Étude du renforcement et de la propagation d’entaille dans les élastomères renforcés - Archive ouverte HAL Access content directly
Theses Year : 2010

Reinforcement and tear propagation in reinforced elastomers

Étude du renforcement et de la propagation d’entaille dans les élastomères renforcés


The subject of this PhD thesis is the resistance to tear of reinforced elastomers. The general context of this work is related to the performances of reinforced elastomers, specifically silica reinforced natural rubber, as regards various usage properties : wear of tyre tread, fatigue and tear resistance of tyre flanks, etc. Wear and fatigue mechanisms are very complex. This PhD thesis is a first step towards understanding these mechanisms. We focussed on the parameters which control ultimate properties (resistance to failure, resistance to tear propagation) of uniaxially stretched samples. Reinforced elastomers are nanocomposite materials made of an elastomer matrix in which submicrometric filler particles or aggregates are dispersed. Adding fillers considerably enhances usage properties, specifically ultimate properties. Mechanical and physical properties qualitatively different from those of the pure elastomer matrix are induced: a strongly temperature dependent complex modulus, strong non linear effects (Payne effect), large dissipation, hysteresis, plasticity and long time recovery (Mullins effect). The material parameters which have an influence on the properties are: the nature of the elastomer matrix (natural or synthetic rubber) and of the reinforcing fillers (carbon black or silica), the volume fraction and dispersion state of the fillers, the nature and strength of interactions at filler-matrix interfaces.This work is an experimental study of the resistance to failure and to tearing of uniaxially stretched samples. The various systems which have been studied are presented first. Their mechanical properties have been characterized in the various regimes of strain amplitude. The various samples have been compared systematically in order to clarify the effect of the various material parameters.Natural rubber crystallizes under strain. This phenomenon is very sensitive to the formulation of the various materials and has a tremendous effect on mechanical and ultimate properties. Thus, we have measured quantitatively the amount of crystallinity induced as a function of the applied strain during elongation cycles and up to sample failure. The influence of the nature and volume fraction of the fillers and of the matrix-filler interfaces has been studied. The crystallinity is close to 13% in all studied materials. In samples filled with silica, the nature of the filler-matrix interactions (covalent coupling vs no coupling) has very little influence on crystallization, whereas it modifies strongly the mechanical properties.Then we have studied the resistance to failure of uniaxially stretched pre-notched test samples. Within a macroscopic approach, we have related the ultimate property (energy density at break) to the various tear propagation modes which are observed. We have studied the effect of temperature and drawing speed. It has been shown that the higher resistance to failure of reinforced natural rubber is related to the appearance of spectacular instabilities of the propagation direction (the so-called ‘tear rotation’). The appearance of tear rotation is specific to pre-notched reinforced natural rubber samples. The physical mechanisms responsible for tear rotation are not yet fully understood. The combination of reinforcement due to fillers and of strain-induced crystallization may lead to a strong anisotropy of the elastic material constant of the material in front of the tear tip, and this might be the driving force for tear rotation. The rotation length has been identified as an important parameter which correlates well to the ultimate properties. The tear propagation is described at various scales. The typical length scales associated to tear rotation which are observed have been related to the material properties.
L'ajout de charges (agrégat de taille submicronique) dans une matrice élastomère apporte des propriétés physiques qualitativement différentes de celles de la matrice pure : module complexe dépendant de la température, forts effets non linéaires, forte dissipation... Ces propriétés sont liées à la nature de la matrice et des charges, à leur fraction volumique, et enfin à la force des interactions charge / matrice. Nous présentons d'abord les différents systèmes et la caractérisation de leurs propriétés mécaniques, de façon à clarifier le rôle des différents paramètres.La cristallisation sous traction du caoutchouc naturel a un effet important sur ses propriétés mécaniques. Nous l'avons donc mesurée quantitativement dans chacune des formulations. Nous montrons que le taux de cristallisation à la rupture est toujours de l'ordre de 13%. La nature de l'interface silice / matrice a un effet sur les propriétés mécaniques mais pas sur la cristallisation. Nous avons ensuite étudié le comportement en traction simple d'échantillons pré-entaillés. Nous montrons que la plus grande résistance à la propagation d'entaille du caoutchouc naturel renforcé est corrélée à la présence d'instabilités de propagation (rotation d'entaille). Les mécanismes physiques à l'origine de la rotation d'entaille ne sont pas compris. Nous décrivons la dynamique de propagation des rotations à différentes échelles, et les caractéristiques des rotations.La combinaison de la cristallisation induite et de la présence des charges induit dans le matériau une très grande anisotropie qui pourrait être à l'origine des rotations.
Fichier principal
Vignette du fichier
TH2010_Gabrielle_Brice.pdf (5.52 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-00736529 , version 1 (28-09-2012)


  • HAL Id : tel-00736529 , version 1


Brice Gabrielle. Étude du renforcement et de la propagation d’entaille dans les élastomères renforcés. Autre. Université Claude Bernard - Lyon I, 2010. Français. ⟨NNT : 2010LYO10002⟩. ⟨tel-00736529⟩
320 View
814 Download


Gmail Facebook Twitter LinkedIn More