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1 Introduction

1.1 A rough overview

The theory of finite-type invariants is part of low-dimensional topology and quantum topology. Low-
dimensional topology can be characterized by its objects of study, namely manifolds of small dimension
(say 2, 3 and 4) and their homeomorphisms; this includes the study of knotted objects in the 3-sphere.
There are several approaches to this study, which may involve combinatorial, algebraic, geometric or
analytic methods. Among these various approaches, there is quantum topology which one can define
as the production and study of quantum invariants. Here, by “quantum invariants”, we mean all these
topological invariants of knots and 3-manifolds, and all these representations of mapping class groups,
that have been obtained during the last 25 years after

• V. Jones’ discovery in 1984 of his famous knot invariant [Jon87],

• E. Witten’s work which interpreted the Jones polynomial as a topological quantum field theory
based on the Chern–Simons path integral [Wit89],

• and the work by N. Reshetikhin & V. Turaev who gave a rigourous construction of E. Witten’s
invariants [RT91].

The mathematical definition of quantum invariants being very algebraic by nature, quantum topology
can also be regarded as the place where low-dimensional topology interacts with some fields of algebra
(such as the representation theory of quantum groups, or the Lie theory). After its “constructive” period,
quantum topology seems now to have taken another direction: the seek for topological interpretations
of the quantum invariants that have been obtained so far. Indeed, the mathematical construction of a
quantum invariant is usually very indirect: it needs a special way of presenting knots or 3-manifolds, it
goes by a finite “state sum” or some kind of integral and, at the end, the topological quantity that is re-
ally measured by this invariant is usually unclear. Of course, this understanding of quantum invariants
may require to extend their range of definition, to refine them (by adding structures to manifolds) or
even to “categorify” them. The challenge is to connect quantum invariants to more classical approaches
of low-dimensional topology, which can be provided by algebraic topology or by geometry.

The theory of finite-type invariants has its origins in the perturbative approach to E. Witten’s quantum
invariants. For knots and links in the 3-sphere, the notion of “finite-type invariant” in itself has been in-
troduced independently by V. Vassiliev [Vas90] and M. Goussarov [Gus94] with different motivations.
Thanks to the Kontsevich integral and its universal property [Kon93b, BN95a], one knows that the fam-
ily of finite-type invariants is very rich; besides, this family dominates all Reshetikhin–Turaev quantum
invariants (by virtue of the Drinfel’d–Khono theorem [Kas95, LM96]). For Z-homology spheres, the
notion of “finite-type invariant” has been introduced by T. Ohtsuki who constructed the first examples
by number-theoretical expansions into power series of some Reshetikhin–Turaev invariants [Oht96].
Presenting 3-manifolds by surgery on links in the 3-sphere, T. Le, J. Murakami & T. Ohtsuki built from
the Kontsevich integral a universal finite-type invariant ofZ-homology spheres [LMO98, Le97]: hence,
for 3-manifolds too, the class of finite-type invariants is very rich. Perturbative Chern–Simons theory
produces some other universal finite-type invariants: see, in particular, [BN91, BT94, AF97, Poi02]
in the case of links and [AS92, BC98, Kon94, KT99] in the case of 3-manifolds. These invariants
have intrinsic formulations in terms of configuration space integrals (which are deep generalizations
of Gauss’ formula for the linking number), and they are conjecturally equal to the Kontsevich integral
(in the case of links) and to the LMO invariant (in the case of 3-manifolds). A strong equivalence is
established in [Les02a] between the Kontsevich integral and the perturbative Chern–Simons invariant
for links in the 3-sphere; these two invariants are also known to coincide in low degrees [Les02b].
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T. Ohtsuki’s theory of finite-type invariants was subsequently generalized to arbitrary 3-manifolds by T.
Cochran & P. Melvin [CM00]. Later, a different theory encompassing arbitrary 3-manifolds and their
links was introduced independently by M. Goussarov [Gou99, Gou00] and K. Habiro [Hab00b]. While
it contains the Ohtsuki theory for Z-homology spheres and the Vassiliev–Goussarov theory for knots,
the Goussarov–Habiro theory is enriched by new surgery techniques and a close relationship with the
lower central series of the Torelli group (in the case of 3-manifolds) and that of the pure braid group (in
the case of links). In the sequel, we shall concentrate on some aspects of the Goussarov–Habiro theory
for compact oriented 3-manifolds. For an introduction to quantum topology, the reader may consult
the books [Kas95, Tur94] and, for a more specific treatment of the theory of finite-type invariants, the
reader is referred to the books [Oht02b, CDM12].

1.2 Finite-type invariants

In order to define finite-type invariants of 3-manifolds, we need to fix a closed oriented surface R

(which may be empty or disconnected). We consider compact connected oriented 3-manifolds M

whose boundary is parameterized by R, i.e. M comes with an orientation-preserving homeomorphism
R → ∂M which is denoted by the lower-case letter m. Two such manifolds with parameterized bound-
ary M and M

� are homeomorphic if there is an orientation-preserving homeomorphism f : M → M
�

such that f |∂M ◦ m = m
�. We denote by V(R) the set of homeomorphism classes of compact con-

nected oriented 3-manifolds with boundary parameterized by R.

Here is one way to modify a manifold M ∈ V(R) without modifying its Z-homology type. First,
we choose a compact oriented connected surface S ⊂ int(M) with one boundary component, and a
homeomorphism s : S → S which is the identity on ∂S and which induces the identity of H∗(S;Z).
Then we define

M(S,s) :=
Ä
M \ int(S × [−1, 1])

ä
∪s̃ (S × [−1, 1]) (1.1)

where S×[−1, 1] is identified with a regular neighborhood of S inM and s̃ is the self-homeomorphism
of ∂(S × [−1, 1]) which is given by s on S × {1} and is the identity elsewhere. In other words, M(S,s)

is obtained by “twisting” M along S with s. The boundary parameterization of M(S,s) is induced by
m in the obvious way. The move M � M(S,s) in V(R) is called a Torelli surgery.1

Let A be an abelian group. A map f : V(R) → A is a finite-type invariant of degree at most d (in the
sense of M. Goussarov & K. Habiro) if we have

�

P⊂{0,...,d}
(−1)

|P | · f(MP ) = 0 ∈ A (1.2)

for any M ∈ V(R) and for any pairwise-disjoint surfaces S0, . . . , Sd ⊂ int(M) equipped with self-
homeomorphisms s0, . . . , sd where each si : Si → Si is the identity on ∂Si and acts trivially in
homology. Here MP ∈ V(R) is obtained by simultaneous Torelli surgeries M � M(Sp,sp) for all
p ∈ P . In other words, the (d+1)-st “formal differential” of f with respect to Torelli surgeries is triv-
ial, so that f should behave like a “polynomial” map of degree at most d with respect to these surgeries.

There are numerous examples of finite-type invariants in the case of closed oriented 3-manifolds (i.e.
in the case R = ∅) and some of them are found among classical invariants. For instance the n-th
coefficient of the Conway polynomial of closed oriented 3-manifolds M having β1(M) = 1 is a finite-
type invariant of degree n [GH00, Lie00]; if one adds spin structures to the theory, the Rochlin invariant
is of degree 1 [Mas03b]; if one adds complex spin structures to the theory [DM05], the I-adic reductions
of the Reidemeister–Turaev torsion are finite-type invariants too [Mas10]. Yet, the “prototype” of a

1This terminology is borrowed from [KT99].
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finite-type invariant is certainly the Casson–Walker–Lescop invariant which is of degree 2 by results
of Morita [Mor91] and Lescop [Les98]. The LMO invariant, which is constructed in [LMO98] from
the Kontsevich integral, can be seen as a far-reaching generalization of the latter. This invariant takes
values in the space A(∅) of trivalent Jacobi diagrams: the generators of this Q-vector space are finite
trivalent graphs whose vertices are oriented, and the relations are the AS relation (a diagrammatic
analogue of the antisymmetry of Lie brackets) and the IHX relation (a diagrammatic analogue of the
Jacobi identity). The space A(∅) is graded by the number of vertices (which is called the i-degree
of Jacobi diagrams). The LMO invariant Z(M) is mainly interesting for Q-homology spheres M ,
in which case it coincides with the Aarhus integral introduced by D. Bar-Natan, S. Garoufalidis, L.
Rozansky & D. Thurston [BNGRT02a, BNGRT02b]2. For a Q-homology sphere M , we have

Z(M) = ∅+
λW(M)

4
· + (i-degree > 2) ∈ A(∅) (1.3)

where λW(M) denotes Walker’s extension of the Casson invariant as normalized in [Wal92], and the
i-degree d part of Z is universal among Q-valued finite-type invariants of degree d [Le97, Hab00b].
The perturbative Chern–Simons invariant constructed by M. Kontsevich [Kon94] and by G. Kuperberg
& D. Thurston [KT99] has the same universal property [Les04]. Consequently, these two invariants
have the same capacity for distinguishing Q-homology spheres; but it is not known whether they are
strictly equal.

1.3 The Torelli group

The theory of finite-type invariants has connections with the study of the Torelli group. Let Σ be a
compact connected oriented surface with one boundary component. The mapping class group of the
surface Σ is the group M(Σ) of isotopy classes of self-homeomorphisms of Σ that are the identity on
∂Σ. The Torelli group I(Σ) is the subgroup of M(Σ) acting trivially on H∗(Σ;Z). The study of the
Torelli group, from a topological point of view, started with works of J. Birman [Bir71] and was fol-
lowed by D. Johnson through a series of paper, which notably resulted in a finite generating set for I(Σ)
in genus at least 3 [Joh83a]. The reader is referred to D. Johnson’s survey [Joh83b] for an account of
his work. From the viewpoint of finite-type invariants, one can regard the Torelli group as an analogue
of the pure braid group (the latter corresponds to links in the 3-sphere, while the former corresponds
to 3-manifolds). However, the Torelli group is not as well understood as the pure braid group.

One way to understand the structure of the Torelli group is to define functions on it using 3-dimensional
invariants. For this, one embeds the surface Σ in the interior of a 3-manifold M ∈ V(R) and, for any
invariant f : V(R) → A with values in an abelian group A, one considers the map

F : I(Σ) −→ A, s �−→ f

Ä
M(Σ,s)

ä
− f(M) (1.4)

where M(Σ,s) is the result of a Torelli surgery as defined at (1.1). For instance, if M is a Z-homology
sphere and if f is the Rochlin invariant (with values inA := Z/2Z), thenF is one of the Birman–Craggs
homomorphisms [BC78] which D. Johnson used to compute the abelianization of I(Σ) [Joh85]. If M
is still a Z-homology sphere and if f is the Casson invariant (with values in A := Z), the corresponding
map F on I(Σ) has been used by S. Morita to compute its second nilpotent quotient [Mor89, Mor91].
The finiteness properties of Rochlin’s and Casson’s invariants play a crucial role in these computations.
Thus D. Johnson’s and S. Morita’s works somehow prefigure the use of finite-type invariants of Z-
homology spheres in the study of the Torelli group. This approach to understand the structure of I(Σ)
has been developed in subsequent works of S. Garoufalidis & J. Levine [GL98, GL97].

2The LMO invariant Z(M) is denoted by Ω̂(M) in [LMO98] and by Å(M) in [BNGRT02a, BNGRT02b]; the invariant
denoted by Ω(M) in [LMO98] is another normalization which coincides with Ω̂(M) for a Z-homology sphere M .
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Besides, this approach is a way to illustrate the polynomial nature of finite-type invariants. We still
assume that the surface Σ is embedded in the interior of a 3-manifold M ∈ V(R), and we consider any
finite-type invariant f : V(R) → Z of degree d. Then theZ-valued functionF on I(Σ) defined by (1.4)
is bounded by a constant times the d-th power of the word metric on I(Σ) and, in some circumstances,
this bound is asymptotically sharp. This has been proved by N. Broaddus, B. Farb & A. Putman whenM
is aZ-homology sphere and f is the Casson invariant [BFP07]. In general, such a polynomial behaviour
of the function F : I(Σ) → Z follows from the fact that its linear extension Z[F ] : Z[I(Σ)] → Z to
the group ring Z[I(Σ)] vanishes on the (d+1)-st power Id+1 of the augmentation ideal I ⊂ Z[I(Σ)].
Since this does not seem to have been observed before, we have included a proof in the appendix.

1.4 Surgery equivalence relations

Finite-type invariants are strongly connected to some equivalence relations among 3-manifolds, which
we now describe. The lower central series of a group G is the decreasing sequence of subgroups

G = Γ1G ⊃ Γ2G ⊃ Γ3G ⊃ · · ·

that are defined inductively by Γi+1G := [ΓiG,G] for all i ≥ 1. This series is related to the I-adic
filtration of the group ring Z[G] (where I denotes the augmentation ideal of Z[G]) by the implication

∀k ≥ 1, ∀g ∈ G, g ∈ ΓkG =⇒ g − 1 ∈ I
k
. (1.5)

The converse is false in general, which constitutes the dimension subgroup problem in group theory.
As we have observed in the previous paragraph, the notion of finite-type invariant is closely related to
the I-adic filtration of the group ring of the Torelli group. This motivates the following definition: let
k ≥ 1 be an integer; two 3-manifoldsM,M

� ∈ V(R) are said to be Yk-equivalent ifM � can be obtained
from M by a Torelli surgery M � M(S,s)

∼= M
� along a surface S ⊂ int(M) with an s ∈ ΓkI(S). It

follows from (1.5) applied to the Torelli group that, for any integer d ≥ 0,

M
Yd+1∼ M

�
=⇒

Ä
f(M) = f(M

�
) for any finite-type invariant f of degree ≤ d

ä
. (1.6)

The converse is false in general, but it is obviously true for d = 0. Note that the Yk-equivalence rela-
tion becomes finer and finer as k increases. In the case of closed oriented 3-manifolds (R = ∅), for
instance, S. Matveev has shown in [Mat87] that the Y1-equivalence is classified by the isomorphism
class of the pair (homology, linking pairing), and it is shown in [Mas03a] that the Y2-equivalence is
classified by the isomorphism class of the quintuplet (homology, space of spin structures, linking pair-
ing, cohomology rings, Rochlin function). But no such characterization of the Yk-equivalence relation
is known for k ≥ 3 and R = ∅.

For any closed oriented surface R, the set V(R) is subdivided into infinitely many Y1-equivalence
classes. Then it is convenient to restrict the theory of finite-type invariants to each of these classes, and
to have the following “dual” viewpoint. Let Y ⊂ V(R) be a Y1-equivalence class. The abelian group
Z·Y freely generated by the set Y has the filtration

Z·Y = F0(Y) ⊃ F1(Y) ⊃ F2(Y) ⊃ · · · (1.7)

where, for any k ≥ 1, Fk(Y) is the subgroup of Z·Y spanned by linear combinations of the form
�

P⊂{0,...,d}
(−1)

|P | ·MP . (1.8)

Here M is any 3-manifold in the class Y , S0, . . . , Sd ⊂ int(M) are pairwise-disjoint surfaces equipped
with s0 ∈ I(S0), . . . , sd ∈ I(Sd) and MP is the result of doing simultaneously the Torelli surgeries
indexed by p ∈ P . Clearly, a map f : Y → A is a finite-type invariant of degree at most d in the sense
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of (1.2) if and only if its linear extension Z·f to Z·Y vanishes on Fd+1(Y).

The Yk-equivalence relations have been considered in their full generality for the first time by M.
Goussarov [Gou99, Gou00] and K. Habiro [Hab00b]. In their works3, these relations are defined in
another way which we briefly recall. In the terminology of [Hab00b], a graph clasper in a 3-manifold
M ∈ V(R) is a compact connected surface G ⊂ int(M) which comes decomposed between leaves,
nodes and edges according to some rules. Here is an example of a graph clasper with three nodes (which
is also drawn using the blackboard framing convention):

an edge

a node

a leaf
=

The surgery in M along the graph clasper G is the usual surgery along a framed link that is derived
from G in an appropriate way: the resulting 3-manifold is denoted by MG. For instance, if G has a
single node, then the associated framed link is

=⇒

and the clasper surgery M � MG is equivalent to a “Borromean surgery” in the sense of [Mat87]. A
calculus of claspers is developed in [Gou00, Hab00b, GGP01], in the sense that some specific “moves”
between graph claspers are shown to produce by surgery homeomorphic 3-manifolds. This calculus
can be regarded as a topological/embedded version of the commutator calculus in groups [Hab00b]. A
clasper surgery M � MG (along a graph clasper G with at least one node) is in fact equivalent to a
Torelli surgery M � M(S,s), and the definition of a finite-type invariant can be reformulated in terms
of clasper surgeries. Similarly, for any k ≥ 1, the Yk-equivalence relation is generated by surgeries
along graph claspers with k nodes [Hab00b].4 It turns out that the calculus of claspers is a very effi-
cient tool to compute finite-type invariants and, at the same time, to study the Yk-equivalence relations.

Some other surgery equivalence relations can be defined on V(R) if one replaces the lower central
series of the Torelli group by another filtration, which we now define. Let Σ be a compact connected
oriented surface with one boundary component. The Torelli group of Σ acts on π := π1(Σ, ∗) in the
natural way (where ∗ ∈ ∂Σ), and the resulting homomorphism

ρ : I(Σ) −→ Aut(π), s �−→ s∗ (1.9)

is injective by classical results of M. Dehn and J. Nielsen: we call it the Dehn–Nielsen representation.
For any integer k ≥ 1, this representation induces a group homomorphism

ρk : I(Σ) −→ Aut(π/Γk+1π), s �−→ (s∗ mod Γk+1π). (1.10)

The Johnson filtration of the Torelli group is the decreasing sequence of subgroups

I(Σ) = I(Σ)[1] ⊃ I(Σ)[2] ⊃ I(Σ)[3] ⊃ · · · (1.11)
3The Yk-equivalence relation is called “(k − 1)-equivalence” in [Gou99] and “Ak-equivalence” in [Hab00b].
4See the appendix of [Mas07] for a proof.
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where I(Σ)[k] denotes the kernel of ρk for any k ≥ 1. Then, two 3-manifolds M,M
� ∈ V(R) are said

to be Jk-equivalent if M � can be obtained from M by a Torelli surgery M � M(S,s)
∼= M

� along a
surface S ⊂ int(M) with an s ∈ I(S)[k]. In the case R = ∅, for instance, a result of T. Cochran, A.
Gerges & K. Orr shows that two closed oriented 3-manifolds are J2-equivalent if and only if they have
isomorphic triplets (homology, linking pairing, cohomology rings) [CGO01]. The lower central series
being contained in the Johnson filtration, the equivalence relations on V(R) are organized as follows:

Y1 ⇐= Y2 ⇐= Y3 ⇐= · · · Yk ⇐= Yk+1 ⇐= · · ·
� ⇓ ⇓ ⇓ ⇓
J1 ⇐= J2 ⇐= J3 ⇐= · · · Jk ⇐= Jk+1 ⇐= · · ·

1.5 Homology cylinders

A special class of 3-manifolds plays a central role in the Goussarov–Habiro theory of finite-type invari-
ants: this is the monoid of homology cylinders, which can be regarded as a simultaneous generalization
of the monoid of Z-homology spheres (with the connected sum operation) and the Torelli group. One
can also think of the monoid of homology cylinders as an analogue of the monoid of string-links: the
latter contains the pure braid group, while the former contains the Torelli group.

Let Σ be a compact connected oriented surface with one boundary component. A homology cylinder
over Σ (or a Z-homology cylinder over Σ, to be exact) is a compact oriented 3-manifold M with bound-
ary parameterization m : ∂ (Σ× [−1, 1]) → ∂M satisfying

H∗ (Σ× [−1, 1];Z) �
∃

��������� H∗(M ;Z)

H∗ (∂(Σ× [−1, 1]);Z) �
m∗

��

incl∗

��

H∗(∂M ;Z).

incl∗

��

In other words, M is a cobordism (with corners) between two copies of the surface Σ, namely ∂+M :=

m(Σ× {+1}) and ∂−M := m(Σ× {−1}), which has the Z-homology type of the usual cylinder
Σ × [−1, 1]. The set of homeomorphism classes of homology cylinders is denoted by IC(Σ) and is
a subset of V(R) with R := ∂(Σ × [−1, 1]): this is actually the Y1-equivalence class of Σ × [−1, 1]

[Hab00b, Hab00a]. The composition of two homology cylinders M and M
� is defined by “stacking”

M
� on the top of M , i.e. we define

M ◦M �
:= M ∪m+◦(m�

−)−1 M
�

where we denote m± := m|Σ×{±1} : Σ → ∂±M , m�
± := m

�|Σ×{±1} : Σ → ∂±M
� and ∂(M ◦M �

)

has the obvious parameterization. The set IC(Σ) equipped with the operation ◦ is a monoid, whose
unit element is Σ× [−1, 1] (with the obvious boundary parameterization). For instance, IC(Σ) is iso-
morphic to the monoid of Z-homology spheres when Σ ∼= D

2.

In positive genus, the mapping cylinder construction

c : I(Σ) −→ IC(Σ), s �−→
Ä
Σ× [−1, 1], (Id×{−1}) ∪ (∂Σ× Id) ∪ (s× {+1})

ä
(1.12)

defines an embedding of the Torelli group into the monoid of homology cylinders; the image consists
of the invertible elements of IC(Σ). This gives 3-dimensional perspectives to the study of the Torelli
group. For example, the computation of the abelianization of I(Σ) due to D. Johnson [Joh85] extends
to a characterization of the Y2-equivalence on IC(Σ) [Hab00b, MM03]: in some sense, the Dehn twists
computations in D. Johnson’s work are replaced by calculus of claspers. The reader may consult the
survey [HM12] for an overview of this 3-dimensional approach of the Torelli group.
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Another reason to be interested in the monoid IC(Σ) is that it constitutes a class of 3-manifolds with
non-trivial Q-homology (provided Σ �∼= D

2). Indeed, the theory of finite-type invariants is rather well
understood for Q-homology spheres thanks to the existence of the LMO invariant and its universal
property. But this is not quite the case for homologically non-trivial 3-manifolds, so that the monoid
of homology cylinders should be a “case study” for this theory. Soon after the works of M. Goussarov
and K. Habiro, the study of homology cylinders by finite-type invariants has been followed up by S.
Garoufalidis & J. Levine [GL05], J. Levine [Lev01], N. Habegger [Hab00a] and others.

1.6 Contents of the dissertation

This dissertation is an exposition of some works of the author in the theory of finite-type invariants
for 3-manifolds. Most of these works deal with the monoid of homology cylinders, in relation with
the study of the Torelli group of a surface. Some of the results presented below have been obtained in
collaboration with D. Cheptea, K. Habiro and J.–B. Meilhan.

In section 2, we present a functorial extension of the LMO invariant to compact oriented 3-manifolds
with boundary [CHM08]. The “LMO functor” is defined on the category of “Lagrangian cobordisms”
(which contains the monoid of homology cylinders) and it takes values in a certain category of “Jacobi
diagrams.” This invariant is universal amongQ-valued finite-type invariants of Lagrangian cobordisms.
We give one application of the LMO functor: the LMO invariant of Q-homology spheres satisfies C.
Lescop’s “splitting formulas” [Mas12c].

Section 3 specializes to the case of homology cylinders over a surface Σ. First, we consider a graded
Lie algebra which is the analogue for the monoid IC(Σ) of the graded Lie algebra associated to the
lower central series of a group. Using the LMO functor, we give a diagrammatic description of the
graded Lie algebra associated to IC(Σ). We relate through the map c : I(Σ) → IC(Σ) this descrip-
tion to R. Hain’s presentation of the graded Lie algebra associated to the group I(Σ) [HM09]. Next,
we consider the Goussarov–Habiro conjecture which claims that the converse of (1.6) should be true
for homology cylinders: we relate this to the dimension subgroup problem in group theory and obtain
some weakened versions of the conjecture [Mas07]. Finally, we classify with a few classical invariants
the Y3-equivalence and the J3-equivalence for homology cylinders and, as an extension of S. Morita’s
work for I(Σ), we analyse the incidence of the Casson invariant on the structure of IC(Σ) [MM10].

The works of D. Johnson and S. Morita on the Torelli group used in a crucial way the Dehn–Nielsen rep-
resentation (1.9). In particular, they used this representation to define a sequence of homomorphisms
relative to the Johnson filtration (1.11). Section 4 considers certain generalizations of these homomor-
phisms in relation with the theory of finite-type invariants. We show that, on the monoid IC(Σ), the
“tree-reduction” of the LMO functor is equivalent to an “infinitesimal” version of the Dehn–Nielsen
representation [Mas12b]. This topological interpretation of a reduction of the LMO functor needs to
consider the Malcev Lie algebra of π = π1(Σ, ∗) instead of the group itself. Using the same “infinites-
imal” approach, we explain how D. Johnson’s and S. Morita’s homomorphisms can be extended in a
canonical way to the Ptolemy groupoid of Σ [Mas12a].

Section 5 concludes this dissertation with a few research directions. The questions, problems and
perspectives that we propose here are continuations of the previous works. For a more comprehensive
list of open problems in the theory of finite-type invariants, the reader is referred to [Oht02a, §§10–11].
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2 A functorial extension of the LMO invariant

2.1 The LMO functor [CHM08]

The LMO invariant has been originally defined for closed oriented 3-manifolds in [LMO98]. Sub-
sequently, it has been extended to 3-dimensional cobordisms in two different ways: by Murakami &
Ohtsuki [MO97] and, later, by Cheptea & Le [CL07]. The approach of [CHM08] differs from these
works in that it applies to a category of cobordisms between surfaces with one boundary component.
This avoids the extension of the Kontsevich integral to trivalent graphs in S

3 and allows for monoidal
structures. Besides, the combinatorics of the gluing formula given in [CHM08] is easy to describe.

We start by defining the source of the LMO functor and, for this, we need the category Cob of 3-
dimensional cobordisms introduced in [CY99, Ker03]. By definition, an object of Cob is an integer
g ≥ 0, which one thinks of as the genus of a compact connected oriented surfaceΣg,1 with one boundary
component. The surface5

Σg,1 is fixed once for all, see Figure 2.1. For any integers g+ ≥ 0 and
g− ≥ 0, a morphism g+ → g− in the category Cob is a cobordism (M,m) from the surface Σg+,1

to the surface Σg−,1: more precisely, M is a compact connected oriented 3-manifold together with a
boundary parameterization m : ∂C

g+
g− → ∂M . Here C

g+
g− ⊂ S

3 is the cube with g− “tunnels” and g+

“handles”, whose oriented boundary contains one copy ofΣg+,1 and one copy of−Σg−,1. The manifold
C

g+
g− is also fixed once for all, see Figure 2.2. The boundary parameterization m of M restricts to two

embeddings m− : Σg−,1 → M and m+ : Σg+,1 → M , whose images are denoted by ∂−M and
∂+M respectively. The composition ◦ in Cob is given by “vertical” gluing of cobordisms, while the
“horizontal” gluing of cobordisms gives a strict monoidal structure ⊗.

α1

αg

β1 βg

Figure 2.1: The standard surface Σg,1 and its system of meridians and parallels (α,β).

1

1

g−

g+

handles

tunnels

Figure 2.2: The standard cube Cg+
g− with g− tunnels and g+ handles.

Unfortunately, the LMO functor of [CHM08] is not defined on the full category Cob, but only on the
subcategory LCob of Lagrangian cobordisms (or Z-Lagrangian cobordisms, to be exact). For any

5This standard surface is denoted by Fg in [CHM08].
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integer g ≥ 0, let Ag be the subgroup of H1(Σg,1;Z) spanned by the meridians α1, . . . ,αg: this is
a Lagrangian subgroup with respect to the homology intersection form. By definition, a cobordism
(M,m) ∈ Cob(g+, g−) belongs to LCob(g+, g−) if and only if

1. H1(M ;Z) = m−,∗(Ag−) +m+,∗
Ä
H1(Σg+,1;Z)

ä
,

2. m+,∗(Ag+) ⊂ m−,∗(Ag−) as subgroups of H1(M ;Z).

For instance, morphisms 0 → 0 in the categoryLCob are preciselyZ-homology cubes, i.e.Z-homology
spheres after gluing of a 3-dimensional ball D3. A similar category of cobordisms between closed sur-
faces appears in [CL07]. The source of the LMO functor is not exactly LCob but the category LCobq
of Lagrangian q-cobordisms. An object of LCobq is a (possibly empty) non-associative word in the
single letter •. For any two such words w+ and w−, a morphism w+ → w− in the category LCobq
is a Lagrangian cobordism g+ → g− where g± is the length of w±. Note that the category LCobq is
monoidal in the non-strict sense.

We now describe the target of the LMO functor. For anyQ-vector spaceV , the space of Jacobi diagrams
colored by V is

A(V ) :=

Q ·
®

finite uni-trivalent graphs whose trivalent vertices are oriented
and whose univalent vertices are colored by V

´

AS, IHX, multilinearity
(2.1)

where the relations are

AS IHX multinearity

= − − + = 0 +=

v1 + v2 v1 v2

.

For any finite set C, we set A(C) := A(Q ·C) where Q ·C is the vector space generated by C. In
particular, A(∅) is spanned by trivalent Jacobi diagrams and, as mentionned in §1.2, this is the target
of the original LMO invariant. The degree of a Jacobi diagram is half the total number of vertices, and
its internal degree (or, in short, i-degree) is the number of trivalent vertices. We shall also need the
degree completion of A(C), which we still denote by A(C). If S is another finite set, a Jacobi diagram
D ∈ A(C ∪ S) is S-substantial if it has no connected component of the form

s1

s2

where s1, s2 ∈ S.

The category of top-substantial Jacobi diagrams is the linear category tsA whose objects are integers
g ≥ 0 and whose space of morphisms tsA(g, f) is, for any integers g ≥ 0 and f ≥ 0, the subspace
of A(�g�+ ∪ �f�−) spanned by �g�+-substantial Jacobi diagrams. Here �g�+ denotes the g-element
finite set {1+, . . . , g+} while �f�− denotes the f -element finite set {1−, . . . , f−}. For example, here
is a Jacobi diagram defining a morphism 4 → 5 in tsA:

1
+

1
+

2
+

2
+

3
+

4
+

1
−

1
−

2
−

3
−

5
−

5
−

For any integers f, g, h ≥ 0, the composition law of tsA

tsA(g, f)× tsA(h, g)
−◦−

�� tsA(h, f) (2.2)
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is defined for any Jacobi diagrams D ∈ tsA(g, f) and E ∈ tsA(h, g) by

D ◦ E :=

Ç
sum of all ways of gluing all the i+-colored vertices of D

to all the i−-colored vertices of E, for every i ∈ {1, . . . , g}

å
.

With the disjoint union of Jacobi diagrams (and appropriate “shift” of colors), the category tsA is
monoidal in the strict sense.

Theorem 2.1. [CHM08, Th. 4.13] There is a tensor-preserving functor

‹Z : LCobq −→ tsA

whose restriction to LCobq(∅,∅) is the LMO invariant Z of Z-homology spheres.

We call ‹Z the LMO functor. Given some non-associative words v and w of length f and g respectively,
the value of ‹Z on a q-cobordism M ∈ LCobq(w, v) is constructed by presenting M as tangle γ in a Z-
homology cube B; this tangle has g “top” components and f “bottom” components. Next, we consider
the Kontsevich–LMO invariantZ(B, γ) of the pair (B, γ) and, finally, ‹Z(M) is defined by normalizing
Z(B, γ) in an appropriate way. Note that, in this construction of ‹Z(M), the colors 1+, . . . , g+ refer to
the curves β1, . . . ,βg (in the “top surface” ∂+M of the cobordismM ) while the colors 1−, . . . , g− refer
to the curves α1, . . . ,αg (in the “bottom surface” ∂−M of the cobordism M ). It should be emphasized
that the definition of the LMO functor requires two preliminary choices:

1. a rational Drinfel’d associator must be specified (since the Kontsevich integral of tangles is used
in the construction);

2. for any g ≥ 0, a system of meridians and parallels (α,β) is fixed on Σg,1 (see Figure 2.1).

A certain reduction of the functor ‹Z factorizes to the category of Lagrangian cobordisms between closed
surfaces, and this reduction of ‹Z recovers the functor defined in [CL07] by Cheptea & Le [CHM08, §6].
The previous constructions also work for the category QLCob of Q-Lagrangian cobordisms, which is
defined in the same way as LCob by replacing Z-homology with Q-homology. Theorem 2.1 is also
valid in this context.

Corollary 2.1. [CHM08, Prop. 8.24] The i-degree≤ 2 truncation of ‹Z : QLCobq → tsA is a functorial
extension of the Casson–Walker invariant of Q-homology spheres to the category QLCob.

This is mainly a consequence of (1.3). The i-degree ≤ 2 truncation of ‹Z is computed in [CHM08,
§5.3] on some explicit generators of the monoidal category LCob (for the choice of an even Drinfel’d
associator).

Just as the LMO invariant of Z-homology spheres [Le97], the LMO functor is universal among Q-
valued finite-type invariants of Lagrangian cobordisms. In order to state this universality, we fix a
Y1-equivalence class Y ⊂ LCob(g, f) of Lagrangian cobordisms, which is obtained by fixing a Z-
homology type of Lagrangian cobordisms [CHM08, Cor. 7.7]. We denote by

AY
(�g�+ ∪ �f�−)

the subspace of tsA(g, f) ⊂ A(�g�+∪�f�−) spanned by Jacobi diagrams with no “strut”, i.e. diagrams
without component of the form . We also fix some non-associative words v and w in the single letter
• of length f and g respectively. Thus, any cobordism M ∈ LCob(g, f) is promoted to a q-cobordism
M ∈ LCobq(w, v). It turns out that the series of Jacobi diagrams ‹Z(M) is the disjoint union of two
parts: one part only contains struts and encodes the choice of the Y1-equivalence class Y , while the
other part is contained in AY

(�g�+ ∪ �f�−) and is denoted by ‹ZY
(M).
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Theorem 2.2. [CHM08, Th. 7.11] The linear map

Q·Y −→ AY
(�g�+ ∪ �f�−), M �−→ ‹ZY

(M)

sends the F-filtration to the i-degree filtration, and it induces an isomorphism at the graded level:

Gr ‹ZY
: Gr

F Q·Y :=

�

d≥0

Fd(Y)/Fd+1(Y)
�−→ AY

(�g�+ ∪ �f�−)

Here F is the filtration (1.7) with coefficients in Q dual to finite-type invariants. The inverse of Gr ‹ZY

is defined by clasper surgery in a way similar to [Gar02]. In this sense, graph claspers are “topological
realizations” of Jacobi diagrams.

The monoid of homology cylinders6 IC(Σg,1) is a submonoid of LCob(g, g), so that the LMO functor
can be applied to this class of 3-manifolds. The results of [CHM08] in this direction complete previous
works of Garoufalidis & Levine [GL05] and Habegger [Hab00a]. The composition (2.2) of the category
tsA leads to the following associative multiplication on AY

(�g�+ ∪ �g�−):

D � E :=

Ç
sum of all ways of gluing some of the i+-colored vertices of D

to some of the i−-colored vertices of E, for every i ∈ {1, . . . , g}

å
. (2.3)

This diagrammatic multiplication has been discovered in [GL05] from calculus of claspers.

Corollary 2.2. [CHM08, Cor. 8.3 & Cor. 8.6] The LMO functor induces a monoid homomorphism

‹ZY
: (IC (Σg,1) , ◦) −→

Ä
AY

(�g�+ ∪ �g�−), �
ä

which is universal among Q-valued finite-type invariants.

Habegger had already defined in [Hab00a] a universal finite-type invariant of homology cylinders
which was deduced in another way from the Kontsevich–LMO invariant [Hab00a], but he did not
address the multiplicativity issue which seems to be difficult in his case. Nevertheless, the method
used by Habegger to recover Johnson’s homomorphisms from the tree-level of his invariant (the so-
called “Milnor–Johnson correspondence”) works as well for our invariant ‹ZY [CHM08, §8.5]: thus,
for any M ∈ IC(Σg,1), the leading term of the “tree-reduction” of ‹ZY

(M) is essentially7 the first non-
vanishing Johnson homomorphism of M . Finally, let us mention that another universal finite-type in-
variant of homology cylinders has been constructed by Andersen, Bene, Meilhan & Penner [ABMP10]
using an extension of the Kontsevich integral [AMR98] to framed links in Σg,1 × [−1, 1].

The topic of homology cylinders from the viewpoint of finite-type invariants is the subject of §3.

2.2 Splitting formulas for the LMO invariant [Mas12c]

For Q-homology spheres, there are two universal finite-type invariants: the Le–Murakami–Ohtsuki in-
variant [LMO98] and the Kontsevich–Kuperberg–Thurston invariant [Kon94, KT99]. These invariants
take values in the same space A(∅) of trivalent Jacobi diagrams, but it is not known whether they are
equal. Lescop obtained in [Les04] some relations satisfied by the variations of the KKT invariant when
one replaces embedded Q-homology handlebodies by others in a “Lagrangian-preserving” way. It is
shown in [Mas12c] that the LMO invariant satisfies exactly the same relations.

6This monoid is denoted by Cyl(Fg) in [CHM08].
7We do not give a precise statement here, since we shall give in §4.1 a topological interpretation of the full tree-reduction

of the LMO functor.
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We first recall how Lescop’s “Lagrangian-preserving” surgeries are defined. A Q-homology handle-
body of genus g is a compact oriented 3-manifoldC � that has the sameQ-homology as the usual genus g
handlebody. The Lagrangian of C � is the kernel LQ

C� of the homomorphism H1(∂C
�
;Q) → H1(C

�
;Q)

induced by the inclusion ∂C
� ⊂ C

�: this is a Lagrangian subspace of H1(∂C
�
;Q) for the intersection

form. A Q-Lagrangian-preserving pair (or, in short, Q-LP pair) is a couple C = (C
�
, C

��
) of two Q-

homology handlebodies whose boundaries are identified ∂C
�
= ∂C

�� in such a way that LQ
C� = L

Q
C�� .

The total manifold of the Q-LP pair C is the closed oriented 3-manifold

C := (−C
�
) ∪∂ C

��
.

The form H
1
(C;Q)

⊗3 → Q defined by triple-cup products (x, y, z) �→ �x ∪ y ∪ z, [C]� is skew-
symmetric: we denote it by

µ (C) ∈ HomQ
Ä
Λ
3
H

1
(C;Q),Q

ä
� Λ

3
H1(C;Q).

Given a closed oriented 3-manifold M and a Q-LP pair C = (C
�
, C

��
) such that C � ⊂ M , one can

replace in M the submanifold C
� by C

�� to obtain a new 3-manifold:

MC :=
�
M \ int(C �

)
�
∪∂ C

��
.

The move M � MC between closed oriented 3-manifolds is called a Q-LP surgery.

The Z-LP surgery is defined in a similar way by replacing Q-homology with Z-homology. A Torelli
surgery M � M(S,s), as defined in §1.2, is clearly an instance of a Z-LP surgery (since the regular
neighborhood of S in M is a handlebody), and the converse is true (since any Z-homology handlebody
can be obtained from the usual handlebody of the same genus by doing clasper surgery or, equivalently,
by a Torelli surgery [Hab00a]). Therefore, if one replaces Torelli surgeries by Z-LP surgeries in §1.2,
one obtains the same notion of finite-type invariant [AL05]. However, the notion differs if one uses
Q-LP surgeries instead of Z-LP surgeries: this difference has been recently analyzed by Moussard in
the case of Q-homology spheres [Mou12]. Let us observe that, in contrast with Z-LP surgery, Q-LP
surgery relates any two Q-homology spheres: therefore Q-LP surgery is more appropriate if one wants
to consider Q-homology spheres all together.

Suppose that we are now given a Q-homology sphere M and r Q-LP pairs C = (C1, . . . ,Cr) such that
C

�
i
⊂ M and C

�
i
∩ C

�
j
= ∅ for all i �= j. We associate to the family C the following tensor:

µ(C) := µ(C1)⊗ · · ·⊗ µ(Cr) ∈
r�

i=1

Λ
3
H1(Ci;Q) ⊂ S

r
Λ
3
H1(C;Q) (2.4)

where C := C1 � · · · � Cr so that H1(C;Q) = H1(C1;Q) ⊕ · · · ⊕H1(Cr;Q). Besides, the linking
number in M defines for any i �= j a linear map

ci,j : H1(C
�
i;Q)⊗H1(C

�
j ;Q) −→ Q

by setting ci,j([K], [L]) := LkM (K,L) for any oriented knots K ⊂ C
�
i

and L ⊂ C
�
j
. Since the space

r�

i,j=1

HomQ
Ä
H1(C

�
i;Q)⊗H1(C

�
j ;Q),Q

ä
�

r�

i,j=1

HomQ
Ä
H1(Ci;Q)⊗H1(Cj ;Q),Q

ä

� HomQ
Ä
H1(C;Q)⊗H1(C;Q),Q

ä

� H
1
(C;Q)⊗H

1
(C;Q)
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projects onto S
2
H

1
(C;Q), the sum �

i �=j ci,j defines a symmetric tensor which we denote by

LkM (C) ∈ S
2
H

1
(C;Q). (2.5)

Next, symmetric 2-tensors such as (2.5), and symmetric products of antisymmetric 3-tensors such as
(2.4), can be depicted graphically using the space A(V ) defined at (2.1) for any Q-vector space V .
Indeed any v1 · v2 ∈ S

2
V can be presented as the Jacobi diagram

v1 v2

and, similarly, any (vi1 ∧ vj1 ∧ vk1) · · · (vir ∧ vjr ∧ vkr) ∈ S
r
Λ
3
V can be seen as the Jacobi diagram

vk1 vj1 vi1
· · ·

vkr vjr vir
.

If the space A(V ) is completed by the degree and has the disjoint union � as operation, then the
exponential exp�(x) :=

�
n≥0 x

�n
/n! ∈ A(V ) is defined for any x ∈ A(V ) of degree > 0. Let

AY
(V ) be the subspace of A(V ) spanned by diagrams without strut component . The “contraction”

pairing

AY
(V )⊗A(V

∗
)

�−,−�V
�� A(∅) (2.6)

assigns to any Jacobi diagramsD ∈ AY
(V ) andE ∈ A(V

∗
) the sum of all ways of gluing all univalent

vertices of D to all univalent vertices of E by means of the evaluation pairing V ⊗ V
∗ → Q.

Theorem 2.3. [Mas12c] Let M be a Q-homology sphere and let C = (C1, . . . ,Cr) be a family of r
Q-LP pairs such that C �

i
⊂ M and C

�
i
∩ C

�
j
= ∅ for all i �= j. For any I ⊂ {1, . . . , r}, let MI be

the 3-manifold obtained from M by simultaneous Q-LP surgeries along those C
�
i

that are indexed by
i ∈ I . Then, the sum �

I⊂{1,...,r}
(−1)

|I| · Z (MI) ∈ A(∅) (2.7)

starts in i-degree r with
¨
µ(C), exp� (LkM (C)/2)

∂
H1(C;Q)

.

Theorem 2.3 has been announced in [CHM08, Rem. 7.12] and it is proved in [Mas12c] by means of
the LMO functor. The starting point for the proof is that Q-homology handlebodies are Q-Lagrangian
cobordisms for appropriate parameterizations of their boundaries: therefore, if a Q-homology sphere
M is decomposed as the union of two Q-homology handlebodies, the LMO functor can be applied to
such a decomposition in order to compute Z(M). Note that the “contraction” pairing (2.6) is a special
case of the composition (2.2) in the category tsA.

Theorem 2.3 generalizes the fact that the LMO invariant of Q-homology spheres is universal among Q-
valued finite-type invariants [Le97, Hab00b]. It is the analogue of Lescop’s result for the Kontsevich–
Kuperberg–Thurston invariant ZKKT: see [Les04] and [Les09, §3]. Lescop’s result for ZKKT gener-
alizes her “sum formula” for the Casson–Walker invariant [Les98]. Indeed, according to [Les04] and
[LMO98], we have

i-degree 2 part of ZKKT
(M) =

λW(M)

4
· = i-degree 2 part of Z(M)

where λW(M) denotes Walker’s extension of the Casson invariant as normalized in [Wal92].
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3 Finite-type invariants of homology cylinders

3.1 The Lie algebra of homology cylinders [HM09]

Let Σ := Σg,1 be a compact connected oriented surface of genus g with one boundary component. The
mapping cylinder construction c : I(Σ) → IC(Σ) defined at (1.12) is an embedding of the Torelli
group into the monoid of homology cylinders8. The main result of [HM09] is a diagrammatic descrip-
tion of the map c at the level of graded Lie algebras, which we now define.

On the side of the Torelli group, the lower central series plays a very important role in the works
of Johnson and Morita. This series is contained in the Johnson filtration (1.11), which has a trivial
intersection since the group π := π1(Σ, ∗) is free. Therefore the lower central series of I(Σ) has a
trivial intersection too, and it is natural to consider the associated graded Lie ring

Gr
Γ I(Σ) :=

�

i≥1

ΓiI(Σ)
Γi+1I(Σ)

.

Assuming that g ≥ 3, Johnson proves in [Joh80] that the homomorphism ρ2 : I(Σ) → Aut(π/Γ3π)

(defined at (1.10)) induces an isomorphism between the abelianization of I(Σ)with rational coefficients
and the third exterior power Λ

3
HQ of HQ := H1(Σ;Q). Therefore there is a graded Lie algebra

epimorphism
J : L

Ä
Λ
3
HQ
ä
−→ Gr

Γ I(Σ)⊗Q

where L
�
Λ
3
HQ

�
denotes the Lie algebra freely generated by the vector space Λ

3
HQ in degree 1. Ac-

cording to Hain [Hai97], the ideal of relations R(I(Σ)) := Ker J is generated by its degree 2 and de-
gree 3 parts and, in genus g ≥ 6, the degree 2 part is enough. Thus the map J induces a quadratic/cubic
presentation of the graded Lie algebra Gr

Γ I(Σ)⊗Q.

On the side of homology cylinders, there is a filtration on IC(Σ) which plays a role similar to the lower
central series of a group. This is the Y -filtration

IC(Σ) = Y1IC(Σ) ⊃ Y2IC(Σ) ⊃ Y3IC(Σ) ⊃ · · · (3.1)

where, for any integer k ≥ 1, YkIC(Σ) is the submonoid of homology cylinders that are Yk-equivalent
to Σ× [−1, 1]. By results of Goussarov [Gou00] and Habiro [Hab00b],

Gr
Y IC(Σ) :=

�

i≥1

YiIC(Σ)
Yi+1

has the structure of a graded Lie ring which is similar to the graded Lie ring associated to an “N -series”
of a group [Laz54]. The Lie algebra of homology cylinders Gr

Y IC(Σ) ⊗ Q has been introduced by
Habiro [Hab00b]. Let AY,c

(�g�+∪�g�−) be the subspace of AY
(�g�+∪�g�−) spanned by connected

Jacobi diagrams, and equip it with the Lie bracket [−,−]� induced by the associative multiplication �

defined at (2.3). Corollary 2.2 is equivalent to saying that the map

Gr ‹ZY
: Gr

Y IC(Σ)⊗Q −→ AY,c
(�g�+ ∪ �g�−), {M}Yk+1 ⊗ 1 �−→ ‹ZY

k (M) (3.2)

is a Lie algebra isomorphism, where {M}Yk+1 denotes the Yk+1-equivalence class of anM ∈ YkIC(Σ)
and ‹ZY

k
(M) denotes the i-degree k part of ‹ZY

(M). An equivalent diagrammatic description of the
Lie algebra Gr

Y IC(Σ)⊗Q was announced in [Hab00b].

8The group I(Σ) is denoted by Ig,1 in [HM09] and the monoid IC(Σ) is denoted by Cg,1.
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Clearly the mapping cylinder construction (1.12) sends the lower central series of I(Σ) to the Y -
filtration of IC(Σ), hence a Lie ring homomorphism

Gr c : Gr
Γ I(Σ) −→ Gr

Y IC(Σ).

The interactions between the Johnson–Morita theory and the theory of finite-type invariants are mainly
contained in this homomorphism. In order to relate Hain’s presentation of Gr

Γ I(Σ) ⊗ Q to the dia-
grammatic description (3.2), we need an alternative description of the algebra AY

(�g�+ ∪ �g�−). For
this, we consider in the space A(HQ), which is defined at (2.1), the subspace AY

(HQ) spanned by
Jacobi diagrams without strut component . Given two Jacobi diagrams D,E ∈ AY

(HQ), whose
sets of univalent vertices are denoted by V and W respectively, we define

D � E :=

�

V
� ⊂ V, W

� ⊂ W

β : V
� �−→ W

�

1

2|V �| ·
�

v∈V �
ω

Ä
col(v), col(β(v))

ä
· (D ∪β E).

Here ω : HQ ×HQ → Q is the symplectic form defined by the homological intersection in Σ, the sum
is taken over all ways β of identifying a part V � of V with a part W � of W and D ∪β E is obtained
from the disjoint union D � E by gluing each vertex v ∈ V

� with β(v) ∈ W
�. This operation � on

AY
(HQ) is associative and it can be regarded as a diagrammatic analogue of the Moyal–Weyl product

on the symmetric algebra of a symplectic vector space. This analogy is justified by considering the
“weight system” associated to a simple Lie algebra [HM09, §3.3]. We call

Ä
AY

(HQ), �
ä

the algebra
of symplectic Jacobi diagrams.

Lemma 3.1. [HM09, §3.1] There is an algebra isomorphism

κ :

Ä
AY
Ä
�g�+ ∪ �g�−

ä
, �

ä
→
Ä
AY

(HQ), �
ä

defined by

κ(D) := (−1)
χ(D) ·

Ç
sum of all ways of (×1/2)-gluing some of the i−-colored vertices of D

with some of the i+-colored vertices of D, for every i ∈ {1, . . . , g}

å
.

Here, χ(D) is the Euler characteristic of a Jacobi diagram D, a “(×1/2)-gluing” means the gluing of
two vertices and the multiplication of the resulting diagram by 1/2, and the colors in �g�+ ∪ �g�− are
interpreted as colors in HQ using the rules j+ �→ [βj ] and j

− �→ [αj ] for any j ∈ {1, . . . , g}.

The benefit of switching from the algebra AY
(�g�+ ∪ �g�−) to the algebra AY

(HQ) is that the former
implicitly referred to the system of meridians and parallels (α,β) on the surface Σ, whereas the latter
only refers to the Q-homology of Σ and its multiplication is equivariant for the natural action of the
symplectic group Sp(HQ).

We now define the LMO homomorphism as the composition

Z := κ ◦ ‹ZY
: IC(Σ) −→ AY

(HQ). (3.3)

In the sequel, we abuse notation and we simply denote AY
(HQ) by A(HQ) as we did in [HM09]. It is

shown in [HM09, §4.1] by calculus of claspers that

GrZ = κ ◦Gr ‹ZY
: Gr

Y IC(Σ)⊗Q −→ Ac
(HQ)

does not depend on the preliminary choices that are needed for the construction of the LMO functor (see
page 11). Here Ac

(HQ) denotes the subspace of A(HQ) spanned by connected Jacobi diagrams, and
it is equipped with the Lie bracket [−,−]� induced by the associative multiplication �. The following
is our algebraic description of (Gr c)⊗Q and answers a question asked by Habiro in [Hab00b].
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Theorem 3.1. [HM09, Th. 1.4] Assume that g ≥ 3. Then the following diagram is commutative in the
category of graded Lie algebras with Sp(HQ)-actions:

Gr
Γ I(Σ)⊗Q

(Gr c)⊗Q
�� Gr

Y IC(Σ)⊗Q

� GrZ

��
L(Λ3

HQ)
R(I(Σ))

�J

��

Y
�� Ac

(HQ).

Here Y is induced by the Lie algebra homomorphism Y : L(Λ3
HQ) → Ac

(HQ) which, in degree 1,

sends the trivector x ∧ y ∧ z to the diagram x y z .

On the one hand, the quadratic relations of the Lie algebra Gr
Γ I(Σ) ⊗ Q can be computed using the

representation theory of the symplectic group. This has been done by Hain [Hai97] and Habegger &
Sorger [HS00] who showed that (for g ≥ 3) the Sp(HQ)-module R2(I(Σ)) is spanned by the following
elements r1, r2 of L2(Λ

3
HQ):

r1 :=

�
[α1 ∧ α2 ∧ β2,α3 ∧ α4 ∧ β4] if g ≥ 4,

0 if g = 3,

r2 := [α1 ∧ α2 ∧ β2,αg ∧ ω] if g ≥ 3.

On the other hand, we have the following description of the Lie bracket of Ac
(HQ) in degree 1 + 1,

which is also obtained using the representation theory of Sp(HQ).

Proposition 3.1. [HM09, §§5.3–5.5] Assume that g ≥ 3. The image of Y2 : L2(Λ
3
HQ) → Ac

2(HQ) is
the subspace spanned by the Theta graph and by the H graphs. Besides its kernel is Sp(HQ)-spanned
by the elements r1, r2.

Then the following is deduced from Theorem 3.1.

Corollary 3.1. [HM09, Cor. 1.6] If g ≥ 3, then (Gr c)⊗Q is injective in degree 2.

We also deduce that (Gr c) ⊗ Q is not surjective since Phi graphs are not in the image of Y2. This is
a diagrammatic translation of Morita’s results [Mor89, Mor91]: the quotient (Γ2I(Σ)/Γ3I(Σ)) ⊗ Q
is determined by the restriction of ρ3 : I(Σ) → Aut(π/Γ4π) to Γ2I(Σ) (i.e. by the second Johnson
homomorphism, which corresponds to the H graphs) and by the Casson invariant (which corresponds
to the Theta graph).

Finally, the previous results are extended in [HM09, §7] to the case where Σ is replaced by a closed
connected oriented surface. The statements must be adapted to this case and the proofs become sub-
stantially more technical. We shall not describe the closed case here.

3.2 The Goussarov–Habiro conjecture [Mas07]

As shown by Habiro [Hab00b] and by Goussarov [Gou00], the converse of (1.6) is true for Z-homology
spheres or, equivalently, for homology cylinders over a disk. Their result provides a surgery description
of the “separation power” of finite-type invariants in this particular case. Here, we consider an arbitrary
compact connected oriented surface Σ.

Conjecture. (Goussarov–Habiro) Two homology cylinders over Σ are Yd+1-equivalent if, and only if,
they are not distinguished by finite-type invariants of degree at most d.
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The paper [Mas07] identifies the algebra underlying the “Goussarov–Habiro conjecture” (or GHC, for
short) by observing that it is a special instance of a general problem in group theory, which is known as
the “dimension subgroup problem” (or DSP, for short). Classically, for a given group G, the question
is whether the k-th term of the lower central series coincides with the k-th dimension subgroup, i.e. the
subgroup of G determined by the k-th power of the augmentation ideal I of the group ring Z[G]:

ΓkG
?
= G ∩ (1 + I

k
). (3.4)

The inclusion “⊂” is always true, as we have mentioned at (1.5). The DSP can be considered in the
more general setting where the lower central series of G is replaced by an N-series, i.e. by an arbitrary
descending chain of subgroups

G = N1G ⊃ N2G ⊃ N3G ⊃ · · ·

such that [NiG,NjG] ⊂ Ni+jG for any integers i, j ≥ 1. It is observed in [Mas07] that the GHC can
be reduced to the DSP after an algebraic re-formulation of topological results due to Habiro [Hab00b]
and Goussarov [Gou00], and which notably led to the above-mentioned result on Z-homology spheres.
In particular, they have shown by calculus of claspers that the monoid9 IC(Σ) quotiented out by the
Yd+1-equivalence relation is a group. The N -series to be considered on that group is induced by the
Y -filtration (3.1) on the monoid IC(Σ).

Unfortunately, the DSP has been known to be a difficult problem since Rips exhibited a finite 2-group G

where (3.4) fails in degree k = 4 [Rip72]. Hence the algebraic reduction of the GHC to the DSP does
not solve by itself this topological conjecture (other than up to degree d+1 = 3). Nevertheless, the DSP
has been solved for coefficients in a field. For the lower central series, this is due to Mal’cev, Jennings
and Hall in the zero characteristic case [Mal49, Jen55, Hal69] and to Jennings and Lazard in the positive
characteristic case [Jen41, Laz54]. These results are generalized in [Mas07, §4.1] to arbitrary N -series
by following Passi’s book [Pas79]. Thus, we obtain a version of the GHC for finite-type invariants with
values in a given field F, and the statement depends on the characteristic of F.

Theorem 3.2. [Mas07, Th. 1.1] Let F be a field of characteristic 0, and let M,M
� be two homology

cylinders over Σ. Finite-type invariants of degree at most d with values in F do not distinguish M from
M

� if, and only if, there exists an integer n > 0 such that Mn is Yd+1-equivalent to M
�n.

Theorem 3.3. [Mas07, Th. 1.2] Let F be a field of characteristic p > 0, and letM,M
� be two homology

cylinders over Σ. Finite-type invariants of degree at most d with values in F do not distinguish M from
M

� if, and only if, there exist some C1, . . . , Cr ∈ IC(Σ) and some integers e1, . . . , er ≥ 0 such that

• Ci is Yki-equivalent to Σ× [−1, 1] for some integer ki > 0 such that kipei ≥ d+ 1,

• M
�
= M ·�r

i=1Ci
p
ei .

A weakened version of the GHC is deduced from the above results.

Corollary 3.2. [Mas07, Cor. 1.3] There exists an integer d(Σ, d) ≥ d such that, if two homology
cylinders over Σ are not distinguished by finite-type invariants of degree at most d(Σ, d), then they are
Yd+1-equivalent.

Consequently two homology cylinders are Yk-equivalent for all k ≥ 1 if, and only if, they are not dis-
tinguished by finite-type invariants (with values in any abelian group).

9This monoid is denoted by Cyl(Σ) in [Mas07].
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By the same kind of algebraic methods, we prove that the universal enveloping algebra of the Lie algebra
of homology cylinders Gr

Y IC(Σ)⊗Q is canonically isomorphic to the algebra dual to Q-valued finite-
type invariants, namely

Gr
F Q·IC(Σ) =

�

i≥0

Fi(IC(Σ))
Fi+1(IC(Σ))

where F is the filtration (1.7) with coefficients in Q. This remains valid if Q is replaced by any field F
of characteristic zero. If F is a field of characteristic p > 0, there is a similar result using the notions
of restricted Lie algebra and restricted universal enveloping algebra. All this is proved in [Mas07, §5]
by extending a result of Quillen for the lower central series of a group [Qui68] to arbitrary N -series.

3.3 Surgery equivalence relations and the core of the Casson invariant [MM10]

Let Σ := Σg,1 be a compact connected oriented surface of genus g with one boundary component.
As we have mentioned in §1.5, the Y1-equivalence relation is trivial on IC(Σ) [Hab00b, Hab00a]
and the Y2-equivalence is classified in [Hab00b, MM03]. The paper [MM10] provides the following
characterization of the Y3-equivalence.

Theorem 3.4. [MM10, Th. A] Let M and M
� be two homology cylinders over Σ. The following

assertions are equivalent:

(a) M and M
� are Y3-equivalent;

(b) M and M
� are not distinguished by any finite-type invariants of degree at most 2;

(c) M and M
� share the same invariants ρ3,λj and α;

(d) the LMO homomorphism Z agrees on M and M
� up to i-degree 2.

The LMO homomorphism Z : IC(Σ) → A(HQ) of condition (d) belongs to quantum topology and
has been defined at (3.3). The invariants ρ3,λj and α of condition (c) are more classical invariants
which we now describe.

The first invariant is an extension for k = 3 of the homomorphism ρk : I(Σ) → Aut(π/Γk+1π),
defined at (1.10) where π := π1(Σ, ∗) and ∗ ∈ ∂Σ. Indeed, by virtue of Stallings’ theorem [Sta65], ρk
can be extended to the monoid IC(Σ) for any integer k ≥ 1:

ρk : IC(Σ) −→ Aut(π/Γk+1π), M �−→ (m−,∗ mod Γk+1π)
−1 ◦ (m+,∗ mod Γk+1π). (3.5)

(Recall that, for any M ∈ IC(Σ), m± : Σ → M denotes the boundary parameterization of the
“top/bottom” surface ∂±M .) The definition of the second invariant λj : IC(Σ) → Z needs to choose
an embedding j : Σ �→ S

3 such that j(Σ) union with a disk splits S3 into two handlebodies:

∀M ∈ IC(Σ), λj(M) := λ

Ç
Z-homology sphere obtained by “plugging”

M into S
3 in a neighborhood of j(Σ)

å

where λ denotes the Casson invariant.10 In order to define the third invariant α, we need the Alexander
polynomial of homology cylinders relative to their “bottom” boundary. More precisely, we define
the relative Alexander polynomial of an M ∈ IC(Σ) as the order of the relative homology group of
(M, ∂−M) with coefficients twisted by m

−1
±,∗ : H1(M ;Z) → H1(Σ;Z):

∆(M, ∂−M) := ordH1(M, ∂−M ;Z[H]) ∈ Z[H]/±H where H := H1(Σ;Z).
10Here, the Casson invariant λ(N) ∈ Z of a Z-homology sphere N is as normalized in [GM92]. We have λ(N) =

λW(N)/2 where λW is the normalization of [Wal92].
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The multiplicative indeterminacy in ±H can be fixed by considering a relative version of the Reide-
meister–Turaev torsion τ introduced by Benedetti & Petronio [BP01, FJR11]. For this refinement of the
relative Alexander polynomial, it is necessary to fix an Euler structure on (M, ∂−M), i.e. a homotopy
class of vector fields on M with prescribed behaviour on the boundary. Actually, any M ∈ IC(Σ)
has a preferred Euler structure ξ0 [MM10, Def. 3.8] so that the class ∆(M, ∂−M) has a preferred
representative

τ(M, ∂−M ; ξ0) ∈ Z[H].

This invariant of homology cylinders features the same finiteness properties as the Reidemeister–Turaev
torsion of closed oriented 3-manifolds [Mas10]. More precisely, if we denote by I the augmentation
ideal of Z[H], then the reduction of τ(M, ∂−M ; ξ0) modulo I

k+1 is for every k ≥ 0 a finite-type
invariant of degree at most k. In particular,

α(M) ∈ I
2
/I

3 � S
2
H

is the “quadratic part” that can be extracted from τ(M, ∂−M ; ξ0): we refer to [MM10, §3.2] for details.

In genus g = 0, Theorem 3.4 asserts that two Z-homology spheres are Y3-equivalent if and only if they
have the same Casson invariant, which is due to Habiro [Hab00b]. The equivalence between conditions
(a) and (b) has already been observed in [Mas07] for any kind of surface Σ. The equivalence between
(a), (b) and (d) is proved using the universality of the LMO homomorphism amongQ-valued finite-type
invariants (see Corollary 2.2), its good behaviour under clasper surgery and the torsion-freeness of a
certain space of Jacobi diagrams. Next, the equivalence of condition (c) with the other three follows by
determining precisely how the invariants ρ3,λj and α are diagrammatically encoded in the LMO ho-
momorphism. We emphasize that the Birman–Craggs homomorphisms, which are needed to classify
the Y2-equivalence [MM03], do not appear explicitly in the above statement for the Y3-equivalence:
indeed they are determined by the triplet (ρ3,λj ,α) [MM10, §3.4]. A diagrammatic description of the
group IC(Σ)/Y3 is also given in [MM10, §5.3].

Besides, we obtain characterizations of the Jk-equivalence relations for k = 2 and k = 3.

Theorem 3.5. [MM10, Th. B] Two homology cylinders M and M
� over Σ are J2-equivalent if and

only if we have ρ2(M) = ρ2(M
�
).

In genus g = 0, Theorem 3.5 asserts that anyZ-homology sphere is J2-equivalent to S3. This is already
noticed by Morita in [Mor89] and follows from Casson’s observation that any Z-homology sphere is
obtained from S

3 by a finite sequence of surgeries along (±1)-framed knots [GM92]. Theorem 3.5
easily follows from the computation of IC(Σ)/Y2 done in [MM03].

Theorem 3.6. [MM10, Th. C] Two homology cylinders M and M
� over Σ are J3-equivalent if and

only if we have ρ3(M) = ρ3(M
�
) and α(M) = α(M

�
).

In genus g = 0, we obtain that any Z-homology sphere is J3-equivalent to S
3, which is due to Pitsch

[Pit08]. Theorem 3.6 is deduced from Theorem 3.4.

Although the invariant λj is easy to compute by surgery techniques (since it is built from the Casson
invariant λ), it is not completely satisfactory in that it depends on the embedding j of the surface Σ

in S
3. This phenomenon already appears at the level of the Torelli group, i.e. for the composition

λj ◦c : I(Σ) → Z which has been studied in detail by Morita [Mor89, Mor91]. More precisely, he has
shown that its restriction to the Johnson subgroup K(Σ) := Ker ρ2 (i.e. the second term of the Johnson
filtration (1.11)) is a group homomorphism which decomposes as

−λj ◦ c|K(Σ) = qj +
1

24
d. (3.6)
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Here the homomorphism qj : K(Σ) → Q is explicitly determined by ρ3 in a way which involves
j, whereas the homomorphism d : K(Σ) → Z does not depend on j. The J3-equivalence relation
being trivial for Z-homology spheres [Pit08], formula (3.6) shows that all the information carried by
the Casson invariant is contained in this map d: Morita calls it the core of the Casson invariant. Let
KC(Σ) := Ker ρ2 be the submonoid of IC(Σ) that acts trivially on π/Γ3π.

Theorem 3.7. [MM10, Th. D] If g ≥ 3, then there is a unique extension of the core of the Casson
invariant to the monoid KC(Σ)

K(Σ)
d

��

c
��

8Z

KC(Σ)
d

���
�

�
�

�

that is invariant under Y3-equivalence and under the action of the mapping class group.

Here the mapping class group M(Σ) acts on IC(Σ) by changing the boundary parameterization of
cobordisms (which generalizes the action of M(Σ) on I(Σ) by conjugation). The assumption g ≥ 3

in Theorem 3.7 can be removed by requiring the invariance under stabilization of the surfaceΣ [MM10,
Th. 7.8]. The unicity of the extension of d is justified by comparing the decomposition of Γ2I(Σ)

Γ3I(Σ) ⊗Q
into irreducible Sp(HQ)-modules [Hai97, HS00] to that of Y2IC(Σ)

Y3
⊗Q [HM09]. The extension of the

homomorphism d to the monoid KC(Σ) can be explicitly defined from the i-degree 2 part of the LMO
homomorphism Z, or, in terms of classical invariants as follows:

d = −24 (λj + qj) + (something explicitly derived from α using j). (3.7)

This generalizes Morita’s formula (3.6) since α is trivial on K(Σ).

4 From finite-type invariants to the Dehn–Nielsen representation

4.1 The tree-reduction of the LMO homomorphism [Mas12b]

Let Σ := Σg,1 be a compact connected oriented surface of genus g with one boundary component.
As in the previous sections, we denote HQ := H1(Σ;Q) and π := π1(Σ, ∗) where ∗ ∈ ∂Σ. Recall
from §3.1 that the LMO homomorphism Z : IC(Σ) → A(HQ) is a monoid homomorphism which is
universal among Q-valued finite-type invariants [CHM08, HM09]. The paper [Mas12b] interprets the
“tree reduction” of Z as an “infinitesimal” version of the Dehn–Nielsen representation. In particular,
Z contains some “infinitesimal” versions of Morita’s homomorphisms.

Let us first recall the definition of Morita’s homomorphisms. For every integer k ≥ 1, we denote by
IC(Σ)[k] the kernel of the representation ρk : IC(Σ) → Aut(π/Γk+1π) defined at (3.5). Thus we
obtain a filtration

IC(Σ) = IC(Σ)[1] ⊃ IC(Σ)[2] ⊃ IC(Σ)[3] ⊃ · · · (4.1)

of IC(Σ) by submonoids [Hab00b, GL05]. This is the analogue of the Johnson filtration (1.11) of the
Torelli group I(Σ) but, in contrast with the latter case, it is far from being separated: in the case g = 0,
for instance, we have IC(Σ)[k] = IC(Σ) for every k ≥ 0. For any integer k ≥ 1, the k-th Morita
homomorphism is the map

Mk : IC(Σ)[k] −→ H3 (π/Γk+1π;Z) , M �−→ µk(closure of M).

Here the closure of M is the closed oriented 3-manifold obtained from M by gluing its top boundary
∂+M to its bottom boundary ∂−M , and by gluing a solid torus to the resulting 3-manifold. For any
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closed oriented 3-manifold C, µk(C) denotes the image11 of the fundamental class [C] ∈ H3(C;Z)
in H3(K(π1(C)/Γk+1π1(C), 1);Z). These homomorphisms have been studied in [Mor93a, Hea06,
Sak06]. By considering the simplicial model of the Eilenberg–MacLane space K(π/Γk+1π, 1), one
can give a more algebraic definition of Mk and this was the original approach of Morita. The k-
th Morita homomorphism is a refinement of the k-th Johnson homomorphism, which is defined in
[Joh83b, Mor93a] for the Torelli group and in [GL05] for homology cylinders.

For every integer k ≥ 1, we define an infinitesimal analogue of the k-th Morita homomorphism

mk : IC(Σ)[k] −→ H3

Ä
m(π/Γk+1π)

ä

where m(π/Γk+1π) is the Malcev Lie algebra of the group π/Γk+1π. The definition of mk given in
[Mas12b, §4] imitates the algebraic definition of Mk, the use of the bar resolution for groups being
simply replaced by that of the Koszul resolution for Lie algebras. Actually, the homomorphism mk

is equivalent to Mk through a canonical isomorphism P : H3 (π/Γk+1π;Q) → H3

Ä
m(π/Γk+1π)

ä

due to Pickel [Pic78]. The advantage of passing from Mk to its infinitesimal version mk is mainly the
possibility of writing its values in a diagrammatic way. Indeed the Lie algebra m(π/Γk+1π) is, in a
non-canonical way, isomorphic to the quotient L(HQ)/L≥k+1(HQ) of the Lie algebra L(HQ) freely
generated in degree 1 by the vector space HQ � π/Γ2π ⊗ Q. (Here L≥k+1(HQ) denotes the part
of L(HQ) of degree at least k + 1.) Next, any acyclic HQ-colored connected Jacobi diagram can be
transformed to a 3-chain in the Koszul complex of L(HQ) by a simple “fission” process. For instance,
the fission of the diagram

h1

h2
h3 h4

h5
produces the trivector

h1 ∧ h2 ∧ [h3, [h4, h5]] + h3 ∧ [h4, h5] ∧ [h1, h2] + h5 ∧ [[h1, h2], h3] ∧ h4.

We observe that this fission process sends the IHX relation of Jacobi diagrams to exact 3-chains in the
Koszul complex. Thanks to prior computations of Igusa & Orr [IO01], we show the following.

Theorem 4.1. [Mas12b, Th. 1.5] Let Ac,t
(HQ) be the subspace of A(HQ) spanned by connected tree-

shaped Jacobi diagrams. Then, the fission process induces an isomorphism

Φ :

2k−1�

d=k

Ac,t

d
(HQ)

�−→ H3

�
L(HQ)/L≥k+1(HQ)

�
.

Thus, one obtains a diagrammatic description of mk as soon as an identification between the Lie alge-
bras m(π/Γk+1π) and L(HQ)/L≥k+1(HQ) is fixed. Some of these identifications shall be better for
our purposes.

Definition 4.1. [Mas12b, §2.3] A symplectic expansion of π is a multiplicative map θ : π → T̂ (HQ)
with values in the complete tensor algebra generated by HQ, such that

(i) for any x ∈ π, θ(x) = 1 + [x] + (deg ≥ 2) where [x] ∈ π

[π,π] ⊗ Q � HQ is seen as a degree 1

element of T̂ (HQ),

(ii) for any x ∈ π, θ(x) is group-like in T̂ (HQ),

(iii) θ ([∂Σ]) = exp(−ω) where ω ∈ Λ
2
HQ is the homology intersection form of Σ and is seen as a

degree 2 element of T̂ (HQ).
11This is sometimes called the k-th nilpotent homotopy type of C [Tur84].
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Conditions (i) and (ii) are equivalent to asking for a filtration-preserving Lie algebra isomorphism θ

between m(π) and the complete free Lie algebra L̂(HQ) spanned by HQ: in particular, this induces for
any k ≥ 1 an isomorphism θ : m(π/Γk+1π) → L(HQ)/L≥k+1(HQ) as required. The third condition,
about the symplectic form ω, is needed for the following construction. We consider, for every k ≥ 1,
the following composition

IC(Σ) ρk
��

�
θ
k

��
� � � � � � � � � � � � � � � � � � � � � � � � � �

Aut(π/Γk+1π)
��

m
�� Aut

Ä
m(π/Γk+1π)

ä
θ◦−◦θ−1

�
�� Aut

Ä
L(HQ)/L≥k+1(HQ)

ä
,

and we take the limit as k → +∞ in order to obtain a monoid homomorphism

�
θ
: IC(Σ) −→ IAutω(L̂(HQ)).

Here IAutω(L̂(HQ)) denotes the group of filtration-preserving automorphisms of L̂(HQ) that fix ω

and induce the identity at the graded level. The homomorphism �
θ can be viewed as an infinitesimal

version of the Dehn–Nielsen representation ρ, which we recalled at (1.9) for the Torelli group. It is
convenient to compose �θ with the following isomorphisms:

IAutω(L̂(HQ))
log◦
�

�� Derω

Ä
L̂(HQ), L̂≥2(HQ)

ä
Ac,t

(HQ) .
η

�
��

Here log◦ is the usual logarithmic series (for the composition ◦ of linear maps L̂(HQ) → L̂(HQ)); its
target is the Lie algebra of filtration-preserving derivations of L̂(HQ) that vanish on ω and take values
in L̂≥2(HQ). The map η is the isomorphism appearing in Kontsevich’s work [Kon93a] in relation with
the cyclic operad of Lie algebras.

Theorem 4.2. [Mas12b, Th. 4.4] For any symplectic expansion θ of π, the following diagram is com-
mutative:

IC(Σ)[k]

−mk

��

η
−1 log◦ �

θ
�� Ac,t

(HQ) �� ��

2k−1�

d=k

Ac,t

d
(HQ)

Φ�
��

H3

Ä
m(π/Γk+1π)

ä �
θ∗

�� H3

Ä
L(HQ)/L≥k+1(HQ)

ä
.

Since �
θ is explicitly defined from the action of IC(Σ) on the Malcev completion of π, this result

allows for explicit computations of the k-th Morita homomorphism. In particular, we obtain that
Kermk = Ker ρ2k = IC(Σ)[2k], which gives an algebraic proof to Heap’s result [Hea06, Sak06]
that KerMk = IC(Σ)[2k].

Finally, we obtain the following algebraico-topological interpretation of the “tree reduction” of the
LMO homomorphism Z.

Theorem 4.3. [Mas12b, Th. 5.13] The LMO functor induces a symplectic expansion Θ of π which
makes the following diagram commutative:

Ac,t
(HQ)

IC(Σ)

η
−1 log◦ �

Θ
�����������������

Z
����������������� Ac

(HQ)

����

GLikeA (HQ)

log��

��
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This symplectic expansion12
Θ is derived from the LMO functor ‹Z by encoding π with a very special

class of Lagrangians cobordims g → (g + 1) and by reducing in an appropriate way the values of ‹Z
on these cobordisms: the construction of Θ is explicit and done is [Mas12b, §5.2]. In Theorem 4.3,
we use the (not yet mentioned) facts that the algebra (A(HQ), �) has a natural Hopf algebra structure
whose primitive elements are connected Jacobi diagrams, and Z takes group-like values. Theorem 4.3
also implies, in conjunction with Theorem 4.2, that the k-th Morita homomorphism corresponds to the
degree [k, 2k[ part of the “tree reduction” of the LMO homomorphism. This theorem is inspired by
an analogous result of Habegger & Masbaum for the Kontsevich integral of string-links [HM00]. The
correspondence between the two situations is the following:

Σ0,n+1 : disk with n holes Σg,1 : surface of genus g with circle boundary

pure braid group� �

��

Torelli group� �

��

monoid of string-links monoid of homology cylinders

Kontsevich integral
��

LMO homomorphism
��

Artin representation

��

Dehn–Nielsen representation
��

Milnor’s invariants Johnson/Morita’s homomorphisms

4.2 Extension of Morita homomorphisms to the Ptolemy groupoid [Mas12a]

Let Σ := Σg,1 be a compact connected oriented surface of genus g with one boundary component.
Morita & Penner considered in [MP08] the problem of extending the first Johnson homomorphism to
the Ptolemy groupoid. The same kind of problem was further considered for higher Johnson homomor-
phisms and other representations of the mapping class group M(Σ) in [BKP09, ABP09]. The paper
[Mas12a] extends in a canonical way each of Morita’s homomorphisms to the Ptolemy groupoid of Σ.
Although it is not directly related to finite-type invariants,13 this work deals with Morita homomor-
phisms using the same “infinitesimal” approach as [Mas12b].

Firstly, let us state what may be a groupoid extension problem in general. Let Γ be a group, and let K
be a CW-complex which is a K(Γ, 1)-space and whose fundamental group π1(K, �) is identified with Γ:

Given
®

an abelian group A

a group homomorphism ϕ : Γ → A

find
®

an abelian group ‹A which contains A
a groupoid homomorphism �ϕ : π

cell
1 (K) → ‹A

such that π1(K, �) = Γ� �

��

ϕ
�� A� �

��

π
cell
1 (K) �ϕ

�� ‹A.

Of course, solutions to the groupoid extension problem always exist: for instance, by choosing for each
vertex v ofK a path connecting v to the base vertex � ofK, one easily constructs an extension �ϕ ofϕwith

12The expansion Θ is denoted by θ�Z in [Mas12b].
13Representations of the Ptolemy groupoid are related to the theory of finite-type invariants in [ABMP10, Pen11].
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values in ‹A := A. The groupoid extension problem is pertinent in the following situation: the group
Γ is not well understood, and the cellular fundamental groupoid π

cell
1 (K) offers a nice combinatorial

model in which to embed Γ. Then one seeks a solution �ϕ defined by a canonical formula: the simpler
the formula, the better the solution �ϕ is. One may need to enlarge A to some ‹A to achieve this, but ‹A/A
should not be too big. From a cohomological viewpoint, the groupoid extension problem consists in
finding a 1-cocycle �ϕ : {oriented 1-cells of K} → A which represents [ϕ] ∈ H

1
(Γ;A) � H

1
(K;A):

again, the 1-cocycle �ϕ is desired to be canonical, which may require taking coefficients in a larger
abelian group ‹A ⊃ A. (A more general problem can also be stated with twisted coefficients.)

The Ptolemy groupoid is a combinatorial object which has arisen from Teichmüller theory in Penner’s
work [Pen87, Pen88]. By definition, the Ptolemy groupoid Pt(Σ) of the surface Σ is the cellular fun-
damental groupoid π

cell
1 (
fiFatb(Σ)) of a certain cell complex fiFatb(Σ). By results of Harer [Har86]

and Penner [Pen87, Pen88], fiFatb(Σ) is the universal cover of a finite cell complex Fatb(Σ) which
is a K(M(Σ), 1)-space. The cells of Fatb(Σ) are indexed by graphs of a certain kind (called “bor-
dered fatgraphs”). Then, the groupoid Pt(Σ) has the following presentation: objects are decorated
graphs of a certain kind (called “trivalent bordered fatgraphs”) whose edges are marked with elements
of π := π1(Σ, ∗); morphisms are sequences of elementary moves between such graphs (called “White-
head moves”) modulo some relations (called “involutivity”, “commutativity” and “pentagon”) [Pen04].

The paper [Mas12a] extends each of Morita’s homomorphisms to the Ptolemy groupoid. In a first
formulation, we define groupoid extensions which we call “tautological.” Indeed, there is a nice 3-
dimensional interpretation of the Ptolemy groupoid (due to Penner) which views Whitehead moves as
Pachner moves between 2-dimensional triangulations. Since the original definition of Morita’s homo-
morphisms is based on the bar resolution B∗(−) of groups [Mor93a], it is very natural to extend them
to the Ptolemy groupoid using the same simplicial approach. Then, by using the combinatorics of fat-
graphs and by giving an explicit value for each kind of Whitehead move, we define in [Mas12a, §2.1] a
canonical groupoid homomorphism �Mk which makes the following diagram commute for any choice
of a π-marked trivalent bordered fatgraph G:

π1

�fiFatb(Σ)/I(Σ)[k], {G}
�

� �

��

G I(Σ)[k] Mk
�� H3 (π/Γk+1π;Z)� �

��

π
cell
1

�fiFatb(Σ)/I(Σ)[k]
�

: Pt(Σ)/I(Σ)[k] ‹Mk

��
B3(π/Γk+1π)

Im(∂4)
.

Thus the groupoid extension problem as it is formulated above, with

Γ := I(Σ)[k], K :=
fiFatb(Σ)/I(Σ)[k] and A := H3(π/Γk+1π;Z), ϕ := Mk,

has the solution
‹A := B3(π/Γk+1π)/ Im(∂4), �ϕ := �Mk.

But, in contrast with Mk, the groupoid homomorphism �Mk has a target of infinite rank. In a second
refinement, we improve this groupoid extension by decreasing its target to a finitely generated free
abelian group. For this, we replace groups by their Malcev Lie algebras, and we use a homological
construction due to Suslin and Wodzicki [SW92]. More precisely, we need their functorial chain map
SW : B∗(F ) → Λ

∗m(F ) between the bar complex of a group F and the Koszul complex of its Malcev
Lie algebra m(F ). If F is finitely generated, torsion-free and nilpotent, the chain map SW induces
Pickel’s isomorphism P : H∗(F ;Q) → H∗(m(F )) at the level of homology [Pic78].
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Theorem 4.4. [Mas12a, Th. 3.1] The groupoid homomorphism ‹mk defined by

Pt(Σ)
I(Σ)[k]

‹Mk
��

�mk

��� � � � � � � � � � � �

B3(π/Γk+1π)
Im(∂4)

SW3
�� Tk(π) : SW3

�
B3(π/Γk+1π)

Im(∂4)

�
⊂ Λ3m(π/Γk+1π)

Im(∂4)

is an extension of Mk to the groupoid Pt(Σ)/I(Σ)[k]:

π1

�fiFatb(Σ)/I(Σ)[k], {G}
�

� �

��

G I(Σ)[k] Mk
�� H3 (π/Γk+1π;Z)

��

SW3

��

π
cell
1

�fiFatb(Σ)/I(Σ)[k]
�

Pt(Σ)/I(Σ)[k]
�mk

�� Tk(π)

Moreover, the free abelian group Tk(π) is finitely generated.

This groupoid extension of Mk is denoted by ‹mk in reference to the k-th infinitesimal Morita homo-
morphism mk = P ◦Mk introduced in [Mas12b] and recalled in §4.1. The free abelian group Tk(π) is
shown to be finitely generated by using Dynkin’s formula for the Baker–Campbell–Hausdorff series.

Since Johnson homomorphisms are determined by Morita homomorphisms in an explicit way [Mor93a],
the same constructions can be used to extend the former to the Ptolemy groupoid [Mas12a, Th. 4.1]. In
the abelian case (k = 1), M1 is equivalent to the first Johnson homomorphism and we exactly recover
Morita & Penner’s extension of the latter [MP08] with values in

1

6
Λ
3
H = T1(π) ⊂

Λ
3m(π/Γ2π)

Im(∂4)
= Λ

3
(H ⊗Q) where H := H1(Σ;Z).

However, for k > 1, it does not seem easy to relate in an explicit way our groupoid extension of the
k-th Johnson homomorphism to the work of Bene, Kawazumi & Penner [BKP09].

As by-products, we obtain extensions of Morita’s homomorphisms to the full mapping class group.
Note that the choice of a π-marked trivalent bordered fatgraph G gives an injection M(Σ) → Pt(Σ),
which sends any f ∈ M(Σ) to a finite sequence of Whitehead moves relating G to f(G).

Corollary 4.1. [Mas12a, Cor. 3.2] The map ‹mG,k defined by

M(Σ) ��
G

��

�mG,k

��� � � � � � � � � � � � �
Pt(Σ) �� �� Pt(Σ)/I(Σ)[k] �mk

�� Tk(π)

is a crossed homomorphism, whose restriction to I(Σ)[k] is mk and whose cohomology class in
H

1
(M(Σ);Tk(π)) does not depend on G.

With the same kind of constructions, we extend Johnson’s homomorphisms to crossed homomorphisms
on the full mapping class group [Mas12a, Cor. 4.3]. Such extensions of Johnson’s homomorphisms
exist in prior works by Morita [Mor93b, Mor96], Perron [Per04] and Kawazumi [Kaw05]. Our exten-
sions of Johnson/Morita’s homomorphisms to the mapping class group are similar to those obtained
by Day in [Day07, Day09]. Day also used Malcev completions of groups, but with the techniques
of differential topology. As in the work [Mas12b] relating Morita’s homomorphisms to finite-type
invariants of 3-manifolds, we use Malcev Lie algebras in the style of Jennings [Jen41] and Quillen
[Qui69]: thus, our approach is purely algebraic and it avoids Lie groups. Consequently, our extensions
of Johnson/Morita’s homomorphisms to the mapping class group are purely combinatorial. The ex-
plicit computation of these extensions is subordinate to finding some explicit closed formulas for the
Suslin–Wodzicki chain map.
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5 Questions, problems and perspectives
This part of the dissertation is not public.

A Finite-type invariants and the word metric on the Torelli group
In this appendix, we prove the following fact which we have mentioned in the introduction: the map on
the Torelli group defined by the variation of a finite-type invariant of degree d is bounded by a constant
times the d-th power of the word length and, under certain circumstances, this bound is asymptotically
sharp. This generalizes a result of Broaddus, Farb & Putman for the Casson invariant of Z-homology
spheres [BFP07]. Our motivation is to simply illustrate the polynomial nature of finite-type invariants.
Other manifestations of this nature have already been observed in the case of links, see [Dea94, Tra94,
BN95b] for instance.

A.1 Polynomial maps on a group and the word metric

Let G be a group and let F : G → A be a map with values in an abelian group A. For any integer
k ≥ 0, the k-th formal differential of F is the map

D
k
F : G× · · ·×G� �� �

k

−→ A

defined by
∀g1, . . . , gk ∈ G, D

k
F (g1, . . . , gk) := Z[F ] ((1− g1) · · · (1− gk))

where Z[F ] : Z[G] → A is the linear extension of F to the group ring Z[G]. For instance, we have

D
0
F = F (1), D

1
F (g) = F (1)−F (g), D

2
F (g1, g2) = F (1)−F (g1)−F (g2)+F (g1g2), etc.

Note that, for any integer m ≥ 1 and for any s1, . . . , sm ∈ G, we have

F (s1 · · · sm) = Z[F ]

Ä
((s1 − 1) + 1) · · · ((sm − 1) + 1)

ä

= F (1) +

m�

k=1

(−1)
k

�

1≤i1<···<ik≤m

Z[F ]

Ä
(1− si1) · · · (1− sik)

ä

=

m�

k=0

(−1)
k

�

1≤i1<···<ik≤m

D
k
F (si1 , . . . , sik). (A.1)

The map F : G → A is said to be polynomial of degree d if Dd+1
F = 0 and D

d
F �= 0. Thus, F is

polynomial of degree at most d if and only if Z[F ] vanishes on the (d+1)-st power of the augmentation
ideal of Z[G]. Polynomial maps have been used by Passi in his study of dimension subgroups [Pas79,
Chap. V]. There are plenties of examples. For instance, non-trivial constant maps and non-constant
group homomorphisms are polynomial of degree 0 and 1 respectively. If G is the discrete Heisenberg
group 





Ö
1 x z

0 1 y

0 0 1

è�������
x, y, z ∈ Z





,

then the function F : G → Z giving the z-coordinate is a polynomial map of degree 2. Besides it is
well-known that, for any integer d ≥ 0, a map F : Qn → Q is polynomial of degree d in the previous
sense if and only if it is polynomial of degree d in the usual sense.
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If the group G is generated by a finite subset S, the word length of an element g ∈ G is the least integer
m for which one can find some s1, . . . , sm ∈ S ∪ S

−1 such that g = s1 · · · sm. This length is denoted
by �g�S . Another choice S

� of finitely many generators for G would lead to an equivalent length, in
the sense that

∃λ > 0, ∀g ∈ G,
1

λ
· �g�S� ≤ �g�S ≤ λ · �g�S� .

Given a function F : G → Q, it can be interesting to bound its absolute values in terms of the word
length. The following lemma gives such an estimate when the map F is assumed to be polynomial.

Lemma A.1. Let G be a finitely generated group, let S be a finite system of generators of G, and let
F : G → Q be a polynomial map of degree d > 0. Then, there is a constant C = C(S, F ) > 0 such
that

∀g ∈ G \ {1}, |F (g)| ≤ C · �g�dS .

Moreover, this bound is asymptotically sharp in the sense that one can find a sequence x = (xn)n≥N

of elements of G and a constant D = D(S, F, x) > 0 such that

lim
n→+∞

�xn�S = +∞ and ∀n ≥ N, |F (xn)| ≥ D · �xn�dS .

Proof. In the sequel, the word length in G with respect to S is simply denoted by � · �. To prove the
first statement of the lemma, we consider an element g ∈ G\{1} with word length m ≥ 1. Thus, there
exist s1, . . . , sm ∈ S ∪ S

−1 such that g = s1 · · · sm. According to (A.1), we have

|F (g)| =
����

m�

k=0

(−1)
k

�

1≤i1<···<ik≤m

D
k
F (si1 , . . . , sik)

����.

For all k ≥ 0, we introduce the constant

Ck := max

�
|Dk

F (r1, . . . , rk)|
��� r1, . . . , rk ∈ S ∪ S

−1
�

and obtain the following bound:

|F (g)| ≤
m�

k=0

Ç
m

k

å
· Ck.

Since F is polynomial of degree at most d, we have Cd+1 = Cd+2 = · · · = 0 so that

|F (g)| ≤
min(m,d)�

k=0

Ç
m

k

å
· Ck.

Next, using the fact that

∀k ∈ {0, . . . ,min(m, d)},
Ç
m

k

å
≤ m

k

k!
≤ m

d

k!
,

we obtain

|F (g)| ≤

Ñ
min(m,d)�

k=0

Ck

k!

é
·md

.

Thus, by setting C :=
�

d

k=0Ck/k!, we conclude that |F (g)| ≤ C · �g�d.
To prove the second statement of the lemma, we now use the assumption that Dd

F �= 0. Thus, we can
find an integer � ≥ 1, some elements h1, . . . , h� ∈ G and some integers i1, . . . , i� ≥ 1 such that

D
d
F (h1, . . . , h1� �� �

i1

, . . . , h�, . . . , h�� �� �
i�

) �= 0 (A.2)
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with i1 + · · ·+ i� = d and h1 �= h2, h2 �= h3, . . . , h�−1 �= h�. According to (A.1), we have

F (h
m1
1 · · ·hm�

�
) =

d�

k=0

(−1)
k

�

j1+···+j�=k

D
k
F (h1, . . . , h1� �� �

j1

, . . . , h�, . . . , h�� �� �
j�

) ·
Ç
m1

j1

å
· · ·
Ç
m�

j�

å

for any integers m1, . . . ,m� ≥ d. In the sequel, we take

m1 := c1n, . . . ,m� := c�n

where n ≥ d is an integer (which will be the index of the sequence x that we are looking for), and
where c1, . . . , c� ≥ 1 are integers (which will be fixed soon). For any integer k ∈ {0, . . . , d} and for
any integers j1, . . . , j� ≥ 0 such that j1 + · · ·+ j� = k, we have

Ç
m1

j1

å
· · ·
Ç
m�

j�

å
=

�
c
j1
1 n

j1

j1!
+ (deg< j1 in n)

�

· · ·
�
c
j�
�
n
j�

j�!
+ (deg< j� in n)

�

=
c
j1
1 · · · cj�

�

j1! · · · j�!
n
k
+ (deg< k in n).

We deduce that

F
�
h
c1n
1 · · ·hc�n

�

�
= (−1)

d
�

j1+···+j�=d

D
d
F (h1, . . . , h1� �� �

j1

, . . . , h�, . . . , h�� �� �
j�

) · c
j1
1 · · · cj�

�

j1! · · · j�!
· nd

+ P (n)

where P (n) is a certain polynomial in n of degree < d. By setting

‹D :=

�

j1+···+j�=d

D
d
F (h1, . . . , h1� �� �

j1

, . . . , h�, . . . , h�� �� �
j�

) · c
j1
1 · · · cj�

�

j1! · · · j�!
,

we obtain
|F (h

c1n
1 · · ·hc�n

�
)| ≥ n

d · |‹D|− |P (n)|.

Note that ‹D does not depend on n, but depends polynomially in c1, . . . , c�. Condition (A.2) insures that,
at least, one coefficient of this polynomial is non-zero: so, we can find some integers c1, . . . , c� ≥ 1 for
which ‹D �= 0, and we fix them once for all. The right-hand side of the inequality

|F (h
c1n
1 · · ·hc�n

�
)|

nd · |‹D|
≥ 1− |P (n)|

nd · |‹D|
goes to 1 as n → +∞. So, there exists an N ≥ d such that

∀n ≥ N, |F (h
c1n
1 · · ·hc�n

�
)| ≥ |‹D|

2
n
d
. (A.3)

Then we consider the sequence x = (xn)n≥N of elements of G defined by xn := h
c1n
1 · · ·hc�n

�
. Since

we have �xn� ≤ �h1� · c1n+ · · ·+ �h�� · c�n, we deduce from (A.3) that

∀n ≥ N, |F (xn)| ≥ D · �xn�d

where D is the constant

D :=
|‹D|

2 · (�h1�c1 + · · ·+ �h��c�)d
.

Furthermore, we deduce from (A.3) and the first assertion of the lemma that

∀n ≥ N,
|‹D|
2

n
d − |F (1)| ≤ |F (xn)|− |F (1)| ≤ C�xn�d,

so that �xn� goes to +∞ when n → +∞.
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A.2 Restrictions of finite-type invariants to the Torelli group

Let Σ be a compact connected oriented surface with one boundary component, and denote by I(Σ) the
Torelli group of Σ. We assume that the genus of Σ is at least 3 so that, by a result of Johnson [Joh83a],
the group I(Σ) is finitely generated.

Lemma A.2. Let Y be a Y1-equivalence class of compact oriented 3-manifolds (with parameterized
boundary, if any) and let f : Y → A be a finite-type invariant of degree d. We choose a 3-manifold
M ∈ Y and an embedding of Σ in the interior of M . Then the map

F : I(Σ) −→ A, s �−→ f

Ä
M(Σ,s)

ä
− f(M) (A.4)

is polynomial of degree at most d. Moreover the degree of F is exactly d in certain circumstances
(which can be specified).

Proof. We consider the group homomorphism σ : Z[I(Σ)] → Z·Y defined by σ(s) := M(Σ,s) −M

for any s ∈ I(Σ). Let k ≥ 0 be an integer and let s0, . . . , sk ∈ I(Σ). We identify the regular
neighborhood of Σ ⊂ int(M) with Σ× [−1, 1], choose (k+1) points −1 ≤ t0 < · · · < tk ≤ 1 on the
interval [−1, 1] and consider the (k + 1) parallel copies of Σ

S0 := Σ× {t0}, . . . , Sk := Σ× {tk}.

We also equip S0, . . . , Sk with the self-homeomorphisms s0, . . . , sk respectively. Then we have

σ

Ä
(1− s0) · · · (1− sk)

ä
=

�

P⊂{0,...,k}
(−1)

|P | · σ
� �

p∈P
sp

�

=

�

P⊂{0,...,k}
(−1)

|P | · (MP −M)

=

�

P⊂{0,...,k}
(−1)

|P | ·MP .

Here MP denotes the 3-manifold obtained from M by simultaneous Torelli surgeries along the surfaces
Sp indexed by p ∈ P or, equivalently, it is the 3-manifold obtained by a single surgery along Σ using�

p∈P sp ∈ I(Σ). Therefore, σ : Z[I(Σ)] → Z·Y sends the filtration by powers of the augmentation
ideal I to the filtration F dual to finite-type invariants, as defined at (1.7). It follows, in particular, that
Z[F ] = (Z ·f) ◦ σ vanishes on I

d+1, so that F is a polynomial map of degree at most d. At the graded
level and in degree d, we have the following commutative triangle:

I
d
/I

d+1 Grd σ
��

Grd Z[F ]
����������������

Fd(Y)/Fd+1(Y)

Grd Z·f
��

A

(A.5)

Consequently, the degree of F is exactly d if and only if Grd Z·f (which we know to be non-zero) is
not trivial on the image of Grd σ.

For example, we can apply Lemma A.2 to a Z-homology sphere M and to the Casson invariant f :=

λ, which is of finite type of degree d := 2. Morita has given in [Mor91] an explicit formula for
(Gr2 Z ·f) ◦ (Gr2 σ), which results to be non-trivial. Therefore, the map F : I(Σ) → Z defined by
(A.4) is polynomial of degree 2, exactly, and Lemma A.1 fully applies to this function F . This is the
result of [BFP07] which, indeed, is based on Morita’s formula. Using Lescop’s formula [Les98], the
same result applies if M is a Q-homology sphere and f := λW is Walker’s extension of λ [Wal92].
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We emphasize that, in the context of Lemma A.2, the polynomial map F : I(Σ) → A associated to a
finite-type invariant f : Y → A of degree d can be of degree strictly less than d. This is due to the fact
that the map Id/Id+1 → Fd(Y)/Fd+1(Y) of diagram (A.5) is not surjective in general. If, for instance,
Y is the monoid of homology cylinders IC(Σ), if Σ ⊂ M is the middle surface Σ×{0} ⊂ Σ× [−1, 1]

in the usual cylinder, and if we take coefficients in Q to simplify, then this defect of surjectivity is
equivalent to the fact that the Lie algebra of symplectic Jacobi diagrams Ac

(HQ) is not generated by
its degree 1 part.
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En topologie de dimension trois, les invariants de type fini se caractérisent par leur
comportement polynomial vis-à-vis de certaines opérations chirurgicales qui préservent
l’homologie des variétés. Motivée par l’approche perturbative des « invariants quan-
tiques », la notion d’invariant de type fini a été initialement formulée par T. Ohtsuki
qui en contruisit les premiers exemples ; les fondements théoriques des invariants de
type fini ont ensuite été posés par plusieurs auteurs dont M. Goussarov et K. Habiro.
Grâce à une construction de T. Le, J. Murakami & T. Ohtsuki basée sur l’intégrale de
Kontsevich, on dispose pour les sphères d’homologie d’un invariant de type fini universel
à valeurs diagrammatiques. Ce mémoire expose d’une manière synthétique certains
aspects de la théorie des invariants de type fini, pour les variétés de dimension trois en
général, et pour les cylindres d’homologie en particulier. Nous présentons notamment
une extension fonctorielle de l’invariant LMO à une certaine catégorie de cobordismes,
et nous appliquons ce foncteur à l’étude du monoïde des cylindres d’homologie. Nous
expliquons comment nos constructions et résultats se relient aux travaux antérieurs de D.
Johnson, S. Morita et R. Hain sur le groupe de Torelli d’une surface. Nous concluons par
quelques problèmes et perspectives de recherche. Certains des travaux exposés dans
ce mémoire ont été réalisés en collaboration avec D. Cheptea, K. Habiro et J.-B. Meilhan.
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