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Résumé en français

Ce travail de thèse a pour objet principal l’analyse des systèmes linéaires mod-

élisés par bond graph avec les approches algébrique et graphiques. Deux types

de modèles sont étudiés: les modèles linéaires à paramètres constants (LTI) et les

modèles linéaires à paramètres dépendant du temps (LTV: Linear Time Varying

models). Cette étape d’analyse est fondamentale puisqu’elle se situe en amont

de la phase de conception et synthèse de lois de commande dans une démarche

classique de conception intégrée.

La synthèse de la commande des systèmes physiques est une tâche complexe

car elle nécessite la connaissance d’un "bon modèle" et en fonction du choix

d’un modèle (linéaire, non linéaire, etc.), certains outils spécifiques doivent être

développés. Ces outils, principalement développés à partir d’un point de vue

mathématique et théorique, doivent être utilisés de l’étape d’analyse (analyse des

propriétés du modèle) à l’étape de synthèse de commande. Il est bien connu

que dans de nombreuses approches, les propriétés des systèmes pilotés peuvent

être analysées à partir du modèle initial (système en boucle ouverte). Pour des

modèles linéaires, il existe des représentations différentes, telles que: la matrice de

transfert, l’espace d’état Kalman (1959), la représentation de Rosenbrock (1970)

et la représentation du module de type fini Fliess (1990).

Si le système est modélisé avec une représentation entrée-sortie ou avec une

représentation espace d’état, deux types d’information sont souvent soulignés: la

structure externe (structure à l’infini) et la structure interne (structure finie).

La première est souvent liée à l’existence de certaines stratégies de contrôle (dé-

couplage entrée-sortie, rejet de perturbation, détection de faute, observateur à

l’entrée inconnue, etc.) et la seconde concerne la propriété de stabilité du sys-

tème contrôlé. Cette thèse est structurée en suivant cette démarche: étude de
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RÉSUMÉ EN FRANÇAIS

la structure finie des modèles LTI et LTV (en particulier la structure des zéros

invariants), et en application la conception d’observateurs de différents types en

utilisant les informations sur la structure des zéros, élément clé dans l’élaboration

d’observateurs.

Dans ce rapport, l’accent a été mis sur l’étude des zéros invariants des modèles

bond graph dans le contexte des modèles LTV. Les systèmes LTV ont reçu beau-

coup d’attention ces dernières années en raison de leurs propriétés particulières

nécessitant des traitements mathématiques particuliers. Les systèmes physiques

sont souvent représentés par des modèles LTV ou non linéaires. Les systèmes

LTV apparaissent dans de nombreux domaines, par exemple, dans le contrôle

des avions modernes et moteurs spatiaux, où les accélérations et les vitesses ac-

crues induisent des variations des paramètres. Dans l’industrie électronique, pour

les amplificateurs paramétriques et émetteurs de microphone, il existe des com-

posants avec des paramètres variant dans le temps. Un autre intérêt des modèle

LTV est qu’un modèle non linéaire peut être considéré comme un modèle LTV

après la procédure de simplification.

L’approche algébrique a été utilisée et développée par Kalman (1965), Fliess

(1990) et Bourlès & Marinescu (2011) dans le domaine automatique. Cette ap-

proche est intrinsèque, un système linéaire est considéré comme un module de

type fini sur un anneau d’opérateurs. Elle était essentielle parce que, même si

le problème est déjà résolu pour les modèles LTI, l’extension aux modèles LTV

n’est pas si facile. L’utilisation simultanée des approches algébrique et graphique

a prouvé son efficacité pour résoudre ce problème.

Le problème des pôles et zéros des systèmes LTV a été étudié dans ce rapport.

D’un point de vue algébrique, certains concepts utilisés pour les modèles LTI

peuvent être étendus aux modèles LTV, mais par exemple le concept de racines

de polynômes n’est pas si facile à définir et à expliquer d’un point de vue physique.

Dans ce travail, certaines notions mathématiques sont utilisées, mais surtout pour

comprendre le concept de racines de certains polynômes (zéros invariants), et

des formes canoniques (Smith/Jacobson formes) à partir de laquelle les racines

peuvent être définies et calculées.

Ce rapport est structuré en six parties, y compris l’introduction et la con-

clusion. Tout d’abord, certains outils de l’approche algébrique introduits par
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Fliess (1999), Bourlès (2005) et Zerz (2006) etc. ont été rappelés dans le pre-

mier chapitre. Plus précisément, les systèmes linéaires qui peuvent être décrits

comme un module de type fini sur un anneau d’opérateurs sont présentés. Les

structures finie et à l’infini des modèles linéaires avec l’approche bond graph

ont été étudiées dans Sueur & Dauphin-Tanguy (1991) pour les modèles LTI et

Chalh et al. (2007) et Andaloussi et al. (2006) pour les modèles LTV. Les résul-

tats connus pour l’étude des zéros invariants des modèles bond graphs dans le

cas LTI ont été rappelés dans le chapitre deux. De nouveaux développements

sont proposés dans le chapitre trois. Deux problèmes principaux sont étudiés: la

structure des zéros invariants des modèles bond graphs dans les cas carré et non

carré et le problème de l’annulation des variables de sortie avec la connaissance

des zéros invariants. Des applications physiques concluent ce travail avec le prob-

lème d’étude d’observateur à entrées inconnues dans le chapitre quatre. Certains

observateurs classiques sont développés et de nouvelles formes d’observateurs ont

été proposées.

Pour l’étude des propriétés structurelles des systèmes linéaires, telles que la

commandabilité, l’observabilité, la structure finie et à l’infini, la théorie des mod-

ules s’avère être un outil efficace. Les modèles LTI et LTV sont définis comme

des modules sur des anneaux d’opérateurs. À la lumière de l’approche algébrique,

les pôles et zéros des systèmes linéaires sont étudiés avec des sous-modules corre-

spondants. La méthode classique pour définir des zéros et des pôles est d’utiliser

certaines formes canoniques des matrices polynomiales ou rationnelles sur les

anneaux. Un procédé plus intrinsèque consiste à examiner les propriétés de sous-

modules, en particulier des modules de torsion. Les sous-modules de torsion sont

liés à des parties non commandables dans un module, il s’agit d’une question

essentielle, et ce principe a été utilisé tout au long du rapport. L’analyse de la

propriété de commandabilité a été bien développée pour les modèles bond graphs

dans les cas LTI et LTV avec une combinaison de l’utilisation de certains outils

algébriques liés à la théorie des modules et certaines applications de la causalité.

Le présent travail consiste à développer ces aspects, avec une analyse particulière

des zéros invariants des modèles de LTV.

L’obtention des formes canoniques définissant la structure des zéros invari-

ants (associées aux sous modules torsions) et ensuite le calcul des racines des

polynômes invariants ainsi obtenus, sont des tâches complexes dans le cas LTV.
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Dans le rapport, l’approche graphique a été utilisée pour détecter cette structure

en combinant les approches algébrique et formelle. Trois types de causalité ont été

utilisés pour analyser les propriétés des modèles, tels que: la causalité intégrale,

dérivée et la bicausalité. Classiquement, le nombre des zéros invariants est étudié

à partir de modèles bond graph en causalité intégrale (modèles BGI), et le nombre

des zéros invariants nuls est obtenu à partir de modèles bond graph en causalité

dérivée (modèles BGD). La principale différence entre les cas LTI et LTV se situe

au niveau du calcul des zéros avec modèles l’application de la bicausalité (modèles

BGB). Les zéros des systèmes étant des pôles des systèmes inverses, l’inversibilité

est une notion fondamentale. Pour les modèles bond graphs, cette propriété est

étroitement liée à la structure à l’infini des modèles et est donc associée aux

chemins causaux entrées-sorties. La propriété d’inversibilité peut également être

étudiée à partir des modèles bond graphs avec la bicausalité. Dans ce contexte,

les procédures bond graph avec l’application de la bicausalité ont été étendues

aux modèles linéaires carrés et non carrés. Dans les modèles BGB, les éléments

dynamiques avec une causalité intégrale permettent le calcul des équations de

torsion associées aux zéros invariants. Pour étudier la structure des zéros invari-

ants de sous-modèles en lignes, les modèles BGB n’existent pas car la bicausalité

ne peut être appliquée qu’à des modèles carrés. De nouvelles techniques ont été

proposées, fondées sur la notion des modules de torsion "communs" entre chaque

sous-modèle (sous-espaces non commandables en commun). Lorsque le nombre

de détecteurs de sortie est supérieur au nombre d’actionneurs d’entrée, la no-

tion des modules communs non observables a été nécessaire. Comme la propriété

d’observabilité n’est pas directement liée à des modules facilement mis en évidence

à partir d’un modèle bond graph, le concept des modèles bond graphs duals a été

utilisé, la propriété d’observabilité étant duale de celle de la commandabilité.

Le problème de l’annulation des variables de sortie a également été étudié en

parallèle avec l’analyse de la structure des zéros invariants parce que ces deux

problèmes sont étroitement liés. Tout d’abord, des modèles LTI monovariables

ont été pris en considération. Dans ce cas, la variable de sortie peut être nulle

avec une condition initiale quelconque des variables d’état et pour une variable

d’entrée de commande directement liée à un zéro invariant (constant pour un

zéro invariant nul). Ce problème a été partiellement étendu au cas LTV. La

proposition a été expliquée d’un point de vue algébrique lorsque les variables
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de sortie ont été fixées à zéro. Pour illustrer l’étude des zéros invariants et le

problème de l’annulation des sorties, des logiciels MapleTM et 20-sim® ont été

utilisés sur certains exemples physiques.

Dans le dernier chapitre, le problème de synthèse d’observateur avec une en-

trée inconnue a été considéré. Une forme générale de UIO a été proposée par

l’utilisation des propriétés de la structure à l’infini et de l’inversibilité des sys-

tèmes SISO dans le cas LTI. Basée sur l’estimation des variables d’état, une forme

générale de l’estimation des entrées inconnues a été introduite avec des matri-

ces inverses généralisées. Le problème de l’estimation de l’état et des variables

d’entrée inconnues a été examiné avec l’existence de variables d’entrée connues

permettant d’effectuer une synthèse de commande. Trois types de UIO ont été

étudiés : UIO avec l’approche algébrique, UIO avec des matrices inverses général-

isées et UIO avec une méthode directe. Les conditions d’existence des UIO ont

également été données. Un modèle physique a été étudié dans les cas LTI et LTV.

Les résultats de simulation avec MATLAB® ont prouvé l’efficacité des UIOs pro-

posés.

Comme l’analyse de la structure finie est une tâche cruciale pour l’étude de

la propriété de la stabilité des systèmes pilotés (étape de contrôle, estimation,

etc.), certains développements mathématiques sont encore nécessaires. Pour les

systèmes non linéaires, étant donné que certaines procédures graphiques existent

pour obtenir un modèle "variationnel" qui peut être considéré comme un modèle

LTV, certaines propriétés locales des systèmes non linéaires modélisés par bond

graph pourraient être étudiées avec nos procédures.
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Introduction

This dissertation is mainly focused on the analysis of linear time invariant LTI and

linear time-varying LTV systems modelled by bond graph throughout algebraic

and graphical approaches.

LTV systems have received much attention in recent years due to the time-

varying properties, which have different mathematical treatments and special

performances. Physical systems are often represented by time-varying or non-

linear models. LTV systems appear in many fields, for example, in the control

of modern aircrafts and space crafts where increased accelerations and veloci-

ties induce parameter variations. In electronics, for parametric amplifiers and

microphone transmitters, there exist time-varying components.

The study of LTI multivariable models is now well defined in the context of

control problems since the first work of Kalman (1969) or Rosenbrock (1970)

for example. Many control problems can be solved either from a state space

representation which requires matrix calculus or from symbolic representation

(Laplace operator for example) which requires polynomial representations. In

this context the concept of poles and zeros is well defined and a direct relation

can be pointed out between these poles and zeros (roots of some polynomials)

and the temporal behavior. For LTV models, mathematical background from

algebraic theory is required and it is much more difficult to be used. From an

algebraic point of view, some concepts used for LTI models can be extended

to LTV models, but for example the concept of roots of skew polynomials is

not so easy to be defined and explained from a physical point of view. Many

references can be cited either for a purely mathematical point of view or for

a control theoretic point of view Ritt (1950), Malgrange (1962), Cohn (1985),

Kolchin (1986), Adkins & Weintraub (1992), Van der Put & Singer (2003), Lam

& Leroy (2004) and Bourlès & Marinescu (2011). In this work, some mathematical
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INTRODUCTION

backgrounds are useful, but mainly for understanding the concept of roots of some

polynomials (invariant zeros), and some particular mathematical representations

(Smith/Jacobson forms) from which roots can be derived.

This report is structured into six parts (4 chapters), including the introduction

and the conclusion. The first chapter recalls some algebraic notions, and first the

algebraic representation of linear systems. More precisely, linear systems which

can be described as a finitely generated module over a ring of operators are pre-

sented. Some well known contributions in this field, mostly dedicated to a control

point of view are recalled Kalman (1965) or Fliess (1990) who proposed different

developments, where a linear system is regarded as a finitely presented module

over a ring of operators. The module theoretic approach is also closely related to

the behavioral approach proposed by Willems (1983), Willems (1991) and Ilch-

mann & Mehrmann (2006). In Bourlès & Marinescu (2011), linear systems are

also defined by this intrinsic way which is different from some well known rep-

resentations: transfer matrix or state-space forms Kalman (1969) or Rosenbrock

representation by Rosenbrock (1970). Then, the infinite and finite structures

are introduced, with the concept of poles and zeros related to some particular

modules Marinescu & Bourlès (2009), and Zerz (2006). Some canonical forms of

matrices over corresponding rings are used for detecting these poles and zeros.

For the finite structure, well known properties are recalled, such as the control-

lability/observability properties and the concept of invariant zero which is the

central problem studied in this work. Some illustrative examples are proposed.

Since The Unknown Input Observer (UIO) Problem is proposed as an application

in this work, some fundamental concepts are recalled in the first chapter.

The study of the finite and infinite structures of linear models with a bond

graph approach received much attention for example in Sueur & Dauphin-Tanguy

(1991) for LTI models and in Chalh (2007) and Andaloussi et al. (2006) for LTV

models. In the second chapter, some tools dedicated to bond graph models are

recalled. First the controllability/observability properties are presented with a

graphical approach, mainly based on the concept of structural rank deduced from

a causal approach. Relations between the non-controllable part of a model (or-

thogonal complement of a controllability matrix) and a torsion module are pointed

out with some causal manipulations. Extensions to LTV models are mainly based

on some extensions of the LTI case, and in order to extend these properties to the
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observability case, the concept of dual bond graph model is recalled Lichiardopol

& Sueur (2010) and Rudolph (1996) for some theoretical developments. Since the

central problem studied in this work concerns the invariant zeros, the previous

approaches dedicated to this problem are recalled, mainly with the concept of

bicausality, usually used for the analysis of the inverse model.

In chapter three, some new developments are proposed, mainly in two re-

lated directions. First, since invariant zeros can be characterized from the poles

of the inverse models, with some restrictions and assumptions, some theoreti-

cal algebraic based approaches are first recalled, mainly on the characterization

of invariant zeros from some particular modules associated to the initial model

Bourlès & Marinescu (2011) and then from modules associated to the inverse

model. Some relations with the output zeroing problems MacFarlane & Karca-

nias (1976) are recalled and some extensions are proposed for the LTV case, for

this last problem. Since the inverse model is directly drawn with application of

bicausality on a bond graph model, we define new modules associated to invariant

zeros directly from the bicausal bond graph model (BGB). In some cases, it is

possible to conclude on the existence of invariant zeros, and the particular case

where invariant zeros have a zero value received a particular attention, with the

concept of bond graph model with a derivative causality assignment (BGD). The

bicausality can be only applied on square models. In many control problems,

models may be not square and even if they are square, structure of row and

global models must be compared. One main contribution in this chapter is the

extension of classical approaches to non square models and with a mathematical

module theoretical approach associated to a graphical approach (bicausality).

The last chapter is addressed to the unknown input observer problem. The al-

gebraic H. L. Trentelman & Hautus (2001), Daafouz et al. (2006) and generalized

inverse matrix approaches Darouach et al. (1994),Darouach (2009) are used to

design unknown input observers in several cases. Some extensions are proposed.

First, some new observer designs in the LTI case are proposed, without study of

stability (which must still be proved), and then some extensions of the cited ap-

proaches are proposed, mainly by using control input variables. Some extensions

to the LTV case are proposed, and we prove the convergence of these observers

on some physical examples. An important work is still necessary for proving the
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stability property of controlled systems with this kind of observer. In that way,

it could be a direct application of the developments proposed in chapter 3.
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Chapter 1

Linear Systems Modeling and

Structure

Contents
1.1 Algebraic Representation of Linear Systems . . . . . 30

1.1.1 Mathematical Background and Notions . . . . . . . . 31

1.1.2 Modules and Linear Systems . . . . . . . . . . . . . . 36

1.1.3 Different Descriptions of Linear Systems . . . . . . . . 41

1.2 System Structures . . . . . . . . . . . . . . . . . . . . . 42

1.2.1 Polynomial and Rational Matrices . . . . . . . . . . . 43

1.2.2 Finite Structure . . . . . . . . . . . . . . . . . . . . . . 48

1.2.3 Structure at Infinity . . . . . . . . . . . . . . . . . . . 57

1.3 Unknown Input Observers . . . . . . . . . . . . . . . . 61

1.3.1 UIO with Matching Conditions . . . . . . . . . . . . . 62

1.3.2 UIO with Algebraic Approach . . . . . . . . . . . . . . 66

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Modelling, analysis and synthesis are a logical sequence when dealing with an

integrated design approach of dynamical systems. According to the complexity

of physical phenomena, the model can have different descriptions, such as: linear

time-invariant (LTI), linear time-varying (LTV) or nonlinear (NL) models.

In order to study system structures, one should choose a model, firstly. The

associated issues and problems of LTI systems have been studied for a long time.
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1. LINEAR SYSTEMS MODELING AND STRUCTURE

There exist many kinds of methods to model, analyze and synthesize physical sys-

tems. Kalman et al. (1969) has established the state space analysis around 1960

and proposed that in the sense of mathematics, a linear system may be repre-

sented by the module. Rosenbrock (1970) has proposed the general description of

a linear system named the Rosenbrock polynomial description. Fliess (1990) has

introduced and developed the module theory in control domain which is different

from the Kalman’s idea. Module theoretic approach is also related to the behav-

ioral approach proposed by Willems (1991). Algebraic methods are appropriated

not only in linear cases but also for nonlinear ones. By this powerful tool, one

can extend the results of the LTI approach to LTV systems. However, because of

non-commutative properties, some differences between these two cases must be

pointed out.

As the coefficients of the differential equations of LTV models are time-varying

functions, the operator does not commute with the coefficients. In the first chap-

ter, some algebraic concepts which are fundamental to construct linear time-

varying models will be introduced, such as: principal ideal ring, module, etc. For

more details, Adkins & Weintraub (1992), Goodearl & Warfield (2004), Bourlès

& Marinescu (2011) and Ilchmann & Mehrmann (2006) are highly recommended.

In this chapter, an overview of structural properties of linear systems is pro-

vided. Roughly speaking, linear system structure is divided into two parts: the

finite structure and the infinite structure. In the second section, the finite and

infinite structure and some kinds of canonical forms of matrices which are useful

to derive two structures are introduced. A number of examples will be given.

Several poles and zeros are presented, which are important to analysis the sys-

tem performances such as controllability, observability, stability, etc. In the last

section, a classical control problem like the unknown input observer one will be

introduced, as an application of analysis and control of linear systems.

1.1 Algebraic Representation of Linear Systems

In this section, some elementary notions derived from algebra will be firstly re-

called, such as: fields, polynomials and rings. For more details, see Bourbaki

(1970), Cohn (1985), McConnell et al. (2001) and Bourlès & Marinescu (2011),

etc. Then, the module theoretical approach used for the study of linear systems

30



1.1 Algebraic Representation of Linear Systems

will be introduced. Furthermore, some examples will illustrate that linear systems

are finitely generated modules over differential polynomial rings of differential op-

erators. In the time-varying case, some differences with the time-invariant one

will be shown. In the last part, different descriptions of linear systems, such as

state-space description, polynomial matrix descriptions are recalled.

1.1.1 Mathematical Background and Notions

1.1.1.1 Fields

One-dimensional (1-D) LTI systems can be modeled by a number of ordinary

differential equations with coefficients in R (or C). In the LTI case, k = R (or

C) denotes the fields to which the systems’s coefficients belong. Coefficient fields

will be utilized to name this kind of fields. Let’s firstly recall the notion of field.

A field k(+,×) is an algebraic structure with notions of addition, multiplica-

tion, satisfying axioms for a, b, c ∈ k:

• a + b ∈ k, ab ∈ k

• a + (b+ c) = (a + b) + c, a · (b · c) = (a · b) · c

• a + b = b+ a, a · b = b · a

• a + 0 = a, a · 1 = a

• a + (−a) = 0, a · a−1 = 1

• a · (b+ c) = (a · b) + (a · c)

1.1.1.2 Rings and Rings of Differential Operators

A ring R(+,×) is an algebraic structure with notions of addition, multiplication,

satisfying axioms for a, b, c ∈ R:

• a + b ∈ R, ab ∈ R

• (a + b) + c = a + (b+ c), (a · b) · c = a · (b · c)

• 0 + a = a+ 0 = a, 1 · a = a · 1 = a

• a + b = b+ a
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1. LINEAR SYSTEMS MODELING AND STRUCTURE

• a · (b+ c) = (a · b) + (a · c), (a+ b) · c = (a · c) + (b · c)

The ring K = k[t] of polynomials of t with coefficients in k ∈ R or C is a

commutative ring. For LTV systems, the coefficients of the differential equations

of the systems are rational or meromorphic functions of time. These coefficients

belong to the ring K = k[t].

Rings of Differential Operators

Definition 1.1 A ring of differential operators (or differential polynomial ring)

is formed from a ring R and a derivation δ : R→ R. In addition, every element

of the ring is a polynomial of δ with coefficients in K. Then the multiplication is

extended from the relation δ · a = a · δ+ ȧ, a ∈ R, which is also known as Leibniz

rules. In the sequel, (̇) denotes the derivation.

In the following, a special differential polynomial ring will be defined as R :=

K[δ]. The elements of R are polynomials of the form (1.1).

P (δ) =

n∑

0

aiδ
i, ai ∈ K (1.1)

A polynomial in (1.1) is named a skew polynomial or a differential operator

when K is not a field of constants. Additionally, a polynomial is called monic if

an = 1. The ring R is generally noncommutative. It is commutative iff K is a

differential field of constants. When elements of coefficient field are polynomials

in one variable (e.g. t), the differential polynomial ring is called a Weyl algebra.

Cohn (1985) has defined the notation of ring of differential operators over K

in d
dt

as R := K[δ; id, d
dt
], where ‘id’ denotes respectively a variable with the fixed

value in the time-continuous and time-discrete cases. In this report, only time-

continuous case is considered, then the ring is also denoted by R := K[δ]. The

set R consists of all polynomial expressions in the variable δ with coefficients in

K. For the addition operation, it’s an abelian group. However, the multiplication

is given by the rule δa = aδ+ d
dt
(a) for all a ∈ K. R becomes a non-commutative

ring by the expanding of associativity and distributivity. Rings of the type of

R are also known as skew polynomial rings or Ore polynomial rings. The ring
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Q(t)[δ; id, d
dt
] is a special case of differential rings where the coefficients’s fields

are the rational functions Q(t) in t.

In what follows, Xm×n is used to represent the set of m × n matrices with

entries in X, Xn for n-length row vectors and Xm for m-length column vectors,

where X is an algebraic structure, such as: field, ring, etc.

A ring is called an integral domain, or a domain, if it is integral, i.e., without

zero divisors. In another word, an integral domain is a ring with 1 6= 0 (i.e.,

the multiplicative identity is not equal to the additive identity) that has no zero

divisor. This means that if a, b ∈ R such that ab = 0, then a = 0 or b = 0. A

unit of R is an invertible element. Two nonzero elements a and b of an integral

domain R are said to be associated if there exist units υ and ϑ such that a = υbϑ.

If υ = 1 (resp., ϑ = 1 ), they are said to be right (resp., left) associated.

Proposition 1.2 Bourlès (2005) R = K [δ], even in the general case, is:

(i) An Euclidean domain, thus a principal ideal domain which is an integral

domain whose all ideals are principal;

(ii) A simple ring, i.e., has no proper nonzero ideal.

Remark 1.3 In the sequel, without any additional specification, R := k[δ] (resp.,

R := K[δ]) is the ring over which is the LTI (resp., LTV) system as a module,

where k = R or C (resp., K = k[t] or k(t)) is the coefficient field of the LTI

(resp., LTV) system.

1.1.1.3 Factorization and Roots of Differential Polynomials

System poles and zeros are defined by some appropriate differential polynomials.

In order to get the solution of polynomials, their factorizations are required.

Van der Put & Singer (2003) have shown that a skew polynomial can be factorized

as a product of elementary factors after a well-chosen field extension.

An n-th order differential equation related to a torsion module T in one vari-

able has the following polynomial form

P (δ, t)ξ = 0, P (δ, t) = δn +
n−1∑

i=0

aiδ
i, ai ∈ K (1.2)

Proposition 1.4 Van der Put & Singer (2003) For every monic polynomial

P (δ, t) ∈ R
× (R× = (R ∪ {0}) \ {0}) there exists an element γ ∈ K

′(K′ is
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an extension of K) such that P (δ, t) has a factorization of the form P (δ, t) =

P ′ (δ, t) (δ − γ). γ is called a ( right) root of P (δ).

In (1.2), if P (δ, t) has a right factor, i.e., P (δ, t) = P ′ (δ, t) (δ − γ), then γ is

a right root of P (δ, t) and ξ(t) = e
∫

γdt is a solution of (1.2).

A decomposition of the initial differential polynomial into its elementary fac-

tors can be given by Proposition 1.4 over a suitable extended field (αi ∈ K′) as

equation (1.3).

P (δ, t) =
∏

i
(δ − αi)

di (1.3)

In this factorization form, only α1 is a root (zero) of P (δ, t). For an element

α ∈ K, there exists a class named conjugacy class ∆(α) which has the form:

∆(α) =

{
α +

dc

dt
c−1, c 6= 0 ∈ K

}
(1.4)

Let P (δ, t) ∈ R be a skew polynomial represented by (1.1), the (right-)evaluation

of P (δ, t) in α ∈ K denoted by P (α) is defined as follows:

P (α) =
∑n

i=0
aiNi (α) (1.5)

where N0 (α) = 1, Ni (α) = Ni−1 (α)α + d
dt
(Ni−1 (α)).

Example 1.5 Consider P (δ, t) which is a skew polynomial with a factorization

form, such as:

P (δ, t) = (δ − α) (δ − β) , α, β ∈ K

The polynomial can be extended in the form (1.1) based on Leibniz rules in defi-

nition (1.1). The polynomial is rewritten as:

P (δ) = δ2 − (α + β) δ + αβ − β ′

where a0 = αβ − β ′, a1 = − (α+ β) , a2 = 1. According to (1.5), the evaluation

of P (δ) in α, β ∈ K is done separately.

• Calculate the terms in (1.5) with the evaluation in α: N0 = 1, N1 =

α, N2 = α2 + α′. So P (α) = α′ − β ′, and α is not a zero of the polynomial

P (δ).
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• Calculate the terms in (1.5) with the evaluation in β: N0 = 1, N1 =

β, N2 = β2 + β ′. So P (β) = 0, and β is a zero of the polynomial P (δ, t).

The product formula of two monic skew polynomials U(δ), V (δ) ∈ R is given

in (1.6), where α ∈ K.

{
(U (δ) V (δ)) (α) = 0, if V (α) = 0

U
(
αV (α)

)
V (α) , if V (α) 6= 0

(1.6)

The notion of left least common multiple (LCLM) denoted by [P (δ, t), P ′(δ, t)]l

is introduced here for two monic skew polynomials P (δ, t), P ′(δ, t) ∈ R×. [P (δ, t), P ′(δ, t)]l

is a monic polynomial, and the calculation in the case of a first order polynomial

P ′(δ, t)]l = δ − α is defined as relation (1.7).

{
[P (δ, t), δ − α]l = P (δ, t), if P (α) = 0

[P (δ, t), δ − α]l =
(
δ − αP (α)

)
U, if P (α) 6= 0

(1.7)

For differential equations (1.2), there exist two notions, such as: fundamental

set of roots of polynomial P (δ, t) and fundamental set of solutions of variable

ξ. By evaluation with each element in the fundamental set of roots, polynomial

P (δ, t) is equal to zero. Each element in fundamental set of solutions is a solution

of equation (1.2) with a related element in fundamental set of roots.

Definition 1.6 Marinescu & Bourlès (2009) Let P (δ, t) ∈ R
× be a polynomial of

degree n. A fundamental set of roots of P (δ, t) is a set ∆ = {γ1, . . . , γn} of right

roots of P (δ, t) such that P (δ, t) = P∆(δ, t), where P∆(δ, t) = [δ−γi, i = 1, . . . , n]l.

For a polynomial with factorization form (1.3), the fundamental set of roots

can be found from the elementary factors in an iterative way. Firstly, γ1 = α1,

then γi, i > 1 is derived from equation

γ
γi−γi−1

i = α′
i, α

′
i =

{
αi−1, di−1 > 1
αi, di−1 = 1

which leads to the Riccati equation:

dγi
dt

+ γ2
i − (α′

i + γi−1) γi −
dγi
dt

+ γiα
′
i
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A fundamental set of solutions of (1.2) can be derived from a fundamental set

of roots of P (δ, t) by solving the elementary equations

(δ − γi) ξi = 0⇔
dξi
dt

ξ−1
i = γi, i = 1, . . . , n (1.8)

Therefore, a fundamental set of solutions consist of ξi (t) = e
∫

γidt, i = 1, . . . , n.

Now another definition of zeros of a polynomial P (δ, t) ∈ R× and the notion

of full set of zeros of P (δ) are recalled.

Definition 1.7 Bourlès & Marinescu (2011) 1. Let P (δ, t) ∈ R
× and let K̂ ⊇ K

be a field extension of K. If there exist polynomials P ′(δ, t), P ′′(δ, t) ∈ K̂[δ] and

α ∈ K̂ such that P (δ, t) = P ′(δ, t) (δ − α)P ′′(δ, t), then α is called a zero of

P (δ, t). 2. If P (δ, t) has a factorization (1.3) into n linear factors δ − αi (not

necessarily distinct), then {α1, . . . , αn} ⊆ K̂ is called a full set of zeros of P (δ, t).

1.1.2 Modules and Linear Systems

In this section, we will recall that linear continuous systems are modules over

polynomial rings. This class of systems consists of differential-algebraic equa-

tions in kernel presentation. The ring is commutative (resp., non-) for linear

time-invariant (resp., -varying) systems. Module theory provides a better math-

ematical way to characterize the inherent structural properties of linear systems.

However, in the time-varying case, mathematical calculus are not easily imple-

mented because of the non commutative property between operations.

Generally speaking, components’s parameters of systems are time-varying.

Linear time-invariant models are just approximations of time-varying systems.

Moreover, variational models of nonlinear systems are LTV systems. Analysis

and synthesis techniques for LTV systems can be applied to control nonlinear

systems along trajectories and to design multi-rate filters in signal processing.

1.1.2.1 Modules

An abelian group (M,+) is a (left) R-module∗ if there is a binary operation

R ×M → M sending (r, a) 7→ ra that satisfies the following properties for all

∗In everything that follows, all modules are left modules, it means that any element of a
module can be represented by a product of a scalar and of an element of a module. The scalar
appears on the left-hand side, and it belongs to a ring.

36



1.1 Algebraic Representation of Linear Systems

r, r1, r2 ∈ R and a, a1, a2 ∈ M :

• r (a1 + a2) = ra1 + ra2

• (r1 + r2) a = r1a+ r2a

• (r1r2) a = r1 (r2a)

• 1a = a

An R-module M is said to be generated by a family (ei)i∈I , if every element

m ∈ M is an R-linear combination of the elements ei. That is to say there exists

a family (λi)i∈I of elements of R such that m =
∑

i∈I λiei where all but a finite

number of λi are zero. The left R-module M is finitely generated iff there exist

a1, a2, . . . , an in M such that for all m ∈ M , there exist λ1, λ2, . . . , λn in R with

m = λ1a1+λ2a2+ . . .+λnan. The set a1, a2, . . . , an is referred to as a generating

set for M in this case. In the case where the module M is a vector space over

a field k, and the generating set is linearly independent, n is well-defined and is

referred to as the dimension of M . A left ideal of R is an R-module.

The concept of module over a ring is an extension of the notion ‘vector space’

over a field. Let V be a k-vector space, λ 6= 0 be a scalar (i.e., an element of k)

and v be a vector (i.e., an element of V ). If λv = 0, then v = 0.

A module M is a set similar to a vector space, but defined over a ring R of

scalars. If R is a field, then an R-module is a vector space. Much of the theory

of modules consists of recovering desirable properties of vector spaces in the case

of modules over certain rings.

Definition 1.8 Bourlès & Marinescu (2011)

An element τ ∈M is said to be torsion if, and only if, there exists a polynomial

a ∈ R, a 6= 0, such that aτ = 0. The set of all torsion elements of a R-module M

is a torsion submodule T (M). A R-module is said to be torsion-free if T (M) = 0.

The quotient module M/T (M) is torsion-free. A module M is said to be

torsion if M = T (M). A finitely generated R-module is said to be free, iff there

exists a basis, i.e., the module is generated by a finite set e = (e1, e2, . . . , em),

and the elements of the family are R-linearly independent. It means that every

element m ∈ M can be represented by a unique form: m =
∑

i λiei. The rank
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of this free module is m. There are some differences and counterparts between

modules and vector spaces in Table 1.1, where nb is the number of elements of

the base.

Table 1.1: Differences and counterparts between modules and vector spaces
Vector Spaces always have a base dimension(nb)

Modules just for free modules rank(nb)

1.1.2.2 Linear Systems Modeled as Modules over R

The LTV systems are represented by ordinary linear differential equations with

time-varying coefficients, their solutions are called time-varying linear systems

or behaviors, from the system theoretic point of view. The obtained results

show the analogy for multidimensional LTI systems. There exists one-to-one

correspondence between LTV systems or behaviors and finitely generated modules

M over a skew-polynomial ring R of differential operators. In Fliess’s theoretic

approach, the linear systems are the modules∗ over differential rings. A module

M over R which is finitely generated by a family e = (e1, e2, . . . eq) is denoted by

[e]
R

. In this thesis, the coefficients of the linear ordinary differential equations of

LTV systems are supposed to be rational or meromorphic functions of time. Ring

R := K[δ],K := k[t] over which are LTV systems as modules is a simple Dedekind

domain (Ore ring where all left ideals are invertible) Bourlès & Marinescu (2011).

An LTV system is defined by a set of equations of the form† (1.9).

R (δ, t)w = 0 (1.9)

where R (δ, t) ∈ K[δ]g×q ∼= Kg×q [δ] is a polynomial matrix in the indeterminate

δ with entries in R over a certain ring or field of time-varying function and

w = [w1, w2, . . . , wq]
T . Equation (1.9) defines a module denoted by M = [w]R or

M = coker(•R). It is said to be defined by generators w = [w1, w2, . . . , wq]
T and

the g equalities in the second equation of (1.9). Matrix R (δ, t) ∈ Rg×q in (1.9) is

called to be a matrix of definition of the module M = coker(•R).

∗In the sequel, a finitely generated module associated with a linear system can always be
represented by R(δ)w = 0, where R(δ) ∈ R

g×q with appropriate dimensions is called the
definition matrix and w is the generator of the module.

†In what follows, a matrix with a time term t (t ∈ [0,∞)) is related to an LTV system.
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The solution set B, in the signal module, of the linear system of differential

equations R(δ, t)w = 0 is represented in the form:

B = {w ∈ M q|R(δ, t)w = 0}

where R(δ, t) ∈ Rg×q is called a representation of B. Such solution sets are known

as “behaviors” in system theory. The elements of B are called trajectories.

Definition 1.9 Bourlès & Fliess (1997) A (linear) dynamics D is a system in

which a finite set u = {u1, u2, ..., um} of input variables is such that the quotient

module D/[u]R is torsion. It means that any element in D is R-linearly dependent

on u, i.e. ∀d ∈ D, ∃a (δ, t) , bi (δ, t) ∈ R with a (δ, t) 6= 0 such that (1.10) is

verified.

a (δ, t) d+
∑m

i=1
bi (δ, t) ui = 0 (1.10)

An LTV system Σ is a finitely generated R-module over a noncommutative

ring R = K[δ]. (Σ, u) denotes the dynamics Σ with the input u. The input

u is said to be independent if [u]
R

is free of rank m. It means that there are

no differential equations relating the input components. In what follows, u is

assumed to be independent. Then the rank of Σ is equal to m. By this way, a

torsion module T ∼= M/[u]
R

is gotten. System (1.9) can be put into the state-

space form and the autonomous system obtained by forcing the inputs to zero

has an equation of the form

δx = Ax (1.11)

where A is a matrix with entries in K Bourlès (2005). Stability can be studied

on equation (1.11) which can be equivalently represented by a scalar differential

equation (1.12),

P (δ) ŷ = 0, P (δ) = δn +
n∑

i=1

aiδ
n−i (1.12)

where ŷ is a generator of torsion module T = M/[u]R.

39



1. LINEAR SYSTEMS MODELING AND STRUCTURE

1.1.2.3 Sequences of R-modules

A sequence of R-modules and R-linear maps

M
f
−→ N

g
−→ P

is called exact at N if im(f)=ker(g). For instance, to say 0 −→ N
h
−→ P is exact

at N means h is injective, and to say M
h
−→ N −→ 0 is exact at N means h is

surjective. The linear maps coming out of 0 or going to 0 are unique, so there is

no need to label them.

Let M , N and P be left R-modules, and let f : M −→ N and g : N −→ P be

R-linear maps. A short exact sequence of R-modules is a sequence of R-modules

and R-linear maps, i.e., left module homomorphisms

0 −→M
f
−→ N

g
−→ P −→ 0

which is exact at N,M and P . That means that f is injective, g is surjective,

and im(f)=ker(g).

As mentioned previously, R is a principal ideal domain. Let w = {w1, . . . wq}

be a finite subset of a left R-module M . w and [w]R denote respectively the

column vector [w1, . . . wq]
T and the submodule spanned by w. It is supposed that

all modules considered here are finitely generated modules over left and right

principal ideal domains which have the left and right Ore property. For every

R-module Σ, there exists a short exact sequence

0 −→ N
f
−→ F

g
−→ Σ −→ 0

where modules F and N are free. N being called sometimes the module of re-

lations. The sequence is called a presentation of Σ. Let θ = {θ1, . . . , θg} and

φ = {φ1, . . . , φq} be bases of N and F, respectively. f is represented by a matrix

called a matrix of definition of Σ. Set γi = f(θi), i = 1, . . . , g, so that γ = Rφ

and wi = g(φi), i = 1, . . . , q; then, M = [w]R ∼= [φ]R/[θ]R.

R(δ, t)w = 0

is called the equation of the module Σ in the chosen bases.
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Example 1.10 Consider the system of equations defined as

µ∑

i=1

aliwi = 0

where ali ∈ K [δ] , l = 1, . . . , ν. w1, . . . , wµ are system variables. F is a free module

generated by f1, . . . , fµ. Let N ⊆ F be the submodule generated by
µ∑

i=1

alifi. F/N

is the module corresponding to the system.

1.1.3 Different Descriptions of Linear Systems

State Space Representations

For a linear time-varying dynamical system Σ, the classical state representa-

tion is given by the Kalman form (1.13),

{
ẋ (t) = A (t) x (t) +B (t)u (t)
y (t) = C (t) x (t) +D (t)u (t)

(1.13)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and the matrices A(t), B(t), C(t) and D(t)

are of compatible order and are differentiable a finite number (≤ n) of times; the

entries of these matrices are real-valued functions of the real independent variable

t. Let U be the input function space over [t0,∞) and Y the corresponding output

space. Elements of U are assumed to be at least continuous. For each initial state

x0 = x(t0), Σ defines a mapping Hx0 : U → Y. The invertibility of the mapping

Hx0 and the existence of the inverse system representation are some fundamental

problems for engineers.

Rosenbrock Representations

The state space representation is a very important contribution to the control

domain due to Kalman (1959). But systems’s equations are not always in a

state space representation, and the general description of a linear system is the

Rosenbrock polynomial description (1.14), Rosenbrock (1970). D(δ, t) is assumed

to be regular (i.e., det(D(δ, t)) 6= 0). The operator δ represents the differential
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operator for linear continuous-time systems. It could be replaced by the shift-

forward operator D for linear discrete-time systems.

{
D(δ, t)ξ = N(δ, t)u
y = Q(δ, t)ξ +W (δ, t)u

(1.14)

Now the system representation is recalled by utilizing the module theory. Let

ξi, i = 1, . . . , r satisfying Σ = [ξ, u]
R

(where [ξ, u]
R
= [ξ]

R
+[u]

R
, i.e., [ξ, u]

R
is the

R-module generated by the components of ξ and u). With w = [ξ, u]T , (1.9) can

be written as (1.15) Bourlès (2005), where D(δ, t) ∈ Rr×r and N(δ, t) ∈ Rr×m.

[
D (δ, t) −N (δ, t)

] [ ξ
u

]
= 0 (1.15)

As yi ∈ [ξ, u]
R

(i = 1, . . . , p), there exist matrices Q(δ, t) ∈ Rp×r and

W (δ, t) ∈ Rp×m such that

y =
[
Q (δ, t) W (δ, t)

] [ ξ
u

]
(1.16)

Equations (1.15), (1.16) are called a polynomial matrix description (PMD)

of the input-output system Σ. The finite sequence ξi, i = 1, . . . , r is called a

pseudo-state of Σ.

Willems (2007) pointed that in some cases, it may be misleading to distin-

guish between system variables. Set w1 = ξ, w2 = u, w = [w1, w2]. The system

corresponding the module [w] = [ξ, u] can be written as

R(δ, t)w = 0

with the polynomial matrix R(δ, t) = [D(δ, t)−N(δ, t)]. The time functions that

are the solutions of the system on the real line R (or on an open interval of R)

are called the behavior Willems (1991).

1.2 System Structures

System structures play an important role in our understanding of linear systems

in a number of system representations. One can get a set of matrix canonical

forms associated to the system by utilizing differential algebraic structure and

differential operator factorizations. The structural canonical form representation
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of linear systems not only reveals system structures but also facilitates the design

of feedback satisfying various control objectives Chen et al. (2004). A system can

be decomposed into several subsystems. Between them, there exist the intercon-

nections, which show structures of the system.

System structures such as structure at infinity and finite structure are largely

studied, Commault et al. (1986) for the LTI systems, Silverman & Meadows

(1967), Porter (1969) for the LTV systems. They are recently studied in Ilch-

mann (1985), Bourlès & Fliess (1997), Bourlès (2005), Bourlès (2006). Structural

properties do not depend on the numerical value of the parameters but only on

the type of elements, and on the way they are interconnected.

Generally speaking, the infinite structure allows us to know whether a model

can be decoupled by a regular static state feedback. The finite structure is useful

for studying the stability property of the decoupled model. It means that, if the

fixed modes are stable, the controlled model can be set stable. The aim of this

section is to recall some studies of structures of linear systems which is based on

module theory. The notions of polynomial matrix and rational matrix from which

system structures can be derived will be introduced firstly. Then the infinite and

finite structure of linear systems will be implemented.

1.2.1 Polynomial and Rational Matrices

In linear system theory, polynomial matrices are used as modeling tools. Polyno-

mial matrices manipulation can settle control problems. A well-known example

is the polynomial matrix spectral factorization, which has been applied in H2 and

H1 control, see Ephremidze et al. (2007) for a new algorithm. Zeros of polynomial

matrices naturally represent either poles or zeros of linear multivariable systems

described by polynomial matrix fractions Zúniga & Henrion (2003). It’s useful

for analyzing and/or designing linear systems or filters. Associated with the ze-

ros are the finite and infinite structures of a polynomial matrix P (δ, t), defined

from specific canonical forms under matrix equivalence: the Smith/Jacobson form

for the finite structure and the Smith-MacMillan form at infinity for the infinite

structure.

In this section, some necessary technics of matrices factorization for defining

the notions of zeros and poles of rational and polynomial matrices are recalled.

For calculating the zeros and poles, the notion of unimodular matrix is needed.
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1. LINEAR SYSTEMS MODELING AND STRUCTURE

Two special matrices - the system matrix and the transfer matrix are introduced.

From them, some structural properties of a system will be obtained.

Definition 1.11 The system matrix associated to the system Σ(C(t), A(t), B(t))

is the polynomial matrix P (δ, t) defined by equation (1.17). If the system is rep-

resented by the PMD form, the corresponding system matrix is in (1.18).

P (δ, t) =

[
Iδ −A(t) −B(t)

C(t) 0

]
(1.17)

P (δ, t) =

[
D (δ, t) −N (δ, t)

Q (δ, t) 0

]
(1.18)

Definition 1.12 Bourbaki (1970) Let R′ = R or R. A polynomial matrix P ∈

R′n×n is called a unit (invertible or unimodular) in R′n×n if ∃ Q ∈ R′n×n such

that

PQ = In

Clearly if P and Q are units, so is PQ. In the LTI case, a matrix P ∈ Rn×n is

unimodular iff detP = c, where c ∈ R and c 6= 0.

Matrices whose entries belong to the ring R(or R) of polynomials of δ, are

called polynomial matrices. Similarly, a rational matrix has entries which are

rational functions of δ. In general, the inverse of an invertible polynomial matrix

is not a polynomial matrix since the inverse of a non constant polynomial is not a

polynomial. The set of all unimodular matrices belonging to Rn×n is a group (for

the multiplication) denoted by GLn (R) and called the “general linear group” of

Rn×n. Therefore, the subclass GLn(K[δ]) of unimodular matrices, defined as the

set of invertible square n×n polynomial matrices whose inverses are polynomial,

or equivalently whose determinants are a constant, plays an important role.

In this subsection, only some fundamental definitions are introduced. The

convention that K[δ] is the set of polynomials and K(δ) is the set of rational

functions is recalled. Here, K[δ] is denoted as R and K(δ) as Q. It is supposed

here that the ring R = k[δ] is over a field k of constants.
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1.2 System Structures

1.2.1.1 Smith/Jacobson Form and Zeros of a Polynomial Matrix

Let R = k[δ] be a ring of differential polynomials, the definition of Smith/Jacobson

form of a polynomial matrix over R is recalled in Definition 1.14. Before defining

the Smith/Jacobson form, let’s firstly recall the notion of divisor for an element

in R.

Definition 1.13 Bourlès & Marinescu (2011)

(1) Let a, b ∈ R; a is said to left-divide (resp., right-) b (or to be a left-divisor

(resp., right-) of b), and b is said to be a right-multiple (resp., left-) of a, if there

exists c ∈ R, c 6= 0 such that b = ac (resp., b = ca).

(2) If a is both left- and right-divisor of b, it is said to be a divisor of b, written

a|b, and b is said to be a multiple of a.

(3) a is said to be a total divisor of b (written a ‖ b) if there exists an invariant

element (a unit when R = k[δ]) c such that a|c and c|b.

Definition 1.14 Bourlès & Marinescu (2011)

(i) A matrix R(δ) ∈ Rq×k admits a diagonal reduction if

R(δ) ≡ diag (d1(δ), . . . , dr(δ), 0, . . . , 0) , di(δ) ‖ di+1(δ), dr(δ) 6= 0 (1.19)

where ≡ denotes matrices equivalence, i.e., there exist matrices U(δ) ∈ GLq(R)∗

and V (δ) ∈ GLk(R) such that (1.20).

U(δ)R(δ)V (δ) = diag (d1(δ), . . . , dr(δ), 0, . . . , 0) (1.20)

Let M = cokerR(•R(δ)); then M = T(M)⊕Φ where T(M), Φ are the torsion

submodule and free submodule of M . Hence, rk Φ = rk M = r and

T(M) ∼=
⊕

16i6rR/R di (1.21)

(ii) diag (d1(δ), . . . , dr(δ), 0, . . . , 0) is called the Smith form of R(δ), and the ele-

ments di (1 6 i 6 r) are called the invariant factors (or polynomials) of R(δ) or

of M .

∗GLq(R) is the general linear group of the square invertible matrices of order q over R
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1. LINEAR SYSTEMS MODELING AND STRUCTURE

When R is noncommutative, the Smith normal form is often called the Jacobson-

Teichmüller form. When R is simple, the Jacobson form is given in Definition

1.15. A proof may be found in Cohn (1985) (Chapter 8).

Definition 1.15 Let P (δ, t) ∈ R
m×n be a polynomial matrix of rank r. There

always exist unimodular matrices U(δ, t) ∈ R
m×m and V (δ, t) ∈ R

n×n satisfying

equations (1.22) and (1.23), where Λ(δ, t) is the Jacobson form of P (δ, t).

U (δ, t)P (δ, t) V (δ, t) = Λ (δ, t) (1.22)

Λ (δ, t) =




1

. . .

1

dr(δ, t)

0




(1.23)

The polynomials di(δ, t) are called invariant polynomials (or invariant factors) of

P (δ, t).

Let R = k[δ], matrices R(δ) ∈ Rq×k are the definition matrices of modules

related to LTI systems. Similarly, matrices R(δ, t) ∈ Rq×k are the definition ma-

trices of modules related to LTV systems when R = K[δ]. As mentioned, the

Smith form is used to calculate the Smith zeros of a polynomial matrix over R,

and Jacobson form for matrices over R.

Elementary Operations

For detecting the Smith/Jacobson form of a polynomial matrix, the elemen-

tary operations are needed. On account of noncommutative property in the LTV

case, these operations are defined in Definition 1.16.

Definition 1.16 Bourlès (2005)

Because of the noncommutative property, elementary operations of a matrix

over R are different from the ones in the time-invariant case. The elementary

row (resp., column) operations are defined as follows:

1. interchange two rows (resp., columns);
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1.2 System Structures

2. multiply a row (resp., column) on the left (resp., right) by a unit in R;

3. add a left (resp., right) multiple of one row (resp., column) to another.

Each of (1)-(3) in Definition 1.16 corresponds to the left (resp., right) multipli-

cation by an elementary matrix. So the Smith/Jacobson form can be detected by

the procedure defined in Definition 1.16. In addition, these forms can be derived

from the method in Definition 1.15 by using elementary matrices.

GCD Approach

In the LTI case, the GCD approach can be used to detect the Smith form of a

matrix over R. Let P (δ) ∈ Rp×q and ∆k(δ) denotes the GCD (greatest common

divisor) of all k × k minors of P (δ), where 1 ≤ k ≤ min(p, q).

Property 1.17 For 1 ≤ k ≤ r, where r = rank(P (δ, t)), ∆k(δ, t) 6= 0 for 1 ≤

k ≤ (r − 1) and ∆k(δ, t) divides ∆k+1(δ, t).

The next definition shows the link between the invariant polynomials and the

zeros of a polynomial matrix.

Definition 1.18 The zeros of a polynomial matrix are the roots of its invariant

polynomials.

It is not difficult to find that there are some similar properties between the in-

variant polynomials and the GCRD of minors. Then one can get the invariant

polynomials without calculating the Jacobson form.

Remark 1.19 ∆i(δ, t) is the monic GCD of all the i-order minors of P (δ, t).

The invariant polynomials of P (δ, t) are presented by relations (1.24) and (1.25):

di (δ, t) = (∆i−1(δ, t))
−1∆i(δ, t) (1.24)

∆0 = 1 (1.25)

Example 1.20 Let P (δ, t) ∈ R
2×3

[
δ + 1 δ2 t

δ δ2 0

]
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1. LINEAR SYSTEMS MODELING AND STRUCTURE

Making the line and column elementary operations, the Jacobson form of P (δ, t)

is gotten: [
δ + 1 δ2 t

δ δ2 0

]
c3∗

1
t
, r1−r2, c1−c3,

−−−−−−−−−−−−−→
c2−c1∗δ, c1∼c3, c2∼c3

[
1 0 0

0 δ 0

]

obtained with

U =

[
1 −1

0 1

]
, V =




0 1 −δ

0 0 1
1
t
−1

t
1
t
∗ δ




and ∆0 = 1,∆1 = 1,∆2 = δ so relation (1.24) can be obtained. For matrix

U(δ, t), det(U(δ, t)) = 1 ∈ K and its inverse is U−1(δ, t) =

[
1 1

0 1

]
where

det(U−1(δ, t)) = 1, U(δ, t) ∗ U−1(δ, t) = I. For matrix V (δ, t), det(V (δ, t)) = 1
t
∈

K and its inverse is V −1(δ, t) =




1 0 t

1 δ 0

0 1 0


 where det(V −1(δ, t)) = t, V (δ, t) ∗

V −1(δ, t) = I.

1.2.2 Finite Structure

Finite structure describes the internal properties of linear systems. There ex-

ist some objects regarding finite structure, such as invariant zeros (resp., poles),

transmission zeros (resp., poles), controllable (resp., uncontrollable) poles, ob-

servable (resp., unobservable) poles, hidden modes and system zeros and poles,

etc. These poles and zeros could be stable or unstable. They are important for

studying the stability of linear systems. The system poles and transmission poles

dominate, respectively, the internal stability and the transfer stability. The hid-

den modes are related to the properties of uncontrollability and unobservability

of systems. The invariant zeros can be regarded as the system poles of the inverse

system. The finite structure of an LTV system is given by the invariant poly-

nomials of several polynomial matrices derived from system matrices. Bourlès

& Marinescu (2011) defined the modules of various finite poles and zeros, these

modules are recalled, firstly. In what follows, Σ is an input-output system with

input u and output y.

48



1.2 System Structures

Fliess (1990) defined linear system Σ as modules which can be represented as

a direct sum (1.26),

Σ = T ⊕ Φ (1.26)

where T is the torsion submodule and Φ ∼= Σ/T is the free submodule. rank(Σ)

is the rank of Σ which is equal to the rank of the free submodule Φ and to the

cardinality of any basis of Φ.

Example 1.21 An electrical system is shown in Figure 1.1. The finite poles and

zeros of this system are studied with the module and the PMD approaches in the

next part.

Figure 1.1: Circuit of a third order system

The state vector is x = (pL1 , qC2 , pL3), where pL1 and pL3 are the magnetic

fluxes in the inductance elements and qC2 is the charge in the capacitor.

The system equations are given in (1.27).

ẋ(t) =




0 − 1
C2(t)

0
1

L1(t)
0 − 1

L3(t)

0 1
C2(t)

0


 x(t) +




1

0

0


u(t)

y(t) =
[
0 1

C2(t)
0
]
x(t)

(1.27)

From the PMD form, the system matrix P (δ, t) and the matrix D(δ, t), N(δ, t),

Q(δ, t) are given in (1.28).
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D(δ, t) =




δ 1
C2(t)

0

− 1
L1(t)

δ 1
L3(t)

0 − 1
C2(t)

δ


 N(δ, t) =




1

0

0




Q(δ, t) =
[
0 1

C2(t)
0
]

P (δ, t) =




δ 1
C2(t)

0 −1

− 1
L1(t)

δ 1
L3(t)

0

0 − 1
C2(t)

δ 0

0 1
C2(t)

0 0




(1.28)

1.2.2.1 System Poles

Definition 1.22 Bourlès & Marinescu (2011)

Let T be a finitely generated torsion module and let diag{1, . . . , 1, PT (δ)} be

the Jacobson normal form of one of its matrices of definition. Let α ∈ K be a zero

of PT (δ); α is called a Smith zero of T. Let {α1, . . . , αm} be a full set of zeros of

PT (δ), i.e. PT (δ) = (δ − αn) . . . (δ − α1) , {α1, . . . , αn} ⊆ K̂ ⊇ K; {α1, . . . , αm}

is called a full set of Smith zeros of T and noted α(T) in the sequel.

Definition 1.23 The system poles of a linear system Σ are the Smith zeros of

the module Σ/[u]R, which is called the module of system poles. Σ is called internal

stable iff all of its system poles lie in the open left half-plane.

If system Σ is given by the PMD form (1.14), its system poles can be derived

from the Smith zeros of D(δ, t). They are the eigenvalues of the “state matrix”

A(t) in the state-space description (1.13). An equation of Σ/[u]R is

D(δ, t)ξ̄ = 0 (1.29)

where ξ̄ is the image of ξ by the epimorphism Σ→ Σ/[u]R and Σ/[u]
R
=
[
ξ̄
]
R

Example 1.24 (continued)

The module of system poles is defined by (1.29). According to Definition

1.16, the procedure for getting the Jacobson form of D(δ, t) in (1.28) is shown by

equation (1.30).
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


δ 1
C2(t)

0

− 1
L1(t)

δ 1
L3(t)

0 − 1
C2(t)

δ


 −L1(t)×r2,l1−δ×r2,
−−−−−−−−−−−−−−−→
c2+c1×L1(t)δ,c3+c1×

L1(t)
L3(t)




0 1
C2(t)

+ δL1 (t) δ δL1(t)
L3(t)

1 0 0

0 − 1
C2(t)

δ


 −C2(t)×r3,c3+c2×C2(t)δ,
−−−−−−−−−−−−−−−−−−−−→
r1−

(

1
C2(t)

+δL1(t)δ
)

r3,l1↔l2,l2↔l3




1 0 0

0 1 0

0 0 δL1(t)
L3(t)

+ δ + δL1 (t) δC2 (t) δ




(1.30)

From the last entry of the above matrix, the invariant polynomial of D(δ, t)

is given by equation (1.31) with calculations according to Leibniz rules.

δ
L1 (t)

L3(t)
+ δ + δL1 (t) δC2 (t) δ

=
L1 (t)

L3(t)
δ +

(
L1 (t)

L3(t)

)′

+ δ + (L1 (t) δ + L′
1 (t)) (C2 (t) δ + C ′

2 (t)) δ

=
L1 (t)

L3(t)
δ +

(
L1 (t)

L3(t)

)′

+ δ + L1 (t) δC2 (t) δ
2 + L1 (t) δC

′
2 (t) δ

+L′
1 (t)C2 (t) δ

2 + L′
1 (t)C

′
2 (t) δ

= L′
1 (t)C2 (t) δ

2 +

(
L1 (t)

L3(t)
+ 1 + L′

1 (t)C
′
2 (t)

)
δ

+L1 (t)C2 (t) δ
3 + 2L1 (t)C

′
2 (t) δ

2 + L1 (t)C
′′
2 (t) δ

= L1 (t)C2 (t) δ
3 + (2L1 (t)C

′
2(t) + L′

1 (t)C2(t)) δ
2

+

(
L1 (t)C

′′
2(t) + L′

1 (t)C
′
2(t) +

L1 (t)

L3(t)
+ 1

)
δ +

(
L1 (t)

L3(t)

)′

(1.31)

1.2.2.2 Decoupling Zeros (Hidden Modes)

The decoupling zeros are distinctly related to the system’s controllability and

observability property.

Input Decoupling Zeros and Controllability
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The complex numbers {δ0} which satisfy

rk[Iδ0 − A(t) B(t)] < n

are called input decoupling zeros (i.d.z.). The i.d.z. number is equal to the row

rank defect of the controllability matrix C defined in (1.32).

C(δ, t) =
[
B(t) (A(t)− Iδ)B(t) · · · (A(t)− Iδ)n−1B(t)

]
(1.32)

The system Σ is said to be controllable iff there is no i.d.z.. If the system is given

in the PMD form (1.14), Σ is controllable iff D(δ, t) and N(δ, t) are left-coprime.

From the point of view of module theory, Σ is controllable iff Σ is a free R-module.

Definition 1.25 The input decoupling zeros of Σ are the Smith zeros of the mod-

ule T = T(Σ), which is called the module of input decoupling zeros.

If the system Σ is given by PMD (1.14), its i.d.z. are the Smith zeros of

[D(δ, t) N(δ, t)]. If the system is defined by (1.9), its i.d.z. are the Smith zeros

of R(δ, t).

Definition 1.26 Σ is said to be stabilizable iff all the i.d.z. lies in the open left

half-plane.

Example 1.27 (continued) The invariant polynomial of [D(δ, t) N(δ, t)] is triv-

ial. So there is no i.d.z. for Σ, i.e. the system is controllable in both LTI and

LTV cases.

Output Decoupling Zeros and Observability

The output decoupling zeros (o.d.z) related to the system observability prop-

erty. The complex numbers {δ0} which satisfy

rk

[
Iδ0 − A(t)

C(t)

]
< n

are called o.d.z.. The number of o.d.z. is equal to the column rank defect of the

observability matrix O is defined in (1.33).

O(δ, t) =
[
CT (t) (AT (t) + Iδ)CT (t) · · · (AT (t) + Iδ)n−1CT (t)

]
(1.33)
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The system is said to be observable iff there is no o.d.z.. If the system is given

in the PMD form (1.14), Σ is observable iff D(δ, t) and Q(δ, t) are right-coprime.

From the point of view of module theory, Σ is observable iff Σ = [y, u]R.

Definition 1.28 The output decoupling zeros of Σ are the Smith zeros of the

module Σ/[y, u]R, which is called the module of o.d.z..

Assume that R′(δ, t) is a GCRD of D(δ, t) and Q(δ, t); i.e., D(δ, t) = 0D(δ, t)R′(δ, t),

Q(δ, t) = 0Q(δ, t)R′(δ, t), where 0D(δ, t) and 0Q(δ, t) are right-coprime. An equa-

tion of Σ/[y, u]R is

R′(δ, t)ξ̃ = 0

where ξ̃ is the image of ξ by the epimorphism Σ→ Σ/[y, u]R. If the matrix R′(δ, t)

is unimodular, then Σ/[y, u]R = 0→ Σ = [y, u]R, i.e., Σ is observable. The o.d.z.

are the Smith zeros of R′(δ, t) or the Smith zeros of [DT (δ, t) QT (δ, t)]T .

Definition 1.29 Σ is said to be detectable iff there is no o.d.z. which lie in the

closed right half-plane.

Example 1.30 (continued)

According to Definition 1.16, the procedure for getting the Jacobson form of

[DT (δ, t) QT (δ, t)]T is shown in (1.34). One will find the different results between

the LTI case and the LTV case.

[
D (δ, t)

Q (δ, t)

]
=




δ 1
C2(t)

0

− 1
L1(t)

δ 1
L3(t)

0 − 1
C2(t)

δ

0 1
C2(t)

0




C2×r4,r1−
1

C2(t)
×r4,

−−−−−−−−−−−−→
r2−δ×r4,r3+

1
C2(t)

×r4




δ 0 0

− 1
L1(t)

0 1
L3(t)

0 0 δ

0 1 0




−L1(t)×r2,r1−δ×r2,
−−−−−−−−−−−−→

c4+c1×
L1(t)
L3(t)




0 0 δL1(t)
L3(t)

1 0 0

0 0 δ

0 1 0




(1.34)

In the LTI case, the last entry in the first line of the last matrix in (1.34)

has the relation δL1

L3
= L1

L3
δ. This entry is equal to zero when the elementary

operation is executed as l1 −
L1

L3
× l3. So the Smith form of [DT (δ) QT (δ)]T is
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Λ(δ) = diag{1, 1, δ} where δ is the invariant polynomial. Therefore, there is an

o.d.z such as δ = 0 for Σ, i.e., the system is unobservable in the LTI case.

Because of the noncommutative property in the LTV case, one has the relation

δL1(t)
L3(t)

= L1(t)
L3(t)

δ+(L1(t)
L3(t)

)′. If L1(t) and L3(t) are proportional by a constant c ∈ C as

L1(t) = cL3(t), i.e., (L1(t)
L3(t)

)′ = 0, the same elementary operations will be done as

in the LTI case. So if L1(t) = cL3(t), c ∈ C, the system is unobservable. Another

situation in LTV case is (L1(t)
L3

(t))′ 6= 0. With new elementary operations on the

last matrix in (1.34), one can get equation (1.35).




0 0 L1(t)
L3(t)

δ +
(

L1(t)
L3(t)

)′

1 0 0

0 0 δ

0 1 0




r1−
L1(t)
L3(t)

×r3,

(

(

L1(t)
L3(t)

)

′

)

−1

×r1,r3−δ×r1,

−−−−−−−−−−−−−−−−−−−−−−−−→
c4+c1×

L1(t)
L3(t)

,r1↔r2,r3↔r4,r2↔r3




1 0 0

0 1 0

0 0 1

0 0 0




(1.35)

So in the LTV case with (L1

L3
)′ 6= 0, the system is observable. Table 1.2 shows

three situations of the observability property of the system in Figure 1.1.

Table 1.2: Observability property of the system in several cases

LTI case
LTV case

(L1(t)
L3(t)

)′ = 0 (L1(t)
L3(t)

)′ 6= 0

unobservable unobservable observable

Remark 1.31 From Example 1.30, the Smith form of matrix [DT (δ) QT (δ)] is

unique. The LTI system is always unobservable because of the invariant polyno-

mial δ, i.e. there always exists an o.d.z. such as: δ = 0. But in the LTV case, the

existence of {o.d.z.} depends on the relation between parameters. These differ-

ences will be explained in Section 2.2.3 by the rank condition of the observability

matrix, algebraic and bond graph approaches.

Let Σ1 be the system obtained by removing {i.d.z} from system Σ by the order

reduction process described in Rosenbrock (1970). The set difference of {o.d.z.}

of Σ and of Σ1 is called the set of input output decoupling zeros ({i.o.d.z.}) of Σ.

Definition 1.32 The {i.o.d.z.} of Σ are the Smith zeros of the module T/(T ∩

[y, u]R), which is called the module of input output decoupling zeros.
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Since, the {i.o.d.z.} corresponds the non-proper (uncontrollable and unob-

servable overlap) part of the system Σ. The set {i.o.d.z.} is included in the

intersection of the set {i.d.z.} and of the set {o.d.z.} such as:

{i.o.d.z.} ⊂ {i.d.z.} ∩ {o.d.z.} (1.36)

Definition 1.33 The hidden modes are the Smith zeros of the module Σ/(Φ ∩

[y, u]R), which is called the hidden modes module.

As to the hidden modes, relation (1.37) is written.

{hidden modes} = {i.d.z.}+ {o.d.z.} − {i.o.d.z.} (1.37)

Example 1.34 (continued)

According to (1.36) and (1.37), {i.o.d.z.} is an empty set for the system in

both LTI and LTV cases. In the LTI case, {hidden modes} is equal to {0}. For

the LTV system, {hidden modes} is equal to {0} when (L1(t)
L3(t)

)′ = 0 is hold. If

(L1(t)
L3(t)

)′ 6= 0, the {hidden modes} of the LTV system is {∅}.

1.2.2.3 Invariant Zeros

Definition 1.35 The module of invariant zeros is Miz = T(Σ/[y]R) which is the

non controllable part of the reduced system Σ/[y]R. The invariant zeros of Σ are

the conjugacy classes of the elements of a full set of Smith zeros of the module Miz.

The invariant zeros can also be derived from Smith zeros of invariant polynomials

of system matrix (1.11).

Let the system Σ be a proper state-space system (1.13). u(t) = uc(t) −

K(t)x(t) is a feedback and Σc, xc(t), yc(t) denote the closed-loop system, the

state and the output of Σc, respectively. One obtains the system equations

{
ẋc(t) = (A(t)− B(t)K(t))xc(t) +B(t)uc(t)

yc(t) = (C(t)−D(t)K(t))xc(t) +D(t)uc(t)

Property 1.36 Bourlès (2005)

The modules of invariant zeros of the system and its closed-loop system defined

by state feedback are isomorphic T(Σ/[y]R) ∼= T(Σc/[yc]R). The invariant zeros

of a proper state-space system are invariant by state feedback.
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Consider an epimorphism Σ → Σ/[y]R, and let ξ̂(t), û(t) denote the images

of ξ(t), u(t). The equation of Σ/[y]R is

P (δ, t)

[
ξ̂(t)
û(t)

]
= 0 (1.38)

Hence, the Smith zeros of P (δ, t) are the invariant zeros of Σ. The invariant zeros

can also be derived from the torsion differential equations in (1.38) with the form

f (δ, t) · g
(
ξ̂(t), û(t)

)
= 0 related to T(Σ/[y]R) where f (δ, t) ∈ R.

Procedure 1.37 From the point of view of module theory, the invariant zero

module T(Σ/[y]R) is a torsion module. The invariant zeros are derived by using

the following procedure:

• The output variables y(t) are set equal to zero to get the module Σ/[y]R

(1.38),

• Torsion equations are derived from the torsion module T(Σ/[y]R), (the Smith

zeros of definition matrix of torsion equations are the invariant zeros)

1.2.2.4 Relationships between various Poles and Zeros

Generally, the set of invariant zeros is a subset of the system zeros set. The

set of invariant zeros and the set of system zeros coincide when m = p and

det(P (δ, t)) 6= 0.

Invariant zeros set contains the complete set of transmission zeros and some,

but not necessarily all, of the decoupling zeros (all of the o.d.z. and some of i.d.z

which are not i.o.d.z.). Generally, the sets of zeros for LTI models satisfy the

following relationships Bourlès & Fliess (1997):

{system zeros} = {transmission zeros}+ {i.d.z} + {o.d.z} − {i.o.d.z}

{transmission zeros} + {i.o.d.z} ⊂ {invariant zeros} ⊂ {system zeros}

For finite poles, one has the relationships Bourlès & Fliess (1997):

{system poles} =

{
= {i.d.z.}+ {controllable poles}
= {o.d.z.}+ {observable poles}

{observable poles} = {transmission poles}+ {i.d.z.} − {i.o.d.z.}

{controllable poles} = {transmission poles}+ {o.d.z.} − {i.o.d.z.}

{system poles} = {transmission poles}+ {hidden modes}
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In Table 1.3∗, several kinds of finite zeros and poles are shown with their

corresponding modules and matrices.

Table 1.3: Modules and corresponding matrices of finite zeros and poles
Zeros & Poles Modules Definition Matrices or Sets
Miz T(Σ/[y]R) P (δ, t)
Msp Σ/[u]R Iδ − A(t)
Midz T = T(Σ) L(δ, t) = [Iδ − A(t) B(t)]
Modz Σ/[u, y]R R(δ, t) = [(Iδ −AT (t)) CT (t)]
Miodz T/(T ∩ [u, y]R) ⊂ {i.d.z.} ∩ {o.d.z.}
Mhm Σ/(Φ ∩ [u, y]R) {i.d.z.} + {o.d.z.} − {i.o.d.z.}

1.2.3 Structure at Infinity

The structure at infinity of linear time-invariant systems has been extensively

studied since the end of the 70’s (see, e.g., Commault & Dion (1981), Ferreira

(1980)). The infinite poles are related to the impulsive motions arising in a system

Verghese & Kailath (1979), Bourles & Marinescu (2007).

The system poles at infinity consist of the transmission poles at infinity and

of the hidden modes at infinity. The first ones are related to the differentiation

number between the input and the output. Another ones are related to the

impulsive motions which can arise inside a system. The transmission zeros at

infinity and the hidden modes at infinity form the structure of system zeros at

infinity. The infinite transmission zeros are related to the number of integrators

between the input and the output. In this section, our interest focus on the

transmission zero at infinity which is called infinite structure. For other kinds of

poles and zeros at infinity such as decoupling zero, hidden mode, invariant zero,

system pole, controllable pole and observable pole at infinity; refer to Bourlès &

Marinescu (1999), Bourles & Marinescu (2007), Bourlès (2006) and the references

therein.

Ring of Integration Operators S and it’s Division Ring L

For studying the poles and zeros at infinity of LTV systems, a new kind of non-

commutative ring S and its quotient field L should be introduced. Set σ = δ−1

∗All modules in the table are torsion modules.
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(integration operator) and S := k[[σ]] denotes the ring of formal power series in

σ which has the element form (1.39), and equipped with the commutation rule

σa = aσ − σȧσ, a ∈ k.

a =

+∞∑

i=0

aiσ
i, ai ∈ k (1.39)

The ring S has the following properties Bourlès (2006):

1. An element a of S is a unit (i.e., is invertible in S), iff a0 6= 0.

2. Let a be a nonzero element of S. The integer w (a) = min {i|ai 6= 0} is

called the order of a, and a takes the following form (1.40), where v and v′

are units over S.

a = vσw(a) = σw(a)v′ (1.40)

Similarly to ring R, ring S is also a principal ideal domain (PID), commutative

iff k is a field of constants. Every nonzero ideal of S has the from σkS = Sσk :=

(σk). Let a and b be two nonzero elements of S, one has a|b iff w(a) ≥ w(b).

The quotient field of S is defined as L := K((σ)) of Laurent series in σ, which is

of the from
∑

i>v aiσ
i, v ∈ Z, av 6= 0. Noticed that the quotient field Q of R can

be embedded in L, which means that every element of Q can be regarded as an

element of L.

1.2.3.1 Smith-McMillan Form at Infinity of Rational Matrices over L

For a rational matrix over L, the Smith-McMillan form at infinity can give the

order of the infinite poles and zeros. Suppose a transfer matrix G(δ, t) : U(δ) →

Y (δ) with entries in Q, because Q is embedded in L, so that G (σ−1, t) = H (σ, t)

is a matrix over L.

Definition 1.38 Bourlès & Marinescu (2011) Let H (σ, t) ∈ L
p×m be a r-rank

rational matrix. There exist two unimodular matrices U(σ, t) ∈ GLp(S) and

V (σ, t) ∈ GLm(S) over S satisfying equations (1.41) and (1.42), where Φ is the

Smith-McMillan form of H (σ, t) at infinity.

U(σ, t)H (σ, t) V −1(σ, t) = Φ (1.41)
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Φ =




σn1

. . .

σnr

0




(1.42)

The integers ni which are possibly negative are such as: ni ≤ ni+1, i = 1, 2, . . . , r−

1. If ni is negative (resp., positive), ni is called the structural indices of the zero

(resp., pole) at infinity. Infinite zero orders of the system are equal to the number

of derivations of the output variables to let input variables appear explicitly and

independently. The sum denoted by z∞ =
k∑

i=1

ni with index k such that ni > 0

for i ≤ k is called the McMillan degree at infinity, or number of zeros at infinity

of H(σ, t).

1.2.3.2 Modules over S

An LTV system is given by the PMD form (1.14), it is assumed that D(δ, t) is

of full rank over R. Equation (1.14) can be written in a form similar to (1.9) as

equation (1.43).
[
D(δ, t) −N(δ, t) 0
Q(δ, t) W (δ, t) −Ip

]

︸ ︷︷ ︸
R(δ,t)




ξ
u
y




︸ ︷︷ ︸
w

= 0 (1.43)

The entries of the matrix R(δ, t) are over R and
[
ξ u y

]
∈ M . In the PMD

or classical state representation, vectors ξ, u and y are considered as column

vectors, and with the module representation, ξ, u and y are considered as row

vectors because
[
ξ u y

]
is considered as a list of variables belonging to the

module M . M is a module over a ring. Consider some elementary operations for

R(δ, t) which is now replaced by R′(δ, t) with

R′(δ, t) = U(δ, t)R(δ, t)V (δ, t)

where the matrices U(δ, t) and V (δ, t) are unimodular over R. R(δ, t) and R′(δ, t)

define the same linear system. The infinite structure of R(δ, t) is the same

as that of R′(δ, t). These matrices correspond to the basis change which pre-

serves the differentiation orders in (1.9). There exists a left-coprime factorization
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(A(σ, t), B(σ, t)) of R(1/σ, t) over S defined as (1.44).

R(1/σ, t) = A−1(σ, t)B(σ, t) (1.44)

The matrix B(σ, t) is a definition matrix of an S-module Σ+ which is deter-

mined by calculating B(σ, t). An equation of the module is BT (σ, t)w+ = 0. All

kinds of poles and zeros are derived from this module.

Definition 1.39 Bourlès & Marinescu (1999)

The orders of zero at infinity of a global LTV model are characterized by the

Smith-McMillan matrix of the input-output relation H(σ, t).

1.2.3.3 State Space Approach

Now the infinite structure such as zeros at infinity of LTV system is considered.

The infinite zero structure of LTV multivariable models is made up of three sets:

• {n′
i} the set of infinite zero orders of the global model Σ(C(t), A(t), B(t))

• {ni} the set of row infinite zero orders of the row sub-systems Σ(ci(t), A(t), B(t))

• {nj} the set of column infinite zero orders of the column sub-systems

Σ(C(t), A(t), bj(t))

Property 1.40 The global zero orders at infinity are equal to the minimum num-

ber of the derivation of the set of output to get the input variables appear explicitly

and independently in the equations.

One can also get the infinite structure by means of the temporal approach.

The row infinite zero order for the row sub-sytem Σ(ci(t), A(t), B(t)) associated

to the ith output yi is denoted by ni, which satisfies the relation:

ni = min
{
k|ci(t)(A(t)− Iδ)k−1B(t) 6= 0

}

With reference to the column order nj of zero at infinity associated to the jth

input variable uj for the column sub-system Σ(C(t), A(t), bj(t)), one has:

nj = min
{
k|C(t)(A(t)− Iδ)k−1bj(t) 6= 0

}
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Property 1.41 ni (resp., nj) is equal to the number of derivations (resp., in-

tegrations) of the output (resp., input) variable necessary for at least one input

(resp., output) variable to appear explicitly.

1.3 Unknown Input Observers

The design of controllers requires the knowledge of many kinds of information

often not available by measurement. When a state space approach is used, the

state vector must be known (partially) and since systems are often subject to

disturbances which can not be measured, an UIO (unknown input observer) must

be designed. The UIO synthesis is achieved by following two steps: the first one

which is dedicated to analysis (properties of the model must be known) and

secondly UIO synthesis. In the first step, the concepts recalled previously must

be used.

Constructive solutions based on generalized inverse matrices taking into ac-

count properties of invariant zeros are given in Kudva et al. (1980) and then

in Miller & Mukunden (1982) and Hou & Muller (1992) with observability and

detectability properties. Full order observers are then proposed in a similar way

(based on generalized inverse matrices) in Darouach et al. (1994) and Darouach

(2009), but with some restriction on the infinite structure of the model. The alge-

braic approach is proposed in H. L. Trentelman & Hautus (2001) and in Daafouz

et al. (2006) for continuous and discret time systems, without restriction on the

infinite structure of the model. A graphical approach is in T. Boukhobza. (2007).

The extension to the LTV case is not so easy, even if the problem formulations

are similar to the LTI case.

In this section, two methods related to the UIO problem are recalled. One

is based on generalized inverse matrices, another one is derived from algebraic

theory which is intrinsic. Sufficient and necessary conditions of existence are

recalled in each case.
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1.3.1 UIO with Matching Conditions

The classical state representation, for an LTI system with unknown inputs, is

given by the Kalman form (1.45)∗, with x(t) ∈ R
n and y(t) ∈ R

p. The input

variables are divided into two sets u(t) ∈ Rm and d(t) ∈ Rq which represent known

and unknown input variables respectively. It is supposed that input variables u(t)

and d(t) are bounded and infinitely continuously derivable.

{
ẋ (t) = Ax (t) +Bu (t) + Fd (t)
y (t) = Cx (t)

(1.45)

Models described in equation (1.45) without unknown inputs are denoted as

Σ(C,A,B) in the LTI case and Σ(C(t), A(t), B(t)) in the LTV case. Models are

supposed to be invertible, with full matrix rank for matrices C, B and F .

Much attention has been paid to the algorithms to compute observers, but

firstly existence conditions must be defined. The concepts of strong detectabil-

ity, strong* detectability and strong observability have been proposed in Hautus

(1983). These concepts are useful for solving the UIO problem.

System Σ(C,A, F ) (with only unknown input d(t)) is strongly detectable, if

y(t) = 0 for t > 0 implies x(t) → 0 with (t → ∞). It is strong* detectable if

y(t) = 0 for t→∞ implies x(t)→ 0 with (t→∞).

The strong detectability corresponds to the minimum-phase condition, di-

rectly related to the zeros of the system Σ(C,A, F ) (without input u(t)) defined

as to be the values of δ ∈ C (the complex plane) for which (1.46) is verified.

rank

(
Iδ −A −F

C 0

)
< n+ rank

(
−F
0

)
(1.46)

Proposition 1.42 Hautus (1983) The system Σ(C,A, F ) in (1.45) is strongly

detectable if and only if all its zeros δ satisfy Re(δ) < 0 (minimum phase condi-

tion).

Proposition 1.43 Hautus (1983) The system Σ(C,A, F ) in (1.45) is strong*

detectable if and only if it is strongly detectable and in addition

rank[CF ] = rank[F ] = q (1.47)

∗This system is also represented as Σ(C,A, [B F ]). The subsystem with only known input
u(t) (unknown input d(t)) is represented by Σ(C,A,B) (Σ(C,A, F )).
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Proposition 1.44 Hautus (1983) The system Σ(C,A, F ) in (1.45) is strongly

observable if and only if it has no zeros.

The condition in Proposition 1.43 is a necessary condition for the existence of

some kinds of unknown input observers. It is used to be satisfied for robust state

reconstruction. It is called observer matching condition, which is to be insensitive

to matched perturbations.

An observer proposed by Darouach (2009) has the form

{
ξ̇ (t) = Nξ (t) + Jy (t) +Hu (t)
x̂ (t) = ξ (t)− Ey (t)

(1.48)

where x̂(t) ∈ Rn is the estimate of x(t). Matrices N, J, and E with constant

entries have appropriate dimensions.

Let P = I + EC, Proposition 1.45 gives the conditions for system (1.48) to

be a full-order observer for system (1.45).

Proposition 1.45 By the full-order observer (1.48), the state variables x(t) in

(1.45) will be estimated (asymptotically) if the following conditions hold

1. N is a Hurwitz matrix (every eigenvalue of N has strictly negative real part)

2. PA−NP − JC = 0

3. PF = 0

4. H = PB

Derived from equations (1.45) and (1.48), the observer reconstruction error is

e = x− x̂ = Px− ξ (1.49)

The dynamic of the estimation error is given by

δe = Ne + (PA−NP − JC)x+ (PB −H)u+ PFd (1.50)

If conditions in Proposition 1.45 are satisfied, then limt→∞ e(t) = 0 for any

x(0), x̂(0), d(t) and u(t). Hence x̂(t) in (1.48) is an estimate of x(t) in (1.45).

Equations 2-3 in Proposition 1.45 can be written as
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N = A+
[
E K

] [ CA
C

]
(1.51)

[
E K

]
Σ = −F (1.52)

where K = −J −NE, Σ =

[
CF
0

]
.

Lemma 1.46 The necessary and sufficient condition for the existence of the so-

lution of equation (1.52) is guaranteed by the matching condition in Proposition

1.43, i.e., rank[CF ] = rank[F ] = q.

Under condition (1.47), the general solution of equation (1.52) is

[E K] = −FΣ+ − Z(I − ΣΣ+) (1.53)

where Σ+ is a generalized inverse matrix (Pringler & Rayner (1971)) of the matrix

Σ which can be derived from

Σ+ = (ΣTΣ)−1ΣT (1.54)

and Z is an arbitrary matrix with appropriate dimension.

After inserting (1.53) into (1.51), the matrix N has the form

N = A1 − ZB1 (1.55)

where

A1 = A− FΣ+

[
CA
C

]
(1.56)

and

B1 = (I − ΣΣ+)

[
CA
C

]
(1.57)

The matrix Z is used to guarantee the stability of the matrix N . The necessary

and sufficient condition for the existence of the matrix Z such that N is Hurwitz

is given by the following lemma.

Lemma 1.47 There exists a matrix Z for assuring the stability of matrix N iff

the system Σ(C,A, F ) is strong* detectable.
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The necessary and sufficient condition of existence of the observer (1.48) for

the system (1.45) is given by the following theorem.

Theorem 1.48 The full-order observer (1.48) will estimate (asymptotically) x(t)

in (1.45) if the system Σ(C,A, F ) is strong* detectable, i.e.,





rank

[
Iδ − A −F

C 0

]
= n+ q, ∀δ ∈ C,Re (δ) ≥ 0

rank [CF ] = rank [F ] = q

(1.58)

Theorem 1.49 Darouach et al. (1994)

Assume that rank[CF ] = rank[F ] = q and rank[P ] = n − m. Then the

following conditions are equivalent

• the pair (PA,C) is detectable (observable)

• rank

[
Pδ − PA

C

]
= n, ∀δ ∈ C,Re(δ) ≥ 0(∀δ ∈ C)

• rank

[
Iδ − A −F

C 0

]
= n+ q, ∀δ ∈ C,Re (δ) ≥ 0 (∀δ ∈ C)

A procedure for designing the observer (1.48) is given.

Procedure 1.50

1. Verify the strong* detectability of the system Σ(C,A, F ).

2. Calculate matrices A1, B1 by equations in (1.56,1.57).

3. Determine matrix Z by pole placement of matrix N in (1.55).

4. Compute matrices E and K by (1.53), then J = −K−NE, H = (I+EC)B.

The full order observer (1.48) proposed by Darouach for linear systems with

unknown inputs is based on generalized inverse matrices. In Darouach (2009),

the general form of observers was also given for linear systems with unknown

inputs in both the state and the measurement equations (y = Cx + Gd). This

kind of observer is convenient to realize, the calculations procedure is concise and

easy to be implemented. But in many physical systems, the matching condition
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rank[CF ] = rank[F ] is not always satisfied. In view of this limit, many con-

tributions have been given by algebraic method approach. Barbot et al. (2007)

proposed an observer for linear systems with unknown inputs by using the sliding

mode approach. In Daafouz et al. (2006), an intrinsic approach was used, but

in that case, impulsive motions can arise due to some derivations used in their

approach. In the next section, this method is recalled.

1.3.2 UIO with Algebraic Approach

In this section, an observer for SISO linear systems proposed in Daafouz et al.

(2006) is recalled. Firstly, some fundamental algebraic notions are introduced.

As mentioned above, a linear system is a finitely generated module over a

differential ring. Structural properties of the system depend on relations between

certain submodules of the system. The notions of controllability, observability and

invertibility have been introduced in previous sections. Here, the left invertibility

and observability of systems with unknown inputs will be introduced by algebraic

point of view.

Definition 1.51 The input-output system Σ is left (resp., right) invertible iff its

transfer matrix is left (resp., right) invertible. Equivalently, Σ is left invertible iff

the quotient module Σ/[y]R is a torsion module. If the system is square, the two

notions are equivalent. Then the system is called invertible.

Without considering known input variables, the system (1.45) can be written

as (1.59).

{
ẋ (t) = Ax (t) + Fd (t)
y (t) = Cx (t)

(1.59)

In the following, notions of rapid and asymptotic observability of system (1.59)

are introduced.

Definition 1.52 The system 1.59 is said rapidly observable or observable in fi-

nite time for unknown inputs, iff

xi, dj ∈ [y]R, i = 1, . . . , n, j = 1, . . . , q (1.60)
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Property 1.53 The system (1.59) is rapidly observable for unknown inputs iff

the vector y is a generator of the system module Σ. Then, the system is observable

and left invertible.

System (1.59) is said asymptotically observable with unknown inputs iff all

state variables can be divided into two groups:

• one group is represented by the output variables and their derivations.

• another group is represented by variables which tend to zero when t→∞.

Theorem 1.54 The system (1.59) is asymptotically observable with unknown

inputs iff it is left invertible, and has the minimal phase property.

Property 1.55 Assume the above theorem is true, the system (1.59) is rapidly

observable with unknown inputs iff its zero dynamics is trivial.

In the LTI monovariable case, the notion of relative degree r is the counterpart

of infinite zero order introduced in Section 1.2.3.3. The relative degree r for sys-

tem (1.59) is equal to the number of derivatives of the output to let the unknown

input appears explicitly. r is defined by CAr−1F 6= 0 and CAi−1F = 0, i < r.

Then one has y(r) = CArx+ CAr−1Fd. In the multivariables case, the notion of

relative order need to be defined.

An unknown input observer for system (1.59) in the SISO case has the form

{
˙̂x = (PA− LC) x̂+Qy(r) + Ly

d̂ = (CAr−1F )
−1 (

y(r) − CArx̂
) (1.61)

where d̂ is the estimate of the unknown input, and matrices Q,P verifies

Q = F (CAr−1F )−1, P = I −QCAr−1 (1.62)

The dynamic of the estimation error of the state variables is given by

δe = ẋ− ˙̂x = (PA− LC)(x− x̂) (1.63)

Then, one has limt→∞ e(t) = 0 for any x(0), x̂(0), d(t). Hence x̂(t) in (1.61) is an

estimate of x(t) in (1.59). The estimation error of the unknown input is

ed = d− d̂ = (CAr−1F )−1CAr(x− x̂) (1.64)
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Since lim
t→∞

(x− x̂) = 0, then lim
t→∞

d̂ = d.

The necessary and sufficient condition of existence of the observer (1.61) for

the system (1.59) is given by the following theorem.

Theorem 1.56 The full-order observer (1.61) will estimate (asymptotically) x(t)

in (1.59) if

1. system Σ(C,A, F ) is left invertible

2. system Σ(C,A, F ) is strongly detectable (minimal phase condition)

The LTI system Σ(C,A, F ) in (1.59), supposed to be asymptotically observ-

able with unknown input, is rapidly observable if, and only if, it zero dynamics

is trivial.

Finally, a linear system is said to be observable with unknown inputs if, and

only if, any system variable, a state variable or an input variable for instance, can

be expressed as function of the output variables and their derivatives up to some

finite order. In other words, an input-output system is observable with unknown

inputs if, and only if, its zero dynamics is trivial and if moreover the system is

square, it is flat.

The unknown input observer with the algebraic approach is intrinsic, and the

complexity for computing matrices of the observer is smaller than the observer

introduced in the above section. Even if the matching condition must not be sat-

isfied, the utilization of high-order differentiator may cause a highly fluctuating or

oscillatory impulsive phenomena. The low-pass filter with iterated time integrals

is a solution. Furthermore, the derivatives of the output will be complicated in

the LTV case. In the chapter 4, some numerical examples will be studied by these

two observers. The results with two observers will be compared. It can be also

noticed that in these observers, the control input is not considered, which is also

another difficulty.

1.4 Conclusion

In this chapter, the focus is on the mathematical background for the study of

linear systems and system structures. In the first part, the module theoretic

method which is an intrinsic approach for the analysis and synthesis of linear
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systems has been introduced. The algebraic notions such as differential field, ring

of operators and differential module and their relations have been explained. The

definition that a linear system is a left-module is fundamental to this dissertation.

Secondly, derived from the above algebraic objects, the polynomial matrices

over some kinds of differential rings and the rational matrices over their quotient

fields have been recalled. Then the Jacobson/Smith-McMillan forms of these

matrices have been presented in the case of LTV systems. These forms are utilized

to study the finite and the infinite structures of LTV systems. A number of

submodules of a system module associated with the poles and zeros of finite and

infinite structures were also given.

At last, the state and input observability analysis for linear systems with un-

known inputs were recalled. The notion of observability is very useful for detecting

the system faults. For the design of unknown input observers, the invariant zeros

of systems play a fundamental role for the study of the stability property. Two

kinds of unknown input observers are recalled, and the necessary and sufficient

conditions of existence of observers are given. The first one is based on the gen-

eralized inverse matrices where a matching condition is required. For the second

observer, some algebraic notions are needed but the existence conditions are less

strict than the first one. The infinite structure related to the invertibility of sys-

tems is used to determine the observer. In the chapter 4, these two observers

will be extended, and the LTV case will also be considered. Simultaneously, a

number of numerical examples will be studied by various approaches.
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In this chapter, the focus is on the graphical procedure to solve some control

problems. Firstly, the elementary notions of the bond graph models are intro-

duced. Being a powerful tool, the bond graph approach can be dedicated to the

system modeling, the system analysis and synthesis. For a bond graph model, the

notion of causal path and causal loop is fundamental. Secondly, some structural

properties of the system such as: controllability, observability and invertibility
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are recalled. In the end, the graphical methods to determine the infinite struc-

ture and finite structure are given. A number of differential bond graph models

are utilized to get the system zeros (finite/infinite). The bond graph model with

integral causality (BGI) is mainly served to determine the invariant zeros. And

the null invariant zeros can be determined by the bond graph model with deriva-

tive causality (BGD). The last part is also related to the bicausal bond graph

model (BGB) which is useful to get the inverse system. It is as well used to get

the invariant zero values by combining the notion of torsion module.

2.1 Graphical Representations of Linear Systems

The graphical approaches are powerful tools to solve the analysis and synthesis

problems of control systems. Two graphical representations have been considered

in this dissertation, such as: the directed graph and the bond graph approaches.

Now let’s introduce these two methods respectively.

2.1.1 Linear Structured Systems

From the middle of the last century, some kinds of system modeling methods

are largely developed, for instance: state space models, transfer matrices, matrix

pencils, polynomial representation, etc. By observing the different models, one

can find that there exist several invariant properties of systems under some given

transformation. The invariant properties are concerned tightly with the notion

of zero (infinite or finite) which plays a fundamental role. Dion et al. (2003) has

pointed out that the usual approaches of linear systems suffer from two main

drawbacks. First, they do not consider available parametric information; and

secondly, they often assume full knowledge of parameters. The notion of struc-

tured system is defined by the system matrices, like for instance in the quadruple

(A,B,C,D), where the entries of the matrices are either a fixed zero or is a free

parameter. In that situation, only the structure of the model must be known.

Definition 2.1 Dion et al. (2003)

A structured real matrix A is a matrix with the coefficients among which are

fixed to zero, and the remaining non-zero ones are supposed to be algebraically

independent reals.
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Definition 2.2 A linear structured explicit system is defined by the following

form:

{
ẋ(t) = Aλx(t) +Bλu(t)

y(t) = Cλx(t)
(2.1)

where x ∈ R
n, u ∈ R

m, y ∈ R
p. Matrix in (2.2) denoting the system matrix of

system in (2.1) is a structured matrix.

(
Iδ − Aλ −Bλ

Cλ 0

)
(2.2)

The fundamental idea of the proposition of “structured system” is that there

exists only the zero/nonzero information in the matrices. This structure captures

most of the structural information available from physical law and system de-

composition. It allows the study of the system properties which depend only on

the structure, almost independently of the value of the unknown parameters.

Figure 2.1: A directed graph representation

Given a system described by Figure 2.1, one has the following system equation:

A =




λ1 0 0 0
λ2 0 0 0
0 0 0 0
0 0 λ3 λ4


 , B =




λ5 0
0 0
0 λ6

0 0




C =

(
0 λ7 0 λ8

0 λ9 0 0

)
(2.3)

where the λi’s are the new parameters. In the directed graph, the vertices cor-

respond to the system variables (inputs, states, outputs) and the edges to the

gains between variables. If one eliminates the edge gains, this (unweighed) graph
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contains the same information as the structured matrices (A,B,C). Therefore,

the system properties depend only on the zero/nonzero structure.

2.1.2 Bond Graph Modeling

In the 1940s and 1950s, H.M.Paynter worked on interdisciplinary engineering

projects. He found that similar forms of equations are generated by dynamic

systems in various domains. In 1959, he gave the revolutionary idea of portray-

ing systems in terms of power bonds, connecting the elements of the physical

system so called junction structures. Bond graphs offer a domain-neutral graph-

ical technique for representing power flows in a physical system. Bond graphs

have demonstrated to be very useful, not only for being a graphical modeliza-

tion for dynamic physical systems, but also for being allowed to analyze systems

structural properties and to generate the symbolic equations. Between the re-

sults, one can cite the notions of causal paths/loops which are useful for transfer

function calculation Chen & Satyanarayana (1976), the calculation of characteris-

tics polynomials Dauphin-Tanguy (2000), pole placement Rahmani et al. (1994)

Gawthrop & Ronco (2002), controllability and observability matrices calcula-

tion. Some fundamental definitions of bond graph approach are introduced in

the Appendix. One can find the introduction of bond graph standard elements

in Appendix A.1. The notion of causality is recalled in Appendix A.2; one can

find the notions of causal path and causal loop therein.

For a bond graph model, bonds connecting component energy ports specify

the transfer of energy between system elements. The bond graph is composed

of the “bonds” which link together “single port”, “double port” and “multi port”

elements.

The bond graph language expresses general class of physical systems through

power interactions. Power, the rate of energy transport between elements, is the

universal currency of physical systems. Bonds exchange instantaneous energy at

ports. A bond represents the flow of power, P , from one element of a physical

system to another. There are two physical variables associated with each bond,

an effort, e(t), and a flow, f(t). The product of these two variables is the in-

stantaneous power flowing between two ports. For a physical system, two energy

variables are given, such as the momentum p(t) =
∫
e(t)dt and the displacement
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q(t) =
∫
f(t)dt. Some power and energy variables of different physical domains

are given in Table 2.1.

Table 2.1: Effort and flow variables in some physical domains
Systems Electrical Mechanical Hydraulic
Effort e(t) Force (F )

Torque (τ)

Voltage (V ) Pressure (P )

Flow f(t) Current (i) Velocity (v)

Angular velocity (ω)

Volume flow

rate (dQ/dt)
Momentum p(t) Flux linkage (λ) Momentum (p)

Angular momentum (h)

Pressure

momentum (pP )
Displacement q(t) Charge (q) Displacement (x)

Angle (θ)

Volume (V )

2.2 Structural Properties of Linear Systems

A causally completed bond graph can provide many kinds of information be-

fore any equations are formulated. Between the structural properties, structural

controllability and observability play an essential role in the context of control

system design, which can be derived directly from the bond graph model. In

this section, three approaches are used to detect controllability and observability

properties of LTI and LTV systems, such as: formal (rank condition for control-

lability/observability matrix), bond graph and algebraic approaches.

In the LTI case, numerical criterion (rank conditions for the controllability and

observability matrices) is a classical method to determine the structure studies.

Sueur & Dauphin-Tanguy (1991) gave the bond graph criteria which are effective

and intuitive to detect systems structural properties.

However, in the case of LTV systems, the bond graph approach for LTI sys-

tems mainly based on rank conditions is no more sufficient. So new rules are

required in this case. Silverman & Meadows (1967) proposed the rank conditions

for controllability and observability matrices in the LTV case. The module the-

ory introduced by Fliess (1990) which is always valid for LTI/LTV systems is

an intrinsic method to determine the structural properties. Lichiardopol (2007)

proposed CBG (resp. OBG) models to detect the controllability (resp. observ-

ability) property of LTV system by bond graph approach. The conventional BGD
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models will be used with some algebraic criteria to determine the controllability

property of LTV models. The observability property of LTV models will be stud-

ied by dual bond graph models by examining its controllability property. In this

section, some differences between the structural properties procedures of LTI and

of LTV systems are enumerated.

2.2.1 Structural State Matrix Rank

In the LTI case, the structural state matrix rank of the system Σ is associated to

two integers determined by the bond graph model: the system order n and the

number of structurally null modes p.

Suppose a linear bond graph model and its state representation defined in

(2.4), where x ∈ Rn, u ∈ Rm, y ∈ Rp.

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(2.4)

Then, the characteristic polynomial for the system (denominator of transfer

functions) may be written as (2.5),

D (δ) = |Iδ − A| = δp
(
a0 + a1δ + . . .+ aq−1δ

q−1 + δq
)

(2.5)

where ai ∈ R, i = 0, . . . , q− 1, p+ q = n and p, q denote respectively the number

of structurally null modes (null eigenvalues of A) and the structural rank of the

state matrix. n is the order of the model.

Definition 2.3 The order of a system is the number of initial conditions which

are independent. In another word, it is equal to the number of independent state

variables.

Property 2.4 The number p of structurally null modes is the number of stor-

age elements to which derivative causality can not be assigned, when a preferred

derivative causality assignment is chosen for the bond graph model.

The structural rank of the model (rank of matrix A without parameter de-

pendence) is pointed out by the following theorem.
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Theorem 2.5 Sueur & Dauphin-Tanguy (1991)

The bond graph rank of matrix A is noted bg_rk[A] and verifies (2.6).

bg_rk [A] = n− p (2.6)

If the number of null modes p is zero, then the matrix A is said to be of

full rank, which means that A is invertible. If every dynamical element can

have a derivative causality assignment when a preferred derivative causality is

assigned to the model, then the model is said to be of full rank. In this case, the

mathematical representation associated to the bond graph model in derivative

causality is given in (2.7).

{
x(t) = A−1ẋ(t)− A−1Bu(t)
y(t) = C(t)A−1ẋ(t)− CA−1Bu(t)

(2.7)

2.2.2 Controllability

In Section 1.2.2.2, the notion of input decoupling zeros was introduced to detect

controllability properties of LTI and LTV systems. Some differences between two

cases were pointed out by mean of Jacobson forms of matrices [Iδ − A B] and

[Iδ − A(t) B(t)]. Here as mentioned, three approaches for detecting controlla-

bility property are introduced, such as: rank condition (formal approach), bond

graph and algebraic approaches. Now, let’s point out the difference between the

controllability analysis of LTI and LTV systems by various methods.

2.2.2.1 Controllability of LTI Systems

Rank Condition for Controllability of LTI Models

From the structural point of view, the model is not structurally controllable

if some linear relations can be written between the rows of matrix [A B].

The numerical method to determine controllability of a system is to calculate

the rank of the controllability matrix, such as:

C =
[
B AB . . . An−1B

]
(2.8)
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The rank of the controllability matrix depends on numerical values of the param-

eters. Hence, this method is parameter dependent and is not a robust measure

of controllability.

Example 2.6 A circuit with two inductance elements, one transformer and a

dissipative element is shown in the Figure 2.2.

Figure 2.2: A second order system

In this example, the controllability matrix is C =

[
R −R2

L1
− R2

m2L2
R
m
− R2

mL1
− R2

m3L2

]
. So

the rank of the controllability matrix rk(C) = 1 < n, it means that the system is

not controllable.

Bond Graph Procedure for Controllability of LTI Systems

As mentioned above, the structural controllability property can be derived by

using its bond graph model without calculating the rank of the controllability

matrix. The controllability properties only depend on the causality assignment

and the causal paths between various elements of the model, so this graphical

approach is robust and parameter independent.

Let n be the number of elements with integral causality assignment in a BGI

model. Before giving the procedure for determining the controllability properties

of the system, some notions are now recalled.

Definition 2.7 Sueur & Dauphin-Tanguy (1991)

c is the number of dynamical elements keeping the integral causality after the

following transformations:

• the preferred derivative causality is imposed on the bond graph model
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• all the necessary dualisation of the control sources have been made to elimi-

nate the integral causality assignment associated to the dynamical elements,

without introducing unsolvable causal loops.

Note that causalities of independent sources, e.g. force due to gravity, are not

considered for this analysis. Now an example is given to illustrate the procedure

for determining c.

Example 2.8 (continued)

The bond graph model is shown in Figure 2.3.

Figure 2.3: Bond graph with preferred integral causality

According to the procedure defined in Definition 2.7, the model with derivative

causality is given in Figure 2.4. By comparing this two models, c is equal to 1.

Figure 2.4: Bond graph with preferred derivative causality

Property 2.9 Sueur & Dauphin-Tanguy (1991)
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2. BOND GRAPH METHODOLOGY

The bond graph rank of matrix [A B] is noted bg_rk[A B] and is calculated

according to equation (2.9)

bg_rk[A B] = n− c (2.9)

The controllability property of a bond graph model can be derived from The-

orem 2.10.

Theorem 2.10 Sueur & Dauphin-Tanguy (1991)

A bond graph model is structurally controllable iff:

• atteignability/reachability condition (necessary condition): there exists a

causal path from one of the control sources to each dynamical element

• rank condition: bg_rk[A B]=n

According to the Theorem 2.10, the bond graph in Example 2.8 is not struc-

turally controllable.

Module Theoretic Approach for Bond Graph Models

Theorem 2.11 Fliess (1990) A linear system is controllable iff it is a free R-

module, i.e. the torsion submodule is trivial T(Σ) = 0.

The module theoretic approach is an intrinsic method to study the controlla-

bility property of LTI and LTV systems. The dynamical elements with an integral

causality in a BGD model are related to the uncontrollable part in the model.

The differential equations of these elements define a module Mei including the

torsion module T(Σ). So one can get the torsion module T(Σ) from submodule

Mei of module Σ. The relation between modules is T (Σ) ⊆Mei ⊆ Σ.

Definition 2.12 For linear bond graph models, there exist a number of dynamical

elements with an integral causality in BGD models. The equations related to these

elements define modules Mei. Because of the non controllable property of these

elements, modules Mei include torsion modules , i.e. the controllability property

of bond graph models can be derived from modules Mei.

80



2.2 Structural Properties of Linear Systems

The non controllable parts of LTI models correspond to the dynamical ele-

ments with integral causality in BGD models. From the algebraic point of view,

the non controllable submodule of these systems is torsion. Therefore, one can

get the differential equations associated to the torsion submodule by using some

information of elements equations with integral causality in BGD models.

Example 2.13 (continued) In Figure 2.3, the two state variables are xL1 and

xL2 . In Figure 2.4, one dynamical element has an integral causality assignment,

thus a mathematical relation can be written between state variables,

ẋL1 −mẋL2 = 0 (2.10)

(same relation obtained between the rows of matrix [A B] when applying a struc-

tural approach). According to the properties of this equation, the controllability

property can be pointed out. ẋL1 −mẋL2 = 0 is equivalent to δ(xL1 −mxL2) = 0,

which is the equation of a torsion submodule and in that case the model is not

controllable.

Theorem 2.10 is a necessary and sufficient condition for the structural control-

lability property of LTI systems. In the LTV case, this theorem is no more valid.

Rank condition, bond graph and module theoretical approaches are recalled in

this case.

2.2.2.2 Controllability of LTV Systems

Rank Condition for Controllability of LTV models

As mentioned in Section 1.2.2, the controllability matrix of LTV systems differ

from the one of LTI systems. In the LTV case, the second condition in Theorem

2.10 is not a necessary condition.

Definition 2.14 Silverman & Meadows (1967) The controllability matrix of LTV

models can be written as the form:

C(δ, t) =
[
B (t) , (A (t)− δIn)B (t) , . . . , (A (t)− δIn)

n−1B (t)
]

(2.11)

LTV systems are controllable iff rk(C(δ, t)) = n.
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Example 2.15 (continued) Let the transformer has a time varying parameter

m(t), according to Definition 2.14, the controllability matrix is:

C(δ, t) =
[
B (A− Iδ)B

]
=

[
R −R2

L1
−R′ − R2

m2L2
R
m
− R2

mL1
− R2

m3L2
− R′

m
+ Rm′

m2

]

The rank of controllability matrix is equal to 2. So the system is controllable

but the corresponding LTI system is not. The algebraic method will illustrate the

difference.

Bond Graph Procedure for Controllability study of LTV Systems

Some additional differential entries are added in the controllability matrix.

Because there is no difference between the ordinary bond graph models of LTI

and LTV systems, the procedure for the controllability study is no more valid for

the LTV systems. Some changes are required in bond graph models in case of

LTV systems. For solving this problem, Lichiardopol (2007) has given modified

bond graph models by using time-derivatives on the bond graph models.

Definition 2.16 Lichiardopol (2007) A differential loop is the modification of a

dynamical element on the BGI model shown in Figure 2.5, where the dissipative

element has a value so that the differential loop gain is d
dt

. C∗ and I∗ mean that

the product of the gains which follow should be derived.

Figure 2.5: Differential loop transformations for CBG models

Definition 2.17 A CBG is a bond graph for the study of controllability property

with a graphical approach. Some new differential loops are defined with Procedure

2.18.
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Procedure 2.18

1. In BGI models, determine all the causal paths of length smaller than n which

start from a source and end in a dynamical element with integral causality.

2. For each causal path determined in the previous step:

• Check the first apparition of an element with a time varying gain along

the causal path.

• For every dynamical element following this element along the causal

path, add a differential loop with the gain d
dt

(maximum one d
dt

for each

dynamical element).

Property 2.19 From the CBG model, an LTV system is controllable iff the two

following conditions are satisfied:

• There is a causal path between each dynamical element and one of the input

sources.

• Each dynamical element can have a derivative causality assignment in the

CBG model with a derivative causality assignment (with a possible duality

of input sources).

Example 2.20 (continued) The CBG model containing a time varying element

TF : m(t) with integral causality assignment (CBGI) from Figure 2.3 is presented

in Figure 2.6. Figure 2.7 shows the CBG model with preferred derivative causality.

According to Property 2.19, the LTV system is controllable.

Figure 2.6: The CBG model with preferred integral causality
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Figure 2.7: The CBG model with preferred derivative causality

Module Theoretic Method for Bond Graph Models

An LTV system (Σ, u, y) (or Σ) which is a R-module can be represented in

(2.12).

[
Iδ − A (t) −B (t) 0

C (t) 0 −Ip

]


x
u
y


 = 0 (2.12)

The first matrix in (2.12) is a matrix of definition of module Σ.

The noncontrollable part of an LTV system is related to the torsion mod-

ule T(Σ). There exist two methods to detect the controllability property of

the system by means of the module theoretic approach. One is to use the Ja-

cobson form of the first matrix in (2.12) to detect input decoupling zeros. As[
Iδ − A (t) −B (t) 0

C (t) 0 −Ip

]
∼=
[
Iδ −A (t) −B (t)

]
, one can derive input de-

coupling zeros from the Jacobson form of the latter matrix
[
Iδ − A (t) −B (t)

]
.

Another method is directly to detect torsion equations in (2.12) of which the tor-

sion module T(Σ) consists. But, with this method it is difficult to find out torsion

equations in some cases.

As mentioned, the controllability property is related to torsion submodules

T(Σ). Because torsion modules T(Σ) are submodules of system modules Σ, it is

not necessary to give all differential equations of systems elements. Through the

bond graph tool, torsion modules can be derived from dynamical elements with

an integral causality in BGD models. It means that torsion modules are included

in modules Mei defined by differential equations of these dynamical elements. For

determining the controllability property of LTV bond graph models, one method
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is to use the Jacobson form of definition matrices of these modules. Another

method is to examine the existence of torsion equations in differential equations

of dynamical elements with an integral causality in BGD models. Therefore, some

differential equations can be written between state variables as for the LTI case

from the bond graph model. If these equations define a torsion module, then the

model is not controllable; otherwise it is controllable.

Let Σ be a linear system (module) and suppose that each dynamical element

has an integral causality and there is a causal path between the set of input

variables and each dynamical element in the BGI model of the system. The

procedure for detecting the controllability property of Σ is given in Procedure

2.21. This procedure is also shown in Figure 2.8.

Procedure 2.21 From the point of view of module theory, the controllability

property can be derived from the input decoupling zeros of the module T(Σ). The

input decoupling zeros are derived by using the following procedure.

1. Draw the BGD model of module Σ.

2. Write the equations of the dynamical elements with an integral causality

in the BGD model. These equations define a module Mei, the definition

equations of this module is: Peixei = 0.

3. The input decoupling zeros can be derived in parallel from the following

methods:

• Calculate the Jacobson form of matrix Pei, then the conjugacy classes

of the elements of a full set of Smith zeros of the invariant polynomials

of this form are the input decoupling zeros.

• Find out the torsion equations in Peixei = 0 which define the torsion

module T(Mei). Then the conjugacy classes of the elements of a full set

of Smith zeros of the definition polynomials of torsion module T(Mei)

are the input decoupling zeros.

Example 2.22 (continued) If m = m(t), relation ẋL1 − m (t) ẋL2 = 0 between

elements L1 and L2 is not associated to a torsion element. Thus, this model

is controllable. This result is in accordance with the one from the bond graph

approach.
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Figure 2.8: Procedure for detecting input decoupling zeros of a module modeled
by bond graph models

2.2.3 Observability

Clearly, for a control system, its state variables x(t) at a current time must be

known. However, in general, not all state variables can be measured. Therefore, it

is necessary to calculate the system state variables from the output variable mea-

surements for a limited time period and the information of the input variables.

This leads to the notion of observability. Just like the controllability property,

there exist some differences for detecting the observability property of LTI sys-

tems and of LTV systems. Firstly, the rank conditions of observability of LTI

and LTV systems are introduced separately. Then bond graph procedures for

detecting the observability of two cases are recalled. Lastly, the module theoretic

approach will be introduced for this structural property. Although the mathe-

matical interpretation is clear by this approach, it is very difficult to find out

the submodule Σ/[u, y]R related to unobservable part of systems. In the next

section, dual bond graph models will be used to get the controllability property

of the dual bond graph models, which is equivalent to the observability property

of initial bond graph models.

2.2.3.1 Rank Condition of Observability

Like the procedure for analyzing the controllability property, the observability one

is firstly based on the rank criteria of the observability matrix. The observability

86

Chapter2/Chapter2figs/EPS/procc.eps
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matrix (O) is defined as (2.13) in the case of LTI systems.

O =
[
CT ATCT . . . A(n−1)TCT

]T
(2.13)

The observability matrix of LTV systems is defined in Definition 2.23, a par-

ticular attention is devoted to transposition.

Definition 2.23 Silverman & Meadows (1967) The controllability matrix of LTV

systems is defined in (2.14). LTV systems are observable iff rank(O(δ, t)) = n.

O(δ, t) =
[
CT (t) (AT (t) + Iδ)CT (t) · · · (AT (t) + Iδ)n−1CT (t)

]
(2.14)

Example 2.24 (continued from Example 1.21) Now rank condition of the observ-

ability matrix is used to study the observability property of the system in Example

1.21.

LTI and LTV cases are discussed separately, different results are shown be-

tween the two cases.

The LTI Case

Based on (2.13), the observability matrix of the LTI system is given in (2.15).

O(δ) =




0 1
C2

0
1

C2L1
0 − 1

C2L3

0 − 1
C2

(
1

C2L1
+ 1

C2L3

)
0


 (2.15)

In (2.15), the first and the third columns are dependent. The rank of the

observability matrix of the LTI system rank(O(δ)) = 2 < 3 means that the

system is unobservable.

The LTV Case

According to Definition 2.23, the observability matrix of the LTV system is

given in (2.16).

O(δ, t) =




0 1
C2(t)

0
1

C2(t)L1(t)
1

C2(t)
δ − 1

C2(t)L3(t)

2
C2(t)L1(t)

δ + 1
C2(t)

(
1

L1(t)

)′
− 1

C2
2 (t)L1(t)

+ 1
C2(t)

δ2 − 2
C2(t)L3(t)

δ − 1
C2(t)

(
1

L3(t)

)′




(2.16)
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The observability property of the LTV system depends on the relation be-

tween parameters L1(t) and L3(t). In the first case, if
(

L1(t)
L3(t)

)′
= 0 i.e., L1(t) =

cL3(t), c ∈ C, the first column is shown in (2.17) after substituting L1(t) by L3(t).

[
0 1

cC2(t)L3(t)
2

cC2(t)L3(t)
δ + 1

cC2(t)

(
1

L3(t)

)′ ]T
(2.17)

From equation (2.17), the first and third columns of the matrix in (2.16) are

dependent. According to Definition 2.23, the LTV system is unobservable with

L1(t) = cL3(t), c ∈ C. In the second case, the dependent relation between the

first and third columns does not exist any more. In this case, the LTV system

becomes observable.

2.2.3.2 Bond Graph Procedure

Definition 2.25 Sueur & Dauphin-Tanguy (1991)

o is the number of dynamical elements which retain the integral causality after

the following transformations:

• the preferred derivative causality is imposed on the bond graph model

• all the necessary dualisation of the output detectors have been made to elim-

inate the integral causality assignment associated to the dynamical elements,

without introducing unsolvable causal loops.

Property 2.26 Sueur & Dauphin-Tanguy (1991)

The bond graph rank of matrix [CTAT ]T denoted by bg_rk[CTAT ]T verifies the

following relation:

bg_rk[CTAT ]T = n− o (2.18)

The observability of a bond graph model can be determined by Theorem 2.27.

Theorem 2.27 Sueur & Dauphin-Tanguy (1991)

A bond graph model is structurally observable iff:

• reachability condition (necessary condition): for each dynamical element in

integral causality, there exists a causal path from a detector to the dynamical

elements
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• rank condition: bg_rk[CTAT ]T=n

Similar to CBG introduced in Section 2.2.2.2, the notion of the Observability

Bond Graph (OBG) for the observability analysis of LTV models is recalled here.

Definition 2.28 An OBG is a bond graph, with some new differential loops with

the gain d
dt

defined with the following procedure. The dissipative elements are

added which are similar to the ones designed for CBG, but with a negative gain

(Figure 2.9).

Procedure 2.29 1. For each dynamical element with an integral causality in

a BGI models, determine all the causal paths with lengths smaller than n−1,

which start from an output detector and end in that element.

2. For each of the causal paths determined in the above step:

• Check the first element with a time-varying gain along the causal path.

• For each of the dynamical element following this time-varying element,

add a differential loop with the gain d
dt

(maximum one d
dt

for each

dynamical element).

Figure 2.9: Differential loop transformations for OBG

Property 2.30 From the OBG model, an LTV system is observable iff the two

following conditions are satisfied:

• There is a causal path between each dynamical element and one of the output

detectors.

• Each dynamical element can have a derivative causality assignment in the

OBG model with a derivative causality assignment (with a possible duality

of output detectors).
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Module Theoretic Approach for LTV Bond Graph Models

The observability property of an LTV system in (2.12) is related to the quo-

tient module Σ/[u, y]R which is a torsion module. The equation of module

Σ/[u, y]R can be represented in (2.19),

[
Iδ −A (t)

C (t)

]
x̄ = 0 (2.19)

where x̄ is the image of x in Σ/[u, y]R.

Property 2.31 Fliess (1990) A linear system is said to be observable iff the two

modules Σ and [u, y]R coincide, i.e. Σ = [u, y]R. It means that every element of

Σ can be expressed as an R-linear combination of the elements ui, i = 1, . . . , m

and yj, j = 1, . . . , p.

If [u, y]R is strictly included in Σ, the system Σ is said to be unobservable

with respect to the output y(t). Observability is equivalent to stating that any

element in Σ can be expressed as a K-linear combination of the components of

u, y and of a finite number of derivatives of them.

There exist two methods to get the observability property of LTV systems

by means of the module theoretic approach. One is to use the Jacobson form of

matrix

[
Iδ − A (t)

C (t)

]
in (2.19) to detect the output decoupling zeros of systems.

Another one is to find out torsion equations in (2.12). These equations are related

to unobservable parts in systems. But torsion equation in (2.12) are difficult to

find out in a number of cases.

For analysis of observability property of LTV models, one solution is to use

the OBG models based on the rank condition of observability matrices O(δ, t).

Another solution is based upon module theoretical approach. Uncontrollable

parts of linear systems are related to dynamical elements with an integral causality

of BGD models, which define torsion module. It means that torsion modules

can be derived from equations of these dynamical elements. Even so, quotient

modules Σ = [u, y]R associated to unobservable parts are difficult to be derived

from bond graph models. Because of the duality between controllability and

observability properties, one solution is to examine controllability properties of

dual bond graph models by module theoretic rules. Then observability properties
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of initial bond graph models are identical with controllability properties of their

dual bond graph models. In the next section, dual bond graph models of LTV

bond graph models will be introduced. Some examples related to examinations

of observability properties of LTV bond graph models will be given.

2.2.4 Dual Bond Graph Model

The concept of duality between the controllability and observability is well-known

to the control system community. Rudolph (1996) has discussed the duality

property for LTV systems from the point of view of module theory. A system

is defined as a left module. The dual system is introduced by considering a

corresponding right module. The module theoretic definitions are intrinsic. It

means that they are valid not only for LTV systems but also for LTI systems.

Now, this concept is recalled, firstly.

The duality associates to a control system another control system, the input

of the former corresponds to the output of the latter and vice-versa. The dual

system of a linear system (2.4) is defined via (2.20):

{
˙̄x = −AT (t) x̄+ CT (t) ū
ȳ = −BT (t) x̄

(2.20)

Property 2.32 Fliess (1990) A linear system is observable (resp., controllable)

iff its dual system is controllable (resp., observable).

Lichiardopol & Sueur (2010) have studied the duality between the controlla-

bility and observability by means of a bond graph approach. One can get the

observability properties from the controllability properties of the dual system and

vice versa.

Procedure 2.33 The dual bond graph model of a bond graph model can be derived

by:

1. Substitute the sources by the detectors with a negative value, i.e. ȳ = −y ;

2. Substitute the detectors by the sources;

3. Give a negative value to each R element, i.e. R:(-R);

If there are time-varying dynamical elements, then
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4. Add a dissipative element with the gain R : − 1
dC(t)
dt

for each C(t)-element

shown in Figure 2.10;

5. Add a dissipative element with the gain R : −dI(t)
dt

for each I(t)-element

shown in Figure 2.10.

Figure 2.10: Dual elements of time-varying dynamical elements

Example 2.34 (continued) The dual bond graph model of system in Figure 2.3

with time-varying element m(t) is shown in Figure 2.11 (if the current of L2 is

selected as the output for the initial system).

Figure 2.11: Dual bond graph model of the system

As mentioned, the observability property of a system is equivalent to the con-

trollability property of its dual system. Now the method introduced in Procedure

2.33 is used to get the dual bond graph model of the LTI and LTV systems.

Example 2.35 The BGB model of the system in Example 1.21 is used to study

the observability property of the system. The BGI model of the system is drawn in

Figure 2.12. The LTI and LTV cases of the model are discussed; the differences

between these two cases will be pointed out.
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2.2 Structural Properties of Linear Systems

Figure 2.12: BGI model of the system in Figure 1.1

The LTI Case

Figure 2.13: BGD model of the LTI system in Figure 1.1

Firstly, the classical method for studying the observability property with the

BGD model is used. The BGD model of the LTI system is shown in Figure 2.13.

There exists a dynamical element L3 with an integral causality. According to

Theorem 2.27, the LTI system is unobservable.

Now the dual bond graph model is used to study the controllability property

of the dual model. The dual bond graph model of the LTI system is drawn in

Figure 2.14.

The BGD of the dual model is given in Figure 2.15. There exists a dynam-

ical element L3 with an integral causality. The mathematical equation between

elements L1 and L3 is written as ẋ1 = ẋ3. This equation can be rewritten as

δ(x1 − x3) = 0 which corresponds to the torsion submodule. So the dual model

of the LTI system is uncontrollable, which means that the LTI system is unob-

servable.
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Figure 2.14: BGI dual model of the LTI system in Figure 1.1

Figure 2.15: BGD dual model of the LTI system in Figure 1.1

The LTV Case

According to Procedure 2.33, the dual bond graph model of the LTV system

is given in Figure 2.16.

Figure 2.16: BGI dual model of the LTV system in Figure 1.1

Now the BGD dual model is used to detect the controllability property of the

dual system. The BGD dual model is drawn in Figure 2.17.
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Figure 2.17: BGD dual model of the LTV system in Figure 1.1

In Figure 2.17, all dynamical elements have a derivative causality. Therefore,

the dual model is structurally controllable and the LTV model is structurally

observable.

From algebraic calculations, the particular case when a relation can be written

between parameters L1(t) and L3(t) is retrieved. From Figure 2.17, the mathe-

matical equation of element L3(t) is written in (2.21).

ẋ1 −
x1

L1(t)

dL1(t)

dt
= −ẋ3 +

x3

L3(t)

dL3 (t)

dt
(2.21)

If L1(t) = cL3(t), c ∈ C, equation (2.22) can be derived after substituting L1(t)

by L3(t) in equation (2.21). Equation (2.21) is related to a torsion submodule.

So the dual model is not controllable, which means the LTV system with L1(t) =

cL3(t), c ∈ C is unobservable. Otherwise,equation (2.21) is no more related to a

torsion module, and the LTV system is observable.





ẋ1 −
x1

L3 (t)

dL3 (t)

dt
= −ẋ3 +

x3

L3 (t)

dL3 (t)

dt(
δ −

1

L3 (t)

dL3 (t)

dt

)
(x1 + x3) = 0

(2.22)

Remark 2.36 In Example 1.21, the observability properties of the LTI and LTV

systems are studied by the existence of output decoupling zeros. These zeros can

be derived by the Smith/Jacobson form of the matrix [DT (δ, t) QT (δ, t)]. By this

method, the LTI system has been proven to be always unobservable. Nevertheless,

in the LTV case, the observability of the system depends on the relation between

parameters L1(t) and L3(t).
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In previous examples, the rank condition of the observability matrix, the bond

graph and algebraic approaches are used to get the same results as in Example

1.21. Especially with the bond graph approach, the dual model was used to detect

the controllability property of the dual system. The main idea for examining

observability property of LTI and LTV systems is to determine if there exist

torsion equations in dual bond graph models of systems. If dual models are not

controllable with torsion equations, then initial models are not observable.

For LTI bond graph models, noncontrollable parts are related to dynami-

cal elements with an integral causality in BGD models and numerical control-

lable is equivalent to structural controllability. In Figure 2.17, there is no ele-

ment with an integral causality, but the model is not controllable when relation

L1(t) = cL3(t), c ∈ C is verified. This result is different from the classical ap-

proach introduced in Theorem 2.10 for studying the controllability property from

a numerical point of view. According to Property 2.19, this model is structurally

controllable. Even so, from equation (2.22), this model is uncontrollable with

relation L1(t) = cL3(t), c ∈ C. So controllability and observability property of

LTV systems are not very easy to be studied. The combined method with bond

graph and algebraic approaches can be one of the solutions.

In this section, some structural properties of LTI and LTV models were re-

called, such as: controllability and observability. In terms of these properties,

there are some differences between LTI and LTV systems. Through a number

of examples, these differences were shown. The controllability and observability

matrices for each case were introduced. The CBG and OBG models with differ-

ential loops for LTV models were used to determine the structural properties by

bond graph approach. As an intrinsic tool, the module theoretical approach is

useful for verifying systems’s properties. Therefore, the torsion submodules are

not always easy to detect. Due to the notion of duality, the observability structure

can be derived from the controllability property of the dual bond graph model.

In the next section, infinite and finite structures of bond graph models will be

recalled. Infinite zero orders related to lengths of input-output causal paths are

used to determine the finite structure. The bond graph models with bicausality

which are fundamental in the sequel to detect invariant zeros are introduced.
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2.3 Infinite and Finite Structures

Bertrand et al. (1997) proposed that there exists a correspondence between the

infinite structure of the bond graph model with a derivative causality assignment

and the finite structure of the bond graph model with an integral causality as-

signment. Rahmani et al. (1996) combined the utilization of the infinite structure

and the input-output causal paths concept to directly determine the solvability of

the feedback decoupling and disturbance rejection problem for LTI systems. An-

daloussi et al. (2006) studied the infinite structure of LTV by means of graphical

methods. Chalh (2007) dealt with the characterization of invariant zeros of LTV

systems using the bond graph methodology. This method is extended in terms of

bicausality of bond graph models to get equations of modules of invariant zeros

and the detail will be given in next chapter. Now the bond graph procedures

which have been interpreted in the above-mentioned literatures are recalled.

2.3.1 Infinite Structure

For BGI models, the concept of infinite zero orders is related to the number of

derivations of corresponding output variable(s) to make appear explicitly at least

one of the entries. In the LTI case, if the system is represented by a state space

equation, ni is the ith row infinite zero orders, associated with the ith output

variable yi, it is the smallest integer such that (2.23) is verified. In that case,

yi = cix and y
(ni)
i = ciA

nix+ ciA
(ni−1)Bu (2.23)

For an LTI bond graph model, the infinite structure can be determined graph-

ically.

Property 2.37 The row infinite zero order ni of the subsystem Σ(ci, A, B) mod-

eled by bond graph is equal to the length of the shortest input-output causal path

between the output yi and the set of source variables.

The column infinite zero orders, similarly to the row one, is defined by the

following property. The column infinite zero orders are equal to the number of

integrations of the input variable uj necessary for at least one output variable to

appear explicitly.
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Property 2.38 The column infinite zero orders nj of the subsystem Σ(C,A,Bj)

modeled by bond graph is equal to the length of the shortest input-output causal

path between the input source uj and the set of output detectors.

For the global system Σ(C,A,B), the notion of disjoint input-output causal

paths is significant.

Definition 2.39 Two causal paths are called disjoint (or different) if there is no

dynamical element in common in the two paths.

Property 2.40 The number of global infinite zeros of the system Σ(C,A,B) is

equal to the number of different input-output causal paths. The global infinite zero

orders n′
i are given in equation (2.24) with possible change of the subscript of the

output variable,

{
n′

1 = L1

n′
k = Lk − Lk−1

(2.24)

where Lk is the smallest sum of k disjoint input-output causal path lengths.

The BGD models are used to characterize the invariant zeros which are equal

to zero. It is supposed that the state matrix A is invertible. The state represen-

tation of BGD models of LTI systems is in (2.25):

{
x (t) = A−1ẋ (t)− A−1Bu (t)
y (t) = CA−1ẋ (t)− CA−1Bu (t)

(2.25)

Analogously, several notions for BGD models are defined such as: the input-

output causal paths and the infinite zero orders nid.

If there exists dynamical elements in integral causality, the notion of gener-

alized causal path length is defined: it is the number of the dynamical elements

in derivative causality minus the number of the dynamical elements in integral

causality.

Property 2.41 The row infinite zero order nid associated to the output variable

yi is equal to the length of the shortest causal path between yi and the set of input

variables in the BGD model.
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Property 2.42 The global infinite zero orders {n′
id} are determined by equations:

{
n′

1d = L1d

n′
kd = Lkd − L(k−1)d

(2.26)

where Lkd is equal to the smallest sum of k causal path lengths between k output

detectors and k input sources in the BGD model.

Property 2.43 The row zero orders at infinity of a BGD model are equal to

the minimum number of the integration of the output variable to get the input

variables appear explicitly and independently in the equations.

The row infinite structure and the global infinite structure in the BGD model

are denoted by two sets {nid} and {n′
id}. By the structural method, one can get

the row infinite zero order nid for the row sub-system Σ(ci, A, B) associated to

output yi, such as:

σnidyi = CA−nid−1ẋ− CA−nid−1Bu

where σ is the integral operator and CA−nid−1B 6= 0, CA−kid−1B = 0, k < nid.

In case of the study of the infinite structure, there is no difference between

procedures for LTI and LTV bond graph models. Hence, some extensions for

LTV models should be considered. From the point view of the graphical method,

infinite zero orders are determined by lengths of input-output causal paths. This

structure depends on the structure of systems; it means that only non-zero terms

in systems’s matrices are related to infinite zero orders.

2.3.2 Invertibility and BGB Models

In this section, the invertibility criteria of a bond graph model is firstly introduced.

For an LTV system, some conclusions obtained in the case of LTI systems are not

valid due to the non commutative properties. The combination of algebraic and

bond graph approaches is a solution for this problem. For bond graph models, the

concept of bicausality is recalled, in order to get the inverse bond graph model.

In the end, an example will be illustrated by pointing out the system equations

of the inverse model.
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The invertibility property of the bond graph model is deduced from the bond

graph model in integral causality, with the notion of disjoint input-output causal

paths. In the LTI case, Rahmani (1993) proposed the necessary and sufficient

condition for invertibility of square bond graph model.

Theorem 2.44 Let Σ be a square system with u ∈ Rp and y ∈ Rp. If there exist

a unique choice of disjoint input-output causal paths, then the bond graph model

is invertible.

When there are several sets of disjoint input-output causal paths, the invert-

ibility depends on the determinant of the system matrix P (δ).

Property 2.45 Let G(δ) be the transfer matrix of the system Σ(C,A,B). The

system matrix P (δ) and the transfer matrix G(δ) associated to the system Σ(C,A,B)

satisfy equation (2.27).

det[P (δ)] = det[Iδ − A] · det[G(δ)] (2.27)

In order to ensure the invertibility of the transfer matrix G(δ), the determinant

of the system matrix P (δ) should not be null.

Let Σ be an LTV system, its inverse system is obtained by the successive

derivation of the output variable y until the input variable u appears explicitly.

The expression of the ni order derivation of yi is represented by (2.28), where

ni, i = 1, . . . , p is the ith row infinite zero orders associated with the output

variable yi.

δniyi =
[(
AT (t) + Iδ

)ni
cTi (t)

]T
x+ ci (t) (A (t)− Iδ)ni−1B (t) u (2.28)

For the output vector, one has:




δn1y1
...

δniyi
...

δnpyp



= y∗ = H (δ, t) x+D (δ, t)u
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where D (δ, t) =
{
Di (δ, t) = ci (t) (A (t)− Iδ)ni−1B (t) , i = 1, . . . , p

}
and H (δ, t) ={

Hi (δ, t) =
[(
AT (t) + Iδ

)nicTi (t)
]T
, i = 1, . . . , p

}
.

If the matrix D(δ, t) is invertible (system is decouplable), then the inverse

system can be represented by equation (2.29).

{
δx = (A−BD−1H)x+BD−1y∗

u = D−1Hx+D−1y∗
(2.29)

Theorem 2.46 Andaloussi (2007)

A square LTV system with p input variables and p output variables modeled

by a bond graph model has the following properties:

• The system is structurally non-invertible if there is no set of p-disjoint input-

output causal paths disjoint.

• The system is structurally invertible if there exists a unique set of p disjoint

input-output causal paths.

• In the case of the existence of several sets of p-disjoint input-output causal

paths, the determinant of Dieudonné of the system matrix is required, which

is a difficulty.

When dealing with several control problems such as: system inversion, state

estimation, parameter estimation and fault detection, the concept of bicausality

proposed by Gawthrop (1997) can be used.

Figure 2.18 explains the principle of bicausal bonds. Comparing with the

standard ones, one can get their mathematical relations.

Figure 2.18: The principle of bicausal bonds

A new type of bond graph element - source sensor (SS) is shown in Table 2.2.

Gawthrop proposed that bicausality can be propagated through junctions,

Figure 2.19 (i) shows a typical situation. The R element is supposed to be
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2. BOND GRAPH METHODOLOGY

Table 2.2: Causal patterns for the source-sensor element SS
Causal pattern Physical nature of SS element actuator/detector

Effort source, flow sensor Se element
Flow source, effort sensor Sf element

Zero flow source, effort sensor De element: effort detector

Zero effort source, flow sensor Df element: flow detector

Flow source, effort source SeSf element

Flow sensor, effort sensor DeDf element

known. Flow f1 impinges on the bond which forces causality of R. Effort e2 can

be represented by the combination of e1 and of e3. Figure 2.19 (ii) shows a flow-

carrying active bond interpreted as the ideal two-port unit gain flow amplifier

which is a TF component. This component is described by the equations: e2 :=
1
m
e1, f2 := mf1.

Figure 2.19: A bicausal junction

Example 2.47 Now an example is given to illustrate the procedure to get the

inverse system by means of the notion of bicausality. Figure 2.20 shows a 3-order

bond graph model in preferential integral causality (BGI). The disjoint input-

output causal paths are: u1 → I → y1 and u2 → C2 → y2. According to Theorem

2.46, the bond graph model is invertible.

To construct the inverse model, the bond graph model in bicausal assignment

is defined in Figure 2.21. The assignment of bicausality to the bonds connected

with input/output variables impinges on the bonds forcing a derivative causality

on the I and C2 elements. The state vector is x = (x1, x2, x3)
T = (pI , qC1 , qC2)

T .

The inverse model is directly obtained from the BGB model:

{
u1 = Iẏ1 +

1
C1
x2

u2 = C2ẏ2 −
x2

C1R
+ y2

R
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Figure 2.20: Bond graph model in integral causality (BGI)

Figure 2.21: Bicausal bond graph model (BGB)

2.3.3 Finite Structure

Finite structure of linear systems was introduced in Section 1.2.2. Here the bond

graph procedure for detecting invariant zeros is recalled. In line with the graphical

approach, the infinite structure introduced above is fundamental to examine the

numbers of invariant zeros and of null invariant zeros of square models without

complex calculations. For the values of invariant zeros, the Jacobson form of

system matrices or definition polynomials of torsion modules are useful. The

invariant zeros structures of kinds of linear bond graph models are the principal

issues of the next chapter.

For an LTI system, the invariant zeros are the system poles of the inverse

system, and the set of system poles consists of the set of input decoupling zeros

and the set of controllable poles. For a controllable and observable model, the

invariant zeros are the non controllable poles of the model with output variables

set to a zero value. The controllability property has been discussed in Section

2.2.2, now some properties of invariant zeros in the LTI case are recalled. The

finite structure of LTV systems will be discussed in the next chapter.
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2. BOND GRAPH METHODOLOGY

The algebraic approach for detecting invariant zeros structure is recalled.

Let Σ be a linear system, the module of invariant zeros is the torsion module

T(Σ/[y]R). The invariant zeros are the Smith zeros of T(Σ/[y]R).

Definition 2.48 The invariant zeros of LTI/LTV systems Σ can be defined by

the three following steps:

• Give equations of module Σ/[y]R.

• Calculate equations of torsion module T(Σ/[y]R).

• Factorize definition polynomial of torsion module T(Σ/[y]R).

Although the algebraic interpretation is intrinsic, sometimes the torsion mod-

ules are difficult to find out. Sueur & Dauphin-Tanguy (1991), Bertrand et al.

(1997) proposed the bond graph procedure which is intuitive and efficient for

square LTI models is introduced.

Property 2.49 Sueur & Dauphin-Tanguy (1991) Suppose an invertible, control-

lable and observable linear square model. The number of invariant zeros is

n− Σn′
i (2.30)

where n is the order of the model and {n′
i} is the set of global infinite zero orders.

Property 2.50 The row infinite zero order nid is equal to the number of null

invariant zeros of the subsystem Σ(ci, A, B) in the BGD LTI model. Σn′
id is equal

to the number of null invariant zeros of the global system Σ(C,A,B) in BGD LTI

model.

After obtaining the numbers of invariant zeros, the BGB model is used to

characterize invariant zeros with algebraic relations between variables associated

to the torsion module in Definition 2.48. Therefore for an LTI system, there are

three steps for determining the finite structure of the system:

• Determine the number of invariant zeros according to the infinite structure

of the BGI model.

• Determine the number of null invariant zeros by using the infinite structure

of the BGD model.
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• Determine the values of invariant zeros, which are not equal to zero based

on the torsion module in the BGB model.

The invariant zeros of linear square models can be derived from different kinds

of bond graph models, which is shown in Table 2.3, where IZ denotes invariant

zero and IS denotes infinite structure.

Table 2.3: Calculation of invariant zeros of linear square BG models
IZ number null IZ number Non-null IZ value(s)

BG models IS of BGI IS of BGD
elements in integral
causality of BGB

Calculate
formula

n− Σn′
i Σn′

id

Smith zeros of
torsion module

Now Example 2.47 is used to illustrate the procedure for obtaining the finite

structure of a bond graph model.

Example 2.51 (continued)

The global infinite zero orders of the bond graph model in Example 2.47 are

{n′
i} = {1, 1}. In terms of equation (2.30), there exists n − Σn′

i = 3 − 2 = 1

invariant zero.

Now the BGD model is used to obtain the number of the null invariant zero.

Figure 2.22 shows the bond graph model in derivative causality. There exist two

disjoint input-output causal paths such as: y1 ← u2 and y2 ← u1. Therefore,

the set of global infinite zero orders of the BGD model is {n′
id} = {0, 0}. With

Property 2.50, there is no null invariant zero in this system.

Figure 2.22: Bond graph model in derivative causality (BGD)

Figure 2.21 showed the BGB model of system. There exist one dynamical

element C1 in integral causality. Now, the causal path between C1 and other
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2. BOND GRAPH METHODOLOGY

components of the BGB model is used to get the equation of C1: C1 → fC1 : ẋ2 =

y1 − fR = −eR
R

= −
eC1

−y2

R
= − x2

C1R
. Therefore, the equation corresponding to the

torsion module is (δ + 1
C1R

)x2 = 0, the invariant zero is equal to − 1
C1R

.

According to Property 2.49 and 2.50, the numbers of invariant zeros and of

null invariant zeros can be detected. Therefore, the values of non-null invariant

zeros are related to certain differential equations, which correspond to the mod-

ule of invariant zeros. For linear square models, the bond graph models with

bicausality which are inverse models of initial models are essential for getting the

invariant zeros. The finite structure with bicausality will be widely studied in the

next chapter. The module theoretical approach will highlight the invariant zeros

structure for BGB models.

2.4 Conclusion

In this chapter, two graphical methods have been recalled to model linear systems

such as: digraph and bond graph methods. From the graphical representation,

one can find the system properties without calculating some complex mathemat-

ical relations.

Some structural properties have been studied for linear system by means of

several approaches: formal, algebraic and graphical approaches. The controlla-

bility and observability of LTV systems have been redefined. Duality is a very

important notion for studying these two notions. The difference between LTI and

LTV systems have been pointed out by the combination of algebraic and bond

graph methods.

Finally, the infinite and finite structure of linear systems modeled by bond

graph have been introduced. The procedure for determining the infinite zero

orders by bond graph model has been recalled. The determination procedure of

invariant zeros of LTI bond graph models was introduced. Some criteria are no

more valid for LTV systems; the next chapter will extend them in accord with

LTV systems.
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The topic of this chapter is the study of invariant zeros of linear bond graph

models by combining several approaches. Before entering into details, basic facts

on invariant zeros are firstly introduced and some approaches dealing with this

issue are recalled.
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In the second section, invariant zeros structure of linear square bond graph

models is studied by means of bicausality. Two kinds of bond graph models are

discussed. Firstly, the null invariant zeros structure is introduced by a linear

SISO circuit from which the difference between LTI and LTV cases is pointed

out. For explaining this difference, the combined method derived from graphical

and algebraic approaches is required. Then an extension for invariant zeros of

bond graph models of linear MIMO square systems is explained. Differential

equations associated to the torsion module are given in the second subsection.

The aim of the third section is to discuss the invariant zeros structure of

bond graph models of linear non-square systems. In accordance with the former

section, the invariant zeros of row submodels of linear MIMO square systems

are studied. Then non-square systems’s invariant zeros structure is presented in

two cases. In the first case, the number of input sources is greater than the one

of output detectors, and the opposite situation is discussed in the second part.

According to the module theoretic approach, the notion of common factors of non

controllable/observable parts will be used.

3.1 Finite Structure of Linear Models

Numerous papers have been written on the study of poles and zeros of LTI sys-

tems. Fundamental contributions are due to Kalman et al. (1969) with the state

space representation and a good survey is proposed in Schrader & Sain (1989). In

order to calculate finite zeros well defined algorithms exist, Kailath (1980), but

systems equations are not always in a state space representation and the general

description of a linear system is the Rosenbrock polynomial description (1.14),

Rosenbrock (1970). The entries of these matrices are elements of a ring denoted,

in different equivalent ways, as R = k[ d
dt
] = k[δ] = k[s]. Mappings are morphisms

of R-modules and the spaces associated with them are R-modules (instead of

morphisms of R-vectors space). This approach can be viewed as an extension

of the Wohnam approach who showed that instead of using matrices, it is more

suitable to use linear mappings Wonham (1985). A discussion on this subject is

proposed in Bourlès & Fliess (1997), with a nice intrinsic approach for the study

of poles and zeros of linear systems. Their module theoretic approach is also
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3.1 Finite Structure of Linear Models

closely related to the behavioral approach proposed by Willems (1983), Willems

(1991).

3.1.1 Invariant Zeros

Invariant zeros are important for the stability analysis of the controlled systems

for several well-known control problems such as the disturbance rejection prob-

lem, the input-output decoupling problem and some other problems such as the

conception of full order or reduced order observers.

The problems have been tackled under various resolution techniques, which

are often similar, even if formulations are different. Among these techniques, the

structural approach, the algebraic approach and the geometric approach which

are popular in control theory, are appeared to be very effective. Different steps

are sometimes proposed. The first step is mainly at an analysis level (study of

the internal structure) and the last step deals with synthesis methods.

The study of finite poles and zeros of linear systems extended to LTV systems

based on algebraic theory of differential rings and modules is proposed in Bourlès

& Fliess (1997), Marinescu & Bourlès (2009), Bourlès & Marinescu (2011). From

the point view of algebraic approach, a linear system is a finitely generated module

over a non commutative polynomial ring of differential operator δ. With regard

to the finite structure of LTV models, in terms of module theory, zeros are the

Smith zeros of the torsion submodule of a specific quotient module, but even if this

quotient module has a simple interpretation, its mathematical characterization

is not so simple. Indeed, in that situation, polynomials are defined over skew

fields, and roots can be obtained by choosing a good field extension. It is a

mathematical problem, and many references can be found in Van der Put &

Singer (2003), Lam & Leroy (2004). The issue about system poles/zeros is related

to solving differential polynomial equations. In Marinescu & Bourlès (2009) it

is shown that a skew polynomial can be written as a product of elementary

factors (δ − γi)
di . They used the same formalism as for the study of the infinite

structure in Bourlès & Marinescu (1997), Bourles & Marinescu (2007) and Bourlès

(2006), by decomposing the initial module into a direct sum of left submodules

and then they proposed a well-suited field extension for the characterization of

polynomials roots. This allows one to give intrinsic definition of the poles and
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zeros of LTV systems by the algebraic approach initiated by Malgrange (1962)

and Fliess (1990).

For non linear models, variational models can be written with Kahler deriva-

tion. These new models are linear time-varying (LTV) models. Non linear bond

graph models are transformed in LTV bond graph models with some graphical

procedures proposed in Achir & Sueur (2005). One approach is proposed by Fliess

(1990) for the study of linear systems and then extended to non linear systems

with flatness analysis in Fliess et al. (1995).

From a bond graph point of view, different classical problems such as the

controllability/observability analysis Chalh et al. (2007), Lichiardopol & Sueur

(2010) or input-output decoupling problem Lichiardopol & Sueur (2006) are pro-

posed as a direct extension of the LTI case due to some properties of the bond

graph representation. This approach is a good solution for studying classical

control problems with the stability property on bond graph models.

In what follows, the focus is on the invariant zeros structure of bond graph

models. Some classical theoretical, mathematical and graphical procedures for

the study of the invariant zeros structure of linear models are now recalled. Then

a synthesis is proposed in two tables, and our main contribution is positioned in

these tables.

3.1.2 Several Approaches for the Study of Invariant Zeros

In this section, several approaches for invariant zeros of bond graph models are

recalled, such as: formal, algebraic and structural approaches. Assumption 3.1 is

firstly given for bond graph models studied in the following.

Assumption 3.1 It is supposed that linear bond graph models studied in this

chapter are controllable, observable and invertible. The state matrices are in-

vertible, and the model order is n. There exist at most one input source and/or

one output detector connected to each junction, and a source (detector) is only

connected to one junction.

1. Formal Approach

For systems with state-representation (2.4), invariant zeros can be derived

from the formal approach. This approach is based on the use of the Jacobson
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form of the system matrix P (δ, t) in (3.1) which was introduced in Section 1.2.2. It

consists in getting this canonical form by using the OreTools library on Maple™ 13,

for example. The algorithms are based on the Gauss pivot method by introducing

the noncommutativity between operators. The rule δa = aδ + ȧ is used with

euclidian divisions to reduce polynomials degrees until obtaining constant terms

(zeros) with elementary row and column operations.

[
Iδ − A(t) −B(t)

C(t) 0

] [
x
u

]
= P (δ, t)

[
x
u

]
= 0 (3.1)

The Jacobson normal form can also be derived from manual calculations with

elementary operations introduced in Definition 1.16. Matrix P (δ, t) is singular

when the differential operator is equal to the invariant zeros. The invariant factors

of the Jacobson form of a system matrix over R are the invariant zeros of the

system.

In this chapter, the focus is on the invariant zeros structure of linear systems

represented by bond graph models. From bond graph models, systems state-

representations can be derived. Hence in system matrices, matrix B(t) (resp.,

C(t)) is of full rank, its rows (resp., columns) are linear independent based on

Assumption 3.1. After several fundamental operations for system matrices, ma-

trices become new ones in (3.2),




[Iδ − A]′
b1,n+1 0

. . .
0 bn,n+m

cn+1,1 0
. . .

0 cn+p,p

0




(3.2)

where [Iδ − A]′ is derived from matrix [Iδ −A] after fundamental operations.

Because of the full rank assumption, one can eliminate rows and columns

including elements bi,n+i, i = 1, . . . , m and cn+j,j, j = 1, . . . , p without changing

rank of system matrices. After eliminations, new matrices are named as reduced

system matrices denoted by Pr(δ, t). Reduced system matrices have the same Ja-

cobson normal forms as original system matrices. In the sequel, Jacobson forms

of reduced system matrices are calculated instead of system matrices by means
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of a formal approach.

2. Algebraic Approach

The module of invariant zeros is written with the algebraic approach. This

approach is defined in Definition 1.35 and with this approach the procedure can

be found in Proposition 1.37. As this module is torsion, it is related to the non

controllable part of the quotient module Σ/[y]R. The study of the controllability

property for LTV systems has been introduced in Section 1.2.2 and Section 2.2.2.

So the focus will be on the non controllable parts of such systems. Let’s consider a

LTV system Σ(C(t), A(t), B(t)) which is a finitely generated module over the ring

R = K[δ]. The module T(Σ/[y]R) is torsion and is called the module of invariant

zeros Miz of Σ. Let z be a generator of T(Σ/[y]R). There exists Z(δ) ∈ R such

that Z(δ)z = 0 and let K̄ an extension of K over which a set of zeros of Z(δ) can

be derived.

Definition 3.2 Bourlès & Marinescu (2011) Miz = T(Σ/[y]R) is the module of

the invariant zeros of the LTV system. The invariant zeros of the LTV system

are the conjugacy classes of the elements of a full set of Smith zeros of Miz.

Definition 3.3 For the LTV system represented by equation (2.4), the submodule

Miz is defined by (3.3)

P (δ, t)

[
x̂

û

]
= 0 (3.3)

P (δ, t) is the system matrix and x̂, û are the images of x, u in module Miz. x̂, û

are called the generators of Miz and matrix P (δ, t) is the definition matrix of the

module.

The torsion equations in (3.3) are related to the invariant zeros. The invariant

zeros are the conjugacy classes of the full set of Smith zeros of the definition

matrix of these equations.

Now, a procedure for detecting invariant zeros structure of LTI/LTV systems

with state-representation is proposed in Procedure 3.4.

Procedure 3.4 According to Definition 3.2, there are two basic steps for detect-

ing invariant zeros. In the first step, one should construct the torsion module
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T(Σ/[y]R). Then, invariant zeros can be derived from the Jacobson normal form

of the definition matrix of the torsion module in the second step. Now this proce-

dure is explained as following:

1. Write the state space representation of the system.

2. Give equations (3.3) of module Σ/[y]R with all output variables to be zero.

3. Find torsion equations in (3.3) and give the definition matrix of the torsion

module T(Σ/[y]R).

4. Calculate invariant zeros by two methods in parallel.

1). By elementary operations, calculate the Jacobson normal form of the

definition matrix of the torsion module Miz, the conjugacy classes of the

elements of a full set of Smith zeros of Miz are invariant zeros of LTV

systems and the invariant factors of Miz are invariant zeros of LTI systems.

2). Find out directly torsion equations in definition equations of Miz, then

definition polynomials of these torsion equations are identical with invariant

polynomials of Jacobson forms of definition matrices of Miz.

In Procedure 3.4 by algebraic method, the invariant zeros of a linear system Σ

are derived from the Jacobson form of the definition matrix of the torsion module

T(Σ/[y]R). Equation (3.4) explains this procedure by a number of mappings and

operations.

Σ→ Σ/[y]
R
→ T (Σ/[y]

R
)→

{
invariant zeros (Jacobson form)

solutions set of u (substitution by u)
(3.4)

Sets of solutions of input variables for zeroing output variables are introduced

in Section 3.1.3 by substituting variables in torsion modules by input variables.

3. Structural Approach

Because of non commutative properties and derivations of time-varying coeffi-

cients, the bond graph rules proposed in the LTI case in Chapter 2 for determining

invariant zeros are not sufficient for the LTV case. Some complementary rules
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must be added. The invariant zeros structure can be studied with an algebraic

approach, but the algebraic calculations are often complex. By combining two

methods, a simple procedure to determine the invariant zeros structure is pointed

out. In this chapter, the study of null invariant zeros is one of crucial issues. From

the point of view of module theory, a null zero corresponds to the factorization

of the term δn(n ≥ 0) related to right roots of torsion module polynomial repre-

sentation.

Techniques for detecting the invariant zeros of bond graph square models

and non-square models by the structural approach are different. For square

systems, invariant zeros modules T(Σ/[y]R) can be derived from system poles

modules Σ−1/[û]R of inverse systems, where û denotes input variables of inverse

systems. Two modules Σ and Σ−1 represent the same system and the variable y

is identical to û. Therefore, modules Σ/[y]R and Σ−1/[û]R are isomorphic, i.e.,

Σ/[y]R ∼= Σ−1/[û]R. Consequently, invariant zeros of bond graph models can be

derived from bond graph models with bicausality representing inverse systems.

The structural procedure for bond graph square models is introduced in Section

3.2.1.

For non-square bond graph models, because the numbers of input sources and

of output detectors are different, it is not possible to choose disjoint input-output

causal paths. It means that BGB models for global models do not exist. However,

submodels with the same number of input and output variables are square. So

BGB models are valid for detecting noncontrollable parts in submodels. Common

uncontrollable parts between submodels are used to deal with non-square systems.

The structural procedure for bond graph non-square models is introduced in

Section 3.3.1.

In this section, several approaches for detecting invariant zeros of bond graph

models were recalled. The formal approach is valid for all kinds of linear bond

graph models. The Jacobson form of the system matrices is of prime importance

in this approach. One can get the invariant polynomial of system matrices or

reduced system matrices after some fundamental operations or procedures of

some softwares. Even so, for calculating the invariant zeros, factorizations of skew

polynomials are needed, which lead to the utilization of the algebraic approach.

By the algebraic approach, one can find out torsion equations in modules Miz

related to the invariant zeros. However, sometime torsion equations are difficult
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to detect. So the notion of a full set of Smith zeros of Miz is used to calculate the

invariant zeros. The structural approach is a direct and efficient method inspired

from the two above approaches. In the square case, global BGB models consist

in detecting uncontrollable parts of models, which are related to the invariant

zeros. In non-square case, global BGB models do not exist. Hence, analysis of

finite structure of square BGB submodels is required to discover the common

factors of invariant zeros of each submodel. These common factors are related

to invariant zeros of global non-square bond graph models. Several approaches

and their techniques from which the invariant zeros structure of applicable bond

graph models can be derived are shown in Table 3.1.

Table 3.1: Applicable bond graph models and techniques for IZ identification

Approaches Formal Algebraic
BGB

global models
BGB

submodels

Models
Square

Non-square
Square

Non-square
Square Non-square

Techniques Pr(δ) Miz Mei

Submodels IZ

Common factors

3.1.3 Output-Zeroing Problem and Invariant Zeros

The output-zeroing problem of a standard linear system is strictly connected with

zeros of the system. These zeros are defined in many ways. MacFarlane &

Karcanias (1976), Schrader & Sain (1989) gave a survey of these definitions. The

most commonly used definition of zeros employs invariant zeros. All definitions

consider zeros merely as complex numbers and for this reason may create certain

difficulties in their dynamical interpretation. Each invariant zero is related to a

set of the input variables which lead the output variable to be zero. Karcanias

& Kouvaritakis (1979) studied the output problem and its relationship with the

invariant zeros structure for continuous systems by a matrix pencil approach. In

the case of discrete systems, this problem was well studied by Tokarzewski (2006)

with the geometric approach.

The physical output-zeroing problem has been approached using zeros. It

is to find all pairs (x0, u(t)) consisting of initial states x0 ∈ Rn and admissible

inputs u(t) such that the corresponding outputs y(t) are identically zero (i.e.,
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y(t) ≡ 0, t ≥ 0). Any nontrivial pair (i.e., such that x0 6= 0 or u(t) is not

identically zero) will be called the output-zeroing input. The dynamics of LTI or

LTV systems restricted to the set of initial conditions for zeroing output variables

(if the set is well defined) is called the zero dynamics. x0 (resp., u0(t)) is used

to denote the state-zero direction (resp., input-zero direction) and to denote the

initial state (resp., input) in output-zeroing problem.

System matrices are singular for some δ = αi which are invariant zeros.

Kailath (1980) proposed that, for an input u(t) = u0e
αit, t ≥ 0, there exists

an initial state x0 such that the output is zero: y ≡ 0, t ≥ 0.

The conditions under which an exponential-type input signal vector leads to

an identically zero output are first considered for proper systems. The key result

required is given by Theorem 3.5.

Theorem 3.5 MacFarlane & Karcanias (1976) Suppose a system Σ(A,B,C),

an input is given in (3.5)

u (t) = g exp(zt)Γ(t) (3.5)

where z is an invariant zero of the system, g is a complex vector with appropriate

dimension and Γ(t) denotes the Heaviside unit step function. With an initial state

vector x0, necessary and sufficient conditions for the existence of a set {z, x0, g}

such that

y (t) = f (t, z, x0, g) ≡ 0, t > 0 (3.6)

are that {z, x0, g} satisfy

[
Iz −A −B

C 0

][
x0

g

]
= 0 (3.7)

The output zeroing problem is related to the initial state vector x0 because

the state-space motion corresponding to the solution of the problem is shown to

be of the form

x (t) = x0 exp (zt) , t > 0 (3.8)

In the present report, the LTV case of the output-zeroing problem is also

considered. Proposition 3.6 gives the solution for the output-zeroing problem of

systems Σ(C(t), A(t), B(t)), which is similar to Theorem 3.5.
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3.1 Finite Structure of Linear Models

Proposition 3.6 Suppose z is one of invariant zeros of an LTV system Σ(C(t), A(t), B(t)),

there exist an input vector

ui (t) = gi(t) exp(zt)Γ(t), i = 1, . . . , m (3.9)

for zeroing the output variables with an initial state vector x0, where gi is a time

function over R. The vector x0 and g(t) =




g1 (t)
...

gm (t)


 can be derived from

[
Iz −A(t) −B(t)

C(t) 0

][
x0

g(t)

]
= 0 (3.10)

The solution of the vector x0 is derived from equations of xi0, i = 1, . . . , n when

the time variable is set to be zero (t = 0) in all matrices in (3.10). After getting

x0, g(t) is derived from (3.10) with time-varying parameters in the matrices.

In this chapter, the module theoretic approach is used to deal with the output-

zeroing problem. It is supposed that all systems studied are controllable. It

means that there exists a relation such as Σ/[u]R = ∅. Therefore, every element

in module Σ can be represented by input variables and their derivations. After

getting torsion equations related to T(Σ/[y]R), one can substitute all variables

in torsion equations by input variables. Then, several differential equations in

input variables can be obtained. According to the method for solving differential

equations introduced in Section 1.1.1.3, one can get a fundamental set of roots

of differential polynomial and a fundamental set of solutions of input variables

u. With elements of the fundamental set of roots αi, for input variables ui(t) =

ui0e
αit, t ≥ 0, i = 1, . . . , m, there exist initial state variables xi0 such that output

variables are null: yi ≡ 0, t ≥ 0, i = 1, . . . , p.

Remark 3.7 In what follows, two cases of the output-zeroing problem will be

studied:

1. With consideration of initial conditions of state variables after detecting the

invariant zeros, i.e., x0 6= 0, u0(t) 6= 0 → y ≡ 0, t ≥ 0. Solutions of input

variables and initial conditions of state variables are derived from Theorem

3.5 in the LTI case and from Proposition 3.6 in the LTV case for each

invariant zero zi.
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

2. Without consideration of initial conditions of state variables, then output

variables will asymptotically converge to zero, i.e., lim
t→∞

y = 0, x0 = 0. Solu-

tions of input variables are derived from y = 0→ T(Σ/[y]R)→ U (δ, t) u =

0, where T(Σ/[y]R) is the torsion submodule of the module Miz, U (δ, t)u =

0 is a differential polynomial of u after substituting variables in T(Σ/[y]R)

by u and its derivatives. In this case, the invariant zeros are not necessarily

known.

3.2 Invariant Zeros of Linear Square Models

As mentioned, invariant zeros structure of square models can be derived from

bond graph models with bicausality. In this section, the structural procedure for

detecting invariant zeros of this kind of models is firstly introduced by means

of BGB models. The relations between structural and algebraic approaches are

interpreted. Then, invariant zeros structure of SISO models is discussed. Differ-

ences between LTI and LTV models are shown, and simulation results are given.

An extension of the second kind of square models with multi-inputs and multi-

outputs is introduced. Formal, algebraic and structural approaches are utilized

to detect invariant zeros for every situation.

3.2.1 BGB Procedure for Invariant Zeros of Square Models

The invariant zeros structure of LTI bond graph models was introduced in Section

2.3.3. The numbers of invariant zeros and of null invariant zeros can be derived

from infinite zero orders of BGI and BGD models by use of Property 2.49 and

Property 2.50.

The calculations for BGB models give the values of non-null invariant zeros.

The structural approach proposed here with bicausality is a unified method not

only for LTI but also for LTV bond graph models. As introduced in Section 3.1.2,

the invariant zeros can be obtained from the system poles of inverse bond graph

models, i.e., BGB models.

For getting the invariant zeros structure, the definition equations of the mod-

ule Σ/[y]R are firstly needed. These equations are procured by using Procedure

3.8 for BGB models.
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3.2 Invariant Zeros of Linear Square Models

Procedure 3.8 Yang et al. (2010) The study of the invariant zeros of a linear

square bond graph model is related to the resolution of four sets of equations

written in the BGB model from the following elements:

• Output detectors (variables are set to a zero value)

• Dynamical elements with a derivative causality

• Input sources

• Dynamical elements with an integral causality assignment

By bond graph method, every module in (3.4) can be represented by an appro-

priate bond graph model. In this procedure, the fundamental issue is to find out

the torsion module T(Σ/[y]R), i.e., the noncontrollable part of the module Σ/[y]R.

Therefore, the focus is on the controllability property study of the bond graph

model of the module Σ/[y]R. Similarly to Procedure 3.4, a procedure by bond

graph approach for detecting invariant zeros of LTI/LTV systems is proposed in

Procedure 3.9.

Firstly, the bond graph model of the module Σ/[y]R is given by using bi-

causality. The controllability property of this model can be derived from method

introduced in Section 2.2.2. Then the procedure for getting the Jacobson normal

form in Section 1.2.1.1 is served to detect invariant zeros structure. These steps

are shown in detail in Figure 3.9 (i).

Procedure 3.9

1. Draw BGI model of modules Σ.

2. Construct the BGB model related to modules Σ/[y]R with output variable

y ≡ 0, then calculate equations (3.3) for each element (x, u).

3. Find torsion equations in (3.3) and give the definition matrix of torsion

module T(Σ/[y]R).

4. Calculate invariant zeros and a set of solutions of u.

1). Calculate the Jacobson normal form of the definition matrix of torsion

module, the conjugacy classes of the elements of a full set of Smith zeros of

this form are invariant zeros for an LTV model and the invariant factors
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

of this form are invariant zeros for an LTI model.

2). Substitute all variables in torsion equations by input variables, solve

differential equations in u then get a fundamental set of solutions of u.

Relations between bond graph and algebraic approaches for detecting invari-

ant zeros structure are shown in Figure 3.1.

Figure 3.1: Bond graph and algebraic approaches for detecting invariant zeros
and their relations

In the third step of Procedure 3.9, the torsion module is quite difficult to

detect. Because of non controllable property of the module, the controllability

property analysis will be used for bond graph models. For a linear square system,

the bond graph model of the module Σ/[y]R can be drawn by using bicausality.

In the BGB model, the elements with an integral causality assignment are related

to non controllable parts.

In reference to Property 2.49, the invariant zeros of LTI square models are

related to dynamical elements which are not included in the shortest disjoint
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3.2 Invariant Zeros of Linear Square Models

input-output causal paths in BGI models. Dynamical elements in these causal

paths structurally have a derivative causality assignment in BGB models, then

other dynamical elements may have an integral causality assignment. Equations

of these elements forms a new module Mei which is included in Σ/[y]R and includes

the module T(Σ/[y]R), such as T(Σ/[y]R) ⊆ Mei ⊆ Σ/[y]R. So the definition

matrices of these three modules have the same Jacobson normal form.

Definition 3.10 For the BGB model of a linear square system, there exists a

number of dynamical elements with an integral causality assignment. The equa-

tions related to these elements define a module Mei. Because of the non con-

trollable property of these elements, module Mei includes the torsion module

T(Σ/[y]R), i.e. they have the same invariant zeros structure.

The equations of modules Mei are given in (3.11),

Pei (δ, t) xei = 0 (3.11)

where matrices Pei are definition matrices of Mei and all state variable of dynam-

ical elements with an integral causality assignment in BGB models are included

in vector xei.

The procedure for detecting invariant zeros of linear square systems is shown

in Figure 3.2, where DPs denotes definition polynomials.

3.2.2 Invariant Zeros of SISO Models

Linear SISO models are studied in this section. The main idea for solving the

invariant zeros problem is to use the inverse model (BGB) with the null output

variable to get invariant zeros and the input variable for zeroing the output vari-

able. In the LTI case, these two issues have a tight relation. One can be easily

derived from another. However, in the LTV case, this relation becomes indistinct.

Invariant polynomials of system matrices of SISO systems are used to detect the

invariant zeros structure. For an SISO system, there is one minor, which is the

determinant of the system matrix. As to the bond graph model, a single input

and a single output variables are considered for BGB model.
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

Figure 3.2: Bond graph procedure for detecting invariant zeros of linear square
systems

3.2.2.1 Null Invariant Zeros: LTI and LTV Cases

In this section, the structure of null invariant zeros of a simple circuit studied

in Yang et al. (2011) is discussed. For LTI models, the infinite structure of

the BGD models is directly related to null invariant zeros. For LTV models,

conditions are only sufficient and a quite similar extension to the study of the

controllability/observability is proposed for the study of null invariant zeros. The

bond graph procedures for detecting invariant zeros of LTI and LTV models have

no difference. The crucial issue is to find out torsion equations after application

of the bond graph procedure. Sometimes, torsion equations are evident; they can

be found out by observation. Nevertheless, usually, it is necessary to use funda-

mental operations to get Jacobson forms of system matrices to determine torsion

elements. In these operations, there may exist some differences of calculations

between LTI and LTV cases. The difference between the invariant zeros struc-

ture of LTI and LTV cases is pointed out with an SISO electrical circuit. The

results will be verified with simulations by the bond graph software 20-sim®∗.

∗20-simr is a registered trademark of the University of Twente, Drienerlolaan 5, 7522 NB
Enschede, The Netherlands, http://www.utwente.nl
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3.2 Invariant Zeros of Linear Square Models

This approach will be extended to MIMO LTV models for square and non square

models in the next section.

The invariant zeros structure of the SISO LTV RLC circuit is studied by

formal and bond graph approaches. The bond graph model of the circuit is

shown by Figure 3.3. This model is controllable and observable. The order of the

model is n = 2. The system equation is given in (3.12)





ẋ1 = −
R(t)
I(t)

x1 −
m(t)
C(t)

x2 + u

ẋ2 =
m(t)
I(t)

x1

y = 1
I(t)

x1

(3.12)

where x = (x1, x2)
T = (pI , qC)

T is the state vector, u and y are the input and

output variables. Table 3.2 gives numerical values of the LTI system components.

Figure 3.3: Bond graph model with integral causality: BGI model

Table 3.2: Numerical values of RLC circuit components
Input u element I element R element TF element C

1 V 1 H 1 Ω 2 1 F

The infinite structure of the BGI model, Figure 3.3, is defined as n′ = 1

(causal path Df → I (t) → Se). By Proposition 2.49, there exist one invariant

zero (n− n′ = 2− 1 = 1).

Figure 3.4 gives the bond graph model with a derivative causality assignment,

model BGD. There is an input-output causal path (Df → C (t) → Se). If the

system is time invariant, there is a null invariant zero (nd = 1) according to

Property 2.50. With the BGD model, it is thus easy to conclude on the existence

of a null invariant zero in this SISO example, but the extension to the MIMO
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

case is not so easy, and the characterization of the invariant module is not direct.

The BGB model is a good alternative for solving these problems.

Figure 3.4: Bond graph model with derivative causality: BGD model

Torsion module with the bond graph model with bicausality (BGB) defined

in Yang et al. (2010) is studied. It will prove the previous conclusion obtained

from the study of the BGD model and it is a simple way for the study of torsion

submodules associated to any kind of invariant zeros.

In Figure 3.5, the bicausal path is drawn between the input source Se : u and

the output detector Df : y. In this simple example, the element C(t) is associ-

ated to the torsion module T(Σ/[y]R). The torsion module is the non controllable

part of the inverse model. The element C(t) (more precisely the state variable) is

not controllable, because it is not reachable when the bicausal path is eliminated.

Now the procedure for deriving the torsion module is given.

Figure 3.5: Bond graph model with bicausality : BGB model

Step 1: output variable

124

chapter3/chapter3figs/LRCBGD.eps
chapter3/chapter3figs/LRCBGB.eps


3.2 Invariant Zeros of Linear Square Models

For the output detector, the flow at the 1-junction is equal to zero. The equa-

tion of output variable is y = 1
I(t)

x1. One relation is thus rewritten: y = 0, thus

x1 = ẋ1 = 0.

Step 2: element with derivative causality

Element I : I(t) −→ fI =
pI
I
= x1

I
= 0

Step 3: input source

Source Se : u −→ u = ẋ1 + eR + m(t)
C(t)

x2 =
m(t)
C(t)

x2

Step 4: element with an integral causality assignment

Element C : C(t) −→ ẋ2 = fC = 0

The formal (Jacobson form) and module theoretic methods to get the set of

invariant zeros are now used.

1. Jacobson form

The system matrix of the system is:

P (δ, t) =




δ + R(t)
I(t)

m(t)
C(t)

−1

−m(t)
I(t)

δ 0
1

I(t)
0 0




and it’s Jacobson form is:

∆(δ, t) =




1 0 0
0 1 0
0 0 δ


 = U(δ, t)P (δ, t)V (δ, t)

where

U(δ, t) =




1 0 0
0 0 I (t)
0 1 m (t)


 , V (δ, t) =




0 1 0
0 0 1

−1 δ + R(t)
I(t)

m(t)
C(t)




So the invariant polynomial of the system matrix is δ, there is a null invariant

zero for LTI model, and the invariant zero of LTV model is a conjugacy class:
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

∆C(t)(0). From the point of view of rank reduction, δ = 0 can reduce the system

matrix rank, which signifies the existence of the null invariant zero.

2. Module theoretic approach

With the algebraic method, the module of invariant zeros can be derived from

(1.38), and the equations related to Miz are such here




δ + R(t)
I(t)

m(t)
C(t)

−1

−m(t)
I(t)

δ 0
1

I(t)
0 0



[
x̂
û

]
= 0 (3.13)

where x̂, û are the images of x, u by the mapping Σ→ Σ/[y]R.

These mathematical relations are directly written for the unknown variables

associated to elements of the BGB model (effort or flow variable depending on

the causality assignment). From this set of mathematical relations, the torsion

module can be highlighted, and the same result is obtained. A torsion equation

has the form:

P (δ)ξ = 0, P (δ) = δn +
n∑

i=1

aiδ
n−i, ξ 6= 0 (3.14)

where P (δ) is the differential polynomial and (3.14) is the definition equation of

the torsion element. ξ is the generator of the torsion module. In (3.13), equation
˙̂x2 is related to the torsion element. Therefore, there exist a null invariant zero for

the LTI model and the invariant zero of LTV model is a conjugacy class: ∆C(t)(0).

3.2.2.2 Invariant Zeros and Solution Set of Input Variables

The output-zeroing problem is considered here. For solving this problem, vari-

ables in torsion equations in Miz need to be substituted by the input variable.

Two equations can be derived from equation (3.13) or from the BGB model:

{
m(t)
C(t)

x̂2 = û

δx̂2 = 0
(3.15)

The second equation δx̂2 = 0 is a torsion element of Miz. By taking account

this relation in the first equation, one can get the torsion equation about û such
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3.2 Invariant Zeros of Linear Square Models

as:

δ
C (t)

m (t)
û =

(
C (t)

m (t)
δ +

(
C (t)

m (t)

)′)
û = 0 (3.16)

According to equation (3.15), the initial value of the input variable depends

on the value of x2 at t = 0. So the solution of the input variable for zeroing the

output variable is shown in (3.17),

{
u (t) = u0e

∫
C(t)m′(t)−C′(t)m(t)

C(t)m(t)
dt

u0 =
m(0)
C(0)

x20

(3.17)

where u0, x20, m(0), C(0) ∈ R are the values of variables u(t), x2(t), m(t), C(t) at

t = 0. Equation (3.17) can also be derived from equation (3.7). After simplifi-

cation in (3.17), the solution of the input for zeroing output problem is given in

(3.18).

u(t) =
m(t)

C(t)
x20 (3.18)

From equation (3.18), one can find that in the LTI case there is always a

constant input for output zeroing which corresponds to the null invariant zero

in the LTI case. However, in the LTV case, although the existence of the null

invariant zero, solutions of the input variable have different forms in accordance

with system parameters.

Solutions of the input variable for the output zeroing problem for SISO models

can also be derived directly from bond graph models. There is a unique input-

output causal path which means that the output variable can be represented by

the input variable and its derivations. In this case, the input-output causal path

gain is equal to 1
m(t)

δ C(t)
m(t)

, Achir et al. (2005). If the coefficient C(t)
m(t)

is a con-

stant, i.e., C(t) and m(t) are proportional, there exists a right root of differential

polynomial, which yields a constant input variable for zeroing the output variable.

In fact, the graphical procedure is closely related to the algebraic one proposed

in Definition 2.48. The BGB model with the output variables y ≡ 0 is used to

get the module Σ/[y]R. The dynamical elements with integral causality in BGBD

model are associated the torsion module T(Σ/[y]R). At last, the differential

equations relative to these dynamical elements are solved to get the invariant

zero and the set of the input variable.
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Output-zeroing Problem with Initial Conditions of State Variables

For the previous example, the output variable converges to zero in a finite time.

The output-zeroing problem where the output variable is equal to zero for all

time range is considered here, i.e., y ≡ 0, t ≥ 0. Theorem 3.5 gives the necessary

and sufficient conditions for this issue. In what follows, LTI and LTV cases are

considered.

The LTI Case

Consider the LTI model with parameters given in Table 3.2. As to the exis-

tence of the null zero, the input variable is u(t) = gΓ(t). Equation (3.7) can be

written as:




1 2 −1
−2 0 0
1 0 0






x10

x20

g


 = 0 (3.19)

Let g = 1, i.e., u(t) = Γ(t). The solution set of {x1, x2} is {0, 1
2
}. Hence, the

input variable and initial condition of state variables for output-zeroing problem

is shown in (3.20).





x10 = 0
x20 =

1
2

u (t) = Γ(t)
(3.20)

The simulation result of the LTI model is indicated in Figure 3.6.

Figure 3.6: The output curve of the LTI model with u(t) = Γ(t), x10 = 0, x20 = 0.5
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The LTV Case

Let m = t + 2, the model becomes time-varying. There still exist a null

invariant zero. Even so, the input variable is no more a constant, which was

written in equation (3.18). Theorem 3.5 supposes that g is a complex vector.

However, in the LTV case, this vector is proved to be a function of time. With

the null invariant zero, equation (3.7) is written as:




1 t+ 2 −1
−t− 2 0 0

1 0 0






x10

x20

g(t)


 = 0 (3.21)

After solving equation (3.21), the input variable and the initial condition of the

state variables are given in (3.22).





x10 = 0
x20 = c

u (t) = c(t+ 2)Γ(t)
(3.22)

where c 6= 0, c ∈ R+. Let x20 = 1, then g(t) = t + 2 which is a time function.

The input variable derived from Theorem 3.5 is identical with the one in equation

(3.17).

Figure 3.7 shows the simulation result of the LTV model according to equation

(3.22).

Figure 3.7: The output curve of the LTV model with u(t) = (t + 2)Γ(t), x10 =
0, x20 = 1

The solutions of the input variable in the LTI (3.20) and LTV (3.22) cases are

identical with the solution derived from the algebraic equation (3.18).
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For solutions of input variables of LTV SISO models for the output-zeroing

problem, Proposition 3.11 is given. It is supposed that Assumption 3.1 hold, and

the BGD model has an input-output causal path length equal to 1, then there is

a null invariant zero.

Proposition 3.11 There exist an input variable such as u(t) = cΓ(t), c ∈ R with

nd = 1, which yields y ≡ 0, t ≥ 0 with an appropriate initial condition of x0 if

there is no time-varying component in the causal path or if the following situation

is verified. The differential polynomial equation of the torsion module T(Σ/[y]R)

has the form: G(δ)u = 0→ G′ (δ) δu = 0, where G
′

(δ) is a polynomial of δ and δ

is the right factor of G(δ). G′ (δ) ∈ R has the form
n∑

i=0

aiδ
i, ai ∈ K, where a0 6= 0.

3.2.2.3 Simulations

In this section, the output-zeroing problem is verified by a number of simulation

results. The focus is on if there is always a constant input variable for zeroing the

output variable in the LTV case with a null invariant zero. Without specification,

the initial condition of the state variables is not considered, i.e. xi0 = 0, i =

1, 2, lim
t→∞

y = 0. In the LTI case, the input variable is constant for zeroing the

output if there is a null invariant zero. Several cases related to different time-

varying parameters of the studied system are considered.

At first, the case without time-varying element in the input-output causal

path of the BGD model is studied. Simulation results show that there is no in-

fluence for the existence of constant input variable for zeroing the output. Then,

with time-varying elements in the causal path, three situations are proposed.

Firstly, there exists only one time-varying element C(t) or m(t) in the causal

path, then parameters C(t) and m(t) are simultaneously time-varying and pro-

portional with a time-invariant modulus. Secondly, parameters C(t) and m(t)

are simultaneously time-varying but not proportional. Finally, the case with one

time-varying element I(t) outside the causal path and one time-varying element

C(t) in the path will be studied. In each case, the solution of the input variable

for the output-zeroing problem is given. Without special declaration, the initial

condition of state variables is null.

BGD without Time-varying Elements in the Input-output Causal Path
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If there is no time-varying elements in the input-output causal path of the

BGD model, a constant input variable can zero the output. Elements I and R

with time-varying parameters are considered respectively.

a). Inertial Element I is Time-Varying

Let I(t) = t2+1, the solution of the input variable of the model is u0 according

to equation (3.17). The curve of the output variable Df with the constant input

u(t) = Γ(t) is drawn in Figure 3.8 and the output variable is equal to 0 in the

steady state part.

Figure 3.8: The output Df curve with I(t) = t2 + 1 and u(t) = Γ(t)

b). Resistive Element R is Time-Varying

Let R(t) = t+1, the solution of the input variable of the model is u0 according

to equation (3.17). The curve of the output variable Df with the constant input

u(t) = Γ(t) is shown in Figure 3.9.

c). Two Elements I and R are Simultaneously Time-Varying

Let I(t) = t2+1 and R(t) = t+1, the solution of the input variable of system

is u0 according to equation (3.17). The curve of the output variable Df with the

constant input u(t) = Γ(t) is displayed in Figure 3.10.

From these three situations, one can verify Proposition 3.11: if there is no

element with time-varying parameter in the causal path of the BGD model, the

LTV model has constant input variable for zeroing the output variable.
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

Figure 3.9: The output Df curve with R(t) = t+ 1 and u(t) = Γ(t)

Figure 3.10: The output Df curve with R(t) = t+1, I(t) = t2+1 and u(t) = Γ(t)

Time-Varying Elements in the Causal Path

There are two elements C and TF in the input-output causal path of the

BGD model. Four situations are considered here.

a). The Transformer Element TF is Time-Varying

Let m(t) = 1
t+1

, the input variable solution of system is 1
t+1

u0 according to

equation (3.17). The curve in Figure 3.11 gives the response of the output Df

with the constant input u(t) = Γ(t).

By (3.18), let u(t) = 1
t+1

, x10 = 0, x20 = 1, Figure 3.12 gives the response of

the output Df .

If m(t) = sin(t) + 2, the curve of output Df with the constant input u(t) =

Γ(t) in Figure 3.13 is not stable. As for the instability of the curve, one should

calculate if there is (are) unstable pole(s) of the system. From algebraic approach,
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3.2 Invariant Zeros of Linear Square Models

Figure 3.11: The output Df curve with m(t) = 1
t+1

and u(t) = Γ(t)

Figure 3.12: The output Df curve with m(t) = u(t) = 1
t+1

and x20 = 1

poles are related to the module Σ/[u]R. Poles of the system can be derived from

the Jacobson form of matrix D (δ) = (Iδ − A). For poles and stability property

of LTV systems, Marinescu & Bourlès (2009) is recommended.

Figure 3.13: The output Df curve with m(t) = sin(t) + 2 and u(t) = Γ(t)

b). The Element C is Time-Varying

Let C(t) = t+1, the solution of the input variable of system is 1
t+1

u0 according
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to equation (3.17). The curve of output Df with the constant input u(t) = Γ(t)

is plotted in Figure 3.14.

Figure 3.14: The output Df curve with C(t) = t + 1 and u(t) = Γ(t)

By (3.18), let u(t) = 2
t+1

, x10 = 0, x20 = 1, Figure 3.15 gives the response of

the output Df .

Figure 3.15: The output Df curve with C(t) = t+ 1, u(t) = 2
t+1

and x20 = 1

c). Two Elements TF and C are Time-Varying and Proportional

Let C(t) = m(t) = t2 + 1, the solution of the input variable of system is u0

according to equation (3.17). The curve of output Df with the constant input

u(t) = Γ(t) is shown in Figure 3.16.

d). Two Elements TF and C are Time-Varying and Nonproportional

Let m(t) = t + 2, C(t) = t2 + 1, the solution of the input variable of system

is u(t) = t+2
t2+1

u20 according to equation (3.17). The curve of output Df with the

constant input u(t) = Γ(t) is indicated in Figure 3.17.
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Figure 3.16: The output Df curve with C(t) = m(t) = t2 + 1 and u(t) = Γ(t)

Figure 3.17: The output Df curve with m(t) = t+2, C(t) = t2+1 and u(t) = Γ(t)

By (3.18), let u(t) = t+2
t2+1

, x10 = 0, x20 = 1, Figure 3.18 gives the response of

the output Df .

Figure 3.18: The output Df curve with m(t) = t + 2, C(t) = t2 + 1, u(t) = t+2
t2+1

and x20 = 1

From these four aforementioned examples, one can find that there exists a

constant input variable for zeroing the output variable in spite of the existence

of time-varying elements in the causal path of BGD model. It means that the
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rule to determine the constant input variable from the BGD model must be com-

pleted with a study of the BGB model and an algebraic criterion. The invariant

polynomials of system matrices give the intrinsic implementation of the existence

of constant input variable.

e). With Time-Varying Elements C(t) and I(t)

The model with two time-varying elements I and C is considered here. Let

I(t) = t + 1, C(t) = t2 + 1, the solution of the input variable of the system is

u(t) = 2
t2+1

u20 according to equation (3.17). Figure 3.19 shows the output Df

curve with the constant input u(t) = Γ(t).

Figure 3.19: The output Df curve with I(t) = t+1, C(t) = t2+1 and u(t) = Γ(t)

By (3.18), let u(t) = 2
t2+1

, x10 = 0, x20 = 1, Figure 3.20 gives the response of

the output Df .

Figure 3.20: The output Df curve with I(t) = t + 1, C(t) = t2 + 1, u(t) = 2
t2+1

and x20 = 1

As mentioned, the SISO system has a null invariant zero in LTI and LTV

cases. In the LTI case, the null invariant zero is always related to a constant
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input variable for zeroing the output variable. However, the conclusion is no more

valid for the LTV system. According to the simulation results of aforementioned

cases, one can find that the input variable for zeroing the output variable has

different forms according to system parameters. When elements C(t) and m(t)

are time-varying separately or simultaneously but nonproportional, a constant

input variable does not exist for the output-zeroing problem. It is because these

time-varying parameters C(t) and m(t) are contained in the input-output causal

path gain of the BGD model. In other cases, there is always a constant input

variable for the problem. These results are confirmed by the algebraic procedure.

An extension is now proposed for MIMO models.

3.2.3 Invariant Zeros of MIMO Models

In case of LTV models, the controllability/observability matrices are quite difficult

to derive. From the algebraic point of view, the bond graph approach is simple

if the algebraic and graphical approaches are combined (see previous sections).

In the SISO case, there is only one choice for input-output causal path, and the

non controllable part for BGB model is not very difficult to find out. But in

the square MIMO case, the notion of disjoint input-output causal paths will be

utilized to draw BGB models. For classical control problems, invariant zeros

must be studied for global models (all input and output variables) and also for

row submodels (only one output variable). In Yang et al. (2010), it is proven

that some uncontrollable parts of the BGB models must be compared from an

algebraic point of view (torsion submodules). An illustrative example is proposed

all along this section and sets of invariant zeros of global MIMO square systems

are pointed out. Therefore, sets of row invariant zeros of square systems are

derived from the row subsystems which are not square, this issue and the non-

square global systems will be discussed in Section 3.3.

Some procedures are now illustrated on a bond graph model, and then the

general methodology will be exposed. Firstly, the bond graph model is supposed

to be associated to an LTI model (with and without an R-element), after that

extended to the LTV case. In the LTV case, the graphical approach is exactly the

same, but the algebraic relations written from different bond graph models allow

us to conclude with the right property. According to Definition 1.35, invariant

zeros are related to Smith/Jacobson zeros of the module Miz. The procedure for
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detecting invariant zeros of linear MIMO square systems is defined in Procedure

3.9.

This procedure can be simplified for square models. According to Definition

3.2, invariant zeros of linear systems are related to torsion modules T(Σ/[y]R).

For an LTI/LTV square system, module Σ/[y]R can be derived from the BGB

model of the system. As mentioned, modules Mei defined by equations of dynam-

ical elements with an integral causality assignment in BGB models are related

to non controllable parts in systems. As to the non controllable property of tor-

sion module, modules Mei have the same invariant zeros structures with torsion

modules.

Proposition 3.12 The invariant zeros of an LTI/LTV square system are related

to dynamical elements with an integral causality assignment in the BGB model.

The invariant zeros of the system are the conjugacy classes of the elements of a

full set of Smith zeros of the module Mei.

In this section, a linear square bond graph model is studied with several situ-

ations. The bond graph model is shown in Figure 3.21. This bond graph model

is studied in different cases: the element R is removed or not and parameters of

the model are supposed to be constant or depending on time, in that case it is

an LTV model. The method for detecting the invariant zeros of LTI and LTV

models by the structural approach is quite the same except calculation proce-

dures with torsion modules. These different configurations allow us to highlight

the methodology.

Figure 3.21: Bond graph model: BGI
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This bond graph model is structurally controllable, observable; a derivative

causality can be assigned to each dynamical element in Figure 3.22 and it is

invertible (the model has two different input-output causal paths). The rank

of the state matrix is equal to 6. x = (x1, ..., x6)
t = (pI1, pI2, pI3, qC4 , qC5 , qC6)

t

is the state vector. These properties are true for each study (LTI, LTV, with

and without the R-element). The study is proposed in a second step without

the R-element, because some interesting properties can be illustrated with a nice

graphical approach due to the bond graph representation.

The row infinite structure of the BGI model is defined as n1 = 1 (causal path

Df : y1− I1−MSe : u1), n2 = 3 (causal path Df : y2− I3−C4− I2−MSe : u2).

The global infinite structure is n′
1 = L1 = 1 and n′

2 = L2 − L1 = 3 (the two

previous input-output causal paths are different). It is concluded that the model

has two invariant zeros.

3.2.3.1 LTI Models

In the LTI case, calculations are much simpler than ones in the LTV case. A

new proposition for detecting invariant zeros of LTI square systems is given in

Proposition 3.13.

Proposition 3.13 Invariant zeros of LTI square systems can be derived from

modules Mei. Roots of invariant factors of Smith forms of definition matrices of

Mei are invariant zeros of systems. Invariant zeros of systems can also be derived

from zeros of definition polynomials of torsion equations in Mei.

Invariant Zeros of the Global System with R Element

By use of Maple™ programs, the invariant polynomial of the Smith form of the

system matrix is δ(R(mC4−C6)δ+m). The invariant zeros are the roots of this

polynomial. Hence, there are two invariant zeros: δ1 = 0 and δ2 = m
R(C6−mC4)

when C6 6= mC4. There exist only one invariant zero, which is null δ = 0 with

C6 = mC4. It is indicated that this polynomial is directly deduced from the bond

graph model, in different ways.

The row infinite structure of the BGD model, Figure 3.22, is defined as n1d = 0

(causal path Df : y1 − R −MSe : u1) and n2d = 1 (causal path Df : y2 − C5 −

TF (m) − MSe : u2) and the global infinite structure is n′
1d = L1d = 0 and
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n′
2d = L2d − L1d = 1 (two previous paths are different). It is concluded that the

second row subsystems has a null invariant zero and that the global model has

one invariant zero at δ = 0.

Figure 3.22: Bond graph model: BGD

Now, an algebraic characterization of the invariant zero at δ = 0 for the global

model is proposed with the BGD and in the next section with the BGB. Invariant

zeros are defined when output variables are set to a zero value, thus x1 = x3 = 0.

Two mathematical relations are directly written following causal path in the BGD

from the output detectors. Equations of the output variables are shown in (3.23).

{
y1 = ẋ4 − ẋ6 +mẋ5 + ẋ5 +

1
R
u1 −

1
R
ẋ1

y2 = ẋ5
(3.23)

From these two equations, if y1 = y2 = 0 it immediately follows ẋ5 = 0 which

is the algebraic relation directly related to the invariant zero at δ = 0 for the

global model, since the relation δx5 = 0 can be written, which is associated to a

torsion module.

The set of invariant zeros is algebraically characterized with the BGB model,

drawn in Figure 3.23. Now the bond graph procedure introduced in Procedure 3.8

is used to detect the invariant zeros structure of the system. There are four steps

in which mathematical relations are written for the unknown variables associated

to elements of the BGB model (effort or flow variable depending on the causality

assignment):

Step 1: output variables

For the two output detectors, the flow at the 1-junction is equal to zero. Two

relations are thus written: y1 = y2 = 0, thereby x1 = ẋ1 = x3 = ẋ3 = 0. These
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Figure 3.23: Bond graph model: BGB

relations are directly taking into account in the following.

Step 2: elements with a derivative causality

Element I : I1 −→ fI1 =
pI1
I1

= x1

I1
= 0

Element I : I3 −→ fI3 =
pI3
I3

= x3

I3
= 0

Element I : I2 −→ fI2 =
pI2
I2

= x2

I2
= −fC4 − fR = −ẋ4 −

1
R
eR = −ẋ4 −

1
R
(ẋ3 +

x5

C5
+m x6

C6
), then x2

I2
= −ẋ4 −

1
R
( x5

C5
+m x6

C6
)

Element C : C4 −→ eC4 =
qC4

C4
= x4

C4
= x5

C5
+m x6

C6

In this second step, there are 2 mathematical relations.

Step 3: input sources

Source MSe : u1 −→ u1 =
x5

C5
+m x6

C6

Source MSe : u2 −→ u2 = ẋ2 − ( x5

C5
+m x6

C6
)− x6

C6

Step 4: elements with an integral causality assignment

Element C : C5 −→ ẋ5 = fC5 = 0

Element C : C6 −→ ẋ6 = fC6 = ẋ4 +
1
R
( x5

C5
+m x6

C6
)

In the LTI case, equation associated to element C : C4 is rewritten with a

derivation ẋ4

C4
= m ẋ6

C6
, and by taking into account this relation in step 4, two

equations are immediately derived:

{
ẋ5 = 0
(C6−mC4

m
)ẋ4 −

1
R
x4 = 0

(3.24)

Equations (3.24) are the equations of the torsion submodule associated to the

invariant zeros. In the LTI case, it is thus easy to derive the invariant zeros. In
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(3.24), there are two torsion equations with mC4 6= C6 and one torsion equation

with mC4 = C6. According to Proposition 3.13, the invariant zeros of the LTI

system with mC4 6= C6 are 0 and m
R(C6−mC4)

. When mC4 = C6, the LTI system

has only a null invariant zero. The invariant zeros of the system are given in

(3.25).

{
δ1 = 0, δ2 =

m
R(C6−mC4)

, C6 6= mC4

δ = 0, C6 = mC4
(3.25)

In this case, module Mei is related to dynamical elements with an integral

causality assignment in the BGB model, i.e., elements C5, C6. The definition

equation of Mei is given in 3.26.





x4

C4
= x5

C5
+m x6

C6

ẋ5 = 0
ẋ6 = ẋ4 +

1
R
( x5

C5
+m x6

C6
)

(3.26)

The Smith form of the definition matrix of Mei is δ(R(mC4−C6)δ+m) which is

the same as the smith form of the system matrix.

Now the module theoretic procedure is executed to get the module Miz. Ac-

cording to Definition 3.3, the equation of Miz is:




δ 0 0 1
C4

0 0 −1 0

0 δ 0 − 1
C4

0 − 1
C6

0 −1

0 0 δ − 1
C4

1
C5

m
C6

0 0

− 1
I1

1
I2

1
I3

δ + 1
C4R

0 0 0 0

0 0 − 1
I3

0 δ 0 0 0

0 1
I2
−m

I3
0 0 δ 0 0

1
I1

0 0 0 0 0 0 0

0 0 1
I3

0 0 0 0 0




[
x̂
û

]
= 0 (3.27)

This equation is identical with the one derived from the BGB model in Figure

3.23 with the procedure in Proposition 3.8. Finally, one can get the torsion equa-

tions from (3.27) which are the same as (3.24).

Solutions of Input Variables for the Output-Zeroing Problem
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Now the procedure proposed in Proposition 1.37 is implemented to get dif-

ferential equations with input variables. As mentioned, in a controllable model,

all system variables can be represented by input variables and their derivations

because of the relation Σ = [u]R. First of all, the representations of all state

variables will be given in (3.28) by using the relations between them in four

steps.





x2 =
(
−I2C4δ −

I2
R

)
u1

x4 = C4u1

x5 =
(
mI2C4C5δ

2 + mI2C5

R
δ + (m+ 1)C5

)
u1 +mC5u2

x6 = −
(
I2C4C6δ

2 + I2C6

R
δ + C6

)
u1 − C6u2

(3.28)

When mC4 6= C6, one can substitute the state variables in equation (3.24)

by input variables. The equation represented by input variables related to the

torsion modules is given in (3.29).





(
m2I2C6

R2(C6−mC4)
2 +m+ 1

)
δu1 +mδu2 = 0(

δ − m
R(C6−mC4)

)
u1 = 0

(3.29)

From equation (3.29), two invariant zeros can be derived, such as: δ1 = 0, δ2 =
m

R(C6−mC4)
. The solution set of input variables is given in (3.30).

{
u1 = u10e

m
R(C6−mC4)

t

u2 =
c
m
−
(

mI2C6

R2(C6−mC4)
2 + 1 + 1

m

)
u10e

m
R(C6−mC4)

t (3.30)

where c, u10 ∈ C and u10 is the numerical value of input variable u1 at t = 0.

When mC4 = C6, one can obtain the relation x4 = 0 from the second equation

in (3.24) which is no more a torsion element. Then the relation u1 = 0 is derived

from equation (3.28). Substitute x5 in the first equation of (3.24) by the equation

of x5 in (3.28). The differential equation of u2 is: δu2 = 0. Therefore, the

solutions of input variables u1, u2 are given by equation (3.31).

{
u1 = 0
u2 = u20

(3.31)

where u20 is the value of u2 at t = 0.

Example 3.14 Consider the system in Figure 3.21, the numerical values of the

system components are given in Table 3.3.
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Table 3.3: Components’s numerical values of the square LTI model
element I1 element I2 element I3 element R

1 H 1 H 1 H 1 Ω
element TF element C4 element C5 element C6

2 1 F 1 F 1 F

As mC4 6= C6, the solution set of the input variables of this model is shown

in (3.32) with arbitrary choices of c, u10 ∈ C such as c = 2, u10 = 2.

{
u1 = 2e−2t

u2 = 1− 4e−2t
(3.32)

With these input variables values, Figure 3.24 shows the simulation result

where all output variables are null.

Figure 3.24: Output variables curves of the LTI model with mC4 6= C6

Let C6 = 2F in Table 3.3, one has the relation mC4 = C6. Therefore, the set

of solutions of input variables u1, u2 is given in (3.31). Let u2 = 2, the simulation

result of output variables curves with u1 = 0, u2 = 2 is shown in Figure 3.25.

Invariant Zeros of the Global System without R Element

The same study is proposed with the bond graph model without the R element in

Figure 3.26. The previous procedures are still applied but with straight results.

It is shown that in case of LTV models, results are different.
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Figure 3.25: Output variables curves of the LTI model with mC4 = C6

Figure 3.26: BGI model of the square MIMO LTI system without R element

By use of Maple™ programs, the invariant polynomials of the Smith form of the

system matrix are (mC4−C6)δ and δ. The invariant zeros are the roots of these

polynomials. Therefore, the model has two null invariant zeros when mC4 6= C6.

There exists one null invariant zero when mC4 = C6. This polynomial is directly

deduced from the bond graph model, in different ways.

The row infinite structure of the BGD model in Figure 3.27 is defined as

n1d = 1 (causal path Df : y1 − C4 −MSe : u1) and n2d = 1 (causal path Df :

y2 − C5 − TF (m)−MSe : u2) and the global infinite structure is n′
1d = L1d = 1

and n′
2d = L2d − L1d = 1 (two previous paths are different). It is concluded that

each row subsystems has one null invariant zero and that the global model has

two invariant zeros at δ = 0.

Now, an algebraic characterization of the invariant zero at δ = 0 for the
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Figure 3.27: Bond graph model without R-element: BGD

global model is proposed with the BGD model and then with the BGB model.

Two mathematical relations are directly written following causal paths from the

output detectors. The equations are:

{
y1 = ẋ4 − ẋ6 +mẋ5 + ẋ5

y2 = ẋ5
(3.33)

Invariant zeros are defined when output variables are set to a zero value, thus

y1 = y2 = 0. If the input variables do not appear explicitly in these expressions,

thus they can be considered as a mathematical expression of a torsion submodule

associated to some invariant zeros equal to zeros. By integration, other null

invariant zeros can be characterized. From the previous equations, it immediately

follows ẋ5 = 0 and ẋ4 − ẋ6 = 0 which are the algebraic relations directly related

to the invariant zeros at δ = 0 for the global model.

Now the set of invariant zeros is algebraically characterized on the BGB model,

drawn on Figure 3.28, following the previous procedure. Given that the example

is similar to the first one, the mathematical equations are directly written:

Output detectors y1 = y2 = 0 −→ x1 = ẋ1 = x3 = ẋ3 = 0

Element I : I1 −→ fI1 =
pI1
I1

= x1

I1
= 0

Element I : I3 −→ fI3 =
pI3
I3

= x3

I3
= 0

Element I : I2 −→ fI2 =
pI2
I2

= x2

I2
= −fC4 = −ẋ4

Element C : C4 −→ eC4 =
qC4

C4
= x4

C4
= x5

C5
+m x6

C6

Source MSe : u1 −→ u1 =
x5

C5
+m x6

C6

Source MSe : u2 −→ u2 = ẋ2 − ( x5

C5
+m x6

C6
)− x6

C6

Element C : C5 −→ ẋ5 = 0
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Figure 3.28: Bond graph model without R-element: BGB

Element C : C6 −→ ẋ6 = fC6 = ẋ4

Three equations are immediately derived, (3 mathematical relations written

from C elements):





x4

C4
= x5

C5
+m x6

C6

ẋ5 = 0
ẋ6 = ẋ4

(3.34)

In the LTI case, for the first equation in (3.34), a new relation is written x4 =
C4

C5
x5+

mC4

C6
x6. Then equations in (3.34) can be written in (3.35). These equations

are also written when reducing the Smith matrix by elementary operations on

rows and columns. They are the equations of the torsion submodule associated

to the invariant zeros. From equation (3.35), there exist two null invariant zeros

when mC4 6= C6. There is a null invariant zero when mC4 = C6.

{
δx5 = 0

δ
(

C6−mC4

C6

)
x6 = 0

(3.35)

Equation (3.34) is also the definition equation of the module Mei in the BGB

model. The invariant zeros can be deduced from the Smith form of the definition

matrix of Mei.

Solutions of Input Variables for Output-Zeroing Problem

Now the procedure introduced in Proposition 1.37 is used to get differential
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equations of input variables. Then the solution set of input variables will be

detected. From above steps, all state variables are derived from input variables

and their derivations. These representations are given in (3.36).





x2 = −I2C4δu1

x4 = C4u1

x5 = (mI2C4C5δ
2 + (m+ 1)C5) u1 +mC5u2

x6 = (−I2C4C6δ
2 − C6) u1 − C6u2

(3.36)

Substitute the state variables in (3.35) by input variables, differential equation

in input variables can be derived. Then the equations of torsion submodule Σ/[y]R
in input variables are shown in equation (3.37).

{
δu1 = 0
δu2 = 0

(3.37)

From (3.37), there are two null invariant zeros for the system. The solution

set of input variables can be derived, which is shown in (3.38).

{
u1 = u10

u2 = u20
(3.38)

where u10, u20 ∈ C are the numerical values of u1, u2 at t = 0.

When C6 = mC4, equation (3.34) related to the torsion submodule T(Σ/[y]R)

is equivalent to equation (3.39).

{
ẋ5 = 0
ẋ4 = ẋ6

(3.39)

Substitute all state variables in (3.39) by using equations in (3.36), differential

equations of input variables are shown in (3.40).

{
C6−mC4

C6
δu1 = 0

−δu2 =
(
I2C4δ

3 +
(

C6+C4

C6

)
δ
)
u1

(3.40)

Because of C6 = mC4, the first equation in (3.40) is no more related to

the torsion submodule. It means that input variable u1 can be any arbitrary

element in the coefficient differential ring K. The second equation in (3.40) is the

definition equation of the torsion submodule. This equation is rewritten in (3.41)

which verifies that there is one null invariant zero. If input variable u1’s form is

fixed, so is the input variable u2 according to the second equation in (3.40).
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3.2 Invariant Zeros of Linear Square Models

δ

((
I2C4δ

2 +

(
C6 + C4

C6

))
u1 + u2

)
= 0 (3.41)

Example 3.15 Now the simulation results of 20-sim® are used to verify solution

sets of the input variables in two cases. In the first case, elements C4 and C6 have

the relation C6 6= mC4. Elements C4 and C6 have the relation C6 = mC4 in the

second case.

Because the asymptotic stability property of this system is not guaranteed, a

resistance element R (R=1 Ω) is added in the 1-junction connected with dynamical

element I1. Because BGD and BGB models have the same properties, this new

model is used for simulation in order to guarantee the stability of the open loop

simulation.

1. In the Case C6 6= mC4

The studied system has two null invariant zeros, and the simulation result with

20-sim® is given in Figure 3.29. The same numerical values of system elements

are used as in Table 3.3, and the two input variables are set to be constant such

as u1 = 2, u2 = 4. This result verifies the existence of two null invariant zeros.

Figure 3.29: Output variables curves with C6 6= mC4, u1 = 2, u2 = 4

2. In the Case C6 = mC4

In this case, u1 = 2, u2 = 4 is still the solution set of the input variables

in (3.40). The simulation result is shown in Figure 3.30 with C6 = mC4, u1 =

2, u2 = 4.
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

Figure 3.30: Output variables curves with C6 = mC4, u1 = 2, u2 = 4

As mentioned, input variable u1 can be arbitrarily selected in K. Let u1 =

t + 2, then u2 = −1.5t + c, c ∈ C according to equation (3.40). Let c = 2 and

u2 = −1.5t + 2, the numerical value of C6 is changed, such as C6 = 2 in Table

3.3. The simulation result in Figure 3.31 shows that u1 = t + 2, u2 = −1.5t + 2

is the solution set of equation (3.40). With these values of the input variables,

output variables y1, y2 are equal to zero.

Figure 3.31: Output variables curves with C6 = mC4, u1 = t + 2, u2 = −1.5t + 2

If C6 = 1, then u1 = t+ 2, u2 = −1.5t+ 2 is no more solution set of equation

(3.40). It is verified by simulation in Figure 3.32.

3.2.3.2 LTV Models

Consider again the previous bond graph model in Figure 3.21, but in this case with

time-varying parameters in C(t) (field of rational functions of t with coefficients

in C). It comes immediately that all the previous mathematical relations directly
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3.2 Invariant Zeros of Linear Square Models

Figure 3.32: Output variables curves with C6 6= mC4, u1 = t+ 2, u2 = −1.5t+ 2

derived from the bond graph models can be written. However, the differential

equations cannot be in some cases associated to a torsion submodule; for example,

some coefficients are depending on time. It is not always easy to point out torsion

submodule and thus the invariant zeros. Two approaches are possible: first by

considering derivations in the temporal domain, secondly by considering formal

calculus in the non commutative ring.

In this section, the Jacobson form of system matrices is used to calculate

invariant zeros of linear systems. Invariant zeros structures of LTI/LTV systems

are detected in the same way, such as: Jacobson form of system matrices P (δ, t)

in (3.1). Roughly speaking, the LTI case is a special class of the LTV case. The

procedure for calculating the Jacobson normal form∗ is also valid in the LTI case.

The case of LTI systems with the simplification that each conjugacy class of an

element of a full set of zeros or a fundamental set of poles is a singleton (only one

element in conjugacy classes). Now the two previous examples are reconsidered,

but in LTV case.

As mentioned, for square LTV bond graph models, the invariant zeros are

related to dynamical elements with an integral causality assignment in BGBs.

These elements related to module Mei in BGB models are the same as dynamical

elements which are not included in the shortest disjoint input-output causal paths

in BGI models. The invariant zeros of LTV models are the conjugacy classes of

the elements of a full set of Smith zeros of Mei. In line with Property 2.49, a

∗When doing elementary operations, pay attention to the terms, with possible null values
in matrices, which may change the rank of matrices.
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

new property for invariant zeros of square LTV bond graph models is given by

Property 3.16.

Property 3.16 Suppose a right invertible, controllable and observable LTV model.

The invariant zeros are the conjugacy classes of which the number is less or equal

to n−Σn′
i where n is the order of the model and {n′

i} is the set of global infinite

zero orders. The invariant zeros of the LTV model are the conjugacy classes of

the elements of a full set of Smith zeros of Mei.

LTV System with R Element related to C4 Element

Consider the bond graph model in Figure 3.21 with time-varying parameters.

The system matrix is the same as the one of the LTI system in (3.27) except

time-varying properties. As mentioned above, the Jacobson form of this matrix

can be derived from its reduced matrix, which is given in (3.42).




0 − 1
C4(t)

1
C5(t)

m
C6(t)

1
I2(t)

δ + 1
C4(t)R(t)

0 0

0 0 δ 0
1

I2(t)
0 0 δ


 (3.42)

The procedure for getting the Jacobson form of the matrix in (3.42) is shown

in (3.43) on the basis of elementary operations defined in Definition 1.16.




0 − 1
C4(t)

1
C5(t)

m(t)
C6(t)

1
I2(t)

δ + 1
C4(t)R(t)

0 0

0 0 δ 0
1

I2(t)
0 0 δ




r2−r4,
−−−−−−−−→
eliminate c1,r4




− 1
C4(t)

1
C5(t)

m
C6(t)

δ + 1
C4(t)R(t)

0 −δ

0 δ 0




C4(t)×r1,c2−c1×
C4(t)
C5(t)

,c2−c1×
m(t)C4(t)

C6(t)
,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c2−c1×

m(t)C4(t)
C6(t)

,c2−
(

δ+ 1
C4(t)R(t)

)

×c1,eliminate r1,c1

[
δC4(t)
C5(t)

+ 1
C5(t)R(t)

δm(t)C4(t)−C6(t)
C6(t)

+ m(t)
C6(t)R(t)

δ 0

]

r1−
C4(t)
C5(t)

×r2

−−−−−−−→

[ (
C4(t)
C5(t)

)′
+ 1

C5(t)R(t)
δm(t)C4(t)−C6(t)

C6(t)
+ m(t)

C6(t)R(t)

δ 0

]

(3.43)

The second matrix in (3.43) is the definition matrix of module Mei. From

above calculations, one can find that modules Mei and T(Σ/[y]R) have the same

Jacobson normal form. So one can derive invariant zeros from Jacobson normal
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3.2 Invariant Zeros of Linear Square Models

forms of definition matrices of modules Mei according to Proposition 3.13. The

first term
(

C4(t)
C5(t)

)′
+ 1

C5(t)R(t)
in the last matrix may has a null value. So, two

situations based on its value are studied.

1. System with
(

C4(t)
C5(t)

)′
+ 1

C5(t)R(t)
= 0

In this case, the last matrix in (3.43) becomes matrix in (3.44). There exists

a term δ in the matrix which means there is a null invariant zero. For the term

δm(t)C4(t)−C6(t)
C6(t)

+ m(t)
C6(t)R(t)

, its relation with a torsion element depends on the value

of m (t)C4 (t)− C6 (t).

If m (t)C4 (t) = C6 (t), this term is equal to zero and the invariant factor of

the Jacobson form is δ, and the invariant zero of the system is a conjugacy class

∆C(t)(0).

[
0 δm(t)C4(t)−C6(t)

C6(t)
+ m(t)

C6(t)R(t)

δ 0

]
(3.44)

If m (t)C4 (t) 6= C6 (t), the procedure for getting the Jacobson form of matrix

in (3.44) is shown in (3.45),

[
0 δm(t)C4(t)−C6(t)

C6(t)
+ m(t)

C6(t)R(t)

δ 0

]
b−1×r2−−−−→

[
0 δ + b′+c

b

δ 0

]
(3.45)

where b = m(t)C4(t)−C6(t)
C6(t)

, c = m(t)
R(t)C6(t)

. The invariant zeros of LTV system with

m (t)C4 (t) 6= C6 (t) are conjugacy classes ∆C(t)(0) and ∆C(t)(
C6(t)

(

m(t)C4(t)−C6(t)
C6(t)

)

′

+m(t)
R(t)

C6(t)−m(t)C4(t)
).

The above calculations are also valid for the LTI case. In this case, one has

relations such as
(

C4(t)
C5(t)

)′
+ 1

C5(t)R(t)
= 0 and b′ = 0. Therefore, there exist one

null invariant for LTI system with mC4 = C6.

δ and δ+ m
R(mC4−C6)

are invariant factors of system matrix of LTI system with

mC4 6= C6. So there are two invariant zeros, such as 0 and m
R(C6−mC4)

for the

system. These results for LTI system are in accordance with the results by bond

graph method in Section 3.2.3.1.

2. System with
(

C4(t)
C5(t)

)′
+ 1

C5(t)R(t)
6= 0
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

In this case, the procedure of elementary operations for the last matrix in

(3.43) is shown in (3.46).

[ (
C4(t)
C5(t)

)′
+ 1

C5(t)R(t)
δm(t)C4(t)−C6(t)

C6(t)
+ m(t)

C6(t)R(t)

δ 0

]

(

(

C4(t)
C5(t)

)

′

+ 1
C5(t)R(t)

)

−1

×r1,r2−δr1,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c2−c1×

(

(

C4(t)

C5(t)

)

′

+ 1
C5(t)R(t)

)

−1(

δ
m(t)C4(t)−C6(t)

C6(t)
+ m(t)

C6(t)R(t)

)

,(−1)×r2

[
1 0
0 δa(δb+ c)

]

(3.46)

Hence, the invariant polynomial of system matrix is given in (3.47),

δa(δb+ c) (3.47)

where a = ((C4(t)
C5(t)

)′ + 1
R(t)C5(t)

)−1, b = m(t)C4(t)−C6(t)
C6(t)

, c = m(t)
R(t)C6(t)

. According to

above calculations, the value of variable b = m(t)C4(t)−C6(t)
C6(t)

may influence the

invariant zeros structure of the system.

If m(t)C4(t) = C6(t), the invariant polynomial becomes δac. One can continue

a column elementary operation, i.e., δac×(ac)−1 = δ. Consequently, the invariant

zero of the system is a conjugacy class, such as ∆C(t)(0).

Otherwise, for getting the invariant zeros of the system, one should factorize

this 2-order differential polynomial into the form with two 1-order polynomials,

such as (δ − α1)(δ − α2). Factorizations of differential polynomials in the LTV

case are very complicated. In this case, one can get this form by using a special

technic which is shown in (3.48).

δa(δb+ c) = (aδ + a′) (δb+ c) = a

(
δ +

a′

a

)(
δ +

c

b

)
b = ∆

a−1×∆
−−−−→
∆×b−1

(
δ +

a′

a

)(
δ +

c

b

) (3.48)

So the invariant zeros of the system are conjugacy class ∆C(t)

((

C4(t)
C5(t)

)

′′

+
(

1
R(t)C5(t)

)

′

(

C4(t)
C5(t)

)

′

+ 1
R(t)C5(t)

)

and ∆C(t)

(
m(t)

R(t)(C6(t)−m(t)C4(t))

)
.
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3.2 Invariant Zeros of Linear Square Models

The invariant factors of the system matrices of the LTI system in two cases

are shown in Table 3.4.

Table 3.4: Invariant factors of system matrices with R in the LTI case
LTI case

mC4 = C6 mC4 6= C6

δ δ(δ + m
R(mC4−C6)

)

Table 3.5 gives the invariant factors of the system matrices of the LTV system

in several cases.

Table 3.5: Invariant factors of system matrices with R in the LTV case
LTV case

(C4(t)
C5(t)

)′ = − 1
R(t)C5(t)

(C4(t)
C5(t)

)′ 6= − 1
R(t)C5(t)

m(t)C4(t) = C6(t) m(t)C4(t) 6= C6(t) m(t)C4(t) = C6(t) m(t)C4(t) 6= C6(t)

δ δ, δ + b′+c
b

δ (δ + a′

a
)(δ + c

b
)

LTV System with R Element related to I1 Element

The study is proposed for the second bond graph model, i.e., the bond graph

model with the resistive element R related to I1 Element. It is shown that

Property 2.50 is no more valid.

According to Proposition 3.12, the invariant zeros can be derived from the

module Mei. The equations of the module are given in (3.34). So the definition

matrix of the module is shown in (3.49).



− 1

C4(t)
1

C5(t)
m(t)
C6(t)

0 δ 0
δ 0 −δ


 (3.49)

The procedure for getting the Jacobson form for this matrix is show in (3.50).



− 1

C4(t)
1

C5(t)
m(t)
C6(t)

0 δ 0
δ 0 −δ


 c1+c3−−−→




m(t)
C6(t)
− 1

C4(t)
1

C5(t)
m(t)
C6(t)

0 δ 0
0 0 −δ


 (3.50)
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Term m(t)
C6(t)
− 1

C4(t)
of the second matrix in (3.50) may has a null value. So,

two cases must be studied.

1. System with C6(t) = m(t)C4(t)

The second matrix in (3.50) and the first matrix in (3.51) have the same

Jacobson form. Equation (3.51) gives the procedure for getting the Jacobson

form.




1
C5(t)

1
C4(t)

δ 0
0 −δ


 C5(t)×r1,r2−δ×r1,−1×r3,
−−−−−−−−−−−−−−−→

eliminate r1,c1

[
C5(t)
C4(t)

δ +
(

C5(t)
C4(t)

)′

δ

]

r1−
C5(t)
C4(t)

×r2

−−−−−−−→

[ (
C5(t)
C4(t)

)′

δ

] (3.51)

Term
(

C5(t)
C4(t)

)′
of the last matrix in (3.51) may has a null value.

If
(

C5(t)
C4(t)

)′
= 0, the invariant factor of the last matrix in (3.51) is δ. Therefore,

the LTI system with C6 = mC4 has one null invariant zero. The invariant zero of

the LTV system with C6(t) = m(t)C4(t) and
(

C5(t)
C4(t)

)′
= 0 is the conjugacy class

∆C(t)(0).

If
(

C5(t)
C4(t)

)′
6= 0, term δ can be eliminated by the elementary operation r2 −

δ

((
C5(t)
C4(t)

)′)−1

×r1. Hence, the LTV system with C6(t) = m(t)C4(t) and
(

C5(t)
C4(t)

)′
6=

0 has no invariant zero.

2. System with C6(t) 6= m(t)C4(t)

In this case, the second matrix in (3.50) becomes matrix in (3.52) by elimi-

nating the first row and column of the previous matrix.

[
δ 0
0 δ

]
(3.52)

Hence, the LTI system with C6 6= mC4 has two null invariant zeros. The

LTV system with C6(t) 6= m(t)C4(t) has two identical conjugacy classes, such as
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∆C(t)(0).

The invariant factors of system matrices of the linear system in several cases

are shown in Table 3.6.

Table 3.6: Invariant factors of the system matrix in several cases
LTI case LTV case

mC4 6= C6 mC4 = C6 m(t)C4(t) 6= C6(t) m(t)C4(t) = C6(t)

δ, δ δ δ, δ
(C4

C5
)′ 6= 0 (C4

C5
)′ = 0

∅ δ

Solutions of Input Variables for Output-Zeroing Problem

Now the set of solutions of input variables u1, u2 of the system with R (R=10Ω)

element related to element I1 is studied here. Let m(t) = C6(t) = t + 2 and the

other elements’s parameters are shown in Table 3.3. As m(t)C4 = C6(t) and(
C4

C5

)′
= 0, there is a null invariant zero according to Table 3.6.

In this case, equation (3.34) can be rewritten as in (3.53).





x4 = x5 + x6

ẋ5 = 0
ẋ4 = ẋ6

(3.53)

The third equation can be derived from the other equations, so it represents

the same torsion element as the second equation. One can substitute x5 by the

differential polynomial equations of u1, u2 for getting the differential equations of

the input variables. The relation between x5 and u1, u2 was given in (3.36) in the

LTI case. The similar relation can be calculated in this case. x5 is represented in

(3.54).

x5 =
(
(t+ 2) δ2 + t+ 3

)
u1 + (t + 2)u2 (3.54)

By use of equation ẋ5 = 0 in (3.53), the differential equation of input variables

u1, u2 is shown in (3.55).

δ
((
(t + 2) δ2 + t+ 3

)
u1 + (t + 2) u2

)
= 0 (3.55)

Finally, the above equation can be written as equation (3.56),
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

(
(t+ 2) δ2 + t+ 3

)
u1 + (t+ 2)u2 = c (3.56)

where c 6= 0 ∈ C. Let u1 = t+ 2 and c = 2, then the set of solutions of u1, u2

is given in (3.57).

{
u1 = t+ 2
u2 = −t− 3 + 2

t+2

(3.57)

Figure 3.33 gives the curves of the output variables y1, y2 with solutions of

u1, u2 (3.57) for y1 = y2 ≡ 0.

Figure 3.33: The output variables curves of the LTV system with m(t) = C6(t) =
t+ 2

With consideration of an initial condition of the state variables, according to

Proposition 3.6, the solution of the input variables for zeroing the output variables

is u1(t) = g1, u2(t) = g2(t), where gi, xj0, i = 1, 2, j = 1, . . . , 6 can be derived from

equation (3.58).





x10 = x20 = x30 = 0
x40

C4
= x50

C5
+ m(t)x60

C6(t)

g1 =
x40

C4

g2 (t) = −
x40

C4
− x60

C6(t)

(3.58)

In (3.58), let x40 = x60 = 1 then x50 = 0, the solution of the input variables is

u1(t) = 1, u2(t) = −1−
1

t+2
. Figure 3.34 gives the simulation result of the output

variables with the initial condition of the state variables and the input variables.
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3.2 Invariant Zeros of Linear Square Models

Figure 3.34: The output variables curves of the LTV system with m(t) = C6(t) =
t + 2 and an initial condition of the state variables

3.2.4 Conclusion

In this section, the structure of invariant zeros of square bond graph models is

studied by several approaches, such as: the formal, module theoretical and graph-

ical approaches. Especially, the structural approach for LTI models is extended

to the LTV case. At first, the bond graph procedure for invariant zeros of square

models is proposed by means of the bicausality. It is proven that the invariant

zeros are related to torsion module of certain bond graph models. For getting tor-

sion modules, the controllability property needs to be studied. Invariant zeros of

SISO models with LTI and LTV cases are studied, and the simulations results ver-

ify the correctness and efficiency of the BGB method. Then, the BGB approach

is extended to detect invariant zeros of MIMO models. By use of the module

theoretical approach, the difference between LTI and LTV cases is pointed out

by determining torsion modules. After obtaining invariant zeros, the solution of

input variables and of initial conditions of state variables for the output-zeroing

problem is considered. In the next section, the structure of invariant zeros of

linear non-square models is taken into account. The main idea is to find out the

common factors of noncontrollable modules between reduced subsystems.
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3.3 Invariant Zeros of Linear Non-Square Models

In this dissertation, three approaches are used to detect the invariant zeros struc-

ture of bond graph models. In above sections, square models were studied. The

formal and algebraic approaches are still valid for non-square models. From the

point view of the structural approach, the main idea to detect the invariant zeros

structure of linear systems is to use BGB models to get equation (3.3). Then

some differential equations which are related to torsion elements in Miz will be

derived. For verifying the existence of torsion elements, the controllability prop-

erty of BGB model is studied. Nevertheless, for non-square models, BGB models

do not exist. In order to implement the previous procedures, some extensions for

non-square models need to be developed. In view of the inequality of input and

output variables number, there exist a number of square submodels, which are

related to BGB models. For studying the controllability of models, the notion of

reduced models will be utilized.

3.3.1 BG Procedure for Invariant Zeros of Non-Square Mod-

els

Definition 3.17 For a linear bond graph non-square model, one can get the BGB

models of submodels after determining the p (m>p) or m (m<p) shortest disjoint

input-output causal paths. In these paths, all output (m>p) or input (m<p) vari-

ables are included. Then one removes all the elements in these paths. The rest of

a BGB model represents a system which is called here the reduced model.

There are two sets of dynamical elements in a BGB model. The first one is the set

of elements in the input-output causal paths drawn in BGB model. The causal-

ity assignments for these elements are fixed. For other elements two causality

assignment can be chosen. For the controllability study, a classical procedure

can be used with a derivative causality assignment. For each choice of a set of

input-output bicausal paths, the procedure must be applied.

Proposition 3.18 The invariant zeros of a non-square model with m>p are de-

rived from the torsion equations of Miz. These torsion elements are the common

factors of definition polynomials of torsion equations in the different square BGB

submodels. In each BGB model, the torsion equations are related to noncontrol-

lable dynamical elements.
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In the case of m < p, the notion of common non controllable parts in the

greatest-order subsystems does not exist. Therefore, the notion of common non

observable parts in these subsystems will be used. Because the observability of a

system is equivalent to the controllability of its dual system, the observability of

reduced systems of square subsystems will be studied by detecting the controlla-

bility property of their dual systems.

The bond graph procedure for detecting the invariant zeros of non-square

models is shown in Figure 3.35.

3.3.2 Row Subsystems of Square MIMO Systems

A row submodel is written if only one output variable is considered. For square

MIMO systems, it is often necessary to compare the set of global invariant zeros

to the sets of row invariant zeros. For stability requirement, in the input-output

decoupling problem for example. The goal of this section is to propose new

procedures for the study of row invariant zeros with a bicausal approach. Row

invariant zeros are the roots of Smith polynomials obtained from the Smith matrix

with one output, in that case the Smith matrix is not square and graphical

approaches have not been proposed in the literature with the bicausal concept.

As to the non-square property, BGB models of row submodels do not exist. The

notion of common noncontrollable parts of all row submodels with the output set

to be zero is used. Firstly, LTI row submodels are investigated by implementing

the formal, algebraic and structural approaches for examining invariant zeros.

Then the LTV case is studied by same approaches; therefore, some differences

between two cases are pointed out by the point of view of the module theoretic

approach.

3.3.2.1 The LTI Case

A new graphical procedure is proposed for LTI row submodels. Because of the

algebraic consideration, this procedure is also valid for the LTV case. In order

to verify the correctness and efficiency of the procedure, formal calculations are

implemented for studing the invariant zeros structure.

The invariant zeros are the non controllable zeros of the row subsystems when

the output variable is equal to zero. From a bond graph approach, a bicausal

bond graph is drawn for each input variable (a bicausal path between the output
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

Figure 3.35: Bond graph procedure for detecting invariant zeros of non square
MIMO systems

detector and one of the input sources) and if a common non controllable sub

model is pointed in each case then it is associated to the invariant submodule.

The procedure is decomposed into four steps in which first a graphical study is

proposed, then an algebraic correspondence is proposed (mathematical relations
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3.3 Invariant Zeros of Linear Non-Square Models

are written).

Procedure 3.19 Invariant zeros of row subsystems can be deduced from the fol-

lowing steps.

For each row subsystem:

• Draw an input-output bicausal path for each input source;

• Study the controllability property for dynamical elements which still have

an integral causality assignment;

• Point out the common non controllable part between each previous sub-

model;

• Calculate invariant zeros or find out the torsion submodule T(Σ/[yi]R).

a). Invariant Zeros of Row Subsystems with R Element

The formal and graphical approaches are proposed with the two previous exam-

ples. The first submodel of the model in Figure 3.21 is studied (output variable

y1). According to the infinite structure of the submodel, there is no null invari-

ant zero. The system matrix of the row submodel is presented in (3.27) after

eliminating the last row in the matrix. After implementing the Maple™ program,

there is no invariant polynomial. Therefore, the row submodel doest not have

any invariant zero.

Figure 3.36: BGBI submodel with output y1: case 1 (input u1)
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Procedure 3.19 is used to get the same conclusion. The model has two input

sources, thus two bicausal submodels are drawn. In Figure 3.36, the bicausal

path is drawn between the input source u1 and the output detector y1. The

controllability property is studied for the bond graph model with input source

u2 and dynamical elements with an integral causality assignment. The classical

procedure is used (derivative causality assignment). The reduced model shown in

Figure 3.37 is controllable (it is possible to assign a derivative causality), thus the

study of the second bicausal bond graph model is not useful because the common

non controllable part must be pointed out, and in this first study, all modes are

controllable.

Figure 3.37: Reduced model of submodel with output y1: case 1 (input u1)

The second submodel is studied (output variable y2). Based on the infinite

structure, there exist a null invariant zero. Furthermore, the result of the Maple™

programme indicates that the invariant polynomial is δ, i.e., a null invariant zero

exists in the submodel. The model has two input sources, thus two bicausal

submodels are drawn. In Figure 3.38, the bicausal path is drawn between the

input source u1 and the output detector y2. The dynamical element C : C5 is

not controllable, because when removing the bicausal path between the input

source u1 and the output detector y2, it is no more reachable. It is also true with

a bicausal path between the input source u2 and the output detector y2, as a

result, a common non controllable mode (equal to 0) is pointed out.

In the LTI case, this bond graph model has two invariant zeros and one

submodel has a null invariant zero (It is well known that the union of the sets of

row invariant zeros is included in the set of invariant zeros of the global model).
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3.3 Invariant Zeros of Linear Non-Square Models

Figure 3.38: BGB submodel with output y2: case 1 (input u1)

b). Invariant Zeros of Row Subsystems without R Element

The second example is now studied. Since the row infinite structure of the BGD

models is n1d = 1 and n2d = 1, the two row subsystems have a null invariant

zero, and in the LTI case, the set of global invariant zeros and the union set

of row invariant zeros are equal. This property is retrieved with the bicausality

approach. In light of the Maple™ program, it is concluded there is one invariant

zero which is null for each submodel.

Figure 3.39: BGB submodel with output y1: case 1 (input u1)

The first submodel with output y1 is studied. The row invariant zeros for the

subsystem are the common non controllable modes for the two row bond graph

models with output y1 and with the two input sources, first with a bicausal path

between u1 and y1, and secondly between u2 and y1. Two row bond graph models

are drawn, Figure 3.39 and 3.40. Now, the controllability property is studied for

elements with an integral causality assignment and with input source u2. The
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Figure 3.40: BGB submodel with output y1: case 2 (input u2)

reduced submodel drawn in Figure 3.41 is not controllable, because one dynamical

element has an integral causality assignment when applying a derivative causality

assignment (Theorem 2.10). The mathematical relation ẋ6 = (m + 1)ẋ5 + ẋ4

associated to a torsion module can be written.

Figure 3.41: BGD for the reduced submodel with y1: case 1

In Figure 3.42, the controllability property is studied for the second reduced

submodel with input source u1. The model is not controllable, because one dy-

namical element has an integral causality assignment when applying a derivative

causality assignment. The mathematical relation ẋ6 = mẋ5 associated to a tor-

sion module can be written. In the two cases, the non controllable mode is equal

to 0, thus the row invariant zero is equal to 0.

For the second submodel with output y2, the conclusions are exactly the same

as for the bond graph model with an R-element. This submodel has a row invari-

ant zero at δ = 0.
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Figure 3.42: BGD for the reduced submodel with y1: case 2

3.3.2.2 The LTV Case

As indicated during the controllability analysis of LTV models, the controllabil-

ity property can be influenced by time-varying parameters of models. Because of

the relation between noncontrollable parts and torsion modules, torsion modules

sometimes become free in time-varying cases. The main idea in this dissertation is

to examine the invariant zeros structure by studying the controllability property

of various bond graph models. Here the row subsystems of the system without R

element in the LTV case are considered. Firstly, the formal approach is applied

for detecting the invariant zeros structure of each subsystem. It can be found

that even in the LTI case, some special relations between dynamical elements can

induce different results. Therefore, invariant zeros derived from Maple™ program

and graphical methods are called to be generic without considering these special

situations. Then Procedure 3.19 is used to derive the invariant zeros. The graph-

ical procedure is almost the same as the one used in previous examples except

the determination of torsion modules with time-varying parameters.

1. The Formal Approach

Referring to the matrix in (3.27), the reduced system matrix of the first sub-

model is indicated in (3.59).




0 δ − 1
C4

1
C5

m
C6

1
I2

1
I3

δ 0 0

0 − 1
I3

0 δ 0
1
I2
−m

I3
0 0 δ


 (3.59)

After several elementary operations, the matrix can be written as
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


δ m
C6
− 1

C4

1
C5

m
C6

− 1
I3

0 δ 0

−m+1
I3

0 0 δ


 (3.60)

If C6 = mC4, the rank of the matrix is changed. In the LTI case, the invariant

zeros of the model is related to the invariant polynomial, such as: I3C5δ
3 +

(m+1)C5+C4

C4
δ. Therefore, there are three invariant zeros, and one of them is null.

The invariant polynomial of the system matrix of the LTV model is δC5

C4
+ 1

m+1
δ+

δC5δ
I3

m+1
δ. Because of the term δC5

C4
, there exists a constant in the polynomial,

such as (C5

C4
)′ 6= 0. So there are three conjugacy classes related to invariant zeros.

When (C5

C4
) = 0, a conjugacy class of zero exists because there is a right factor in

the polynomial, i.e., δ.

Now, the more generic situation is taken account with C6 6= mC4. Continuing

to implement elementary operations; finally, the matrix in (3.60) is equivalent to

the matrix in (3.61).

[
(m+ 1) δ δ

]
(3.61)

If m is a constant, the invariant polynomial of the above matrix is δ. Hence,

there is a null invariant zero in the LTI model. However, in the LTV case, the

invariant polynomial is null, i.e., there is no invariant zero in LTV model.

The second subsystem is studied by the formal approach. The reduced system

matrix is 


0 0 − 1
C4

1
C5

m
C6

− 1
I1

1
I2

δ 0 0

0 0 0 δ 0
0 1

I2
0 0 δ


 (3.62)

Examining the matrix by elementary operations, there is always a null invariant

zero, which does not depend on system parameters.

Through elementary operations on system matrices, the invariant zeros struc-

ture of two row subsystems is displayed in Table 3.7.

2. The Structural Approach

Here, only the general case C6 = mC4 is considered with the structural ap-

proach. The graphical procedure implemented in the preceding example in the
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Table 3.7: Invariant factors of the system matrix without R in several cases

Subsystem
y1 y2mC4 6= C6 mC4 = C6

LTI δ δ3 + (m+1)C5+C4

I3C4C5
δ δ

LTV ∅ δC5

C4
+ 1

m+1
δ + δC5δ

I3
m+1

δ δ

LTI case is still valid for LTV subsystems. However, the criterion for the determi-

nation of torsion modules should be used on considering time-varying parameters.

The controllability property of each reduced model of two submodels is needed

to be examined. Firstly, the submodel with output variable y1 is studied, with

the first reduced model in Figure 3.41. A differential equation related to the

dynamical element with an integral causality assignment is written, such as ẋ6 =

(m(t) + 1)ẋ5 + ẋ4. In the LTI case, this equation is related to a torsion module.

However, as to the time-varying parameter m(t), it is no more related to a torsion

module. It means that the reduced model is controllable. Consequently, it is

not necessary to study the second reduced model. It is concluded there is no

invariant zero in the submodel with y1. This conclusion is in accordance with the

calculation result by the formal approach shown in Table 3.7.

For the second row subsystem with the output variable y2, there is always a

differential equation ẋ5 = 0 with y2 = 0. This equation is related to a torsion

module. Therefore, time-varying parameters do not influent the invariant zero

structure for this model.

3.3.3 Non-Square MIMO Models

In this section, invariant zeros of non-square systems are studied by use of formal

and bond graph approaches. By the formal approach, Jacobson forms of reduced

system matrices are used to get invariant zeros. The invariant zeros of a non-

square MIMO system can also be derived by mean of the bond graph approach

which is similar to the procedure for row submodels of square models. One should

study all square submodels and find the torsion elements related to elements with

an integral causality assignment in every BGB model of the submodels. Finally,

the common right factors of the definition polynomials of the torsion modules

will be detected, which are related to systems invariant zeros. In this section, two
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kinds of linear non-square MIMO systems will be studied with different sizes and

relations of input and output variables.

3.3.3.1 Linear MIMO Models with m > p

Let’s consider a linear system represented in Figure 3.43 with three input sources

u1, u2, u3 and two output detectors y1, y2. Firstly, the formal approach is utilized

to detect the invariant zeros structure of the system in LTI and LTV cases. Then

the output-zeroing problem is studied with the obtained invariant zero. Secondly,

the graphical procedure is implemented to derive the invariant zero from three

2-order square subsystems in the system. The idea of this approach is to study

the torsion elements in each subsystem, separately.

Figure 3.43: BGI model with three input and two output variables

1. Formal Approach for BG Models

1). Invariant Zeros

Now the Jacobson form of the system matrix is used to detect the invariant
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zeros of the model. System matrix P (δ) is shown in (3.63).

P (δ) =




δ 0 0 1
C4

0 0 1 0 0

0 δ 0 − 1
C4

0 − 1
C6

0 1 0

0 0 δ − 1
C4

1
C5

m
C6

0 0 1

− 1
I1

1
I2

1
I3

δ + 1
C4R

0 0 0 0 0

0 0 − 1
I3

0 δ 0 0 0 0

0 1
I2
−m

I3
0 0 δ 0 0 0

1
I1

0 0 0 0 0 0 0 0

0 0 1
I3

0 0 0 0 0 0




(3.63)

The Jacobson form of system matrix P (δ) in (3.63) is identical to the Jacobson

form of matrix Pr(δ) in (3.64) after eliminating r1, r2, r3, r7, r8 and c1, c3, c7, c8, c9

in P (δ).

Pr (δ) =




1
I2

δ + 1
C4R

0 0

0 0 δ 0
1
I2

0 0 δ


 (3.64)

The procedure by elementary operations for obtaining the Jacobson form of

Pr(δ) is shown in (3.65).

Pr (δ)
r1−r3,

−−−−−−−−→
eliminate c1,r3

[
δ + 1

C4R
0 −δ

0 δ 0

]

c1+c3,c1×C4R
−−−−−−−−−−−−−→
c3+c1×δ,eliminate r1,c1

[
δ 0

] (3.65)

The invariant polynomial of the Jacobson form of matrix Pr(δ) is δ. Therefore,

there is a null invariant zero for the LTI non-square system.

Now the algebraic procedure is used to get the torsion module T(Σ/[y]R). The

definition equations of module Σ/[y]R are defined as (3.3), from which several

differential equations are written





x1 = 0
x3 = 0
− x4

C4
+ u1 = 0

ẋ2 =
x4

C4
+ x6

C6
+ u2

x4

C4
− x5

C5
− mx6

C6
= −u3

ẋ4 = −
x2

I2
− x4

C4R

ẋ5 = 0
ẋ6 = −

x2

I2

(3.66)
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The torsion equation related to (3.66) is ẋ5 = 0. So there is one null invariant

zero in the system. The proceeding calculations are also valid in the LTV case.

Therefore, the system has always a null invariant zero δ = 0 in LTI and LTV cases.

2). The Output-Zeroing Problem

The output-zeroing problem with initial conditions of state variables is con-

sidered here. On account of the null invariant zero, values of the input variables

and initial conditions of state variables can be derived according to Theorem 3.5.

The problem is studied in both LTI and LTV cases. Some differences are pointed

out.

a. The LTI Case

The system parameters are indicated in Table 3.3. For solving the output-

zeroing problem, the input variables need to be ui = giΓ(t), i = 1, . . . , 3 according

to the null invariant zero, where gi is a constant and Γ(t) is the Heaviside unit step

function. Referring to the system matrix in (3.63) and Theorem 3.5, equations

related to variables xi0, gj, i = 1, . . . , 6, j = 1, . . . , 3 are shown in (3.67).





x10 = 0
x20 = 0
x30 = 0
x40 = 0
g1 = 0
g2 = −x60

g3 = x50 + 2x60

(3.67)

Let x50 = 2, x60 = 1, then g2 = −1, g3 = 4. Furthermore, the input variables for

this problem are u1 = 0, u2 = −Γ(t), u3 = 4Γ(t). The simulation result is plotted

in Figure 3.44 with these parameters.

b. The LTV Case

Consider the LTV model with a time-varying parameter m(t) = t + 1. Some

similar equations to ones in (3.68) can be deduced in (3.68).
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Figure 3.44: Curves of output variables of the LTI model





x10 = 0
x20 = 0
x30 = 0
x40 = 0
g1 = 0
g2 = −x60

g3(t) = x50 +m(t)x60

(3.68)

In these equations, g3(t) is a time function, which is a constant in the LTI case.

Let x50 = x60 = 1, finally, the parameters for the problem are xi0 = 0, i = 1, . . . , 4,

and u1 = 0, u2 = −Γ(t), u3 = (t + 2)Γ(t). Figure 3.45 displays the simulation

result of the LTV system.

Figure 3.45: Curves of output variables of the LTV model

2. Bond Graph Approach for Invariant Zeros

Now, the graphical approach is executed to detect the invariant zero structure

of the model. As mentioned, there are three 2-order square subsystems in the

system. Let’s study the torsion elements in each subsystem, separately. Then the
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common factor of the definition polynomial of torsion elements in the subsystems

is related to the invariant zero.

Subsystem with Bicausal Paths between Inputs u2, u3 and Outputs y1, y2

Figure 3.46: BGB submodel with inputs u2, u3 and outputs y1, y2

The BGB model of the first subsystem concerned with bicausal paths between

input sources u2, u3 and output detectors y1, y2 is shown in Figure 3.46. There are

two dynamical elements C5, C6 with integral causality. They are not controllable

because there is not any causal path between these dynamical elements and the

input source MSe : u1 (not reachable). One can get the differential equation

related to these elements:





ẋ5 = 0
ẋ6 = −ẋ4 −

x4

C4R
x4

C4
= x5

C5
+ mx6

C6

(3.69)

In the LTI case, with equation associated to element C4, a new relation can

be written by doing derivation for two sides ẋ4

C4
= mẋ6

C6
. Then two equations are

derived from (3.69).

{
ẋ5 = 0(
C6−mC4

m

)
ẋ4 −

1
R
x4 = 0

(3.70)

Equation (3.70) are the equations of the torsion submodule in this 2-order

square subsystem. One can get the definition polynomials of this torsion module,

such as: δ and (C6−mC4)
m

δ − 1
R
.
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Subsystem with Selected Inputs u1, u2 and Outputs y1, y2

Figure 3.47: BGB submodel with selected inputs u1, u2 and outputs y1, y2

Figure 3.47 gives the BGB submodel with selected input sources u1, u2 and

output detectors y1, y2, for the two disjoint input-output causal paths, such as:

y1 → I1 → u1 and y2 → I3 → C4 → I2 → u2. With the preferred deriva-

tive causality assignment, there are two dynamical elements C5, C6 with integral

causality. In the LTI case, one can get the same differential equation related to

these elements in (3.70). So one can get the definition polynomials of this torsion

module, such as: δ and (C6−mC4)
m

δ − 1
R
.

Subsystem with Selected Inputs u1, u3 and Outputs y1, y2

Figure 3.48: BGB submodel with inputs u1, u3 and outputs y1, y2

The BGB submodel with the selected input sources u1, u3 and the output
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detectors y1, y2 is shown in Figure 3.48, for the two disjoint input-output causal

paths in Figure, such as: y1 → I1 → u1 and y2 → I3 → u3. With the two selected

input sources u1 and u3, a third order bond graph model must be studied with

dynamical elements I2, C4, C5 and C6. In that case, this model is reachable with

input source u2, except for element C5. If a derivative causality assignment is

chosen, i.e., BGB model in Figure 3.48, only one dynamical element C5 keep on

integral causality assignment. One can get the differential equation related to

these elements:

ẋ5 = 0 (3.71)

Equation (3.71) is the equation of the torsion module in the subsystem. The

definition polynomial of this torsion module is δ. Comparing (3.71) with (3.70),

δ is the common factor of the definition polynomials of the torsion submodules in

three square subsystems. According to Proposition 3.18, there is a null invariant

zero for the system in Figure 3.43.

3.3.3.2 Linear MIMO Models with m < p

A system with one input variable and two output variables is considered here.

The system BGI model is drawn in Figure 3.49. One can find there are two

input-output causal paths in the figure: y1 → I2 → C4 → I1 → u and y2 → I3 →

C4 → I1 → u. There exist two square subsystems Σ1 (c1, A, B) and Σ2 (c2, A, B).

The common torsion elements in these two subsystems will be pointed out for

determining the system invariant zeros.

Figure 3.49: BGI model of a system with one input and two output variables

176

chapter3/chapter3figs/12.eps


3.3 Invariant Zeros of Linear Non-Square Models

Formal and Algebraic Approaches for BG Models

Here, the structure of invariant zeros of bond graph models in LTI and LTV

cases is studied by the formal and algebraic approaches. Calculations by elemen-

tary operations are implemented, the difference between the two cases is pointed

out. Then the output-zeroing problem is considered in LTI and LTV cases.

From the BGI model, the system matrix is indicated in (3.72).

P (δ) =




δ 0 0 1
C4

0 0 −1

0 δ 0 − 1
C4

0 − 1
C6

0

0 0 δ − 1
C4

1
C5

m
C6

0

− 1
I1

1
I2

1
I3

δ + 1
C4R

0 0 0

0 0 − 1
I3

0 δ 0 0

0 1
I2
−m

I3
0 0 δ 0

0 1
I2

0 0 0 0 0

0 0 1
I3

0 0 0 0




(3.72)

After eliminating rows and columns related to input and output matrices, the

reduced system matrix is given in (3.73).

Pr (δ) =




0 − 1
C4

0 − 1
C6

0 − 1
C4

1
C5

m
C6

− 1
I1

δ + 1
C4R

0 0

0 0 δ 0
0 0 0 δ




(3.73)

The above calculations are valid in both LTI and LTV cases. However, be-

cause of the non-commutative property, two situations are considered, separately.

a. The LTI Case

By implementing the Maple™ program, the Jacobson form of the system ma-

trix is shown in (3.74).

∆(δ) = U (δ)P (δ) V (δ) =

[
diag {1, . . . , 1, δ}

0

]

8×7

(3.74)

So the invariant polynomial is δ which means there is a null invariant zero.
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Now the algebraic procedure is used to get the module Miz. The definition

equations of Miz are defined as (3.3), from which several differential equations

are given in (3.75).





x2 = 0
x3 = 0
ẋ1 = −

x4

C4
+ u

x4

C4
+ x6

C6
= 0

x4

C4
− x5

C5
− mx6

C6
= 0

ẋ4 =
x1

I1
− x4

C4R

ẋ5 = 0
ẋ6 = 0

(3.75)

The equations related to the torsion module are shown in (3.76).





ẋ5 = 0
ẋ6 = 0
x5

C5
+ (m+1)x6

C6
= 0

(3.76)

In the LTI case, the second equation in (3.76) can be derived from the others

equations in (3.76). It means that ẋ5 = 0 is a definition equation of the torsion

module Miz, and δ is the definition polynomial of the module. Therefore, the LTI

system has a null invariant zero.

b. The LTV Case

For getting the structure of invariant zeros of LTV system, the Jacobson form

of the matrix in (3.73) with time-varying parameters is required. The calculations

procedure is indicated in (3.77).

Pr (δ, t)
eliminate
−−−−−→

c1,r3




− 1
C4(t)

0 − 1
C6(t)

− 1
C4(t)

1
C5(t)

m(t)
C6(t)

0 δ 0
0 0 δ




r2−r1,C5×r2
−−−−−−−−→
eliminate r1,c1




1 (m(t)+1)C5(t)
C6(t)

δ 0
0 δ


 r2−δ×r1−−−−−−−−→

eliminate r1,c1

[
−δ (m(t)+1)C5(t)

C6(t)

δ

]
(3.77)

Because of the non-commutative property, the first entry in the matrix needs

to be discussed in two situations. If (m(t)+1)C5(t)
C6(t)

is a constant, it can be commu-
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tative with δ. Hence, the first entry can be eliminate by the second entry. It

means that there is a null invariant zero in the LTV system. Conversely, if this

coefficient is time-varying, elementary operations for the last matrix in (3.77) is

shown in (3.78). Obviously, there is no invariant zero in the LTV system.

[
−δ (m(t)+1)C5(t)

C6(t)

δ

]
→

[
− (m(t)+1)C5(t)

C6(t)
δ −

(
(m(t)+1)C5(t)

C6(t)

)′

δ

]

r1+
(m(t)+1)C5(t)

C6(t)
×r2

−−−−−−−−−−−−−−−−−−−−−→
−

(

(

(m(t)+1)C5(t)
C6(t)

)

′

)

−1

×r1,r2−δ×r1

[
1
0

] (3.78)

Now, the algebraic approach is used to detect torsion equations in (3.76)

with time-varying parameters. The third equation in (3.76) can be written as

x5 = − (m(t)+1)C5(t)
C6(t)

x6. If (m(t)+1)C5(t)
C6(t)

is a constant, the second equation can be

derived from two others. However, if this coefficient is time-varying, a relation

can be written in (3.79) from the third equation in (3.76) after a derivation.

ẋ5 = −
(m (t) + 1)C5 (t)

C6 (t)
ẋ6 −

(
(m (t) + 1)C5 (t)

C6 (t)

)′

x6 (3.79)

For getting the second equation in (3.76), a relation is needed, such as: x6 = 0

which yields x5 = 0 from the third equation in (3.76). Therefore, the equations

in (3.76) are not related to a torsion module. Finally, there is no invariant zero

in this situation. The invariant zeros structure of the model in several cases is

shown in Table 3.8, where a =
(

(m(t)+1)C5(t)
C6(t)

)′
.

Table 3.8: Invariant factors of the system matrix with m < p in several cases

System LTI
LTV

a = 0 a 6= 0
δ δ ∅

Bond Graph Approach for Invariant Zeros

1. Subsystem with Bicausal Path between u and y1

The BGBD model of the first 1-order square subsystem is given by Figure 3.50.

The bicausal path is drawn between the input source u and the output detector y1.
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

Figure 3.50: BGBD model of the square subsystem with u and y1

With the preferred derivative causality assignment, there is a dynamical element

C5 with integral causality. So the torsion element of this submodel is related to

C5. One can get the equation of the torsion element, such as:

mẋ5 − ẋ6 = 0 (3.80)

Equation (3.80) is related to a torsion element with the form δ(mx5 − x6) when

m is time-invariant. The definition polynomial of the torsion module is δ.

The reduced submodel with output y1 is shown in Figure 3.51.

Figure 3.51: Reduced model of the square subsystem with output y2

For studying the observability property, the dual model of the reduced model

is needed. Figure 3.52 gives the dual model of the reduced system with output

y2. The preferred derivative causality is assigned, there is a dynamical element

C5 with an integral causality assignment related to the torsion submodule. The

definition equation of this torsion submodule is defined as: mẋ5 = ẋ6, and the

definition polynomial of the torsion module is δ in the LTI case. But if m is

time-varying, this bond graph model will become controllable because the previ-

ous equation is no more related to a torsion module.
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3.3 Invariant Zeros of Linear Non-Square Models

Figure 3.52: Dual model of the reduced model with output y2

2. Subsystem with Bicausal Path between u and y2

Figure 3.53 give the BGBD model of the second 1-order square subsystem.

The causal path is drawn between the input source u and the output detector

y2. In this case, the torsion element of this submodel is related to the dynamical

element with integral causality, such as C5. One can get the equation of the

torsion element, such as:

ẋ5 = 0 (3.81)

Equation (3.81) is related to a torsion element with the form δx5. It means that δ

is the definition polynomial of the torsion module. This result is consistent with

Table 3.8.

Figure 3.53: BGBD model of the square subsystem with u and y2

The common factor of definition polynomials of torsion modules in two sub-

system is δ by comparing equation (3.80) and (3.81). So there is one null invariant

zero of the LTI system.

The reduced model with output y1 is shown in Figure 3.54. For studying the

observability property, the dual model of the reduced model is needed. Figure

3.55 gives the dual model of the reduced system with output y2. The preferred
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3. INVARIANT ZEROS OF BOND GRAPH MODELS

integral causality is assigned in the figure, there is a dynamical element C5 with

an derivative causality. This element is not reachable. So the equation related to

C5 can be derived: ẋ5 = 0, and this equation is related to a torsion submodule.

Then the definition polynomial of the torsion module is δ in the LTI case.

Figure 3.54: Reduced model of the square subsystem with output y1

Figure 3.55: The dual model of the reduced model with output y1

Compare Figure 3.52 with Figure 3.55, the common factor of the definition

polynomials of the non observable submodules of the reduced systems is δ. So

there is one null invariant zero in the system shown in Figure 3.49.

Figure 3.56 shows the simulation result with 20-sim® in the LTI case, which

verifies there is a null invariant zero. Numerical values of the system elements

parameters are given in Table 3.3 with u = Γ(t).

In the LTV case, e.g. m(t) = C(t), equation (3.80) is no more related to a

torsion module. Hence, there is no invariant zero, which corresponds to Table

3.8. Consider the submodel with the input source u and output detector y1 in

Figure 3.49 (eliminate the output y2). The BGI model has an input-output causal

path: y → I2 → C4 → I1 → u, so there are three invariant zeros. y → C6 → u

is an input-output causal path in BGD model. In the LTI case, there is a null
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Figure 3.56: The outputs y1 and y2 curves of the LTI system

invariant zero because of n′
d = 1. But in the LTV case, after formal calculations,

the invariant polynomial of the system matrix is m(t)δ+δ C6(t)
C5(t)(m(t)+1)

+δ2I3(t)δ. If

the term C6(t)
C5(t)(m(t)+1)

= 0, δ is a right root of the polynomial, i.e., a null invariant

zero exists. Otherwise, there is no null invariant zero in LTV models.

Remark 3.20 In LTV models, the condition that infinite zero orders of BGD

models do not equal to zero, i.e. n′
id 6= 0, is not sufficient to ensure the existence

of null invariant zeros. Algebraic calculations are necessary to deduce torsion

submodules of Miz, only right roots of definition polynomials of torsion modules

which equal to zero are related to null invariant zeros.

3.4 Conclusion

The focus of this third chapter was on the invariant zeros structure of LTI/LTV

bond graph models. Firstly, several approaches were recalled, which are fun-

damental to determine the invariant zeros, such as: structural, graphical and

algebraic approaches. Then new bond graph procedures using some BGB models

were proposed.

Square models were discussed according to two situations. In the first one, the

invariant zero structure of SISO systems was studied in LTI and LTV cases. From

an algebraic point of view, results can be different in the context of LTI and LTV

models because torsion modules associated to invariants zeros can have a complex

description and invariant polynomials are not easy to be written. In the context

of a bond graph approach, thanks to bicausality, a reduced bond graph model
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can be drawn and some simplified equations can be written in the two cases. The

last step allowing a right description of the torsion module is nevertheless also

difficult to implement. For invariant zeros equal to zero, some particular analysis

have been proposed in the context of zeroing the output. When a null invariant

zero exists either in the LTI or LTV case, the solutions of the input variable for

zeroing the output are different. Being different from a constant input variable in

the LTI case, the input variable depends on the input-output causal gain in the

BGD. For the second situation, a square MIMO system is studied with two input

sources and two output detectors. It can be easily extended to systems with m

input sources and m output detectors. The BGB models were used to detect the

torsion elements in the bond graph model.

For square models (SISO or MIMO), in the BGB models, dynamical elements

contained in the input-output bicausal paths have a derivative causality assign-

ment. Other elements have an integral causality assignment and since these BGB

models do not contain any other input source (in the BGB output detectors and

input sources become Source-Sensor); the reduced bond graph model associated

to these dynamical elements with an integral causality assignment is no more

controllable. The associated torsion module can be used to define the module of

the invariant zeros. This approach is used in the non-square case studied in the

third part.

In many control problems, properties of row subsystems (one output variable)

are often compared to properties of the global system (input-output decoupling

problem, etc.). In that case, row submodels of a square MIMO model can be

regarded as non-square MIMO submodels. The common non controllable parts

of these square submodels were studied to get the invariant zeros. For non-square

global MIMO systems, according to the number relation between input sources

and output detectors, there are two kinds of systems.

When the number of input sources is greater than the one of output detectors,

the bond graph procedure is similar to the procedure for row submodels of square

models. When the number of output detectors is greater than the one of input

sources, the common non observable parts in submodels were used to detect the

invariant zeros structure of global models. This property must be studied from

the controllability property of dual models because for LTV models modules

associated to invariant zeros can be only written in this context. Results of the
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invariant zeros study are considered in the context of the unknown input observer

problem as an application in chapter 4.
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Chapter 4

Unknown Input Observer
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In Section 1.3, several kinds of unknown input observers have been introduced.

The sufficient and necessary conditions for existence of these observers were re-

called. In this chapter, some extensions will be done with different approaches,

such as: generalized inverse matrix, algebraic and bond graph approaches. First,

new procedures for developing observers are given. A general form of UIO is pro-

posed by using the infinite structure property of SISO systems Σ(C,A, F ). This

form is shown to be accurate on a physical example, but some proofs on stability

property and pole placement should still be derived. Then a general form of the

unknown input estimate is proposed by using of the generalized inverse matrix
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of the disturbance input matrix of systems Σ(C,A, [B F ]). Then the observer

proposed by Darouach (2009) will be extended into the LTV case. The algebraic

approach for designing observers is developed when the control variable u(t) is

considered. By the algebraic point of view, procedures for designing observers for

LTI and LTV cases will be explained. In this context, it is shown that the bond

graph approach is convenient for detecting zeros and poles, and for verifying the

detectability of system Σ(C,A, F ).

In the second part, some physical examples with a DC motor will be stud-

ied. The procedures will be implemented for the design of observers. A system

satisfying the matching condition in the LTI case is studied, with the design of

different observers. When the matching condition is not satisfied, the algebraic

approach is used. A direct method is also proposed by using flatness property.

The LTV case of systems with different situations is considered, some unknown

input observers are designed.

Note that the stability property of observers is a crucial issue. Some of the

poles can be chosen, but some of them which are a part of the invariant zeros

cannot be freely chosen. In the LTI case, this problem is well defined, which is

not the case for LTV models. Some solutions are proposed.

4.1 Unknown Input Observer Design

In this section, observers introduced in Section 1.3 are extended. A new form

of UIO and of unknown input estimate is proposed. The observer is based on

generalized inverse matrices which can estimate simultaneously state and distur-

bance variables of system Σ(C,A, [B F ]). Most of previous works are proved to

be accurate for estimation of disturbance state but without taking into account

the control input. We propose new forms which take into account the control in-

put. This solution must be improved by following tow goals: stability study and

pole placement. In this context, bond graph procedures are used for detectability

analysis of systems and matching condition evaluation. For each observer, the

LTV case is also considered.
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4.1.1 UIO Deduced from the Infinite Structure

A new UIO based on the infinite structure of LTI SISO systems Σ(C,A, F ) is

proposed here. The invertibility property between the unknown input d and

the output y is studied for designing this UIO. Being different with conventional

UIO, the UIO proposed here firstly estimate the unknown input d. After that,

the estimate of the state variable x can be deduced.

Consider model (4.1) with Assumption 4.1.

{
ẋ = Ax+Bu+ Fd
y = Cx

(4.1)

Assumption 4.1 For LTI systems in (4.1), it is supposed that matrices B,F

have full column rank, and matrix C has full row rank. The known and unknown

input u, d are bounded.

The relative degree r is equal to the infinite zero order between the unknown

input d and the output y. The r-order derivation of the output y can let the

unknown input appears explicitly, such as:

δry = CArx+ CAr−1Fd+

r−1∑

i=0

CAiBu(r−1−i) (4.2)

where CAr−1F 6= 0, CAi−1F = 0, i < r.

The first equation in (4.1) can be written as:

x = (Iδ − A)−1 (Bu+ Fd) (4.3)

Inserting (4.3) into (4.2) yields

δry = CAr−1
(
A(Iδ − A)−1 + I

)
Fd+

r−1∑

i=0

CAiBu(r−1−i) + CAr(Iδ − A)−1Bu

(4.4)

Since CAr−1F 6= 0, it can be shown that CAr−1
(
A(Iδ − A)−1 + I

)
Fd 6= 0.

Hence, equation (4.4) can be written as (4.5),

d = D (δ) y(r) −D (δ)U (δ)u (4.5)
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where

D (δ) =
(
CAr−1

(
A(Iδ −A)−1 + I

)
F
)−1

(4.6)

and

U (δ) =
r−1∑

i=0

CAiBδ(r−1−i)+CAr(Iδ − A)−1B (4.7)

After inserting (4.5) into (4.3), an unknown input observer based on the infi-

nite structure of Σ(C,A, F ) is proposed in (4.8).

{
d̂ = D (δ) δ(r)y −D (δ)U (δ) u

x̂ = (Iδ − A)−1
(
Bu+ F d̂

) (4.8)

where matrices D(δ) and U(δ) are given in (4.6) and (4.7). The UIO in (4.8)

can also be used in the LTV case. But the difficulty is related to calculations of

inverses of matrices over a noncommutative differential ring. The UIO in (4.8) is

derived from formal calculations of the initial system in (4.1). Different property

must still be proved: the accuracy of this observer, pole placement and stability

according to invariant zero property.

4.1.2 A General Form of Unknown Input Estimate

Systems (4.1) are considered in the LTI and LTV cases with Assumption 4.1.

A new procedure for the design of the disturbance estimation is proposed with

the pseudo-inverse of matrix F , which is an alternative of the UIO proposed in

Darouach (2009).

A pseudoinverse A+ of a matrix A is a generalization of the inverse matrix.

Here, the generalized inverse matrices with two special cases are introduced.

1. If the columns of a matrix Am×n are linearly independent (so that m ≥

n), then ATA is invertible. In this case, an explicit formula is: A+ =

(ATA)−1AT . It follows that A+ is then a left inverse of A: A+A = In.

2. If the rows of a matrix Am×n are linearly independent (so that m ≤ n), then

AAT is invertible. In this case, an explicit formula is: A+ = AT (AAT )−1.

It follows that A+ is then a right inverse of A: AA+ = Im.
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4.1.2.1 LTI Case

According to Assumption 4.1, the columns of the matrix F in the state equation

of a system with unknown input in (4.1) are linearly independent. So it has a left

inverse F+, such as F+F = Iq. Suppose that x̂ is the estimate of x in (4.1), i.e.,

lim
t→∞

ex(t) = lim
t→∞

(x (t)− x̂ (t)) = 0 (4.9)

The first equation in (4.1) can be written as:

d (t) = F+ (ẋ (t)−Ax (t)−Bu (t)) (4.10)

Replace x(t) by x̂(t), equation (4.10) is written as:

d̂ (t) = F+
(
˙̂x (t)−Ax̂ (t)−Bu (t)

)
(4.11)

where x̂(t) (resp., d̂(t)) is the estimate of x(t) (resp., d(t)) in (4.1).

The unknown input error is

ed = d− d̂ = F+
(
ẋ− ˙̂x− A(x− x̂)

)
= F+(ėx − Aex) = F+(N −A)ex (4.12)

Because of (4.9), the unknown input error converges asymptotically to zero,

i.e., limt→∞ ed = 0. Hence, d̂(t) in (4.11).

The observer in (1.48) with generalized inverse matrix approach is then rewrit-

ten as (4.13),





ξ̇ (t) = Nξ (t) + Jy (t) +Hu (t)
x̂ (t) = ξ (t)− Ey (t)

d̂ (t) = F+
(
˙̂x (t)−Ax̂ (t)−Bu (t)

) (4.13)

where matrices N, J,H,E and F+ can be derived from procedures in Section

1.3.1.

The block diagram of observer in (4.13) is shown in Figure 4.1.
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Figure 4.1: Block diagram of the LTI observer with generalized inverse matrices

4.1.2.2 LTV Case

In this section, the LTV systems which satisfy the matching condition are con-

sidered. Consider system (4.14) where matrices A(t), B(t), C(t) and F (t) have

time-varying entries with appropriate dimensions.

{
ẋ (t) = A (t)x (t) +B (t) u (t) + F (t) d (t)
y(t) = C (t)x (t)

(4.14)

The unknown input observer proposed by Darouach (2009) is extended to the

LTV case. The UIO introduced in (4.13) is extended to the LTV UIO (4.15),





ξ̇ (t) = N (t) ξ (t) + J (t) y (t) +H (t) u (t)
x̂ (t) = ξ (t)−E (t) y (t)

d̂ (t) = F+ (t)
(
˙̂x (t)− A (t) x̂ (t)−B (t) u (t)

) (4.15)

where x̂(t) ∈ Rn (resp., d̂(t) ∈ Rq) is the estimate of x(t) (resp., d(t)). Matrices

N(t), J(t), and E(t) with time-varying entries have appropriate dimensions.

Let P (t) = I+E(t)C(t), Proposition 4.2 gives the conditions for system (4.15)

to be a full-order observer for system (4.14).

Proposition 4.2 By the full-order observer (4.15), the state and disturbance

192

chapter4/chapter4figs/sbuiod.eps


4.1 Unknown Input Observer Design

variables x(t) and d(t) in (4.14) will be asymptotically estimated if the following

conditions hold.

1. N(t) is a Hurwitz matrix

2. Ṗ (t) + P (t)A(t)−N(t)P (t)− J(t)C(t) = 0

3. P (t)F (t) = 0

4. H(t) = P (t)B(t)

Derived from equations (4.14) and (4.15), the observer reconstruction error is

ex = x− x̂ = P (t)x− ξ (4.16)

The dynamic of the estimation error is given by

ėx = N(t)ex +
(
Ṗ (t) + P (t)A(t)−N(t)P (t)− J(t)C(t)

)
x

+ (P (t)B(t)−H(t)) u+ P (t)F (t)d(t)
(4.17)

If conditions in Proposition 4.2 are satisfied, then limt→∞ e(t) = 0 for any x(0), x̂(0), d(t)

and u(t). Hence x̂(t) (resp., d̂(t)) in (4.15) is an estimate of x(t) (resp., d(t)) in

(4.14).

Equations 2-3 in Proposition 4.2 can be written as

N(t) = A(t) +
[
E(t) K(t)

] [ C(t)A(t)
C(t)

]
+ Ṗ (t) (4.18)

[
E(t) K(t)

]
Σ(t) = −F (t) (4.19)

where K(t) = −J(t)−N(t)E(t), Σ(t) =

[
C(t)F (t)

0

]
.

Under condition rank[C(t)F (t)] = rank[F (t)], the general solution of equation

(4.19) is

[E(t) K(t)] = −F (t)Σ+(t)− Z(t)
(
I − Σ(t)Σ+(t)

)
(4.20)

where Σ+(t) is a generalized inverse matrix of Σ(t) and Z(t) is an arbitrary matrix

with appropriate dimension.

After inserting (4.20) into (4.18), the matrix N(t) has the form

N(t) = A1(t)− Z(t)B1(t) + Ṗ (t) (4.21)
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where

A1(t) = A(t)− F (t)Σ+(t)

[
C(t)A(t)
C(t)

]
(4.22)

and

B1(t) =
(
I − Σ(t)Σ+(t)

) [ C(t)A(t)
C(t)

]
(4.23)

The matrix Z(t) is used to guarantee the stability of the matrix N(t). There

exists a matrix Z(t) for assuring the stability of matrix N(t) iff the system

Σ(C(t), A(t), F (t)) is strong* detectable. Because the matrix N(t) has time-

varying entries, the calculation of its poles can be derived from the procedure

introduced in Section 1.2.2.1.

The necessary and sufficient condition of existence of the observer (4.15) for

the system (4.14) is given by the following theorem.

Theorem 4.3 The full-order observer (4.15) will estimate (asymptotically) x(t)

in (4.14) if the system Σ(C(t), A(t), F (t)) is strong* detectable, i.e.





rank

[
Iδ −A(t) −F (t)

C(t) 0

]
= n+ q, ∀δ ∈ C(t),Re (δ) ≥ 0

rank [C(t)F (t)] = rank [F (t)] = q

(4.24)

A procedure for designing the observer (4.15) is given.

Procedure 4.4

1. Verify the strong* detectability of the system Σ(C(t), A(t), F (t)).

2. Calculate matrices A1(t), B1(t) in equations (4.22) and (4.23).

3. Determine matrix Z(t) by pole placement of matrix N(t) in (4.21).

4. Compute matrices E(t) and K(t) by (4.20), then J(t) = −K(t)−N(t)E(t),

H(t) = (I + E(t)C(t))B(t).

5. Calculate matrix F+(t) for the estimate of d(t).
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4.1 Unknown Input Observer Design

4.1.3 UIO with the Algebraic Approach

As mentioned above, the matching condition for the existence of observers is often

required (see Kudva et al. (1980); Darouach et al. (1994)): rank CF = rank F

= q. However, this condition is not always satisfied. Floquet & Barbot (2006)

proposed unknown input sliding mode observers after implementing a procedure

to get a canonical observable form of systems. This method can also be extended

in the nonlinear case. Daafouz et al. (2006) gave an intrinsic explanation of

the UIO problem by the algebraic approach for systems in (1.59). A general

structure of UIOs for estimating state and unknown variables was proposed with

the necessary and sufficient conditions: system Σ(C,A, F ) is left invertible and

minimum phase. The first condition is equivalent to rank C(Iδ − A)−1F = q.

Most of the previous works do not take into account the control input. An

extension is proposed here with these input variables. The unknown input ob-

server for an SISO model with control input is written in (4.25). Two estimates

of the disturbance variables are proposed, the first one d̂1 is an extension of the

one proposed in Daafouz et al. (2006), the second one d̂2 is the estimate proposed

in (4.10).





˙̂x = (PA− LC) x̂+Q
(
y(r) − U

)
+ Ly +Bu

d̂1 =
(
CAr−1F

)−1 (
y(r) − CArx̂− U

)

d̂2 = F+
(
˙̂x− Ax̂−Bu

) (4.25)

Matrices Q and P satisfy (4.26) and (4.27),

Q = F
(
CAr−1F

)−1
, P = In −QCAr−1 (4.26)

and U is a differential polynomials matrix of the input variable u, such as:

U =

r−1∑

i=0

CAiBu(r−1−i) (4.27)

r is the infinite zero order between the unknown input d(t) and the output y(t).

The block diagram of observer (4.25) is shown in Figure 4.2, where P1 =

PA− LC, Y (δ) = Qδr + L and U(δ) = B −Q
r−1∑
i=0

CAiBδ(r−1−i).

The main idea of the method is to implement derivations on the output vari-

able y(t) to let the unknown input variable d(t) appears explicitly. The r-order

195



4. UNKNOWN INPUT OBSERVER

Figure 4.2: Schema block of the LTI observer with the algebraic approach

derivation of output variable is given in (4.2). Note that the control input must be

derivable (r−1 times) which is possible for example with a flat control approach.

For MIMO models, the extension of the procedure was proposed by Floquet &

Barbot (2006).

The dynamic of the estimation error of state variables is

ėx = ẋ− ˙̂x = (PA− LC) (x− x̂) (4.28)

One has limt→∞ ex(t) = 0 for any x(0), x̂(0), d(t) and u(t). The disturbance

estimate d̂1 can be written as

d̂1 =
(
CAr−1F

)−1
CAr (x− x̂) + d (4.29)

As limt→∞ ex(t) = 0, then limt→∞ d̂1(t) = d(t).

The observer (4.25) can be obtained by Procedure 4.5.

Procedure 4.5 Yang & Sueur (2012) If the following steps are implemented, the

variables x(t) and d(t) will be asymptotically estimated.

1. Verify the minimum phase property of systems Σ(C,A, F ).

196

chapter4/chapter4figs/sbuiodm.eps


4.1 Unknown Input Observer Design

2. Compute the relative degree r and the inverse of CAr−1F .

3. Compute Q, P and U and then L for pole placement.

The procedure for designing unknown input observers in the LTV case is

similar to the LTI procedure. The main difference is that derivations of matrices

with time-varying entries should be taken into account. The relative degree of

the system Σ(C(t), A(t), F (t)) is not easy to calculate with the procedure, but

it can be easily derived from the infinite structure of the bond graph model. In

case of LTV models, a similar approach can be proposed.

4.1.4 Bond Graph Procedure for Strong* Detectability

According to Procedure 4.4, the first step is to verify the strong* detectability of

the system Σ(C,A, F ). This step can be divided into two parts: the matching

condition rank[CF ] = rank[F ], and strong detectability of the system Σ(C,A, F ).

For a bond graph model, these two conditions can be easily implemented with a

graphical approach. The matching condition is related to the length of the causal

path between the output y and the unknown input d. The strong detectability

is related to the zeros structure of the system Σ(C,A, F ). The zeros structure of

systems can be derived from bond graph models as proposed in chapter 3.

The matching condition for an LTI bond graph model with a single unknown

input and a single output can be verified by Proposition 4.6.

Proposition 4.6 In the bond graph model of an SISO system Σ(C,A, F ), the

relative degree is equal to the length of the causal path between the unknown input

and the output. If the input-output causal path is equal to one, i.e. there is only

one dynamic element in the path, the matching condition is satisfied. One has

CF 6= 0 and rank[CF ] = rank[F ] = 1.

The strong detectability is related to the invariant zeros of systems. The

invariant zeros must be stable for systems Σ(C,A, F ). In the LTI case, the exis-

tence of null zeros can be easily derived from bond graph models. The existence

of null zeros do not satisfy the strong detectability condition. Then for a bond

graph model, the first step is to verify the existence of null invariant zeros in the

model. Now, a bond graph procedure for verifying the strong detectability of the

system Σ(C,A, F ) is proposed.
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4. UNKNOWN INPUT OBSERVER

Procedure 4.7 Based on the bond graph approach, the strong detectability of

systems Σ(C,A, F ) is verified by the following steps.

• Verify the number of IZ of the system Σ(C,A, F ) by its BGI model. If there

is no IZ, stop the procedure, the strong detectability condition is satisfied.

• Verify the existence of null zeros of the system Σ(C,A, F ) by its BGD model.

If there are null zeros, stop the procedure, it is not possible to design the

observer.

• Calculate values of IZ by its BGB model. If all real part of invariant zeros

are negative (resp., positive), the strong detectability condition is satisfied

(resp., unsatisfied).

This procedure is represented in Figure 4.3.

Figure 4.3: Strong detectability condition with bond graph approach

Procedure 4.8 The strong* detectability of the system Σ(C,A, F ) can be verified

by the following steps.
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1. Verify the matching condition by Proposition 4.6.

2. Examine the strong detectability by Procedure 4.7.

Since the same (or equivalent) conditions must be verified for design of other

UIO, these procedures are not proposed here.

4.2 Numerical Examples and Simulations

In this section, an example of a DC motor as a physical example for the design of

UIOs. The different UIOs proposed in the previous section are implemented. The

LTI and LTV cases are considered here. The existence condition of observers will

be verified by the bond graph approach introduced above. The graphic approach

is used to detect invariant zeros and poles of bond graph models.

The BGI model of the system with a disturbance signal is given in Figure

4.4, and the state-space equations are presented in (4.30), with x = (pL, pJ)
t =

(x1, x2)
t the state vector, y the measured output variable, u the control input

variable and d the disturbance input variable. Here the disturbance input is

supposed to be d(t) = 20 sin(t), and the input u(t) is the Heaviside unit step

function, i.e., u(t) = 30Γ(t).

Figure 4.4: BGI model of the DC moteur





ẋ1 = −
R
L
x1 −

k
J
x2 + u

ẋ2 =
k
L
x1 −

b
J
x2 + d

y = 1
J
x2

(4.30)

The bond graph model is controllable and observable (a derivative causality

can be assigned). The numerical values of system parameters are shown in Table
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4. UNKNOWN INPUT OBSERVER

4.1. From structural calculation, condition rank CF = rank F = q is satisfied,

hence the observer proposed in Darouach (2009) can be used.

Table 4.1: Numerical values of system parameters
L R k J b d(t) u(t)
5× 10−4 H 0.25 Ω 1 5 kgm2 0.2 Nm/Wb 20 sin(t) 30Γ(t)

It is noticed that the matching condition is not satisfied if the output y(t) is

placed at the 1-junction related to the element I : L. In the following sections,

the first case with the matching condition is considered in the LTI case. The

generalized inverse matrix and algebraic approaches are implemented to design

observers for the system. For the second case, the approach with generalized

inverse matrices is no more available. Hence, the algebraic approach will be used

to estimate the state and unknown input variables. Lastly, for each case, the LTV

extension will be made by various approaches. It should be known that the study

of poles and zeros of systems derived from bond graph and formal approaches is

an essential issue for designing UIOs.

Remark 4.9 In the simulation process, impulsive motions often arise because

of some variables which appear with derivatives. Some filters are used in the

simulation process for reducing non descried phenomena. However, these filters

can reduce the accuracy of the estimates of state and unknown input variables.

The initial condition of state variables and the poles of observers also affect the

simulation results.

4.2.1 Case with Matching Condition Satisfied

The system in Figure 4.4 is studied in this section. First, the bond graph proce-

dure is used to verify the matching condition of system Σ(C,A, F ). The input-

output causal path between the input d and the output y is: Df : y → I :

J → Se : d. According to Procedure 4.6, the matching condition is satisfied,

i.e., rank[CF ] = rank[F ] = 1. After calculation, matrix CF is equal to 1
J

with

the causal path Df : y → I : J → Se : d. The strong detectability of system

Σ(C,A, F ) is required. This property is related to the invariant zeros study of

the system. Now, Procedure 4.7 is used to detect the invariant zeros of system

Σ(C,A, F ). Firstly, the number of invariant zeros is determined by the infinite

200
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structure of the BGI model. The causal path length between the output detector

Df : y and the disturbance input Se : d is equal to 1, thus there is an invariant

zero in the system Σ(C,A, F ) and r = 1.

If there exist null zeros in system Σ(C,A, F ), it is no possible to design UIOs.

The null zeros can be examined by BGD model of the system. This model is

given in Figure 4.5. The causal path length between the output detector Df : y

and the disturbance input Se : d is equal to 0, path Df : y → R : b → Se : d,

thus there is no null invariant zero in the system Σ(C,A, F ).

Figure 4.5: BGD model of the DC moteur

The BGB model of system Σ(C,A, F ) shown in Figure 4.6 is used to calculate

the invariant zero.

Figure 4.6: BGB model of the DC moteur

If the causal path Df : y → I : J → Se : d is removed, the reduced bond graph

model has no input variable. The mathematical relation ẋ1+
Rx1

L
= (δ+ R

L
)x1 = 0

associated to a torsion module can be written. Hence, the invariant zero of system

Σ(C,A, F ) is δ = −R
L
= −500 which verifies the minimum phase condition.
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4.2.1.1 UIO by Generalized Inverse Matrices

As mentioned above, the system Σ(C,A, F ) satisfies the matching condition and

the strong detectability. Hence, the observer in (4.13) can be used. The calcula-

tions of matrices in Procedure 4.4 are implemented for designing the observer in

(4.13).

The matrix Σ is derived from equation (1.52), such as Σ =

[
CF
0

]
=

[
0.2
0

]
.

Based on equation (1.54), one has Σ+ =
[
5 0

]
. According to (1.56) and (1.57),

matrices A1 and B1 are A1 =

[
−500 −0.2
0 0

]
, B1 =

[
0 0
0 0.2

]
. Let the matrix

Z =

[
z1 z2
z3 z4

]
, after inserting matrices A1, B1 and Z into (1.55), the matrix N

has the form N =

[
−500 −0.2 − 0.2z2
0 −0.2z4

]
. The matrix Z is used to place the

poles of the observer. The poles are the invariant factors of the Smith form of

Iδ − N . In this case, the invariant polynomial of the Smith form of Iδ − N is

(δ + 500)(δ + 0.2z4). The pole δ = −500 is equal to the invariant zero of system

Σ(C,A, F ). Let z1 = z2 = z3 = 0 and z4 = 100, then the poles of the observer

are δ1 = −500, δ2 = −20 which assure the stability of the observer. Finally, the

matrix N has the form N =

[
−500 −0.2
0 −20

]
.

By computing the matrices E and K in (1.53), one has E =

[
0
−5

]
and

K =

[
0
−100

]
. After that, the matrices J and H can be deduced, such as:

J =

[
−1
0

]
, H =

[
1
0

]
. Since F =

[
0
1

]
, one has F+ =

[
0 1

]
which is used

to estimate the unknown input.

After calculations of matrices, simulations are implemented with models of

the system and the observer in MATLAB®/Simulink®. With an initial condition

x(0) =

[
0.1
2

]
for the system Σ(C,A,

[
B F

]
), the estimate errors of the state

variables are shown in Figure 4.7.

The unknown input d and its estimate de
∗ are displayed in Figure 4.8.

Suppose a noise signal µ(t) of random number with variance of 1 is added

to the unknown input, i.e., d(t) = sin(t) + µ(t). The unknown input d and its

∗In what follows, because of a symbol display problem in MATLAB®, the estimate of d is
denoted by de in place of d̂.
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Figure 4.7: Trajectories exi
= x̂i−xi, i = 1, 2 of the LTI system 1 with generalized

inverse matrix method
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Figure 4.8: Trajectories d and de of the LTI system 1 with generalized inverse
matrix method

estimate de are displayed in Figure 4.9. de can rapidly estimate the unknown

input d with the noise signal.

Note that this noise signal will be used in the following simulations.

4.2.1.2 UIO by Algebraic Approach

Now, the UIO in (4.25) is used to estimate the state and unknown input variables.

Matrix L is used to place the poles of the observer. One pole is fixed (invariant

zero of system Σ(C,A, F ): δ1 = −500), another is placed at δ2 = −20. Through
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Figure 4.9: Trajectories d and de of MUIO of the LTI system 1 with a noise signal

the procedure proposed in Section 4.1.3, the matrices of the observer are

Q =

[
0
5

]
PA− LC =

[
−500 −0.4
0 −20

]

L =

[
1
100

]
U = 0

(4.31)

The estimation errors of the two state variables with an initial condition

x(0) =

[
0.1
2

]
are displayed in Figure 4.10.
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Figure 4.10: Trajectories exi
= x̂i − xi, i = 1, 2 of system 1 with the algebraic

approach
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The estimation d̂1 of d in (4.25) is

d̂1 = 5(ẏ −
[
400 −0.008

]
x̂) (4.32)

The comparison of the estimation of the unknown input dei, i = 1, 2 and itself d

is shown in Figure 4.11, where de1 (resp., de2) is d̂1 (resp., d̂2) in (4.25).
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Figure 4.11: Trajectories d(t) and de1, de2 of system 1 with the algebraic approach

With d(t) = sin(t) + µ(t), the unknown input d and its estimate dei are

displayed in Figure 4.12. dei can still rapidly estimate the unknown input d with

the noise signal.

4.2.2 Case without Matching Condition

Now the output y(t) is placed at the 1-Junction related to the element I : L,

i.e., the output matrix is C = [ 1
L
0]. The bond graph model is controllable and

observable. The BGI model of the system is shown in Figure 4.13. The causal

path length between the output detector Df : y and the disturbance input Se : d

is equal to 2, i.e., r = 2, path Df : y → I : L → GY → I : J → Se : d, thus

there is not any invariant zero. It means that poles of the observer can be freely

assigned. According to Proposition 4.6, the matching condition is not satisfied.

Here, one has rank[CF ] = 0 and rank[F ] = 1. So the observer with generalized

inverse matrices in (4.13) can not be derived.

Because there is no invariant zero in the system Σ(C,A, F ), the minimum

phase condition is satisfied. The system Σ(C,A, F ) is invertible. According to
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Figure 4.12: Trajectories d and dei of AUIO of the LTI system 1 with a noise
signal

Figure 4.13: BGI model of the DC motor with y in the second position

Theorem 1.56, an observer in (4.25) can be designed. As r = 2, the unknown

input can be represented by a 2-order differential polynomial of the output y(t),

such as ÿ = CA2x + CABu + CAFd + CBu̇. One has CF = 0, CAF = −400.

The matrices of the observer are:

Q =

[
0

−0.0025

]
PA− LC =

[
−900 −0.2

2.45× 106 500

]

L =

[
0.2
−600

]
U = 2000u̇− 1× 106u

(4.33)

The poles of the observer are arbitrarily placed by the matrix L, here δ1,2 =

−200. Figure 4.14 shows the estimation errors of two state variables of the second

system with an initial condition x(0) =

[
0.1
2

]
.
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Figure 4.14: Trajectories exi
= x̂i − xi, i = 1, 2 of the LTI system 2 with the

algebraic approach

The estimation d̂1 and d̂2 in (4.25) are

{
d̂1 = −0.0025(y

(2) + 1× 106u− 2000u̇−
[
4.992× 108 200016

]
x̂)

d̂2 = ˙̂x2 − 2000x̂1 + 0.04x̂2

(4.34)

Trajectories of the estimation d̂i(t), i = 1, 2 of the unknown input d(t) are

shown in Figure 4.15, where de1 (resp., de2) is d̂1 (resp., d̂2) in (4.25). Because

of the derivatives of the input variable u(t) in (4.34) for estimating the unknown

input d(t), the impulsive motion in the curve of de1 is much more violent than in

the curve of de2.

4.2.3 UIO with Direct Method

The two examples are studied with the new UIO proposed in Section 4.1.1.

Example: case 1

For the system in Figure 4.4, without considering the unknown input d in (4.30),

the system state space equation can be written as:





ẋ1 = −
R
L
x1 −

k
J
x2 + u

ẋ2 =
k
L
x1 −

b
J
x2

y = 1
J
x2

(4.35)
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Figure 4.15: Trajectories d and dei, i = 1, 2 of the LTI system 2 with the algebraic
approach

In Figure 4.4, the causal path between the output Df : y and the input u is

Df : y → I : J → GY → I : L → Se : u. So there is no invariant zero in the

system Σ(C,A,B). This system is a flat system Barbot et al. (2007), and the

output y is the flat output. It means that all the variables of the system can be

represented by the flat output and its derivatives. Hence, equation (4.35) can be

written as:





x1 =
LJ
k
ẏ + Lb

k
y

x2 = Jy

u = LJ
k
ÿ + Lb+RJ

k
ẏ + Rb+k2

k
y

(4.36)

Let’s reconsider the system Σ(C,A, [B F ]) in (4.30). Like the form in (4.35),

all system variables can be represented by vectors y, d and their derivatives, such

as:





x1 =
LJδ+Lb

k
y − L

k
d

x2 = Jy

u = LJδ2+(Lb+RJ)δ+bR+k2

k
y − Lδ+R

k
d

(4.37)

Here, the unknown input d is estimated without estimating the state variables.

In (4.30), the second equation can be written as:

d = Jẏ + by −
k

L
x1 (4.38)

combined with the first equation in (4.30). One can get an estimate of the un-
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known input d:

d̂ =

(
Jδ + b+

k2

Lδ +R

)
y −

k

Lδ +R
u (4.39)

After inserting (4.39) into (4.30) (or with equation (4.37)), an observer in

(4.8) with the direct method is shown in (4.40).





d̂ =
(
Jδ + b+ k2

Lδ+R

)
y − k

Lδ+R
u

x̂1 =
L
k

(
Jẏ + by − d̂

)

x̂2 = Jy

(4.40)

The curves of the unknown input d and its estimate de are displayed in Figure

4.16.
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Figure 4.16: Trajectories d and de of the LTI system 1 with the direct method

Figure 4.17 shows the estimate errors of two state variables of the system in

(4.30) with an initial condition x(0) =

[
0.1
2

]
.

With d(t) = sin(t) + µ(t), the unknown input d and its estimate de are dis-

played in Figure 4.18.
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Figure 4.17: Trajectories exi
= xi− x̂i, i = 1, 2 of the LTI system 1 with the direct

method
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Figure 4.18: Trajectories d and de of DUIO of the LTI system 1 with a noise
signal

Example: case 2

Similarly to the procedure for detecting the UIO in (4.40), the UIO of the system

in Figure 4.13 is given in (4.41).





d̂ = − 1
k
(JLδ2 + (JR + bL) δ + bR + k2) y + 1

k
(Jδ + b) u

x̂1 = Ly

x̂2 =
J

Jδ+b

(
ky + d̂

) (4.41)
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4.2 Numerical Examples and Simulations

Remark that since in the first case, the model is flat (between control input

and output detector). State variables estimates are derived as function of the

input variable, the output variable and the disturbance variable estimation and

their derivatives. In the second case, the model is flat but by considering the

disturbance input and the output detector. In that case, the disturbance variable

estimation is defined as a function of the output variable the input variable and

their derivatives.

The curves of the unknown input d and its estimate de are displayed in Figure

4.19.
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Figure 4.19: Trajectories d and de of the LTI system 2 with the direct method

Figure 4.20 shows the estimate errors of two state variables of the system with

an initial condition x(0) =

[
0.1
2

]
.

With d(t) = sin(t) + µ(t), the unknown input d and its estimate de are dis-

played in Figure 4.21. Because of the use of filters, the estimate de can not rapidly

estimate the unknown input d. This problem can also occur for the UIO in (4.25)

of the second system. The algebraic and direct approaches for designing UIOs

require two-order derivative of the output y, which leads impulsive motions. The

filters are used to reduced these motions, but they may influence the accuracy of

estimations.

In this section, the synthesis of UIO observers is proposed for a DC motor

with different approaches. The disturbance variable has been estimated from the

estimate of the sate vector, or directly from the input and output variables and
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Figure 4.20: Trajectories exi
= xi− x̂i, i = 1, 2 of the LTI system 2 with the direct

method

0 2 4 6 8 10
−60

−40

−20

0

20

40

60

time

d 
&

 d
e

 

 

d
d

e

Figure 4.21: Trajectories d and de of DUIO of the LTI system 2 with a noise
signal

their derivatives, or with some filters. According to the property of the model and

of the estimations, different solutions can be proposed. In each case, the proposed

solutions are sufficiently accurate. A deeper comparison could be proposed and

an extension to the MIMO case could be easily achieved. In the following, an

extension to the LTV case is proposed.
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4.2 Numerical Examples and Simulations

4.2.4 LTV Case

In this section, the LTI system described by equation (4.30) is extended to the

LTV case. Let k = cos(t) + 1.2, so the matrix A has time-varying entries, i.e.,

A(t). Three approaches will be used to design UIOs for the LTV system, such as:

generalized inverse matrix, algebraic and direct approaches. The main difficulty

is related to pole placement due to the definition of a pole in the LTV case. The

proposed example is rather simple because it is a second order model and the

invariant zero in the first case is constant real value.

UIO with Generalized Inverse Matrices

With the generalized inverse matrix approach, the UIO proposed in (4.15) can be

derived for estimating the state vector and the unknown input of the LTV system.

From the formal calculation, the invariant zero of the LTV system Σ(C,A(t), F )

is δ = −500. According to Procedure 4.4, the matrices of the UIO in (4.15) are

given in (4.42).

N (t) =

[
−500 −0.24
0 −20

]
J (t) =

[
− cos (t)− 1.2

0

]

H (t) =

[
1
0

]
E (t) =

[
0
−5

] (4.42)

The matrix Z(t) in (4.21) is used to place poles of the observer. Let Z (t) =[
z1 (t) z2 (t)
z3 (t) z4 (t)

]
, then the matrix N(t) has the form

N (t) =

[
−500 −0.2k − 0.2z2 (t)
0 −0.2z4 (t)

]

The poles of the observer can be derived from the Smith form of the matrix

Iδ − N(t). Let Z (t) =

[
0 − cos(t)
0 100

]
, then N(t) become a matrix with time-

invariant entries. The poles of the observer are δ1 = −500, δ2 = −20.

The estimation errors of two state variables with an initial condition x(0) =[
0.1
2

]
are displayed in Figure 4.22.

The comparison between the estimation of the unknown input de(t) and d(t)

is shown in Figure 4.23.
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Figure 4.22: Trajectories exi
= x̂i−xi, i = 1, 2 of the LTV system with generalized

inverse matrices
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Figure 4.23: Trajectories de(t) and d(t) of the LTV system with generalized in-
verse matrices

With d(t) = sin(t) + µ(t), the unknown input d and its estimate de are dis-

played in Figure 4.24. de can rapidly estimate the unknown input d.

UIO with the Algebraic Approach

In the LTV case, the design of the observer defined in (4.25) must be redefined,

except for the part dealing with the structural analysis with the bond graph ap-

proach. An UIO is directly proposed on the following example, with a particular

attention to the problem of poles and zeros.

The conclusions for structural analysis in the LTI case are still valid for the

214

chapter4/chapter4figs/exdy1t.eps
chapter4/chapter4figs/eddy1t.eps


4.2 Numerical Examples and Simulations

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

40

50

time

d 
&

 d
e

 

 

d
d

e

Figure 4.24: Trajectories d and de of MUIO of the LTV system 1 with a noise
signal

LTV system. However, one should pay attention to calculation with time-varying

parameters in matrices over the noncommutative ring of differential operators.

System Σ(C(t), A(t), F (t)) contains one invariant zero, which is δ = −500. So

the minimum phase condition is satisfied. Procedures for UIO design are similar

to the LTI case. As to r = 1, the 1-order derivation of the output is ẏ =

CA(t)x+ CFd+ CBu. The matrices of the observer are

Q =

[
0
5

]
PA(t)− L(t)C =

[
−500 −0.24
0 −1

]

L(t) =

[
− cos (t)

5

]
U = 0

(4.43)

In the LTV case, the finite structure may be influenced by time-varying pa-

rameters in system matrices as shown by Yang et al. (2011). Invariant zeros

and poles of systems can be derived from Smith form of matrices over differ-

ential rings. Let L(t) = [l1(t) l2(t)]
T be the time varying matrix chosen for

pole placement of the observer. The definition matrix of poles of the observer is

[Iδ − PA+ LC]. The invariant polynomial of this matrix in case of the example

is (δ + 0.2l2(t))(cos(t) + 1.2 + l1(t))
−1(δ + 500). So there are two poles, one of

which is δ = −500 being the invariant zero of the system Σ(C,A(t), F ). As term

(cos(t) + 1.2 + l1(t))
−1 is time varying, it cannot be commuted with the term

(δ+0.2l2(t)). Because only right factors of polynomials in LTV cases are roots of
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4. UNKNOWN INPUT OBSERVER

polynomials, it is difficult to compute poles. If l1(t) = − cos(t), the polynomial

becomes 2(δ + 0.2l2(t))(δ + 500). Let l2(t) = 500, the observer has two negative

poles δ1 = −500, δ2 = −100.

The estimation errors of two state variable with an initial condition x(0) =[
0.1
2

]
are displayed in Figure 4.25.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

time

e x i

 

 

e
x

1

e
x

2

Figure 4.25: Trajectories exi
= x̂i − xi, i = 1, 2 of the LTV system with the

algebraic approach

The estimation of d is d̂ = 5(ẏ −
[
0.4(cos(t) + 1.2) −0.008

]
x̂). The com-

parison of the estimation of the unknown input de(t) and d(t) is shown in Figure

4.26.
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Figure 4.26: Trajectories de(t) and d(t) of the LTV system with the algebraic
approach
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With d(t) = sin(t) + µ(t), the unknown input d and its estimate de are dis-

played in Figure 4.27.
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Figure 4.27: Trajectories d and de of AUIO of the LTV system 1 with a noise
signal

The designed observer is stable and rebuilds correctly real states and the

unknown input which is a time function. In the LTV case, the proposed observer

(4.25) is still valid but matrices in (4.25) must be redesigned, for example with

symbolic calculation. The second case (with detector on I : L) is more complex,

because two time varying poles must be placed (not studied here). Finally, with

the known input which are rarely kept on in cited works, the observer (4.25) is

a good extension of the observer in Daafouz et al. (2006), but derivations of the

control input are necessary. The flatness approach could be a good solution, with

a flat output to be controlled.

UIO with the Direct Approach

The UIO with the direct approach introduced in Section 4.2.3 is valid in the LTV

case. The UIO has the form





d̂ =
(
Jδ + b+ k2(t)

Lδ+R

)
y − k(t)

Lδ+R
u

x̂1 =
L

k(t)

(
Jẏ + by − d̂

)

x̂2 = Jy

(4.44)

217

chapter4/chapter4figs/eday1tn.eps


4. UNKNOWN INPUT OBSERVER

The estimation errors of two state variable with an initial condition x(0) =[
0.1
2

]
are displayed in Figure 4.28.
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Figure 4.28: Trajectories exi
= x̂i−xi, i = 1, 2 of the LTV system with the direct

approach

The comparison of the estimation of the unknown input de(t) and itself d(t)

is shown in Figure 4.29. With d(t) = sin(t) + µ(t), the unknown input d and its

estimate de are displayed in Figure 4.30.
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Figure 4.29: Trajectories de(t) and d(t) of the LTV system with the direct ap-
proach

By the direct method, unknown input and state variables of LTV systems can

be estimated. This method is based on formal calculations on initial systems, it

is not necessary to compute zeros and poles of LTV systems. The direct approach
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Figure 4.30: Trajectories d and de of DUIO of the LTV system 1 with a noise
signal

is derived from derivatives of the output variable of LTV systems. Except the

complexity of formal calculus, this approach is similar to the LTI case.

4.3 Conclusion

In this chapter, several unknown input observers were proposed. The observers

recalled in chapter 1 were extended for LTI and LTV models with different sit-

uations. A general form of UIO of SISO systems was proposed by studying the

infinite structure of systems Σ(C,A, F ). For this UIO, the unknown input can

be estimated independently. This method does not need to calculate poles of

observers and some algebraic notions are required to design observers. If the es-

timate of the state variable is constructed, a general form for the estimate of the

unknown input was proposed by using generalized inverse matrices. The observer

derived from the invertibility of systems Σ(C,A, F ) was extended to the case of

systems with control variables, which is much more close to the real problems.

In the second part, a DC motor with a step input signal as the known input

and a sinusoidal signal as the unknown input was studied by different approaches.

Firstly, the system with the matching condition was studied, and simulation re-

sults prove the efficiency of different UIOs. Secondly, the system with the output

detector in a new position was studied (the matching condition not satisfied).
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The general form of UIOs were used to estimate the unknown input and state

variables. At last, the LTV case was considered. With estimates of the unknown

input and state variables, some synthesis problems can be resolved, e.g. the

motion planing problem.
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The control synthesis of physical systems is a complex task because it requires

the knowledge of a "good model" and according to the choice of a model (linear,

non linear...), some specific tools must be developed. These tools, mainly devel-

oped from a mathematical and theoretical point of view, must be used from the

analysis step (analysis of model properties) to the control synthesis step. It is

well-known that in many approaches, the properties of the controlled systems can

be analyzed from the initial model (open loop system). If the system is described

with an input-output representation or with a state space representation, two

kinds of information are often pointed out: the external structure (infinite struc-

ture) and the internal structure (finite structure). The first one is often related

to the existence of some control strategies (input-output decoupling, disturbance

decoupling...) and the second one gives some focuses on the stability property of

the controlled system.

In this report, the focus has been on the study of invariant zeros of bond

graph models in the context of LTV models. The algebraic approach was essential

because, even if the problem is already solved for LTI bond graph models, the

extension to LTV models is not so easy. The simultaneous use of algebraic and

graphical approaches has been proven to be effective and convenient to solve

this problem. First, some tools from the algebraic approach have been recalled

in chapter one and results for the study of invariant zeros of LTI bond graph

models recalled in chapter two. Some new developments are proposed in chapter

three and some applications for the unknown input observer problem with some

physical applications concludes this work in chapter four.

For detecting structural properties of linear systems, such as controllability,

observability, finite structure and infinite structure, the module theoretic ap-

proach is necessary. LTI and LTV models are defined as modules over rings of
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operators. In light of the module theoretic approach, the poles and zeros struc-

tures of linear systems have been studied with some corresponding submodules.

The classical method for defining zeros and poles is to use some canonical forms

of polynomial or rational matrices over rings. A more intrinsic method is to ex-

amine properties of submodules, especially torsion modules. Torsion submodules

are related to noncontrollable parts in a module, this is an essential issue, and

it has been used throughout the whole report. Since the controllability property

has been well developed for LTI and LTV bond graph models with a combined

use of some algebraic tools related to the module theory and some applications

of causality in the graphical representation, the present work is dedicated to the

analysis of invariant zeros of LTV models which are shown to be directly associ-

ated to some specific torsion submodules.

As to the complexity to get the canonical forms and roots of invariant poly-

nomials of canonical forms of matrices, the invariant zeros structure is not easy

to be pointed out in the LTV case. In the present report, the graphical approach

has been used to detect this structure by combining the algebraic and formal

approaches. Three kinds of causality were used to derive models properties, such

as: integral causality, derivative causality and bicausality assignments. Conven-

tionally, the number of invariant zeros is related to BGI models, and the number

of null invariant zeros is derived from BGD models. The main difference between

the LTI and LTV cases was the calculation procedure of zeros values with BGB

models. Because zeros of systems are poles of inverse systems, the invertibility is

a fundamental notion to get zeros when the output detectors are set to be zero.

In conventional bond graph models, this property is tightly related to the infinite

structure of bond graph models and thus associated to input-output causal paths.

The invertibility property can also be studied from bond graph models with bi-

causality. In this context, bond graph procedures with application of bicausality

were extended to the linear square and non square MIMO models. In BGB mod-

els, the dynamical elements with an integral causality are used to compute torsion

equations. For studying the invariant zeros structure of row sub models, BGB

models do not exist because the bicausality can only be assigned for bond graph

models with the same number of input sources and output detectors. Some new

technics were used, which are based on the notion "common" torsion modules

between each sub model (common non controllable subspace). When the number
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of output detectors is greater than the number of input actuators the notion of

common non observable modules was required. Since the observability property

is not directly related to some simple modules, the concept of dual bond graph

model was used.

The output-zeroing problem was also studied in parallel with the structure of

invariant zeros because these two problems are closed. First, monovariable LTI

models were considered. In that case, the output variable can be null with some

well chosen initial conditions for the state vector and for a control input variable

directly related to the invariant zero (constant for a null invariant zero). This

problem has been partially extended for the LTV case. The proposition has been

explained by the algebraic point of view with the formal presentation of the input

variable when the output variables were set to be zero.

For the invariant zeros and output-zeroing problems study, softwares Maple™

and 20-sim® were used on some physical examples.

In the last chapter, the unknown input observer problem has been consid-

ered. A general form of UIO was proposed by use of the infinite structure and

invertibility of LTI SISO systems. Based on the estimate of the state variables, a

general form of estimate of unknown inputs was introduced with generalized in-

verse matrices. The problem of estimation of state and unknown input variables

was considered with the existence of known input variables. Three kinds of UIO

were designed, such as: UIO with the algebraic approach, UIO with generalized

inverse matrices and UIO with a direct method. The existence conditions of UIOs

were also given. A physical model was studied in the LTI and LTV cases with or

without the matching condition. The UIOs proposed have weaker conditions of

existence than conventional UIOs. The simulation results of MATLAB® proved

the efficiency of the proposed UIOs.

In this work, some new procedures were developed for the study of the invari-

ant zeros structure of LTV bond graph models. We show that the extension from

the LTI to the LTV case is not simple from a theoretical point of view, many

proofs must still be achieved. Nevertheless, from a graphical point of view, some

procedures developed in the LTI case can be used due to the linear structure of

bond graph models. Causal analysis (with different assignments, integral, deriva-

tive, bicausal...) is similar for these two cases. Since the finite structure analysis

is a crucial task for studying the stability property of controlled systems (control
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step, estimation...), some mathematical developments are still needed. Another

interesting point is the application to non linear models. Since some graphical

procedures yet exist to get a "variational" model which can be considered as

an LTV model, some local properties of non linear systems modelled with bond

graph could be studied with our procedures.
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A

Appendix

A.1 Bond Graph Standard Elements

A bond graph model consists of elements linked together by half arrows, which

represent power bonds. Two variables such as effort e(t) and flow f(t) are related

to each bond. The two conjugate variables at a bond is always bi-directional. A

little line called a causal stroke is drawn orthogonally to one end of a bond where

the effort serves as an output of the bond. Several kinds of elements and their

possible causal stroke positions are introduced in this section.

Single Energy Port Elements

1. Source Element

The source elements impose the effort or the flow to the system. The causality

assignments associated with source elements are fixed. The effort source Se and

the flow source Sf are external variables for a system. Se (resp. Sf) determines

the effort (resp. flow) in the bond connected with it. So the causal stroke for the

effort (resp. flow) source must be away (resp. closed) from the source. Voltage

supply, pressure supply, gravity can be regard as effort sources and current supply,

pump as flow sources. The causalities are assigned for tow sources in Figure A.1.

2. Inertial Element I

233



A. APPENDIX

Figure A.1: Source bond graph element

This element is defined in terms of a mass in mechanics. It allows modeling

some energy storages. Depending on the causality assignment, effort-flow rela-

tions in Figure A.2 are defined. Electrical inductance, mass, inertia can be regard

as inertial elements.

f(t) =
1

L

∫ t

−∞

e (ξ) dξ =
p(t)

L
e(t) =

d(Lf(t))

dt
=

dp(t)

dt

Figure A.2: Inertial bond graph element

3. Capacitive Element C

A bond graph element C can model the energy storage. Effort-flow relations

are written in Figure A.3. Electrical capacitor, mechanical spring, torsion bar,

tank, accumulator are identified as capacitive elements.

e(t) =
1

C

∫ t

−∞

f (ξ) dξ =
q(t)

C
f(t) =

d(Ce(t))

dt
=

dq(t)

dt

Figure A.3: Capacitive bond graph element

4. Resistive Element

Unlike I and C elements where an integration form exists between the effort

and flow variables, resistive elements involve no integration and have a direct

relation between the effort and flow variables. An R element is a passive element
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which is associated to the energy dissipation. Regarding the causality assigned to

the element, the effort-flow relations are shown in Figure A.4. On the contrary,

conductive causality for element causaled case. Electrical resistor, mechanical

damper, dashpot, friction, hydraulic restriction are resistive elements.

resistance: e(t) = Rf(t) conductance: f(t) =
e(t)

R

Figure A.4: Resistive bond graph element

5. Detector Element

The detectors also called sensors, are supposed to be ideal (no power dissi-

pation and storage). The effort detector is symbolized as De, voltmeter, force

sensor, pressure sensor belong to this category. The flow detector is used to de-

tect the flow represented by symbol Df , such as: flow rate sensor, tachometer.

Figure A.5 gives the fixed causality to each type of detector.

Figure A.5: Detector bond graph element

Two Energy Port Elements

1. Transformer TF

The transformer does not store or dissipate energy (power conservation). A

transformer relates flow to flow and effort to effort. The bond graph transformer

can represent an ideal electrical transformer, a massless lever, a gear pair, an

hydraulic ram, etc. The possible causality assignments and the effort-effort or

flow-flow relations are given in Figure A.6.

2. Gyrator GY
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{
f2(t) = mf1(t)
e1(t) = me2(t)

{
e2(t) =

1
m
e1(t)

f1(t) =
1
m
f2(t)

Figure A.6: Transformer bond graph element

In contrast with the transformer, a gyrator establishes relationship between

flow to effort and effort to flow. It transmits also the power factors without

storing or dissipating energy. The possible causality assignment and the effort-

flow relations are given in Figure A.7, where r denotes the gyrator modulus. The

bond graph gyrator can represent mechanical gyroscope, hall effect sensor, voice

coil, DC motor, etc.

{
e2(t) = rf1(t)
e1(t) = rf2(t)

{
f2(t) =

1
r
e1(t)

f1(t) =
1
r
e2(t)

Figure A.7: Gyrator bond graph element

Junction Elements

The junction element is not a material point. It does not generate, dissipate

or store energy. In other words, the algebraic sum of powers at a junction is zero.

It is just utilized to connect elements and transmit the energy.

1. 0-Junction

The efforts on the bonds connected to a 0-junction are identical and the

flows algebraic sum is zero. The half-arrow directions determine the signs in the

algebraic sum. The bond graph symbol and algebraic relations are given in Figure

A.8.

2. 1-Junction
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ei = ej
∑

aifi = 0 ai = ±1, i, j = 1, 2, . . . , n

Figure A.8: 0-junction

Similarly, the flows on the bonds attached to a 1-junction are equal and the

algebraic sum of the efforts is zero. The half arrow directions determine the signs

in the algebraic sum. The bond graph symbol and algebraic relation are presented

in Figure A.9.

fi = fj
∑

aiei = 0 ai = ±, i, j = 1, 2, . . . , n

Figure A.9: 1-junction

Example A.1 A bond graph model reflects the physical structure of a system.

Block diagrams display which variables must be known in order to compute oth-

ers, they represent the structure of the mathematical model - the computational

structure. However, a connection between two blocks represents only one signal.

In the bond graph representation, each bond represents two conjugate power vari-

ables. The causality structure of bond graphs could be confirmed by adding the

causal strokes. Such a causally completed bond graph can be systematically trans-

formed into a block diagram. Figure A.10 (i) gives a circuit of a second order

system. The bond graph model of the system with causality assignments is shown

in Figure A.10 (ii). The block diagram corresponding to the system is shown in

Figure A.10 (iii). Nevertheless, not every block diagram can be transformed into

a bond graph Borutzky (2010).
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Figure A.10: (i) Circuit of a second order system (ii) Causally completed bond
graph model (iii) Block diagram model of the system

A.2 Causality

Before talking about the causality, note that a bond in a bond graph model rep-

resents power exchange between elements or junctions. Bonds may be subjected

to systematic analysis to built the system mathematical model which predicts its

dynamical behavior. To achieve this purpose, another exchange is required in a

bond - exchange of information. Paynter told that energy and information flow

across a bond. The bond graph causality analysis provides many system charac-

teristics. Because there exist two variables for an energetic interaction function,

there are two possible choices for the input and output of each element (or sub-

system). One variable is assigned as the role of cause (or input) and the other as

the role of effect (or output), so this choice is referred to causality assignment. A

causal stroke is put at one end of the bond to represent this choice. The causal

assignment representation and the equivalent block diagram are shown in Figure

A.11.

Several notions of causality are recalled here, such as causal paths/loops are

useful in calculating the transfer function, the state space representation, poles
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Figure A.11: Causal assignment and its block diagram representation

placement and the calculation of controllability/observability matrices, etc. A

special kind of causality - bicausality is useful for system inverse analysis.

Causal Path

Definition A.2 Given two sets J1 and J2, such as J1 = {C, I, R, Se, Sf} and

J2 = {C, I, R,De,Df}, a causal path between two elements in the previous two

sets is a series of interconnected bonds, junctions and elements with complete and

correct causality assignment; two bonds connected to the same node (element)

have opposed causalities.

Definition A.3 For calculating the causal path length, the preferential integral

causality is required. There exist two situations:

(i) Every element has the integral causality. The causal path length between

two elements is equal to the number of dynamical elements met in the path.

(ii) There exist several dynamical elements with the derivative causality as-

signment, the generalized causal path length is equal to the difference between the

number of dynamic elements in integral causality and the number of dynamic

elements in derivative causality.

A causal path is characterized by its gain and its length which are devoted

to determine system properties, for example: the transfer function, state space

representation, system structure, etc.

Definition A.4 The causal path gain is defined as being the quotient of the last

bond output variable divided by the first bond input variable in the path. The gain

of the causal path is calculated by the equation (A.1) following the direction from

the end to the beginning.

Ti = (−1)n0+n1
∏

i

mki
i (t)

∏

j

r
lj
j

∏

e

ge(t) (A.1)
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where:

• n0, (resp. n1): number of orientation switches in 0 (resp. 1) junction when

the flow (resp. effort) variable is followed;

• mk
i (t) (resp. rli (t)): is time varying modulus, gain of the transformer

(resp. gyrator) along the causal path, with ki = ±1, according to the el-

ements causality.

• gi(t): gain of the R, I and C elements along the causal path.

Example A.5 A bond graph model with integral causality is shown in Figure

A.12. There exist a causal path between the input Se and the output De. Every

element of model is met in the path.

Figure A.12: A bond graph model with integral causality

By applying the causal path gain equation (A.1), elements gains are shown in

the Table A.1 with n0 = 1 and n1 = 1.

Table A.1: Elements gain in the causal path
Elements Inertial I I(t) Compliant C C(t) Transformer TF m(t)
Gain 1

I(t)δ
1

C(t)δ
m(t)

Causal Loop

Definition A.6 A causal loop is a closed causal path between two elements in

the set {C, I, R}. This path starts from the output variable of a bond and ends by

the input variable of the same bond with passing through any bond only one time,

following the same variable. When a causal loop does not contain any element

in previous set, it is called a causal mesh Dijk & Golo (1994). Furthermore, a

causal mesh is as well as one kind of algebraic loops.
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Definition A.7 The gain of the causal loop between two elements in the set

{C, I, R} is given in equation (A.2).

Bi = (−1)n0+n1
∏

i

m2ki
i (t)

∏

j

r
2lj
j

∏

e

ge(t) (A.2)

where: n0, n1, m
ki
i (t), r

lj
j and ge(t) are defined as in (A.1).
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Approche Algébrique pour l’Analyse de Systèmes Modélisés par Bond Graph

Résumé: La commande de systèmes physiques s’avère être une tâche difficile en général.
En fonction du modèle choisi, les outils mathématiques pour l’analyse et la conception
de lois de commande peuvent changés. Pour les systèmes décrits par une représentation
entrée-sortie, type transfert, ou par une équation de type état, les principales informations
exploitées lors de la phase d’analyse concerne la structure interne du modèle (structure
finie) et la structure externe (structure à l’infini) qui permettent avant la phase de syn-
thèse de connaître, sur le modèle en boucle ouverte, les propriétés des lois de commande
envisagées ainsi que les propriétés du système piloté (stabilité. . .).
Le travail porte principalement sur l’étude des zéros invariants des systèmes physiques
représentés par bond graph, en particulier dans un contexte de modèle type LTV.
L’approche algébrique est essentielle dans ce contexte car même si les aspects graphiques
restent très proches du cas linéaire classique, l’extension aux modèles LTV reste très
complexe d’un point de vue mathématique, en particulier pour le calcul de racines de
polynômes. De nouvelles techniques d’analyse des zéros invariants utilisant conjointe-
ment l’approche bond graph (exploitation de la causalité) et l’approche algébriques ont
permis de mettre en perspective certains modules associés à ces zéros invariants et de
clarifier le problème d’annulation des grandeurs de sortie. L’application aux problèmes
d’observateurs à entrées inconnues a permis d’illustrer nos propos sur des exemples
physiques, avec certaines extensions, problèmes pour lesquels les zéros invariants appa-
raissent aussi comme éléments essentiels.

Mots-clefs: Bond graph, Module, Approche algébrique, Modèles LTV, Zéros invariants,
Causalité, Observateur à entrée inconnue

Algebraic Approach for Analysis of Systems Modeled by Bond Graph

Abstract: The control synthesis of physical systems is a complex task because it re-
quires the knowledge of a "good model" and according to the choice of a model some
specific tools must be developed. These tools, mainly developed from a mathematical
and theoretical point of view, must be used from the analysis step (analysis of model
properties) to the control synthesis step. It is well-known that in many approaches, the
properties of the controlled systems can be analyzed from the initial model. If the system
is described with an input-output representation or with a state space representation, two
kinds of information are often pointed out: the external structure (infinite structure) and
the internal structure (finite structure). The first one is often related to the existence
of some control strategies (input-output decoupling, disturbance decoupling...) and the
second one gives some focus on the stability property of the controlled system.
In this report, the focus has been on the study of invariant zeros of bond graph models
in the context of LTV models. The algebraic approach was essential because, even if the
problem is already solved for LTI bond graph models, the extension to LTV models is
not so easy. The simultaneous use of algebraic and graphical approaches has been proven
to be effective and convenient to solve this problem. First, some tools from the algebraic
approach have been recalled in chapter one and results for the study of invariant zeros of
LTI bond graph models recalled in chapter two. Some new developments are proposed in
chapter three and some applications for the unknown input observer problem with some
physical applications conclude this work.

Keywords: Bond graph, Module, Algebraic approach, LTV models, Invariant zeros,
Causality, Unknown input observer
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