. Bn-10, BN-16, BN-18, BN-19

. La-première-ligne-de-ce-chier-enregistre-le-maillage-en-masse, adimensionnel ou non) (N+1 points comme pour le chier distrib.txt), puis à chaque temps, on enregistre le temps (t = xx

. [. Bibliographie, S. G. Arefmanesh, and . Advani, Diusion-induced growth of a gas bubble in a viscoelastic uid, Rheol. Acta, vol.30, pp.274283-274293, 1991.

]. H. Bab99 and . Babovsky, On a monte carlo scheme for smoluchowski's equation, 1999.

R. C. Ball, C. Connaughton, H. M. Thorwald, O. Stein, and . Zaboronski, Instantaneous gelation in Smoluchowski???s coagulation equation revisited, Physical Review E, vol.84, issue.1, 2011.
DOI : 10.1103/PhysRevE.84.011111

J. [. Burgisser and . Gardner, Experimental constraints on degassing and permeability in volcanic conduit ow, Bull Volcanol, vol.67, p.4256, 2005.

K. [. Beechem, A. Lafdi, and . Elgafy, Bubble growth mechanism in carbon foams, Carbon, vol.43, issue.5, 2005.
DOI : 10.1016/j.carbon.2004.11.046

J. D. Blower, H. M. Mader, and S. D. Wilson, Coupling of viscous and diusive controls on bubble growth during explosive volcanic eruptions, Earth and Planet. Sci. Letters, vol.193, issue.01, pp.4756-4766, 2001.

]. P. Bro95 and . Brown, Structural stability of the coalescence, 1995.

J. [. Cole, A. Beck, B. Haji-sheik, and . Litkouhi, Heat Conduction Using Green's Functions, Boca Raton, 2011.

A. [. Castro, I. Burgisser, S. Shipper, and . Mancini, Mechanisms and dynamics of bubble coalescence in silisic magmas, Bulletin of Volcanology, 2012.

P. [. Chouet, M. Dawson, and . Nakano, Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid, Journal of Geophysical Research, vol.88, issue.47, pp.7310-7320, 2006.
DOI : 10.1029/2005JB004174

M. [. Van-dongen and . Ernst, Tail distribution of large clusters from the coagulation equation, Journal of Colloid and Interface Science, vol.115, issue.1, pp.2735-2745, 1987.
DOI : 10.1016/0021-9797(87)90005-1

M. [. Van-dongen and . Ernst, Scaling solutions of Smoluchowski's coagulation equation, Journal of Statistical Physics, vol.119, issue.1-2, pp.295329-295339, 1988.
DOI : 10.1007/BF01022996

N. [. Deaconu, E. Fournier, and . Tanré, Study of a stochastic particle system associated with the smoluchowski coagulation equation, 2003.

F. [. Danaila, O. Hecht, and . Pironneau, Simulation numérique en c++, 2003.

B. G. Van-dongen, Solutions of Smoluchowski's coagulation equation at large cluster sizes, Physica A: Statistical Mechanics and its Applications, vol.145, issue.1-2, pp.1566-1576, 1987.
DOI : 10.1016/0378-4371(87)90240-8

]. R. Dra72 and . Drake, A general mathematical survey of the coagulation equation, Topics in Current Aerosol Research, p.201376, 1972.

D. [. Erasmus, R. C. Eyre, and . Everson, Numerical treatment of the population balance equation using a Spline-Galerkin method, Computers & Chemical Engineering, vol.18, issue.9, pp.775783-775793, 1994.
DOI : 10.1016/0098-1354(94)E0007-A

W. [. Eibeck and . Wagner, An ecient stochastic algorithm for studying coagulation dynamics and gelation phenomena, SIAM J. Sci. Comput, vol.22, pp.802821-802831, 2000.

W. [. Eibeck and . Wagner, Stochastic particle approximations for smoluchowski's coagulaion equation, Ann. Appl. Probab, 2001.
DOI : 10.1214/aoap/1015345398

URL : http://projecteuclid.org/download/pdf_1/euclid.aoap/1015345398

S. [. Forestier-coste, A. Mancini, F. Burgisser, and . James, Numerical resolution of a mono-disperse model of bubble growth in magmas, Applied Mathematical Modelling, vol.36, issue.12, 2012.
DOI : 10.1016/j.apm.2012.01.031

URL : https://hal.archives-ouvertes.fr/hal-00544506

]. L. Fcmis, S. Forestier-coste, and . Mancini, (soumis) A nite volume preserving scheme on non-uniform mesches and for multidimensional coalescence Numerical simulation of the smoluchowski equation, Filbet and P. Laurençot, 2004.

]. S. Fri61 and . Friedlander, Theorical considerations for the particle size spectrum of the stratospheric aerosol, J. Meteorol, vol.182, issue.6, p.753759, 1961.

]. J. Gar07 and . Gardner, Bubble coalescence in rhyolitic melts during decompression from high pressure, Journal of Volcanolgy ang Geothermal Research, vol.166, 2007.

M. [. Gardner, M. R. Hilton, and . Carroll, Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure, Earth and Planetary Science Letters, vol.168, issue.1-2, pp.201218-201228, 1999.
DOI : 10.1016/S0012-821X(99)00051-5

M. [. Gardner, M. R. Hilton, and . Carroll, Bubble growth in highly viscous silicate melts during continuous decompression from high pressure, Geochimica et Cosmochimica Acta, vol.64, issue.8, 2000.
DOI : 10.1016/S0016-7037(99)00436-6

S. [. Goanac-'h, J. Lovejoy, D. Stix, and . Schertzer, A scaling cascade model for bubble growth in lavas, Earth Planet. Sci. Lett, vol.139, issue.96, pp.395409-395419, 1996.

C. [. Giordano, P. Romano, D. B. Papale, and . Dingwell, The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites, Chemical Geology, vol.213, issue.1-3, 2004.
DOI : 10.1016/j.chemgeo.2004.08.032

J. [. Gelbard and . Seinfeld, Coagulation and growth of a multicomponent aerosol, Journal of Colloid and Interface Science, vol.63, issue.3, pp.472479-472489, 1978.
DOI : 10.1016/S0021-9797(78)80008-3

[. Hess and D. B. Dingwell, Viscosities of hydrous leucogranitic melts : A non-arrhenian model, American Mineralogist, vol.81, p.12971300, 1996.

[. Hurwitz and O. Navon, Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content, Earth and Planetary Science Letters, vol.122, issue.3-4, pp.267280-267290, 1994.
DOI : 10.1016/0012-821X(94)90001-9

[. Marziano, B. C. Schmidt, and D. Dol, Equilibrium and disequilibrium degassing of a phonolite melt (vesuvius ad 79 "white pumice") simulated by decompression experiments, Journal of Volcanology and Geothermal Research, vol.161, p.151164, 2007.

C. [. Jaupart and . Allegre, Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes, Earth and Planetary Science Letters, vol.102, issue.3-4, pp.413429-413439, 1991.
DOI : 10.1016/0012-821X(91)90032-D

]. C. Jau00 and . Jaupart, Magma ascent at shallow levels. Encyclopedia of volcanoes, p.237245, 2000.

J. [. Kumar, G. Kumar, and . Warnecke, Numerical methods for solving two-dimensional aggregation population balance equations, Computers & Chemical Engineering, vol.35, issue.6, 2011.
DOI : 10.1016/j.compchemeng.2010.08.002

J. Kumar, M. Peglow, G. Warnecke, and S. Heinrich, An ecient numerical technique for solving population balance equation involving aggregation , breakage, growth and nucleation, Powder Technology, 2008.

]. D. Kri95 and . Krivitsky, Numerical solution of the smoluchowski kinetik equation and asymptotics of the distribution function, J. Phys. A, vol.63, pp.2025-2039, 1995.

]. M. Lee00 and . Lee, On the validity of the coagulation eqution and the nature of runaway growth, Icarus, 2000.

]. M. Lee01 and . Lee, A survey of numerical solutions to the coagulation equation, 2001.

J. [. Larsen and . Gardner, Experimental study of water degassing from phonolite melts: implications for volatile oversaturation during magmatic ascent, Journal of Volcanology and Geothermal Research, vol.134, issue.1-2, 2004.
DOI : 10.1016/j.jvolgeores.2004.01.004

H. [. Lovejoy, D. Gaonac-'h, and . Schertzer, Bubble distributions and dynamics: The expansion-coalescence equation, Journal of Geophysical Research: Solid Earth, vol.50, issue.11, pp.10-1029, 2004.
DOI : 10.1007/500445-004-0376-4

URL : https://hal.archives-ouvertes.fr/hal-00711730

. [. Heureux, A new model of volatile bubble growth in a magmatic system: Isobaric case, Journal of Geophysical Research, vol.3, issue.B4, pp.12208-12218, 2007.
DOI : 10.1029/2006JB004872

S. [. Lyakhovsky, O. Hurwitz, and . Navon, Bubble growth in rhyolitic melts: experimental and numerical investigation, Bulletin of Volcanology, vol.58, issue.1, pp.19-32, 1996.
DOI : 10.1007/s004450050122

S. [. Laurençot and . Mischler, On coalescence equations and related models, Modeling and computational methods for kinetic equations, Modeling and Simulation in Science, Engineering ans Technology, p.321356, 2004.
DOI : 10.1007/978-0-8176-8200-2_11

O. [. Lensky, V. Navon, and . Lyakhovsky, Bubble growth during decompression of magma: experimental and theoretical investigation, Journal of Volcanology and Geothermal Research, vol.129, issue.1-3, pp.722-732, 2004.
DOI : 10.1016/S0377-0273(03)00229-4

H. [. Leyvraz and . Tschudi, Singularities in the kinetiks of coagulation processes Evolution of coagulating systems, J. Phys. A J. Colloid Interface Sci, vol.14141273, issue.453, pp.33893405-33893415, 1973.

]. A. Lus76 and . Lushnikov, Evolution of coagulating systems iii. coagulating mixtures, Journal of Colloid and Interface Science, vol.54, issue.176, pp.10-1016, 1976.

J. [. Mongrain, P. L. Larsen, and . King, Rapid water exsolution, degassing, and bubble collapse observed experimentally in K-phonolite melts, Journal of Volcanology and Geothermal Research, vol.173, issue.3-4, 2008.
DOI : 10.1016/j.jvolgeores.2008.01.026

R. [. Meunier and . Peschanski, Intermittency, fragmentation, and the Smoluchowski equation, Nuclear Physics B, vol.374, issue.2, pp.327339-327349, 1992.
DOI : 10.1016/0550-3213(92)90356-G

T. [. Mangan and . Sisson, Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism, Earth and Planetary Science Letters, vol.183, issue.3-4, pp.441455-441465, 2000.
DOI : 10.1016/S0012-821X(00)00299-5

B. [. Martel and . Schmidt, Decompression experiments as an insight into ascent rates of silisic magmas, Contrib Mineral Petrol, vol.144, p.397415, 2003.

T. [. Mangan and . Sisson, Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts, Journal of Geophysical Research, vol.402, issue.B8, pp.1202-1212, 2005.
DOI : 10.1029/2004JB003215

T. Kudo, K. Aizawa, J. Kitagawa, N. Hiraga, A. Matsumoto et al., Eruptive materials of the 2000 eruption of usu volcano, northern japan : Component materials and their temporal change(<special section>the, Bulletin of the Volcanological Society of Japan, vol.47, issue.24, pp.279-288, 2000.

]. F. Olv72 and . Olver, Bessel function of integer order Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1972.

]. B. Per02 and . Perthame, Kinetic formulation of conservation laws. Oxford lecture series in mathematics and its applications, 2002.

D. [. Proussevitch and . Sahagian, Dynamics and energetics of bubble growth in magmas: Analytical formulation and numerical modeling, Journal of Geophysical Research: Solid Earth, vol.80, issue.B8, pp.1822318251-1822318261, 1998.
DOI : 10.1029/98JB00906

D. [. Proussevitch and . Sahagian, A numerical model of volcanic eruption mechanisms driven by disequilibrum magma degassing, J. Volcanol, 2005.

D. [. Proussevitch, A. T. Sahagian, and . Anderson, Dynamics of diusive bubble growth in magmas : Isothermal case, Journal of Geophysical Research, vol.98, issue.B12, pp.2228322307-10, 1993.

G. [. Qamar and . Warnecke, Solving population balance equations for two-component aggregation by a nite-volume scheme, Chemical Engineering Science, 2007.

G. Rosebrock, A. Elgafy, T. Beechem, and K. Lafdi, Study of the growth and motion of graphitic foam bubbles, Carbon, vol.43, issue.15, 2005.
DOI : 10.1016/j.carbon.2005.06.044

]. L. Scr59 and . Scriven, On the dynamics of phase growth, Chem. Eng. Sci, vol.10, issue.59, pp.113-123, 1959.

]. T. Sgl-+-10, L. Shea, J. F. Gurioli, B. F. Larsen, J. E. Houghton et al., Linking experimental and natural vesicle texture in vesuvius 79ad white pumice, Journal of Volcanology and Geothermal Research, vol.192, pp.69-84, 2010.

]. M. Smo16 and . Smoluchowski, Drei Vorträge über Diusion, Brownsche Bewegung und Koagulation von Kolloidteilchen, Physikalische Zeitschrift, vol.17, pp.557-585, 1916.

]. M. Smo17 and . Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift für Physikalische Chemie, 1917.

R. [. Srivastava and . Passarelli, Analytical solutions to simple models of condensation and coalescence. journal of the atmospheric sciences, 037<0612:ASTSMO>2.0.CO, pp.612621-612631, 1980.

S. [. Tanaka, K. Inaba, and . Nakazawa, Steady-State Size Distribution for the Self-Similar Collision Cascade, Icarus, vol.123, issue.2, 1996.
DOI : 10.1006/icar.1996.0170

S. [. Takeuchi, A. Nakashima, H. Tomiya, and . Shinohara, Experimental constraints on the low gas permeability of vesicular magma during decompression, Geophysical Research Letters, vol.56, issue.10, pp.10-1029, 2005.
DOI : 10.1029/2005GL022491

]. A. Tor95, . S. Toramaru, A. Takeuchi, H. Tomiya, and . Shinohara, Numerical study of nucleation and growth of bubbles in viscous magmas Degassing conditions for permeable silicic magmas : Implications from decompression experiments with constant rates, J. Geophys. Res. Earth and Planetary Science Letters, vol.100, 1995.

F. [. Turco and . Yu, Particle size distributions in an expanding plume undergoing simultaneously coagulation and condensation, J. Geophys, 1999.

T. [. Vale and . Mckenna, Solution of the population balance equation for two-component aggregation by an extended xed pivot technique, Industrial & Engineering Chemistry Research, vol.44, issue.20, pp.78857891-78857901, 2005.

C. [. Vrentas and . Vrentas, Slow bubble growth and dissolution in a viscoelastic uid, 12<2093::AID-APP16>3.0.CO, pp.1097-46282, 1998.

]. S. Wel98 and . Welch, Direct simulation of vapor bubble growth, Int. J. Heat and Mass Transf, vol.4197, pp.16551666-16551676, 1998.

W. G. Whittington, B. H. Hellwig, H. Behrens, B. Joachim, A. Stechern et al., The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas, Bulletin of Volcanology, vol.88, issue.27, pp.185199-185209, 2009.
DOI : 10.1007/s00445-008-0217-y

H. [. Zhang and . Behrens, H2O diusion in rhyolitic melts and glasses, Chemical Geology, vol.169, issue.1299, pp.243262-243272, 2000.

. Liste-des-diérentes-données-nales-expérimentales.........., 84 TABLE DES FIGURES 1.28?P28? 28?P fonction dê P a pour la convergence de 1

. Dans-le-cas-bien-préparé, les courbes se croisent toutes les trois en un point, R = 1, P = 1 + ?. En rouge est représenté P 2, p.60

?. De, ?. D. , and .. , Données provenant de 13 études) Les 4 champs en vert (cas limites, général et équilibre) font référence à la table 1, Distribution des expériences de laboratoire en termes, p.85

. Marginale, massique" pour le cas monodisperse (gauche) et le cas polydisperse (droite) aux temps t = 0

.. Résolution-témoin, Sont représentés sur les graphiques, la marginale (gauche) et la marginale "massique" (droite) aux temps t = 0, p.150

=. Résultat-À-t and .. , 85 pour la densité de distribution et la marginale "massique" après post-traitement, p.153

A. Solution-pour-la-donnée-initiale, Rayon (gauche) et porosité (droite) en fonction de la pression ambiante, p.159

G. Solution-pour-la-donnée-initiale, Rayon (gauche) et porosité (droite) en fonction de la pression ambiante, p.160