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Résumé 
 
 

 
 
Ce travail porte sur deux problèmes d’optimisation de trajectoires spatiales: le vol d’un dernier étage de lanceur, et 

le nettoyage des débris spatiaux. L'objectif est de développer pour ces deux problèmes des méthodes de résolution et 

des logiciels utilisables dans un contexte industriel. Les travaux comportent une partie théorique de formulation et 

une partie appliquée de résolution numérique. Les domaines abordés sont la mécanique spatiale, l'optimisation 

discrète, l'optimisation continue en dimension finie et le contrôle optimal. 

 

 

Vol d’un dernier étage de lanceur 

 

Le problème de minimiser la masse de propergol consommée par un lanceur pour rejoindre l’orbite visée est d’une 

importance cruciale. Cette masse de propergol conditionne en effet la masse totale du véhicule et donc son coût. Vu 

son importance pratique, ce problème a fait l’objet de nombreux développements depuis les années 1960. Il peut être 

aujourd’hui considéré comme bien compris et différentes méthodes de résolution numérique sont disponibles, avec  

leurs points forts et leurs points faibles. Ces méthodes sont généralement classées en deux catégories : méthodes 

directes et méthodes indirectes. 

• Les méthodes directes consistent à discrétiser le problème de commande optimale pour le formuler comme 

un problème d’optimisation paramétrique. Le problème résultant est de dimension finie et il peut être résolu 

par un algorithme d’optimisation non linéaire sous contraintes. Cette approche est relativement simple à 

mettre en œuvre et robuste, car l’utilisateur peut directement fournir une loi de commande initiale et la 

modifier en fonction du comportement de l’algorithme. Les deux principaux défauts de ces méthodes sont 

le temps de calcul (lié à la dimension du problème discrétisé) et la précision de convergence. La qualité de 

l’optimum obtenu est en effet affectée par la discrétisation du problème de commande optimale, et par la 

précision numérique du solveur. 

• Les méthodes indirectes sont basées sur le Principe du Maximum de Pontryagin qui exprime des conditions 

nécessaires d’optimalité. Le problème est formulé comme un problème aux deux bouts : les inconnues sont 

les composantes du vecteur adjoint initial qui doivent satisfaire un système d’équations non linéaires à 

l’instant final. La résolution s’appuie sur une méthode de tir, associée à un solveur de type Newton. 

L’optimum est généralement obtenu de façon très rapide et précise, la principale difficulté étant de fournir 

une initialisation suffisamment proche de l’optimum afin de permettre la convergence. 
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Dans un contexte industriel, l’accent est mis sur la capacité à résoudre rapidement et si possible automatiquement ce 

problème. Le temps nécessaire pour un ingénieur à l’optimisation d’une trajectoire de lancement impacte 

directement : 

• le coût de préparation d’une mission réelle (comme pour le lanceur Ariane5), 

• le nombre de configurations (étagement, propergols) qui pourra être examiné lors de la conception d’un 

lanceur futur. 

Même si l’expérience acquise permet de calculer des trajectoires optimales de lanceur de façon relativement rapide, 

l’ingénieur reste confronté de façon récurrente aux difficultés usuelles des méthodes d’optimisation numériques : 

robustesse de l’initialisation, vitesse de convergence, optima locaux. Le savoir-faire pratique reste indispensable en 

l’absence de méthode automatique suffisamment robuste pour couvrir l’ensemble des missions et des véhicules 

envisagés. 

Le travail proposé consiste à élaborer une méthode de résolution automatique pour le vol du dernier étage d’un 

lanceur. Les principales difficultés d’optimisation sont en effet liées à cette phase de vol, soumise à des contraintes 

d’état et des contraintes finales. 

 

La méthode envisagée repose sur des algorithmes de continuation dont le principe est de partir d'un problème simple 

dont la solution est connue pour aller progressivement vers le problème réel, en initialisant chaque problème 

intermédiaire avec la solution du problème précédent. Les méthodes de continuation appliquées aux problèmes de 

trajectoires spatiales ont atteint aujourd’hui une maturité suffisante. Mais leur mise en œuvre n’est pas automatique 

et demande une expérience pratique importante, avec des réglages au cas par cas, au cours des phases de 

continuation successives. Elles ne sont en l'état pas suffisamment efficaces pour être employées de façon 

systématique dans un contexte industriel. 

Pour la résolution du vol d’un dernier étage de lanceur, deux approches différentes par continuation sont envisagées 

à partir de simplifications des modèles : 

• La première approche consiste à résoudre le problème en Terre plate, avec un champ de gravité uniforme, 

puis à revenir au problème en Terre ronde par une double continuation sur la gravité et sur la courbure de 

la Terre. 

• La deuxième approche consiste à résoudre le problème impulsionnel, correspondant à un niveau de 

poussée infini, puis à revenir au problème en poussée continue par une continuation sur le niveau de 

poussée. 

L'objectif est de définir un processus de résolution le plus automatique possible, applicable pour différent jeux de 

données du problème réel : caractéristiques du lanceur, orbite à atteindre. 

 

 

Mots-clés : 

Transfert orbital, Commande optimale, Principe du Maximum de Pontryagin, Méthode de tir, Continuation 
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Nettoyage des débris spatiaux 

 

 

La prolifération non contrôlée des débris orbitaux depuis les débuts de la conquête spatiale rend problématique 

l’accès à l’espace dans les années à venir. Les différentes études sur la population des débris spatiaux et son 

évolution montrent qu'il serait nécessaire de retirer chaque année 5 gros débris (étages de lanceurs, satellites) en 

orbite basse pour stabiliser la situation. 

Des missions de nettoyage sont donc aujourd’hui envisagées, consistant à envoyer un véhicule pour capturer 

successivement plusieurs gros débris et les désorbiter en les plaçant sur des orbites de retombée. 

Pour minimiser le coût de la mission de nettoyage, mesuré par la consommation d'ergols nécessaire, il faut 

sélectionner parmi une liste de candidats les 5 débris à désorbiter, choisir l'ordre dans lequel ceux-ci seront visités, et 

optimiser les manoeuvres du véhicule pour se rendre d'un débris à l'autre. La mission doit être réalisée en moins d'un 

an. 

L'ensemble des débris candidats forme un graphe orienté complet. Les valuations des arcs sont les coûts de transfert 

pour aller d'un débris à un autre, chaque débris étant défini par son orbite osculatrice à l'instant de début de la 

mission. Ces orbites évoluent pendant la durée de la mission sous l'effet en particulier des perturbations du champ 

gravitationnel terrestre (aplatissement). 

Chaque évaluation d'un coût de transfert nécessite de résoudre le problème de contrôle optimal associé qui consiste, 

en partant du débris initial, à réaliser un rendez-vous avec le débris final. Ce problème intrinsèquement difficile 

lorsque les orbites sont quelconques, est de plus dépendant de l'instant initial, en raison des perturbations qui 

modifient les orbites des débris. 

La sélection des débris et de l'ordre de visite est un problème de type plus court chemin dans un graphe à coûts 

dépendant du temps. Des algorithmes efficaces existent pour ce type de problème lorsque les coûts des arcs sont 

constants (« k-shortest path »), mais ils ne peuvent pas s'appliquer directement au problème de la mission de 

nettoyage. 

Le problème global comporte donc un fort couplage entre des aspects d'optimisation combinatoire et des aspects de 

contrôle optimal, chacun de ces problèmes étant intrinsèquement difficile. La résolution de ce problème dans toute 

sa généralité est inenvisageable avec les moyens actuels, et des hypothèses simplificatrices sont nécessaires. 

Le travail proposé consiste à élaborer une méthode de résolution avec des objectifs d'efficacité, de représentativité et 

d'optimalité. En vue du développement d'un futur véhicule de nettoyage, on souhaite en effet être capable de 

résoudre différentes instances du problème en des temps raisonnables, et que les solutions obtenues présentent des 

garanties d'optimalité et de réalisme. 

Les principales hypothèses permettant de simplifier la formulation du problème portent sur les orbites des débris, le 

moteur du véhicule et la durée de la mission. Une grande partie des satellites à désorbiter se trouvent sur des orbites 

héliosynchrones. On oriente donc le dimensionnement du véhicule prioritairement sur ce type de débris et les orbites 
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peuvent ainsi être supposées basses et quasi circulaires. Par ailleurs, l'utilisation d'un moteur à poussée forte permet 

une approximation impulsionnelle des manoeuvres de transfert d'orbite. Enfin, la contrainte de durée totale de 1 an 

pour la mission permet des phases d'attente entre transferts successifs, de façon à effectuer les manoeuvres aux 

instants les plus favorables. On pourra ainsi définir une stratégie-type applicable à chaque transfert. Cette stratégie 

type permet de ramener le problème de contrôle optimal à un problème d’optimisation continue en dimension finie, 

dont la résolution peut être couplée au problème de chemin. Une linéarisation locale permet ensuite de mettre en 

œuvre des algorithmes de séparation-évaluation. En itérant le processus de linéarisation – résolution à partir d’une 

solution initiale, on pourra converger vers la solution du problème global. 

 

 

Mots-clés : 

Débris spatiaux, Mécanique orbitale, Séparation et Evaluation, Programmation linéaire 
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Abstract 
 
 

 
 
This work addresses two space trajectory optimization problems : the flight of a launcher upper stage and the 

collecting of space debris. For these two problems the goal is to develop solution methods and softwares usable in 

an industrial framework. The work consists of a theoretical part to formulate the problems and an applied part to 

develop numerical algorithms. The related fields are space mechanics, integer programming, nonlinear 

programming and optimal control.  

  

 

Launcher upper stage flight 

 

The problem of minimizing the fuel consumed by a launcher to reach the targeted orbit is of major importance. 

Indeed the propellant mass influences directly the launcher gross mass and therefore the launch cost. Due to its 

practical importance, this problem has attracted numerous theoretical and algorithmic developments since the 

1960ies. It can be considered as well-mastered nowadays and various solution methods are available, with their 

respective advantages and disadvantages. These methods are generally divided into two categories : direct or 

indirect methods. 

• Direct methods consist in a discretization of the optimal control problem in order to transform it into a 

parametric optimization problem. The resulting problem is of finite dimension and it can be addressed by a 

nonlinear programming algorithm. This approach is relatively straightforward and robust, because it allows 

the user to provide directly an initial command law and to modify it depending on the algorithm behaviour. 

The two main issues of these methods are the computation time (due to the size of the discretized problem) 

and the convergence accuracy. The quality of the optimum obtained is indeed downgraded by the 

discretization of the optimal control problem and by the numerical accuracy of the nonlinear programming 

algorithm. 

• Indirect methods are based on the Pontryagin Maximum Principle which provides necessary optimality 

conditions. The problem is formulated as a two point boundary value problem: the unknowns are the 

components of the initial costate vector that must satisfy a nonlinear system at the final date. The solution 

is based on a shooting method using a Newton-like solver. The optimum is generally obtained very quickly 

and with a very high accuracy. The main issue lies in the costate initialization that must be sufficiently 

close to the optimum is order to allow the convergence. 

 

In an industrial context, a major concern is the ability to solve efficiently and if possible automatically this problem. 

The time required by an engineer to assess an optimal launch trajectory has a direct influence on :  
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• The cost to prepare an operational mission (as for an Ariane 5 launch), 

•  The number of configurations (staging, propellants) that can be investigated in a preliminary design study 

for a future launcher. 

Even if the experience on such problems allows fast assessments of optimal launcher trajectories, the engineer still 

faces the usual algorithmic difficulties related to numerical methods : initialization robustness, convergence rate, 

local optima. A practical know-how remains necessary as long as automatic and robust methods lack to cover the 

full range of possible missions and launchers configurations. 

 

The proposed work aims at designing an automatic solution method for a launcher upper stage flight. The main 

optimization issues are indeed related to this flight phase, subject to path constraints and to final constraints. 

The method envisioned is based on continuation algorithms. The principle of these algorithms consists in starting 

from a simplified problem whose solution is known to move progressively towards the real problem. Each 

intermediate problem is initialized with the solution of the previous problem. 

Continuation methods applied to launcher trajectories can be considered nowadays as mature. But their 

implementation is not straightforward and it requires some practical know-how, with case by case adjustments, 

throughout the stages of the continuation process. They are therefore not directly applicable in an industrial context. 

For the problem of a launcher upper stage flight, two continuation approaches are envisioned from model 

simplifications : 

• The first approach consists in solving the flat Earth problem with uniform gravity, then to come back to the 

round Earth problem through a double continuation on the gravity and on the earth curvature. 

• The second approach consists in solving the impulsive problem, corresponding to an infinite thrust level, , 

then to come back to the continuous thrust problem through a continuation on the thrust level. 

The goal is to define a solution procedure as automatic as possible for various instances of the real problem : 

launcher configuration, targeted orbit. 

 

 

Keywords : 

Orbital transfer, Optimal control, Pontryagin Maximum Principle, Shooting method, Continuation 
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Space debris collecting 

 

The uncontrolled proliferation of space debris since the beginning of the space age makes the access to space critical 

in the coming years. Various studies related to the space debris population and its evolution indicate that it would be 

mandatory to deorbit 5 heavy debris per year (launcher stages, satellites) from the low Earth orbits to stabilize the 

evolution. 

Cleaning missions are therefore studied nowadays, consisting in launching a dedicated vehicle to capture 

successively several heavy debris and deorbit them by setting them on fall down trajectories. 

In order to minimize the cost of such a cleaning mission, measured by the required propellant consumption, it is 

necessary to select the 5 debris among a list of candidates, to optimize the visiting order, and to optimize the vehicle 

maneuvers to go from a debris to the other. The whole mission must be achieved in less than one year. 

 

The set of the candidate debris represents an oriented graph. The edge valuations are the transfer cost to go from a 

debris to the other, each debris being defined by its osculating orbit at the mission initial date. These orbits evolve 

during the mission under the influence of the perturbations of Earth gravitational field (Earth flattening). 

Assessing the cost of a single transfer requires solving the associated optimal control problem which consists, 

starting from the initial debris to perform a rendezvous with the final debris. This problem is already intrinsically 

difficult in the general case. It depends moreover on the initial date because of the perturbation that modify de debris 

orbit throughout the time. 

The selection of the debris and the visiting order is a shortest path problem in a time-dependent valuated graph. 

Efficient algorithms exist for this category of problems when the edge valuations are constants (« k-shortest path »), 

but they are not directly applicable to the space cleaning mission problem. 

The global problem exhibits therefore a strong coupling between combinatorial aspects and optimal control aspects, 

each of these problems being intrinsically difficult. Trying to solve the problem in the general case is not reasonable 

with the known methods, and simplifying assumptions are necessary. 

 

The proposed work consists in designing a solution method with the concerns of efficiency, representativity and 

optimality. With the perspective of a future cleaning vehicle, it is indeed desirable to be able to solve various 

instances of the problem in reasonable computation times, with some guarantee of optimality and practical 

feasibility. 

The main assumptions that allow simplifying the problem formulation are related to the debris orbit, the vehicle 

engine and the mission duration. Most used satellites orbit on sun-synchronous orbits. The cleaning vehicle design is 

driven by this category of debris and the debris orbits are therefore assumed as low and circular. On the other hand 

using a high thrust engine allows modeling the transfer orbit maneuvers as impulses. Finally the one year allocation 
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for the whole mission gives enough time to insert waiting phases between the successive transfers. The maneuvers 

can thus be performed at the optimal dates in order to minimize the fuel consumption. 

With these assumptions a generic strategy is defined that is applicable to every transfer. This generic strategy 

reduces the optimal control problem to a nonlinear programming problem of finite dimension, which can be coupled 

to the path problem. A local linearization around an initial solution allows to set up a Branch and Bound algorithm. 

The reference solution is then updated with the linearized solution. Iterating on the linearization-solution process 

from the pre-optimized initialization allows converging to the solution of the global problem. 

 

 

Keywords : 

Space debris, Orbital mechanics, Branch and bound, Linear programming 
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Part 1 

 

Launcher upper stage flight 

Optimal coplanar transfer by continuation 

from the flat Earth model or from the impulsive model. 

 

 

Abstract  We consider the problem of the minimum consumption trajectory for a launcher upper stage. The upper 

stage mission is a coplanar transfer consisting in bringing the payload on the targeted orbit, starting from given 

injection conditions. This problem has been very much investigated in the literature. We are interested here in 

solving this problem by means of a shooting method, based on the application of the Pontryagin Maximum 

Principle. The convergence of the shooting method is made difficult, because of initialization issues and 

discontinuities of the optimal control law. Several processes are already known in order to overcome this 

convergence problem. We consider here two different approaches, starting either from the flat Earth model with 

constant gravity, or from the impulsive model. 

These simplified problems have a nearly explicit solution that can be found efficiently without any specific 

initialization work. Their solutions are used as starting point for a numerical continuation transforming the 

simplified problem into the initial problem. The whole process is carried out automatically from scratch and yields 

the upper stage optimal trajectory with reduced computation times. The methods are exemplified on practical 

application cases. 

 

 

Keywords  

Orbit transfer problem, Optimal control, Pontryagin Maximum Principle, Shooting method, Continuation 
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PMP Pontryagin Maximum Principle 

BVP Boundary Value Problem 

NLP Non Linear Programing 
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1  Introduction 

The trajectory of a launcher from the lift-off to the orbit is split into successive sequences corresponding to the flight 

of the propulsive stages. The global trajectory optimization problem handles a large number of variables and 

constraints with different scales throughout the trajectory. Achieving an accurate convergence is generally a painful 

task requiring the supervision of an experienced user. The goal of the present work is to build an automatic solution 

method applied to the upper stage flight. The resulting solver should be fast, accurate and robust enough to be 

incorporated within a simulation tool. By this way the global trajectory optimization problem could reduce to the 

lower stages flight, speeding up the solution and easing the practical use. 

 

1.1  Problem statement 

The problem of the orbit transfer at minimum consumption has been widely studied from the 1960’s
1,2

 and it is still  

a topic of current research. We can distinguish mainly between two formulations of this problem. The first one 

considers that the vehicle produces instantaneous changes of velocity and is referred to as the impulse orbit 

transfer
3,4,5

. The second formulation takes into account the fact that an actual engine has a limited thrust so that the 

vehicle's dynamics is continuous in the position and velocity coordinates
6
. In this continuous approach, we also 

separate the high-thrust and the low-thrust transfer, depending on the available acceleration level. 

We focus here on the high thrust orbit transfer that we furthermore restrict to be coplanar. This problem is naturally 

written as an optimal control problem. There exist various numerical methods to solve such problems, and we 

usually separate them in two classes: direct and indirect methods. 

• Direct methods
7
 consist in discretizing the optimal control problem in order to rewrite it as a parametric 

optimization problem. Then a nonlinear large scale optimization solver is applied. The advantage of this 

approach is that it is straightforward and usually quite robust. New variables or constraints can also be 

added to the problem with reduced programming effort, making the method very flexible. Due to this 

flexibility and the availability of numerous efficient software packages such as IPOPT (with AMPL), 

BOCOP, GESOP, …, the direct methods are widely applied for space trajectory optimization, as well for 

operational launchers like Ariane 5, as for preliminary studies of future launchers.  The main drawback is 

that those methods are computationally demanding and that they are not very accurate when compared with 

the indirect approach
7
. They are therefore not well suited to build the envisioned solver. 

• Indirect methods are based on the Pontryagin Maximum Principle
8
 (PMP) which gives a set of necessary 

conditions for a candidate trajectory and control strategy to be optimal. The idea is to use those necessary 

conditions to reduce the search of a solution to the search of the zero of the so-called shooting function 

(indirect methods are also called shooting methods in this context). The advantage is that shooting methods 

are very fast when they converge and that they produce high accuracy solutions. Their main drawback is 

that, since they use a Newton-like algorithm to look for the zero of the shooting function, they are hard to 

properly initialize. We can also mention mixed methods that use a discretization of the PMP necessary 

conditions and then apply a large-scale equation solver
9
. 
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1.2  Shooting method 

The goal is to build an automatic, fast and accurate solver applied to an upper stage flight performing a coplanar 

orbit transfer. Because of its fast convergence and high accuracy, we will turn to a shooting method to solve the 

problem. There already exist some methods to cope with the initialization drawback of this method. In Ref
10

, the 

impulse transfer solution is used to provide a good initial guess to the shooting algorithm. This method is based on 

the fact that a continuous high-thrust orbit transfer tries to mimic an impulse transfer, as outlined in Refs
4,11

. 

However this approach is only valid for nearly circular initial and final orbits. In Ref
12

, a multiple shooting method 

parameterized by the number of thrust arcs, is used to solve an Earth-Mars transfer. In Ref
13,14

, a differential 

continuation method linking the minimization of the L
2
-norm of the control to the minimization of the consumption 

is used to solve the low-thrust orbit transfer around the Earth. However this approach is not adapted for a high-thrust 

transfer. In Ref
15

 simplified formulas are established by interpolating many numerical experiments, which permit to 

initialize successfully the shooting method for the minimal time orbit transfer problem, in a certain range of values 

for nearly circular initial and final orbits. Based on that initial guess and on averaging techniques, the authors of 

Ref
16

 implement in the software T3D continuation and smoothing processes in order to solve minimal time or 

minimal fuel consumption orbit transfer problems. 

 

1.3  Continuation from simplified models 

Two different approaches are envisioned to initialize a shooting method for a high-thrust coplanar orbit transfer. 

They are based on model simplifications, which allow solving easily the transfer problem, followed by continuation 

methods to come back to the ‘real’ problem. The simplifications envisioned are respectively related to the Earth 

modeling and to the thrust modeling : 

• The first approach consists in starting from the flat Earth model (infinite curvature radius) and continuously 

decreasing the curvature radius to end up with the ‘real’ round Earth model. 

• The second approach consists in starting from the impulsive model (infinite thrust level) and continuously 

decreasing the thrust level to end up with the ‘real’ continuous thrust model. 

We restrict ourselves to fixed final time problems since it has been shown numerically that the minimum 

consumption orbit transfer does not have a solution at free final time
11,12

 . 

 

The text is organized as follows. The Pontryagin Maximum Principle is first applied to the general minimum 

consumption orbit transfer without any simplification. Since we are interested in the flight of a launcher upper stage, 

we restrict the problem to the coplanar orbit transfer which is representative of a large part of practical applications. 

The problem is further analyzed considering model simplifications : flat Earth model or impulsive model. Efficient 

algorithms are proposed that solve these simplified problems from scratch. A parameterized problem is then defined 

that allows passing continuously from the simplified problem to the ‘real’ problem : 
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• The flat Earth model is modified by additive terms so as to introduce curvature and make it diffeomorphic 

to the round Earth model. A continuation procedure is set up that introduces progressively the additive 

terms in the model. This allows passing from the flat Earth problem solution to the targeted round Earth 

problem solution. 

• The impulsive model is used to initialize the continuous thrust model considering a fictitious very high 

thrust level. The continuation procedure consists in decreasing progressively the thrust level until the 

targeted vehicle thrust level. 

The methods are illustrated on application examples representative of launcher upper stages targeting either a sun-

synchronous or a geostationary orbit. 
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2  Problem formulation 

This chapter introduces the mathematical formulation of the optimal control problem. The Pontryagin Maximum 

Principle is first recalled. It is applied to the general 3-dimensional transfer problem for a launcher upper stage, 

yielding a boundary value problem. The coplanar transfer problem is then directly derived from the general 3-

dimensional formulation by reducing the state and control dimensions. 

 

2.1  Pontryagin Maximum Principle (PMP) 

We consider a dynamic system, evolving between a fixed initial date t0 and a free final date tf. The system is 

represented at any date t∈[t0,tf] by a nx-state vector X(t) and it is controlled by a nu-command vector U(t) belonging 

to a subset Ua of un
R representing the admissible controls. The system dynamics is modeled by a first order ODE : 

 [ ] [ ]
xux nnn

f0

RRRR:f

t,ttfortU(t),X(t),f(t)X

→××

∈=&

 (1)  

The initial state is fixed : X(t0) = X0, whereas the final state is subject to m final constraints :  

 [ ]
mn

ff

RRR:Ψ

0t),X(tΨ

x →×

=
 (2)  

The optimal control problem denoted (OCP) is formulated under the Mayer form with a final cost J to minimize : 

        
[ ]

[ ] [ ]

[ ]

RRR:J

0t),X(t

X)X(t

t,ttfortU(t),X(t),f(t)X

s.t.t),X(tJMin
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n

ff

00

f0

ff
tU(.),

→×


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




=Ψ

=

∈=&

 (3) 

According to the Pontryagin Maximum Principle, every optimal trajectory X(.) of (OCP) is the projection of an 

extremal ( )U(.),pP(.),X(.),
0

 on the state space. An extremal is associated with : 

• a control U(.) on [t0,tf], 

• an absolutely continuous mapping [ ] xn

f0 Rt,t:P(.) → , named the costate (or adjoint) vector, 

• a non positive real number p
0
, with ( ) ( )0,0pP(.),

0 ≠  

• a Hamiltonian function 

            [ ] [ ]tU(t),X(t),.fP(t)(t)X.P(t)tU(t),,pP(t),X(t),H tt0 == &  (4) 

and it satisfies : 

• the Hamiltonian system : 
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      for almost every t∈[t0,tf] (5) 

• the maximization of the Hamiltonian : 

            [ ] [ ]tW,,pP(t),X(t),HMaxtU(t),,pP(t),X(t),H
0

UW

0

a∈
=       for almost every t∈[t0,tf] (6) 

• the transversality conditions on the Hamiltonian (if the final date is free) and on the costate : 
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     with scalar multipliers ν∈R
m
 and p

0
 ≤ 0 (7) 

Similar transversality conditions hold at the initial date if the initial conditions are not fixed. When the initial state is 

fixed, the initial costate is free. 

The extremal ( )U(.),pP(.),X(.),
0

 is said normal if p
0
 ≠ 0, abnormal if p

0
 = 0. In the normal case, it is usual to 

normalize the costate vector so that p
0
 = -1, but any other choice with p

0
 strictly negative is valid. 

For an autonomous system (i.e. the dynamics, the cost and the final constraints do not depend explicitly on the 

time), the Hamiltonian is constant along any extremal. It is moreover equal to zero if the final time is free. 

 

2.2  Boundary value problem (BVP) and shooting method 

2.2.1  Boundary value problem 

Applying the PMP yields a boundary value problem representing the necessary conditions for a minimum cost : 

• Unknowns : P(t0)    →  nx unknowns  (state dimension) 

   ν    →  m unknowns  (final constraint multipliers) 

  tf    →  1  unknown    if the final time is free 

• Equations : Transversality on P(tf)  →  nx equations  

   Final constraints [ ] 0t),X(tΨ ff =  →  m equations 

  Transversality on H(tf)  →  1  equation  if the final time is free 

 

The BVP is a nonlinear system of dimension nx+m (+1 if the final time is free). The single shooting method consists 

in finding a zero of the shooting function 
1mn1mn xx RR:S

++++ →  defined as : 
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2.2.2  Fixed final state 

A simplification arises when the final constraints are expressed directly on the final state components. Assuming 

that the final state )X(t f  has its first m components )(tX fm-1  specified to f

m-1X , while the nx-m last components 

)(tX fn-1m x+  are free, the final constraints take the form : 
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In that case, the cost function no longer depends on the specified components )(tX fm-1  : 

 [ ] mto1ifor0t),X(t
X

J
ff

i

==
∂

∂
 (10)  

The transversality conditions take the form : 
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The first m transversality conditions mean that the corresponding final costate components are “free” (or unknown), 

i.e. they are determined implicitly by solving the BVP. These conditions can thus be discarded from the shooting 

function together with the unknown multipliers ν1-m. The BVP dimension is reduced to nx (+1 if the final time is 

free) and the shooting function 
1n1n xx RR:S

++ →  is defined as : 
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2.2.3  Shooting method 

Computing the shooting function values requires integrating the state and costate equations starting from the fixed 

initial state X(t0) and a guessed initial costate P(t0). The Hamiltonian system (5) is integrated numerically from the 

initial date t0 until a guessed final date tf. The control U(t) along the trajectory is determined ‘on line’ by the 

maximization condition (6) on the Hamiltonian. 
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This numerical integration is combined with a Newton-like algorithm to find a zero of the shooting function S. 

The main issue comes from the Newton method convergence properties. For highly nonlinear equations, the 

algorithm converges only in the near vicinity of the solution, so that a very accurate initial guess must be provided to 

achieve the solution. An additional difficulty comes from the control discontinuities that occur when the 

Hamiltonian is linear with respect to the control, as it is the case for the upper stage transfer problem. A poor guess 

of the initial costate generally fails to catch the optimal control structure, and therefore does not allow converging on 

the solution. 

 

2.3  General transfer problem 

The general transfer problem for a launcher upper stage is first formulated in the 3-dimensional space, without 

specifying the coordinate system. As this stage, the formulation is indeed identical whatever the dimension (2 or 3). 

At the end of Chapter §2 the problem will be reduced to the 2-dimensional space in order to set up the continuation 

procedure for the coplanar transfer problem. 

 
2.3.1  General 3-dimensional formulation 

The general transfer problem consists in finding the minimal consumption trajectory to go from given injection 

conditions to a targeted orbit defined by orbital parameters. For this 3-dimensional problem, the Earth is modeled as 

a sphere, with its center taken as the origin of an inertial frame. The vehicle is considered as a material point 

represented by the 7-state vector 7
R
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=
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.The cost function is the final mass ( )[ ] ( )ff tmtXJ =  to 

maximize. The vehicle is submitted to the Earth acceleration gravity )r(g
rr

and the transfer trajectory is controlled by 

the 3-command vector 3RU(t) ∈  representing the vehicle thrust. Denoting the burned propellant exhaust velocity 

by ve, the thrust magnitude by e(t)vmT(t) T(t), &−= , maxTT(t)0 ≤≤ , the thrust direction by (t)u
r

, 1(t)u =
r

, the 

command vector is ( ) (t)utTU(t)
r

= . 

Applying the fundamental dynamics principle in the inertial frame yields :  
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The vehicle dynamics is thus represented by the first order ODE : 

 

[ ] ( )















−=

+=

=

⇔=

ev

T(t)
(t)m

(t)rg(t)u
m(t)

T(t)
(t)v

(t)v(t)r

U(t)X(t),f(t)X

&

rrr&r

r&r

&         for t∈[t0,tf] (13)  



 24

The system is autonomous since the dynamics does not depend explicitly on the time. 

 

The initial state is given, corresponding to the position, velocity and gross mass at the upper stage injection : 
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The final state is constrained on the targeted orbit, specified by its energy Kf, its angular momentum 
fh

r

 
and its 

eccentricity vector fe
r

. These 5 final constraints do not depend explicitly on the time and they take the form
17

 : 
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where µ is the gravitational constant of the attracting body (here the Earth). 

There is generally no rendezvous constraint applied to the upper stage trajectory. The rendezvous constraint is 

managed later by the satellite once released by the upper stage. The injection anomaly θf is therefore free. 

 

Assumption 1. 

In order to have a ‘real’ optimal control problem to solve, we assume that the initial state vector )X(t 0 does not 

satisfy the final constraints [ ] 0XΨ = . In other terms, the initial point does not belong to the targeted orbit. 

Consequently the null thrust solution is discarded and any solution must have at least one thrust arc. 

 

2.3.2  Final time 

Without any bound on the mission duration, the minimal consumption solution is in infinite time
6,7

 and it consists in 

an infinite series of impulsive maneuvers at each revolution. 

For a practical application there are always operational constraints bounding the mission duration, e.g. : 

• the engine limited re-ignition capabilities, which limit the number of thrust arcs, 

• the tracking capabilities which limit the number of revolutions. 

With such an upper bound, the minimum consumption transfer problem is well-posed. Fixing the final time at the 

upper bound yields an equivalent problem. Indeed it is always possible to add a coast arc to any solution, without 

changing the total consumption. From now on we thus consider that the optimal control problem is with a fixed final 

time. 

Since the above actual constraints are rather formulated in terms of maximal number of ignitions or of revolutions, 

the final time value cannot be fixed directly. It becomes necessary to solve a series of optimal control problems with 
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different values of the final time tf  in order to get the optimal solution of the transfer problem compliant with the 

operational constraints. 

 

2.3.3  Final anomaly 

If a particular injection anomaly θf is chosen at the fixed final time tf, the final position and velocity vectors are 

completely fixed by 6 final constraints. In that case the final constraints can be expressed directly using the state 

vector components instead of the orbital parameters : 
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This formulation (16) of the final constraints is easier to handle than (15) in the numerical solution. Indeed the 

position and velocity costates become free, so that the associated transversality conditions can be discarded from the 

problem formulation (cf §2.2.2). Practically there is generally no rendezvous constraint and the injection anomaly θf 

is free. The formulation (16) can still be used, but it becomes necessary to solve a series of optimal control problems 

with different values of the injection anomaly θf  in order to get the optimal solution of the transfer problem. 

For a launcher upper stage, the optimal injection is generally located in the vicinity of the perigee of the targeted 

orbit. Thus there exists a local optimum corresponding to a prescribed number of revolutions. 

 

2.4  Hamiltonian and costate 

The costate vector is defined as : 7
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The Hamiltonian of the transfer problem is : 
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The costate equations are : 
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              for t∈[t0,tf] (18)  

For a central gravitational field : r
r

µ
  )r(g

3

rrr
−= , the gravity gradient is the 3×3 matrix

17
 : 
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    in rectangular coordinates. 

 

2.5  Application of the PMP 

Applying the PMP to the upper stage transfer problem yields successively the transversality conditions, the optimal 

control, and the Hamiltonian value. 

 

2.5.1  Transversality conditions 

In the case of fixed injection position and velocity (when the anomaly injection is specified), the final constraints 

take the simplified form (9) : 

 

[ ]
[ ]

[ ]









=
∂

∂

=
∂

∂

⇒=








−

−
=

1)X(t
v

Ψ

1)X(t
r

Ψ

0
v)(tv

r)(tr
)X(tΨ

f

f

ff

ff

f

r

r

rr

rr

 (20)  

The cost function depends only on the mass : 
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The transversality conditions on the position and velocity costates can then be discarded from the problem 

formulation together with their multipliers νr and νv (cf §2.2.2). 

There remains only the transversality condition on the mass costate : 

 [ ] 0p)X(t
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p)(tp 0

f
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=   (22)  

The costate vector is defined up to a multiplicative scalar. The usual normalization is either p
0
=0 (abnormal case) or 

p
0
=-1 whenever the corresponding extremal is normal. In what follows we will prove that, under an adequate 

assumption, the abnormal case does not occur in our problem. 
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2.5.2  Control 

Before looking for the optimal control, we establish the following lemma. 

 

Lemma 1.  The function (t)pt v

r
a  does not vanish identically on any subinterval of [t0, tf]. 

Proof.  The argument goes by contradiction. Assume that 0(t)pv =
r

 on a subinterval I of [t0, tf]. 

Replacing 0(t)pv =
r

in (18) gives :   
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By Cauchy uniqueness of the solution :  
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    on [t0, tf]. 

Replacing in the Hamiltonian (17) yields :  

[ ]f0
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t,tt,
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p
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From the PMP the scalar p
0
 is either negative or null : 

• 
If p

0
<0, then the Hamiltonian maximization requires [ ]f0 t,tt,0T(t) ∈∀=  . 

This raises a contradiction with Assumption 1 which discards the null thrust solution.
 

• If p
0
=0, then [ ]f0m t,tt,0(t)p ∈∀=   . 

We have simultaneously 
[ ]




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 

 

Applying now the PMP, the optimal control U(.) maximizes the Hamiltonian for almost every t∈[t0,tf] : 
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The Hamiltonian maximization yields firstly the optimal thrust direction along the velocity costate : 
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For a null thrust the Hamiltonian is insensitive to the thrust direction, and from Lemma 1, the function (t)pt v

r
a  

does not vanish identically on any subinterval of [t0, tf]. The thrust direction u
r

 is thus well defined almost 

everywhere by (24). 

 

Replacing the optimal thrust direction u
r

 in the Hamiltonian (17) leads us to define the switching function Φ on 

[t0,tf] : 

 

e

mv

v
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(t)p
Φ(t) −=

r

 (25)  

The Hamiltonian can then be expressed as : 
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The Hamiltonian maximization requires secondly choosing the thrust magnitude so that : 
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 (27)  

The PMP does not yield directly the thrust magnitude when the switching function is null. 

Singular arcs correspond to a switching function that vanishes identically on a subinterval I of on [t0,tf]. The non-

occurrence of singular arcs must be checked from the numerical simulations. A study of the controllability aspects 

of the orbit transfer problems can be found in Refs
1,13,18,19

. 

In the simplified case of a flat Earth model (cf §3), it will be shown that singular arcs can be discarded through an 

adequate assumption on the transfer endpoints. 

 

Replacing the optimal thrust direction u
r

 in the mass costate equation (18) yields : 
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The mass costate is thus non-decreasing along any extremal. 

 

2.5.3  Hamiltonian value 

Since the transfer problem is autonomous, the Hamiltonian is constant : 
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 (29)  

Moreover the cost J and the final constraints Ψ do not depend explicitly on the time, so that if the final time is free, 

the Hamiltonian is null along any extremal. For the general transfer problem, it is necessary to fix the final time in 

order to get a practically feasible solution (cf §2.3.2). The Hamiltonian takes then a non-null value. 
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2.6  Switching function 

The sign of the switching function : [ ]
e

mv

f0
v

(t)p

m(t)

(t)p
Φ(t)t,tt −=∈

r

a  determines the sequences of thrust and 

coast arcs. The function Φ is differentiable almost everywhere in [t0, tf]. For every [ ]f0 t,tt ∈  such that 0(t)pv ≠
r

, 

the first derivative is given by : 
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 (30)  

The sign of the derivative is the sign of the function (t)Φt 1a  defined for every t in [t0, tf] by : 

 (t)p(t)p(t)Φ r
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rr
−=  (31)  

This function Φ1 is differentiable almost everywhere in [t0, tf] : 
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At this stage, it is necessary either to turn to numerical methods or to make simplifying assumptions to go further in 

the extremal analysis. This analysis is continued in §3 in the case of a flat Earth model with a uniform gravitational 

field, for which 
( )

0
r

(t)rg
=

∂

∂
r

rr

 . 

 

2.7  Abnormal extremals 

For abnormal extremals we can establish the following lemma. 

 

Lemma 2.  There are no coast arcs on abnormal extremals. 

Proof.  For an abnormal extremal, we have p
0
=0 and from (28) : 
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The switching function is then positive or null : 
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Assume by contradiction that there exists a coast arc, corresponding to a sub-interval I of [t0,tf]. Along such an arc, 

the switching function cannot be strictly positive from (27). This arc is therefore singular, and using (33) : 
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 (35)  

By the Cauchy theorem, the solution of the costate equations is unique on I for given endpoint conditions. The 

costate vector is then identically null on [t0,tf] : [ ]f0

m
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We have simultaneously 
[ ]





=

∈∀=

0p

t,tt,0P(t)

0

f0
  which raises a contradiction with the PMP.         

 

Every possible abnormal extremal consists therefore of a single thrust arc. Such solutions can be found by solving 

the minimal time transfer problem. 

 

2.8  Coplanar transfer problem 

In practice, launcher trajectories are designed in order to bring the upper stage as close as possible to the targeted 

orbital plane. Plane changes at high velocities are indeed very fuel consuming. Such maneuvers should be either 

avoided by an adequate choice of the launch azimuth, or achieved as soon as possible during the lower stage flight. 

We assume from now on that the upper stage transfer problem reduces to a coplanar transfer, which is representative 

of a large part of the practical applications. This problem is a 2-dimensional instance of the general transfer problem 

defined in §2.3.1. The state vector and command vector reduce to respectively 5 and 2 components. 

Considering that the final time is fixed, the boundary value problem is a nonlinear system of dimension 5, with the 

initial costate P(t0) as unknowns. Despite this reduction, finding a satisfying guess for the shooting method remains 

an involved task. 

On the other hand, it happens that the coplanar transfer problem can be nearly analytically solved in two simplified 

cases : 

• The first simplified model is the flat Earth model. In the flat Earth model the gravity does not depend on 

the position and the switching function variations can be explicitly analyzed, yielding the sequences of the 

optimal trajectory. An automatic solution procedure can be set up that avoids the usual issues of the 

shooting method. This is the object of Chapter §3. A continuation procedure on the dynamics equations, 

presented in Chapter §4, allows passing from the flat Earth model solution to the round Earth model 

solution. 

• The second simplified model is the impulsive model. In the impulsive model, the optimal control problem 

reduces to a nonlinear programming problem of small dimension that can be easily solved. The solution is 
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used to derive an initial guess for the costate vector. A continuation procedure on the thrust level, presented 

in Chapter §5, allows passing from the impulsive solution to the continuous thrust solution. 

 

2.9  Orbital parameters 

This section recalls the definition of the orbital parameters
25

 that will be considered in the next chapters. 

The keplerian motion assumes an inverse square gravity field. With that assumption the trajectory consists in a conic 

curve whose nature depends on the initial position and velocity. This conic is called the osculating orbit. It can be 

characterized by 5 constant orbital parameters defining the orbit plane (2 angles), shape (2 lengths) and orientation 

(1 angle), plus a varying angle along the motion. 

• The perigee of the osculating orbit is the point on the orbit corresponding to the minimum radius vector. 

• For a closed conic (ellipse), the apogee of the osculating orbit is the point on the orbit corresponding to the 

maximum radius vector. 

Considering the general motion of a space vehicle submitted to various forces (drag, thrust, gravity, …), the 

osculating orbit is defined at any date as the trajectory that would be followed by the vehicle from its current 

position and velocity if the keplerian assumption of an inverse square gravity field became valid from the current 

date. This osculating orbit represents a fairly good prediction of the true motion when the additional non keplerian 

forces (called ‘perturbations’) are small wrt the keplerian inverse square gravity. 

 

Depending on the mission, specific properties may be required on the satellite orbit : 

• Telecommunication or meteorological missions are performed from geostationary orbits (GEO). On such 

an orbit the satellite appears fixed to an observer from the ground. A geostationary orbit is necessarily 

equatorial, circular at the altitude of 35786 km, so that its period matches the Earth rotation period. 

• Earth observation missions are performed from sun-synchronous orbits (SSO). On such an orbit the orbital 

plane keeps a constant angle with the sun direction throughout the year so that the observed Earth areas are 

always flown over at the same local solar hour. A sun-synchronous orbit is generally circular at altitudes 

between 500 km and 1500 km with an inclination around 100 deg. The inclination is tuned in order that the 

orbital plane precession due to the Earth flattening matches the rotation of the sun direction of about 

1deg/day. This property is detailed in the Chapter §3 on the second part of this document, devoted to the 

collecting of space debris on sun-synchronous orbits. 
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3  Flat Earth model 

This chapter investigates the flat Earth problem. This problem is a simplified instance of the coplanar transfer 

problem presented in §2.8 with the additional assumptions of a flat Earth surface and a uniform vertical gravity 

field. Due to these assumptions the extremal equations can be analyzed further leading to a significant problem 

reduction. An algorithm is then proposed to find the solution whatever the data, without prior specific initialization 

task. This algorithm will be used as first step of a self-starting solution procedure for the round Earth problem. 

 

3.1  Problem statement 

The Earth is modeled as a horizontal line with a uniform vertical gravity field. The inertial reference frame is 

( )j,iH,
rr

 with the origin H being any point on the line representing the Earth surface and with horizontal and vertical 

vectors respectively i
r

and j
r

. In ( )j,iH,
rr

 (see Figure 1) : 

• The position components are the downrange d and the altitude h :    
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• The velocity components are the horizontal velocity vd and the vertical velocity vh :  
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Figure 1 : Flat Earth model 
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The gravity field components are : ( ) 








−
==

0

0
g

0    
grg
rrr

. The value 
2

E

0
r

µ
  g =  is the gravity at the round Earth surface, 

with rE the Earth radius, and µ the Earth gravitational constant. 

The initial position )(tr 0

r
 and velocity )(tv 0

r
 are fixed. The targeted position and velocity correspond to an injection 

at the perigee in the round Earth model, at an altitude hP and with a horizontal velocity vP. The final downrange is 

free, corresponding to the horizontal distance travelled between the initial position and the injection. The final 

conditions are thus : 

 





















=









=

0

v
)(tv

h

free
)(tr

P

f

P

f

r

r

  (36)  

Contrary to the round Earth model (§2.3.2), there exists no orbit in the flat Earth model, so that the problem has a 

finite time solution letting the final time free. The problem is then stated as :
 

[ ] )m(tt,)X(tJMax fff
tU(t), f

=  

In the flat Earth model with a uniform gravity field, the free motion is a parabola. The apogee altitude hA is reached 

at tA when the vertical velocity vanishes : 
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For the upcoming analysis of the flat Earth problem, we make the following assumption. 

 

Assumption 2. 

We assume that the initial apogee altitude hA(t0) is lower than the targeted injection altitude h(tf) =hP. 

 

0

2

0
00AP

2g

)v(t
)h(t)(thh +=>   (37)  

This assumption is practically always satisfied. Indeed the lower stages of a launcher must be separated on instable 

orbits (i.e. with a negative or low perigee altitude) in order to control their fall-down. The upper stage starts from 

such an orbit after the last but one stage injection. This orbit has generally a low apogee altitude and the last stage 

must provide a significant vertical velocity increment to reach the targeted altitude. It can be noticed that 

Assumption 2 discards the solutions at null thrust vertical component. 
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3.2  Application of the Pontryagin Maximum Principle 

Applying the PMP to the flat Earth problem is identical to the general transfer problem, considering a 5-state vector 

and a uniform gravity ( ) 0grg
rrr

= . The gravity gradient is then null : 
( )

0
r

rg
=

∂

∂
r

rr

,so that the position and velocity 

costate (18) can be integrated : 
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From the transversality conditions, the costate components at the endpoints are free whenever the state components 

are fixed, and conversely. The fixed components of the costate vector are given by : 

 [ ]

[ ]
0pwith

t),X(t
X

J
p)P(t

t),X(t
X

J
p)P(t

0

ff

0

f

00

0

0

≤










∂

∂
−=

∂

∂
=

  (39)  

For the flat Earth problem the transversality conditions yield : 

 

• Initial conditions at t=t0 :          
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• Final conditions at t=tf :           















−=

=















=

⇒=

=

fixedp)(tp

free)(tp

free)(tp

free)(tp

fixed0)(tp

free)m(t

fixed0)(tv

fixedv)(tv

fixedh)h(t

free)d(t

0

fm

fvh

fvd

fh

fd

f

fh

pfd

pf

f

     (41)  

The term “free” (or unknown) means that the corresponding state or costate component is not given a priori, but it 

will be determined by solving the BVP. 

The position costate is thus constant with a null downrange component : 
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And the velocity horizontal costate is constant : 

 [ ]f0vd
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vd t,tt,p(t)p ∈∀=   (43)  

Since the system is autonomous and the final time is free, the Hamiltonian is constant and null along the optimal 

trajectory : 
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with the switching function Φ defined by (25) :  [ ]
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and the thrust magnitude determined by (27) :    
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3.3  Switching function 

The derivative of the switching function has the sign of the function : (t)Φt 1a  defined for almost every 

[ ]f0 t,tt ∈  by : 
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This function Φ1 is differentiable almost everywhere in [t0, tf] and it is either constant or strictly increasing : 
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The values of Φ1 and Φ at the final time tf are : 
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3.4  Singular arcs 

The two following lemmas prove that there are no singular arcs for the flat Earth problem with the Assumption 2. 

 

Lemma 3.  The function Φ(t)t a  is constant on any subinterval of [t0, tf] if and only if 0p r

rr
= . 

Proof.    If 0p r

rr
=  then : [ ] [ ] 0(t)Φ ,t,tt0(t)Φ  ,t,tt f01f0 =∈∀⇒=∈∀ & ,  and Φ is constant on [t0, tf]. 

Conversely if Φ is constant on a subinterval I of [t0, tf], then : 

0p0p(t)Φ I,t0(t)Φ I,t0(t)Φ I,t r

2

r11

rrr
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Lemma 4.  The function Φ(t)t a  does not vanish identically on any subinterval of [t0, tf]. 

Proof.  The argument goes by contradiction. Assume that 0Φ(t) =  on a subinterval I of [t0, tf]. 
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Then from Lemma 3 (necessary condition) 0p r

rr
= and again from Lemma 3 (sufficient condition)  Φ is constant on 

any subinterval of [t0, tf]. Therefore Φ is constant and vanishes identically on [t0, tf]. 

From the costate equations (38) :   [ ] )(tp(t)p ,t,tt0p fvvf0r
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 almost everywhere in [t0, tf]. 

The thrust vertical component is then constantly null which is not compliant with Assumption 2.            

 

Lemma 4 discards singular arcs. The optimal control can thus always be determined from the PMP, using the 

velocity costate for the thrust direction and the switching function for the thrust magnitude. 

 

3.5  Switching function variation 

The sequences of the optimal trajectory are determined by the sign of the switching function. We analyze the 

switching function variation considering successively the case 0p r

rr
=  and the case 0p r

rr
≠ . 

 

3.5.1  Null position costate 

Lemma 5.  If 0p r

rr
=

 
then the thrust is constant and maximal on [t0, tf]. 

Proof.  If 0p r

rr
= then from Lemma 3, Φ is constant on [t0, tf] and from Lemma 4, Φ is not equal to 0. 

If Φ < 0 , the thrust is null on [t0, tf] which is not compliant with Assumption 2. 

Therefore Φ must be strictly positive and the thrust is constant equal to Tmax on [t0, tf].             
 

 

In the case of a null position costate, any extremal consists therefore of a single thrust arc. The minimal 

consumption transfer problem is then equivalent to the minimal time transfer problem. 

Furthermore the velocity costate vp
r

 is constant, and therefore the optimal thrust direction is constant. The problem 

reduces to two unknowns, namely the thrust pitch angle (angle with the horizontal) and the final time. The state 

equations can be analytically integrated to find the optimal solution. 
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3.5.2  Non null position costate 

Lemma 6.  If 0p r

rr
≠

 
then Φ has a unique minimum at tm. Furthermore : 





=Φ+

=

0)(t)T(t)(tvp

0)(tp

mmmhh

mvh
. 

Proof.  The sign of (t)Φ&  is the sign of t)t(pp)(tpp(t)p(t)Φ f

2

rr

t

fvr

t

v1 −−−=−=
rrrrr

. 

The function (t)Φt 1a  is linear and strictly increasing since 0pr

rr
≠ . It has a unique zero at tm , is negative for t<tm 

and positive for t>tm . The switching function Φ is therefore decreasing  for t<tm ,increasing for t>tm with a unique 

minimum a t=tm : 

 
0)(tp0)p(tp

p

0
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p
p)(tp0)(tΦ0)(tΦ mvhhmvh
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
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










=⇒=⇒=

rr
&  (48)  

since by assumption 0ph ≠ . Replacing in the Hamiltonian (44) yields :  

)(t)T(t)(tvp

)(t)T(t
g

0

)(tp

p

)(tv

)(tv

p

0

)(t)T(tg)(tp)(tvp)H(t
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
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
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
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
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


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






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


=

Φ++=
rrrr

 

H being constantly null, we get the required formula :  0)(t)T(t)(tvp mmmhh =Φ+           

 

The variation of the switching function in the case 0p r

rr
≠  is depicted in Table 1. 

 

t  tm  

(t)Φ&  < 0 0 > 0 

Φ(t)

 
  

 

 

 

Φ(tm) 

 

 

Table 1 : Switching function variation in the case pr≠≠≠≠0 

 

The possible sequences of an optimal strategy when 0p r

rr
≠ depend on : 

• the sign of the minimum Φ(tm) 

• the date of the minimum tm with respect to the interval [t0, tf] 
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If the minimum Φ(tm) is positive, then the switching function is always positive and the thrust is constant equal to 

Tmax on [t0, tf]. The problem is equivalent to a minimum-time problem. 

The remaining case when rp
r

is non null and the minimum value Φ(tm) is negative is investigated in the next section. 

For that purpose, the velocity costate is expressed as follows using 0)t(p mvh = yielded by Lemma 6 : 
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  (49)  

 

3.6  Case of a negative minimum 

In this section, we assume that 0p r

rr
≠  and that Φ has a strictly negative minimum 0)Φ(t m < . 

The switching function Φ being continuous, it remains negative in a neighborhood of tm. There exists thus a non null 

interval I containing tm such that : 0Φ(t) I,t <∈∀  corresponding therefore to a coast arc : 0T(t) = . 

 

Lemma 7.  The switching function is symmetric with respect to tm in the interval I. It has two zeros at distinct 

switching dates t1 and t2 symmetric with respect to tm. 

Proof.  The switching function is given by (25) : 

e

mv

v
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(t)p
Φ(t) −=

r

 

On the interval I, T is null and we have respectively for (t)pv

r
, (t)pm

 and m(t) : 
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Replacing in the switching function yields :
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and since 0ph ≠  (Assumption for §3.6) Φ has two zeros at t1 and t2 such that : 
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These switching dates are distinct and symmetric with respect to tm :    2
21

m1 t
2

tt
tt <

+
=<

     


 

The trajectory on [t1, t2] is a parabola reaching its apogee at tm when 0)(tv mh = : 
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  (51)  

In order to determine the optimal trajectory sequences, we need to locate the final date tf with respect to the coast arc 

[t1, t2]. 

For that purpose we analyze the variation of the vertical velocity component (t)vh in order to determine when the 

final condition 0)(tv fh = can be met. 

 

3.6.1  Vertical velocity 

The function (t)vt ha  is differentiable almost everywhere, except at the switching dates. Its first derivative is given 

by the state equation : 
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Lemma 8.  The derivative of (t)vt ha is monotonous for t > t2 : 

• decreasing  if ph > 0, 

• increasing   if ph < 0. 

Proof.  To establish the lemma, we assess the second derivative of vh(t). 

For t > t2 , 0(t)pv

rr
≠  (using 49) so that the function (t)ut ha is differentiable ant its derivative is : 
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which can be expressed as : 

 ( )2

h

v

h
h (t)u1

(t)p

p
(t)u −−= r&  (53)  

On the other hand, the switching function is null at t2 and increasing. For t > t2 , it is strictly positive and thrust is 

constant equal to Tmax. 

Using 
e

max

e v

T

v

T(t)
(t)m −=−=&  , the second derivative of (t)vt ha is given for t > t2 by : 
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 (54)  

with  1(t)u1(t)u h ≤⇒=
r

 

For t > t2 > tm, the term inside the parenthesis are all positive. The sign of (t)vh
&& is constant, opposite to the sign of 

hp and the function (t)vt h
&a is monotonous, decreasing if 0ph > , increasing if 0ph <  .

           
 

 

Lemma 9.  The function (t)vt ha  vanishes at most once for t > t2. In that case, hp is negative. 

Proof.  The function (t)vh
is continuous everywhere, and from (51) it is negative at t2 : 0)t.(tg)(tv m202h <−−= . 

We consider successively the cases 0ph >  or 0ph <  : 

• Case 0ph >  

In that case,
(t)p

)tt(p
(t)u

v

mh
h r

−
=  is negative for t > t2> tm, and (t)u

m(t)

T(t)
g(t)v h0h +−=& is also negative for t > t2. 

(t)vh
 is decreasing and it can therefore not vanish for t > t2. 

• Case 0ph <  

In that case, from Lemma 8 (t)vh
&  is monotonous and increasing. If it becomes positive at a date t3 > t2, it remains 

positive for t ≥ t3. (t)vh
 is then strictly increasing for t ≥ t3 and it can vanish at most once at a date t4 ≥ t3.         

 

 

Lemma 9 implies that the final date tf  satisfying the condition 0)(tv fh = , can be greater than t2 only if 0ph < . In 

that case, (t)vh
 is negative on [t2, tf] and the variations of (t)u h

and (t)vh
 are depicted in Table 2. 
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t  t1  tm  t2  t3  tf=t4 

uh(t) -  - 0 +  +  +  

(t)vh
&  -  -  -  - 0 +  

 

vh(t)

 

 

+ 

  

+ 

 

0 

 

- 

  

- 

  

- 

 

0 

 

Table 2 : Vertical velocity variation in the case ph<0 

 

We next analyze the variation of the osculating apogee (t)hA
 in order to prove that the case 0ph < cannot occur. 

 

3.6.2  Osculating apogee 

The osculating apogee altitude is defined at any date t as the maximal altitude reached on a free motion starting from 

the kinematic conditions at the date t. It is given by (37) : 

 

0

2

h
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2g

(t)v
h(t)(t)h +=  (55)  

On a downward leg, the vertical velocity is negative and the osculating apogee is located at a date prior to the 

current date t. 

The function (t)ht Aa  is differentiable almost everywhere, except at the switching dates. Its first derivative is 

given by : 
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(56)  

with : 

• 
(t)p

)tt(p
(t)u

v

mh
h r

−
=  

• (t)u
m(t)

T(t)
g(t)v h0h +−=&    and 0)(tv mh =  

 

Lemma 10.  If 0ph < , the final condition Pf h)h(t =  cannot be met. 

Proof.  From Table 2, in the case 0ph < , the product (t)(t)vu hh
 is constantly negative or null. On the other hand, 

the thrust T(t) in null in the interval [t1, t2], and maximal outside, so that : 
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• 0(t)hA =&     for t1 < t < t2 

• 0(t)h A ≤&     for t < t1 or t > t2 

The osculating apogee (t)hA  is decreasing with the time, and from Assumption 2 : P0A h)t(h <  . 

Therefore : P0AA0 h)(th(t)h,tt <≤≥∀  

Since  h(t)
2g

(t)v
h(t)(t)h

0

2

h
A ≥+=  , we get : P0 hh(t),tt <≥∀  and the final condition Pf h)h(t =  is never met     

 

3.7  Optimal sequences 

The previous results are summed up in the following theorem. 

Theorem 1.  The possible sequences of the optimal trajectory are : 

• Either Tmax – 0 if  t1 < tf < t2 

• Or       Tmax        if  tf < t1 

Proof.   

In the abnormal case, there is a single thrust sequence at maximal thrust (Lemma 2). 

In the normal case, 
hp cannot be negative (Lemma 10), else the two final conditions 





=

=

Pf

fh

h)t(h

0)t(v
 cannot me met 

simultaneously. 

If 0ph = , there is a single thrust sequence at maximal thrust (Lemma 5). Furthermore the thrust direction is 

constant and the problem can be solved analytically. 

If 0ph > , the switching function has a minimum (Lemma 6) that is : 

• Either positive. In that case, there is a single thrust sequence at maximal thrust. 

• Or negative. In that case, (t)vh  does not vanish for t > t2 (Lemma 9). The final date tf is therefore prior to t2 

and the possible sequences of the optimal trajectory are : 

o Either Tmax – 0   if  t1 < tf  < t2 

o Or       Tmax        if  tf < t1                
 

 

Remark 

The conclusions of Theorem 1 might seem counterintuitive. Indeed a 2-boost strategy Tmax – 0 - Tmax is generally 

optimal in the round Earth model. In the extreme case of impulsive maneuvers, the optimal strategy is a Hohmann-

like transfer consisting in a first boost to increase the apogee altitude up to the targeted injection altitude, and after 

a coast arc, a second boost to increase the semi-major axis. The injection occurs at the perigee of the targeted orbit. 

This remains the optimal strategy as long as the thrust level is sufficiently high, and the targeted orbit is 

significantly higher than the initial orbit. 
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The flat Earth model with uniform vertical gravity does not admit any orbit like the keplerian orbits in the round 

Earth model. The targeted final conditions do therefore not correspond to the injection on a stable orbit in the 

vicinity of the perigee, but rather to a specified apogee to reach. These final conditions could be equivalently 

specified in term of impact downrange and velocity, as for a ballistic missile. For such ballistic problems, all the 

necessary maneuvers can be realized with a single initial boost. Delaying the thrust maneuvers by waiting on a 

coast arc is sub-optimal. The minimum consumption strategy consists in realizing the maneuver as far as possible 

from the final point. 

 

Theorem 1 allows a significant reduction of the BVP for the flat Earth model. The optimal trajectory is at most 

composed of two sequences : 

• a single thrust sequence starting at t0 and ending when the osculating apogee hA becomes equal to the 

targeted final altitude hP , 

• possibly a coast arc until the final altitude is reached. 

 

In the case of a final coast arc the problem can be further reduced due to the following Lemma. 

 

Lemma 11.  If there is a coast arc on the optimal trajectory, then : 

• 
vdp  has the sign of )t(v-)t(v 0dfd

, 

• )t(p 0vh  is strictly positive, 

• the final time is given by : 

 

h

0vh
0f

p

)t(p
tt +=  (57)  

• the switching date t1 satisfies : 

 )t(pg)tt(pg)t(vp 0vh001h01hh =−+  (58)  

Proof.  The horizontal velocity derivative is almost everywhere : 
( )tp
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dd r& ==  where vdp  is 

constant. It keeps the sign of vdp along the whole trajectory.  In order to pass from )t(v 0d  to )t(v fd , vdp  must have 

the sign of )t(v-)t(v 0dfd , which is the first result of the Lemma. 

The Hamiltonian is null along the optimal trajectory. At tf we have : 
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If there is a coast arc, the thrust is null at tf . On the other hand : 


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Replacing in the Hamiltonian yields : )tt(p)t(p 0fh0vh −=  
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From Theorem 1, there can be a coast arc only if 0ph > . Therefore :
 

0)t(p 0vh >  and 
h

0vh
0f

p

)t(p
tt +=  which are 

the second and third results of the Lemma. 

Similarly at the switching date t1 the Hamiltonian is null and the switching function vanishes : 
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which is the last result of the lemma.              

 

An efficient solution algorithm is derived in the next section, based on the results of Theorem 1 and Lemma 11. 

 

3.8  Algorithmic procedure 

For most practical applications a significant altitude increase is required making the constant thrust strategy 

inefficient. The algorithm solving the flat Earth problem is restricted to solutions such that : 

 

Assumption 3. 

We assume that the optimal trajectory comprises at least one coast arc. 

 

This assumption discards abnormal extremals (Lemma 2), and also normal extremals with 0ph = (Lemma 10). 

Since ph is positive (Theorem 1), the solutions sought restrict to normal extremals with 0ph > . 

 

Basically the shooting method applied to the flat Earth problem consists in solving a BVP with 6 unknowns and 6 

equations. 

The 6 unknowns are : 

• the initial costate components ( ))t(p,)t(p,p,p 0m0vhvdh  and the non positive real number p
0
. These 

components are defined up to a multiplicative scalar. 

• the final time tf 

The 6 equations are : 

• the 3 final conditions :   
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• the 2 transversality conditions :   
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fm  

• a normalization condition on the costate components 
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For a normal extremal, p
0
 is strictly negative and a usual normalization choice is to set p

0
 = -1. However for the 

present problem, even if there is no abnormal extremal, a different normalization will be chosen that takes advantage 

of the fact that the costate vector is defined up to a multiplicative scalar (see below). The problem is reduced in 3 

successive steps as presented in the following sections. 

 

3.8.1  Final time 

From lemma 11 the final time is determined directly from ph and pvh(t0) by : 
h

0vh
0f

p

)t(p
tt +=  , replacing the 

transversality condition 0)H(t f = . This reduces the BVP to 5 unknowns and 5 equations. 

The 5 unknowns are : 

• the initial costate components ( ))t(p,)t(p,p,p 0m0vhvdh  and the non positive real number p
0
. These 

components are defined up to a multiplicative scalar. 

The 5 equations are : 

• the 3 final conditions :   
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• the transversality condition :   
0

fm p)(tp −=  

• a normalization conditions on the costate components 

with the final time tf being determined by :  
h

0vh
0f

p

)t(p
tt +=  

 

3.8.2  Mass costate 

In the flat Earth problem, the mass costate (t)pm  is only used to assess the switching function : 

e

mv

v

(t)p

m(t)

(t)p
Φ(t) −=

r

 which in turn determines the switching dates. 

From Theorem 1, there is at most one switching date t1, and from Lemma 11 the value of t1 can be determined by 

the condition (58) : )t(pg)tt(pg)t(vp 0vh001h01hh =−+  which makes no use of mp . The assessment of (t)pm  is 

therefore no longer useful and it can be put aside when solving the BVP, together with the associated transversality 

condition 0

fm p)(tp −= . The unknown p
0
 that is used only in this transversality condition is also discarded of the 

problem. This gives a degree of freedom for the costate normalization, that will be used in §3.8.3 to further simplify 

the problem. The BVP is now reduced to 3 unknowns and 3 equations. 

The 3 unknowns are : 

• the initial costate components ( ))t(p,p,p 0vhvdh which are defined up to a multiplicative scalar. 

The 3 equations are : 
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• the 3 final conditions :   
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with the switching time t1 and the final time tf being determined respectively by : 
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Furthermore these conditions (59) yielding t1 and tf  are equivalent to the 2 conditions : 

 









+=

=

h

0vh
0f

fh

p

)t(p
tt

0)(tv

 (60)  

Indeed on the coast arc from t1 to tf , we have : 
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And :    )t(pg)tt(pg)t(vp0)(tv 0vh001h01hhfh =−+⇔=  

We can therefore put aside the final condition 0)(tv fh =  in the BVP. This condition is automatically satisfied when 

t1 and tf  satisfy the conditions (59). 

 

3.8.3  Costate normalization 

Form Assumption 3 the costate hp is strictly positive. A useful normalization of the costate vector consists in 

choosing 1ph =  so that hp  is no longer an unknown of the problem. We stress that this normalization is not the 

usual one (that would rather consist of normalizing the costate vector so that p
0
=-1). The normalization chosen here 

happens to be more convenient and more adapted to our specific situation. 

This reduces the BVP to 2 unknowns and 2 equations. 

The 2 unknowns are : 

• the initial costate components ( ))t(p,p 0vhvd . 

The 2 equations are : 

• the 2 final conditions :   
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with the switching time t1 and the final time tf being determined by (59), with 1ph =  : 
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3.8.4  Reduced problem solution 

The reduced BVP is solved by a shooting method which consists in a numerical integration of the trajectory from 

guessed values of the 2 unknowns ( ))t(p,p 0vhvd , and a Newton-like solver to find the unknown values satisfying the 

final conditions. The algorithm is the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 : Flat Earth problem 

Input :  Gravity constant :  g0 

Propulsion features :  Tmax,ve 

Vehicle initial mass ; m(t0) 

Initial conditions :  t0, h(t0), vd(t0), vh(t0) 

Final  conditions :  hP, vP 

 

1. Initialization : Choose arbitrary values of the unknowns pvd > 0 and pvh(t0) > 0 

2. Integrate numerically the state equations : 

 

from t0 to t1 satisfying :  

3. Compute explicitly the final state at  :  

 

4. Solve with a Newton-like method the system : 

 

 

Output :  BVP unknowns pvd and pvh(t0) 
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Instead of a numerical integration, it is possible to compute explicit expressions of the state components h(t), vd(t) 

and vh(t) on [t0,t1]. Nevertheless the resulting expressions do not allow an explicit computation of the switching time 

t1 given by the nonlinear equation )t(pg)tt(g)t(v 0vh00101h =−+ . Therefore it does not improve the algorithm 

neither for the execution time, nor for the robustness. The numerical integration happens to be more efficient from 

both points of view since it allows detecting without failure the switching date t1 during the integration. 

The free Fortran routines used for the shooting method are respectively Dop853.f for the numerical integration (8
th
 

order Runge-Kutta method), and Hybrd.f for the nonlinear system solution (Newton-like method with numerical 

derivatives by finite differences). The same routines will be used for the successive shooting problems along the 

continuation procedure described in Chapter §4. Both allow controlling the accuracy of the solution. For the 

application example presented in Chapter §6, the numerical integration is performed with absolute accuracies 

respectively of 10
-8

 m on the position, and 10
-8

 m/s on the velocity. For the zeros of the shooting function the 

required accuracies are respectively 10
-4

 m on the final position and 10
-4

 m/s on the final velocity. 

 

3.8.5  Solution renormalization 

The above algorithm is easy to carry out and it converges in a few iterations from scratch, i.e. for almost any initial 

positive values of the unknowns ( ))t(p,p 0vhvd . This solution will be used as the starting point for the continuation 

procedure described in Chapter §4. For that purpose, it is necessary to retrieve the costate components of the initial 

problem which we denote with an upper bar : ( ))t(p,)t(p,p,p 0m0vhvdh . 

 

The first stage consists in assessing the missing components ( ))t(p,p,p 0mhd  of the initial costate from the reduced 

solution ( ))t(p,p 0vhvd and from the switching date t1. 

The position costates are constant : 0pd =  (free coordinate)   and  1ph = (normalization choice). 

The velocity costate is computed explicitly from the reduced solution ( ))t(p,p 0vhvd : 
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(61)  

The value of the initial mass costate is deduced from the Hamiltonian which is constantly null : 
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Replacing with 
2

0vh

2

vd0v )(tpp)(tp +=
r

 given by (60) and 1ph = , we obtain for the initial mass costate : 
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The second stage consists in renormalizing the costate vector components to restore the usual normalization p
0
 = -1. 

The scalar p
0
 is given by the transversality condition on the mass costate : 0

fm p)(tp −= . 

The value of the final mass costate is deduced from switching function which vanishes at the switching time t1 : 
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The mass and the mass costate are constant along the coast arc from t1 to tf : 
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We obtain for the final mass costate : 
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Dividing the costate components by )(tpp- fm

0 = , we obtain the solution of the initial problem with the usual 

normalization p
0
 = -1 : 
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 (66)  

The final time is unchanged by the renormalization :  
h

0vh
00vh0f

p

)t(p
t)t(ptt +=+=  
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4  Continuation from the flat Earth to the round Earth model 

This chapter presents the procedure to pass from the flat Earth problem whose solution is easy to the original round 

Earth problem which is more difficult to solve from scratch. For that purpose the coplanar transfer problem is 

formulated component-wise considering successively the simplified flat Earth model of Chapter §3 and the “true” 

round Earth model. A coordinate change is defined in order to establish some similarities between both models and 

to build a modified formulation of the flat Earth problem. Continuation parameters are then defined that introduce 

continuously the ‘round Earth terms’ into the modified formulation. 

 
4.1  Flat Earth model 

4.1.1  Coordinates and state equations 

For clarity, we recall here the notations of §3.1 for the simplified flat Earth model. The position, the velocity and the 

thrust are expressed in rectangular coordinates :  
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The state vector has 5 components :  
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 (67)  

with the uniform vertical gravity taken at the Earth surface : 
2

E

0
r

µ
  g = . 

The initial and final conditions are respectively : 
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These final conditions correspond to a horizontal injection at a free distance from the initial position. 

 

4.1.2  Application of the PMP 

We denote by (OCP)flat the optimal control problem of maximizing the final mass m(tf) for the control system (67) 

subject to the initial and final conditions (68), with a free final time. 

Denoting 
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P  the costate components, the Hamiltonian of the flat Earth problem is Hflat : 
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(69)

Since the system is autonomous and the final time is free, the Hamiltonian is constant and null along any extremal. 

The costate equations are : 
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4.2  Round Earth model 

4.2.1  Coordinates and state equations 

In view of a continuation process linking the flat Earth model to the round Earth model, the polar coordinate system 

is the natural choice. Indeed it works with local kinematics variables (radius vector, velocity, flight path angle) that 

can be easily related to flat Earth rectangular coordinates (altitude, horizontal and vertical velocity). 
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The Earth is modeled as a circle of center O and radius rE. The reference inertial frame ( )j,iO,
rr

 defines the 

trajectory plane of the coplanar transfer. The vehicle is modeled as a material point M whose polar coordinates in 

( )j,iO,
rr

 are :  
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 with r the radius vector and ϕ the polar angle. 
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The velocity components in ( )ϕe,e r

rr
 are : 
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 with v the velocity modulus and γ the local slope. 

The coordinate system is depicted on Figure 2. The polar angle ϕ is oriented clock-wise in view of the upcoming 

coordinate change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : Round Earth model 

 

The Earth gravitational field is central : 
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The thrust is expressed by: 
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The initial and final conditions are respectively : 
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These final conditions correspond to an injection at the perigee of the targeted orbit (null flight path angle) at a free 

angular distance from the initial position. This means that the orientation of the final orbit is not prescribed. 

 

The final conditions can also be defined in terms of orbit energy Kf and eccentricity ef. Using the relationships (15) 

in the 2-dimensional case yields as final constraints : 
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In that case, the injection position on the orbit is not prescribed, nor the orbit orientation. In view of the continuation 

procedure between the flat and the round Earth model, we consider rather final conditions under the form (72) that 

apply directly on the state vector components. As mentioned in §2.3.3, the resulting BVP is reduced and thus it is 

easier to handle by the shooting method. Nevertheless this leads to over-constrain the final state so that an additional 

optimization of the free injection conditions must be processed together with the BVP solution. This is discussed 

further in §4.8. 

 

4.2.2  Application of the PMP 

We denote by (OCP)round the optimal control problem of maximizing the final mass m(tf) for the control system (71) 

subject to the initial and final conditions (72), with a fixed final time. Indeed as explained in §2.3.2, the problem has 

no finite solution at free final time. The way to choose the final time value will be explained in the continuation 

procedure. 
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 the costate components, the Hamiltonian for the round Earth problem is Hround : 
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Since the system is autonomous, the Hamiltonian is constant along any extremal. Contrary to the flat Earth model, 

its value is not necessarily null since the final time is fixed. 
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With the derivative of the Earth central gravitational field 
2r

µ
g(r) =  given by : 
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4.3  Modified flat Earth model 

4.3.1  Flat vs round Earth problem 

Making the shooting method converge is practically difficult on the round Earth problem (OCP)round, because it 

requires very accurate guesses for the costate initialization and for the control discontinuities. On the other hand, the 

solution of the flat Earth problem (OCP)flat is easily obtained by the Algorithm 1 presented in §3.8.4. A natural idea 

to bypass the initialization issues of (OCP)round is to retrieve the costate solution of (OCP)flat and use it as initial 

guess for the shooting method. 

This idea does not work so directly, because the coordinate systems are different, and also because the features of 

the two problems are too different. In order to make the transition possible, a continuation process must be set up by 

introducing parameters in the dynamic model. The goal is to pass progressively from the flat Earth problem to the 

initial round Earth problem by a continuous variation of these parameters. The continuation process must take into 

account the respective features of the flat and round Earth models we would like to link : 

• The coordinate system is rectangular for the flat Earth model, polar for the round Earth model. A 

coordinate change is therefore necessary on the round Earth model to make some similarity appear in the 

state equations. 

• The gravity is vertical and constant g0 for the flat Earth model, central and variable g(r) for the round Earth 

model. The continuation process should change continuously the gravity from g0 to g(r). 

• The round Earth model admits orbits (i.e. stable periodic trajectories with null thrust), namely the Keplerian 

orbits, whereas no orbits exist in the flat Earth model. Indeed the vertical velocity is always decreasing in 

the absence of thrust, due to the constant downward gravity and the fact that the altitude decrease is not 

compensated by the Earth curvature. 
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This last difference between the two models introduces major changes in the solution of the optimal control 

problem. In order to overcome this issue and make a continuation possible, the dynamics of the flat Earth model 

should be modified by additional terms, so that horizontal trajectories (‘orbits’) with zero control may exist. At the 

same time, this modified model should be equivalent, up to some change of coordinates, to the round Earth model. 

This modified flat Earth model is derived in the next section, by defining a change of coordinates that flattens 

circular orbits into horizontal trajectories, and then by computing the associated control system. 

 

4.3.2  Coordinate change 

In order to establish some similarities in the state equations of the round Earth model and the flat Earth model, a 

coordinate change is defined that maps the round Earth variables to “equivalent flat Earth variables”. The new 

rectangular coordinates (d, h, vd, vh)  are defined from the polar coordinates (r, ϕ, v, γ) as follows, with the goal of 

mapping circular orbits to horizontal trajectories : 

• The downrange d is defined by the curvilinear distance at the radius r :  d = rϕ 

• The altitude is defined by the distance to the Earth surface : h = r – rE 

• The horizontal and vertical velocity components are defined from the modulus and flight path angle :  
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The coordinate change is depicted on Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 : Coordinate change from the round Earth to the flat Earth model 
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Summing up we consider the change of coordinates for the round Earth problem : 
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 (76)  

The coordinate change (76) defines a diffeomorphism denoted F : ( ) ( )γv,,r,v,vh,d,F hd ϕ= . 

For the thrust direction (t)u
r

, the transformation from polar to rectangular coordinates is : 
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4.3.3  State equations 

In order to write the state equations with the new coordinates, we first differentiate the new coordinates (76) : 
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The polar coordinates derivatives are then replaced from the state equations (71) : 
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Simplifying and reordering the right hand sides yields : 
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Replacing in the right hand sides by the new coordinates (76), and retrieving the mass equation unchanged, we 

obtain the state equations in the new coordinate system : 
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We call ‘modified flat Earth model’ the formulation (78) in rectangular coordinates. It still represents the original 

round Earth model, up to the change of coordinates. In particular, the centrifugal term 
r

v2

d   compensates the gravity 

in the vertical velocity equation and makes null thrust orbits possible. For example, the following initial conditions 

yield a circular orbit at the altitude h0 in a central gravitational field 
2r

µ
g(r) =  : 
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For convenience, the flat Earth model formulation (67) is reproduced here below in order to compare it with the 

modified flat Earth formulation : 
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 (79)  

We observe two differences between (78) and (79) : 

• the first one is the gravity term in the dynamics of vh, constant in the flat Earth model, varying with the 

radius vector in the modified model. 

• the second one is the presence of additional terms in the dynamics of d, vd and vh. These new terms 

introduce a coupling between the horizontal and vertical motion, which does not exist in the flat Earth 

model. They can be considered as corrective terms, making possible in particular the existence of orbits 

(i.e. periodic trajectories without thrust). 
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The modified model is equivalent to the round Earth model while establishing an interesting similarity with the flat 

Earth model. This similarity is used in the next section to set up a continuation procedure between the flat Earth 

problem and the round Earth problem. 

 

4.4  Continuation procedure 

4.4.1  Continuation parameters 

To pass from the simplified flat Earth model (79) to the modified flat Earth model (78), we introduce two 

parameters denoted respectively λ1 and λ2. The first parameter λ1 permits to pass continuously from the constant 

gravity to the varying gravity, and the second parameter λ2 introduces continuously the corrective terms in the 

dynamics. This defines a family of control systems with the parameters λ1 and λ2 varying between 0 and 1 : 
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The system initial and final conditions are those of the flat Earth problem (68) : 
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4.4.2  Continuation path 

For all ( ) [ ]2

21 0,1λ,λ ∈ , we denote by ( )
21 λ,λ

OCP the optimal control problem of maximizing the final mass m(tf) for 

the control system (68) subject to the initial and final conditions (59). The problem is at free final time for λ2 = 0, 

and fixed final time λ2 ≠ 0 as explained hereafter. 
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For λ1 = λ2 = 0, we recover the simplified flat Earth problem ( )flatOCP , and for λ1 = λ2 = 1, we recover the modified 

flat Earth problem which is diffeomorphic to the initial round Earth problem ( )roundOCP . The continuation from the 

flat Earth problem ( )0,0OCP  to the modified flat Earth problem ( )1,1OCP  proceeds in two steps : 

• A first continuation (which we call the ‘gravity continuation’) is realized on the parameter λ1 from 0 to 1, 

while fixing the parameter λ2 = 0. This introduces the variable gravity in the modified model. During this 

continuation, the final time is free since the corresponding optimal control problems ( ) ,0λ1
OCP  have a finite 

solution at free final time. We denote 
flat

ft  the optimal value of the final time obtained as solution of 

( )1,0OCP . 

• A second continuation (which we call the ‘dynamics continuation’) is realized on the parameter λ2 from 0 

to 1, while fixing the parameter λ1 = 1. This introduces the additional dynamics terms in the modified 

model. During this continuation, the final time is fixed to the value 
flat

ft  obtained as solution of ( )1,0OCP . 

Indeed the targeted problem ( )1,1OCP  which is equivalent to the round Earth problem, has no finite solution 

at free final time, making necessary to fix this value. 

 

The choice of fixing 
flat

ff tt = is somewhat arbitrary. The actual constraint in a practical application is rather 

expressed as a maximum number of thrust arcs (limited by the engine re-ignition capabilities) or a maximum 

number of revolutions (limited by the operational tracking capabilities). The solution obtained for ( )1,1OCP  with the 

fixed final time 
flat

ff tt =  can be improved by a third continuation consisting in progressively increasing the value of 

tf, as long as the final mass increases, and until an operational constraint (number of ignitions, or number of 

revolutions) is violated. This is illustrated on the application example in Chapter §6. 

 



 61

The continuation procedure is depicted hereafter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 : Continuation procedure from (OCP)0,0 to (OCP)1,1 

 

 

The continuation consists in solving a series of shooting problems for neighboring optimal control problems of the 

family ( )
21 λ,λ

OCP . Each problem differs from the previous one by a small increment on the parameter λ1 for the first 

continuation, or the parameter λ2 for the second continuation. Every time a problem has been solved, its solution 

(i.e. the initial costate components, and the final time) is retrieved as initial guess for the next shooting problem. If 

the increment on the continuation parameter is sufficiently small, one can hope that this initial guess allows the 

convergence of the Newton method. 

Different continuation algorithms exist, differing by the way the continuation parameter is updated from one 

shooting problem to the other (Refs
20,21

). For the coplanar transfer problem, we will use the simplest method which 

is a discrete homotopy with constant increments. 

 

The BVP associated to the problem ( )
21 λ,λ

OCP is derived in the next section by applying the PMP, in a very similar 

way as done for the general 3 dimensional case (Chapter §2). 
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4.5  Application of the PMP 

4.5.1  Hamiltonian and costate equations 

Denoting 
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P  the costate components, the Hamiltonian of the modified flat Earth problem (80) is 
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H  : 

The Hamiltonian of the modified flat Earth problem (80) is : 
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The costate equations are : 
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with 
2

r

µ
g(r) =  and 

r

2g(r)
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dr
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3

−=−= . 

 

4.5.2  Control 

Denoting the position costate, the velocity costate and the gravity by vectors respectively : 
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The expression of 
21 λ,λ

H  is similar to the Hamiltonian of the general 3 dimensional case (17), with the additive 

terms introduced in the modified flat Earth model. These purely additive terms do not depend on the control, so that 

the results obtained for the general 3 dimensional problem in §2.5 and §2.6 apply to the modified flat Earth problem 

without change. For completeness, we reproduce hereafter the calculus of the optimal control obtained derived from 

the PMP. 

The Hamiltonian maximization yields firstly the optimal thrust direction along the velocity costate : 
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For a null thrust the Hamiltonian is insensitive to the thrust direction, and from Lemma 1, the function (t)pt v

r
a  

does not vanish identically on any subinterval of [t0, tf]. The thrust direction u
r

 is thus well defined almost 

everywhere by (85). 

Replacing the optimal thrust direction u
r

 in the Hamiltonian and defining the switching function 
21 λ,λ

Φ  as : 
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the Hamiltonian can be expressed as : 
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The Hamiltonian maximization requires secondly choosing the thrust magnitude so that : 
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4.5.3  Transversality conditions 

The final constraints (81) yield for the position and velocity transversality conditions : 
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With the usual normalization of the state vector components with p
0
=-1 the transversality condition for the mass 

costate is : 

 1)(tp fm =   (90)  

The system being autonomous, the Hamiltonian is constant and if the final time is free, the Hamiltonian is null along 

any extremal : 

  0)(tH fλ,λ 21
=  (91)  

 

4.5.4  Boundary value problem (BVP) and shooting method 

The BVP derived from the PMP is of dimension 6. It consists in finding a zero of the shooting function 
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→  is defined as : 
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If the final time tf is fixed, the last equation is discarded and the shooting function is reduced to 5 components. 

Computing the shooting function values requires integrating the state and costate equations starting from the fixed 

initial state X(t0) and the guessed initial costate P(t0). The control along the trajectory is determined ‘on line’ during 

the trajectory by the maximization condition on the Hamiltonian : the thrust magnitude depends on the sign of the 

switching function, while the thrust direction is defined by the velocity costate. 
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4.6  Practical implementation 

The trajectory is integrated numerically from the initial date t0 to the guessed final date tf using the free Fortran 

software Dop853.f which implements an 8
th

 order Runge-Kutta method with an adaptative stepsize. 

Three kinds of shooting problems must be solved at the successive stages of the continuation procedure : 

• The starting point corresponds to the flat Earth problem : (OCP)0,0 = (OCP)flat. This problem is solved from 

scratch by the Algorithm 1 presented in §3.8.4 without any specific initialization task. 

• The first part of the continuation procedure consists in solving the equation [ ] 0t),P(tS f0,0λ1
=  for a 

sequence of parameters λ1 increasing from 0 to 1. These problems are of dimension 6 with a free final time. 

• The second part of the continuation procedure consists in solving the equation [ ] 0)P(tS 0λ1, 2
=  for a 

sequence of parameters λ2 increasing from 0 to 1. These problems are of dimension 5 with the final time 

fixed at the optimal value of (OCP)1,0 : 
flat

ff tt = . The final problem (OCP)1,1 is equivalent to the round 

Earth problem (OCP)round. 

The shooting problems are solved using the free Fortran software Hybrd.f which implements a Newton-like method. 

The successive shooting problems prove relatively robust to the initial guess, so that quite large steps are possible on 

the parameters λ1 and λ2 from one problem to the next one. For the application example presented in §6, the steps 

used are respectively ∆λ1 = 0.1 and ∆λ2 = 0.2. In case of a step failure, the parameter increment is halved and the 

solution is restarted until the shooting method converges. The increment is then reset to its initial value to go on the 

continuation path. 

 

It is possible to consider different paths in [ ]2
0,1   driving the parameters λ1 and λ2 from (0,0) to (1,1). The path 

proposed allows keeping the final time free until the intermediate problem (OCP)1,0. Since the value of the final time 

must be fixed in a somewhat arbitrary way, before solving the round Earth problem (OCP)1,1, it seems reasonable to 

fix this value as late as possible in the continuation procedure. The final time value must anyway be refined after the 

second continuation in order to get the maximum final mass under actual operational constraints (typically 2 engines 

re-ignition at most, or one revolution at most). Furthermore the numerical applications show that the first part of the 

continuation from (OCP)0,0 to (OCP)1,0 introducing the variable gravity in the flat Earth model is quite fast and 

robust. Hence considering a more direct continuation path from (OCP)0,0 to (OCP)1,1 would not yield a significant 

gain of execution time, while taking more risks regarding the convergence. 

 

This algorithmic procedure provides a way of solving the upper stage coplanar transfer problem without any a priori 

knowledge on the optimal solution. The price to pay is that, instead of solving only one optimal control problem, 

one has to solve the series of ( )
21 λ,λ

OCP . However the whole procedure remains time-efficient since the shooting 

method relies on a Newton-like method. It offers the advantage of starting from scratch and therefore of by-passing 

the initialization issues usually encountered when trying to solve directly the problem with the shooting method. 
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4.7  Round Earth problem costate 

The above continuation process yields, if successful, the solution of the modified flat Earth problem ( )1,1OCP . The 

state, the costate and the control are obtained in the modified coordinate system : 
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We denote with an upper bar the state, the costate, the control and the Hamiltonian corresponding to the solution of 

the initial round Earth problem ( )roundOCP  in the polar coordinate system (§4.2) : 
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The problems ( )1,1OCP  and ( )roundOCP  are equivalent up to the change of coordinates (76) and (77) defining a 

diffeomorphism F and its inverse G=F
-1

 : 
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(95)  

The mass component is unchanged in the state vectors X  and X  , and it is therefore not taken into account in F.  

The state and the control of the initial round Earth problem are retrieved by inverting the above coordinate change. 

The corresponding costate transformation can be established by different ways : 
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• The analytical approach consists in using a generating function to derive the canonical transformation from 

( )PX,  to ( )P,X . 

• The geometrical approach relies on the intrinsic character of the PMP . 

 

4.7.1  Analytical approach 

The canonical transformation can be guessed by considering that the Hamiltonian must be identical, up to a function 

of the time, for both coordinate systems. For a point transformation like (93), this is more direct than the usual 

approach consisting in the differentiation of a generating function
22

. 

We denote respectively H  and H  the Hamiltonian in the 2 coordinate systems : 

 [ ]

[ ]
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
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=

=

(t)X(t)P(t)U(t),P(t),XH
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&

&

         for t∈[t0,tf] (96)  

For convenience, the time variable is dropped in what follows. Since the system is autonomous, the Hamiltonian 

does not depend explicitly on the time. We thus impose the condition, without additive function of the time : 

            [ ] [ ] XPXPUP,X,HU,P,XH tt &&
=⇔=                                                 (97)

Differentiating the coordinate change, with dF denoting the differential of F, we have : 

            ( ) ( )XXdFXXFX &&
=⇒=                                           (98)

Replacing in (97) gives :  

            
[ ] [ ] [ ]

XP

XPdF(X)XdF(X)PXdF(X)PXP

t

ttttt

&

&&&&

=

===
                                                (99)

F being a diffeomorphism, the differential dF(X) is not singular. 

A sufficient condition to have a canonical transformation is to define the costate coordinate change as : 

 PdF(X)P t−=  (100)  

It must now be checked that P  defined by (Eq 100) satisfies the PMP. By Cauchy uniqueness, this will ensure that 

P  is indeed the costate in the new coordinate system. This analytical demonstration is tedious and we will not 

undertake it. Indeed it can be established in a much more elegant way by the following geometrical approach. 

 

4.7.2  Geometrical approach 

We recast the Pontryagin Maximum Principle under a geometrical form in order to recall its intrinsic character. 

Let M and N be smooth manifolds of respective dimensions n and m, M0 and Mf two regular submanifolds of M and 

U a subset of N. 

We consider the autonomous control system represented on M by a first order ODE : 
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 [ ] [ ]
TMNM:f
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→×

∈=&
 (101)  

The function f is smooth, taking its value in the tangent bundle TM. The control U is a bounded measurable function 

taking its value in a subset U of N. 

We consider the optimal control problem at free or fixed final time : 
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(102)  

where J is the cost function to minimize and f0 is a smooth function. 

According to the Pontryagin Maximum Principle, if X(.) is an optimal trajectory, there exists : 

• a control U(.) on [t0,tf], 

• an absolutely continuous mapping [ ] ( )MTP(t)t,tt:P(.) *

tXf0 ∈∈ a , named the costate vector, taking its 

value in the cotangent bundle MT*
at X(t), 

• a non positive real number p
0
, with ( ) ( )0,0pP(.),

0 ≠  

• a Hamiltonian function 

 [ ] U)(X,fpU)f(X,P,U,pP,X,H 000 +=  (103)  

and it satisfies : 

• the Hamiltonian system : 
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                                  for almost every t∈[t0,tf] (104)  

• the maximization of the Hamiltonian : 

 [ ] [ ]W(t),pP(t),X(t),HMaxU(t),pP(t),X(t),H
0

W(t)

0 =        for almost every t∈[t0,tf] (105)  

• the transversality conditions at both endpoints : 
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Formulated in this way on a manifold, the Pontryagin Maximum Principle is intrinsic, i.e. its statement does not 

depend on a specific choice of coordinates
23

. 
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Let now M  and N  be two other smooth manifolds of the same dimension n and m of respectively M and N. 

We consider two diffeomorphisms  MM: aΦ  and  NN: aΨ
 
defining the coordinate changes : 
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 (107)  

The differential dΦ defines a diffeomorphism between the tangent bundles TM and MT , while the transpose of its 

inverse -tdΦ defines a diffeomorphism between the cotangent bundles MT
*

and MT
*

(Refs
22,24

). From the 

intrinsic character of the PMP, X&  and P  are respectively mapped onto X
&

 and P  by dΦ and 
-tdΦ : 
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which is analogous to (100). 

 

4.7.3  Round Earth costate 

Instead of applying the transformation (100) with the diffeomorphism F defining the state coordinate change (93), it 

is easier to work with its inverse G (94). Indeed : 
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so that : 

 P)XdG(P t=  (110)  

The differential of G is : 
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The costate for the initial round Earth problem ( )roundOCP  is thus : 
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4.8  Final conditions 

Going back to the general 3-dimensional transfer problem, the upper stage mission is generally specified in terms of 

the targeted orbit parameters, yielding the conditions (15). For a coplanar transfer, these conditions reduce to (73), 

with an additional condition on the orbit orientation. 

 

The continuation procedure described in §4.4 solves the coplanar transfer problem subject to the final conditions 

(72) : 

• The values specified for the altitude and the velocity components correspond to an injection at the perigee 

of the targeted orbit. The final anomaly is thus fixed at zero. 

• The free final downrange means that the perigee position is free in the transfer plane. The orbit orientation 

is not controlled and the perigee argument is thus free. 

 

In practice, for an upper stage mission : 

• Either the targeted orbit is circular. There is then no orientation constraint. The conditions (72) are 

equivalent to a free injection anomaly and they are representative of the actual problem. 

• Or the targeted orbit is elliptical. The actual constraints are generally a fixed perigee argument and a free 

injection anomaly (no rendezvous constraint), and the conditions (72) are not representative of the actual 

problem. 

Moreover the problem (OCP)1,1 is solved at fixed final time, whereas the mission duration is rather limited by the 

number of engines ignition or the number of revolutions. 

In order to be representative in the general transfer problem, the following improvements should be envisioned : 

• The final time must be optimized, while staying compliant with the operational constraints mentioned here 

above. As mentioned in §4.4.2, this can be done by an additional continuation on the fixed final time value 

until finding a local maximum for the final mass. This method is applied on the application example of §6. 

• In the case of an elliptical orbit, different approaches are possible. One method would be to add a first 

continuation on the constrained final downrange, starting from the initial value of (OCP)1,1 , until reaching 

the desired perigee position.  A second additional continuation on the injection anomaly could then locate 

the injection position yielding a local maximum for the final mass. Another method would be to add a 

single continuation between the final conditions (72) expressed on the state components to the final 

conditions expressed on the constrained orbital parameters, with the respective changes in the transversality 

conditions. 

In the same perspective it can be envisioned to solve the 3-dimensional problem starting from the coplanar solution, 

by adding a continuation on the inclination and the ascending node longitude. This has a reasonable chance to work 

as long as the required plane change remains small, as is generally the case for an upper stage mission. 
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5  Bi-impulse model 

In this chapter an alternative method is proposed to initialize the costate vector for the round Earth problem. This 

method is more direct than the continuation from the flat Earth model and it relies on the solution of the bi-impulse 

transfer problem. This problem is a simplified instance of the general transfer problem presented in §2.3 with the 

additional assumption of an infinite thrust level. The maneuvers are modeled as velocity impulses, i.e. instantaneous 

velocity changes. Owing to this assumption the optimal control problem reduces to a nonlinear programming 

problem which can be easily solved. The Lagrange multipliers associated to the initial state provide a fairly good 

guess for the initial costate, since both represent the optimal cost derivatives. Starting from this initialization, a 

continuation on the thrust level allows solving the continuous thrust transfer problem by the shooting method. 

 

5.1  Problem statement  

The bi-impulse transfer consists of two instantaneous velocity increments delivered at optimized dates. The problem 

formulation is very similar to the general transfer problem of §2.3, with the difference that the continuous thrust 

maneuvers are replaced by velocity impulses. Each impulse is modeled by a discontinuous change of the state vector 

velocity components while the position components remain unchanged. Between the impulses the vehicle follows a 

coast arc under the influence of the Earth gravitational field. 

Only two impulses are allowed corresponding to the upper stage engine re-ignition capability. The first and second 

impulses are denoted respectively 
0v

r
∆ and 

fv
r

∆  . They are delivered at the upper stage injection date t0 and at the 

orbit injection date tf. Denoting t
-
 and t

+
 the dates before and after an impulse, the mass consumed by a velocity 

increment v
r

∆  is assessed from the rocket equation, also known as Tsiolkovsky formula
25

 : 

 

)m(t

)m(t
lnv v e +

−

=∆  (113)  

Where :  vv
r

∆=∆   is the impulse modulus 

  ve  is the engine exhaust velocity 

  m  is the vehicle mass  

The mass m∆ consumed by the velocity increment v
r

∆  is then :  )m(t)m(tm +− −=∆  

Maximizing the final mass is equivalent to minimizing the sum of the two impulse modulus. This bi-impulse 

problem has been widely studied and various solution methods have been proposed depending on the initial and 

final constraints
25,26,27

. Anyway there is no fully explicit solution that could be applied for the present problem and 

we have to turn to numerical solution methods. For that purpose the bi-impulse problem is formulated as an NLP 

problem in the next section. 
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5.1.1  Direct formulation  

With the above assumptions the vehicle dynamics is modeled as follows : 

• The initial state at 
−
0t  is denoted with a subscript 0. It is fixed, corresponding to the position, velocity and 

gross mass at the upper stage ignition : 
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• The first impulse is delivered at t0. It puts the vehicle on a coast arc crossing the targeted orbit : 
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• During the coast arc from +
0t  to −

ft  the vehicle is only subjected to the Earth gravitational field. The 

vehicle dynamics is represented by the first order ODE : 
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• The second impulse is delivered at tf when the vehicle crosses the targeted orbit. It corrects the velocity to 

put the vehicle on the targeted orbit. 
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• The final state at +
ft  is denoted with a subscript f : 
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The final position fr
r

 and velocity fv
r

 define the injection orbit parameters (15) : 

• Energy :   Kf 

• Angular momentum : 
fh

r
 

• Eccentricity vector: 
fe

r
 

• Anomaly or longitude : Lf 
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The final state is constrained on the targeted orbit, specified by its energy KT, its angular momentum 
Th

r

 
and its 

eccentricity vector Te
r

. For the coplanar transfer problem, the angular momentum constraint is dropped. 

Nevertheless we keep it in the problem formulation since the methodology presented applies similarly in a 2-

dimensional or a 3-dimensional space. This is illustrated on the application example presented in §6. 

For the bi-impulse transfer problem there are thus 5 final constraints that do not depend explicitly of the time : 
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The injection anomaly or longitude is free. The rough formulation of the bi-impulse transfer problem is : 
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In the 3-dimensional space this nonlinear programming problem has 7 variables and 5 constraints. In the 2-

dimensional space the dimensions reduce to respectively 5 variables and 3 constraints. 

 

5.1.2  Problem reduction 

Although it is quite possible to tackle directly the bi-impulse transfer problem under the formulation (120), we 

modify it in order to reduce the NLP problem dimension and to ease the solution. The transfer problem is 

transformed into a rendezvous problem by : 

• defining an anomaly time law (t)L T
on the targeted orbit starting from an initial value 

T0L at t0 : 

 T00T L)(tL =  (121)  

• adding a constraint on the injection anomaly Lf :  

 )(tLL fTf =  (122)  

In order to make the rendezvous problem equivalent to the transfer problem, the initial value T0L is free and it must 

be chosen to maximize the cost function mf. This amounts in fact to free the injection anomaly, as in the initial 

transfer problem. 

 

With this additional anomaly constraint the final position fr
r

 and velocity fv
r

 become completely determined for a 

given injection date tf : 
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The coast arc is therefore constrained by the initial position 
0r
r

, the final position 
fr
r

 and the coast duration 

0f ttt −=∆ . In that way the transfer is formulated as a Lambert problem that can be tackled efficiently by many 

numerical methods
17

. Solving this Lambert problem for a given final date tf, we obtain the velocities at the coast arc 

endpoints, respectively )(tv 0

+r
 and )(tv f

−r
. The corresponding impulses are then directly computed as the velocity 

differences : 
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With the related mass evolution derived from the Tsiolkovsky formula (113) : 
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The Lambert transfer is depicted on the Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Lambert transfer 
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The formulation of the bi-impulse transfer problem as a rendezvous problem allows the following reductions : 

• The impulses 0v
r

∆ and fv
r

∆  are assessed from the final date tf by solving numerically the associated 

Lambert problem. They are no longer unknowns of the problem and they can be discarded from the 

problem variables. 

• The final constraints (123) are automatically met, for the position )(trr fTf

rr
=  by solving the Lambert 

problem, and for the velocity )(tvv fTf

rr
=  by assessing the impulses from (124). They are also discarded 

from the problem formulation. 

• On the other hand, the initial anomaly T0L on the targeted orbit is added to the problem variables in order 

to make the rendezvous problem equivalent to the transfer problem. 

The bi-impulse transfer problem (120) is therefore reformulated as an unconstrained problem with 2 variables : 

 f
t,L

mMax
fT0

 (126)  

This unconstrained problem is quite easily solved by any NLP solver, yielding the optimal impulsive maneuvers 

0v
r

∆ , fv
r

∆  and the transfer duration tf. For the numerical application, an internal NLP solver developed at Astrium 

for space mission analyses has been used. Since there are only two unknowns it is even possible to solve this 

unconstrained problem by a two levels sweeping method (e.g. with a golden search section), provided that the search 

bounds have been correctly chosen.  The same solution methodology is applicable if some initial orbital parameters 

(including the anomaly) or some final orbital parameters are free, by adding these parameters to the optimization 

variables
T0L and tf in (126). 

 

5.2  Initial costate assessment 

The solution of the bi-impulse transfer problem can be used to provide an initial costate guess for the continuous 

thrust transfer problem. 

From the PMP, the costate vector represents the sensitivity of the cost function to the state along an extremal : 

 [ ] [ ]f0

ff t,ttfor
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∂
=  (127)  

The initial costate can thus be assessed from the derivatives of the cost function wrt to initial state : 
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These derivatives may be assessed either by finite differences, or by Lagrange multipliers. An analytical assessment 

is also possible under simplifying assumptions. 
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5.2.1  Finite differences 

The optimization problem is solved applying successively a small perturbation δXi on each component X0i of the 

initial state vector (position 0r
r

, velocity 0v
r

, mass m0). This requires solving one optimization problem per state 

component. The additional computational cost is small : indeed the unperturbed solution provides a very good 

initialization for each perturbed problem, so that the convergence is immediate. 

 

5.2.2  Lagrange multipliers 

We consider the following constrained optimization problem : 

 cg(x)s.t.f(x)Min
x

=  (129)  

The optimal solution is denoted with a superscript * : 
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The Lagrange multipliers λ of the constraints g represent the optimal cost sensitivity to the constraint levels, up to 

the sign
28

 : 

 

c

f
λ

*

∂

∂
−=  (131)  

Most NLP solvers provide the Lagrange multipliers at the end of the optimization. In order to assess the initial 

costate from the Lagrange multipliers, the bi-impulse transfer problem (126) is reformulated as : 

 
00f

t,t),X(t
X)X(ts.t.mMax

f10

=−

−
 (132)  

This problem is strictly equivalent to the unconstrained problem (126), since the variables )X(t0

−
 corresponding to a 

free initial state are in fact constrained to their fixed values 0X . The Lagrange multipliers associated to the 

constraints 00 X)X(t =−  are then : 

 

0

f

X

m
λ

∂

∂
−=  (133)  

By this way, a single optimization run yields the initial costate P(t0) up to the sign. 

 

5.2.3  Analytical assessment 

The derivatives the cost function (125) are given by : 
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(134)  

where x denotes a component of the initial state other than the mass. 

An analytical assessment of the initial costate is possible under the simplifying assumption of a Hohmann-like 

transfer. In many practical cases the upper stage is injected in the vicinity of the apogee of its initial osculating orbit, 

with a flight path angle near to zero. For a circular targeted orbit, the optimal bi-impulse transfer consists then in a 

half elliptical orbit with tangential boosts at the endpoints (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 : Hohmann-like transfer 

 

The coast arc semi-major axis is : 
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The velocities at the coast arc endpoints are given by : 
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The tangential initial and final impulses are assessed by : 
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The impulses depend on the initial radius vector r0 and the initial velocity modulus v0. For this specific transfer, we 

obtain thus an analytical assessment for the following cost derivatives : 
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with mf, a, )v(t0

+
 and )v(t f

−
 given respectively by (134), (135) and (136). 

In a practical case, these analytical derivatives provide a good initialization for the initial costate components Pr(t0), 

Pv(t0) and Pm(t0) as long as the initial state is close to the apogee of the initial osculating orbit, and the targeted orbit 

is close to circular The flight path angle costate Pγ(t0) must nevertheless be assessed by numerical derivation. 

 

5.3  Duration assessment 

The boost durations for the continuous thrust transfer problem can be assessed from the bi-impulse transfer solution. 

For a finite thrust level T, the propellant flow rate q is given by : 

 
ee v

dt

dm
qv T −==  (139)  

Assuming a constant flow rate, the boost duration can be assessed from the Tsiolkovsky formula : 
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The coast arc duration for the continuous thrust transfer problem is initialized directly with the bi-impulse coast 

duration. 

 

5.4  Thrust level continuation 

The method presented above yields an initial guess for the costate vector and for the sequence durations, derived 

from the bi-impulse transfer solution. This initial guess allows us to solve the continuous thrust transfer by the 

shooting method, provided that the thrust level is sufficiently high. Indeed the bi-impulse model is the limit of the 

continuous thrust model with an infinite thrust level and null boost durations. 

To pass from the bi-impulse model to the continuous thrust model, we introduce a parameter denoted α. This 

parameter is a multiplicative factor on the thrust level. It permits us to pass continuously from a very high thrust 

level T∞ to the actual vehicle thrust level T, via intermediate values Tα : 

 αTα)T(1Tα +−= ∞  (141)  

This defines a family of control systems with the parameter α varying between 0 and 1 : 
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The “infinite” thrust level T∞ must be chosen so that the boost durations remain small compared to the total transfer 

time. In that case, the initial costate derived from the bi-impulse solution is sufficiently accurate to allow the 

shooting method to converge. The continuation procedure from α=0 to α=1 allows solving the continuous thrust 

transfer problem starting from the bi-impulse initialization. 

In practice, it is even be possible to bypass the thrust level continuation and try to solve directly the problem for α=1 

from the bi-impulse initialization. In case of failure, the continuation is started from the “infinite” thrust level T∞. 
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6  Application examples 

This chapter illustrates the algorithmic procedures on practical application examples. Two cases are considered with 

different vehicle features, and different initial and final conditions. The targeted orbits for the first and second case 

are respectively sun-synchronous (SSO) and geostationary (GEO). An additional plane change is also considered for 

the first case in order to illustrate the bi-impulse procedure on a 3-dimensional transfer. 

 

6.1  Example data  

6.1.1  Case 1 : Sun-synchronous orbit  

The polar coordinates at the upper stage ignition are : 

• Altitude :   h0 = 200 km ⇒   r0 = rE + h0 = 6578 km 

• Longitude (or polar angle) : ϕ0 = 0 deg 

• Absolute velocity modulus : v0 = 5500 m/s 

• Flight path angle :  γ0 = 2 deg 

The initial apogee and perigee altitudes are respectively 204 km and -4194 km. The initial anomaly is 178 deg. 

The upper stage uses a cryogenic engine. The mass and propulsion features are : 

• Initial gross mass :  m0 = 40 000 kg 

• Vacuum thrust :   T = 180 kN 

• Vacuum  specific impulse : Isv = 450 s ⇒   ve = 4413 m/s 

The targeted orbit is circular at the altitude of 800 km. The injection conditions in polar coordinates are : 

• Altitude :   hf = 800 km ⇒   rf = rE + hf = 7178 km 

• Longitude :   ϕf  free  ⇒   corresponding to a free injection anomaly 

• Absolute velocity modulus : vf = 7500 m/s     




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µ
v  ≈ orbital velocity at rf 

• Flight path angle :  γf = 0 deg 

 

The polar coordinates are transformed into the modified coordinates through the coordinate changes (76) : 

 

 Initial conditions Final conditions 

Downrange d (km) 0 free 

Altitude h (km) 200 800 

Horizontal velocity vd (m/s) 5496.6 7500 

Vertical velocity vh (m/s) 191.9 0 

Table 3 : Initial and final conditions (SSO) 
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For the bi-impulse procedure, a 3-dimensional transfer is also considered with the same data by requiring an 

additional plane change of 5 deg. 

 

6.1.2  Case 2 : Geostationary orbit  

The polar coordinates at the upper stage ignition are : 

• Altitude :   h0 = 4000 km ⇒   r0 = rE + h0 = 10378 km 

• Longitude (or polar angle) : ϕ0 = 0 deg 

• Absolute velocity modulus : v0 = 7700 m/s 

• Flight path angle :  γ0 = 30 deg 

The initial apogee and perigee altitudes are respectively 31987 km and 745 km. The initial anomaly is 77 deg. 

The upper stage uses storable propellants. The mass and propulsion features are : 

• Initial gross mass :  m0 = 10 000 kg 

• Vacuum thrust :   T = 65 kN 

• Vacuum  specific impulse : Isv = 350 s ⇒   ve = 3432 m/s 

The targeted orbit is circular at the altitude of 35786 km. The injection conditions in polar coordinates are : 

• Altitude :   hf = 35786 km ⇒   rf = rE + hf = 42164 km 

• Longitude :   ϕf  free  ⇒   corresponding to a free injection anomaly 

• Absolute velocity modulus : vf = 3075 m/s     




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v  ≈ orbital velocity at rf 

• Flight path angle :  γf = 0 deg 

 

The polar coordinates are transformed into the modified coordinates through the coordinate changes (76) : 

 

 Initial conditions Final conditions 

Downrange d (km) 0 free 

Altitude h (km) 4000 35786 

Horizontal velocity vd (m/s) 6668.4 3075 

Vertical velocity vh (m/s) 3850.0 0 

Table 4 : Initial and final conditions (GEO) 
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6.2  Continuation procedure from the flat Earth model 

The continuation procedure from the flat Earth model is illustrated on the first test case (§6.1.1) with a sun-

synchronous targeted orbit. 

 

6.2.1  Initialization 

The continuation procedure consists in solving a sequence of shooting problems starting with the Algorithm 1 

presented in §3.8.4.  With the normalization choice ph=1, the initial problem is reduced to 2 unknowns pvd and 

pvh(t0). The algorithm converges instantaneously from scratch, provided that positive values are chosen as initial 

guess of pvd and pvh(t0), for example pvd = pvh(t0) = 100. It requires 41 trajectory simulations. The solution of the 

initial problem is then renormalized so that 1p)(tp 0

fm =−=  : 

 

(OCP)0,0 Final 

time (s) 

Final 

mass (kg) 

Hamiltonian Costate 

ph(t0) 

Costate 

pvd(t0) 

Costate 

pvh(t0) 

Costate 

pm(t0) 

Initialization 1433.3 1676.2 0 1.000 96.349 1433.314 NA 

Renormalization 1433.3 1676.2 0 0.756 72.808 1083.108 -0.137 

       NA = Not Assessed 

Table 5 : Initialization 

 

6.2.2  Gravity continuation 

This solution is used as starting point for the first continuation, which introduces the variable gravity into the flat 

Earth model. The initial step increment is ∆λ1=0.1. The continuation is achieved in 15 steps, including some restarts 

with halved steps, and it requires 953 trajectory simulations. The solution is presented in the Table 6. 

 

(OCP)1,0 Final 

time (s) 

Final 

mass (kg) 

Hamiltonian Costate 

ph(t0) 

Costate 

pvd(t0) 

Costate 

pvh(t0) 

Costate 

pm(t0) 

Gravity homotopy 1483.2 1504.8 0 3.850 69.874 2198.207 -0.236 

Table 6 : Gravity continuation 

 

We can notice that the performance is lowered when introducing the variable gravity, passing from mf = 1676.2 kg  

to mf = 1504.8 kg. This could seem counterintuitive since the variable gravity is always lower than the constant 

gravity taken at the Earth surface. In fact the gravity helps to flatten the trajectory by reducing the vertical velocity 

(‘gravity turn’). It has thus a positive influence on the performance when a horizontal injection is targeted. 

 

6.2.3  Dynamics continuation 

At this step, we switch from a free final time to a fixed final time in order to have a well posed problem. The final 

time is fixed at the optimal value yielded by the first continuation flat

ff tt = = 1483.2 s, so that the solution is 
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unchanged between the free and the fixed final time problem. This means that the shooting function has from now 

on one less unknown and one less constraint to satisfy at the endpoint of the extremal flow. 

This solution is used as starting point for the second continuation, which introduces the additional terms making the 

flat Earth model equivalent to the round Earth model. The initial step increment is ∆λ2=0.2. The continuation is 

achieved in 5 steps requiring 741 trajectory simulations. The solution is presented in the Table 7. 

Compared to the first continuation, we observe that the number of simulations is not proportional to the number of 

homotopy steps. In fact larger steps may require more iterations of the Newton method because the initial point is 

farther from the solution. Different step sizes have therefore been tried in order to minimize the execution time, 

which is roughly proportional to the number of simulations. The choices ∆λ1 = 0.1, ∆λ2 = 0.2 prove a good 

compromise between time efficiency and robustness. 

 

(OCP)1,1 Final 

time (s) 

Final 

mass (kg) 

Hamiltonian Costate 

ph(t0) 

Costate 

pvd(t0) 

Costate 

pvh(t0) 

Costate 

pm(t0) 

Dynamics homotopy 1483.2 18915.4 3.149 12.211 6821.530 5225.629 0.310 

Table 7 : Dynamics continuation 
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We can notice that the performance for the round Earth model is far better than the one obtained for the flat Earth 

model. This could be expected because increasing the altitude is less costly in the round Earth model than in the flat 

Earth model. Indeed the Earth surface curvature makes the altitude naturally increase on a free motion (i.e. without 

external forces) as pictured on the Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 : Altitude increase in the round Earth model 

 

This centrifugal effect is expressed in polar coordinates by the centrifugal term γ(t)cos
r(t)

v(t)
 in the flight path angle 

equation (71). It allows increasing the apogee up to 800 km (targeted altitude) much more easily after the first boost 

and the coast arc. The durations of the first boost are indeed : 

• ∆t1 = 943.8s  for (OCP)1,0 

• ∆t1 = 481.3s  for (OCP)1,1 

Most of the performance gain is thus realized on this first boost. For (OCP)1,1, the circularization at the altitude of 

800 km is achieved by the second boost with a duration ∆t2 = 35.6s. 

 

6.2.4  Continuation path 

The Figure 7 shows the zero paths of the shooting function respectively for the first and the second homotopy. 

O 

ϕ 

v�� 

∆h = altitude gain h 

free motion 
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Figure 7 : Continuation path 

 

It can be noticed that the second homotopy is not smooth around some values of the homotopy parameter λ2 , 

namely λ2 ≈ 0.4, and λ2 ≈ 0.8. These values correspond to changes in the optimal thrust strategy : 

• Tmax – 0   for 0 < λ2 < 0.41, 

• Tmax – 0– Tmax  for 0.41 < λ2 < 0.78, 

• Tmax – 0   for 0.78 < λ2 < 0.86, 

• Tmax – 0– Tmax  for 0.86 < λ2 < 1. 

When the optimal thrust strategy changes, the zero path of the shooting function makes corners. It can be observed 

numerically, by reducing the homotopy steps, that the path remains continuous but it is no longer differentiable. This 

phenomenon is due to the occurrence in the continuation process of a switching date (i.e. a zero of the switching 

function) coinciding with the final date. In that case, the switching function is still continuous but not differentiable 

(see ref
13

 for more details). This occurs 3 times for λ2 taking the approximate values 0.41, 0.78 and 0.86. 

 

The Figure 8 shows the evolution of the commutation dates and the final mass respectively for the first and the 

second homotopy. 
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Figure 8 : Commutation dates and final mass 

 

6.2.5  Trajectory variables 

The following Figure 9 and Figure 10 compare the trajectory and control strategy obtained respectively : 

• for (OCP)1,0 at the end of the first homotopy, 

• for (OCP)1,1 at the end of the second homotopy. 

 



 87

 

Figure 9 : Trajectory variables 

 

Figure 10 : Switching function - Control 
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It can be noticed that the altitude becomes negative on the optimal trajectory of (OCP)1,0. This is not physically 

feasible. Nevertheless it corresponds only to an intermediate fictitious problem, and the minimum altitude condition 

is to be checked only on the solution of (OCP)1,1 corresponding to the real problem with the round Earth model. For 

the present application example, the altitude is monotonously increasing and the minimum altitude constraint is 

naturally satisfied. 

It may happen that the solution of (OCP)1,1 violates this constraint that is not explicitly taken into account in the 

solution process. For a low initial acceleration level, the optimal trajectory may indeed begin with a diving leg to 

increase the velocity. In order to yield a feasible solution whatever the data, the present algorithm must be enhanced 

to cope with the minimum altitude constraint. 

 

6.2.6  Final time 

The solution obtained at the end of the second homotopy corresponds to a fixed final time, whose value has been 

fixed at the optimal value 
flat

ff tt =  yielded by the first homotopy. As mentioned in §4.8, it is possible to improve 

the performance by an additional continuation which consists in solving a sequence of fixed final time problems 

where the final time value varies. 

The step on the final time can be taken up to ∆tf = 100 s. Each step requires on average 25 trajectory simulations.  

The curves on the Figure 11 show the evolution of the final mass, the Hamiltonian, the minimum altitude and the 

final longitude with the final time. 

 

Figure 11 : Final time continuation 
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The shooting method converges without difficulty until tf≈3900 s, but numerical issues arise after that date. This can 

be explained by looking at the respective values of the final longitude and of the minimum altitude along the 

trajectory (Figure 11). Increase the final time results in increase the final longitude. When more than a half 

revolution is allowed, the optimal coast arc consists in passing as close as possible to the Earth center in order to 

benefit from the gravity acceleration on the downward trajectory leg. Such solutions are not physically feasible, and 

also induce numerical difficulties in the shooting methods since the gravity acceleration tends to very high values. 

Moreover the modified coordinate system (78) is not suited to such trajectories making more than a half revolution. 

In order to improve the numerical integration accuracy and to enhance the convergence of the shooting method, the 

state and the costate must be moved either to rectangular or to orbital coordinates to pursue the continuation on the 

final time. 

 

Increasing the final time value yields a significant performance improvement : 

• With the modified coordinates, the maximum final mass is 22082 kg for a final time of 3956 s, but the 

corresponding trajectory crosses the Earth surface with a minimal altitude of -518 km. This solution 

corresponds to a local maximum. It can be observed that the Hamiltonian passes by a positive local 

minimum for a lower final time value, around 3300 s. 

• Moving to rectangular coordinates, the solution is further improved yielding a final mass of 22103 kg for a 

final time of 4121 s. The minimal altitude decreases to -700 km. 

 

The best acceptable solution staying above the atmospheric upper limit (conventionally taken at the altitude of 120 

km) yields a final mass of 21294 kg for a final time of about 3200 s. The corresponding trajectory makes more than 

a half revolution (230 deg), which is a usual feature for such upper stages missions. It must be noticed that this 

solution is not the optimal solution with the minimum altitude constraint, since the constraint is not explicitly taken 

into account in the solution. It is only the best acceptable solution found along the continuation procedure. 

The 2 solutions (with and without the altitude limitation) are presented in the Table 8. 

 

Final 

time 

(s) 

Final 

mass 

(kg) 

Final 

longitude 

(deg) 

Minimal 

altitude 

(km) 

Hamiltonian Costate 

ph(t0) 

Costate 

pvd(t0) 

Costate 

pvh(t0) 

Costate 

pm(t0) 

3183.2 21294.1 230 120 0.834 6.500 6098.6 1912.1 0.475 

4121.4 22103.7 298 -700 1.155 5.905 4995.7 172.5 0.553 

Table 8 : Final time continuation 
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6.2.7  Results recap 

For this application example, the computation accuracies are the following : 

• the numerical integration is performed with absolute accuracies respectively of 10
-6

 m on the position, and 

10
-9

 m/s on the velocity, 

• the zeros of the shooting function are required with respective accuracies of 10
-1

 m on the final position and 

10
-4

 m/s on the final velocity. 

The Table 9 summarizes the successive steps of the continuation procedure. 

 

 Final 

time (s) 

Final 

mass (kg) 

Hamiltonian Costate 

ph(t0) 

Costate 

pvd(t0) 

Costate 

pvh(t0) 

Costate 

pm(t0) 

Initialization 1433.3 1676.2 0 1.000 96.349 1433.314 NA 

Renormalization 1433.3 1676.2 0 0.756 72.808 1083.108 -0.137 

Gravity homotopy 1483.2 1504.8 0 3.850 69.874 2198.207 -0.236 

Dynamics homotopy 1483.2 18915.4 3.149 12.211 6821.530 5225.629 0.310 

Final time homotopy 3183.2 21294.1 0.834 6.500 6098.6 1912.1 0.475 

Table 9 : Results recap 

 

The total number of trajectory simulations is about 2300 : 

• 41  for the initialization (OCP)0,0, solved instantaneously 

• 953 for the gravity continuation until (OCP)1,0, achieved in 5s 

• 741 for the dynamics continuation until (OCP)1,1, achieved in 4s 

• 593 for the final time continuation, achieved in 3s. 

The computation is performed on a Sun Solaris OS 5.10 workstation. With an average of 200 simulations per 

second, the convergence is achieved in about 12 s, without specific code or algorithm optimization. If necessary, the 

procedure can be significantly sped up by code improvement, especially regarding the time per simulation. 

 

The continuation procedure from the flat Earth model fails on the second test case (§6.1.2) with a geostationary 

targeted orbit. The altitude difference between the initial and the final orbit is indeed much higher than for the sun-

synchronous case. Even if the flat Earth problem theoretically admits a solution whatever the initial and the final 

conditions, this solution corresponds in this case to a vanishing final mass and an infinite acceleration level. The 

trajectory integration becomes prone to numerical errors, and specific algorithm enhancements would be necessary 

to allow the shooting method to converge. Furthermore the difference in terms of performance and of command law 

between the flat Earth and the round Earth problem makes the continuation procedure questionable in such cases. 
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6.3  Continuation procedure from the impulsive model 

The continuation procedure from the impulsive model is detailed on the first test case (coplanar sun-synchronous 

targeted orbit). The procedure is then applied successively on the second test case (coplanar geostationary targeted 

orbit), and on the first case with an additional plane change in order to illustrate the method applicability to a 3-

dimensional transfer. 

 

6.3.1  Initialization 

Solving the bi-impulse transfer problem (132) yields a final mass of 22099 kg for a final time of 2270 s. The 

variation of the final mass in function of the transfer time is plotted on the Figure 12. 

 

Figure 12 : Bi-impulse transfer performance vs transfer time (SSO) 
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The curve is relatively flat between 1500 s and 3000 s. This can be explained by the fact that the initial state is close 

to the apogee of the initial orbit, whereas the final orbit is circular. The optimal solution is a Hohmann-like transfer 

which is not very sensitive to the injection position and therefore to the transfer time. 

The initial state is given in spherical coordinates. The initial costate assessed from the Lagrange multipliers is 

therefore in the same coordinate system : 
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The multiplier 0λϕ  is null since the final orbit is circular and the injection anomaly is free. Change the initial polar 

angle ϕ0 results in a rotation of the whole trajectory without cost change. 

 

For the present example, the analytical assessment (138) with the simplifying assumption of a Hohmann-like 

transfer gives for the initial costate components Pr, Pv and Pm : 
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The agreement with the numerical solution of the nonlinear problem is fairly good in the present case. The flight 

path angle costate must nevertheless by still assessed by a numerical method. 

 

6.3.2  Thrust level continuation 

The continuation procedure consists in solving a sequence of shooting problems with decreasing thrust levels 

• The first shooting problem is initialized with the costate and durations derived from the bi-impulse 

solution. The thrust level T∞ is fixed to a sufficiently high value so that the continuous thrust problem is 

close to the impulsive problem.  

• Each successive shooting problem is initialized with the previous solution, while decreasing the thrust 

level (parameter α). 
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The Table 10 presents the intermediate solutions issued by the shooting method on the continuation path for 

respective thrust levels of 10 and 3 times the actual level of 180 kN. For each thrust level the Table gives : 

• the boost and coast durations, 

• the initial costate in spherical coordinates (the unities are kg, km and rad) 

 

 Bi-impulse Thrust level × 10 Thrust level × 3 Thrust level × 1 

Thrust level         (kN) Infinite 1800 540 180 

Boost 1 duration  (s) 0 41.8 139.0 380.8 

Coast    duration  (s) 2269.6 2559.2 3219.5 3682.7 

Boost 2 duration  (s) 0 2.1 7.3 57.9 

Final time            (s) 2269.6 2603.1 3365.8 4121.4 

Final mass           (kg) 22098.96 22098.73 22098.85 22103.65 

Pr                         (kg/km) 5.9227 5.9220 5.9211 5.9049 

Pv                                   (kg/(km/s)) 5006.8 5006.8 5005.9 4998.7 

Pγ                                   (kg/rad) -9.2033 -9.7160 -10.078 -10.921 

Pm                        (kg/kg) 0.55247 0.55247 0.55249 0.55287 

Table 10 : Thrust level continuation (SSO 2-dimensional transfer) 

 

It can be observed that the final mass and the initial costate derived from the bi-impulse solution are very close to 

the continuous thrust solution with the nominal thrust level, although the durations are quite different. The bi-

impulse initialization is in fact sufficiently accurate to bypass the continuation procedure, and the shooting method 

converges directly for α=1. For the present example, this method is therefore very efficient and much more direct 

than the flat Earth continuation procedure. This has to be confirmed by more exhaustive tests cases.  

 

The solution is identical to the one obtained by the flat Earth continuation procedure (Table 8) without minimal 

altitude constraint. Indeed applying the coordinate change (112) on the costate components we obtain : 
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The trajectories corresponding to the successive thrust levels are plotted on the Figure 13. As mentioned in §6.2.6, it 

would be necessary to take into account a constraint on the minimal altitude in order to obtain realistic trajectories. 
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Figure 13 : Optimal trajectories vs thrust level (SSO) 

 

 

6.3.3  Solution analysis 

It could seem surprising to obtain a better performance with the finite thrust level of 180 kN than with the impulse 

modeling. This performance improvement can be explained by assessing the velocity losses during the thrust 

maneuvers, for the different thrust levels. 

The Table 11 presents for each boost and for the different thrust levels : 

• the impulsive velocity assessed by the Tsiolkovsky formula (113), 

• the gravity and incidence losses. 
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  Bi-impulse Thrust level × 10 Thrust level × 3 Thrust level × 1 

 Thrust level         (kN) Infinite 1800 540 180 

Boost 1 Duration              (s) 0 41.8 139.0 380.8 

 Impulse               (m/s) 2435.0 2451.4 2442.9 2169.2 

 Gravity loss         (m/s) 0 8.0 -5.2 -252.0 

 Incidence loss     (m/s) 0 0.2 0.1 2.1 

Boost 2 Duration              (s) 0 2.1 7.3 57.9 

 Impulse               (m/s) 183.4 167.1 175.5 448.3 

 Gravity loss         (m/s) 0 0.0 0.0 0.6 

 Incidence loss     (m/s) 0 0.0 0.0 0.0 

Table 11 : Velocity losses (SSO 2-dimensional transfer) 

 

The velocity losses arise when the velocity increments are not delivered instantaneously
25

. They represent the 

additional variation of the vehicle absolute velocity modulus due to the gravity and the incidence during a 

continuous thrust maneuver from tini to tfin. 

• The gravity loss is defined by :  ∫=
fin

ini

t

t

grav dtsinγg∆V   where γ is the flight path angle. It is positive on an 

upwards leg, negative on a downward leg. 

• The incidence loss is defined by :  ( )∫ −=
fin

ini

t

t

inci dtcosi1
m

T
∆V   where i is the angle between the thrust and the 

velocity direction. It is always positive. 

The incidence loss is an indicator of the command law optimality, and it should be as near to zero as possible. A 

significant incidence loss on the optimal trajectory may be caused either by path constraints or by an insufficient 

thrust level. 

 

By definition, the velocity losses are null with the impulsive modeling. The first boost is oriented upwards in order 

to raise the apogee so that the coast arc crosses the targeted orbit. 

The high thrust solution (10×T) is close to the impulsive solution, with short boost durations. The first boost is 

delivered in 42 s and it incurs a 8 m/s penalty due to the gravity. This results in a slight cost decrease as expected. 

Decreasing the thrust level further (3×T, 1×T) becomes favorable since it gives enough time to perform an initial 

downward leg during the first boost. On this downward leg the gravity acts positively regarding the velocity 

increase. The command law remains optimal as indicated by the incidence loss close to zero. 

For the present example, an unrealistic trajectory is obtained since no minimal altitude constraint is imposed. This 

path constraint would limit the downward maneuver and downgrade the performance, on the one hand by reducing 

the gravity velocity gain, on the other hand by inducing higher incidence losses. 
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6.3.4  Geostationary case 

On the geostationary case (§6.1.2) the bi-impulse procedure still yields a sufficiently good costate initialization, 

allowing the convergence of the shooting method. The costate guess is compared to the shooting method solution in 

the Table 12. 

 

 

 

 

 

 

 

 

 

 

 

Table 12 : Initial costate guess (GEO) 

 

6.4  3-dimensional transfer 

The bi-impulse problem formulation (132) and the solution method (§5.1.2) apply identically to the 3-dimensional 

case. Indeed the Lambert transfer occurs in the plane defined by the initial and the final positions, whatever the 

initial and final orbital planes. The plane changes are performed at the endpoints by the impulse assessments (124) 

after solving the Lambert problem. 

The initial costate guess is derived from the Lagrange multipliers associated to the 7 components of the initial state. 

The costate components correspond to the initial state in spherical coordinates, denoting : 

• ψ the angle between the initial position and the targeted orbital plane (latitude) 

• χ the angle between the initial velocity and the targeted orbital plane (azimuth) 

 

The first test case (SSO) is retrieved, with an additional plane change requirement of 5 deg between the initial and 

the final orbital plane, assumed to be equatorial (inclination = 0 deg). Two cases are considered by moving, either 

the initial velocity orientation (angle χ = 5 deg), or the initial position (angle ψ = 5 deg) out of the targeted orbital 

plane. 

A continuation on the thrust level is then started considering an initial high level and progressively reducing it until 

the actual one. Opposite to the 2-dimensional case, some costate components are highly sensitive to the thrust level.  

In order to make the shooting method converge from the bi-impulse solution, it is necessary to set the initial thrust 

level to 40 times the actual one. 

 Bi-impulse Thrust level × 1 

Thrust level         (kN) Infinite 65 

Boost 1 duration  (s) 0 13.6 

Coast    duration  (s) 29425.1 17934.0 

Boost 2 duration  (s) 0 173.6 

Final time            (s) 29425. 18121.2 

Final mass           (kg) 5561.9 6454.1 

Pr                         (kg/km) 0.8879 0.9818 

Pv                                   (kg/(km/s)) 1606.4 1874.2 

Pγ                                   (kg/rad) -28.5817 -25.9051 

Pm                        (kg/kg) 0.55619 0.64541 
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6.4.1  Out of plane initial velocity 

The initial conditions for this 3-dimensional test case are identical to §6.1.1 with : 

• ψ = 0 deg : the initial position is in the targeted orbital plane. 

• χ = 5 deg  : the initial velocity makes an angle of 5 deg with the targeted orbital plane. 

This corresponds to an initial orbit with an inclination of 5 deg and a perigee argument of -178 deg. The other orbital 

parameters are unchanged (apogee 204 km, perigee -4194 km, anomaly 178 deg). 

The Table 13 presents the intermediate solutions issued by the shooting method on the continuation path for 

respective thrust levels corresponding to 40 and 10 times the actual level of 180 kN.  

 

 Bi-impulse Thrust level × 40 Thrust level × 10 Thrust level × 1 

Thrust level         (kN) Infinite 7200 1800 180 

Boost 1 duration  (s) 0 10.6 42.6 384.3 

Coast    duration  (s) 2296.8 2450.2 2533.8 3675.6 

Boost 2 duration  (s) 0 0.5 2.2 64.0 

Final time            (s) 2296.8 2461.3 2578.4 4123.9 

Final mass           (kg) 21765.07 21781.82 21780.91 21716.7 

Pr                         (kg/km) 5.7918 5.7329 5.7378 5.7701 

Pϕ                        (kg/rad) 0 0 0 0 

Pψ                        (kg/rad) 111.207 107.234 -61.044 -70.085 

Pv                                   (kg/(km/s)) 4739.0 4752.4 4767.3 4647.2 

Pγ                                   (kg/rad) -17.218 -16.706 -6.750 -16.197 

Pχ                                   (kg/rad) 124.627 125.609 124.670 149.761 

Pm                        (kg/kg) 0.54413 0.54466 0.54431 0.54360 

Table 13 : Thrust level continuation (out of plane velocity) 

 

With 40 times the nominal thrust level, the shooting method solution is very close to the bi-impulse initialization. 

When the thrust level is reduced, the costate component Pψ related to the out of plane position evolves drastically 

and it even changes sign, making the continuation procedure more sensitive than in the 2-dimensional case. In this 

3-dimensional case the shooting method does not converge starting with 10 times the nominal thrust level and the 

continuation procedure is necessary to come back to the initial problem. 

The other costate components and the final mass remain correctly estimated by the bi-impulse modeling. 



 98

 

 

The Table 14 presents for each boost and for the different thrust levels the impulsive velocity and the gravity and 

incidence losses. 

 

  Bi-impulse Thrust level × 40 Thrust level × 10 Thrust level × 1 

 Thrust level         (kN) Infinite 7200 1800 180 

Boost 1 Impulse               (m/s) 2504.0 2509.7 2510.6 2194.7 

 Gravity loss         (m/s) 0 2.6 8.5 -272.8 

 Incidence loss     (m/s) 0 63.6 59.9 66.2 

Boost 2 Impulse               (m/s) 181.6 173.8 172.0 500.7 

 Gravity loss         (m/s) 0 0.0 0.0 0.5 

 Incidence loss     (m/s) 0 1.0 4.1 12.3 

Table 14 : Velocity losses (out of plane velocity) 

 

Compared to the 2-dimensional case, the plane change requires out of plane thrusting mainly during the first boost. 

This induces an incidence loss and the final mass is therefore 387 kg lower than in the coplanar case. The sensitivity 

of the performance to the plane change is revealed by the high values of the costate components Pψ and Pχ. 

 

6.4.2  Out of plane initial position 

The initial conditions for this 3-dimensional test case are identical to §6.1.1 with : 

• ψ = 5 deg : the initial position is 5 deg outwards the targeted orbital plane. 

• χ = 0 deg  : the initial velocity is parallel to the targeted orbital plane. 

This corresponds to an initial orbit with an inclination of 5 deg and a perigee argument of -88 deg. The other orbital 

parameters are unchanged (apogee 204 km, perigee -4194 km, anomaly 178 deg). 

The Table 15 presents the intermediate solutions issued by the shooting method on the continuation path for 

respective thrust levels corresponding to 40 and 10 times the actual level of 180 kN.  
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 Bi-impulse Thrust level × 40 Thrust level × 10 Thrust level × 1 

Thrust level         (kN) Infinite 7200 1800 180 

Boost 1 duration  (s) 0 10.4 41.2 377.5 

Coast    duration  (s) 1425.5 3885.0 3862.0 3515.1 

Boost 2 duration  (s) 0 2.1 8.4 99.8 

Final time            (s) 1425.5 3897.4 3911.6 3992.4 

Final mass           (kg) 20092.70 19639.36 19752.17 20531.1 

Pr                         (kg/km) 4.9839 5.0327 4.9305 4.2308 

Pϕ                        (kg/rad) 0 0 0 0 

Pψ                        (kg/rad) -501.398 -511.566 -510.445 -475.626 

Pv                                   (kg/(km/s)) 4454.0 4134.1 4117.5 4305.8 

Pγ                                   (kg/rad) -90.027 -150.313 -139.529 -47.431 

Pχ                                   (kg/rad) 8.729 5.055 8.0875 25.6049 

Pm                        (kg/kg) 0.50232 0.49196 0.49741 0.52351 

Table 15 : Thrust level continuation (out of plane position) 

 

Compared to the previous case of an out of plane velocity (§6.4.1), the costate component Pψ related to the out of 

plane position is this time well guessed and stable. But the other costate components and the final mass estimated by 

the bi-impulse modeling are farther from the shooting method solution even for the high thrust level of 40 times the 

real one. 

The optimal solution, particularly the costate component Pγ related to the initial flight path angle, proves very 

sensitive to the thrust level, making the whole procedure less efficient than in the previous case. This sensitivity is 

intrinsic to the problem instance. It appears indeed when trying to assess the derivatives of the nonlinear problem 

(132) by finite differences using different increments (§5.2.1). In such a case, care must be taken on these 

derivatives assessment whatever the numerical method envisioned (finite differences or Lagrange multipliers). 

 

The Table 16 presents for each boost and for the different thrust levels the impulsive velocity and the gravity and 

incidence losses. 

 

  Bi-impulse Thrust level × 40 Thrust level × 10 Thrust level × 1 

 Thrust level         (kN) Infinite 7200 1800 180 

Boost 1 Impulse               (m/s) 2303.2 2434.8 2405.1 2144.7 

 Gravity loss         (m/s) 0 -2.3 -10.7 -281.6 

 Incidence loss     (m/s) 0 108.5 90.0 25.0 

Boost 2 Impulse               (m/s) 735.2 706.0 708.9 798.5 

 Gravity loss         (m/s) 0 0.0 0.0 9.0 

 Incidence loss     (m/s) 0 402.5 395.3 301.3 

Table 16 : Velocity losses (out of plane position) 
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Compared with the previous case the incidence losses are much higher during the second boost, in order to perform 

the plane change when the vehicle crosses the targeted orbit. The bi-impulse solution is consequently less 

representative of the continuous thrust solution, even with a high thrust level. This may explain the less good 

accuracy of the initial costate guess. In view of a systematic solution process, algorithmic enhancements would be 

necessary both for the initial assessment and for the continuation procedure. 
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7  Conclusion 

Various methods exist to tackle the problem of the minimal consumption orbit transfer for a launcher upper stage. 

Direct methods are easier to handle at the initialization stage, but an accurate convergence is time consuming due to 

the large size of the NLP problem resulting from the discretization. On the other hand indirect methods are based on 

the Newton method to solve the shooting problem derived from the PMP, and thus benefit from its properties : fast 

convergence and high accuracy. Their major issue lies in the costate initialization which has to be quite accurate to 

allow the convergence of the Newton method. Various initialization algorithms have been proposed for indirect 

methods, applied either to nearly circular transfers
10

 or to low-thrust orbit transfers
13

. 

Two alternative methods are proposed here in order to overcome the initialization issue and solve the problem of the 

coplanar orbit transfer at minimum consumption without any a priori knowledge on the optimal solution. They are 

based on model simplifications followed by continuation procedures to come back to the real problem. These 

methods constitute interesting complements to the existing ones for high-thrust orbit transfers starting from elliptical 

initial conditions. They are thus well suited to the solution of an upper stage flight. 

 

7.1  Methods proposed 

The methods proposed rely on model simplifications that allow a significant problem reduction. The two simplified 

models envisioned are respectively : 

• The flat Earth model 

• The impulsive model  

In each case, an efficient algorithm can be set up that solves the simplified problem without specific initialization 

task. The model is then parameterized in order to perform a continuation procedure coming back to the real model : 

• The flat Earth model is modified by adding terms that make it diffeomorphic up to a coordinate change to 

the ‘real’ round Earth model. The continuation procedure introduces continuously these additive terms in 

the model. 

• The impulsive model is approximated by a very high (“infinite”) thrust level. The continuation procedure 

decreases progressively the thrust level until recovering the vehicle nominal level. 

From the algorithmic point of view, the procedures consist in solving a series of shooting problems, starting from 

the simplified problem, whose solution can be found automatically, and ending up with the real problem. These 

procedures are time-efficient and provide a way for bypassing the usual initialization issues of the shooting method 

when applied directly to the real problem. Regarding the practical application, these algorithms are well-suited for a 

launcher upper stage using a high-thrust engine. Although no exhaustive tests were performed, the algorithms seem 

quite robust and efficient. 
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7.2  Current status 

7.2.1  Flat Earth model 

Convergence issues may occur when solving the flat Earth problem. The performance with the flat Earth model is 

indeed far worse than with the round Earth model, since the free altitude gain due to the Earth curvature is cancelled 

(see Figure 6). This is illustrated clearly by the application example of §6. If the final orbit is too high with respect 

to the initial orbit, the final mass may tend to vanish, causing numerical issues in the shooting method. A possible 

way to overcome this difficulty would be to perform the whole continuation with a lowered gravity field, and once 

the round Earth model completed to continuously increase this gravity field until recovering the true value. 

Another difficulty may be encountered at the initialization step if the flat Earth problem solution consists of a single 

thrust arc. Algorithm 1 should be modified to cope with this case, for example by stopping the numerical integration 

as soon as one at least of the final conditions is met (orbit altitude or horizontal velocity). In that case, the solution 

yielded by the Algorithm 1 will not be optimal for the Earth problem, but it can still be used as starting point for the 

continuation procedure.  

 

7.2.2  Impulsive model 

The continuation procedure starting from the bi-impulse model seems more promising in view of an automatic 

solver for the following reasons : 

• The modified coordinates used for the flat Earth procedure become unsuited to long trajectories making 

more than a half Earth revolution. On the opposite no specific coordinate system is required for the bi-

impulse procedure. The dynamics equations remain the same along the continuation. 

• The impulsive problem is “closer” to the real one than the flat Earth problem whose solution has only one 

boost. This may question the systematic success of the continuation from the flat to the round Earth model. 

Also less continuation stages are required starting from the bi-impulse solution, and one single shooting 

problem may even be sufficient as in the coplanar example. This results in computation time gain. 

• The extension of the flat Earth procedure to 3-dimensional transfers or to elliptical final conditions requires 

further algorithmic developments and additional continuation stages. On the opposite, the bi-impulse 

procedure directly applies whatever the initial and final conditions provided that the thrust level 

continuation is enhanced to account for stiff costate changes, as illustrated by the example of §6. 

 

7.3  Perspectives 

Many questions remain open and from this point of view the present work should be considered as preliminary. A 

first question is to investigate whether the procedures proposed are systematically efficient, for any possible 

coplanar orbit transfer. Up to now no exhaustive tests were performed. It is very probable that some difficulties will 

be met, as in any continuation process, due to the intricate topology of the space of possible continuation paths, this 

space being not always arc-wise connected. Other perspectives are to enhance the procedures when some orbital 
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parameters are free, including the initial anomaly, in order not to over-constrain the problem, and to extend 

systematically the methods to the three-dimensional case, whatever the initial and final orbits. The continuation 

from the impulsive model seems particularly promising in view of solving this general orbit transfer. 

Finally it should be possible to improve the zero path following, for example by differential homotopy methods, 

with the goal of reducing significantly the computation time in view of an industrial tool. 
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Part 2 

 

Multiple Space Debris Collecting Mission 

Debris Selection and Trajectory Optimization 

 

Abstract  This document investigates the cost requirement for a Space Debris Collecting mission aiming at 

removing heavy debris from low Earth orbits. The problem mixes combinatorial optimization to select the debris 

among a list of candidates and continuous optimization to define the orbital manoeuvres. The solution methodology 

proceeds in two steps : firstly a specific transfer strategy with impulsive manoeuvres is defined so that the problem 

becomes of finite dimension, secondly the problem is linearized around an initial reference solution. A Branch and 

Bound algorithm is then applied iteratively to optimize simultaneously the debris selection and the orbital 

manoeuvres, yielding a new reference solution. The method is exemplified on a representative application case. 

 

 

Keywords   

Space debris, Orbital mechanics, Branch and Bound, Linear Programming 

 

Acronyms 

PMP Pontryagin Maximum Principle 

NLP Non-Linear Programing 

MINLP Mixed Integer Non Linear Programing 

MILP Mixed Integer Linear Programing 

LEO : Low Earth Orbit 

SSO Sun-Synchronous Orbit 

GTO : Geostationary Earth Orbit 

PEO : Polar Earth Orbit 

SDC : Space Debris Collecting 

TSP : Travelling Salesman Problem 

LP : Linear Programming 

BB : Branch and Bound 

AN : Ascending Node 

RAAN : Right Ascension of the Ascending Node 
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Variable nomenclature 

 
Vehicle 

X(t) State vector (position + velocity + mass) Real 7 

m(t) Mass Real 1 

Y(t) State vector (position + velocity) Real 6 

U(t) Command vector Real 3 

 

 

Mission 

N Number of candidate debris Integer 1 

n Number of debris to deorbit Integer 1 

Tdeorb Deorbitation operations duration Real 1 

Tmin Transfer minimum duration Real 1 

Tmax Mission maximum duration Real 1 

C Mission cost Real 1 

T Mission duration Real 1 

CL Mission linearized cost Real 1 

TL Mission linearized duration Real 1 

 

 

Orbits 

RT Earth equatorial radius (= 6378137 m) Real 1 

µ Earth gravitational constant (= 3.986 10
14

 m
3
/s²) Real 1 

J2 First zonal coefficient (= 1.086 10
-3

) Real 1 

CJ2 182

T2J2 10 1.318 RµJ
2

3
C ==  

Real 1 

a Semi major axis Real 1 

e Eccentricity Real 1 

I Inclination Real 1 

Ω Right ascension of the ascending node Real 1 

ω Argument of the perigee Real 1 

ν True anomaly Real 1 

L Longitude from the ascending node Real 1 

n Mean motion Real 1 
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Ω&  RAAN precession rate Real 1 

H Altitude Real 1 

V Speed Real 1 

∆V Impulsive speed Real 1 

∆VP Perigee impulsive speed (Hohmann transfer) Real 1 

∆VA Apogee impulsive speed (Hohmann transfer) Real 1 

 

 

Debris k, k=1 to N 

ks  Debris selection Binary 1 

kx  Number of arriving edges Binary 1 

ky  Number of departing edges Binary 1 

kz  Product of xk and yk Binary 1 

a

kt  Arrival date Real 1 

d

kt  Departure date Real 1 

kC  Operations cost Real 1 

kT  Operations duration Real 1 

ak Semi major axis Real 1 

Yk(t) State vector (position + velocity) Real 6 

ek Eccentricity Real 1 

Ik Inclination Real 1 

Ωk Right ascension of the ascending node Real 1 

kΩ
&  RAAN precession rate Real 1 

 

 

Transfer i-j, i,j=1 to N, i≠j 

ijs  Transfer selection Binary 1 

ijC  Transfer cost Real 1 

ijT  Transfer duration Real 1 

ti Departure date Real 1 

tj Arrival date Real 1 
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LijC  Transfer linearized cost Real 1 

LijT  Transfer linearized duration Real 1 

aij Drift orbit semi major axis Real 1 

eij Drift orbit eccentricity Real 1 

Iij Drift orbit inclination Real 1 

ijΩ
&  Drift orbit RAAN precession rate Real 1 

∆Vij Transfer impulsive speed Real 1 

αij Semi major axis difference wrt reference Real 1 

τi Departure date difference wrt reference Real 1 

pij Product of sij and aij Real 1 

qij Product of sij and ti Real 1 

amin, amin Bounds on semi major axis Real 1 

αmin, αmin Bounds on semi major axis difference Real 1 

τmin, τmin Bounds on departure date difference Real 1 
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1  Introduction 

1.1  Space debris 

A drastic growth of the space debris population in Low Earth Orbits under 2000 km is foreseen in the next decades 

with high collision risks for future space flights
1,2

. A particularly crowded region is the vicinity of the Sun-

Synchronous Orbits and Polar Orbits in the range 600-1200 km altitude and 80-105 deg inclinations with a density 

peak around the altitudes of 800-900 km. These orbits are well adapted to Earth observation and are therefore 

intensively used. The most efficient ways to mitigate this scenario are to avoid the creation of new debris by 

appropriate spacecraft conception and to actively remove the existing debris
3,4

. Several studies have led to the 

conclusion that removing 5 heavy LEO debris per year, like spent satellites or launchers upper stages, is mandatory 

to stabilize the debris population
5
. This document deals with such a Space Debris Collecting mission that would 

meet this requirement. 

 

1.2  Mission definition 

The Space Debris Collecting mission aims at deorbiting 5 heavy debris per year. The debris must be selected in a list 

of N candidates, so that the required propellant consumption for the mission is minimized. The deorbitation aims at 

clearing the LEO region (altitude below 2000 km) : this can be achieved by either making the debris re-enter the 

atmosphere (preferred solution if not too costly regarding the SDC vehicle size and the fall-out operations) or re-

orbiting the debris at a higher altitude
3
. For the SSO debris considered in this document, only the reentry solution 

is envisioned. After the debris capture the deorbitation manoeuvre is either performed by the vehicle, or by the 

debris itself with a deorbitation device (booster, tether, …) supplied by the vehicle. The mission starts from the 

first debris selected on the path assuming that the launcher has brought the SDC vehicle to this first debris. The 

cost and duration to reach this first debris are therefore not counted into the mission cost and duration. 

 

1.3  Global optimization problem 

The global SDC problem is a nonlinear time dependent graph problem mixing : 

• several continuous transfer problems consisting in optimizing the trajectory from one debris to the other. 

• a combinatorial path problem consisting in selecting the debris and the collecting order. 

Table 1 gives an overview of these embedded problem features. 
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 Transfer problem 

Optimize the trajectories 

Path problem 

Select the debris and the order 

Category Functional optimization / Optimal control Graphs / NP problem  (TSP like) 

Complexity Infinite dimension Exponential 

Algorithms Nonlinear programming Integer programming 

Problem nature Nonlinear time dependent graph problem 

Table 1 : Embedded optimization problems 

 

The transfer problem and the path problem are both challenging, even considered separately, and it is therefore not 

reasonable to tackle the global problem directly. We first review the available numerical methods for functional 

optimization (find the optimal control law of a dynamical system) and combinatorial optimization (find the optimal 

path in a graph) with their related issues. A solution methodology is then set up taking into account the SDC 

problem specificities. 

 

1.3.1  Functional optimization 

Functional optimization deals with infinite dimension problems, one at least of the unknowns being a function. The 

nomenclature ‘optimal control problem’ refers to a functional optimization problem where the unknown function is 

the command law of a controlled dynamical system. For such problems, even simple, there are generally no analytic 

solutions and numerical solutions must be found with iterative algorithms. The numerical methods can be divided 

into two main categories
6,7

 : 

• Direct methods discretize the command law with time steps. The functional problem is transformed into a 

large size finite dimension problem for which Nonlinear Programming (NLP) algorithms can be applied. 

The direct methods are relatively easy to initialize, but the convergence is generally slow and the results 

only approximate the solution to the functional problem. 

• Indirect methods try to solve the infinite dimension problem using the Pontryagin Maximum Principle 

(PMP). A costate vector of the same dimension as the state vector is introduced, which obeys the Euler-

Lagrange equations. The problem reduces to finding the initial values of the costate vector in order to 

match the optimality necessary conditions. A shooting method with a correct initialization can be used to 

solve these nonlinear equations. The indirect methods are very difficult to initialize, but the convergence is 

generally quick and accurate. 

 

1.3.2  Combinatorial optimization 

Combinatorial optimization deals with problems in which all or part of the unknowns are integer variables. The 

classification of combinatorial problems lies on the existence or not of polynomial-time algorithms, on one hand to 
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solve the problem, on the other hand to check a solution
8
. The P-class includes problems with a known polynomial-

time solution algorithm (the same algorithm can indeed be used to check the solution). The NP-class includes 

problems with a known polynomial-time checking algorithm, but no known polynomial-time solution algorithm. 

The set of NP-complete problems denoted NPC is formed by all NP problems that can be transformed to each other 

by a polynomial-time algorithm. If one day a polynomial-time solution algorithm was found for one problem of 

NPC, then any problem of NPC could also be solved polynomially and we would have NP=P. 

The TSP and all its variants are NPC. For these hard combinatorial problems, the solution methods fall into three 

main categories
8,9

 : 

• Explicit enumeration of all the possible combinations ensures to find the exact solution i.e. the global 

optimum. The total number of arrangements of n debris amongst N is equal to n)!-(N/N!An

N = . Taking 

into account the constraints leads to a formulation of the problem with large numbers of binary variables. 

With m binary variables, the total number of combinations amounts to 2
m
. The explicit enumeration is 

practically restricted only to small size problems with a few tens of variables. For m=50, the enumeration 

would take one year with a computer assessing one billion combinations per second. 

• Implicit enumeration (Branch and Bound, Branch and Cut) consists in exploring the tree of all possible 

combinations with branches cut-off during the exploration
10,11

. The cut-off is based on an assessment of the 

best potential solution contained in a branch, and the comparison with a reference admissible solution. Like 

explicit enumeration, implicit enumeration yields the exact solution. The method efficiency is highly 

dependent on the branching strategy. Also the computation time grows exponentially with the problem size. 

These methods are therefore applicable to medium size problems (a few hundred variables). 

• Approximate solutions can be found by stochastic programming methods like genetic algorithms, tabu 

search, simulated annealing…
9,12

. These methods limit a priori the number of combinations assessed and 

thus the computation time. The combinations space is explored using an oriented random strategy. If the 

best solution found is judged unsatisfying, the search may be resumed with new tunings in order to improve 

the exploration strategy. Opposite to continuous problems there exists generally no sufficient conditions for 

discrete problems that guarantee the local optimality of the solution or its difference with the true global 

optimum. These methods are the only ones applicable for large size problems (more than thousands of 

variables). 

 

1.3.3  Mixed integer nonlinear programing 

The global SDC problem comes in the field of mixed integer nonlinear programing (MINLP). MINLP deals with 

finite dimension optimization problems mixing integer and real variables with nonlinear cost and constraints. A 

survey of existing MINLP solvers is presented in Ref
13

 and free MINLP software packages are available at the 

link
14

. Most solution algorithms for nonlinear problems consist in a local linearization around an initial reference 

point yielding a mixed integer linear programing problem (MILP). The solution of the MILP subproblem is carried 

out generally by a Branch and Bound algorithm. The procedure is then iterated after updating the reference point. 
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A major issue for MINLP problems is the convergence toward the global optimum. In the case of convex cost and 

constraint functions, the convergence toward the global optimum can be guaranteed, for example by procedures of 

outer convexification and step bounding. Such procedures implemented in several existing softwares consist in 

adding successive tangential linearizations as inequality constraints to the MILP subproblems while using nonlinear 

relaxations to bound the step
14

. 

 

1.4  Solution methodology for the SDC problem 

The SDC problem features are : 

• The medium size : typically 5 debris must be selected amongst 10. The number of variables and related 

constraints required to formulate the path problem ranges between 100 and 1000. This medium size favours 

the choice of an implicit enumeration method like Branch and Bound in order to get the exact solution. For 

larger numbers of debris, it would be necessary to turn towards stochastic methods. 

• The difficulty due to the infinite dimension embedded control problems, which are themselves intrinsically 

hard in the general case. The cost of going from any debris to the other depends on the starting date and on 

the allocated duration. The mission overall duration being constrained to less than one year, there is a 

strong coupling between the optimal control laws of the successive transfers from one debris to the other. 

In view of a Branch and Bound algorithm, a linear formulation of the problem is desirable, in order to ensure the 

required solution robustness and efficiency. The simplification steps leading to a practical formulation that can be 

solved by a Branch and Bound algorithm are : 

• to define a transfer strategy that restricts the optimal control problem to a reduced size NLP problem 

• to formulate the problem with respect to the specific transfer strategy selected (transfer variables and 

constraints) 

• to linearize the resulting formulation around an initial reference solution. 

Due to the linearization, an iterative process must be set up in order to update the linearization around the new 

solution, until the solution stabilizes. The solution methodology depicted on Figure 1 follows the successive steps : 

• Write the problem formulation (Chapter 2) 

• Simplify the transfer problem considering the mission specificities (Chapter 3) 

• Linearize the formulation around an initial pre-optimized solution and then iterate on the local solution 

until stabilization (Chapter 4) 

• Issue the optimal path and reoptimize the controls and dates along the selected path 
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Figure 1 : Solution methodology 
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2  Problem formulation 

This chapter presents the mathematical formulation of the two embedded optimization problems and gives an 

overview of the available numerical methods. 

 

2.1  Transfer problem 

The transfer problem consists in going from a debris i to another debris j. The SDC vehicle is represented by the 7-

state vector  







=
















=

=

=

=
m(t)

Y(t)

massm(t)

velocity(t)v

position(t)r

X(t)
r

r

. 

To ease the subsequent formulation of the optimal control problem, we introduce the 6-vector Y(t) representing the 

6 first components of X(t), i.e. the 3 position and the 3 velocity components or equivalently the 6 orbital parameters. 

The 6-state vector of the debris k at the date t is similarly denoted Yk(t). 

 

The SDC vehicle trajectory is controlled by the 3-command vector U(t)  representing the vehicle thrust. Denoting 

the thrust magnitude by U(t)u(t) = , with maxuu0 ≤≤ , the thrust direction by (t)d
r

and the burned propellant 

exhaust velocity by ve, the vehicle dynamics is represented by the first order ODE : 

 


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
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
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⇔=

ev
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r
r&r
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&  (1)  

We denote d

it and 
a

jt  the respective dates of departure from the debris i and arrival to the debris j. The vehicle state 

must coincide : 

• with the debris i state at the transfer beginning : ( ) ( )d

ii

d

i tYtY =  

• with the debris j state at the transfer end ( ) ( )a

jj

a

j tYtY = . 

The propellant consumption Cij and duration Tij required for this transfer are : 

 
( ) ( ) [ ]( )
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The optimal control problem of the transfer from a debris i to a debris j is then formulated as : 

( ) ( ) [ ]( )

( ) ( )
( ) ( )
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d

iij

a

j

d
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d
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&
 (3) 

The upper bound max ijT on the transfer duration is necessary in order to have a well posed problem
15,16

. The 

unknowns are the initial date 
d

it , the final date 
a

jt , and the command law [ ]a

j

d

iij tt t(t),U ≤≤  which is a 

function of the time. 

 

2.2  Path problem 

2.2.1  Travelling Salesman Problem and variants 

The archetype of path problems is the Travelling Salesman Problem (TSP). The salesman has to visit successively N 

towns. Every town is linked to any other with the distances being fixed. The goal is to visit each town once and only 

once while minimizing the total distance covered. The distance (or cost) from any town i to any other town j is Cij 

and the associated duration is Tij (Figure 2). 

 

 

Figure 2 : The Travelling Salesman Problem 

 

In order to formulate the SDC path problem, we start from the classical TSP with the additional features : 

• Only n debris among the N must be visited. This TSP variant is the “n-shortest path problem”
17,18,19,20

. 

• The costs Cij and durations Tij are time-dependent. 

• There is a global duration constraint on the solution : T ≤ Tmax 

Town i 

Town j 

Distance Cij 

Time Tij 
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• Processing a debris (capture, deorbitation, release) requires a minimum duration Tdeorb. It corresponds to 

a minimum waiting phase once a debris has been reached before starting the next transfer. 

 

2.2.2  Path Problem Formulation 

In terms of graphs theory, the debris are represented by nodes and the transfers are represented by directed edges. To 

write down the mathematical formulation of the path problem, we introduce the following variables and 

constraints
21

. By convention, variables with one index are related to nodes whereas variables with two indexes are 

related to edges. 

• sij , i,j=1 to N with i≠j, is a binary selection variable for the edge (i-j) 

• xk , k=1 to N, is the number of edges arriving to the node k :   1sx
i

ikk ≤=∑  

• yk , k=1 to N, is the number of edges departing from the node k : 1sy
j

kjk ≤=∑  

• zk , k=1 to N, is the product of  xk and yk :    kkk y.xz =  

zk = 1 if and only if  there is one edge arriving and one edge departing from the debris k. 

• sk , k=1 to N, is a binary selection variable for the node k :    









+=−+= ∑∑

j

kj

i

ikkkkk ss1,Minzyxs  

Remark 1 

Although the variables xk, yk, zk and sk are redundant with the variables sij, they are kept in the problem formulation 

together with the related constraints in view of the further problem linearization (Chapter 4). 

 

• a

kt and 
d

kt  , k=1 to N are the dates of arrival to and departure from the debris k 

The mission starts at t0=0 and ends at t < Tmax (1 year) : 0 <
a

kt , 
d

kt  < Tmax. We introduce also a lower bound 

Tmin (for example 1 day) on the transfer durations. This bound discards fuel-expensive transfers that would 

anyway be rejected when optimizing the path. 

 

The path feasibility is ensured from the following set of constraints : 

• From :  1nsx
ki,

ik

k

k −==∑∑    (number of “arrival” debris) 

  and  2nz
k

k −=∑                (number of “mid path” debris) 

we deduce that there is only one debris which is an arrival without departure (end of the mission). 

• From :  1nsy
jk,

kj

k

k −==∑∑     (number of “departure” debris) 

  and  2nz
k

k −=∑                 (number of “mid path” debris) 

we deduce that there is only one debris which is a departure without arrival (beginning of the mission). 
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• From :  deorb

a

k

d

k Ttt ≥−      (debris operations) 

  and  minmaxijmax

a

j

d

i T-Ts.Ttt ≤+−  (increasing dates along the selected path) 

we ensure that the required operation durations are satisfied and that the path has no loop (Figure 3 left). 

Indeed for a selected edge (sij=1) the constraint becomes a

jmin

d

i tTt ≤+  with a minimum transfer duration 

Tmin. 

Adding   1ns
ji,

ij −=∑    (number of edges) 

 and  2nz
k

k −=∑                 (number of “mid path” debris) 

we ensure that the path is made of  n-1 edges and that it is connex (Figure 3 right). 

 

  

Figure 3 : Examples of non feasible paths 

 

 

The path total cost C and duration T are 
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with the respective contributions : 

• Cij and d

i

a

jij ttT −=  for the transfer (i-j) 

• Ck and a

k

d

kk ttT −=  for the debris k operations 

The cost C depends on the debris selection order because of the constraints applied to the variables sij and sk. 
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2.3  Space Debris Collecting problem 

The SDC problem is a nonlinear time dependent variant of the classical TSP. The main differences with the TSP 

come from the embedded transfer problems : 

• The town locations are replaced by the debris locations on their orbits (therefore varying with the time) 

• There is an infinite number of possible trajectories to go from any debris i to any other debris j depending 

on the dates 
d

it , a

jt  and on the command law [ ]a

j

d

iij tt t(t),U ≤≤ . Each possible trajectory requires a 

propellant consumption (or cost) ( ) ( ) [ ]( )a

j

d

iij

a

j

d

i

a

j

d

iij tt t(t),U,tX,tX,t,tC ≤≤  and a duration d

i

a

jij ttT −= . 

 

 

Figure 4 : Trajectories between debris 
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The SDC problem formulation mixes binary variables sij, xk, yk, zk, sk, real variables ( ) ( )a

k

d

k

a

k

d

k tX,tX,t,t  and 

functions [ ]a

j

d

iij tt t(t),U ≤≤  : 
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• S is the number of transfers :       ∑=
ji,

ijsS  

• C is the mission cost :           ∑∑ +=
k

kk

ji,

ijij CsCsC  

• T is the mission duration :           ∑∑ +=
k

kk
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ijij TsTsT  

• Y is the location state vector :         
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• Ck is the cost of the debris k operations :  ( ) ( )( )d
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kk

d

k

a

kk tY,tY,t,tC  

• Tij is the duration of the transfer (i-j) : 
d

i

a

jij ttT −=  

• Tk is the duration of the debris k operations : a

k

d

kk ttT −=  

• N and n are respectively the total number of debris and the number of debris to deorbit 
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The mission is assessed from the first selected debris, assuming that a launcher has realized the prior rendezvous 

manoeuvres. If not, the same formulation applies by adding a fictitious debris numbered 0 corresponding to the SDC 

vehicle injection orbit. This fictitious debris is fixed as the start of the path by fixing the related variables (x0=0, 

y0=1, z0=0 and s0=1), and the transfer from this debris 0 to the first selected debris is then taken into account. 

 

  



 125

3  Transfer strategy 

The optimal transfer strategy depends on the initial and final orbits, the mission constraints and the vehicle 

capabilities. In the general case, finding the optimal control law may be a challenging task. For the SDC mission it is 

nevertheless possible to define a specific transfer strategy that takes advantages of the mission particularities, 

regarding the debris orbits and the mission duration. 

 

3.1  Debris orbits 

For each debris, the orbital parameters (Figure 5) are given at the mission starting date t0. The semi-major axis a and 

the eccentricity e define the orbit shape, the inclination  I and the right ascension of the ascending node (RAAN)  Ω 

define the orbit plane, the argument of the perigee ω and the true anomaly ν define the location on the orbit. 

 

 

Figure 5 : Orbital parameters 

 

The Space Debris Collecting mission aims at Low Earth Orbit (LEO) or Sun-Synchronous Orbit (SSO) old 

satellites. During their operational life the orbital parameters have been controlled to keep precise values matching 

the mission purposes, e.g. observation or telecommunication. For example typical SSO are circular at altitudes 

ranging from 600 to 1000 km, and inclination ranging from 96 to 100 deg. Similarly the launcher upper stages used 

to bring the satellites on their operational orbit have been left in the vicinity of these orbits. 

After their end of life, the satellites have been left uncontrolled and subjected to perturbations (Earth gravitational 

perturbations, Sun and Moon attraction, atmospheric drag, solar pressure radiation, geomagnetic field, etc.).  For 

nearly circular LEO or SSO, the average effect of the perturbations on the orbit semi-major axis, the eccentricity and 

the inclination is very small : this is confirmed both by theory, numerical simulations and by observation
22

. These 

debris are thus still moving on nearly circular orbits, at very close altitudes and inclinations. 
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In the altitude range [600 km – 1000 km] the main orbital perturbation is due to the Earth flattening, which adds the 

first zonal term J2 to the Earth gravitational potential. The Earth equatorial bulge creates a torque on the debris orbit. 

The debris rotating on its orbit behaves as a gyroscope : the angular momentum rotates around the Earth polar axis 

causing a precession of the orbital plane and a secular drift of the node along the Equator (Figure 6). 

 

 

 

Figure 6 : Orbit precession due to the Earth flattening 

 

The secular precession rate of the RAAN is expressed as
23

 : 
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The Earth constants given by the WGS84 model
23

 are the gravitational constant (µ=3.986 10
14

 m
3
/s²), the equatorial 

radius (RT=6378137m), the first zonal coefficient (J2=1.086 10
-3

, 
2

T2J2 RµJ
2

3
C = ).  

3a

µ
n = is the mean motion. 
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The other parameters a, e and I are not subjected to secular effects from the J2 perturbation and they can be 

considered as constant throughout the SDC mission. The RAAN precession rate (Equation 5) is therefore constant : 

00  )t(  t)( Ω=Ω=Ω &&&  and the RAAN is a linear function of the time : )t-t( )t(  t)( 000 ×Ω+Ω=Ω &  

 

For a Sun-Synchronous Orbit the precession rate is adjusted to match the Earth revolution rate 

around the Sun (360 deg in 1 year, i.e. 0.986 deg/day). The orbital plane makes a complete 

revolution around the polar axis in one year keeping a constant angle with the Sun direction, as 

illustrated on  

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 : Sun-Synchronous Orbit 

 

 

Table 2 gives the range of values of the RAAN precession rates for near SSO debris. 

 

RAAN precession rate 
Semi major axis 

7000 km 7200 km 

Inclination 
98 deg 1.002 deg/day 0.908 deg/day 

99 deg 1.126 deg/day 1.020 deg/day 

Table 2 : RAAN precession rates for near SSO debris 
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For nearly circular orbits, the location on the orbit can be defined by the longitude from the ascending node L=ω+ν 

replacing ω and ν. In summary, the orbital parameters are split into : 

• 3 constants a, e, I  with e ≈ 0, 

• 1 slow variable )t-t( )t(  t)( 000 ×Ω+Ω=Ω & , 

• 1 fast variable )t-t(n )t(L  L(t) 00 ×+= . 

The next sections discuss the performances of a direct vs a drift strategy, the influence of the duration constraint and 

of the thrust level. A specific drift strategy is then selected in §3.6, assuming that the mission is performed by a 

single vehicle and considering the consumption as representative of the mission cost. 

 

3.2  Direct strategy 

The debris orbits are quasi-circular at close altitudes (700 km < H < 900 km) and inclinations (98 deg < I < 99 deg) 

with a = RT + H  for a circular orbit. 

To gain some insight into the features of an optimal transfer strategy, we first assess the impulsive costs for direct 

orbital parameter changes on a typical circular SSO (H=800 km, I=98.6 deg) : 

• ∆H = ± 100 km ⇒  ∆V = 50 m/s   (altitude correction by a Hohmann transfer) 

• ∆I = ± 1 deg ⇒  ∆V = 130 m/s   (inclination correction by a single impulse at the node) 

• ∆Ω = ± 1 deg ⇒  ∆V = 130 m/s   (RAAN correction by a single impulse at the plane intersection
23

) 

∆Ω = ± 10 deg ⇒  ∆V = 1300 m/s 

The anomaly correction for the rendezvous with the targeted debris is assessed considering a Lambert manoeuvre
23

 :  

• ∆L = ± 10 deg ⇒   ∆V = 150 m/s  (anomaly correction) 

∆L =  - 90 deg ⇒   ∆V = 1010 m/s 

∆L = + 90 deg ⇒   ∆V = 1640 m/s 

All the debris altitudes and inclinations being very close, the changes of H and I to go from any debris to any other 

can be performed directly at moderate costs, typically less than 200 m/s, whatever the date. On the other hand, the 

RAAN difference changes with the time since each debris has its own precession rate. The required RAAN 

corrections may therefore take large values depending on the SDC mission starting date. As illustrated by the above 

numerical example, the impulsive cost for a direct change becomes prohibitive as soon as the required correction 

exceeds a few degrees. The same remark applies to the anomaly correction if the manoeuvre date cannot be chosen 

freely. A direct change strategy would therefore lead to prohibitive costs and an oversized SDC vehicle. 

 

3.3  Drift strategy 

An alternative strategy consists in waiting until the J2 precession has nullified the RAAN difference. For a chaser 

and a target of respective orbital parameters (a1,e1,I1,Ω1) and (a2,e2,I2,Ω2) at an initial date t0, the RAAN evolutions 

are : 

• )t-t( )t(  t)( 01011 ×Ω+Ω=Ω &        with 21 , ΩΩ &&  given by Equation 5. 
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• )t-t( )t(  t)( 02022 ×Ω+Ω=Ω &  

The RAAN correction is completed when t)(  t)( 21 Ω=Ω  and the required duration is:
Ω∆

∆Ω
−=

Ω−Ω

Ω−Ω
=

&&&
12

12- ∆T . 

The value of ∆Ω is to take modulo 360 deg in order to match the sign of Ω∆ &  and yield a positive duration. 

This purely waiting strategy is not time efficient for 2 reasons : 

• The debris orbits are very close in terms of altitudes and inclinations, and the precession rates difference 

Ω∆ &  is therefore rather small (typically Ω∆ &  ≈ ±0.1 deg/day from Table 2). 

• The sign of Ω∆ &  may not match the optimal correction sense. This is illustrated on Figure 8 in the case of 

positive precession rate (retrograde orbits like SSO). 

 

 

 

 

 

 

 

Figure 8 : Forwards or backwards correction 

 

If the chaser is initially backwards (∆Ω < 180 deg), it should try to overtake the target ( 021 <Ω∆⇒Ω>Ω &&& ) and if 

it is initially forwards (∆Ω > 180 deg), it should try to wait for it ( 021 >Ω∆⇒Ω<Ω &&& ). 

In the worst cases (small Ω∆ & , wrong sense) waiting for a natural correction would take hundreds of days. Similarly 

a waiting strategy for the anomaly correction is not time efficient, since the respective mean motions of the debris 

can be very close. 

 

In order to control the waiting duration, a more effective strategy consists in transferring the vehicle on an 

intermediate drift orbit where the RAAN correction will be speeded up. The drift orbit parameters are chosen to 

control both the sense of the correction (depending on whether the drift altitude is lower or higher than the target) 

and the correction speed (depending on the difference of the precession rates). A compromise has to be made 

between the cost of the additional transfer manoeuvres and the durations allocated to achieve the RAAN correction. 
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By the same way, a significant difference between the mean motions on the drift orbit and on the targeted debris 

orbit ensures that the anomaly phasing can be quickly (i.e. within a few revolutions) achieved whatever the initial 

anomaly difference, making the rendezvous cost negligible, once the RAAN correction is achieved. 

 

3.4  Duration constraint 

The duration constraint is necessary to have a well posed problem else the optimal solution is in infinite time
6,7

. 

Qualitatively we can distinguish : 

• A weak duration constraint if it leaves enough time to make the drift strategy possible. The RAAN 

correction using the J2 precession may then span on several months, depending on the initial state. In that 

case the rendezvous cost can be considered as negligible with respect to the orbit change manoeuvres. 

• A strong duration constraint if there is not enough time to use efficiently the J2 precession for RAAN 

correction. In that case, the direct change strategy must be considered, taking directly into account the 

rendezvous constraint at the expense of higher mission costs. For example reference
24

 presents a Lambert 

based strategy in order to deorbit 3 LEO debris within a few days. 

 

3.5  Thrust level 

The term ‘thrust level’ is used, although it is in fact the acceleration level that reflects the orbit change capability of 

the vehicle. The way the transfer is optimized depends highly on the thrust level and on the transfer strategy : 

• In the case of a high thrust engine, the manoeuvre durations can be considered as negligible with respect to 

the coast phase durations, making the impulsive modeling adequate. It is then possible to analyze the 

transfer in a “patched-conics” manner, and to define a specific strategy based on Hohmann transfers (for 

the orbit changes) and Lambert transfers (for the rendezvous). 

• In the case of a low thrust engine, the manoeuvre durations are no longer negligible. A global optimization 

is required taking into account the coupling between the successive phases of the transfer. In the case of the 

drift strategy, approximate solutions can be derived from the impulsive solution by taking into account the 

cost and duration penalty of low thrust manoeuvres. This approach is realistic provided that the manoeuvre 

durations remain compliant with the drift strategy. If this assumption is not satisfied, it is necessary to 

directly tackle the global transfer optimization problem through optimal control methods. 

 

Remark 2 

The available acceleration level of the vehicle grows throughout the mission, since the engine thrust 

level remains constant while the vehicle gross mass decreases. A transfer between two debris can therefore be 

achieved at lower propellant consumption if it occurs at the mission end rather than at the beginning. The path 

optimization should then take in account this acceleration level increase in the case of non-impulsive manoeuvres. 
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Remark 3 

Similarly the propellant consumption for the deorbitation manoeuvre, if it is performed by the vehicle, depends on 

the debris mass. The debris selection should then take into account their masses. 

 

For the upcoming definition of the transfer strategy, it is assumed that the vehicle is equipped with a high-thrust 

engine and that the targeted debris are of similar size and mass in order to be compliant with the vehicle catching 

system. With these assumptions the path optimization no longer depends on the acceleration level variation nor on 

the debris masses. 

 

 

3.6  Selected transfer strategy 

The SDC mission starts from the first selected debris and requires four successive transfers that must be realized 

within one year. This leaves time to perform the ascending node changes using the J2 precession (weak duration 

constraint). The drift transfer strategy is therefore adequate for the SDC mission in order to minimize the overall 

consumption. 

Remark 4 : The real cost of the mission does in fact not only depend on the propellant consumption. The mission 

duration is also a major cost driver, for the vehicle design (thermal systems, on board power, …) and for the 

operations (ground tracking, manoeuvre planning, collisions avoidance, …). In terms of global cost, the propellant 

savings with the drift strategy may be offset by the cost induced by the mission duration. The trade-off between the 

direct strategy and the drift strategy must therefore be investigated before fixing the vehicle definition and the 

mission strategy. 

 

Assuming that the SDC vehicle is equipped with a high thrust engine, the impulsive approximation can be 

considered as valid. Extension to low thrust engines is the subject of future work. 

 

For a transfer from a debris 1 to a debris 2, we define a specific strategy composed of 3 phases and 4 manoeuvres : 

• A first Hohmann transfer starting at the date t1 to go from the debris 1 orbit to the intermediate drift orbit 

with 2 apsidal manoeuvres ∆VP1 (perigee) and ∆VA1 (apogee) 

• A waiting phase of duration ∆T12 on the drift orbit until the RAAN correction is completed 

• A second Hohmann transfer starting at the date t2 to go from the intermediate drift orbit to the debris 2 orbit 

with 2 apsidal manoeuvres ∆VA2 (apogee) and ∆VP2 (perigee) 

The parameters of the initial, drift and final orbits are denoted with the respective subscripts 1, d and 2. 

 

The transfer strategy is depicted on Figure 9 in the case of a drift orbit higher than the debris orbits. In the 

problem solution there will be no a priori assumption regarding the relative altitudes of the 3 orbits. The drift 

orbit can be either below, or between or over the initial and final debris orbits. 
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Figure 9 : Transfer manoeuvres and successive orbits 

 

The Hohmann transfer durations are considered as negligible (typically a half revolution, i.e. about 1h) with respect 

to the drift duration (several weeks). The RAAN evolution of the debris and of the SDC vehicle along their 

respective orbits since the mission starting date t0 are : 

• Debris 1 : )t-t( )t(  )t( 0110111 ×Ω+Ω=Ω &  

• Debris 2 : )t-t( )t(  )t( 0220222 ×Ω+Ω=Ω &  

• Vehicle : )t(  )t( 111 Ω=Ω       (start at t1 from the debris 1 orbit) 

)t(  )t( 222 Ω=Ω    (arrival at t2 to the debris 2 orbit) 

)t-t( )t(  )t( 12d12 ×Ω+Ω=Ω &  (coast since t1 until t2 on the drift orbit) 

 

The duration required to complete the RAAN correction is then given by : 

 ( ) ( )
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01120102

1212
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==

&&

&&

 (6)  

The anomaly rendezvous constraint is not considered since it can be satisfied with a negligible additional cost and 

duration by selecting the appropriate date of second transfer once the RAAN correction is achieved. 

 

The overall cost of the transfer is the sum of the 4 manoeuvres : P2A2A1P1 ∆V∆V∆V∆V  ∆V +++=  

Each impulsive manoeuvre is assessed as the difference of the velocity vectors before and after the orbit change. 

The velocity modulus depends on the semi-major axis a and the current radius vector r
23

 : 
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In the case an inclination change is performed simultaneously with a shape change, the impulsive manoeuvre is 

assessed as the norm of the vector difference (Figure 10). 

 ( )abba

2

b

2

aba iicosV2VVVVV  V −−+=−=∆
rr

 (7)  

where  bV
r

(resp aV
r

) and ib (resp ia) are the velocity and inclination before (resp after) the manoeuvre. 

 

 

 

 

Figure 10 : Simultaneous inclination and shape change 

 

 

3.7  Problem formulation with the selected transfer strategy 

With the selected strategy, the control problem (Equation 3) is simplified as follows : 

• The command law [ ]a

j

d

iij tt t(t),U ≤≤  for each transfer (i-j) is replaced by the drift orbit parameters 

aij,eij,Iij. There are no longer function unknowns and the problem becomes a finite dimension NLP problem. 

• The dynamical constraint a

j

d

iij ttt,t](t),Uf[X(t),  (t)X ≤≤=&  disappears since the trajectories are modeled by 

keplerian arcs (Hohmann transfers) with secular J2 RAAN precession (drift orbits). 

• The initial and final state constraints on ( )d

itY and ( )a

jtY  are discarded since they are directly taken into 

account in the transfer modeling (the anomaly rendezvous constraint is neglected). 

• The transfer costs Cij are measured by the required impulsive velocities ∆Vij, depending only on the 

parameters of the initial, drift and final orbit. The mass is also discarded from the problem formulation. 

• The transfer durations Tij depend on the parameters of the initial, drift and final orbit, and also on the date 

of the transfer beginning (Equation 6). 

 

With these simplifications the SDC problem (Equation 4) becomes a mixed integer-real finite dimension problem, 

formulated as : 

 

ia 

ib 

Equatorial 
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• S is the number of transfers :       ∑=
ji,

ijsS  

• C is the mission cost :           ∑∑ +=
k

kk

ji,

ijij CsCsC  

• T is the mission duration :           ∑∑ +=
k
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ijij TsTsT  

The cost Cij and duration Tij of the transfer (i-j) depend on the parameters of the initial orbit (debris i), the final orbit 

(debris j) and the drift orbit. The duration depends also on the date of the transfer beginning 
d

it  : 
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3.8  Further simplifications 

The problem dimension can be further reduced regarding the choice of the drift orbit eccentricity and inclination. 

 

3.8.1  Drift orbit eccentricity 

We examine two extreme scenarios regarding the choice of the drift orbit eccentricity : 

• The first scenario uses an elliptical drift orbit having the same perigee (or apogee) as the initial debris orbit. 

This scenario requires only three manoeuvres (one for the first transfer, two for the second transfer). 

• The second scenario uses a circular drift orbit. This scenario requires four manoeuvres (two for the first 

transfer, two for the second transfer) as depicted on Figure 9. 
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The comparison is led on a representative numerical example with the initial and final debris on the same SSO 

(800 km , 98.6 deg). We assume also that the drift orbit altitude is comprised between 600 km and 1000 km. 

The plots of Figure 11 show for the two scenarios the manoeuvre costs depending on the drift orbit altitude (or 

perigee or apogee in the elliptical scenario) and the precession duration required for a one degree RAAN correction. 

 

 

Figure 11 : Elliptical vs. circular drift orbit 

 

The fastest RAAN correction rate that can be hoped with the elliptical scenario is about 0.05 deg/day, with a related 

manoeuvre cost of 100 m/s. This means that a single RAAN correction of 10 deg could not be achieved in less than 

200 days. This strategy is therefore not compliant with the SDC mission global duration of one year. 

On the other hand the circular drift orbit scenario allows a doubling of the RAAN correction rate, but at the 

expenses of higher impulsive costs. This numerical example shows that considering elliptical drift orbits can help 

reduce the mission cost, but makes the solution more sensitive to the duration constraint. 

We will therefore consider only circular drift orbits and fix the drift eccentricities eij at zero. This assumption is the 

most conservative with respect to the duration constraint, since it maximizes the RAAN correction rates of each 

transfer. It can later be relaxed when post-optimizing the trajectory (once the path is selected) in order to reduce the 

mission cost. 

 

3.8.2  Drift orbit inclination 

Regarding the drift orbit inclination a similar analysis can be made as for the eccentricity. The respective 

inclinations on the initial and final debris orbits are I1 and I2. In order to minimize the overall transfer cost, the 

inclination change has to be performed simultaneously with one of the four manoeuvres of the transfer. From the 

impulsive formula (Equation 7), the minimum cost is achieved for the minimum velocity modulus product VaVb. 

Assuming identical altitudes H1=H2 for the initial and the final debris with respective inclinations I1 and I2, we can 

see on Figure 12 that there are two cost-equivalent opportunities at the apogee manoeuvres for the inclination 

change : 

• If the drift orbit is above the debris orbits, these opportunities correspond to the 2
nd

 and 3
rd

 manoeuvres 
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• If the drift orbit is under the debris orbits, these opportunities correspond to the 1
st
 and 4

rd
 manoeuvres 

 

              

Figure 12 : Optimal inclination change opportunity 

 

It is thus always possible to perform the inclination change either before or after the drift phase, without cost 

penalty. The criterion of choice is then to speed up the RAAN correction by maximizing the precession rate 

difference between the drift orbit and the final debris orbit. 

For retrograde orbits (I > 90 deg), the precession rate (Equation 5) is positive :  0)e(1acosIC- Ω 2-22
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The optimal drift orbit inclination with respect to the debris altitudes and inclinations is : 
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We will therefore fix the drift inclinations Iij at their optimal values with respect to the RAAN correction duration. 

In practice this assumption is quasi-optimal in terms of cost as long as the debris move at close altitudes. If not, the 

inclination change opportunities are not cost-equivalent and the drift inclinations Iij should be kept free in the 

problem. 

 

3.8.3  Debris operations 

In addition to the previous assumptions regarding the drift orbit parameters, we assume that : 

• the costs Ck for the debris operations (rendezvous, deorbitation, release) depend only on the debris orbits, 

• the durations Tk for the debris operations are fixed (Tk = Tdeorb) and identical for all the debris, 

• the vehicle leaves each debris as soon as the deorbiting operations are completed : deorb
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• the minimum transfer duration Tmin is fixed to zero Indeed the constraints on the dates become 

)T(T-Ts.Ttt deorbminmaxijmax

a

j

a

i +≤+−  so that Tmin is  redundant with Tdeorb in the problem formulation. 

Delaying the departure is a loss of time : the next drift orbit must be reached as soon as possible to speed up the 

RAAN correction. A drift orbit identical to the initial orbit is anyway a possible solution that is not prevented by the 

above assumption. The arrival date on the debris k will consequently be noted without superscript : k

a

k tt = and the 

departure date is given by : deorbk

d

k Ttt += . 

 

3.8.4  Problem simplified formulation 

With these simplifying assumptions, the SDC problem formulation (Equation 8) becomes : 
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 (10) 

with the cost Cij and duration Tij of the transfer (i-j) defined by Equation (9). 

The numbers of variables and constraints are : 

• N² + 3N binary variables : N(N-1) for the sij  and  4N for the xk, yk, zk, sk 

• N²  real variables :    N(N-1) for the aij  and  N for the tk 

• N² + 3N + 3 constraints 

This is a MINLP problem where the nonlinearities come from the cost functions Cij(aij), the duration functions 

Tij(aij,ti) , their products with the edge selection variables sij and the relationships between the binary variables xk, yk 

and zk. These last nonlinearities are easily removed by a standard transformation recalled in §4.3. The practical 

solution procedure of the MINLP problem is presented in the next chapter. 
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4  Practical solution 

The above simplifications have removed the functional unknowns (control laws) and led to a finite dimension 

MINLP problem. But the problem is still nonlinear, and therefore not adapted to a Branch and Bound approach. 

Indeed the tree exploration requires solving repeatedly instances of the relaxed problem, with a guarantee of 

convergence. It is very difficult to ensure the required solution robustness for general NLP problems unless the 

convexity of the cost and constraint functions can be established. In the absence of convexity properties such 

problems present generally local minima making algorithms sensitive to the initialization. Also it is nearly 

impossible to find algorithmic settings robust whatever the problem. 

In order to get the required convergence guarantee and time efficiency, the most effective approach consists in 

linearizing the problem. The advantage is the possibility to use reliable linear programming methods. The drawback 

is that the solution found is only valid in the vicinity of the starting point. Therefore the linearization and solution 

steps must be repeated within an iterative process until the solution stabilizes. 

Another issue that must be discussed is how to guarantee of convergence toward the global optimum. Proving and 

ensuring this convergence is generally not possible unless the convexity of the cost and constraint functions can be 

established. In the case of convex functions outer convexification procedures can be added to the linearization in 

order to ensure that the iterates converge toward the global optimum
14

. 

 

4.1  Problem linearization 

The nonlinear terms in the above formulation (Equation 8) are the transfer costs ( )ijij aC , the transfer durations 

( )iijij t,aT  and the variable products ( ) ( ) ( )kkijijijij yx,Ts,Cs . 

 

4.2  Transfer cost and duration linearization 

The cost and duration are linearized for each transfer around reference values of the drift orbit semi-major axis aij 

and of the transfer starting date ti. In order to ease the explanation of the linearization process, we denote : 

• ad (resp a) and td (resp t) the reference (resp actual) values of the semi major axis and the starting date 

• α and τ the differences between the actual and the reference values : 
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• [amin;amax] and [tmin;tmax] the intervals of validity of the linearization. This will be discussed when detailing 

the iterative process. The corresponding intervals on the variables α and τ are [αmin;αmax] and [τmin;τmax]. 

The nonlinear functions C(a) and T(a,t) are replaced by linear approximations CL(α) and TL(α,τ) in these intervals. 
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The cost C and the duration T partial derivatives are approximated in the linearization intervals by secant formulae :  
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This linearization choice for the duration function T (Equation 6) is driven by the function shape (Figure 13). This 

function is linear with respect to td, convex and highly nonlinear with respect to ad with an asymptote at ad=a2 if Id=I2 

(or near a2 if Id ≈ I2). Indeed the duration for the RAAN correction becomes infinite if the precession rates are the 

same. 

 

 

Figure 13 : Linearization of the duration function 
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converge on the optimal solution saturating the duration constraint consists in tightening the intervals [αmin;αmax] 

and [τmin;τmax] from one iteration to the other after the linearized solution stabilizes on the optimal path (see §4.6.2). 

 

Alternative linearization approaches 

Two alternative linearization approaches with respect to the semi-major axis variable have been envisioned. 

 

The first one consists in considering directly the tangent at the linearization point instead of the secant on the 

linearization interval : 

( ) ( ) ( ) ( ) τ.t,a
t

T
α.t,a

a

T
t,aTτα,T ddddddL
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+=  

This linearized duration function underestimates the true duration (the tangent is below the curve). The mission real 

duration corresponding to the linearized solutions is therefore systematically higher than 1 year. The intermediate 

iterations yield never feasible solutions with respect to that constraint until the convergence is achieved. This first 

approach has proved practically difficult to control within the iteration process. 

 

The second approach aims at meeting more accurately the true duration constraint at every iteration. It consists in 

approximating the duration function by 2 half segments as pictured on Figure 14 : 

 

 

Figure 14 : Duration function approximation with two half segments 
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This approach makes necessary to take into account the sign of αij when linearizing the duration of the transfer (i-j) 

and it leads to an increase of the linearized problem dimension. The time of solving this larger dimension problem 

can nevertheless be balanced by a reduction of the number of iterations necessary to meet accurately the global 

duration constraint. The choice must be made case by case, depending on the iteration behavior and on the 

computation time observed. 

 

4.3  Variable product linearization 

A product of a binary variable { }0;1u∈  with a real variable [ ]max;min; vvv∈  is linearized by introducing one 

additional real variable w representing the product (u.v) and four inequality constraints
21

 : 
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The variable w is then used in the problem formulation in order to replace the products (u.v). If the variable v is a 

binary one the same transformation applies with 1vand0v maxmin; == . This transformation is applied to all the 

products pij=sij.αij , qij=sij.τi and zk=xk.yk, adding thus 2N²-N real variables and 8N²-4N constraints. 

 

4.4  Linearized problem 

The linearized problem formulation is obtained by successively : 

• Choosing for each transfer (i-j) reference values of aij and ti 

• Replacing the variables aij and ti by αij and τi 

• Replacing the true cost Cij and duration Tij by their linear approximations CLij and TLij with their respective 

linearization coefficients (C0ij ,C1ij) and (T0ij ,T1ij,T2ij) : 
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• Replacing the products by the associated variables and constraints (Equation 13). The product linearization 

variables are denoted : 
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The SDC problem formulation after linearization is : 
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with the linearized cost CL and duration TL given by : 
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The numbers of variables and constraints of the linearized problem are : 

• N² + 3N binary variables : N(N-1) for the sij  and  4N for the xk, yk, zk, sk 

• 3N²-2N  real variables :    3N(N-1) for the αij, pij, qij and  N for the τi 

• 9N² - 2N + 3 constraints + variable bound constraints. 

 

4.5  Initialization 

The initialization goals are to pre-optimize the drift orbit parameters in order to start with an already good solution 

and also to eliminate unfeasible or too expensive transfers of the possible paths in order to reduce the problem size. 

 

4.5.1  Pre-optimization problem 

Denoting the initial, drift and final orbits of a single transfer with the respective subscripts 1, d and 2, the pre-

optimization consists in minimizing the transfer cost ∆V12 in less than a given duration T0 : 
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Remark 5 

The preliminary assessment of the drift duration (Figure 11) has shown that only circular drift orbits could yield 

reasonable transfer durations and the drift eccentricity ed has been removed from the global problem formulation. 

Nevertheless the pre-optimization problems are solved with a free drift eccentricity variable. The optimum is found 

to be a null eccentricity as expected, validating the assumption in practical cases. 

 

4.5.2  Duration constraint 

The SDC mission is composed of 4 transfers to be completed within one year. The average transfer duration is thus 

3 months. Since the linearized approximation TL overestimates the true duration, the duration constraint T0 must be 

set to strictly less than 3 months (e.g. 2 months) at the initialization stage, so that the initial solution remains feasible 

after linearization. The linearized solution will tend progressively to saturate the global duration constraint 

throughout the iterations by tightening the linearization intervals. 

 

Remark 6 

The duration constraint is generally active. Indeed a short duration implies high precession rates differences and 

expensive drift orbits. The constraint is inactive only if the debris precession rates are sufficiently different so that 

the RAAN correction is naturally completed on the initial orbits within the prescribed duration. 

 

4.5.3  Solution diagnosis and linearization 

For each transfer, the pre-optimization diagnoses if the transfer is unfeasible in the prescribed duration T0 (this can 

happen because of the drift altitude bounds) or more expensive than a prescribed cost threshold ∆Vmax (in order to 

keep only the candidate transfers that are compliant with the envisioned mission cost). These transfers are 

eliminated by fixing the corresponding selection variable sij to zero. 

For a feasible transfer, the pre-optimization yields values of the semi-major axis ad, the inclination Id and the initial 

date t1. These values are taken as starting linearization values, with adapted linearization intervals [αmin;αmax] and 

[τmin;τmax] compliant with : 

• The operational altitude range :   maxdmin aaa << . 

• The mission initial and final dates :   max0210 Ttttt +<<< . 

In order to have a valid linearized modeling of the transfer duration, the drift altitude interval must also lie entirely 

on the same side of the targeted debris altitude. Indeed the transfer duration function has an asymptote for ad=a2 and 

Id=I2 (drift orbit identical to target orbit) and the linearization is subject to growing errors when one of the bounds 

(ad+αmin) or (ad+αmax) approaches the limit ad=a2 (Figure 13). This holds even if Id is not strictly equal to I2, since all 

debris and drift orbits are in a narrow inclination range. 

For each transfer, the side chosen for ad (lower or higher than a2) at the initialization stage is thus definitive for the 

subsequent iterations, since the linearized solution is bounded on one side of the asymptote. Consequently the 

selected inclination (either Id=I1 or Id=I2) is kept unchanged throughout the iterations.  
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These initial assumptions about the drift altitudes and inclinations are re-examined at the end of the iterations, in 

order to check their validity with respect to the optimal path found (see §4.6.3). 

 

4.6  Iteration process 

4.6.1  Solution update 

We denote with a superscript 
(k)

 the drift orbit parameters at the k
th

 iteration. The problem is linearized around the 

local solution (k)

ij

(k)

ij

(k)

ij
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i I,e,a,t  using the difference variables 
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ij

(k)

i α,τ . 

The eccentricity and inclinations are determined once and for all at the initialization step as explained in §3.8 : 
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The iterative process is depicted on Figure 15. 

 

Figure 15 : Iteration process 
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4.6.2  Convergence 

Two successive phases are observed throughout the iterations : 

• The first phase starts from the pre-optimized solution with large linearization intervals. During that phase 

the drift orbit parameters may vary widely at each iteration and the optimal path may change. As long as 

the path changes, it is better to keep the linearization intervals large, or even not to change the initial ones. 

• Once the optimal path stabilizes, the second phase aims at converging accurately on the mission duration 

constraint. Indeed the linearization leads to an over-constrained solution, since it overestimates the true 

duration. The convergence is obtained by reducing progressively (for example by halving) the linearization 

intervals. Although this was not observed on practical cases, the path may again change during that phase : 

in that case it is better to restore larger linearization intervals until stabilization on a new path. 

 

Remark 7 

The set of selected debris issued from the pre-optimized solution is already optimal in most cases, because these 

debris are the “closest” in terms of RAAN differences. Starting from a less refined initialization requires a higher 

number of iterations with changes of selected debris, but it does not prevent the process convergence. 

 

Remark 8 

Even if the solution stabilization has been observed on practical cases, there is no guarantee that the global 

optimum has been found. The global optimality of the solution can be ensured in the case of convex cost and 

constraint functions. For that purpose it would be of interest to study the convexity properties of the transfer cost 

and transfer duration wrt the drift orbit semi major axis and the transfer starting date. If this convexity could be 

established in the intervals of variation, the MINLP solution procedure could be extended for example by outer 

convexification
14

 in order to ensure the convergence toward the global optimum. 

 

4.6.3  Solution check 

Once the convergence is completed, one must check the solution optimality with respect to the choices made at the 

initialization stage regarding the side (lower or higher) and the inclination of the transfer orbits. The initial choices 

were based on a pre-optimization of each transfer with a fixed duration upper bound T0. For different values of T0, 

the optimal sense for the RAAN correction may be inverted, and these choices should be changed. If the linearized 

solution exhibits drift altitudes on their bounds and near the asymptote (Figure 13), it indicates that the iterations 

should be resumed with updated assumptions. In practical cases, the debris selected on the initial path are close in 

terms of RAAN values, so that the initial sense of RAAN correction is generally unchanged at the end of the 

iterations. The preliminary assumptions on the drift altitudes and inclinations are thus optimal at the first attempt. 
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4.7  Post-optimization 

The iterations yield the optimal path (debris selection and order) and the associated cost, considering the specific 

transfer strategy defined in §3.6 with simplifying assumptions : impulsive manoeuvres, circular drift orbits, pre-

optimized drift inclinations, rendezvous at null cost and duration. The post-optimization stage consists in removing 

these assumptions in order to refine the trajectories with more realistic models, without changing the path. This is a 

classical optimal control problem without integer variables. 

 

4.8  Algorithms and software 

The solution process requires three optimization algorithms respectively for the problem initialization and post-

optimization, the linearized problem solution and the Branch and Bound search. 

 

4.8.1  Problem initialization 

For every pair of debris, the transfer pre-optimization problem defined by Eq 18 is a small size (3 variables, 1 

constraint) nonlinear problem. A generalized reduced gradient method is used. In order to ensure the solution 

robustness, several optimizations are repeated for the same problem starting from different initialization values. The 

best result is retained as the initial reference solution for the linearization. 

 

4.8.2  Branch and Bound 

For a problem with binary variables, the set of all possible combinations is represented as a binary tree
11

. A node of 

the tree is an instance of the optimization problem where part of the binary variables has been fixed either to 0 or to 

1. The root node corresponds to the fully relaxed problem, i.e. with the binary variables considered as real ones. 

Each node is separated into two children by fixing a selected binary variable at 0 or 1. The relaxed instances are of 

decreasing dimension when going downwards in the tree since more and more binary variables become fixed. 

Since the whole tree can potentially be explored, the search strategy must be implemented using as little computer 

memory as possible
25

. For that purpose only the active nodes (i.e. the nodes still not fully separated into their two 

children) are stored in a stack. Each node is dynamically allocated as a derived data type, containing the relaxed 

problem data and a pointer linking the node either to its parent (depth search) or to the next best one in the stack 

(breadth search). The linked list of active node starts with only one node (root node), is updated by eliminations 

and/or separations as the search goes on, until it becomes empty when the tree exploration is completed. 

 

The binary tree is explored downwards from the root node
8,11

. Separating a node consists in solving the associated 

relaxed problem, with a part of the binary variables fixed to 0 or 1, while the others are treated as real variables. 

After the relaxed problem is solved, the following situations may occur : 

• The relaxed problem yields a feasible solution with respect to the integrity constraints. This solution is 

compared to the best feasible solution already available from the previously separated nodes. If better, this 
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new best solution is stored replacing the previous one. There can be no better solution in the branches 

outgoing from that node. The node is pruned and all its outgoing sub-branches are cut off. 

• The relaxed problem is unfeasible because the fixed binary variables are not compliant with the constraints, 

or the relaxed solution is worse than the reference best solution stored. There can be no better solution in 

the branches outgoing from that node. The node is pruned and all its outgoing sub-branches are cut off. 

• The relaxed problem yields a solution that is neither feasible with respect to the integrity constraints nor 

worse than the reference best solution. The node is then separated into two children. Each child is a copy of 

the parent node with one selected variable (the separation variable) being fixed respectively to 0 and 1. 

Having a good reference solution as soon as possible is desirable in order to speed up the solution by branches cut 

offs. For that purpose a greedy solution is built at the pre-optimization stage by selecting the best arrangement 

meeting the mission constraint. This solution is stored as the initial reference solution. 

 

The efficiency of the Branch and Bound method depends on the tree exploration strategy (“Branch”) and the node 

evaluation function (“Bound”) : 

• The exploration strategy specifies the way to choose the next node to separate and the separation variable. 

The depth search strategy consists in separating always the most downward node with the hope to reach 

quickly a bottom node of the tree and issue a first reference solution. The breadth search strategy consists 

in separating the active node with the best evaluation hoping that the best feasible solution lies in a sub-

branch of that node (Figure 16). Several possible choices of the separation variable are among others : by 

initial order (the most simple), or by constraints (the variable appearing in the maximum number of 

constraints), or by cost penalty (the variable producing the largest variation in the cost function when 

changed from 0 to 1). 

• The separation rules (nodes and variables) must be tried case by case in order to assess their practical 

efficiency on a given problem. The number of nodes examined before issuing the problem solution may 

vary by large factors depending on these choices and on the problem features. 
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Figure 16 : Depth and Breath search strategies 

 

The node evaluation (or pricing) aims at assessing the best solution that could be found among all the node children. 

There is a compromise to make between the time to evaluate the node, the evaluation accuracy and the robustness. 

The goal is to assess as precisely as possible the best solution contained in the node, without consuming an 

excessive computation time. Solving the node relaxed problem by linear programming is the most robust approach, 

and it favours the linearization approach chosen for the SDC problem. 

For the SDC mission study, several exploration strategies have been tried in order to select the most efficient one. 

On the practical run cases the breadth search strategy coupled with the separation on the most constrained variable 

has given the best performance in terms of number of nodes assessed. The depth and breadth strategies 

performances are compared for the application case presented in Chapter 5. 

 

4.8.3  Linear programming 

Three algorithms are used within the Branch and Bound process to solve the successive relaxed linear problems : 

• A primal simplex to solve the root problem at the top of the tree, when starting from scratch. 

• A dual simplex to solve the successive nodes. The parent node solution is used to restore a feasible dual 

basis, taking into account the fixing of the binary variable chosen to separate the node
20

. This warm-start 

procedure avoids the risk of failure when searching an initial feasible basis for the current node. It results in 

robustness and computation time gains in the tree exploration. 
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• An interior point method as backup algorithm. When the simplex fails (about 1% of the cases), either 

because of numerical rounding errors or degeneracy, the interior point solver is called to restart the node 

solution. Similarly to the dual simplex, the parent node solution is retrieved as initialization. The interior 

point solver is generally more robust, but slower and less accurate than the simplex on medium size 

problems.  

Several reduction techniques
21

 are applied to decrease the size of the linear problem before trying to solve it: 

• Some binary variables can be fixed by constraints elimination. 

• The dual variables at the parent node solution provide a lower bound on the current node cost. This allows 

either directly pruning the current node or fixing some binary variables depending on their multipliers. 

 

4.8.4  Software 

The generalized reduced gradient software used for the pre- and post-optimization stages has been developed at 

Astrium Space Transportation years ago and is largely used for mission analysis studies. 

The Branch and Bound software with the linear programming solvers have been developed from scratch for the 

present application, in Fortran 90. Efficient free or commercial softwares like X-Press, OSL or CPLEX
13,14,26

 are 

available that solve mixed integer linear programming problems. In particular for convex MINLP problems several 

software packages ensure the convergence toward the global optimum. The drawback is that they generally work as 

black-boxes, making it difficult to diagnose correctly the problems that occur (erroneous formulation, inefficient 

exploration strategy, insufficient node evaluation robustness, numerical accuracy issues,…). Also the convexity of 

the cost and constraint functions as formulated in (10) has not been studied so that no there is not guarantee that 

these softwares would behave correctly. 

Mastering the entire source code allows one to first check that the problem is correctly formulated and solved, then 

to upgrade the solution strategy in order to solve as efficiently as possible the specific application considered. Also 

the iteration and linearization process has been automated, so that practical cases are solved with very limited 

manual interventions. 

 

4.9  Assumptions and simplifications recap 

The method presented in the previous sections yields a valid solution (from the optimality point of view) under the 

following assumptions :  

• The mission starts from the first debris selected on the optimal path. The cost and duration required to 

reach that debris are null, assuming that a launcher has performed the required manoeuvres. It is possible to 

release this assumption, by adding a fictitious starting debris located on the launcher injection orbit.  

• The vehicle uses a high thrust engine, so that the manoeuvre durations are negligible with respect to the 

coast arc durations. An impulsive modeling is then representative and the problem becomes of finite 

dimension. 

• The duration constraint is weak, and a drift strategy allows performing the RAAN corrections at null cost. 
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• The durations of the debris operations (capture, deorbitation, release) are fixed and identical for all debris. 

• The drift orbits are circular, with their inclinations fixed at the pre-optimization phase. The correctness of 

the inclination choice is checked a posteriori on the solution. Allowing non null eccentricities could 

improve the global optimum, at the expense of increasing the problem dimension. 

 

The contributions of the mission phases to the global cost and duration are summarized on Table 3. 

 

 Cost Duration 

Transfer manoeuvres Counted Neglected 

Drift phases Null Counted 

Debris operations Counted Neglected 

Table 3 : Cost and duration contributors 

 

4.10  Current status and further work 

The solution method has been automated. The initialization, problem linearization and Branch and Bound solution 

are processed sequentially and iterated until convergence. The user needs only to check the validity of each iteration 

result before running the next one, and if necessary restrict the linearization intervals. Medium size problems like 

the one presented in Chapter 5 can be solved in a short time, allowing sensitivity assessments to the mission data. 

The solution method described in this document applies only to a high thrust vehicle, when the powered manoeuvres 

can be modeled as velocity impulses. In this scope the enhancements envisioned are the following : 

• Allowing non circular drift orbits may reduce the mission cost.  This additional degree of freedom leads to 

an increase of the problem dimension and it will slow down the Branch and Bound solution. Presently the 

targeted debris are on LEO and SSO. Before modifying the transfer strategy for such debris, it must be 

checked on a continuous problem (fixed path) if significant performance gains can be expected from 

elliptic drift orbits. On the other hand, if a SDC mission is envisioned for debris on elliptic orbits, like 

launcher upper stages left on Geostationary Transfer Orbits (GTO), this enhancement becomes necessary. 

• Considering non impulsive manoeuvres is possible at the initialization stage. The linearized cost and 

duration function resulting from the transfer pre-optimization will then be more representative of the 

vehicle thrust capabilities. The same solution method can be retrieved as long as the transfer durations 

remain small with respect to the drift durations. If not, a new formulation must be devised taking into 

account the coupling between the transfer and the drift phases since a part of the RAAN correction is 

achieved during the transfer. 

• In the case of a deorbitation manoeuvre performed by the vehicle after the debris capture, the vehicle has to 

return on a stable orbit before starting the next transfer. This orbit should be optimized within the global 

mission optimization process. 
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For a low thrust vehicle, the durations of the transfer and drift phases become of the same order of magnitude. 

They can no longer be considered as uncoupled, since a part of the RAAN correction is realized during the 

transfer. Also the rendezvous constraint is no longer negligible in terms of duration and cost. A different transfer 

strategy and solution method has to be devised for this category of vehicles. 
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5  Application example 

The solution method is illustrated with an application case consisting in selecting n=5 debris to deorbit among a list 

of N=11. The deorbitation is assumed to be performed by the debris themselves with a device supplied by the 

vehicle. The problem initial dimension is 154 binary variables, 341 real variables and 1070 constraints. 

 

5.1  Debris orbits 

The debris are on Sun-Synchronous Orbits with regularly spaced inclinations ranging from 98 to 99 deg, and initial 

RAAN ranging from 160.2 to 235.0 deg at the mission beginning. These orbits are representative of end of life 

operational satellites dedicated to Earth observation missions. For each orbit the semi-major depends on the 

inclination (Equation 5 with deg/day 0.986 Ω=& ). The debris orbits are given in Table 4. 

 

 Semi-major axis (km) Eccentricity (-) Inclination (deg) Initial RAAN (deg) 

Debris 1 7030.5 0.0001 98.0 221.1 

Debris 2 7055.3 0.0001 98.1 188.3 

Debris 3 7080.0 0.0001 98.2 164.4 

Debris 4 7104.4 0.0003 98.3 235.0 

Debris 5 7128.5 0.0000 98.4 174.7 

Debris 6 7152.5 0.0001 98.5 194.1 

Debris 7 7176.3 0.0001 98.6 149.0 

Debris 8 7200.0 0.0001 98.7 180.3 

Debris 9 7223.2 0.0002 98.8 200.6 

Debris 10 7246.4 0.0001 98.9 191.0 

Debris 11 7269.3 0.0003 99.0 160.2 

Table 4 : List of 11 candidate debris 

 

Remark 9 

The solution methodology has been applied in the same way for debris orbits that do not have the sun-synchronism 

property. The above example is motivated by the fact that most observation satellites are on SSOs, so that a future 

SDC vehicle should be first designed for such debris. 

 

Remark 10 

Taking into account the deorbiting manoeuvre (if the vehicle has to deorbit the debris) would not change the optimal 

path. Indeed the debris being on very close circular orbits, the deorbitation costs are quasi identical for all of them, 

and they do not influence the debris choice. 
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The drift orbit altitudes are bounded in the range 400 km – 1200 km. The duration for the debris operations is 

assumed to be null : Tdeorb=0. 

 

5.2  Initialization 

Every transfer from any debris to any other is pre-optimized for a fixed duration of 2 months. Once all the 

optimizations are completed, the unfeasible transfers are discarded from the problem by setting their selection 

variables sij to 0. The remaining feasible transfers are linearized around their solution in order to initialize the 

iteration process for the Branch and Bound. This pre-processing allows a reduction of the problem dimension from 

500 to 200 variables and from 1000 to 500 constraints. 

At this initialization stage, with fixed transfer durations set to 2 months, the optimal path would be 

(5→8→2→10→6) , for a total ∆V of 711 m/s and a total duration of 8 months (2 months per transfer). The 

intermediate orbits on this initial path are presented in Table 5. This 2 months allocation per transfer does not 

saturate the global duration constraint of one year, and it thus gives some freedom to the subsequent iterations in 

order to converge toward the optimal solution. Fixing this initial allocation too high (e.g. slightly less than 3 months) 

with the hope to reduce the number of iterations would in fact freeze the initial path. 

It can be observed at this initialization stage that the mission cost is driven by the RAAN differences rather than the 

inclinations or the altitudes. The best strategy consists in selecting the debris with the minimum RAAN differences 

in order to have drift orbits as close as possible to the debris orbits. The drift orbits are lower than the debris orbits, 

with higher precession rates, so that the vehicle catches the debris forwards. The debris are therefore ordered by 

increasing RAAN values. This can be considered as a “rule of thumb” in order to guess a quite good solution. 

 

Initial path Semi-major axis (km) Inclination (deg) Cost ∆V (m/s) Duration ∆T (days) 

Debris 5 7128.5 98.4 0 0 

Drift 5 → 8 7019.6 98.7 173.3 61 

Debris 8 7200.0 98.7 0 0 

Drift 8 → 2 6947.9 98.7 246.9 61 

Debris 2 7055.3 98.1 0 0 

Drift 2 → 10 7140.9 98.9 176.5 61 

Debris 10 7246.4 98.9 0 0 

Drift 10 → 6 7125.5 98.9 114.1 61 

Debris 6 7152.5 98.5 0 0 

Total   710.8 244 

Table 5 : Initial path 
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5.3  Iterations 

The initial linearized problem is solved by a Branch and Bound method starting from the pre-optimized path as 

feasible initialization. The depth and breadth search strategies are tried at this first iteration in order to determine the 

most efficient one for the further iterations. The numbers of nodes assessed are respectively 135 for the depth search 

and 99 for the breadth search. The difference is explained by the fact that an already good reference solution is 

provided by the initial path. The depth search whose goal is to find a feasible solution as soon as possible, while 

neglecting node elimination (opposite to the breadth search) is therefore less efficient. The solutions issued from the 

successive iterations are presented in Table 6. 

 

Iteration Number of nodes Path Cost ∆V (m/s) Duration ∆T (days) 

Initial  5 → 8 → 2 → 10 → 6 710.8 244.0 

1 99 5 → 8 → 2 → 10 → 6 652.3 269.3 

2 53 5 → 8 → 2 → 10 → 6 594.8 299.1 

3 41 5 → 8 → 2 → 10 → 6 540.7 335.7 

4 33 5 → 8 → 2 → 6 → 10 508.0 363.3 

5 14 5 → 8 → 2 → 6 → 10 502.8 364.1 

6 13 5 → 8 → 2 → 6 → 10 500.7 366.0 

Table 6 : Iterations 

 

The set of selected debris issued by the pre-optimization is unchanged, but the optimal path changes at the 4
th
  

iteration with a permutation of the last two debris, and becomes (5→8→2→6→10). This behavior is observed in 

most practical cases (cf. §4.6.2 Remark 7). In cases with debris very near to each other, there may be changes in the 

selected debris set from one iteration to the other, and the optimized set may be different from the initial one. In 

such cases, the cost improvement due to the debris change is generally very small. 

A total ∆V of 501 m/s is required for a total mission duration of 12 months (maximal duration allowed). 

The iterations require less and less node evaluations, while the solution approaches the optimum, because the initial 

reference solution is better and allows more efficient cut offs. The saturation of the duration constraint is expected 

since taking as long time as possible for the RAAN correction allow the drift orbits to be closer to the debris orbits, 

and thus minimizes the transfer costs. 

 

5.4  Optimal solution 

The optimized solution yields a total ∆V of 501 m/s. The solution that would be obtained at the initialization stage 

with a 3 months allocation per transfer yields a total ∆V of 517 m/s. This solution corresponds to the rule of thumb : 

“Order the debris by RAAN initial values and select the closest ones”. Although the optimal path may be different, 
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this rule yields a good debris selection so that the problem reduces to optimizing the drift durations. A correct order 

of magnitude for the required ∆V can thus be assessed from a purely continuous NLP problem. 

 

The intermediate orbits on the optimal path are presented in Table 7. It is observed that the optimal debris order is 

no longer by increasing RAAN values. It proves more favorable to change the sense of the RAAN correction for the 

last transfer, in order to reduce the inclination change manoeuvres. 

If the vehicle has to deorbit the debris, the deorbitation manoeuvre must lower the perigee inside the atmosphere in 

order to ensure a natural fall out and the vehicle must afterwards restore a stable orbit. The order of magnitude of 

this manoeuvre is 200 m/s per debris, so that the total mission cost increase amounts to 1000 m/s. This value is 

conservative since it assumes that the vehicle returns on the initial orbit after the deorbitation manoeuvre is achieved 

and before starting the next transfer. An improvement of this strategy would consist in returning on an optimized 

orbit (instead of the initial orbit) before the next transfer. The parameters of this orbit should then be added to the 

global problem formulation. 

 

Optimal path Semi-major axis (km) Inclination (deg) RAAN change (deg) Cost ∆V (m/s) Duration ∆T (days) 

Debris 5 7128.5 98.4  0 0 

Drift 5 → 8 7090.6 98.7 +3.6 107.9 103.0 

Debris 8 7200.0 98.7  0 0 

Drift 8 → 2 7042.6 98.7 +8.0 165.2 100.8 

Debris 2 7055.3 98.1  0 0 

Drift 2 → 6 7028.2 98.5 +5.8 126.4 92.8 

Debris 6 7152.5 98.5  0 0 

Drift 6 → 10 7247.7 98.5 -3.1 101.2 69 .4 

Debris 10 7246.4 98.9  0 0 

Total    500.7 366 

Table 7: Optimal path 

 

The vehicle trajectory (transfer and drift orbits), the RAAN evolution (difference between the vehicle RAAN and 

the debris RAAN), and the mission cost (before and after optimization) are plotted on Figure 17, 18 and 19. 
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Figure 17 : Optimal path orbits 
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Figure 18 : RAAN correction 

 

 

Figure 19 : Mission cost before and after optimization 

 

 
We observe from Table 7 that roughly 20m/s – 30m/s per degree of RAAN change are required for each transfer. 

These costs are much lower than those required by a direct change strategy (§3.2) that would amount to 130m/s per 
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degree of RAAN change (§3.2). On this application example dealing with SSO debris, the overall mission cost is 

decreased by a factor 5 between the direct strategy and the drift strategy. 

 
5.5  Computation time 

All computations have been performed on Sun Solaris OS 5.10 workstation. The initialization stage consists in pre-

optimizing the 11×10 = 110 transfers from any debris to any other. These 110 optimizations are achieved in about 2 

minutes. Each iteration to solve the mixed integer linear optimization problem by the Branch and Bound method 

requires then about 15 minutes. The linearized solution is used to move the reference solution and re-linearize the 

problem around the new reference. The user’s main tasks consist in checking that the new reference solution reduces 

the cost, and updating the linearization bounds depending on the iteration result (§4.6). In the case of an 

unsuccessful iteration (i.e. the new reference solution does not reduce the cost), the previous iteration must be 

restarted with lower bounds until getting an effective improvement.  With these computation times, and including 

the checks of the intermediate linearized solutions, it is possible to solve medium size problems from scratch within 

typically two days. 
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6  Conclusion 

This document proposes a method to optimize simultaneously the debris selection and the trajectories in view of a 

Space Debris Collecting mission. A specific transfer strategy with impulsive manoeuvres is defined so that the 

problem becomes of finite dimension. This MINLP problem is then linearized around an initial reference solution in 

order to apply a Branch and Bound algorithm. The process is iterated until the solution stabilizes on the optimal 

path. Although this stabilization has been observed in practice, there is no proof that the solution found correspond 

systematically to the global optimum. A way to investigate the global optimality would be to study the convexity of 

the cost and constraint functions. In that case the convergence toward the global optimum could be ensured by 

adding outer convexification constraints to the successive MILP problems, as is done in existing MINLP software 

packages.  

The method is theoretically applicable whatever the numbers of debris (total number and number to deorbit) and 

whatever the mission duration. The practical limitation comes from the problem size and the associated computation 

time that grow exponentially with the number of candidate debris. The initialization procedure includes a filtering of 

the unfeasible or too expensive solutions, allowing thus a subsequent size reduction and a time-efficient numerical 

solution. Medium size problems (with typically 10 to 20 debris) can thus be tackled efficiently with this method. For 

larger size problems, it is necessary to turn to stochastic programming methods in order to get approximate solutions 

within reasonable computation times. 

An application case consisting in selecting 5 SSO debris among a list of 11 candidates is presented. The method 

proves reliable and an optimal path is issued in a few iterations. The optimal solution is slightly better than the one 

guessed by applying the rule of thumb : “Order the debris by RAAN initial values and select the closest ones”. This 

intuitive rule reduces the problem to optimizing the drift durations. The order of magnitude of the required ∆V can 

thus by quickly assessed. 

The optimal path can then be used as a basis for a more detailed mission analysis, taking into account the vehicle 

features (thrust level) and the operational constraints (rendezvous and deorbitation operations). Sensitivities to the 

mission main constraints (duration, altitude bounds) can also be easily issued in order to support design trade-offs 

for a future SDC vehicle. 

The main enhancements envisioned are to allow non-circular drift orbits and to account for non-impulsive 

manoeuvres in the cost and duration assessment. The two interests of allowing elliptical drift orbits are : to reduce 

the SDC mission cost for LEO and SSO debris, and to apply the method to GTO debris which are on highly 

elliptical orbits. Considering continuous instead of impulsive thrust is more representative of the vehicle capabilities 

when assessing the mission cost. This is possible without changing the solution method as long as the transfer 

durations remain small with respect to the drift durations. For very low-thrust engines, the transfer and the drift 

phases become highly coupled, since a part of the RAAN correction is realized during the transfer. Also the 

rendezvous constraint is no longer negligible in terms of duration and cost and it must be explicitly taken into 

account. A specific transfer strategy has to be devised for this category of vehicles. 
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