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Introduction

The PhD work described in this thesis was carried out within the combustion mod-
eling team at CORIA. It was funded jointly by the French Environment and Energy
Management Agency (ADEME) and the Air Liquide group.

Its research objectives were defined within the framework of the SAFIR project
(Simulation Avancée des Foyers Industriels avec Recycle), itself a part of a broader
three-year technology partnership between the two aforementioned actors and the
Total group: an industrial-scale pilot trial of carbon capture and storage (CCS).
CCS is one of the methods explored by industrial actors to mitigate the contribution
of fossil fuel combustion to global warming through carbon dioxide (COs) emissions.
As a new technique, its economic viability and technical feasibility are still to be
demonstrated; such is the role of this project.

Three approaches are available for capturing carbon dioxide from combustion
processes: pre-combustion, which requires the transformation, before the combustion
process, of the fuel (by gasification for coal, or reforming for natural gas) into a syn-
thetic gas (composed mainly of CO and Hy), the conversion with steam of its carbon
monoxide into COs, then extracted using a physical absorbent; post-combustion, in
which COs is separated from the exhaust gases downstream of the full combustion of
the fuel with air, usually through chemical absorption by amines; and ozy-combustion,
where the oxidizer used in the combustion process is oxygen rather than air, enabling
the exhaust gases to be mainly composed of CO, and HyO, carbon dioxide being then
retrieved by compression that condensates the vapor into liquid water. Each of these
approaches features advantages and drawbacks in terms of investment and opera-
tional costs, energy efficiency, operability, environmental impact and these are being
evaluated in a number of recent works, by industrial and academic actors as well as
international organisations [Kanniche 10, Finkenrath 11, Koornneef 12].

The option chosen in the present project is oxy-combustion. On a Total-run
installation in the natural gas extraction site of Lacq, a Southern France locality, a
30-MW electricity production facility was revamped to accommodate the injection
of CO4 into deep ground layers (4,500 m). Air Liquide is involved in the overhaul to
implement oxy-combustion burners [Cieutat 09]. Future applications of the process
include oil extraction sites, where the fossil source would be heavy fuel oil.

Four burners of the Air Liquide technology REOXAL, of nominal power each
8 MW, were set up in the boiler. They are designed to be flexible for gaseous and
liquid fuels, to enable, on a transient basis, combustion with air rather than oxygen,
and to achieve flame stability even for difficult liquid fuels . An important feature
of the burners is the external recirculation of part of the flue gases, injected like the
oxidizer and fuel through a set of dedicated injectors at the flame base.
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C,HsOH

Figure 1: Target configuration of the SAFIR experiment: an ethanol spray within an Og—
COy co-flow, with possible dilution of the flame by recirculating burnt gases.
Reproduced from [Cessou 10].

Within this context, the SAFIR project aimed at developing solutions for the
numerical simulation of such a process. Two objectives were outlined: i) accounting
for the effects of dilution of the reactants by burnt gases; ii) exploring properties of
two-phase combustion, and opening prospects for simulating high-viscosity, weakly
volatile fuel oil combustion. The strategy, as far as the CORIA laboratory was
concerned, was built around two tasks: a two-phase turbulent spray flame experiment
conducted by the team of A. Cessou, D. Honoré and G. Cléon [Cessou 10]; and a
modeling effort including the present work, aiming at developing a model toolbox for
simulating the experiment.

What is naturally referred to as the SAFIR experiment is a 25-kW burner, com-
prising an ethanol spray that combusts within a co-flow of oxygen diluted with carbon
dioxide, see Fig. 1. The apparatus is designed so as to allow different levels of dilution
— from 0% (pure oxygen) to 60 % in volume proportions — and different co-flow ve-
locities, achieved through a system of removable insets with different exit diameters.
The experiment is focused on studying the effect of dilution on the flame stabiliza-
tion, its structure, the energy transfer and pollutant emissions. A large range of
measurements is available, forming a robust basis for comparing experimental results
with simulation, and aiming at collecting sufficient information on the problem’s limit
conditions.

On the numerical side, the contribution of this work is twofold:

e a Large-Eddy Simulation of the SAFIR spray flame has been carried out on an
unstructured mesh, based on detailed flamelet chemistry and at a 250-pm spa-
tial resolution, until then unattained for a two-phase turbulent reacting flow.
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Significant features of the experiment, in particular the general flame struc-
ture and anchoring distance, have successfully been captured. This work may
be seen as preliminary to numerous prospects: only one of the different dilu-
tion/velocity settings has been simulated and the ability of the computation
to recover the flame response to these parameters must yet be demonstrated;
indeed, it was decided to first tackle a case where no internal dilution occurs
(the surrounding co-flow protects the flame base from the burnt gases that re-
circulate within the combustion chamber), and time did not allow to extend the
simulation to other cases. Also, a number of improvements may be achieved on
subgrid-scale droplet dispersion and combustion—evaporation interaction mod-
eling.

e a new modeling approach for turbulent chemistry tabulation has been devel-

oped that takes into account the flow’s mixing history and formally improves
the description of multiple-parameter chemistry. At stake is the modeling of
complex configurations, such as multiple-fluid problems (that require more than
one mixture fraction) or those with heterogeneous dilution effects (calling for
including such fields as the enthalpy into the chemical description). Named
FCCT, for Flow-Controlled Chemistry Tabulation, this model attempts at com-
bining the advantages of tabulated chemistry with the flexibility of transported
pdf methods.
FCCT was first validated on a turbulent jet flame in a vitiated co-flow [Cabra 05]
a reference literature configuration that is a classical two-fluid problem and has
been simulated in RANS and LES following numerous modeling approaches.
The next step was to apply FCCT to a more complex problem. The chosen
SAFIR flame was not in itself a candidate for complex parameterization: a
single mixture fraction suffices to describe mixing (it is a two-fluid problem,
one fuel and one oxidizer), and the flame dynamics are not impacted by het-
erogeneous dilution effects. Thus FCCT was not applied to the SAFIR case.
However, in the REOXAL burner featuring external gas recirculation, which is
the end application of SAFIR, the description of mixing requires two mixture
fractions. Thus, steps were taken to assess the feasibility of applying FCCT to
a REOXAL simulation.

This report is structured in three parts. Part I builds the theoretical and technical
framework of LES in the single-phase and two-phase applications addressed by this
work. In Chapter 1, the equations driving both phases and the model for their two-
way interaction are presented. A discussion on multiple-fluid problems, one guiding
thread of this manuscript, is given in its last section. Then, the numerical framework
of the two solvers used for the simulations is detailed in Chapter 2. The technical
contributions brought by the present work to allow for the modeling of complex spray
injection and evaporation, as well as the study of the resulting statistics, are listed.

In Part II, the steps leading to the SAFIR spray flame simulation are discussed.
Chapter 3 is devoted to the spray injection numerical procedure: several approaches
are followed to obtain relevant statistics compared with those collected in the exper-
iment. The momentum two-way coupling and subgrid-scale dispersion model are
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assessed. Chapter 4 then deals with the reacting simulation. A review of statisti-
cal approaches in turbulent combustion modeling is given, that both applies to the
SAFIR case and gives a framework for the subsequent description of FCCT. Final
simulation results are presented, where two variance models have been used. Flame
structure and thermochemical fields are compared with the experiment.

Part III is then devoted to the Flow-Controlled Chemistry Tabulation model.
Chapter 5 is the reproduction, with some additions, of a publication issued dur-
ing the course of the present PhD [Enjalbert 11]. In it are presented the model’s
principles, its practical implementation, and its validation on the aforementioned
literature jet flame. In Chapter 6, the flow structure and mixing patterns in a
REOXAL oxy-burner configuration are studied and the adaptation of FCCT to this
three-fluid application is discussed.
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Principles and numerics of LES






Chapter 1

LES of single- and two-phase flows

The equations governing the behavior of single- and two-phase flows, as well as the
models invoked in their simulation, are detailed in this chapter. Its contents give
a common theoretical background underlying the rest of the present report. The
first two sections are devoted to the descriptive framework and evolution laws of the
carrier and dispersed phases. Their filtered counterparts are examined in a following
section. Finally, some notions relative to the parameterization of mixing are given in
a last paragraph.
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CHAPTER 1. LES OF SINGLE- AND TWO-PHASE FLOWS

1.1 Carrier phase conservation equations

1.1.1 Navier—Stokes

The reference situation of a compressible Newtonian fluid carrying no dispersed phase
is first considered. The conservative form of the equations governing its dynamics,
forming the Navier—Stokes system, reads as follows:

%Jrz'(p@) =0 (1.1)
a(aptuuz'@@@@ = YW+ ¥-z+pf (1.2)
a(g:t)+2-(pget) = —V-(pu)+Y-(r-u)+V-AVT) +pf -u+ O1.3)

where the formalism of Poinsot & Veynante [Poinsot 05] is used:

e 7 is the viscous stress tensor, defined as

T=p (zg +'Vu-— g(v - u) 1) (1.4)

with g the dynamic viscosity;

e —\VT is the heat diffusion term, which follows a Fourier law, with A the heat
conduction coefficient;

e ¢, is the total energy, defined as the sum of internal energy and kinetic energy

e f is the resultant of the volume forces applied homogeneously to the gas (grav-
ity, ...);

e Q is the external heating rate, which can be positive (spark ignition, ...) or
negative (heat loss at the walls or by radiation, ...).

Moreover, the fluid is assumed to obey the ideal gas law:

p RT
P =W (1.5)

where R = 8.315J/mol-K is the ideal gas constant and W the average molecular
mass of the gas mixture.

1.1.2 Multi-species transport
Mass fractions

In the context of this work, the gas is a mixture of several species, indexed by

m =1,..., Ny, whose composition is characterized by the mass fractions
Y, = (1.6)
P

so that > Y, = 1. From them, the average molecular mass and heat capacity of

the mixture are defined as .
Y,
W = _m 1.7
(=) "

10



1.1. CARRIER PHASE CONSERVATION EQUATIONS

Cp = Z Com(T) Yo , (1.8)

where the dependency of C, with 7" must be noted. The molar fraction of a species
m is denoted by X, and is related to the mass fractions through:

Y,
X =W 1.9
i (19)

The mass fraction Y, is driven by the following conservation equation:

I(pYm)

where w,, is the production rate of the concerned species. In this equation, the
diffusive term is written by assuming the diffusion of species m into the fluid obeys a
binary diffusion law, and involves the diffusivity D,, = A\/(pC,Le,,) (see Section 1.1.4
of the book by Poinsot & Veynante [Poinsot 05]).

In the present work, a unique and constant Lewis Le = 1 is assumed for all species.
A single diffusivity coefficient D may be used. It is related to the dynamic viscosity
by pD = u/Sc, where Sc is the Schmidt number, assumed here to be constant. This
hypothesis leads to neglect differential diffusivity effects, which may affect flame
front stability, but it is widely invoked for non-hydrogen hydrocarbon fuels and is
here deemed acceptable.

Similarly, the heat diffusion coefficient is determined from the molecular viscosity
as A = uC,/ Pr, where Pr is linked to Sc through:

_ Sc

Le=—.
¢ Pr

(1.11)

Molecular viscosity laws
Several laws may be adopted for the dynamic viscosity.
Sutherland law. The viscosity is expressed as a sole function of temperature,
through
To+C (T\*?
T)=po—— | = 1.12
Wt =mp e (1) (112)

where three constants pg, Ty and C are required inputs, such that pg is the viscosity
at the reference temperature Ty. A practical usage of this law is usually enabled by
assuming that the viscosity properties are those of the main fluid, in most cases air.

Wilke’s formula. An alternative that takes into account the dependency of the
viscosity with composition is the semi-empirical law by Wilke [Wilke 50]:

(1.13)

11
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where the ¢;; coefficients are composition-independent and defined as

1/2
)@
1 Wi

Gij = W Y2 (1.14)
22 (1+
V2 ( " Wj)
If i = j, ¢;j = 1, however these coeflicients are not symmetric, ¢;; # ¢;;. The

viscosities u; of each species may be given a temperature dependency.

1.1.3 Energy quantities

In the Navier—Stokes system derived above, the energy conservation equation (1.3)
was written on the total energy e;, but it may often be more convenient to solve other
quantities, that are equivalent but obey transport equations in which the rhs terms
differ. A closer look is taken at them in this section, in particular at the pressure
and viscous terms.

Total energy e;. In the equation for the total energy e;, the pressure and
viscous terms represent the power of the external forces on the surface 9V of a
control volume V:

/ u-(-pn+z-n)ds.
ov

Observing that w- (7 -n) = (7 - u) - n, this surface integral may be rewritten as the
volume integral of the diverge_nce term V - (—=pu + 7 - u), which is how the pressure
and viscous forces terms read in Eq. (1.3). -

Total enthalpy h;. Writing an equation for the total enthalpy h; = e; + p/p is
then done with help from the continuity equation (1.1), enabling the relation

d(phy) d(pet)
ot ot

0
+ Y (puer) + = 4 Vp+ (V- up.

+ V- (puhy) = Y

The transformation keeps the viscous term V - (7 - u) unchanged but yields, for the
pressure term, the time derivative dp/dt. The conservation equation reads:

d(phy)
ot

+Z'(Pﬂht):%‘1‘2'(2'2)+2‘()\2T)+pi'2+g- (1.15)

Total non-chemical enthalpy H. The equation for the total non-chemical
enthalpy H, defined as H = h,— ), Ahomem, simply contains the additional source
term

W ==Y ALS, m, (1.16)
compared to which the diffusive species term is neglected. This reads

a—f[+2~(ng) = —+V- (;-y)+z-(AZT)+pi-g+Q+wT.(1.17)

12



1.2. DISPERSED PHASE

In a similar way, the total non-chemical energy E may be defined as £ = e; —
> AhY Y, and satisfies

a(gfj) + Y- (puB) = =Y (pu) + Y- (£-w) + ¥ AVT) + pf -ut+ Q+wr . (1.18)

Kinetic energy. An equation for the kinetic energy %|u|® is obtained by mul-
tiplying the momentum equation by u. Since in Eq.(1.2) the viscous and pressure
terms read —Vp + V - 7, the conservation equation for the kinetic energy involves
u- (=Vp+V-1): a

A(5|ul?)
P51

Sensible enthalpy h,. The total non-chemical enthalpy may be decomposed
into sensible enthalpy and kinetic energy: H = hg + %]Q\Q, where

+pu-VGu) =u-(-Vp+V - 1) +pf-u. (1.19)

T
he =Y hemYm =Y _ Yy / Copn(T")AT" . (1.20)

Tref

Thus the h, transport equation is the difference between Eq. (1.17) and Eq. (1.19):
the pressure term reads dp/0t + u - Vp, while the viscous term is equal to

V(w1 —u(V-1)=1:Vu. (1.21)

This term represents the power of the internal viscous forces, which dissipate ki-
netic energy into heat. It is always a positive term in the enthalpy equation. The
conservation equation for hg reads:

d(phs)
ot

: Vu + Q(1.22)

0
T (uh) = ort (0 Tp) £V OTT) +

1=

It may be noted that the power of the external forces f cancels out and is not present
in the resulting equation.

1.2 Dispersed phase

This section presents the model employed in this work for the dispersed phase. It
is formulated to describe the behavior of a dilute dispersed liquid phase in a gas,
characterized by a large liquid-to-gas density ratio p;/p ~ O(10%) and a small volume
fraction oy < 1. The validity of this modeling framework in our case will be discussed
in Section 3.2.1.

1.2.1 Descriptive formalism

Achieving a comprehensive description of a liquid spray is not straightforward. In this
work, the considered droplets have diameters of the order of a few tens of millimeters
and are carried by the gas on distances of several centimeters, i.e. two to three orders

13



CHAPTER 1. LES OF SINGLE- AND TWO-PHASE FLOWS

of magnitude larger than the smaller particles. A capture of the full range of scales
of the flow fluctuations generated by this displacement is impossible. On the scale
of an individual droplet, a boundary layer and a wake are to be expected in the
gaseous phase, as well as possible internal circulation in the liquid. The required
resolution may be five to six orders of magnitude smaller than the largest simulated
dimensions, and is therefore computationally out of reach. Therefore, approximations
are required for the resolution of both the dispersed phase and the continuous phase.

As far as the spray is concerned, the particles may be individually identified
and treated in a way that does not require a full resolution of their inner structure.
A reference work by Williams in 1958 introduced one of the first such statistical
description of the spray [Williams 58]. Droplets are assumed independent and undif-
ferentiated (all subject to the same form of equations). In the present work, a droplet
is characterized by its position z, velocity u, diameter d and temperature T'. A single
composition is assumed for the liquid so there is no variation in density. The proba-
bility density function (pdf) of a particle is defined on the joint (z, u, d, T')-space and
as a function of time such that

ftz,u,d, T)dz dudd dT (1.23)

is the probability of finding the droplet with position in [z; z + dz], velocity in [u; u+
du]', diameter in [d;d + dd] and temperature in [T; T + dT] at time ¢. Formally,

Szt d* T7) = (6(z" — z(8)0(uw” —u(t))o(d” —d(6))o(T" = T'(t) ), (1.24)

where (.) denotes the ensemble average operator.

The expression in Eq.(1.23) may also be seen, using an ergodicity argument,
as the proportion of droplets, among all spray realizations, with properties in the
aforementioned intervals, at time ¢. As a pdf, f satisfies

/// ft,z,u,d, T)dedudddT =1, Vt. (1.25)
zJuJd=0JT=0

The spray as a whole may be characterized by a multiple-particle joint pdf fypray
which, because of particle independence, is defined as the product of the single-
particle pdf f:

N
Py (1,2, 1,0, 7O, ) ) @) 700 =TT f(8,29,u, a9, 70

k=1
(1.26)

with N the number of droplets of the spray and ¥) referring to the properties of the
k-th droplet.

Historically, in the context of Fluid Mechanics, a transport equation for the pdf
of the velocity field was first derived by Lundgren [Lundgren 67| and for the pdf of
scalar reacting fields by Dopazo & O’Brien [Dopazo 74]. A paper summarizing the

1Using an ad hoc extension of the 1D interval notation [...] to 3D.
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1.2. DISPERSED PHASE

approach was published by Pope [Pope 85]. Here, f satisfies the Langevin equation
(see [de Chaisemartin 09], Section 1.2.1):

of dz du 0 (dd o (dT B
E‘FZ(EJC)‘FZH(Ef)‘l'%(af)—l—a—T(Ef)—o (1.27)

The physical modeling of the particles’ behavior appears in this generic formulation
in the time derivatives of x, u, d and T'. It is detailed in the next two sections. The
numerical approach for solving Eq. (1.27) is presented in the next chapter, Section 2.2.

A particle-laden flow with a mass loading of the order of unity or larger is expected
to behave in a significantly different way than a single-phase flow [Crowe 96, Bini 08].
Here, the effect of the particles on the gaseous phase is approximated with the point-
source approach, widely used for exploratory studies [Boivin 98, Okong’o 04, Bini 08]
as well as practical applications [Apte 03b, Jones 10c|. The mass, momentum, energy
and scalar transfer from particles to the gas is described by means of punctual source
terms. This formalism was shown to be valid in cases where the particles are smaller
than the Kolmogorov lengthscale or separated from each other by distances large
compared to their diameter, because the gas fluctuations induced by the droplets are
then dissipated by viscous forces quickly enough for their effect on other particles to
be negligible [Boivin 98]. A noteworthy model that takes into account the fluid dis-
placement caused by the particles and is thus fit for dense particulate flows, not used
here, was investigated by Apte et al. [Apte 08]. Resulting equations are examined in
Section 1.2.4, and further discussion on this assumption in the case studied here is
presented in Section 3.2.1.

To summarize, the gas is seen as a continuous phase, populated with a number of
liquid particles, each with individual properties. The behavior of a droplet depends
on its own properties as well as on those of the gas at its position. The action of the
dispersed phase on the carrier is described through point-source terms at the particle
positions.

1.2.2 Droplet kinematics

A distinction between gas and particle properties is introduced in the notations with
the subscript , for all particle properties, while the gas properties notations are left
blank: wu, is the particle velocity, and u refers to that of the gas.

In this study, droplets are assumed to be spherical. This point is later discussed
in Section 3.2.1. A direct consequence is the expression of a particle’s mass as a
function of its diameter: .

3
m, = Plgdp . (1.28)

Position

The position of a particle is governed by the evident point mechanics relation

dx
—Pp
— =u,, 1.29

e ~F (1.29)
which is internal to the droplet properties and conveys no information on the particle’s
interaction with its environment.
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Momentum

The velocity equation reads

d
mp% —F (1.30)

=

where F is the resultant of the external forces, classified into three types [Fukagata 00]:

- body forces, such as gravitational force,
- surface forces from the surrounding fluid, such as drag and lift,
- impulsive forces occurring at collisions with the wall or with other particles.

In the present study, only the contributions of gravity and drag are modeled (see
justification in [Dufour 05]): F' = F, + F,, as detailed below.

Gravity. The gravitational force is written

T g (1.31)

Eg:(pl_p)6 pd

and in the present case, since p; > p, the buoyancy effects may be neglected, so that

EF,=m,g. (1.32)

Drag. Although the liquid volume fraction «; was assumed small, the mass
loading «yp;/p can be comparable or substantially larger than one, resulting in a
non-negligible momentum interaction between the phases. Typical liquid densities
are of the order of p; ~ 103kg.m =3, while gas densities at 293 K are a thousand times
lower.

The non-dimensional parameter characterizing the gas-droplet momentum inter-
action is the particle Reynolds number, defined as

Re, = w : (1.33)
v
which involves the gas-droplet slip velocity w, — u. The response timescale of the
droplet to the slip velocity fluctuations is written

4 Pzd_?;

= — 1.34
3CpRe, p v’ (1.34)

Tp

where Cp is the drag coefficient and depends on the particle Reynolds number as

24 (14 0.15Rey®") if Re, < 10°

0.44 Re, else (1.35)

C DRep - {
The first case in the above equation corresponds to the Stokes regime, in which the

drag coefficient varies inversely with Re,. For Re, < 1, Cp >~ 24/Re, and the classical
Stokes law (1851) is satisfied, with:

_1pd

= 1. 1.
T 8,0 Re, < (1.36)
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1.2. DISPERSED PHASE

The first expression in Eq. (1.35) is an extension of the Stokes law to intermediary
particle Reynolds number, and is a widely used empirical correlation proposed by
Schiller & Naumann in 1935 [Schiller 35]. The drag coefficient increases with Re,
until the latter reaches 103, that is for large droplets or very high slip velocities,
where it stabilizes around 0.44 or 0.45 [Crowe 98|.

The expression for the drag force is based on that of the momentum relaxation
time Eq. (1.34), and reads ,

Fp= mpT_p(Hp —u). (1.37)

Neglected contributions. Additional effects are not taken into account. They

consist of:

e lift force, a lateral force due to particle rotation (slip-spin lift) or to shear of
the surrounding fluid (slip-shear lift) [Fukagata 00],

e added mass effect, a contribution due to droplet acceleration,

e Basset force, a history effect caused by a temporal shift between the droplet
action on the gas and the actual gas response to this action.

The above contributions can all be neglected because of the large liquid-to-gas density
ratio [Boivin 98, Dufour 05]. Moreover, because of the problem geometry, interac-
tions with the walls, in the vicinity of which the drag coefficient is known to increase,
need not be described in the present work.

Due to the low volume loading, inter-particle collisions are neglected.

1.2.3 Droplet thermodynamics

The relations pertaining to the evolution of the droplet’s diameter and tempera-
ture are obtained from mass and energy conservation applied on the droplet sys-
tem. The framework of the problem and related hypotheses are presented in a
first part, from where mass and temperature equations are then derived in subse-
quent subsections. The specific case of saturation is addressed in a final paragraph.
The analyses presented here summarize approaches followed by Kuo [Kuo 86], Sirig-
nano [Sirignano 10], Sazhin [Sazhin 06] and Boileau [Boileau 07].

Model hypotheses

A schematic of the gas—droplet system is shown in Fig. 1.1. Some notations used in
the following are listed here:

~ Far-field gas property

surf At the droplet’s surface
= Related to species m
r Related to the fuel
The main assumptions on which the derivation of the droplet behavior is based

are examined below.

Velocity field. A reference frame instantaneously travelling at the velocity of
the center of the droplet is used; the droplet appears stationary and the gas moves
past it: in the far-field, u = u .
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Gaseous
far-field Droplet
Too Tsurf = Tp
Uy
R
U™ uniform 7,
dp
o
D, !

Figure 1.1: Schematic view of the droplet model and notations used in the model.

While the far-field velocity is considered uniform, in the neighborhood of the
droplet relative fluid motion may occur, in the form of the so-called Stefan flux: the
evaporation of the liquid creates gaseous matter which must move away from the
surface since p; > p,, therefore ug,- e, > 0 (in the case of condensation, the radial
velocity is negative). Given the high liquid-to-gas density ratio, the position of the
droplet surface may be assumed stationary.

As far as the liquid is concerned, no internal fluid circulation is accounted for.

Thermal response. Fourier heat conduction is assumed, so the temperature
equation, which holds separately in the liquid and gaseous phases, involves the flux

gradient term

oT
T k(V-VT). (1.38)

where the thermal diffusivity is denoted by k = A\/(C,p) taken with liquid- or gas-
phase values depending on whether < d,/2 or r > d,/2. This raises the character-

istic heat transfer times
d? d?
Tcond,l = L Tecond,g = £ (139)
R Rg

characterizing the thermal response times of respectively the droplet and its sur-
rounding gas film.

The thermal diffusivity of liquids is much lower than that of gases, leading to a
smaller thermal response time of the gas phase. Taking values relevant to the present
case (ethanol droplet in 293 K O,-CO, mixture?), the liquid phase timescale of a 10-
pm droplet is about 1.1 ms while that of the surrounding gas layer is rather about
5ps. Therefore, the thermal response may be assumed quasi-steady in the gas phase,
and time derivatives be neglected there, while kept for the liquid phase.

Within the droplet, the density p; and heat capacity C),; are taken independent
of temperature.

Species mass fractions. The droplet phase is considered a single component
liquid, referred to as ‘fuel’. At the droplet surface, the gas is described as a two-

2Using k; = 8.4 x 1078 m?2.s~! for liquid ethanol at 300 K and kg = 1.9 x 107> m?2.s7! for air
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1.2. DISPERSED PHASE

component non-reactive mixture of the newly vaporized fuel and the ambient gas,
of respective mass fractions Yr and Yir = 1 — Yp. The properties of the non-fuel
mixture are assumed to be uniform from the droplet surface to the far field. This
implies in particular that no flame is located close to the droplet: the gas farther
away may be reacting or fully burnt and will influence the droplet’s behavior through
far-field quantities such as T, but only mixing between the far-field fluid and the
freshly evaporated fuel is taken into account in the droplet’s vicinity.

The droplet’s surface is assumed at phase equilibrium. This yields an expression
of the fuel partial pressure pr through the Clausius-Clapeyron relation:

B Wely (1 1
pF(T)_prefeXp< R (Tboil T)) (1.40)

where Ty, is the boiling point at pressure p (arbitrary, usually taken equal to
latm), and Ly = Ly (Tqon) is the latent heat of vaporization®. From there, the fuel
molar fraction Xz = prp/p may be used to express the fuel mass fraction

B XpWe
XpWe+ (1= Xp)Wop '

Y

(1.41)

where the molar weight of the non-fuel mixture is uniform from the surface to the
far-field and expressed through

1-Y,
ECCR, y (1.42)

Wop = .
T Yoo Weo /Wi

Final system. The gas layer surrounding the droplet (r > d,/2) is described,
given the general hypotheses formulated above, by the following equations of an
incompressible flow:

Mass: V- (pu) =0 (1.43)
Fuel mass fraction: V- (puYr) =V - (pDVYr) (1.44)
Temperature: V- (pu(C,T)) =V - (AVT) (1.45)

The mass and momentum evolution equations, derived below, are obtained by
first considering the reference stagnant case, u., = 0, and then extending it to the
case of a moving droplet.

Mass evolution

The evolution of the droplet’s mass and temperature is best examined, in a first
approach, for the case u,, = 0. Because of the spherical symmetry of the problem in
this case, the velocity field is purely radial in the reference coordinate system:

u(r) = u(r)e, . (1.46)

3The Clausius-Clapeyron relation presented here stems from the integration of the differential
expression dp = Ly (T)dT/(TAV) with the approximations AV =~ V', since the volume of the
gaseous phase is very large compared with that of the liquid one, and Ly constant along the
integration path (pee, Tec) — (p, T), valid in practice even on a T variation of up to 100 K.
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In the gas, mass conservation (1.43) then leads to
drr? pu = —m, (1.47)

implying that pru is a constant. The quantity 1, = dm,/dt, is the first unknown
of the problem. Consequently, fuel mass fraction conservation (1.44) reads here

oy 0 (D QaYF) |

Integrating this equation between the surface, r = d,/2, and the far field, r = oo,
yields (see [Boileau 07)):

d, 1 —Yroo
i L =Dlog [ — £ ) 1.49

Hsurf 2 °8 (1 - YF,surf) ( )
This expression is reformulated by introducing two convenient coefficients, the Spald-
ing mass transfer number B,

- YF,surf - YF,oo

B
M 1 - YF7surf

(1.50)

and the Sherwood number Sh = 2. Finally, the mass evolution equation reads:

m, = —nd,Sh (pD)log(1 + By) . (1.51)

The “1/3-rule”. In the previous equation, pD is considered constant, although
it depends on properties (temperature and composition) of the gas surrounding the
droplet which vary between the surface to the far field. It is common practice to
assume that such quantities can be computed as functions of a reference T, and
composition (Y, ).er, defined as a 2/3-1/3 weighted interpolation of surface values
and far-field values [Hubbard 75]:

Tt = 2/3 Tt + 1/3 T (1.52)
Ym,ref = 2/3 Ym,surf + 1/3 Ym,oo . (153)

In the following, all gas properties for which this assumption is made are denoted by
the subscript ef:

Qref - Q (Trefa (Ym)ref) . (154)

Diameter evolution. The droplet diameter evolution is deduced from Eq. (1.51)
by observing that

L)
dm, = §pldp dd, (1.55)
and therefore dd Sh .
Sy _ g 20 el 10001 4+ Byy)— . 1.56
1 0 Scr og(1+ M)dp (1.56)

Introducing the characteristic mass evaporation timescale

o pi(dy)* Scp
"™ 4Sh et log(1 + Byy)

(1.57)
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leads to the reformulation

a, (@)

—_— = 1.58

dt 2d, 7, (1.58)
The well-known linear behavior of d? is recovered: d(d2)/dt = —(d)?/Tm.

Convection effects. The case u,, # 0 is addressed by using a modified Sherwood
coefficients. A classical empirical expression, proposed by Ranz & Marshall [Ranz 52,

Sh =2+ 0.55Rel/2Sc;” (1.59)

accounts for the fact that evaporation is enhanced by relative gas motion. Sirig-
nano [Sirignano 10| points out the limitations of this correlation, that should not
be applied if transient heating, regressing interface effects or internal circulation are
modeled. However in the present case it is sufficient and will be used hereafter.

Temperature evolution

The analysis starts, here also, from the spherically symmetric stagnant case. The
energy balance at the droplet’s surface may be written

O, = 1, Ly — P, (1.60)

where ®, and ®; denote the conductive flux contributions, oriented away from the
surface in both the liquid and gaseous phases, as illustrated in Fig. 1.1. The quantity
®,; is the cause for the variation of the droplet temperature 7}:

dT,
mpCp,ld_tp - CDl 5 (161)
which enables to write dT
mpcp’ld_f =myLy — @, . (1.62)

The same integration as that done for Yz above is performed on the temperature
equation. Eq. (1.45) is cast into

aor o ar
. — = (2= 1.
Gy ar  or ()\ 8r> ’ (1.63)
which, integrated between the surface and the far field, gives
dp A Ugurf pCp(Tsurf - TOO)
surf 5~ — 1 1 . 1.64
st 2 pCp o8 < + [8T/ar]surf ( )

Like previously, two coefficients are introduced, the heat transfer number Br

_mpCp,ref(Tsurf - Too)

Br = T

(1.65)

g

and the Nusselt number Nu = 2. Using the link between ®, and the temperature
gradient at the particle’s surface,

, = —md> \ {—} , (1.66)
surf
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a new expression for the mass change rate arises:

m, = —rd,Nu ( ) log(1 + Br) . (1.67)

A
Cp,ref

Combined with the previous expression (1.51), this provides a relation between Br
and Bjy:
Sh Pr
BT = (1 -+ BM) NuSep — 1, (168)
The surface convective flux in the gas may be written as a function of the transfer

coefficients:

i Nu Href Cp,ref 10g(1 + BT)

b, = Tt — T'o 1.69

g d,  Pr Br (Lot ) (1.69)
Sh Href Cp ref lOg(l + BM)

= — : T'sur - Too . 170

dp SCF BT ( f ) ( )

Finally, injecting Eq. (1.69) into Eq. (1.62) leads to the droplet temperature evolution
equation

AT, 1y [ Cprer
- 7 Tsur - Too L . L.71
& m,Cy < By Lot~ Toc) + V) (1.71)

Assuming the surface temperature in the gas Ty is equal to the bulk droplet tem-
perature T}, this becomes

d7, 1 Ly Br
—L = —— T, — (T — 1.72
= [ () a7

with the characteristic heating time

SCF BT Cp,l pldf, - Pr BT CpJ pldf;

o= — 1.73
"~ 6Sh log(1 + Bar) Cpret et 6 Nulog(l + Br) Cpref fhret ( )
which compares with the mass evaporation time as:
2 BTCp 1
=———""7,. 1.74
h 3 Cp,ref " ( )

Convection effects. Relative gas motion is taken into account through a corre-
lation on Nu similar to Eq. (1.59):

Nu =2+ 0.55Re)/* Pr'/?. (1.75)

Saturation

The set of relations derived above presents singularities as the droplet temperature
T, nears the boiling temperature T, the gaseous layer at the droplet surface then
reaches saturation, i.e. Ypqys tends to 1, and By, diverges to infinity, see Eq. (1.50).
Another system may be written in this situation.
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The droplet is boiling, with a constant temperature
T, = Thoi , (1.76)
so that, in Eq.(1.72), dT'/dt = 0 and a saturated heat transfer coefficient may be

introduced
Cp,ref<Too - Tboil)

B = 1.77
T LV ( )
The mass evolution equation is modified. In Eq. (1.60), ®; = 0 and therefore
, ®
m, = L—i : (1.78)
Eq. (1.69) still holds, with By = B5*, so that
Nu fire
iy = —mdy— " og (1 + B2 | (1.79)
or also, on the same pattern as the non-saturated relation (1.51),
Sh fire
m, = —7d, K Clog(1 + B, (1.80)
SCF

with B53® consistently related with B5* according to Eq. (1.68).

1.2.4 Two-way coupling

The transfer of mass, momentum, energy and scalars from the droplets to the gas
is described by source terms appended to the equations governing the continuous
phase.

DT o) = S (1.81)
6(5)f)+2'(py®u) = -Vp+V-1t+pf+Sp (1.82)
M) o V- (pue) = V() + Y- (z-w) + ¥ - (W)

+pf u+Q+Sp (1.83)

According to the point-source approximation discussed above, these source terms
are localized at the particles’ positions, and related to their individual property vari-
ations: the mass source term may be expressed as

N
1 )
Su(z,t) = 177 > —is(z - 2P(1) (1.84)
k=1

where ¢ is the Dirac function and AV a control volume, theoretically of the order
of the particle dimension (point-source hypothesis) but usually chosen to be, in the
practice of simulation, of the order of the local spatial resolution. The momentum
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source term corresponds to the reaction of the particles to the force exerted on them
by the gas, which in the present case comes down to the drag force:

Splz,t) = ALVZ—E%%(@—@;’%)) . (1.85)

The energy source term involves the energy flux transferred from the droplet to the
gas, ®,. According to Eq. (1.62),

N (k)

1 d7, .

Sp(z,t) = AV g <—mg“)C'pJd—l:j + mg“)LV> 6(z — @ff) (1) - (1.86)
ke

1

Additionally, the transported scalars affected by the local creation of fuel vapor
also see an evaporation source term appear in their balance equation. This is the
case of the species mass fractions: denoting by Y, fe the value of Y, in pure fuel
vapor, Eq. (1.10) becomes:

d(pYom)
ot

+ V- (puY,,) =V - (pDVY,,) + @m + Yo tue Sus - (1.87)

1.3 Filtered equations for LES

The numerical simulations carried out in this work are Large-Eddy Simulations. They
aim at solving only the large structures of the turbulent flow while its small-scale
features are modeled. This approach is justified by the idea that the smaller eddies, in
the inertial range, present more universal characteristics (isotropy, short lifetime,...)
than the large eddies that are directly impacted by the geometry, boundary conditions
and physical properties of the fluid.

The scale separation is obtained by a spatial filtering of the unknown fields, re-
sulting in equations examined in a first paragraph (Section 1.3.1). Unclosed terms
arise, for which expressions are found by invoking the model assumptions formulated
for the smaller scales. In this section, only the closure of turbulent terms is discussed
(Section 1.3.2); models for chemistry are presented in the chapter devoted to com-
bustion (Section 4.2). Assumptions for the coupling of the continuous phase with the
spray are finally formulated in Section 1.3.3.

1.3.1 Filtering

The filtering operator is the spatial convolution with a filter function G, character-
ized by its size A (see usual filters in [Poinsot 05]); a scalar field ¢(z,t) becomes,
once filtered:

bz, 1) = ///_o;qb(z/,t)%(z’ —z)dz’. (1.88)

The departure from the filtered value, displaying sub-filter spatial fluctuations, is
denoted by

¢ =b—0. (1.89)
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The filter function must satisfy the following normalization rule

// _Z%(z)dg =1 (1.90)

and commute with derivation in time or space:

% — % and V¢o=Vo. (1.91)
The definition (1.88) implies that the filtering operation is linear. Commutativity
with spatial derivation is ensured if Ga is isotropic and A uniform in space, and with
time derivation if A is constant.

In practice however, numerical simulations often rely on non-uniform filter sizes
(irregular meshes) and locally anisotropic filter functions (next to domain bound-
aries). Hypothesis (1.91) is only partly satisfied, but it is a commonly accepted
approximation: For non-uniform filtering, it was shown that the commutative error
is negligible provided that A has n — 1 vanishing moments, n being the order of the
spatial integration scheme of the LES [Vasilyev 98]. Addressing this question further
is beyond the purpose of this work.

The density-weighted filtering, also referred to as Favre filtering, is defined as

P (1.92)
P
with the unresolved part denoted by ¢ = ¢ — 5 It is a notion convenient for
the filtering of compressible Navier—-Stokes equations (1.1)—(1.3) and (1.10), which
yields [Poinsot 05]:

B U
 GrTm = S (1.93)
a(gf)Jrz-(ﬁﬂ@@) = —Vp+V-(T-pT) +pf+5p (1.94)
W) v Giw) = v G0+ Y- (TT)
+ V.- |A\VT - ﬁ(uet—uet)}nLﬁf-g—i-éngE (1.95)
O(pYpm - - _
(’;t ) 4V (GT) = [pD vy, — <uY —gYmﬂ + Gy + Sy (1.96)

Several terms in these equations require modeling:

e A closure must be provided for the unresolved Reynolds stress

T=u®u—-u®u (1.97)

of components 7;; = w;u; — u;u;. A classical eddy-viscosity approach is used
in the simulations of this work: turbulent fluxes are modeled by an expression
similar to the laminar definition Eq. (1.4) as

T = pe (zﬂJrTzﬂ— ;(Z@);) , (1.98)
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where p; = py; is referred to as the turbulent viscosity. An expression must
be provided for v; from the knowledge of the sole resolved fields. This is the
purpose of subgrid turbulence models, examined below in Section 1.3.2.

e On a similar pattern, the unresolved energy flux and species fluxes are respec-
tively modeled with a turbulent Prandtl number Pr;

(ue; —ue;) = —5-Ve; (1.99)

and a turbulent Schmidt number Sc;

2y, m=1,... N, (1.100)
Ct

Like their laminar counterparts, Pr; and Sc; are set as constants in the present
simulations.
e For the filtered laminar diffusion fluxes, simple assumptions are made:

AVT =AVT and pD,, VY, = pDpYY,, . (1.101)

e The pressure velocity term V - (pu) is approximated by V - (pu).

e The closure of the filtered chemical source terms w,, represents an important
part of the modeling effort in LES of turbulent reacting flows; this topic is the
object of Section 4.2.

1.3.2 Sub-filter scale turbulence models for LES

The two sub-filter turbulence models that have been used in the present work are
briefly presented below.

The Smagorinsky model

This model is derived by assuming the production and dissipation (¢) terms in the
sub-filter kinetic energy transport equation are higher than the others and thus
balance each other [Smagorinsky 63]. This leads to v, = &/(2|S]?) where S =

%(Z U —|—TZ w) and, with a dimensional analysis, gives the estimation
v, = V2(C,A)S] (1.102)

the norm of a second-order tensor being defined as |S| = (5;;5;)Y2. Cj is the so-
called Smagorinsky constant, usually prescribed to lie in the [0.1;0.2] range, and A
is the filter size.

In the present work, C is determined by means of a dynamic procedure [Germano 91a,
Germano 91b], based on a deduction of the sub-filter scale behavior from the smallest
resolved scale, and that requires the filtering, at a scale larger than A of the resolved
velocity field.
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The Wall-Adapting Local Eddy-viscosity (WALE) model

This model was introduced in 1999 by Nicoud & Ducros [Nicoud 99], and aims, by
including the effect of strain rotation, at a better prediction in high-vorticity regions
— in particular, it reproduces near wall scaling v, = O(y?). It involves the traceless
symmetric part of the resolved velocity gradient tensor S, denoted by gd:

1 1
' =5 (Y + (V)] - STr(Yu)l. (1.103)
v, is formulated as
~d|3
Vy = \2;\; 2% . (1104)
|1S[P + [5°[5/2

1.3.3 Sub-filter-scale liquid—gas coupling

On top of the approximations already needed for the deterministic description of
particle-laden flows (Section 1.2.1), additional modeling is necessary in LES, where
only the resolved scales are available. In this section, the formulation of the sub-filter
two-way coupling is discussed.

Impact of the dispersed phase on the sub-filter turbulence

The modeling of unresolved terms examined in the previous section pertained to
single-phase flows. The first question is whether these sub-filter turbulence models
are still valid in the presence of particles. As soon as the mass loading is larger than
about one, at least two impacts may be expected at sub-filter scales: first, a modified
energy spectrum and cascade process, with a higher dissipation of the gas turbulent
energy at length scales of the order of the particle dimensions [Boivin 98]; second, the
preferential concentration of the particles at the edge of sub-filter vortices [Fessler 94,
Reveillon 07] may locally increase or decrease the effects of the two-way coupling.
Boivin et al. [Boivin 00] noted however that the sub-filter modeling of turbulence
is less critical for two-phase flows because the particles catch a large part of the
dissipated energy coming from the large scales. Moreover, an a posteriori study of
a temporal mixing layer by Leboissetier et al. [Leboissetier 05] concluded that sub-
filter models presented the same strengths and weaknesses in two-phase flows as in
single-phase flows. Apart from an isolated study by Yuu et al. [Yuu 01] in which a
specific two-phase turbulent model was used, the usual single-phase models are used.

In exploratory studies [Okong’o 04, Leboissetier 05], the Smagorinsky model was
found to be less than optimal for two-phase flows. However, most practical studies,
including the recent ones [Jones 10b, Wang 10a, Jones 11, Sanjosé 11| have success-
fully used this model, and a similar choice is made here. Future work should assess
the impact of this simplifying assumption.

Impact of the gaseous sub-filter fluctuations on the dispersed phase

The dispersed phase equations, and consequently the droplet source terms for the
continuous phase, involve local gas properties ¢, but in LES only the resolved part ¢ is
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known?. In the present paragraph, ¢ stands for the quantities involved in Eqgs. (1.37),
(1.50), (1.52-1.53) and (1.65), namely u, Yr oo, Yo and .

The reproduction of the sub-filter fluctuations is an important matter : “In an
LES of a dilute spray, the magnitude of any error associated with the use of an
unmodified single phase sgs model is likely to be much smaller than that due to an
inadequate representation of the dispersion effects of the unresolved gas fluctuations
on the liquid dispersed phase” [Okong’o 04, Bini 08]. At stake is the prediction of
the particle dispersion and preferential concentration.

As described in [Okong’o 04], several alternatives can be considered to express ¢
from accessible quantities: (i) neglecting the sub-filter fluctuations, taking ¢ = 5 (ii)
random, where ¢ is a random variable following a Gaussian law with mean QZ and a

modeled standard deviation o3 (iii) deterministic, using ¢ = ¢ — 7 sign(V?¢), with

@ written as a function of 7%, ¢ and ¢¢. The authors conclude that the baseline ap-
proach (i) yields better results than the random model (ii) but still not as good as the
deterministic model (iii). Other models are available, as summarized by Pozorski &
Apte [Pozorski 09]. The latter authors themselves propose a stochastic Langevin
model and assess its results in terms of preferential concentration prediction. In a
competing work, Bini & Jones advocate the use of a more general method, which
accounts for the dependence of the particle drag time with Re, outside of the Stokes
regime — see Eq. (1.35) — and the resulting heavy-tailed probability density function
for the particle acceleration [Bini 07]. The utilization of this model in subsequent
works [Bini 08, Bini 09, Jones 10b, Jones 10¢| yields good predictive capabilities of
the long term particle dispersion.

The two-phase flow simulated in the present study does not require such an ad-

vanced prediction of the particle interaction with high flow frequencies: as will be
discussed in Section 3.2.2, the particles act almost exclusively, over their short life-
time, as momentum sources not sinks, and the overall spray behavior, upstream of
its quick evaporation in the flame, is expected to be relatively insensitive to more
than the resolved flow. Since, at this stage, the main interest is the study of the
flame structure, the sub-filter fluctuations are neglected and approach (i) is followed:
Uy, = U.
Similar to the small-scale velocity fluctuation modeling, sub-filter modeling for
the temperature fluctuations, relevant to the prediction of evaporation, was also
proposed [Bini 09]. But again, for simplicity reasons, the baseline model T,, = T is
used here.

1.4 Parameterization of mixing

One of the objectives of the present work is to address combustion problems that
involve complex mixing configurations. In this section, general results about the
parameterization of mixing by passive scalars are discussed; in particular the mixture
fraction scalars are introduced.

4and in LES of reactive flows, some quantities themselves, such as f, need to be modeled.
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1.4.1 Passive scalars and N-fluid problem

In the cases studied in this work, the large number of species and radicals, which can
reach several hundreds, makes it impossible to solve a transport equation for each
of them. The introduction of the mixture fraction scalars Z; is meant to alleviate
this difficulty. These quantities track, in each point of the flow, the local proportions
of fluids originating from the different inlet streams. They are blind to any other
phenomenon than mixing, and especially to the chemical reaction.

The mixture fractions behave as passive scalars. In this section, general results
on this class of physical quantities are first given, the notion of an N-fluid problem
is defined, and the practical definition of the Zj is then detailed.

Passive scalars

A fluid mechanics problem is considered, where the flow is subsonic and the boundary
conditions are of three types: inlet, outlet and no-slip walls. In this paragraph, the
following result is proved: if there are Ny inlets, the mazimum number of passive
scalars to carry independent information is Niye. Any additional passive scalar is
necessarily a linear combination of the others.

Let ¢ be a passive scalar, obeying the conservative, source-term-free transport
equation

00 4 pu Vo= (DY) (1.105)

and constrained at the inlet boundary conditions by constant and uniform ingoing
values, defined on the inlet boundaries denoted by B;, i =1, ..., Niyet:

oz, t) = ¢, Vo€ B;. (1.106)
In the conditions defined above, such a problem is mathematically well-posed: using
the NSCBC formalism, for instance [Poinsot 92, Lodato 08a], the characteristic wave
involving ¢ is outgoing at walls and at the outlets, and ingoing at the inlet. The
values ¢P¢ are necessary and sufficient requirements to pose the problem.

Let ¢ be another passive scalar, obeying the same transport equation, and the
boundary conditions ¢ defined on the same set subdivision {B;}. The linearity of
Eq. (1.105) implies that any linear combination of ¢ and v, ay¢+ a1 is also a passive
scalar, verifying the same equation, and the solution of the problem with boundary
conditions ay@P® + ayPe, i =1,..., Niget-

Linearity and the fact that a passive scalar is fully determined by its set of Njyet
inlet boundary conditions lead directly to the desired result: the problem is linear, of
dimension Nje. Two passive scalars are independent if and only if vector ¢l?" and
wl": are not colinear. Furthermore, any two sets of Ny, passive scalars are linearly
related.

In a practical context, since a constant and uniform field equal to one is a solution
of the passive scalar equation, it is never necessary to transport more than N — 1
passive scalars to retrieve the information carried by this class of fields.

29



CHAPTER 1. LES OF SINGLE- AND TWO-PHASE FLOWS

N-fluid problem

Considering a fluid mechanics problem as defined above, and only from a mixing,
non-reacting, point of view (imagining all chemical reactions are disabled), the con-
figuration may be defined as an N-fluid problem if the number of degrees of freedom of
the inlet properties is N — 1. This means that there exist N reference fluid conditions
such that any of the inlets i = 1, ..., Nyt is a mixture of these N fluids. Considering
a property () which is linearly conserved by mixing (such as energy/enthalpy or the
mass fractions), there exist N constant reference values Q1, Qs, . .., Qy such that for
any i = 1,..., Nine, Q¢ is a linear combination of them.

[t must be stressed that this value N is independent of the number of inlets (with
only the inequality N < Njye¢ holding).

In a standard configuration, N = N, so that the reference conditions are
superposed with those of the inlets. Most often the combustion problem consists of
the mixing (and reaction, but this does not enter the present discussion) of an oxidizer
(Ox) and a fuel (F), forming a two-fluid problem. The REOXAL configuration,
studied in Chapter 6 of this study, involves a third fluid, whose properties are not
linearly related with those of the other two. It forms a three-fluid problem.

1.4.2 Mixture fractions

Mixture fractions are scalars describing the mixture that, given some hypotheses, are
passive scalars. Their definition is given here and their properties discussed.

Elemental mass fractions Zz’j

The most rigorous definition of a mixture fraction is based on atomic elements, i.e. C,
H or O in the hydrocarbon flames that are the subject of this work. Denoting
the number of atoms of element p in species m by a,,, (for example acy, c = 1,
acm,n = 4), the quantity Z is defined as

N W,
Z = an, (WZ) Y, . (1.107)

m=1

This scalar obeys the following transport equation, obtained by a linear combination
of several instances of Eq. (1.10) thanks to the hypothesis D,, = D:

d(pZ! W
(gtp) + V- (puZy) =V - (pDNZy) + Y iy (W—p) O - (1.108)

0

The source term of this equation is necessarily zero, because of the conservation of
elements: any set of chemical reactions, leading to the source term w,, for species
m, is neutral as far as the elements p are concerned. As a consequence, the Z, are
passive scalars.
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Mixture fractions Z;

The mixture fractions are defined as normalizations of one of the elemental mass
fractions Z. The most common case of a two-fluid problem — where a single mixture
fraction Z is sufficient to parameterize the mixing state — is first presented; then, a
generalization of the formalism to a larger number of degrees of freedom N > 2 is
proposed.

Two-fluid configuration. A problem is considered in which the flow can be
described as the mixing of two fluids 1 and 2 forming the reference conditions (see the
above discussion on the definition of an N-fluid problem). The following quantities
are introduced:

p,1 = gl g
Zp}l— Z’pf (1.109)
Zyy= L2l _1_g
p,2 ZI/)’2 _ ZI/LI p,1 >

where 7, and Z, , are the values of the elemental mass fraction Z in the reference
conditions 1 and 2, by hypothesis constant in time. The scalar field Z,; is equal to
1 in the pure fluid-1 conditions and to 0 in pure fluid-2 conditions, and, since it is a
passive scalar, remains in the interval [0; 1] in the rest of the flow®, and vice versa for
Zpo. First of all, Z,; and Z,, 5 are passive scalars, since they depend linearly on Z}.
Second of all, they are indifferent to the choice of p, since they obey the same passive
scalar equation and have identical ingoing boundary conditions. Notice only that p
should be chosen such that Z | # Z/ ,, otherwise the definitions in Eq. (1.109) are
invalid.

Since Z,9 = 1 — 7,1, the two quantities provide redundant information, and only
one is needed. Classically, in a canonical oxidizer—fuel case, the definition of the
mixture fraction Z is that which enables Z = 0 in pure oxidizer (Ox) conditions and
Z =1 in pure fuel (F) conditions. Thus,

AR
7 = I —box (1.110)
Z;,),F - Z;/),Ox

where p is indifferent, often taken as C or O.

N-fluid configuration. The generalization of the definition above to a larger
number N > 2 of reference conditions is straightforward. For any couple (j,k) €
[1; N]?, j # k, the mixture fraction Z; is introduced, defined as

/ /
Zp Zp,k

Zj = 2Bk
J.k 7 7
Zp,j Zp,k

(1.111)

®Due to the absence of a source term, the purely diffusive equation of a passive scalar ¢ leads
to a systematic “erosion” of peak values: in the vicinity of a local maximum, considering a control
volume V stagnant in a frame of reference at velocity u that follows this local maximum, the average
divergence of the flux DV ¢ in V is negative, meaning the average value of ¢ in the control volume
decreases. The converse is true for a local minimum.

Therefore, if the limit conditions of ¢ are bounded by [0; 1], its value stay enclosed in this interval
throughout the flow.
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with p chosen for each (j, k) such that the denominators are non-zero. Z; is equal to
0 in pure fluid-j conditions and to 1 in pure fluid-k conditions. With this definition,
N(N — 1) variables have been introduced, which are in excess compared with the
N — 1 degrees of freedom which necessitate only N — 1 variables. It is sufficient to
fix j and to define the N — 1 mixture fractions of the problem as

Zy=Zip, jfixed, k=1,...,N, k+#j (1.112)

so that all Zj are equal to 0 in pure fluid-j conditions.
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Chapter 2

Numerical implementation

The numerical simulations performed in this work involve two computational flow
solvers and rely on three different formalisms for the Eulerian resolution of the
Navier—Stokes equations:

e SiTCom (Simulating Turbulent Combustion) is a fully compressible solver
designed for Cartesian meshes, used here for the development of the FCCT
combustion model and applied to the computation of a single-phase turbulent
lifted jet flame (Chapter 5).

e YALES2 (Yet Another LES Solver) is a low-Mach solver, employed, when
it comes to the gaseous phase, in two frameworks: the incompressible formu-
lation of the Navier-Stokes equations (ics solver), convenient for addressing
the frozen flow properties (Chapter 3), and a variable-density formulation (vds
solver), for the reactive flows (Chapter 4).

YALES?2 also includes a Lagrangian spray solver, with which the simulation of the
SAFIR burner is performed in this work. A discussion on this solver is the object of
Section 2.2.

SiTCom and YALES2 are designed for running in parallel on a large number
of processors; in Section 2.3 the strategies of both solvers regarding this point are
presented.

A number of contributions has been brought to YALES2 in the context of this
work, as listed here:

e the implementation of the droplet evaporation model in the solver (Section 2.2.3)
e the development of a particle-aware load-balancing approach (Section 2.3.2)

e the development of an approach for conveniently comparing the simulated spray
properties with experimental measurements of droplet properties statistics (Sec-
tion 2.4.1)

e the design of algorithms for realistic particle injection (Section 2.4.2)

These contributions extended the range of two-phase configurations that YALES2
is able to tackle, from relatively simple textbook cases to realistic spray flows, like
the SAFIR burner.
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2.1 Continuous phase

In this section, we introduce the theoretical framework of the different formalisms
and present the characteristics of the solvers.

2.1.1 Fully compressible: SiTCom

Finite volume formulation. SiTCom solves the filtered Navier—Stokes equations
(1.93-1.96) by an explicit finite volume approach and is written for cartesian grids.
The balance equations may be symbolically written as

aﬁg conv diff | @

W+Z-£¢ ZZ'£¢ +S¢a (2'1)

where ¢ stands for either of the transported quantities, including 1 for the density
equation, and F and FUT respectively denote the convective and diffusive fluxes.
The filtered source terms are gathered in Sy. Integrated spatially on a control volume
V of surface S and in time on an interval [t";¢"™] such that At = "' —¢" this
equation becomes:

vt

1 N ¢+l
/ podVdt + / / F -ndSdt
tm % tm S

tn+1 tn+1

= / F3T . ndSdt + / / Sy dzdt . (2.2)
tn S tn Vv
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This is reformulated as:

tn+1

(o)™ — ()" = / (—C+D+S)dt, (2.3)

tn

where

Q" = %/VQ(L t") dx (2.4)

is the average value of a quantity Q(z,t) on the control volume V at time ¢".

Discretization. The division of the computational domain into control volumes
follows the orthogonal hexahedra of the cartesian grid. The values () are stored at
the center of the cells.

Spatial integration. The convective terms C are solved with a fourth-order
skew-symmetric-like scheme [Ducros 00]; the diffusive fluxes D are handled with a
fourth-order centered scheme. Artificial viscosity is added in Eq.(2.3) as a term
A, following the High-Resolution Switched Scheme [Tatsumi 95]. Boundary condi-
tions are solved according to the 3D-NSCBC formalism [Lodato 08b]. The reader is
referred to Lodato’s PhD thesis for extensive details on SiTCom [Lodato 08a].

Temporal integration. An explicit third-order TVD (total variation dimin-
ishing) Runge-Kutta is used as the temporal scheme: quantities at time n + 1 are
computed following:

o~ o~

BO)" = (50)" + At (~C" + D" + A" +S") (2.5)
@) = S0+ 1oy + G (-CHADt AT ST . (20)
- -~ -~ A

PO = @O+ + (TP AT S, (27)

where the marked terms C,ID, S are evaluations of their counterparts in Eq. (2.3) at
times ¢", t7 and t*, likewise for A the artificial dissipation term. The time step
is limited by Courant—Friedrichs—Lewy (CFL) and Fourier conditions, imposing ap-
proximately

V V?
(lul + )8 JulS?

where C = 1 for the present TVD formulation, ¢ = /vp/p is the sound velocity,
and the minimum is computed on all control volumes of the computational domain
(see [Lodato 08a] for more details).

At < C X min (2.8)

Thermochemistry. Although the code can tackle thermochemistry in several
ways, the SiTCom computations presented in this work invariably involve tabulated
chemistry. The justifications and approaches for building such chemical tables are the
object of dedicated subsequent chapters; here, the implementation of this approach
in the flow solver is presented.

The purpose of a turbulent chemical table is to provide the solver with values for
filtered thermochemical quantities @1, @2, ..., @n,,,. that would otherwise be diffi-
cult or computationally costly to close directly (for example via a literal expression)
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from the other scalars solved. The tabulation is based on the parameterization of
these thermochemical quantities by a small number of variables, V1, %2, ..., VN, 0o

forming a vector denoted by 9. The filtered values of these parameters, 1, are com-
puted in the LES, and the quantities of interest are retrieved from the table as

Q1(¥), Q2(¥), ..., Qnyra (V) - (2.9)

In the version of SiTCom used here, a turbulent chemistry table contains:

e the filtered energy source term, wr, defined in Eq. (1.16)

e the filtered average molecular mass of the gas mixture, W

e the filtered mass fractions of a set of species, Y,,,, Yo, ..., Yoy .., Decessary
to retrieve T from E, in that mg, & = 1, Ntaple are in [1; Ny| such that the
approximation

N.s,table
Co(T) = > Comy(T)Y, (2.10)
k=1

may be considered valid on a range of temperature [Tinin; Timax] €xpected in the
flow [Galpin 08].

Additionally, a separate database containing second-order polynomial interpolations
of the C,,,, integrals is available: it contains three sets ay;, br.i, ¢k, K = 1, Ns table,
i =1,(Ny — 1), such that

T
/ CMmk (T/) dT/ ~ a,wT? + bkﬂ,T + Cr; On T e [T‘Z, T%-H] (211)
Tret

where T; = Tyin + (1 — 1)/ (Nr — 1) X (Tinax — Tmin)- Nr must be large enough for
this quadratic regression to be accurate.

The energy source term wr is retrieved from the table and used in the total non-
chemical energy E transport equation, see Eq. (1.18). At the end of each time step,
the equation of state is enforced in each control volume through the following steps
(the filtering notations are omitted in the terms below):

1. The integral £ = fTT Cy(T")dT" is computed as

Rﬂef

= (2.12)

S a1,
&€=E— S -
where W is retrieved from the table and Trer 18 an arbitrary reference temper-
ature . N N
2. The temperature T is extracted from £ and the table’s mass fractions, thanks to
the approximation (2.10) and tabulation (2.11), by an inversion of the second-
order polynomial

Ns,tablc Ns,tablc Ns,tablc
~ 2 ~ ~
E a}mYmk T + E bk,zYmk T+ E Ck,iYmk (213)
k=1 k=1 k=1

with ¢ taken in each control volume as the index corresponding to the previous
temperature.
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3. Pressure is then computed as

)

K

== 2.14
= (2.14)

2.1.2 The low-Mach-number variable-density solver in YALES2

Like SiTCom, the vds (variable-density) solver in YALES2 is based on the finite
volume method, but in a formalism of low Mach number Ma, the ratio of the flow
velocity to the sound velocity c. This restricts the simulation to subsonic flows. The
treatment of acoustic waves is eliminated as they are assumed to travel instanta-
neously. The CFL condition on explicit time stepping is relaxed, but an implicit
Poisson equation needs to be solved. Precisions are given in the following.

Low Mach number approximation. The Navier-Stokes equations may be
rewritten in the limit case Ma < 1. To obtain the new system, Eqgs. (1.1), (1.2) and
(1.5) are first non-dimensionalized:

dp
5 TY (o) = 0 (2.15)
9(pu) B 1
5 TY(u®u) = —Vpt+ V-t +pf (2.16)
pT
= — 2.17
p ’}/Ma27 ( )

where all above quantities have been normalized by their reference values uy, ¥, pr,

Ty Ury

w: and T (the dimensional quantities are marked with * and the nondimensional
ones are left blank, in this paragraph only) and Ma = u}/\/yR*T* .

The asymptotic expansion of all variables in powers of the square of the Mach
number:

¢ = ¢+ Ma’py + ... (2.18)

where ¢ stands for u, p, u, e;, except for the pressure, written as:

p o+p1+..., (2.19)

B Ma2p

are plugged into the mass and momentum conservation equations (2.15-2.16). At
the order 1/Ma?:

Vpo = 0 (2.20)

implying that py is a uniform field, called the “thermodynamic pressure”. In this
work it will be assumed constant in time. The equation of state becomes

T
Po = —pov 2, (2.21)
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and the rest of the system reads

0
8pto +V - (pouy) = O, (2.22)
d(pou 1
(paot_(]) + V- (pouy ®uy) = —Vpi + §Z "To Tt pof - (2.23)

The fluctuating part of the pressure, py, is referred to as the “dynamic pressure”. The
equations (2.21-2.23) form a system with five unknowns: pg, the three components
of u,, and p;.

Integration. The integration of the above equations involves simultaneously an
explicit time advancement, an implicit resolution of the Poisson equation satisfied
by p1, and an enforcement of the equation of state. It is illustrated here, back in
dimensional form and for the filtered values, in a case where the spray two-way
coupling terms are mentioned. The subscripts ¢ and ; have been omitted for the sake
of simplicity, only pq is written explicitly. p thus denotes the dynamic pressure.

The velocity is computed at integer time steps ¢, while density and pressure and
the scalars are at staggered time values, and denoted accordingly with the super-
scripts "2 nH3/2 ete.

For each control volume, an integration step is structured as follows (for the sake
of clarity, the filtering notations - and ~ have been omitted under the hat symbol):

1. A density predictor p* is computed in one step from the mass conservation
equation, along: R
pr =Y AL (—C 4 S (2.24)

where it is noteworthy that the convective term in Eq. (2.24) is evaluated at
the integer time n:

Ccr = /S (Fa)" - nds. (2.25)

2. Scalars are advanced in their conservative form with the desired temporal
scheme, solving in fractional steps:

(;5)* _ (;g?ﬁ)”ﬂ/z+a*At(—CZH/2+]D>ZH/2+§£+1/2) (2.26)

(2.27)

where the rhs terms are evaluated from primitive values computed with the
density predictor, as ¢* = (pp)*/p*.

3. The density p"*%/? is computed as a relaxation between the predictor value p*,
and a value coming from the equation of state, peos:

POW*
RT*
As mentioned above, py is a constant of the problem; the temperature and

average mass fraction are an output of the themochemistry model, examined
below. For the density, it reads

Peos = (2.28)

,/O\n+3/2 = QrelaxPeos + (1 - Oérelax))aﬁ< ) (229)
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from which the value at "' is then assessed as

~ 1 ~n ~n

anrl — §(p +1/2 +p +3/2) ) (230)
A value agelax = 0.7 is convenient for an installed configuration; at the devel-
opment stage, when the equation of state might abruptly vary from one run to
the next, aeax = 0.5 offers more flexibility.

4. A velocity predictor is advanced with the desired temporal scheme. Denoting
by * the value obtained at the penultimate step, this reads:

()" = (P0)" + At (—C — vp 2+ D + S50 (2.31)
where
cy = [ [0 ©7] - nds. (2:32)
B S

5. This predictor does not satisfy the continuity equation. The pressure is ad-
vanced from t"~'/2 to t"*1/2 as a corrector to enforce this condition, in such a

way that:
R R /E n+1 /77 *
zpn+1/2 :anfl/Q_’_ (p_) N (p_) (233)
where the momentum at t"*! must satisfy the mass conservation, as:
ab\ n+1
v (T n+1 - _ -
V- (pu) ( 8t)
~n+3/2 _ ~ntl/2
P P
~ . 2.34
A7 (2.34)

Therefore, the pressure p™+/? is computed from the resolution of the Poisson
equation obtained by porting Eq. (2.34) into the divergence of Eq. (2.33):

V2 (prY? 2y = prts/2 _ pntl/2 V- (pu) |

INE A7 (2.35)

6. Velocity is corrected to take into account the new pressure gradient.

7. The scalars are corrected to take into account the corrected velocity.

Spatial discretization. The solver can handle unstructured grids made of multi-
ple types of elements, from triangles or quadrilaterals in 2D, to tetrahedra (used in the
present work), prisms, pyramids or hexahedra in 3D. The control volumes on which
the finite volume equations are based are constructed around each node, as schemati-
cally illustrated in Fig. 2.1. Volume-averaged data @) are stored at the nodes. Further
detail on this discretization is given in Vantieghem’s PhD thesis [Vantieghem 11].
Notations are given below when necessary.

Numerics. Several spatial and temporal schemes may be selected by the user.
The explicit time advancement may be done by third-, fourth- or fifth- order Runge-
Kutta schemes, or a recently developed, soon to be published, fourth-order scheme
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Figure 2.1: Schematic illustration of a node-centered control volume in YALES2, here on
a two-dimensional mesh. e: node; o: middle of an edge; o: face center

combining Runge-Kutta and Lax-Wendroff, called TFV4A [Kraushaar 11]. As far as
spatial integration is concerned, both second-order and fourth-order precisions are
available. The addition of artificial viscosity follows the fourth-order Cook & Cabot
scheme [Cook 04]. The linear Poisson solvers include PCG [Van der Vorst | and
Deflated PCG [Nicolaides 87], the BIGSTAB, BIGSTAB2 and BIGSTAB(2) schemes,
as well as their deflated counterpart [Van der Vorst |.

In the present work, the schemes that were used were fourth order in space,

TFV4A and DPCG.

Thermochemistry. In the integration approach presented above, no energy
equation is directly involved in the resolution loop, all thermochemical information
is carried by the equation of state (2.28): in YALES2, the thermochemical model
must simply provide pe.s, and optionally a temperature T and a mean molecular
mass W that are consistent with it through the equation of state.

An extra remark may be made at this stage: in the low-Mach-number framework,
the sensible enthalpy hy = fTT . C), introduced in Section 1.1.3 may be considered to
behave like a transported reactive scalar if the work of the viscous forces 7 : Vu is
neglected. Indeed, the pressure term in Eq. (1.22) is zero at the lowest order in Ma,
and, noting that by definition dhs = C,dT’, one has

dph
ot

+ V- (puhy) = ér+ V- (LVh) + 0. (2.36)

Diffusion for the enthalpy is controlled by the Prandtl number, the same way as the
Schmidt number for the scalars.

2.1.3 Incompressible: the constant-density solver in YALES2

The Navier—Stokes equations may be formulated in the framework of incompressible
flows, in which the density is assumed constant. This goes farther than simply ne-
glecting the propagation of acoustic waves coupling pressure and density fluctuations:
here, density is not even impacted by changes in temperature, which in practice re-
stricts this solver to cases where the heat release is negligible. The incompressible
solver is fit for non-reacting cases.
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Formulation. The incompressible formulation of the equations solved by YALES2
reads

Vou = 0 (2.37)

0 1 1
—fw-(g@u) = Yt Vertf (2.38)

Numerics and integration. The numerical schemes available in the ics solver
are the same as in the vds solver. The time advancement is based on the same steps,
with an explicit approach for the scalars and velocity and an implicit computation
of pressure, but are simpler since no density variation needs to be predicted.

2.2 Dispersed phase

Several approaches have emerged in the last decade to solve the evolution of sprays,
described formally in the pdf equation (1.27). Both Lagrangian and Eulerian meth-
ods are possible alternatives, each with their strengths and weaknesses, as discussed
in a first subsection (Section 2.2.1). In YALES2, a Lagrangian solver is used; the
numerical treatment of two-way coupling is addressed in a subsequent paragraph (Sec-
tion 2.2.2), then the particle time advancement algorithm is described (Section 2.2.3).

2.2.1 Spray solving approaches

Like all pdf transport problems, the formalism introduced by William’s spray equa-
tion (1.27) may be tackled by both Eulerian and Lagrangian methods.

Let it first be noted that an exact solution of Eq.(1.27) contains much more
information than the observed spray evolution (positions and other properties of the
particles over time). Rather, f embeds the probabilities of all possible spray states,
which at a given time include the one observed to happen, but also all the unobserved
others. The goal of a spray simulation is not to obtain this type of information, which
in most cases is unneeded.

The idea of the Eulerian approach, introduced by Février et al. [Février 05] is to
compute spatial fields of the pdf f’s statistical moments, such as the particle number
density (zeroth order):

wwt) = [ [ [ pewar)duadar, (2.39)

the averages (first order), here for velocity:

(2 t) = / / °° Tif(t,z,@, d,T)ududddT . (2.40)

or the variances (second order), here for velocity in direction i:

<(uZ — <uz>)2> (z,t) = //d: TO:OO ft, 2, u,d, T)u? dudddT — (u;)*, (2.41)
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solved from transport equations that are derived from Eq.(1.27). An advantage of
this method is its easy insertion into classical finite volume gaseous flow solvers,
benefitting in particular from all optimizations for parallel computing. However, the
restriction of the spray pdf to its moments makes the treatment of such phenomena
as polydispersion (inhomogeneous particle sizes) or out-of-equilibrium velocity dis-
tributions (for example two particle streams crossing each other) a delicate matter,
as addressed in Chaisemartin’s PhD thesis [de Chaisemartin 09]. Response strate-
gies include the introduction of discretized conditional moments, or the recourse to
presumed conditional pdf. In practice, the Eulerian resolution of the dispersed phase
coupled with an Eulerian solver for the continuous phase, forms the so-called Euler—
Euler, or “two-fluid”, framework [Boileau 08a].

The Lagrangian approach provides a more intuitive description of the spray, since
it is based on the tracking of computational particles whose individual behavior, de-
scribed in Section 1.2.1, is similar to the actual droplets. Compared to the Eulerian
method, it offers low numerical dispersion and a straightforward handling of all di-
ameter or velocity distributions. Moreover, its computational cost is made flexible by
the numerical weighting of each particle (denoted by w®) for particle k). A realistic
description of the spray may be achieved by setting all weights to one, w®*) = 1; in
this case, referred to as Direct Particle Simulation, the computed particles match
exactly the actual spray droplets. To keep the number density unchanged, the aver-
age particle weight must be inversely proportional to the number of computational
particles. An increase in the number of particles can be used for an accurate reso-
lution of the pdf f in Williams’s equation, through a Monte-Carlo simulation. The
pdf moments may be computed on localized sets of particles as

(k) (k)
(9) =~ Zg:—wf) : (2.42)

Conversely, a decrease of the computational cost is easily obtained by an increase of
the numerical weights, which enables the transport of a reduced number of particles.
Computational droplets are then also referred to as “stochastic parcels”. Too strong
a reduction of the parcel number may lead to an unacceptable loss of accuracy, with
strong intermittency effects [Okong’o 04].

The discussion on the pros and cons and modeling strategies for Lagrangian and
Eulerian methods is similar when it comes to the sgs modeling of turbulent combus-
tion, see Section 4.2.

The dispersed phase solver in YALES2 is Lagrange-based. Numerical weighting
varies, depending on the cases, between one (full spray simulation) and 4-20, reducing
the number of particles by a factor 6. It is naturally well suited, when it comes to
the phase coupling, to the point-source approximation presented in Section 1.2.4, as
is explained in the next section.

2.2.2 Two-way coupling

The implementation of two-way coupling in the Euler-Lagrange framework is worth
a look since the two phases are described by fundamentally different data structures.
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gk)

N

Figure 2.2: Illustration of notations relative to two-way coupling and Euler-Lagrange com-
munications.

Notations

The notations relative to two-way coupling and used in the following are listed below
and illustrated in Fig. 2.2.
z,;,¢; Position of/property at grid node 4
™ p*)  Position/property of particle k
&; Grid element j
N (&) Set of nodes of grid element j: i € N'(E;)
&, Elements “connected” to z. That is,
if x is inside a grid element, this element;
if z = x, is a node, the set of adjacent elements
(of which i is a node — the set of &; such that i € N (&;))
E®)  Element in which particle k is located, that is = Epm
by extension of the above definition. -

Particle-to-grid interpolation

The “particle-to-grid” interpolation operator {-}; is introduced and defined as follows.
Given a set of particles and their property ¢, a grid node ¢ and its set of adjacent
elements &, , the interpolation of the Lagrangian quantity ¢ at z; may be written

{6}i= Y. giwo® (2.43)
klz(®) ey,

where g, 1, is an inverse-distance weight:

1/]z®) — z,|
9ik = .
Zi/eN(5<k)) 1/]z® — ;|

The computational weight of the droplets may be taken into account by interpo-
lating the weighted fields {w¢};.

(2.44)
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The first application of this operator is expressing the spray source terms Sy, Sp,
SE, defined in Section 1.2.4, involved in the transport equations of the continuous
phase. The point source hypothesis is implemented, in the discrete framework, in a
filtered fashion:

(Sar)i = {wSar}s . (2.45)

meaning the source contribution of each particle is split between the nodes of the
element it is localized in. Thus, conservation is ensured thanks to the definition of
gk, that satisfies, for each particle k, >, g, = 1. Moreover, distributing the term
between several nodes rather that fully assigning it to the control volume where the
particle is located amounts to a filtering of the point source at the grid size level.

Finally, this particle-to-grid interpolation can target the grid elements rather than
the nodes. It is then denoted by and defined as:

{0}e, = > oM. (2.46)

klz(®)eg;

This expression is also conservative.

Grid-to-particle interpolation

Conversely, the “grid-to-particle” interpolation operator allows the evaluation of
fields defined on the grid at a particle’s position. It is based on the same inverse-
distance weighting as above, according to:

{0} = > giner. (2.47)

AC)

It is employed in the particle advancement routine to compute the far-field properties
involved in the kinematic and evaporation models and denoted by the subscript .,
see Sections 1.2.2 and 1.2.3.

2.2.3 Particle advancement

The particle temporal advancement is based on a third-order Runge-Kutta approach,
applied to each particle on substeps At, of the main Eulerian time step At. For
each particle, the amplitude of a substep is computed as the smallest of the mass
evaporation timescale 7,,, heat evaporation timescale 7, and kinematic response time
Tp. It was tested that this choice for At, is sufficiently accurate, see Section 4.4.4.

Over a time substep At,, advancing from " to " *! the new position, diame-
ter and temperature of the particles are computed, along with the drag, mass and
optionally heat source terms, that are accumulated and ultimately passed to the Eu-
lerian solver at the end of the total time step. The algorithm is presented as a chart
flow in Fig. 2.3, with some details given in the lines below.

(A) The far-field quantities u.,, T, Yr oo are updated at every substep At,, and
assumed constant over the Runge-Kutta iterations. Similarly, the reference
viscosity fuef and reference heat capacity C),,r are updated only between two
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Figure 2.3: Chart flow of the particle temporal advancement algorithm. One loop repre-
sents a Runge-Kutta iteration. 15
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time substeps. Finally, the Clausius-Clapeyron formula (1.40) providing the
fuel mass fraction at the droplet surface Yp g, is computed only each substep,
due to its computational cost.

(B) The diameter evolution on a time interval dt is kept nonlinear, from the exact
solution to Eq. (1.58) with a constant mass timescale 7,,:

dy(t + 6t) = dy(t)4 /1 — f—t . (2.48)

This equation indicates that the diameter reaches zero if 6t = 7,,,. Notice also
that the mass timescale may sometimes become negative, when Yp g < Yr o,
meaning condensation is occurring; the diameter evolution equation still holds.

(C) As was presented in Section 1.2.3, the equations for the droplet evaporation are
different whether in saturated regime (7, = Tion) or not, and the evolution is
thus treated separately depending on this condition.

(D) Over a Runge-Kutta iteration, simulating a forward time advancement 0t =
arkAt,, the sub-interval of time spent at saturation is denoted as dtgy;.

(E) The drop disappearance is handled as follows: a minimum diameter value is
set, under which a particle is considered fully evaporated and its diameter
automatically set to zero; in the present case d,,;, = 1pm.

(F) Additionally, if the diameter reaches this minimum value before the last Runge-
Kutta iteration, one considers that the time substep At, was unduly set too
large and the substep is restarted with a smaller value, either 7, or 0t — dtg..

2.3 Parallel computing

The utilization of several processors to compute flow dynamics is a natural response to
the increasing number of cells required by ever larger domain dimensions and smaller
resolutions. Both SiTCom and YALES2 are developed for parallel computing. The
distribution of tasks between processors is briefly presented in this section. In a first
part, the strategies for grid splitting in both codes are discussed — they concern the
Eulerian solvers. The handling of Lagrangian particles in YALES2 is addressed in
a second subsection.

2.3.1 Grid splitting and inter-processor data communica-
tions

A mesh comprised of N cells is considered, that is to be split into as many subdo-
mains as there are computing cores, Neore.
Equal distribution of the number of cells among processors

A domain decomposition must offer an optimal repartition of the workload between
the processes, to avoid some processes waiting for others to complete their time step
advancement. In a purely Eulerian context, the primary requisite is to split the
domain into subdomains containing equivalent numbers of elements.
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In SiTCom, the domain is invariably a regular hexahedron, of Neey = N, x Ny, x N,
cells. The mesh can easily be split up in each direction, forming a set of Nege =
N, x N, x N/ smaller hexahedra, provided each N; is an integer multiple of N},
1=, 2.

The splitting of an unstructured mesh is less straightforward. In YALES2, this
procedure is based on a graph-partitioning algorithm implemented in a library called
METIS [Karypis 95]. One considers the undirected graph formed by vertices match-
ing the N, cells of the mesh, and edges describing the face connections between
cells (pairs of vertices/cells (j1,71), - -, (ja, Jiy) where M is the number of edges and
the j,, ji, are in [1; Nen]). The algorithm determines how the N vertices may be
arranged into Ngo. disjoint subgraphs that minimize the number of cut edges and
have as closely as possible an equal number of vertices. In terms of the mesh, the
result is a set of cell subdomains with approximately Neen/Neore cells each and with
a minimum number of face connections with each other.

Minimizing data exchange

In the context of multiple-core parallel computation, a given process does not have
access to the memory containing data at positions beyond the extent of its assigned
subdomain. As a consequence, spatial derivatives cannot be directly computed near
the inter-processor boundaries, and a data communication procedure between pro-
cesses is required. The number of nodes or cells involved in these exchanges increases
with the size of the stencil involved in the spatial integration scheme.

To minimize the computational cost of these inter-processor communications,
the connectivity surface must be as small as possible. The regular mesh splitting
in SiTCom, yielding exchange buffers localized on the faces of the subdomains, is
optimal on this criterion too. And this explains why the mesh splitting algorithm,
used for YALES2 as described above, involves a minimization of the edge cuts.

Double domain decomposition

In YALES2, the exchanged data, localized along the connectivity surfaces entailed
by the mesh decomposition, are organized in specific data structures called commu-
nicators.

A specific feature of the solver was developed to further optimize the performance
of computations carried out on very large numbers of processors: double domain
decomposition [Moureau 11a]. Each subdomain, obtained from the primary mesh
splitting, is itself decomposed into so-called “cell groups”, forming the basic data
structures. Their size is set so that the information they contain occupies a memory
within the cache capacity. This enables all group operations to be carried out at
once, without repeated access to the cache. This approach additionally offers much
flexibility for potential dynamic load-balancing or local grid refinement, which can be
performed at the level of the cell groups instead of down to the cell level, with only
partial connectivity reconstruction necessary. Moreover, the coarse mesh formed by
the cell groups is exploited by the linear solver of the Poisson equation (2.35).

As a consequence, the solver involves two types of communicators, as described
in Fig.2.4: the external communicators, corresponding to the primary decomposi-
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grid of CPU #1

— CPU #2

cell group

— CPU #3

int. comm
(ext. comm.) (ext. comm.)

[ boundary ][ boundary ]

Figure 2.4: Schematized view of the internal and external communicators in YALES2.
Taken from [Moureau 11a].

tion, through which exchanges between processors are performed; and the internal
communicators, enabling the exchanges between cell groups within a core.

Automatic mesh refinement

The YALES?2 solver has been developed to enable parallel computations on meshes
of several billion cells. To that purpose, an automatic mesh refinement feature is
available, that tessellates each tetrahedron into eight smaller elements of similar
skewness. Details are given in [Moureau 11a]. This circumvents the limitation of
mesh-generating softwares which cannot handle grids larger than about 50 million
cells. Starting from a mesh half this limit size, one level of refinement, performed di-
rectly at the start of the computation, yields a mesh of 200 million cells, and a second
level of refinement reaches a level of 1.6 billion cells. This tool is a significant contribu-
tion for the progress towards highly-resolved large-scale computations; it has enabled
to reach resolutions at which the thermal flame thickness is resolved [Moureau 11b],
and was exploited here, with further details provided in Section 3.3.2, for the com-
putation of the ethanol spray flame.

2.3.2 Lagrangian transport
Memory spatialization

In YALES2, the localization of Lagrangian particles on the Eulerian grid takes
advantage from the double domain decomposition technique. Particles are organized
as so-called “particle groups”, which contain particles localized in the grid elements of
a given cell group. This spatial clustering makes operations affecting large numbers of
particles faster and less memory-transfer consuming. For example, the computational
loops involved in a grid-to-particle interpolation are performed particle group per
particle group; for each of them, there is only one corresponding cell group, easily
retrieved, and the search for the cells £ involved in the summation in Eq. (2.47) is
restricted to the cell group. This saves a costly search through the entire set of cells
in the process’ grid.
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inside

* g(®)

Figure 2.5: Schematic of a face and notations for the particle localization algorithm.

Particle tracking

The algorithm checking if a particle (position z(*)) lies within an element is based
on a comparison of vector directions: given the [-th face of an element, characterized
by its center Y, and outward normal vector e;, the particles is contained in the space
delimited by these faces if

Vi=1,...,Nuce, (y,—2™)-¢>0, (2.49)

as seen in Fig. 2.5.

Particles must be tracked during their displacement, and their location on the
grid (cell number, cell group and process) be updated each time step. To that
end, a search algorithm called “known-vicinity algorithm” is used. The particle’s
initial position and grid location are known, as well as the new position. The new
containing cell must be determined. It is searched for by advancing through the
cells, neighbor to neighbor, starting from the initial one, and checking each time
whether the particle lies within their limits. It takes advantage of the dot products
computed in Eq. (2.49) to determine which neighbor to pick: the one connected by
face [ such that the dot product involving Y, and e; is the largest of all Ng,.. values.
This algorithm was shown to be more efﬁment than brute force methods, and also
than another approach involving a directional search, in which the direction of motion
is taken into account [Apte 03b].

Along the search, it may happen that the particle has crossed a boundary between
two cell groups or even CPU grids: in the former case, it must then be localized in
the particle group corresponding to the new cell group; in the latter case, it must be
sent to another process. Specific memory buffers structured along the internal and
external communicators mentioned above are employed to that purpose.

Load balancing in two-phase configurations

The strategies described above to balance the computational workload between com-
putational cores for the resolution applied to purely Eulerian problems. The La-
grangian transport involved in the spray simulation, because of its different nature,
calls for adaptations in the load balancing.

As described in papers by Boileau et al. [Boileau 08a, Boileau 08b], two strategies
can be envisioned to cope with the transport of particles on multiple cores: either
reserving a portion of the processes exclusively for the Lagrangian transport, with
the rest devoted to the Eulerian computations; or having all processes tackle both
the continuous and dispersed phases of their assigned subdomains. Since the particle
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equations and gas equations are coupled, a huge amount of data must be sent back
and forth, in the first approach, between all Eulerian processes and all Lagrangian
processes; the second approach, since it is localized in physical space, is less costly
on this point, and is the one implemented in YALES2.

However, the particles are not expected to be homogeneously scattered through-
out the computational domain, which leads to workload imbalance between the cores.
This negatively affects the overall efficiency of the solver. A natural response to this
issue is to make the domain decomposition sensitive to the particles, not only to the
number of cells [Ham 03].

Such an approach was developed in YALES2 in the context of the present work.
The number of computational particles (parcels) in an element j is first computed,
with the particle-to-grid interpolation formalism introduced in Section 2.2.2, as:

nj={l}e, = > 1. (2.50)

k‘|§€5]’

The graph-partitioning algorithm in METIS can take into account weighted nodes
(grid cells) and edges (grid faces), denoted respectively by w;, 7 = 1,..., Neen and
wl.,m = 1,...,M. The resulting set of subgraphs V. have approximately equal
total weights ey, wj and minimizes the weight of the cut edges. The particle-
independent grid partitioning described above corresponded to node and edge weights

set to one. Here, the node weights are defined as
wj =14 a,(n;) , (2.51)

where «, is an adjustable constant and (-) denotes time averaging performed over a
sufficient duration.

This domain decomposition can be carried out only once at a time, at the start
of a computation, and is therefore not optimal for cases where the parcel density
strongly varies on large characteristic times. However, in the case studied in this
work, the departure |n; — (n;)| is low in amplitude and occurs at high frequencies,
and this approach enables an up to 62 % reduction of the computational cost, as will
be presented in Section 3.3.2.

2.4 Towards complex spray configurations

The two-phase problem addressed in the present work, extensively described in the
next chapters, involves non-trivial particle diameter and velocity distributions, and
complex boundary conditions (spray injection). Therefore, simulating tools have
been developed in YALES2 that enable: i) a straightforward evaluation of the spray
property statistics, and ii) particle injection with highly configurable features, both
in terms of geometry and property distributions. Each development is presented in a
devoted subsection, and the tools are illustrated in a reference example, forming the
final part of this section.
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2.4.1 Grid-interpolated particle statistics

The computation of statistics of the spray in space is a useful feature that was
developed in the context of the present work. In the Lagrangian framework used
here, the spray modeling involves a large number of parcels whose purpose is to carry
information representative of the population properties, in a fine-grained fashion; but,
echoing the principle behind the Fulerian description of the spray, it is interesting
to compute moments of the statistical distributions. In the experimental practice —
as will be detailed for the case of the SAFIR burner, see Section 3.1 —, diagnostic
tools retrieve spray properties at a fixed location and statistics are obtained over a
significant period of time. Comparison of simulation results with such data therefore
requires to interpolate the moving particles’ statistics onto the grid. Time averaging
may subsequently be performed in a straightforward way, like for gas properties.

Grid-interpolated spray statistics may be computed from the time averages of the
interpolated fields defined in Section 2.2.2. As a first step, particle-to-grid interpo-
lation conditional on a variable 1) may be performed by selecting, for the average
computation in Eq. (2.43), only the particles whose 1(®) is equal to the target value
¥* with an accuracy A: it may be written

{olv", Ay} = Z Gi k0w — ) "), (2.52)

klz(F ey,

with day(¢) = 1 if || < Ay and 0 else. Any droplet property can be used as the
reference variable 1), but the formalism below is based on the diameter since most
experimental spray statistics are conditioned on this variable.

At a given node position z;, the time-averaged diameter number distribution
histogram on intervals Ad, may be obtained from

i) = g (2.59

where the mention of Ad, in the conditional interpolation operator has been omitted
for the sake of legibility. Also, diameter-conditioned time averages of quantities, and
in particular of velocity, may be evaluated as
oy o)
({wldy})

Another interesting quantity is the velocity fluctuation, defined formally, from con-
ditional ensemble averages () on the particle population as — here in direction j —

W) rms(2|dy) <u \d,) — (u;(z)|d,)* . (2.55)

They are estimated as

(2.54)

Ujrms( |d ) <{wu ‘dp}> <<{wuj|dp}l>) . (256)

{wldy}:) {wldy}:)
To summarize, the comparison of the experimentally-obtained diameter pdf and
diameter-conditioned velocity moments with the YALES2 simulation results requires

the computation of the field {w} and, for as many d, values as deemed necessary, of
the fields {wl|d,}, {wul|d,} and {wu?|d,}.
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CHAPTER 2. NUMERICAL IMPLEMENTATION

2.4.2 Particle injection

Computationally, particle injection involves the data structure called “injector”, de-
fined by the following properties:

52

e an injection rate through which the number of particles injected at each time

step is controlled. At each time step, particles are injected one by one and their
properties set, or drawn randomly, as prescribed. This is performed as long as
the injection rate condition is not reached. The most common and realistic
case is the mass flow rate constraint, which is enforced through

Z w(k)mg“) S minjectordt . (257)

k injected

Two alternatives are either to enforce a number flow rate:

Z w(k) S hinjectordt 9 (258)
k injected
or a momentum flow rate:
Z w(k)ml(;k) ’Q(k)| S ginjectordt . (259)
k injected

a geometry, such as: 0D — point, 1D — line, circle, or 2D — disk, annulus,
cone surface. Since particles must be localized on the grid at their generation,
the injection boundaries that are not points must be divided into sub-surfaces
small enough for the localization algorithm not to lose track of a newly injected
parcel. Once their position has been linked to a grid element, the algorithm
(described in Section 2.3.2) is efficient in tracking them along their trajectory,
but it requires a starting point where the particles first enter the system. In
practice, an injector with a flow rate constraint 7 is split up into N sub-injectors
with flow rate constraints 7/ partitioned accordingly. This also takes into
account the possibility that an injector surface spans the domains of several
Processors.

the definition of the particle properties’ distributions, that can be fixed or
random. The support for a wide range of classical random laws has been
inserted in YALES2: uniform, normal, log-normal. Common diameter distri-
butions have also been implemented: Rosin—-Rammler, Nukiyama—Tanasawa.
Definitions, properties and generation methods are listed in Appendix A.

Since particles are injected one by one, the solver bases the generation of their
random properties, say ¢, on the knowledge of a number distribution fy. It is
defined so that fo(¢*)d¢ is the ratio of the number of particles with |¢p—¢*| < d¢
to the total number of particles. This is an important remark because distri-
butions such as Rosin—-Rammler are defined from their volume distributions f3
which may be misleading. All details of the determination of f; are given in
Appendix A.
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Additionally, manually configurable discrete and histogram distributions have
also been enabled. A noteworthy feature is the possibility to condition the
parcel weight with the diameter (see Section A.5.2). A practical application is
for example to assign a large weight on small-diameter parcels, which may, if
they form a significant volume ratio of the liquid phase, represent very large
numbers of physical droplets (hence high computational costs). The larger
droplets may retain a unity weight, because they may turn up less numerous,
but especially because they affect their environment more strongly, making the
simulation benefit from an individual tracking of their evolution.

2.4.3 Illustrating example: a particle channel

A simple simulation is performed to illustrate the features described in the previous
sections. A laminar, steady channel flow of velocity u, in a box of length L in the
flow direction, is considered, as shown in Fig.2.6. Particles are injected uniformly
along a line, with an initial velocity %g Two-way coupling is disabled, the particles
are subjected to drag but do not transfer momentum to the carrier phase.

Injection line

Figure 2.6: Schematic illustration of the particle channel.

Particle velocity relaxes towards u, with a characteristic time 7, — see Eq. (1.34)
—proportional to the square of their diameter. This dependency can be seen by
computing the particle velocity conditional to d,, (u|d,), as presented in Section 2.4.1.
It is plotted along the channel in Fig.2.7a, with statistics collected over two flow-
through times L/ug. The larger particles display higher relaxation times than the
smaller.

In the case presented in Fig 2.7, particles are injected with a discrete diameter
distribution fy, defined as follows:

dy (nm) | 20 40 60 80 100
fo10.05 02 025 04 0.1

The diameter number distribution as defined in Eq. (2.53) is plotted for this discrete
set of values along the channel direction in Fig.2.7b. As expected, these ratios are
recovered downstream, whereas close to the injection, smaller particles are in default
because of their faster acceleration compared with the larger, slower ones, in excess
(initial velocity ug/2).

In the configuration of Fig. 2.7, the particles are injected as computational parcels
of constant unity weight : w = 1. Other constant weight settings are tested: w = 2,

23



CHAPTER 2. NUMERICAL IMPLEMENTATION

a) r : 2 b)os
—~ i T
= b = T
'@R — 20 pm 1 ~03 i
= —~ H
§ o ﬁgﬂm */—E o ‘>_>~——~—»»4--————-————»1{’-
60 pm ] :
é - 80 pm B o 7
~ 100 pm S L X
- 1= L
O 1
05 . |
g \ \ \ \ ] oL 1 \ \
0 02 04 06 08 1 0 02 04 06 08 1
xz/L x/L

Figure 2.7: a) Time-averaged particle velocity conditional to the diameter. b) Time-
averaged diameter number distribution along the channel for different values of
d,. Grey lines: theoretical values.
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Figure 2.8: Collapsing solid lines: time-averaged particle density ({w}) for the same size
distribution but different weight correlations: constant w =1, w = 2, w = 10
and diameter-dependent w. Dotted lines: instantaneous particle density, no
symbol: w = 1, black circle: w = 10.

w = 10, as well as a diameter-dependent weight, defined for the present dummy case
as 1,2,3,4,5 for the five diameter values. The number ratios of the computational
parcels are automatically adjusted to maintain the simulated diameter number distri-
bution. This may be seen in Fig. 2.8, where the overall particle density, computed as
({w}), is plotted along the flow. While the time-averaged density are all equivalent,
the instantaneous values display much higher fluctuations around the time average if
the weighting is large. This intuitive result echoes the observation made by Okong’o
& Bellan in their DNS study [Okong’o 04].

Finally, to show a continuous distribution, a normal diameter law was simulated,
of mean 65 pm and standard deviation 15pm. The computed number distribution
obtained downstream (z/L > 4) is compared for several values of d, in Fig.2.9 with
the theoretical distribution imposed at injection. Both collapse on each other, as
expected.
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Part 11

SAFIR spray flame simulation






Chapter 3

Modeling and simulation of spray
injection

Part II of this report is concerned with the Large-Eddy Simulation of the SAFIR
spray flame. As discussed in the introduction, liquid ethanol fuel is atomized into
a co-flow of oxygen mixed with carbon dioxide. The experimental apparatus allows
for imposing different dilutions of the oxidizer, and the co-flow velocity can also be
varied. Both two-phase modeling and combustion modeling are by themselves self-
standing disciplines. Given the complexity of the problem, only one configuration has
been simulated here, where the flame is lifted and not impacted by the recirculating
burnt gases.

Principles and numerical tools behind two-phase simulation have already been
introduced in earlier chapters. In the present chapter, they are put into practice to
simulate the spray atomization and dispersion, in a non-reactive context.

The chapter is structured as follows: first, the spray properties are discussed, and
the large set of experimental data that have been collected is presented. A part of
them was initially meant to serve as limit conditions, but the YALES2 solver became
available in the course of this work that offered the possibility of a full spray simula-
tion. The objective became, as discussed in a second section, to design a numerical
spray injection that yielded the experimental statistics obtained downstream. The
different steps of this attempt, its initial insufficiencies and subsequent improvements,
are detailed in a third and last section.
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3.1 Spray properties

In this section, the properties of the simulated spray are presented. Its general
features are first discussed; available experimental data are then examined.

3.1.1 Apparatus and liquid flow structure

In the following, the origin of the coordinate system is set at the center of the spray
nozzle. The longitudinal direction is denoted by coordinate x, while all radial prop-
erties are studied along the radius coordinate r.

The spray nozzle is designed to produce a cylindrically-symmetric, 23.3-kW ethanol
flame, ensured by a 3.96 liter-per-hour flow rate. The nozzle diameter is 0.23 mm;
outer dimensions are shown in Fig. 3.2. It is a so-called simplex injector [Lefebvre 89b]:
atomization is caused by the high liquid velocity (bulk inlet velocity 83 m.s™!, hence

Figure 3.1: Schematic view of the spray injection configuration and coordinate notations.
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Figure 3.2: Dimensions of the spray injector in mm and photograph of the liquid spray,
taken from [Cessou 10].

a large supply pressure of 2.2 MPa) compared with the relatively low gas velocity
outside (co-flow velocity about 0.5m.s71).

The device design produces a conical liquid sheet and subsequent break-up droplets
that move upwards and radiate away from the symmetry axis with no azimuthal ve-
locity component. Observations show that the liquid sheet may be considered fully
atomized at a distance of 6 mm from the nozzle plane [Cessou 10]. This is visible in
the photograph of Fig. 3.2. Most of the injected liquid mass concentrates around an
angle of 30 degrees, however the lower angles are also populated, if less densely.

It is noteworthy that here, atomization is not induced by the gaseous phase, as
is the case for air-assisted injectors [Lasheras 00]. In the following, this turns out
to be an important point because kinetic energy comes mainly from the liquid and
is transferred to the gas phase in the process of atomization. The turbulence thus
generated is expected to have particular properties that classical sub-filter turbulence
models may have difficulty to predict in the context of large-eddy simulation.

3.1.2 Available experimental data

A large set of measurements has been gathered to accurately document the behavior
of the spray and flame, and to provide the simulation work with input and comparison
data.

Gas phase. Non-intrusive velocity measurements of the gas phase were con-
ducted with and without the spray, from as close as 0.5 mm to the chamber bottom. In
the regions without ethanol droplets, velocity tracking was obtained by Doppler-Laser
Anemometry (DLA) after seeding the co-flow with small DEHS droplets (< 5 pm).
In the spray areas, the smallest ethanol droplets (< 5pm) were used as gas-velocity
trackers, with velocities estimated by Particle-Doppler Anemometry (PDA). This is
based on the assumption that they fully follow the gas movements, which is yet to
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Figure 3.3: Axial and radial components of the mean gas velocity along a line 2 mm down-
stream of the nozzle, experimentally measured without (e) and with (o) the
spray. Measurement points at velocity below —0.6m.s~! are available but left
here out of the plot range, for the sake of clarity.
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Figure 3.4: Example of PDA measurements at position z = 6 mm, » = 4mm. Left: droplet

diameter number distribution; right: conditional mean and rms velocities.

be confirmed by a Stokes-number analysis [Cessou 10].

As an illustration, the role of the spray on gas velocity is shown in Fig. 3.3. The
strong, localized impact of the spray close to the centerline is visible on the axial
component. The radial component shows the entrainment effect of spray on the gas
co-flow: without spray, the u, profile is characteristic of a bluff-body wake: positive
behind the nozzle, due to the recirculation zone in the atomizer’s wake, negative next
to it, due to a weak entrainment of the co-flow. In presence of the spray, entrainment
becomes much stronger, and the radial component decreases strongly as one nears
the nozzle’s edge.

A comparison of such DLA measurements with the simulation results will enable
a validation of the momentum two-way coupling, as discussed in Section 3.3.

Liquid phase. Extensive measurements of the droplet diameter statistics and
conditional velocities have been performed. They provide diameter distributions on
the range 0-100 pm with 2 pm-buckets, and mean and rms velocities conditional to
these diameter buckets. An example of such a data set in one point is given in
Fig. 3.4, at the tip of the liquid sheet.
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Figure 3.5: Top: average droplet momentum (G,) = ((/6)pdsu,|) at a distance z =
6 mm from the inlet; center: average droplet diameter and velocity magnitude;
bottom: droplet velocity magnitude conditional to the diameter. All data as

obtained by PDA measurements.

Even though these measurements were performed in the presence of the flame for
safety reasons, the flame is positioned downstream and does not impact the gas and
liquid flows up to 15 mm from the nozzle.

As an illustration of the overall spray characteristics, the mean droplet momen-

63



CHAPTER 3. MODELING AND SIMULATION OF SPRAY INJECTION

50

...........

10 i 2 g : 3 o ©
r (mm)

Figure 3.6: Angle of the average velocity to the centerline (dashed line: azimuthal angle
0 = atan(r/x), as illustrated on the right) at a distance + = 6 mm from the
inlet, as obtained by PDA measurements.

tum is plotted in Fig.3.5 at the outset of the secondary atomization region, just
after the tip of the liquid sheet. It is visible that the highest-momentum droplets are
concentrated within a 1.5-mm-wide crown around the position r = 3.25 mm, corre-
sponding to the 23°-36° cone-angle interval. The mean droplet diameter and mean
droplet velocity magnitude are plotted below: (d,) is roughly only increasing from the
centerline towards the interior of the spray. Diameter-conditional velocities increase
with d, and display a maximum at radii positions that increase with d,, see Fig. 3.5
bottom. Finally, droplet emission directions are compared to a radial emission from
the nozzle in Fig.3.6. It may be seen that close to the centerline, droplet movement
tends to be aligned with the symmetry, while at larger azimuth positions droplets
move in a direction that radiates from the nozzle center.

Note that non-spherical droplets are excluded from the PDA statistics; this will
prove of importance when assessing the ability of simulation to reproduce the spray
behavior (see Section 3.3.4). They will have to be artificially taken into account.

Finally, these statistics are also available further downstream in the reaction zone;
this part will be discussed in the next chapter.

Other configurations. The spray measurements presented and discussed in
this study are limited to one dilution/inset diameter configuration, as discussed in
the introduction, but the cases of other inset diameters and co-flow dilutions were
also explored. Similar set of measurements are available [Cessou 10]; they will be
the object of future simulations and will prove a valuable data set to improve the
prediction capabilities of spray LES.

3.2 Modeling the spray as a limit condition

This section is devoted to the modeling of the spray injection.
A brief review of the common approaches for describing or predicting atomization
is first given. The applicability, in the present configuration, of the two-phase model-
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ing framework introduced in Part I (Section 1.2) is discussed in a second part: close
to the nozzle, the liquid phase takes up a large portion of the fluid volume, and it is
thus not straightforward to invoke the dispersed droplet framework. As then detailed
in Section 3.2.3, the purpose here is not to predict atomization itself, but rather to
impose relevant limit conditions based on the experimental measurements, in both
the gaseous and liquid phases, through the ad hoc injection of numerical particles.

3.2.1 Atomization modeling

Atomization is a complex process, a field of study in itself and the object of extensive
ongoing research [Lefebvre 89a, Ashgriz 11]. Full understanding of the mechanism is
still out of reach. Empirically, spray properties have been found to depend strongly on
as various parameters as the injector geometry, liquid mechanical properties (viscosity
wy, density p;, surface tension o), inlet velocity, turbulence level in the liquid and the
gaseous flows [Reitz 82]. In the context of combustion, key properties of the spray are,
in addition, droplet size distribution and conditional velocities, since they directly
impact the fuel vapor field on which the flame will develop.

There have been various attempts at developing descriptive and predictive tools,
from empirical laws to detailed atomization models. Empirical laws expressing global
spray properties, such as mean droplet diameter and opening angle of the cone,
as functions of the injector and fluid characteristics, have been formulated since
the 1980s [Lefebvre 89b]. Since optical access to some areas of the atomizing jet is
difficult, in particular close to the nozzle, detailed numerical simulations have also
been used to improve the understanding of the process of both primary and secondary
atomization [Ménard 07, Desjardins 08].

Yet, when it comes to large-eddy simulations where the spray is but an inlet
condition, it is neither affordable to fully simulate its development nor sufficient
to know only global quantities such as mean diameters and velocities. The poly-
disperse character of spray must be accounted for, and full diameter distributions
and velocity correlations must be provided. Several empirical size distributions are
used that may be characterized by a limited number of parameters. Their list and
description are given in a review by Babinsky et al. [Babinsky 02]; as mentioned in
Chapter 2, they were implemented in YALES2 and are listed at the end of this
document in Appendix A. An example of their use may be found in a recent work by
Bini & Jones [Bini 08]: Nukiyama-Tanasawa functions that interpolate experimental
findings are prescribed at the inlet as the spray droplet diameter distributions.

Comprehensive predictive models have also been developed, mainly for Euler—
Lagrange LES, where droplet break-up is described from the determination of a
characteristic instability frequency, a function of sub-filter gas-phase turbulence and
properties of the numerical parcels (velocity, viscosity). These models are generally
formulated to reproduce secondary atomization but may be used for predicting pri-
mary atomization too, by modeling the liquid sheet as droplets of diameter equal to
that of the nozzle [Apte 03a, Apte 09a, Jones 10a].
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3.2.2 Validity of the spray modeling framework for the present
application

The liquid phase modeling presented in Chapter 1 has theoretical limitations and
its validity must therefore be assessed in the light of the present simulation. In this
paragraph the assumptions earlier formulated when deriving the droplet behavior
equations are listed and examined in the conditions of the SAFIR experiment.

Sparseness. One of the main assumptions behind the Lagrangian transport
model is a low volume loading, say o; < 1072 for a conservative criterion, that
enables to assume the droplets are isolated. This condition is not totally met in
the spray atomization region. The average volume fraction occupied by the liquid
within the full cone opening is relatively small: computed over the cone section just
downstream of the nozzle, of longitudinal dimension 1 mm and angular opening of
40°, and assuming an average output velocity of 40m.s™!, @; ~ 3.7 x 1072 ; 5mm
farther downstream the volume fraction has decreased more than a hundredfold. Yet
obviously, these averaged estimations must be adjusted because the liquid density
is heterogeneous. In the 30°-azimuthal direction, where most of the ethanol mass
is ejected, the fuel forms a liquid sheet which cannot be expected to behave like a
set of discrete droplets. Preferential repartition can reasonably be assumed to yield
local volume fractions a; a hundred times larger than the full-cone-averaged value
ay; with this estimation, the isolated droplet framework is valid only downstream of
a distance of 4mm from the nozzle.

Sphericity. For liquid drops, sphericity is the result of predominant surface
tension compared with the deformation effects of external stress (coming from the
inner liquid or the outer gas). The ratio of their intensity is characterized by the
Weber number,

we — BPlu—wl® (3.1)
o
with p the gas density and o the surface-tension coefficient!. Liquid droplets at
low Weber numbers (We < 1) may safely be considered spherical, while a departure
from the spherical shape is to be expected at larger We, including possible break-up
(We > 10) [Sirignano 10].

Values of the Weber number for ethanol droplets in the configuration of the SAFIR
experiment are plotted in Fig. 3.7 (CO9—0O4 gaseous atmosphere at 293 K). Typical
dimensions of droplets encountered here are below 100 pm; it may be seen that for
relative velocities below 10m.s™!, the Weber remains well below one.

The relative velocities in the present SAFIR configuration are now examined.
Their largest values are expected to be found at the tip of the liquid sheet: droplets
have just been ejected from the sheet whose velocity dissipation by momentum trans-
fer to the gas has been limited. Droplet velocities at this position, x = 6mm,
r = 4mm, are shown in Fig. 3.4. The gas velocity may be estimated as equal to that
of the smallest droplets, due to their very small drag response time: in [Cessou 10],
the 5-pm class is used as the velocity tracer within the spray. Even though droplets

lvalue at 293 K for ethanol: 22.3mN/m, for water: 72.8 mN/m.
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Figure 3.7: Weber number of an ethanol droplet of characteristic diameter d, in the 293 K-
atmosphere of the SAFIR experiment, at various values of the relative velocity
|u — u,|, indicated on the plot.

smaller than 5pm do not display uniform velocities, using the most conservative es-
timation, it appears that gas-liquid relative velocities are larger than 10 m.s~! only
for very large droplets, of diameter above 80 pm.

This validates the sphericity assumption for the most part of the droplet popu-
lation. Again, the largest droplets are few but take up a significant portion of the
mass and momentum fluxes, so this result must be used with caution. The practical
handling of large droplets will be addressed in a subsequent part, see Section 3.3.4.

Interaction with turbulence. The present configuration features the notable
property that the momentum is mostly carried by the liquid spray: the injected liquid
momentum flux equals 7.2x1072 N while that of the gaseous co-flow, evaluated at
8.9x107* N — considering a uniform velocity at the chamber inlet of 0.5m.s™!~ | is a
hundred times smaller.

The spray dispersion occurs simultaneously with liquid-to-gas momentum trans-
fer, and no easy evaluation of the turbulence properties can be carried out. A simplis-
tic attempt at giving an order of magnitude for the turbulent length scales?, based on
homogeneous isotropic turbulence, yields a dissipative length scale of 0.1 mm com-
parable with the droplet dimensions.

At any rate, the spray dispersion models invoked in this work have not been
designed for the present case, and may be expected to be limited in their predictive
capabilities.

3.2.3 Present approach

In this paragraph we present the approach followed to impose limit conditions that
will lead to correct gas and spray properties downstream. Upstream of 6 mm to the
nozzle, the primary atomization is not complete and no liquid phase measurement is

2In isotropic turbulence, ly~L fRer/ * with Re L, the large-eddy Reynolds number, based on Ly

the integral lengthscale and u’ the quadratic velocity fluctuation [Bailly 03]. The present numerical
application is for Ly ~ 10 mm and v’ ~ 2m.s~!, and yields Iy >~ 76 pm.
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available. Downstream of this position, spray measurements cover the azimuthal in-
terval 0°—45° (grayed area in Fig. 3.8). Beyond 45° the droplet population is expected
to be negligible.

The objective here is not to directly model atomization, but rather to determine
the spray limit conditions so that experimental measurements made downstream,
both for the gas and the liquid phase, are reproduced. Throughout the flow, the
spray is modeled as the sparse phase of isolated spherical droplets presented in Part I
and discussed above, even in the very dense areas where non-sphericity is obvious.
Despite the evident shortcomings of this approach, we designed settings that result
in relevant spray and gas statistics — and that will more likely lead to a realistic flame
structure (as seen in the next chapter).

In the very droplet-dense area, from the inlet to about where measurements be-
come possible at 6 mm, spray and gas behaviors are strongly inter-linked. Momentum
transfer tends to occur from the larger droplets to the gas, and from the gas to the
smaller droplets, in a continuum that makes it difficult to accurately control the spray
statistics downstream, from only the injection definition. Moreover, as is discussed
below, no information is available on the azimuthal distribution of the liquid mass
flow rate.

The construction of inlet conditions that, despite these difficulties, are considered
satisfactory, is presented here in four sections; their objective is to show the steps
followed and the problems that arose with the successive attempts.

First of all, simulated gas flow statistics are compared with the spray-free exper-
imental measurements, the like of those plotted with black circles in Fig. 3.3. This is
presented in Section 3.3.1.

The spray injection modeling has followed several steps, as illustrated in Fig. 3.8.
In a first, natural, attempt (A) we have tried to inject all droplets directly from
the nozzle. But the smaller droplets gather early along the centerline and statis-
tics retrieved at 6 mm are far from satisfactory. Consequently, a second try (B) has
consisted in injecting droplets partly from the liquid sheet position, in order to ap-
proximately reproduce primary atomization. This enabled to obtain correct 6-mm
statistics, although they are found to deteriorate farther downstream. Due to subse-
quent observations, the last option chosen for the flame simulation (C) was to inject
droplets directly from the 6-mm plane, and to fully remove small droplets. The latter
option is addressed in the next chapter, dedicated to the reactive-flow simulations.

In addition to Sections 3.3.2, 3.3.4 and 4.4.1 discussing respectively steps (A),
(B) and (C), Section 3.3.3 is devoted to numerical measures taken to reduce the
simulations’ computational cost.

3.3 Steps towards a relevant injection simulation

3.3.1 Gas-only case definition
Mesh and geometry

The problem geometry, cylindrically symmetric, is shown in Fig. 3.9. For the compu-
tations described in this section, a 27-million-tetrahedron mesh was used, hereafter
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0 = 30°
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- (A) : injection from the nozzle

Figure 3.8: Schematic illustration of the atomization process (left) and the different nu-
merical injection approaches (right).

referred to as the “reference” mesh. The mesh properties are summarized in Ta-
ble 3.1. Cell dimensions at the nozzle are such that the injector’s head diameter is
discretized in 18 segments.

Number of Number of Smallest cell —Largest cell
# | Designation cells nodes (near nozzle) (near outlet)
1 | Reference 26.8M 4.88M 500 pm 10 mm
2 | Refined at nozzle 26.7TM 4.85M 100 pm 10mm
3 | Uniformly refined 215M 39.9M 250 pm 5 mm

Table 3.1: Summary of the different mesh characteristics

Inlet conditions

In the experimental setup, the co-flow turbulence is generated at the inlet of a con-
verging section by a 200-mm-wide and 40-mm-long tranquilizing chamber, followed
by 50 mm of 3-mm beads held together by two 1-mm grids. A turbulence grid is also
placed in the middle of this converging section, that is not directly accounted for in
the simulation. It is a 1-mm square grid made of 400-pm wire.

As far as simulation is concerned, the gas turbulence properties are imposed as a
boundary condition with a numerical algorithm where homogeneous isotropic turbu-
lence with a Passot—Pouquet spectrum is injected; velocity fluctuations of amplitude
1.2cm.s™! and characteristic wavelength 8 mm are imposed at the entrance of the
converging section.
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Figure 3.9: Problem geometry and general view of the reference mesh.

Spray-free velocity profiles

As presented in Section 3.1.2, DLA velocity measurements are available very close
to the chamber bottom, at £ = 2mm, in the absence of spray injection. The initial
purpose of this measurement was to supply a structured-mesh simulation with inlet
boundary conditions. With the development of YALES?2, it was decided to simulate
the co-flow establishment and this collected data has finally a validation role.

Overall, the simulation results are in conformity with experimental mean obser-
vations, as shown in Fig.3.10. Statistics have been accumulated over a duration of
2.5s. The largest mean velocity component u, is accurately predicted, from the cen-
terline to the brim of the inset. The radial component is correctly reproduced close
to the centerline, but the entrainment of chamber gas by the co-flow is too strong
in the simulation: for » > 25 mm, u, remains negative in the LES, in contradiction
with the experimental measurements. Close to the centerline, where the flow is pro-
tected from the chamber gas movements by the co-flow, the rms curves show correct
trends and amplitudes. But within the co-flow and near the inset’s edge, the rms
levels are virtually zero in the simulation, although measurements show it should
reach up to 10 % of the mean velocity magnitude. All these prediction errors suggest
that the chamber/co-flow stream interaction is incorrectly captured: it may be due
to low-frequency fluctuations that insufficient computational time has prevented us
from observing. Or simply we have not given the chamber flow enough time for flow
establishment.

At any rate, these shortcomings are of limited importance, for the flow behavior is
mainly driven by the spray, of much higher momentum than the gaseous co-flow. The
present results, very satisfactory close to the nozzle, enable us to safely go forward
with the spray injection.
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Figure 3.10: Comparison of the simulated (—) velocity statistics with the experimental
measurements (o), in the absence of spray.

3.3.2 (A) Injection from the nozzle only

In this section the first attempt at defining spray inlet properties is described. Nu-
merical spray parcels are all injected directly at the nozzle center O. The way in
which their statistics are imposed is discussed below.

Statistics angular discretization

At z = 6 mm, the closest distance at which spray statistics have been gathered, data
is available in 15 locations between r = O0mm and r = 5.5 mm. These target points
are used to impose the spray properties at the nozzle inlet, based on an angular

discretization in N, = 15 “sub-cones” Cy,Cs,...,Cy,, each of them encompassing one
of the measurement points, as illustrated in Fig.3.11. The delimiting angles of the
sub-cones form a continuous sequence 61,60y, ...,0y_ 41, with 6; = 0, so that C; is the

cone fraction {0 € [0;;0;11)}.
Within each sub-cone, droplets are injected in direction

€y = cosl e, +sinf (cosp e, +sinde,), (3.2)

inj

where 6 and ¢ are uniform random variables respectively on [0;;6;11) and [0 : 27). A
similar discretization approach may be found in [Bini 09].
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measurement points
RPN TN RN B

Figure 3.11: Schematic illustration of the angular discretization into N, = 15 sub-cones,
from the measurement points at £ = 6 mm.

To each sub-cone C; is assigned a droplet diameter number distribution f®(d,), a
histogram pdf defined on Ny = 50 diameter buckets, each one of width 2 pm, between
0 and 100 pm, similar to the statistics collected by PDA (see Fig. 3.4). Also consistent
with the available statistics, droplet velocity magnitude at injection follows a random
law conditioned on the diameter class: for sub-cone C; and diameter bucket j, u is
set as a Gaussian variable, of mean u(Y|; and standard deviation uﬁr)ls| ;-

In this approach (A), the diameter properties measured at 6 mm are directly
applied to the droplets at injection. As for the velocity means and rms, the statistics
collected at 6 mm are multiplied by a function of the diameter equal to or larger than
one and applied to the inlet conditions. Several shapes for this function have been
tried: uniform (with values from 1 to 2), tanh from 1 for large diameters to 2 or more
for small diameters (heavy droplets are not expected to lose much velocity over this
distance, while light ones are).

The knowledge of these properties is not sufficient for a full setup of the spray
numerical injection. Most important an information is the repartition of the total
mass flow rate (quotal = 3.96 L.h™!, that is 8.689 x 10~*kg.s™!) between the sub-cones
C;, which is determined with the approach described below.

Mass flow rate profile

In each of these points, the PDA measurement device has collected information on
a maximum of 20,000 droplets over a duration not exceeding 90s. Thus, in addition
to velocity and diameter properties, it returned — for each measurement point ¢ — the
number n( of droplets included in the sample population and the mean time At{)
between two such successive droplets. This last data is not a fully reliable measure
of the droplet passing frequency at the targeted location, as the device automatically
excludes from its sample droplets that appear non-spherical. However, n(® and Ati(i)ter

represent the only access to an estimation of the mass flow rate angular profile of the
spray.
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Figure 3.12: Total mass flow rate repartition among sub-cones C; as estimated from
Egs. (3.3) and (3.4).

The mass flow rate per unit surface at the measurement point 7 is estimated as:

(1) NS
o) = K gn (42) . (3.3)

inter

where d3, is the measured SMD and K a dimensioning constant, assumed independent
of the sub-cone i: the measurement volume is considered identical for all the N, PDA
target points.

The total mass flow rate emitted into sub-cone C; is then computed from its
counterpart per unit surface qgl) through the following normalization:

I3 Gtotal
q() = S q(i) T (7’1-2+1 — r?) , (3.4)
Qs N—————

where r; = tan 6; x 6 mm, such that .S; is the intersecting surface of sub-cone C; with
the plane x = 6 mm. With Eq. (3.4), giving a value to K is thus unnecessary. The
obtained mass flow rate profile is shown in Fig. 3.12.

i

Results

Whatever the adjustments made to the inlet definition, the results of the injection
approach (A) are not satisfactory. As plotted in Fig.3.13, a systematic peak in the
longitudinal mass flow rate is observed near the centerline, in disagreement with the
estimated profile shown in Fig. 3.12 — used as the nozzle profile. The mass flow rate
profile does not remain self-similar along the spray expansion.

While velocity means and rms are found responsive to variations in the inlet
conditions, and statistics of large droplets (> 50 pm) are correctly captured, a deficit
of small droplets (11 pm) in the outer region pdf is invariably observed, along with
an excess of 25- to 40-pm droplets. Figure 3.14 shows, in six points along a line 6 mm
downstream of the nozzle, the local diameter number distribution. 11-pm droplets
are in excess compared with measurements at » = 1 mm, but in deficit farther from

the centerline. As for 25-num parcels, their occurrence is over-predicted across the
range r = 2-4mm.
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Figure 3.13: Cylindrical mean of the mass flow rate per unit surface at x = 6 mm, repre-
sentative of simulations of type (A), with spray injection from the nozzle.
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Figure 3.14: Comparison between droplet diameter number pdf at x = 6 mm measured
experimentally (full line) and obtained from LES at sub-sampled diameters
(blue circles), for an injection approach (A).
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Figure 3.15: Tllustration of the preferential concentration of small immaterial droplets along
the centerline when issued from the nozzle: seeding of the injector in case (A)
by one-way-coupled 11-ym (blue), 25-pm (green) and 41-pm (red) droplets.

The formulation imposing the 6-mm spray statistics directly as the nozzle inlet
conditions shows clear limitations when it comes to the small-droplet behavior. While
it is justified for the largest droplets, which do not change direction and see their
velocity remain virtually constant on this distance, droplets smaller than about 40 pm
are of much smaller drag relaxation time 7, — scaling as df), Eq.(1.34) — and their
trajectories are deviated by the surrounding gas velocity field.

To illustrate this effect, a test is carried out: superposed to the present spray
injection, droplets of three different sizes are injected as immaterial tracers: for them
only, the liquid-to-gas momentum transfer is deactivated. The injection direction is
uniform within a 30° cone. Results are presented in Fig. 3.15: whatever their initial
direction, the droplets are deviated towards the centerline, strongly for the 11-pm
class, imperceptibly for the 41-um class.

This proves that with the transport model, mesh, and large-droplet dynamics
used here, no injection of the small droplets exclusively from the nozzle can lead to
the expected statistics at 6 mm.

Mesh refinement

As far as the mesh is concerned, one factor could explain these unsatisfactory results:
an insufficient refinement near the spray opening. As can be seen in Fig. 3.16 (left)
and in Table 3.1, the reference mesh resolution near the spray injection is 500 pm.
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Small droplet truncation

The transport of small droplets requires higher computational time than that of
large ones, due to a necessary sub-stepping procedure. Indeed, the drag relax-
ation timescale scales as dg and imposes the sub-step time interval. Moreover, small
droplets can represent a significant proportion of the total population, owing to the
dg dependency of their volume. Consequently, it is sensible to impose a minimum
droplet size to the inlet conditions. In practice, the mass flow rate carried by droplets
of diameter bins j < juin (i-€. dy < (Jmin — 1) X 2m) is transferred onto bin juy.
In YALES2 this is formulated in terms of number distribution: given the initial
histogram pdf f;, the truncated pdf f} is defined as

f],':()a J < Jmin
i = 2 fr (3.5)
f]/':fja J > Jmin

This transformation does not strictly conserve momentum; to achieve conserva-
tion, the inlet velocity conditional to diameter bucket j..;, could be adjusted. Yet
the overall impact is negligible if the truncation diameter is low, and it was preferred
to keep the conditional droplet velocities unchanged.

In the present case, the truncation diameter is set to 6 pm. Compared to cutting
at 4pm, it yields a limited 1.5% gain in particle population but enables a 22 %
reduction of the overall computation time, while not impacting the spray statistics.
No direct comparison with the original diameter pdf (no truncation) was carried out.

It is worthwhile noting that this truncation only intervenes at the inlet con-
dition definition, and does not concern the diameter decrease due to evaporation.
The numerical procedure described in Section 2.2.3 involves a threshold diameter
dmin = 1pm for droplet vanishing. All droplets are reaching this small size before
evaporating, but this happens within the flame where the evaporation rates are very
high, leading to no significant increase of the transport cost.

Numerical weighting

To go further in the droplet population reduction, a diameter-dependent numerical
weighting is implemented. It enables to give a larger weight to parcels corresponding
to smaller, more numerous droplets, while retaining a low weight on the fewer, larger
droplets that impact the gas velocity field more strongly.

A tanh-shaped weight is applied to the droplets; all parcels in the same diameter
bucket are given the same weight, so that the latter can be indexed by j:

d,|; —d,
wj = Wsmall + (wlarge - wsmall) tanh (_%> 5 (36)

this expression involving four parameters Wgman, Wiarge, do and Ad.
The population reduction can be estimated literally from the diameter distribu-
tion: for a given mass flow rate ¢ and number pdf f;, the reduction in the number
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Figure 3.17: Particle density field as computed in each element to serve as a criterion in
the mesh partitioning process.

of particles thanks to weighting can be estimated as

Nw ~ Z fjdp|§’

N S wifidl? o0

In the present computations, typical values for the weight interval ranged from
1-5 to 4-20; one refined computation was done with full unity weighting; the center
and width of the tanh function were respectively around 40 pm and 10pm. The
reduction in particle population reached 6.4 between the highest weighting case and
the unrefined spray computation.

Particle-aware mesh partitioning

The mesh partitioning sensitive to the droplet repartition, introduced in Section 2.3.2,
was developed at this stage. It is based on the number of particles in each grid
element k, denoted by ng, shown for the present case in Fig.3.17. The resulting
partition is comprised of subsets with less cells where particles are concentrated and
more numerous ones in particle-scarce zones. A variable weight coefficient v, is used
to adjust the sensitivity to ny: results for different values of «,, are shown in Fig. 3.18.
So high is the particle concentration in some cells that values of «,, higher than 80
were impossible to reach because it led to empty subsets.

For «, = 75, the computational time reduction reached 62 %, as shown in
Fig.3.19, but an intermediary value «,, = 25 was retained for the following, still
offering a 40 % acceleration while avoiding too small mesh partition subsets.
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o, =1 II Il
Oy =D II Il
Oy = 25 II Il
Q= 75 II Il

Figure 3.18: Partitionings of the mesh resulting from different choices of the «,, coefficient.
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sors, for the same configuration on grid partitionings with different «,, see

Eq. (2.51).

3.3.4 (B) Attempt at simulating primary atomization: in-
jection from the 30°-cone surface

Initial approach

Having observed, with approach (A), the incorrect behavior of small droplets when
injected from the nozzle, it was necessary to extend the injection area downstream.
The 30°-cone surface imposed itself as a natural candidate since this is where the
liquid sheet is located in the actual process, along which atomization occurs (see
illustration in Fig. 3.8).

The injection conditions are set as follows:

e The purpose is to inject the smallest droplets from the 30°-cone surface rather
than from the nozzle. Starting from the diameter distributions f® injected
in each sub-cone C; at the nozzle in approach (A), the smallest droplets are
removed from the nozzle distributions, modified and renamed fr(li)zzle, “collected”
and merged into a distribution f3po that is to be injected from the cone surface
— see an illustration in Fig.3.20. In practice, the mass flow rates are split

according to:
(1)
L g0 2iziends Vi
nozzle N, %
S 1Y

Nc
a =Y (4~ i) (39)

i=1

, (3.8)

where jo, is the cutting diameter index, and V; = ddp‘lj?'_l
D

which the volume portion of bucket j is proportional. The diameter number
distributions remaining at the nozzle then read

x3dx is a factor to

fxgo)zzle’j = (4) { f |] B - Jeut ; (310)
Z] fnf)zzle’j 0 ’ clse
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while the merged pdf for the cone surface injection is obtained by weighting
the contributions of each sub-cone with its related mass injection rate:

) L i G _ 0 1 = Feoels
fageli = ——=—» (@7 —q 1) Ly : (3.11)
() nozzle i i
Z] f380|j i=1 Z] (f]() - frgo)zzle|j> ‘/;

A cutting diameter d.,; = 35 1m was found optimal, which is reasonable since
it was seen that 41-pm droplets are about the smallest droplets not significantly
deviated between the nozzle and the 6-mm plane. Other attempts were made
where the division between nozzle and cone-surface injections is smoothed. The
mass diverted from the nozzle to the cone surface amounted to between 5 and
10 % of the total mass flow rate, depending on the configurations.

The liquid mass injection rate repartition over the cone injection surface must
be defined in an appropriate way too. Three configurations were tested: (B1)
droplets are injected uniformly along the x-axis; (B2) droplet injection is homo-
geneously spread on the surface, meaning that the mass flow rate is proportional
to x; both approaches produce insufficiently satisfactory results, therefore (B3)
a customized mass flow rate tanh-profile is adopted: the cone surface is di-
vided into 10 sub-surfaces of equal z-extent, and their liquid mass injection
rate satisfies a discretized version of the following law:

r — x*
1—|—tanh< A ), (3.12)

Xz

where convenient parameters were found to be z* = 2mm and Az = 0.6 mm.
Finally, a profile must be given to the initial droplet velocity. For the sake of
simplicity, velocity properties are in a first approach applied to droplets inde-
pendently from their size: velocity amplitude is set constant, uzgpe = 30m.s™!;
the injection angle made with the centerline direction is randomly drawn for
each droplet, uniformly on a [Opin; Omax] interval. Various intervals were tested:
[20°; 40°], to orient droplets symmetrically around the 30°-cone, to reproduce a
possibly spontaneous ejection from the liquid sheet, due to surface instabilities;
[5°;30°], or even [—20°;20°], to make droplet injection convergent towards the
cone interior, illustrating the potential role of the gas flow entrained through
holes in the liquid sheet and reaping droplets off its surface.

Additional droplet size differentiation

The statistics at 6 mm were found mostly sensitive to two degrees of freedom in
this procedure: the cutting diameter (sharp or smooth) and the injection velocity
angle. However, it was found that whatever the choice of parameters, the droplet
behavior differs significantly between the 015 pm and the 15-35 num categories. With
deyy at 35 um, droplets above 15 pm prove responsive to the injection conditions: in
this case, the statistics downstream are optimal when the injection angle is centered
around 30°; but the diameter distribution at the center is too uniform, leading to
too high a (d,). Conversely, decreasing the cutting diameter enables more control
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mass flow rate profiles

uvrvlg%rgl sg%g ggrllles?ll%%ace tanh-bhaped
x
r = 6 mm —
(B1) (B2) (B3)
: initial
| i nozzle diameter pdf
d(;ut dp

Figure 3.20: Schematic illustration of the liquid mass injection rate repartition procedure.

on the smallest droplets, but leads the larger ones (still below 35 pm) to gather too
strongly at the center, as in approach (A).

A natural response to this is to separate the injection velocity properties between
smallest (0-15pm) and larger (15-35pum) particles. Two groups are formed, with
a smooth separation function (tanh-shaped), so that the 15-pm droplets are evenly
split between the two, and 99 % of droplets smaller than 13 pm or larger than 17 pm
are exclusively gathered in one or the other. The velocity magnitude is kept at
30m.s~! for both of the particle groups. For the smaller particles, the injection
angle is inwards-oriented: [—20°;20°]; for the larger ones, it is centered around 30°:
[15°; 45°].

This approach yields satisfactory results in terms of diameter distributions and
velocities. In Figs.3.21, 3.22 and 3.23, the statistics downstream of x = 6 mm are
shown, with the simulation results in blue and the experimental measurements in
black. While the diameter pdf and conditional velocities are very well captured
at 6mm, the statistics’ quality tends to degrade farther downstream, in a more
pronounced way at larger radii. This degradation, visible in Fig.3.21, starts at
a distance x = 10mm: the simulated mean diameter and droplet momentum are
too low compared with the experiment; this is in accordance with the diameter
distributions in Fig. 3.22, where it may be seen, in the plots of the upper right corner,
that the 25- to 41-pm droplets are in excess.
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Adding large droplets

It was found difficult to limit this d, distribution distortion by only acting on the
droplet dispersion through modifications in the injection settings: directing more
intermediary-size particles inwards, which would be expected to increase the mean
diameter in the outer region, impacts in turn the central region where the predicted
mean diameter is correct.

Instead, another reason for the underpredicted mean diameter may be found
in the experimental setup: as mentioned in Section 3.1.2, non-spherical droplets,
i.e. large ones, are shunned from the statistical treatment by the PDA diagnostic
device. These droplets may undergo secondary atomization over their trajectory
and produce smaller, spherical particles, that farther downstream can be accepted
by the granulometry device. It can then be thought that downstream statistics
are more relevant than those upstream, which may be a consistent explanation of
why statistics look correct at 6 mm, but deteriorate farther downstream. With the
approach presented above, the overall diameter distribution is conserved, the total
number of droplets in each size bucket is constant and equal to that extracted from
the 6-mm statistics, as discussed in Section 3.3.2.

In response to this observation, statistics are now modified and large droplets
are added to the injection: total mass injection rate is kept unchanged, and diam-
eter distributions are tilted towards the larger values. In practice, a bell-shaped
pdf-function f,, centered in 65pm and of width 15pm, is added to the injection
distributions of sub-cones with angles larger than about 25°, with a weight a; equal
to zero if 0; < 25° and to maximum 0.2 if §;, > 29°:

f+(dy in pm) = exp [— (dp - 65)2] (3.13)

15
0; + 0; . . 1 0 —27
;= o <%) with a(f in °) = 0.2 x 3 {1 + tanh (T)} (3.14)
so that the modified diameter distribution, for sub-cone i, reads:

FOd) = (1 —ay) fO(d,) + i fi(d,) . (3.15)

Expectedly, the addition of large droplets changes the upstream statistics, making
them depart from the measurements, but improves those downstream. The mean
droplet momentum and diameter are plotted in Fig.3.24. It appears that the mean
droplet momentum is significantly more impacted by the change than is the mean
diameter: the addition of large droplets increases (d,) and simultaneously makes
droplets less prone to losing velocity; hence the augmented effect on (G,).

Gaseous phase

The impact of the spray on the gas flow is also examined. Mean velocity streamlines
are shown in Fig.3.25. Although flow statistics have not been accumulated long
enough downstream, the entrainment of the co-flow by the spray is clearly visible:
streamlines converge into the spray cone and become abruptly aligned in the z-
direction as they pass the spray sheet.
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Figure 3.21: Mean droplet momentum (left) and diameter (right) along radial profiles at
different distances x from the nozzle, in a simulation of injection following ap-
proach (B3). Full blue line: simulation; circles: experimental measurements,
with the axial and radial components of the momentum respectively in full
and empty symbols.
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Figure 3.24: Mean droplet momentum (left) and diameter (right) along radial profiles at
different distances x from the nozzle, in a simulation of injection following ap-
proach (B) with addition of large droplets (compare with Fig.3.21). Full
blue line: simulation; circles: experimental measurements, with the axial and
radial components of the momentum respectively in full and empty symbols.
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Figure 3.25: Mean velocity streamlines, colored with instantaneous velocity, for approach
(B3) with addition of large droplets (the velocity mean is not fully converged
downstream).

The mean and rms velocity radial profiles at several axial positions are plotted in
Fig. 3.26, in the case where injection is modeled with approach (B3), without addition
of large droplets. It is worthwhile mentioning here that the addition of large droplets
does not significantly change the velocity profiles: this can be explained by the fact
that the liquid mass injection rate is not changed, and that the large droplets never
impact the diameter distribution with a factor larger than 0.2.

Looking at the comparison between LES and experimental results, notice first
of all that simulations have been performed without combustion model, while the
measurements were done in presence of the flame. The latter being stabilized at about
20mm from the nozzle, there is a probable impact of the flame on the gaseous flow
downstream of 15mm that cannot be taken into account here. Overall, the trends
are quite well captured up to x = 10 mm, with the velocity magnitude somewhat
underpredicted: the liquid phase does not transfer enough momentum to the gas
phase. This must probably be attributed to the large difference between the modeling
framework and the actual liquid phase properties. Also, already observed above in
Section 3.3.1, the predicted rms levels are too low far from the centerline. However,
nearer to the spray center, in the droplet-populated area, the velocity fluctuations
are correctly captured.

Downstream of x = 14 mm, the axial velocity component displays a decrease as
r — 0, that is not captured by the simulation. It will appear in the next chapter
that the presence of the flame enables to recover this effect.

3.3.5 Concluding comments

The work presented in this chapter on numerically representing spray atomization
through the injection of droplet parcels from the nozzle and along a 30°-cone, is fully
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No combustion model is activated. Blue line:
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simulation (full: wu,, dashed: u,); circles: experimental measurements.
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successful in capturing statistics at the desired distance of 6 mm, initially meant to
serve as input conditions. The mass flow angular distribution is a crucial information
for imposing spray limit conditions, and its absence here is a cause for uncertainty.

Farther away from the nozzle, statistics deteriorate and it was not possible to make
the simulation output match all available experimental measurements — themselves
having to be considered with caution. We think it would be possible, with extreme
care and a very substantial amount of additional work, to achieve an accurate capture
of both the upstream and downstream behaviors.

However, such a result would not lead to the design of a systematic, general
method for reproducing, from the present isolated droplet model, a full spray atom-
ization, with liquid-dense areas, a liquid sheet and secondary atomization.

At any rate, the present two-phase flow has properties that make it intrinsically
difficult to be reproduced by the spray model used here. First of all, the gaseous
flow features peculiar turbulence characteristics since the overwhelming majority of
the momentum is imposed by the radial liquid injection. Thus, even in areas where
droplets are expected to be scarcer and more spherical than close to the nozzle, the
dispersion model, that neglects sub-filter scale contributions, is probably unable to
predict correct dispersion patterns. Second of all, the liquid forms a sheet for which
the gas—spray momentum transfers cannot be described by an isolated droplet model.
In these conditions, a prolonged attempt at fully reproducing measured statistics by
simulation would be a waste of time. On the other hand, we cannot conceive of
a different approach than one particular-based to describe the spray, because the
liquid sheet does not behave like a wall: gas passes through it, intermittent holes
being observed in the experiment.

We can thus outline the model improvements necessary for a more realistic treat-
ment of the present liquid jet configuration: a) a droplet interaction model accounting
for high liquid density [Sirignano 10]; b) a sub-filter-scale two-way momentum cou-
pling (see Section 1.3.3), first developed for homogeneous turbulence, that would
enable, at least in a degraded way, the input of specific turbulence properties as
those encountered here (see Section 3.2.2).

Since the core objective of the present work is the study of combustion, we will
favor, for the rest of the SAFIR experiment simulation, an empirical approach (C)
where droplets are injected in an ad hoc manner from the 6-mm plane. It will lead to
a successful reproduction of the flame general structure, making it possible to study
two-phase combustion models.
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Chapter 4

Spray flame simulation

The present work’s objective is to simulate a two-phase reactive flow. In the previous
chapter a simulation of the dense-spray atomization and subsequent dispersion in the
SAFIR experiment has been performed in non-reactive conditions. Here, turbulent
combustion modeling is added to the simulation system.

This chapter is structured in four sections. In a first, introducing part, a pre-
sentation of the SAFIR flame addressed by our simulation is given. The second
section is devoted to a theoretical description of turbulent combustion models, re-
viewing the classical, so-called statistical approaches. Then the practical chemistry
table construction, for our ethanol combustion problem, is examined. A discussion
is conducted on the PCM-FPI modeling framework that is invoked here, and its
application to the present two-phase-flow context. In a fourth and last section, the
simulation results are examined and discussed.
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4.1 The SAFIR flame structure

In this section we reproduce the results on flame structures summarized in the final
SAFIR report [Cessou 10], with an emphasis on the particular case of concern in the
present simulations.

4.1.1 Stability diagram

Three main flame structures are observed when the inset diameter and the CO,
dilution in the co-flow are varied. They are summarized on a two-dimensional plot
in Fig.4.1.

e The first flame type, referred to as type A, corresponds to a flame stabilized at
the nozzle. There are actually two flames, one inside the liquid sheet, the other
anchored at the tip of the sheet. Two subtypes may be distinguished: type A’,
where the outer flame is more luminous than the inner one, and the converse,
type A”.

e In type B flames are stabilized at the tip of the liquid sheet: compared to type
A, no inner flame is observed.

o Type C' flames are stabilized downstream of the liquid sheet.

At low co-flow velocities (< 2m.s™!), the three types A, B and C are successively
observed as the dilution ratio increases from 0% (pure Os) to about 70 %. The flame
blows off at higher CO5 contents. In practice, the mass flow rate of oxygen gas is
kept constant so that increasing dilution comes with increased velocities. Type A
transitions to type B around o = 40% for the 200- and 95-mm insets, and around
a = 35% for the 45-mm inset, and type B to type C around a = 55%, 50 % and
40 % respectively for the 200-, 95- and 45-mm insets. Type A flames are, in these
cases, A’ flames.

At larger co-flow velocities (7m.s™!), obtained for the smallest inset (diameter
23mm), only type A” flames are observed; the outer flame cannot sustain on its own
the surrounding velocities, and an increase in the dilution leads to a blow-off beyond
o~ 41-42%.

In the present work, only one lifted flames, 7.e. of type C, has been simulated.
Carbon dioxide dilution amounts to 60 % and the inset diameter equals 95 mm.

4.1.2 Lifted flame

The flame simulated in the present work, like all those of type C, features a dual
structure, with an outer and an inner flame. The bottom of this structure is stabilized
on the spray cone, at a distance from the nozzle that increases with the dilution ratio.
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Figure 4.1: Flame structure diagram in the co-flow velocity ws. dilution space, taken
from [Cessou 10].

The outer flame is located along a surface bending downstream; the inner flame is
thicker than the latter. A time-averaged OH*-chemiluminescence image has been
produced and Abel-inversed, and is presented along with a standard picture of the
flame in Fig.4.2. Notice that the existence of stable lobes in the flame structure,
probably due to asymmetries in the atomization, causes parasitic traces on these
pictures.

4.2 Statistical modeling of turbulent combustion

In this section the modeling of turbulent combustion based on statistical approaches
is presented. All turbulent chemistry modeling in the present work is based on
such approaches: PCM—-FPI in YALES2 for the present two-phase reactive flow,
and the FCCT approach, the object of Part III. They form one of the main groups
of available modeling strategies, next to geometrical or analytical points of view,
themselves described in numerous books and reviews [Poinsot 05, Veynante 02] or
PhD dissertations [Naudin 08, Lecocq 10, Yoshikawa 10].

Combustion chemistry is characterized by highly non-linear behaviors of energy
production and composition changes vs. such thermodynamical quantities as temper-
ature or pressure. The related phenomena occur over very short timescales and very
small length scales, making their simulation in LES and RANS formalisms challeng-
ing. Moreover, hydrocarbon combustion, as is the interest here, involves dozens of
species and hundreds of elementary reactions.

All modeling strategies must take this complexity into account while limiting
the computational cost of simulation. The statistical approaches may be described
by several modeling steps, formulated mathematically in a generic fashion in Sec-
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Figure 4.2: Flame picture and Abel-inversed OH*-chemiluminescence image, taken
from [Cessou 10].
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tion 4.2.1, then detailed in the subsequent paragraphs.

e The starting point is to describe the problem’s chemical framework. The possi-
bly large number of variables driving chemistry may be reduced by appropriate
parameterization. In Section 4.2.2; kinetic mechanisms and common chemical
parameters are presented.

e Parameterization should be adapted to the combustion configuration addressed,
and enable the construction of a chemical database that describes chemistry at
the molecular level. This is commonly done by solving archetypal problems, as
examined in Section 4.2.3.

e Then, a formalism must be developed to capture, at the resolved level (spatially
filtered in LES or temporally averaged in RANS), the turbulent behavior that
results from the multi-scale interaction of turbulence and diffusion-reaction.
The sub-filter fluctuations (resp. temporal variations) of chemical quantities
require modeling, in the same way as sub-filter velocity fluctuations do in non-
reacting turbulent flows (see Section 1.3.2). Different strategies exist, that form
the core of turbulent chemistry modeling, as discussed in Section 4.2.4.

4.2.1 Generic formalism for statistical modeling approaches

The core “reactive turbulence” problem is described by the N, species mass fractions
balance equations (1.10), in addition to that of an energy-related quantity (tempera-
ture T', or one of the quantities listed in Section 1.1.3). In the present discussion, the
aerodynamic quantities — velocity, pressure — are assumed conveniently coupled with
chemistry. Therefore, the physical quantities that the turbulent combustion model-
ing is concerned with are Y,,, T" or an equivalent, and the chemical and energy source
terms. Within the RANS or LES context, the quantities that must be an output of
the simulation are the filtered or time-averaged counterparts of these variables. Here,
only the LES formalism will be invoked but in most cases equations are compatible

with RANS.

Following notations already laid out in Eq.(2.9), the fundamental role of the
model is to provide a way to determine the unknown variables, denoted by the vector
@, from the resolved ones 1. The set of variables () requiring modeling depends on
the implementation of thermochemistry in the flow solver, described in Section 2.1.
As already discussed then, @ stands for

e in SiTCom: T, wr and a calibrated number of Y,, and their source term w,,
e in YALES2: pe,s and optionally 7', W, as well as any number of additional
quantities like mass fractions or source terms.

In a statistical modeling approach, the filtered-scale expression Q(@) is formu-
lated, from an a priori knowledge of the small-scale (molecular level) properties

Q) (4.1)
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by means of a joint-y distribution! that depends on the solved variables @, following
Q- [ Q. (13)
¥

This distribution function p is formally similar to that of Williams’ Eq. (1.23), except
it is here defined continuously on space; the time and space dependencies were tacitly
omitted in the above equation, the pdf’s actual signature reads:

p(t,z; 1) . (4.4)

Note that this function should, strictly speaking, be referred to as a “filtered mass
density function”, but the term “pdf” is retained by usage.

Corresponding to the two equations above, two main steps must be completed:
first, determine the small-scale expression of Eq. (4.1); second, give an expression for
the pdf in Eq. (4.3).

As far as point one is concerned, it is the role of kinetic mechanisms to provide a
complete description of thermochemistry, namely

(T, Y, = 1,..., N,}). (4.5)

From this data, it is possible to then reduce the complexity of such expressions by
designing privileged parameters which will finally form the set of solved variables 1.
A chemical database is built that finally yields the contents of Eq. (4.1). Sections 422
and 4.2.3 discuss the physical aspects and implications of these steps, referred to as
parameterization and tabulation.

As for the second point, formulating expressions for the joint-1) distributions yield-

ing realistic Q is the core of turbulent combustion modeling. Classical approaches
are examined in Section 4.2.4.

4.2.2 Description of chemistry
Kinetic mechanisms

The combustion modeling community relies on research in chemical kinetics which
designs chemical reaction schemes, or mechanisms, consisting of a list of species and
elementary reactions with their Arrhenius parameters; their purpose is to describe
as realistically as possible the chemical behaviors of given sets of fuels and oxidizers
in various reactive configurations, from laminar flamelet propagation to self-ignition
to e.g. pyrolysis.

IThe set of variables 1 is not necessarily identical to the set of resolved variables, meaning @

may be different from QSOI. In the case where the two are equal, the pdf first moments must satisfy

Y= / Yp()dy. (4.2)
»
However, to illustrate their common role as parameters, the letter 1 is used to denote both of them.
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Some kinetic schemes are very detailed, containing several dozens of species and
hundreds of reactions: they aim at offering an accurate prediction of minor species,
but are memory-expensive: each mass fraction Y,,, m = 1,..., Ny must be trans-
ported and the source terms be computed from the numerous elementary reactions.
Additionally, the evolution timescales are extremely short and impose for the reso-
lution (and for any simulation that would directly utilize these schemes) to advance
at a very slow pace. Conversely, some others are very reduced schemes, with as few
as four or five species and three reactions; storing the chemical behavior of mix-
tures thus described is cheap, but at the cost of accuracy: only general properties of
reaction are captured, and significant prediction errors must be expected. Typical
examples of mechanisms for methane oxidation are, on the detailed side, the GRI-
MECH 3.0 [Smith |, with 53 species and 325 reactions; on the reduced side, Jones &
Lindstedt [Jones 88], with 5 species and 4 reactions. Further discussion on chemical
mechanism reduction may be found in [Vicquelin 09]. It is often easier for end users
to integrate detailed mechanisms than very reduced ones in homogeneous reactor
or stationary flamelet computations, because the latter tend to induce stiffer equa-
tion systems. At any rate, it is important to keep in mind that kinetic schemes are
usually developed for certain applications and validated on limited numbers of com-
parisons with experiments (adiabatic flame temperatures, laminar flamelet velocity,
self-ignition time) and that inaccuracies remain even for detailed schemes.

In some modeling frameworks, it is unaffordable and unnecessary to keep track
of all species involved in the reaction; nevertheless, for most complex combustion
problems, reduced schemes are too inaccurate to be convenient. The usual response
to both these limitations is to decrease the number of degrees of freedom used in the
description of chemistry. Chemical evolution is assumed to be restricted, in the mass
fraction space, to a low-dimensional manifold. This is the object of the so-called
“chemistry parameterization”, further examined here.

Mixture fraction

The mixture fraction, described in Section 1.4.2 as a variable for characterizing mix-
ing, is a useful parameter for combustion: it takes an oxidizer and a fuel that mix
with each other for reaction to occur. Two such fluids are considered in the follow-
ing, conform to notations of Eq. (1.110): notation ‘Ox’ refers to the oxidizer, where
Z =0, and ‘F’ to the fuel, where Z = 1. Stoichiometric proportions are met when
7 = Zg, higher values mean rich conditions, lower values lean conditions. An al-
ternative variable is the equivalence ratio ¢, the quotient of the F-to-Ox mass ratio
with its value at stoichiometry, and is thus related to Z and Zg through:

A 1—Zg

b= X (4.6)

¢ tends to infinity when Z tends to one.

Progress variable

To describe the progress of combustion, the most common parameter is a variable
describing the advance of reaction from an unburnt state to a state of chemical
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equilibrium. Depending on the chemical framework, it can take several forms.

A standard, intuitive way to describe the progress of reaction is to follow tempera-
ture: T itself is sometimes a good candidate, in particular for premixed combustion:
since no mixing takes place, a temperature increase is fully related with reaction
progress. It is common practice to normalize this variable between its value in cold
mixture 7j and its equilibrium value 7., to form

T-T,
=32 A7
ST (4.7)

that varies from 0 to 1 as reaction goes. c is often referred to as a “progress variable”.
In the context of detailed chemistry, the choice is often made to define reaction
progress through a linear combination of species mass fractions, such that

Ns
Vo= amYn. (4.8)
m=1

This variable should be monotonic from the unburnt to the burnt gases, along a
direction suitably chosen for the given problem (as explained below, it is mostly used
in the context of premixed flames) and for the targeted configuration range. Like
above, a progress variable c¢ is defined as the normalized reaction progress:

Y, — Y
= 4.9
T Yoo — Yoo (4.9)

4.2.3 Archetypal combustion problems

The usual approach for tabulating chemistry, in other words for building a reference
chemical database?, is to formulate archetypal combustion configurations, compute
the chemistry behavior with the detailed kinetic mechanism and store the obtained
chemical quantities with a limited number of parameters, such as those defined in the
previous section. The obtained manifold is to serve as a database for all subsequent
chemistry modeling in the LES, so the choice of configuration depends on the target
problem. Classical approaches are discussed below.

Propagation in premixed combustion: laminar flamelet

For premixed combustion, the steady unstrained laminar flamelet is a natural can-
didate. A given equivalence ratio ¢ is considered, equivalent to fixing a mixture
fraction Z. A set of N, + 1 one-dimensional balance equations is then solved, com-
prising N, equations for the species mass fractions — Eq. (1.10) — and one enthalpy

2Notice that the word “tabulation” is also used for some turbulent chemistry models, because
data is stored in a lookup table, as discussed in the next section. The step described here deals
with describing chemistry at the molecular diffusion scale, in other words with feeding data to the
parameterization, and is the basis for subsequent development of the turbulent combustion models
described here.
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balance equation, for example Eq. (1.22), formulated in a frame of reference that fol-
lows the flame front at the laminar burning velocity S.(Z). For the mass fractions,
this reads

oY, 0 oY\

(DS GE = o (P2 ) + i (4.10)
V(e = —00) = (1= 2Z)Yimox+ ZVmr, (4.11)
Y, B
Y, B

(4.14)

where the premixed unburnt mixture forms the upstream limit condition, Eq. (4.11),
of density po(Z). The downstream limit condition necessarily sees a composition at
chemical equilibrium, since the zero-gradient condition on Y, imposes w,, = 0.

In the above set of equations, the source terms w,, are computed with the desired
detailed reaction scheme. The resolution of this problem, which is not numerically
straightforward (see for example discussion in [Poinsot 05], Sections 2.2 and 2.3),
may be obtained by devoted numerical softwares like PREMIX [Kee 85].

Furthermore, this computation is only possible within the physical boundaries of
the flammability domain: below and above certain equivalence ratio values, the flame
is totally quenched and no propagation is experimentally observed.

ILDM-FPI/FGM. Two reference models based on a mixture fraction—progress
variable parameterization of laminar premixed flamelets are FPI (“Flame Prolonga-
tion of ILDM”) [Gicquel 00] and FGM (“Flamelet-Generated Manifold”) [van Oijen 00],
which were developed simultaneously by different research teams just before 2000.
The chemical quantities Y, T, w,, and wr are expressed as functions of (Z,Y,) where
Y, is a linear combination of the species mass fractions satisfying, as a progress vari-
able, monotony through all flame fronts of the mixture fractions of interest.

From a mathematical standpoint, this parameterization comes down to select-
ing the larger timescales of the problem and leaving the smallest ones aside: in the
N,-dimensional composition space, the (Z,Y,)-described chemical evolution is an at-
tractor of all possible initial states, with trajectories converging towards this manifold
at a quick rate compared with that of Z and Y.’s evolutions. This was formalized in
the ILDM (“Instrinsic Low-Dimensional Manifold”) method [Maas 92], from which
FPI derives its name.

The apparition of these approaches, that offer both a reduction of the memory
requirement (less parameters) and slow-timescale description of chemistry, jump-
started the prospects of large and complex combustion problems simulations, and
indeed the scope and magnitude of LES applications expanded rapidly thereafter.

Additional parameters. The steady flamelet described above may be tabulated
by projection on a mixture fraction—progress variable space. Yet it may happen that
additional degrees of freedom must be accounted for in the problem addressed. The
formulation can be extended to strained flamelets, by adding a sink term in the rhs
of density, mass fraction and energy equations [Delhaye 08, Subramanian 10a]. As
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a natural extension, it is possible to compute temporal evolution of these flamelets
in the case of unsteady strain [Barths 98, Delhaye 08]. In the latter case, additional
timescales, characteristic of the unsteadiness, are added to the problem, and adequate
parameterization must be formulated if this chemistry is to be tabulated [Pitsch 00,

Coelho 01].

Spray flamelets. Although it is not used in the present work, a formalism by
Gutheil, called “spray flamelets”, is worth being mentioned [Gutheil 98, Hollmann 98].
Laminar spray diffusion flames, consisting of an oxidizer stream directed against a
gas that carries a mono-disperse spray. The system thus defined then depends on the
scalar dissipation rate, like its gaseous counterpart, but also on the initial droplet
size, velocity and overall equivalence ratio, as the authors point out. Choices must
be made when building the database to limit the number of parameters.

Mixing-reaction interaction in non-premixed combustion: laminar diffu-
sion flame

In a way similar to the premixed case, it is reasonable to tabulate non-premixed
chemistry by solving a set of laminar diffusion flames.

The diffusion flame problem is more complex than the premixed flame, as thor-
oughly discussed in [Poinsot 05]. We recall simply here that from a parameterization
point of view, no intrinsic timescale or flame thickness exists for diffusion flames,
and that they are fundamentally described by two parameters: the mixture fraction
Z and scalar dissipation yz = 2D|VZ|?, illustrating the dependence of the flame
behavior on both reaction and mixing. The archetypal mass fraction equations may
be written in Z space, for the steady case:

Z(x — —o00) = 0, (4.15)
Z(x —o00) = 1, (4.16)

1 0%, .
SPXZ G T Wm = 0. (4.17)

No space dependency explicitly appears in Eq. (4.17) but it is embedded in yz, which
depends on space. The above equations define a locally one-dimensional flamelet
structure. Often the scalar dissipation rate profile is parameterized with a single
constant @ in s~!, for example the value of yz at the stoichiometric point Z = Z,
enabling a simpler two-variable tabulation: the output chemical quantities Y,,,, 7" and
their source terms may be formulated as functions of (Z,a). The chemical progress
variable ¢, if any is defined, will also be an output ¢(Z,a). It is important to note
that it is not monotonic across the flame, as shown in Fig.4.3. As a consequence,
chemistry tabulation through diffusion flames is complex in practice [Michel 08].
The domain on which the diffusion flamelets can be computed is restricted by
quenching point and ignition point: these are limit values a, and a; of the scalar
dissipation rate between which a hysteresis, the so-called “S-shape” behavior, is ob-
served: starting from a frozen flow flamelet, at high strain, decreasing a progressively
will lead to ignition when a = a;; starting from a burning flamelet, at low strain,
increasing a up to a, leads to quenching. In between (a; < a < q,), there exists a
weak branch of burning unstable equilibrium [Poinsot 05, Veynante 02, Thme 08|.
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diffusion flamelets

N/

premixed flamelets

Figure 4.3: Schematic illustration of premixed and diffusion flame structures in the mixture
fraction Z and progress variable ¢ space. The main parameter for the former
is Z, and for the latter yz. It may be seen that ¢ is not monotonic across the
diffusion flame front.

Self-ignition: perfectly-stirred reactor (PSR)

The textbook problem for mixture ignition is the perfectly-stirred reactor, or PSR:
whether in self-ignition or in forced ignition, the spatial gradients can sometimes be
neglected compared to the chemical source terms. The handling of equations is then
much simpler than for flamelets; in the baseline configuration where no mixing is
considered, the mass fraction equation reads:

N .
5~ Wm - (4.18)
In the formulation above, the mixture is a closed system, with fixed equivalence
ratio and only the progress variable varying as self-ignition occurs. With the evo-
lution c(t), the system may be tabulated such that Y'**(c(t)) = Y,,(t). Forced
ignition may also be simulated this way, but an enthalpy increase must be modeled
at some point, that should in theory lead to the insertion of an additional param-
eter [Lacaze 09]. Often, though, the forced ignition behavior is mapped onto the
self-ignition manifold by modeling the enthalpy increase by a progress variable in-
crease [Boileau 08b, Triantafyllidis 09, Subramanian 10b].

Additional parameters. Mixing events and variations in Z can be taken into
account by considering a plug flow reactor: the PSR is connected to a flow input
with given mass flow rate and composition. For mass conservation, an output with
mass flow rate instantaneously equal to that of the inlet is also implemented. The
inlet mass fractions are denoted by Y™ and the ratio of inlet mass flow rate to the
mass contained in the reactor is inverse to a characteristic injection, or engulfment,
timescale, 7i,;, that will be discussed in Part III of this study (see Section 5.3.3). The
resulting equation reads

oY . yin vy,

— oy, 4 —m 4.19
ot Wm + Tinj ( )
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If the inlet mixture composition belongs to the (Z,c) manifold, such that Y» =
Y,,(Z™, ™), the system may then be tabulated with the three parameters Z, ¢ and
Tinj-

Like above, the controlling variables of the problem may be made unsteady, en-
abling mass flow rate (through 7y,;) and composition (through Z™, ¢™) to vary in
time.

Partially premixed combustion

Most combustion problems that are not fully premixed display a partially premixed
behavior: rather than strict diffusion flame structures where homogeneous pure fuel
on one side reacts with homogeneous pure oxidizer on the other side, there exist
mixture fraction gradients on both sides. A typical structure of this phenomenon is
the well-known triple flame, described experimentally in 1965 [Philips 65] and later
captured numerically [Vervisch 98] and studied by asymptotical analysis, see among
others [Boulanger 02].

For these cases, the premixed flamelet formulation lacks diffusion in the Z direc-
tion: a two-dimensional problem should be solved. In this context, a notable flamelet
resolution approach may be mentioned: Nguyen et al. [Nguyen 10] formulate the pre-
mixed flamelet equation in the reduced parameter space (Z, Y.) rather than in space.
It allows a straightforward introduction of diffusion across the equivalence ratio space
(0?-/0Z? terms). It also happens to enable a quicker computation of the first flamelet
solution, most often a delicate matter.

4.2.4 Turbulent combustion modeling

The modeling work concerned with combustion’s turbulent behavior has to describe
the sub-filter scale statistics of the chemical parameters 1) chosen in the parameteri-
zation step discussed above. Mathematically, the aim is to provide an expression for
the joint-variable pdf p(¢)) of Eq. (4.3). The modeling work also has to ensure that

p’s formulation makes the computation of the unknown fields @ through Eq. (4.3)
accurate enough at a reasonable computational cost. N

Classical approaches are presented in the following paragraphs. A schematic
summary of the approaches is given in Fig. 4.4.

Transported pdf

A natural strategy is to attempt a direct resolution of the joint-parameter distri-
bution. Formally, p’s balance equation is similar to the spray equation, Eq. (1.27),
except that the fields are continuous not discrete; but variable density and the un-
closed sub-filter-scale terms add complexity to it [Jaberi 99] :

A) \ v pip) - ~Y- (7|l -] »)
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In the rhs’ second term, J ‘ is the tensor of ¥’s diffusion fluxes in space (e.g. for a

mass fraction, Jy = —DiYm). Most importantly, the last term is closed since w,
the source terms for 1’s component variables, is known from the chemical database
previously discussed. Multiplying Eq. (4.20) with ¢ to form transport equations of
¢ p and taking their first density-weighted moment vields the Favre-filtered Navier-
Stokes equations for ¢ (mass fractions, temperatures, etc.), recovering Eqs. (1.95)-
(1.96) formulated in Part I.

To solve this equation in a practical way, a numerical method must be imple-
mented that addresses the two challenges of 1) restricting p’s infinite-dimension
functional space to a finite number of unknowns, and 2) closing the first two rhs
terms that carry the subfilter-scale convection and diffusion processes [Haworth 09].
Lagrangian Monte-Carlo procedure [Pope 85] is behind one class of such methods;
it echoes the spray transport formalism discussed in Part I. Lagrangian numerical
particles, carrying individual position, velocity, and ¢ properties (likewise indexed
by ®) k=1,... ,IN,,) , are transported in physical space by the filtered velocity field
as well as molecular and sub-filter diffusion, for which the same discussions as those
concerning the turbulent transport of spray parcels in Section 1.3.3 apply. The lat-
ter are carried by the first term in Eq. (4.20). In addition, the particles’ ¢ undergo
the mixing reaction processes carried by the remaining two terms. While chem-
istry is closed, mixing must be modeled and this makes up the most delicate part
of the whole method. Discrete particle interaction models have been developed that
aim at reproducing the effect of molecular and sub-filter turbulent diffusion on the
scalar fields. They are the object of numerous studies [Correa 95, Subramaniam 99,
Ren 04, Meyer 09] and continuing developments [Duplat 10, Shetty 10]; one of them
in particular, the EMST model [Subramaniam 98], is involved in this work’s Part II1I.

The stochastic particle set defines a space-localized fine-grained distribution

—ZM VO (1)5(z — P(2)), (4.21)

pkl

that may then be used to approximate the joint-i) pdf through a discretized space-
filtering operation

36 — 9 (8) Ga () ~ 2
)= S

or any convenient weighted-average operation [Jaberi 99]. In practice, this expression
is combined with Eq. (4.3) to compute directly the filtered quantities @) of interest
(among which 1 themselves):

~ S Q™) Ga(a™(t) — )
ULt = =5 o™ —z)

An alternative resolution method, similarly to the spray resolution approaches,
is to approximate the joint-¢) pdf by the computation of several Eulerian stochastic
fields [Valino 98, Sabel'nikov 05, Jones 10d].

(4.22)

(4.23)
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Balancing their mixing-model-related limitations, one of the most attractive fea-
tures of pdf transport methods is to make estimations of the filtered chemical source
terms unnecessary. In theory, a fully detailed chemical scheme may be used with-
out reduction. However, these methods are computationally costly, because like all
Monte-Carlo techniques, the prediction error decreases as the inverse square root
of the number of samples, making a large number of stochastic particles or fields
required for accuracy. Thus, it is favorable to use them combined with reduced ki-
netic schemes or tabulated chemistry. For example, in the case of a flamelet-based
chemistry, a physical interpretation of the pdf transport method is that the turbulent
flame is assumed to be formed by multiple flamelet portions: the molecular-diffusion-
scale structure is embedded in the chemical table; their individual properties Z and
Y. evolve, at the sub-filter scale, by reaction (closed wy,(Z,Y.)) and turbulent and
diffusion interactions predicted by the mixing model.

The approach is compatible with the RANS formalism, in which case pdf inte-
gration is used to compute the time-averaged fields.

Presumed pdf: Conditional Moment Closure (CMC)

Pdf transport, described above, aims at preserving all degrees of freedom to the
chemical variable ¢ distribution. In the Conditional Moment Closure (CMC) for-
malism [Klimenko 99, Bushe 99, Cha 01, Kronenburg 04], the number of degrees of
freedom is reduced to a finite set of parameters, which will be used to condition the
parameter vector ¢). This set of parameters is referred to as the conditioning param-
eters, and denoted by 1. Typical such parameters are the mixture fraction Z or the
scalar dissipation xz. 5 may be a subset of ¢ or not.

The idea is to presume the joint-n distribution P(n) and to solve the filtered
unknown ¢ conditional on n: a a

—_——

(YIn) | (4.24)

from where the chemical source term will be closed by the first order hypothesis
(@(@)ln) ~ Q(@I@) : (4.25)

Presumed pdf shapes. Since distribution functions are to some extent impractical
to compute directly, as discussed in the previous section on pdf transport, it is a
widespread alternative to presume them. Their shape is commonly assumed to be
a function parameterized by its first and second moments, which are resolved: for a
unique variable 7,

P(n) =P ) - (4.26)
This requires solving only 77 and 1”2, rather than the large number of samples re-
quired to make the Monte-Carlo error acceptable in the pdf transport approach. The
first moment is usually solved on an Eulerian grid; likewise, the variance can be
transported (see [Vervisch 04, Domingo 05a] for its balance equation), or it can be
computed from its mother variable resolved field 77 (see discussion in Section 4.3.2).
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The most widely used presumed distribution is the beta-shaped function. For a
variable whose variation interval is 0-1:

a—l(l _ n)b—l
B(n) = —1 : 4.27
() fol n*a—1(1 — )bl dp* ( )

where the parameters a and b are coefficients determined from the first and second
moments. They satisfy:

mﬁ(é—o, b=a (1), (1.28)

where 5, is a normalized variance, or unmixedness factor. It is designed so as to vary
between 0 and 1, with a relation to the second order moment 7, reading

77’[)
S, =it (4.29)
Studies from DNS simulations have shown these functions to be satisfactory ap-
proximations of the sub-filter distributions of mixture fractions and progress vari-
ables [Vervisch 92, Wall 00, Vervisch 04, Moureau 11b].

CMC theory. To implement CMC in a LES computation, the following steps must
be taken:

e A relevant set of conditioning variables 7 is selected; for computational cost
reasons, the smaller the better.

e The n-space is discretized into a number N, of values Q("), 1=1,...,N,.

e The N, sets of conditional filtered parameters gl = <@Q(i)> are solved,
they satisfy equations where the chemical source term is closed, thanks to
Eq. (4.25), and the other terms must be modeled [Klimenko 99, Bushe 99,
Triantafyllidis 09]. These equations must usually be solved on a coarser grid
than the rest of the computation, since N, may count in the dozens.

e On the regular grid, ’s moments are transported so that in each point P(n)

may be presumed. The desired chemical quantities Q can then be evaluated.
The filtered mass density function p within the expression

Q=/Q@m@my (4.30)
P

is decomposed using n’s distribution:

mwzjﬁmmgmm, (4.31)

which yields

@) dn. (4.32)
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The values for ) under the integral sign are available from the chemical database,
and the summation is finally discretized as

Q=3 Pu)Q ((wh) (13

Formulations allowing for second-order closure of the chemical terms [Mastorakos 98]
or compatible with spray combustion [Mortensen 09] have been developed.

This technique was first adapted for Reynolds-averaged approaches, and is now
used by several teams in LES [Navarro-Martinez 05, Navarro-Martinez 09, Garmory 11]

Presumed Conditional Moments (PCM).

The PCM approach was initially developed for and applied to RANS computa-
tions [Vervisch 04, Fiorina 05|, then applied to LES [Galpin 08, Domingo 08].

It may be seen as an extension of the CMC model, where the set of conditioning
variables is superposed with the entire set of chemical parameters: n = . Thus,

no conditional average ¥ is solved; instead, the full joint-i distribution must be
presumed. In the CMC formalism, Eq. (4.31) simply means that p and P are now
identical objects.

The practical configurations to which PCM has been applied are two-dimensional:
chemistry is parameterized by mixture fraction and progress variable. In these cases,
it may be argued, based on DNS data [Vervisch 04], that the conditional pdf p(c|Z)
is weakly dependent of Z, which leads to the independence assumption:

p(Z,Ye) = pz(Z) pe(Ye) - (4.34)

The mixture fraction distribution, like in CMC, is assumed to be beta-shaped: pz =
15} 7.7 balance equations for the first two moments Z and Z'2 are solved. The same
is applied to the progress variable distribution p. = 6,5’ on; estimates for ¢’s mean and
variance are required. Taking advantage of the independence hypothesis, ¢ may be
obtained from the resolution of 576:

_ Y,
C=—= (4.35)
Yeeq

where the mean equilibrium progress of reaction is computed from the chemical table
and the Z distribution:

1
Yeeq :/0 Yc’eq(Z)BZZ,v,Q(Z) dz . (4.36)
As a result, the filtered quantities of interest are functions of four parameters
o 1 pl
0(7,2, 7%, o) — / / Q(Z,¢) By.g, () Brs, () dZde (4.37)
0o Jo

and can be stored into a four-dimensional table with input variables Z , ¢, Sz and S,
all in the [0; 1] interval.
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Lagrangian Ye
pdf transport . ..
) : .3 * . solving particle transport
’ ° . — fine-grained pdf
cc, + spatial filtering
Z
Ye .
CMC (Z™); discretization
*ee |
— Z o
solving Z, 7”2
— presumed Z pdf
&
PCM

independence assumption
p(Z,¢) =p(Z) p(c)

solving Y., Yy!”?
— presumed ¢ pdf

A

solving Z, 7'
— presumed Z pdf

Figure 4.4: Schematic representation of three turbulent combustion models: Lagrangian
pdf transport, CMC and PCM, representing the composition space in the two-

dimensional case ¢ = (Z,Y,). For CMC, the common case where the mixture
fraction is used as reference parameter, n = Z, is taken.
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Compared with transported pdf, the PCM approach makes a less expensive tur-
bulent combustion model. Tabulation is easily coupled with an Eulerian solver, nu-
merics are more straightforward than those of a Lagrangian particle solver. However,
the pdf presumption, and especially the independence assumption, make it difficult
to extend PCM to problems that cannot be parameterized by two or less variables.
In the case of variable-enthalpy or multiple-inlet configurations, where enthalpy or
more than one mixture fraction must be used, no obvious way of presuming the joint
pdf is available. By contrast, the transported pdf approach can be applied to these
cases with no formal difficulty. In that view, Flow-Controlled Chemistry Tabula-
tion [Enjalbert 11], the turbulent combustion model developed in Part III of this
work, is an attempt at reconciling advantages of both methods: using a chemical
table based on pdf’s that, instead of being presumed, are computed by means of
stochastic particle modeling.

MMC

As Cleary et al. put it [Cleary 09b], “Multiple Mapping Conditioning (MMC) is a
methodology which effectively unifies the joint pdf and CMC approaches”. Intro-
duced in the early 2000’s [Klimenko 03], it has evolved from a mathematical formu-
lation requiring complex stochastic modeling to a technique well suited for LES, and
reasonable as far as computational cost is concerned [Kronenburg 08, Cleary 09a].

The idea is still to solve the transported pdf equation, Eq. (4.20), but to improve
the mixing model by conditioning it to a set of reference variables 7 (like in CMC,
commonly the mixture fraction). The filtered reference variables 7 are solved on the
Eulerian LES grid, and the filtered mass-weighted distribution p(; z,t) stochasti-
cally, by means of Lagrangian particles. Source terms are still fully closed and depend
only on the stochastic particles’ properties. The reference variables 1 only impact
the mixing term [Klimenko 09], which is localized in the composition space thanks
to the conditioning. But unlike localized mixing models used in the pdf transport
method, such as EMST, which are dependent on the particle distribution and thereby
violate scalar independence, here, localization is based on the field, independent, of
the reference variables.

Thus, the conditioning makes the mixing modeling much more physical and much
more accurate, so that a reduced number of Lagrangian particles is sufficient to yield
accurate results. The result in term of computation is a so-called “sparse Lagrangian”
resolution of the pdf [Cleary 09a, Cleary 09b, Klimenko 09].

4.3 Chemical table construction for the SAFIR
simulation

The objective of this section is to provide practical details on the implementation of
PCM-FPI in the present work. This model is used for the simulation of the SAFIR
turbulent spray flame. It also plays a role of reference for assessing capabilities of
the turbulent chemistry model presented in Part III.

Chemistry parameterization and tabulation are first described. The construction
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Figure 4.5: Ethanol-air mixtures at 300 K and 1.0 bar: laminar flame speed measured
experimentally and predicted by Marinov’s mechanism, and results with the
present work flamelet software. Data reproduced from [Marinov 99].

of the turbulent combustion lookup table and the formalism elected here for SAFIR
are then discussed in a second paragraph. It follows closely the approach followed in
the LES of Cabra et al.’s turbulent lifted jet flame in a vitiated co-flow [Cabra 05]
by the team among which the present work was carried out [Domingo 08, Godel 09].
Finally, a discussion on the validity of PCM—-FPI for the present two-phase flow
configuration is given.

4.3.1 Chemistry tabulation
Kinetic scheme

A 56-species, 351-reaction kinetic scheme for ethanol oxidation is used, published by
Marinov in 1999 [Marinov 99]. The authors validated it against several experimental
data: laminar flame speed (ethanol-air mixtures at 300 K under 1.0 and 2.0 bar and
at 453 K under 1.0 bar), ignition delay (ethanol-oxygen—argon mixtures at lean to
rich equivalence ratios and under pressure between 1.0 and 3.3 bar) and combustion
products in jet-stirred reactors (ethanol-air mixtures at temperatures > 1000 K under
1 atm).

Freely propagating laminar flame speed results and model predictions according
to Marinov’s paper are reproduced in Fig.4.5. Close to stoichiometry, measured
velocities reach 47 cm.s™!, which predictions tend to underestimate by no more than
5%. Conversely, the model predicts larger values than the experiment in the lean
domain.

A number of other models have been developed and published since then, and
said to bring improvements compared with Marinov’s. Yet this one was chosen for
availability reasons. One of them, by Li et al., offers comparisons against a larger
set of experimental data, but performs equivalently on the 1-atm 300-K laminar
flame speed [Li 07]; an other mechanism, even more recent, looked promising but
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Oxidizer Fuel
Z 0 1
T 293 K 293K
w 39.2 g.mol ! 46.07 g.mol~!
Composition Xmox  Ymox Xmp Yor
Oy 04 03265 CyH;0H | 1.0 1.0
COy | 0.6 0.6735

Table 4.1: Summary of SAFIR chemistry’s limit conditions.

was released after the present work was initiated [Leplat 11].

Thermochemical properties

As prescribed by the FPI formalism, chemical evolution in the composition space is
restricted to the two-dimensional manifold parameterized by mixture fraction Z and
progress of reaction Y.. Z is to vary between 0 and 1, and Y, between two values
that depend on Z: the cold mixture value Y., and the equilibrium value Y, .(Z).
Following Eq. (4.9), the normalized “progress variable” ¢ is then formed, so that (Z, ¢)
varies on the pair of intervals [0; 1] x [0; 1].

In the SAFIR experiment targeted by the present study, the fuel limit condition
Z =1 is pure gaseous ethanol (atomic formula CoH;OH); its boiling temperature
under 1atm is Tyoy = 351.5K, and latent heat of vaporization Ly = 837kJ.kg .
The oxidizer side of the domain, Z = 0, corresponds to the diluted oxygen co-
flow composition: in volume, 40% Oy and 60 % CO,. Both fluids are at 293 K.
Stoichiometry is in Zgz = 0.135, as may be estimated by considering the global
balance equation

yielding stoichiometric mole and mass ratios respectively equal to s, = 3x (14+1.5) =
7.5 and s = s, Wox/Wr ~ 6.39. The estimated stoichiometric mass fraction is
obtained from Zy = 1/(1 4 s) ~ 0.135. Table 4.1 summarizes the limit conditions
properties.

Equilibrium temperature and major species at equilibrium are plotted as a func-
tion of Z in Fig.4.6. Maximum temperature is obtained in Z = 0.15, at 2,429 K.
Ethanol is predicted by the chemical model to fully dissociate into methane and
carbon oxides at equilibrium.

Flamelet computations

The PREMIX software is used to compute a set of laminar premixed flamelets [Kee 85],
consisting of the spatial profiles of temperatures T'(z), mass fractions Y,,(z) and their
source terms wy,(z) for a number of mixture fractions. Starting from a computation
in stoichiometric conditions, where flammability is granted, the mixture fraction is
gradually decreased, and a stationary solution, close to its predecessor, is each time
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Figure 4.6: Equilibrium temperature and mass composition of ethanol-oxygen—carbon
dioxide mixtures in the SAFIR experimental conditions.
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Figure 4.7: Laminar burning flame velocity for the SAFIR ethanol-O2/60 % CO2 condi-
tions, plotted wvs. equivalence ratio (and compared with ethanol-air flame re-
sults of Fig.4.5) and mixture fraction.

computed. This is done until convergence cannot be achieved anymore. The same
procedure is then carried out on the fuel-rich side. This method can be expected to
give the approximative extent of the flammability domain, insofar as the numerical
software can be trusted to succeed in capturing physical flame behaviors. As a mat-
ter of fact, this is not completely certain: in Fig. 4.5, the laminar burning velocity
obtained from PREMIX is compared with that reported by Marinov’s own computa-
tions, for well-documented ethanol-air mixtures; a discrepancy between the outputs
is observed on the lean side; in addition, our software does not succeed in reaching
as low a minimal Z value as Marinov’s.

As far as the SAFIR conditions are concerned, the maximum flame speed pre-
dicted is 35 cm.s™!, at an equivalence ratio larger than one and even larger than that
in the ethanol-air case. Plots vs. both ¢ and Z are shown in Fig. 4.7.
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Y. expression (1) (2) (3) (4)
reverse behavior (x0.01 %) 1.16 0.20 0.17 0.005
Max o, CoH;OH | 217 (2.17)  1.69 (1.69) 1.44 (1.44) 1.44 (1.44)

CO, | 1054 (8.3) 1549 (11.3) 231 (15.9) 16.3 (16.3)
CO| 616 (5.6) 8.4 (8.4) 11.2 (11.2) 11 2 (11.2)
O, | 1628 (6.2) 2266 (2.2) 376 (2.9) 6)

(2.

(
(
6 (2.
(2.6)
(8
(

H,O | 1154 (7.9) 816 (2.1) 121 (2.8) 6
Hy | oo (105) oo (76) o (82) 0 (89)
OH | 53 (42) 39 (36) 56 (45) 58 (47)

Table 4.2: Evaluation criteria for four progress variable expressions: reverse behavior quan-
tifies bijectivity and the normalized gradients o,, the mass fraction resolution
in the Y. space. Values between parentheses are computed on a less stringent
basis, see explanations in the text body.

Choice of progress variable

From these flamelet data, a convenient expression for Y, can be determined. Several
candidates, all defined as linear combinations of chosen mass fractions, are examined:

(1) Y.=Yco, + Yoo

(2) Y.=Yco, + Yoo + Yo

(3) Ye=Yco, + Yco + Yi,0 — Yethanol

(4) Y. =Yco, + Yco + Yu,0 — Yethanol + Ya,
They are evaluated along two criteria. First, Y,.’s bijectivity against the spatial com-
ponent: Y.(x) must be as monotonic as possible. Second, the species mass fractions
profiles in the Y, space: they must be as smooth as possible, in practice for each

flamelet the normalized gradient
max, Y,,(z) — min, Y, (z)
4.39
'/( max, Y.(x) — min, Y,(x) ) ( )

must be as small as possible across the flamelet front.
Table 4.2 summarizes results obtained for the four alternatives. It gathers the
following criteria:

om ()

e the amount of “reverse behavior” through the flamelet, that is when Y.’s spatial
gradient sign is opposite to that of Y. (2max) — Ye(2min). In Table 4.2, the value
given is averaged over all computed flamelets, and indicated as a proportion of
the spatial flamelet extent.

e for species of interest (main reactants, products, and significant minor species,
like OH), the maximum of o, over all computed flamelets is given. Due to the
discretization of the Y, space, this value can reach extremely high values, often
at Y, domain’s ends. Therefore an alternative maximum, computed only on
points with contiguous Y, variation larger than one thousandth of the global
variation, is also displayed as a less stringent evaluation criterion.

As far as bijectivity is concerned, a significant improvement is obtained when
adding H,O, from expression (1) to expressions (2) and (3): while Y, is on the whole
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Figure 4.8: Progress variable profiles of expressions (2) and (4) vs. expression (3).

increasing through the flamelet, a small drop is observed ahead of the flame front
in the first case, which disappears with (2) and (3). The improvement from (3) to
(4), is less significant: Hs is a low concentration species, and has its effect at the two
ends of the flame, where Y. and species evolve very flatly, respectively from their cold
flow value and towards their equilibrium value. This is visible in Fig. 4.8 where the
Y. profiles, as given by expressions (2) and (4), are plotted wvs. expression (3).

The steepness measurement shows that for major species, all expressions lead
to overall acceptable gradients. The curves are generally similar for all expressions;
distinctions can be made in the detail. Relevant species profiles are plotted vs. Y,
(3) in Fig.4.9. Minor species are harder to capture, in particular Hy that displays a
very strong gradient in the composition space, on the fresh gases side, see Fig.4.9.
Gradients are generally smallest for expression (2) that involves H,O but not ethanol,
as may be seen on Table 4.2’s o,, values between parentheses; yet some points,
invisible in the general trend, display much higher gradients for (2) than for (3), as
indicated by the raw o, indicators.

For the present study expression (3) was chosen: Y, = Yco, + Yco+ Yi,0 — Yethanol-
Flamelet profiles of a selected set of species are plotted in Fig.4.9. Cold flow and
equilibrium values as a function of the mixture fraction are plotted in Fig. 4.10. Note
how Y., varies with Z and even becomes negative for Z > 0.4.

The systematic study presented above had not been carried out when the choice
was made, but it proved a satisfactory decision. In further studies, expression (4)
may be favored, in particular for very refined LES or DNS studies where the chemical
flame structure is not smoothed by high subgrid-scale Y, variance and when Y, has
therefore a stronger impact on the prediction.

Chemical database completion

The chemical database must then be completed outside of the laminar flamelet range.
Following a tried-and-tested approach [Vervisch 04, Domingo 08, Godel 09], chem-
istry is stored as inert mixing between the cold-flow condition and the equilibrium.
Source terms are set to zero.

A full chemical table, constructed on 159 Z points between 0 and 1 (59 flamelets +
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Figure 4.9: Selected set of species plotted wvs. the progress variable Y, for all the computed
laminar premixed flamelets.
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Figure 4.10: Limit condition values for the progress variable as a function of the mixture
fraction Z: cold flow Y. ((Z) and equilibrium Y. q(Z).

100 mixing profiles) and 360 Y, points, is finally available, that contains the following
fields:

Yn(Z,c)ym=1,...,Ns,, T(Zc), wy(Zc), wr(Zc). (4.40)

4.3.2 PCM-FPI lookup table

The SAFIR large-eddy simulations of this work, carried out with the YALES2 solver,
employ the PCM-FPI model as presented in Section 4.2.4. The chemical table Q(Z, ¢)
discussed in the previous section is filtered according to Eq. (4.37) and forms a lookup
table @ (Z , ¢, S7,5:), accessed from the simulation. In practice this table is an array
of values corresponding to a discrete set of points in each direction. Values in any
point are retrieved by multilinear interpolation. A mathematical description of the
process is given is Appendix C. The Z and ¢ directions are discretized into 50 points
each, while 10 points are used on the segregation directions. The resulting table
occupies about 23 megabytes.

As was introduced in Section 4.2.4 on the presumed pdf approach, PCM-FPI
requires the modeling of segregations from the resolved fields. Here the choice was
made to express the variances Z”? and ¢”? directly from the native variables’ gradi-
ents, rather than solving balance equations.

Two models are tested:

e A ‘gradient’ model, which relates linearly variance and the resolved gradient
norm:

1" = Kgaa AV (4.41)

This expression may be derived from assuming a bi-modal pdf for n [Vervisch 10].
A suggested value for Kgy,q is 0.18.
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e A ‘mixing’ model, introduced in [Veynante 06], suggesting a quadratic depen-
dency:

0?2 = KnixA?|V7)?, (4.42)

with the optimal K\, value determined to be 0.08 [Moureau 11b].

The validity of both expressions has been discussed recently by Moureau et al. using
high-resolution YALES2 computations of a turbulent premixed combustion prob-
lem, where the progress variable was resolved across the flame front [Moureau 11b].
It was shown, for the normalized progress variable ¢, that the behavior tends to-
wards linearity, hence the gradient model becomes more relevant, as the filter width
increases.

The segregation is obtained from the variance by normalization, following Eq. (4.29).

4.3.3 PCM-FPI in YALES2 two-phase flow simulation

Here we examine the extent of PCM’s relevance in a two-phase context, and suggest
possible adaptations of the formulation to the present case.

Enthalpy

The chemical tabulation here is based on gaseous ethanol at 293 K. However this is
an approximation, because it is in its liquid form that ethanol has this temperature.
Enthalpy must be supplied by the gaseous phase to enable vaporization, and as the
mixture fraction Z (ethanol mass fraction) increases, the enthalpy linearly decreases
with it with a slope Ly .

This variation may be considered negligible, as the latent heat of vaporization
is Ly ~ 38.5kJ.mol™!, while ethanol’s heat release (lower heating value) reaches
1.3MJ.mol™!; the error thus made amounts to a little less than 3 %. In stoichio-
metric proportions, the error is, in a first approximation, the order of Zy x 3 %;
considering a temperature increase of 2,000 K, this error corresponds to about 7K.
In configurations where the flame is less robust, vaporization may locally contribute
to flame extinction. In zones where local equivalence ratio reaches higher values,
this prediction is not negligible. However, the error is for the moment deemed small
enough to be neglected. Therefore, enthalpy has been assumed blind to vaporization
in the reactive-flow computation results shown in the next section.

However, it is possible to build a chemical lookup table with an additional sensible
enthalpy parameter, h,. It would require, if chemical reaction is activated, a five-
dimensional tabulation. Here, an illustration of the approach is given for a non-
reacting case, where only evaporation is accounted for.

A two-dimensional lookup table, containing density and temperature as functions
of mixture fraction and enthalpy,

p(Z,hs), T(Z, hs) (4.43)

is built from inert mixture computations between the two limit compositions Z = 0
and Z = 1 given in Table 4.1.
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Figure 4.11: Instantaneous mixture fraction and temperature fields obtained for a non-
reacting SAFIR spray simulation, injection type (B), where enthalpy drop
due to vaporization are taken into account.

In the flow solver, Z and TLS are solved from their balance equations. In particular
the evaporation source terms S); and Sg are computed from particle-to-grid inter-
polations discussed in Section 2.2.2. Given the close to linear behavior of mixing,
subgrid-scale fluctuations may be neglected, so that filtered density and temperature
fields are computed from the aforementioned chemical table

o~ p(Z,hy), T~T(Zh). (4.44)

Obtained a short instant after starting the injection (3.3 ms), the filtered mixture
fraction (solved) and filtered temperature (looked up in the table) fields are shown.
While, without chemical heat release, evaporation remains limited, with a maximum
Z value about .04, the temperature drop is consistent with the mixture fraction field.
It reaches about 4 K in the presented case.

Saturation mixture fraction

The mixture fraction field in a spray flame as the one addressed here is expected to
differ from that in a purely gaseous flow, where it is purely driven by gaseous mixing.
In the present context where all fuel is initially in condensed form, the gaseous fuel
reactant (non-zero Z) is entirely the result of evaporation. Therefore, properties of
the mixture fraction field should be coupled as closely as possible with the spray.
This has an impact on the modeled sgs variance of Z, as was tackled by Pera et al.
who proposed a balance equation for Z, in an LES of an evaporating spray [Pera 06].
Here, variances are only estimated from the resolved field.

At another level, the specificity of the evaporation-related Z field potentially
undermines the PCM-FPI formulation validity. At droplet temperatures lower than
the boiling point, the fuel partial pressure in the droplet vicinity may never surpass
the saturation value observed at the surface, defined in Eq. (1.40) and recalled here:

WeLly /1 1
T) = Dre - = . 4.4
pe(T) = pusesp (0 (- 1) (1.45)

This puts a limit on the maximum fuel mass fraction that can be found in the gas
phase, and that depends on the surrounding species composition. Expressed in terms
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Figure 4.12: Saturation ethanol mole fraction Xgu: vs. temperature.

of parameter Z, it is referred to as the saturation mixture fraction and denoted by
Zsat- As an illustration, the maximum mole fraction Xz = pg/p is plotted in Fig. 4.12
as a function of temperature. N

The way it is defined in Eq. (4.37), the expression for the filtered fields @) is
therefore not physical, for the integration is carried out on the entire [0;1] interval
and the integrand may thus include points from beyond the maximum Zg,; < 1.

This approach may however be deemed an acceptable approximation for two
reasons: first, because a low Z variance is expected, making the proportion of the
distribution above Zg,; not likely significant; second, because the boiling temperature
is quite low compared with that of the burnt gases, expected to reach more than
2,000 K (see Fig. 4.6). Thus the region in which Eq. (4.37) may not be valid is confined
to the cold edge of the burning zone, and only to where the mixture fraction gradients
have started to rise from zero because of the evaporation. Yet on the other hand,
this zone is where the chemical reaction is triggered, and the flame structure may be
sensitive to the way combustion occurs there. In the present work, this question was
not further explored.

Only an improvement suggestion for future work can be given here. It was in-
troduced in [Reveillon 00] and used in some subsequent works, like [Apte 09b]. The
idea. is to integrate not on [0; 1] but on [0; Zu], where the upper value is interpolated

locally from the surrounding droplets’ individual Zs(gft) :

Zsat - <Zsat> . (446)
In a tabulated formalism, Zsat becomes an additional parameter, adding a dimension
to the lookup table. The filtered quantities read (compare with Eq. (4.37)):
Zsat 1
Q(Z,¢,57,5¢, Zsa) = Q(Z,¢c) 3" (Z) Pzs.(c)dZde (4.47)

7,87, Zs:
7—0 =0 Z4sat

where ' the beta-function attached to the Z dimension is properly normalized from
the [0; 1]-defined 3, Eq. (4.27).
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4.4 Simulation results

4.4.1 (C) Direct injection at 6 mm
Initial attempt

It was seen in the previous chapter that injection approach (B) led to relevant spray
statistics upstream of 20 mm, where the flame is observed to be stabilized; droplets are
injected from both the spray nozzle position and the 30° cone, and with the addition
of large droplets unaccounted for in the measurements (details in Section 3.3.4). It
is thus natural to try to use it as the baseline configuration for reacting simulations.

Starting from a non-reacting case, a pocket of gases is artificially ignited by set-
ting the progress variable Y. to its equilibrium value Y,.(Z). It is a cylindrical
volume, centered on the axis, of diameter 2mm, and extending over the x inter-
val [7.0; 9.0l mm3. A spark duration of 5ms was found close to the minimum re-
quirement for ignition to proceed and for a sustained flame to develop. This is an
approach commonly used for reproducing forced ignition in tabulated chemistry sim-
ulations [Triantafyllidis 09, Subramanian 10b], and it matches the actual ignition
procedure, where an igniter device must be introduced within the spray and fired for
several seconds.

All runs in this section are performed with Z and ¢ segregations estimated from
the ‘gradient’ variance model, with purposely large constant values Kg, = 0.36 and
Kg, = 0.36, to prevent risks of unresolvedness.

A flame was able to develop from this procedure, and to stabilize itself downstream
of the observed liquid sheet’s tip in x = 6 mm. The instantaneous chemical source
term field wy, is shown in Fig.4.13. Yet, its structure does not match to experimental
observations. A source term pocket is visible, centered on the symmetry axis at a
distance of 30 mm from the nozzle. In actuality, chemical reaction is expected to
be located along the circle where the flame tip is observed. Instantaneous mixture
fraction and its source term are also shown. Consistently, the intense evaporation
occurring on the centerline is visible, as is the fuel-rich zone in its wake.

This result seems to proceed from the same effect as that observed in Chap-
ter 3: small droplet dispersion is not correctly predicted, leading to their excessive
concentration on the centerline. When combustion is activated, this central flame
appears. The mean droplet diameter (d,), shown in Fig.4.14, is less than 25 pm on
the centerline.

Approach (C1): direct injection from the z = 6 mm plane

To confirm this result, an additional test is carried out: droplets are injected directly
from the z = 6 mm plane, with the measured spray statistics. This was the initial
objective of spray measurements: to serve as limit conditions. And it enables us to
rule out the prediction errors due to the modeled nozzle and spray-cone injection.
The disk x = 6 mm, » < 6 mm is divided into V. annuli, matching the intersections
of sub-cones C; with the plane = 6 mm. The procedure is similar to approach (A)

3Another geometry was tested, where the spark was toroidal around the z = 8mm, r = 2 x
tan 30 © circle; it led to the same eventual flame structure.
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Figure 4.13: Instantaneous fields of chemical source term, mixture fraction and its source

term, showing the flame structure when the spray injection follows approach
(B). Mixture fraction isoline Z = Z.

Figure 4.14: Mean instantaneous droplet diameter, showing the flame structure when the
spray injection follows approach (B).
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Figure 4.15: Instantaneous mixture fraction source term, showing the flame structure when
spray injection is carried out from the 6-mm plane.

where all droplets were injected from the nozzle (Section 3.3.2), except injection now
starts from these annuli. Injection is carried out homogeneously on each annulus®.
Experimentally-observed diameter distributions and velocity mean and averages are
imposed without pre-treatment on the droplets.

With this approach only, the zone upstream of 6 mm would be void of droplets.
To maintain the same flow pattern there as before, a spray injection following ap-
proach (B) is still performed, but with droplets that are flagged into a dummy particle
set, and numerically deleted as soon as they cross the 6-mm plane.

The result is not different from previously: small droplets gather along the center-
line and are in sufficient concentration for a dominant reaction zone to develop there,
unlike what is observed in the experiment. The mixture fraction source term, shown
for the present case in Fig.4.15, features the same structure as with approach (B).

Approach (C2): ad hoc injection from the x = 6 mm plane

The unsatisfactory flame structures obtained above demonstrate that spray modeling
on which the simulations of this work are based is yet insufficient to predict dispersion.
As discussed in Section 3.2.1, turbulence in the present problem possesses peculiar
properties that are far from the model’s expected validity range. Further work on
the subgrid-scale gas—spray coupling will be beneficial to prediction accuracy.

However, it is still possible to study the main traits of the combustion model in
the context of two-phase combustion. In particular, the constants in the segregation
models, the droplet weighting properties and the mesh refinement are three aspects
that can be explored, even if spray statistics consistent with the experiment and
realistic flame structure have appeared difficult to be obtained simultaneously.

To that end, droplets smaller than 20 pm are removed from the injection distribu-
tion. This ad hoc injection, referred to as (C2), is designed to yield a realistic flame
structure that matches, on the whole, to the experimental observations of a lifted
flame stabilized along a circle, at a distance 20 mm from the nozzle.

4i.e. the injection point’s radius and azimuth and the cone angle of the injection direction are

determined according to uniform random laws.
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The results are shown in Fig.4.16. The fuel-rich zone close to the centerline has
disappeared; the experimental flame anchoring is recovered, if still a little downstream
of the expected 20 mm. In the next sections, the effect of model parameters on this
structure are examined; even better predictions are obtained.

It may be possible to use a smaller cutting diameter, the role of this parameter
has not been examined thoroughly. The purpose here was to obtain a relevant flame
structure. It may be that 10 or 15 um are large enough to prevent the appearance
of a central flame. At any rate the prior study shows that dispersion prediction will
require improvement, and we now turn our attention to the flame’s structure and
response to combustion model parameters.

4.4.2 Variance models

Using the injection approach (C2) discussed above, flame computations are run long
enough for the simulated fields to stabilize. For both mixture fraction and progress
variable unmixedness, the two variance models — ‘gradient’ and ‘mixing’ — presented
in Section 4.3.2 are tested.

The flame structure, i.e. its position and shape, are significantly impacted by
the variance model. In a few words, the mixing model predicts a flame shape that
seems to match well to the experimental observations, but with the gradient model
the flame has the correct lift-off height. Details are given in the analysis and figures
below.

Chemical reaction and evaporation. The chemical source term, evaporation
and OH species mass fraction are shown in Fig.4.17, with markers for the » =10,
20 and 30 mm distances. With the gradient model, the flame anchors at a distance
x = 20mm, conform to the experiment; with the mixing model, it stabilizes farther
downstream, about 30 mm from the nozzle. The angular opening of the flame tips is
also larger with the mixing model than with the gradient model.

The latter predicts a more intense chemical reaction, with an outer flame front
dominant over the inner flame, which is thicker but short. With the mixing model,
the flame front is thin and much longer on the inside than on the outside. Evaporation
intensity is comparable between the two models, but its structure follows that of the
flame: it can be seen that evaporation starts along the reaction line, as droplets enter
the high temperature area, and fades downstream as droplets disappear. The mixing
model leads to much higher OH concentrations (.07) than those with the gradient
model (.03). The maximum OH mass fractions are observed on the flame fronts least
intensely reacting: the inner side with the gradient model, the outer side with the
mixing model.

Resulting fields: Z , f, ?CQHE)OH. Resolved mixture fraction, temperature and
ethanol mass fraction fields are shown in Fig.4.18. Consistently with the observa-
tions on the evaporation and reaction intensity, the mixture fraction reaches similar
maximum values (about 0.6-0.7) for both variance models (slightly higher for the
gradient model), but the ethanol mass fraction is lower with the gradient model,
which predicts stronger chemical source terms. The main difference in terms of flame
shape is visible on the ethanol mass fraction: while a single line of fuel is visible for
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Figure 4.16: Injection approach (C2): removing smaller droplets from the injection distri-
butions suppresses the central fuel-rich zone.
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Figure 4.17: From top to bottom, time-averaged chemical source term fuyc, instantaneous
mixture fraction source term Sj7, and time-averaged OH mass fraction ?OH,
indicator of the flame position. White lines in the top image indicate distances
to nozzle x = 10, 20 and 30 mm.
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the gradient model, the mixing model leads to two branches: a high-concentration
thick one, on the outer side, corresponding to the slow-evaporation (Z source term)
and low-reactivity outer branch; and a weaker one, on the inside, where 57@2H50H does
not surpass .03, corresponding to the inner evaporation branch, that can be seen be
distorted by the turbulent structures of the flow.

One may advance that with the mixing model, the outer flame front is a diffusion
flame, and the inner front is in all likelihood a premixed front, while with the gradient
model only two diffusion fronts are predicted. The latter structure seems to be due
to the total evaporation of fuel simultaneously with reaction at the base of the flame.
Premixed combustion with the mixing model comes from continued evaporation along
the low-intensity inner reaction zone. Scalar unmixedness fields are helpful markers
of these two behaviors: the mixture fraction segregation Sy is virtually zero along
the inner branch with the mixing model, while with the gradient model it is non-
zero everywhere around the Z > 0 area. Also, the reaction progress segregation .S,
features a distinct non-zero along the inner flame branch predicted by the mixing
model.

To further this flame structure analysis, it should prove interesting, in future
work, to compute the flame index as defined in [Yamashita 96] and to conduct a
similar study as that by Domingo et al. [Domingo 05b].

Droplet statistics are now examined. The time-averaged local density ({w}),
mean diameter (d,) and mean temperature (7,), as defined in Section 2.4.1, are shown
in Fig. 4.20, superposed with the mixture fraction and ethanol mass fraction isolines.
The drop in droplet density due to evaporation and corresponding to a mixture
fraction increase, is illustrated by the fact that ({w}) is virtually zero within the zone
bounded by the stoichiometric line. The flame structure impacts the spray properties.
The gradient-model flame features relatively high temperatures along the centerline,
and sees most droplets disappear beyond 50 mm from the nozzle. The remaining ones
see their temperature increase slowly up to Thy. The mixing-model flame allows a
large number of droplets to carry on their way along the centerline, with only a
slow diameter decrease, because temperature remains low on a wide central corridor.
Behind the flame front, in the fuel-rich burnt-gas zone, where gaseous ethanol is in
excess (as delimited by the white lines), gas temperature remains relatively mild,
and the few droplets that have survived the flame front crossing see their diameter
decrease more slowly than within the flame; their temperature is lower than the
boiling point. Further study of these patterns will be needed, keeping in mind their
dependency to all modeling steps, that are critical at many levels given the strong
interrelations between spray properties, evaporation and reaction.

Instantaneous OH fields. Finally, a general comparison between the simulated
flame structure and the experimental observations is conducted in Fig.4.21. Instan-
taneous OH mass fraction is shown for both variance model cases, and compared
with a LIF OH-concentration picture taken in a case slightly different from the tar-
get configuration: dilution is 40 % instead of 60 %, but the inset diameter, 95 mm, is
the same. There is a strong resemblance with the OH field predicted with the mixing
model: the inner flame branch is thick and responsive to turbulent vortices; the outer
flame is thin and rather straight. By contrast, the inner flame remains a consistent
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Gradient model Mixing model

|

Figure 4.18: From top to bottom, instantaneous fields of mixture fraction Z , temperature
T and ethanol mass fraction Yc,m,0mH.
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Gradient model Mixing model

Figure 4.19: Top: mixture fraction segregation Syz; bottom: normalized reaction progress
segregation S..
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Gradient model Mixing model

<d_p> <d_p>
0,0001 T 0.0001

Figure 4.20: Time-averaged particle density ({w}), local mean diameter (d,) and local
mean temperature (T,. Black isolines: stoichiometric mass fraction Z = Zg.

White isolines delimit the zone where gaseous ethanol is present: ?CQHSOH =
0.02.
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Figure 4.21: Top: Instantaneous OH mass fraction fields; bottom: experimental LIF cap-
ture of OH, on the 40 % CO2 dilution, 95-mm inset diameter case (simulated
case is at 60 % dilution).

front, if wrinkled, with the gradient model.

Gas velocity. As expected, the flame has an impact on the velocity field. Mean
and rms gas velocity components are plotted and compared with experimental mea-
surements in Figs. 4.22 and 4.23. First of all, it may be seen that in the region close
to nozzle, the velocity means are better captured than with the injection approach
(B) examined in the previous chapter. The peak axial velocity is higher here than
earlier: this is probably due to the deletion of smaller droplets in favor of larger ones,
that leads to a higher liquid-to-gas momentum transfer.

Second, the flow distortion due to the flame is conform to experimental predic-
tions: this is most visible for the gradient model case, for which the flame lift-off
height is correctly recovered. The axial component’s decrease as r — 0 is actually
captured, which was not the case in the cold flow simulations, see Fig.3.26. In the
light of the flame position, this is due to thermal expansion when the flow crosses
the flame, whose angle leads to curving the streamlines towards the centerline. In
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Figure 4.22: Mean and rms velocity profiles along radial profiles at different distances x
from the nozzle, for a flame simulated with the gradient model for segre-
gations. Blue line: simulation (full: u,, dashed: w,); circles: experimental
measurements.

addition, correct velocity rms levels are also captured. As for the mixing model, no
such trend is visible but this is due to the flame being positioned too far downstream.

4.4.3 Highly resolved simulations

As a tentative step towards more detailed study, preliminary simulations of the
SAFIR flame were run at one level of mesh refinement, leading to mesh #3, with cell
dimensions reduced by a factor 2. This leads to a 215-million-tetrahedron mesh. The
spray computation has been refined as well: numerical droplet weighting is set to one
for all parcels. The steady-state number of droplets reaches 107,000. Computations
were carried out using, for variances, the gradient model.

Instantaneous mixture fraction, temperature fields are shown in Fig.4.24, along
with a view of the resolved progress variable at the flame tips, and the mesh wireframe
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Figure 4.23: Mean and rms velocity profiles along radial profiles at different distances z
from the nozzle, for a flame simulated with the mixing model for segre-
gations. Blue line: simulation (full: u,, dashed: w,); circles: experimental

measurements.
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Figure 4.24: Instantaneous mixture fraction A , temperature T and progress variable Y.
flame fields obtained on the highly-resolved, 215m-cell mesh #3, with the
gradient model. The mesh’s level of resolution is shown in the bottom view.

apparent. It can be seen that the filtered flame front is resolved with 6-7 points
through its thickness. The flame structure seems to be slightly impacted by the
mesh refinement, in particular the inner flame region where less turbulent structures
appear to impact the mixture fraction and temperature fields.

A brief summary of computation efficiency is given in Table 4.3, comparing two
runs with the reference mesh, with two levels of numerical droplet weighting, and the
refined run.

4.4.4 Validation of the time advancement algorithm

The time advancement algorithm, presented in Section 2.2.3, is based on a particle
time sub-step computed as the minimum of characteristic timescales linked to mo-
mentum, heat and mass transfer. A validation test is carried out here to ensure that
this sub-step is sufficiently small. Two runs in identical conditions (large segregation
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1 2 3

Number of cells | 27TM 2T 215M

Droplet weighting (large—small) | 4-20 1-5 1-1

Number of processors | 1024 1024 8192

Number of numerical droplets | 16,300 47,600 107,000

Time step (ps) | 50. 48. 10.

Reduced efficiency: time/nodes/stepsxprocs (ms) | 7.1 8.8 7.7
% time spent on Lagrangian solver | 72% 76 % 59 %

Table 4.3: Comparison between runs conducted at different Eulerian and Lagrangian reso-
lutions. For all computations, CFL=1.5, Fourier number Fo=0.2.

model constants, K, = 0.36) are compared, one using the standard sub-step, and
another where it is divided by two.

Gas-phase and spray-phase properties are shown in Figs.4.25 and 4.26. Slight
differences are visible, but are small enough not to significantly impact the flame and
spray structures. This validates the time advancement algorithm.

4.5 Conclusions

A turbulent ethanol spray flame has been simulated with detailed flamelet chemistry
on an unstructured mesh reaching a close-to-250-pm resolution in the flame tip. The
PCM-FPI approach proves to yield satisfactory results, used with two scale-similarity
variance models: a ‘gradient’ model giving the correct lift-off height and a 'mixing’
model that leads to a flame structure matching very well with the experimental
observations.

A number of points can be improved in this simulation, in addition to a better
accounting of spray atomization and turbulent dispersion, already discussed in Chap-
ter 3, which will be paramount to enhancing the predictions’ quality. It should be
possible to include the enthalpy drop caused by evaporation, although with a limited
impact on the results. A treatment of the sgs fluctuations of mixture fraction that
accounts for the saturation value is very feasible, at the cost of one additional di-
mension in the lookup table. Further than examining spray statistics and the flame
structure, bulk fumes properties could also be compared with the available exper-
iment data. Flamelet chemistry has proven effective on this point in earlier works
and should accordingly behave well in the present simulation.

Given the large number of configurations studied in the SAFIR experiment and
the generally successful output of the present simulations, this study appears as an
initiating work that lays the basis for a potent exploration of the impact of oxidizer
dilution and co-flow velocity on flame properties, such as lift-off height, structure,
maybe pollutant emissions too.

A second step will be to tackle the cases where the inner recirculation of burnt
gases within the combustion chamber impacts the flame structure. Accounting for
enthalpy losses through radiative transfer will then be a necessity if relevant results
are to be expected. This will require the insertion of enthalpy as an additional
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Figure 4.25: Comparison of gas-phase properties of two runs in identical conditions except
apt = 1 (left) and aay = 0.5 (right). From top to bottom: mean velocity
magnitude, isolines 1.0, 4.5, 8.0, 11.5, 15. m.s~!; rms velocity magnitude, iso-
lines 0.1, 0.5, 1.0, 2.0 m.s~'; instantaneous mixture fraction, regular isolines
from 0.05 to 0.6.
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Figure 4.26: Comparison of liquid phase properties of two runs in identical conditions ex-

cept anr = 1 (left) and ap; = 0.5 (right). From top to bottom: mean
droplet temperature, isolines of regularly-spaced values from 280 to 350 K;
mean droplet diameter, isolines regular from 20 to 90 pm.
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parameter in the chemical description. The PCM-FPI formalism is not designed
to be naturally extended to a third parameter. Subgrid-scale enthalpy fluctuations
could be assumed to be negligible. As an alternative, the FCCT approach, described
in Part III, can offer the framework to account for non-trivial sgs distribution of such
an additional parameter.
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Chapter 5

Mixing-time history effects in LES
of non-premixed turbulent
combustion

The time history of mixing is known to play a crucial and non-trivial role in non-
premixed turbulent combustion. The idea behind the Flow-Controlled Chemistry
Tabulation (FCCT) approach is to account for the mixing history in a way that will
formally enable multiple-parameterization.

After an introduction, Eulerian balance equations are derived in Section 2 for
both a flow residence time and a characteristic time of the mixing which the particles
gathered in a fluid element have been subjected to in their flow histories. These
equations are analyzed and solved in a Large-Eddy Simulation (LES) context for a
fuel jet mixing with an oxidizer coflow. Typical responses of filtered mixture frac-
tion ws. flow residence time are highlighted. In Section 3, the FCCT tabulation is
devised: the effects of unresolved fluctuations of thermochemical variables in LES
are simulated, combining partially-stirred reactors with tabulated chemistry. The
reactor evolutions are organized to mimick flow engulfment and micro-mixing, so
as to reproduce the observed filtered mixture fraction ws. residence time response.
This allows for dynamically building sub-grid scale joint probability density func-
tions, and thereby the sub-filter response of the non-premixed flames, according to
four control parameters: the filtered mixture fraction, the progress of reaction, the
flow residence time and a mixing time. Finally, LES of the Cabra et al. [Cabra 05]
fuel-jet lifted-flame developing in a vitiated oxidizer environment is performed and
results are compared against measurements.

This chapter is mainly a reproduction of a journal publication [Enjalbert 11]. It
is self-consistent and accepts an independent reading. However, some points may
already have been addressed in earlier sections of this manuscript and they are then
quoted between parentheses. Additional paragraphs have been inserted that are not
included in the publication, but that provide additional information, either on the
theory of the FCCT formalism, or on the study of the simulation results.
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5.1 Introduction

The time history of mixing is usually considered as central to turbulent flames, where
large-scale unsteady flow motion leads to an imperfect mixing of the reactants, while
micro-scale molecular diffusion brings chemical species in contact within thin reaction
zones [Bray 66]. In this context, Large-Eddy Simulation (LES) has flourished to sim-
ulate the large-scale mixing, while smallest scales are modeled [Moin 02]. However,
LES must address the turbulent structures at a resolution fine enough to allow for a
reliable prediction of the subgrid-scale (SGS) mixing dynamics [Pope 04], specifically
when scalar fields are concerned [Vervisch 10].

Accounting for time history effects in the evaluation of the SGS statistics, while
dealing with the double challenge of accuracy and computational cost, is not straight-
forward. A large set of methods tackle this issue in different ways. The trans-
ported probability density function (pdf) and transported mass-weighted pdf meth-
ods [Jaberi 99] are formulated precisely to follow the individual history of fluid el-
ements. In their Lagrangian formulation, the evolution of stochastic particles are
subjected to chemical sources and turbulent transport, the interaction between mix-
ing and chemistry is reproduced throughout the evolution of particles [Sheikhi 05,
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Yaldizli 10]. It was shown that equivalent averaged results may be obtained with
an Eulerian formulation, by the computation of several stochastic fields [Valino 98,
Raman 06, Jones 10d]. Obviously, the numerical accuracy of these methods is di-
rectly sensitive to the number of stochastic particles, or fields, used in the computa-
tions.

Fully prescribing the SGS statistics with presumed pdfs oversimplifies the history
of fluid parcels. The Presumed Conditional Moments (PCM) formulation [Vervisch 04,
Domingo 08, Subramanian 10b, Michel 08] is such an approach; it relies on estimat-
ing low order statistical properties of the distributions, like averages and variances.
The pdfs are then assumed to take a specific shape, parameterized by these quan-
tities. In the presumed pdf approach, the history of the flow is only taken into
account through its effect on these statistical properties and it is the local result of
history that is described, not its dynamics. Complex correlations between chemical
and mixture parameters cannot be accounted for, and strong hypotheses must often
be framed, such as statistical independence between mixture fraction and progress
of reaction. Moreover, the transport of statistical higher moments, like scalar vari-
ances, is subject to inaccuracies as soon as the filter size — in most cases the mesh
— is not sufficiently refined [Vervisch 10]. On the other hand, the filtered flame re-
sponse may be tabulated with a reduced number of controlling parameters. A lookup
table, computed prior to the LES, is then accessed from the simulation, making the
additional cost due to chemistry marginal. Methods based on direct computations of
conditional means, as Conditional Moment Closure (CMC), have also being explored
in the literature [Klimenko 99, Cha 01, Kronenburg 04, Kronenburg 08].

The work presented in this paper proposes an alternative parameterization of the
flow for non-premixed jet flames, which enables a tabulation of turbulent chemistry,
but avoids presuming joint pdfs. The idea is to describe not the results of low mixing
history, but properties of this history itself. There have been previous attempts to
enable the description of history through conditioning scalars: age-related markers
were introduced in premixed flames [Bilger 04, Grout 07] and a flamelet lifetime
was used for an interactive computation of unsteady diffusion flamelets [Pitsch 98].
In a tabulated chemistry approach for RANS [Kolaitis 06], a residence time was
also formerly introduced as a conditioning variable to replace the reaction progress
variable.

The present approach, labeled “Flow-Controlled Chemistry Tabulation” (FCCT),
consists of both a novel formalism for parameterizing chemistry and a tabulation
technique based on Monte-Carlo simulations of a Partially-Stirred Reactor (PaSR).
A flow chart in Fig. 5.1 schematizes the method.

e A multi-scale approach is followed: in the LES, in addition to usual continuity,
momentum and energy budgets, four quantities are resolved: Z, the filtered
mixture fraction; Y., the progress of reaction used to tabulated detailed chem-
istry; the filtered “residence time” T, defined here as the time duration over
which mixing has been acting on a fluid particle and the “mixing time” 7y, an
evaluation of the characteristic turbulent mixing time along the fluid particle
trajectory. Two of these resolved fields (Tyes, Z) are used to find a distribution
of mixture fraction wvs. residence time which is representative of the unsteady
mixing dynamics.
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e Aside from the flow solution, time sequences of a stochastic PaSR are consid-
ered under the mixing constraint given by the Z wvs. T, distribution, which
is fulfilled by monitoring reactor injection. In this PaSR, at the microscale
level, the balance between molecular diffusion and chemistry is described by
a flamelet hypothesis [Gicquel 99, van Oijen 00]; chemistry is thus retrieved
from the mixture fraction Z and the progress of reaction Y,.. At an intermedi-
ate scale, which is still at the subgrid level in the LES, these flamelets interact
with turbulence according to a mixing closure in the stochastic reactor and
with the mixing time scale 7.

e In the end, a four-dimensional lookup table (Z , 376, Tres, Tmix) 1S built, resulting
from a treatment of Monte-Carlo simulations of the PaSR, and supplies the
unclosed Eulerian terms in the LES. The coupling between this table and LES
is similar to presumed pdf approaches with tabulated chemistry, however here
the sub-filter joint pdf is not imposed a specific shape but built according to
the flow mixing dynamics.

In a first section, the mentioned flow timescales are introduced and their role in
describing the turbulent mixing properties is analyzed. The FCCT method is then
presented in detail, specifications of the PaSR model are given, and the table gen-
eration technique is described. A last part illustrates the method’s implementation
in the LES flow solver; a simulation of a lifted methane-air jet flame in a vitiated
co-flow is carried out and results are compared with experiments [Cabra 05], after
studying the output table properties.

5.2 Eulerian description of mixing-time history

5.2.1 Residence time

Let a scalar ¢ be defined by the Lagrangian equation

d¢ _

=5 (5.1)

It may be seen as the property of a single, identifiable particle, and measures the
accumulation of the source field S on its trajectory T : t — z(t); for an initial
value ¢g, ¢ = ¢g + fT S(z(t),t)dt. Considering now ¢(z,t) as an Eulerian field,
defined on any test volume of the flow as its ensemble average value on the enclosed
particles, it satisfies the following conservation equation:

%0 L Y- (pub) = Y- (/DY) + S (52)

Interactions with particles from surrounding volumes imply the existence of the dif-

fusive term in Eq. (5.2) [Nauman 81], where D is the molecular diffusivity, assumed
to be the same for all species.

With this result, some information on flow history can be retrieved. A first,

widely used application [Bilger 04, Nauman 81] is the evaluation of the local residence
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time T [Ghirelli 04], which is the time a particle has spent in the computational
domain since its entry. 7 is a scalar of the kind defined in Eq. (5.1), with S constant
and uniform equal to unity: 7. = fT dt. Therefore, the residence time field obeys

ap7—I‘ES
ot

Notice that this residence time is an Fulerian quantity, hence the average over fluid
particles within a flow volume.

+V - (puties) = V- (DY Tres) + - (5.3)

5.2.2 Trajectory-averaged mixing time

The trajectory average of any quantity Q is defined for each particle as

Jr Q). t)dt Q'

— 4
(@) = QN T 5.1
where the integral Q' = [~ Q( t)dt satisfies Eq. (5.1), with S = Q.

The objective of this Work is to address well resolved LES (i.e. simulations where
more than 80 % of the turbulent kinetic energy is resolved); then, the Eulerian distri-
bution of the residence time 7,5 features fluctuations around the space-filtered value
that are relatively small. This is justified by the fact that residence time is mostly
large-scale-controlled, thereby unresolved contributions to the residence time elapsed
along a particular trajectory remain small compared to the space-filtered value. Con-
sequently, the Eulerian field of (@), may be computed by making, for the filtering
operation denoted by =, the approximation Q'/7es ~ Q! / Tres, and solving QT and Te
from the filtered Egs. (5.2) and (5.3). This approach can be applied as an instrument
to characterize the turbulence history of a fluid element in the ﬂow

To account for the SGS mixing effect, a local mixing timescale 7.}, is introduced.
It characterizes the intensity of turbulence in the unresolved inertial and viscous
ranges and its subgrid-variance reduction effect [Dopazo 79, Pera 06, Klimenko 07]:

A2

o= 5.5

where A is the LES filter size and Dy ~ A2(§ij§¢j)1/2 the modeled SGS turbulent
diffusivity, with S = 0.5(V u + Y'u). Because of the expected level of spatial resolu-
tion, locations exist where Dy is not large and the molecular diffusivity D is added to
compute 7.5, in Eq. (5.5). Along a flow trajectory, the variance v of a passive scalar
varies, due to molecular mixing, according to [Dopazo 79]:

do(t)  w(t)
dt _TI’;iX ’ (5.6)

and the linear role of 1/7. may therefore be integrated. The average mixing level
that the particles forming a fluid element have been subjected to in their low histories
may thus be measured by

1 Tres Tres

Tmix = =5 >
<1/ m1x>T fT 1/ mlx @

(5.7)
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where © = (1/77, ) satisfies

00O
T+ Y (pu0) = V- (pDYO) + . (5.8)

The FCCT closure discussed in this paper is grounded on the two governing re-
lations (5.3) and (5.8). As discussed in the literature [Darabiha 92, Im 99|, non-
premixed flames may be more sensitive to the time history of strain and mixing rates
than to their local and instantaneous values. For instance, a diffusion and reactive
layer subjected to a strain-rate level above the steady quenching value, may not be
quenched if this high mixing rate is imposed for a short duration of time. The time
history of micro-mixing calibrated through the variable © can thus be an interesting
ingredient for turbulent diffusion flame modeling.

5.2.3 Higher-order history distribution moments

This section is not included in the publication and is not needed for an understanding
of the FCCT approach.

The concept presented above of trajectory-averaged scalars can be generalized to
achieve a higher-order description of the scalar history along the trajectory.

High-order statistical moments.

The simple computation of the integral (Q*)!, satisfying Eq. (5.1) with S = Q*, gives
access to higher-order statistical properties of the scalar history. For example, the
trajectory variance may be evaluated as
(@) - (@)°
Tres
In practice, the accuracy of the computation is limited by the numerical error of
the solver, and remains subjected to the approximation (Q*)!/Tes >~ (Q%)'/Tres-

Interval tracing

Another approach consists of quantifying directly how frequently, along the trajec-
tory, certain values have been taken by (). Let the scalar’s expected variation range
be divided into a number N; of intervals, Iy,ls,...,Iy,. One may assume, for the
present discussion, that they cover the entire variation range:

Ny

Vt, vz, Qz,t)e | JI;. (5.10)

Jj=1

The idea is to assess the amount of time, along the trajectory, spent by ) within

each of the intervals. The durations 7;, j = 1,..., Ny, are introduced, each of them
satisfying

opr;

5 T Y (pur;) =V - (pDV) + px5(Q) (5.11)
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where the source term x; () is a mask function:

Q) = { Lfeel;, (5.12)

0 else.

With the hypothesis (5.10), the 7;’s sum up to the total residence time:

Ny
Z Tj = Tres - (5.13)
j=1

A histogram distribution p;,j = 1,..., Ny of the temporal history of ) along the
fluid particle trajectory is then available in each point of the solved flow:

Ny
T.
p]:TJ .Y pi=1, (5.14)
res i—1
as illustrated in the schematic of Fig. 5.2.
Q(xz(t), 1) Q
Iy
IS ‘ b3 = 7_3/7_res
I
nl
Tres t P
Tres

Figure 5.2: Schematic illustration of the construction of a histogram temporal history dis-
tribution.

5.2.4 Flow configuration and numerics

All simulations in this study are performed with the structured-mesh SiTCom solver,
presented in Part I. Artificial turbulence of the inflow is generated according to
the Klein et al. approach [Klein 03]. Boundary conditions are determined following
the 3D-NSCBC formalism [Lodato 08b], including in the BCs a specific heat ra-
tio v computed from the local gas composition. The SGS turbulent fluxes are mod-
eled using the Wall-Adapting Local Eddy-viscosity (WALE) closure (Section 1.3.2).
The laminar viscosity is computed from Sutherland’s law; the laminar and tur-
bulent Prandtl numbers are set to 0.72 and 0.90. The geometry and inlet flows
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match those of the Cabra et al. [Cabra 05| methane-air experiment, which has
been the subject of numerous modeling works [Domingo 08, Michel 08, Gordon 07,
Gkagkas 07, Navarro-Martinez 09, Thme 10]. The jet inlet diameter is D = 4.57 mm,
with a bulk velocity ujer = 100m.s™!, and a uniform co-flow velocity of magnitude
Use = 5.4m.s™t. The co-flow carries the oxidizer, a mixture of mainly air and HyO
at Ty = 1,350 K; the fuel, issuing through the central inlet, is a rich mixture of
air and methane at 77 = 320 K. In this work, various meshes are considered from
1,950,000 up to 5,700,000 nodes; more details concerning LES of this flame under
similar conditions may be found in [Domingo 08, Godel 09].

5.2.5 (Tmixs Tres) Properties

In non-premixed flames, the regions of interest are the zones where the mixing be-
tween the inlet streams takes place, which can be characterized by Z(1 — Z) # 0,
where Z is the mixture fraction (a passive scalar equal to unity in pure fuel and van-
ishing in the oxidizer stream), and Z = pZ/p is its mass-weighted (or Favre) filtered
value. Only the history of the flow in these areas is considered, and the residence
and mixing timescale integrations are carried out only there, weighting their source
term by SJZF, equal to unity where Z € [¢;1 — €, and zero elsewhere (e = 107* is used
in the computations). The following two equations are solved:

apa;res + Z : (ﬁ@ffres) = Z : (pDzTres - Tﬂ-es) + ﬁS—ZL_ ) (515)
P ¥ (7i6) = ¥ - (DVO — To) + L5 (5.16)

from which the trajectory-weighted mixing time is estimated as (Eq. (5.7)):

Tres
Tmix — —= - 5.17
5 (5.17)

The SGS turbulent fluxes are T, . = PUTwes — piTees and To = pu® — puO, which
are modeled using the WALE closure [Nicoud 99] and the approximation pDV 7yes o
pDV T, is used for the diffusive terms.

To start tackling 7., and 7, behaviors in the fuel jet configuration, the chemi-
cally frozen mixing of fuel and co-flowing streams is simulated. Instantaneous fields
of Tres and Ty are presented in Fig. 5.3, for a run performed on the 1,950,000-node
mesh with longitudinal (resp. transverse) characteristic spacing between 1.57 mm and
4.75mm (resp. 0.28 mm and 4.4mm); the mesh fineness has an impact on the 7,
value, through the cell size A and the SGS turbulent eddy viscosity Dy, see Eq. (5.5).

TheNZ—dependence of the residence time source term is apparent, in that 7, = 0
where Z equals zero or unity (Fig.5.3). Co-flow fluid is entrained into the jet and,
as the flow develops, the residence time increases. The centerline profile of the time-
averaged residence time, (Tes) (), is plotted in Fig.5.4. It correctly matches the fit

(Eq. (D.5)):
(s} () ~ \/’;Ex , (5.18)
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which may be derived from a one-dimensional steady jet model (see Appendix D).
The cross-stream variation of the mixing timescale 7, reflects the fact that the
subgrid turbulent intensity peaks at the edge of the jet.

Tmix

0.001

Figure 5.3: Instantancous fields of Z, Tes (Eq. (5.15)) and mmix (Eq. (5.17)) in logarithmic
scale.

The structure of the average T,os and T, fields is illustrated in Fig. 5.5. It may be
seen that the residence time isolines and the mixing time isolines are close to perpen-
dicular at the edge of the jet, indicating that they carry complementary information,
and supporting their use as conditioning variables. A more detailed description of
the properties of the T,es and i fields in a jet flow is now given.

5.2.6 Mixture fraction wvs. residence time

Simulation of the filtered residence time (Eq.(5.15)) provides information that is
useful for studying the temporal development of the mixing process, which is first
analyzed in (75, Z)-space for the two-stream problem. Subsequently, laminar mixing
in a vortical flow configuration is also examined, showing similar mixing patterns in
(Tres, £ )-space.

Global properties of mixing in a turbulent jet configuration

An instantaneous distribution of the resolved mixture fraction Z is plotted against
the residence time 7,o in Fig.5.6. The overall shape of this distribution does not
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(Fres)|
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Figure 5.4: Time-average profile of Tes on the jet centerline (solid line) and its theoretical
fit (dotted line Eq. (D.5)).

Figure 5.5: Isolines of time-averaged characteristic times. Black lines: residence time.
White lines: mixing time.
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vary significantly over time. At age zero, only pure fluid is encountered (i.e. Z =0,
or 1). The fluid mixes across the entire range [0; 1] rapidly. As turbulent mixing pro-
ceeds, and residence time increases, the upper bound of the filtered mixture fraction
distribution decreases from its initial value of unity.

This is a clear illustration of turbulence homogenizing the mixture along trajec-
tories in the flow; this also shows that there exists a restricted range of accessible Z
values for a given T,es (Fig. 5.6). In other words, for a given realization, only a subset

of the (Tes, Z) plane can be reached.

I T T T . T T T

i | L 1 .
001 __ 0015 0.02 0.025 0.03

Tres

Figure 5.6: Z vs. Tres SCatter plot at a representative instant in time.

The evolution of fluid projected on the (Tyes, Z )-space is expected to depend on the
local mixing time 75, (Eq. (5.5)): with the fastest mixing (small 7%, ) occurring close
to the inlet (T, close to zero), and slower mixing (large 7, ) downstream (large Ties)-
This evolution of the mixing rate is observed in Fig. 5.7 which presents instantaneous
contours of the mixing time, 7%, (Fig. 5.7a), and the trajectory-averaged mixing time,
Tmix (Figs.5.7b,c), overlaid on the 7 vs. Tres distribution. The lines in these figures
show the boundary of the regions occupied by all occurrences of selected values of
Trnix _

Because Ty is averaged over the fluid history, its distribution in (T, Z)-space
exhibits less scatter than the distribution of 7. . Contours of 7., are aligned with

mix*

OI' Trix-

lines of constant Z /Tres, Whose slopes decrease as Ty, increases.

The same run was carried out on a finer mesh, of 5.7 million cells, featuring
a radial resolution ranging between 0.25mm and 2.9mm. It appears, as plotted
in Fig.5.7c, that the distinct (Tyes, Z) structure is unchanged, despite lower values
of the local mixing timescales, as expected after increasing resolution. Also, it has
been checked that in the burning case simulated below, the properties of the (Ties, Z)
response are not fundamentally modified by heat release.

Mixing timescales in a laminar vortex

Next we examine the residence and mixing timescales in a laminar vortex. As in
Meunier and Villermaux [Meunier 03], the flow involves the mixing of a blob of
passive scalar initialized within a vortex with velocity field vy = I'/(27r), with r the
radial coordinate and I' the vortex circulation.
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T I !
Toixe domain limits |

Eqetesy i,

Tmix domain limits |
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Tres

Figure 5.7: Instantaneous contours of a) the mixing timescale 7. (Eq.(5.5)), b) and c)
trajectory-averaged mixing timescale Tyix (Eq.(5.17)). Time scale values in
legend box of Fig.b). Gray points: instantaneous scatter plot of Z vs. Tyes.
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initial at time 1 control
state volume

S0 50
S0

Figure 5.8: Schematic of the micro-mixing problem formulated by Meunier & Viller-
maux [Meunier 03].

The initial blob, of width s, is distorted into a spiral, whose shape can be param-
eterized by 0(r,t) = I't/(27r?), with a characteristic width in the transverse direction
(see [Meunier 03] for further detail), decreasing in time as the streak is elongated (see
diagram in Fig. 5.8):

V14 T2 (n2rd)
The equation satisfied by the tracer concentration Z is written in a frame of refer-
ence (0, X,Y) where X is locally aligned with the spiral and Y oriented towards the
center of the vortex. After a change of variables £ = Y/s(r,t) and

(1) = /Ot S(Ldt/ _Dt (1 N E) , (5.20)

r, )2 s3 3m2pd

s(r, t)

(5.19)

where D is the molecular diffusion coefficient, it reads like a simple diffusion equation:

YA

E — 8_52 9 (5.21)

meaning that the evolution of Z in the (&, 7) reference system is fully determined by
its initial condition. In this coordinate system, the residence time (or age), denoted
by a(&, T), obeys , ,

da  0%a  s(t)?

5~ et 5t (5.22)
The solution of this equation can be computed numerically; the evolution of the
spatial profiles is shown in Fig.5.9.

Plotting the concentration as a function of the age (Fig.5.10) reveals a behavior
similar to that observed in the LES (compare Fig.5.10a with Fig.5.6); the upper
hull, given by the set of points (a(0,7), Z(0,7)) is a decreasing function of the age.
As expected from the form of Eq. (5.22), the relevant non-dimensional age is a/A;
A = s2/D is a characteristic diffusion time, which is the mixing timescale of this
laminar problem. As shown in Fig. 5.10b, the upper hull function Z,,,x(a/A) depends
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Figure 5.9: Temporal evolution of a) mixture fraction Z(&,7) and b) a(&, 7) residence time
spatial profiles in a canonical micromixing configuration, for s3/D = 1.0s and
I'/r? =5.0s7!. Time grows from dotted to solid lines.
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Figure 5.10: a) Temporal evolution of the concentration wvs. residence time profiles in the
conditions of Fig. 5.9, the straight lines on the horizontal axis denote a scale-
split. b) Upper hull function Zpax(a/A) for different values of the mixing to
injection times ratio (s3/D)/(r?/T).

156



5.3. FCCT MODELING

only on the ratio A/B, where B = 7r?/T" is the other characteristic timescale of the
problem and may be seen as an “engulfment”, “entrainment” [Han 01], or “injection”
time. Indeed, if one considers a control volume enclosing a portion of the tracer streak
(see Fig.5.8), of side 2dr and centered in r, the amount of flow replaced every time
unit by Z = 0 fluid, which enters through its sides is of the order of:

[vg(r — 01) — vg(r)]dr — [vg(r 4 r) — ve(r)]|or
_ dvgi Jor2 (73;2) or? = (é) 5r2.  (5.23)

The bounding function decrease becomes steeper as the A/B ratio increases.

No further conclusion should be formulated from the results of this micro-mixing
problem, or be generalized to multiple-scale problems. In this configuration, the
mixing time is varying with time and depends on the injection time; it cannot
be seen as fully equivalent to a large-scale problem such as the turbulent jet con-
sidered in this study. However, two timescales have arisen, which reflect the ef-
fects of the two phenomena involved in turbulent mixing, as evidenced by Viller-
maux et al. [Villermaux 99]: a dissipation process through which the homogeneity of
the fluid increases (here, the molecular diffusion; in an LES, subgrid scale turbulent
mixing as characterized by Ty ), and a creation process, through which the interface
between two mixing entities develops and becomes complex (the shear or vorticity
stress, which among other effects brings in new fluid).

In the turbulent jet of this study, at large scales, i is expected to be of the same
nature as A. In the PaSR detailed below, a process will play the role of engulfment,
governed by an injection timescale 7iy;, similar to B.

These findings support the relevance of introducing (Tyes, Tmix) in the turbulent
mixing history parameterization, in addition to the local mixture fraction. Since
the present work addresses reactive flows, the progress of reaction must be used as
a parameter too. This point of view is now explored to propose an SGS modeling
strategy for non-premixed turbulent flames.

5.3 FCCT modeling

5.3.1 Modeling strategy

The mass-weighted space filtering operation is defined in Large Eddy Simulation as:

~ Jy p(a, )Q(z, )Gz — z,)dx
@t = [, (@, )Ga(z — zo)dx

where Ga is a filter function used to damp fluctuations at lengths smaller than A.
Assuming that @ is a unique function of the set of parameters ¢, () may be computed
from the joint pdf p(¢; z,t):

xO? /Q ¢7370> ) ¢ (524)
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The Flow-Controlled Chemistry Tabulation approach stems from the idea that
the residence time T,es(2, t) and mixing timescale Ty, (z, t), introduced in Section 5.2,
are relevant conditioning variables for the turbulence-chemistry interaction. They are
adjoined with the set of parameters ¢ = (Z,Y,) (mixture fraction and progress of

reaction) describing chemistry, to form the conditioning variables y = @, Tres, Tmix)
to express unclosed filtered quantities as:

Q = QT (Y) = Q" (¢; Fres, Tunin) - (5.25)

Like in all models based on a reduced parametrization of the variables, the pdf of
these variables must be modeled. In presumed pdf methods the pdf is expressed
commonly as a function of the first two moments of the composition, here, they are
generated in preliminary Monte-Carlo computations of a Partially-Stirred Reactor.

The PaSR simulations model three processes: a mixing process (i.e. turbulent
mixing), a reaction process (combustion chemistry) and an injection process (engulf-
ment). The joint-¢ distributions are monitored and tabulated to form a chemical
lookup table. Then, during the run, this table is accessed from the LES flow solver
as a lookup table and provides the terms needed to close the filtered equations. One
of the key points is to select an injection process that is representative of the flow
studied, and reproduce the (Tes, Z) typical response discussed above. The details of
this procedure, sketched in Fig. 5.1, are now presented.

5.3.2 Tabulated chemistry

As in previous simulations of the vitiated air jet-flame considered [Domingo 08],
the flame composition is projected onto a two-dimensional manifold [Gicquel 00,
van Oijen 01, Nguyen 10], embedding the small-scale balance between chemical re-
actions and molecular diffusion. The chemistry tabulation spans the whole range
of equivalence ratios, from a mixture fraction Z = 0 (pure oxidizer) to Z = 1 (pure
fuel); the stoichiometric mixture fraction is Zy = 0.177. A measure of the progress of
reaction (or progress variable) Y. is defined as Y. = Yo + Yco,. This was found to be
an effective measure of reaction progress in previous simulations of this configuration
presuming beta-function pdfs [Domingo 08]. For each Z value, Y, varies monoton-
ically from fresh, Y.¢(Z), to burnt gases, Y..q(Z). All thermochemical quantities,
i.e. the temperature T', the species mass fractions Y; and their rates of change w;,
are tabulated as functions of Z and Y,. The progress variable has its own rate of
change, wy..

The chemical database is built with the detailed GRI 3.0 mechanism, with 53
species [Smith |. For mixture fractions within the range where flame front prop-
agation can be observed (0.055 < Z < 0.5), a set of laminar freely propagating
unstrained premixed flamelets is computed with the PREMIX software [Kee 85] and
tabulated along the progress variable. Because of potential self-ignition on the lean
side, resulting from mixing with vitiated air, the chemical table is prolongated on the
oxidizer side by computing the time evolution of chemically homogeneous mixtures
with the SENKIN software [Lutz 87]. On the rich side (i.e. where premixed flame
propagation cannot be observed), a prolongation making use of the equilibrium re-
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sponse in proportion of Y./Y. ., is used. The full table, Q(Z,Y,), is thus composed
of self-igniting responses and premixed flamelets, as in [Godel 09].

It is not the objective of this work to improve that chemistry tabulation specif-
ically, whose shortcomings and limits are well known [Nguyen 10, Bykov 07]. The
focus is rather on the procedure to account for SGS effects acting on passive and
reactive scalars (Z and Y.). The method discussed below can be applied to any
chemical lookup table grounded on a reduced number of reaction progress variables,
or even to any scalars reacting according to a given chemical scheme.

5.3.3 A Partially-Stirred Reactor model for FCCT

Monte-Carlo simulations of a PaSR are performed to mimic the unresolved SGS
events. The system is composed of N elements (particles), each of them a sam-
ple point in the composition-temperature space situated on the (Z,Y.)-manifold.
Particle k is defined by its properties @(k) = (7 (k),Yc(k)), from which all chemical
properties p*), %) Yi(k) and ng ) are obtained from the chemical database. Addi-
tionally, an age property, denoted by a'® | is attached to each particle, measuring the
time spent in the reactor since its entry; this age will be linked to the flow residence
time defined above.
The ensemble average of a quantity @ is denoted by @ = (1/N) Zszl Q™ and
its Favre-averaged value:
N k) (k -0
Q= —Z’f:}\,p( 0B _ Q. (5.26)
> k1 P P
These averages are meant to be considered as filtered quantities in the LES of re-
active flows and the deviation (@) — @) mimics SGS fluctuations. Also, the average
age of the particles in the reactor may be seen as a measure of the residence time
obeying Eq. (5.15):
Tres = @ . (5.27)

In the following, the notation a is used for the property of the PaSR particles, while
Tres 18 used for the LES field. This distinction is made because of the specific Z-
dependent definition of the latter, see Eq. (5.15).

PaSR formulation

As outlined in Section 5.2.6, at scales in the turbulent inertial range down to the
flamelet reference length-scale [Peters 09], the mixing phenomena may be seen as
the conjunction of two processes that result in somewhat opposed effects: one tends
to reduce the scalar variances, while the other provokes an increase of the local un-
mixedness, as exterior fluid enters the considered area. In a PaSR, these processes are
modeled by so-called mixing and inflow /outflow processes, controlled respectively by
a mixing time T, (& notation consistent with the former section) and an engulfment
time, or injection time Tiy;.

On the whole, the discrete PaSR is meant to reproduce the evolution of the
turbulence-combustion interaction occurring in the flow, through distributions con-
ditioned by (Z, Y., Tres; Tmix). The injection timescale 7,; follows an imposed law that
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is designed to reproduce the macroscopic (Z , Tres) Droperties of the flow evidenced in
Section 5.2.6. Thus, 7i,; and 7yix are input control parameters of the lookup table
construction, while Z , Y, and @ are allowed to evolve freely during these simulations.
The lookup table, organized as @ = Q(Z, Y., d = Tres, Tmix), 1S progressively built, as
explained below.

Unlike in a Lagrange—Fuler coupling approach, the particles here are not local-
ized in physical space but evolve in composition space only. The individual particle
equations read:

do® w70

Y + Mg+ Iy (5.28a)
da®

Zt = P 4 MP 4 TH) | (5.28b)

with o) = Z®) or Y. ¥, The interaction between particles is carried by the mixing
terms (Mg, M,), whereas the chemical (wg) or age increase (w,) and inflow /outflow (Z4, Z,,)
terms are applied to particles independently from their counterparts. The chemical
term is zero for mixture fraction and wy, (Z, Y.) takes the value of the reaction progress
variable chemical source of the chemical database. According to Section (5.2), the

age source is w, = 1. Boundary conditions applied to Egs. (5.28a) and (5.28b) are
given below.

As in Ren et al. [Ren 04], Eqgs. (5.28) are solved by a time marching scheme of
time step At, with three fractional steps. Chemical reaction and mixing are solved
as continuous processes on time intervals between two integer values of ¢/At, and
a splitting scheme which ensures quadratic accuracy is used [Ren 08]. At is chosen
small enough, in practice ten times smaller than the smallest 7, [Ren 04]. The
inflow /outflow fractional step occurs at these discrete times.

PaSR micro-mixing

Any mixing model (stochastic or algebraic) could be used in the present approach.
Among the numerous options available in the literature, the Euclidian Minimum
Spanning Tree (EMST) mixing closure was retained because it demonstrated its pre-
cision in transported pdf simulations of jet flames [Xu 00, Cao 05, Wang 08, Merci 06,
Stollinger 10]. Mixing in the PaSR is a variance-decay process parameterized by Tpiy.
EMST is a pairwise exchange model, local in composition space [Subramaniam 98|
and well adapted to non-premixed combustion [Subramaniam 99|. Localness in the
composition space ensures that particles in the flow interact with their immediate
neighbors in physical space, for example do not mix across the reaction zone without
burning.

A subset of the N particles is defined at any given time from their age a®
by Spm(t) = {k‘|h(a(k), t) > 0}; only those particles take part to the mixing process.
h is a stochastic criterion function, defined in such a way that the distribution of its
values is statistically steady, so that the size of the mixing subset Ny, < N remains
constant on average [Subramaniam 98|. Here, h prescribes a mean Ny equal to
N/2. The Euclidian minimum spanning tree of Sy, uniquely defined, is built. It
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binds the Ny mixing particles in Na¢ — 1 pairs or edges (i, ji’), such that the sum
of the distances | ‘Q(ik’) _ ?(jk/)

is minimal. Particle k£ properties then obey

dg™ () R F) _ (i) *K) _ )
i~ M = 3 B[00 = 0)) G, + (0 =9V ) b, ] (5.29)
k=1

where coefficient By is an edge weight bounded by unity, lowest for the outer edges
of the tree and increasing towards its center. The parameter « is determined at each
time step such that the variance function of the system v = ij:l ‘ Q(k) — @2 obeys
the decay law, with the LES-obtained time scale Ty, (Eq. (5.17)).

In Eq. (5.28b), the mixing term for the age is set to zero, because the age distri-
bution affects neither the particles thermochemical properties, which depend only on
¢, nor the mixing term My in Eq. (5.28a), since here the localization of the EMST
model is restricted to the (Z,Y,)-space. Notice that this absence has no impact on
the average age @ retrieved from the PaSR computation.

PaSR boundary conditions: inflow/outflow process

Flow engulfment is mimicked by the injection of particles into the reactor. Every
injection is simultaneous to a removal, so as to keep the total number of particles
constant (an ‘injection’ is synonymous with a ‘replacement’). Boundary conditions
are those of the target flow configuration: pure unburnt oxidizer, Qo =(Z=0,Y.=0)
and pure unburnt fuel, ¢ = (Z=1,Y.=0).

Without any injection or replacement, the average age in the reactor increases
linearly with time by steps of At (da/dt = 1). With injection of fresh particles of
age zero, the age follows the evolution equation:

da a

E - Tinj

(5.30)

where 7,,; is the characteristic injection time; then, @(t) = 7i;(1 — exp(—t/7in;)) with
the asymptotic steady state @ = 7ip;.

In FCCT, the discrete injection process is controlled by two parameters: (i) pinj,
the probability that injection take place and (ii) if it does, the number N,,; of particles
which are injected (i.e. replaced). The steady average age reached by the reactor

contents reads! v
a = ( N ) At = Tinj - (531)
Pinj{Vinj

In practice, for a given 7i,j, the number of particles which should be injected each
time step if pi,; = 1 would be N, = NAt/7,; (Eq. (5.31)). Hence, the determination
of pinj and Niy,; is done as follows: if Ni’;j > 1, pinj is set to 1 and Ny, to the integer
closest to Ny; else, Niyj = 1 and piy; = Ny

In the target jet flame experiment, fast mixing with burnt gases develops from the
burner exit. To mimick this effect, one stoichiometric particle at equilibrium, Qign =

!This is obtained by writing @(t + At) as a function of @(t) and searching for the limit when
t — oo.
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(Z = Zg,Ye = Yeeq(Zst)) is injected at each initialization. Those burnt gases are
also needed to ensure burning in the reactor with chemistry tabulated from a single
progress variable, since the source of Y. on the mixing line is not large enough for self-
ignition to occur. Because the reactor statistics are cumulated over many composition
space trajectories, which rapidly evolve away from this initial point, this was not
found to have a profound impact on the lookup table.

Reactor sequences

Reactor sequences are organized to approximate the SGS statistics. The mixing rate
that is imposed to the EMST closure needs to be representative of mixing along
flow trajectories; typically, the mixing increases right after injection to then decay.
Thus the reactor evolution should imitate flow parcel trajectories over which the
mixing time is not constant. However, to avoid introducing an additional closure,
it was chosen to impose an averaged fixed mixing timescale in EMST. Because of
non-linear effects in the integration of mixing and its interaction with reaction, the
input value of the model must be adjusted from the LES-obtained 7; it was found
that Tiix retrieval = QmixTmix LES, With amie = 0.5, yields satisfactory results and their
sensitivity to the ay,;, parameter will be evaluated in Section 5.4.

The injection process must be designed in a way that enables the reactor contents
to reproduce the Z vs. T, response, in which fuel is mixed with oxidizer, here vitiated
air. The reactor sequence starts from a pure fuel condition and oxidizer is injected
until it fills the reactor and has replaced all initially present fuel. When considered
in composition space, this process is intended to reproduce trajectories originated
from both burner inlets. A full sequence captures composition-space mixture evolu-
tion from both pure fuel and pure oxidizer, down to mixture featuring the mixture
fractions encountered downstream in the simulated domain. Such a reactor sequence
is similar to those proposed by Borghi in Euler-Lagrange modeling [Borghi 88]. A
single sequence is only one temporal occurrence and needs to be repeated, with a
variability coming from a random law in the 7,; definition.

The Z vs. Tres study (Fig. 5.6) brings the necessary information to determine 7y;.
The way the reactor’s average mixture fraction and age evolve for the simple case of
a fixed 7, value, is first examined. Over one sequence, the reactor’s initial stage is
set to pure fuel at age zero (coordinates (0,1) in the (@, Z) space), and the injected
particles are oxidizer, at age zero too (point (0,0)). They are injected as the mixture
grows older and homogenizes, so that the reactor’s Z evolves from 1 to 0, according
to: o o

dz Z

E n Tinj ’

(5.32)

The computation is stopped when Z reaches a threshold value close to zero (1073),
the reactor reset to its initial configuration and the process starts again.

As for the average age a, which is expected to match the flow residence time 7,
(Eq. (5.27)), it repeatedly evolves from 0 to values determined by the discrete evolu-
tion of 7,5. Typical evolutions of these average parameters are shown in Fig. 5.11a.

For a fixed 7y, Egs. (5.30) and (5.32) would lead to a linear trajectory in the
(@, Z) space. The trajectory of the reactor averages for this simple constant Tinj CASE
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Figure 5.11: a) Time evolution of Favre-averaged reactor quantities (dark lines) and of indi-
vidual particle properties (gray lines); b) Trajectory samples, in the mixture
fraction-residence time space (normalized by 7inj), of the PaSR ensemble-
averaged and density-weighted properties for a constant 7i,; case. Solid line:
Tinj = 10~*s; long dashed line: 5.0 x 10™%s; dashed line: 2.0 x 1072s. No
symbol: Ty = 1.4 x 10735, +: 2.4x1073s; 0: 7.0 x 107 3s.

is shown in Fig. 5.11b, where a linear response is indeed observed independently from
the mixing timescale, which only affects the variance. The Favre averages, however,
depend slighly on 7,;x because of the non-linearity induced by the density-weighting.

It is therefore possible to fully drive the (@, Z) trajectory by determining 7i;(t)
(engulfment time) over the reactor sequence from a stochastic process parameterized
with Z, to capture the (@ = Tpes, Z) seen in Fig.5.6; details are given in the next
paragraph. In practice, various definitions of the injection time may be envisioned,
the main point being the selection of one that produces trajectories within the allowed
(Tres, Z) domain.

The study of Fig.5.7 has shown that the distinctive structure of the 7 vs. Tres
scatter plot is independent from the 7, range. This is consistent with the result
just presented (Fig.5.11), and supports the idea that the choice of 7 and 7, as
the PaSR’s control parameters may be done independently. This results from a scale
separation in the turbulent mixing process, between the large resolved scales piloting
the engulfment process (7i;) and the molecular micro-mixing (7ix)?. Therefore, the
definition of 7i,; was determined independently from 7.,;. Several computations of
the FCCT PaSR are performed, each at a different 7,;, value.

Injection timescale 7;,; distribution

As illustrated in Fig.5.12 for the jet under study, the range of 7,; values ensuring

that @ remains below a maximum value as Z decreases must be narrower at high Z
values than at lower values representative of the oxidizer stream. The limits of this

2The canonical micromixing configuration studied in Section 5.2.6 is a case where the scales are
not separated; there the mixing and injection times are linked.

163



CHAPTER 5. MIXING-TIME HISTORY EFFECTS IN LES

range, denoted by [mi™N, 7MA%(Z)], are defined as 7™ = 10~*s and

~ 1 2 Zid — 2
Ti%AX(Z) =70+t 5(7'1 — 7o) <1 T tan~" (#)) (5.33)

with 79 = 3. x 1073s, 7, = 5. x 1072, Zpiq = 0.5 and AZ = 1073.

To ensure sufficiently high fluctuations of the reactor behavior, the random update
of the injection timescale 7, is done every | Tyix/At| time steps, a choice which links
this law update frequency with the turbulence level in the reactor. N

The injection timescale 7,5(¢) may be randomly drawn on [ri™, 7Mi*%(Z)] from
either a uniform law or an inverse uniform law, the latter yielding smaller 7,; values
than the former, a useful property to correlate the law with the fluid engulfment and
related mixture fraction behavior. Indeed, very low mixture fraction are found in
the zones where the coflow fluid just entered the mixing area, therefore where the
age (or residence time) is still small. Overall in the reactor, small injection times
produce average ages tending towards low values (see above analysis). This is why
as Z approaches zero, 7i,; must be preferably low to favor small average ages and the
inverse uniform law, yielding smaller 7,;, must be favored. As a consequence, the
choice between uniform and inverse uniform laws was made as follows: if 7 < 0.2 the
inverse uniform law is chosen with probability 1 — min(Z/0.2, a,,) and the uniform
law with probability min(z /0.2, cr,). If Z > 0.2, the uniform (resp. the inverse
uniform) law is chosen with probability «, (resp. 1 — ). The stochastic parameter
o, is fixed at the start of each reactor sequence, and taken alternatively equal to 0.1
and to 1.

1x10* 3x1073

Figure 5.12: Illustration of the determination of the injection timescale variation range as
a function of Z.

5.3.4 Lookup table control parameters

For a given mixing timescale Ty, an FCCT reactor is set up as defined above, and
allowed to evolve freely: average values Z, Y. and a are not restricted by any specific
constraint. The system output, density-weighted averages of reaction and energy
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source terms, temperature and mass fractions, is built along the computation as a
function of Z, Y, and @, by an approach of accumulation over time. Formally, if
the system composition and age temporal development is denoted by ¢(t),a(t), the
output quantities computed on a time interval [to; ] are defined as B

] "o(30) - &) a ) ) ma) a
Qo ,a") = = g———— , (5.34)
/t 5(9(15) _ ) 5 @(t) — @) a(t)dt

where ¢ is the Dirac function in the composition or age space. It localizes the time
~* ~ . .
integral around the target (¢ ,a*), meaning that only the system states at times when

the Favre averages (Z , 37675) are equal to it contribute to the output average. The
relation (5.34) is assumed to correctly define the average result of all 7, -controlled
histories leading to the target point (2*,570*,5*). The randomness of the system,
lying in the injection law and in the intermittency treatment by the EMST model,
leads several histories to reach this target point.

In practice, Eq.(5.34) is solved in a discrete and approximate fashion, in two
steps. The (Z , }N/C,Zi) space is partitioned into My x My, x M, cells, denoted by the
indices (p, q,7): [va_l;ép] X [f{zvq_l;i}qq] X [Tres,r—1 Tres,r]- At each timestep, the state
of the system is collected and made to contribute to the values of the appropriate
table cell. If at a given time the system’s Z, Y, and a fall into cell (p, ¢, r), the table’s
average quantity is updated with the current system value

(rQ) (nm,r (PQ), ., + p_Q> /(Mpgr +1) (5.35)

where n,, ; , is the number of times the cell has been reached and updated before. This
approach is schematized in Fig.5.13. The procedure is also carried out for p alone
and for pZ, pY, and pa themselves. The Favre-averaged quantities are eventually
computed as Qpqr = (pQ)p o /Ppqr Similarly, Qp o = (Zpgirs Yeqr) and a, 4,
are output; they are within the range of values defined by one cell, but they do
not necessarily match the exact value of the center of cell (p,q,r), hence a filtering
operation is needed.

p,q,r

A smoothing filter is applied on these @Mm values, to yield, in any target point g ,a*

@/(gv a*) = ;fv* Z Np.q,r G <¢p a,r - ? > (5p,q,r - a*) Ct\ép,q,r ) (536)

/LUSuIn(g5 75*) P,q,T
where the G functions are Gaussian filters in the composition and age spaces, and
W (0°,8%) = My Go(6, =0 ) Gl — @) (5.37)
Pa;r

is a normalizing factor also useful to control the quality of the lookup table, typically
Weum (¢, @) > 100 to ensure that enough events have contributed to the averages.
This quantity is stored and it is checked during LES that points accessed in the table
satisfy this criterion.
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le (given Tpix)
™

Tres,r

table value
update

Figure 5.13: Schematic diagram illustrating the lookup table construction procedure (see
Eq. (5.35)).

The final output is thus comprised of a set of Favre-averaged quantities on points
(Z,Y,,a) of a grid covering the composition and age (residence time) space. A mesh
size refined in the regions where high gradients of the output are expected and where
the reactor average properties have a high probability of presence, and a filter size
equal to the mesh size, have been found to be appropriate.

This approach amounts to a Monte-Carlo integration, and its error therefore
decreases slowly, as n~/2 with n the number of time steps. A favorable factor for the
computational cost is that a relatively small number of particles is sufficient, because
of the accumulation over time of the reactor’s response (thus mimicking an overall
large number of particles). In the present case, N = 100 is convenient; instantaneous
distributions carry a satisfactory level of accuracy, and the computation is fast enough
to be run over a large number of iterations. The whole procedure is performed on
a set of Ty values, so that the final table is a four-dimensional array of chemical
quantities:

@ - @(2/7 }A}m ﬁes; Tmix) . (538)

It can then be used with multilinear interpolation to evaluate the desired quantities
at any value of the four parameters.

5.3.5 Analysis of the FCCT lookup table

The output of the FCCT computation is analyzed in the context of the Cabra ex-
periment [Cabra 05] introduced above. The Z discretization is refined on the lean
and stoichiometric regions; the 370 space is normalized at each value of the mixture
fraction by Y. .q(Z), and refined near the cold mixture line and close to equilibrium.
Given the (Tyes, 7 ) structure, which is paramount to the design of the FCCT dynam-
ics, the residence time direction is uniformly discretized conditionally to the mixture
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fraction, into 16 points on intervals [0; 722*(Z)]. The upper boundary is designed so

7 'res

as to enclose the possible variations of Tp:

T 7Y = 70 + 0.5(1y — 10){1 + tanh[(Z — Zumia)/AZ]}, (5.39)

res

with Zyq = 0.35 and AZ = 0.1, evolving smoothly and monotonically from the
small value 77 = 2.5 x 107s in Z = 1 to 70 = 3.0 x 107?s, as the average mixture
fraction decreases towards zero. A view of the resulting (7Tes, Z)-grid is shown in
Fig.5.14. As for the mixing timescale dimension, it is discretized into 16 values
ranging from Ty = 3.0 X 10745 to Tmix = 1.6 x 107 2s.

02

0
0 0.005 0.01 ~ 0015 0.02 0.025 0.03

Figure 5.14: Representative FCCT mesh of the residence time — mixture fraction space.

The timestep At is set to 107° s, small enough for the explored range of controlling
timescales. The lookup table building is carried out over 3.0 x 107 time steps for each
of the 7, values.

Output distributions

A distinctive strength of the FCCT tabulation method lies in the spontaneous gen-
eration of the composition distributions. Correlations between parameters natu-
rally appear according to the reacting flow properties. As an example, a fine-
grained view of the joint (Z,Y,)-distribution obtained for representative Favre av-
erages 7 = Z4 = 0177 (stoichiometric condition) and Y, =05 Yeeq(Zs) and the
input mixing timescale T, = 2.5 x 1072 s and residence timescale T = 3.0 x 1073 s,
is plotted in Figure 5.15. For this distribution, the unmixednesses-normalized SGS
scalar variances, see Eq. (4.29)-are respectively 0.34 and 0.65 for the mixture frac-
tion and the reaction progress variable. It is compared with a distribution which, for
the same first and second statistical moments, would be assumed in a presumed pdf
approach as equal to the product of two uncorrelated beta-functions. This compar-
ison highlights the clear dependence of the progress of reaction conditional pdf on
Z, already discussed for this flame in [Michel 08]; the particles of mixture fraction
smaller than 0.3 are all close to the equilibrium, while the richer ones are unburnt.
In most presumed pdf approaches, the Z and Y, /Y. ,(Z) distributions would be as-
sumed to be independent and the SGS correlation between parameters might not be
fully reproduced.
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Figure 5.15: Fine-grained visualizations of a joint (Z,Y.)-distribution as obtained from
FCCT, or a product of beta-pdf. Solid line: Y, at equilibrium.
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Average behavior

Following the same principle as what was carried out in Section 5.2.6 from the LES
fields, scatter plots of the density-weighted mixture fraction Z, but also progress of
reaction Y., vs. the filtered residence time 7., are sampled along their evolution
in the FCCT reactors and shown in Fig.5.16. The injection (engulfment) process
was defined to make the FCCT behavior match that observed in the LES run (see
Section 5.3.3), as is shown by the comparison of the scatter plots with the hull then
found, which collapse onto each other. These scatters are plotted for several values
of Tmix- The mixture fraction plots depend slightly on the mixing timescale: the
stronger curvature of the trajectories for larger 7,,;x may be discerned, as was shown
in Fig.5.11b.

The analysis of the FCCT table allows for illustrating the importance of the in-
teraction resulting from the engulfment and the mixing time scales. Specifically, in
addition to the so-called S-curve [Wang 08| response that is representative of a canon-
ical burning diffusive and reactive layer (a decrease of the mixing time is followed
by an increase of the burning rate up to quenching occurring because chemistry can-
not keep up with fast diffusion), complementary but not antagonistic behaviors are
found, which are also observed in real combustion systems.?

The Y, vs. T,es plots possess a specific structure, which illustrates this intricate in-
teraction. The mixing timescales considered here are mostly larger than the chemical
timescales, so that mixing imposes its dynamics to the reaction, a situation repre-
sentative of most combustion systems, except those where very slow combustion is
sought. The filtered Y, are bounded by a maximum value, equal to 0 at the inlet and
increasing with the residence time. The steepness of this upper boundary decreases
distinctly as 7y, is increased. A higher 7, imposes a smaller mixing rate, which
leads to the slowed average reaction process. This overall decrease of the progress
of reaction is also visible in Fig.5.17, where the time average of the reactor’s Y. is
plotted conditionally to Z. It appears that around stoichiometry, increasing the mix-
ing timescale leads to a mixture burning first more easily, up to a maximum, and
then quenching (for a given Z, the conditional mean of Y, increases then decreases).
When 7, becomes very large compared to the injection timescale, fuel and oxidizer
remain fully segregated over a PaSR sequence and intense burning is indeed not
possible.

Output quantities

The influence of T, and 7,i as parameters to the modeled subgrid scale composition
distributions is examined here.

The well-known role of micro-mixing as an enhancer or inhibitor of the reaction
may be seen in Fig. 5.18, where the output chemical source term wy, conditioned to
stoichiometric conditions Z = Z has been time-averaged, and plotted as a function
of the mixing and residence timescales. For any given 7., the reaction rate, seen

3Notice, however, that the ignition sequence of the single-progress variable FCCT reactor
(flamelet tabulated chemistry) may not capture all the chemical details pertaining to ignition of a
turbulent fuel/vitiated-air mixture. The direct integration of the detailed chemical scheme would
be necessary for refined description.
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Figure 5.16: Scatter plots of Z and Y, vS. Tees sampled along their evolution in the FCCT
reactors, for different mixing timescales. The cold LES hull obtained in Fig. 5.6
is shown in gray (top).

0.08

Figure 5.17: Time average of the density-weighted mean progress variable in the FCCT
reactor, conditioned by the average mixture fraction. The increasing mixing
timescale values are 8.0 x 107%,1.4 x 1072,2.0 x 1073,3.4 x 1073,9. x 1073
and 1.6 x 10~ 2s. Gray line: equilibrium.
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as a function of the residence time, increases then decreases, as may be expected for
the evolution in time of a stoichiometric mixture. This process is much quicker at
low T values than at large ones. A high mixing intensity prompts a tall and narrow
chemical source term peak; conversely, the reaction proceeds at a slower pace and
with lower intensity, in the case of a large mixing timescale.

14
12
10

o N o»

Figure 5.18: Time-averaged output chemical source term (.T)YC conditioned at stoichiometry,
plotted as a function of Tix and Tyes.

The FCCT tabulation technique makes the mixture fraction and progress variable
variances v, = ¢> — ¢¢ an output of the system. The study of these variables (or
their normalized counterparts, Sz and S.) provides much insight on the role of the
timescales on the output distributions. These segregations are plotted in Fig.5.19 as
a function of Z, for fixed values of the normalized progress variable and mixing time,
and at different residence times. S decreases, at a fixed Z, as the residence time
Tres increases (dotted to solid lines), a logical consequence of the variance-decreasing
mixing process on a passive scalar. A different behavior characterizes S.: as Z
goes from 1 to 0, the ¢ segregation peaks; this illustrates the competition of the
reaction process, which sees the individual Yc(k) values increase, against the mixing
which tends to homogenize the mixture, helping unburnt particles to reach reactive
conditions and pulling burnt particles down towards the average Y,.. The c segregation
is maximum in the stoichiometric zone, close to Zy = 0.177. This maximum increases
as the residence time increases, reflecting the fact that between two distributions of
particles having reached the same Z and Y, averages, the younger one has had a much
stronger rate of injection history than the older one, therefore lower variances. Seen
from the other point of view, the state of the older distribution could only be reached
thanks to a weaker injection-rate history, which allowed more particles to reach their
equilibrium state without being replaced — segregations are higher. On these two
plots, it may be seen that data is available only for Z such that Ties < Gmax(Z).

The mixture fraction segregation is also plotted for fixed average mixture fraction
and progress variable in Fig.5.20, this time as a function of the residence time and
for different mixing timescales. While the Y,-conditioning makes it difficult to really
discriminate the role of 7, it may still be perceived that the segregations’ decrease
rate becomes smaller as 7,;, take higher values.
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Figure 5.19: Segregations of the mixture fraction and normalized progress variable in the
FCCT output distributions as a function of Z, at Y, = 0.5Y¢q(Z) and for
residence times ranging from 0.001 (dotted line) to 0.01s (solid line). The
mixing timescale is set to 2.4 x 1073 s.
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Figure 5.20: Segregations of the mixture fraction in the FCCT output distributions as a
function of Tyes, at Z = 0.175 and Y, = 0.5 Y, oq(Z) and for mixing timescales
ranging from 0.001 (solid line) to 0.016s (dotted line).
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Finally, filtered chemical quantities which are to be used in the LES, namely the
filtered energy source term and mass fractions, are plotted in Fig.5.21 as functions
of the normalized progress variable, for different mixture fractions, and at different
residence and mixing times. They are confronted with the quality criterion wgum
defined in Eq. (5.37). It is confirmed that values of wg,, above 100 indicate smooth
and consistent output fields. Where wy,,, takes lower values, some of the output fields
become irregular. They even become strongly spotty, sometimes outright irrelevant
if wgum becomes really small. Apart from these cases, it is confirmed that a higher
mixing timescale leads to decreased source terms, and that they evolve along the
residence time, as increasing then decreasing functions. The behavior of main species,
such as CHy, is not much modified by the timescales; on the contrary, intermediate
species see their properties vary along those of the reaction intensity: where the
reactions rates are decreased, the production of such species, as e.gq. OH, is reduced.

5.4 Jet flame LES using FCCT

Large Eddy Simulation of the vitiated-air jet flame [Cabra 05] is now performed,
the simulation follows the procedure reported in [Domingo 08|, in which the flamelet
presumed pdf lookup table has been replaced by the FCCT one. Along with the
Navier-Stokes equations in their fully compressible form, Egs. (5.15) and (5.16) are
solved for T, and é, and relation (5.17) provides 7. A usual convection-diffusion
equation is solved for the mixture fraction Z ; in the Eulerian balance equation for
the progress of reaction Y,, an additional chemical source wy, = wy,(Z,Ys, Tres, Tmix)
appears that is read in the lookup table. The thermochemical properties of the flow
are also retrieved from the table to ensure energy coupling. The selected numerics and
turbulence SGS modeling have been reported above in Section 5.2.4; the 1,900,000-
cell mesh is used. The value ayix = 0.5 (Section 5.3.3) is chosen before studying the
sensitivity of the results to this parameter.

In the experimental set-up, when starting the burner, autoignition occurs at a
position far downstream, then combustion moves upstream and stabilizes between
40 and 50 jet diameters D from the inlet [Cabra 04]. The very first spontaneous
self-ignition point is beyond the range of the computation domain. Because of this,
and since the initial transient is not the topic of interest here, the initialization of
the flame is done, starting from the cold run, by artificially filling a small number
of cells with gases at chemical equilibrium (Y, = Y, .(Z)) on the axis. It has been
checked that the distance at which this artificial ignition point is positioned does not
impact how and where the flame stabilizes and later keeps a steady position in mean.
Figure 5.22 shows that combustion indeed starts in a zone located between 40 and
50 diameters downstream of injection, conform to the experiment.

5.4.1 Comparison with experimental results

To obtain the statistics of the LES computation and compare them with the exper-
imental means, the fields are collected every 100 iterations (or about 2.5 x 107> s)
and averaged over a 60,000-iteration period, which amounts to about 3.6 7,0y, Where
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Figure 5.21: Filtered energy source term, temperature and mass fractions output from the
FCCT computation, along with wsum, as a function of the normalized progress
variable and for different mixture fractions. Lines with no symbol: mnix =
1.4 x 1073 s; black circles: Tmix = 2.4 x 1072s. Dotted lines: Tres = 0.002s;
dashed lines: Tes = 0.005s; solid lines: Tes = 0.01s.
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Figure 5.22: 2D view of the averaged temperature field. Line: 1,400 K isoline.

the box time is defined as T,ox = 90 D /ujet, with e, the bulk fuel-jet velocity. This
time-averaging duration was found to yield sufficiently converged statistics. In these
results, all time-averaged radial profiles have additionally been space-averaged in the
azimuthal direction, given the cylindrical symmetry of the flow.

3000

2500 - 4
2000]
T 1s0f
1000
s00|-

0

500

o
T 300 -
Trus |

200

100

Figure 5.23: Centerline profiles of temperature and temperature fluctuations. Symbols:
measurements; lines: LES.

In an initial zone extending down to about 40 D, the temperature follows a mixing
trend, from the 320 K jet towards the vitiated coflow temperature of 1,350 K. After
reaching the axial position of 40 diameters, the temperature then sees an increase
over about 20 jet diameters, up to around 2,200 K, an indicator of the presence of
the flame, which is reproduced by the LES (Fig.5.23). The position of this flame
base fluctuates in time, subject to the mixture fraction, residence time and mixing
timescale variations. This may be seen on the computed temperature fluctuations
whose sharp increase is located where the experimental results position it. Down-
stream, in the burnt gas at chemical near-equilibrium, the time-averaged temperature
conforms to the experimental measurements, remaining constant around 2,200 K. As
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100

Figure 5.24: Centerline profile of the average mixture fraction. Symbols: measurements;
lines: LES.

could be expected from the temperature profiles, which strongly depend on the FCCT
lookup table parameters, the mixture fraction decay on the jet axis agrees with mea-
surements (Fig.5.24).

The radial profiles of Z and T at several downstream positions, starting at the
flame base (x = 40 D), are given in Fig.5.25. The mixture fraction profiles show
some slight over-prediction of the jet spreading, a consequence of which may be seen
on the centerline with the slight underestimation of Z far from the inlet (Fig. 5.23).
Correspondingly, the temperature radial spread exceeds the experimental observa-
tions. In the experiment, the flame front reaches more upstream positions slightly
away from the axis: at x = 40 D, r = 20mm, the temperature has already started to
increase, while on the centerline the mixture is still inert; the LES does predict this
bell-shaped flame front.

The radial profiles of the temperature fluctuations are shown in Fig. 5.26. It may
be observed that if Trys seems to be over-predicted far downstream on the centerline,
its radial profiles in the flame (in particular at = 70 D) are yet mostly consistent
with the experimental findings.

The computational results in terms of the species mass fractions are displayed
in Fig. 5.27. The major species’ behaviors are closely reproduced in the mixing and
flame front regions. In the burnt gas zone, the LES predicts a mixture slightly too
lean, with a direct influence on the species mass fractions: non-zero O, concentrations
and COy levels lower than the experimental results. As far as the minor species are
concerned, the behavior in the time-averaged flame front is well captured for Hy, CO,
though the peak values are under-predicted. The computed OH increase is too steep
compared with the experiment. Farther downstream, the levels of Hy and CO do
not decrease as fast as the measurements. This may owe to the fact that pockets of
unburnt gases intermittently manage to go across the flame front and reach positions
beyond z = 60 D, burning farther downstream than where the reaction on average
takes place. The levels of intermediate species thus remain high.

Overall, comparisons with measurements confirm the prediction capabilities of
the proposed SGS modeling. A study of the chemical source term wy, in the LES
computation illustrates how the FCCT formulation accounts for the enhancing role of
mixing on the reaction. In Fig.5.28, a snapshot of the mixture fraction iso-surface at
Z = Zg is shown at an arbitrary time instant, and colored in several views with dif-
ferent quantities. Displayed on it is the progress variable iso-line Y. = 0.25 Y, o (Zst).
The mixing time T is shown (view a), and confronted with iso-surfaces of the
(Q-criterion, where () = 0-5(@]@1’]‘ — §,;j§ij), 2 and S denoting respectively the
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Figure 5.25: Radial profiles of the average mixture fraction and temperature at successive
downstream positions. Symbols: measurements; lines: LES.
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Figure 5.26: Radial profiles of the temperature fluctuations. Symbols: measurements; lines:
LES.
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Figure 5.27: Centerline profiles of the average mass fractions of some major and minor
species. Symbols: experiments; lines: LES.
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antisymmetric and symmetric components of the filtered velocity gradient tensor
Vu [Dubief 00], which are markers of the turbulent vortical structures (view b). A

spot of lower 7, is visible on the iso—?C line, positioned at the center of an elon-
gated element of the iso-Q) surface. At this point, the lower 7, value signals a
history of more intense turbulence, to which the narrow vortex structure has likely
contributed. Along the iso-Y, line, a clear link between low mixing times and high
chemical source terms (?}yc (view c¢) is evidenced. This is consistent with the trend
presented in Fig.5.18. The role of the residence time is here cast aside, since Tyes
proves to be only weakly varying on the line studied (view d).

c

Tres
0

Figure 5.28: Snapshot of the mixture fraction isosurface 7 = Zst, colored with different
quantities. Black line: is.o—l7C = 0.25Y, ¢q(Zst). Views a and b: Tyix (s), with,
in view b: iso-Q = 10°s72 in gray; view c: progress variable source term (s71);
view d: Tres (). The arrow in view a indicates the main flow direction.

5.4.2 Sensitivity to amix

In the results presented above, the value oy, = 0.5 was found to be optimal. The
introduction of this coefficient was made necessary by the constant 7,,;, assumption.
Therefore, it is interesting to study the sensitivity of the computed flame behavior
to this parameter.

179



CHAPTER 5. MIXING-TIME HISTORY EFFECTS IN LES

The centerline profiles of some significant quantities, obtained for different values
of the mixing time coefficient are plotted in Fig.5.29. Unmistakably, it appears
that the flame base anchors itself closer and closer to the inlet as oy, is decreased,
that is as the EMST-simulated mixing intensity increases. Not shown in this figure
but indirectly visible through the steepness of the temperature increase, the chemical
source terms become higher as the input 7,,;x value is decreased, as could be predicted
by the source term plot in Fig.5.18. Thus, the global burning rate becomes higher
and enables the flame to stabilize itself closer upstream, towards the high velocity
flow regions. Conversely, values of o, larger than 0.9 lead to a blow-off; the flame
leaves the computational domain.

2000
~ 1500

1000

!
b
coo

100

Figure 5.29: Centerline profiles of time-averaged mixture fraction, temperature, tempera-
ture fluctuation and Ha obtained for several values of amix (see legend box on
Hy graph).

5.4.3 FCCT-LES coupling quality

As discussed earlier, the prediction of the SGS pdf by FCCT from the knowledge of
Z, Y. and the residence and mixing timescales is an indirect process. In particular, if
the injection law in the simulated PaSR has been devised to account for the (Tyes, Z)
dynamics observed in the non-reacting LES, no result on the filtered progress variable
Y, has been taken into account in the definition of the reactor. The assumption is
that a relevant reproduction of the mixing process on one side, and of the chemical
behavior on the other side, leads to a correct prediction of the turbulent combus-
tion dynamics once in the flow simulation. The satisfactory results presented above
support this approach, but a more detailed look into the strength of the coupling
between the properties transported in the LES and the composition-space-simulated
dynamics of FCCT is necessary.

To this end, the most suitable indicator is the quality criterion wgy,, which makes
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Figure 5.30: Probability maps of the events (wgum > 10) and (wsym > 10%), superposed
with the time-averaged temperature (left) and progress variable fields (right).

it possible to map, in the flow, the density of occurrences of the local set of parame-
ters (Z Ye, Tres, Tmix) 0 the FCCT-simulated PaSR. The higher this factor, the more
stochastic particles have contributed to the fields read in the FCCT table. It was
seen in Fig. 5.21 that values of wgy,,, higher than 102 indicate very reliable results and
that a progressive but systematic degradation of the data starts when wg,, drops
below about 10. The probability maps of the two events Wy, > 10 and weyy, > 102
are computed on a time interval of about 27, and plotted in Fig. 5.30. It appears
directly that the quality criterion does not always remain above the level of 10 which
would be sufficient to fully guarantee the validity of the coupling. The zone where
the most frequent degradation of the tabulated fields may be expected is situated
in the flame area. This is an unsatisfactory result, however the correctness of the
predicted flame behavior presented above calls for a more detailed analysis.

The overall observed departure between the actual filtered flow fields and the
simulation result is a complex function of several contributions, which may be sym-
bolically formulated by

Stotal - f(gsolvera gFCCT) gPaSRa gstat) .

The different terms may be described this way: a) Eer is the error introduced by
the numerical code, the discretization method and the assumptions in the formula-
tion of the transport equation terms and boundary conditions; it is common to all
computations performed with the same code and is not the subject of this work. b)
One level below, Epcer is the error introduced by the main hypotheses of the turbu-
lent combustion model; in the present case, the assumption that all unclosed terms
may be conditioned by the four parameters Z,Y,, T.es and 7i. Within the scope
restriction implied by this choice, however, an additional source of inaccuracy comes
from ¢) the way the determination of the unclosed fields is formulated: Ep,sr, in the
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present case, is the error stemming from the PaSR definition and methodology for
computing the chemical table. d) Finally, an ultimate, technical, contribution Eay
represents the numerical inaccuracy in the computation of the table, 7.e. the discrep-
ancy between the the actual table and the theoretically fully converged statistics on
an infinitely fine grid.

The low levels of wq,m, obtained in the present computations are related in the first
place to Egat. The statistical origin of the insufficient density of particles contributing
to the averages is obvious: a longer generation time for the tables would lead to higher
Wsum results. Two things must yet be noted: first, the effect of the Monte-Carlo errors
is simply an increase of the variance of the output around their expected value. The
tabulated terms used in the SiTCom solver are either source terms or mass fractions
(see Section 2.1.1). The former are involved in the transport equation of Y, and E
which may thus, on the whole, not be affected by these source term fluctations. The
latter are used for the computation of temperature, and subsequently of pressure,
by solving the filtered counterpart of Eq.(1.18), and the noise with which they are
evaluated has indeed an impact on the pressure field, which is patchier than if a
presumed pdf method was used. Second, the examination of softer criteria on wgum
show that the whole field verifies P(wgym > 0.1) = 1 and P(wsym > 5) > 0.5, so that
the interpolated values are never so noisy as to be fully irrelevant. As a conclusion,
the overall impact of &,x on the computed physics is not very strong.

Still, a simple increase of the table computation time or of its grid fineness will not
modify the main structure of the wg,, field; the low-value regions will comparably
remain the same, despite a general increase in wg,,. This originates from the way the
PaSR has been formulated, and is therefore related to the term Ep,sg. To analyze
this, the LES and FCCT table chemical behaviors are confronted with each other in
detail, as shown in Fig.5.31. From an instantaneous snapshot of the flow, all points
with specific (Y., Tmix) values are picked and plotted in the (7,5, Z) space. They are
superposed with (Tyes, 7 ) maps of the wg,y, criterion obtained in the FCCT table. It is
interesting to compare, for each subset, the position of the clouds of LES points with
the high-wg,, zones. Expectedly, the general trends appear to be similar: for both
the LES and FCCT results, higher values of the mean progress variable correspond
to points which tend to be older and closer to stoichiometry. Yet there is a clear
age shift between the LES points and the zones of highest wgym, visible in particular
for Y./Yeeq = 0.5. The point cloud is located in zones of wgyy, around 10, although
for these (370, Tmix) Points some areas are well populated, with wg,, above 10%. In all
cases, the average residence time of the points is larger than the zone where wgyy, is
optimal. It means that the reaction in the FCCT reactor starts faster than it does
in the LES where the FCCT table is used. This observation confirms the need for an
improvement of the reactor formulation, in such a way that the chemical response to
the modeled mixing process in the FCCT reactor matches that of the reacting flow
simulated in the LES using FCCT.

As complex as this retroactive coupling may appear to be, there is room for
improvement: the mixing law has been given a very simple formulation: the reactor
mixing time 7, is taken constant, but in actuality the flow particles, during their
trajectories, are not submitted to constant-intensity mixing; as Figs.5.3 and 5.7
suggest, the instantaneous mixing timescale is very small close to the inlet, in the
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rich zones where no burning is possible, and decreases as the particles reach the
flammable regions. Imposing in the reactor a variable mixing time in the PaSR would
therefore lead to a slower burning, thus to a better match with the LES behavior.
This appears to be the most obvious direction to take for an improvement of the
method. A formalism such as that developed in Section 5.2.3, to access details of the
7*. history, may prove useful.

mix

8 x 107*

Z = = 095

0 1 \}\ k] g e o *
0 0.005 0.01 001 0 0.005 0.01 0015 0 0.005 0.01 0.015 002

Tres Tres TI‘GS
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Figure 5.31: Superposition of LES points (symbols) of fixed 170/ Yeeq and Tmix properties
with FCCT-output wgym maps in the (ﬁeS,Z) space: the isolines delimit
regularly-spaced powers of 10; full line: 10%; — — — 10%; — — — 10%; etc.,
decreasing with lighter line style.

As a conclusion, in spite of some imperfect results in the quality check, which call
for improvements in the PaSR formulation, the FCCT conditioning hypothesis seems
comforted by the satisfactory comparison between the computational and experimen-
tal statistics. Further tests should prove fruitful, but this study demonstrates to some
extent the pertinency of using timescales — which describe the average history of the
flow — as conditioning parameters of the unclosed chemical terms.

5.5 Summary

A novel chemistry tabulation approach for LES has been presented that is based on
properties of the flow history. It is formulated through probability density functions
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which are not presumed, but generated in Monte-Carlo simulations of a Partially-
Stirred Reactor that models three processes: turbulent mixing, chemical reaction
and inflow/outflow (engulfment). The result is a lookup table accessed from the flow
solver with the following input parameters: a residence time and a mixing timescale,
which describe the flow mixing history, and the transported filtered chemical param-
eters.

It has been tested in the LES of a laboratory lifted jet flame in a vitiated air
co-flow, experimentally investigated by Cabra et al. [Cabra 05], with flamelet chem-
istry described through a mixture fraction and a progress variable. The simulation
reproduces satisfactorily the properties of the lifted turbulent flame.

The Flow-Controlled Chemistry Tabulation (FCCT) method requires collecting
information on the mixture fraction response wvs. residence time. To initiate the
simulation, this response can derive from a preliminary cold flow LES (or even RANS)
of the burner. After using FCCT, a first solution including heat release is available
providing a new mixture fraction/residence time response, useful to optimize the
FCCT lookup table. This process can be repeated with an overall rapid convergence
expected, since the mixing field is mainly sensitive to global heat release.

The method offers the possibility of tabulating chemistry without presuming the
intercorrelations between the thermochemical variables in the SGS statistics. Possible
future applications are multiple inlet burners in the presence of recirculating, non-
constant enthalpy, burnt gases [Wang 10b], which may be difficult to handle with
presumed pdfs. In the next chapter, a preliminary work is conducted to evaluate
how FCCT could be implemented in a three-fluid turbulent combustion problem.
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Chapter 6

Prospects for the RANS
computation of a three-fluid
turbulent combustion problem

The initial objective of the FCCT development is a prospective application to multiple-
fluid, variable-enthalpy problems. The REOXAL burner is a configuration that meets
these criteria and is a challenging object for the improvement of turbulent combus-
tion modeling. Already simulated in a RANS framework by the Air Liquide research
center’s modeling team, it came as a natural candidate for an FCCT application. In
this chapter, the prospects and challenges posed by such an undertaking are explored.

A discussion on the parameterization of the configuration is given in a first section:
mixing must be described by two variables. Through the study of mixture fraction
and enthalpy fields, the complex flow mixing patterns are then examined in a second
section. The study leads to a modification of the FCCT residence time introduced
in Chapter 5 and the design of a possible PaSR network that would account for the
observed recirculation patterns.
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CHAPTER 6. PROSPECTS FOR A THREE-FLUID RANS COMPUTATION

6.1 Mixing and chemistry parameterization of the
REOXAL configuration

6.1.1 Description of the mixing

The configuration considered in this note is a confined combustion chamber into
which three fluids issue:

e Natural gas, later referred to as the fuel stream, denoted by F;

e Oxygen gas, later referred to as oxidizer, denoted by Ox;

e Recirculating burnt products, referred to as the External Gas Recirculation
(EGR) stream.

The EGR fluid is a mixture of the main oxidizer and fuel inlet streams, in close
to stoichiometric proportions, which has lost enthalpy during its recirculation; the
problem is therefore non-adiabatic. The description of the mixing between the three
fluids requires more than a single mixture fraction Z, which is sufficient only in
adiabatic conditions.

Two possible parameterizations

A two-mixture-fraction parameterization of the fluid may be adopted, involving two
passive scalars Z; and Z,, with inlet conditions distinct from each other: Z;, the
fuel mixture fraction, is the elemental mass fraction of the fuel stream in the flow,
and Zs, the secondary mixture fraction, that of the EGR stream in the flow. Their
inlet conditions are defined in Table 6.1. The elemental mass fraction of the oxidizer
stream may be obtained from the other two as 1 — Z; — Zs.

Z Z,| Z h ¢ =z Y
F 1 0] 1 A 10 1 1
Ox [0 0] 0 Rm), |0 0 0
EGR| 0 1 | Zger hecr |1 Yeea(Zrcr)

Table 6.1: Inlet conditions of the parameter scalars.

A different description of the mixture, involving the enthalpy A, may be chosen:
indeed, the lower enthalpy of the EGR stream compared with the fresh F and Ox
fluids mixed in similar proportions makes h a relevant tracer of the EGR mass frac-
tion in the flow. The parameterization may involve the standard two-inlet mixture
fraction Z = (¢ — ¢ox)/(¥r — @ox), which tracks the proportion of fluid originating
from the fuel stream, and h. Here h refers to total enthalpy, which obeys Eq. (1.15).
In the recirculating gases, Z is equal to Zgggr, the bulk mixture fraction of the
burner (close to Zg in the present conditions) and h = hggr, a value lower than
Zrarh® + (1 — Zgar)hY,, the adiabatic mixture enthalpy in same proportions. This
departure makes the transported h non-linearly related to Z and therefore a carrier
of additional information. The inlet conditions are summarized in Table 6.1.
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Equivalence

Enthalpy, under adiabatic, viscous-free conditions and if external forces f are absent,
behaves like a passive scalar. B

Therefore, the result on passive scalars enunciated in Section 1.4.1 may be in-
voked. The two formulations (Z;, Z3) and (Z, h) may actually be unified provided
that the flow inside the chamber is assumed adiabatic (this is in no contradiction
with the fact that the EGR has lost enthalpy compared to the adiabatic mixture,
in same proportions, of inlet Ox and F, and that as a whole the problem is not
enthalpy-conserved) and that the conditions above are satisfied, as is now detailed.

In the chamber, enthalpy losses are due to either radiation or heat exchange at
the walls. Since velocities are high in the flame zone and upstream, radiation may be
considered negligible, and the main physical hypothesis may be formulated as follows:
no enthalpy loss occurs except in the burnt gases. Thus, the adiabatic assumption is
valid in the reaction and upstream mixing zones.

Where h is considered a passive scalar, the (Z,h) parameter couple is linearly
related to the two mixture fractions (Z1, Zs). Any conserved property () may be
obtained from its values in the three inlet streams Q%, Q% , and Qrcr as

Q= Z1Q% + ZoQucr + (1 — Z1 — Z2) Q) - (6.1)
Applied to Z and h, this relation leads to the following linear system:

7 = 71+ ZyZpcr (6.2)
h = ZihY + Zohpor + (1 — Zy — Zo) R, 6.3)

It is useful to introduce intermediary scalars providing a different angle of descrip-
tion of the mixing proportions within the fluid: ¢ is the mass fraction of the EGR
stream within the mixture as opposed to fluid coming from the Ox or F inlets, and
z is the proportion of F within this portion of fluid that comes from the Ox and F
inlets. An illustrative schematic is provided in Fig. 6.1, and their values at the inlets
given in Table 6.1. With this definition, any conserved property () may be obtained,
in the flow, from its limit values as:

Q= CQher + (1 —¢) (ZQ(F) +(1 - 2)Q%x) . (6.4)

The relations between ((, z) and the two sets (Z,h) and (7, Z,) are obtained as
follows:

e Choosing ) equal to Z and to h, Eq. (6.4) leads to a system that, once inverted,
yields the following set of equations:

Zhe + (1= Z2)hY, — h

Zh) =
(2,1 Zrarh® + (1 — Zggr)hd, — hrcr
7 — (7
AZ,h) = 1<—<EGR (6.5)
h—h
-y - ey
=, — e
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Ox

........... A 1— Zggr

Py < initially
EGR ~ o from Ox
ZEGR
F initially
from F

directly or indirectly
(via EGR) from Ox

Foo 7 non EGR

EGR

directly or indirectly
(via EGR) from F

Figure 6.1: Schematic illustrating the different set of parameters describing the mixture.
A full circle represents the state of a fluid particle, and the angular sectors the
diverse proportions from the inlets.

e The set of Egs. (6.1) and (6.4), true for any (), implies that
Zv=01-=Qz, Zy=C(. (6.6)

It must be noted that z is not a passive scalar, since it is defined as a fraction
and displays a singular behavior when ( nears zero. The last two sets of equations,
if merged, lead to System (6.3) relating Z; and Zy with Z and h. However, the
formulation involving ¢ and z — Egs. (6.4) and (6.5) — is most useful to parameterize
the chemical database, since it directly links the flow properties to those of the pure
fuel and oxidizer streams, as is presented in the next section.

6.1.2 Chemical database

On top of the two parameters describing the mixture, a progress variable Y, is in-
troduced to account for the chemical reaction, forming a three-parameter (Z,h,Y.
or Zy,Zy,Y.) description of the chemistry. As in the FPI formalism, it is defined
as a convenient linear combination of certain mass fractions, e.g. Y. = Yco + Yco,,
varying monotonously along the reaction from fresh reactants to burnt products.

The reference chemical database which is to be generated must provide unfiltered
chemical fields in the form:

T(Z7h71/c)7 d)yC(Z,h,}/c), K(Za}%}/c)?
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using in the following the (Z, h) description for the mixing. Chemistry tabulation is
done as discussed in Section 4.2.3, for example through laminar flamelet computa-
tions.

Whatever the favored approach, the reactant mixture (set, for example, as the
fresh gas condition for a premixed flamelet or as the initial gas composition for a PSR)
is a mixture of the three inlet fluids, characterized by Z € [0;1] and h € [hpin; Pmax),
where huyinjmax = minjmax(hy, b, hecr). The species composition is obtained from
(Z, h) through:

Yi(Z,h) = (Yigar + (1 =) (ZY;OF + (1 —2)Y0,) (6.7)

where ¢ and z are obtained from Z and h via System (6.5).

6.2 Reactor configuration and timescales compu-
tation

In this study, the REOXAL burner was simulated with the RANS approach, using
the commercial software FLUENT®. All computations presented here were per-
formed in conditions which the modeling team at Air Liquide had already used, with
other combustion models, and from which they had obtained meaningful results.
Following the methodology used for the jet flame, the study starts with exploratory
runs performed in cold flow conditions: the combustion model was switched off. The
main modeling task is to analyze the mixing parameters Z and h structure vs. the
residence time T, S0 as to design injection laws for a PaSR which would reproduce
the observed flow behavior.

6.2.1 Flow topology

The present burner is composed of five inlet streams, as illustrated in Fig.6.2. Fuel

external EGR

internal EGR
external O2 g ) )
internal recirculation
natural gas
internal O2 |REES>--------=-====--s--mmssssmsemsimnonan

(symmetry axis)

Figure 6.2: Schematic of the inlet streams. Full coloring: straight injection; streaked col-
oring: swirled injection.

issues through four circularly positioned nozzles at the chamber bottom. Oxidizer
is brought in through two inlets: a jet nozzle positioned on the axis (internal O,),
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and a circular swirl injector surrounding the fuel inlet points (external Oy). The
REOXAL burner is completed by two streams of warm recirculating gases (EGR)
injected through circular swirling nozzles.

The burner is 90 °-periodic in the azimuthal angle direction. In the following, all
views of the computed fields in the burner are presented on two planes, one on a fuel
inlet, the other a bisector between two of them, see Fig.6.3.

plane 1:
superposed with fuel inlet

plane 2:
fuel inlet bisector

inlet side

symmetry axis
Figure 6.3: Outline of the computational domain and display planes.

A study of the velocity field reveals two recirculation zones. The first one, ex-
pected like in all confined chambers where the momentum injection is performed
close to the symmetry axis, is a toroidal “dead zone” at the chamber bottom, near
the enclosing walls. The second one, whose role in the mixing behavior will be em-
phasized by this study, is caused by the swirling pattern of the gas injection and
creates a movement of fluid from the center of the chamber in the upstream direction
and towards the symmetry axis. These two zones are visible in Fig. 6.4, where the
negative axial velocity areas have been highlighted.

Figure 6.4: Average axial velocity field: zero-isoline shown in white.

The two mixing-describing scalars Z and h are plotted in Figs.6.5 and 6.6. A
scatter plot of their computed values across the full flow region is displayed and
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analyzed in Fig.6.7: the points are enclosed within a convex, triangular structure
whose vertices correspond to the three inlet streams compositions. It may be noted
that the EGR inlet point is below the Ox—F mixing line, confirming that the enthalpy
of the EGR stream is lower than that of the adiabatic mixture of Ox and F in similar
proportions.

Figure 6.5: Average mixture fraction Z field.

Figure 6.6: Average enthalpy h field.

Already some remarks on the mixing structure can be made from Fig.6.7. The
Ox—F and Ox-EGR mixing lines are populated; not the third edge of the triangle,
the F-EGR mixing line. This indicates that no direct mixing between the EGR and
the fuel streams occurs in the flow, and is easily corroborated by a look at the burner
geometry: the fuel pipes are separated from the EGR injection by the stream of
external O,. Moreover, a denser pattern may be observed along a straight line that
connects the oxidizer point and a point indicated by an asterisk in Fig. 6.7. The latter
corresponds to a mixture in stoichiometric proportions and an enthalpy higher than
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Figure 6.7: Scatter plot of the average mixture fraction Z values in the flow vs. enthalpy
h. Asterisk: point corresponding to the tip of the internal recirculation zone.

the EGR. A study of the flow reveals these are the properties of the fluid where the
internal recirculation zone mentioned above reaches the injection zone, between the
internal O and the fuel injectors. The role of this recirculation zone in the mixing
pattern in the flame region turns out to be pivotal and is further examined in the
coming sections, thanks to the use of the residence time.

6.2.2 “Standard” residence time

In order to develop the FCCT modeling of the present problem, a first computation
of the residence time T,¢ is performed in the RANS solver. This is done as prescribed
in Section 5.2.5, through the resolution of a convective—diffusive equation of source
term p. For the moment no specific restriction on the source term is imposed, and
the inlet values are set to zero, so that 7, is literally the average time spent by
the fluid particles in the chamber starting from their injection. With these settings,
the residence time is referred to as “standard”. A snapshot of its field is shown in
Fig.6.8. Its structure reveals the different injection velocities; along inlet streams of
high velocities, the residence time increase needs longer distances and is therefore
smaller than in the slower injection zones. Despite the highly diffusive character of
the RANS simulations, the occurrence of recirculation is faintly visible in the zones
where T, increases in upstream directions, as highlighted in Fig. 6.8.

Structure of the mixing

In a fashion similar to the study of the simple jet configuration (Section 5.2.5), the
mixing behavior of the flow is plotted wvs. the residence time. Here, as mentioned
earlier, mixing is described by a set of two parameters, Z and h, so that the plot
must now be three-dimensional. As was done earlier with a (T..s, Z) scatter plot,
a (Tres, Z,ﬁ) scatter plot is thus built, expanding the previous (2,%) plot, Fig.6.7,
along the 7, direction. This is presented in Fig.6.9.

Inspected with the information brought by the residence time, the mixing patterns
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Figure 6.8: Average field of the standard residence time. Zero axial velocity isoline is shown
in white.

appear with more clarity than in previous Fig. 6.7. At a first glance, two observations
can be made: first, the earliest mixing takes place on the Ox-F and Ox-EGR lines
(looking at the T,es = 0 plane); second, the mixture is all but fully homogenized when
Tres Teaches the value 7., indicated on the plot in Fig. 6.9, and its properties (Z *, ﬁ*)
remain thereafter approximately constant. The long streak of points corresponds to
flow parcels mixing with each other and growing older without significant evolution of
their properties. A slow decrease of the enthalpy h along time (as the residence time
increases) is actually visible, corresponding to heat losses at the walls. At any rate,
the role of the internal recirculation zone — denoted from here on by IGR (Internal

Gas Recirculation) — may now be examined by considering the 7,5 € [0 : 7,%5] interval.

The triangle formed by the (Z,h) scatter is now extruded in the Ty direction,
into an approximate tetrahedron of vertices Ox, F, EGR and the new point IGR =
(Z*,h*, 7). As a completing point of view, the three-dimensional scatter is plotted
in Fig.6.10 as intersections with constant-7,.s planes. The scatter repartition is not

uniform, but rather displays the following structures:

e (1) and (1)’ the two already mentioned lines, markers of a very quick mixing
between Ox and F, and between Ox and EGR.

e (2) a dense, elongated cluster of points along the Ox-IGR line indicates a
distinctive mixing pattern between the two streams, one issuing from the central
O, the other coming in the reverse direction from the inside of the chamber. It
corresponds to the dense line mentioned in the analysis of the 2D scatter plot
(Fig.6.7).

e (3) a group of points is spread mainly on the triangle F-Ox-IGR, but at posi-
tions near from the Ox-EGR-IGR plane, fills the inside of the zone separating
the two planes.

e (4) the triangle joining the Ox, EGR and IGR vertices is filled with points, in
a shape separate from structure (2). It corresponds to a mixing between the
Ox-EGR line mentioned in (1) and the internal recirculation IGR.
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Tres

Figure 6.9: Scatter plot of the resolved (Z ,E) vs. the resolved residence time Tres In its
standard version, left: 3D views, right: schematized features.

This structure is complex and the difficulty to describe it matches the complexity of
the flow itself close to the injectors. Yet unclear is the exact way in which mixings
(3) and (4) occur, which could appear more clearly if more insight were had into how
the Ox-EGR-IGR triangle is filled, and into how points streaking from the F vertex
blend into the latter.

Basis of the FCCT formulation

However, from the results just obtained, the framework of the PaSR formulation that
should be involved in an FCCT table computation can already be outlined.

Four limit conditions must be used: the expected burner inlet conditions Ox,
F and EGR, and the additional IGR which, it was seen, plays the role of a limit
point in the mixing pattern although it is not a physical inlet of the burner, but
is rather due to the flow geometry. To be considered a valid inlet, useable in the
PaSR model as an input condition, one condition must be satisfied: it should be a
homogeneous fluid of known composition. One may quite safely assume this is the
case here, because the IGR point is the result of a long recirculation history, in a
zone where it is verified that the average fluctuations are very weak, and therefore
has had the time to become homogeneous.

Still, the presence of this fourth “boundary condition” fluid, the internal recircu-
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Figure 6.10: Scatter plot of the resolved (Z ,}VL) vs. the resolved residence time Tyes in its
standard version, plotted on constant T,es slices, whose values are indicated in
seconds.

lating gases, is not a seamless addition to the reference situation, studied earlier, of
the fuel jet in an oxidizer co-flow. Actually, the age of the IGR, 7, is non-zero and

this creates a practical difficulty in the exploitation of the (Z, h, Tyes) scatter plot, as
explained here.

The mixing structure of a set of two streams 1 and 2 with zero-age limit conditions
(Tres1 = Tres2 = 0) and mixture-describing properties @) < ()2 is always shaped, in
the (Tres, @) space, as in Fig. 6.11(a): the scatter plot is bounded on the lower 7, side
by the straight line 1-2, and on the higher 7, side, by a curve C. The characteristic
width of the shape in the T, direction is denoted by A7,. This was true in the
jet situation, and, adapted in three dimensions, it would be true for the three-inlet
conditions studied here if no internal recirculation took place.

In the event of one or more boundary conditions of non-zero age, the scatter
plot limit on the lower 7, side is still the line or plane joining the inlet points,
which corresponds to an infinitely fast mixing between their respective streams (see
the study of mixing vs. aging in Section 5.2.5), but is just not the 7., = 0 axis
as previously. Compared with the all zero-age inlets situation, the width A7 is
unchanged, as illustrated in Fig.6.11(b). Yet it is the departure from the infinitely
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Tres Tres

Figure 6.11: Schematic description of the mixing patterns seen in the (@, Tres) Space, where
@ is a generic mixture-describing quantity. (a) all zero-age inlet conditions;
(b) non-zero age inlet. Dash line: infinitely fast mixing line.

fast mixing line that must be captured to design the 7,; law. And, in practice,

attempting to design 7i,; laws appropriate for reproducing the (T.es, ) pattern (see
Section 5.3.3) becomes difficult if ATyes < MaX;£j|Tresi — Tresj|, ¢, standing for the
possible inlet conditions. In this case, the age variations due to aging are small
compared with those due to the reduction of the large-scale age gradients, possibly
becoming impossible to capture in a strongly diffusive simulation: the numerical
error on the residence time field may be of the order of the shift induced by the aging
process. Put differently, this may arise when the source term (one), in the residence
time equation (5.15), becomes negligible in comparison with the diffusion terms, a
condition coming down to:

max (“Z %a& > 1, (6.8)
where u, L and D.g are characteristic velocity and length of the zone of interest, and
a measure of the computational diffusivity, a sum of the molecular, turbulent and
artificial diffusivities.

In the scatter plot of the present case, obtained in RANS, this problem is encoun-
tered. In Fig. 6.9, it is visible that almost all points seem to approximately snap on
the faces of the Ox~F-EGR-IGR tetrahedron, with a characteristic A7, >~ 0.03s,
while the IGR residence time 7%, is of the order of 2s. The error level linked to the
numerical scheme and due to the large variation range of the residence time in the
mixing region hides its variations caused by the aging source term, the ones that
must be captured.

To summarize, the internal recirculation, leading old fluid to mix in the zone of
interest with freshly injected matter, hinders an accurate capture of the departure of
the (Tres, Z, h) from the instantaneous mixing behavior. A strategy to address this
problem is described in the next section.

6.2.3 Dealing with the internal recirculation

The objective is to emulate a situation where the four problem inlets — here, the
only stream not verifying it being the internal recirculation — would be of age zero.
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This can only be achieved by modifying the transport equation of 7., outside the
zone of interest, which is successfully done as detailed in the first paragraph. The
mixing structure can then finally be studied with sufficient accuracy and the results
and implications in terms of FCCT formulation are subsequently examined.

Relaxation of the residence time to zero

The FCCT table data are, strictly speaking, only required in the zone where the
burning and the mixing history leading to it occur. Out of it, the key phenomena
are independent of the turbulence-chemistry interaction; in particular in the burnt
gases, downstream of this interest zone, the controlling phenomena are rather inert
mixing, as well as, if they are activated in the simulation, radiation and energy loss
at the walls, and a simplified description of the unclosed terms may be used.
Therefore, liberty is taken to modify the equation for the residence time outside
the zone of interest. In order to force the residence time to be zero as the IGR
reaches the zone where it comes in contact with the inlet streams, the source term
in Eq. (5.15) (p) is replaced on a domain Syecire. by a relaxation term towards zero:

N — TTGS

S =- .
p res pﬂelax

(6.9)

Several attempts in fixing Ticax Were necessary and the extent of the recirculation
domain S,ecire. Wwas defined as the points for which Z and h were each between con-
veniently chosen intervals.

With these settings, the standard transport equation for the residence time, with
p as the source term, is still fully verified in the zone of interest!. Everything hap-
pens, within its boundaries, as if there were four physical inlets, of age zero and of
determined mixture-describing properties (Z, h).

Defined this way, the residence time is referred to as “relaxed”, its notation un-
changed. Unless explicitly mentioned, it is this definition which is used in the follow-
ing.

Results

The resulting scatter plot of the mixture fraction and enthalpy ws. the relaxed res-
idence time is shown in Fig.6.12. As was the purpose of the modification in 7,’s
definition, the structures linked to the aging are much more visible than previously.

First of all, the four limit points are all located on the zero-age plane, and any
point found with 7.5 > 0 corresponds to a flow parcel which has aged as it was
formed by the mixing of the streams coming from the inlets, be they physical (Ox,
F, EGR) or emulated as such (IGR).

Expectedly too, the variation amplitude in the 7, direction has drastically dropped:
the majority of points, forming the main structure as described in detail below, have
a residence time between 0 and A7.s =~ 0.035s. This 7, variation, exclusively due
to the aging from an initial zero value, was already discernible on the former plot,

Keeping in mind that the use of the FCCT data will be restricted to this zone. Elsewhere in the
flow, invoking a more simple closure will be possible, with for example an equilibrium hypothesis.
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Figure 6.12: Features of the scatter plot of the resolved (2 ,E) vs. the resolved residence
time Tyes, in its “relaxed” definition, Eq. (6.9).

but only unreliably, since it was eclipsed by the mixing between non-zero, large age
properties (the order of up to 2s).

The remaining points form a structure which is the trace of the former streak of
points, seen in view (a) of Fig.6.12; they correspond to the zone of the flow where
the relaxation source term is used. With the relaxed residence time, the maximum
age reached is 0.3s; it is visible that some mixing occurs between these points and
some from the main structure, but it occurs outside the critical region where the
turbulence-reaction interaction must be described, downstream of the flame.

The main structure is seen in view (b) of Fig.6.12. The study conducted in
Section 6.2.2 may be refined. Structures that appeared as thick straight lines in
Fig. 6.9 because of the poor resolution due to the non-zero age inlet values are now
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more clearly identifiable; they will provide quantitative information about the rates
at which the engulfment of different parts of the flow into each other occurs, and
therefrom about how to define the 7,; law in the FCCT reactor.

e the mixing between Ox and EGR, which was one of the straight lines (1) with
the standard definition of the residence time, is now visibly spread as a structure
bounded in the low T, by a parabola-like curve, of apex at T,es >~ 0.002s. The
structure blends itself with other point structures as T, increases.

e a coherent set of points links the Ox and the IGR limit points, forming a
parabola-like streak, of apex about 0.03s (identified by ‘M’ on the graph) and
with a T thickness about 0.003s. This corresponds to structure (2).

e the blending of F into the rest of the flow may be seen this way: part of it
mixes instantly with the external O stream (points are seen on the Ox-F
line previously denoted by (1)’, embedded in the 7T.s = 0 plane); this pattern
appears unchanged by the definition of the relaxed 7,.. But it is only a part of
a larger engulfment pattern of F into the mixture formed by Ox and IGR; seen
in Fig.6.12, the points spread on a manifold from F to the Ox-IGR parabola
(2), along two asymptotes: on the low T, side, the plane F-Ox—M, and on the
other side, the IGR-M branch of the parabola. A parabola-like bounding curve
links points F and IGR, with an apex at T, >~ 0.012s. This is still identified
as pattern (3).

e the remaining points, matching the previously introduced pattern (4), are link-
ing the Ox-EGR faster mixing limit (1) with the bulk of the F-Ox-IGR points
as they approach parabola (2).

The study of this plot allows for establishing a schematic representation of the
engulfment pattern in the region of interest, presented in Fig. 6.13.

Figure 6.13: Schematic description of the engulfment process as interpreted from the
(Z,h, Tres) scatter plot of Fig.6.12. Illustrating example in the legend box:
stream A mixes with stream B.

Now that the patterns describing the mixing between the different inlet streams
have been highlighted, the settings of the PaSR to be implemented in an FCCT
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computation may be defined. Given the complexity of the flow, the simple one-
reactor two-inlet model used in the jet flame configuration will prove insufficient, as
explained in the section below.

FCCT: multiple-PaSR modeling

The first difference with the jet flame case, already pointed out, is the larger number
of limit points, four instead of two.

It would be possible to design a four-inlet PaSR. However, it also appears that
using a single reactor cannot reproduce the engulfment patterns seen in the flow by
the study of the (Z, h, T.es) behavior. Considering the fuel and EGR streams enables
to understand why: as illustrated in Fig.6.13, F fluid particles get in contact with
EGR fluid particles not earlier than at stage (4). This occurs only after F first mixed
with the external Og stream (1)’; itself mixing (3) with the Ox-IGR stream (2); and
after EGR mixed with Oy (1). In a single reactor approach, it is impossible to put
into contact two mixtures that are all not in the pure boundary conditions. Thus,
fresh F could be injected into an Ox-EGR mixture, or pure EGR into a F-Ox-IGR
mixture; it would be impossible to render the complex mixing history just described.

Instead, a network of inter-connected PaSR could accomplish this task. Let us
consider the reactor configuration presented in Fig.6.14, which is designed so as to
closely match the pattern schematized in Fig.6.13. The reactor numbering matches
that of the engulfment patterns distinguished in the schematized flow.

Actually putting into practice and validating this model has not been completed.
Because of that, and although it is the simplest structure that may be considered
given the complexity of the flow, it can only be meant as a sketch of an actual
procedure to finally obtain an FCCT table ¢(Z, h, Yz, Tres, Tmix)-

Still, before any practical validation, some properties that should be assigned
to the injection between the reactors can be foreseen here. Some are just working
hypotheses — unverified — about the optimal settings:

e The reactor whose joint (Z, h, Y,)-distribution should be used to build the out-
put is reactor (4). With an appropriate repartition of the injections, the content
of any of the upstream reactors can be directly transferred into this reactor,
since it is positioned at the output of the network.

e Each reactor (k) is piloted by its own micro-mixing, injection and reaction
processes, with laws which could be designed for the mixing time T &) and
injection time Tiyj ). Setting individual levels of 7, for each reactor would
actually match the different intensities of turbulent mixing occurring in the
flow. Yet, for simplicity reasons, a uniform, constant law of 7,,,;, could also be
set, as was done in the jet flame case, and the non-linearity induced by the
interaction of mixing with reaction could be compensated by a constant i
(see Section 5.3.3). As was said earlier, accounting for more realistic mixing
time histories is one of the main prospects of improvement of the method, which
promises a more rigorous coupling between the flow and the PaSR modeling.

Other settings may be strictly deduced from the information provided by the (Z , }Nl, Tres)
scatter plot. Some examples are given:
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Figure 6.14: Proposed structure of a PaSR network that would reproduce the engulfment
pattern schematized in Fig. 6.13.

e The shape of the curve bounding the set of points (1) on the low T, side, which
can be parameterized as

with 7(1) =~ 0.002s (see the description of structure (1) with the relaxed resi-
dence time definition), imposes that the injection rate be bounded by a max-
imum value. In terms of the injection timescale 7y, (1), it should not cross a
minimum value, such a condition may be derived as depending on parameter
x and on what fluid is injected:

MIN

Ox injection : 7y (z) = 47z(2 — 37) (6.11)
EGR injection : Tlll\l/gﬂ(\i)(x) = dry(1—2)(3z—1). (6.12)

e Similar properties may be deduced on the mixing in other reactors. In (1), the
injection must be considered virtually instantaneous and the contents of the
reactor quickly injected forward into reactor (3). In (2), the compact shape on
the scatter plot indicates that the interval [7’%{%, 7%{*(%] must be narrow. In

(3), the fluid particles from (1)’ should be injected only if the contents coming

from (2) correspond to the branch IGR-M of the parabola (2) linking IGR and

Ox, that is if they are comprised dominantly of IGR.
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6.3 Conclusions and prospects

In this chapter, the possibility of applying Flow-Controlled Chemistry Tabulation to
a three-fluid problem, namely the simulation of an Air Liquide REOXAL burner, has
been assessed. A discussion on mixing parameterization was held. One specificity of
the configuration is the presence of an internal recirculation current, that leads to
four, rather than only three, limit conditions in the mixing patterns. The definition
of the residence time was modified to make the structure of the flow in the mixing—
residence time space more discernible. When it comes to modeling, the simple one-
reactor approach considered in Chapter 5 turns out to be insufficient and a complex
reactor network must be built.

The method followed in this chapter to study the mixing patterns in a non-reactive
context could be systematized and extended to other three-fluid configurations with
internal recirculation. However a large number of unknown remains to reach a com-
pletely operational FCCT table: interesting further work would be to study the tur-
bulence intensity patterns through the instantaneous and trajectory-averaged mixing
times, to determine, even with simple assumptions, mixing and injection timescales
for each reactor of the network. A first FCCT table for REOXAL could be generated,
and the flame structure obtained in a simulation be examined to assess the potential
of the method for such a complex flow.
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Conclusions

In this PhD work, two aspects of the numerical turbulent combustion activity have
been addressed: with the SAFIR flame simulation, a technically complex case aiming
at the numerical simulation of a multi-physics problem has been built; with FCCT, a
theoretical framework meant to extend the reach of turbulent combustion modeling
capabilities has been developed and validated to a two-fluid problem.

The simulation of one configuration of the SAFIR experiment is, to date, the
first LES of a spray flame with tabulated detailed chemistry, and the first to reach
such a spatial resolution. It called for the development of a number of numerical
tools (Chapter 2): a Lagrangian droplet evaporation model, a particle-aware load-
balancing approach, a numerical dispersed-phase statistics retrieval method, as well
as flexible particle injection algorithms; for the design of simulation strategies ad-
dressing liquid spray issues (Chapter 3); and for the application of turbulent com-
bustion models to this novel spray flame case (Chapter 4). Using the YALES2 solver
enabled to reach high resolution in both the treatment of the dispersed phase, with a
direct particle simulation of the spray, and of the gaseous phase, with a 215-million-
cell grid. There is room for improvement, as detailed in the conclusions of Chapters
3 and 4, in particular because the spray injection had to be strongly adapted to
reach realistic flame structures. Direct numerical simulation of the injection zone
very close to the nozzle could provide valuable information on the turbulence prop-
erties and be used for improving the subgrid-scale spray—gas coupling. As far as
turbulent combustion modeling is concerned, it was seen that none of the two scal-
ing laws used for the variances enables a full capture of the flame structure: either
the lift-off height is recovered (linear, “gradient” model) or the flame front structure
is correctly predicted (quadratic, “mixing” model). It should be possible to assess
variances through balance equations, although modeling of some of their terms, in
this two-phase context, does not appear to be obvious. Else, other turbulent com-
bustion modeling frameworks, requiring no input of variances, could be invoked, such
as those based on thickened or filtered flamelets [Colin 00, Fiorina 10]. At any rate,
the results call for an extension of the present simulation case to other dilution levels
and other co-flow velocities, in particular to attempt at recovering the various flame
types studied experimentally on the SAFIR bench.

FCCT is a novel approach to describe turbulent non-premixed combustion, through
timescales linked to the fluid particle trajectories and the characterization of the
turbulence—chemistry interaction. Applied to the two-fluid reference case of the
Cabra et al. jet flame, it led to statistics comparing very satisfactorily with the
experimental results. Yet the model will benefit from further work on some points:
in particular, it is necessary to collect more information on the mixing time history
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patterns. A possibility is to make use of the detailed tracking method presented in
Section 5.2.3; alternatively, a refined Euler-Lagrange computation could be run with
YALES2 to collect individual particular histories and have input for improved PaSR
modeling. A study on the effect of the mixing model on the FCCT results would be
interesting: here EMST was used but other models such as IEM or modified Curl
models could be tested. Other improvements could come from including ‘age’ in the
localization space for such models as EMST; a DNS study would provide the basis
for assessing whether and how this should be implemented. In particular, the vari-
ation of directional weighting in the EMST mixing space could be the object of an
interesting sensitivity study. Age, or the residence time, could also prove a relevant
conditioning variable for turbulent combustion models such as MMC.

Chapter 6 shows that the extension of FCCT to more complex configurations
is not straightforward. However, with work conducted on both the SAFIR simula-
tion and the FCCT approach, the latter could be a possible modeling framework to
eventually tackle the spray flame problem. It would be valid as much in the case
addressed here where no dilution effects are observed, as in the more complex case
where, stabilized father downstream, the flame is diluted by the recirculating burnt
gases.

As more advanced technological solutions are developed to address ever stronger
environmental challenges, the way REOXAL was for the flexibility needed in the con-
text of boiler revamping, simulated problems will grow in complexity. Two directions
are being taken as a response. On the one hand, increased computational capaci-
ties, with faster and more numerous processors — and the software solutions that
can take advantage of these evolutions — enable to increase spatial resolution and/or
the physical duration of the resolved problem; the present work on the SAFIR flame
simulation belongs to this train of high-resolution computations. On the other hand,
the development of approaches that can both account for complex phenomena and
retain a reasonable computational cost (both in terms of number of processors and
of process memory) is necessary, for all actors may not quickly be able to dispose of
extended computational resources; the development of FCCT belongs to this second
category of solutions. At any rate, the two approaches respond to each other, as the
former high-resolution simulations enable to explore scales at which information is
often useful for developing the latter modeling solutions.
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Appendix A

Particle size distributions

A.1 Link between number and volume distribu-
tions

The classical inlet particle diameter distributions are given in two categories: number
distributions (subscript 0) and volume distributions (subscript 3). All of them are
functions of D the diameter, and verify, if denoted by f,

/oo fu(D)AD = 1. (A1)

However they do not describe the same properties. The corresponding cumulative
distributions (cdf), denoted by F', and defined as

D)= [0 (D)= FD), (A2)

characterize:

e (D) the ratio between the number of droplets of diameter < D and the total
number of droplets

e [(D) the volume ratio occupied by the droplets of diameter < D.

The definitions imply that, if the number distribution f; is known, the volume
cdf verifies

S8 fe(8)ds
F3(D) = W (A.3)
so that D* (D)
f3(D) = 175 o(0)d0 (A4)

In the other way, Eq. (A.4) gives us that fy is proportional to f3; the constant is
necessarily determined from the condition [ fo = 1:

_ fs(D)/D?
fo(D) = ™ 12(0)/5°05 (A.5)
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A.2 Normal and log-normal distributions

A.2.1 Definition

Normal distribution. It is a classical definition, used here as an intuitive number
distribution:
1 1/D—p\?
fo(D) = exp | — = < “) . (A.6)
2o 2 o

Log-normal distribution. In this distribution, In D follows a normal random law

fo(D) = ﬁexp <_% (ln(iﬂ) ) | (A7)

The parameters may be named as follows: D* is such that ' = In D* is the
log-mean diameter, that is the mean of the random variable In D; while ¢’ is the
standard deviation of In D.

A.2.2 Properties and alternative parameterization

The mean and standard deviation of the random variable D, respectively denoted by
M and S, verify:

— * o’?
R (A5)
S = D*\/e (e —1)
The inverse of this system reads
. M
1+ (S/M)? (A.9)

o' = I+ (S/M)?)

and M and S can therefore also be input as parameters to define the log-normal
distribution.

A.2.3 Generation of normal and log-normal distributions

If u; and uy are two independent variables following uniform laws on [0; 1], then the
random variable

r = pu+ oy —2Inwu; cos(2mus) (A.10)

follows a normal law of mean p and standard deviation o. y = exp x with conveniently
defined mean and standard deviations provides the desired log-normal distribution.
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A.3 The Rosin—Rammler distribution

A.3.1 Definition

It is defined, in Babinsky & Sojka [Babinsky 02] as well as in Wikipedia (Weibull
distribution), from its volume distribution

F3(D) =1— e P (A.11)
k—1
o) =5 (F) e (A12)

(implying that Eq. (11) in [Babinsky 02] is actually f3 not f;) where A is the mean
particle size, and k a measure of the particle size spread.
Let us determine fy. Introducing first the denominator integral

[ = / " (0)/6%do

= % T ki@ g5
0
= {variable change u = §/\,dd = Adu}
k; & k—4 — k
= — u e " du
A% Jo
— {variable change x = u*, du = dz/(ku*"")}
[ Ry
= — x e dx
A% Jo

1 3
= Fr(—EH)

Plugging this into Eq. (A.5) leads, for the number pdf, to the expression:

D73k,)\7ka71€7(D/>\)’“

fo(D) = -
L KD\
O T(=3/k+1) A\ A
In turn, the number cdf reads:
1 [ "
Fo(D — 6k—4 —(6/X) ds
D) = T Ak—3/0 ‘

— {variable change u = (6/\)*,dd6 = (\¥/k)d'*du}

23 (D/X)F ,
= m/ 0" tdu

1 (D/X)F 3/k
e —3/kg—uq
T(—3/k + 1) /0 woe d
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A.3.2 Properties

While A is the mean of the f3 distribution, the arithmetic mean diameter d, is equal

v [(—2/k + 1)

TR (A.13)

dyg = / N Fo(6)8d8 = A
0

A.3.3 Simulation of a Rosin—Rammler distribution

The volume distribution f3 may easily be simulated thanks to the remark that if
u is a random variable uniform on [0; 1], then the random variable A(— In(u))"/* is
Rosin-Rammler distributed with parameters A and k. Indeed, if v = A(— In(u))"*,
then u = exp(—(v/\)¥), which has the desired cumulative distribution (1 — F3).

The simulation of a variable of law fj is not as straightforward. It actually follows
a modified Gamma distribution. Introducing the lower gamma function

T
v(s;x) :/ u¥ e du
0
the expression for Fiy may be reformulated

v (=3/k + 1;(D/\)¥)
T(=3/k +1)

Fo(D) = (A.14)

Property : if Y is a random variable on [0; co) whose cdf is F'(y), and if g : [0 :
o0) — [0 : 00) is an increasing function (thus bijective), then X = ¢~ '(Y") follows
the law of cdf F' o g (and therefore of pdf ¢’ x f o g).

Here is an algorithm to simulate fy (see Wikipedia, incomplete Gamma function).
One defines 6 as the fractional part of —3/k + 1, so that

3 3
s=1-3-|1-3].

1. draw a, b, ¢ three independent uniform variables on ]0 : 1]

£=10b' n=c& 1l ifa<e/(e+d)

2. deﬁne{ gzl—lnb 7’]:66_5 else

3. if n < €7 1e~¢ then choose ¢ and exit. Else loop again from 1.
The result of this loop is € which follows I'(9, 1). Take

[1-3/k]
Y=¢— > WU ~y(-3/k+1) (A.15)

=1

where the U; are independent uniform variables on (0;1]. The final variable is then
obtained by
D=\YYVE~ fy. (A.16)
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A.4 The Nukiyama—Tanasawa distribution

A.4.1 Definition

It is defined from its number distribution
fo(D) = KpDPe= P/ (A.17)

where Kp is a normalizing constant equal to

q

Ko = o
q

[ts cumulative distribution may then be expressed as

rpy (%Fl( p(i;mq)

q

(A.18)

A.4.2 Simulation of a Nukiyama—Tanasawa distribution

It may be performed in a similar way to the Rosin-Rammler distribution, as was
remarked by Gonzélez-Tello et al. [Gonzélez-Tello 08]. Therefore, the generation of
these distributions is merged. Three parameters are used: A, p and ¢, with Rosin—
Rammler a specific case where p = ¢ — 4.

A.5 Discrete distributions

A.5.1 Unweighted

The diameter may take a finite number n of values, D; < --- < D, each with
(number) probability p;,i = 1,...,n. The relation

Zpi =1
i=1

is verified. The number probability may formally written

fo(D) =Y pid(D = D). (A.19)
i=1
From this data, the cdf is a discontinuous function, defined by
0 it D < Dy
Fo(D) = ¢ 2% p; if Dy <D < Dy (A.20)
1 if D> D,
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A.5.2 Weighted

In YALES2, an array of weights correlated with the diameters may be supplied. They
are defined as w;,7 = 1,...,n and respectively applied to the weight of each category
of particles. At this point the physical number of particles must be differentiated
from the computational number of them.

The physical distribution is not modified, thus the p; must be given unchanged.
The physical number of particles of diameter D; is denoted by /NV; and its average
verifies (N;) = p; > N; = p;N. If the computational number of particles is in turn
denoted by N/ and defined as N = N;/w;, the following relation holds:

() =2 (A21)
so that class #i of weighted particles is given a probability p;/w; instead of p; for the
matching unweighted particles.

Now looking at the computational probability of each class, needed for generating
the weighted distribution, one introduces the total number of computational particles
N*=>" N. The computational probability of class #i is

Pl = <Nz*> _ pi/wz’ (A.22)

N+ E?:l pijw;

Thus, the same procedure as the unweighted case is used, except the particles diam-
eters are drawn with the probabilities p; and individually weighted with w;.

A.6 Histogram distribution

Exactly the same procedure may be carried out, except once it is determined that
class #i is the result of the draw, the output variable must be uniformly drawn on
an interval [D;; D;yq].
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Appendix B

On tabulated source terms

This appendix aims at illustrating that the tabulation of chemical quantities by
the resolution of archetypal problems, as described in Section 4.2.3, leads, in the
parameter space, to specific behaviors and do not collapse on each other. It shows in
particular that a temperature source term 7YY (ZY,) obtained from an unstrained
laminar premixed flamelet resolution is different from that obtained from an auto-
ignition computation, TA(Z,Y,). The former must therefore not be used to create a
turbulent auto-ignition table, and vice versa.

B.1 Laminar premixed flamelets and homogeneous
reactors, native equations

The laminar flame equations read, in space coordinates and with convenient assump-
tions and notations:

oy, :
Pt o VY = Y- (pDVYn) + o (B.1)
T 1
p=r +pu-VT = —V-(AVT) +wr (B.2)
ot Cp

where

Writing them in 1D and assuming stationarity leads to the laminar premixed flamelet
equations:

aY,, 0 aY,, _

poSL_@x = 5 <pD—ax ) + Wi, (B.3)
oT 1 0 oT )

PGy T on (Aa_> o (B4)

since pu = pgSy, is a constant.



APPENDIX B. ON TABULATED SOURCE TERMS

The homogeneous reactor equations are much simpler:

Y., ,
oT :
pa = Wr. (BG)

The purpose of this appendix is to quantify the difference between the source
terms w,, and wr when expressed as functions of the tabulating parameters Z,Y..
From here on they are differentiated by the notation P for premixed flame and 4! for
auto-ignition. For simplicity reasons the mixture fraction is fixed in the following:
the initial states of both the premixed flame (fresh gas limit condition) and the
auto-ignition problem (initial condition) are identical.

B.2 Rewriting in the progress of reaction space

A progress of reaction Y. is defined as a linear combination of the species mass
fractions, and therefore verifies

Y, 1 (0 [ O\ . e
dr — poSi (£ (pD 31’) e ) (B7)

within the premixed flame context, and

Y.
_ B.
ot e (B2

for the auto-ignition problem.

The following discussion is carried out only for the temperature equation, but can
equivalently be applied to the species components. The temperature equations are
rewritten in the Y. space. For the premixed flame, it becomes

T .pp A [(OV.NPT oy
oY, _cp(ax> gy

so that introducing the scalar dissipation rate of Y,

NN AN
w= o (5) (B.9)
leads to ,
oT 0T

In turn, the auto-ignition equation reads

oT . .
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B.3. CONSEQUENCES ON MODELING

B.3 Consequences on modeling

The laws of thermodynamics state that there is a unique equilibrium temperature
for a given initial state. This applies to the two cases of a premixed flame and a
homogeneous reactor. Consequently, the temperature increase AT in a flame with a
cold gas mixture of given temperature T and equivalence ratio ¢
) 0*T
yes WIT + XY Ay

2
AT = OV gy, (B.12)
Y0 wEF

is equal to the temperature increase of this same gas burning in a homogeneous
reactor
Y4 deI
AT:/ Lo ay,. (B.13)

Al
Yo We

c

Now let us consider a model in which a temperature is determined through this
equation

aT . )
where M is a term modeling diffusion and other phenomena. The temperature
increase reads similarly
yed
AT:/ wr tM gy (B.15)
Y9 We

c

If the source terms are taken from a laminar premixed flamelet table (meaning in
the above equation wy <+ WP and w,. < w!T), the difference in temperature increase
between this model and the expected temperature difference AT will read

0*T
eca M — —
M,PF M,PF Ye e oY ?
ATMPF AT = TMPF , v, . (B.16)
b Yo WPF

More specifically, if the premixed flame source terms are plugged into a 0D reactor
model (for which M = 0), the temperature difference reads

9T
Y, XY. A9
¢ e
" T, = /YO e Y. (B.17)
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Appendix C

Generic formalism for
multi-dimensional interpolation

All values obtained from the turbulent chemistry tables (PCM or FCCT) are com-
puted by multilinear interpolation. In the present case, the dimension is four (mixture
fraction, progress variable, residence time and mixing time) but a generic algorithm
is present in the code, enabling any dimension and paving the way to configurations
requiring more parameters.

C.1 Mathematical expression

Denoting the dimension by Ny, let a point z of coordinates z™M), 2 . . (N4 be
considered. These coordinates are positioned on the discrete grid in such a way that
there exist integers ky, ko, ..., ky, for which

Vi € [1, Ny, x,(;l) <29 < xlg?ﬂ ,

the @ denoting the coordinates in the i-th dimension. Point z is positioned inside
the hypercube defined by the indices k;.

Values of the quantity ¢ at the hypercube’s corners are known, there are 2™V¢ of
them, and they are denoted by

_ 1) (2) (Na)
¢k1+017k2+027~~:kNd+0'Nd - (b(xkl-i,-o-l? xk2+0'27 T 7kaZ+a'Nd)

where the o; are equal to either 0 or 1. If o; = 0, the hypercube corner considered is
on the “left” of z in the dimension ¢, if o; = 1, it is on the “right” of z. Let the set
of all combinations of N; 0’s or 1’s be denoted by § (of size 2", consistently). Then
the values at the corners may be written

¢k17/€2 ----- kn,.0os ges.

The sought result is the value of ¢ in z, which may be formulated as

¢(£) = Z Oég(z) ¢k17k2,~~~:kNd7£ :
ce§



APPENDIX C. GENERIC FORMALISM FOR MULTI-DIMENSIONAL INTERPOLATION

In the multilinear framework, the coefficients o, are equal to

Ny 1-— m if o; = 0
a/g(£> - :E(l) i—;(i) ‘ )
oo ifoi =1
L1 — T,

Ng S) _ .T(l)

— o " kito;
ag(z) = [J(=1) NORENG
i=1 ki1 k;

These coefficients verify

Vx, Z ag(@) =1.
ce§

C.2 Code implementation

Here is how this is implemented in the FCCT table generation code. In the header
file FCCT/com_FCCT. f, integer variables *_1linint are defined:

ndim_linint the table dimension Ny
power2 linint must be equal to 2V¢, this is checked
in initialization routine build_linint_basecoords
basecoords_linint array of dimensions (power2_linint,ndim linint)
contains all possible vectors of 0’s and 1’s of this size
(corresponds to the set Q)

An initialization routine build linint basecoords is first called which initializes
the 0-1-vectors basecoords_linint (they are actually the writing of all integers
between 0 and 2V — 1 in the binary base).

Then, when an interpolation is necessary, a call is made to routine INTERPOL,
which takes as input parameters, on top of the three ndim, power2 and basecoords
introduced above:

nfields the number of fields

X the coordinates of vector =
Xleft the coordinates of the “lower left” corner of the hypercube
Lhy ka,kn,

Xright  the coordinates of the “upper right” corner of the hypercube

lk‘1+1,k2+1,...,k‘]\]d+l
values  the values qbkl,kQ’_,,’kNd,g for the nfields different fields,
in an order consistent with that used in basecoords

and returns an array output of nfields values computed from the equations written
above.
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Appendix D

One-dimensional residence-time jet
model

A simplified steady one-dimensional formulation of the jet properties may be derived,
following classical results on the entrainment by Ricou & Spalding [Ricou 61] and
subsequent works [Lee 03, Enjalbert 09]. Based on self-similarity observations, axial
velocity and scalar profiles are assumed to be Gaussian in the radial direction, of
half-width b(z). In a constant-density configuration (pg the density of the inlet fluid
is equal to poo, that of the environment), the time-averaged fields are denoted by
(u)(z) and (7yes) (), omitting the radial r/b(x) dependency.

The evolution equations are based on mass and momentum flux balances on
thin transverse sets. The momentum flux is conserved, which leads to mb?*(u)? =
7(D/2)*u3, where uq is the bulk jet velocity. The mass flux conservation equation is
written thanks to an entrainment hypothesis, which states that the rate of incorpo-
ration of environment fluid by the jet, as it develops, is proportional to its centerline
axial velocity, so that

d(mb*(u))
dx
with a the entrainment constant, measured at 0.056 [Ricou 61]. This set of equations
leads to the well-known results of a linear spreading: b ~ 2az and a decreasing
velocity as (u) ~ ugD/(4ax).

As far as the scalars are concerned, similar balance equations may be written,
with an adjustment on the rate of spreading: the scalar half-width increases as 2\aur,
with A which was found of the order of 1.19. In the case of the residence time, a
source term is inserted in the rhs:

d(7 (u) (Tres))
dx
Building on the results on the half-width and velocity, this leads to
d(Tres)  4Avz®

dx uy

= 2amb(u) (D.1)

= 7b* . (D.2)

(D.3)

hence to

<Tres> ~ ( ha (D4)

3ugD)x?



APPENDIX D. ONE-DIMENSIONAL RESIDENCE-TIME JET MODEL

In the present case, the density is not uniform, the cold fuel injected in the center
is of density pp = 0.947 kg.m~? while for the warm coflow, po, = 0.2432kg.m 3. This
may be tackled by retaining the present formulation, considering p = p., everywhere,
and assuming only that the inlet diameter is modified to D* = \/po/psc D [Ricou 61],
thus preserving the initial mass and momentum flow rates. This leads to the final

result n
~ o Poo 2
res) ™ - . D.5
(o) ~ g\ 2 05)
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