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Abstract

Each Bartonella species appears to be highly adapted to one or a limited
number of reservoir hosts, in which it establishes a long-lasting intraerythrocytic
bacteremia as the hallmark of infection. Although the course of Bartonella
infection has been precisely described, the molecular mechanisms of host
specific erythrocyte infection and the stages of precedent the arrival in the
bloodstream are poorly understood. In this thesis we purposed to identify the
mechanisms of erythrocyte infection by Bartonella and characterize the possible
locations of Bartonella during the days before the intraerythrocytic stage.

By the establishment of an in vitro model of adhesion and invasion of
erythrocytes by Bartonella spp., we demonstrated that host specificity was
determined by the interaction between bacteria and erythrocytes. By screening
signature-tagged mutagenesis (STM) library of B. birtlesii in vivo and in vitro and
ectopic expression, we revealed that type IV Trw locus was required for
host-restricted adhesion to erythrocytes in a wide range of mammals. After that,
we further characterized that only TrwJ1 and TrwJ2 were expressed and present
on the surface of the bacteria and had the ability to bind to mouse erythrocytes,
and the receptor of them was erythrocyte band3 by different technology (phage
display, electron microscopy, far western blot and adherence and invasion
inhibition assay). By the model of experimental infection of laboratory normal
Balb/C mice and splenectomized mice with B. birtlesii, we showed that during
the first 7 days, no bacteria were recovered from lymph nodes, bone marrow and
brain, but in the spleen, transient in the liver, And bacteremia was the same in
both infection models during the first 7 days, thereafter, bacteremia was 10 fold
higher in splenectomized mice than in normal mice and lasted 2 weeks longer.
This suggested that the spleen was able to retain Bartonella.

In conclusion, the host specific adhesion between Bartonella and erythrocyte
was mediated by Trw and erythrocytic band 3, and spleen had a role in retention

Bartonella.

(&)}









INTRODUCTION GENERALE

Les bactéries du genre Bartonella spp. sont des alpha-protéobactéries réparties
dans le monde entier [1]. Ces bactéries, Gram-, sont principalement transmises
par des vecteurs arthropodes ou par contact direct avec un animal infecté [2].

A ce jour, au moins 24 espéces de Bartonella spp. ont été décrites [3]. Chaque
espece semble étre tres adapté a un ou quelques hotes réservoirs, dans lequel
la bactérie établit une bactériémie intra-érythrocytaire pouvant durée plusieurs
mois [2, 4]. Deux espéces de Bartonella ont un réservoir humain: B. bacilliformis
et B. quintana, toutes les autres ont pour réservoir des animaux sauvages ou
domestiques. B. bacilliformis est considéré comme le seul représentant d'une
lignée ancestrale a partir de laquelle les autres espéces de Bartonella auraient
evolué [5, 6]. Les infections a B. bacilliformis ne se produisent que dans les
régions andines de I'Amérique du Sud [7, 8], et parmi toutes les espéces, c’est
celle qui induit les maladies les plus graves (Des taux de mortalité jusqu'a 80%
ont été décrites chez des patients ne recevant pas de traitement antibiotique [9]).
Les infections a B. quintana sont réparties dans le monde entier, elles ont
d'abord été reportées au cours de la Premiere Guerre mondiale sous la forme de
la fievre des tranchées (ou fievre quintane). L'intérét médical pour B. quintana
s’est estompé aprés la Seconde Guerre mondiale et a été ravivé a la fin du XXe
siecle. En effet, B. quintana est réapparu comme une bactérie d'importance en
santé publique avec une reconnaissance de son rdle dans des bactériémies
persistantes et des endocardites chez les sans-abris (fievre des tranchées
urbaines).

De nombreux animaux domestiques et sauvages, y compris les ruminants, les
chats, les chiens et les rongeurs peuvent servir d'hétes réservoirs pour les 22
autres espéces de Bartonella [2]. Au moins 13 de ces espéces sont des agents
de zoonoses et linfection chez I'homme est a l'origine de manifestations

cliniques aigués variées alors, que chez I'animal, I'infection est le plus souvent
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asymptomatique.

Parmi ces espéces zoonotiques, B. henselae est celle qui a lI'impact le plus
important en santé publique. L'infection provoque une grande variété de
manifestations cliniques, y compris des adénopathies (maladie des griffes du
chat), malaises, fievres et splénomégalie qui peut persister pendant plusieurs
mois. Moins frequemment (25% des cas) [10], des manifestations plus graves
peuvent survenir, y compris des angiomatoses (chez Iles patients
immunodéprimés), des troubles oculaires, des encéphalites, méningites,
glomérulonéphrites et des endocardites [11].

En ce qui concerne le cycle de vie des Bartonelles, il est admis qu’aprés
pénétration dans son hoéte vertébré réservoir, par le biais d’'une morsure ou
d’'une piqare par un arthropode, Bartonella spp. colonise une niche primaire
encore inconnue a ce jour. Puis, par vagues successives, elle colonise le sang,
infecte les érythrocytes dans lesquels la bactérie se multiplie pour atteindre
environ 8 bactéries par cellule et survit ainsi jusqu’a la mort naturelle du globule
rouge [12]. Cette caractéristique semble vraie pour tous les représentants du
genre, sauf pour B. bacilliformis qui se multiplie jusqu’a la lyse de I'érythrocyte
infecté. La colonisation intra-érythrocytaire est une étape clé qui assure a la fois
la multiplication et le maintien de la bactérie, a I'abri des défenses immunitaires,
et sa transmission a un vecteur arthropode au moment de son repas sanguin [
13]. Les essais d’infection d’espéces de mammiféres non réservoirs par des
espéces hétérologues de Bartonella aboutissent a une bactériémie trés fugace,
suivi d’'une élimination de la bactérie du sang circulant. L'étude des mécanismes
lies a la persistence de Bartonella spp. dans son héte réservoir et plus
précisément a la persistence intra-érythrocytaire a fait I'objet de cette thése.

En guise d’introduction générale de ce travail de thése, nous avons réalisé une
revue blibliographique récapitulant les connaissances actuelles concernant les
strategies utilisées par Bartonella spp. pour infecter son hote reservoir.

Le premier chapitre de cette thése est consacré a l'identification des génes

essentiels a I'induction de la bactériémie en utilisant un modéle murin d’infection

o



par B. birtlesii, grace a I'utilisation d’'une banque de mutants de cette bactérie.
Nous avons ensuite mis au point un systéme d’infection in vitro d’érythrocytes
par Bartonella spp. ce qui nous a permis d’identifier parmi les mutants qui ont
perdu la capacités a induire une bactériémie chez la souris, ceux qui sont altérés
dans leur capacité a infecter les globules rouges. Cette étude nous a permis de
mettre en évidence le réle clé de la reconnaissance du globule rouge dans la
spécificité d’hétes de Bartonella spp. et d’identifier le systéme de sécrétion de
type IV Trw de Bartonella spp, comme I'élément clé de la reconnaissance
hote-spécifique du globule rouge.

Le deuxiéme chapitre de cette thése est consacré a [lidentification des
composants de ce systeme de sécrétion qui sont responsable de I'adhesion de
Bartonella spp. aux érythrocytes et leur récepteur érythrocytaire.

Dans cette thése, nous avons participé a I'élucidation des mécanismes de
reconnaissance des globules rouges par Bartonella spp. Toutefois, les étapes
plus précoces de l'infection, avant I'arrivée de Bartonella spp dans le sang, sont
beaucoup moins connues. L'opinion courante est que les cellules endothéliales
vasculaires seraient une des cibles des bactéries avant qu’elles n’infectent les
globules rouges [12, 14-18]. D’autres cellules, comme les précurseurs des
globules rouges, ont également été proposées comme niche précoce de
Bartonella spp [19]. Dans le troisieme chapitre de cette thése, nous avons
exploré les localisations de Bartonella spp. pendant les premiers jours suivant

I'infection en utilisant le modéle d’infection de souris par B. birtlesii.
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Abstract

Numerous mammal species, including domestic and wild animals such as
ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts
for various Bartonella species. Some of those species reservoired by
non-human mammals have zoonotic potential. Our understanding of
interactions between bartonellae and reservoir hosts has been greatly
improved by the development of animal models of infection and the use of
molecular tools allowing large scale mutagenesis of Bartonella species. By
reviewing and combining the results of these, and other approaches, we can
obtain a comprehensive insight into the molecular interactions that underlie
exploitation of reservoir hosts by Bartonella species, particularly the

well-studied interactions with vascular endothelial cells and erythrocytes.

Keywords: Bartonellae, human, animal, pathogenesis, reservoir hosts.
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1. INTRODUCTION

Bartonella species are small, curved, pleomorphic, fastidious, hemotropic
Gram-negative bacteria that have specifically adapted to infect mammals.
Although 26 Bartonella species or sub-species have been formally validated to
date, many more, as yet partially characterized, await formal proposal.
Bartonellae have been encountered in mammals all over the world, however,
the prevalence of infections and their public health and veterinary importance

vary according to species and geographical region.

Bartonella species are transmitted between mammalian hosts by
blood-feeding arthropods. Numerous, diverse arthropods have been
implicated in the transmission of bartonellae, but each Bartonella species
appears to exploit only one, or few, arthropod species. The role of arthropods
in the natural cycle of bartonellae may extend beyond more vectors; there is
some evidence to support their role as additional reservoirs for the bacteria.
Each Bartonella species appears to be highly adapted to one or few
mammalian reservoir hosts [1, 2], in which Bartonella establishes a
long-lasting intra-erythrocytic bacteraemia as the hallmark of infection [3]. This
bacteraemia does not appear to cause immediate detriment to the host. In
general, bartonellae provoke acute clinical manifestations only when
accidentally introduced into the wrong host or when encountering

immunocompromised individuals among reservoir populations.

The Bartonella genus lies among the alpha proteobacteria in proximity to the
genus Brucella. Both genera are classified in the family Rhizobiales that also
embraces a large number of taxa of plant-associated and environmental
bacteria. Twenty four Bartonella species have been validly described to date,
with one species, B. vinsonii, subdivided into three subspecies (Table 1).

Inference of the phylogenetic relationships within the genus reveals a profound

16



divergence of B. bacilliformis, which lies alone on an “ancient” ancestral
lineage (lineage 1), apart from the other Bartonella species (Figure 1). The
remaining “modern” species form two further lineages, with lineage 2
containing the four ruminant-associated species (B. bovis, B. capreoli, B.
chomelii and B. schoenbuchensis), and lineage 3 containing the remaining 19
species (Figure 1). Within lineage 3, B. clarridgeiae is the outlier, and
phylogenetic studies that have also included as yet only partially characterised
bartonellae have suggested that this species is a representative of a fourth
lineage within the genus [4, 5]. The complete genome sequences of six
Bartonella species (B. bacilliformis, B. clarridgeiae, B. grahamii, B. henselae,
B. quintana and B. tribocorum) have been published to date, although efforts
to sequence the genomes of all remaining species and numerous
partially-characterised bartonellae are also underway. The sizes of the

published genomes range from 1.45Mb to 2.62Mb [4, 6].

B. bacilliformis and B. quintana are the two Bartonella species that appear to
exploit humans as reservoir hosts (Table 1). Infections with B. bacilliformis only
occur in the Andean region of South America [7, 8], and this specific
geographical distribution correlates with the range of the Lutzomyia species
that are thought to transmit infections [8]. B. bacilliformis appears to be
potentially the most pathogenic Bartonella species, provoking a remarkably
bi-phasic disease referred to as bartonellosis. Acute bartonellosis manifests as
Oroya fever, and is characterized by infection, then haemolysis, of nearly
100% of erythrocytes. Fatality rates of up to 80% have been described in
patients not receiving antibiotic treatment [9]. B. bacilliformis infections can
also manifest as verruga peruana, characterized by vascular tumors that result
from the massive proliferation of endothelial cells, and which can persist for
more than one year [7, 8]. Verruga peruana was probably recognized during
pre-Columbian times, but its etiology was not resolved until 1905, when B.

bacilliformis was first isolated by Barton in 1909. B. quintana infections were
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first recognized during World War | in the form of trench fever (or five-day
fever), but the bacterium was not isolated until 1961. Medical interest in B.
quintana waned after World War Il as infections became rare, but, at the end of
the twentieth century, B. quintana re-emerged as a bacterium of public health
importance with recognition of its role in persistent bacteraemia in the
homeless, drug and alcohol addicts (“urban” trench fever) and refugees.
Infection is usually characterized by a chronic intra-erythrocytic bacteraemia
with few, mild, self-limiting symptoms [10], although more severe
manifestations such as endocarditis and bacillary angiomatosis have also
been reported [10]. B. quintana is transmitted by the human body louse
(Pediculus humanus humanus), an ectoparasite that is specific to humans but
which only emerges when clothes remain unchanged and unwashed [11].
Thus, as with B. bacilliformis, vector behavior is a key determinant in the

epidemiology of B. quintana infections.

Numerous domestic and wild animals, including ruminants, felids, canids and
rodents serve as reservoir hosts for various Bartonella species (Table 1) [2].
To date, evidence of zoonotic potential has been reported for 10 of these
species (Table 1). In these reports, no evidence of an intra-erythrocytic
presence of zoonotic bartonellae was recorded in humans [12]. Of the
zoonosis-associated Bartonella species, B. henselae is the most frequently
associated with human disease. B. henselae exploits felids, including domestic
cats as reservoir hosts, between which infection is transmitted by cat fleas
(Ctenocephalides felis) [13]. As is typical for reservoir hosts, cats usually do
not develop any apparent symptoms of infection, which can persist for months
or years [14]. B. henselae transmission from cats to humans is thought to
occur primarily by the inoculation of infected flea faeces via cat scratches or
bites [13], although there is also some evidence that infection can also be
acquired from ticks [15, 16]. B. henselae can provoke a wide variety of clinical

manifestations in humans, including, most commonly, lymphadenopathy (cat
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scratch disease), malaise, fever and splenomegaly that can persist for several
months. Less frequently (25% of cases) [17], more serious manifestations can
occur, including angiomatosis (in immunocompromised patients), ocular

disorder, encephalitis, meningitis, glomerulonephritis and endocarditis [12].

The other nine zoonosis-associated Bartonella species exploit a range of
reservoir hosts; for example, B. vinsonii subspecies berkhoffii parasitizes
canids (domestic dogs, coyotes and gray foxes) and B. alsatica parasitizes
rabbits. Others, such as B. grahamii are associated with woodland rodents
(Table 1). In addition to their potential as human pathogens, numerous
Bartonella species have been implicated in veterinary infectious diseases,
including, most frequently, B. henselae and B. vinsonii subspecies berkhoffii.
Many of the manifestations observed in cats and dogs are akin to those

observed in humans.

2. DYNAMICS OF INFECTION IN MAMMALIAN RESERVOIR HOSTS

The life cycle of bartonellae in their reservoir hosts has been deduced through
observations of naturally infected mammals and through experimental
infections. In a seminal study [3], the evolution of infection of B.tribocorum in
laboratory rats was monitored using a green fluorescent protein (GFP)-tagged
bacterial strain in conjunction with microscopy and flow cytometry. This study
revealed that, following intravenous injection (models incorporating a natural
route of infection still remain generally elusive), bacteria were cleared from
circulating blood within few hours but bacteraemia reappeared approximately
five days later. In the blood, bacteria were observed adhering to and invading
mature erythrocytes within two days. An erythrocyte was usually invaded by a
single bacterium, which, once inside, replicated in a membrane-bound
compartment over a period of several days until, on average, eight daughter

cells were created. Replication then ceased, and infected erythrocytes were
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shown to persist in circulation for several weeks. This process did not provoke
symptoms in the infected rat [3]. Experiments using other animal models, such
as the B. birtlesi-mouse model [18-20], the B. henselae-cat model [21] have
yielded results that are akin to those observed in the B. tribocurum-rat model,
suggesting a common infection mode for all Bartonella species in their
respective animal reservoirs [22]. Furthermore, that the kinetics of bacteraemia
observed in these models were similar to those observed captured
naturally-infected animals (unpublished observations), supports the status of
the models, including their artificial routes of inoculation, as faithful and

therefore meaningful reproductions.

Our understanding of bartonellae/host interactions has been greatly improved
by the development of molecular tools allowing large scale mutagenesis of
Bartonella species such as B. tribocorum and B. birtlesii. The use of these
tools in conjunction with judicious screening in relevant animal models (rats
and mouse respectively) has resulted in the identification of numerous genetic
sequences the integrity of which is necessary for the establishment of
bacteraemia by bartonellae [4, 19]. Those genetic sequences can be classified
in six groups: (1) genes previously implicated in Bartonella infection of its
mammalian hosts, (2) genes implicated in cell envelope integrity, (3) genes
involved in metabolism, (4) phage-related genes, (5) genes encoding proteins
of unknown function and (6) intergenic regions. These data, when combined
with the results of in vitro studies, allow us to draw the picture of the molecular

basis of the strategy used by Bartonella species to exploit reservoir hosts.
3. STEP 1: INFECTION PRIOR TO BACTERAEMIA.
As mentioned above, inoculation of a susceptible host appears to be primarily

mediated by the introduction of infected vector faeces into cuts or scratches on

the skin. However, the fate of infecting bacteria immediately following
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inoculation, prior to their appearance in the bloodstream, remains uncertain.
However, it is clear that bartonellae can colonize highly vascularized tissues
like liver and spleen during the first days of infection as well as the vascular
bed of the skin (for B. bacilliformis) [23]. Current opinion is that the vascular
endotheliature serves as a primary niche for bartonellae prior to them entering
the bloodstream. Indeed, bartonellae have been shown to have the unique
ability to induce vasoproliferation, manifesting as verruga peruana (B.
bacilliformis) or bacillary angiomatosis/peliosis hepatis (B. henselae and B.
quintana). In many in vitro studies, bartonellae have been shown to be able to
invade endothelial cell lines and/or interfere with their physiology [24-28] (see
below). However, although the endothelial vasculature undeniably plays a role
in the early stages of infection, there is some experimental evidence that other
putative cell types, such as erythrocytic precursors, may also serve as a niche
for infecting bartonellae [29]. This hypothesis, however, conflicts with data
obtained from experiments with the GFP-B.tribocorum/rat model that clearly
indicated that encounter with, and invasion of, erythrocytes occurs in the
bloodstream [3]. In support of this observation, we have been unable to find
any evidence for the presence of bartonellae in erythrocyte precursors isolated
from the bone marrow of B. birtlesii-infected mice, despite rigorous efforts to do

so (unpublished observations).

It should also be borne in mind that evidence for vascular endothelial cell
involvement in vivo is drawn primarily from pathological observations of B.
bacilliformis-induced verruga peruana, and bacillary angiomatosis, a rare
manifestation of B. henselae and B. quintana infections of humans. Endothelial
cell colonization has not yet been reported in asymptomatically infected
reservoir hosts. Furthermore, pathological study of the vasculoproliferative
lesions that characterize verruga peruana and bacillary angiomatosis suggest
bartonellae are concentrated in proximity to the external surface of the

endothelial cells rather within them. Thus, although we devote much of this
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review to the molecular basis of bartonellae-vascular endothelial cell
interactions, we do not discount the possibility that an as yet unidentified
alternative primary niche may exist.

Exploitation of vascular endothelial cells by bartonellae involves binding to the
cell surface, possible internalization, then persist within (or adjacent to) cells.
To date, two major bacterial factors that play crucial roles in interacting with
endothelial cells have been identified, namely the BadA/Vomp/Brp proteins
and the VirB/D4 type four secretion system (T4SS) and its effectors. Other
bacterial surface proteins, including the heme-binding protein A (pap31) or
Omp43, have also been shown to interact with these cells. All of these factors
have also been shown to be essential for the establishment of bacteraemia, as
revealed by signature-tagged mutagenesis (STM) screening in both B.
birtlesi-mouse and B. tribocorum-rat infection models, demonstrating their
essential function in mammalian host infection and underlying the notion that

bacteraemia is not the initial stage of the infection process.

3.1. The BadA/Nomp/Brp adhesions

These proteins have different names in different Bartonella species, reflecting
their concurrent discovery by independent groups of researchers. These
proteins are referred to as Bartonella adhesin A (BadA) in B. henselae [30], the
variably-expressed outer membrane proteins (Vomps) in B. quintana [31], and
Bartonella repetitive protein A (BrpA) in B. vinsonii [32]. They are outer
membrane proteins belonging to the trimeric autotransporter adhesin (TAA)
family [33], that also includes the yersinia adhesin A (YadA) in Yersinia
enterocolitica [34], the Haemophilus influenzae adhesin (Hia), the
haemophilus surface fibrils (Hsf) in H. influenzae [35], and the ubiquitous
surface protein A (UspA) in Moraxella catarrhalis [36], all of which are
considered to be virulence factors. All TAA family members share similar

modular architectures, consisting of a head, a neck, a stalk, and C-membrane
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anchor domains [34]. The C-membrane anchor domains define the TAA family
and form trimers [37, 38]. The size of these proteins varies from one species to
another due to the number of TAA neck/stalk repeats, which can differ by up to
four-fold. In B. henselae, the monomeric form of Bad A is 328 kDa in size [30].
In B. quintana, Vomps are encoded by a family of four genes, three of which
are very similar to badA (the exception being vompD). Although BrpA remains
little studied, the functions of BadA and Vomp have been extensively explored
using in vitro assays and experimental infections of laboratory animals. This
work has demonstrated the pleiotropy of these proteins, implicating them in (1)
mediation of binding of Bartonella spp to extracellular matrix proteins
(collagens and fibronectin) and to endothelial cells, via a-5B-1-integrins (2)
circumvention of phagocytosis (3) mediation of angiogenesis via activation of
hypoxia-inducible factor 1 (the key transcription factor in angiogenesis) in
infected endothelial cells and via provocation of secretion of proangiogenic
cytokines (e.g. vascular endothelial growth factor) [30, 39]. BadA/Vomps are
also involved in bacterial auto-aggregation [31, 40]. Interestingly, there is
marked variation in the expression of BadA between different B. henselae
strains [41] and it is known that high number of in vitro passages of isolates
results in the loss of BadA expression. Different genetic processes, such as
single base deletions or insertions, or recombination events, can affect BadA
expression resulting in the coexistence of phase variants expressing or not
expressing BadA. This characteristic, when coupled with the observation that
BadA-expressing strains grow slower than non-expressing strains, suggests
that expression of BadA (which is an enormous molecule) is a highly
energy-consuming process, and one which bartonellae will only continue whilst

required to do so.

3.2. The VirB/D4 type IV secretion system (T4SS) and its effector proteins

T4SSs consist of a multiprotein channel spanning inner and outer
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Gram-negative bacteria membranes and a surface filament extending from the
bacterial envelope. The system mediates the transfer of protein or DNA
substrates from a bacterial donor cell into various cell types (e.g. transfer of
DNA into other bacteria by conjugation or transfer of bacterial effector
molecules into eukaryotic cells). In pathogenic bacteria, this protein complex
can be compared to a microscopic syringe that is used to inject effector
proteins into target cells in order to subvert their physiology. T4SSs serve as
key virulence factors for many important human pathogens including
Helicobacter pylori, Legionella pneumophila, Bordetella pertussis, and Brucella
melitensis [42]. Among T4SSs, VirB/D4 is a macromolecular complex of at
least 10 components termed VirB2 to VirB11 and an associated substrate
recognition receptor known as the T4 coupling protein (T4CP), named VirD4

(Figure 2).

The VirB/D4 T4SS was first identified in Bartonella species in 2000 as a result
of characterization of the locus that encodes a 17kDa immunodominant protein
in B. henselae [43]. Genetic comparison of this locus revealed that the 17kDa
protein it encoded was a VirB5 homolog and further exploration of the locus
revealed the presence of homologes of other members of the T4SS upstream
and downstream of VirB5 [43, 44]. The putative promoter region of the operon
was also identified and its expression was shown to be induced when B.
henselae was cultivated with human microvascular endothelial cells [45]. The
operon was subsequently identified in other Bartonella species, and its
necessity for host interaction was demonstrated using the B. tribocorum-rat
and, subsequently, the B. birtlesi-mouse infection models [4, 19, 46].
Experimentation using these models went on reveal that although the VirB/D4
system was essential for exploitation of the primary niche, it was dispensable
for the subsequent erythrocytic infection [47]. Subsequent studies have also
characterized seven genes encoding for effector proteins, the Bartonella

effector proteins (Beps), named BepA to BepG that are translocated by the
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T4SS into endothelial cells [48] and are responsible for subverting their
physiology. Indeed, in vitro experiments have indicated that VirB/D4 and its
effector proteins mediate a range of profound changes to parasitized
endothelial cells [49, 50], including (i) massive rearrangements of the actin
cytoskeleton, resulting in the formation and internalization of large bacterial
aggregates by the invasome structure; (ii)NF-kB-dependent pro-inflammatory
activation, leading to cell adhesion molecule expression and chemokine
secretion; and (iii) inhibition of apoptotic cell death, resulting in enhanced
endothelial cell survival. Internalisation of bartonellae via a unique “invasome”
structure, initially characterized by the formation of a bacterial aggregate on
the cell surface, which is subsequently engulfed and internalized by an
actin-dependant mechanisms [26]. This process appears to be specific to
bartonellae, and is dependent on three VirB/D4 effectors, BepC, BepG, and
BepF [51, 52]. BepA has been shown to inhibit EC apoptosis through
upregulation of cAMP levels in cytosol [48] and it also promotes capillary
sprout formation in an endothelial spheroid infection model, whereas BepG
inhibits such sprouting [53]. The functions of BepB, BepD and BepE are still to
be elucidated. VirB/D4 appears to be part of the regulon of the BatR/S two
component regulatory system, a global regulator that may be a key mediator of
the physiological transition of bartonellae as they associated with endothelial

cells [54].

A homolog of the VirB/D4 system, Vbh, has also been identified and all
Bartonella species, except B. bacilliformis, possess at least one of these two
T4SSs [4]. Comparative genomics have indicated that these systems were
acquired by a common ancestor of lineage 2 and 3 Bartonella species
following its divergence from lineage 1 that carries B. bacilliformis (Figure 1)
[5]. Given the key roles attributed to these T4SSs, it is clear that its acquisition
has resulted in fundamentally different bases of host exploitation by B.

bacilliformis and the other Bartonella species. It has been proposed that
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species possessing the VirB/D4 or Vbh systems have attenuated virulence
compared to B. bacilliformis, although this view remains controversial. Indeed,
given that VirB/D4 and Vbh are so important for endothelial cell interaction in
all Bartonella species, it is intriguing that the species in which it is absent, B.
bacilliformis, is the species for which in vivo endothelial cell subversion is most

apparent.

Other bartonellae proteins have been shown to interact directly or indirectly
with endothelial cells or the extracellular matrix. For instance, the outer
membrane lipoprotein Omp43 is one of the bacterial proteins that binds most
strongly to human umbilical vein endothelial cells (HUVEC) [55, 56]. The
Pap31 protein (heme-binding protein A) of B. henselae binds to fibronectin and
promotes bacterial adhesion to endothelial cells [57]. As for VirB/D4 and
Bad/Vomp, the disruption of these genes in the genomes of both B. birltesii
and B. tribocorum results in the non-appearance of bacteraemia in inoculated
animal models [4, 19]. Bartonella species also, remarkably, appear to secrete
the heat-shock protein GroEL, and this molecule is a potent mitogen of
HUVECs [58]. The holistic view of the synergy between all those virulence

factors are schematically represent in Figure 3.

4. STEP 2: SEEDING OF BLOOD AND EXTRA CELLULAR SURVIVAL

In various animal models of infection, Bartonella bactaeremia appears
between two and seven days post infection. It has been proposed that this
appearance of bartonellae is orchestrated, with discreet, recurrent waves of
seeding occurring during infection rather than continuous stream of bacteria
entering the blood [3]. Initially, the bacteria are extracellular, thus their passage
must present them with a significant challenge in that they are fully exposed to
the host immune system. Recently, we have shown that a B. birtlesii

badA-knockout (AbadA) mutant was sensitive to mouse serum, while the
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wildtype B. birtlesii, expressing active BadA, was resistant (Figure 4A). As the
AbadA mutant was not killed by heat-inactivated serum (Figure 4B), we
suspect that B. birtlesii BadA is involved in resistance to complement. In
support of this hypothesis, we have shown that when wildtype B. birtlesii is
grown in liquid media, the supernatant of this medium has anti-complement
activity, but that this activity can be neutralized with anti-BadA antibodies
(kindly provided by Professor Volkard Kempf, Goethe-Universitat, Frankfurt am
Main, Germany). These observations suggest that BadA, or a part of BadA,
could be secreted or released by B. birtlesii to counter the effects of
complement, in a manner akin to that reported for the BadA homolog YadA in
Yersinia enterocolitica [59]. We have also obtained evidence that bartonellae
are capable of binding IgG Fc fragments and hypothesize that by doing so, the
bacteria further facilitate their extracellular longevity by subversion of host
humoral response. We observed that several Bartonella species had the
capacity to bind Fc, and most could bind immunoglobins derived from a range
of different mammals. Western blotting indicated that the Fc binding capacity
was mediated by a protein of approximately 65kDa size, and N-terminal
sequencing of this protein demonstrated its identity with the heat shock
response protein GroEL. Western blotting of B. henselae cellular fractions
indicated that GroEL was located in the cytoplasm and in the inner and outer
membrane of the cell, as previously demonstrated for B. bacilliformis [58].
Expression of recombinant B. henselae GroEL conferred an Fc binding
capacity on Eschericha coli (Figure 5). A further mechanism by which
bartonellae may counteract the threat of host immunity is via
lipopolysaccharide (LPS) modification. The LPS of B. henselae possesses an
unusual penta-acylated lipid A with a longchain fatty acid [60]. This feature,
also a characteristic of LPS attenuates toll-like receptor (TLR) 4-mediated host

response to bartonellae endotoxin [60, 61].

5. STEP 3: ERYTHROCYTE ENCOUNTER AND ADHESION.
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The ability of bartonellae to exploit erythrocytes is key to their parasitic strategy
and is almost unique amongst bacteria. Once inside erythrocytes, bartonellae
occupy a nutrient-rich, immunologically privileged niche that, by virtue of its
position in the circulatory system, facilitates not only bartonellae persistence

within the reservoir host but also its uptake by hematophagous vectors.

There is no evidence yet that Bartonella species are able to sense and
specifically move towards circulating erythrocytes, hence we must currently
assume that contact between bacterium and erythrocyte results from their
chance encounter. Some Bartonella species possess flagella, which may
facilitate their movement in blood plasma, but their absence from most species
suggests they are not essential appendages and indeed, there is evidence that
their value in host interaction occurs elsewhere during the course of infection

(see below).

Adherence to erythrocytes by most Bartonella species appears to be mediated
by the Trw T4SS and as yet uncharacterized receptors. Trw is the third T4SS
found in bartonellae, and its importance in the establishment of
intra-erythrocytic infections by bartonellae in reservoir hosts has been
recognized for some time [62-64]. However, evidence for the direct role of Trw
in erythrocyte infection has been only recently obtained following the
development of an in vitro model for erythrocyte adherence and invasion [19].
In this study, we identified B. birtlesii genes required for erythrocyte infection
by identifying, among STM mutants unable to induce bacteraemia in mice,
those which could also not invade erythrocytes in vitro. From this screening we
identified nine invasion-deficient mutants. In seven of these, genes within the
trw operon were disrupted, whereas in the other two, disruptions were located
in the invasion-associated ialA/B locus (see below) and in livG, a putative

ABC-transporter encoding gene. The nature of our screening resulted in the
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conclusion that the products of all these genes are essential for the adhesion
to and/or invasion of erythrocytes rather than replication or persistence within

them.

Trw shares homology with the broad-host-range conjugation system of R388
plasmid and has been acquired by horizontal transfer from phylogenetically
distant bacterial species [65]. Unlike VirB/D4, the Trw T4SS lacks the coupling
protein required for export of effectors, suggesting that it is no longer a
secretion system [64]. The trw genes of Bartonella species are co-linear with
the respective genes of plasmid R388 except for the presence of multiple
tandem gene duplications of trwL (the virB2 homolog) and trwJ-I-H (the virB5,
virB6 and virB7 homologs). The multiple copies of trwlL and trwdJ are thought to
encode the suface-exposed pilus components of the T4SS, while the products
of trwl and trwH are thought to be involved in pilus elongation and anchorage
of the T4SS to the outer membrane (Figure 2). The presence of the multiple
copies of these components indicates that they probably participate to the
expression of variant pilus forms. It is not know if all trw genes are
co-expressed and thus if numerous pili variants are concurrently present in the
bartonellae population infecting a host or if differential expression of copies of
these genes occurs, resulting in different pili variants being present on the
bacterial cell surface during different stages of the infection process. It has
been hypothesized that the presence of pili variants may facilitate the
interaction with different erythrocyte receptors or with the variable forms of a
specific receptor found across the breadth of the reservoir host population [63,

66].

Our studies have also yielded evidence that Trw is a key determinant of
bartonellae host specificity. As discussed above, although bartonellae can
infect non-reservoir hosts, when they do so, they are unable to establish an

intra-erythrocytic bacteraemia. However, we were able to confer to B.
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henselae and B. quintana (which are naturally associated with only cats or
humans respectively) the ability to interact with rat erythrocytes by
transforming them to express the trw locus of B. tribocorum, a naturally

rat-specific species [19].

Even though erythrocyte parasitism is the hallmark of Bartonella species, the
trw genes are not present in all Bartonella species, being restricted to all
members of lineage 3 with the exception of this lineage’s outlier, B.
clarridgeiae (Figure 1). This distribution suggests that the Trw T4SS was
horizontally acquired by a common ancestor of these members of lineage 3
members [4]. Interestingly, the distribution of Trw and flagella among the
Bartonella species is mutually exclusive (Figure 1), thus it has been proposed
that following its acquisition, the function of Trw evolved to replace that
performed by flagella. This hypothesis is supported by observations that the
flagella of B. bacilliformis are involved in adhesion to and entry of erythrocytes

[67-69].

6. STEP 4: INVASION OF, AND PERSISTENCE WITHIN, ERYTHROCYTES

Among first virulence factors to be described for bartonellae were those
encoded by the ialA/Blocus in B. bacilliformis [70, 71]. The survey of B. birtlesii
genes involved in erythrocyte adherence/ invasion, described above, also
identified ialA and ialB. Early work demonstrated that the transformation of E.
coli with B. bacilliformis ialA/B conferred the ability to invade erythrocytes [70]
and more recently, we have shown that although deletion of ialB did not
significantly affect adhesion of B. birtlesii to erythrocytes, it provoked a 10 fold
decrease in bacterial entry into erythrocytes [19]. lalA has been characterized
as a (de)nucleoside polyphosphate hydrolase of the MutT motif family and has
homologs in other invasive bacteria such as Yersinia enterocolitica and

Rickettsia prowazekii [72]. The precise role of lalA and its homologs is
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suspected to be the reduction of stress-induced dinucleotide levels during
invasion, thereby enhancing pathogen survival [72]. lalB is a 19.9 kDa protein
with about 64% sequence similarity to the Yersinia enterocolitica protein Ail, a
surface protein that plays a key role in mediating cell entry and serum
resistance [59]. Intriguingly, B.bacilliformis lalB appears to be localized to the
inner membrane [70] so it is unclear how it affects its role in erythrocyte entry.
However, more recent work has suggested that in B. henselae, the protein is
also associated with the outer membrane [71, 73]. To add to this uncertainty,
we have been unable to detect lalB on the cell surface of B. birtlesii while ial B
was detected in B. birtlesii cryo-sections supporting ialB is not a cell surface
exposed protein (Figure 6). Exploration of the determinants of ialB expression
in B. bacilliformis has been reported and the patterns of expression observed
under different conditions (temperature, pH, oxidative stress, hemin limitation)
suggest that the gene is upregulated in response to environmental cues
signaling passage of the bacterium from vector to host, and also possibly at
times when the bacterium is subjected to stress-inducing environmental
conditions [74]. Despite the identification of entry-associated virulence factors,
we currently have very little idea about how bartonellae enter erythrocytes.
Given the unusual structure and physiology of erythrocytes, it is likely that
bartonellae employ a mechanism of invasion that is different from those used
for microbial entry into other cell types. How akin this mechanism is to, for
example, those employed by Plasmodium species for erythrocyte invasion,
remains to be seen. Microscopy has been used to monitor B. bacilliformis entry
into erythrocytes, and suggested that the bacteria provoke, then enter,
substantial deformations in erythrocyte membranes. Bacteria appeared to
drive themselves into deep invaginations then membrane fusion at the necks
of these invaginations led to the formation of intracellular vacuoles containing
bacteria [67]. This process was considered, at least in part, to be mediated by
the action of flagella. As discussed above, only very few Bartonella species

express flagellae, hence, those without these appendages must have evolved
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an alternative entry strategy. There is also evidence that bartonellae produce
an extracellular protein, termed deformation factor, which induces extensive

invaginations dentations and trenches in erythrocyte membranes [75, 76].

Intra-erythrocytic replication starts within a vacuolar membrane immediately
after invasion [3]. After several days, bacterial replication slows down, reaching
a plateau maintained for the remaining life span of the infected erythrocytes.
Cessation of bacterial replication may result from an active mechanism of
growth control not yet identified. Moreover, the intra-erythrocytic environment
is inhospitable and the bacteria must cope with oxidative stress. None of
molecular mechanisms allowing multiplication, growth control and them
persistence of Bartonella spp. within erythrocytes have been identified so far.
However, genomics have identified potential candidates that may help bacteria
to cope with stressors. Proteases lalA and CtpA degrade misfolded proteins
that arise from stress. Genes encoding these 2 proteins have been shown to
be essential for bacteraemia establishment [4, 19]. Interestingly, the BatR/BatS,
a two-component regulatory system serves as a pH sensor, upregulating
genes at neutral pH and repressing them at alkaline pH, and is probably used
by Bartonella species to respond to environmental cues encountered in the
context of its host [77]. However, the specific role of this system in bartonella

adaptation to erythrocytes has still to be demonstrated.

As many pathogenic bacteria, bartonellae utilizes host heme-containing
proteins as a source of heme and iron. Bartonellae sources of heme include
hemin, hemoglobin and host erythrocytes. Within Bartonella genus, it has been
shown that acquisition of heme involves paralogous gene family encoding
Heme binding proteins (hbp) and a heme uptake locus [78-80]. We have
previously shown that disrupting heme-binding protein genes (hbp) in B.
birtlesii and B. tribocorum lead to the lost of ability of the correponding mutants

to induce bacteraemia in their corresponding natural host indicating their
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important role in establishment of bacteraemia by Bartonella spp [4, 19]. Little
is known about molecular acquisition of heme acquisition by Bartonella spp.
However, it is well known that both hbp genes and the hemin associated locus
(hut) are regulated by Irr, an iron response regulator in response to various
stress (temperature shift, oxygen level and hemin concentration) [81, 82].
Further studies of those systems will contribute to understand how bartonellae
use the most abundant source of heme in the mammalian host (i.e.,
hemoglobin) and how it contributes to the success of its persistence within

erythrocytes as well as in its different hosts, i.e., arthropod and mammals

The rapid development of transcriptomic technologies should soon provide the
means for exploration of the dynamics of bacterial gene expression during host
interaction, thus we predict that the transcriptome of intra-erythrocytic

bartonellae will soon be available, helping us better understand the molecular

means by which bartonellae thrive in their erythrocyte niche.

There is currently no evidence to suggest that infection of erythrocytes by
Bartonella spp. has a significant effect on their physiology (life span and
membrane integrity appear unchanged) [3]. However some subtle changes
may occur; for example, during the period of erythrocyte invasion and
multiplication, B. tribocorum-infected cells were observed to be cleared from
circulation more rapidly than uninfected cells. However, once intracellular
replication has ceased, this difference in clearance rates disappeared [3].
These observations suggest that there are “recognizable” changes in
erythrocyte structure or physiology during the early stages of their parasitism.
These changes may result from the effects of deformin, as discussed above,
with altered erythrocytes being filtered out by spleen as demonstrated for

Plasmodium spp. [83].

While most Bartonella species appear intent on not significantly altering the
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physiology of the circulating erythrocyte population, B. bacilliformis has the
potential to provoke severe hemolytic anemia [84], although this pathology is
not necessarily a consequence of infection. Evidence that hemolysis may be
mediated by a contact-dependant hemolysin has been presented [84], but this
protein has yet to be fully characterized. A putative hemolysin-encoding gene
is present in the B. bacilliformis KC583 genome, although the genomes of
other Bartonella species (B. henselae, B. quintana, B. tribocorum and B.

grahamii), also contain hemolysin homolog genes.

7. CONCLUSION

The high prevalence of infections in mammals, and the potential threat posed
to the health of humans, livestock and companion animals, warrants further
exploration of the fundamental biology of Bartonella species. Despite a huge
effort in the last 20 years to understand mechanisms used by Bartonella to
exploit their natural reservoir hosts, many areas of uncertainty remain and

require further research.

In retrospect, one of the key studies that paved the way for recent advances
was that completed a decade ago describing the dynamics of infection, as
monitored using fluorescently-labelled bacteria [3]. The identification and
quantification of distinct stages of infection, in tandem with the development of
reliable tools for the genetic manipulation of bartonellae, has allowed
significant advances to be made in our understanding of the molecular basis of
bartonellae parasitism. However, despite this progress, and the ever
increasing medical importance of bartonellae, it appears that today, fewer and
fewer scientists are studying these bacteria. It is unthinkable that research into
the molecular basis of bartonellae-host interactions should falter now, with
some many important and exciting questions still to be answered. For
example, what is the fate of bacteria following inoculation? How do bacteria

disseminate around the body and is the endothelial vasculature truly a primary
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niche for infection? Furthermore, why, on occasion, do bartonellae provoke
angiogenesis? We also know nothing about how bartonellae regulate their
intra-erythrocytic replication and persistence, what physiological changes they
endure. We know little about the interaction between bartonellae and host
immunity and thus little about the extent and importance of immunoregulation.
Researchers also need to consider the role of arthropods in the bartonellae
natural cycle and should perhaps incorporate “natural” inoculation by
arthropod rather than by syringe into relevant animal models. In summary, the
challenges for future years, are (1) to understand how, the unique infection
strategy of bartonellae contributes to their remarkable epidemiological success
in their reservoir hosts, and (2) to better assess if bartonellae have the
potential to emerge as new zoonotic pathogens. In such a small field, a
constructive means of helping to invigorate stimulating and high level science,
is collaboration between those laboratories with expertise in various key
technical skills (experimental vector transmission, genetics, animal models)
and those with the enthusiasm, but perhaps not all the means, to progress the

field. Such initiatives should be encouraged and welcomed by all.
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Table 1 :

Bartonella species proven/suspected evidence of human
reservoir host infections?

B.alsatica rabbits yes

B. bacilliformis humans yes

B. birtlesii small rodents

B.bovis ruminants

B. capreoli ruminants

B. chomelii ruminants

B. clarridgeiae felids yes

B. coopersplainensis rats

B. doshiae small rodents

B. elizabethae rats yes

B. grahamii small rodents yes

B. henselae felids yes

B. japonica small rodents

B. koehlerae felids yes

B.peromysci small rodents

B. queenslandensis rats

B. quintana humans yes

B. rattaustraliani rats

B. schoenbuchensis ruminants

B. silvatica small rodents

B. talpae moles

B. taylorii small rodents

B. tribocorum rats yes

B. vinsonii subsp. arupensis | small rodents yes

B. vinsonii subsp. berkhoffii | canids yes

B. vinsonii subsp. vinsonii | small rodents yes

Table 1: Validated Bartonella species, their reservoir hosts, and their currently

perceived medical relevance.
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Figures Legend:

Figure 1: Molecular phylogenetic analysis of the 24 extant, validated
Bartonella taxa inferred from alignment of partial (326bp) g/tA sequences.
Evolutionary history was inferred by using the Maximum Likelihood method
based on the Tamura-Nei model. The tress with the highest log likelihood is
shown. Evolutionary analyses were conducted in MEGAS. Imposed on the tree
are the disctributions of the three T4SSs (red box= VirB/D4, blue box= Trw,
green box: vbh) and flagella (orange box) amongst the taxa. To the right of the
tree is an indication of the three evolutionary lineages defined within the

genus.

Figure 2: Hypothetical models of the architectures of Bartonella Type 4
Secretion System (T4SS), VirB/VirD4 and Trw.

The T4SS VirB/VirD4 system possesses an inner membrane protein VirD4, that
is an associate substrate recognition receptor named as T4 Coupling Protein
(T4CP). On the external part of the outer membrane, VirB4 and VirB11
energize the secretion process. VirB3, 6, 8, 9 and 10 are considered to build a
secretion channel accross the inner membrane and the surface exposed pilus
associated components VirB2 and VirB5.

The Bep proteins are secreted through this system.

The T4SS Trw system has the same organization as VirB/D4 system with
homologs for all VirB proteins (named Trw D, E, F, G, H, |, J, K, L, M) except
that Trw system lacks VirD4 (T4CP) and does not secrete any known substrat.
However, Trw system is organized as VirB/D4 with a channel accross the inner
membrane and the surface exposed pilus associated components TrwL and
Trwd. Unlike VirB/D4 system, the Trw system express multiple variant copies of
TrwlL and Trwd.

EX, extracellular matrix; OM, outermembrane; PP, periplasm; IM,

innermembrane; CY, cytoplasm.
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Figure 3: Holistic view of bartonellae interactions with endothelial cells and
erythrocytes.

Exploitation of vascular endothelial cells by bartonellae involves binding to cell
surface via BadA/Vomps proteins as well as VirB/D4 and possible other
adhesions as Omp43/pap31. VirB/D4 and its effectors mediate massive
rearrangements of the actin cytoskeleton, resulting in the formation of large
bacterial aggregates by the invasome structure as well as inhibition of
apoptosis leading to enhanced endothelial cells survival.

The mechanisms of the passage of Bartonella spp. from endothelial cells to
erythrocytes is unknown however, it appears that before infecting erythrocytes,
the bacteria is free in the blood. Adherence to erythrocytes appears to be
mediated by Trw T4SS (for most Bartonella species) and by flagella (for B.
bacilliformis and bovine-specific species). An erythrocyte is usually infected by
one single bacteria; which once inside replicate in a membrane-bound
compartment to reach up to eight cells per erythrocytes, and then persist till the
natural death of the infected cells. During this process, proteases ialA and
CtpA are suspected to degrade misfolded proteins and to protect bacteria

against stress.

Figure 4: Role of B. birtlesii BadA in complement inactivation

A- The different strains of B. birtlesii (wild type: WT, or badA-knockout
mutant: AbadA) was incubated with calf fetal serum diluted twice (either
in Schneider medium, or in supernatant culture medium of B. birtlesii
WT after 24h of growth) at 35°C in a 5% CO, atmosphere for one hour.
Different dilutions were then plated on CBA (Columbia blood agar)
medium, plates incubated at 35°C in a 5% CO2 atmosphere for 5 days.
Colonies forming unit (CFU) were then counted. N= 6 +/- SE

B- The different strains have undergone the same treatments as in A but
the serum used has been heated for 56 °C for 30 min to inactivated the

complement. N=6 +/- SE.
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Figure 5: Far-Western blot of (1) E. coli BL21, (2)E. coli BL21 transformed with
pET30a, and (3) E. coli BL21 transformed with pET30-AR1 (containing B.
henselae groEL insert), probed with rat Fc fragments conjugated to alkaline
phosphatase (Jackson Immunoresearch). All strains were grown in LB to
log-phase and induction of plasmid expression was achieved using IPTG as
per manufacturer’s instructions (Novagen). ). Construction of pET30a-AR1:
The B. henselae groEL ORF was amplified using a PCR incorporating primers
BhgroELF (AAG GAG AGG AAG AAA TGG CTG CTA AAG AAG T) and
BhgroELR (TCA AGG GCT TAG AAA TCC) then cloned into pCR2.1-TOPO
and used to transform E. coli TOP10 cells according to manufacturer’s
instructions (Invitrogen). The resulting plasmid, pAR1-TOPO, was purified then
digested with BamHI and Xhol to yield a 1600 bp fragment that included the
groEL ORF. This fragment was cloned into compatible sites of pET30a
(Novagen) to generate pET30-AR1, which was used to transform E. coli XL10
cells (Stratagene). pET30-AR1 was recovered from these cells and subcloned

into E. coli BL21 cells.

Figure 6: Transmission electron microsopy and immunogold labeling of pellets
of B. birtlesii using anti-B. birtlesii serum (A); negative serum (B); anti-B.
birtlesii recombinant ialB serum C) or in B. birtlesii cryosection stained with
anti-B. birtlesii recombinant ialB serum (D). Arrows indicated the gold

particules corresponding to the detection of the corresponding proteins.
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CHAPTER I

The Trw Type IV Secretion System of Bartonella Mediates
Host-Specific Adhesion to Erythrocytes




Commentaires Article-1 (Chapitre 1)

Chaque espéce de Bartonella spp. n'est capable d’infecter qu’'un ou quelques
especes de mammiferes, dans lesquels la bactérie va induire une bactériémie
intra-érythrocytaire persistante. Chez les hétes accidentels (=non réservoirs),
cette phase bactériemique est inexistante ou de trés courte durée. Ainsi, nous
avons fait 'hypothése que si la bactérie ne colonise pas le sang d’h6tes non
réservoirs, c'est parce qu’elle est incapable d’infecter ou de reconnaitre les
globules rouges de I'espéce en question.

Les travaux présentés dans l'article ci aprés ont pour but de confirmer cette
hypothése. Pour ce faire, nous avons :

— mis au point un modele d’infection in vitro des globules rouges de
différentes especes de mammiféres par différentes especes de
Bartonella spp. Ainsi nous avons confirmé que les espéces de bartonelles
ne sont capables d’infecter in vitro que les globules rouges provenant de
leurs hoétes réservoirs.

— Nous avons ensuite entrepris d’identifier les genes bactériens impliqués
dans la reconnaissance des globules rouges. Ceci a été réalisé en 2
étapes : (1) en criblant une banque de mutants de B. birtlesii, construits
par la technique de Signature-Tagged Mutagenesis, afin les mutants qui
ont perdu la capacité a induire une bactériémie persistante chez la souris,
hoéte naturel de B. birltesii; (2) en criblant in vitro les mutants, dits
« abactériémiques », en utilisant le systtme mis au point dans la
premiére partie de nos travaux. Ainsi nous avons mis en évidence que le
systéme de sécrétion de Type IV Trw était essentiel a I'adhésion de B.
birtlesii aux globules rouges murins.

— Enfin, nous avons prouvé que la reconnaissance hoéte-spécifique du
globule rouge par Bartonella spp. était portée par le systéme de sécrétion

de type IV Trw, en exprimant les génes codant le systéme de sécrétion de



type IV Trw d’'une espéce de Bartonella infectant le rat (B. tribocorum),
chez B. henselae (spécifique du chat) et B. quintana (spécifique de
I’lhomme). Cette expression ectopique a pour effet de changer le tropisme
de B. henselae et B. quintana qui deviennent infectieuses, in vitro, pour
les globules rouges de rat.
Par ailleurs, les analyses phylogénétiques menées dans le cadre de cette étude
montrent que les génes codant ce systéme de sécrétion ont été acquis par
Bartonella, au cours de I'’évolution grace a des mécanismes de transfert latéral
de génes, puis se sont diversifiés au sein du genre bactérien pour faciliter
I'infection de différentes espéces de mammiféres.
L'émergence de maladies causées par ces bactéries, chez 'Homme et/ou
'animal, pourrait donc voir le jour, aprés transfert des génes codant ces
complexes macromoléculaires de bactéries pathogénes vers des bactéries a
I'origine non infectantes pour ’'Homme et qui, du fait de cette acquisition de

génes, deviendraient pathogéne pour 'Homme.
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Abstract

Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-
specificity are poorly understood. The a-proteobacterial genus Bartonella comprises 21 species that cause host-specific
intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific
pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we
have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using
mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific
Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce
the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant
selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among
45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode
components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the
Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B.
tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to
rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus
further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine
host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the
Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals.
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Introduction

The successful infection of a mammalian host by a bacterial
pathogen typically involves a series of intimate host-pathogen
interactions. On the molecular level this is reflected by specific
receptor-ligand interactions between bacterial virulence factors
and their targeted host factors [1]. Adaptation of a bacterial
virulence factor to a host factor that displays variability within the
host population can restrict the host range that is susceptible to
infection. The resulting host-specificity is an inherent feature of
most bacterial pathogens of humans, including Helicobacter pylort,
Listeria monocytogenes, Neisseria gonorrhoae, Salmonella typhi, Streptococcus
pyogenes and  Staphylococcus aureus. However, remarkably little is
known about the molecular determinants of host specificity in
bacterial infections, with the only exception of L. monocytogenes for
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which the conjugated action of two distinct host-specific invasion
proteins was shown to be critical for fetoplacental listeriosis [2,3,4].

Bartonellae represent an interesting but largely unexplored
model for host specificity. These facultative intracellular bacteria
use arthropod transmission and hemotropism as mammalian
parasitism strategies [5]. As the result of an adaptive radiation
each of the 21 species infects only one or a few closely related
mammalian reservoir host(s), which is highlighted by their capacity
to cause a long-lasting intraerythrocytic bacteremia [6]. Non-
reservoir hosts may get incidentally infected without developing an
intraerythrocytic infection [7]. T'wo Bartonella species are human-
specific: Bartonella bacilliformis causes the biphasic Carrion’s disease,
with acute Oroya fever followed by the chronic verruga peruana,
and Barlonella quintana causing trench fever. The life-threatening
Oroya fever and the much milder course of trench fever represent
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Author Summary

Pathogens are—as the result of adaptive evolution in their
principal host(s)—typically limited in the range of hosts
that they can infect successfully. However, infrequently
such host-restricted pathogens may undergo a spontane-
ous host switch, which can lead to the evolution of
pathogens with altered host specificity. Most human
pathogens evolved this way, and animal-specific patho-
gens have thus to be considered as an important reservoir
for the emergence of novel human pathogens. Despite
host-specificity representing a common feature of patho-
gens, the underlying molecular mechanisms are largely
unknown. In this study we have used bacterial pathogens
of the genus Bartonella to identify bacterial factors
involved in the determination of host specificity. The
bartonellae represent an excellent model to study host-
specificity as each species is adapted to cause an
intracellular infection of erythrocytes exclusively in its
respective reservoir host(s). Using a genetic approach in
combination with erythrocyte infection models in vitro and
in vivo we demonstrate that a surface-located bacterial
nanomachine—a so-called type IV secretion system—
determines host specificity of erythrocyte infection. Our
work sheds light on the molecular basis of host specificity
and establishes an experimental model for studying the
evolutionary processes facilitating spontaneous host shifts.

the characteristic intraerythrocytic stages of these pathogens. The
other 19 species cause intraerythrocytic infections in various non-
primate mammalian reservoirs. At least seven of them are
recognized as zoonotic pathogens which incidentally infect
humans. Commonly, B. henselae is associated with cat scratch
disease [7].

The life cycle of Bartonella in the reservoir host has been
analyzed in detail in rats experimentally infected with B. tribocorum
[8]. Following intravenous inoculation, bacteria initially infect a
primary niche outside of circulating blood, which is considered to
comprise the vascular endothelium and possibly other cell types.
Approximately on day five of infection, large numbers of bacteria
are released into the bloodstream where they bind to and invade
mature erythrocytes. Bacteria then replicate in a membrane-
bound compartment until reaching a critical number. For the
remaining life span of the erythrocytes the intracellular bacteria
remain in a non-dividing state [8]. Monitoring of bacteremia in
other animal models, such as the B. birtlesii-mouse [9] and B.
henselae-cat models [10], or in captive naturally infected animals
has yielded results that match those observed in the B. tribocorum-
rat model, suggesting a common mode of infection of the different
species in their respective animal reservoirs [11]. The only
exception is B. bacilliformis, which causes lysis of the infected
human erythrocytes, eventually resulting in a severe hemolytic
anemia.

The B. tribocorum-rat model was further explored to identify
bacterial pathogenicity factors that are required for colonization of
the mammalian reservoir host. A signature-tagged mutagenesis
(STM) screen identified 98 essential bacterial loci [12], including
genes encoding components of two distinct type IV secretion
systems (T4SS), VirB/VirD4 and Trw, the invasion-associated
locus B (IalB) protein, the trimeric autotransporter adhesin BadA,
as well as further members of the autotransporter family [6].
Whether any of the identified genes is critical for host-specificity is
unknown, although it is conceivable to assume that host-specificity
loci are essential for infection and may thus be represented among
the hits of the performed STM screen.
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Experimental infections of different mammalian hosts by a
given Bartonella strain have reproduced the species-specificity of
erythrocyte observed in natural infections
[11,13,14,15]. However, despite their availability, ¢ vitro erythro-
cyte infection assays [16,17] have not been investigated for the
study of host specificity. Here, we demonstrate for the first time
that host specificity is reflected by the exclusive capacity of
Bartonella species to adhere to erythrocytes isolated from their
natural host(s). Second, by performing STM in Bartonella birtlesii
followed by screening in mice i viwo and in isolated erythrocytes in
vitro we identified the T4SS Trw as the molecular determinant of
host-specific erythrocyte infection.

invasion  as

Results

An in vitro erythrocyte colonization assay to study
host-restricted infection

Based on described i wvitro models of human and feline
erythrocyte infection by B. bacilliformis and B. henselae, respectively
[16,17], we established for B. birtlesii an in vitro infection model for
erythrocytes isolated from the murine reservoir host. Balb/C mice
were used as the source of erythrocytes as they are known to
develop a long lasting intraerythrocytic infection upon experi-
mental infection with B. birtlesii [9]. The intraerythrocytic presence
of bacteria was evaluated over a period of three days using the
gentamicin protection assay (Fig. 1A). Bacterial entry into
erythrocytes was dependent on the number of bacteria per
erythrocyte (multiplicity of infection, MOI; tested MOI range:
0.01 to 10) and time of infection (days post infection, DPI; tested
time range: 1 to 3 DPI). The highest intraerythrocytic bacterial
content over time was obtained for MOI=0.1 and 1, with
approximately 2x10° colony forming units (CFU) per 10'°
erythrocytes (=0.002% infected erythrocytes) at 3 DPIL. Given
that mouse blood contains approximately 10'® erythrocytes/ml,
this value corresponds well to the bacteremia reported for
experimentally infected Balb/C  mice (=1x10° CFU/ml;
0.001% infected erythrocytes) [9]. For MOI =10, erythrocytes
were infected at 1 DPI, but lysed entirely by 3 DPL At
MOI=0.01, only low numbers of intraerythrocytic bacteria were
detected over time. Based on these data, MOI =1 was used for all
subsequent erythrocyte infection assays. To evaluate whether the
increase of intraerythrocytic bacteria over time was mainly due to
continued bacterial invasion, or to intraerythrocytic bacterial
multiplication, or to a combination of both, erythrocytes were
infected with B. birtlesii for one day in the absence of gentamicin,
followed by incubation in the continuous presence of gentamicin
to kill extracellular bacteria. Fig. 1B shows that the number of
intracellular bacteria increased over time in the presence of
gentamicin, albeit to a lesser extent than in the untreated control.
Bacteria thus appear to enter erythrocytes beyond 1 DPI and,
moreover, to replicate in an intra-erythrocytic location.

Invasion of erythrocytes by Bartonella 1s preceded by bacterial
adhesion to the erythrocyte surface [18]. To quantify erythrocytes
infected by adherent extracellular and/or intracellular bacteria,
we used GFP-expressing bacteria in combination with flow
cytometry (Fig. 1C, D.). Similar as described for intraerythrocytic
bacteria in the gentamicin protection assay, erythrocyte coloniza-
tion revealed by flow cytometry was dependent on time (Fig. 1.C)
and MOI (Fig. 1.D). However, the rate of erythrocyte colonization
evaluated by flow cytometry (55% for MOI=1 at 3 DPI) was
approximately 20'000-fold higher than erythrocytes invasion
determined by the gentamicin protection assay (compare
Fig. 1.A), indicating that the vast majority of bacteria detected
by flow cytometry were associated extracellularly with erythro-
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Figure 1. B. birtlesii invades murine erythrocytes /n vitro. (A, B) Time- and bacterial number-dependency of B. birtlesii invasion of murine
erythrocytes determined by the gentamicin protection assay. (A) Freshly isolated murine erythrocytes were infected with B. birtlesii at the indicated
multiplicity of infection (MOI) and the numbers of intra-erythrocytic bacteria (colony forming units, CFU) was determined by the gentamicin
protection assay at 1, 2 and 3 days post infection (DPI); n=6, mean +/-SD; *, **: significant difference of data compared to 1 DPI. (B) Freshly isolated
murine erythrocytes were infected with B. birtlesii at MOl = 1. At 1 DPI, gentamicin was added to half of the samples, and growth was continued in the
continous presence of gentamicin through 3 DPI to kill extracellular bacteria. The other half of the infected erythrcyotes was not treated with
gentamicin. For both untreated and gentamicin treated samples, numbers of intra-erythrocytic bacteria were determined by the gentamicin
protection assay at 1, 2 and 3 DPI (n=6; mean +/—SD, ¥, **: significant difference in gentamicin treated samples compared to 1 DPI). (C) Time- and (D)
bacterial number-dependency of B. birtlesii associated to murine erythrocytes determined by flow cytometry. Freshly isolated murine erythrocytes
were infected with B. birtlesii-gfp (MOl =1, detection at 1 and 3 DPI in C and MOI=0.1 or 1, detection at 3 DPI in D). The percentage of erythrocytes
associated with bacteria were quantified by flow cytometric analysis at 2 and 3 DPI. Representative data for the fluorescence (FL-1) of 10’000
erythrocytes are shown as histogram plots. (E) Confocal microscopic analysis of murine erythrocytes infected for 2 days with GFP-expressing B.

birtlesii (MOl = 1). Arrows point to bacteria found in close association with erythrocytes.

doi:10.1371/journal.ppat.1000946.9001

cytes. Confocal microscopy confirmed the predominant extracel-
lular localization of erythrocyte-associated bacteria (Fig. 1.E).

Next we investigated whether Bartonella species differ in their
capacity to interact in witro with erythrocytes of different
mammalian origin, and whether this capacity may reflect the
host-restriction displayed during natural infection. First, mouse
erythrocytes were infected with either B. burtlesiz, B. vinsonit arupensis
(both mouse-specific), B. alsatica (rabbit-specific), B. vinsonit berkhoffii
(dog-specific), B. henselae (cat-specific), B. quintana (human-specific),
or B. tribocorum (rat-specific). Erythrocyte invasion was quantified
by the gentamicin protection assay (Fig. 2). B. wvinsonii arupensis
displayed invasion rates similar to B. butlesii, while none of the
other strains tested resulted in significant erythrocyte invasion.
Using a corresponding set of strains expressing GFP, consistent
results were obtained for the flow cytometric determination of
bacterial adhesion to mouse erythrocytes (Fig. 3 and Fig. SI).
These findings indicate that specificity for the mouse reservoir i
vivo correlates with efficient adhesion to and invasion of mouse
erythrocytes m vitro.

Next, we tested whether - similarly as observed for mouse
erythrocytes and B. birtlesii — the capacity of B. henselae, B. quintana
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and B. tribocorum to adhere to erythrocytes i vitro is also restricted
to erythrocytes from their natural reservoir host, i.e. cat, human
and rat, respectively. GFP-expressing bacteria were used for
erythrocyte infection, and adhesion was quantified by flow
cytometric analysis. Fig. 3 and Table 1 illustrate that all tested
Bartonella species were able to efficiently adhere to erythrocytes
isolated from their respective reservoir hosts, while they essentially
did not adhere to erythrocytes from non-reservoir hosts. The only
exception is B. quintana, which further to erythrocytes from the
human reservoir also colonized cat erythrocytes. Together, these
data indicate that the established i vitro model of erythrocyte
colonization reflects well the host restriction as observed during
natural infection.

B. birtlesii genes required for intra-erythrocytic
bacteremia in mice

As a basis for identifying genetic factors involved in host-
restricted erythrocyte colonization, we identified a comprehensive
set of B. birtlesii genes required for establishing intraerythrocytic
bacteremia in mice. To this end, an STM library of B. burtlesit was
constructed as previously described for B. tribocorum [6,12,19].
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120'000 pools, 98 were not detected in the output pools from mice at days 7
B B. birtlesii and 14 post infection and were thus classified as abacteremic
mutant candidates. All 98 abacteremic mutant candidates were
B alsatica retested by reassembling them into 49 pools of 9 mutants, each

= .. pool containing two abacteremic mutant candidates and an
801000 {| B B. berkhoffii invariable set of seven mutants displaying wild-type behavior
8 B. henselae (bacteremic mutants). The rescreen confirmed an abacteremic
60000 4| B B. quintana phenotype for 48 of the initial 98 abacteremic mutant candidates,
O B. tnbocorum corresponding to 3.3% of the total number of mutants screened.
Growth of all of the 48 confirmed abacteremic mutants on solid

100000 4| BB. arupensis

CFU/10'0 erythrocytes
(=1 ml blood)

40000 4 media was similar to the parental wild-type strain (data not
shown).

20'000 - We determined the transposon insertion sites for all 48

abacteremic mutants by direct sequencing out of the transposon

0 into the flanking chromosomal region and mapping of the derived

sequences onto the draft genome sequence of B. birtlesii (S. Cescau,
H.M. Yang, J. Wang, M. Vayssier-Taussat, A. Danchin, and F.
Days post infection (DPI) Biville, unpl.lblish‘ed data). Three mutants harborin.g two separate
transposon insertions were not considered further in the analysis.
Table S1 lists the loci inactivated by single transposon insertion in

1 2

Figure 2. Efficiency of in vitro invasion of murine erythrocytes

by different Bartonella species. Freshly isolated murine erythrocytes the remaini.ng 4? ab.actere.mic mutants. Five mutants carried the
were infected with the indicated Bartonella species with a MOl =1. The transposon insertion in an intergenic region: one (83D04) was near
numbers of intra-erythrocytic bacteria (colony forming units, CFU) was a gene encoding a tRNA; three of them (04A01, 86C05, 69B07)
determined by the gentamicin protection assay at 1 and 2 days post were upstream of genes encoding proteins of unknown function

infection (DPI1); mean +/-SD of triplicate samples.

d0i:10.1371/journal.ppat.1000946.9002 and one (69C09) was in proximity to a putative transcriptional

regulator gene. In these mutants, the transposon may have thus
disrupted a promoter or another regulatory sequence. 40

From each conjugation assay, we selected 96 single kanamycin- transposon insertions were mapped to the coding region of 38
resistant colonies and assembled an STM mutant library of 3456 different protein-encoding genes. In 8 mutants the insertions were
mutants. We then identified mutants that have lost the capacity to found in genes encoding a conserved protein of unknown function,
cause intraerythrocytic bacteremia by screening the library in the among them three putative surface proteins. Sixteen mutants
mouse infection model [9]. Of 1456 mutants tested in the input carried insertions in genes previously implicated in bacterial
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Figure 3. Efficiency of interaction between erythrocyte and Bartonella sp. according to host origin and Bartonella species. Freshly
isolated erythrocytes from mouse, cat, human or rat were infected with gfp-expressing bacteria of the indicated Bartonella species (MOl=1). The
percentages of infected erythrocytes were determined by flow cytometry at two DPI. Representative histogram plots for GFP-fluorescence (FL-1) of
10’000 erythrocytes are shown.

doi:10.1371/journal.ppat.1000946.9003
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Table 1. Efficiency of erythrocyte colonization according to host origin and Bartonella species.

B. birtlesii B. henselae B. quintana B. tribocorum

in vivo in vitro (%)* in vivo in vitro (%)* in vivo in vitro (%)* in vivo in vitro (%)*
Mouse + 263 +/— 2.2 b 13 +/— 05 n.r. 0.8 +/— 0.3 n.r. 1.6 +/— 04
Cat n.r. 1.6 +/— 0.8 +¢ 285 +/— 4.1 n.r. 422 +/— 3.1 n.r. 0.5 +/— 0.3
Human nr. 27 +/— 1.0 nr. 13 +/—03 + 584 +/— 1.2 n.r. 09 +/— 0.2
Rat n.r. 20+/—13 n.r. 1.8 +/— 07 n.r. 354+/—1.1 +¢ 20.7 +/— 2.8

(9], P[15], [41,42], °[8,43,44], °[8].

*Freshly isolated erythrocytes from mouse, cat, human or rat were infected with gfp-expressing bacteria of the indicated Bartonella species (MOl = 1). The percentages of
colonized erythrocytes were determined by flow cytometry at day two post infection. Data for 10’000 erythrocytes per time-point were analyzed (n=6 for tests with
homologous species and n=3 for tests with heterologous species, mean +/— SD). For previously described infections of the respective mammalian hosts with the

doi:10.1371/journal.ppat.1000946.t001

pathogenicity, either in Bartonella (virB/D4, trw, ald/B, badA,
omp43, iba) or other pathogenic bacteria (i.e. loci encoding heat
shock proteins) [5]. Moreover, mutant genes encoding proteins
involved in transport and metabolism, as well as phage-related
function were also identified.

B. birtlesii genes required for erythrocytic infection
in vitro

The 45 confirmed abacteremic mutants with single transposon
msertion were individually tested for their capacity to invade
murine erythrocytes using the gentamicin protection assay (7able
S7). Nine mutants were found to be impaired in murine
erythrocyte invasion (Fig. 4). Complementary erythrocyte adhe-
sion assays based on flow cytometric analysis of antibody-stained
bacteria demonstrated that seven of these nine invasion-deficient
mutants are also deficient in erythrocytes adhesion. All seven
mutants harbor a mutation in the operon encoding the T4SS Trw
(two in trwD, trwk, trwk, twj2, trwll, trwl.2), which was previously

indicated Bartonella species the presence (+) or absence (-) of intraerythrocytic bacteremia is indicated (n.r.=not reported).

shown to be important for establishing an intraerythrocytic
bacteremia in B. tribocorum [20]. Compared to wild-type, both
trwD mutants (04B03 and 41C12) showed a five-fold decrease in
invasion/adhesion efficiency. All other #rw mutants failed to invade
erythrocytes and were severely impaired in their capacity to
adhere to erythrocytes (Fig. 4). These data demonstrate that the
Trw system is required for erythrocyte invasion by mediating
specific adhesion to erythrocytes. In contrast, mutants harboring
an insertion in the invasion-associated locus ald/B showed normal
erythrocyte adhesion but impaired invasion (10-fold reduced,
p<0.01), confirming the previously suggested role of this locus in
erythrocyte invasion [21,22]. Equally, an insertion mutant (25A02)
inactivating liwG (encoding an amino acid ABC-transporter)
showed normal adhesion but a specific defect in invasion (4-fold,
p<<0.05) compared to wild-type (Fig. 4). None of the other
abacteremic mutants appeared to be involved in erythrocytes
invasion indicating that they probably are required for an earlier
step of infection, i.e. for colonization of the primary niche.
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Figure 4. Role of Trw in erythrocyte infection. Efficiency of in vitro invasion of murine erythrocyte by abacteremic mutants of B. birtlesii. The in
vitro erythrocyte adhesion or invasion phenotype of abacteremic mutants identified in the STM screen was evaluated at 2 DPI by flow cytometry after
immunocytochemical staining of bacteria (see Figure S2) or at 1 DPI by the gentamicin protection assay, respectively. The efficiency of erythrocyte
adhesion or invasion of each tested mutant is expressed as percentage of erythrocyte adhesion or invasion of the isogenic wild-type strain (mean +/-
SD of triplicate samples). All mutants listed in Table S1 that do not appear in this figure display wild-type phenotype in regard of in vitro erythrocyte
invasion.

doi:10.1371/journal.ppat.1000946.9004

@ PLoS Pathogens | www.plospathogens.org 651 June 2010 | Volume 6 | Issue 6 | 1000946



Role of Trw T4SS in host-specific infection of erythrocytes

Next we tested whether the Trw system shown here to be
essential for erythrocyte infection i vitro and i vivo may be directly
involved in determining host-specificity. To this end we introduced
pAB2, a plasmid encoding the #w locus of rat-specific B. tribocorum
[20], into cat-specific B. henselae, human-specific B. quintana and B.
tribocorum (control). We then compared the capacity of these
recombinant strains to infect rat erythrocytes with their parental
strains. Among the parental strains, only B. tribocorum mediated
invasion of rat erythrocytes (Fig. 5), which is consistent with the
erythrocyte adhesion data presented in Fig. 2. The pAB2-
mediated ectopic over-expression of trw in B. tribocorum resulted
only in a slight increase of invasion, indicating that the endogenous
level of trw expression is sufficient to mediate efficient bacterial
entry. Strikingly, ectopic expression of the B. tribocorum trw locus in
B. henselae and B. quintana rendered these pathogens capable of
infecting rat erythrocytes. These data clearly demonstrate a direct
role of the Trw system in determining host-specificity of
erythrocyte infection.

To further assess which components of the Trw T4SS may
mediate host specificity we analyzed the molecular evolution of
different #rw genes of B. birtlesii and related species. Candidate
genes for mediating host specificity are surface exposed compo-
nents, i.e. the T4SS pilus components TrwL and Trw]J. As shown
by Nystedt et al. [23] for other Bartonella species, trwl and trwf
genes have been amplified and diversified several times during
evolution. The #rw locus of B. birtlesii also displays amplification of
trwL (five copies) and co-amplification of #rwj together with troH
and trwl (two copies) (Fig. S3, panel A). Phylogenetic analyses and
calculation of the non-synonymous (dN) and synonymous (dS)
substitution frequencies of different #w genes further showed that
trwf and #rwl homologs have diversified to much higher degree
than other components of the Trw T4SS, within and among
different species [Iig. S3, panel B-G, and [23]].
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Figure 5. Role of Trw T4SS in mediating host-specific
erythrocyte invasion. Freshly isolated rat erythrocytes were infected
with B. tribocorum, B. tribocorum (pAB2), B. henselae, B. henselae (pAB2),
B. quintana, or B. quintana (pAB2) at a MOI=1. Intra-erythrocytic
bacteria were enumerated at 1, 2 and 3 days post infection (DPI) by the
gentamicin protection assay (n=3; mean +/—SD).
doi:10.1371/journal.ppat.1000946.9005
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Discussion

Host-specificity is a prominent feature of pathogenic bacteria
that reflects the host range susceptible to infection. Subtle changes
in the molecular mechanisms that govern host-specificity may
result in spontaneous host shifts, which represent a major risk for
the emergence of novel human pathogens from animal reservoirs.
Striking examples for this evolutionary scenario are the barto-
nellae, which cause host-restricted intra-erythrocytic infections in
their mammalian reservoirs. In conjunction with repeated host
shifts, the large number of Bartonella species evolved by adaptive
radiation [6], including the human-specific pathogen B. quintana
that evolved from cat-specific B. henselae [24]. Here we explored
the bacterial genetic basis for host-restricted infection of
erythrocytes. The establishment of an i vitro model of erythrocyte
adherence and invasion allowed us to demonstrate for the first
time a direct correlation of host-restricted erythrocyte infection in
vivo and i vitro, demonstrating that host-specificity is determined
by the capacity of bacteria to adhere to erythrocytes. In order to
identify the bacterial factors critical for host-restricted erythrocyte
infection we have used a two-step experimental protocol. First, we
performed an STM screen for B. birtlesi in mice which allowed us
to identify 45 abacteremic mutants defective in establishing intra-
erythrocytic infection. Among the corresponding set of 38 protein-
encoding genes, 13 loci were also indentified in a similar STM
screen performed in the B. tribocorum-rat model [6]. This indicates
extensive similarities in the repertoire of pathogenesis factors in
these closely related organisms as well as robustness of the
performed genetic screens. Second, rescreening of the entire set of
45 abacteremic B. birtlesii mutants in the i vitro mouse erythrocyte
infection model resulted in the identification of nine mutants
impaired in erythrocte invasion. The other mutants (36 of
45=80%) displaying a wild-type phenotype in this assay are
therefore not directly involved in erythrocyte infection, but rather
may contribute to the establishment of infection in the primary
niche. Prominent examples are the virB/virD4 genes encoding the
VirB/VirD4 T4SS, which is known to be required for primary
niche infection in the B. tribocorum/rat model (Schulein, 2002).
Moreover, a recent study inferred the VirB/VirD4 T4SS as major
bacterial factor facilitating bacterial adaptation to novel hosts [6].
The nine mutants impaired in i vitro erythrocyte invasion differ in
their capacity to adhere to erythrocytes. Transposon insertions in
the invasion locus (iald/B) previously implicated in erythrocyte
invasion [21,22] and /lvG encoding an amino acid ABC-
transporter displayed wild-type like adherence to erythrocytes.
TalA/B and LivG should thus represent invasion factors. The
remaining seven invasion-deficient transposon mutants were all
severely impaired in erythrocyte adhesion. Strikingly, all these
mutants carry insertions in components encoding the T4SS Trw,
which thus represents an erythrocyte adherence system that is
critical for erythrocyte invasion. Trw is known to be required for
establishing intra-erythrocytic infection in the B. tribocorum-rat
model [5,20,25], however, evidence for a direct role of the Trw
system in erythrocyte adhesion as provided here was lacking so far.
Based on the presumable surface location of components of Trw
[20] this T4SS may directly interact with the erythrocyte surface
and thus may restrict the host range of erythrocyte infection. To
test the hypothesis that Trw determines host range we have
expressed Trw of rat-specific B. tribocorum in cat-specific B. henselae
and human-specific B. quintana. Strikingly, this genetic manipula-
tion resulted in an extension of the host range for wn witro
erythrocyte infection towards rats, demonstrating that I'rw indeed
represents a major determinant of host-specificity of erythrocyte
infection. Thus, this finding establishes a new experimental model
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to study the molecular mechanisms governing host restriction -
further to the molecular paradigm of host-specificity exemplified
by the interaction of two surface proteins of L. monocytogenes, InlA
and InlB, with their respective host receptors [2,3,4].

The Trw locus was laterally acquired during evolution of the
bartonellae. It is present in the largest sub-branch of the genus
tree, comprising 13 species that are adapted to diverse
mammalian reservoir hosts, while it is absent from human-
specific B. bacilliformis, cat-specific Bartonella clarridgeiae and the
species of the ruminent-specific sub-branch, which all diverted
early during evolution of the bartonellae [6]. Interestingly, the
acquisition of Trw by the modern lineage correlates with the loss
of flagella, which are know to represent a major pathogencity
factor for the invasion of erythroctes by B. bacilliformis and
probably other flagellated bartonellae [25]. The Trw system of
Bartonella represents an interesting example of a pathogenesis-
related T4SS that evolved rather recently by functional
diversification of a laterally acquired bacterial conjugation
system. The #w locus displays characteristic features of a
pathogenicity island and shares extensive similarity with the trw
locus of IncW broad-host range plasmid R388 encoding a
genuine conjugation system. The #w loci of Bartonella and R388
are colinear, except for multiple tandem gene duplications of
trwl and trwj-trwH in Bartonella. Complementation of R388
derivatives carrying mutations in different fw genes with their
Bartonella homologues allowed to demonstrate functional inter-
changability for some T4SS components [20,26], underscoring
the structural and functional conservation of individual subunits
of these functionally diversified T4SSs. However, a major
difference between these homologous systems is the lack of the
coupling protein TrwB in Bartonella, which in R388 is required
for export of T4SS substrates. The lack of TrwB in Bartonella thus
indicates that its Trw system may not be capable of translocating
substrates. However, the multiple copies of #rwL and #rw7 in the
Bartonella trw locus encode variant forms of surface-exposed pilus
components, which probably are all co-expressed [20], indicat-
ing that the primary function of the Bartonella Trw system may be
the formation of variant pilus forms [25]. Based on the essential
role of the Trw system for adhesion to erythrocyte and its role in
determining host range it is conceivable to assume that these
variant pili may facilitate the specific interaction with polymor-
phic erythrocyte receptors, either within the reservoir host
population (e.g. different blood group antigens), or among
different reservoir hosts. Phylogenetic analyses and calculation of
the non-synonymous (dN) and synonymous (dS) substitution
frequencies of different #w genes indeed demonstrated that trwf
and #rwl homologs have diversified to much higher degree than
other components of the Trw T4SS, within and among different
species [23]. Together with the notion that the number of
tandem repeats of frwl and trwjIH are variable among different
Bartonella species these findings indicate that trwl and trwj genes
have been amplified and diversified several times during
evolution. Horizontal transfer of such genes from a different
bartonellac — similarly as we have demonstrated here for the
entire trw operon of rat-specific B. tribocorum resulting in an
extension of the host range of cat-specific B. henselae or human-
specific B. quintana to rat — or alternatively pre-adaption of
superfluous copies of #wl and frwj may represent realistic
molecular evolutionary scenarios for host shifts and thereby the
evolution of pathogens with an altered host-specificity as it has
happened repeatedly during the evolution of the bartonellae.
Future studies should identify the nature of the erythrocyte
receptors targeted by the Trw system and their specific
interaction that facilitate host-specific erythrocyte infection.
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Materials and Methods

Ethics statement

Animals were handled in strict accordance with good animal
practice as defined by the relevant European (European standards
of welfare for animals in research), national (Information and
guidelines for animal experiments and alternative methods,
Federal Veterinary Office of Switzerland) and/or local animal
welfare bodies. Animal work performed at the Biozentrum of the
University of Basel was approved by the Veterinary Office of the
Canton Basel City on June 2003 (licence no. 1741), and animal
work performed at the Ecole Nationale Vétérinaire d’Alfort
(ENVA/AFSSA) was approved by the institute’s ethics committee
on September 2005.

Bacterial strains and growth conditions

B. alsatica (IBS 3827, CIP 1054777) [27], B. birtlesii (IBS 1357,
CIP 1066917 [28], B. henselae (Houston-1, ATCC 49882"), B.
quintana (Fuller', ATCC VR-358"), B. tribocorum (IBS 506", CIP
105476 [29], B. vinsonii subsp. berkhoffit (ATCC 51672, B. vinsonii
subsp arupensis (ATCC 700727) [30] were grown for 5 days on
Columbia agar containing 5% defibrinated sheep blood (CBA) in a
humidified atmosphere with 5% CO0, at 35°C.

Construction of bacterial strains

B. tribocorum-gfp containing a chromosomally-integrated gfp-
expression cassette [8] was used as GFP-expressing B. tribocorum
strain. GFP-expressing bacteria of other Barlonella species were
obtained by electroporation with plasmid pJMBGFP as previously
described [31,32]. This plasmid was extracted and purified from
B. quintana using a Midi Prep Kit (Qiagen). The electroporation
procedures was described previously [31]. Transformed bacteria
were selected by plating on CBA-Km. A signature-tagged mutant
library of B. birtlesii IBS135" was constructed as described for B.
tribocorum [6,12]. Cosmid pAB2 encoding the entire #rw locus of B.
tribocorum [20,33,34] was introduced into B. henselae and B. quintana
by three parental mating [34,35].

In vitro infection of erythrocytes

Erythrocytes from peripheral blood of mice (Balb/C), cats, rats
(Wistar) and humans were isolated and purified by Ficoll gradient
centrifugation. After washing in PBS, they were maintained in F12
modified medium [supplemented with 10% fetal calf serum, 2 mM
glutamine, 1 mM sodium pyruvate, 0.1 mM Hepes, 257 mM
histidine, 0.1 mg/ml hematin/histidine, non-essential amino acid
(Gibco, FRANCE)] at 2x10%/ml. For in vitro infection experiments,
Bartonella species were grown on CBA or CBA-km (Bartonella-gfp and
STM mutants) plates. After 5 days of culture (10 days for GFP-
expressing Bartonella), bacteria were harvested, washed, suspended in
PBS, and added to erythrocytes at a multiplicity of infection (MOI,
calculation based on 1 ODggy pm = 3x10° bacteria/ml) varying
from 0.01 to 10 and incubated at 35°C in 5% CO, for various
periods of time (from 1 to 3 days).

Detection of erythrocyte-associated bacteria

Colonization of erythrocytes by Bartonella was assessed and
quantified by the gentamicin protection assay, flow cytometry and
confocal microscopy. For the quantification of intracellular
bacteria by gentamicin protection, 100 ul were withdrawn from
the invasion mixtures after 1, 2 or 3 days of @ wvitro infection.
Mouse erythrocytes were separated from non-associated bacteria
by washing 3 times with PBS and centrifuged at 500 g for 5 min.
Erythrocytes were then incubated for 2 h at 35°C with gentamicin
sulfate (250 pg/ml) to kill residual extracellular bacteria. Erythro-
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cytes were then washed three times in PBS to remove the
antibiotic and intracellular bacteria were released from erythro-
cytes by hypotonic lyses of erythrocytes in 10 pl of sterile water by
freezing at —20°C for 15 min. After thawing, serial dilutions of
bacteria in PBS were inoculated onto CBA plates and incubated at
35°C for 5 days before being counted. For data presentation, all
measurements were expressed as the number of CFU/10'
erythrocytes (corresponding to =1 ml of blood).

For flow cytometric detection of erythrocyte-associated with
GFP-expressing bacteria, measurements were performed at day 1,
2, 3 after i witro infection of erythrocytes with ten days old
bacterial cultures. 100 pl of the infection mixtures was washed 3
times in PBS and fixed for 10 min with 0.8% paraformaldehyde
and 0.025% glutaraldehyde. After fixing, erythrocytes were
analyzed by flow cytometry (FACScan, Becton Dickinson
Bioscience, France). For flow cytometric detection of erythrocytes
associated with bacteria that do not express GFP (abacteremic
mutants), measurements were performed at day 2 after @ vitro
infection. 100 pl of the infection mixtures was washed 3 times in
PBS and fixed for 10 min with 0.8% paraformaldehyde and
0.025% glutaraldehyde. After fixing, erythroctes/mutants associ-
ation was revealed with mouse anti-B. birtlesii serum and anti-
mouse FITC antibodies (Santa Cruz Biotechnology, Santa Cruz,
CA,USA) and analyzed by flow cytomtry. Data were analyzed
using the CellQuestPro software, version 4.0.2. Data for 10’000
gated erythrocytes were collected and analyzed.

For confocal microscopy, 100 ul of the infection mixtures was
washed three times in PBS and the erythrocytes cell surface was
stained using goat anti-mouse GPA antibodies (Santa Cruz
Biotechnology, California, USA) and labelled with anti- goat-PE-
antibodies (ImmunoQuest Antibody, North Yorkshire, UK).
Samples were viewed with a Nikon Eclipse C1 Plus confocal laser
scanning microscope (Nikon, Amstelveen, Netherlands) with
detection in channel 1 (GFP fluorescence) and channel 2 (PE
fluorescence) at original magnification x100.

STM library

The transposon vectors pHS006-Tag-001 to pHS006-Tag-036
each contained an onT for conjugative transfer, the Himarl
transposon, a kanamycin resistant marker, a hyperactive trans-
posase and one of 36 distinct signature-tags [6]. These 36
signature-tagged mariner transposon vectors were separately
transferred from E. coli 2155 to B. birtlesii by two-parental mating
as previously described [35]. From each mating, 96 single
kanamycin-resistant B. burtlestz transconjugants were transferred
to a 96-well plate with cryo-medium and stored at —80°C.

Mouse infections

Eight weeks old female Balb/C mice from Charles River
Laboratories were housed in an animal facility (2 animals/cage)
and allowed to acclimate to the facility and the diet for at least 5 days
prior infection. Food and water were provided ad lbitum. 36
differently signature-tagged mutants were grown separately from
the transposon library for each input pool. They were pooled in PBS
immediately before infection, and used to infect two mice with a
total inoculum of 5x107 colony forming units (10 pl of ODsgs=1)
in the ear dermis of Balb/C mice. The remainder of the input pools
was heated at 100°C for 10 min and used as template for PCR
detection. Fifty pl of blood were taken from the tail vein of the
infected mice when bacteremia is peaking (days 7 and 14 post-
infection) [9]. Bacteria released from erythrocytes by a freeze/thaw
cycle were plated on CBA-km. After 10 days, bacterial colonies
(output pool) were counted, harvested in PBS, suspended to
OD;95 =1 and heated at 100°C for 10 min to be used as template
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for PCR detection. The rescreen was done following the same
protocol using pools of nine mutants (two abacteremic mutants and
seven mutants displaying a wild-type phenotype).

PCR detection of abacteremic mutants

For signature-tag identification, the generic primer Srev0l
corresponding to a sequence in the transposon and a set of tag-
specific primer were used for amplification of a fragment of
approximately 600 bp [6]. The conditions for the PCR were as
follows: a first denaturation step at 95°C for 5 min, followed by 30
cycles of PCR with denaturation at 95°C for 1 min, annealing for
30 s at 52°C, and extension at 72°C for 1 min. The program was
completed by an extension step at 72°C for 5 min. The amplified
fragments were displayed on a 1% agarose gel. Mutants that were
detected in the input pools and absent from the out put pools (days
7 and 14) in both mice were considered as abacteremic mutants.

Identification and analysis of transposon insertion sites

Genomic DNA from abacteremic mutants, regrown from the
library, was prepared with the ROCHE Genomic DNA Isolation
Kit. Genomic DNA was sent to QIAGEN for sequencing with
primers Tng,, and Tn.q [6]. The sequences obtained by the
genomic sequencing were compared by BlastN to the nr data base
of NCBI (http://blast.nchi.nlm.nih.gov/Blast.cgi). The exact
transposon insertion sites were found by comparing the genomic
sequences to contigs of the ongoing B. birtlesii genome sequencing
project by BlastN.

Screening of abacteremic mutants for their capacity to
infect murine erythrocytes

Mutants displaying an abacteremic phenotype were tested for
their capacity to invade murine erythrocytes using the gentamicin
protection assay. Each mutant was tested at MOI=1 in at least
two independent experiments performed in triplicate samples. For
mutants displaying an impaired erythrocyte invasion phenotype,
invasion assays were performed at least three times in triplicate
samples and adhesion assays were tested at day 2 post infection by
flow cytometric detection once in triplicate samples.

Statistical analysis

Numerical data are reported as the mean of at least 3 replicate
samples +/- standard errors of the means. Statistical significance of
the data was measured by use of Student’s t test. A p-value <0.05
was considered significant.

Phylogenetic and evolutionary analysis

The sequence of the B. birtlesit trw locus was deposited under the
EMBL-EBI accession no. FN555106. Sequence alignments were
calculated with ClustalW as implemented in MEGA4. Phyloge-
netic trees were inferred by maximum likelithood methods with
Paup 4.0 [36] and 100 bootstrap replicates were calculated. To
select an appropriate substitution model the Akaike information
criterion of Modeltest 3.7 was used [37]. The models obtained
were general time reversible (GTR) + I for trwFED and #rwh,
transversion model (TVM) + 1 for #wl, and TVM + I + G for twf
and trwL. Nonsynonymous (dN) and synonymous (dS) substitution
frequencies were calculated using the method of Yang and Nielson
[38] as implemented in the PAML package [39,40].

Supporting Information

Figure S1 Efficiency of & vitro adhesion of murine erythrocytes
to Bartonella sp. Freshly isolated murine erythrocytes were infected
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with Bartonella sp.-GFP (MOI =1, detection at two DPI). The
percentage of erythrocytes associated with bacteria were quanti-
fied by flow cytometric analysis. Representative data for the
fluorescence (FL-1) of 10’000 erythrocytes are shown as histogram
plots.

Found at: doi:10.1371/journal.ppat.1000946.s001 (0.08 MB TIF)

Figure 82 Efficiency of in vitro adhesion of murine erythrocytes
to abacteremic mutants. Freshly isolated murine erythrocytes were
infected with B. burtlesit abacteremic mutants (MOI = 1, detection 2
DPI). Association between erythrocytes and bacteria was revealed
with mouse anti-B. birtlesii polyclonal serum and labelled with anti-
mouse FITC antibody. The percentage of erythrocyte associated
with bacteria was quantified by flow cytometric analysis.
Representative data for the fluorescence (FL-1) of 10°000
erythrocytes are shown as histogram plots.

Found at: doi:10.1371/journal.ppat.1000946.s002 (0.20 MB TIF)

Figure S3 Genetic organization of the Bartonella trw locus, and
phylogenies and synonymous (4S) vs. nonsynonymous (dN)
substitution frequencies of the encoded trw genes. (A) Gene order
structure of the trw locus of B. birtlesii and comparison to other
Bartonella species. The copy number of amplified genes or segments
in other Bartonella species is indicated within brackets. Maximum
Likelihood phylogenies of (B) the concatenated nucleotide
alignments of trwF, trwkE, and trwD, the nucleotide alignments of
(C) trwf copies, (D) trwl, (E) trwl copies, and (F) trwN of B. birtlesii
(Bb), B. grahamii (Bg), B. henselae (Bh), B. quintana (Bg), and B.
tribocorum (Bt). For trw] (C) and #rwL (E), the range of pairwise dN/
dS ratios of different phylogenetic subclusters (shaded areas) are
indicated at the upper right of each cluster. For #rwlL1, the range of
pairwise dN/dS ratios is indicated as well, although they do not
cluster. (G) The pairwise dN/dS ratios of orthologous trw genes
and the two adjacent genes ubtH and sdhA of B. burtlesii and B.
grahamii, B. henselae, B. quintana, or B. tribocorum are plotted
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according to their gene order. For the tandem repeated genes
trwL, trwf, trwl, and trwH only trwl), trwjl, trwll, and trwHI are
shown, since ortholog assignment is difficult for the others due to
copy number variation and the occurrence of recombination
among different species [23].

Found at: doi:10.1371/journal.ppat.1000946.s003 (0.46 MB JPG)

Table S1 Genotypic characterization of abacteremic mutants of
B. birtles obtained by signature-tagged mutagenesis (STM). The
columns BARBAKC, BH, BQ and BT list the extensions of
systematic names of orthologous genes from the published
genomes of B. bacilliformis (accession no. CP000524), B. henselae
(accession no. BX897699), B. quintana (accession no. 897700) and
B. tribocorum (accession no. AM260525), respectively. * The w vitro
erythrocate invasion phenotype of each mutant was determined by
the gentamicin protection assay after 1 day of infection (triplicate
samples) and categorized as normal (>70% of wild-type), reduced
(<70% of wild-type but >1% of wild-type) or none (<1% of wild-
type). Mutants with reduced or none in vitro invasion were tested
again (n=3) and the resulting mean and SD of all three
experiments are represented in Figure 4.
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Table S1

Supporting Table S1: Genotypic characterization of abacteremic mutants of B.

birtlesii obtained by signature-tagged mutagenesis (STM).

The columns

BARBAKC, BH, BQ and BT list the extensions of systematic names of orthologous

genes from the published genomes of B. bacilliformis (accession no. CP000524), B.

henselae (accession no. BX897699), B. quintana (accession no. 897700) and B.

tribocorum (accession no. AM260525), respectively. * The in vitro erythrocate

invasion phenotype of each mutant was determined by the gentamicin protection

assay after 1 day of infection (triplicate samples) and categorized as normal (>70% of

wild-type), reduced (<70% of wild-type but >1% of wild-type) or none (<1% of wild-

type). Mutants with reduced or none in vitro invasion were tested again (n=3) and the

resulting mean and SD of all three experiments are represented in Figure 4.

Gene Name Mutant Putative function BARBAKC BH BQ BT In vitro
infection*
Adhesion/Invasion
badA 05A04 adhesin 583_0314 01490 01390 0168  normal
01510 01400
01410
badA 70D12 adhesin 583_0314 01490 01390 0168  normal
01510 01400
01410
ialA/ialB 05D10 invasion associated gene B 583_0326 01650 01550 0181 reduced
ibaA 44H12 putative inducible autotransporter ~ 583_1132 13160 10410 1655  normal
omp43 43G09 outer membrane protein, adnesin ~ 583_0447 12500 09890 1902  normal
trwD 04B03 T4SS component, VirB11 homolog 15760 12680 2533  reduced
trwD 41C12 T4SS component, VirB11 homolog 15760 12680 2533  reduced
trwkE 65D01 T4SS component, VirB10 homolog 15750 12670 2532  none
trwF 61B04 T4SS component, VirB9 homolog 15740 12660 2531 none
trwJ2 43H01 T4SS component, VirB5 homolog 15670 12590 2519  none
15700 12620 2522
2524
2526
2528
trwlL1 25G12 T4SS component, VirB2 homolog 15570 12490 2511 none
15580 12500 2512
15590 12510 2513
12600 12520 2514
12610 12530 2515



12620 12540 2516
12630 12550 2516a
12640 12560
trwl.2 60H02 T4SS component, VirB2 homolog 15570 12490 2511 none
15580 12500 2512
15590 12510 2513
12600 12520 2514
12610 12530 2515
12620 12540 2516
12630 12550 2516a
12640 12560
virB4 61H02 T4SS component, VirB4 homolog 13280 10550 1691 normal
virD4 69D12 T4SS component, VirD4 homolog 13380 10640 1701 normal
virD4 79C12 T4SS component, VirD4 homolog 13380 10640 1701 normal
61C01 autotransporter protein 13030 10290 1796 normal
Iron uptake
hutA 5B10 outer membrane heme receptor 583_0460 04970 04160 0774 normal
Transport function
ilvE 45B03 amino acid transporter 583_0747 10010 07730 1376  normal
livF 04A08 amino acid transporter 08250 06330 1144  normal
livG 25A02 amino acid transporter 08260 06320 1145  reduced
livH 45C07 ABC transporter 08280 06300 1147  normal
phaA 05G09 K+/H+ transmembrane protein 583_0030 16460 13360 2670  normal
Cell stress
response
ibpA (hsp20) 86B07 chaperon 583_0614 07300 05230 1333  normal
hslO (hsp33) 41A03 chaperon 5831292 01080 00990 0118  normal
Metabolism / cell
integrity
carD 41C07 transcriptional regulator factor 583_0123 15240 12150 2444 normal
glnE 70D02 glutamate ammonialigase adenyl 4800 04000 0707  normal
transferase
ftsK 15G10 cell division transmembrane 583_0291 03840 02850 0572  normal
protein
cobS 44G10 cobalamin biosynthesis 583_0080 15880 12800 2554  normal
IpcC 69H08 lipopolysaccharide core 583_0983 11690 09300 0746 normal
biosynthesis mannosyltransferase
mfd 41B10 transcription repair coupling factor ~ 583_0798 08750 05840 1197  normal
Unknown function
43H05 unknown function 03150 0332 normal
0505

)]
oo



BA0981
BA1484
BA1559

BA1819

BA1566

65D04
15A08
35D02

41C02

61D04
05H01

44G12

putative exported protein
putativemembrane protein 583_1009

helicase/methyltransferase

unknown function

unknown function
conserved/putative (Tm helices) 583_0492
membrane protein

putative efflux transport protein

02590
11960
15450

09350

05300

12560

02450
09380

04480

1229
1275
1394
1812
2614
0286
0713
0164
0455
0541
1006
1021
1035
1053
1080
1105
2491
0466
1089
1090
2281
2282
1926
0812

1909

normal
normal

normal

normal

normal

normal

normal

Phage origin
BA1301

86C10

putative anti-repressor protein 583_1070

)]
©

06900
02990
03430
03240
03670
03690

0325
0355
0372
0373
0431
0470
0486
0494
0556
0557
0954
0976
2290

normal



2301

BA1052 60B07 Putative anti-repressor protein 02890 0475  normal
03020
03250
03440
0345
03460
03470
Intergenic region
83D04 ig 583_1301/ 00970/ 00900/ tRNA- normal
583_1302 00960 0089  BT000
1/BTO
082
69C09 ig, close to putative transcriptional ~ 583_1248 13590 02090 2389 normal
regulator 14160 2390
14370 2397
14380 2399
14970 2400
04A01 ig 583 1132 13140 10380 1660  normal
or or
13160 1661
69B07 ig 583_0094/ 15500/ 12420/ 2497/  normal
583_0093 15510 12430 2504
86C05 ig 583_1019/ 12050/ 09460/ 1641/  normal
583_.1020 12060 09470 1642

~
o
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CHAPTERII

Identification of Bartonella Trw Host- specific receptor

on erythrocyte




Commentaires Article-2 (Chapitre 2)

Dans la premiere partie du travail de thése, nous avons identifié le systeme de
sécrétion de Type IV Trw de Bartonella spp. comme étant le complexe
permettant 'adhésion de la bactérie au globule rouge.

Le systéme de sécrétion de Type IV Trw de Bartonella spp. est un complexe
macro-moléculaire similaire au systéme de conjugaison IncW du plasmide R388
de E. coli. Les génes trw de Bartonella spp. sont colinéaires avec leurs
homologues respectifs du plasmide R388 sauf pour TrwL et Trwd qui sont en
multi-copies (nombre de multi-copies dépendant de I'espece de Bartonella
considérée). Ces génes codent des variants des composants des pili. Etant
donné le rble clé du systéme Trw dans la reconnaissance héte-spécifique des
globules rouges, il est concevable d’'imaginer que ces variants permettraient
I'interaction avec le ou les récepteurs érythrocytaires. Toutefois, la nature des
composants de Trw associés a l'interaction avec les érythrocytes et celle des
récepteurs érythrocytaires sont encore inconnues. Dans cette étude, en
combinant différentes technologies et en utilisant le modéle B. birtlesii /
erythrocytes murins, nous avons identifié que, parmi les composants trw, seuls
Trwd1 et TrwJ2 sont exprimés a la surface bactérienne et pouvait se lier a la
membrane érythrocytaire via la glycoprotéine transmembranaire majeure : la
Band-3.

Cette glycoprotéine a déja été impliqué dans I'adhésion de B. bacilliformis et de
Plasmodium spp. aux globules rouges suggérant un réle essentiel dans la
reconnaissance des globules rouges par divers agents pathogénes a tropisme

érythrocytaire.
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Abstract

Each Bartonella species appears to be highly adapted to one or a limited
number of reservoir hosts, in which it establishes long-lasting intraerythrocytic
bacteremia as the hallmark of infection. Recently, we identified Trw as the
bacterial system involved in recognition of erythrocytes according to their
animal origin. The T4SS Trw is characterized by a multiprotein complex that
spans the inner and outer bacterial membranes, and possesses a hypothetical
pilus structure. TrwJ, I, H and trwL are present in variable copy numbers in
different species and the multiple copies of trwlL and frwd in the Bartonella trw
locus are considered to encode variant forms of surface-exposed pilus
components. We therefore aimed to identify which of the candidate Trw pilus
components were located on the bacterial surface and involved in adhesion to
erythrocytes, together with their erythrocytic receptor. Using different
technologies (electron microscopy, phage display, invasion inhibition assay,
far western blot), we found that only TrwJ1 and TrwJ2 were expressed and
localized at the cell surface of B. birtlesii and had the ability to bind to mouse
erythrocytes, and that their receptor was band3, one of the major
outer-membrane glycoproteins of erythrocyte, (anion exchanger). According to
these results, we propose that the interaction between TrwJ1, Trwd2 and band
3 leads to the critical host-specific adherence of Bartonella to its host cells,

erythrocytes.



Introduction

Bartonella species (Bartonella spp.) are small, curved, pleomorphic, fastidious,
hemotropic, Gram-negative bacteria, mainly transmitted by arthropod vectors
or via direct contact [1]. Until now, 24 species or subspecies, 13 of which being
involved in human disease, have been formally validated [2]. Each of them
appears to be highly adapted to a limited number of mammalian reservoir

hosts, which results in relatively strict host specificity [1, 3].

Bartonella infection can cause many human and animal diseases. For
example, B. bacilliformis causes Carrion’s disease, B. quintana causes trench
fever and B. henselae causes a variety of clinical manifestations in humans:
the main disease in immunocompetent individuals is cat scratch disease
(CSD), whereas in immunocompromised patients it causes bacillary

angiomatosis (BA) and bacillary peliosis (BP).

Bartonella spp., along with Plasmodium spp., Babesia spp. and Anaplasma
marginale, is one of the few infectious agents to infect erythrocytes [4]. The
remarkableness, in contrast to other infectious agents infecting erythrocytes, is
that all Bartonella spp. described to date, with the exception of the deadly B.
bacilliformis, are maintained within the erythrocytes without having a significant

effect on their physiology [5].

The dynamics of erythrocyte infection have been monitored in rats infected
with fluorescently labelled B. tribocorum. After a primary phase, corresponding
to the infection of a still unknown primary niche, potentially vascular endothelial
cells [5-10] or erythrocytic precursors [11]), Bartonella spp. reached the blood
stream where they adhered to and invaded mature erythrocytes within 2 days.
After infection, intracellular replication started immediately in a

membrane-bound compartment, continuing over a period of several days until



a steady number of intracellular bacteria was reached, the infected

erythrocytes persisting in circulation for several weeks [5].

Bartonellae play an active role during erythrocyte invasion requiring both
respiration and proton motive force [12], whereas treatment of erythrocytes
with proton-motive force inhibitors has no effect on Bartonella adhesion. This
suggests that erythrocytes play a passive role in invasion [13-15] and that

Bartonella spp. are the main active participants in erythrocyte invasion.

The successful infection of a mammalian reservoir host erythrocyte by a
Bartonella sp. typically involves a series of intimate host-pathogen interactions.
On the molecular level this is reflected by attachment between Bartonella
ligands and the erythrocyte receptors. The flagella of B. bacilliformis was
identified to mediate initial erythrocyte adhesion [12]. This was supported by
the reduction of the erythrocyte-binding ability of B. bacilliformis with
anti-flagellin antibodies [16], and the poor adherence of non-motile variants
and flagellin-minus mutant [17, 18]. Erythrocyte receptors for attachment to
flagella have been partially characterized for B. bacilliformis. Buckles and
McGinnis hill [19] demonstrated that B. bacilliformis was able to bind to several
erythrocyte proteins: a and 3 subunits of spectrin, band 3 protein, glycophorin
A, and glycophorin B. In addition, Iwaki-Egawa and Ihler [20] demonstrated
that spectrin, actin and the other potential erythrocyte membrane proteins from
different sources (human, cat, sheep) were able to bind to B. bacilliformis and

B. henselae.

However, within the Bartonella genus, 13 Bartonella spp. are represented as a
major phylogenic sub-branch of flagella-free Bartonella. All these flagella-free
Bartonella possess a Trw Type 4 Secretion System (T4SS). T4SSs are
supra-molecular transporters ancestrally related to bacterial conjugation [21].

In Bartonella spp., 2 T4SS, the VirB/D4 and Trw have been described and

4
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identified as pathogenicity factors required for bacterial colonization [22, 23].
Interestingly, the distribution of Trw and flagella among Bartonella spp. is
mutually exclusive suggesting that, after its acquisition by horizontal transfer,
the function of Trw evolved to replace that performed by flagella. In a recent
study, using an in vitro model of erythrocyte adherence and invasion we

demonstrated the direct role of Trw in erythrocyte recognition [23].

The trw genes of Bartonella species are collinear except for the presence of
multiple tandem gene duplications of trwL and trwJIH. The multiple copies of
trwlL and trwd are considered to encode variant forms of surface-exposed pilus
components which are postulated to have a role in host-interaction with
various surface structures of erythrocytes in different species. In contrast, the
other duplicated genes, trwl and trwH are considered to encode the
components required for pilus elongation and for pilus anchorage to the outer
membrane, respectively [24].

Although the Trw locus has been identified as one of the Bartonella spp.
factors involved in erythrocytic host-specific recognition, which of the Trw
components are associated with the attachment, and the identity of the
erythrocytic receptors are still unknown. In this study, combining different
technologies and using the B. birtlesii /| mouse erythrocytes model, we first
identified that among the Trw components, only Trwd1 and TrwJ2 were
expressed at the bacterial surface and could bind to the erythrocyte membrane.
Using Far Western blot we identified the major erythrocyte transmembrane

glycoprotein Band3 as the receptor of the type IV Trwd component.



Material and Methods

Bacterial strains and growth conditions

Bartonella birtlesii (B. birtlesii) (IBS 325, CIP 106691") were grown for 5 days
on Columbia agar containing 5% defibrinated sheep blood (CBA) in a
humidified atmosphere with 5% CO, at 35°C.

E.coli TOP10 (Invitrogen, USA), BL21 Star (Invitrogen, USA) and BL21 pLysS
(Novagen, Germany) were grown overnight in Luria-Bertani (LB) broth or on
LB agar plates supplemented when needed with carbenicillin (50ug/mL) at

37°C.

Animals and Ethics statement

Animals were handled in strict accordance with good animal practice as
defined by the relevant European animal welfare body. Animal work was
approved by our institute’s ethics committee. The protocol was approved by
the Committee on the Ethics of Animal Experiments of the National Veterinary
School of Alfort (Permit Number: 08/03/11-3).

Six-week old OF1 or Balb/C female mice were housed in an animal facility (5
mice per cage) for blood sampling or immunization with recombinant proteins.
White New Zealand male rabbits (16 weeks old) were used to produce
polyclonal antibodies against murine band 3 extracted from erythrocytic

membrane.

Isolation of erythrocytes

Erythrocytes from the peripheral blood of mice were isolated and purified by
Ficoll gradient centrifugation as previously described [25]. After washing in
PBS, erythrocytes were maintained in F12 modified medium (F12 medium
supplemented with 10% foetal calf serum, 2mM glutamine, 1TmM sodium
pyruvate, 0.1mM Hepes, 257mM Histidine (His), 0.1mg/ml Hematin/His, and

non-essential amino acid) (Gibco, France) before being used for further



analysis (erythrocyte invasion assay, phage binding assay).

Trw proteins expression and purification

Genomic DNA was isolated from B.birtlesii using the Roche high pure PCR
template preparation kit (Roche, Switzerland). Based on the entire trwJ1, trwJ2,
trwlL1, trwl 2 ,trwl 3, trwlL4 and trwL5 sequences (F. Biville, unpublished data),
DNA inserts corresponding to trw genes were amplified by PCR from genomic
B. birtlesii as template and the corresponding specific primers (shown in table
1). PCR consisted of an initial denaturation step at 98°C for 2 min followed by
30 cycles of denaturation at 98°C for 20s, annealing at 55°C for 50s and
extension at 72°C for 50s, and a final extension step at 72°C for 10min. All
PCR reactions were performed in a MyCycler™ thermocycler (Biorad, USA)
with the Phusion high-fidelity DNA polymerase (New England Biolabs, USA).
PCR products were ligated to the PET-102 expression vector (Invitrogen,
USA). This vector allows expression of recombinant protein containing a
thioredoxin epitope followed by an enterokinase recognition site at the
N-terminal end and a 6-His tag at the C-terminal end. After propagation of the
recombinant plasmids in E.coli TOP10, they were then transformed into BL21
Star and BL21 pLysS by electroporation. Expression was obtained for trwJ1
and trwJ2 in BL21 Star incubated with 0.5mM IPTG (isopropyl
B-D-thiogalactoside) for 4 hours at 22°C, and for trwlL2, trwlL3, trwlL4, and
trwL5 in BL21 pLysS incubated with 0.5mM IPTG for 4h at 37°C. As TrwJ1
was recovered in inclusion bodies, an 8M urea treatment was performed for
this protein before purification.

The recombinant fusion proteins were purified by affinity chromatography
using the nickel-nitrilotriacetic acid (Ni-NTA) resin following the manufacturer’s
protocol (Qiagen, Germany) under native conditions or denaturing conditions
according to their properties. For mice immunization, the thioredoxin parts of
the recombinant proteins were cut off by enterokinase (Invitrogen, USA). The

digestion reactions were performed in the Ni-NTA-protein mixture overnight at
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37°C, under shaking, in 1ml containing 10X enterokinase buffer and 25U of
enterokinase and were followed by 3 washes in PBS. In each case the
recombinant proteins were eluted from the resin in 400pl elution buffer
(300mM NaCl, 50mM NaH2PO4, 250mM imidazole, pH 8.0).

The purified recombinant proteins were analyzed by a 15%
SDS-polyacrylamide gel electrophoresis (SDS-PAGE), followed by gel staining
with Coomassie brilliant blue R-250 (Sigma, USA). The SigmaMarker™ |ow

range (Sigma; USA) was used as reference for the molecular weights.

Production of murine polyclonal antibodies against recombinant Trw
proteins

Balb/C mice were injected twice subcutaneously with 10ug of each
recombinant protein mixed in oil Montanide® adjuvant ISA-70 (Seppic, France)
at 2-weeks-interval with the same antigen dose. Sera were collected 15 days
after the last immunization and stored at -20 °C. The titres of polyclonal
antibodies were determined by dot-blot analysis using the corresponding

recombinant proteins.

Western blot (WB) analyses

B. birtlesii (1.10® UFC from 5 days growth on CBA plates) and 0.1 ug of rTrwJ1,
rfrwd2, rTrwl2, rTrwlL3, rTrwlL4, rTrwL5 recombinant proteins were reduced
with 100mM DTT, resolved by a Tris-Glycine 15% SDS-PAGE gel and blotted
onto PVDF membranes (GE Healthcare, UK) at 15V for 12min by Trans-Blot®
SD Semi-Dry Electrophoretic Transfer Cell Instruction (Biorad, USA) in Towbin
transfer buffer (25mM Tris, 192mM glycine, 20% methanol, pH 8.3). The PVDF
membranes were blocked in 1X blocking buffer (50mM Tris, 150mM NaCl pH
7.4 and 0.05% Tween-20, 5% non-fat dried milk) for 1h at 37°C and then
incubated with 1/1000 dilution of mouse anti-Trw proteins polyclonal antibodies
for 1h at 37°C in blocking buffer. Anti-Trw labelling assays were revealed with

an anti-mouse IgG (H+L) alkaline phosphatase (AP)-goat antibody (1:10,000;
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Jackson ImmunoResearch Laboratories, USA) for 1h at 37°C, and a 10ml
solution of NBT (Nitro blue tetrazolium chloride)/BICP

(5-Bromo-4-chloro-3-indolyl-phosphate p-toluidine salt) (Sigma, Germany).

Electron microscopy and immunolocalization of Trw components

Pellets of bacteria were fixed for 30 min with 2% paraformaldehyde solution in
PBS, then centrifuged and washed in PBS. The bacteria were collected onto
400 mesh formvar-coated nickel grids. Grids were quenched with NH4CI
50mM in PBS, blocked with PBS containing 1% BSA, and 0.1% BSA-c™
(BioValley, France). Antibodies (anti-Trwd1, anti-TrwJ2, anti-TrwL2-L5, naive
mouse serum) were added at a 1/100 dilution in PBS containing 1% BSA,
0.1% BSA-c™ and incubated over night at +4°C. The grids were then washed
twice for 3 min in PBS -1% BSA, 0.1% BSA-c™ and goat anti-mouse IgG (1/50
dilution) coupled to 10 nm colloidal gold particles (British Biocell International —
TEBU, France) added for 1 hour. The grids were again washed twice with PBS
-BSA, twice with PBS, and fixed for 5 min with 2.5% glutaraldehyde in PBS.
Finally, the grids were washed three times with distilled water and air dried.
The grids were then examined with a Zeiss EM902 electron microscope
operated at 80kV (Carl Zeiss — France), and images were acquired with a
charge-coupled device camera (Megaview Ill) and analysed with ITEM
Software (Eloise, France) MIMA2 Platform, INRA-CRJ
(http//MIMAZ2@jouy.inra.fr)

Expression of TrwJ1 and TrwJ2 on T7 phage

The T7 select 10-3b Cloning kit (Novagen, Germany) containing the T7 select
10-3b EcoRI/Hindlll vectors and T7 packaging extracts was used to display
TrwJ1 and Trwd2 on T7 phage. Briefly, trwJ7 and trwJ2 genes were amplified
by PCR using the specific primers described in table 1. To allow insertion in T7
phage sequences, the forward primer contained an EcoRl restriction enzyme

site while the reverse primer contained a Hindlll restriction enzyme site.
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After PCR amplification, the PCR products were digested by EcoR/ (TaKaRa,
Japan) and Hindlll (TaKaRa, Japan) and purified by PCR clean-up Gel
extraction Kit (MACHEREY-NAGEL, Germany), before being packaged,

titered and amplified following the procedures outlined in T7Select system.

Phage binding assay with mouse erythrocytes

Mouse erythrocytes were resuspended in PBS at 1x10° cells/ml, and
incubated with 1x10° PFU TrwJ1-T7 or TrwJ2-T7 phages with shaking for 4
hours at 35°C. The bound phages were separated as previously described
with slight modification [26]. Briefly, 300ul of the cell-phage mixtures were
gently transferred to the top of a non-miscible dibutyl phthalate/cyclohexane
(9:1 [v:v]) organic lower phase (600ul) and centrifuged at 10,000g for 10 min.
The supernatants were drawn-off. Bound phages were eluted from cells for 10
minutes at room temperature by adding 500ul of 1% SDS. The titres of the
bound phages were then determined by following the procedures outlined in

T7Select system.

Effect of anti-Trw antibodies on in vitro infection of mouse erythrocytes
by B. birtlesii

The effect of the different mouse anti-Trw antibodies on the invasion capacity
of erythrocytes by B. birtlesii was measured in vitro as described [23]. Briefly,
after culturing B. birtlesii for 5 days on CBA plates, the bacteria were harvested,
washed in PBS and suspended in F12 modified medium. Anti-Trw antibodies
(1/100 dilution) or serum from a non-immunized mouse (1/100 dilution) were
then incubated with bacteria at 35°C for 4h, while the control was incubated
with F12 modified medium. In each case, bacteria were then added to mouse
erythrocytes at a multiplicity of infection (MOI, calculation based on 1 ODegno
nm=3x10° bacteria /ml) of 1 and incubated at 35°C. After 48h of invasion, the
erythrocytes were separated from the non-associated bacteria by washing 3

times with PBS and centrifuged at 1500rpm for 10 min. The erythrocytes were
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then incubated with 50ul gentamicin sulfate (125ug/ml) for 2h at 35°C to Kkill
any residual extracellular bacteria, washed three times in PBS to remove the
antibiotic and then any intracellular bacteria were released by hypotonic lyses
of the erythrocytes in 20l of sterile water by freezing at -20°C for 15 min. After
thawing, serial dilutions of bacteria in PBS were inoculated onto CBA plates
and incubated for 5 days before being counted. The impact of anti-Trw
antibodies on invasion capacity was then evaluated by comparing the numbers

of intra-erythrocytic bacteria with or without antibodies.

Identification of TrwJ2 erythrocytic receptor by Far-Western blot

Lysates of erythrocytic membranes were prepared from frozen blood (5%10°
erythrocytes) samples, thawed, resuspended in stabilization solution
(ID-CellStab, Diamed) and washed in 0.9% NaCl (B. Braun Medical).
Membranes were prepared at 0-4°C by hypotonic lysis with 5P8 buffer (5mM
NaxHPO,4, pH8.0 and 350uM EDTA, pH 8.0), stripped by incubation with 10mM
NaOH and finally solubilized with an equal volume of 4X LDS Sample buffer
(Invitrogen). Erythrocytic membrane lysates were reduced with 100mM DTT,
resolved by Tris-Glycine 8% SDS-PAGE and transferred onto PVDF
membranes at 20V for 25min by Trans-Blot® SD Semi-Dry Electrophoretic
Transfer Cell. The PVDF membranes were blocked in 1X blocking buffer and
incubated for 2 hours at RT with 200ug of rTrwd2 in 10ml blocking buffer,
immunodetected with 1/1000 dilution of anti-TrwJ2 polyclonal antibodies and
1/10,000 dilution of AP-goat anti-mouse IgG (H+L) (1/10,000), then stained
with a solution of NBT/BICP as above. The PVDF membranes were similarly
reprobed with a 1/100 dilution of anti-band3 (C-17) monoclonal antibodies
(Santa Cruz Biotechnology, USA) and a 1/30,000 dilution of AP-goat
anti-donkey IgG (Jackson ImmunoResearch Laboratories, USA), and stained

with a solution of NBT/BICP as above.

Inhibition of Bartonella-erythrocytes interaction using anti-band 3
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polyclonal antibodies

As commercially available anti-band3 antibodies did not recognize all the
surface part of band3, polyclonal antibodies raised against the entire sequence
of murine erythrocytic band3 were produced as follows: lysates of erythrocytic
membrane were resolved by Tris-Glycine 8% SDS-PAGE gels, the band
corresponding to the size of band3 (90kDa) was cut from the gels, grinded and
resuspended in PBS.

Two rabbits were injected subcutaneously with 200pg of murine erythrocytic
band 3 mixed in Montanide® oil adjuvant ISA-70. Second and third injections
were given at 2-week-interval with the same antigen dose. Sera were collected
15 days after the final immunization and stored at -20 °C. The titres of
polyclonal antibodies were determined by dot-blot analysis using the purified
erythrocytic band3 protein.

The effect of anti-band3 polyclonal antibodies on the interaction between
Trwd1-T7 or TrwJ2-T7 phages and mouse erythrocyte was assessed by
incubating 1x10® mouse erythrocytes with anti-band3 antibodies (1/100
dilution) or serum from a non-immunized rabbit (1/100 dilution) at 35°C for 4h,
while the control was incubated with PBS. Then 1x10° PFU of TrwJ1-T7 or
Trwd2-T7 phages were added and phage binding assays with mouse
erythrocytes were performed as described above.

In parallel, the effect of anti-band3 polyclonal antibodies on the invasion
capacity of erythrocytes by B. birtlesii was measured by incubating anti-band3
antibodies (1/150 dilution) or serum from a non-immunized rabbit (1/150
dilution) in B. birtlesii-erythrocyte mixture at 35°C for 4h, while the control was
incubated with F12 modified medium. The intracellular bacteria were quantified

as described above.
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Results

1- Identification of Trw components that are expressed at the B. birtlesii
cell surface:

Candidate genes for mediating Trw interaction with erythrocytic receptors
encoded surface-exposed components. Among the Trw components, the
T4SS pilus components TrwL (L1 to L5) and TrwdJ (J1 and J2) were shown to
be putative surface proteins [27]. We checked whether they were indeed
expressed at the B. birtlesii surface by first producing polyclonal antibodies
which reacted specifically with each of the corresponding recombinant
proteins.

Recombinant soluble proteins rTrwd2, rTrwlL2, rTrwL3, rTrwL4 and rTrwL5
were expressed and recovered from the supernatant of lysated E. coli, while
recombinant rTrwJ1 was recovered as an insoluble form in the inclusion body
of E. coli. Despite many assays using different E. coli strains and different
culture conditions, we failed to express rTrwL1.

After purification, a single band corresponding to each purified recombinant
protein was identified on SDS-PAGE on a Coomassie stained acrylamide gel.
The observed molecular mass corresponded to the predicted size of the
recombinant protein with the addition of 13 kDa corresponding to the
thioredoxin motif and 3 kDa corresponding to the V5 and 6xHis-tag motifs, i.e.
43.5 kDa for rTrwd1, 42 kDa for rTrwd2, 23.5 kDa for rTrwL2, 23.5 kDa for
rTrwL3, 23.5kDa for rTrwL4 and 23.5 kDa for rTrwL5 (Figure 1A).

The thioredoxin-free recombinant proteins were used to produce polyclonal
antibodies from immunized Balb/C mice. The obtained polyclonal antibodies
reacted with the corresponding recombinant proteins as shown in Figure 1B.
Recognition of native proteins by antibodies was then evaluated by western
blot on proteins extracted from B. birtlesii culture on agar plates and separated
on SDS-PAGE. As shown in Figure 1C, only TrwJ1 and TrwJ2 were detected,

while Trw L2, L3, L4, L5 were not (Figure 1C). The molecular mass observed
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for Trwd1 corresponded approximately to the one calculated from the
sequence (27.5 kDa). On the contrary, the molecular mass observed for TrwJ2
was higher than was expected from the sequence (26 kDa) with signal
peptides around 32kDa. This difference would suggest the presence of
aggregates or post-translational modifications.

The different putative Trw surface components were localized by
immunostaining B. birtlesii whole bacteria with the different anti-Trw polyclonal
antibodies and electron microscopy observations. Trwd1 and TrwJ2 were
detected at the B. birtlesii cell surface whereas none of the TrwL proteins was

detected at the cell surface (Figure 2).

2 - TrwJ1 and TrwJ2 interact with erythrocytes

Two complementary analyses were performed to see whether TrwJ1 and
Trwd2 were able to bind to mouse erythrocytes: the first analysis consisted of
measuring the capacity of Trwd1-T7 as well as TrwJ2-T7 phages to bind to
mouse erythrocytes; the second consisted of evaluating the capacity of
anti-Trwd1 and anti-TrwJ2 polyclonal antibodies to inhibit erythrocyte invasion
by B. birtlesii. As shown in Figures 3A and 3B, T7 phage displaying B. birtlesii
Trwd1 and TrwJ2 were able to bind to mouse erythrocytes. The amounts of
TrwJ1-T7 and TrwJ2-T7 phages which were able to bind to 1x10® mouse
erythrocytes were 1.7x10” PFU and 2x10” PFU respectively, while wild-T7
phages were unable to bind to mouse erythrocytes. Addition of anti-TrwJ1 and
anti-Trwd2 polyclonal antibodies to the B. birtlesii-erythrocytes invasion
mixture, significantly reduced the invasion of mouse erythrocytes by B. birtlesii
by 60% and 55.7% respectively, while serum from a non-immunized mouse

did not reduce invasion.

3- Identification of erythrocytic receptor of TrwJ2
As Trwd1 was expressed as an insoluble form, identification of the receptor

was only conducted with Trwd2 by Far-Western blotting. When recombinant
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rTrwd2 is incubated with mouse erythrocytic membrane proteins, antibodies
against TrwJ2 react with a single band which corresponds to a mouse
erythrocytic membrane protein with an estimated size of 90 kDa (Figure 4A).
This band corresponds to the size of the erythrocytic band3 as validated by
immunoblot with goat anti-band3 monoclonal antibody (Figure 4B).

To further demonstrate that band 3 was or was not a receptor of B. birtlesii
Trwd, we then evaluated the capacity of rabbit anti-band3 polyclonal
antibodies to inhibit erythrocyte binding with B. birtlesii TrwJ1-T7 or TrwJ2-T7
phages and erythrocyte invasion by B. birtlesii. As shown in Figures 5A and 5B,
adding anti-band3 polyclonal antibodies to the Trwd1-T7 or Trwd2-T7
phages-erythrocytes binding mixture significantly reduced phage binding
capacity by 62% and 64% respectively, and significantly reduced B. birtlesii
invasion capacity by 62%, while serum from non-immunized rabbit had only a

very slight influence on both adherence and invasion.
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Discussion

Bacteria-specific adhesion to host cells can be defined as the selective binding
between a specific molecular component on the bacterial surface and a
substratum-specific receptor in the host cells. We have previously shown that
in Bartonella species, the T4SS Trw is involved in erythrocytic recognition [23].
T4SS Trw is characterized by a multiprotein complex that spans the inner and
outer bacterial membranes, and possesses a hypothetical pilus structure. TrwJ
and frwL are thought to encode minor and major pilus components, which are
considered to be potentially responsible for the interaction with erythrocyte [27].
The aim of the present study was therefore to evaluate the role of TrwJ and
TrwL proteins in adhesion to erythrocytes.

B.birtlesii trwd1, trwd2, trwl2, trwlL3, trwlL4 and trwlL5 were expressed as
recombinant proteins and polyclonal antibodies against these proteins were
produced, firstly to estimate their expression and secondly to localize them on
the cell surface of the bacteria. Immunoblot analysis showed that only TrwJ1
and Trwd2 could be detected on CBA-cultivated B. birtlesii, and not TrwL2, L3,
L4, or L5, suggesting that these latter were not expressed in in vitro culture, or
at an undetectable level. Some studies showed that homologues of TrwJ
(VirB5) and TrwL (VirB2) were not detected in wild and complemented
Agrobacterium tumefaciens, whereas they could be detected in induced
complemented cells [28-31]. Similarly the homologue of VirBS was not
detected in B. henselae cultivated on cell-free laboratory medium but could be
detected in bacteria incubated with HMEC-1 cells [32]. The Trw T4SS has also
been identified as being upregulated intracellularly during B. henselae
interaction with HUVECs or ECs [8]. Finally, Bartonella has the ability to infect
different hosts (reservoir or incidental mammalian as well as arthropod hosts),
and different host cell types, which suggests the existence of different
pathogenicity factors on its surface that are presumably controlled by

differential gene expression during the course of infection. These findings
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suggest that the expression of TrwL, like that of its homologues in other
bacteria, might be regulated in response to infection signals, although further

work is necessary to unravel the molecular details of this mechanism.

Results obtained by immunoblot analysis were then confirmed by electron
microscopic analysis as only Trw J1 and TrwJ2 were detected at the cell
surface of B. birtlesii. For these reasons, TrwJ1 and TrwJ2 appeared to us as
the best potential candidates for in vitro interaction between B. birtlesii and

erythrocytes.

We then investigated whether the surface Trw components TrwJ1 and TrwJ2
were associated with the adherence to erythrocytes, by constructing phage
displaying B. birtlesii Trwd1 and TrwJ2. The results showed that B. birtlesii
Trwd1-T7 and TrwJ2-T7 phages were able to bind to mouse erythrocytes,
while wild-T7 phages showed significantly less binding ability. We then
confirmed this result by evaluating the capacity of anti-TrwJ1 and anti-TrwJ2
polyclonal antibodies to inhibit erythrocyte invasion by B. birtlesii. We found
that incubation with both polyclonal antibodies resulted in inhibition of the
invasion of mouse erythrocytes by B. birtlesii. These results clearly suggest
that Trwd1 and TrwJ2 are associated with adherence of the bacteria to
erythrocytes. As we have previously shown that the Trw T4SS of Bartonella
mediates host-specific adhesion to erythrocytes, and that B. birtlesii is unable
to bind and invade cat erythrocytes [23], we performed the same experiment,
using cat erythrocytes and showed that B. birtlesii TrwJ1-T7 and TrwJ2-T7
phages were not able to bind to cat erythrocytes (data not shown). These
results enlarged on those obtained in earlier studies of the relationship
between Trw and the host erythrocyte, and now suggest that this host-specific

adhesion is mediated by TrwJ1 and TrwJ2.

Although TrwL were not detected on the surface of bacteria, this does not
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exclude an interactive role between the bacteria and their host cells. Indeed,
after adherence, bacteria use other virulence factors to become more
intimately bound to their host cells via specific and stable interactions that can
mediate invasion [33]. Mutagenesis of TrwL is reported to lead to inhibition of
intraerythrocytic bacteremia in the reservoirs of for B. fribocorum and B.
birtlesii [22, 23], and to loss of the capacity of B. birtlesii to infect mouse
erythrocyte in vitro [23] thus demonstrating that TrwL also has an essential role
in erythrocyte invasion, both in vivo and in vitro. However, in the absence of
direct proof, to suggest that TrwL is involved in intimate adhesion rather than in
the initial adhesion occurring during infection of the erythrocytes, remains
speculative.

By conducting experiments to determine the receptor of TrwJ1 and TrwJ2, we
found that TrwJ2 recombinant protein was able to bind a major glycoprotein
present in mouse erythrocyte membrane: band3. We also demonstrated that,
in vitro, polyclonal antibodies raised against mouse Band-3 were able to inhibit
the adhesion between TrwJ1-T7 and TrwJ2-T7 phages and mouse
erythrocytes and reduce the mouse erythrocyte invasion capacity of B. birtlesii.
Taken together, all these results clearly suggest an interaction between TrwJ1,
TrwJ2 and Band 3 leading to critical adherence of the bacteria to its host cells,

the erythrocytes.

Band 3 is a major transmembrane glycoprotein of the erythrocyte membrane
and functions in anion transport [34]. It has been suggested to be one of the
possible erythrocyte receptors of B. bacilliformis [19]. Erythrocytic band 3 has
also been suggested to be involved in the malaria parasite invasion of
erythrocytes [ 35-40]. In addition, recent studies have revealed that P.
falciparum merozoite surface protein 1 (MSP1), an essential parasite protein
has a conserved role in the invasion of erythrocytes by P. falciparum and P.
chabaudi[41, 42] and this protein interacts with two nonglycosylated exofacial
regions of erythrocyte band 3, designated 5ABC (amino acids 720-761) and

6A (amino acids 807-826) [43]. Two regions of merozoite surface protein 9
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(MSP9), which is also known as an acidic basic repeat antigen, interact directly
with SABC during erythrocyte invasion by P. falciparum [44, 45]. Erythrocyte
invasion by P. falciparum is thought to proceed via two distinct pathways [46,

47]: a sialic acid-dependent pathway mediated by glycophorin A, B and C |
48-52 ], and a sialic acid-independent pathway mediated by band3, as
described above. Concerning Bartonella, a previous study showed that
pre-treatment of feline erythrocytes with neuraminidase and trypsin had no
effect on B. henselae invasion, indicating that invasion occurs via a sialic
acid-independent pathway [ 53 ]. As we have identified band 3 as the
erythrocyte receptor of Bartonella, we attempted to determine whether or not
the sialic acid-dependent erythrocyte receptors of P. falciparum were also
involved in Bartonella infection. Preliminary results demonstrated that the
anti-mouse N-terminal extracellular domain of glycophorin A polyclonal
antibodies reduced invasion of mouse erythrocytes by B. birtlesii by
approximately 50% (data not shown). This result provides additional
informations, which allows us to hypothesize that Barfonella-erythrocyte
interactions may also be mediated by two distinct pathways, and expands our
understanding of the biology and infection course of Bartonella spp., which is
still far from completely understood. Further studies are needed to elucidate

the complete mechanisms involved in erythrocyte invasion by Bartonella spp.
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Figure legends:

Figure 1: Expression and detection of the putative surface Trw
components.

A - SDS electrophoresis of the purified recombinant Trw proteins.
SDS-PAGE analysis under reduced condition of Trw recombinant proteins
expressed in E. coli after purification by affinity chromatography and without
elimination of the thioredoxin epitope. Lane 1, Low range molecular weight
(Sigma); Lane 2, rTrwJ2; Lane 3, rTrwJ1; Lane 4, rTrwL5; Lane 5, rTrwL4;
Lane 6, rTrwL3; lane 7, rTrwL2; Lane 8, rTrwL1.

B - Western blot detection of the purified recombinant Trw proteins
Immunoblot analysis of Trw recombinant proteins expressed in E. coli after
purification by affinity chromatography, without elimination of the thioredoxin
epitope, and after separation on SDS-PAGE under reduced conditions, using
polyclonal antibodies against rTrwJ2 (lane 2), rTrwJ1 (lane 3), rTrwL5 (lane 4),
rTrwL4 (lane 5), rTrwL3 (lane 6), rTrwL2 (lane 7). Lane 1, Prestained
molecular weight marker (New England Biolabs).

C - Western blot detection of the B. birtlesii Trw proteins

Western blot detection of total B.birtlesii proteins separated by SDS-PAGE
under reduced conditions, using polyclonal antibodies against rTrwJ1 (lane 2),
rTrwd2 (lane 3), rTrwL2 (lane 4), rTrwL3 (lane 5), rTrwL4 (lane 6) and rTrwL5

(lane 7). Lane 1, Prestained molecular weight marker (New England Biolabs).

Figure 2: Inmunogold labelling and transmission electron microscopy of
Trw components (in? of the? on the?) B. birtlesii surface.

Electron microscopy detection of Trwd1 and TrwJ2 on the surface of
CBA-cultivated B. birtlesii using polyclonal antibodies against rTrwJ1 (B) and

rTrwd2 (C) recombinant proteins. (A), naive mouse serum as negative control.
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Figure 3: ldentification of TrwJ1 and TrwJ2 interaction with mouse
erythrocytes

A - Binding assay between mouse erythrocytes and T7 fusion phages
Assessments of the capacity of Trwd1-T7 and TrwJ2-T7 phages to bind to
mouse erythrocytes were evaluated three times (3 replicates each). Wild-T7
phages were used as control and the values are presented as the mean of
three independent experiments.

B - Efficiency of in vitro invasion inhibition of mouse erythrocyte by B.
birtlesii with anti-Trw polyclonal antibodies

Invasion inhibition assays with polyclonal antibodies against rTrwJ1 and
rTrwd2 recombinant proteins and serum from non-immunized mouse were
performed three times (3 replicates each). The values are presented as the

mean of three independent experiments.

Figure 4: Identification of TrwJ2 erythrocytic receptor

A — Far Western blot analysis of mouse erythrocyte membrane proteins
using rTrwJ2 recombinant protein

Mouse erythrocyte membrane proteins were separated on SDS-PAGE under
reduced conditions, transferred onto a PVDF membrane, probed with rTrwJ2,
and analysed by immunoblot using anti-mouse antibodies (lane 2). Lane 1,
prestained molecular weight marker (New England Biolabs). The experiment
was conducted twice with qualitatively similar results.

B —Immunoblot analysis of mouse erythrocytic membrane proteins using
Band3 monoclonal antibody

Mouse erythrocyte membrane proteins were separated on SDS-PAGE under
reduced conditions, transferred onto a PVDF membrane, and analysed by
immunoblot using anti-band3 antibodies (lane 2). Lane 1, Prestained

molecular weight marker (New England Biolabs).

Figure 5: Role of erythrocytic band3 in adhesion and invasion of mouse
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erythrocyte by B. birtlesii

A - Analysis of the impact of anti-band3 antibodies on the interaction
between mouse erythrocytes and TrwJ1-T7 or TrwJ2-T7 phages.

Phage binding inhibition assays with anti-band3 polyclonal antibodies and
serum from non immunized rabbit were performed three times (3 replicates
each).The values are presented as the mean of three independent

experiments.

B - Analysis of the impact of anti-band3 antibodies on the invasion
capacity of mouse erythrocyte by B. birtlesii

Invasion inhibition assays with anti-band3 polyclonal antibodies and serum
from non-immunized rabbit were performed three times (3 replicates each).

The values are presented as the mean of three independent experiments.
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Table

Table 1 Primer sequences and their applications

Primer name Nucleotide sequence (5'-3') Applications

J1-F 5-CACCATGAAAAAGCTGATTAC-3’ Protein expression

J1-R 5-TCTTATAgTTggCATgCCTC-3’ Protein expression

J2-F 5"-CACCTTTATAGTTGGAGGGAT-3’ Protein expression

J2-R 5°-TCgTATAgATCgTATTATTggC-3" Protein expression

L1-F 5’-CACCCAAACAACCACAAAAG-3’ Protein expression

L1-R 5°-TTggATgTAAAATAATATATgCTAAT-3’ Protein expression

L2-F 5"-CACCCAACTACAACATGCG-3’ Protein expression

L2-R 5-ATTAgCTTTgAATAgCATTgCgAC-3’ Protein expression

L3-F 5-CACCCAAAATACTTTGAAAAAAGC-3’ Protein expression

L3-R 5°-TggCTTAAATAACATCgCgAC-3’ Protein expression

L4-F 5-CACCGAATTAAAACACGCTAAAAAG-3’ Protein expression

L4-R 5°-TgCATggCCgAACAACATTTTTAC-3’ Protein expression

L5-F 5-CACCCAAGCACGCGCTTTG-3’ Protein expression

L5-R 5-TCCGTTTTGAAATAACATAGCGAC-3’ Protein expression

TrxFus Forward 5-TTCCTCGACGCTAACCTG-3’ Cloning identification

T7 Reverse 5-TAGTTATTGCTCAGCGGTGG-3’ Cloning identification
Trwd1-F2 5°-CCggAATTCCATgAAAAAGCTgATTAC-3’ Construction T7 fusion phage
Trwd1-R 5-CCCAAGCTTTTATCTTATAGTTGGCAG-3’ Construction T7 fusion phage
TrwJ2-F2 5°-CCggAATTCCATgAAAAAACAgQgTCA-3” Construction T7 fusion phage
Trwd2-R 5"-CCCAAGCTTTTATCGTATAGATCGTA-3’ Construction T7 fusion phage
T7Select up 5"-GGAGCTGTCGTATTCCAGTC-3’ Phage identification

T7Select down

5’-AACCCCTCAAGACCCGTTTA-3’

Phage identification
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Commentaires Article-3 (Chapitre 3)

Dans les 2 premiers chapitres de cette thése, nous nous sommes intéressés au
stade érythrocytaire de Bartonella spp. Toutefois, les stades de l'infection qui
préceédent l'arrivée des bartonelles dans le sang sont beaucoup moins bien
caractérisés. Il est clair que ces bactéries peuvent coloniser des tissus
hautement vascularisés au cours des premiers jours de l'infection comme le lit
vasculaire de la peau (pour B. bacilliformis). D’ailleurs, l'opinion couramment
admise est que I'endothélium vasculaire sert de niche pour les espéces de
Bartonella avant leur arrivée dans la circulation sanguine. En effet, les
bartonelles ont la capacité unique de provoquer une vasoproliferation, se
manifestant comme une angiomatose bacillaire ou une péliose hépatique (B.
bacilliformis et B. henselae ou B. quintana). Par ailleurs, dans de nombreuses
études in vitro, Il a été démontré que Bartonella spp envahit des lignées de
cellules endothéliales et / ou interfére avec leur physiologie. Cependant, bien
que la vascularisation endothéliale joue indéniablement un réle dans les
premiers stades de linfection dans certains cas particuliers, toujours chez
'homme (pour B. bacilliformis ainsi que B. quintana ou B. henselae chez les
patients immunodéprimés), I'implication de ces cellules comme niche primaire
chez I'hdte réservoir animal n’a jamais été établi.

D’autres types cellulaires, comme les précurseurs érythrocytaires ont également
été proposés comme niche possible de Bartonella spp., [linfection
intra-érythrocytaire résultant de la présence des bactéries dans les précurseurs.
Cette hypothése n’est toutefois pas confirmée par les données obtenues a partir
d'expériences in vivo avec le modele GFP-B.tribocorum/rat qui indiquent que la
rencontre entre Bartonella spp. et les globules rouges se produit dans le sang.
Dans la troisiéme et derniere partie de la thése, nous avons entrepris d’explorer
les différents sites possibles de colonisation de B. birtlesii chez la souris et ceci

dans la premiere semaine suivant l'infection.



Nous avons recherché les bactéries dans les ganglions lymphatiques, les
cellules de la moelle osseuse, la rate, le foie, le cerveau et le sang de souris
infectées. Nous avons ainsi pu mettre en évidence une accumulation de
bactéries dans la rate ainsi qu’une infection passagere du foie. Aucune bactérie
n'a été identifiée a partir des autres prélévements. Afin d’'identifier si la rate jouait
un réle de niche pour Bartonella spp. ou si au contraire, elle participait a son
élimination, nous avons comparé la bactériémie chez des souris normales et
splénectomisées. Pendant les 7 premiers jours suivant I'infection, la bactériémie
est la méme dans les deux lots de souris. Au dela de ces 7 premiers jours
suivant linfection, la bactériémie est 10 fois plus élevée chez les souris
splénectomisés par rapport aux souris normales et dure 2 semaines
supplémentaires. Ces résultats indiquent que la rate ne joue pas le rble de niche
primaire, mais participe probablement a la rétention des globules rouges

infectés.
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Abstract:

Bartonella spp. are intra-erythrocytic pathogens of mammals. In this study, we
investigated the role of spleen, and other tissue and/or organs in Bartonella infection.
Using an in vivo model of mice infection by Bartonella birtlesii, we detected
accumulation of bacteria in the spleen, transient infection of the liver but failed to
detect any bacteria in brain, lymph nodes, lung, or heart. We then compared
bacteremia in normal Balb/C mice and in splenectomized mice. Bacteremia in
splenectomized mice was 10 fold higher than in normal mice and lasted 2 weeks
longer. In conclusion, the spleen seems to retain and filter infected erythrocytes

rather than to be a sanctuary for chronic Bartonella infection.



The bacterial genus Bartonella comprises at least 24 species or subspecies of
facultative bacteria that use arthropod transmission and haemotropism as a
mammalian parasitism strategy. Each species is highly adapted to infect one or few
reservoir hosts in which they induce asymptomatic intra-erythrocytic bacteremia
(Vayssier-Taussat, et al., 2009). When they are introduced into an accidental host or
into immuno-compromised individuals, infection can result in diverse clinical
manifestations. The mode of infection of the reservoir hosts is common to all
Bartonella species. Following injection, the bacterial inoculum is cleared from
circulating blood within a few hours but bacteremia reappears approximately five
days later. Bacteria can be observed, adhering to and invading mature erythrocytes
in the blood, within two days. An erythrocyte is usually invaded by a single bacterium,
which, once inside, replicates in a membrane-bound compartment over a period of
several days until eight daughter cells, on average, are created. Replication then
ceases, and the infected erythrocytes are shown to persist in circulation for several
weeks (Schulein, et al., 2001, Rolain, et al., 2003).

The stages of infection that precede the arrival of bartonellae in the bloodstream
have been far less well characterized. The current opinion is that the vascular
endothelial cells may serve as a primary niche for Bartonella spp. before they enter
the bloodstream (Dehio, et al., 1997, Dehio, 1999, Dehio, 2001, Schulein, et al.,
2001, Schmid, et al., 2004, Schmid, et al., 2006, Pulliainen & Dehio, 2009). However,
other putative cells such as erythrocytic precursors have also been proposed as
putative niches of Bartonella spp. (Rolain, et al., 2003, Mandle, et al., 2005).

The aim in this study was to explore the different possible locations of Bartonella spp.
in the first week following infection, using Balb/C mice infected with a rodent-adapted

B. birtlesii (Boulouis, et al., 2001). For this purpose, an inoculum of 5x10” Colony



Forming Units (CFU) of B. birtlesii (IBS 325" strain) was inoculated into the caudal
vein of Balb/C mice. At 0.5, 1, 2, 3 and 7 days post-infection, the mice were
euthanized and the lymph nodes, bone marrow, spleen, liver, brain and blood were
sampled. Organ samples were mechanically crushed using a Dounce potter in 1mL
of F12 medium before being grown for 5 days on Columbia agar containing 5%
defibrinated sheep blood (CBA) in a humidified atmosphere with 5% CO, at 35°C.
Cells from lymph nodes (axillary, inguinal and mesenteral lymph nodes) and bone
marrow were isolated by disrupting the lymph nodes, and flushing medium through
the bone. The recovered cells and erythrocytes were then lysed by hypotonic shock
and the released bacteria were grown on CBA in a humidified atmosphere with 5%
CO; at 35°C.

As shown in Fig. 1A, no bacteria were recovered from the lymph nodes, bone
marrow or brain, indicating that these tissues or organs were not targets for B.
birtlesii in this animal model of Bartonella sp. infection. In contrast, B. birtlesii
colonized the liver and, to a much larger extent, the spleen during the first 7 days
following infection, and before seeding the bloodstream. While liver colonization
stopped after this first step, the spleen remained highly infected throughout the
duration of bacteremia (data not shown).

In order to investigate whether spleen could provide a possible sanctuary for chronic
Bartonella infection, as demonstrated for other bacteria (Trulzsch, et al., 2007,
Watson & Holden, 2010), or whether the spleen filters infected erythrocytes as
shown for Plasmodium falciparum (Safeukui, et al., 2008), bacteremia induced by B.
birtlesii infection was compared in normal Balb/C mice and in splenectomized mice.

During the first 7 days, bacteremia was the same in both normal and



splenectomized mice. Thereafter, bacteremia was 10 fold higher in splenectomized
mice than in normal mice and lasted 2 weeks longer (Fig. 1B).

Spleen is an important site for host response to bacterial infection (Junt, et al., 2008).
Within the spleen, free bacteria may encounter various tissue-resident phagocytes,
such as macrophages, dendritic cells and neutrophils, which could eliminate them. In
our model, during the first week following infection, (when B. birtlesii was not yet
inside the erythrocytes), having a spleen or not had no effect on the time of
appearance of bacteria in blood or the level of bacteremia. This suggests that the
spleen does not have a fundamental role in the first step of infection, based on the
model used. Once the bacteria were intra-erythrocytic, the spleen appeared to
strangle the infection since bacteremia was 10 fold higher in splenectomized mice.
This data suggests that the spleen has a role in clearing Bartonella-infected
erythrocytes.

The elimination of microorganisms in the spleen is mainly triggered by the clearance
of opsonized encapsulated bacteria (such as pneumococci, meningococci, and
Escherichia coli) and intra-erythrocytic parasites (such as those causing malaria and
babesiosis) by the splenic macrophages. However, in the specific case of intra-
erythrocytic parasites such as Plasmodium sp., the spleen may also retain
Plasmodium-infected erythrocytes through mechanical sensing of deformed or rigid
erythrocytes, which explains the fulminant nature of these infections in persons with
anatomic or functional asplenia (Safeukui, et al., 2008). In our study, we have shown
that the spleen is able to retain Bartonella spp., although the mechanisms of
retention have still to be elucidated. First we have to confirm that Bartonella is
localized within the spleen erythrocytes. If this is so, we will then have to determine

the mechanism by which the infected erythrocytes are retained. Indeed, it is widely



accepted that the infection of erythrocytes by Bartonella has no effect on their
physiology (no changes in life span or in membrane structures,...) (Schulein, et al.,
2001). However, a deformation factor, called “deformin”, has been identified in B.
bacilliformis and B. henselae, which causes marked physiological changes (pitting
and invagination) of the erythrocyte membranes (Xu, et al., 1995, Iwaki-Egawa &
Ihler, 1997). This factor would insert itself into the erythrocyte membrane as a pore-
like structure leading to deformation of the erythrocytes. This would explain the
differences in clearance between infected and uninfected erythrocytes, the altered
erythrocytes being filtered out by spleen as demonstrated, for example, for
Plasmodium sp. (Buffet, et al., 2011).

It would be interesting to elucidate whether retention of poorly deformable red blood

cells also has a crucial impact on Bartonella spp. infections.
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Figure:

Fig. 1: A) Detection of bacteria in different organs, tissues, and in blood during the
first 7 days of Balb/C mice infection with B. birtlesii. The recovered bacteria are
expressed in CFU/ml of blood; CFU/mg of organs, and CFU/10* of cells recovered
from lymph nodes and bone marrow. N=5 (per day)

B) Bacteremia in normal or splenectomized Balb/C mice infected with B. birtlesii.
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CONCLUSION ET PERSPECTIVES

Cette thése présentait comme objectif de mieux identifier les mécanismes liés a
I'infection des érythrocytes par Bartonella et de mieux caractériser les
localisations possibles de la bactérie au cours des premiers jours suivant
I'infection et avant I'étape intra-érythrocytaire. Au cours de ce travail, I'étude des
interactions bartonellae/globule rouge nous a conduit a mettre en évidence les
mécanismes moléculaires liés a la spécificité des espéeces de Bartonella pour
leurs hétes mammiféres.

La spécificité d'hdte est une caractéristique importante des bactéries
pathogenes qui restreint I'éventail des hétes sensibles a linfection. Des
changements subtils dans les mécanismes moléculaires qui régissent cette
spécificité d'hdte peuvent entrainer des changements soudain d'hétes, ce qui
représente un risque majeur pour I'émergence de nouveaux agents pathogénes
humains a partir des réservoirs animaux.

Des exemples frappant de ce scénario sont les bartonelles, qui causent des
infections intra-érythrocytaires dans une large gamme de réservoirs de
mammiferes, chaque espéce étant adaptée a une espece de mammifere.
L'établissement d'un modeéle in vitro de l'adhérence et de linvasion des
erythrocytes par Bartonella spp. nous a permis de démontrer pour la premiére
fois une corrélation entre la restriction d'héte et la capacité a infecter les
érythrocytes in vivo et in vitro, montrant que la spécificité d'hote est déterminée
par l'interaction directe des bactéries avec des érythrocytes.

Afin d'identifier les facteurs bactériens responsables de la reconnaissance héte
spécifique des érythrocytes, nous avons utilisé un protocole en deux étapes :
Dans un premier temps, nous avons effectué un criblage d’'une banque STM de
B. birtlesii chez les souris qui nous a permis d'identifier des mutants incapables
d’établir une infection intra-érythrocytaire. Parmis les 38 protéines essentielles

pour l'infection qui ont été identifiées par ce criblage, 13 ont également été



retrouvés comme essentielle pour l'infection intra-érythrocytaires du rat par B.
tribocorum [6], indiquant des similarités des facteurs moléculaires impliqués
dans linfection par ces deux organismes et la robustesse des criblages
effectués. Dans un deuxiéme temps, un nouveau criblage de I'ensemble des
mutants abactéremique de B. birtlesii a été réalisé en utilisant le systéme in vitro
d’infection des globules rouges. Ceci a abouti a l'identification d'un total de 9
mutants déficients pour l'invasion des globules rouges. Les autres mutants
(36/45 = 80%) affichent un phénotype de type sauvage dans cet essai et ne sont
donc pas directement impliqués dans l'infection des érythrocytes, mais plutét
contribue a l'établissement de l'infection dans les phases précoces. Les
principaux exemples sont les génes codant pour les virB/virD4 T4SS, qui sont
requis pour l'infection de la niche primaire (cellules endothéliales vasculaires) [
20].

Parmi les 9 mutants déficients pour l'infection des érythrocytes in vitro, 2 (ialA/B
et LivG) ont un phénotype sauvage pour I'adherence aux globules rouges, en
revanche, ces mutants ont un phénotype d’invasion altéré suggérant qu'ils
participent a l'invasion des érythrocytes comme suggéré par d’autres études [21,
22].

Les 7 autres mutants sont tous altérés dans la fonction d'adhésion a
I'érythrocyte. Remarquablement, ils sont tous mutés dans le méme opéron : le
systéme de sécrétion de type IV Trw (T4SS, Trw). Trw avait été précédemment
identifié comme un facteur clé impliqué dans I'établissement de l'infection
intra-érythrocytaire dans le modéle B. ftribocorum | rat [6]. Par ailleurs,
I'apparition transitoire de ce mutant dans le sang au début de la bactériemie
intraérythrocytaire suggére que le systtme Trw est dispensable pour la
colonisation de la niche primaire, mais est nécessaire pour I'établissement de
bactériémie intraérythrocytaire [23]. Toutefois, la preuve directe du role de ce
systéme dans le reconnaissance des globules rouges manquait jusqu'ici et est
apporté pour la premiére fois par notre étude. Pour tester si Trw était également

impliqué dans la reconnaissance héte sépcifique des érythrocytes, nous avons
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exprimeé le Trw d’'une espéce spécifique du rat : B. fribocorum, dans une espéce
spécifique du chat B. henselae et de 'homme : B. quintana. Cette expression
ectopique a provoqué une extension de la gamme d'hote de B. henselae et B.
quintana pour l'infection des érythrocytes de rats in vitro, montrant que
I'expression de Trw est suffisante pour déterminer la spécificité d’héte.

Le systéme Trw de Barfonella donc représente un exemple particulierement
intéressant d'un T4SS liée a la pathogenése qui a évolué assez récemment par
la diversification fonctionnelle d'un systéeme de conjugaison bactérienne
latéralement acquis [24]. Dans le genre Bartonella spp., il a été acquis pendant
I'évolution de ces bactéries, ainsi, il n’est représenté que dans une
sous-branche comportant 13 espéces, qui ont divergé assez td6t dans I'évolution
de ces bactéries [6]. L'acquisition du systéme Trw est a corréler avec la perte du
flagelle, connu pour étre un facteur de virulence important pour I'invasion des
érythrocytes chez B. bacilliformis et probablement chez les autres espéces
flagellées de Bartonella [23].

Le systeme Trw de Bartonella spp. posséde les caractéristiques d'un flot de
pathogénicité et montre des similitudes avec le systéme de conjugaison IncW du
plasmide R388 (jusqu'a 80% d'identité pour la séquence en acides aminés)
initialement isolé a partir Enterobacteriacea. Les genes trw de Bartonella spp.
sont colinéaires avec les génes respectifs du plasmide R388, sauf pour la
présence de multiples duplications de génes en tandem : trwL, trwJ-trwH. La
complémentation des génes de R388 avec leurs homologues de Bartonella a
permis de démontrer l'interchangeabilité fonctionnelle pour certains composants
[23], soulignant le degré élevé de conservation structurale et fonctionnelle des
unités individuelles de ce T4SS. Cependant, une différence majeure entre les 2
systémes est I'absence de TrwB chez les espéces de Bartonella spp.. Dans
R388, TrwB code la protéine de couplage qui est requis pour I'exportation des
substrats véhiculés par le T4SS. L'absence de TrwB chez Bartonella indique
donc que le systéme de Bartonella Trw a probablement perdu sa capacité de

translocation de substrats.



Par ailleurs, les copies multiples de frwL et trwJ dans le locus trw de Bartonella
spp. code des protéines de pili constituant les parties exposées a la surface
bactérienne. Les autres génes dupliqués, frwl et trwH, code les composants
requis pour I'élongation des pili et leur ancrage a la membrane externe [25]. La
présence de multiples copies de ces composants suggérent la possibilité de la
formation de formes variées des pili. Du fait du réle essentiel du systéme Trw
pour I'adhésion érythrocytaire, il est concevable de penser que ces variants ont
pour réle de faciliter l'interaction avec les différents récepteurs érythrocytaires,
soit au sein de la population hbte réservoir (par exemple, différents antigénes de
groupe sanguin), ou chez des hotes réservoirs différents.

Les analyses phylogénétiques et le calcul des fréquences de substitution des
différents génes de I'opéron trw montrent que les homologues trwJ et trwlL ont
un degré de diversité beaucoup plus élevé que les autres composants du T4SS
Trw, au sein et entre les différentes espéces [26]. Par ailleurs, le nombre de
répétitions en tandem de trwlL et trwJIH sont variables selon les espéces de
Bartonella indiquant que les génes trwL et trwJ ont été amplifiées et diversifiees
a plusieurs reprises durant I'évolution.

Nous avons pu démontré que, dans le cas de culture in vitro de B. birtlesii, parmi
les protéines de surface formant le pilus, seule Trwd1 et TrwJ2 était exprimées
et présentes a la surface de la bactérie, alors que les différentes formes de TrwL
n‘ont pu étre détectées. |l serait intéressant d’évaluer leur expression dans un
contexte naturel d’infection in vivo, afin d’évaluer leur induction en condition
naturelle, soit au moment du passage dans la niche primaire, ou dans la
circulation sanguine.

En effectuant des essais pour déterminer le récepteur de Trwd1 et TrwJ2, nous
avons mis en évidence une liaison de la protéine TrwJ2 avec la glycoprotéine
majeure transmembranaire, Band3 érythrocytaire qui joue un rble dans le
transport d'anions [27].

Cette protéine avait déja été identifiece comme un récepteur potentiel de B.

bacilliformis [28]. Elle a par ailleurs été impliquée dans I'invasion des globules
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rouges par I'agent du paludisme [29-34]. Des études récentes ont révélé que la
protéine de surface du mérozoite 1 (MSP1) de P. falciparum interagit avec deux
régions non glycosylées de la bande 3 des érythrocytes appelé 5ABC (acides
aminés 720-761) et 6A (acides aminés 807-826) [35]. D’autres protéines
parasitaires, comme MSP9, sont également capables d’interagir avec la méme
région 5ABC [36, 37].

L’invasion des érythrocytes par P. falciparum est assurée par 2 voies distinctes [
38, 39]: la voie dépendante de l'acide sialique, nécessitant 'adhésion aux
glycophorines A, B et C [40-44], et la voie indépendante de I'acide sialique
nécessitant l'interaction avec la Band3 comme décrit ci-dessus. Concernant
Bartonella spp., des études réalisées dans notre laboratoire ont montré que
I'incubation avec des anticorps anti-glycophorine A des globules rouges murins
avant l'infection par B. birtlesii avait pour effet de décroitre de 50% la capacité
d’invasion suggérant, que comme pour P. falciparum, plusieurs voies d’'invasion
des globules rouges sont utilisées par Bartonella spp. Des études
complémentaires doivent étre menées pour confirmer ces hypothéses.

Les stades de l'infection qui précédent l'arrivée des bartonelles dans le sang
étant tres peu caractérisés, in vivo, nous avons utilisé le modele d’infection
expérimentale des souris de laboratoire par B. birtlesii pour identifier les
différents organes, tissus ou cellules colonisés par B. birltesii dans les premiers
jours suivant I'infection. Nous avons ainsi pu montré qu’aucune bactérie n’a été
récupereé a partir des ganglions lymphatiques, la moelle osseuse et le cerveau,
ce qui indique que ces organes, tissus ou cellules ne sont pas des cibles de B.
birtlesii dans ce modéle animal d'infection. En revanche, B. birtlesii colonise le
foie et de maniere encore plus importante la rate au cours des 7 premiers jours
suivant l'infection. Alors que la colonisation du foie s’arréte aprés cette premiére
étape, la rate reste trés infectée pendant toute la durée de la bactériémie.

Nous avons ensuite identifié si la rate pouvait représenter un sanctuaire possible
de l'infection a Bartonella comme cela a déja été démontré pour d'autres

bactéries [45, 46] ou au contraire, si la rate filtrait les érythrocytes infectés,
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comme démontré pour Plasmodium falciparum [47]. Nous avons trouvé que
durant la premiere semaine suivant l'infection, alors que B. birtlesii n'est pas
encore dans les érythrocytes, avoir ou non une rate, ne change pas le moment
de l'apparition des bactéries dans le sang ou le niveau de la bactériémie,
suggérant que la rate n'a pas un réle fondamental dans la premiére étape de
I'infection. A partir du moment ou les bactéries sont intra-érythrocytaires, la rate
apparait jouer un réle dans le contrdle de I'infection puisque la bactériémie est
10 fois plus élevée chez les souris ayant subi une splénectomie. Ces données
suggérent que la rate a un réle dans la rétention des érythrocytes infectés par
Bartonella.

Dans notre étude, nous avons montré que la rate est en mesure de retenir les
Bartonella. Cependant, les mécanismes de la rétention doivent encore étre
élucidés. Dans le futur, nous devrons confirmer Ila localisation
intra-érythrocytaire de Bartonella dans la rate. Si, comme supposé, les bactéries
sont associées aux érythrocytes, nous aurons a déterminer le mécanisme par
lequel les hématies infectées sont reconnues et retenues. En effet, il est
largement admis que l'infection des érythrocytes par Bartonella n'a aucun effet
sur leur physiologie (pas de changement dans la durée de vie, aucun
changement dans les structures de la membrane, ...) [12]. Cependant, un
facteur de déformation, appelée "deformin", a été identifié dans B. bacilliformis
provoquant des changements structuraux (piques et invagination) de la
membrane érythrocytaire [48, 49]. Ce facteur décrit comme s'insérer dans la
membrane bactérienne et créant un pore pourrait déformer les globules rouges,
expliquant la différence de clairance des érythrocytes infectés par rapport a ceux
non infectés, les érythrocytes altérés étant filtrés par la rate comme cela a été
montré pour P. falciparum [50].

Le développement de modeles animaux d’infection par Bartonella spp. et des
outils pour la manipulation génétique de ces bactéries a permis des avancées
significatives dans la compréhension des bases moléculaires expliquant les

mécanismes d’infection de I'héte réservoir par Bartonella. Cependant, malgré



ces progres, et limportance meédicale de ces bactéries, de nombreuses
qguestions sont encore sans réponse. Par exemple, quel est le sort des bactéries
apres inoculation? Comment les bactéries diffusent a partir du point de piqare
via la circulation sanguine, et I'’endothélium vasculaire est-il vraiment un site
principal de l'infection? En outre, nous ne savons rien sur la fagon dont
bartonellae se réplique et survie a lintérieur du globule rouge, et si des
changements physiologiques du globule rouge est induit par I'infection. Nous
savons peu de choses sur l'interaction entre bartonellae et I'immunité de I'héte et
donc peu de choses sur I'étendue et I'importance de l'immunorégulation. Les
recherches futures devront également tenir compte du rdle des arthropodes
dans le cycle naturel et Bartonella et des infections par inoculation naturelles
devront étre privilégiées par rapport aux inoculations actuelles par seringue. En
résume, les défis pour les années a venir, sont (1) de comprendre comment, la
stratégie unique de linfection par bartonellae contribue a son succes
épidémiologique remarquable dans ses hotes réservoirs, et (2) d’avoir le
maximum d’information concernant la biologie de ces bactéries pour pouvoir
évaluer leur potentiel pour devenir de nouveaux pathogénes pour ’lhomme ou

I'animal.
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