PhD Defense

Experimental study of broadband trailing edge noise of a linear cascade and its reduction with passive devices

ARTHUR FINEZ

LMFA/École Centrale de Lyon

Thursday $10^{\rm th}$ May 2012

Noise reduction

Why aircraft noise is to be reduced?

Orly airport noise disturbance map. - : LDEN>70, - : LDEN>65, - : LDEN>55. [ACNUSA]

Noise problems nearby airports.

Noise reduction

Why aircraft noise is to be reduced?

Orly airport noise disturbance map. - : LDEN>70, - : LDEN>65, - : LDEN>55. [ACNUSA]

Noise problems nearby airports.

Fan noise contribution

Engine of an A380 aircraft

Take-off and landing : $\simeq 40\%$.

Discriminating fan noise sources

Fan noise composition

- Tonal noise, significantly reduced in the past decades,
- Broadband noise, still to be reduced.

Many broadband noise sources near the rotor

FIGURE: Axial flow compressor rotor flow phenomena [AGARD-AG-328].

Discriminating fan noise sources

Fan noise composition

- Tonal noise, significantly reduced in the past decades,
- Broadband noise, still to be reduced.

Many broadband noise sources near the rotor

- Turbulence - Leading Edge (LE) interaction noise,

FIGURE: Axial flow compressor rotor flow phenomena [AGARD-AG-328].

Discriminating fan noise sources

Fan noise composition

- Tonal noise, significantly reduced in the past decades,
- Broadband noise, still to be reduced.

Many broadband noise sources near the rotor

- Turbulence Leading Edge (LE) interaction noise,
- Turbulent Boundary Layer (TBL) -Trailing Edge (TE) interaction noise,

FIGURE: Axial flow compressor rotor flow phenomena [AGARD-AG-328].

Discriminating fan noise sources

Fan noise composition

- Tonal noise, significantly reduced in the past decades,
- Broadband noise, still to be reduced.

Many broadband noise sources near the rotor

- Turbulence Leading Edge (LE) interaction noise,
- Turbulent Boundary Layer (TBL) -Trailing Edge (TE) interaction noise,
- Blade Tip noise,

FIGURE: Axial flow compressor rotor flow phenomena [AGARD-AG-328].

Discriminating fan noise sources

Fan noise composition

- Tonal noise, significantly reduced in the past decades,
- Broadband noise, still to be reduced.

Many broadband noise sources near the rotor

- Turbulence Leading Edge (LE) interaction noise,
- Turbulent Boundary Layer (TBL) -Trailing Edge (TE) interaction noise,
- Blade Tip noise,
- Turbulence Shock Surface interaction noise,

FIGURE: Axial flow compressor rotor flow phenomena [AGARD-AG-328].

Discriminating fan noise sources

Fan noise composition

- Tonal noise, significantly reduced in the past decades,
- Broadband noise, still to be reduced.

Many broadband noise sources near the rotor

- Turbulence Leading Edge (LE) interaction noise,
- Turbulent Boundary Layer (TBL) -Trailing Edge (TE) interaction noise,
- Blade Tip noise,
- Turbulence Shock Surface interaction noise,
- Stall noise ...

FIGURE: Axial flow compressor rotor flow phenomena [AGARD-AG-328].

Discriminating fan noise sources

Fan noise composition

- Tonal noise, significantly reduced in the past decades,
- Broadband noise, still to be reduced.

Many broadband noise sources near the rotor

- Turbulence Leading Edge (LE) interaction noise,
- Turbulent Boundary Layer (TBL) -Trailing Edge (TE) interaction noise,

- Blade Tip noise,
- Turbulence Shock Surface interaction noise,
- Stall noise ...

FIGURE: Axial flow compressor rotor flow phenomena [AGARD-AG-328].

Introduction

Cascade Effect

Blades are not isolated in a fan!

- Reflections,
- Resonances,
- Duct propagation ...

Introduction

Cascade Effect

Blades are not isolated in a fan!

- Reflections,
- Resonances,
- Duct propagation ...

Literature : few studies on *cascade* trailing edge noise

- Analytical modeling : Howe 92; Glegg 98;
- Experiments : Parker 66, Sabah & Roger 01.

Introduction

Cascade Effect

Blades are not isolated in a fan!

- Reflections,
- Resonances,
- Duct propagation ...

Literature : few studies on *cascade* trailing edge noise

- Analytical modeling : Howe 92; Glegg 98;
- Experiments : Parker 66, Sabah & Roger 01.

Need for cascade noise experiment & model validation.

A. Finez (LMFA/ECL)

Introduction Objectives

This study aims at

- Designing an aeroacoustic cascade set-up,
- Measuring cascade TBL-TE noise with various $U_1, \alpha_1...$
- Assessing the extent of the cascade effect,
- Validating existing cascade noise models,
- Reducing cascade noise.

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics
- 2 Analytical Model Validation
 - Input Data for Models
 - Amiet's Isolated Airfoil Noise Model
 - Glegg's Cascade Noise Model
 - Cascade Noise Reduction
 - Set-up
 - Acoustic Results
 - PIV results
 - Noise reduction mechanisms

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics
 - 2 Analytical Model Validation
 - Input Data for Models
 - Amiet's Isolated Airfoil Noise Model
 - Glegg's Cascade Noise Model
 - Cascade Noise Reduction
 - Set-up
 - Acoustic Results
 - PIV results
 - Noise reduction mechanisms

Set-up of a unique linear cascade

Linear cascade of 7 NACA 6512-10 airfoils, studied by Emery¹.

Chord	c	100	mm	$\sigma = c/s$	1.43
Pitch	s	70	$\mathbf{m}\mathbf{m}$		
Upstream velocity	U_1	80	m/s	Μ	0.23
Span	L	200	$\mathbf{m}\mathbf{m}$	Re	$5.3 imes 10^5$

A. Finez (LMFA/ECL)

^{1.} Systematic two-dimensional cascade tests of NACA 65-series compressor blades at low speeds, NACA report 1368, 1957

Improvements from Sabah's set-up

2001 : Sabah's PhD thesis

- Aim : measurement of cascade leading edge and trailing edge noise,
- High background noise level.

Improvements from Sabah's set-up

2001 : Sabah's PhD thesis

- Aim : measurement of cascade leading edge and trailing edge noise,
- High background noise level.

Some improvements

- Side panels,
- Brushes at the end of wood boards,
- No boundary layer exhaust.

Improvements from Sabah's set-up

2001 : Sabah's PhD thesis

- Aim : measurement of cascade leading edge and trailing edge noise,
- High background noise level.

Some improvements

- Side panels,
- Brushes at the end of wood boards,
- No boundary layer exhaust.

Downstream far-field acoustic spectra

Outline

Cascade Experiment

• Set-up

• Aerodynamic Loading

• Cascade Acoustics

Analytical Model Validation

- Input Data for Models
- Amiet's Isolated Airfoil Noise Model
- Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Aerodynamic Loading

Validating the cascade design point

Reference point near maximum efficiency

 $\alpha_1 = 15^{\circ}, \ \beta_1 = 35^{\circ}, \ U_1 = 80 \text{ m/s}.$

 $(\sigma = 1.43)$

Aerodynamic Loading

Validating the cascade design point

Reference point near maximum efficiency

 $\alpha_1 = 15^{\circ}, \ \beta_1 = 35^{\circ}, \ U_1 = 80 \text{ m/s}.$

$$(\sigma = 1.43)$$

Control on center blade.

- Measurement,
- Bock RANS computation,

- Emery & al.,

$$(\alpha_1 = 14.1^\circ, \beta_1 = 30^\circ, \sigma = 1.5)$$

- Sabah.

Aerodynamic Loading

Validating the cascade design point

Reference point near maximum efficiency

 $\alpha_1 = 15^{\circ}, \ \beta_1 = 35^{\circ}, \ U_1 = 80 \text{ m/s}.$

$$(\sigma = 1.43)$$

Control on center blade.

- Measurement,
- Bock RANS computation,

- Emery & al.,

$$(\alpha_1 = 14.1^\circ, \beta_1 = 30^\circ, \sigma = 1.5)$$

- - Sabah.

Control on other blades.

- At 50% chord, — Suction Side.
- Pressure Side.

10/05/2012

Outline

1 Cascade Experiment

- Set-up
- Aerodynamic Loading
- Cascade Acoustics
- Analytical Model Validation
 - Input Data for Models
 - Amiet's Isolated Airfoil Noise Model
 - Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Velocity Dependence

Specific frequency scaling

Far-field PSD at r=2 m

Scaling to $U_1 = 80 \text{ m/s}$ using PSD $\propto U_1^6$,

Frequency axis unchanged $\Rightarrow \text{He} = \frac{fL}{c_0}$ rather than $\text{St} = \frac{f\delta^*}{U_1}$.

A. Finez (LMFA/ECL)

Near the center blade trailing edge, midspan plane

- To measure entry data of analytical models (boundary layer statistics),
- To investigate near-field/far-field coherence.

Near the center blade trailing edge, midspan plane

- To measure entry data of analytical models (boundary layer statistics),
- To investigate near-field/far-field coherence.

Near the center blade trailing edge, midspan plane

- To measure entry data of analytical models (boundary layer statistics),
- To investigate near-field/far-field coherence.

Near the center blade trailing edge, midspan plane

- To measure entry data of analytical models (boundary layer statistics),
- To investigate near-field/far-field coherence.

Blade-to-blade reflections

Most obvious cascade effects have been observed

To go further, need for analytical modeling : computation of the cascade transfer function.

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics

2 Analytical Model Validation

- Input Data for Models
- Amiet's Isolated Airfoil Noise Model
- Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Input Data Measurement : BL Statistics

On center blade, $U_1 \simeq 70 \text{ m/s},$ $\alpha_1 = 35^\circ,$ $\beta = 45^\circ.$

Input Data Measurement : BL Statistics

$$\bigoplus l_{z} = \int_{0}^{+\infty} \gamma(\omega, \eta) \cos(K_{z}\eta) \mathrm{d}\eta$$

Input Data Measurement : BL Statistics

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics

2 Analytical Model Validation

• Input Data for Models

• Amiet's Isolated Airfoil Noise Model

• Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Analytical Models Amiet's isolated airfoil TE noise model

Isolated airfoil formulation :

$$S_{pp}^{(n)}(x,y,z,\omega) = 2L \left(\frac{\omega yc}{4\pi c_0 S_0^2}\right)^2 \left| \mathscr{I}\left(\frac{\omega}{U_c},0\right) \right|^2 \Phi_{pp}(\omega) l_z \left(\frac{kz}{S_0} = 0,\omega\right)$$

7 independant airfoils, observer in the midspan plane, infinite span, shear layer refraction.

A. Finez (LMFA/ECL)

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics

2 Analytical Model Validation

- Input Data for Models
- Amiet's Isolated Airfoil Noise Model
- Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Glegg's Analytical Model Original formulation

Linear cascade model

- Fan azimuthal periodicity \Rightarrow periodic sources in linear cascade
- Small numbers of propagating modes,
- BL information in Q,
- 3D : $\mathbf{K} = (K_x, K_z).$

$$p_s = \frac{-2\pi i}{Bh} \sum_{m=-\infty}^{m=+\infty} Q H_m(K_x) e^{-i\omega t + iK_z z} \frac{K_m^- e^{-i\gamma_m^- (x-yd/h) - 2i\pi my/Bh}}{(2\pi)^2 i(\gamma_m^- + K_x) J_+^{(m)}(-K_x) J_-^{(m)}(\gamma_m^-)}$$

Glegg's Analytical Model Original formulation

Linear cascade model

- Fan azimuthal periodicity \Rightarrow periodic sources in linear cascade
- Small numbers of propagating modes,
- BL information in Q,
- 3D : $\mathbf{K} = (K_x, K_z).$

$$p_s = \frac{-2\pi i}{Bh} \sum_{m=-\infty}^{m=+\infty} Q H_m(K_x) e^{-i\omega t + iK_z z} \frac{K_m^- e^{-i\gamma_m^-(x-yd/h) - 2i\pi my/Bh}}{(2\pi)^2 i(\gamma_m^- + K_x) J_+^{(m)}(-K_x) J_-^{(m)}(\gamma_m^-)}$$

Glegg's Analytical Model Original formulation

Linear cascade model

- Fan azimuthal periodicity \Rightarrow periodic sources in linear cascade
- Small numbers of propagating modes,
- BL information in Q,
- 3D : $\mathbf{K} = (K_x, K_z).$

$$p_s = \frac{-2\pi i}{Bh} \sum_{m=-\infty}^{m=+\infty} Q H_m(K_x) e^{-i\omega t + iK_z z} \frac{K_m^- e^{-i\gamma_m^-(x-yd/h) - 2i\pi my/Bh}}{(2\pi)^2 i(\gamma_m^- + K_x) J_+^{(m)}(-K_x) J_-^{(m)}(\gamma_m^-)}$$

A. Finez (LMFA/ECL)

Glegg's Analytical Model

Comparison with acoustic measurements

Last Steps :

- Expressing Q in terms of Φ_{pp} , l_z , U_c ,
- Integrating on K_z ,
- Summing over independant blade contributions.

Glegg's Analytical Model

Comparison with acoustic measurements

Last Steps :

- Expressing Q in terms of Φ_{pp} , l_z , U_c ,
- Integrating on K_z ,
- Summing over independant blade contributions.

Results :

Suction side $\theta = 40^{\circ}$

Slight modulation of single airfoil results (3 dB).

Amiet's model.

Analytical Models

Conclusions

Three noise models have been adapted to the test case :

- Amiet's isolated airfoil TE noise model,
- Glegg's cascade TE noise model,
- Howe's cascade TE noise model (not shown).

Analytical Models

Conclusions

Three noise models have been adapted to the test case :

- Amiet's isolated airfoil TE noise model,
- Glegg's cascade TE noise model,
- Howe's cascade TE noise model (not shown).

Results show that :

- Cascade effect $\simeq 3$ dB,
- Experiment variation close to model discrepancies,
- Cascade CPU (10min) \gg Isolated Airfoil CPU (1 sec).

Analytical Models

Conclusions

Three noise models have been adapted to the test case :

- Amiet's isolated airfoil TE noise model,
- Glegg's cascade TE noise model,
- Howe's cascade TE noise model (not shown).

Results show that :

- Cascade effect $\simeq 3$ dB,
- Experiment variation close to model discrepancies,
- Cascade CPU (10min) \gg Isolated Airfoil CPU (1 sec).

Cascade TE noise measured and may be reduced.

Set-up

Outline

- - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics
- - Input Data for Models

 - Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Cascade TBL-TE Noise Reduction

Successful *isolated* airfoil noise reduction

- Many passive devices tested in the FLOCON EU project,
- TE serrations gave best results & were down-selected.

Set-up

Introduction

Cascade TBL-TE Noise Reduction

Successful *isolated* airfoil noise reduction

- Many passive devices tested in the FLOCON EU project,
- TE serrations gave best results & were down-selected.

 \Rightarrow Does the noise reduction also occur in a *cascade*?

Set-up

Introduction

Cascade TBL-TE Noise Reduction

Successful *isolated* airfoil noise reduction

- Many passive devices tested in the FLOCON EU project,
- TE servations gave best results & were down-selected.

 \Rightarrow Does the noise reduction also occur in a *cascade*?

Serrations sketches

- Straight edge _
- Short servations
 - $\lambda_c = 2 \text{ mm}, 2h = 13 \text{ mm}$
- Long servations $\lambda_c = 2 \text{ mm}, 2h = 20 \text{ mm},$

A. Finez (LMFA/ECL)

PhD Defense

10/05/2012 26 / 37

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics
- Analytical Model Validation
 - Input Data for Models
 - Amiet's Isolated Airfoil Noise Model
 - Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Serration Acoustic Results

Far field noise reduction, suction side direction $\theta = 40^{\circ}$

- Very similar results to single airfoil noise reduction,
- Single airfoil $St_0=1.18$; Cascade $St_0=1.21$.

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics
- Analytical Model Validation
 - Input Data for Models
 - Amiet's Isolated Airfoil Noise Model
 - Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

PIV results

Near Wake Dynamics Mean Velocity \overline{U}_x

Observations

- Serration wake larger and less deep,
- Serrations : through flow with a 10° angle.

PIV results

Near Wake Dynamics Fluctuating velocity u'_x

Observations

- BL removed from the airfoil surface, _
- Smaller turbulent area in the pressure side wake.

A. Finez (LMFA/ECL)

PhD Defense

10/05/2012 31 / 37

Outline

- 1 Cascade Experiment
 - Set-up
 - Aerodynamic Loading
 - Cascade Acoustics
- Analytical Model Validation
 - Input Data for Models
 - Amiet's Isolated Airfoil Noise Model
 - Glegg's Cascade Noise Model

Cascade Noise Reduction

- Set-up
- Acoustic Results
- PIV results
- Noise reduction mechanisms

Serrations

Investigation of noise reduction mechanisms

Serrations may reduce noise through :

- BL ejection,
- Spanwise decorrelation,
- Local sweep angle ? \rightarrow Analytical investigations.

Serrations

Investigation of noise reduction mechanisms

Serrations may reduce noise through :

- BL ejection,
- Spanwise decorrelation,
- Local sweep angle ? \rightarrow Analytical investigations.

Modified A miet model for sweep angle φ :

Step 1 : Airfoil response function - compressible unsteady aerodynamics

A. Finez (LMFA/ECL)

PhD Defense

10/05/2012 33 / 37

Serrations

Investigation of noise reduction mechanisms

Modified A miet model for sweep angle φ :

Step 2 : Far-field scattering - Curle's theory

Conclusions :

- Serration details cannot be analytically reproduced \Rightarrow only a hint,
- This new model could be useful for fan noise prediction,
- Decrease of noise power in $\cos \varphi^3$.

Conclusions

Cascade Experiment

- Cascade rig significantly improved,
- Cascade trailing edge noise measured,
- Specific cascade effects observed and analysed.

Analytical models

- Input data measured in cascade,
- Amiet's model give reasonable prediction ± 3 dB above 200 Hz,
- Glegg's cascade model adapted to the experiment,
- It differs from Amiet's model in level by ±3 dB,
 ⇒ need for increasing cascade effect via σ.

Conclusions

Cascade noise reduction

- Serration inserted in cascade,
- Reduction at low frequencies,
- No influence of cascade effect on noise reduction,
- Candidate mechanism to noise reduction :
 - BL removal,
 - Spanwise decorrelation,
 - Local sweep angle,
- Amiet's model modified for sweep angle.

Thank you for your attention!