to V2 and in the right part those from V2

to V1. Figure A.1 gives the representation digraph of the de Bruijn dihypergraph
GBH(2, 9, 2, 9), where vertex i belongs to the in-set of the hyperarcs E2i and E2i+1

and the hyperarc Ej has as out-set the vertices 2j and 2j+1 (all the numbers being
taken modulo 9).

Remark that when you inverse the respective roles of V1(R) and V2(R) in R(H),
you intuitively exchange the role of the vertices with the role of the hyperarcs in
H. This is an informal notion of the dual dihypergraph H∗. Formally, the vertices
of the dual dihypergraph H∗ are in bijection φv with the hyperarcs of H and the
hyperarcs of H∗ are in bijection φE with the vertices of H. Moreover, for every
vertex v ∈ V(H) and every hyperarc E ∈ E(H), vertex e= φv(E) ∈ V(H∗) is in V −,
where V = φE(v) ∈ E(H∗), if, and only if, v ∈ E+ and, similarly, e is in V + if, and
only if, v ∈ E−. It is important to notice that a hyperarc V ∈ E(H∗) may have an
empty in-set (if d−H(v) = 0) or an empty out-set (if d+

H(v) = 0).
The underlying multidigraph U(H) of a dihypergraph H has as vertex set

V(U(H)) = V(H) and as arc set E(U(H)) that is the multiset of all ordered pairs
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Figure A.1: Bipartite representation of the De Bruijn dihypergraph GBH(2, 9, 2, 9)

and a complete Berge dicycle represented by dotted arcs (vertices are drawn twice
to better represent all the arcs).

(u, v) such that u ∈ E− and v ∈ E+, for every hyperarc E ∈ E(H). We emphasize
that U(H) does not need to be simple: the number of arcs from u to v in U(H) is
the number of hyperarcs E = (E−, E+) in H such that u ∈ E− and v ∈ E+. Ob-
serve that the underlying multidigraph of a given dihypergraph is unique. However,
a given digraph D can be the underlying digraph of many dihypergraphs H.

A.2.2 Eulerian and Hamiltonian Dicycles in Dihypergraphs

By a dipath in a dihypergraphH, we mean a sequence P = v0, E0, . . . , vp−1, Ep−1, vp,
such that, for all i, j, we have vi ∈ V(H), Ej ∈ E(H), vi ∈ E

−
i for every 0 ≤ i ≤ p−1,

and vi ∈ E+
i−1 for every 1 ≤ i ≤ p. We also say that P is a dipath of length p.

Moreover, the dipath P is called a dicycle, or circuit, in H if, and only if, we have
v0 = vp. Observe that each dicycle in a dihypergraph H corresponds to a dicycle
in its bipartite representation R(H). Note that we allow repetitions of vertices or
hyperarcs and some authors prefer to use the word tour in this case.

In the same way, we can extend the digraph-theoretic notions of Eulerian dicycles
and Hamiltonian dicycles to dihypergraphs:

De�nition 7. Let H be a dihypergraph. We say that H is Eulerian (resp. H is
Hamiltonian) if, and only if, there is a dicycle C in H such that every hyperarc of H
(resp. every vertex of H) appears in C exactly once. We call C an Eulerian dicycle
(resp. a Hamiltonian dicycle).

Our generalization of an Eulerian dicycle to dihypergraphs is close to the exten-
sion of an Euler tour to the undirected hypergraphs introduced in [LN10].

De�nition 8 ([LN10]). Let Hu be an undirected hypergraph. A tour is a sequence
T = v0, E0, v1, . . . ,

vm−1, Em−1, v0 where, for all i, vi 6= vi+1 and vi and vi+1 are in the hyperedge Ei
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(indices are taken modulo m). T is called an Euler tour when every hyperedge of
Hu appears exactly once in T . Hu is an Eulerian hypergraph if there exists an Euler
tour T in Hu.

Remark 1. An Eulerian dicycle in H (resp. a Hamiltonian dicycle in H) is a
dicycle in R(H), such that each vertex of V2(R) (resp. of V1(R)) appears exactly
once.

As a consequence, a necessary and su�cient condition for R(H) to be Hamilto-
nian is that there is a dicycle C in H, such that C is simultaneously an Eulerian
dicycle and a Hamiltonian dicycle in H. In reference to the undirected case [Ber73],
we call C a complete Berge dicycle:

De�nition 9. Let H be a dihypergraph. A complete Berge dicycle in H is a dicycle
C in H, such that C is both an Eulerian dicycle and a Hamiltonian dicycle in H.

In the following sections, we focus on Eulerian dihypergraphs. We assume that
the studied dihypergraphs have no isolated vertex, without any loss of generality.

A.3 General Results

A.3.1 Some conditions

First, we recall a well-known characterization of Eulerian digraphs:

Theorem 24 ([BP79]). Let D be a digraph. The following statements are equivalent:

1. D is Eulerian;

2. D is (strongly) connected and, for all vertex v ∈ V(D), d−(v) = d+(v);

3. D is (strongly) connected and it has a dicycle decomposition (i.e. its arcs can
be partitioned into arc-disjoint dicycles).

The digraph-theoretic notions of connectivity can be extended to dihyper-
graphs [BES11]. We say thatH is strongly (resp. weakly) connected if its underlying
multidigraph U(H) is strongly (resp. weakly) connected. U(H) is weakly connected
if its associated multigraph GU(H) (obtained by forgetting the orientation) is a con-
nected multigraph (in Graph Theory this undirected graph is often called the under-
lying graph; we use here a di�erent terminology as we already use the word underly-
ing for the digraph associated to a dihypergraph). The digraph-theoretic notions of
vertex-connectivity and arc-connectivity are also generalized by the dihypergraph-
theoretic notions of vertex-connectivity and hyperarc-connectivity (see [BES11]).
Unlike 1-arc connected digraphs, 1-hyperarc connected dihypergraphs are not al-
ways 1-vertex connected.
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Remark that unlike an Eulerian digraph, an Eulerian dihypergraph does not
need to be strongly connected. Indeed, let H be an Eulerian dihypergraph. If we
add a new vertex x in H, such that x is incident to only one hyperarc E of H and
d−(x) = 0, then the dihypergraph obtained is still Eulerian, but it is not strongly
connected.

On the other hand, we have the following necessary condition:

Proposition 14. Let H be a dihypergraph. If H is Eulerian, then H is weakly
connected.

Proof. Let GU(H) be the undirected associated multigraph to U(H). We want to
prove that GU(H) is connected. Note �rst that for all hyperarc E ∈ E(H), vertices
in the subset E− ∪ E+ are in the same connected component in GU(H), by the
de�nition of U(H). Moreover, let E,F be any pair of distinct hyperarcs of H. Since
there is an Eulerian dicycle in H, therefore, there exist u ∈ E+ and v ∈ F−, such
that there is a dipath in H from u to v. Since there is a dipath from u to v in H,
therefore there is a dipath P from u to v in U(H) and so a path between u and v
in GU(H). Therefore, the subsets E− ∪E+ and F− ∪F+ are in the same connected
component in GU(H) too. Therefore, GU(H) is connected.

Recall that a hypergraph is k-uniform if all its hyperedges have the same cardi-
nality k. It was proved in [LN10] that, if H is an Eulerian k-uniform hypergraph,
then |Vodd(H)| ≤ (k − 2)m(H), where Vodd(H) is the set of all the vertices in H

with an odd degree and m(H) is the number of hyperedges in H. Using the same
idea, we also prove a necessary condition for a dihypergraph H to be Eulerian.

Theorem 25. Let H be a dihypergraph. If H is Eulerian then:
∑

v∈V(H)

|d+(v)− d−(v)| ≤
∑

E∈E(H)

(|E+|+ |E−| − 2).

Proof. Let C = v0, E0, v1, . . . , vm−1, Em−1, v0 be an Eulerian dicycle in H. By
de�nition, a given vertex may appear many times in C, but every hyperarc appears
exactly once in the dicycle C. Let us �nd the maximum number of occurences of
a given vertex v in C. For all i 6= j we may have vi = vj , but we are sure that
Ei 6= Ej . So a vertex v can appear at most min (d+(v), d−(v)) times in C and, as a
consequence, we have the following inequality:

∑

v∈V(H)

min (d+(v), d−(v)) ≥ m

Moreover, we know that:

min (d+(v), d−(v)) =
1

2
(d+(v) + d−(v)− |d+(v)− d−(v)|),

∑

v∈V(H)

d+(v) =
∑

E∈E(H)

|E−| and
∑

v∈V(H)

d−(v) =
∑

E∈E(H)

|E+|.
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Therefore, the following inequalities hold:

∑

v∈V(H)

(d+(v) + d−(v)− |d+(v)− d−(v)|) ≥ 2m

∑

E∈E(H)

|E−|+
∑

E∈E(H)

|E+| −
∑

v∈V(H)

|d+(v)− d−(v)| ≥
∑

E∈E(H)

2

∑

v∈V(H)

|d+(v)− d−(v)| ≤
∑

E∈E(H)

[(|E+| − 1) + (|E−| − 1)]

For a digraph D, Theorem 25 is equivalent to the Euler's condition presented in
Theorem 24: for all v ∈ V(D), d+(v) = d−(v).

Theorem 25 is not a su�cient condition for a strongly connected dihypergraphH
to be Eulerian: counter-examples are presented in Figure A.2 and in Figure A.3(b).
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Figure A.2: A regular dihypergraph that is not Eulerian.

Another necessary condition was proposed by N. Cohen (private communica-
tion), who transposed the search of an Eulerian dicycle into a Perfect Matching

problem (see [Ber73, BM08b]).
Let H be a dihypergraph. If there is a hyperarc E ∈ E(H) whose in-set

(resp. whose out-set) is empty, then H cannot be Eulerian. Else, let ϕ : E(H) →

V(H) × V(H) be any function such that, for all E, we have ϕ(E) ∈ E− × E+.
By replacing each hyperarc E by the arc ϕ(E) we get a digraph, denoted by
Dϕ[H] = (V(H), ϕ(E(H))). Observe that Dϕ[H] is a subdigraph of U(H) and
it can have loops or multiple arcs.

Remark 2. A dihypergraph H is Eulerian if, and only if, there exists a function ϕ
such that Dϕ[H] is an Eulerian digraph.

By Theorem 24, a necessary and su�cient condition for a digraph D to be
Eulerian is that D is connected and, for every vertex v, d−(v) = d+(v). If D
satis�es this degree constraint for every vertex, but is not necessarily connected, we
call D a balanced digraph.

We will use the well-known Hall's Theorem to prove a necessary and su�cient
condition for the digraph Dϕ[H] to be balanced, for some ϕ.
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Theorem 26 (see [Ber73, BM08b]). Let G = (V1 ∪ V2, E) be a bipartite graph such
that |V1| = |V2|. There is a perfect matching in B if, and only if, for every subset
S ⊂ V1, |Γ(S)| ≥ |S|, where Γ(S) denotes the set of vertices adjacent to some vertex
of S.

De�nition 10. Let X be a subset of V(H). We denote by d+
H(X) (shortly d+(X))

the number of hyperarcs E ∈ E(H) such that E− ∩X 6= ∅ and by d−s,H(X) (shortly
denoted d−s (X)) the number of hyperarcs E such that E+ ⊆ X.

We are now able to prove the following result:

Theorem 27. Let H be a dihypergraph. There exists a function ϕ such that Dϕ[H]

is a balanced digraph if, and only if, for every subset X ⊆ V(H), we have d−s (X) ≤

d+(X).

Proof. Let us assume there exists ϕ such that Dϕ[H] is a balanced digraph. For
every subset X ⊆ V(H), for every hyperarc E such that E+ ⊆ X, we necessarily
have (u, v) = ϕ(E) ∈ V(H)×X. Since Dϕ[H] is balanced, hence there must be
some hyperarc F such that ϕ(F ) has vertex v as origin, that is v ∈ F−. So F−∩X is
not empty. Furthermore, we can associate to two distinct hyperarcs E two distinct
hyperarcs F ; therefore d−s (X) ≤ d+(X).

Conversely, let us assume that for every subset X ⊆ V(H), d−s (X) ≤ d+(X).
Consider the bipartite graph BP (H) = (V1(BP )∪V2(BP ), E(BP )) with V1(BP ) =

{E+
j : Ej ∈ E(H)}, V2(BP ) = {E−j : Ej ∈ E(H)} and E(BP ) = {E+

j E
−
j
′ : E+

j ∩

E−
j
′ 6= ∅}.

Let S = {E+
j1
, E+

j2
, . . . , E+

j|S|
} be a subset of V1(BP ) and X =

⋃|S|
k=1E

+
jk
. Observe

that |Γ(S)| = d+(X). Since d−s (X) ≥ |S|, we conclude that |Γ(S)| ≥ |S|. Moreover,
V1(BP ) and V2(BP ) have the same cardinality. By Theorem 26, there is a perfect
matching M in BP (H). We now de�ne a function ϕ as follows: for all edge E+

i E
−
j

of M , one can choose any vertex v ∈ E+
i ∩ E

−
j as the tail of ϕ(Ei) and the head of

ϕ(Ej). Thus, we get a subdigraph Dϕ[H] that is a balanced digraph.

Observe that we may de�ne d−(X) and d+
s (X) in the same way as d+(X) and

d−s (X). Thus, another formulation of Theorem 27 is: there exists ϕ such that Dϕ[H]

is a balanced digraph if, and only if, for every subset X ⊆ V(H) d+
s (X) ≤ d−(X).

By Theorem 27, deciding whether there exists ϕ such that Dϕ[H] is a balanced
digraph can be done in polynomial time. However, deciding whether there exists ϕ
such that Dϕ[H] is strongly connected is an NP-complete problem [BJT01].

A.3.2 Duality and Complexity

First, we show that the search of an Eulerian dicycle in H is equivalent to the search
of a Hamiltonian dicycle in its dual:

Proposition 15. A dihypergraph H is Eulerian if, and only if, H∗ is Hamiltonian.
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Proof. For each dicycle C = v0, E0, v1, E1, . . . , vp, Ep, v0 of H one can �nd a corre-
sponding dicycle in H∗ namely C∗ = e0, V1, e1, . . . , ep, V0, e0 and vice-versa. Thus,
C is an Eulerian dicycle in H (i.e. C contains each hyperarc of H exactly once) if,
and only if, C∗ contains each vertex of H∗ exactly once, i.e. C∗ is a Hamiltonian
dicycle of H∗.

As a direct consequence we can observe that, since (H∗)∗ = H, H is Hamiltonian
if, and only if, H∗ is Eulerian. Moreover, since deciding whether a di(hyper)graph
H is Hamiltonian is an NP-complete problem [BJG10], the following result is not
surprising:

Theorem 28. Deciding whether a dihypergraph H is Eulerian is NP-complete.

Proof. Let C be a dipath. One can verify, in O(|E(H)|) operations, whether C is an
Eulerian dicycle in H. Consequently, the problem is in NP . Since the dual H∗ can
be built in O(|E(H)| + |V(H)|)-time, we conclude the proof directly from Proposi-
tion 15 and the NP-completeness of deciding whether a digraph is Hamiltonian.

In order to check if a given dihypergraph is Hamiltonian, we will often use the
following proposition:

Proposition 16. Let H be a directed hypergraph. H is Hamiltonian if, and only if,
its underlying multidigraph U(H) is Hamiltonian.

Proof. By de�nition of U(H), any dicycle in H is a dicycle in U(H) with the same
vertices, and reciprocally.

A.3.3 Line Dihypergraphs Properties

The line dihypergraph L(H) of a dihypergraph H has as vertices the dipaths of
length 1 in H and as hyperarcs the dipaths of length 1 in H∗:

V(L(H)) =
⋃

E∈E(H)

{(uEv) | u ∈ E−, v ∈ E+},

E(L(H)) =
⋃

v∈V(H)

{(EvF ) | v ∈ E+ ∩ F−};

where the in-set and the out-set of hyperarc (EvF ) are (EvF )− = {(uEv) | u ∈

E−} and (EvF )+ = {(vFw) | w ∈ F+}.
Particularly, when D is a digraph, L(D) is the line digraph of D (see [BJG10]).
The following results are used in the sequel:

Theorem 29 ([BES11]). Let H be a dihypergraph. Then,

1. the digraphs R(L(H)) and L2(R(H)) are isomorphic;

2. the digraphs U(L(H)) and L(U(H)) are isomorphic;
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3. the digraphs (L(H))∗ and L(H∗) are isomorphic.

Recall that:

Theorem 30 ([DR94]). For a given digraph D, the line digraph L(D) is Hamilto-
nian if, and only if, D is Eulerian.

This property is useful for some special families of digraphs, e.g. Kautz and
de Bruijn digraphs, that are stable by line digraph operation [DR94]. By using
induction, one can prove that every digraph of the family is Hamiltonian. It was
shown in [BES11] that de Bruijn and Kautz dihypergraphs are also stable by line
dihypergraph operation. So, it is natural to wonder whether this property can be
generalized to dihypergraphs. However, we only get a weak generalization.

Proposition 17. Let H be a dihypergraph. Then, L(H) is Hamiltonian if, and only
if, U(H) is Eulerian.

Proof. By Proposition 16, the dihypergraph L(H) is Hamiltonian if, and only if,
U(L(H)) is Hamiltonian. Moreover, U(L(H)) and L(U(H)) are isomorphic by
Theorem 29. Finally, by Theorem 30 L(U(H)) is Hamiltonian if, and only if, U(H)

is Eulerian.

We now show with two counter-examples that both implications of the corre-
sponding version of Theorem 30 to dihypergraphs do not hold. There exist dihy-
pergraphs which are Eulerian such that their line dihypergraph is not Hamiltonian
and there also exist dihypergraphs that are not Eulerian such that their line dihy-
pergraph is Hamiltonian.
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Figure A.3: Counter-examples for extension of Theorem 30 to dihypergraphs.

Consider the dihypergraph H1 = (V(H1), E(H1)) whose bipartite representation
digraph is depicted in Figure A.3(a). Observe that 0, E, 2, F, 0 is an Eulerian dicycle
in H1. But d+

U(H1)(1) = 4, that is di�erent than d−U(H1)(1) = 3. As a consequence,
U(H1) cannot be Eulerian, by Theorem 24.

On the other hand, the directed hypergraph H2 = (V(H2), E(H2)), depicted in
Figure A.3(b), is not Eulerian, but U(H) is Eulerian and so L(H) is Hamiltonian.
Remark that H2 veri�es the necessary condition of Theorem 25. Furthermore, H2

is strongly connected. One may observe that its underlying multidigraph U(H2)

is Eulerian (it is even a 2-regular digraph). However, H2 is not Eulerian because
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it does not verify the condition of Theorem 27. Indeed, d−s ({1, 2}) = 2, which is
strictly greater than d+({1, 2}) = 1.

We will show, in the next sections, that there are Eulerian dihypergraphs H,
which are not digraphs, such that their U(H) is Eulerian.

A.4 Case of d-regular, s-uniform Dihypergraphs

Let (s−, s+) be a couple of positive integers. An (s−, s+)-uniform dihypergraph H
is a dihypergraph such that the in-size (resp. the out-size) of every hyperarc in H
equals s− (resp. equals s+). When s− = s+ = s we also say that H is a s-uniform
dihypergraph. Recall that digraphs are 1-uniform dihypergraphs.

Let (d−, d+) be a couple of positive integers. A (d−, d+)-regular dihypergraph
H is a dihypergraph such that the in-degree (resp. the out-degree) of every vertex
in H equals d− (resp. d+). When d− = d+ = d, we also say that H is a d-regular
dihypergraph. Regular 1-uniform dihypergraphs are exactly regular digraphs. Re-
mark that a dihypergraph H is (p, q)-uniform if, and only if, its dual dihypergraph
H∗ is (p, q)-regular, for any positive integers p, q.

When the studied dihypergraphs are uniform, Theorem 25 can be reformulated
in a very similar way to [LN10]:

Corollary 19. Let H be an Eulerian dihypergraph. If H is (s−, s+)-uniform, then:
∑

v∈V(H)

|d+(v)− d−(v)| ≤ (s+ + s− − 2) m

Observe that even though d-regular dihypergraphs always verify the necessary
condition of Theorem 25, they are not always Eulerian (see Figure A.2).

We recall the following result about regular digraphs:

Theorem 31 ([BJG10]). Deciding whether a 2-regular digraph D is Hamiltonian is
an NP-complete problem.

In [LN10], the authors use a similar result about 3-regular graphs, to prove that
deciding whether a k-uniform hypergraph, k ≥ 3, is Eulerian is an NP-complete
problem. We do the same for uniform dihypergraphs. First, observe that if the di-
hypergraphs are 1-uniform, that is they are digraphs, we know that deciding whether
a digraph is Eulerian can be done in polynomial time [DR94].

Theorem 32. Let (s−, s+) be a couple of positive integers. If s− ≥ 2 or s+ ≥ 2,
then deciding whether a (s−, s+)-uniform dihypergraph is Eulerian is an NP-complete
problem.

Proof. By symmetry, we only need to prove the case when s+ ≥ 2. Furthermore,
by Theorem 28, we already know that the problem is in the NP-class. We now
reduce the Hamiltonian problem in 2-regular digraphs to the Eulerian problem in
(s−, s+)-uniform dihypergraphs.



150
Appendix A. Eulerian and Hamiltonian Dicycles in Directed

Hypergraphs

The idea consists in associating in polynomial time to a 2-regular digraph D a
dihypergraph HD, such that HD is Eulerian if, and only if, D is Hamiltonian and
then the result will follow by Theorem 31.

Let D = (V(D), E(D)) be a 2-regular digraph. We de�ne the dihypergraph HD

with the following rules:

1. V(HD) = V(D) ∪ {A× V(D)} ∪ {B × V(D)}, where A and B are two sets
satisfying |A| = s− − 1 and |B| = s+ − 2;

2. to each vertex v ∈ V(D), we associate a hyperarc Ev ∈ E(HD) such that
E−v = {v}∪{A× {v}} and E+

v = {wv, w
′

v}∪{B × {v}}, where wv and w
′

v are
the out-neighbors of v in D.

By construction, HD is a (s−, s+)-uniform dihypergraph. Let us prove now that D
is Hamiltonian if, and only if, HD is Eulerian.

Suppose �rst that D is Hamiltonian and let C = v0, v1, . . . , vn−1, v0 be a Hamil-
tonian dicycle in D. From C, we build a dicycle CD in HD, CD = v0, Ev0 , v1, Ev1 ,
. . ., vn−1, Evn−1 , v0, where Evi

is the hyperarc that is induced by vi. By de�nition
of a Hamiltonian dicycle, for all v ∈ V(D), v appears only once in C. Therefore, by
construction of HD, for every Ev ∈ E(HD), Ev appears exactly once in CD. So, CD
is an Eulerian dicycle in HD.

Now, suppose that HD is Eulerian. Remark that for every E,F ∈ E(HD),
by construction of HD, we have E+ ∩ F− ⊂ V(D). Thus, let CD =

v0, E0, v1, E1, . . . , vm−1, Em−1, v0 be an Eulerian dicycle in HD. Because of the
previous remark, we know that for every i, vi ∈ V(D). However, a vertex v ∈ V(D)

is incident to only one hyperarc in HD. As a consequence, for all i, Ei is the hy-
perarc that is associated to vi and so, each vi appears exactly once, and therefore,
C = v0, v1, . . . , vm−1, v0 is a Hamiltonian dicycle in D.

When H is a digraph, we know that:

Theorem 33 ([DR94]). Let D be a weakly-connected digraph. If D is regular, then
all its iterated line digraphs Lk(D), for every k ≥ 1, are Hamiltonian and Eulerian.

We now prove that, more generally:

Theorem 34. Let H be a weakly-connected, d-regular, s-uniform dihypergraph.
Then for every k ≥ 1, Lk(H) is Eulerian and Hamiltonian.

Proof. Since H is d-regular and s-uniform, then U(H) is a ds-regular multidigraph.
As a consequence, for all k ≥ 0, Lk(U(H)) is also ds-regular. By Theorem 29, we
have by induction on k that, for all k ≥ 0, U(Lk(H)) is isomorphic to Lk(U(H)).
So, for all k ≥ 0, U(Lk(H)) is Eulerian (because it is a regular multidigraph), that
is equivalent, by Proposition 17, to L(Lk(H)) = Lk+1(H) be Hamiltonian.

Moreover, H∗ is s-regular, d-uniform, and we claim that it is also a weakly
connected dihypergraph. Indeed, s ≥ 1 implies that there is no empty in-set and
no empty out-set in H∗. So, the connectivity of H implies the connectivity of H∗.
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Therefore, for every k ≥ 1 Lk(H∗) is also Hamiltonian. Again by Theorem 29, we
prove by induction on k that, for all k ≥ 1, (Lk(H))∗ is isomorphic to Lk(H∗).
Therefore, by Proposition 15, for every k ≥ 1 Lk(H) is Eulerian.

Remark 3. Theorem 34 holds when H is (d−, d+)-regular, H is (s−, s+)-uniform,
if we add the extra-condition: d−s− = d+s+.

Recall that a complete Berge dicycle is an Eulerian and Hamiltonian dicycle and
that if a dihypergraph has such a dicycle, then its bipartite representation digraph
R(H) is Hamiltonian. In the case s = d, we are able to prove a slightly more general
result:

Proposition 18. Let H be a d-regular, d-uniform dihypergraph that is weakly con-
nected. There is a complete Berge dicycle in L(H).

Proof. Because of the d-regularity, d-uniformity of H, its own bipartite representa-
tion digraph R(H) is d-regular. Therefore, for every i ≥ 1, Li(R(H)) is Hamiltonian.
By Theorem 29, we know that L2(R(H)) and R(L(H)) are isomorphic. Therefore,
R(L(H)) is Hamiltonian.

Other results about Eulerian and Hamiltonian dihypergraphs can be found
in [Duc12].

A.5 de Bruijn and Kautz Dihypergraphs

In this section, we study the Eulerian and Hamiltonian properties of the generaliza-
tion of de Bruijn and Kautz digraphs to dihypergraphs.

A.5.1 de Bruijn, Kautz and Consecutive-d digraphs

First, we recall some de�nitions and previous results on digraphs that we will use
in the sequel.

De�nition 11 ([II81, RPK80]). The generalized de Bruijn digraph GB(d, n) (also
called Reddy-Pradhan-Khul digraph), is the digraph whose vertices are labeled with
the integers modulo n; there is an arc from vertex i to vertex j if, and only if,
j ≡ di+ α (mod n), for every α with 0 ≤ α ≤ d− 1.

If n = dD, GB(d, n) is nothing else than the de Bruijn digraph B(d,D)

(see [BP89, DR94]).

De�nition 12 ([II81]). The generalized Kautz digraph GK(d, n) (also called Imase-
Itoh digraph), is the digraph whose vertices are labeled with the integers modulo n;
there is an arc from vertex i to vertex j if, and only if, j ≡ −di− d+ α (mod n),
for every α with 0 ≤ α ≤ d− 1.

If n = dD + dD−1, GK(d, n) is nothing else than the Kautz digraph K(d,D)

(see [BP89, DR94]).
Both of those families of digraphs can be generalized in the following way:
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De�nition 13 ([DH89]). Let 1 ≤ d, q ≤ n− 1, and 0 ≤ r ≤ n− 1, then the
Consecutive-d digraph G(d, n, q, r) is the digraph whose vertices are labeled with the
integers modulo n, such that there is an arc from vertex i to vertex j if, and only if,
j ≡ qi+ r + α (mod n), for every α with 0 ≤ α ≤ d− 1.

Observe that if q = d and r = 0, then G(d, n, d, 0) = GB(d, n) and that if
q = r = n− d, then G(d, n, n− d, n− d) = GK(d, n).

De�nition 14 ([DH88]). Let λ be a positive integer, with 1 ≤ λ ≤ d. Then
GBλ(d, n) is the subdigraph of GB(d, n) such that there is a link from i to j if,
and only if, j ≡ di+ α (mod n), for every 0 ≤ α ≤ λ− 1.

Actually, the digraph GBλ(d, n) is nothing else than the Consecutive-d digraph
G(λ, n, d, 0). But the notation of GBλ(d, n) helps to understand that it is a subdi-
graph of GB(d, n). If λ = d, GBd(d, n) = GB(d, n). We can de�ne in a similar way
GKλ(d, n).

Consecutive-d digraphs have been intensively studied (see [DH89, DHHZ91,
Hwa87, CHT97, CHT99, DHK94, DHP92, DHNP02, CDH+98]). Particularly, the
characterization of the Hamiltonian Consecutive-d digraphs is nearly complete:

Theorem 35 ([CHT99, DH89, DHHZ91, Hwa87]). Let G = G(d, n, q, r) be a
Consecutive-d digraph.

• If d = 1, then G is Hamiltonian if, and only if, all of the four following
conditions hold:

1. gcd(n, q) = 1;

2. for every prime number p such that p divides n, then we have p divides
(q − 1);

3. if 4 divides n, then 4 also divides (q − 1);

4. gcd(n, q − 1, r) = 1.

• If d = 2, then G is Hamiltonian if, and only if, one of the following conditions
is veri�ed:

1. gcd(n, q) = 2;

2. gcd(n, q) = 1 and either G(1, n, q, r) or G(1, n, q, r + 1) is Hamiltonian.

• If d = 3, then:

1. if gcd(n, q) ≥ 2, G is Hamiltonian if, and only if, gcd(n, q) ≤ 3;

2. if gcd(n, q) = 1 and 1 ≤ |q| ≤ 3, G is Hamiltonian.

• If d ≥ 4, then G is Hamiltonian if, and only if, gcd(n, q) ≤ d.

Corollary 20 ([DHHZ91]). Let G = G(d, n, q, r) be a Consecutive-d digraph. If
gcd(n, q) ≥ 2, then G is Hamiltonian if, and only if, gcd(n, q) ≤ d.
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The only remaining case is when d = 3, for which there is only a partial charac-
terization.

In particular, the characterization of the Hamiltonian generalized de Bruijn
(resp. Kautz) digraphs is complete:

Theorem 36 ([DH88]). If λ = gcd(n, d) ≥ 2, then GBλ(d, n) and GKλ(d, n) are
Hamiltonian.

Theorem 37 ([DHHZ91, DH88]). GB(d, n) is Hamiltonian if, and only if, one of
the following conditions holds:

1. d ≥ 3;

2. d = 2 and n is even.

Theorem 38 ([DHHZ91, DH88]). GK(d, n) is Hamiltonian if, and only if, one of
the following conditions holds:

1. d ≥ 3;

2. d = 2 and n is even;

3. d = 2 and n is a power of 3.

GB(d, n) and GK(d, n) are also Eulerian [DH88].
Finally, GB(d, n) and GK(d, n) have interesting line digraph properties. We use

the following relations:

Proposition 19 ([DH88]). If gcd(n, d) = λ ≥ 2, then

L(GBλ(d,
n

λ
)) = GBλ(d, n) and L(GKλ(d,

n

λ
)) = GKλ(d, n)

Particularly:

L(GB(d, n)) = GB(d, dn) and L(GK(d, n)) = GK(d, dn).

A.5.2 De�nitions of de Bruijn and Kautz dihypergraphs

We now give the arithmetical de�nition for the de Bruijn and Kautz dihypergraphs.
For other de�nitions, see [BDE97]. In what follows, the vertices (resp. the hyperarcs)
are labeled with the integers modulo n (resp. modulo m); the vertices are denoted
i, 0 ≤ i ≤ n − 1 and the hyperarcs Ej , 0 ≤ j ≤ m − 1. To ease the reading we do
not write, when it is clear in the context, the expressions (mod n) and (mod m).

De�nition 15 ([BDE97]). Let d, n, s and m be four positive integers, such that
dn ≡ 0 (mod m) and sm ≡ 0 (mod n). The generalized de Bruijn dihypergraph
GBH(d, n, s,m) has as vertex set (resp. hyperarc set) the integers modulo n (resp.
modulo m). Any vertex i belongs to the in-set of hyperarcs Edi+α (mod m), for every
0 ≤ α ≤ d− 1. Any hyperarc Ej has as out-set the vertices sj + β (mod n), for
every 0 ≤ β ≤ s− 1.
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Note that the condition dn ≡ 0 (mod m) follows from the fact that the vertices
i and i + n should be incident to the same hyperarcs d(i + n) + α ≡ di + α (mod
m). Similarly E+

j = E+
j+m implies sm ≡ 0 (mod n).

Particularly, when n = m, it can be useful to remark that in the bipartite
digraph R(GBH(d, n, s, n)), the incidence relations from V1 to V2 are the same as
in GB(d, n) and the incidence relations from V2 to V1 are the same as in GB(s, n).

De�nition 16 ([BDE97]). Let (d, n, s,m) be four positive integers, such that dn ≡ 0

(mod m) and sm ≡ 0 (mod n). The generalized Kautz dihypergraph, denoted by
GKH(d, n, s,m), is the dihypergraph whose vertices (resp. hyperarcs) are labeled by
the integers modulo n (resp. modulo m), such that a vertex i is incident to hyperarcs
Edi+α (mod m), for every 0 ≤ α ≤ d− 1 and hyperarc Ej has for out-set the vertices
−sj − s+ β (mod n), for every 0 ≤ β ≤ s− 1.

By inversing the labeling of the hyperarcs, it has been proposed in [BDE97] an
equivalent de�nition for Kautz dihypergraphs:

De�nition 17 ([BDE97]). Let (d, n, s,m) be four positive integers, such that dn ≡ 0

(mod m) and sm ≡ 0 (mod n). The generalized Kautz dihypergraph, denoted by
GKH(d, n, s,m), is the dihypergraph whose vertices (resp. hyperarcs) are labeled by
the integers modulo n (resp. modulo m), such that a vertex i is incident to hyperarcs
E−di−d+α (mod m), for every 0 ≤ α ≤ d− 1 and hyperarc Ej has for out-set the
vertices sj + β (mod n), for every 0 ≤ β ≤ s− 1.

We recall some properties that will be used in Section A.6.

Theorem 39 ([BDE97]). The underlying multidigraph of GBH(d, n, s,m) (resp.
GKH(d, n, s,m)) is GB(ds, n) (resp. GK(ds, n)).

Theorem 40 ([BDE97]). If H = GBH(d, n, s,m) (resp. GKH(d, n, s,m)), then
H∗ = GBH(s,m, d, n) (resp. GKH(s,m, d, n)).

Theorem 41 ([BES11]). The line dihypergraph of GBH(d, n, s,m) (resp. of
GKH(d, n, s,m)) is GBH(d, dsn, s, dsm) (resp. is GKH(d, dsn, s, dsm)).

A.5.3 Eulerian and Hamiltonian properties

We now characterize when the generalized de Bruijn and Kautz dihypergraphs are
Hamiltonian and Eulerian. Recall that we suppose n > 1 and m > 1.

Theorem 42. Let H = GBH(d, n, s,m) be a generalized de Bruijn dihypergraph.
H is Hamiltonian if, and only if, one of the following conditions is veri�ed:

1. ds ≥ 3;

2. ds = 2 and n is even.

Proof. First, recall that U(H) = GB(ds, n) by Theorem 39. By Theorem 37, we
know that the de Bruijn digraph GB(ds, n) is Hamiltonian if, and only if, ds ≥ 3;
or ds = 2 and n is even. Therefore, by Proposition 16, Theorem 42 follows.
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Theorem 43. Let H = GBH(d, n, s,m) be a generalized de Bruijn dihypergraph.
H is Eulerian if, and only if, one of the following conditions is veri�ed:

1. ds ≥ 3;

2. ds = 2 and m is even.

Proof. By Theorem 40, H∗ = GBH(s,m, d, n). Theorem 42 gives a necessary and
su�cient condition for H∗ to be Hamiltonian. By Proposition 15, this is also a
necessary and su�cient condition for H to be Eulerian.

The method that is used for deciding whether GBH(d, n, s,m) is Eulerian or
Hamiltonian can be applied to Kautz dihypergraphs in the same way. By Theorem
38, we have necessary and su�cient conditions for a generalized Kautz digraph to
be Hamiltonian. Consequently:

Theorem 44. Let H = GKH(d, n, s,m) be a generalized Kautz dihypergraph.

1. If ds ≥ 3, then H is Eulerian and Hamiltonian;

2. If ds = 2, then H is Eulerian (resp. Hamiltonian) if, and only if, m (resp. n)
is even or a power of 3.

A.6 Existence of Complete Berge Dicycles

In this section, we want to determine when there exists a complete Berge dicycle in
GBH(d, n, s,m), (i.e a Hamiltonian dicycle in its bipartite representation digraph).

A necessary condition for a dihypergraph H to have a complete Berge dicycle is
that n = m. Otherwise, R(H) cannot be Hamiltonian. We prove that:

Theorem 45. There is a complete Berge dicycle in GBH(d, n, s, n) if one of the
following conditions is veri�ed:

1. d ≥ 3 and s ≥ 3;

2. d = 2 and s ≥ 4, or s = 2 and d ≥ 4;

3. {d, s} = {2, 3} and either n is even or n is a multiple of 3;

4. d = s = 2 and n is even or n is a power of 3 (otherwise it does not exist);

5. d = 1 or s = 1 and GB(ds, n) is Hamiltonian (otherwise it does not exist).

The only remaining case is when {d, s} = {2, 3} and n and 6 are relatively prime,
for which we conjecture GBH(d, n, s, n) has a complete Berge dicycle:

Conjecture 4. If {d, s} = {2, 3}, then there is a complete Berge dicycle in
GBH(d, n, s, n).
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We highlight the particular case when s = d, for which we have a complete
characterization:

Theorem 46. There is a complete Berge dicycle in GBH(d, n, d, n) if, and only if,
one of the following conditions is veri�ed:

1. d ≥ 3;

2. d = 2 and n is an even number;

3. d = 2 and n is a power of 3.

Remark that, for d ≥ 2, these conditions are exactly the same as those implying
that GK(d, n) is Hamiltonian (see Theorem 38). It would be interesting to see if
there is a relationship between Theorems 38 and 46. We were able to �nd it only
when n is odd (see Lemma 37 in Section A.6.4).

The rest of this section is devoted to the proof of Theorems 45 and 46. In
Section A.6.1, we deal with the easy case d = 1. In Section A.6.2, we show that
Theorem 45 is true when gcd(n, d) ≥ 2 and gcd(n, s) ≥ 2 using a special product of
digraphs and the notion of line digraphs. Then, in Section A.6.3, we consider the
opposite case, where gcd(n, d) = 1 or gcd(n, s) = 1, and solve all the cases except
{d, s} = {2, 3}, d = s = 2 and d = s = 3. Section A.6.4 contains the lemma which
shows the relation with the generalized Kautz digraphs, and that the conditions of
Theorem 46 are su�cient for d = s = 2 and n is a power of 3. In Section A.6.5,
by using the Euler's function, we show that these conditions are also necessary for
d = s = 2. Finally, in Section A.6.6, we deal with the remaining case: d = s = 3

and gcd(n, 3) = 1 and we solve it using a link-interchange method.

A.6.1 Case d = 1

Lemma 33. If d = 1, then there is a complete Berge dicycle in GBH(1, n, s, n) if,
and only if, the de Bruijn digraph GB(s, n) is Hamiltonian.

Proof. If d = 1, then every vertex i is only incident to hyperarc Ei. So we may not
distinguish the vertices from the hyperarcs and we get a digraph, the relations of
incidence of which are the relations of incidence between hyperarcs and vertices in
the original dihypergraph. Therefore, Lemma 33 follows.

By symmetry, observe that the case when s = 1 is also solved by Lemma 33.

A.6.2 Case gcd(n, d) ≥ 2 and gcd(n, s) ≥ 2

In this section, we completely solve the case when gcd(n, d) ≥ 2 and gcd(n, s) ≥ 2.
The proof is involved; in the particular case d = s, it can be simpli�ed by using
other methods such as the concatenation of digraph dicycles [Duc12].

We will use a subcase of a digraph product introduced in [BH95, BH96]:
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De�nition 18 ([BH95, BH96]). Let L1, L2 be two digraphs with the same order n
and with V(L1) ∩ V(L2) = ∅ and let φ: V(L1) → V(L2) be a one-to-one mapping.
Then, L1⊗φL2 is the digraph L such that V(L) = V(L1)∪V(L2) and the set of arcs
E(L) is de�ned by exchanging the out-neighbors of u ∈ V(L1) with the out-neighbors
of φ(u) ∈ V(L2) and vice-versa. More precisely, if u2 = φ(u1), and (u1, v1) is an
arc of L1 and (u2, v2) is an arc of L2, then the arcs (u1, v2) and (u2, v1) belong to
E(L).

Observe that if L1 is the generalized de Bruijn digraph GB(s, n), L2 is the
generalized de Bruijn digraph GB(d, n) and φ is the identity function, then L1⊗φL2

is the bipartite representation digraph R(GBH(d, n, s, n)).
It happens that even if L1 and L2 are both strongly connected, L1 ⊗φ L2 may

be disconnected. However, it was proven by Barth and Heydemann the following
su�cient condition:

Lemma 34 ([BH95]). If L1 and L2 are strongly connected, and if there exist u1 and
u2 such that φ(u1) = u2 and there is a loop (u1, u1) ∈ E(L1) and a loop (u2, u2) ∈

E(L2), then L1 ⊗φ L2 is strongly connected.

We now prove a useful lemma:

Lemma 35. For every i ∈ {1, 2}, let Di be an arbitrary digraph and Li = L(Di) be
its line digraph. If L1 and L2 have the same number of vertices and φ : V(L1) →

V(L2) is a one-to-one mapping, then L1 ⊗φ L2 is also a line multidigraph L(D),
such that V(D) = V(D1)∪V(D2) and the degree of a vertex in D is the same as the
degree of its corresponding vertex in D1 or D2.

Proof. The vertices of Li (i = 1, 2) are the arcs of Di and so they are of the form
(ui, vi), with ui, vi ∈ V(Di). Let V(D) = V(D1) ∪ V(D2). For each (u1, v1) of L1, if
(u2, v2) = φ((u1, v1)) is its image by φ, we put in D the arcs (u1, v2) and (u2, v1).

Now, consider the mapping ψ : V(L1 ⊗φ L2) → V(L(D)) = E(D), de�ned as
follows: if (u1, v1) is a vertex of L1 and (u2, v2) = φ((u1, v1)) is the associated
vertex in L2, then ψ((u1, v1)) = (u1, v2) and ψ((u2, v2)) = (u2, v1). Observe that ψ
is a one-to-one mapping. To prove the lemma, it su�ces to prove that ψ keeps the
adjacency relation.

On one side, by de�nition of the product, the vertex (u1, v1) is joined in L1⊗φL2

to the out-neighbors of (u2, v2) in L2 that is to the vertices of the form (v2, w2), with
(v2, w2) an arc of D2. On the other side, in L(D), the vertex (u1, v2) = ψ((u1, v1))

is joined to the vertices (v2, y1), where y1 is such that there exists x1 in D1 and
w2 in D2, such that (x1, y1) is an arc of D1, φ((x1, y1)) = (v2, w2) and (v2, w2) is
an arc of D2. But, by de�nition, (v2, y1) = ψ((v2, w2)). So, ψ((u1, v1)) is joined in
L(D) to all the images by ψ of the out-neighbors of (u1, v1) in L1 ⊗φ L2 and then
the adjacency relation is kept for the vertices of L1. The proof is identical for the
vertices of L2.

When s = d, we can prove a stronger result namely that GBλ(d, n)⊗φGBλ(d, n)

is the line digraph of GBλ(d, n
λ )⊗φ GBλ(d, n

λ ) [Duc12].
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Remark 4. Note that, if L1 = L(D1) and L2 = L(D2) are Hamiltonian digraphs,
then D1 and D2 are balanced and so, by Lemma 35, D is a balanced digraph, i.e.
every vertex of D has equal in-degree and out-degree.

Lemmas 34 and 35 enable us to prove the following theorem:

Theorem 47. Let H = GBH(d, n, s, n) be a generalized de Bruijn dihypergraph. If
gcd(d, n) ≥ 2 and gcd(s, n) ≥ 2, then there is a complete Berge dicycle in H.

Proof. Let us show that R = R(GBH(d, n, s, n)) is a Hamiltonian digraph. We
recall that R is isomorphic to GB(s, n)⊗φ GB(d, n), φ being the identity function.
So, for λ = gcd(d, n) and µ = gcd(s, n), the digraph GBµ(s, n) ⊗φ GBλ(d, n) is
isomorphic to a subdigraph of R. As, by Proposition 19, GBµ(s, n) and GBλ(d, n)

are two line digraphs, then, by Lemma 35, GBµ(s, n) ⊗φ GBλ(d, n) is also a line
digraph L(D). Moreover, since GBµ(s, n) and GBλ(d, n) are also Hamiltonian di-
graphs, by Theorem 36, then D is a balanced digraph by Remark 4. Furthermore,
both GBµ(s, n) and GBλ(d, n) are strongly connected and those two digraphs have
a common loop (0, 0). Consequently, by Lemma 34, GBµ(s, n) ⊗φ GBλ(d, n) is
strongly connected, hence D is strongly connected too.

D is a balanced digraph that is strongly connected. In other words, D is an
Eulerian digraph and so L(D) = GBµ(s, n)⊗φGBλ(d, n) is a Hamiltonian digraph.

A.6.3 Case n and d relatively prime, or n and s relatively prime

In the next proofs, we consider a Hamiltonian dicycle in a Consecutive-d digraph as
a circular permutation σ in Zn. If j is the vertex that follows i in the Hamiltonian
dicycle, then σ(i) = j; if k is the vertex that follows j in the same dicycle, then
σ2(i) = k and so on.

Now we deal with the other case gcd(n, d) = 1 or gcd(n, s) = 1 and will prove
that the Theorem 45 holds in most of the cases. The proof will rely on the following
lemma:

Lemma 36. Let n and d be relatively prime. If the Consecutive-s di-
graph G(s, n, ds, 0) is Hamiltonian, then there is a complete Berge dicycle in
GBH(d, n, s, n).

Proof. Recall that in G(s, n, ds, 0) a vertex i is joined to the vertices j ≡ dsi+ β

(mod n), for every β with 0 ≤ β ≤ s− 1. Let 0, σ(0), σ2(0), . . . , σn−1(0), 0

be a Hamiltonian dicycle of G(s, n, ds, 0). We construct the following dicycle in
GBH(d, n, s, n). Vertex i precedes the hyperarc Edi. Since gcd(n, d) = 1, therefore
d is invertible in Zn and i→ di is a bijection between vertices and hyperarcs. The
dicycle 0, E0, σ(0), Edσ(0), . . . , σ

n−1(0), Edσn−1(0), 0 is then a complete Berge dicycle
in GBH(d, n, s, n); indeed the vertex σk+1(0) ≡ dsσk(0) + β ≡ s(dσk(0)) + β is in
the out-set of Edσk(0).
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Theorem 48. Let H = GBH(d, n, s, n) be a generalized de Bruijn dihypergraph
such that d 6= 1 and s 6= 1. If n and d are relatively prime or n and s are relatively
prime, then there is a complete Berge dicycle in H if one of the following conditions
hold:

1. d ≥ 4 or s ≥ 4;

2. {d, s} = {2, 3} and n is even or n is a multiple of 3.

Proof. By Theorem 35, we know that G(s, n, ds, 0) is Hamiltonian if one of the
following conditions hold:

• s ≥ 4 and gcd(n, ds) ≤ s;

• or {s = 3 and 2 ≤ gcd(n, 3d) ≤ 3};

• or {s = 2 and gcd(n, 2d) = 2}.

Furthermore, if n and d are relatively prime, we have:

gcd(n, ds) = gcd(n, s) ≤ s (A.1)

and so, 2 ≤ gcd(n, 3d) ≤ 3 is equivalent to n multiple of 3 and gcd(n, 2d) = 2 to
n even.

By using these facts and Lemma 36 we get:

• Fact 1: if n and d are relatively prime, then there is a complete Berge dicycle
in GBH(d, n, s, n) when s ≥ 4 or {s = 3 and n is a multiple of 3} or {s = 2

and n is even}.

• Fact 2: (obtained by exchanging d and s) if n and s are relatively prime, then
there is a complete Berge dicycle in GBH(s, n, d, n), hence, there is also a
complete Berge dicycle in the dual GBH(d, n, s, n), when d ≥ 4 or {d = 3 and
n is a multiple of 3} or {d = 2 and n is even}.

Now, we can conclude as follows:
Let d ≥ 4. If n and s are relatively prime we conclude by using Fact 2. Otherwise

gcd(n, s) ≥ 2 and n and d are relatively prime. The theorem is proved by using Fact
1 as either s ≥ 4; or s = 3, but then n is a multiple of 3, because gcd(n, s) ≥ 2; or
s = 2 and gcd(n, s) ≥ 2 implies that n is a multiple of 2.

The case s ≥ 4 can be done similarly (by exchanging d and s, which corresponds
to work in the dual).

Now let d = 3 and s = 2. If n is a multiple of d = 3, then by hypothesis n and s
are relatively prime and we conclude by Fact 2. If n is a multiple of s = 2, then by
hypothesis n and d are relatively prime and we conclude by Fact 1. The case d = 2

and s = 3 is done similarly by exchanging d and s.
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A.6.4 Concatenation of dicycles and relation to generalized Kautz
digraphs

If n is an odd number, then Theorem 46 can be partly proven with a concatenation
of dicycles.

Lemma 37. If GK(d, n) is Hamiltonian and n is odd, then there is a complete
Berge dicycle in GBH(d, n, d, n).

Proof. We use a variant for the de�nition of GBH(d, n, d, n). Indeed as noted
in [Cou01], if we label the hyperarc Ej with label En−1−j , we get the incidence
relations of GK(d, n). In other words, GBH(d, n, d, n) can be de�ned as follows:
vertex i is incident to hyperarcs E−di−d+α (mod n), for every 0 ≤ α ≤ d− 1, and
hyperarc Ej has as out-set the vertices −dj−d+β (mod n), for every 0 ≤ β ≤ d− 1.

Now, by Theorem 38, there exists a Hamiltonian dicycle in the Kautz digraph
GK(d, n) for n odd, and either d ≥ 3 or { d = 2 and n is a power of 3}; let it
be 0, σ(0), σ2(0), . . . , σn−1(0), 0. Let C be the dicycle of GBH(d, n, d, n), where
vertex i precedes hyperarc Eσ(i) and hyperarc Ej precedes vertex σ(j). So, C =

0, Eσ(0), σ
2(0), . . . , σ2h(0), Eσ2h+1(0), . . . , σ

n−2(0), Eσn−1(0), 0, where 0 ≤ h ≤ n − 1.
As n is odd, the n vertices and also the n hyperarcs of the dicycle are all di�erent.
Therefore C is a complete Berge dicycle in GBH(d, n, d, n).

Corollary 21. If n is odd and d ≥ 3, then there is a complete Berge dicycle C in
GBH(d, n, d, n).

Corollary 22. If n is a power of 3 and d = 2, then there is a complete Berge dicycle
C in GBH(2, n, 2, n).

In the same way, we can prove that, if GB(d, n) is Hamiltonian and n is odd,
then there is a complete Berge dicycle in GBH(d, n, d, n). However, even if it would
have given the result for GBH(d, n, d, n) with n odd and d ≥ 3, it would have
not been enough to conclude for the case d = 2 and n a power of 3. In that
case, the proof of Lemma 37 plus the fact that, by [DHHZ91], σ : i → −2i− 1

is a Hamiltonian dicycle in GK(2, n), gives the following complete Berge dicycle
C in GBH(2, n, 2, n) (by renaming the edges with the standard de�nition). In C,
vertex i precedes the hyperarc E2i, and hyperarc Ej precedes the vertex 2j + 1.
Thus, C contains as consecutive vertices i and 4i+ 1. Figure A.1 shows the dicycle
0, E0, 1, E2, 5, E1, 3, E6, 4, E8, 8, E7, 6, E3, 7, E5, 2, E4, 0, that is obtained in this way
for n = 9 (with dotted red arcs).

A.6.5 Case d = s = 2

Theorem 47 and Corollary 22 show that there exists a complete Berge dicycle in
GBH(2, n, 2, n) when n is even, or {n is odd and n is a power of 3}. We still have
to prove there is no complete Berge dicycle in the remaining cases. For that, we
need to use the Euler function, in the spirit of the proof of [DHHZ91].
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De�nition 19. The Euler function, denoted by ϕ, associates to a positive integer
n, the number ϕ(n) of positive integers that are lower than n and relatively prime
to n.

The Euler function satis�es the following properties (the three �rst ones are
immediate consequences of the de�nition and the fourth one is known as Euler's
theorem):

1. ϕ(1) = 1;

2. If p is a prime number and m ≥ 1, then ϕ(pm) = (p− 1)pm−1;

3. If a and b are relatively prime, then ϕ(ab) = ϕ(a)ϕ(b);

4. If a and b are relatively prime, then aϕ(n) ≡ 1 (mod b).

Lemma 38. If n is odd, then there is a complete Berge dicycle in GBH(2, n, 2, n)

if, and only if, n is a power of 3.

Proof. Let us suppose that there is a complete Berge dicycle C in GBH(2, n, 2, n).
We distinguish two cases: either there exists a vertex i, such that i precedes in C the
hyperarc E2i and we will show this holds for all the vertices; or any vertex i precedes
in C the hyperarc E2i+1. To prove this claim, consider that some vertex i precedes
E2i in C. Since gcd(2, n) = 1, we have that 2 is invertible in Zn. Thus, i′ = i− 2−1

cannot precede E2i′+1, as 2i′ + 1 = 2i. So, i′ precedes E2i′ too. Consequently, since
2−1 is a generator element of Zn, any vertex i precedes in C the hyperarc E2i.

Similarly, we can prove that either every hyperarc Ej in C precedes the vertex
2j, or every hyperarc Ej in C precedes the vertex 2j + 1. Therefore, if we consider
only the vertices of the dicycle C and we denote by σ(i) the successor of i in C, we
have exactly four possibilities for σ, namely: σk(i) = 4i+ k with 0 ≤ k ≤ 3.

Since 4 · 0 = 0, the solution k = 0 does not generate a complete Berge dicycle.
Furthermore, if gcd(n, 3) = 1 the equation σk(i) ≡ i ⇐⇒ 4i + k ≡ i ⇐⇒ 3i ≡ −k,
has always a solution for 1 ≤ k ≤ 3. Therefore, none of the other values of k works,
when gcd(n, 3) = 1.

It remains to consider the case n = c3p, p ≥ 1 and gcd(3, c) = 1. By induction,

we have that σh
k (0) = k(4h−1)

3 (mod n).
Let ϕ be the Euler function; by Properties 2 and 3, ϕ(n) = ϕ(c)ϕ(3p) =

2ϕ(c)3p−1. Since gcd(n, 2) = 1, then, by Property 4, 2ϕ(n) ≡ 1 (mod n). Therefore,
4ϕ(c)3p−1

≡ 1 (mod n) and, since ϕ(c)3p−1 < n, σ3 never generates a complete Berge
dicycle either.

Moreover, since 2 is invertible in Zn, then we also know that σ2 generates a
complete Berge dicycle if, and only if, this is also the case for solution σ1. Actually,
when we choose σ1, we choose σ2 in the dual, and reciprocally. So, let us concentrate
now on σ1. The equation σh

1 (0) = σh′

1 (0) is equivalent to 4h ≡ 4h′
(mod 3n). Again,

Property 4 of Euler's function implies that 4ϕ(c)3p
≡ 1 (mod 3n). But the only value

of c such that ϕ(c) = c is c = 1. Therefore, if n is not a power of 3, σ1 and σ2 do
not generate a complete Berge dicycle.
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This proof for d = 2 and n odd could be shortened using the characterization
of the Hamiltonian Consecutive-1 digraphs. Indeed, we prove there are only four
possibilities for having a complete Berge dicycle in GBH(2, n, 2, n). In the original
proof, we deal with them as applications σk of Zn, for 0 ≤ k ≤ 3. But these four
solutions are also equivalent to some Consecutive-1 digraphs. They correspond,
respectively, to the relations of incidence in G(1, n, 4, 0), G(1, n, 4, 1), G(1, n, 4, 2)

and G(1, n, 4, 3). Then, deciding whether one of these four solutions generate a
complete Berge dicycle is the same thing as deciding whether one of these four
Consecutive-1 digraphs is a Hamiltonian digraph. Furthermore, by Theorem 35,
we know whether one of those digraphs is Hamiltonian, depending on the value
of n. For all n, G(1, n, 4, 0) and G(1, n, 4, 3) are never Hamiltonian. Moreover,
G(1, n, 4, 1) and G(1, n, 4, 2) are Hamiltonian if, and only if, n is a power of 3.
Since the Hamiltonicity of at least one of these digraphs is a necessary and su�cient
condition for H = GBH(2, n, 2, n) to have a complete Berge dicycle, then there is
a complete Berge dicycle in H if, and only if, n is a power of 3.

A.6.6 Case d = s = 3

To �nish the proof, it remains to deal with the case n even, d = s = 3 and n and
d relatively prime. Note that, for d = 3, we do not know when the Consecutive-3
digraph G(3, n, 9, 0) is Hamiltonian, and so, we cannot use the same proof as in
Lemma 36. We will use a method, introduced in [DHHZ91], that is di�erent from
the previous ones. This method enables us to merge two disjoint dicycles of R(H)

into one dicycle.

De�nition 20. Let C1, C2 be two dicycles, that are subdigraphs of the same digraph
D. A pair {x1, x2} with x1 ∈ C1 and x2 ∈ C2 is called an interchange pair if the
predecessor y1 of x1 in C1 is incident to x2 in D, and the predecessor y2 of x2 in
C2 is incident to x1 in D too.

If {x1, x2} is an interchange pair, then we can build a dicycle containing all the
vertices of C1 ∪C2 by deleting (y1, x1) and (y2, x2) and adding the arcs (y1, x2) and
(y2, x1).

Lemma 39. If n is even and n and 3 are relatively prime, then there is a complete
Berge dicycle in GBH(3, n, 3, n).

Proof. Let R be the bipartite representation digraph of GBH(3, n, 3, n). To every
vertex i we associate the hyperarc E3i+1 and, similarly, to every hyperarc Ej we
associate the vertex 3j + 1. Since gcd(n, 3) = 1, the digraph R is partitioned
into pairwise vertex-disjoint dicycles. If there is only one dicycle in this partition,
we are done as it is Hamiltonian. Otherwise, we use interchange pairs to merge
successively the dicycles till we have only one. But we have to be careful to do
independent interchanges.

Figure A.4 shows an example for the case n = 8, where we obtain the 4 dicycles:
C0 = (0, E1, 4, E5), C1 = (1, E4, 5, E0), C2 = (2, E7, 6, E3), C3 = (3, E2, 7, E6).
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Figure A.4: An application of the link-interchange method to the de Bruijn dihy-
pergraph GBH(3, 8, 3, 8).

We �rst claim that, if i and i+1 belong to two disjoint dicycles C1 and C2, then
{i, i + 1} is an interchange pair. Indeed, let Ej be the predecessor of i in C1 and
Ej′ the predecessor of i+ 1 in C2. By construction, 3j + 1 = i and 3j′ + 1 = i+ 1.
Consequently, 3j + 2 = i+ 1 and so there is an arc from Ej to i+ 1. We also have
3j′ = i and so there is an arc from E′j to i. Therefore, the claim is proved. For
n = 8, {0, 1} is an interchange pair and we can merge C0 and C1 by deleting the
arcs (E5, 0) and (E0, 1) (in dashed blue in Figure A.4) and adding the arcs (E5, 1)

and (E0, 0) (in blue).
Similarly, we have that if Ej and Ej+1 belong to two disjoint dicycles then

{Ej , Ej+1} is an interchange pair. We have to be careful not to use twice the same
vertex in an interchange pair, as the predecessor has changed when doing the �rst
merging. Here we will use only some interchange pairs of the form {2i, 2i+ 1} and
{E2j+1, E2j+2}, which are pairwise independent because n is even.

We proceed as follows: if there exists an i such that 2i and 2i + 1 belong to
di�erent dicycles we merge these dicycles using the interchange pair {2i, 2i + 1}.
After at most n/2 merge operations, we get a set of disjoint dicycles such that, for
all i, 2i and 2i+ 1 belong to the same dicycle. In the example for n = 8, we merge
C0 and C1 using the interchange pair {0, 1} and C2 and C3 using the interchange
pair {2, 3} (see Figure A.4). We now have 2 dicycles.

Then, consider two vertices of the form 2i and 2(i + 3−1). Suppose that they
belong to two di�erent dicycles C1 and C2. The vertex 2i + 1, which is also in C1

precedes the hyperarc E6i+4 in C1 and the vertex 2(i+ 3−1) precedes E6i+3 in C2.
Moreover, we claim that {E6i+3, E6i+4} is an admissible interchange pair that we



164
Appendix A. Eulerian and Hamiltonian Dicycles in Directed

Hypergraphs

can use to merge the two dicycles, because 6i+ 3 is odd whereas n is even, and so,
6i+3 (mod n) is odd. Finally, since 3 and n are relatively prime, 3−1 is a generator
element in Zn and so we can consider successively the possible i such that 2i and
2(i+ 3−1) belong to two di�erent dicycles and merge all the dicycles.

Observe that for the example in Figure A.4, when n = 8, we have that 3−1 = 3.
We now use the construction for i = 0. Vertices 0 and 6 are in two di�erent
dicycles, and {E3, E4} is an admissible interchange pair. So we can merge the two
dicycles by deleting the arcs (6, E3) and (1, E0) (in dashed red in Figure A.4) and
adding the arcs (1, E3) and (6, E4) (in red) to get the �nal complete Berge dicycle
C = 0, E1, 4, E5, 1, E3, 3, E2, 7, E6, 2, E7, 6, E4, 5, E0, 0.

A.6.7 Complete Berge dicycles in Kautz Dihypergraphs

The Kautz dihypergraph GKH(d, n, d, n) is close to the dihypergraph
GBH(d, n, d, n), but the existence of complete Berge dicycles in it is much harder
to prove due to its asymmetry. Indeed, the relations of incidence from its vertices
to the hyperarcs are not the same as the relations of incidence from its hyperarcs to
the vertices.

Nonetheless, we have been able to show the existence of complete Berge di-
cycles in GKH(d, n, d, n) for some particular values of (d, n). Remark that
R(GKH(d, n, d, n)) is isomorphic to the bipartite digraph BD(d, n) (see [GPP98]).
The proof of the following theorem uses the same tools as for GBH(d, n, d, n) and
can be found in [Duc12]

Theorem 49. Let H = GKH(d, n, d, n) be a Kautz dihypergraph. There is a com-
plete Berge dicycle in H if one of the following conditions is veri�ed:

1. d ≥ 4;

2. d = 3 and n is even;

3. d = 2 and n is even or n is a power of 5 (otherwise it does not exist);

4. d = 1 and n ∈ {1, 2} (otherwise it does not exist).

We also have the following conjecture concerning complete Berge dicycles in
GKH(d, n, d, n):

Conjecture 5. Let H = GKH(d, n, d, n) be a Kautz dihypergraph. If d ≥ 3, then
there is a complete Berge dicycle in H.

A.7 Conclusions

In this chapter, we showed that it is an NP-complete problem to decide whether a
dihypergraph is Eulerian (or Hamiltonian). We presented a generalization of some
results concerning Eulerian digraphs, in the case where the studied dihypergraphs
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are uniform and regular. Then, we studied the Eulerian and Hamiltonian properties
of generalized de Bruijn and Kautz dihypergraphs.

We let as open questions Conjectures 4 and 5. It would also be nice to �nd a
relationship between Theorems 38 and 46, since both have similar conditions and
di�erent implications.





Appendix B

Distributed Storage Systems

Contents
B.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.1.1 Reconstruction Process . . . . . . . . . . . . . . . . . . . . . 170

B.2 Markov Chain Models . . . . . . . . . . . . . . . . . . . . . . 172

B.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.3.1 Systems with same Availability . . . . . . . . . . . . . . . . . 175

B.3.2 Systems with same Durability . . . . . . . . . . . . . . . . . . 176

B.3.3 Systems with same Storage Space . . . . . . . . . . . . . . . . 177

B.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Distributed or Peer-to-Peer (P2P) storage systems are foreseen as a highly reli-
able and scalable solution to store digital information [KBC+00, BDET00, BTC+04,
CDH+06]. The principle of P2P storage systems is to add redundancy to the data
and to spread it onto peers in a network.

There are two classic ways to introduce redundancy: basic replication and era-
sure codes [Rab89], like the traditional Reed-Solomon (RS) [RS60]. Many studies
compare the reliability of replication against erasure codes [WK02, RL05, LCL04].
Erasure codes use less additional storage space to obtain the same reliability as
replication. On the other hand, replication has the advantage of having no cod-
ing/decoding time, of having an easier and faster access to data, and of being ade-
quate in the presence of high churn.

Furthermore, the reconstruction process of RS systems is costly. In the RS
system, the data is divided into small fragments that are sent to di�erent peers.
When a fragment of redundancy is lost, the whole original data has to be retrieved
to regenerate it. At the opposite, in a system using replication, a repair is done by
simply sending again the lost data.

In order to spend less bandwidth in the reconstruction process, the Regenerat-
ing Codes were proposed in a recent work [DGWR07] as an improvement of the
traditional erasure codes. In this coding scheme, the peers that participate of the
reconstruction process send, instead of fragments of the data they have, linear com-
binations of subfragments of the fragments that they keep, in such a way that total
transferred data to the newcomer peer is smaller than the original data. This is
possible thanks to previous results on Network Coding [ACyRL+00].

In this work, we investigate in detail the use of two hybrid strategies. The
�rst one is usually called Hybrid Coding and was introduced and studied in [RL05]
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and [DGWR07], respectively. This strategy combines the use of both replication
and coding. It tries to get the best of both worlds: the storage e�ciency of RS and
the repair e�ciency of replication. The idea is to keep one full-replica of the data
in one peer along with erasure coded fragments spread in the network.

We also propose a new strategy that we name Double Coding in which we
improve the idea of Hybrid Coding. Instead of keeping the full-replica of the data
in only one peer of the network, we place a copy of each fragment (including the
redundant ones) in di�erent peers in the network.

Here we compare Hybrid Coding and Double Coding with RS systems and Re-
generating Codes. We study the bandwidth usage of these systems by considering
the availability of the peers under the presence of churn, the data durability and the
storage space usage. We show that both hybrid strategies perform better than tra-
ditional RS systems and that Double Coding is a good option for system developers
since it is simple to implement in practice and can perform close to Regenerating
Codes in terms of bandwidth usage.

Related Work.

P2P and large scale distributed storage systems have been analyzed by using
Markov chains: for erasure codes in [ADN07, DA06, DGMP09] and for replication
in [RP06, CDH+06]. In this work, we model Hybrid Coding, Double Coding and
Regenerating Codes with Markovian models. We also introduce a new chain for RS
systems that models the failure of the reconstructor during a repair.

Rodrigues and Liskov in [RL05] compare the Hybrid system versus replication
in P2P Distributed Hash Tables (DHTs). However, there are no comparisons of the
Hybrid system against the traditional erasure codes. Dimakis et al. [DGWR07]
study the e�ciency of bandwidth consumption for di�erent redundancy schemes,
among them the Hybrid Coding. They state that the Hybrid Coding has a better
availability/bandwidth trade-o� than the traditional erasure codes. Both of these
works focus on availability and they do not consider the durability of the data. They
also do not take into account the time to process the reconstructions. By using
Markov chains, we exhibit the impact of this parameter on the average system
metrics. Furthermore, they only consider RS using an eager repair policy, which
is highly ine�cient for the bandwidth. In [BTC+04], the authors propose the lazy
repair mechanism to decrease the bandwidth usage in the reconstruction process.
Here, we thus compare Hybrid Coding and an RS system using lazy repair.

In [DA06], Datta and Aberer study analytical models for di�erent lazy repair
strategies in order to improve the bandwidth usage under churn. In our work, we
employ the lazy repair to minimize the extra-cost in bandwidth even in a system
with high availability of peers.

Regenerating Codes [DGWR07] is a promising strategy to reduce the bandwidth
usage of the reconstruction of the lost data. There are some studies about these
codes like in [RSKR09], [DRW09], [DB09] and [DRWS10]. However, as far as we
know, there is no study of the impact of the reconstruction time in these codes.
Most of the results in the literature consider only simultaneous failures. In this



B.1. Description 169

work, we introduce a Markovian Model to study the impact of the reconstruction
time in Regenerating Codes.

Our Contributions.

• We study the availability and durability of Hybrid systems. We compare Hybrid
solution with RS system and RC systems.

• We propose a new kind of Hybrid codes, that we refer to as Double coding. This
new code is more e�cient than the Hybrid one. Its performance is close to the
one of Regenerating Codes in some cases. Furthermore, explicit deterministic
constructions of RC are not known for all sets of parameters. Double Codes is
then an interesting alternative in this case.

• We model these systems by using Markov chains (Section B.2). We derive
from these models the system loss rates and the estimated bandwidth usage.
These chains take into account the reconstruction time and the more e�cient
lazy repair.

• We analyze di�erent scenarios (Section B.3):

- When storage is the scarce resource, RS system has a higher durability.

- When bandwidth is the scarce resource, the Hybrid solution is a better
option.

• We compare systems for three metrics durability, availability and bandwidth
usage for a given storage space, when other studies focus on only two param-
eters.

In Section B.1 we present in detail the studied systems. In the following section
we describe the Markov Chain Models used to model these systems. Finally, in
Section B.3, these systems are compared by an analysis of some estimations on the
Markovian models.

B.1 Description

In distributed storage systems using Reed-Solomon (RS) erasure codes, each block
of data b is divided into s fragments. Then, r fragments of redundancy are added
to b in such a way that any subset of s fragments from the s + r fragments su�ce
to reconstruct the whole information of b. These s+ r fragments are then stored in
di�erent peers of a network. Observe that, the case s = 1 corresponds to the simple
replication. The codes studied in this work are depicted in Figure B.1.

For comparison, we also study ideal erasure codes in which there would also
be s original fragments and r redundancy fragments spread in the network, but it
would be possible to reconstruct a lost fragment by just sending another fragment
of information.



170 Appendix B. Distributed Storage Systems

The Hybrid system is simply a Reed-Solomon erasure code in which one of the
s + r peers stores, besides one of the original s fragments of a block b, also a copy
of all the other original fragments. This special peer which contains a full copy of
b, namely full-replica, is denoted by pc(b).

Following the idea of the Hybrid system, we propose the Double Coding strategy.
In Double Coding, each of the s+ r fragments has a copy in the network. However,
di�erently from the Hybrid approach, we propose to put the copies of the fragments
in di�erent peers of the network, instead of concentrating them in a single peer.
Consequently, we need twice the storage space of a Reed-Solomon erasure code and
also 2(s + r) peers in the network. We show, in Section B.3, that Double Coding
performs much better than RS systems in terms of bandwidth usage and probability
to lose data and this disadvantage on storage space is worthy.

Finally, in the Regenerating Codes the original data is also divided into s +

r fragments and the fragments are also spread into di�erent peers of a network.
However, the size of a fragment in these codes depend on two parameters: the
piece expansion index i and the repair degree d, as explained in [DB09]. These
parameters are integer values such that 0 ≤ i ≤ s− 1 and s ≤ d ≤ s+ r − 1. Given
these parameters, the size of a fragment in a Regenerating Code with parameters
(s, r, i, d) is equal to p(d, i)s where

p(d, i) =
2(d− s+ i+ 1)

2s(d− s+ 1) + i(2s− i− 1)
.

The repair degree d is the number of peers that are required to reconstruct a lost
fragment. This parameter also impacts the required bandwidth usage to repair a
fragment that was lost as we discuss in the next section.

B.1.1 Reconstruction Process

To ensure fault tolerance, storage systems must have a maintenance layer that keeps
enough available redundancy fragments for each block b. In this section, we describe
how the lost fragments must be repaired by this maintenance layer in each system.

Reed-Solomon. As stated before, in a Reed-Solomon system the reconstructor p(b)
of a block b must download s fragments in the system, in order to rebuild b, before
sending the missing fragments to new peers. Most of the works in the literature
consider only the case of the eager reconstruction, i.e., as soon as a fragment of data
is lost the reconstruction process must start. This is highly ine�cient in terms of
bandwidth usage, because, in most of the cases, s fragments are sent in the network
in order to rebuild only one lost fragment.

Here, we assume that the reconstruction process in a RS system uses the lazy
repair strategy [DA06], which can be much more e�cient in terms of bandwidth
usage. Given a threshold 0 ≤ r0 < r, the reconstruction process starts only when
the number of fragments of b is less than or equal to s+ r0. Observe that the case
r0 = r− 1 corresponds to the eager reconstruction. Recall that decreasing the value
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Figure B.1: Description of the redundancy schemes.

of r0 correspond to increase the probability to lose the block, i.e., to lose at least
r + 1 fragments.

When the reconstruction starts, a peer p(b) is chosen to be the reconstructor.
Note that, when reconstructing the missing redundancy of b, the peer p(b) possesses
a full-replica of the block which is discarded afterwards.

Hybrid Coding. In the Hybrid system, recall that pc(b) is the peer that contains a
full-replica of the block b, hence for each block there are 2s+r−1 fragments present
in the system. When there is a failure, if the peer pc(b) is still alive, it generates the
lost fragments from its full-replica. It then sends the missing fragments to di�erent
peers in the network. To be able to do that, the peer only needs to store the initial
block or, equivalently, s fragments. As a matter of fact, it can quickly create the
other fragments at will.

When the peer pc(b) fails, a new peer is chosen to maintain the full-replica. In
this case, the whole block needs to be reconstructed. This is accomplished by using
the traditional Reed-Solomon process, with the addition that the reconstructor keeps
a full-replica of the block at the end of the process. From that we see that a Hybrid
system can be easily built in practice from an RS system.

Double Coding. Recall that in the Double Coding, for each block there are 2(s+r)

fragments present in the system. An interesting property of Double Coding is that
it keeps the idea of Hybrid Coding, because when a fragment f is lost it is just
necessary to ask the peer that contains the other copy of f to send a copy of it to
another peer in the network.

Moreover, we can just say that a fragment f is lost in the system if its two
copies are lost. In this case, it is necessary to use the Reed-Solomon reconstruction
to rebuild at least one of the copies of f . Since this is an expensive process in terms
of bandwidth usage, we also adopt a threshold value 0 ≤ r0 < r to let this process
more e�cient. When r−r0 pairs of the same fragments are lost, a peer p(b) is chosen
to be the responsible for downloading s disjoint fragments of the system, rebuilding
the block b and the r redundant fragments and resending only the �rst copies of the
fragments that have lost both of their copies. Then, the second copies are sent by
the peers that contain the �rst one.
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Regenerating Codes. In these codes there is not the �gure of the reconstructor.
When a fragment f is lost, a peer that is usually called newcomer is in charge of
downloading linear combinations of subfragments of the block from exactly d peers
in the network in order to replace f .

The amount of information that the newcomer needs to download is equal to
d.δ(d, i).s where

δ(d, i) =
2

2s(d− s+ 1) + i(2s− i− 1)
.

Recall that d peers are required in the reconstruction process. If there are no d
peers available in the beginning of the reconstruction process, but there are still s
peers on-line, the reconstruction can be still processed by downloading s complete
fragments and reconstructing the original information of b as it happens in a RS
system.

There are two special cases of Regenerating Codes: the Minimum Bandwidth
Regenerating (MBR) codes and the Minimum Storage Regenerating (MSR) codes.
The MBR codes correspond to the case in which i = s − 1 and in the MSR ones
i = 0.

Since the most expensive resource in a network is arguably the bandwidth we use
the MBR Regenerating Codes. Observe that these systems have a storage overhead
factor δ of 2d

2d−s+1 . That is, each block has s+ r fragments, as the RS system, but
these fragments are bigger by a overhead factor δ.

In the following section, we present the Markov Chain Models that we use to
study the bandwidth usage and the durability of each system.

B.2 Markov Chain Models

We model the behavior of a block of data in all the cited systems by Continuous
Time Markov Chains (CTMCs). From the stability equations of these chains, we
derive the bandwidth usage and the system durability.

Model of the Reed-Solomon System. We model the behavior of a block b in a
lazy RS system by a CTMC, depicted in Figure B.2(a). We did not use the chains
classically used in the literature [ADN07, DA06]. Our chain models the possible
loss of the reconstructor p(b) during a reconstruction. In brief, the states of the
chain are grouped into two columns. The level in a column represents the number
of Reed-Solomon fragments present in the system. The column codes the presence
of the reconstructor p(b): present for the left states and absent for the right ones.

Model of the Hybrid System. In Figure B.2(b), it is presented the Markov
chain that models the behavior of a block b in the Hybrid system. Recall that, in
a Hybrid system, s+ r Reed-Solomon fragments and one replica are present inside
the system. We draw our inspiration from the chain representing the RS system.
We code here the presence of the peer pc(b) in the system, in a similar way to how
we code the presence of the reconstructor p(b) in the RS system.
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Recons No Recons

(a) Reed-Solomon.

Replica No Replica

(b) Hybrid system. (c) Regenerating Codes.

Figure B.2: Markov Chain models for di�erent codes.

Figure B.3: Summary of the notations
s Number of initial fragments
r Number of redundancy fragments
r0 Reconstruction threshold
α Peer failure rate
MTTF Mean Time To Failure: 1/α

a Peer availability rate
d Number of available peers to reconstruct (RC)
θ Average time to send one fragment
γ Fragment reconstruction rate in Hybrid approaches: γ = 1/θ

θ− Average time to retrieve the whole block
γ− Block reconstruction rate: γ− = 1/θ−

θ∗ Average time to retrieve a d subfragments in RC
γ∗ Fragment reconstruction rate in RC: γ∗ = 1/θ∗

θ⊤ Average time to reinsert a dead block in the system
γ⊤ Dead block reinsertion rate
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Figure B.4: Markov Chain for Double Coding system for s = 2, r = 3 and r0 = 0.

Model of the Double Coded System. We also model the behavior of a block in
this system by a continuous-time Markov chain (see Figure B.4) to estimate the loss
rate of a block and the expected bandwidth usage in the steady state of the system.

Model of Regenerating Codes. Basically, the only di�erence between the
Markov chain that we used to model the RS system and the one that we intro-
duce in this section for Regenerating Codes (see Figure B.2(c)) is that in RC-based
systems, we do not have the reconstructor. When a fragment is lost, the newcomer
will just download linear combinations of subfragments of the other peers that are
present in the system.
Model of Ideal Codes. For the ideal system, the chain is similar to the one
that we present for Regenerating Codes, only the estimation of bandwidth usage is
di�erent.

B.3 Results

We now use the Markov chains presented in Section B.2 to compare the systems we
described from the point of view of data availability, durability and loss rate.

The bandwidth usage and loss rate plots are estimations from the chains. To
estimate the bandwidth usage, we just observe, in the steady state of the chain, the
rate that some data in the reconstruction process is transferred times the amount
of transferred data. The loss rate is simply the probability to be in the dead state
in the stationary distribution.

In Subsections B.3.1, B.3.2 and B.3.3, the plots concerning Regenerating Codes
(RC) are estimations taken from the chain where the bandwidth usage is calculated
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in an optimal way, i.e., the estimation considers that the system is a MBR code and,
moreover, all the available peers participate of the reconstruction process.

Value of the parameters. In the following experiments, we use a set of default
parameters for the sake of consistency (except when explicitly stated). We study a
system with N = 10000 peers. Each of them contributes with d = 64 GB of data
(total of 640 TB). We choose a system block size of Lb = 4 MB, s = 16, giving
Lf = Lb/s = 256 KB. The system wide number of blocks is then B = 1.6·108. The
MTTF of peers is set to one year. The disk failure rate follows as α = 1/MTTF .
The block average reconstruction time is θ = θ− = θ∗ = θ⊤ = 12 hours.

Except in the �rst studied scenario, the availability rate a is chosen to be 0.91

which is exactly the one of PlanetLab [DGWR07].

B.3.1 Systems with same Availability

The �rst scenario we study is the one we compare the bandwidth usage and the loss
rate of the described systems when they have approximately the same availability.
Since Ideal, RS and RC systems have the same formula to estimate the availability
of each system, they are taken as basis to the hybrid approaches.

In this experiment, we keep the value s constant for all the systems and we
increase the availability rate a. For each value of a, we compute the availability
for Ideal, RS and RC and, then, we �nd the value of r for Hybrid coding and also
for Double coding that provides the closest value of availability to the one found to
Ideal, RS and RC. This experiment provides the results in Figure B.5.
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Figure B.5: Systems with same availability.

Since the RS system uses much more bandwidth than the others studied systems,
we choose r0 = 1 to provide a lower bandwidth usage. However, one may observe
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the impact of this choice in the loss rate of this RS system. The Double coding plot
has the eager reconstruction strategy, i.e., r0 = r − 1.

Recall that these systems do not use the same storage space, as explained in
Section B.1. Observe that the hybrid approaches perform as good as regenerating
codes in this case. However, the system loss rate is smaller in the regenerating codes.

B.3.2 Systems with same Durability

In the following experiment, we increase the value of r of an RC system with s = 16

and, for each value, the estimation of the system loss rate is taken as a parameter
for the others systems.

Given the system loss rate of the RS system, for each other system, the best
value of r is considered in order to plot the values of availability and bandwidth
usage, i.e., the value of r whose loss rate estimation is the closest to the one of the
regenerating code.

In Figure B.6, RS and Double coding are both considered to be in the eager
case, i.e., r0 = r − 1.
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Figure B.6: Systems with same durability.

First, remark that the bandwidth curve of the RS system is not present in the
plot since, as commented before, the bandwidth usage in the eager case is much
bigger than the bandwidth used by the other systems.

Again, we observe that the hybrid strategies perform well in terms of bandwidth
usage when the compared systems have approximately the same loss rate. Recall
that these systems do not use the same storage space.
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B.3.3 Systems with same Storage Space

Finally, we compare all the systems when they use the same storage space. The
RS system is taken as reference and, then, the redundancy of the others systems
is set to use only the space of r fragments of the RS system. Recall that the
encoded fragments of regenerating codes are bigger than the RS according to the
function presented in Section B.1. Consequently, even the regenerating codes have
less redundancy fragments in this experiment, when compared with the redundancy
of the RS system.
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Figure B.7: Systems with same storage space.

The considered RS system has r0 = 1 in order to let the plot of bandwidth usage
in the same scale, since the eager policy performs much worse. Again, observe that
the system loss rate is a�ected by this choice.

Another important remark is that even for systems with the same storage space,
the hybrid approaches perform as well as the regenerating codes.

Remember that the last three experiments are based in Optimal RC systems,
where all the available peers participate of the reconstruction process.

B.4 Conclusions

We studied the availability and durability of Hybrid systems. We proposed a new
kind of Hybrid codes, namely Double coding. Then, we compared Hybrid solutions
with Reed-Solomon and Regenerating Codes systems.

We modeled these systems by using Markov chains and derived from these models
the system loss rates and the estimated bandwidth usage. Di�erently from other
studies, these chains take into account the reconstruction time of a data-block and
the use of the more e�cient lazy repair procedure. We compared these systems for
three metrics: durability, availability and bandwidth usage for a given storage space,
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when other studies focus on only two parameters. We analyzed di�erent scenarios:
when the scarce resource is the storage space or when it is bandwidth.

Double Coding is most of the time more e�cient than the Hybrid one. Its
performance is close to the one of the best theoretical Regenerating Codes in some
scenarios. If Reed-Solomon systems have a higher durability when bandwidth is not
limited, Double Coding is a better option when it is a scarse resource.
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(q, q − 4)-graph, 125
P4-sparse graph, 30, 125
k-constructible graph, 26
k-critical graph, 27
l-improper chromatic number, χl(G), 41
l-improper coloring, 41
q-pseudo-spider, 126
w-balanced coloring, 43
Good Edge-labeling, 4
Greedy Coloring, 2
Hull Number, 116
Vertex Coloring, 2
Weighted Coloring, 2, 25
Weighted Improper Coloring, 3, 42
L(p1, . . . , pd)-labeling, 42
Improper Coloring, 41
Routing and Wavelength Assign-

ment, 95
Threshold Improper Coloring, 42
Wavelength Division Multiplex-

ing, 4

ABC-graph, 105
average degree, Ad(G), 112

bad graph, 96

chromatic number, χ(G), 2
closed interval, I[u, v], 5, 116
closed neighborhood, N [v], 117
cograph, 30, 125
cographs, 2
color class, 2
coloring, 2
complement of a bipartite graph, 122
complete graph, 26
convex hull, 5, 115
convex set, 5, 115
critical graph, 102

Delaunay graph, 92
directed hypergraph, 6

edge-cut, 103
edge-labeling, 95
Eulerian cycle, 6
extended P4-laden graph, 2, 12
extension of a coloring, 31

fat-extended P4-laden graph, 12
�rst-�t algorithm, 2

generalized hull number, 132
girth of a graph, 134
good edge-labeling, 96
good graph, 96
greedy algorithm, 2, 9
greedy coloring, 9
Grundy number, 2, 9

Hamiltonian cycle, 6
hexagonal grid, 53
hull number, hn(G), 5, 116
hull set, 5
hyperarc, 6

identi�cation, 26
increasing path, 95
independent paths, 96
independent set, 2
induced subgraph, G[S], 10
interference of a vertex, Iu(G,w, c), 41
isometric subgraph, 117

matching-cut, 4, 103
maximum clique, ω(G), 9
maximum weighted degree, ∆(G,w), 43
minimum k-threshold, Tk(G,w), 3, 42
modular decomposition, 10
module, 10
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neighborhood, N(v), 10, 117

on-line chromatic number, 9
outerplanar graph, 4

parallel node, 10
planar graph, 4
prime graph, 10
Primeval Decomposition, 125
proper coloring, 2
pseudo-split graph, 2, 11

quotient graph, 11

representative of a color, repc(i), 27

series node, 10
simplicial vertex, 117
singleton module, 10
spider graph, 11, 126
split graph, 11
square grid, 50
stable set, 2
subcubic graph, 4, 104

triangular grid, 54

universal vertex, 117

weight of a color, 2, 25
weight of a coloring, 2, 25
weighted k-constructible graph, 27
weighted t-improper k-coloring, 41
weighted t-improper chromatic number,

χt(G,w), 3, 41
weighted chromatic number, χw(G), 2,

25
weighted improper coloring, 3
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