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Abstract

This thesis deals with automatic localization of thin surgical tools such as needles

or electrodes in 3D ultrasound images. The precise and reliable localization is im-

portant for medical interventions such as needle biopsy or electrode insertion into

tissue.

The reader is introduced to basics of medical ultrasound (US) imaging. The

state of the art localization methods are reviewed in the work. Many methods

such as Hough transform (HT) or Parallel Integral Projection (PIP) are based on

projections. As the existing PIP implementations are relatively slow, we suggest

an acceleration by using a multiresolution approach.

We propose to use model fitting approach which uses randomized sample con-

sensus (RANSAC) and local optimization. It is a fast method suitable for real-time

use and it is robust with respect to the presence of other high-intensity structures

in the background. We propose two new shape and appearance models of tool in

3D US images. Tool localization can be improved by exploiting its tubularity. We

propose a tool model which uses line filtering and we incorporated it into the model

fitting scheme. The robustness of such localization algorithm is improved at the

expense of additional time for pre-processing.

The real-time localization using the shape model is demonstrated by implemen-

tation on the 3D US scanner Ultrasonix RP. All proposed methods were tested on

simulated data, phantom US data (a replacement for a tissue) and real tissue US

data of breast with biopsy needle. The proposed methods had comparable accuracy

and the lower number of failures than the state of the art projection based methods.

Keywords: 3D ultrasound images, localization, needle, model fitting, line filter-

ing, real-time application.
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Résumé (in French)

Cette thèse traite de la détection automatique d’outils chirurgicaux de géomét-

rie linéaire tels que des aiguilles ou des électrodes en imagerie ultrasonore 3D. Une

localisation précise et fiable est nécessaire pour des interventions telles que des biop-

sies ou l’insertion d’électrode dans les tissus afin d’enregistrer leur activité électrique

(par exemple dans le cortex cérébral).

Le lecteur est introduit aux bases de l’imagerie ultrasonore (US) médicale. L’état

de l’art des méthodes de localisation est rapporté. Un grand nombre de méthodes

sont basées sur la projection comme la transformation de Hough ou la Projection

Intégrale Parallèle (PIP). Afin d’améliorer l’implantation des méthodes PIP connues

pour être assez lentes, nous décrivons une possible accélération par approche multi-

résolution.

Nous proposons d’utiliser une méthode d’ajustement de modèle utilisant une ap-

proche RANSAC et une optimization locale. C’est une méthode rapide permettant

un traitement temps réel et qui a l’avantage d’être très robuste en présence d’autres

structures fortement échogenes dans le milieu environnant. Nous proposons deux

nouveaux modèles d’apparence et de forme de l’outil dans les images US 3D. La lo-

calisation de l’outil peut être améliorée en exploitant son aspect tubulaire. Nous

proposons un modèle d’outil utilisant un filtrage rehausseur de ligne que nous avons

incorporé dans le schéma de recherche de modèle. La robustesse de cet algorithme

de localisation est améliorée au prix d’un temps additionnel de pré-traitement.

La localisation temps-réel utilisant le modèle de forme est démontrée par une

implantation sur l’échographe Ultrasonix RP. Toutes les méthodes proposées on été

testée sur des données de simulation US, des données de fantômes (qui sont des

tissus synthétiques imitant les tissus biologiques) ainsi que sur des données réelles

de biopsie du sein. Les méthodes proposée ont montré leur capacité à produire

des résultats similaires en terme de précision mais en limitant d’avantage le nombre

d’échecs de détection par rapport aux méthodes de l’état de l’art basées sur les

projections.

Mots-clés: imagerie ultrasonore 3D, localisation, aiguille, ajustment de modèle,

filtrage rehausseur de ligne, temps-réel
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Abstrakt (in Slovak)

Táto téza sa zaoberá automatickou lokalizáciou tenkých chirurgických nástrojov,

ako napŕıklad ihiel alebo elektród, v troj-rozmerných (3D) ultrazvukových obrázkoch.

Presná a spol’ahlivá lokalizácia je dôležitá pre lekárske zákroky ako biopsia alebo

vsunutie elektródy do tkaniny.

Čitatel’ je uvedený do základov lekárskeho ultrazvukového zobrazovania. V práci

sa skúmajú lokalizačné metódy, ktoré zodpovedajú súčasnému stavu vývoja v oblasti.

Je množstvo metód, ako napŕıklad Houghova transformácia (HT) alebo Paralelná

integrálna projekcia (PIP), ktoré sú založené na projekciách. Ked’̌ze existujúce im-

plementácie PIP metódy sú pomalé, navrhujeme jej zrýchlenie pomocou pŕıstupu

viacnásobného rozĺı̌senia dát.

Navrhujeme použit’ metódu odhadovania parametrov modelu (angl. model fit-

ting), ktorá je založená na hl’adańı konsenzu náhodne vybraných vzoriek (skr. RAN-

SAC) a na lokálnej optimalizácii. Je to rýchla metóda vhodná pre použitie v

reálnom čase a navyše je robustná voči výskytu iných štruktúr s vysokým jasom

v obrázku. Predkladáme dva nové modely nástroja v 3D ultrazvukových obrázkoch,

ktoré sú založené na popise tvaru a výzoru. Lokalizácia nástroja môže byt’ vylepšená

s využit́ım informácie o jeho rúrkovom tvare. Navrhujeme model nástroja, ktorý

použ́ıva lokálne filtrovanie rúrkových objektov. Parametre tohto modelu sú odhad-

nuté pomocou RANSAC-u. Navrhnutý lokalizačný algoritmus je robustneǰśı za cenu

zvýšeného času potrebného pre predspracovanie dát.

Lokalizácia v reálnom čase je demonštrovaná implementáciou na 3D ultrazvuko-

vom skeneri Ultrasonix RP. Všetky navrhnuté metódy boli otestované na simulo-

vaných dátach, na ultrazvukových dátach fantómu (umelá vzorka nahradzujúca

tkaninu) a na skutočných ultrazvukových dátach prsńıku s bioptickou ihlou. Navrh-

nuté metódy majú v porovnańı s inými sučasnými metódami porovnatel’nú presnost’

a lepšiu spol’ahlivost’ meranú počtom správnych výsledkov.

Kl’účové slová: 3D ultrazvukové obrázky, lokalizácia, ihla, odhadovanie paramet-

rov modelu, rúrkovité filtrovanie, aplikácia v reálnom čase.
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Chapter 1

Introduction

Small instruments such as needles and electrodes are inserted into the biological

tissue in the surgical practice. Their precise location is required to be known during

the interventions which is a motivation for this work (Section 1.1). Our aim is

to develop an automatic localization method for tools in 3D ultrasound images

(Section 1.2) which shows the location of the tool in surrounding tissue.

We introduce the reader to basics of ultrasound imaging in the remaining part of

this Chapter (Section 1.3). The state of the art localization methods are reviewed

in the next Chapter 2. We describe two localization methods in detail: the Parallel

Integral Projection in Chapter 3, and the model fitting which uses a randomized

algorithm in Chapter 4. The line filtering is proposed for improvement of robust-

ness of model fitting in Chapter 5. The model fitting is demonstrated as real-time

localization in the last Chapter 6. We conclude the thesis with a summary and

future work in Chapter 7.

This work is a result of collaboration between the Center for Machine Perception

(CMP)1, Department of Cybernetics, Czech Technical University (CTU) in Prague

and the CREATIS-LRMN2 in Lyon, which is a common laboratory of Institut Na-

tional des Sciences Appliquées (INSA), Université Claude Bernard (UCB) Lyon 1,

CNRS UMR 5220 and INSERM U630. The project was funded in the framework

WARTHE3 (Wide Applications and Research Training in Health Engineering) which

is a part of European Comission’s Marie Curie Actions for Early Stage Training FP6

human resource programme. The author started his work in May 2007 and during

the PhD studies was supervised by Dr. Jan Kybic at CMP and co-supervised by

1http://cmp.felk.cvut.cz/
2http://www.creatis.insa-lyon.fr/
3http://www.warthe.eu

1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0035/these.pdf 
© [M. Uhercik], [2011], INSA de Lyon, tous droits réservés

http://cmp.felk.cvut.cz/
http://www.creatis.insa-lyon.fr/
http://www.warthe.eu


2 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Motivation for surgical tool localization: (a) biopsy needle localization,
e.g. in breast, (b) electrode localization in brain tissue.

Prof. Christian Cachard and Dr. Hervé Liebgott at CREATIS.

1.1 Motivation and clinical applications

Minimally invasive surgical procedures often involve insertion of a thin tubular

instrument into the human body. In a percutaneous biopsy (e.g. breast, liver,

prostate), tissue samples are taken from a region of interest by means of a thin nee-

dle [1] (Figure 1.1a). In prostate brachytherapy, small radioactive rods are inserted

inside the tissue by a hollow shaft [70]. For a neurological research, the electrical ac-

tivity of a specific group of neurons is recorded by a thin electrode [3] (Figure 1.1b).

The electrode is inserted through a hole in the skull and the ultrasound image is ob-

served through a second hole. In peripheral nerve block (PNB) anaesthesia, a needle

delivering an anaesthetic medicine is inserted close to the nerve and the arm or leg

is desensitized [54]. In all these cases it is important to localize the instruments,

to know their precise position which is the subject of our research. The desired

localization accuracy depends on the application: for needle biopsy it is 2–3mm, for

electrode insertion, it is around 0.3mm.

1.1.1 Guidance of surgical instruments

The precise navigation of surgical instruments is vital for reducing the damage to

the tissue caused by the insertion to a wrong location. Instrument miniaturization

makes the tool placement more challenging because the needle may bend due to

steering [26].
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1.1. MOTIVATION AND CLINICAL APPLICATIONS 3

(a) (b)

Figure 1.2: Medical imaging modalities used for guidance of surgical instruments:
(a) magnetic resonance image of tungsten electrode inserted into brain (Institut des
Sciences Cognitives, Lyon), (b) ultrasound image of a core biopsy needle in the tissue
close to a round tumor [103].

A stereotactic frame for instrument guidance on small animals was first intro-

duced in 1908 [55]. The frame is fixed to a solid part of body, e.g. bone, and allows

precise navigation with respect to external anatomical landmarks.

To avoid the limitations of stereotaxy and patient discomfort, frameless tech-

niques were proposed, e.g. the spatial localization of a tool using a radio-frequency

signal [105], or optical tracking with two calibrated cameras [35]. Glossop et al. [47]

propose a magnetic sensor embedded in the needle tip that allows to track it in

the surrounding magnetic field. Nowadays, stereotaxy is sometimes combined with

medical imaging techniques [79], e.g. MRI, CT, or ultrasound imaging (Figure 1.2),

and the localization accuracy achieves the order of tenth of a millimeter [86].

In this work, we focus on ultrasound (US) imaging of miniature surgical tools

as the US modality has several advantages: no ionizing radiation is produced and

the cost is relatively modest; ultrasound imaging is a standard technique in clinics

and offers a real-time acquisition speed. Our goal is to develop localization method

which relies only on image data. Unlike with the MRI that is not compatible with

metallic tools, ultrasound does not require any change in the clinical procedure.

1.1.2 Visualization of surgical tools

The surgical instruments are observed in 2D ultrasound images together with the

surrounding tissue because the guidance task might require to reach a particular

target or avoid some anatomical structures. The physicians must be trained to

maintain the observation plane incident with the tool. The problem can be partially
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(a) (b)

Figure 1.3: Ultrasound imaging of surgical tool: (a) probe observing the tissue, (b)
example of acquired 3D ultrasound image.

solved by fixing the needle to the probe [98]. A less restrictive solution is to acquire

3D data, then localize the tool and present a suitable 2D slice to the radiologist. The

tool marked by a colour line can be shown in the incident slice and a perpendicular

slice can be presented to give a view of surrounding tissue. When 3D data are used,

physician does not need to maintain the observation plane anymore. Ultrasound

image together with surgical instrument can be shown in augmented reality [74].

1.2 Task definition

The task addressed here is to automatically determine the 3D location of an elon-

gated tool, e.g. needle or electrode, in the US image of the biological tissue. The

coordinate system is defined relatively to the probe position (Figure 1.3a). The

tool is usually straight or slightly bended due to the lateral forces during insertion

and steering [26]. Bending is typical for thin electrodes (diameter around 0.3mm),

unlike biopsy needles which are thicker (diameter around 1mm) and stay straight.

The tool appears as a long thin cylinder with diameter around 1mm in ultrasound

image (Figure 1.3b). The tool voxels usually have the intensity higher than the sur-

rounding voxels, but the appearance is irregular because of the speckle noise which

is present in US images.

The localization task is decomposed into two sub-tasks:

� Axis localization (direction of tool) – it is important during insertion/steering,
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e.g. for identification of plane incident with the tool.

� Tip localization (endpoint of tool) – it performs a precise identification of

tool tip during intervention. Typically, the needle is inserted from outside of

observed area so there is at most one endpoint in the image.

The result should be computed from 3D volume in real-time, i.e. faster that the

acquisition speed (approximately 1 s for our 3D probe connected to Ultrasonix (Van-

couver, BC, Canada) RP scanner and performing a mechanical sweeping in the

azimuthal dimension).

1.3 Ultrasound image formation

In this section, the basics of ultrasound imaging are summarized including sound

propagation, instrumentation and image formation. Medical ultrasound exploits

the backscattering of acoustic energy from biological tissues. A series of pressure

pulses are transmitted into the body along pre-determined trajectories, each of them

forming a narrow ultrasound beam. Images are computed from backscattered signals

received for each beam.

The frequencies used in medical practice are typically in the range from 1 to

20MHz. The ultrasound acquisition is relatively fast and a real-time imaging is

possible with a frame rate from 5 to 80 frames per second for the 2D US. The tissue

is not mechanically altered in any way. Ultrasound scanners are relatively cheap

compared to other medical imaging modalities.

Ultrasound image acquisition is view-dependent (unlike tomography), and is af-

fected by a strong speckle noise [15]. However, the imaging of some types of tissue

such as bones or lungs is difficult, and the interpretation of the ultrasound images

needs to be done by a trained specialist.

1.3.1 Sound propagation in medium

The tissue is a medium for the sound propagation where an exchange of the kinetic

energy and the potential energy takes place. The waves are primarily longitudinal

in water and biological tissues. The waves are propagated by the tissue particles

which are alternately compressed and decompressed (Figure 1.4).

The wave equation describes the propagation of pressure p�x, t� which is a func-

tion of the position x and time t. A longitudinal wave in homogeneous medium
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Figure 1.4: Illustration of the propagation of a 1D longitudinal wave in homoge-
neous, loss-less medium [5]. The pressure p�x, t� is alternately compressed (C) and
decompressed (R).

without attenuation is described in 1D by a second-order differential equation [5, 6]:

∂2p�x, t�
∂x2

�
1

c2
∂2p�x, t�

∂t2
� 0 (1.1)

The pressure p�x, t� is related to the sound velocity c in the medium. Using the

medium compressibility κ [Pa�1], the sound velocity c is expressed in terms of

medium density ρ:

c �
1º
κρ

(1.2)

The sound velocity for some materials is summarized in Table 1.1. In the case of

a harmonic sound wave with frequency f , the propagation velocity is given by

c � λ � f (1.3)

where λ is the sound wavelength in the medium.

The acoustic properties of the medium are characterized by the acoustic impedance

which is an opposition to the flow of sound through a surface. The acoustic impedance

is defined as the pressure p per velocity v per area S:

Z0 �
p

vS
(1.4)

The specific acoustic impedance Z of is the ratio of sound pressure p to particle
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c [m�s�1] Z [10�6�kg�m�2�s�1]

Air 343 0.0004
Fat 1450 1.38
Water 1484 1.48
Blood 1550 1.61
Kidney 1560 1.62
Liver 1570 1.65
Skull bone 3360 6.00
Aluminium 6420 17.00

Table 1.1: Sound velocity c and specific acoustic impedance Z for some materials
and biological tissues [5].

velocity v at a point:

Z �
p

v
� Z0S (1.5)

The unit rayl defined as 1 [rayl] = 1 [kg�m�2�s�1] is commonly used to quantify the

specific acoustic impedance. The specific acoustic impedance of selected materials

and biological tissues is listed in Table 1.1.

Reflection and transmission

When the wave is propagated in tissue, a certain portion of the incident energy

is reflected (Ir) while the remaining portion is transmitted (It) (Figure 1.5) [5, 6].

Assuming a planar boundary of two homogeneous media (with dimensions much

greater than the wavelength λ), their portion can be quantified by the intensity

reflection coefficient RI and intensity transmission coefficient TI

RI �
Ir
Ii
�

� Z2

cos θt
�

Z1

cos θi
�2� Z2

cos θt
�

Z1

cos θi
�2 (1.6)

TI �
It
Ii
� 1 �RI (1.7)

where Z1, resp., Z2 is the specific acoustic impedance of the first, resp., the sec-

ond medium. The equations governing the angles of incidence θi, reflection θr and

transmission θt are given by
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Figure 1.5: Transmission and reflection of a sound wave on a planar boundary
between two media with distinct acoustic properties: the specific acoustic impedances
Z1 x Z2 and sound velocities c1 A c2. The angles of incidence θi, reflection θr are
equal and the angle transmission θt is changed because of the different speed of sound
c in the medium.

θi � θr, (1.8)

sin θi
sin θt

�
c1
c2

(1.9)

where c1 and c2 are the sound velocities in the first, resp., the second medium.

In case of different c1, c2, the transmitted wave is deviated from the direction of

incident wave leading to refraction artifacts in an image.

For the ultrasound wave propagation inside the human body, the angles θi, θt are

often not too big, so we neglect them θi � θt � 0 for the simplicity.

The amount of reflected energy depends only on the ratio between Z1, Z2:

RI �
Ir
Ii
�
�Z2 �Z1�2�Z2 �Z1�2 (1.10)

Using values of the specific acoustic impedances listed in Table 1.1, it can be shown

that the intensity of the reflected sound wave from an interface within soft tissue is

typically around 0.1% of the incident intensity. The reflection on other interfaces,

e.g. bones, can be stronger because of the higher specific acoustic impedance.

Scattering, absorption and attenuation

Incident wave travels through medium particles with dimensions smaller or compa-

rable to the wavelength, its energy is scattered into many directions in the form of

a spherical wave and thus propagates in all directions. Such waves interact through
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positive and destructive interferences resulting in a typical speckle noise pattern of

ultrasound images. The magnitude of scattered energy depends on many factors

including the shape, the size and the acoustic properties of scatterers.

Absorption is a process of converting the acoustic energy to heat when a sound

wave propagates through the medium. The energy is absorbed due to a relaxation

phenomenon, which is a force acting against the movement of displaced particles, is

also taking place. This force is trying to restore the equilibrium and it responsible

for the energy losses of the absorption process.

The loss of intensity (or energy) of the forward propagating wave because of scat-

tering and absorption is denoted attenuation. It is approximated by an exponential

function of the distance x and linearly depends on the initial intensity [5]

I�x� � I�0� � e�µx (1.11)

where µ [cm�1] is the intensity attenuation coefficient. Its value is often given in

units of decibels per centimeter µ [dB �cm�1]. The coefficient µ depends on the tissue

type and is proportional to the frequency f . The attenuation in biological media is

approximately 1dB � cm�1 � MHz�1. Decreasing the frequency permits to investigate

deeper located parts of a body at the price of decreasing the axial resolution which

is inversely proportional to the frequency.

1.3.2 Design of transducers

The key component for the ultrasound system is a transducer which converts the

electrical signal to the mechanical energy and vice versa. It operates in a pulse-

echo mode which perform two steps: transmission and recording [4]. In transmis-

sion mode, the transducer acts as loudspeaker sending out acoustic pulse which are

transmitted into the body as mechanical vibrations. Subsequently, the transducer

acts as microphone which records the received sound waves and converts them into

electrical signals. Afterwards the time-varying signal is processed and presented as

an ultrasound image (Section 1.3.3). Assuming the sound velocity in a tissue to be

known (1540 m�s�1), the distance from the transducer is determined from the time

elapsed from transmission to the reception.

Transducers are usually composed of an array of small piezoelectric crystals.

The dimensions of the single crystal is periodically changed by applying harmonic

voltage. The array configuration is used for electronic beam forming and dynamic

focusing. The focusing is a beamforming technique which changes the shape of the
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(a)

(b)

Figure 1.6: Physical layout of a five-element transducer with a 2D FOV and phased
array beamforming: (a) bunch of pulses transmitted with a delay pattern achieves
steering and focusing of wave; (b) echoes returning to the transduced are delayed and
summed together. [4]

propagating wave so that the energy is concentrated at specific depth. It allows

to increase the resolution of the US scanner. The physical layout of crystals on

the transducer determines the shape of the observed field of view (FOV) and its

dimensionality which is discussed in the following text.

Linear and sector 2D scanning

Transducers for 2D scanning consist of a large number (64–512) of piezoelectric

crystals arranged in a single row. Exciting few adjacent crystals by a voltage pulse,

a sound beam is produced (Figure 1.6a). Afterwards the echoes backscattered from

the medium are received by the same group of crystals (Figure 1.6b). [5, 6]

The ultrasound probes usually use two configurations of transducers:

1) The linear transducers consist of crystals arranged in a line. Parallel beams are

produced and they provide 2D images with a rectangular FOV. The FOV can be

extended by steering beams at ends of the array. A probe with the linear transducer
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Figure 1.7: (a) Linear or (b) sector transducer with 2D FOV is translated to acquire
a series of parallel 2D images. (c) The scan plane of a linear or (d) sector probe is
tilted while 2D images are acquired with a predetermined angular step.

is suitable, e.g., for observation of shallow objects in the body such as carotid arteries

or cysts in the liver.

2) The sector transducers use the same pulse excitation as linear transducer but

the array of crystals is placed on a convex curve. They produce a fan-shaped field

of view and therefore they have a larger FOV. A probe with the sector transducer

is suitable, e.g., for observation of the hearth from the space between ribs.

Scanning with a 3D FOV

The matrix transducers have piezoelectric elements arranged in a rectangular grid

form. It allows to steer the ultrasound beam electronically in two directions, creating

a 3D field of view. The resolution of such systems is better than other 3D probes

because the focusing is done in two dimensions. [36]

The matrix transducers are at the level of development and they are not standard

yet in industry. Instead, many 3D imaging systems acquire data by scanning 2D scan

planes and composing them into 3D volume. The mechanism inside the probe allows

to tilt or shift the 2D transducer in the acquisition procedure (Figure 1.7). The

acquisition time is increased multiple times (to around 1 s) compared to matrix

transducers but is still sufficient for medical examinations.

1.3.3 Image reconstruction

The acquisition of ultrasound data consists of transmission of pulses and recording

of echoes from the tissue which explore the space in narrow beams. The beams are
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organized in an array of Nb�Np in case of 3D data acquisition. There are Np planes

and each plane consists of Nb beams. For each beam ri,j, a radio-frequency (RF)

signal of length Ns is recorded over time at a sampling rate fs. The RF signal is

digitized to ri,j�n� and it is processed by a sequence of operations (Figure 1.8) in

order to generate ultrasound image.

Band-pass filtering. Received RF signals can have some frequency components

outside the frequency band of the transducer. These components correspond to noise

and they need to be suppressed. Therefore, RF signals are filtered with a band-pass

filter whose parameters correspond to the frequency band of the transducer. Let us

denote the filtered RF signals by fi,j�n�.
Envelope detection. Image intensities shown on the ultrasound screen are de-

rived from the energy of the filtered RF signals. The common way of computing

the RF signal envelope is using the Hilbert transform H��� [5] which is defined for

a continuous real-valued signal x�t� as a complex function

x̂�t� � H�x�t�� � 1

π S
ª

�ª

x�τ�
t � τ

dτ (1.12)

The Hilbert transformation is interpreted as the output of π
2 phase shifter with input

x�t� and the impulse response h�t� � 1
πt . The amplitude envelope e�t� of a signal

x�t� is computed as the complex module of the sum of the original signal and its

Hilbert transformation

e�t� � Sx�t� � jx̂�t�S � Sx�t� � j �h�t� � x�t��S (1.13)

where j is a complex unit and � denotes a convolution. The US scanners often use

an approximation of the Hilbert transform such as quadrature demodulation [4].

Logarithmic compression. The dynamic range of the RF signals and envelope

signals ei,j�n� is up to 80dB which makes the simultaneous perception of high and

low intensities difficult for a human observer. In most ultrasound imaging systems,

the amplitude of envelope signals is compressed before displaying by a logarithmic

function

ci,j�n� � k1 log �ei,j�n� � k2� ; (1.14)
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Figure 1.8: Block scheme [9] illustrating the reconstruction of an ultrasound image
from acquired RF signals. Intermediate data are shown on the right side.
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Figure 1.9: The geometry of 3D ultrasound data showed as wireframe model of the
volume boundary: (a) sectorial geometry (b) book-shape geometry.

where k1, k2 are parameters influencing the degree of amplitude compression. Jensen [60]

proposes for the purpose of visualization to set both parameters k1, k2 to 1.

Scan conversion. The values in ci,j�n� specify the intensity of voxels aligned along

the i-th ultrasound beam on the j-th scan plane. To display the acquired image,

we must determine for each ci,j�n� its coordinates in a Cartesian coordinate system.

The explicit conversion formula depends on the probe used for acquisition. We give

examples of two types of geometry from Figure 1.7: sectorial (c) and book-shaped

(d) geometry.

In case of a 3D probe with sector geometry (Figure 1.9a), the conversion formula

for computation of the Cartesian coordinates �x, y, z� from the indices �i, j, n� is
<@@@@@@>
x�i, j, n�
y�i, j, n�
z�i, j, n�

=AAAAAA? �
nc

2fs

<@@@@@@>
sin�ϕi�

cos�ϕi� sin�θi�
cos�ϕi� cos�θi�

=AAAAAA? (1.15)

where θj is a tilt angle of the j-th plane with respect to axis z and ϕi is a scan angle

of i-th beam in the j-th plane.

In case of a 3D probe with book-shaped geometry (Figure 1.9b), the conver-

sion formula for computation of the Cartesian coordinates �x, y, z� from the indices�i, j, n� is <@@@@@@>
x�i, j, n�
y�i, j, n�
z�i, j, n�

=AAAAAA? �
<@@@@@@>
sxx�i, j, n�
nc
2fs

sin�θi�
nc
2fs

cos�θi�
=AAAAAA? (1.16)

where θj is a tilt angle of the j-th plane with respect to axis z and sx is a scale
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factor of with respect to axis x.

The conversion usually includes computation of intensities for each voxel vx,y,z

in an axis-aligned 3D grid by backward interpolation into the original volume data

ci,j�n�. In case of visualization of a section plane, it is enough to compute coordinates

of points in the plane and compute their intensities by interpolation. The data are

presented to the screen as perpendicular slice sections (Section 1.1.2).

1.4 Observation of tool in ultrasound images

In clinical practice, localization of surgical tools in ultrasound images is mostly done

by a human expert [57]. Clinicians need to interact with the tool in the tissue in

order to guide it to the target area. However, automatic methods (Chapter 2) can

help with the localization.

The 2D ultrasound imaging is a common standard but it is limited by observing

only one plane at a time. A larger volume of interest is observed by the 3D ultrasound

and the guidance task becomes easier [16]. It is more difficult for radiologist to

handle the 3D data, so there is an increased demand for an automatic method.

Various non-image based solutions have been proposed to improve the needle

contrast in the ultrasound image [17], [20]: passive markers at the needle tip which

enhance the ultrasound signal [91]; the adaptive ultrasound beam steering which

enhances the energy of reflected ultrasound wave by sending it more perpendicular

to the needle [19]. In this work, we focus on pure ultrasound image processing based

methods and therefore modifications of the surgical tools or the clinical protocol are

not necessary.

Difficulties of US imaging of metallic tools. A metallic tool usually has

a much higher acoustic impedance than the surrounding tissue (Figures 1.10 and

1.11). Thus the reflections from tool appear as high intensity pixels in the ultrasound

image. A problem is that varying the angle between the tool and the ultrasound

beam might make the signal to noise ratio (SNR) lower because metallic tools are

not perfect diffuse reflectors (Figure 1.11b). Some types of tissue (e.g. fat, bones)

have a similar high-intensity appearance as the tool (Figure 1.10).

Acoustic shadows, attenuation and other artifacts can also locally obscure the

continuous appearance of the tool [56] (Figure 1.10). Moreover, specific combina-

tions of the tool (such as a needle with a hole inside) and the transmission frequency

can generate reverberation artifacts [87] (Figure 1.11a).
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Figure 1.10: 2D slice of 3D ultrasound image of a biopsy needle in the breast tissue.
The US image was acquired by GE Voluson E8 scanner with a 12MHz probe and
the needle has a diameter 1.092mm. The high intensity structures in the top are
2D layers of fat tissue. The needle is straight (marked by the green arrow) but the
appearance is irregular because of speckle noise and shadowing by the particles above
the tool.
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(a) (b)

Figure 1.11: 2D ultrasound images of a tungsten micro-electrode in the brain tissue.
The US image was acquired by Phillips US scanner with a 15MHz probe. The
structures in the top belong to the cortex or white matter. The electrodes are in the
bottom part, marked by the green arrow. The electrode in the figure (a) has a tail on
the right side. Its appearance is interrupted probably by a shadow. The electrode in
the figure (b) has varying contrast. The contrast on the tip (where the green arrow
points) is lower than in the middle part of the tool.
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Chapter 2

State of the art

A variety of algorithms for elongated object localization in ultrasound (US) data

have been proposed. Most of them assume that the object, i.e. surgical tool in

US image, appears brighter than background voxels and that the tool axis is straight.

A method based on the Principal Component Analysis analysis is described in

Section 2.1. Many methods use a kind of integral projection: the standard Hough

transform (Section 2.2) and its modifications, e.g. the randomized Hough trans-

form (Section 2.3) or the Parallel Integral Projection (Section 2.5). The methods

based on the Hough transform are applied to a straight tool localization in US im-

ages (Section 2.4). Another approach is a model fitting method (Section 2.6) using

a randomized algorithm which is a fast method able to estimate also a curved tool.

The method for tool tip localization is described in the last Section 2.7.

The survey of various tool localization methods was written in the author’s thesis

proposal [P7]. We have presented the review of needle localization methods at the

International Congress on Ultrasonics (ICU) 2009 [P6].

2.1 Principal component analysis method

The detection of elongated tubular object in thresholded image is done using the

Principal component analysis (PCA) [62]. The dominant eigenvector is detected

(other eigenvectors are assumed to be smaller) using the eigenanalysis of points

belonging to cylindrical objects.

Tool detection using PCA in a 2D image. Draper [30] uses a 2D ultrasound

(US) image incident with a needle to track the biopsy needle in the breast tissue.

19
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First, the local variance image I1 of the original US image is computed to enhance

the tool voxels and suppress the background noise. The size of the local window and

the variance is found as a trade-off of the needle enhancement and computational

time.

Then, a binary image is created by adaptive thresholding. The intensity of pixels

in I1 is modelled as a single normal distribution with the mean value µ and variance

σ2. The parameters of distribution are estimated from the training data. An appro-

priate threshold as T � µ�kσ, where the value of k A 0 is found experimentally [30].

A morphological closure with a 3�3 symmetrical structural element is applied in

order to obtain a smooth tool contour. The morphological closure also reduces the

possibility of accidentally connecting the clusters of various structures in the image.

The clusters Ci �i � 1, ..,N� are found by a connectivity analysis using an 8-pixel

neighbourhood. Let us denote by Ri the covariance matrix of pixel coordinates

in the cluster Ci, Eigenvectors vi,1,vi,2 of Ri and the corresponding eigenvalues

λi,1 C λi,2 C 0 are determined using the PCA. The line approximating a cluster Ci

is defined by its mean �x, y� and the eigenvector which corresponds to the largest

eigenvalue. The needle is then identified among the needle candidates as the cluster

with the largest eigenvalue λi,1.

The location of the end-point (tip) is found in the binary image on the estimated

tool line. Clusters along the line separated by a gap smaller than the electrode

diameter are joined together. The tool tip is found as the end-point of the largest

cluster.

Tests were performed on a tissue mimicking phantom containing a biopsy needle

of diameter 2.1mm with US scanner operating at 5.5MHz [30]. The tool axis and

tip in 2D image were determined by the algorithm with accuracy of 1mm for a depth

of insertion greater than 15mm.

Tool detection using PCA in 3D volume. Novotny et al. [75] proposed an

extension of Drapper´s method in 3D. The binary pre-segmentation of volume is

created by thresholding. Connected components (using a 26-voxel neighborhood)

are analyzed using the PCA. The longest and the straightest candidate are selected

by maximizing the ratio of the first and second eigenvalue.

The experiment was done with a cylindrical rod of diameter 6.2mm submerged

in water tank close to the tissue sample. The algorithm succeeds to segment the

rod from tissue which was located at distance 2mm. The mean tip accuracy was

0.7mm and the mean variance 0.6mm.
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The problem with the PCA based methods is that the component belonging to

the tool has to be continuous and the appearance of the tool is not continuous in

the real case.

2.2 Standard Hough transform

In the following two sections, the Hough transform (Section 2.2) and the randomized

Hough transform (Section 2.3.2) are explained. Both of them convert the image into

the space of line parameters. Section 2.4 discuss various applications of the HT to

tool localization in US image.

The Hough transform (HT) was proposed for line detection in 2D images [32].

The idea is to use a voting scheme and dual representation of the line. A line in the

image space represented as

Linea,b � ��x, y� > R2 S y � ax � b� (2.1)

corresponds a single point �a, b� in the parameter space (also called the Hough

space). Each point �x, y� in the image space is transformed into a set of possible

line parameters �a, b� such that a line Linea,b passes through �x, y�:
Pointx,y � ��a, b� > R2 S y � ax � b� (2.2)

which is a line in the Hough space. The intersection of all such lines in the Hough

space is a single point �a, b� and represents the desired line in the image space.

Practically, the input image f�x, y� is thresholded and transformed point-by-

point into a set of lines in the Hough space. The accumulator is incremented for

the set of points �a, b� in the Hough space corresponding to the point �x, y� in the

image space according to (2.2). The Hough space is discretized using an accumulator

array which is a uniform grid over the bounded parameter space (Algorithm 1). The

accumulator grid must be sufficiently fine for accurate localization of the thin tool

but significantly coarse so that bins get enough votes to allow unambiguous solution.

The lines are detected as local peaks in the Hough space. The local maximum is

detected in the local neighbourhood window N �N , where N is a parameter, e.g.

N � 5.

Note that better parametrization of line is using polar coordinates �θ, r� [32]
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Input:
f�x, y� — input image.

Output:��θi, ri� S i C 0� – set of detected lines.
forall �θ, r� do A�θ, r�� 0;
forall �xi, yi� > R2 s.t. f�x, y� C T do

Compute the set of bins ��aij, bij�� corresponding to �xi, yi� according to
(2.2) or (2.3):
foreach �aij, bij� do

A�aij, bij�� A��aij, bij�� � 1;
end

end
Find local maxima ��θi, ri�� in accumulator A�θ, r�;
Algorithm 1: The HT for line detection in a thresholded image f�x, y�.

(Figure 2.1):

Lineθ,r � ��x, y� > R2 S y sin θ � x cos θ � r� (2.3)

because it avoids the singularity of a line parallel to the y-axis. The parametrization

(2.3) leads to a more uniform distribution of points in the parameter space when

considering all lines which admissible in the volume boundary.

Relation to the Radon transform. The Hough transform with the parametriza-

tion in polar coordinates (2.3) is related to the Radon transform (RT) [51] which is

defined as integral of the image function f�x, y� > R over curve L

R�θ, r��f�x, y�� � S
L
f �x�t�, y�t��dL�t� (2.4)

where the integration is performed with respect to measure dL�t�. We obtain the

HT with 2 parameters when doing the RT along a straight line:

L�t� � �x�t�, y�t�� � t �sin θ,� cos θ� � r �cos θ, sin θ� (2.5)

where r is the distance of line from the origin and θ is the angle to x-axis. Note

that (2.5) is a parametric form of (2.3). It is differentiable by t which is required by

the Radon transform (2.4).

The image transformed into the Radon (parameter) space �θ, r� is often called

a sinogram and it is used in computer tomography [71] for an image reconstruction.

The HT can be also extended for detection of other parametric shapes [8], e.g.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0035/these.pdf 
© [M. Uhercik], [2011], INSA de Lyon, tous droits réservés



2.3. MODIFICATIONS OF THE HOUGH TRANSFORM 23

x

y

 

 

50 100 150 200 250

50

100

150

200

0 100 200

θ
r

 

 

50 100 150

50

100

150

0 100 200 300 400

Max

(a) (b)

Figure 2.1: Hough transform using polar coordinates (2.3): (a) the input US image
with a linear tool, (b) the output Hough space with parameters �θ, r�.
circle, ellipse. The computational complexity is increased exponentially with the

number of dimensions of the Hough space. The HT has been extended for curved

object detection [77] (details in Section 2.4) and specifically for thin needle detection

in US images.

2.3 Modifications of the Hough transform

2.3.1 The 3D Hough transform

The HT is generalized also for 3D line detection [106, 108]. The line in 3D is defined

by at least 4 parameters [82]. The point p and the vector v defining the line in 3D

is computed from spherical coordinates:

Lineϕ,ρ,θ,r � �x�t�, y�t�, z�t�� � pθ,r � tvϕ,ρ (2.6)

where point pθ,r is an intersection of line with base plane (intercept point with the

plane xy). The spherical coordinates for pθ,r and the azimuth and the elevation for
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vϕ,ρ are

pθ,r � �r cos�θ�, r sin�θ�,0� , (2.7)

vϕ,ρ � �cos�ϕ� cos�ρ�, sin�ϕ� cos�ρ�, sin�ρ�� (2.8)

Line detection is done similarly to the 2D case but the 4D accumulator is much

bigger.

Bhattacharya et al. [13] decompose the finding of line in 3D into: (i) finding the

slope of 3D line in 2D parameter space �ϕ, ρ�, and (ii) finding its intercept pθ, r

of a 3D line also in 2D parameter space (so called a (2+2)D Hough space). The

experimental results on range images of 3D objects were demonstrated and more

moderate costs have been achieved compared to the standard 3D Hough transform.

2.3.2 Randomized Hough transform

The randomized Hough transform (RHT) has been proposed by Xu and Oja [100,

102]. The RHT maps a pair of points �x1, y1�, �x2, y2� > R2, which define a line, into

a single point �a, b� in the parameter space.

2 Points � ��x1, y1�, �x2, y2��� �a, b� (2.9)

It is in contrary to the standard HT which maps 1 point �x, y� to a curve in a pa-

rameter space. The RHT is more time-efficient than the standard HT.

The RHT (Algorithm 2) iteratively samples random pairs of points in a thresh-

olded image, and increments corresponding bins in the accumulator. The proba-

bility distribution of line parameters is represented by a uniform grid accumulator

or by an other approximation method using a probability distribution [101]. The

solution candidates are found as local maxima in the accumulator.

The RHT has been generalized to the 3D line detection by [108] and used for

needle detection in US image. The improved Quick RHT (QRHT) uses a coarse-to-

fine strategy to improve the speed [81]. The application of the RHT and the QRHT

for tool detection in US images are further discussed in Section 2.4.

2.3.3 Probabilistic Hough transform

In the Probabilistic Hough transform (PHT) [65], a randomly selected subset of

points is used as input for the standard Hough transform. The time complexity
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Input:
f�x, y� — input image.
N — the number of iterations.

Output:��θi, ri� S i C 0� – set of detected lines.
A�θ, r�� 0; j � 1;
while j B N do

Select randomly a pair of points �x1, y1�, �x2, y2� > R2 s.t.
f�x1, y1�, f�x2, y2� C T ;
Compute parameters �θ, r� from �x1, y1�, �x2, y2�;
Increment accumulator A�θ, r�� A�θ, r� � 1;

end
Find local maxima ��θi, ri�� in accumulator A�θ, r�;
Algorithm 2: The RHT procedure for line detection in an image f�x, y�.

of the PHT is reduced compared to the standard HT at the expense of increased

variance. Comparison of the HT methods (RHT, PHT, HT) [67] shows that the

RHT is the fastest method for line detection. Several modifications of the RHT are

proposed in [67] as well. The performance evaluation of the HT, the PHT, and the

RHT is presented in [66]. It is shown that the RHT is better suited for high quality

low noise edge images, while the PHT is more successful for noisy low quality images.

The experiments were done on synthetic images of points belonging to a line and

randomly distributed background points.

2.4 Tool localization with the HT

Okazawa et al. [77] provides an overview of previous work in tool localization in

US images. Ding et al. [27, 28] proposed to use 2D projections of 3D US volume

for faster detection of a tool. Initially, a region of interest (ROI) which contains

the tool is selected. To avoid the computational burden of an exhaustive 2D search

for the needle direction, a faster 1D search procedure is proposed. First, a plane

which contains the needle direction is determined by finding the line in the initial

projection. Subsequently, an adaptive 1D search technique is used to adjust the

projection direction iteratively until the projected needle area is minimized. Wei

et al. [99] uses the method for 3D guidance for robot-aided prostate brachytherapy.

Experimental testing showed that the algorithm finds the 3D needle orientation

within 0.54 degree for a chicken tissue phantom, and 0.58 degree for agar phantoms,

over a �15 degrees insertion orientation.
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The application of the 3D RHT to a localization of a needle in US images was

proposed [106]. The RHT discretizes the parameter space and randomly samples

pairs of 3D voxels in thresholded volume (Section 2.3.2). Standard accumulator

(uniformly discretized over parameter space) is used. Reported average time of lo-

calization is 1 second [107, 108]. Qiu et al. introduced a quick randomized 3D Hough

transform [81] which reduces the computational effort by doing the RHT only on

coarse resolution images, and subsequently refines the solution locally. The reported

angular deviation of the estimated position is less than 1 degree, position deviation

less than 1mm, and the computational time is less than 1 second. All experiments

were done in a water tank only.

Okazawa et al. [77] proposes two methods for detection of a tool in 2D US images,

both based on the HT. In the first method, a rough approximation of the axis is

found. A boundary detection is performed in the direction perpendicular to the

axis. The final needle axis is found by the HT. The second method uses a field

of possible trajectories of an inserted needle which is assumed to be an arc with

constant curvature. The field is used to transform the image with needle so that the

needle is straight after the transformation. The proposed method has been tested

on US images of a phantom and on photographic images.

Salcudean et al. [83] developed a robotic system for needle guidance for prostate

brachytherapy. The reported translational repeatability was 0.06 mm, and the ro-

tational repeatability was within 0.05 degree. An extended needle insertion study

using US-based 2D motion tracking was presented in [24].

Aboofazeli et al. [2] propose a scheme which also detects curved needles in 3D US

images. A 2D projection is done first similarly to the method of Ding et al. [29].

A 2D parallel projection along specified direction is done using a volume rendering

technique (VRT). The tool is segmented in a projected 2D image and then projected

back to 3D volume as a surface. The 3D location of the tool is found in the sur-

face. The curved shape is modelled by approximating the tool by few short straight

segments.

A modified Radon transform for instrument localization has been proposed by

Novotny et al. [76]. They divided the volume into smaller spherical regions and

detected the axis in parallel in each of them using a fast method implemented on

a graphics processing unit (GPU). They demonstrated a real-time system for track-

ing of tubular instruments of diameter 5mm (enhanced with passive markers [90])
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in a cardiac sequence with accuracy 0.2mm [91].

A method based on the generalized HT represents the tool as a Bézier curve

of order three which allows the curved shape to be modelled [73]. It increases the

number of parameters of the tool and therefore also the time complexity of solution.

The speed of the method has been optimized by a parallel implementation on the

GPU. The method is demonstrated on 3D US images of brachytherapy needle (of

diameter 0.7mm) in a gelatin agar phantom.

2.5 Parallel Integral Projection

The Parallel Integral Projection (PIP) [P2, 9] is a transform which integrates the

volume over parallel lines given a spatial angle �α,β�. The integration lines are

summed in a projection plane which is perpendicular to lines. The PIP transform

can be used for finding the straight tool axis by finding the maximum value of

the PIP over varying orientation. When the projection is done parallel to the tool

axis, all tool voxels contribute to a single point in the projection plane, and the PIP

transform is maximized. An efficient method for maximization of the PIP transform,

and thus also finding the angle �α,β� has been proposed [P2, 9]. The details about

the PIP-based tool localization and its improvements are in Chapter 3.

2.6 Model fitting methods

A model fitting approach estimates the tool defined by a set of parameters. A me-

thod based on the RANSAC procedure [37] is used to solve the problem of a curvilin-

ear object localization in 3D US image. Tao et al. [93] proposed a method based on

the RANSAC which was applied to range data from an underwater acoustic camera.

He approximates the sought object by superquadrics and with help of the RANSAC,

the outliers are filtered out.

Barva et al. [12] developed the idea of model fitting for tool localization in US

images. The input 3D US image is thresholded to reduce the amount of data. The

location of the tool (defined as a polynomial curve) is estimated using the RANSAC

procedure. The precise location of the tool is found by subsequent local optimization

of the model. Finally, the tip of the tool is localized by the method described in

Section 2.7. Barva proposed in three shape and appearance models of the tool in US

images which are summarized in his PhD thesis [9]. We have developed his method
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Figure 2.2: Intensity profile along the estimated axis a�t� is used to identify the part
of the axis that passes through the tool.

further and created new tool models. We give a detailed description of the method

in Chapter 4.

2.7 Tip localization

Once the tool axis is identified, we determine the coordinates of tool endpoint. In

most cases, the tool is not entirely comprised in the field of view since only a small

part of tissue is scanned by the scanning device. Therefore, we only localize one tool

endpoint (referred to as a tool tip) that is located inside the field of view.

We use the method [P2, 9] for the tool tip localization in methods proposed in

Chapters 3 and 4. We describe it here in more detail. The tool axis is modelled as

a parametric line or curve in 3D (Chapter 4, Section 4.1.2). Let a�t� be the tool

axis: a � R � R3 with a parameter t > R. Let B�t� be the voxel intensity along the

estimated axis a�t�:
B�t� � I�a�t��; ¦t > R � a�t� >Ω (2.10)

Figure 2.2 shows an example of an intensity profile along the estimated axis.

While tracing the values of B�t� for increasing t, let t� be the first value where B�t�
decreases under a pre-determined threshold T . The coordinates of the tool tip are

given by a�t��.
The threshold value T is determined from two a priori estimated probability
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distributions: probability of the tool voxel p�tl S I�, resp. background voxel p�tl S I�
given the voxel intensity I. Parameter T is such that p�tl ST � � p�bg ST �. To

estimate these distributions, voxels were classified as tool or background voxels in

a dataset with known tool position.

The breaks smaller than bmax are skipped during the tracing of B�t� . The max-

imum length of a break bmax is determined using a histogram of break lengths, as

the 95% quantile.
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Chapter 3

Improving the Parallel Integral

Projection

The Parallel Integral Projection (PIP) was used by Barva et. al [P2, 11] for a straight

tool localization in 3D images (Sections 3.1 and 3.2). The PIP is related to the gen-

eralized 3D Radon transform [51]. The comparison to other methods [10, P6] and

summary of the PIP method is given in Barva’s thesis [9].

We propose the multi-resolution improvement of the PIP method (Section 3.3)

which was also presented at the IEEE International Symposium on Biomedical Imag-

ing (ISBI) 2008 [P3]. We show that the downsampling with use of a maximum

decimation filter achieves the better results than the standard downsampling with

averaging.

We have published the method based on the PIP transform in the IEEE Trans-

actions on Ultrasonics, Ferro-electrics, and Frequency Control (UFFC) [P2]. The

author contributed to the project by making final corrections of the paper.

3.1 Definition of the PIP

The PIP is a transform that maps an image function I � R3 � R representing the

volume data to a function PI � R4 � R describing its projections as the projection

direction determined by two angles �α,β� and a function of the 2D displacement�u, v�. More formally, the PIP transformation of I�x� is defined by an integral along

a line passing through the point Q � �u, v� with a direction given by angles α, β:

PI�u, v,α, β� � S ª

�ª

I �R�α,β� � �u, v, τ�T �dτ, (3.1)

31
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where R�α,β�
R�α,β� � �����

cosβ sinα sinβ � cosα sinβ

0 cosα sinα

sinβ � sinα cosβ cosα cosβ

����� (3.2)

is the rotation matrix representing a rotation around the x-axis by angle α, and

around the y-axis by angle β. The range of values �u, v,0� covers the entire volume

in all projections.

The PIP transform is used to identify the axis of a thin tool in a 3D image

assuming the intensity of tool is greater than the intensity of background. As the

tool diameter tends to zero, the location of the PIP maximum

�umax, vmax, αmax, βmax� � argmaxPI�u, v,α, β� (3.3)

approaches the axis of tool with a parametric equation

a�t� �R�αmax, βmax� � �umax, vmax, t�T ; ¦t > R. (3.4)

The integral PI is evaluated numerically. The integration line is sampled with

a sampling step corresponding to the axial resolution of an ultrasound system.

We shall optimize the PIP transformation (3.3) of a 3D image on a discrete grid.

The discretization step ∆ for parameters �α,β� and the discretization step Γ for�u, v� must be sufficiently fine in order not to miss the tool. It is necessary that at

least one integration line passes through the tool.

3.2 Optimization of the PIP

We decompose the maximization of PI (3.3) to an inner maximization with respect

to �u, v� and an outer maximization with respect to �α,β�. Let us define a function

A�α,β� �max
u,v

PI�u, v,α, β�, (3.5)

that is referred to as the angle function. We shall now find values αmax, βmax that

maximize the angle function A�α,β�,
�αmax, βmax� � argmax

α,β
A�α,β�. (3.6)
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Figure 3.1: Maximization of the angle function A�α,β�. (a) Exhaustive search
with discretization steps evaluates A�α,β� at each grid point of a square grid`0,180Xe � `0,180Xe uniformly sampled with discretization steps ∆ � 1X. (b) Five-
level hierarchical mesh-grid search with initial steps ∆1 � 16X and final discretization
steps ∆5 � 1X. The size of a search region and discretization steps ∆ are decreased
by factor of 2 at each level. Black rectangles in the figure delineate the region of
search on each level.

Two approaches to the maximization have been tested: (i) exhaustive search

and (ii) hierarchical mesh-grid search. [14] Both approaches do not require an initial

solution and they do not need derivates. We decided to use the hierarchical mesh-

grid method since its time complexity is lower and it also avoids local maxima to

some extent.

Exhaustive search. The interval �α,β� � `0X,180Xe � `0X,360Xe covers all 3D ro-

tations. There are two optimal rotations �αmax, βmax� of the angle function A�α,β�
(3.6) in this interval which correspond to the projection planes with the opposite

orientation. Therefore, it suffices to maximize the angle function in the interval`0X,180Xe � `0X,180Xe. The grid is uniformly sampled with discretization steps ∆,Γ

and the angle function is evaluated at each grid point (Figure 3.1a).

The total number of the evaluations of angle function A�α,β� is equal to �180X∆
�2,

where ∆ is the sampling step of angle space �α,β�.
Hierarchical mesh-grid search. The main drawback of the exhaustive search is

its computational complexity. We propose to use the hierarchical mesh-grid search

method [50] to alleviate it. On the ith level, A�α,β� is evaluated on a rectangular

grid of points that are uniformly sampled (Figure 3.1b). Generally, the angle func-

tion is evaluated on a grid `αi�1
max �

180X

2i
, αi�1

max �
180X

2i
e � `βi�1

max �
180X

2i
, βi�1

max �
180X

2i
e with
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max 2x max 4x max 8x max 16x

avg 2x avg 4x avg 8x avg 16x

Figure 3.2: The 2D image of a slice with needle selected from 3D volume, and multi-
ple downsampled images using max and avg functions. The original resolution was
53�71�262 voxels, for each coarser level the resolution has been divided by two. The
tool of radius 0.3mm is blurred out in case of the avg function in coarse resolutions,
while for the max function the contrast between the tool and the background stays
relatively good.

discretization steps ∆i �
∆1

2i�1
. The algorithm continues until the step ∆i is inferior

to a predefined threshold value ∆final that controls accuracy of axis localization.

The asymptotic complexity of the method is logarithmical compared to exhaus-

tive search. The details and the discussion about proposed algorithms can be found

in [P2].

3.3 Multi-resolution PIP

As the basic PIP method [P2, 9] is rather slow, we want to improve its speed. We

propose to use downsampled 3D images for tool localization with a special decima-

tion filter. We show that more reliable results on downsampled images are obtained

by using a maximum function than with a standard averaging of neighbouring ele-

ments.

A discrete function Ismp � N3 � R represents an image I at the pixel grid. We

define the downsampled image Idown of image Ismp by a factor Mx,My,Nz > N.
The intensity of voxel �x, y, z� in downsampled image is computed as a function of

intensities of neighboring voxels of size Mx �My �Mz:

I
f
down�x, y, z� � f

¢̈̈¦̈̈¤ Ismp�xMx � i, yMy � j, zMz � k�,
0 B i @Mx, 0 B j @My, 0 B k @Mz

£̈̈§̈̈¥ , (3.7)
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Input: 3D image Ismp with tool, constants
∆init,∆final,Γinit,Γfinal,Kinit,Kfinal

Result: Tool axis: �αmax, βmax, umax, vmax�
Create multiple resolutions I1...In;1

k �Kinit, ∆�∆init, Γ� Γinit, R � 90X;2

A� �0X,∆,2∆, ...,180X� � �0X,∆,2∆, ...,180X�;3

while ∆ A∆final or Γ A Γfinal or k AKfinal do4 �αmax, βmax, umax, vmax� � argmaxα,β maxu,v5

PIk�u, v,α, β� where �α,β� > A and �u, v�
> �u1, u1 � Γ, ..., u2� � �v1, v1 � Γ, ..., v2�;

k �max�k � 1,Kfinal�;6

∆�max�∆~2,∆final�;7

Γ�max�Γ~2,Γfinal�, R � R~2;8

A � �αmax � R, αmax � R � ∆, ..., αmax � R�9

� �βmax � R, βmax � R � ∆, ..., βmax � R�;
Algorithm 3: Hierarchical mesh-grid search of the MR-PIP. Constants
u1, u2, v1, v2 are boundaries of the projected volume, A contains the set of angles
for evaluation of PIk , R is the size of the current interval of angles. ∆init,∆final

and Γinit,Γfinal are initial and final discretization steps for ∆ and Γ respectively.
Kinit and Kfinal is initial and final level of resolution respectively.

The f should preserve well the contrast between the tool and the background. We

examine two functions: the standard averaging (f � avg) and the maximum function

(f �max) of a set of values which is a quantile with the top rank. We discuss some

other options in Section 3.5. We set Mx �My �Mz � 2. A multi-resolution pyramid

was constructed by repeated downsampling (Figure 3.2):

I1 � Ismp,I2 � I
max
down�I1�, . . .In � Imax

down�In�1�. (3.8)

Algorithm. We use a hierarchical mesh-grid search (Section 3.2) [P2, 9, 14] for

finding the maximum �αmax, βmax, umax, vmax� of the PIP transform with respect

to (3.6). We modify the maximization by using a multi-resolution pyramid (Algo-

rithm 3). The discretization step ∆ for �α,β� and the discretization step Γ for �u, v�
is iteratively decreased as the resolution level Ik is refined. The multi-resolution

(MR) method is faster than the PIP while preserving the high accuracy.

By stopping the iterative algorithm early we further accelerate the algorithm.

We stop on a coarse resolution IKfinal
and set larger discretization steps ∆final and

Γfinal. It usually allows to use less iterations but decreases the accuracy. We call

this method the fast multi-resolution Parallel Integral Projection (Fast MR-PIP).
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Let us analyze the time complexity of the MR-PIP. The number of iterations of

while loop in Algorithm 3 is at most N �max�N1,N2,N3� where N1 � �log2 2∆init

∆final
�,

N2 � �log2 2Γinit

Γfinal
� and N3 � Kinit �Kfinal � 1. The number of evaluations of PIk in

each iteration is dependent on maximization of the term in line 5. There are T1 �� 180X

∆init
�2 evaluations of outer part maximizing over �α,β� and T2 � PΓfinal

i�Γinit
� sizeΓi

�2 �
4
º
3 � � size

Γfinal
�2 evaluations of inner part maximizing over �u, v�. The total number of

evaluations of PI�u, v,α, β� is N � T1 � T2 and it depends on the size of volume and

discretization steps ∆init,∆final,Γinit,Γfinal.

3.4 Results

We show that the MR-PIP method is as accurate as the basic PIP method while be-

ing faster. The method was implemented in MATLAB. We did all tests on a Gentoo

Linux computer with a 64-bit Intel Core 2 processor at 2400MHz.

Two measures are used to quantify the accuracy [P2, 9]. The tip localization

accuracy is

εtip � YT � T̂ Y, (3.9)

where T is the true tool tip, T̂ is the estimated tip and Y �Y is the Euclidean distance.

Axis localization accuracy is given by

εaxis �max�YE �Q1Y, YT �Q2Y� , (3.10)

where E is the intercept point, Q1 and Q2 are the orthogonal projections of E and

T on the estimated axis with respect to the true axis (Figure 3.3). We consider

a result as successful when the axis accuracy is better than 10mm.

For the evaluation of image quality we define the signal-to-noise ratio:

SNR � 10 log
E�x2

el�
E�x2

bg� �dB� (3.11)

where xel are voxels with distance from the axis less than a tool radius and the

remaining voxels are considered as background xbg.

3.4.1 Evaluation of parameters influence

The experiments were done on 28 simulated datasets of size 53�71�307 voxels with

varying tool translation and rotation. Simulated data were generated by using the
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Figure 3.3: Illustration of the axis and endpoint accuracy evaluation. The ground-
truth tool position is determined by an intercept point E and a tool tip T . It is
compared with an axis a�t� and a tip T̂ estimated by the proposed method.

US simulator FIELD II [59]. The parameters of simulation were set to imitate the

US scanner Voluson 530D. The discretization parameters were fixed to ∆init � 32X,

∆final � 1X, Γinit � 0.4 � 2levels�1mm, Γfinal � 0.4mm where the parameter levels is

the number of resolutions.

We compared the max and avg decimation functions for downsampling. The

SNR values of simulated data are in Figure 3.4. Downsampling with the max

function seems to preserve the tool shape and also the SNR is better than the avg

function. Figure 3.5a shows the success rate for the MR-PIP on synthetic data. The

success rate is steadily close to 100% for the max function, and decreasing to 0%

for the avg. We decided to use the max function for downsampling in the rest of

experiments.

We varied the number of resolution levels from 1 to 5 and measured the time

(Figure 3.5b). As expected, the time has been significantly reduced from the 123

seconds mean time for the basic single resolution PIP method (Table 3.1, row 1).

The best mean time was 46 seconds for resolution 3 (Table 3.1, row 2) with the

accuracy 0.4mm which is satisfactory (Figure 3.5c, 3.5d).

We have also evaluated the trade-off between the speed and the accuracy for the

Fast MR-PIP method. The results for various values of the final discretization step

are shown in Figure 3.6. The error of tool localization was larger for one dataset

relatively to the rest of group (three points to the right in Figure 3.6) but still
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Figure 3.4: The comparison of SNR of simulated data on various resolution levels
for max and avg filtering function.

considered as a successful run. We reached the mean time 7.8 seconds with axis

accuracy around 2mm for Γfinal � 1.6mm (Table 3.1, row 3).

3.4.2 Experiments on real data

We acquired 8 datasets of a cryogel tissue mimicking phantom with a thin tungsten

electrode of 250 µm in diameter and length 20mm using an US scanner Voluson 530D

[69]. The datasets are sector volumes of 40X�40X�depth 6.2 cm with a resolution of

53 � 71 � 310 voxels. The success rate for experiments on this data was 100% in

all cases and measured time and accuracy can be found in Table 3.1 (row 4 for the

MR-PIP and row 5 for the Fast MR-PIP).

A dataset of breast biopsy was acquired by a 3D US scanner GE Voluson E8 with

the 12MHz probe. The biopsy needle was 1.092mm in diameter. The geometry of

the volume was 30X�38mm and 19mm depth with resolution 207�383�208 voxels.

The localization was successful with a discretization step Γfinal � 0.3mm and the

result corresponds to the visual identification. The time and achieved accuracy are

in Table 3.1 (row 6 for the MR-PIP and row 7 for the Fast MR-PIP).

3.5 Conclusions

We have presented a multi-resolution PIP method for a straight tool axis localization

in 3D US data which is much faster than the basic PIP and yet has the same

accuracy. Further speed-up is achieved by the Fast multi-resolution PIP based

on an early stopping of the hierarchical search algorithm at the expense of worse
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Figure 3.5: Results from the MR-PIP on simulated data. The original resolution of
the data was 53�71�307 voxels. The basic PIP algorithm is equivalent to resolution
level 1. The success rate considers good results with axis accuracy better than 10mm.
The figures show means as points and standard deviations as vertical bars.
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Figure 3.6: The figures show the dependence of time and accuracy on final discretiza-
tion Γfinal for the Fast MR-PIP and the basic PIP without any multi-resolution on
simulated data.

accuracy. Rewriting the method in a compiled language or implementing the method

on the GPU would also accelerate it substantially.

The decimation based on averaging or the Gaussian filtering is commonly used.

We propose downsampling with the max decimation function which preserves tool

voxels better than averaging. The other functions similar to maximum could be

considered, e.g. a quantile with a high rank which preserves the high intensity tool

and could be more robust. The decimation can be used also for other applications

requiring fast detection of thin lines, e.g. vessel segmentation in a 3D image.

The PIP methods are not suitable for localization of curved tools. They have

also problems with tools of a low contrast to the background, i.e., when there are

other biological structures with high intensity. We will propose different localization

methods in the following chapters.
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Data / Method Time [sec] Axis ac. [mm] tip ac. [mm]

simulated / 1 123 � 5.8 0.327 � 0.180 1.732 � 5.132
simulated / 2 46.1 � 15 0.371 � 0.178 0.422 � 0.268
simulated / 3 7.8 � 2.6 2.143 � 1.369 13.89 � 6.67

phantom / 2 62.5 � 26 0.443 � 0.206 0.508 � 0.175
phantom / 3 7.3 � 2.1 1.421 � 0.429 9.335 � 7.747

br. biopsy / 2 61 0.108 0.569
br. biopsy / 3 5.5 3.270 3.302

Table 3.1: Results on various data: simulated data (28 datasets), cryogel phantom
(8 datasets), breast biopsy (1 dataset). Methods used is the table: 1 - the PIP on
single full resolution, 2 - the MR-PIP with 3 resolutions, 3 - the Fast MR-PIP. The
mean and standard deviations of elapsed time, axis accuracy and tip accuracy are
reported.
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Chapter 4

Model fitting using RANSAC

The proposed localization algorithm is based on a model fitting approach described

previously by Barva [9]. It is able to localize the deformed tool because the axis

is represented as a polynomial curve. We propose two new models of the tool in

US image (Section 4.1.3). Parameters of model are estimated using the RANSAC

procedure (Section 4.1.4) and refined using the local optimization (Section 4.1.5).

We add experiments on real data of a phantom and breast tissue (Section 4.2). The

work described in this chapter has been published in the IEEE Transactions on

Biomedical Engineering [P1].

4.1 Method

Given a 3D ultrasound image (Fig. 4.1), our method is able to find the position and

orientation of thin elongated objects such as electrodes or needles. With respect

to the projection-based methods mentioned above (the HT, the RHT or the PIP),

the presented method is designed to be faster, more robust to the presence of other

high-intensity structures, and allows more generally shaped models.

The algorithm is based on the following two assumptions:

Assumption 1: The intensity of the tool voxels is higher than the surrounding

tissue.

Assumption 2: The shape of the tool is a thin, long, and possibly curved cylinder.

The tool might be deformed during insertion and steering. The deformation is

caused by lateral forces [26]. Bending is typical for thin electrodes (diameter around

43
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0.3mm). Biopsy needles are thicker (diameter around 1mm) and therefore remain

straight.

Our goal is to localize the axis and the tip of the tool with sub-millimeter accuracy

which is sufficient for all intended applications. The task is challenging for several

reasons: the diameter of the tool can be as small as the physical resolution of the

ultrasound. The images contain a large amount of speckle noise and some parts

of the tissue have a level of intensity similar to the tool. The proposed algorithm

consists of four steps:

1. Thresholding — the considered set of voxels is reduced by thresholding using

Assumption 1 (Section 4.1.1).

2. Axis localization — an approximate position of the tool axis is estimated by

a robust randomized search procedure RANSAC (Section 4.1.4).

3. Local optimization — a more accurate solution is found by using local opti-

mization (Section 4.1.5).

4. Tip localization — the endpoint of the tool is identified along the tool axis (as

described in Section 2.7).

Steps 2 and 3 are based on a model describing the tool shape and intensity in the

image (Sections 4.1.2 and 4.1.3).

4.1.1 Thresholding

A set of voxels with coordinates X b R3 and intensities I�X � b R is split by thresh-

olding into two disjoint sets: Xt (tool voxels) and Xb (background voxels)

Xt � �x > X � I�x� C TI� ,
Xb � X �Xt,

(4.1)

As an example, a thresholded 3D image Xt from Fig. 4.1 is shown in Fig. 4.2. All

subsequent processing uses only the subset Xt in order to reduce the processing time.

The threshold TI is found by minimizing voxel classification error, assuming that

labelled training data are available. Otherwise, the threshold is chosen empirically.

Barva estimates the threshold as the 95% quantile of the input data by fitting

a Gamma distribution [9] which seems to work in practice. It is based on the

expectation that the proportion of voxels belonging to the tool is less than 5%.
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Figure 4.1: Example of a 3D ultrasound image of the PVA cryogel phantom in water.
Inside the phantom there is a tungsten electrode. Two planar sections (one of them
passing through the electrode axis) are shown in gray-scale. The diagonal dashed line
is the localization result. A thin wire-frame shows the scanned volume boundaries.

Note that the resulting Xt also contains some non-tool voxels (outliers) which are

filtered out later (Section 4.1.4).

4.1.2 Axis model

The tool axis is represented by a spatial parametric polynomial curve a�t;H� � R�
R3 of order n � 1:

a�t;H� � �����
h11 � h1n

h21 � h2n

h31 � h3n

�����´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H

��������
1

t

�

tn�1

��������
; t > R (4.2)

We use n � 2 to model straight tools, polynomial curves of low order n � 3 to model

bent tools (C-like shapes) and occasionally higher values of n might be also used (S-

like shapes for n � 4). The curve is determined by n control points pi > R3, i � 1 . . . n

through which it is required to pass. First, a principal direction k0 is determined

by fitting a straight line to points pi, e.g., using a least squares method. Then, we
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Figure 4.2: A 3D ultrasound image from Fig. 4.1 after thresholding. Intensity values
shown are normalized by the mean of all voxels. A blue wireframe shows the volume
boundaries.

choose the parameters ti according to a projection onto this line

ti �
�pi � p1�k0Yk0Y . (4.3)

Finally, the polynomial curve defined by matrix H is found by solving the following

system of 3n linear equations:

a�ti,H� � pi, ¦i � 1 B i B n, (4.4)

after substituting a�ti,H� from (4.2).

4.1.3 Tool models

Two models (AxShp, IntDstr) are proposed for the tool shape and intensity in 3D

ultrasound images to be used in steps 2 and 3 of the algorithm (Section 4.1). Each

model consists of a function q�x;H� > �1,0� classifying each voxel x with intensity

I�x� as either a tool (q � 1), or a background (q � 0); and a cost function C�Xinl;H�
quantifying how well the model parameters H fit a set of voxel observations Xinl

consistent with the model (inliers).
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The tool shape, i.e. curve parameters H, are first estimated roughly by using

the function q�x;H� in the RANSAC procedure (Section 4.1.4). The RANSAC

maximizes the number of tool voxels (inliers Xinl). Afterwards, the solution is refined

by local optimization of the cost function C�X̂inl;H� on the best set of estimated

inliers X̂inl (Section 4.1.5).

Model AxShp

The model evaluates only the distances of the points x > Xt to the curve a�t;H�.
It does not use any a priori information on the intensity values and no training is

needed. The classification function q�x� uses a distance d�x;H� of the point x to

the curve a�t,H�
qAxShp�x; H� � ¢̈̈¦̈̈¤ 1, if d�x;H� B τ

0, otherwise
(4.5)

The threshold τ is set as the expected radius of the tool in the image. The model’s

cost C�H� is the sum of the squared distances to the axis

CAxShp�Xinl; H� � Q
x>Xinl

d�x;H�2. (4.6)

The cost function is smooth (unlike P qAxShp�x;H�, used in [9]) which is important

for the local optimization later.

As the true point-to-curve distance would be prohibitively expensive to calculate,

the following approximation is used:

d�x;H� � Yx � a�t;H�Y, (4.7)

with t �
�x � p1�k0Yk0Y

which is good as long as the curvature of a�t;H� is small.

Model IntDstr

The model is based on an estimated likelihood p�d, i S c� of observing a voxel x with

an intensity i � I�x� at distance d (4.7) from the axis, given its class c (tool ‘tl’ or

background ‘bg’). Assuming p�tl� � p�bg�, the classification function q is chosen as
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a likelihood comparison test:

qIntDstr�x; H� � ¢̈̈¦̈̈¤ 1, if p�d, i S tl� C p�d, i S bg�
0, otherwise

(4.8)

The model’s cost function C�H� is a negative logarithmic likelihood of observing

the set of inliers Xinl given a tool position, assuming that voxel observations are

independent:

CIntDstr�Xinl;H� � Q
x>Xinl

� log p�d, i S tl�. (4.9)

The dependence of p�d, i S c� on H is implicit through d (4.7).

The likelihood p�d, i S tl� for tool voxels is decomposed as follows:

p�d, i S tl� � p�i Sd, tl�p�d S tl� (4.10)

with p�d S tl� � N�

0,σ�d�
where N�

0,σ�d� is the positive part of a normal distribution with zero mean and

variance σ (for simplicity) corresponding to the expected radius of the tool in the

image. The background intensity p�d, i S bg� is assumed to be spatially independent,

i.e.,

p�d, i S bg� � p�i S bg�. (4.11)

Both p�i Sd, tl� and p�i Sbg� are estimated from a training set of images with

a known ground-truth. The tool voxels are first collected intom uniformly sized bins

bj � �j∆d; �j � 1�∆d� according to a distance d from the tool. The distributions of

voxel intensities p�i Sbg� and p�i Sd > bj, tl� for j � 0 . . .m�1 are modelled as Gamma

distributions Γkbg,θbg and Γkj , θj, respectively. The Gamma distribution is sufficiently

general to approximate the real distribution well and it was successfully used for

ultrasound images in [9, 94]. The parameters σ, kbg, θbg, kj and θj are determined as

maximum likelihood estimates [21]. Examples of learned distributions are shown in

Fig. 4.3.

4.1.4 RANSAC procedure

The RANSAC (RAndom SAmple Consensus) procedure was introduced by Fischler

and Bolles [37] to solve the problem of robust estimation of model parameters given

a set of input samples with a large portion of outliers. In our case, the input of the

RANSAC procedure is a set of thresholded voxels Xt and a classification function
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Figure 4.3: Examples of empirically learned distributions p�iSd, tl�, p�dStl� and
p�iSbg� used in the IntDstr model. The distributions were estimated from a training
set of nine images of an electrode in the PVA cryogel phantom.

qAxShp or qIntDstr. The RANSAC outputs are the identified curve parameters Ĥ and

the corresponding set of points X̂inl consistent with the model.

In each RANSAC iteration (Algorithm 4), first a sample consisting of a set

P � �pi; i � 1 . . . n� of n distinct points pi is randomly selected from Xt (Step 1 of

Algorithm 4). To quickly filter out sets P leading to excessively curved axes, which

would not lead to good solutions anyway, the samples with curvature κ�P� A κmax

are rejected. The pseudo-curvature κ�P� is defined as the maximum orthogonal

distance between one of the control points pi and a straight line l�P� fitted to all

n points P . The threshold κmax is set to maximum expected deformation. The

coefficient matrix H is calculated from P as described in Section 4.1.2 (Step 2) and

a set of inliers is estimated (Step 3):

Xinl�H� � �x > Xt S q�x; H� � 1� . (4.12)
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Input:
Xt — thresholded voxels.
q — classification function from AxShp or IntDstr models.

Output:
X̂inl – estimated inliers.
Ĥ – estimated curve parameters.
P̂ – control points on the estimated curve.

j � 1; J � Jmax;
while j B J do

1. Randomly select a subset P ` Xt, SP S � n and compute κ�Sj�. If
κ�P� B κmax, then continue; otherwise repeat step 1;

2. Compute matrix H from control points P (4.2–4.4);

3. Estimate a set of inliers Xinl (4.12);

4. Update the best-so-far model:
if SXinlS A SX̂inlS then

a) Ĥ ��H; P̂ �� P ; X̂inl �� Xinl;

b) Update the number of iterations J (4.13);

else j � j � 1 ;

end

Algorithm 4: The RANSAC procedure to robustly estimate parameters of the
tool axis from the thresholded points Xt.

The best curve parameters Ĥ found so far based on the number of estimated inliersSXinlS (Step 5) are stored together with the corresponding control points P̂ and a set

of consistent points X̂inl.

The number of iterations J to perform is initially set to Jmax (typically a few

hundred) and it is then adaptively updated (Step 4b) whenever a better model is

found [37, 96]

J �
ln�1 � η�
ln�1 � ζn� , with ζ �

SXinlSSXtS (4.13)

where ζ estimates the inlier ratio and η is a user-defined parameter which is a desired

probability that the RANSAC succeeds. Success of the RANSAC means that n

inliers are selected at least once during J iterations.
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4.1.5 Local optimization

The RANSAC procedure gives a robust approximation of the axis position. How-

ever, its accuracy is limited, since the model parameters Ĥ are computed only from

n control points. Therefore a more accurate solution H� is found based on the

complete estimated set of inliers X̂inl by minimizing the cost function C�X̂inl;H�
(Section 4.1.3).

Instead of optimizing the coefficients H directly, we optimize the position of the

control points P because it is numerically more stable. Moreover, it is enough to

vary the point positions in a direction perpendicular to the axis.

First, the local coordinate system K is calculated from the set X̂inl by PCA. The

coordinate system K consists of principal directions k0, k1, k2, in the decreasing

order of corresponding eigenvalue magnitudes (Sλ0S C Sλ1S C Sλ2S)1. The position of the

control points along the k0 is not important for the shape of the curve. To reduce

the redundancy of the parametrization, the control points P̂ are reparametrized by

using a matrix E with dimensions 2 � n

�p1 � pn�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P�E�

� �p̂1 � p̂n�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P̂

� �k1 k2� E (4.14)

The curve parameters H�E� are calculated from control points P�E� by solving

the linear system (4.4), as described in Section 4.1.2. The cost function C from

Section 4.1.3 is optimized with respect to variable E:

H�
� argmin

E
C�X̂inl; H�E��, (4.15)

The optimization is done using a derivative-free Nelder-Mead downhill simplex me-

thod [72] with an initial estimate E � 0.

4.1.6 Implementation details

We use a straight line (n � 2 in (4.2)) or a quadratic curve (n � 3 in (4.2)) for cases

where tool is expected to be bent (Section 4.2.2, 4.2.3). The desired probability for

the successful RANSAC termination was set to η � 0.99. Increasing η further im-

proves the accuracy by 5 � 15% at the expense of an increased number of iterations.

Local optimization usually terminates in not more than 40 steps, taking about 26%

1In Section 4.1.2 a principal direction k0 is also calculated but only from the n control points.
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of the total time. The majority of the memory was used for storing the 3D volume

(90 MB for 3D data of size 53 � 71 � 3100 voxels). The RANSAC localization algo-

rithm takes the thresholded points as input which is only a small fraction of the full

set of points so the additional memory requirements for the RANSAC are negligible.

All algorithms were implemented in MATLAB2 on a standard PC with Intel

Core 2 processor at 1.83GHz. Further speedup should be possible by rewriting

them in a compiled language such as C++. Our preliminary experiments with

implementation of the RANSAC method in C++ show that the speedup is at least

by a factor of three.

4.2 Results

The results of the localization algorithm are presented on simulated data, on real

ultrasound data of a phantom with an inserted tool, and on real data from a breast

biopsy. The true tool position in the simulated data is known; for the real ultrasound

data, it was found as a mean of the estimates of ten human observers. The mean

variability for human observers was less than 0.4mm. All 3D visualizations shown

in this section were made in Paraview [52].

The proposed method is compared to other projection-based localization meth-

ods (see also Chapter 2): the randomized Hough transform (RHT) [108], the Quick

RHT (QRHT) [81], the PIP method [P2], the multi-resolution PIP (MR-PIP) me-

thod [P3] (Chapter 3), and the Fast MR-PIP method [P3]. The number of bins for

the RHT and the QRHT is set to 36 and 16, respectively, for each of four dimen-

sions. In the PIP method, an angular resolution of 1X and spatial resolution 0.2mm

is used; its MR version uses three resolution levels, its fast variant (Fast MR-PIP)

stops the optimization at the second resolution level. All algorithms use the same

method for tip localization (Section 2.7).

In the experiments described below, the randomized algorithms were repeated

30 times (on each test data set) with various random seeds. We report the mean

time for each method. For the RANSAC method, we also report the mean number

of iterations because the time complexity of the RANSAC depends directly on it.

We give an overview of all data sets in Table 4.1. The first three data sets were

computed as the envelope of the acquired RF signals with high axial resolution. To

study the effect of axial resolution on the localization accuracy, we have performed

2The MathWorks, Natick, MA

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0035/these.pdf 
© [M. Uhercik], [2011], INSA de Lyon, tous droits réservés



4.2. RESULTS 53

Data Resolution Page Results

Simulation 53�71�3100 54 Table 4.2
PVA phantom 53�71�3100 56 Table 4.3
PVA phantom 53�71�3100 56 Table 4.4
Turkey Breast 273�376�196 58 Table 4.5
Breast biopsy 273�383�208 59 Table 4.6
Breast biopsy 273�383�208 59 Table 4.7

Table 4.1: Overview of data sets used for experiments.
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Figure 4.4: Example of histograms of axis accuracies measured for AxShp model
fitting on the PVA cryogel phantom: a) for successful runs (εaxis @ 3mm) with
a fitted normal distribution shown as red line, b) for failures (εaxis C 3mm).

the localization with the envelope volumes downsampled 10� (in the axial direction);

the axis localization accuracy was not significantly affected. The last three data sets

were acquired by using a different 3D scanner as standard B-mode images.

4.2.1 Accuracy assessment

Two measures are used to quantify the accuracy of the proposed method [9]. Tip

accuracy εtip (3.9) and axis accuracy εaxis (3.10), measured in millimeters, were

defined in Chapter 3, see also Figure 3.3. Angular error, which is also sometimes

used to measure localization accuracy, is related to εaxis and the tool length.

The result is considered a failure when εaxis C 3mm or εtip C 3mm. The num-

ber of failures is reported separately and accuracy is evaluated only on successful

runs. An example of sample histograms for accuracy εaxis in Fig. 4.4a for successful

runs shows that accuracies approximately follow a normal distribution, while for

failures (Fig. 4.4b) the errors are significantly higher. We have performed statisti-

cal significance tests for comparison of the proposed method to the other methods.
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Specifically, we do a t-test [38] with a significance level of 5% (p � 0.05) for accuracy

εaxis and also for the number of failures. The experiments are repeated many times

(with various random seeds) so that enough measurements are accumulated for the

distribution of the number of failures in order to be approximately normal and the

t-test to be applicable. The results of statistical tests are in the following text.

4.2.2 Simulation study

A data set mimicking breast tissue was created using the software package Field II [59].

The simulator parameters were set to imitate an ultrasound scanner Voluson 530D3

operating at a central frequency of 7.5MHz. Background scatterers were distributed

according to a smoothed real 3D ultrasound image of a breast in order to obtain

a realistic inhomogeneous background. A signal corresponding to a 0.6mm diame-

ter tool (radius 0.3mm) with metal-like acoustic parameters was created by using

highly reflecting scatterers. The background field and the tool field were summed in

the radio-frequency (RF) signal domain, and a 3D envelope image was calculated.

It is equivalent to adding the tool as scatterers but is faster when many datasets are

created with the same background. An example volume of 53 � 71 � 3100 voxels is

shown in Figure 4.5.

Parameter learning was performed on a training set of simulated data sets with

varying tool locations, distinct from the testing set. The threshold TI was set to

maximize the inlier ratio (Section 4.1.1) to approximately 11 times the mean inten-

sity. The threshold τ was set to 0.6mm, which was the tool observed radius.

Tool location

Nine training and 19 testing data sets were prepared with varying depths and ori-

entations of the straight tool with respect to the probe. The mean inlier ratio in

the testing data was 30% and the mean number of the RANSAC iterations was

60. The results (Table 4.2) show that the proposed methods (the RANSAC with

local optimization) are among the fastest and have the best repeatability (smallest

standard deviation). The number of failures is nearly zero for the RANSAC, the

RHT and the PIP methods. However, the PIP method is still very slow. It can be

accelerated (by the MR-PIP) but the robustness is then reduced. There is a statis-

tically significant difference (t-test, p � 0.05) between the RANSAC and the RHT

3GE Healthcare, UK
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Figure 4.5: Simulated ultrasound data using Field II with a tool and inhomogeneous
background. A 2D slice of a 3D volume with the tool is selected. The estimated tool
(marked by a dashed line) is oriented diagonally entering the volume from the left
side.

axis accuracy but not between AxShp and IntDstr results. The RANSAC with the

simple AxShp model is the fastest and should be chosen for this data.

Tool deformation

The robustness of the tested methods with respect to tool deformation was evaluated

on 21 test data sets. We used parameters learned in the previous experiment. The

tool axis was modeled by a quadratic (n � 3) polynomial curve, and the shape was

controlled by bending the tool tip. The tip bending offset varied between 0 (straight

axis) and 4.0mm for the total length of 20mm. The results in Figure 4.6 demonstrate

that the axis localization error εaxis (we are not discarding failures in this case) for

the RHT and for the QRHT increases when applied on data with a deformed tool.

The performance of the proposed method does not deteriorate because it represents

the tool axis as a polynomial curve.
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Simulated Axis acc. Tip acc. Fails Time
data [mm] [mm] [%] [s]

RNS+AxShp 0.14 � 0.09 0.46 � 0.50 0% 0.54
RNS+IntDstr 0.12 � 0.08 0.48 � 0.62 0% 2.22
RHT 0.38 � 0.28 0.62 � 0.59 2% 1.82
QRHT 1.41 � 0.81 1.42 � 0.99 28% 1.11
PIP 0.28 � 0.12 0.53 � 0.35 5% 69.1
MR-PIP 0.27 � 0.13 0.45 � 0.76 11% 29.4
Fast MR-PIP 0.56 � 0.24 0.85 � 0.62 11% 12.1

Table 4.2: Axis accuracy, tip accuracy, percentage of failures and elapsed time for
simulated data with varying tool positions and various localization algorithms for the
synthetic inhomogeneous background case.

Signal-to-noise ratio

The robustness of the tested methods with respect to noise was evaluated for data

with varying tool intensities with respect to the background. The signal-to-noise

ratio (SNR) was defined as:

SNR �
mean�I�xel��
mean�I�xbg�� , (4.16)

where xel are voxels whose distance from the true axis is less than a tool radius;

the remaining voxels are considered as background xbg. The percentage of failures

is reported in Fig. 4.7 for SNR between 1.0 and 2.0 — for higher SNR. All methods

localized the tool perfectly and for lower SNR none of the methods found it. A group

of nine training and 19 testing data sets were used for each SNR level. Note that

the fastest method, the RANSAC+AxShp, has about the same number of failures

as the RHT. The RANSAC+IntDstr model is the most robust method.

4.2.3 Experiments on real data

PVA Cryogel phantom

To mimic a biological tissue with a highly reflecting inclusion, a polyvinyl alcohol

(PVA) cryogel phantom [45] with size 50 � 50 � 50 mm was created. Inside the

phantom there was a thin straight tungsten electrode 150 µm in diameter and 20mm

long. The phantom was scanned eight times from various directions by Voluson 530D

ultrasound scanner with a 3D probe operating at a central frequency of 7.5MHz.
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Figure 4.6: The axis accuracy εaxis for varying tool offsets (bending) in simulated
data. The failures were not discarded.

The axial resolution was approximately 0.4mm and the lateral resolution 1mm. The

size of acquired volumes was 53 � 71 � 3100 voxels.

All the localization algorithms were tested in two variants: a) we selected a small

region of interest (ROI) with the electrode, b) on full volume which also contains

the high-intensity phantom boundary. The results of the first experiment are shown

in Table 4.3. There is no statistically significant difference (t-test, p � 0.05) in the

number of failures between the RANSAC and the RHT based methods. The mean

inlier ratio was 20% and the number of the RANSAC iterations was between 100

and 200. However, for the second experiment on the full volume in Table 4.4, the

percentage of failures is statistically significantly smaller for the RANSAC than for

the RHT and the QRHT methods. The mean inlier ratio was only 5% and the

number of the RANSAC iterations increased to 1000 � 2000. Therefore the total

time for the RANSAC also increased.

The proposed RANSAC-based methods are very robust, especially using the

IntDstr model, unlike the RHT, the QRHT and the PIP methods which are fooled

by the presence of the phantom boundary in the 3D volume. The PIP is the most

accurate method, followed by the RANSAC. An example of a localization result can

be seen in Fig. 4.1. The AxShp model fitting is the fastest method but using model

IntDstr is more robust to the presence of outliers.
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Figure 4.7: The failure rate for varying SNR (tool contrast) on simulated data.

Experiments on turkey breast

We acquired three data sets of turkey breasts with a 27-gauge needle (0.41mm) in-

serted. The 3D ultrasound images are 273� 376� 196 voxels. The central frequency

of the 3D probe RSP6-16 RS varied between 10 and 18MHz so the needle’s appear-

ance was different in each data set. Therefore, we had to train on each data set

separately. To make training and testing data distinct, we trained on different parts

of the image than the part tested. The needle in the breast tissue was deformed in

various ways; the maximal bending offset of the tool varied between 0.6 and 1.8mm.

The tool length in the ROI was between 8 and 14mm.

We selected a ROI containing the needle as well as some high-intensity structures

(Fig. 4.8). The results are shown in Table 4.5. The mean inlier ratio was 16%

and the number of the RANSAC iterations was between 700 and 1000. There is

a statistically significant difference (t-test, p � 0.05) between the number of failures

for the RANSAC methods and the RHT. The RANSAC has the lowest number

of failures but longer processing time compared to other methods. We observed

that the RHT often fails on this data because of bent needles, while the proposed

methods are successful. The all PIP methods fail on this data.
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PVA phantom Axis acc. Tip acc. Fails Time
data [mm] [mm] [%] [s]

RNS+AxShp 0.47 � 0.31 0.46 � 0.26 1% 0.66
RNS+IntDstr 0.91 � 0.54 0.40 � 0.32 0% 2.62
RHT 0.91 � 0.44 0.80 � 0.40 4% 2.13
QRHT 1.44 � 0.75 0.99 � 0.60 13% 2.19
PIP 0.33 � 0.14 0.60 � 0.21 25% 1268
MR-PIP 0.50 � 0.31 0.80 � 0.18 25% 342.1
Fast MR-PIP 0.33 � 0.14 0.77 � 0.25 25% 113.4

Table 4.3: Axis and tip accuracy, the percentage of failures and elapsed time for
experiments on the PVA cryogel phantom for the small ROI.

PVA phantom Axis acc. Tip acc. Fails Time
data [mm] [mm] [%] [s]

RNS+AxShp 0.56 � 0.27 0.64 � 0.27 29% 5.67
RNS+IntDstr 0.55 � 0.28 0.66 � 0.31 14% 7.90
RHT 0.74 � 0.33 0.98 � 0.45 88% 3.81
QRHT 1.52 � 0.67 0.63 � 0.03 97% 2.07
PIP 0.34 � 0.12 0.58 � 0.12 50% 5615
MR-PIP 0.29 � 0.12 0.45 � 0.02 50% 1528
Fast MR-PIP 0.91 � 0.25 0.62 � 0.16 75% 537.2

Table 4.4: Axis and tip accuracy, the percentage of failures and elapsed time for
experiments on the PVA cryogel phantom for the full volume.

Experiments on a breast biopsy

The usability of the proposed method on clinical data is demonstrated on real ultra-

sound data sets from a breast biopsy acquired by a 3D US scanner GE Voluson E8

with a 12MHz probe (Figure 4.9). We acquired three data sets with a mostly straight

19-gauge needle (1.092mm outer diameter) and one data set with a 26-gauge needle.

The 3D ultrasound images are 273 � 383 � 208 voxels.

The ROI contains the needle as well as some highly reflecting artifacts. The tip

of the needle was located outside of the scanned volume area for three of the data

sets, so the tip localization measure was not applicable here. The axis accuracy and

the time elapsed for the the various methods are shown in Table 4.6. The last data

set contains a thin needle that has a different appearance from the previous group.

We trained and tested the localization method on distinct parts of the volume. The

results are reported in Table 4.7. In this case, the tip localization accuracy was also
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Figure 4.8: A slice of a 3D data of turkey breast with a needle. A 2D slice of a 3D
volume with the needle is selected. The estimated tool (marked by a dashed line) is
oriented diagonally entering the volume from the top-right side.

Turkey Axis acc. Tip acc. Fails Time
breast [mm] [mm] [%] [s]

RNS+AxShp 0.10 � 0.05 0.19 � 0.10 18% 2.24
RNS+IntDstr 0.09 � 0.05 0.15 � 0.07 16% 4.78
RHT 0.21 � 0.11 0.13 � 0.04 74% 1.74
QRHT 1.19 � 0.14 1.37 � 0.08 78% 1.37
PIP N.A. N.A. 100% N.A.
MR-PIP N.A. N.A. 100% N.A.
Fast MR-PIP N.A. N.A. 100% N.A.

Table 4.5: Axis and tip accuracy, percentage of failures and elapsed time for ultra-
sound data showing a needle in a turkey breast.

evaluated because the electrode tip is visible.

The data used in this experiment are very challenging, so all the methods have

a relatively high failure rate. Nevertheless, the RANSAC-based methods are the

fastest, most robust and most accurate. The PIP is also accurate but less robust

and two orders of magnitude slower. The RHT is as robust as the RANSAC with

speed similar to the IntDstr model but with a worse accuracy.
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Figure 4.9: 3D view of data from breast biopsy. The boundary geometry of 3D data
is marked as a wireframe. There is one planar section of the data with a needle in
the upper part and seven perpendicular planar sections. The dashed line shows the
estimated needle direction.

4.3 Conclusions

We proposed a method for the fast and robust tool localization from 3D ultrasound

images based on the RANSAC, local optimization. The model fitting uses one

simple and one more complicated model. The AxShp model is very fast and easy

to implement and works well in most cases. The more complex IntDstr model takes

advantage of the learned shape and intensity of the tool and the background. It

works better in difficult low-SNR situations but is several times slower.

The proposed RANSAC+AxShp method needs less than 1 s in MATLAB which

is approximately the time needed for an acquisition of one 3D volume. A real-time

implementation in a compiled language should be perfectly possible. We estimate

a throughput of 3 � 5 fps on a single processor system. Previous articles [76, 73]

showed the feasibility of projection based methods implemented on the GPU. The

RANSAC is also suitable for a parallel implementation. The accuracy is better than

1mm which is enough for all potential applications — visualization, localization and
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Biopsy Axis acc. Fails Time
data [mm] [%] [s]

RNS+AxShp 0.20 � 0.11 33% 0.64
RNS+IntDstr 0.17 � 0.12 33% 2.29
RHT 0.52 � 0.57 33% 4.31
QRHT 1.75 � 0.47 79% 1.88
PIP 0.15 � 0.0 67% 619
MR-PIP N.A 100% 198
Fast MR-PIP N.A. 100% 28

Table 4.6: Axis accuracy, tip accuracy, percentage of failures and elapsed time for
biopsy ultrasound data with a 19-gauge needle.

Biopsy Axis acc. Tip acc. Fails Time
data [mm] [mm] [%] [s]

RNS+AxShp 0.25 � 0.10 0.97 � 0.25 0% 1.66
RNS+IntDstr 0.24 � 0.08 1.08 � 0.49 0% 3.80
RHT 0.35 � 0.26 0.87 � 0.48 50% 2.67
QRHT N.A. N.A. 100% 2.5
PIP N.A. N.A. 100% 113
MR-PIP N.A. N.A. 100% 37.0
Fast MR-PIP N.A. N.A. 100% 6.5

Table 4.7: Axis accuracy, tip accuracy, percentage of failures and elapsed time for
biopsy ultrasound data with a 27-gauge needle.

guidance. The proposed method could be used for initialization of the tracking of

the tool in a sequence of 3D ultrasound volumes.

Our experimental results show that the methods proposed here are superior to all

other methods tested. They are mostly as robust and fast as the randomized Hough

transform (RHT) method while being more accurate, and as accurate as the Parallel

Integral Projection (PIP) method while being about two orders of magnitude faster.

The proposed methods are also more robust to low tool contrast and tool bending.

We have shown that the methods were successfully applied to real ultrasound data.
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Chapter 5

Line filtering for tool localization

In this chapter, we present a method for enhancement and localization of surgical

tools in 3D ultrasound (US) images. Our first aim is to enhance the visual contrast

of the tool to aid with visual localization. Secondly, we want to apply the new

appearance description to improve our previously described automatic localization

method (Chapter 4), particularly its robustness with respect to the background

noise.

Previous localization methods assume the tool to appear as a high intensity

cylinder in 3D US images. An additional assumption about the tool, that it is a one-

dimensional (1D) object, is used to distinguish the tool from other high-intensity

structures. These structures are usually of biological nature (such as bones or fat

tissue) and they are zero-dimensional (isolated points) or two-dimensional (layers of

echogenic tissue).

A review of line filtering methods is in Section 5.1. The robustness of localization

algorithm to background noise is increased by applying an appearance based tool

model using line filtering (Section 5.2). The proposed model fitting is fast and

accurate enough after pre-processing step which is approved by results (Section 5.3).

Initial part of this work has been published at the conference IEEE International

Ultrasonics Symposium (IUS) 2009 [P4].

5.1 Review of line filtering methods

Line filtering is a method for enhancement of tubular structures. It is used for vessel

enhancement and detection, e.g., in the MR angiography (MRA) [78, 95]. Vessel

enhancement techniques are used also for improved segmentation and visualization

63
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64 CHAPTER 5. LINE FILTERING FOR TOOL LOCALIZATION

in medical imaging. The diameter of surgical tool is fixed in the tool localization

task (unlike the varying diameter of vessels) which makes the task easier.

Extensive taxonomy of vessel extraction techniques and algorithms can be found

in [63]. There are three groups of such methods: 1) matched filters (Section 5.1.1)

which use a set of filters with varying orientation; 2) ridge analysis (Section 5.1.2)

based on differential geometry and second order analysis; 3) steerable filters (Sec-

tion 5.1.3) which compute the result of line filtering by interpolation from a fixed set

of filter responses. Model based methods, which follow the top-down strategy, offer

an alternative to local filtering. References to particular works are in the following

sections.

5.1.1 Matched filters

Chaudhuri et al. [18] observed three interesting properties of blood vessels in 2D

retinal images: 1) small curvatures; 2) lower mean intensity pixels compared to the

background; 3) the intensity profile approximately corresponding to the Gaussian

curve in a direction perpendicular to axis. Similar properties are valid also for linear

tools in US images.

The local line filter should have a similar shape as the intensity profile itself and

it should be bounded. The intensity profile at point x is defined by using a center

line cv passing through the origin and having orientation v. The 2D filter kernel is

expressed as a function of distance d�x, cv� to the line cv:

Kv�x� � 1�2πσ2�e� d�x,cv�2

2σ2 , for YxY B L

2
(5.1)

where L is the maximum length of the linear segment. We note that other templates

can be used for line detection, e.g. ridge template [58] which is similar to (5.1) but

smoothed in all directions.

A set of matched filters Kvi
with various orientations is prepared so that the

set �vi�Ni�1 is sampled on unit sphere. Unknown direction of the line at pixel x is

determined as the direction of the strongest response of all filters:

v̂�x� � argmax
vi

�Kvi
�x� � I�x�� (5.2)

We find both the orientation v and the strength J of the linear structure

J�MF��x� �Kv̂�x��x� � I�x� (5.3)
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where � is a convolution.

Chaudhuri uses matched filters for detection of lines in 2D images. Twelve

various orientations with angular distance 15X are prepared. The kernel width σ is

determined manually but in later works [53], it is found by optimization. Increasing

the number of filters improves the accuracy but decreases the speed. The speed is

also influenced by the size of convolution mask. The size of the convolution mask

in pixels is chosen proportionally to 3σ.

Poli and Valli [80] developed an algorithm based on matched-filters and thresh-

olding with hysteresis which works at real-time. Proposed filters are sensitive to

thin vessels in coronary angiograms. Hoover at al. [53] classify each pixel using lo-

cal and region-based properties. The response of the matched filter is examined by

iteratively decreasing the threshold of the classifier.

5.1.2 Hessian based methods

When we look at 2D image as the elevation map, lines can be seen as ridges or valleys.

Ridge and valley is a concept of local maxima and minima which is generalized to N

dimensions (N C 1) [34]. 1D Ridge is defined as a curve such that each point is a local

extrema in a subspace orthogonal to the ridge, i.e., each point of 1D ridge in 2D

image has a local extrema (maximum, resp. minimum) at a direction perpendicular

to the ridge.

We are interested in 1D ridges in 3D with an approximately constant intensity.

Tubular tools in 3D US images are enhanced by using filtering methods based on 1D

ridge analysis mentioned here. The filters are based on directional second deriva-

tives of image smoothed by the Gaussian kernel. We follow a concept of tubular

objects [41] when such objects are determined by relationship (5.12) of eigenvalues

of the Hessian matrix. Frangi [41] and Sato [84] use a 3D multi-scale enhancement

filter to adapt the filter to the scale of tubular structure.

Local properties of linear structure

Intensity variations of voxel x in its local neighborhood are analyzed via second

order derivatives. The image function I�x� is approximated using Taylor expansion

in the proximity of point x as

I�x � d� � I�x� � dT
S I�x� � 1

2
dTH�x�d, (5.4)
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66 CHAPTER 5. LINE FILTERING FOR TOOL LOCALIZATION

where d is a small perturbation vector. The gradient vector

SI�x� � � Ix�x� Iy�x� Iz�x� � (5.5)

and the Hessian matrix

H�x� � <@@@@@@>
Ixx�x� Ixy�x� Ixz�x�
Iyx�x� Iyy�x� Iyz�x�
Izx�x� Izy�x� Izz�x�

=AAAAAA? (5.6)

are computed by the convolution of the image function I with derivatives of the

isotropic Gaussian [41]:

Iα�x� � I�x� � ∂

∂α
G �x, s� (5.7)

Iαβ�x� � I�x� � ∂2

∂α∂β
G �x, s� (5.8)

where α,β > �x, y, z� are directions of derivatives and s is a scale of Gaussian. The

Gaussian G is defined as:

G�x, s� � 1�2πs2� 3
2

e�
YxY2

2s2 (5.9)

Scale s of the Gaussian G�x, s� corresponds to apparent radius of the tool and is

learned from training set of images. The learning is done by maximizing the response

of the Gaussian filter given ground-truth orientation of linear structure.

The second order directional derivative at v can be obtained from the Hessian

matrix
∂2I

∂v2
�x� � vTH�x�v, v > R3, YvY � 1 (5.10)

where v is unit directional vector of chosen orientation. It is used later by oriented

line filters (Section 5.1.3) with a priori known principal orientation.

Eigenanalysis of H. Eigenanalysis of the Hessian matrix H�x� characterizes the
second order local structure. Let Sλ1S B Sλ2S B Sλ3S be its eigenvalues and e1, e2, e3

corresponding eigenvectors. The local principal direction is:

v̂�x� � e1 (5.11)
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If all λi � 0 (i � 1,2,3) are close to zero, there is no noticeable structure. For planar

structures, Sλ3S Q Sλ2S � Sλ1S � 0. For blob-like structures, SλiS A 0 (i � 1,2,3) and

λ1 � λ2 � λ3. For voxels in a tubular structure, one eigenvalue λ1 is small and the

other two λ2, λ3 large:

�0 � Sλ1S� and �Sλ1SP Sλ2S� and �λ2 � λ3� (5.12)

Various tubularness measures J�x� have been proposed for line enhancement in

3D images (see also examples of filtering of 3D US images in Figures 5.1, 5.2 and

5.3). Their experimental comparison is presented in Section 5.3. We assume a bright

cylinder on dark background so the voxels which do not satisfy the condition

�λ3 @ 0� and �λ2 @ 0� (5.13)

are discarded and J�x� set to 0.

Li’s measure

A simple formula for line filtering has been proposed by Li et al. [68]

J�Li��x� � Sλ2SSλ3S �Sλ2S � Sλ1S� (5.14)

which penalizes the large Sλ3S compared to the Sλ2S. The term (5.14) is maximized

when ratio Sλ2S
Sλ3S

is close to 1 and difference Sλ2S � Sλ1S is large.
Sato’s measure

Sato et al. [84] uses a notation for eigenvalues assuming λ1 A λ2 A λ3 which is

equivalent to Frangi’s notation (Sλ1S B Sλ2S B Sλ3S) when all λ1, λ2, λ3 B 0. Ideal

tubular structure in 3D image should have eigenvalues satisfying:

�λ1 � 0� and �λ2 � λ3 @ 0� (5.15)

The absolute values of λ2 and λ3 are relatively large compared to λ1. The con-

dition (5.15) is logically equivalent to conjunction of conditions (5.12) and (5.13)

which is used by Li and Frangi [41].
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Based on the condition λ2 � λ3 @ 0, a measure of tubularness is introduced

λ23 �

¢̈̈¦̈̈¤ Sλ3S �λ2

λ3
�γ23 , if λ3 @ λ2 @ 0,

0, otherwise
(5.16)

where γ23 C 0 controls sharpness of the function. The term (5.16) is maximized when
Sλ2S
Sλ3S

is close to 1 and both Sλ3S and Sλ3S are large. The condition λ1 � 0 is combined

with λ23 to

λ123 � λ23w12, if λ3 @ λ2 @ 0, (5.17)

where w12 is a weight function that decreases as λ1 deviates from zero

w12 �

¢̈̈̈̈̈
¦̈̈̈̈̈¤
�1 � λ1

Sλ2S
�γ12 , if λ1 B 0,�1 � α λ1

Sλ2S
�γ12 , if Sλ2S

α A λ1 A 0,

0, otherwise

(5.18)

where γ12 C 0 and 0 @ α B 1. Parameter α is introduced in order to give w12

asymmetrical characteristics in negative and positive regions of λ1.

The function J�Sato��x� � λ123 is typically used with parameters γ23 � γ12 � 1 or

γ23 � γ12 � 0.5 as proposed by Sato [84].

Frangi’s measure

An advanced tubularness measure has been proposed by Frangi et al. [41]. He

introduces three natural quantities: RB for quantification of the relative amplitude

of Sλ1S, RA for discrimination of tubular structures from planar structures, and S

for quantification of strength of all second order features:

RB �
Sλ1S»Sλ2λ3S , RA �

Sλ2SSλ3S , (5.19)

S � Õ H ÕF �

¾
Q

j�1,2,3

λ2
j (5.20)

Two quantities RA, S should be maximized (RA only up to 1) and RB should be

low or close to 0. They are combined into a single tubularness measure [41]:

J�Fra��x� � �1 � e�
R

2
A

2α2 ��e�R2
B

2β2 ��1 � e�
S
2

2c2 � (5.21)
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Frangi et al. [41] recommends to set α � β � 0.5; the parameter c is set experimen-

tally.

Hessian based localization

Aylward et al. [7] approximate the medial axes of tubular vessels as oriented intensity

ridges. Ridges are tracked from a user-supplied starting point by estimating the local

directions of the tube with respect to the Hessian matrix. The local widths of the

object is estimated by using points on the ridges. It requires a fair amount of user

intervention (around 100 mouse clicks).

Guo et al. [49] propose a ridge extraction method that first applies median filter

and then non-linear anisotropic smoothing. Adaptive thresholding is used to cut

the cost of the ridge extraction and reduce false ridges. The vessel centerlines are

connected using a curve relaxation process.

Staal et al. [89] use the Hessian based method to detect ridges in 2D images

followed by a learn-able selection scheme. Ridge pixels are grouped by the similarity

of eigenvector directions, and straight line elements are formed out of them. Image

is partitioned according to the closest line element. Pixels are classified according

to a set of features computed in a local coordinate frame.

5.1.3 Steerable filters

Matched filter based detection (Section 5.1.1) is computationally demanding because

a large number of non-separable filters need to be applied. A more efficient approach

is to use only a few filters (corresponding to a few angles) and interpolate between

their responses. A term steerable filter is used for such a class of filters in which

filter of arbitrary orientation is synthesized as a linear combination of a set of basis

filters [42, 43]. We will show here that elements of the Hessian matrix H also

constitute a basis for a steerable filter.

Basis filters are designed by using partial derivatives of the Gaussian function.

For the first order directional derivative of I, it is enough to pre-compute three

basis functions Ix, Iy and Iz as in (5.7). Response of the filter at given direction v

is computed by linear combination

∂I

∂v
�x� � vxIx�x� � vyIy�x� � vzIz�x� (5.22)

where v � �vx, vy, vz� is unit directional vector of chosen orientation YvY � 1.
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The second order directional derivative of the image I is computed by convolution

with the partial derivatives of the Gaussian ∂2G�x,s�
∂v2 (5.8). The construction of

steerable Gaussian filter requires six basis filters [25]

∂2I

∂v2
�x� � 6

Q
i�1

ki�v� �I�x� �Bi�x, s�� (5.23)

where Bi�x� are the basis functions and ki�v� are the interpolation scalars

B1�x, s� � �2x2
1 � 1�G�x, s�, k1�v� � v21

B2�x, s� � �2x1x2 � 1�G�x, s�, k2�v� � 2v1v2

B3�x, s� � �2x2
2 � 1�G�x, s�, k3�v� � v22

B4�x, s� � �2x1x2 � 1�G�x, s�, k4�v� � 2v1v3

B5�x, s� � �2x2x3 � 1�G�x, s�, k5�v� � 2v2v3

B6�x, s� � �2x2
3 � 1�G�x, s�, k6�v� � v23

(5.24)

where x � �x1, x2, x3� are three coordinates, G�x, s� is the 3D Gaussian (5.9) and

v � �v1, v2, v3� is unit directional vector of chosen orientation.

The expression in (5.23) is similar to obtaining the second order directional

derivative from the Hessian matrixH (5.10). The interpolation scalars ki�v� appears
as scalar factors in the expansion of (5.10)

vTH�x�v � v21®
k1�v�

Ixx � 2v1v2²
k2�v�

Ixy � v22®
k3�v�

Iyy � 2v1v3²
k4�v�

Ixz � v2v3±
k5�v�

Iyz � v23®
k6�v�

Izz (5.25)

and the convolution of the image I�x� and basis functions Bi�x, s� correspond to

the second order partial derivatives of the image I�x�:
B1� Ixx � I�x�, B2 � Ixy � I�x�, B3� Iyy � I�x�, (5.26)

B4� Ixz � I�x�, B5� Iyz � I�x�, B6� Izz � I�x� . (5.27)

Since two methods for computation of ∂2I
∂v2 �x� are similar (equations (5.10) and

(5.23)), we implement only the Hessian based computation in our experiments (Sec-

tion 5.3).

Line detection with oriented filter. We want to design an oriented line filter

ζ�x,v� for detection of tool at orientation v. The oriented line filter can use one of

two methods for computing the second order directional derivatives ∂2I
∂v2 �x� as de-
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scribed above (equations (5.10) and (5.23)). A more informative notation ζ�x,v,K�
is used where K specifies either the Hessian matrix H or the steerable basis (5.24).

The estimated principal orientation v̂ of the line filter corresponds to the first

eigenvector ê1 of the Hessian matrix H. The other two eigenvectors ê2, ê3 form

a plane perpendicular to the tubular structure. In case of using steerable technique

(5.23), the local direction v̂ is determined by maximization of the filter’s response

over all directions v similarly to matched filters (Section 5.1.1).

The 3D line filter oriented along v � ê1 is defined as [43]:

ζ1�x,v� � ∂2I

∂ê22
�x� � ∂2I

∂ê23
�x�, (5.28)

Jacob and Unser [58] showed that there is a better alternative using Canny-like

criteria by maximization of the signal to noise ratio (SNR). The following line filter

is proposed

ζ2�x,v� � �2
3

∂2I

∂ê21
�x� � ∂2I

∂ê22
�x� � ∂2I

∂ê23
�x� (5.29)

which is claimed to have a better sensitivity to the orientation of linear structures

than filter ζ1�x,v� (5.28).
Line detection with steerable filters. The steerable based line detection has

been used also for the 3D MRA images [48, 104]. Weiping et al. [104] created a 3D

steerable filter based on dyadic B-spline wavelets. González et al. [48] use steerable

features for statistical 3D dendrite detection. Rotationally invariant features that

include higher-order derivatives are used. Then a classifier is learned on them which

allows to adapt the filter to particular properties of filaments without manual in-

tervention. The method is claimed to be more robust to the presence of noise than

Hessian based methods.

5.2 Tool localization with line filtering

The tool localization method proposed here improves the previously described me-

thod in Chapter 4 and it consists of two steps.

In the first step, the line filtering method is applied to calculate the tubularness

J�x� and the local orientation v̂�x� using one of the methods in Section 5.1.2.

The variable K�x� contains the Hessian matrix (5.6) which is used later in tool
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localization. The attributes

m1�x� � �I�x� J�x�� , �x > X � (5.30)

are used in pre-segmentation to reduce the amount of voxels not belonging to the

tool (Section 5.2.1). This is a generalization of the simple thresholding from the

method used in Chapter 4.

The subsequent tool localization uses all attributes from the previous step

m2�x� � �I�x� J�x� v̂�x�K�x�� , �x > X � (5.31)

The tool axis is estimated by model fitting based on the RANSAC procedure (Chap-

ter 4). The subsequent local optimization step uses the cost function based on the

shape description (Section 4.1.3). Additional variables v̂�x� or K�x� are used for

computation of consistency of the local orientation with the curve (Section 5.2.2).

5.2.1 Pre-segmentation

Tentative tool voxels Xt b X are selected according to the attribute vector m1�x�
(5.30)

Xt � �x > X S h�x� � 1� (5.32)

where h�x� > �0,1� is a binary classifier, determining the tool (h�x� � 1) and back-

ground voxels (h�x� � 0). The attribute J�x� was pre-computed by line filtering

(Section 5.1.2). We discuss several options for classifier in the following text.

Thresholding

The simple approach is to use thresholding of intensities I�x�
hthresh�x� � 1 � I�x� C IT (5.33)

where IT is a threshold estimated on the training data.

The thresholding was used for pre-segmentation in Chapter 4 and in [P1]. It

is an efficient method for reducing the amount of data. It is much faster than the

following methods based on line filtering but it is not so precise in recognition of

tubular structures from other, e.g. 2D, structures.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0035/these.pdf 
© [M. Uhercik], [2011], INSA de Lyon, tous droits réservés



5.2. TOOL LOCALIZATION WITH LINE FILTERING 73

Linear classifier

Decision function is defined as monolithic linear classifier [33] using the attribute

vector m1�x� (5.30):
hlinear�x� � 1 � w �m1�x� C w0 (5.34)

where w is a weight vector and w0 is a bias. Parameters w and w0 are learned from

the training data with ground truth as the Fisher’s linear discriminant (FLD) [33]

or by using a modified perceptron learning for linearly non-separable case. We use

a pocket algorithm [46] which keeps the best solution seen so far. The pocket algo-

rithm returns the solution in the pocket, rather than the last solution (Figure 5.4a).

Pre-segmentation using two attributes gives better results (in terms of true pos-

itives and true negatives) than doing thresholding (Chapter 4) at the expense of

additional time for line filtering. The results are reported in Section 5.3.

Support Vector Machine

Support Vector Machine (SVM) classifier [33] is defined as:

hSVM�x� � 1 � �w � kS�x� C w0� (5.35)

where discriminant function is defined by using dot product of weight vector w and

the vector of kernel functions

kS�x� � �k�m1�x�, s1�, ..., k�m1�x�, sd��T (5.36)

centered at support vectors S � �s1, ..., sd� , si > Rn which are usually subset of the

training data. The kernel functions k�x1,x2� � ϕ�x1� � ϕ�x2� are defined as a dot

product of transformed vectors ϕ�x1� and ϕ�x2�.
If the kernel function ϕ�x� is an identical function then the SVM is, in fact,

a linear classifier. The kernel function ϕ�x� can use a polynomial mapping which

allows to transform a non-linearly separable data into higher dimension and solve it

there using a linear classifier. Quadratic mapping is used for the ϕq�x�:
ϕq�x� � �x1, x2, . . . , xn, x

2
1, x1x2, . . . , x1xn, x

2
2, . . . , x2xn, . . . x

2
n� (5.37)

where xi denotes the i-th attribute of the vector x.
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For training of the SVM, the pattern recognition toolbox from [39] or the faster

implementation SVM Light [61] for large datasets can be used. The library LIBO-

CAS [40] implements the fastest SVM training method known to us.

Cascaded classifier

We have tested a cascade of two classifiers: the first one is thresholding of intensities

(5.33); the second one is linear classifier of two features (5.34)

f0 � hthresh, f1 � hlinear (5.38)

where f1 is applied only on the voxels which were positively classified by classifier

f0. More time consuming classifier f1 is run only on a small portion of surviving

candidates. Such an architecture saves the computational time by early refusing of

a large portion of voxel candidates with low intensities.

The cascade is trained in two phases: first, we find a threshold as the FLD

and adjust it so that 80% of the FPs are achieved on the testing set. Then, a linear

classifier is learned by perceptron learning of m1�x� on a subset of surviving training

samples. The found solution is usually close to other tested classifiers (Section 5.3).

An example of cascaded classification is in Figure 5.4b.

AdaBoost and WaldBoost

The AdaBoost (adaptive boosting) is a learning meta-algorithm. [44] Given a la-

belled training set and a set of weak (usually very simple) classifiers G, the AdaBoost

produces a strong classifier

hAdaB�x� � I

Q
i�1

h�i��m1�x�� (5.39)

where h�i� > G is selected sequentially during training. The resulting strong classifier

(which is binary in our case) maximizes the likelihood ratio of the tool class and the

background class.

Šochman et al. [88] proposed an algorithm WaldBoost which integrates the Ad-

aBoost training with the Wald’s sequential probability ratio test (SPRT). The SPRT

gives the termination criterion for the evaluation in the cascade. Two additional pa-

rameters have to be specified: the desired FN and FP rate. The WaldBoost can be

viewed as a theoretically justified boosted cascade of classifiers proposed by Viola
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and Jones [97].

Weak classifiers, which can be used in the AdaBoost or WaldBoost, can have

the accuracy only a little better than random guessing. An example of a weak

hypothesis is thresholding of a single feature or randomly oriented linear classifier.

Domain partitioning weak classifiers [85] divides the feature into K bins. In each

bin, the response of the weak classifier is computed from the sum of positive and

negative samples falling into the bin.

5.2.2 Tool model

The localization algorithm introduced in Chapter 4 uses shape and appearance

model for the tool in 3D US. Here, we propose an extended appearance model

which uses intensities I�x� as well as the data pre-computed by line filtering meth-

ods from Section 5.1.2, namely tubularness J�x�, principal direction v̂ and the local

characteristics K�x� stored in m2�x� (5.31).
Model fitting. We recall that the tool model is used by the localization algo-

rithm (Chapter 4) and it consists of a classification function q�x,H� > �0,1� classi-

fying voxel x as either a tool (q � 1) or a background (q � 0); and a cost function

C�Xinl;H� > R quantifying how well the model parameters H fit the set of observa-

tions Xinl consistent with the model.

The tool shape, i.e. curve parametersH, is first estimated roughly by maximizing

the number of tool voxels (inliers set Xinl) as determined by q via RANSAC

Ĥ � argmax
H
Q
x>Xt

q�x,H� (5.40)

on the pre-segmented set of voxels Xt. The estimated inliers set X̂inl is determined

as a subset of Xt containing only voxels with q�x, Ĥ� � 1, i.e. inliers. Finally, the

tool parameters Ĥ are refined by minimization of the cost function

H�
� argmin

H
C�X̂inl,H� (5.41)

on the set of inliers X̂inl (Chapter 4). In this chapter, we use the cost function (4.6)

from Section 4.1.3, which is based on the sum of squared distances of inliers X̂inl to

the axis.
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Calculation of features. The classification function q�x,H� uses the curve pa-

rameters H and the vector m2�x� (5.31) for decision if x is an inlier or not. We

compute the feature vector as

ω � �I�x� J�x� d�x;H� b�x;H�� (5.42)

where functions d�x;H� and b�x;H� are explained in the following text. First,

a distance to the curve a�t,H� is computed for each voxel x. The approximative

distance d�x;H�, is used as explained in Section 4.1.3. A tangent vector of the curve

a at point a�t0,H� is also required by our tool model

at�x,H� � c
∂a

∂t
�t0,H�, (5.43)

where c is a normalization constant such that Yat�x,H�Y � 1. Finally, a measure of

the consistency b�x,R� of the local image structure and the curve’s tangent at�x,H�
are computed. We have considered two options:

1) Compute the dot product of the tangent vector with the local principal direction

v̂ which was obtained by eigenanalysis:

b1�x;H� � Sv̂�x� � at�x,H�S . (5.44)

The higher value of b1 (closer to 1) corresponds to the high consistency of the tangent

vector at with the v̂�x�.
2) Apply a line filter ζ1 or ζ2 in the direction of the tangent v � at�x,H�. De-

pending on the choice of the equation (5.28) or (5.29) from Section 5.1.3 we have

two options:

b2�x;H� � ζ1�x, at�x,H�,K�x�� (5.45)

b3�x;H� � ζ2�x, at�x,H�,K�x�� (5.46)

where K�x� is the local characteristics, e.g. the Hessian matrix. The consistency of

the local structure with the tangent vector is now computed with respect to a local

structure tensor.
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(a) (b)

Figure 5.1: Example of the line filtering results: a) original 3D US image simulated
using FIELD II, b) the output of line filtering using Frangi’s filter.

Classification function q�x,H�
The classification function q�x,H� uses four features for each voxel x > Xt stored

in ω�x� (5.42) and it is used to evaluate tool hypotheses within the RANSAC

procedure (5.40). The classifier q�x,H� can be thought of as forming a classification

cascade together with the pre-segmentation (5.32). Unlike in pre-segmentation, it

also depends on the axis parameters H.

The function q�x,H� can be defined as linear classifier trained by perceptron

algorithm, linear classifier trained by the SVM, classifier trained by the SVM with

quadratic mapping, cascaded classifier, the AdaBoost or theWaldBoost (Section 5.2.1).

The parameters of classifier are learned from the training data with ground truth.

We report the results and comparison of all classifiers in Section 5.3.

5.3 Results

We did experiments on various types of data which are similar to data used in

previous Chapter 4:

Simulation study. Twenty-eight 3D ultrasound datasets were generated by the

ultrasound simulator FIELD II [59] with known ground-truth location of the tool

(Figure 5.1a). Numerical phantoms mimic the statistical properties of scatterers of

real tissue. Spatial distribution was varied to imitate non-homogeneous response

of the breast tissue. An image of tubular tool was created by adding a cylinder of

radius 0.4mm with highly reflecting scatterers. Resolution of each 3D image was
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(a) (b)

Figure 5.2: Example of the line filtering results: a) original 3D US image of the
PVA cryogel the phantom acquired with Voluson 530D scanner, b) the output of line
filtering using Frangi’s method.

Figure 5.3: 3D volume of breast biopsy with needle. The left part of the slice contains
the original data and the right part contains the data filtered by method of Frangi [41].
The original data were acquired with GE Voluson E8 scanner.

53 � 71 � 160 voxels.

PVA phantom. Experiments have been done on a PVA cryogel phantom [31, 45]

which mimics properties of biological tissue. The PVA cryogel phantom contained

an electrode of diameter 0.3mm (Figure 5.2a). Eight 3D ultrasound images of size

53 � 71 � 260 voxels of the PVA cryogel phantom from various positions have been

acquired using the ultrasound scanner Voluson 530D with a probe with central

frequency 7.5MHz.
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Breast biopsy. We tested the method on three data sets of the breast tissue

(Figure 5.3) with a straight biopsy needle of 11-gauge (1mm outer diameter). 3D

ultrasound images were acquired by the GE Voluson E8 scanner with a probe of

12MHz. Volume data sets were of dimension 273 � 383 � 208 voxels.

The ground-truth for real data sets has been determined as an average location

labelled by eight experts. They were asked to find the tool axis in thresholded set

of voxels by fitting the best approximating line. The mean variability for human

observers was less than 0.4mm. Assuming the ground-truth location of the tool

to be known, voxels of the volume have been divided into two groups: Xtool (tool

voxels) and Xbg (background voxels). Radius of the tool has been determined on the

training data set as a mean of standard deviations of distances to the ground-truth

location of the tool in thresholded data.

The evaluation of classifiers is performed only on simulated data. The reason

is that we have the precise ground-truth location of the tool only for the simulated

data. The results of classification on real data is similar, but such a high accuracy

of evaluation (as for simulated data) cannot be guaranteed. The final localization

results are shown on all types of data.

Implementation. Line filtering methods and proposed localization method were

implemented in MATLAB (The MathWorks, Natick, MA) and tested on PC with

Intel Core 4 processor at 2.83GHz. The Hessian matrices were computed using

a code by Almar Klein1. The code estimates partial derivatives of any order on

multi-dimensional data by convolution with derivative of the Gaussian. For the

fast training of the SVM on large datasets, the library LIBOCAS [40] was used.

For the training and evaluation of the AdaBoost, the implementation from the

CMP Vision algorithms [92] was used. The implementation of Waldboost with

domain partitioning weak classifiers by Jan Šochman was used. The number of weak

classifiers was set to five times the number of features, i.e., the number was 10 for

classifier h in the pre-segmentation and 20 for the classifier q in the RANSAC. The

desired TP rate and FN rate, for the training of the AdaBoost and the WaldBoost,

was set to 99%. For weak hypotheses of the AdaBoost, we used randomly generated

linear classifiers. Domain-partitioning weak classifiers with eight bins were used in

the WaldBoost.

1http://www.mathworks.com/matlabcentral/fileexchange/19696
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Frangi’s filter Sato’s filter Li’s filter
Datasets (number) ΨImpr Time ΨImpr Time ΨImpr Time

Simulation (28) 3.14 10.64 s 1.96 10.53 s
:::::
0.65 10.31 s

PVA phantom (8) 16.78 18.80 s 4.04 18.61 s 3.12 18.27 s
Breast tissue (3) 4.54 236.7 s 2.29 213.1 s 1.89 201.4 s

Table 5.1: Measured results of the mean contrast improvement using the mean con-
trast ratio ΨImpr�If , Io,Xtl,Xbg� and the mean elapsed time. The Frangi’s filter out-
performed the others and its column is marked by bold-face. The time of filtering
increased with the size of volume.

5.3.1 Enhancement evaluation

According to an expert, the images after line filtering by Frangi’s filter were better,

the improved visual contrast helped identify the tool easier. We have also evaluated

the enhancement of the linear structures using a quantitative method. We used the

contrast of tool voxels Xtl and background voxels Xbg � Ω�Xtl. The contrast Ψ was

measured using the contrast ratio:

Ψ�I,Xtl,Xbg� � mean �I�Xtl��
mean �I�Xbg�� (5.47)

Let us assume that the original image is Io and the filtered image is If . We

measure the improvement of contrast by computing the ratio:

ΨImpr�If , Io,Xtl,Xbg� � Ψ�If ,Xtl,Xbg�
Ψ�Io,Xtl,Xbg� (5.48)

Results of enhancement. We performed experiments on all three types of datasets

mentioned earlier: twenty-eight simulated datasets (53 � 71 � 164 voxels), eight

PVA phantom datasets (53 � 71 � 310 voxels) and three datasets of breast tissue

(383 � 273 � 208 voxels). We evaluated the mean contrast improvement ΨImpr using

three types of filters: Frangi, Sato and Li. The processing time was approximately

the same for all three types of filters and it increased with the volume size and with

the size of convolution mask for partial derivative estimation. The results measured

by the contrast ratio are in Table 5.1. The images that were filtered with Frangi’s

method have the best improvement of the contrast Ψ. Curiously, for the Li’s filter-

ing method, the contrast decreased on simulated data (marked by waved underline)

because of some difficult configurations of the tool in simulated data mentioned
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earlier.

5.3.2 Pre-segmentation evaluation

The task in pre-segmentation is to classify voxels into tool and background using two

attributes: intensity and tubularness (Figure 5.4). We have evaluated the precision

of classifiers described in Section 5.2.1.

Classifier h�x� evaluation. The predicted segmentation X̂tl and X̂bg is compared

to the ground-truth sets Xtl and Xbg. Table 5.2 summaries the naming convention

in the confusion matrix.

Confusion matrix negative predicted X̂bg positive predicted X̂tl

actual negatives Xbg True Negative (TN) False Positive (FP)
actual positives Xtl False Negative (FN) True Positive (TP)

Table 5.2: Confusion matrix illustrates the naming convention for the evaluation of
predicted class with respect to actual class.

The basic measures to be evaluated are a TP rate (sensitivity) and a FP rate

(1-specificity):

TP rate �
TP

FN �TP
(5.49)

FP rate �
FP

TN � FP
(5.50)

We primarily want to maximize the inliers ratio (Section 4.1.4). It is also called

a precision and it is defined as:

Precision �
TP

TP � FP
(5.51)

The performance of the RANSAC procedure directly depends on it. The accuracy

(also called the error rate) is also used in this chapter and it is defined as:

Accuracy �
TP �TN

TP �TN � FP � FN
(5.52)

The sensitivity, specificity and accuracy are informative measures which provide

an information complementary to the precision.
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Figure 5.4: Feature space composed of two attributes for each voxel: intensity I�x�
and tubularness J�x�. (a) monolithic linear classifier found by the perceptron learn-
ing; (b) cascaded classifier composed of thresholding and followed by linear classifier.
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Type of Precision Sens. Spec. Train Test Filter
Classifier [%] [%] [%] [s] [�10�3 s] [s]

Thresholding 66.4 77.5 80 6.91 5.41 0
Linear (Perc.) 85.2 89.5 80 8.71 5.76 10.64
SVM (Lin.) 92.4 91.8 80 1.13 3.42 10.64

SVM2 (+Qm) 94.5 92.0 80 3.44 5.36 10.64
AdaBoost 91.8 91.0 80 142.7 81.83 10.64
WaldBoost 87.6 90.6 80 3.46 345.16 10.64
Cascade 89.6 83.7 80 3.45 3.82 0.98

Table 5.3: Results of training of pre-segmentation on simulated data. For each
classifier, we report the precision (inliers ratio), sensitivity (TP rate), specificity (1
- FP), training time (on 472 � 103 samples) and testing time (on 118 � 103 samples).
The best achieved precision and the best achieved time using line filtering is marked
by bold face. The times of training and testing of AdaBoost and WaldBoost (in
italics) are higher because they were tested in MATLAB. The time required for line
filtering is reported separately.

Results on testing data. We compared the classifiers by evaluating the precision

(inliers ratio), the FP rate and the TP rate, where our primary objective is to

maximize the precision. The training set contained 472 � 103 samples made of 9

simulated datasets. Testing set (different from training set) contained 118 � 103

samples. The results on the testing set are reported in Table 5.3. Classifiers were

adjusted by looking at the ROC curve so that specificities are 80% (Section 5.3.2) to

make sensitivities comparable. The results show that the precision is higher when

using the line filtered data, e.g. 85.2% for linear classifier which is in contrast with

66.4% for the simple thresholding. The precision was around 90% for the cascaded

classifier, the AdaBoost or the WaldBoost. The highest precision 94.5% was achieved

with the non-linear SVM classifier. The times of training and testing of AdaBoost

and WaldBoost are higher because they were tested in MATLAB. It is fast enough

for our application, but better time can be achieved by re-implementation, e.g. in

C.

The time required for filtering is reported in Table 5.4. The time is similar

for all three types of Hessian based methods (Frangi’s, Li’s and Sato’s). The line

fitlering can be evaluated efficiently in the cascaded classifier (Section 5.2.1). The

filter is evaluated only on voxels surviving the first level thresholding and the second

level classifier uses also tubularity feature. Using the fast version of line filtering in

cascade, we succeeded to reduce the overall time to 10%. The filtering time around

1 s allows the faster implementation of the tool localization. We propose to use
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Datasets Size [voxels] Full volume in Cascade

Simulation 53 � 71 � 164 10.64 s 0.98 s
PVA phantom 53 � 71 � 310 18.80 s 2.05 s
Breast tissue 383 � 273 � 208 236.7 s 14.04 s

Table 5.4: Elapsed times for line filtering using Frangi’s method of various datasets.
The time is given for filtering of the full volume and for filtering of the thresholded
data in a cascade. The overall time depends linearly on the size of dataset.

the cascaded classifier because the time of evaluation is lower than for the other

classifiers.

ROC curve analysis

We evaluated the quality of the pre-segmentation (Section 5.2.1) using receiver op-

erating characteristics (ROC) curve [33]. We draw the dependency of the TP rate

on the FP rate. The ideal ROC curve has low false alarm rate and high true posi-

tive rate. We note that the ROC curve provide only a complementary information

and the primary criterion for choosing the best classifier is precision as explained

previously.

We do the ROC curve computation by varying the bias of the linear classifier

(trained by perceptron or by the SVM) in the range of all possible classifications. The

ROC curve for the AdaBoost was plotted by connecting the points corresponding to

the weak classifiers. The ROC curve for the WaldBoost was computed by varying

the decision threshold. We show the ROC curves in Fig. 5.5 for the testing set.

The optimal found classifiers are shown by point marks and the curve represent

the result of varying classifier. For convenient comparison, we have set the bias

for each classifier so that the FP rate is 20% and we observed the TP rate. The

results obtained using this technique are given in Table 5.3. The computed ROC

curve shows small differences between tested classifiers. The linear and the cascaded

classifier were performing better than the thresholding. The highest TP rate for the

varying FP rate around 20% achieved the SVM-based classifiers.

A similar adjustment technique for the classifier q��, including the computa-

tion of the ROC curve, is performed in the following section and the results are in

Table 5.6.
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Figure 5.5: The ROC curves for various pre-segmentation classifiers: thresholding,
linear classifier, cascade, the SVM, the AdaBoost and the WaldBoost. The optimal
classifiers found by learning algorithms are marked by point symbols in legend. The
ROC curves were by varying the decision threshold from the optimal classifiers.
There are two views of the same ROC curve with a different range of TP and FP.
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feature I�x� J�x� d�x;H� b1�x;H� b2�x;H� b3�x;H�
ΣLDA��� 13.9 32.9 35.4 13.5 16.4 11.9

Σaccuracy��� 56.9% 76.7% 98.5% 56.4% 65.0% 46.2%

Table 5.5: Analysis of features discriminativity using the LDA.

5.3.3 Tool model evaluation

In this Section, we evaluate the proposed tool model. First, we do feature analysis

to determine good features used later in the classification. Then, we examine the

classification function q�x,H� (from Section 5.2.2) which is used in tool localization.

Feature analysis

We have proposed to use several features in vectors ω�x�. The most important one

is distance from tool axis d�x,H�. We shall also compare two ways for computing

the consistency of local vector and the curve direction: by dot product b1�x;H�
(5.44) and by oriented line filter b2�x;H� (5.45) or b3�x;H� (5.46).

We measure the discriminative power of features by two measures: 1) Linear

discriminant analysis (LDA) which measures the ratio of between-class and within-

class variance:

ΣLDA�F � � σ2
between

σ2
within

(5.53)

2) Classification accuracy Σaccuracy�F � (5.52) of a linear trained by FLD [33] for each

evaluated feature.

The results of evaluation of ΣLDA and Σaccuracy in Table 5.5 show that feature

b2�x;H� is more discriminative than b1�x;H� or b3�x;H�, therefore we use the

oriented line filter ζ1 (5.45) in our tool model.

Evaluation of classifier

The training of the classifier q�x,H� is done on datasets separated from the testing

set. We compute the vector ω�x� (5.42) for each voxel x. The ground-truth label is

assigned according to distance from the ground-truth location. If d�x;H� C r (where

r is radius of tool) then ”1” is assigned, otherwise ”0” is assigned.

The classifier q�x;H� is used for the robust RANSAC estimation of the tool

axis by maximization of the number of inliers. Note that the input data might

be contaminated by outliers, therefore we need a classifier robust to large spatial

variations of tool axis. We compared all classifiers from Section 5.2.1. We report
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Type of Precision Sens. Spec. Train Test
classifier [%] [%] [%] [s] [10�3 s]

Linear (Perc.) 94.97 96.11 98 0.10 0.57
SVM (Lin.) 96.99 99.98 98 0.38 0.74
SVM2 (+Q.) 98.12 99.99 98 0.99 1.08
AdaBoost 98.18 99.29 98 19.30 7.70
WaldBoost 96.77 98.28 98 1.68 42.37

Table 5.6: Results of training of classifier q�x;H� on simulated data. For each
classifier (with or without quadratic mapping), there are various values reported:
precision (inliers ratio), Sensitivity (TP rate), Specificity (1 - FP rate), training
time (on 30 � 103 samples) and testing time (on 7.6 � 103 samples). The best achieved
precision is marked by bold face. The times of training and testing of AdaBoost and
WaldBoost (in italics) are higher because they were tested in MATLAB.

results (the precision, the TP rate and the FP rate) in Table 5.6. Classifiers were

adjusted by looking at the ROC curve (using a technique from Section 5.3.2) so that

specificities are 98%. The best performing classifiers (with the precision over 99%)

were the non-linear SVM and the AdaBoost, but the difference between them is not

significant.

5.3.4 Localization evaluation

In this section, the proposed localization method is evaluated using the axis accuracy,

the number of failures and the elapsed time. We evaluate the axis accuracy ϵaxis as

in Chapter 4 (Section 4.2.1). The result is considered to be a failure when the axis

accuracy is ϵaxis A 3 mm. The number of failures are reported separately and the

accuracy is evaluated only on the successful runs. The reported times include line

filtering and pre-processing.

The proposed method is examined with two variations in pre-segmentation: 1)

with a cascaded classifier (referred as CASC) and 2) with a classifier learned by the

SVM with quadratic mapping (SVM2). The proposed method is examined with four

variations of classifier q�� in the RANSAC procedure: 1) the basic SVM classifier

(SVM); 2) the SVM with quadratic mapping (SVM2); 3) the AdaBoost with weak

linear classifier (ADA); 4) the WaldBoost with domain partitioning weak classifiers

(WALD). In total we examined 8 variations of the proposed method on each type

of data.

The proposed method with line filtering (5.2.2) is also compared to previously

described localization methods based on model fitting using the RANSAC with
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No. Method Pre-segm. + Time Fails Acc.
# Tool model [sec] [%] [mm]

1 PIP None 69.1 5.0 � 4.7 0.28
2 MR-PIP None 29.4 11.0 � 9.8 0.27

3 RHT Thresholding 1.38 14.5 � 12.4 0.36
4 Q-RHT Thresholding 0.89 28.0 � 20.1 1.41

5 RANSAC Thrsh. + AxShp 0.41 8.6 � 7.8 0.14
6 RANSAC Thrsh. + IntDstr 1.00 1.4 � 1.4 0.38

7 RANSAC Casc. + SVM 1.05 0 � 0 0.16
8 RANSAC Casc. + SVM2 1.07 0 � 0 0.17
9 RANSAC Casc. + ADA 1.22 0 � 0 0.13
10 RANSAC Casc. + WALD 2.05 0 � 0 0.23

11 RANSAC SVM2 + SVM 7.61 0 � 0 0.18
12 RANSAC SVM2 + SVM2 7.78 0 � 0 0.11
13 RANSAC SVM2 + ADA 8.57 0 � 0 0.12
14 RANSAC SVM2 + WALD 9.26 0 � 0 0.18

Table 5.7: The results of the tool localization on simulated data with the high SNR
of the tool.

models AxShp and IntDstr [P1] (Chapter 4) and also with the PIP [P2], the MR-

PIP [P3] (Chapter 3), the RHT and the Q-RHT [108]. The tool models were learned

as described in Chapter 4 (Section 4.1.3). The settings for the RHT and the QRHT

were the same as in previous Chapter (Section 4.2).

Simulation study

We have compared various tool localization methods on the simulated data with two

levels of difficulty: the first group contains datasets with a relatively high contrast

of the tool (also referred as the SNR); the second group contains datasets with the

SNR decreased by 50% compared to the first group.

The results for the first group are reported in Table 5.7 and example of the

input 3D volume is in Figure 5.1a. The methods based on the PIP (rows 1–2)

are taking longer than 10 seconds. The RHT-based methods (rows 3–4) are worse

(in terms of the robustness) than the RANSAC localization with the model AxShp

and IntDstr (rows 5–6). The methods which are using line filtering (rows 7–14)

perform better than the others but they require more time for pre-processing. We

have successfully tested the cascaded classifier (rows 7–10) which has reduced the

filtering time compared to the SVM with quadratic mapping (rows 11–14). All
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No. Method Pre-segm. + Time Fails Acc.
# Tool model [sec] [%] [mm]

1 PIP None 70.8 100 � 0 N.A.
2 MR-PIP None 31.2 100 � 0 N.A.

3 RHT Thresholding 5.91 100 � 0 N.A.
4 Q-RHT Thresholding 4.08 100 � 0 N.A.

5 RANSAC Thrsh. +AxShp 9.8 100 � 0 N.A.
6 RANSAC Thrsh. +IntDstr 11.2 100 � 0 N.A.

7 RANSAC Casc. + SVM 18.3 44.3 � 24.7 0.27
8 RANSAC Casc. + SVM2 23.4 17.1 � 14.2 0.32
9 RANSAC Casc. + ADA 26.9 95.7 � 4.1 0.51
10 RANSAC Casc. + WALD 22.6 95.7 � 4.1 0.58

11 RANSAC SVM2 + SVM 39.6 17.1 � 14.2 0.36
12 RANSAC SVM2 + SVM2 41.2 1.4 � 1.4 0.16
13 RANSAC SVM2 + ADA 39.1 15.7 � 13.2 0.26
14 RANSAC SVM2 + WALD 54.6 67.1 � 22.1 0.41

Table 5.8: The results of the tool localization on simulated data with the low SNR of
the tool.

variants of proposed method had zero number of failures which was not be achieved

by the previous methods without line filtering.

We tested the localization methods on more difficult data in order to show dif-

ferences between their performance. The results for the case with a low SNR of

the tool are in Table 5.8 and example of localization result is in Figure 5.6. The

methods, which are not using the line filtering (rows 1–6), are failing in the most

cases. The methods with the SVM classifier in pre-segmentation achieved the best

performance. The classifier q�� based on the SVM with quadratic mapping (row 12)

had least number of failures. The cascaded classifier in pre-segmentation decreased

the overall time at the cost of increasing the number of failures.

Experiments on real data

The results on real data of the PVA phantom are in Table 5.9 and example of

localization result is in Figure 5.7. The methods based on the PIP (rows 1–2) take

longer time than 30 seconds and they are not reliable with 50% of failures. The

RHT and the QRHT (rows 3–4) mostly fail because of the presence of the 2D layer

which confuses them. The same problem had the model fitting with the AxShp and

the IntDstr (rows 5–6). The robustness of tested methods was improved when using
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No. Method Pre-segm. + Time Fails Acc.
# Tool model [sec] [%] [mm]

1 PIP None 126.8 50 � 25 0.34
2 MR-PIP None 34.2 50 � 25 0.50

3 RHT Thresholding 3.81 88 � 10.5 0.74
4 Q-RHT Thresholding 2.07 97 � 2.9 1.52

5 RANSAC Thrsh. + AxShp 0.37 97.5 � 2.4 0.69
6 RANSAC Thrsh. + InDstr 1.34 91.3 � 7.9 0.75

7 RANSAC Casc. + SVM 3.83 2.5 � 2.4 0.61
8 RANSAC Casc. + SVM2 4.45 10.0 � 9 0.72
9 RANSAC Casc. + ADA 5.30 10.0 � 9 0.80
10 RANSAC Casc. + WALD 6.00 12.5 � 10.9 0.83

11 RANSAC SVM2 + SVM 16.21 7.5 � 6.9 0.83
12 RANSAC SVM2 + SVM2 17.12 2.5 � 2.4 0.68
13 RANSAC SVM2 + ADA 17.24 2.5 � 2.5 0.68
14 RANSAC SVM2 + WALD 17.58 40.0 � 24 0.89

Table 5.9: The results of tool localization on the PVA cryogel phantom.

No. Method Pre-segm. + Time Fails Acc.
# Tool model [sec] [%] [mm]

1 PIP None 619 100 � 0 N.A.
2 MR-PIP None 198 100 � 0 N.A.

3 RHT Thresholding 14.31 100 � 0 N.A.
4 Q-RHT Thresholding 5.48 100 � 0 N.A.

5 RANSAC Thresh. + AxShp 2.21 100 � 0 N.A.
6 RANSAC Thresh. + IntDstr 8.21 100 � 0 N.A.

7 RANSAC Cascade + SVM 48.6 80 � 16 0.314
8 RANSAC Cascade + SVM2 53.1 66.7 � 22.2 0.168
9 RANSAC Cascade + ADA 52.6 66.7 � 22.3 0.174
10 RANSAC Cascade + WALD 52.6 100.0 � 0.0 N.A.

11 RANSAC SVM2 + SVM 272.7 53.3 � 24.9 0.098
12 RANSAC SVM2 + SVM2 273.8 6.7 � 6.2 0.098
13 RANSAC SVM2 + ADA 280.9 0.0 � 0.0 0.132
14 RANSAC SVM2 + WALD 276.9 0.0 � 0.0 0.198

Table 5.10: The results of tool localization on real data of breast biopsy.
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line filtering (rows 7–14). The failure rate decreased to below 10% which makes

the localization method more reliable. The best performance was achieved with the

SVM classifier with quadratic mapping in pre-segmentation and in in the RANSAC

procedure (rows 8). Similar failure rate was achieved with the AdaBoost classifier.

The time of localization can be reduced by employing the cascaded classifier in the

pre-segmentation.

The results on real data of breast tissue with the biopsy needle are in Table 5.10.

The methods, which are not based on the line filtering (rows 1–6), completely fail on

this data. The line filtering helped with detection of the tool in the biological tissue.

The proposed methods (rows 7–14) achieve less failure rate. The combination of the

SVM classifier and the AdaBoost or the WaldBoost in the tool model achieves zero

failures on the three data sets that were used in the experiment.

The elapsed times were higher because of the volume size (273�383�208 voxels)

but it was successfully reduced from 246 s to 35 s using the cascaded classifier.

5.4 Conclusions

We proposed the method for tool localization in 3D ultrasound images which exploits

its 1D shape. The tool contrast has been enhanced by line filtering methods based

on eigenanalysis of the Hessian matrix. We chose the Frangi’s method because it

provides the best enhancement of the tool contrast.

The localization method proposed in this chapter improves the previous model

fitting method because of two properties: 1) the line filtering reduces the number of

background voxels, so the fraction of tool voxels is higher after pre-segmentation; 2)

the classifier in the RANSAC procedure uses additional features pre-computed by

line fitlering which makes it more robust. The best performing combination is the

cascaded classifier in the pre-segmentation (for fast evaluation of the line filtering)

and the SVM classifier in the RANSAC procedure (for the low number of failures).

Additional voxel descriptors could be used for improved robustness (Section 5.2),

e.g., the raw acoustic data from the US scanner. We have used the cost function

based on the SSD (sum of squared distances) for the local optimization. We shall

propose in the future a cost function which corresponds to classifiers described in

this chapter.

The line filtering requires an additional pre-processing time (around 10 s for the

volume of 53 � 71 � 160 voxels). The time was significantly reduced by employing

the cascade classifier to 1 s.
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(a)

(b)

Figure 5.6: Visualization of the localization results in simulated 3D ultrasound
data. The dashed line shows the correct result of tool localization with line fil-
tering. Two red lines show examples of failure without line filtering. Complete
statistics and comparison of various methods can be found in Table 5.7. Two dif-
ferent views (a) and (b) show the same data set for better understanding of the
3D scene. Another 3D visualization in a movie is on the accompanied CD in file
/Viz3D/animation-simData.avi.
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(a)

(b)

Figure 5.7: Visualization of the localization results in 3D ultrasound data of the
PVA phantom. The dashed line shows the correct result of tool localization with line
filtering. Two short red lines show examples of failure without line filtering. The
localization method got confused by the high intensity layer caused by the border of
the phantom. Complete statistics can be found in Table 5.9. Two different views
(a) and (b) show the same data set. Another 3D visualization in a movie is on the
accompanied CD in file /Viz3D/animation-pvaData.avi.
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Chapter 6

Real-time localization

In this chapter, we propose to assist the surgeon by providing a real-time application

that takes the 3D data from the ultrasound scanner, automatically localizes the

surgical tool and displays the section plane containing the tool. The axis of the

tool is estimated with a method based on model fitting using a Random Sample

Consensus (RANSAC) as described in Chapter 4.

The work presented here was presented on the IEEE International Ultrasonics

Symposium (IUS) 2010 [P5]. The author made a significant contribution to the soft-

ware presented here while working on it with various master students at CREATIS

over two years.

6.1 Method

The algorithm that was used to localize the surgical tool from 3D data is presented

in Section 6.1.1. The design of real-time application, overall functioning and im-

plementation in the C++ is given in Section 6.1.2 which is a contribution of this

work.

6.1.1 Localization algorithm

The tool localization algorithm based on the model fitting [P1] (Chapter 4) is used.

The method has been tested offline and has been validated in various configurations.

We implemented the simple tool model based on evaluation of distance to the tool

axis. We do not perform the local optimization because we aim at demonstrating

the real-time feasibility of the method.

95
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6.1.2 Proposed application

The application is implemented on the Ultrasonix Sonix RP with a CPU speed of

3GHz and the Microsoft Windows XP operating system. The 3D probe 4DC7-3/40

was used that allows the acquisition of echographic volumes by built-in motorized

sweeping of transducers. Three frequencies are available with this probe for the

acquisition of B-mode: 2.5, 4.0 and 5.0MHz. It had an array length of 55mm and

a maximum Field of View (FOV) of 104X.

The demonstration application is built from the open source application Pro-

pello provided by Ultrasonix for custom applications. It uses the Porta library

(version 4.6.2) which is an interface for communication with the Ultrasonix scanner

and for controlling of 3D probe motor. Propello was built-up in the C++ language

using the Microsoft Foundation Class (MFC 7.1). The library allows, among others,

multi-threading which is used to create a real-time application. The program source

code is provided for the Visual Studio .NET environment.

The tool localization algorithm (model fitting using the RANSAC procedure)

was implemented in the C++ and it is provided as an open-source static library

under the GNU GPL licence. The GNU Scientific library (GSL) version 1.11, an

open-source library for scientific computing, was used for mathematical functions.

In addition to the localization method (Chapter 4), there is also a function for

automatic estimation of the threshold. This function finds such a threshold (from

range between 0 and 255) that returns a given portion of voxels over threshold. There

are other important parameters of the tool localization: the minimal length of the

tool, the maximum radius of the cylinder, the desired probability of the solution

and the maximal number of iterations.

Functions and features

Propello allows the acquisition of frame data from motorized 3D transducers. Vari-

ous types of data can be collected (pre-scan and post-scan converted B-mode data,

raw RF data, etc.). With the Propello program, users have full control over the

motor. There are two types of capturing method: manual (i.e. step by step) and

automatic mode which was used here.

After initialization, the user can modify various parameters for the acquisition,

e.g. the number of frames per volume, or the step (in degrees) between frames.

After starting the automatic acquisition, all the acquired frames are stored in a cyclic

buffer of a fixed size (Figure 6.1) according to the principle first-in, first-out (FIFO).
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Figure 6.1: Representation of the cyclic buffer which contains acquired volumes.

With the original application provided by the Ultrasonix, it is not possible to

know when an entire volume is acquired. We implemented the missing feature

by testing the number of frames already acquired. Once a full volume has been

obtained, it is ready to be processed by the tool localization function. See also

a detailed description of the procedure in the next section 6.1.2.

An offline mode has also been implemented. In this mode, user can replay the

acquired sequence and the tool localization from the memory or from a file. The

feature of replaying from file allows the application to run on any computer without

the Ultrasonix computer and the 3D probe connected.

Software architecture

We use a multi-threading architecture which allows running three various tasks in

parallel:

� Main Window - for user interaction and displaying of the result of localization.

� Acquisition - for automatic acquisition of frames in the Porta library.

� Worker Thread - for tool localization (using our C++ library).

The synchronisation between them is done by calling functions and exchanging mes-

sages (Figure 6.1.2). The acquisition thread consists of: (i) checking if a correct

probe (i.e. 3D probe) is connected; (ii) automatically moving the motor using pa-

rameters (e.g. spacing between frames and the number of frames) supplied by the

user, (iii) acquiring and storing frames in the cyclic buffer as discussed above.

Whenever a new frame is acquired, a callback function from Porta is called and

handled in the main dialog (Step 1). Once a full volume has been obtained (Step

2), we test if the worker thread has finished the processing of the previous volume

(Step 3). If finished, the main window wakes up the worker thread (Step 4) which

works on a copy of the last acquired volume. We ensure that the volume data is not
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Figure 6.2: The
figure shows how
the synchronisa-
tion between three
threads works: the
Porta library, the
main dialog and the
worker thread. The
user controls the
acquisition by click-
ing on the initialize
button, the run
button and the stop
button. Note that
here a self message
represents one me-
thod calling another
method belonging
to the same object.
More explanation
about the sequence
diagram is given in
Section 6.1.2
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Figure 6.3: Graphical user interface installed on the Ultrasonix RP. The axis of the
surgical tool is indicated by the red line. Several parameters can be changed from the
window and the user can replay the acquisition sequence and tool localization either
from the memory or from a file. 1) B-mode image. 2) Section plane with the tool.
3) Perpendicular plane.

overwritten by the acquisition thread. After the worker thread has computed the

solution, it returns the result to the main window for visualization (Step 5). The

acquisition runs in a loop until the user stops it.

Graphical User Interface

The Graphical User Interface (GUI) shows both the section plane containing the tool

(marked by the number 2 in Figure 6.3) and the perpendicular plane to it (marked

by the number 3 in Figure 6.3) in order to give a view of surrounding tissue. The

section plane (containing the tool) is computed from the coordinates of the tool and

from the geometry of 3D volume, so that the 2D slice completely contains the volume

and the incident tool. The nearest neighbour interpolation is used to compute the

image of the section plane with the tool. The perpendicular plane which intersects

the middle of the tool is computed similarly. Our application provides a relevant

visualization for a real-time localization (Figure 6.3).
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6.2 Results

Experiments were performed on three types of data with surgical tools: (i) sub-

merged in water, (ii) inserted into homogeneous polyvinyl alcohol (PVA) Cryogel

phantom [31] and (iii) liver tissue. Conditions under which our experiments were

performed are described in Section 6.2.1. The time required for tool localization and

the success rate of localization are discussed in Section 6.2.2.

6.2.1 Details of experiments

For our experiments, the B-mode sector angle was 52X. The motor step was set

to 0.732X with a corresponding 49X FOV, i.e., 67 frames per volume. The depth of

acquisition was 6 cm. The focal point was approximately at the depth of the tool.

3D volumes of size 33 � 64 � 224 voxels have been acquired by using the probe with

central frequency 5MHz.

Concerning the material used in experiments, we used two types of needles: 1)

Short needle of a length of 5 cm and a diameter of 1mm. 2) Longer biopsy needle of

length 8 cm and diameter 1.25mm. The PVA cryogel phantom of size approximately

5 cm � 5 cm � 5 cm was used for insertion of the needles. The distance between the

3D probe and the needle was approximately 4 cm.

We tested the application in a static configuration, i.e., the needle was already

inserted and was not moving. When the needle was submerged in water, we tested

if we were able to locate the needle in any position relatively to the 3D probe. Then

we tried to follow the needle during the insertion inside the phantom. We also

performed the experiment with the biopsy needle in the liver tissue sample (bought

in a supermarket).

In our experiments, the following parameters were set for tool localization me-

thod: minimum length of the tool: 5mm; maximum radius of the tool: 1mm;

maximum number of points (for automatic threshold estimation): 1000; desired

probability: 99.5%; maximum number of iterations: 3000.

6.2.2 Success rate and time

In a static configuration described above, the application displays the correct frame

that contains the needle and gives an estimation of the needle position with a high

successful rate greater than 98%. When the needle is moving, in any environment,

the success rate is decreasing slightly. Although, sometimes the displayed frame
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Figure 6.4: The dependence of localization time on the proportion of inliers.

is correct, the location of the needle is incorrect. On average, good frames are

displayed with a success rate of 95% and good locations of the needle are obtained

with a success rate of 75%.

The localization time depends on the environment. It varies linearly with the

volume size and the number of points remaining after thresholding (a parameter of

tool localization). The time of localization is inversly proportional to the fraction

of inliers (true tool voxels) in the thresholded data set (Figure 6.4). For our setting

with a needle of diameter of 1mm, the fraction of inliers is 19% and the localization

time is 0.935 seconds on average.

The volumes of size smaller or equal than 67 planes � 128 beams � 224 samples

(it corresponds to a depth of 7 cm, a field of view of 104X in horizontal direction

and 63X in vertical direction), the localization time is less than the time required for

acquisition (about 1 second).

6.3 Discussion

Seeing that it is feasible to localize the tool during its positioning at real-time in

various types of an environment, the application can be useful for surgical operations

after an optimisation phase of the process. In fact, the automatic needle localization

can be difficult because of the images with low contrast, attenuation and artifacts.

It would be also interesting to implement the other tool models based on the

intensity profile of the tool as proposed in [P1] (Chapter 4). In order to enhance

the contrast of the tool, the second harmonic imaging [5] or the pulse inversion

technique [64] or can be used.
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The resulting location of the tool has a large variation because the tool local-

ization is performed on each volume of sequence independently. We could use the

information computed from the previous volume in order to constrain the estimation

for the tracking of the tool in the sequence of volumes.

6.4 Conclusion

We propose to assist surgeons by providing a real-time application which is able to

track surgical tools movements. The refresh rate of the tool localization images and

displaying the interpolated planes is about one second. It corresponds to the time

necessary to acquire a full volume with the 3D probe used here. In the absence of

artifacts, our experiments have shown that we are able to locate the surgical tool

in water, the PVA cryogel phantom and liver quickly and with a good accuracy.

The application is available at our webpage http://www.creatis.insa-lyon.fr/

site/en/ToolDemo.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0035/these.pdf 
© [M. Uhercik], [2011], INSA de Lyon, tous droits réservés

http://www.creatis.insa-lyon.fr/site/en/ToolDemo
http://www.creatis.insa-lyon.fr/site/en/ToolDemo


Chapter 7

Conclusions and outlooks

This thesis was dedicated to the problem of automatic localization of surgical tools in

3D ultrasound (US) images. The proposed methods were tested on real clinical data

of the breast biopsy. They are fast enough to perform the localization in real-time.

The result of localization can be presented as a 2D slice containing the tool

because the clinicians are used to observe 2D ultrasound images. Besides, it is not

necessary to maintain the observation plane incident with the tool anymore.

The localization method consists of the axis and tip localization. The proposed

tool localization method is fast and robust to the deformation of the tool and the

presence of other high-intensity structures.

Parallel Integral Projection. The Parallel Integral Projection (PIP) was pro-

posed previously for a straight tool localization. The author contributed to the final

publication of Barva et al. [P2] in the IEEE Transactions on Ultrasonics, Ferro-

electrics, and Frequency Control.

The existing PIP implementation was rather slow so we proposed to use a pyra-

mid of multiple down-sampled 3D US images which brings the time of the method

from the order of hundreds of seconds to below than ten seconds (Chapter 3). The

author’s proposal was presented at the IEEE International Symposium on Biomed-

ical Imaging 2008 [P3].

Model fitting using RANSAC. The model fitting is a localization method

which estimates the parameters of the axis by using the RANSAC procedure. We

proposed two new shape and appearance models in Chapter 4: one simple based on

the axis shape and one more complicated model which can better fit the typical in-

tensity profile of the tool. The proposed methods are very fast, the localization time
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it depends on the proportion of inliers. In our tests, it was 0.5 s for the simple shape

model applied to the volume of 53 � 71 � 3100 voxels. The tool model with a priori

known intensity distribution is more robust to the presence of high-intensity struc-

tures in the real ultrasound images than the state of the art localization methods.

We published the model fitting method in the IEEE Transactions on Biomedical

Engineering [P1].

We showed that the robustness can be further improved by exploiting a priori

information about the one-dimensionality of the tool. We proposed to use the line

filtering in pre-segmentation and in the estimation of the tool model (Chapter 5).

The robustness of the localization method was further improved on all tested 3D

US images including the difficult simulated data, the PVA phantom and the breast

tissue. We achieved the zero number of failures, while the other state of the art

methods had higher failure rate or they were failing in all cases. The additional

time costs with the line filtering were reduced by employing the cascaded classifier

from 8 s to 1 s. The preliminary work about line filtering was presented at the IEEE

International Ultrasonics Symposium 2009 [P4] and a publication for a journal is in

preparation.

The model fitting is a fast method suitable for real-time localization (Chapter 6).

It is demonstrated by a real-time application with the simple shape model imple-

mented on the 3D ultrasound scanner Ultrasonix RP. The localization method was

able to follow the movement and insertion of the needle in the phantom. The appli-

cation was presented at the IEEE International Ultrasonics Symposium 2010 [P5].

Future work. The model fitting method (Chapter 4) can be further improved

by incorporating more a priori knowledge, e.g. by using additional descriptors in

method proposed in Chapter 5 or by incorporating constraints for the solution. The

other way for improving the method is to replace the RANSAC procedure with

variations, e.g., randomized RANSAC [22] or locally optimized RANSAC [23].

A new voxel descriptor based on the radio-frequency (RF) signal could be devel-

oped. The RF signal is the raw acoustic data recorded by an ultrasound scanner at

high sampling rate (Section 1.3.3). The raw RF data offer a better accuracy than

the standard US images which are degraded by post-processing and interpolation.

Unfortunately, the most commercial US scanners do not provide an access to the

RF data.

A complementary information to intensities in the US image is the acoustic

shadow which is relatively strong for the metallic tools. A new tool model could
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detect a dark shadow line in the projection under the tool axis. It would be useful

in cases when the contrast of the tool is poor because of the specific observation

angle.

The tool is usually inserted from the lateral side of the volume so that the tool

axis is usually oriented perpendicularly to the sound wave propagation. This can

be used as a constraint in the estimation of the tool axis for the rejection of the

non-feasible orientations.

The proposed method performs the localization in the single 3D US volume. It

can be applied to the sequence of volumes for a real-time tracking (Chapter 6). The

tracking can be improved by using the result of localization on the previous volume

in sequence. The change of location is expected to be relatively small because of the

continuous movement.

Many of the proposed methods are suitable for a parallel implementation: the

PIP projections can be computed in parallel, the hyphoteses of the RANSAC can

be also tested concurrently. The line filtering uses a local neighborhood so the

implementation, e.g., on the GPU, would descrease the time complexity immensely.

More experiments with the real tissue should be performed to validate the

proposed method in real clinical cases. We have done experiments with the breast

biopsy data and the phantom data, but other types of real tissue should be also

considered. The validation of the proposed method with a complementary imaging

modality, e.g. MRI or CT, should verify the precision of the method. In the future,

the validation of the localization method should be done with a clinician.
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Appendix A

Accompanying CD

We provide a supplementary material on the CD Accompanying to this text. The

manuscript of the thesis is in the file: UhercikThesis2010.pdf.

A.1 Directory structure

Please read the file ReadMe.txt first. There are several directories:

� DemoGUI – Demonstration application for the tool localization (Section A.2).

� Papers – The publications related to this thesis in electronic form.

� Viz3D – Supplementary movies with visualization of 3D data used for experi-

ments.

The source code is available at the CMP or the CREATIS laboratory. If you

are interrested, please contact the author (Marián Uherč́ık1) or the supervisors (Jan

Kybic at CMP, CTU in Prague, Hervé Liebgott and Christian Cachard at CREATIS-

LRMN, Université Lyon).

A.2 Demonstration application

We provide a demonstration application on the Accompanying CD. It is different

application than the real-time demonstration (Chapter 6). This application is for

testing of proposed tool localization methods off-line. The software was implemented

in MATLAB and we provide a program with the graphical user interface (GUI)

compiled to an executable file.

1uhercik@cmp.felk.cvut.cz
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Figure A.1: The GUI for tool localization in MATLAB.

Localization methods. The tool localization methods, which are implemented

in this application, are based on the model fitting with the RANSAC procedure

(Chapter 4). Three shape and appearance models of tool in 3D US have been

implemented: the AxShp, the IntDstr and the LineFilter – a tool model with line

filtering (Chapter 5).

The models IntDstr and LineFilter were learned on training data, while the model

AxShp does not use any learning. We note that the line filtering was performed in

advance and the pre-processed data are stored in a separate file. The tool model with

line filtering used a cascaded classifier in pre-segmentation and the SVM classifier

in the RANSAC estimation.

Software implementation. The application was implemented in the MATLAB

and compiled using a MATLAB Compiler. The MATLAB Component Runtime

(MCR) is required for running the application. The executable file for the MS Win-

dows is DemoGUI/ToolDemo/ToolDemo.exe. There is also a version compiled for

Linux in the archive DemoGUI/ToolDemoLinux.zip. Please read the file readme.txt

before starting the program. The 3D US data sets are stored in the sub-directory

USdata and the tool models are prepared in USmodels.
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How to use it. The screenshot of the GUI application is in Figure A.2. The main

window consists of the 3D view of the thresholded data and the control panel on

the left side. The user can select one of the experiments (from list in the top-left

corner) and all parameters are automatically set. The 3D US dataset is also loaded

and displayed.

The user can modify some parameters, e.g. the ROI, and start the localization

by clicking on the button (in left side panel). The result of localization is presented

in two ways: (i) as a red line in the main window together with the thresholded set

of points, and (ii) as a 2D section plane containing the tool (computed from 3D US

data by interpolation) in a separate window. Detailed documentation and a tutorial

how to use the application is in the file DemoGUI/ToolDemoDoc.pdf.

Set of experiments is prepared in (in the top-left part):

� The first three items (Sim. dataset ...) are testing various tool models on

simulated data.

� The next group of four items (PVA-Phantom ...) uses the real data of the

PVA Cryogel phantom with various tool models.

� The last group uses the real US data of breast tissue with two types of needle:

– Thick needle of diameter 1.067mm (Breast Biopsy - thick ...).

– Thin needle of diameter 0.4636mm (Breast Biopsy - thin ...).

The very last item (Breast Biopsy - thin needle - large ROI ) is an example of difficult

data set. The most localization methods fail but the tool model with the line filtering

is able to localize the tool.
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[P3] M. Uherč́ık, J. Kybic, H. Liebgott, and C. Cachard. Multi-resolution parallel

integral projection for fast localization of a straight electrode in 3D ultrasound

images. In IEEE International Symposium on Biomedical Imaging (ISBI):

From nano to macro, pages 33–36, May 2008.
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