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Preface

This memoir was written in partial fulfillment of the requirements of the “Habilitation
a Diriger des Recherches” degree, as defined by the French law. It is therefore intended
as a summary of my research activity and vision developed during the last 4 years, since
I have started working on reverberation chambers.

Because of the specific nature of this document, it should not be regarded as a sort of
monograph about large cavities: in no possible way it could be considered as complete
enough for such a purpose; discussions are often on an informal level and mostly the
main results from my work are presented. It should be regarded as more of an overview
of my work than a self-contained presentation on the physics of large cavities.

This memoir is organized into four chapters. The first chapter introduces the main
ideas and concepts that allow modelling large cavities in a harmonic steady-state, where
the field distribution can often be modelled as a random process: the two main theoret-
ical approaches currently employed are then introduced, with the aim of showing why
most of the current activities surrounding reverberation chambers in the electromag-
netic compatibility (EMC) community is wanting; original contributions are then pre-
sented, showing how getting back to simple first-principle approaches can shed some
light on misunderstandings mainly affecting the EMC community.

The second chapter is a direct continuation of the first one, focused on the use of
simple statistical models in order to understand why real-life cavities naturally behave
in a manner that can be very different from the ideal case of a diffusive medium.

The third chapter introduces the idea of merging the statistical properties of large
cavities with those of time-reversed waves, in order to make a coherent propagation out
of a random medium. The theoretical and practical feasibility of emulating propagation
environments from free-space propagation to multipath ones is discussed, together with
ideas of future developments and applications based on these concepts.

The fourth and final chapter discusses how these contributions point to a coherent
approach that let foresee a number of future contributions directly motivated and sup-
ported by my current research activities. The appendices present a short curriculum
vite, together with selected papers and a complete list of my publications.






Acknowledgements

The ideas and work discussed in this dissertation have benefited from the implication
of undergraduate and graduate students during the last 4 years. I wish to thank those
who have been involved in the process of developing and testing these ideas; their
questions have often served the important role of requiring an assessment of my own
understanding.

I am deeply indebted towards Prof. Jean-Charles Bolomey, former Director of the
Département Electromagnétisme in Supélec, for having given me the opportunity to
work on several transversal projects during my post-doctorate years; Dr. Marc Lesturgie,
also a former Director of our department, for having been the unexpected source of my
even more unexpected interest in reverberation chambers; Dr. Dominique Lecointe, our
current Director, for his support and the total freedom of research of which my work
has strongly benefited.

I also wish to thank my colleagues, particularly Dr. Marc Lambert, Senior Researcher
at CNRS, for our discussions and Dr. Florian Monsef, Lecturer at Paris Sud University
and close collaborator. Florian has often contributed to the settling of my ideas and has
lent his ears to my most unlikely ideas for future research topics. If they will be proved
right one day, his role shall not be regarded as a passive one. I am sure our research
partnership will provide new and exciting results in the next few years.

I cannot forget to acknowledge the contribution of distant colleagues, particularly
Prof. Paolo Corona, Full Professor at Universita Parthenopea, Italy, Dr. Niklas Wellander,
Senior Researcher at FOI, Sweden, Dr. Koh Wee jin, Laboratory Head at DSO, Singapore
and Dr. Philippe Besnier, Senior Researcher at CNRS. All of them have in some way at a
certain time led me to question my understanding. A special thank goes to Dr. Gabriele
Gradoni, Junior Researcher at the Maryland University, USA, who has acted (and still
does so) as a rare bridge between the ideas of wave-chaos theory and the electrical
engineering education we share.

The importance of the excellent forum provided by the several discussion groups of
the GDR Ondes, a researchers’ network in France, has also played a fundamental role
in my getting in touch with ideas and concepts from fields whose existence I was not
even aware of until a few years ago. The time and efforts spent by the organizers of
workshops, seminaries and summer schools should be applauded.






Chapter 1

Large cavities in a harmonic steady state

The method of science depends on our attempts to de-
scribe the world with simple theories: theories that are
complex may become untestable, even if they happen to
be true. Science may be described as the art of systematic
over-simplification — the art of discerning what we may
with advantage omit.

Karl Raimund Popper

AvITIES could appear as a peculiar choice for research. They basically consist
of a contiguous (eventually multiply-connected) region of space surrounded
by impenetrable and weakly absorbing boundary conditions. Propagation of
waves through this type media is seldom treated in graduate courses, giving a

large preference for free-space propagation while introducing diffraction from medium
discontinuities often as local-perturbation phenomena.

In fact, free-space-like propagation based on the idea of line-of-sight propagation is
hardly found in practice. The feeling that line-of-sight propagation should be taken as
the obvious reference in radio-wave propagation is probably due to the fact that radio-
links are often designed (or at least presented) in such a way as to provide a point-to-
point link from a transmitter A to a receiver B. More complex propagation scenarios are
found in radio-wave applications, e.g., in indoor and urban environments, but are often
presented as special cases at the end of an electrical-engineer degree cursus.

At the antipodes of line-of-sight propagation lies wave diffusion. Wave diffusion can
be stated as a peculiar configuration where an observer experiences a large number of



waves directed at him, covering with the same

frequency of occurrence all directions of ar-

% rival. As a result, no preferential direction of

arrival can be identified, nor their common ori-

/ gin. This kind of phenomenon basically occurs

/ /7’ in two configurations: 1) wave scattering over a

7 x rough surface and 2) multiple-scattering events.

T In the framework of this dissertation, we will

xi: E,(7.,0) not discuss about the first case, since it is of

limited interest for microwave cavities, though

some attempts at introducing rough surfaces

within such cavities has been made in the past

within the electromagnetic compatibility (EMC)

community [R63, R62], as inspired by previous
work in acoustics [R76, R44, R14].

When thinking about our daily experience
it is self-evident that most wave-propagation
events occur more often within at least partially
bounded structures than in a free-space-like scenario. For microwaves, most radio-
links typically involve waves interacting with the interior or exterior of buildings or
geological structures, and in a similar manner acoustic waves and visible light. Wave
diffusion should therefore be regarded as a common phenomenon occurring in a num-
ber of practical situations. For instance, scattering of light from most of natural surfaces
has strongly diffusive characteristics, as well known to scientists working in computer
graphics, where the efforts to render realistic scenes passes through the use of physical
models representing wave diffusion by rough surfaces.

Figure 1.1 — Non-specular scatter-
ing from a generic surface.

Wave diffusion should not be expected exclusively for wave propagating through
open media prone to wave scattering, such as the case of Rayleigh scattering of Solar
visible radiation through the atmosphere [R88], but is similarly found in practice when
waves are excited within a bounded medium with sufficiently reflective boundaries, i.e.,
a cavity with boundaries such that an incident local plane wave E;(#, w) propagating
along the direction #; is scattered along a set of directions 7, into a field E, (7, w) with
negligible loss of power, i.e.,

f IE(Fs, )2 dFs = || E; (75, )%, (1.1)

where the integral is computed over all directions pointing away from the region of
impact of the impinging wave and towards the inside of the cavity; this situation is
depicted in Fig. 1.1. The present dissertation will be limited to this special case of
diffusive media. Weak dissipation is not the only assumption that will be taken for
granted; cavities will also be assumed to be much larger than the wavelength imposed

Large cavities in a harmonic steady state



1.1 - Large cavities as test facilities 3

by the medium inside the cavity, i.e., electrically large cavities. The rationale for this
condition will be discussed in §§ 1.3.1 and 2.2.

Under these conditions, the field generated and propagating within a cavity can
often be approximated as a diffuse field, as introduced earlier in this section. Here is
to be found one of the two major themes of this dissertation: as every approximation,
even the most effective holds only within given bounds imposed by the context of its
application. Wave-diffusion models can be used for large weakly dissipative cavities,
but their accuracy depends on what we need to compute in our investigations.

Some reflections pertaining to this question are presented in § 2, showing how
diffuse-field models can be misleading when forgetting under what conditions this ap-
proximation is valid. To this end, we present a simplified discussion in this chapter
showing how wave-diffusion models can be expected to work, and what other models
can be applied in order to understand their limitations.

1.1 Large cavities as test facilities

A large variety of practical configurations can be approximated by large cavities: urban
setting, rooms, the interior of airplanes and any system equipped with a metallic shield,
lasers, quantum wells, cavity interferometers, etc. Although the scale and dimensional-
ity change, the phenomena are fundamentally the same, with the appearance of natural
resonances as soon as the boundary conditions of the cavity are highly reflective.

While the physical phenomena are shared by all of the previous examples, the ability
of cavities to generate resonances can be regarded as a nuisance or an advantage. For
example, wireless communications within indoor media typically require some clever
signal processing and coding, due to their strongly frequency-selective response, which
would otherwise make wide-band communications through indoor media an unlikely
idea. On the contrary, resonances have been exploited within the framework of two
generic groups of applications: 1) to design very selective filters; 2) to design diffusive
media. The first one can be accessed when at least one of the cavity’s dimensions is
comparable to the working wavelength; in this case, the resonances are typically not
overlapping and cavity filters (e.g., in microwaves but also surface acoustic-wave filters)
can provide very narrow pass-band/stop-band responses. As soon as the frequency
increases, a larger number of resonances are allowed, leading to increasingly more
likely overlapping of their frequency responses. An example of these two trends is
given in Fig. 1.2.

If the interest of the single-resonance regime is obvious, it could be less clear why
a complex frequency selective system should be of any use. In order to have an in-
tuitive understanding, we should rather switch to a wave-propagation point of view.
Fig. 1.3(a) shows, in a very simplified way, how a single source within a large cavity
(i.e., with respect to the working wavelength) generates a large number of waves prop-
agating along very diverse trajectories. Intuitively, if the structure of the cavity were

Large cavities in a harmonic steady state
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Figure 1.2 — An example of frequency response measured in Supélec’s reverber-
ation chamber, over its low to intermediate region before the establishment of a
diffuse-field condition.

complex enough, it could be expected that each point of the cavity would be crossed by
waves propagating along every direction. This idea becomes even more natural if we
think about what makes a room having a good “acoustics”: it is typically the fact of en-
suring an experience, as a listener, that is practically independent from our position and
orientation, as well as a frequency response that is flat (no distortion); distinguishable
echoes should not exist. In fact, this is exactly what happens within a reverberating cav-
ity, where echoes are so close to each other to be indistinguishable, while the multipath
propagation of waves practically annihilates any difference related to frequency, direc-
tion and orientation. The result is a diffuse field, identical on average everywhere. It is
therefore not surprising that the field of acoustics, and in particular room acoustics, has
been the first to thoroughly investigate the physics of large cavities [R69, R73, R44].
Large cavities are not only important to ensure a good experience to concert-goers;
the same ideas and requirements are at the base of their use as test facilities. Reverber-
ating cavities capable of supporting a diffuse-field regime, are fundamental tools in a
large number of fields, from microwaves to acoustics passing through optics. Their main
use is given by a simple observation: if a source radiates a scalar field F(k) along the
directions k, then the signal V, received by an isotropic transducer would be (Fig. 1.3)

N
Vo= > a,F(ky), (1.2)
n=1

where N is the total number of echoes or propagation paths between the source and the
transducer. Each contribution arriving along different directions k, will be weighted by

Large cavities in a harmonic steady state
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source

Q region Q EUT

N
Z

(@) (b)

N

Figure 1.3 — Wave diffusion in a cavity, exploited to : (a) collect data about the
radiation of a source along all possible directions; (b) simultaneously excite an
EUT along a large number of directions.

a random coefficient a,, as in the case of a listener in a concert hall. By taking the
squared modulus of V, and repeating this operation a number of times in different
configurations (moving the source, the transducer, etc.), yields

N

(IVol?) = > (lay ) IF (i) 2 (1.3)

n=1

where (-) is the result of averaging over all the different test configurations. If the cavity

generates a diffuse field, then <|a|2> = afms and

N
(IVol?) = a2 > |F(ie,) o f |F (i) |*dk, (1.4)
n=1 4n

since the number N of random directions {k,} would be ideally infinite, implying that
(1.4) is nothing else than an excellent Monte Carlo approximation of the total radiated
power integral. The averaging therefore appears to allow passing from an integral over
angles to one over random realizations, a property related to the ergodicity of the field
in diffusive cavities. Realizations involving different sets of {a,} can be generated with
a number of techniques, but they are all intended to lead to an ensemble of cavities. The
integrating property of large cavities is exploited in the characterization of sources of
propagating waves, in a very general way. In the case of optics, integrating spheres are
also equipped with diffusive boundaries which allow a further averaging mechanism.
For longer wavelengths, e.g., in acoustics and microwaves, scatterers are routinely in-
serted within the cavity for the same reason.

Reciprocity implies Fig 1.3(b): now the transducer is the source of radiation, and
an equipment under test (EUT) is submitted to a large number of waves with random

Large cavities in a harmonic steady state



6 1.1 - Large cavities as test facilities

amplitude, direction of arrival and (eventually) polarizations. The average power im-
pinging over the EUT is known: it is therefore possible, from simple computations based
on power conservation, to assess the power absorbed by the EUT. This further applica-
tion is important in acoustics (e.g., assessing the performance of absorbers for phonic
insulation, but also the amount of power lost in comfortable seats), as well as in the
characterization of any material.

In all of these examples, reverberation chambers allow reducing the overall duration
of tests, since if the same operations were carried out within anechoic environments,
it would be necessary to scan an EUT along all possible directions, in order to collect
enough data: in this case, a source could only generate line-of-sight excitations.

These ideas are given a twist in the case of EMC [R33, R45, R42], where the EUT is
now an electronic system, in which impinging waves can disrupt its nominal behaviour.
A well-known example of this problem is the requirement to turn off radiating devices
on airplanes. Another important specificity of EMC tests is that in order to ensure a good
safety margin, reverberation chambers are not only used to reduce the test duration,
but also as an effective way of generating very strong fields from relatively low-power
sources. Resonances take on their full importance in EMC tests, since field levels as
high as 10 kV/m can be required in aeronautics, in order to simulate the conditions
experienced when passing close to radars.

It is important to understand that the diffuse-field condition is not only invoked as
a simple ideal approximation. The most important point is that when a field is diffuse,
its statistical properties does not depend any longer on the fine details of the cavity, by
definition. The direct consequence is that the results of a test can be expected to be
independent from the cavity, i.e., they can be reproduced in other test facilities. It is
this simplification that is important, since it ensures that reverberating cavities can be
regarded as fit for metrology tasks. The rich literature dealing with the study of the
behaviour of reverberating cavities is largely justified by this need of assessing their
accuracy.

It is worth mentioning that cavities, in particular microwave cavities, are also the
backbone of another field of investigation, that of wave-chaos theory [R81]. In this
case, the motivation is by far less practical: the problem is to find a simple way of
experimentally verifying the theoretical predictions of quantum-chaos theory, as well as
of the mathematical theory of billiards [R11].

In short, cavities are a rather familiar component in many experimental fields of
investigation. Perhaps less familiar are the modelling tools used in order to understand
their peculiarities. The rest of this dissertation is concerned with this topic, together
with the introduction of even more peculiar features enabled by time-reversed excita-
tions.

Large cavities in a harmonic steady state



1.2 - Wave-propagation modelling in large cavities 7

1.2 Wave-propagation modelling in large cavities

When thinking about models capable of representing the propagation of waves within
cavities, and in general bounded media, their nature strongly depends on the context
of application. While in wireless communications the most important issue is to predict
figures of merit such as the power-delay spread and the number of degrees of free-
dom, in wave-chaos theory one would rather look for the statistical behaviour of the
frequencies of resonance and the field distribution, whereas in radiated tests the spatial
invariance of statistical moments would be more important.

As a result, a number of methods have been proposed independently in each field
of application, with scant cross-fertilization, leading to a collection of techniques that
are tuned to each specific need. The peculiarity of this situation, far from being the
only such case in physics, is that imporrtant results are scattered over a number of
domains where it is not always possible to browse through them easily. This problem
will be apparent in § 2, where notions that have been available in acoustics and wave-
chaos theory for some decades have been practically unknown to the electromagnetic
community; tools and concepts routinely applied in statistical optics are scantly used,
too.

This section will not try to sort out these models, though such operation would
be badly needed. We would rather limit our discussions to two antipodal approaches
available for the goals we have set ourselves for §§ 2 and 3, namely understanding
the physical phenomena at the basis of harmonic and time-reversal excitation of large
cavities. Our discussions will be the starting point for the introduction of surprisingly
simple models based on random spectral representations; passing from a rigid deter-
ministic point of view to a statistical one, we will argue in § 1.4 that there is room
for misunderstandings about the interpretation and use of these methods. This same
discussion will constitute the foundation for the analyses introduced in § 2.

1.2.1 Green’s functions

In the context of linear systems studied under a harmonic steady state, the most general
technique employed to deal with their spatiotemporal evolution is that of Green’s func-
tions [R56, R21], which generalizes the concept of impulse response. In the context
of this dissertation we will just need to recall the main ideas needed to introduce the
spectral representation of Green’s functions, as applied in § 1.3 and § 2.

Green’s functions can be introduced for a linear system of which we want to observe
the evolution of a given quantity, here referred to as u(r). This quantity depends, in
a general way, on the value taken by a parameter; for our discussion, we will consider
the position r in a multidimensional space where u(r) is sampled (measured). The
region of space {2 where the phenomena of interest occur will be considered finite in
our discussions, and with a simple topology (e.g., Fig 1.4). The choice of the variable
r should not mislead into regarding it as merely representing space, but can more

Large cavities in a harmonic steady state



8 1.2 - Wave-propagation modelling in large cavities

generally include time as well. Typ-
ically, for a practical configuration,
the quantities of interest are state
variables used to define the phase-
space of a system; being dependent
on r, they are by definition fields
and we will assume a scalar field in
this section for the sake of simplic-
ity
When the problem at hand is
the propagation of waves through
reflective a medium, the field of interest is
boundaries . .
causally excited by a physical event
f(r), such as a variation in pres-

Figure 1.4 - A typical configuration for a rever- sure or electric current; knowledge
be}*atlng cavity, dehmlt.ed bY reﬂe'ctlve bour}d- of the physical laws underpinning
aries (external boundaries), including reflective .

. . the phenomena of interest allow
scatterers (internal boundaries) and at least a o f | relationship b
source region. The space Q2 delimited by the writing a formal relationship be-
external and internal boundaries is filled by a tween cause and effect
homogeneous medium, assumed to be air, for
simplicity.

Q

passive
/ < scatterers ’

N

sources
volume

Liru(r)=f(r) reQ, (1.5

where L(r) is a linear operator. In a general way, it is also necessary to specify a set of
auxiliary equations describing boundary or initial conditions over, e.g., the border 9Q
of the region of existence of u(r)

B(r)u(r)=g(r) redq. (1.6)

Observation of (1.5) shows that it cannot be directly used in practical settings: as a
matter of fact, we are typically more interested in predicting the outcome u(r) due to a
cause f (r), so that the following equation would be of more direct help

LY ()f(r) =u(r), 1.7

where the exponent in L™!(r) should clearly be interpreted as a symbolic convention
indicating the inverse operator. Green’s functions actually provide a way of computing
this inverse operator, by solving (1.5) for a special case, where

u(r) = G(r,r) (1.8)
f(r) = &(r-r"), (1.9

with r,r’ € Q. Clearly, the above problem is still submitted to the constraints imposed
by (1.6).

Large cavities in a harmonic steady state



1.2 - Wave-propagation modelling in large cavities 9

Once the Green’s function G(r, r’) is available, it is possible to show that any solu-
tion of (1.7) is readily accessible for a given excitation [R56]

u(r)=J G(r,r")f(r)dr'. (1.10)
Q

An example of interest involving vector fields is the operator linking electric currents
J(r) to the electric field E(r) they generate; it can be directly derived from Maxwell’s
equations and put in operator form as

L(r)-E(r)=J.(r), (1.11)

where L(r) is now a dyadic operator (second-rank tensor). This last case is the one of
interest in this dissertation, where (1.10) can now be written as [R56]

E(r) :J G (r,r)-J (r)dr’, (1.12)
Q

with - the inner vector product. The dyadic Green’s function G, (r,r’) used in this
case is intended to link the electric field to electric currents, hence the subscript “ee”.
Other Green’s functions can therefore be considered, linking electric/magnetic fields to
electric/magnetic currents.

In practice, the problem of finding a solution G(r,r’) is far from trivial, and only
for very simple canonical geometries it is possible to express it in closed form [R87].
Numerical techniques are most often needed, but as they do not allow the derivation of
predictive models, they will not be considered in the context of this dissertation.

This is where spectral approaches come in handy, by allowing to break down the
problem of Green’s functions into simpler problems, particularly when dealing with
cavities. As we will discuss in the rest of this section, the spectral approach in itself
does not provide any simpler solution to the above problem, but rather a short-cut to
(and an informal justification for) the use of simple, but very effective, approximations
based on statistical considerations.

Moreover, spectral representations provide a direct insight into the physical mecha-
nisms responsible for certain properties of a system. This last claim is particularly true
for resonant cavities, as we will show in § 2 when discussing the importance of available
degrees of freedom.

1.2.2 Spectral representations

The problem of modelling wave propagation through the use of Green’s functions can
be simplified by the use of spectral expansions. This standard procedure [R56, R81]
consists of expressing the Green’s functions as a linear combination of the eigensolutions
{4 ,(r)} of Helmholtz equation, defined as

Large cavities in a harmonic steady state



10 1.2 - Wave-propagation modelling in large cavities

V2, (r)+ k24, (r) =0, (1.13)

submitted to the boundary conditions (1.6), where v, (r) takes the place of the generic
solution u(r) in the special case of a sourceless configuration. The set {1,(r)} of eigen-
functions can be shown to form a complete basis of orthogonal functions, thus capable
of representing any field distribution satisfying the boundary conditions imposed by the
configuration of the cavity.

The set {4, (r)} can be normalized in such a way as to ensure their orthonormality,
ie.,

[ Y| ] =J Bl (1) P (r)dr = &, (1.14)
Q

where T stands for the Hermitian transpose and §&,,, is Kronecker’s delta.

When considering the G (r,r") dyadic Green’s function the eigenfunctions could
be of two natures: solenoidal or irrotational field distributions. Being interested in the
behaviour of electromagnetic reverberation chambers, we will just focus our attention
on the former group of eigenfucntions and note them as {e,(r)}; as a matter of fact, ir-
rotational solutions are related to TEM modes that are not of practical interest in the use
of reverberating chambers, since they are not associated to resonant phenomena [R87].
As a result, the electric field within a cavity can be expressed as[R56, R87]

o0
E(r, @)=Y 7pen(r)pn(c) (1.15)
n=1
with
Yn=1[Je|en] (1.16)
the modal coefficients and
1
Pnl@) =153 = (1.17)

the modal responses, with k, the square root of the eigenvalue associated to the eigen-
fucntion e, (r) and k = k(w) the wave number.

What should be the advantage of using (1.15) rather than (1.10)? There are several
reasons for choosing the former, such as a more efficient model with reduced complex-
ity, but in the context of resonating media (here cavities) we will mainly stick to the
physical insight brought in by the presence of the modal responses {¢,(w)} in (1.15).

In order to understand their role, we should start by observing that their modulus
essentially correspond to a Lorentzian function, and are related to the response of a
damped harmonic resonator. In the ideal case of undamped resonances, the generic k,,
is purely real and corresponds to a resonance frequency
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o= b
i
with ¢, the average speed of light in the medium filling the cavity.

In practice, dissipation mechanisms lead to the appearance of an imaginary part
in k,, whose amplitude is typically much smaller than the real part. This scenario of
weakly damped resonances implies that the dissipation mechanisms can be treated as
weak perturbations, by having the singularities of ¢,,(«w) not laying on the real axis any
longer, requiring [R87]

) (1.18)

kn > kn(l _j/Qn): (119)

where Q,, is the quality factor of the resonance associated to the n-th eigenfunction, or
normal mode. The quality factors involved in electromagnetic reverberation chambers
are very easily higher that several thousand units, so that the frequency of resonance
can be regarded as unaffected by the introduction of losses, which thus behave as a
weak perturbation.

The frequency evolution of a generic ¢,(w) is represented in Fig. 1.5, for several
values of Q,. While for an increasing
Q,, the peak-value of ¢,(w) increases,
the function becomes more tightly con- 1r
centrated around its resonance frequency. /
The width of the modal response can be 4y ---Q=10°
assessed by introducing the half-power 0.8r /
modal bandwidth By, , !

B ) 0.6} i
M : '
T — | Qu>1. (1.20) ;

f n Qn /

. . . 0.4r 7
which implies that the {¢,(w)} essen- ,/
tially act as very effective narrow-band . \
filters. A different way of looking at this 0.2} | "~
result is to observe that each mode brings P
a non-negligible contribution limited to g .l
frequencies very close to the resonance (9.98 1 1.02
frequency. It is therefore possible to as- k/kn
sociate a notion of locality to the spec-

tral expansion; as it will be discussed in

a.u

Figure 1.5 - Some examples of peak-

§ 1.3, this interpretation has important normalized modal response ¢,(w), plot-
consequences on the statistical modelling ted against the normalized frequency
of the fields generated within large cavi- k/k, for a varying quality factor Q.

ties, with direct impact on practical appli-
cations, as shown in §2.
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In a similar way, the electric energy U(w) stored in a cavity at a single frequency
can be expressed as

U(w) = EOJ IECr, @)l2dr = € 3 Iral2lén(@)?, (1.21)
Q n=1

having exploited the orthonormality of the eigenfunctions e, (r). As a result of being
a spectral expansion, the energy can be easily computed as a discrete sum rather than
as an integral. The real-valued nature of (1.21) allows a simple graphical illustration,
as proposed in Fig. 1.6: each mode contributes with a degree of freedom only for a
narrow bandwidth around its frequency of resonance, thus implying that for a given
working frequency only the few modes within this bandwidth will actively contribute to
the overall field distribution. This maximum bandwidth, here referred to as B,, allows
estimating the number of degrees of freedom underpinning the field distribution within
a cavity, as discussed in §§ 1.3.1 and 2.2. As demonstrated in [J4], B, corresponds to
the average modal bandwidth.

Hence, it is possible to approximate the infinite sum (1.21) by a finite one, limited
to the set of M modes .# = {m : |f,, — f| < B./2}, i.e.,

U(@)=€o Y, [rnPlgm(e)? (1.22)

me#

Clearly, the same line of reasoning can be applied to the overall electric field.

The idea of limiting the in-
finite summation (1.15) to a fi-
nite number of terms can be re-
garded as a fundamental advan-
tage of the spectral expansion, al-
lowing a reduced-order modelling
of reverberating structures. But we
deem that the main interest of this
approach is the clear and natural
appearance of the concept of de-
grees of freedom in a cavity: it is
this concept that subtend all the
results we have introduced during
the last 4 years. In the rest of
this chapter, these ideas will be

Figure 1.6 — A schematic illustration of the local
contributions provided to the electric energy by
each resonant mode within a cavity. Only the
modes with a frequency of resonance within a

distance B,/2 from the working frequency ac- largely invoked as a powerful yet

tively contribute. simple way of drawing general con-
clusions about the behaviour of a
cavity.
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1.2.3 Black-box (empirical) statistical modelling

Before passing to the core of this dissertation, we need to introduce several ideas that
constitute the foundation of the statistical modelling of wave propagation in complex
media. It was already noted at the beginning of § 1.2.1 that Green’s functions in analyt-
ical form are hardly available but for canonical configurations. Numerical approaches
can be applied to compute Green’s functions, but this implies a clear assumption : that
the details of the system/medium in which we are interested are available. As strange
as it could appear to a first reading, this is seldom the case. Examples abound, but we
will stick to the case of cavity-like media: the case of indoor and urban propagation
media is perhaps the first example that comes to mind to an electrical engineer, because
of its omnipresence in wireless communication settings. Numerical approaches would
be put in jeopardy by three very practical difficulties :

1. the geometrical details of the propagation medium are typically unknown : let just
think of the position of furniture, walls, buildings, their geometrical dimensions,
etc. ;

2. the electrical characteristics of the material making up the elements of the medium
are also typically unknown;

3. even if these details were known, the Green’s functions associated to the medium
could be accessed only by means of numerical simulations. Since in practice in-
door/urban setups span regions of space well larger than a wavelength, numerical
models would involve a quickly untractable number of unknowns.

Clearly, these limitations do not mean that it is impossible to predict any trend
in complex media, but that we should rather change our perspective in propagation
modelling. We should ask ourselves what kind of information we really need in order
to satisfyingly engineer a system based on the propagation of waves in complex media.
As an example, in wireless communications the main issue is ensuring a given level of
received power, i.e., a good coverage, with a given probability, rather than a perfect
knowledge of the actual level at the receiver. In other words, a probabilistic approach
is often sufficient.

As a result an alternative, and more importantly viable, approach is that of describ-
ing wave propagation in statistical terms. A number of statistical quantities can be
defined to this effect; we will just introduce the most basic ones, as they will also be
needed in the rest of this dissertation. Statistical descriptions often correspond to phe-
nomenological approaches, where one can only assess the effects of the medium struc-
ture on wave propagation rather than the causes of specific behaviours. Data needed
to the extraction of statistical models can be obtained from extensive measurement
campaigns or parametric numerical simulations.

From the receiver point of view, the amplitude of the received signal is of paramount
importance. Therefore it makes sense to study the probability density function py(x, w)
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14 1.2 - Wave-propagation modelling in large cavities

of the value x taken by the complex transfer function H(w) between a transmitter and
a receiver ports. In many practical configurations, this probability density function can
be set beforehand, as soon as certain conditions are satisfied; an example is given by
the family of media displaying Rice/Rayleigh statistics, requiring a diffusive propaga-
tion [R66]. More details about these ideas will be presented in § 1.4.

It is therefore possible to predict the probability of observing a given level at the re-
ceiver, even though hardly any detail of the propagation medium are known. The price
to pay for this simplification is the difficulty of establishing/identifying any causal rela-
tionship between the physical parameters of the medium and the statistical properties
of waves propagating through it: as a result, we are somewhat stuck with a functional
approach that only allows blind design procedures. Other quantities of physical and
practical interest can be modelled in this way, providing a large scope for this type
of approaches: angles of arrival of waves and time-delay spread profiles are but two
examples of interest in wireless communications [R84, R70].

Once probability density functions are introduced, any statistical moment can be
computed for a quantity modelled as a random variable; for a random scalar variable
X € R, the moment of order n is defined as

xX™ = JX”pX(x)dx, (1.23)

where the integral is taken over all the possible random realizations of X, while pyx(x)
is its probability density function. The brackets notation will be used in the rest of this
dissertation as a compact notation for averages computed over all the possible values
taken by X. The first-order moment (average value) is instrumental to the definition
of centered moments, where the zero mean-valued random variable X — (X) is now
considered in (1.23) instead of X. The most widely used centered moment is certainly
the variance, 0)2( = <(X —(X ))2> and the associated standard deviation 0.

In the case of X € C, complex-valued moments can be considered, but in order to
be assimilable to a distance, the Euclidean norm is typically used, i.e., 0)2( = <|X |2>.
A further generalization is needed when dealing with random vector quantities, e.g.,
noted as X; the main modification is in moments greater than one, where they take the
shape of n-rank tensors, where n is also the order of the statistical moment. We will
just consider the case of the covariance matrix Cy, defined as

Cx = ((X - (X)X - (x)'). (1.24)

In practice, the random vector could be any vector transfer function, for instance
the one relating the excitation signal applied to a transduced to the electric field it
generates at a given position r, i.e., X = H(r, w).

While Cx assesses the statistical dependence between the single scalar elements of
vector X, a similar idea can be introduced to study the global statistical dependence
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of, e.g., the vector transfer functions observed at two different positions r; and r,,
introducing the spatial correlation

C(ry,rp) = (H(ry, ) -H(ry, o)), (1.25)

often expressed as a function of the variances by introducing the spatial-correlation
function

(H(r1, )" H(rs,))
VHG L, o)I12) (IH (g )Y

with |p(rq,7r,,w)| € [0,1]; in (1.26), H(r, w) was assumed to have a zero average
value. A spatial correlation close to one implies that though the field observed at two
positions can still be modelled as two random variables, they essentially present a non-
fully stochastic nature, with a partially deterministic relationship linking them. The
simplest such representation is provided by a first-order regression model

p(rl,rz,a)): (1.26)

H(ry,w)~T(rq,ry)H(r;,w)+ o0H(w), (1.27)

where T (rq,r,) € C3*3 (e.g., for a three-component vector field) is a dyadic opera-
tor, in general anisotropic, while 6 H(w) is a fully random process, independent from
H(rq,w). In practice, the relative contributions of the deterministic and random parts
in (1.27) are functions of the offset vector d = r, —r{, but this point is out of the scope
of this dissertation.

Typically p(r;,r,, ) depends only on the offset vector d, while the absolute posi-
tions r; affects only the scaling of the covariance through the field variances in (1.26).
In this case, spatial correlation is virtually independent of the absolute position and will
be expressed as p(d, w). The same ideas can be applied to other parameters on which
H(r,w) depends, most notably the frequency.

Spatial correlation and covariance are important since the use of probability den-
sity functions could suggest the modelling of wave propagation as a random process
H(r,w), where r and w just act as parameters leading to independent random pro-
cesses, i.e.,

(H(r,0)-H'(ry,0)) o 8(ry—ry) (1.28)
<H(r,a)1)'HT(r,w2)> x  6(wy — wq). (1.29)

Even in the case of very complex media, e.g., diffusive ones, correlations are typi-
cally present. These express physical mechanisms of varying nature: e.g., spatial cor-
relation are always limited by the wavelength of propagating waves, effectively setting
a minimum spatial resolution that is of fundamental importance when dealing with
time-reversed signals (§ 3).
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In practice, p(d, w) is a smooth function of the distance d = ||d|| between the two
observation points and typically characterized by an infinite support, i.e., it is never
identically equal to zero beyond a given minimum distance (§ 1.4.1). It is nonetheless
possible to define a minimum distance D,, called the coherence distance [R93], beyond
which the spatial correlation is always smaller than a given maximum value

Dc(w) = min{d Hp(d, )| < pmax} > (1.30)

or, alternatively, as the distance at which the spatial correlation crosses the zero value
for the first time when incrementing ||d|| from zero to infinity. The minimum in (1.30)
is taken over the Euclidean norm of the offset vectors d. Since the spatial correlation
is typically anisotropic (§ 1.4.1), D, should rather be expressed as a function of the
direction d linking r; and r,; the maximum of all observed correlation distances can
therefore be taken as

D.(w)=maxD,(d,w), (1.31)
d

and provides a simple manner of assessing the distance beyond which two samples of
the field can always be approximated as statistically uncorrelated.

The correlation distance is at the basis of the definition of the coherence cell of a
random field distribution, defined as the region of space

¢ =1{d :||d|| < D.(d,w)}. (1.32)

It bears important insight in statistical modelling, especially for phase-space rep-
resentations [R93, R81], e.g., in the prediction of the number of spatial degrees of
freedom of the field generated within a cavity [R50, R93]. Moreover, the presence of
statistical correlation also has a major impact on any averaging method, as discussed
in §§8 1.4 and 2.1. Spatial correlation appears in a number of configurations, of which
the memory effect [R24] highlighted in wave-propagation through multiple-scattering
media is just an example.

The fact that correlations involve two quantities leads to their being referred to as
second-order statistics. We will neglect even higher order statistics, although they play
a fundamental role in statistical field theories [R81].

These ideas can be directly transposed to the analysis of the correlation between
field samples observed at two different frequencies, but over the same position in space.
A coherence bandwidth can therefore be defined, which will play an important role in
§ 3.

1.3 Random spectral models

The modelling tools introduced in the two previous sections are somewhat extreme
approaches, switching from the rigid framework of a perfectly detailed deterministic
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representation to a black-box statistical description based on phenomenological obser-
vations, without any physical insight. In between them, there exists a class of statistical
models based on the physical representation offered by the spectral models introduced
in § 1.2.2.

Their rationale is very pragmatic. Spectral models are capable of capturing some
important features, such as the existence of a discrete set of degrees of freedom, un-
der the shape of resonant modes actively excited at the working frequency. While the
precise value of the modal quantities introduced in (1.15) is typically not accessible, it
is actually not always important to know the details of the field distribution, or of the
frequency response of a complex medium. The main reason for this point of view is that
it is simply not possible most of the time.

But there are more sensible reasons involving the fact that the geometry of the
medium may change from one random realization to another, with these realizations
still sharing some common features. A simple example is the case of cavities with exactly
the same volume and nature of the boundaries, while presenting an infinite number
of random realizations for their detailed shape. Similarly, families of cavities can be
identified by the amount of average overall dissipation losses experienced by waves
propagating through them, or a given geometry can be excited in an infinite number
of ways by changing the position and orientation of a given group of sources. All of
these examples share the idea of at least a common macroscopic feature which can be
at the same time found in a large (ideally infinite) number of random and independent
sub-configurations. In this case, it makes sense to wonder what would be the average
behaviour of field-related quantities, as a function of the macroscopic parameters. For
instance, it is of practical importance to understand how the behaviour of a cavity
changes when its volume is increased. This kind of problem cannot be easily answered
in either of the two extreme modelling approaches introduced so far; conversely, the
approach presented in this section will be shown to be capable of providing insight
even without knowing anything about the details of a single realization.

The origin of this idea of modelling the average behaviour of a complex system can
be traced back to the work of J.C. Maxwell and L.E. Boltzmann about the statistical-
mechanical explanation of the thermodynamical laws of gases [R83]. The problem
they faced was very similar to ours: the dynamics of gases was studied by introducing
the idea of an infinite number of collections of particles each one provided of a ran-
dom position and velocity. The deterministic solution of such a system was and still
is practically impossible, but for the sake of thermodynamical laws it was not a mat-
ter of importance. The microscopic details of the state of each particle is not the focus
in this context, whereas the average state of the system is fundamental, particularly if
related to macroscopic quantities such as the temperature, volume or pressure of the
system. The idea of an ensemble was therefore introduced as a clever way of bypassing
a complex problem, allowing to extract still useful information from first-principle laws
coupled to a statistical analysis. A more recent and complex example of interest in our
discussion is that of wave chaos (see § 1.3.2), where the focus is set on the properties
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of eigenvalues, rather than of field-related quantities [R81].

In a similar manner, the microscopic degrees of freedom in a spectral representation
are the modes, or energy levels in quantum mechanics, of the system. Their state is now
modelled by their modal coefficients, while the equivalent of the macroscopic features
are the overall electric field observed at a given position. The analogy could be thought
as complete, but there is a fundamental difference that still generates much confusion
and misunderstanding: the number of degrees of freedom in the case of gases is simply
huge, with orders of magnitude set by Avogadro’s number; comparing this number
to the few modes typically excited within a cavity (as discussed in § 1.3.1) under a
harmonic steady state should appear as a formidable obstacle to the application of the
ideas of statistical physics to the case of cavities. Unfortunately, because of the lack
of simpler alternative approaches, this problem is often not acknowledged, leading to
expectations that are simply not realized in practice; examples will be presented from
the field of electromagnetic compatibility in the next chapter.

This mismatch was the motivation of some of the analyses that we have carried out,
where the focus was on a specific macroscopic parameter, namely the number of degrees
of freedom actually available in a cavity. As discussed in the next chapter, things get
even more confused by the fact that it is not even the availability of a large number of
modes that enables diffuse-field approximation (see § 1.4.1) but rather the overlapping
of their frequency responses. This type of questions can be very effectively answered by
means of a statistical analysis of (1.15).

In order to enable these results, the modal quantities in (1.15) are modelled as
random variables, hence the idea of random spectral models. Randomness can originate
on a number of levels

¢ frequencies of resonance {f,} : their number, position and interdistance;

e modal topographies {e,(r)} : changing boundary conditions, through material
and/or geometry modifications or displacements (e.g., of scatterers);

e modal coefficients {y,}: a direct consequence of randomness in the sources J,(r)
and/or the modal topographies, as implied by (1.16).

Modelling any of these parameters as random variables requires the definition of
suitable probability density functions capable of capturing the variations observed in
practice due to randomness. In certain cases, it is possible to justify these choices on
the basis of physical models, such as in the case of elementary excitations of the kind

J(r,w)=Jy(w)o(r —ry), (1.33)

where r is the randomly chosen position of the current; the modal coefficients defined
in (1.16) are therefore given by

Yn :JO(wn)'en(TO)) (134)
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corresponding to a random sampling of the modal topographies. In the case of canonical
geometries for the cavity boundaries, these functions are known, so that setting the
probability density function of the random position r can be readily translated into
the probability density function of the random modal coefficients.

In most cases, though, this physically-based procedure is not feasible, forcing to
choose axiomatic distributions. An example is given by the assumption of Gaussian-
distributed modal coefficients, which is typically regarded as reasonable when assuming
an ensemble of cavities: randomness is here justified on the impossibility to know the
exact modal topographies.

Without going into the details of this issue, recalling the statistical convergence en-
sured by the central limit theorem in presence of a large number of independent and
identically distributed (iid) random contributions implies that whatever choice made
for the individual (microscopic) contributions would inevitably lead to the same kind
of overall probability distribution. The actual difference in the choice of the probabil-
ity distributions of the modal coefficients (and similarly for other parameters) has an
impact only on the dispersion of the overall field, not on its statistical nature. For this
reason we do not attach a great importance on the choice of the microscopic-level prob-
ability density functions, as long as this choice is not motivated on physical grounds,
but rather presented as axiomatic.

A counterexample is discussed in § 1.3.2, where random-matrix theory results pro-
vide physical-based, though asymptotic, probability laws for the spacing that should be
expected between two consecutive frequencies of resonance.

It is fundamental to take into account the actual conditions of operation of a cav-
ity before applying any assumptions on the probability laws underpinning the modal
parameters. An example is given by the case of a cavity with a fixed geometry, where
the observer position can be regarded as random; if we were interested in studying
the average field intensity observed, while treating the modal parameters as random
variables, only a single random realization should be considered to represent the elec-
tromagnetic behaviour of the entire cavity. In this case there is no ensemble of cavities,
since the problem is centered around the statistics of the field for a given cavity geome-
try, rather than the average behaviour expected for a group of cavities sharing the same
macroscopic quantities. We should therefore consider two levels of randomness:

1. asingle realization for the random modal coefficients;

2. arandom ensemble for the position of observation of the field.

The second point will therefore be at the basis of the computation of the average
field intensity, being the only random variable that could be expected to change. Ensem-
ble averages should be applied only when dealing with a different problem, e.g., when
computing the average field intensity observed within any cavity with a given volume.
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In this case, an ensemble average should also be computed across all the possible real-
izations of the modal coefficients, as dictated by the random boundaries underpinning
the concept of an ensemble of random cavities.

This apparently superfluous difference has important consequences when dealing
with the estimation of the number of degrees of freedom available within a cavity and
will be at the center of § 1.4.2, when considering the asymptotic validity of the diffuse-
field approximation.

In the following sections we present further information about the use of this kind
of approach, particularly for what concerns the use of random-matrix theory as a tool
for predicting modal statistics. The notions here discussed are then applied to the
question of modal-coefficient independence and to the fundamental problem of how to
assess the degrees of freedom in a cavity, in view of the application of the diffuse-field
approximation (see § 1.4.1).

1.3.1 Modal density and overlapping

When thinking about the modal density, one intuitively associates it to a certain number
of modes resonating around the working frequency. The modal density can therefore
be defined as the average number My of modes found in a bandwidth B,

Mpz(f)
mp(f) = B
and is therefore dependent on B itself. As long as B is large enough to encompass
several modes, then (1.35) is an average value that can be expected to converge to a
single value, for B large enough, predicted by Weyl’s approximation [R86]

) (1.35)

8nv 871V,
my(f) = C—gf +o(f)= +o(f), (1.36)

f

0

with V the volume of the cavity, ¢, the speed of light in the filling medium and V, the
volume measured in cubic wavelengths.

The definition (1.35) provides a more general framework than (1.36), since the
modal density is considered in a local setting: for this reason, it will be referred to as
the local modal density, associated to a specific bandwidth.

It is often practical to associate a specific value to the modal density m(f), e.g., by
taking the limit for B — 0: the discrete nature of the set of frequencies {f;} at which a
cavity resonates implies that in practice m(f) can only take two values, i.e., zero if no
mode resonates at the working frequency f or infinity otherwise [R81], i.e.,

m(f) = lim mp(f) =;5(f ~f). (1.37)

This outcome is inevitable as the distribution of the normal modes cannot approach the
completeness of real numbers, thus leaving inevitable “gaps” between them.
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The estimate my(f) is in general different from mg(f) because it is not derived as
in (1.37), but in a less direct manner, by first introducing the function N(f) describing
the overall number of modes of a cavity up to the frequency f

N(f)=#{fi: fi<f} (1.38)

with # the cardinality of a set. This function can be represented as the sum of a smooth
approximation Ny (f) and a fluctuating function N¢(f ) with zero average value

N(f)=Nw(f)+ Ne(f). (1.39)

This smooth approximation was first derived by Weyl and was intended to provide
an approximate solution asymptotically exact at infinite frequency [R86]. The fact that
the intensity of the residual fluctuations grows less quickly than Ny(f) as f — oo, thus
ensuring

Ni(f) |
Ny (f)
should not be mistaken for an indication that modal density can be defined as often

done, by taking the derivative of Ny(f) at the working frequency f, leading to the
approximation

lim

f—o0

0, (1.40)

M N
m(f) = lim —= = d Cvljff ) (1.41)

As a matter of fact, the residual R,,(f) = |mw(f) — Mg/B| does not converge to
zero, since N¢(f) takes on the discrete nature of N(f), thus preserving the results in
(1.37). It could be expected that the accuracy of the approximation (1.41) improves as
the frequency, and thus N(f), increases, hence leading to modes getting close enough
to provide a sort of approximate continuity; unfortunately, this is not the case and these
fluctuations should not be dismissed as minor approximation errors, particularly when
the average number of overlapped modes is not high enough, as happens to be the case
even at frequencies well above the lowest usable frequency (or LUF) as usually defined
by thumb rules proposed in practice within the framework of EMC tests [R2].

The differences between m(f) and my(f) play a central role when studying the
average local modal overlapping M;,.(f ). This quantity represents the average number
of modes found within a bandwidth B, equal to the average —3 dB width of a mode,
i.e., By; = f/Q, hence

Mloc(f) = mBM(f)%f)’ (1.42)

with Q(f) the ensemble-average composite quality factor of a MSRC.
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As proven in [J4], a high modal density in itself is not a guarantee of a diffuse
field, ensuring Gaussian-distributed scalar field components; the dominant parameter
is rather M),.(f ), which is required to be M;,.(f) > 1 in order to support a diffuse field.
Therefore, it makes more sense to directly count the number of modes overlapping over
By, rather than passing through (1.42), since it requires an estimate of the local modal
density mp (f), as defined in (1.35). This apparently subtle distinction makes all the
difference and should not be underestimated: it could seem more natural to assume
mg, (f) =~ my(f) and derive Mo (f) from (1.42), i.e.,

My (F) = % 4 (1) (1.43)
= — 0 .
v af) ’

assuming

Mloc(f) = MW(f); (1~44)

but in this way we would implicitly accept the notion of a deterministic and smoothly
increasing modal density, with no random fluctuations, with an my,(f) not depending
on By, thus neglecting the discrete nature of the distribution of the frequencies of
resonance. On the other hand, it is tempting to just consider the average modal density
(and overlapping), since in practice the ensemble-average of mp (f) can be quite close
to my, (f); as discussed in § 2.3, such an approximation directly leads to a fundamental
misunderstanding about the origin of statistical anomalies, or outliers, originated by
strong random fluctuations in the modal density expected for single realizations of the
cavity.

When directly considering the number of modes overlapping over B, the corre-
sponding modal density should rather be defined as in (1.35), with an implicit local
definition depending on B,,. In practice, (1.35) is an average modal density, but in
this context the average is not over the realizations (ensemble average), but rather over
the bandwidth B,, for a single realization. In other words, it represents a sort of lo-
cally homogenized modal density, spread equally over the entire modal bandwidth B,
rather than as a set of singularities as in (1.37). For this reason, we will refer to it as a
local average, in contrast with the ensemble average. It will be shown in § 2.3 that this
apparently redundant distinction makes a big difference.

We can already consider a representative example shown in Fig. 1.7, where the
modal density predicted by (1.36) is compared to a direct count of the number of
modes within a 1 % and 0.1 % relative bandwidths for a cuboid cavity. As stated at
the beginning of this section, the local modal density is well approximated by (1.36)
when dealing with relatively large local bandwidths; but when recalling that the modal
bandwidth is typically very narrow, large fluctuations naturally appear. In order to
have access to the probability density function of the local modal density, results from
random-matrix theory are needed, as presented in § 1.3.2; the consequences of these
results will be discussed in § 2.3.
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Figure 1.7 — Local modal density for a cuboid cavity characterized by a fundamen-
tal resonance at f,,, averaged over 0.1 % and 1 % relative bandwidths. The thick
black curve is the result predicted by deriving Weyl’s approximation (1.36). The
relative bandwidth over which the average modal density should be computed is
rather 1/Q, which is usually much smaller than the 0.1 % value here considered.
Much stronger fluctuations should be expected in this case, making their graphical
representation by far less clear.

1.3.2 Some elements of random-matrix theory

This short summary is certainly not intended to serve as an introduction to random-
matrix theory (RMT) and the interested Reader should refer to the first three chapters
in Stéckmann’s seminal book [R81]. Nonetheless, we will give a brief overview of the
reasons why we can apply in practice the results derived in the context of quantum
chaos to our problem of field statistics in mode-stirred reverberation chambers.

RMT was developed to deal with structures where a direct solution of Schrodinger
equation is regarded as complex or simply ill-defined, e.g., when the Hamiltonian oper-
ator is unknown. This is the case for complex quantum structures, such as large nuclear
compounds or mesoscopic structures (e.g., quantum dots). A solution to this type of
problems was found by approximating the unknown Hamiltonian operator by means of
a matrix, eventually of asymptotic infinite dimensions, whose entries are assumed to
follow specific probability distributions [R92]. This idea is directly related to a previous
and very successful approach, namely statistical mechanics, where in a similar man-
ner the problem of studying the (thermo)dynamics of a large collection of interacting
particles was solved by considering a random description of the state variables of the
particles. The drive in these approaches is not having a fine-level information of the
system at the scale of the individual elements it is composed of: the focus is rather on
its macroscopic behavior, described by means of statistical quantities related to the sta-
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tistical moments of physical quantities of interest and in general by means of probability
distribution functions.

RMT has been widely successful in this respect, and at least in its basic idea sur-
prisingly simple; the same cannot be said for the mathematical details. The struc-
tural similarity existing between Helmholtz and Schrédinger equations has motivated
studies comparing the results predicted by RMT to those observed in microwave ex-
periments [R82]. It is important to notice that a major difference between these two
equations is the absence of an Hamiltonian operator in Helmholtz equation: the struc-
ture is the same, but the lack of an Hamiltonian hinders the drawing of a direct parallel
between the two equations. It is for this reason that the application of RMT to cavities
where classical waves (of any nature) propagate had virtually to wait for a fundamen-
tal piece of work, namely the Bohigas-Giannoni-Schmidt conjecture [R6], where it was
postulated that the results of RMT should apply to any complex system. A number of ex-
perimental validations have confirmed this conjecture, which is today widely accepted
as a physical fact. Of particular interest for the EMC community are the works dealing
with microwave cavities, i.e., unstirred reverberation chambers, where the accuracy of
the prediction of RMT was proven beyond any doubt (e.g., [R82]).

The rationale behind recalling these points is that the nomenclature used in RMT
is somewhat cryptic, with definitions that make sense in the context of quantum chaos
without having any correspondence in classical wave theory. The apparent validity of
the Bohigas conjecture allowed a direct transfer of the RMT ideas from the former to
the latter, hence the potentially confusing terminology.

In this framework, we need to recall that RMT is based on universality classes al-
lowing to define fundamental symmetry properties of the random matrix approximation
of the Hamiltonian, according to fundamental physical properties of the system under
consideration, e.g., energy conservation, reciprocity, etc., independently from the fine
details of the system. In this respect, we will consider two configurations of practical
interest, the case of integrable systems, also referred to (improperly) as the Poissonian
ensemble [R5], and that of the Gaussian Orthogonal Ensemble (GOE) [R81], charac-
terized by time-reversal invariance, i.e., energy conservation. A precise definition of the
first class is apparently not yet available outside the context of quantum chaos, but the
analogy with microwave structures is still maintained. The important point to consider
is that under the category of integrable systems is considered any system that do not
present any trace of the features of wave-chaotic systems, in particular level repulsion
and of course exponential sensitivity to initial conditions. In practice, the fact that fre-
quencies of resonance can cross each other’s path when a dynamical perturbation (stir-
ring) is operating, is a direct measure of absence of a fully chaotic behavior. Integrable
systems are actually regarded as an extreme case of non-chaotic systems, whereas in
practice a certain amount of chaos is often observed [R29]. In practice, completely
empty rectangular cuboid cavities are a good example of integrable systems, while the
inclusion of a scatterer spurs partially chaotic responses as soon as its dimensions are
comparable to the wavelength. The GOE provides the other extreme representation for

Large cavities in a harmonic steady state



1.3 - Random spectral models 25

0.9¢ Poisson ensemble
0.8F
0.7-
0.6F Figure 1.8 — Nearest-neighbor
E sl GOE ensemble spacing probability density func-
& tions for an integrable and a
0.4 GOE system, normalized to the
03l ensemble-average spacing.
0.2F
0.1r
0 L L L L L L J
o 0.5 1 15 2 25 3 35 4

the ideal case of a fully chaotic system. It should be clear that the notion of integrable
system is by no means related to the idea of degeneracy in the frequencies of resonance
of a cavity, as in the case of an empty rectangular cavity with widths in rational propor-
tion. Even in the case of irrational ratios, such a system will present the same behavior
than any other integrable system.

We will limit our analysis to the modal spacing, defined as

si = fiy1— fis (1.45)

where s; can be regarded, according to RMT, as the i-th realization of a random vari-
able s, the probability density functions of the normalized nearest-neighbor spacing
& = s/5, with § = 1/my the average nearest-neighbor spacing between adjacent
modes, are [R81]

pe(x)=e™", (1.46)

for a Poisson ensemble and

—nx2/4
)= Zyx , 1.47
Pg( ) 5 € ( )

for the GOE case. We are thus confronted to either an exponential distribution or a
Rayleigh one with a parameter 02 = 2/7. These two functions are plotted in Fig. 1.8
where it is clear that the nil probability of superposed modes in chaotic systems is a
direct consequence of level repulsion.

Two major differences can be noticed in these functions and will have a major im-
pact on the statistics of the local modal density (see § 1.3.1): 1) for chaotic systems, the
modal spacing is decidedly less dispersed than for an integrable system, with a proba-
bility distribution presenting a mode (peak) close to the average spacing £ = 1; 2) for
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an integrable system, it is clear that modes can come in clusters due to a high proba-
bility of superposition [R5], so that in order to maintain a fixed average spacing, the
clusters must be relatively isolated one from the other, as justified by the longer expo-
nential tail. We can refer to this phenomenon as modal depletion, i.e., the local lack of
resonant modes, and it can be conjectured that the probability of incurring into what
are often regarded as outliers [R42] can be explained by this phenomenon. In other
words, it is a natural and inevitable phenomenon in an integrable system, whereas it
should be expected to be less likely in chaotic systems.

According to the type of system we are dealing with, a higher probability of observ-
ing a wider nearest-neighbor spacing has a direct impact on the number of modes that
can be observed in a fixed bandwidth, as will be recalled in § 2.3.

As already recalled, practical systems are often in between these two extreme con-
figurations, although a Poisson ensemble behavior should be expected in the lower
frequency range when dealing with rectangular cavities: this result holds as long as
eventual scatterers in the cavity are electrically small, after which the system moves
gradually towards a chaotic one, as shown experimentally in [R82]. Several meth-
ods have been devised to assess the degree of chaoticity of a cavity: in the context of
this work, we will restrict our discussions and computations to the two extreme classes
already introduced.

RMT is an asymptotical theory capable of accurately predicting the statistical prop-
erties of the spectrum of a system (here the frequencies of resonance of a cavity) as long
as it permits a sufficiently large number of stable states. It should be clear that RMT
cannot pretend to be exact when the electrical dimensions of a cavity become small,
i.e., in its lower frequency range where it mainly behaves as a high quality factor res-
onator, allowing only a very limited number of resonances. Hence, RMT can be applied
successfully even at frequencies below the LUE since the modal density is typically high
enough to justify a statistical description.

1.3.3 Correlation of the modal coefficients

Random spectral models are typically based on axiomatic assumptions on the probabil-
ity density functions of the modal parameters. A further difficulty is deciding whether
these parameters should be regarded as independent random variables or correlated
ones. This issue has been the focus of theoretical investigations for the frequencies
of resonance, as discussed in the previous section; conversely, modal coefficients are
typically assumed to be independent without any proof: e.g., see [R90].

The random nature of the modal coefficients can appear due to a number of random
processes, of which the random positioning and orientation of a source is of practical
interest. This problem has recently been considered in [J8], where the source was as-
sumed to have no impact on the modal topographies of the cavity under analysis; this
assumption allows separating the randomization effects of changing boundary condi-
tions due to moving sources, from those of the modification of the modal coefficients
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for a changing set of equivalent current distributions. In practice, these two phenomena
are intertwined and cannot be separated. The question asked here is whether a random
positioning of the current distributions is sufficient to assume uncorrelated modal coef-
ficients.

The analysis presented in [J8] is based on the statistical analysis of the projection
(1.16), and more specifically on the computation of its covariance matrix elements

Gizj = (ri¥j)s (1.48)
where the independence assumption implies O'izj = 0)2,51- ;. The use of a common vari-
ance (7)2, translate the assumption of a uniformly sharing of the total energy over all of
the available modes, which is reasonable in the case of an ensemble of sources, as it is
the case here, since the changing nature of the source can be expected to sweep all of
the positions/orientations that will lead to an effective excitation of all the modes with
the same intensity.

In practice, recalling (1.16)

oizj = J dr ej(r) f dr’ C(r,r")-e;(r), (1.49)
Q Q
where C(r,r’) can be referred to as the coupling dyad, defined as

C(r,r) = (J(r)Ti(r"). (1.50)

The coupling dyad is basically the covariance matrix of the scalar components of the
current distribution of the sources, submitted to random orientation and positioning.
Since the coupling dyad operates in (1.50) as a kernel weighting in the orthonormality
relation (1.14), the condition (1.48) would be valid as soon as the inner integral in
(1.49) did not alter the modal topographies e;(r).

In [J8], it was shown that this requirement is satisfied for a coupling dyad with
spherical symmetry (isotropy), unpolarized, i.e., diagonal, and invariant with respect
to the space variables. These conditions are satisfied only when the position and orien-
tation of the sources have no preferential value over the entire set of possible positions
and orientations.

Since these conditions are typically valid in practice, particularly in EMC reverber-
ation chambers, equipped with complex-shaped stirrers acting as source randomizers,
the modal coefficients can be assumed to be uncorrelated. The extension to indepen-
dence is less trivial but can be simplified by recalling that if the modal coefficients could
be modelled as Gaussian-distributed random variables, then uncorrelation would rhyme
with independence. It happens that this assumption is systematically taken for granted
[R90], but without any formal proof, to the best of our knpowledge. In fact, this as-
sumption is formally correct only in the case of chaotic ensembles [R81]. We will not
go further on this topic, but it is clear that the actual statistics of the modal coefficients
are far from a closed subject of investigation.
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1.4 Random plane-wave spectra

A close observation of (1.15) shows that the main limitation of random spectral mod-
els is the absence of information about the behaviour of the modal field topographies
{e,(r)}; while this is not a fundamental problem when modelling the field behaviour at
one single position, it hinders any attempt at extrapolating its spatial evolution. Spatial-
related quantities are of interest in a number of applications, but for the special case of
EMC, spatial uniformity is the main quantity of interest.

The main approach used to cope with this issue consists in extending the random
spectral approach to modal topographies. The eigenfunctions {e, ()} are now regarded
as random processes, by treating them as random functions of the spatial coordinate
r; more generally, a space-frequency approach can be applied, modelling the eigen-
functions as random functions of the 4-dimensional coordinate (r,w). This type of
description is reminiscent of the statistical modelling discussed in § 1.2.3, where phys-
ical phenomena are no more directly accessible but behave as a hidden-variable model
where only a few observables allow to probe the underlying physics of the system by
observing its behaviour.

How to proceed with this further approximation? The simplest approach consists
in expanding the modal topographies {e,(r)} into a suitable basis of functions, i.e., a
further spectral expansion. The main difference with respect to what we did in § 1.2.2
is that this new basis need not present any specific physical significance as it was the
case when using the eigensolutions of Helmholtz equation. In that case the modal
expansion bore physical significance and naturally yielded the concept of degrees of
freedom associated to the number of resonant modes.

This further expansion is rather a mathematical technique to simplify the descrip-
tion of random processes depending on a multidimensional variable, the modal to-
pographies. In this respect, any choice of basis functions is equivalent, as long as they
are capable of effectively representing realistic modal topographies. Among the several
potential candidates that are up to this task, the Fourier basis is perhaps the simplest
option. First of all, it is likely the most widely studied basis, with a number of specific
properties relating spatial and spectral representations [R59, R61]. Second, the spatial
and spectral representations of a vector function, respectively g(r) and g (k) are linked
through a Fourier-transform pair,

g(r,w) = 9_1{§}(r,w)=J g(k, w)e kT dk (1.51)
Cd

g(k,w) = %g}(k,w):f g(r,w)etkrdr, (1.52)
Cd

with d the dimensionality of the space in which the cavity is defined. The availability of
numerical codes based on fast Fourier transforms implies that this choice is numerically
efficient.
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Third, the Fourier kernel does have a direct physical meaning of interest : it repre-
sents a plane wave propagating along the direction k corresponding to the a propaga-
tion constant ||k||. This fact is one of the main reasons for its large use in the modelling
of wave-propagation phenomena, from Fourier optics [R57] to X-ray diffraction from
crystals [R28]. This property is of fundamental importance for the understanding of
the phenomena occurring within a cavity, as discussed in the next chapter: multiple-
incidence scenarios become apparent through the use of Fourier basis. Fourier spectra
applied to functions of the spatial variable are therefore typically referred to as plane-
wave spectra (PWS), where the original function is represented as a superposition of
plane waves propagating along a set of directions [R12].

Finally, plane-wave spectra allow a direct access to the physical phenomena under-
pinning the appearance of resonant patterns, i.e., the modal topographies as discussed
in § 1.4.2.

Getting back to the idea of using the Fourier kernel as a complete basis, we need to
acknowledge that this is a complete basis capable of representing any field distribution
only if the entire domain of the spectrum if accessible, i.e., any value of the variable k.
In practice, the value taken by k provides important physical information about the na-
ture of the plane wave associated: the spherical surface defined by ||k|| = k, identifies a
subregion of the reciprocal space representing plane waves propagating at the speed of
light set by the medium filling the cavity. Other values cannot be associated to propa-
gating waves, but are rather related to the reactive components of the spectrum [R12],
thus localized to a region of space attached to sources, primary or secondary (scatter-
ers). It is therefore reasonable to assume a plane-wave spectrum mainly composed of
propagating contributions, i.e.,

é,(k)=e,(k)5(k —ky), (1.53)

where it is sufficient to specify the direction of propagation of the plane waves, since
they all share the same wavenumber k,. The function e,(k) therefore contains the
entire information needed to reproduce the original spatial distributions, as

e,(r)= J én(lz)e_jkok'rdlz. (1.54)
4r

Being solely dependent on the angular direction k, e, (k) is sensibly referred to as
the angular spectrum in some texts.

Although (1.51) seems to suggest that the plane-wave spectrum of the overall field
distribution can be directly accessed from the original spatial distribution, it should
be clear that there is a mismatch: Fourier-transform pairs are defined for an infinite
support, whereas field distributions can only be defined within the cavity itself. Direct
application of a spatial Fourier transform as done in (1.51) would require a continu-
ation of the spatial distribution to the outside of the cavity. The choice of setting the
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outside field to zero would imply an extended discontinuity over the frontier of the cav-
ity, which would be translated in the plane-wave spectrum through the appearance of
reactive components, required to represent local discontinuities, thus leading to fictive
contributions to the spectrum. While the passage from the plane-wave spectrum to the
spatial distribution can be carried out by means of a Fourier transform, the opposed
passage is much more critical and requires estimation methods not relying on the or-
thonormality of the Fourier kernel, such as those at the base of MUSIC and ESPRIT
algorithms [R71, R68].

We have introduced these tools and ideas in the first place to cope with our inability
to predict the eigenfunctions {e,(r)}. Defining a plane-wave spectrum representation
can be a simpler task, since the entire spatial distribution is now captured by a set
of coefficients, potentially finite (see § 2.1). The question is how to choose a plane-
wave spectrum in such a way as to represent a realistic field distribution in a complex
medium? Two answers will be considered in § 1.4.1 and § 1.4.2, both relying on wave
propagation in media complex enough as to make the idea of a random ensemble ac-
ceptable.

1.4.1 Diffuse-field approximation

The first solution to the problem of modelling the field distribution in a complex me-
dia is based on a very pragmatic observation. Let us consider a medium structured
in such a way as to force any in-

coming wave to undergo a very

small scatterer large number of scattering phe-

nomena. Reverberating cavities are

é (k) . =

/ T an example of such media, but it is

© _> Q\ more intuitive to consider the ex-

5 —» l\\ \\A observer ample given in Fig. 1.9, where scat-

E — j l ,/ terers of lateral dimensions well

5 —» | smaller than a wavelength are dis-

% — \ ‘f /}v tributed in a random manner. Ran-

g —> Ql, O:: domness is here required in order

—> “/// l x\?“ l\\\“ to avoid the appearance of a dis-

crete set of eigensolutions, or prop-

agation modes, that would be pos-

Figure 1.9 — A multiple-scattering propagation sible in the case of periodic struc-
scenario, due to the presence of a large number tures [R8].

of small scatterers interacting with each other, When dealing with this kind of

excited by a single incident wave. Each scat-
terer contributes to the overall non-coherent
field with an elementary plane-wave spectrum.

media, as an incoming plane wave
interacts with the first scatterers
the portion of the wave directly af-
fected by each scatterer will be dis-

Large cavities in a harmonic steady state



1.4 - Random plane-wave spectra 31

tributed over a continuous set of directions through Rayleigh scattering [R38]. Each
scattering interaction can effectively be represented through plane-wave expansions, as
schematically depicted in Fig. 1.9, making each scatterer a secondary source of plane
waves propagating along a larger number of directions than the original one, with each
event yielding a contribution e (k) to the overall plane-wave spectrum.

This scenario is reiterated for all of the scatterers, intuitively leading to a pragmatic
conclusion: in a medium presenting a number of scattering events large enough, with
potentially multiple-interaction events (see Fig. 1.9), an observer deep enough within
the medium would be unable to identify the direction of arrival of the original wave,
since exposed to a very large number of waves providing each one a fraction of the
original energy, propagating along any possible direction of arrival. This concept is
usually referred to as diffuse-field approximation and it has a prominent role in wave
propagation through complex media, from stellar nebulae to ultrasound imaging [R38].

Modelling the complex amplitudes of the overall plane-wave spectrum as a collec-
tion of iid random variables, this state of propagation can be defined by the observation
that the Poynting vectors S; of each wave satisfy the following conditions, similarly as
to what is done in the analysis of percolation [R56]

1 {S()) I < V/(lISi()II?) (1.55)

with
S(w) = Si(w), (1.56)

implying that the net flux of power across any surface is negligible with respect the
root-mean-square flux contributed by each wave.

The passage from a relatively unperturbed free-space-like propagation to a diffuse-
field one implies some sort of spatial transient; this problem is at the core of the
radiative-transfer theory, first introduced to understand how light propagating through
stellar nebulae is affected [R10]. In the context of this dissertation, our interest will be
limited to the properties of diffuse-field propagation under a spatial steady-state con-
dition, i.e., when the field has lost any trace of the original coherence of the incoming
wave.

This approximation allows a strong simplification of the problem that has led us to
use plane-wave spectra in order to represent modal topographies. To understand them,
let recall that under a diffuse-field approximation the overall field is expressed as a
superposition of the contributions generated by an infinite number of scattering events
(see Fig. 1.9)

E(r,w)zZJ eM(k, w)e ok df (1.57)
n=1J4n
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where each such event contributes with a plane-wave spectrum e (k, w), i.e., an over-
all plane-wave spectrum

[©¢]

E(k,w) = Zé(”)(fc,w). (1.58)

n=1

This last consideration allows a direct derivation of the statistical properties of
diffuse-field scenarios. If we assume that each contribution e™(k,w) is statistically
independent from the others, and of similar intensity, then the central-limit theorem
allows stating that E (k, w) will behave as a Gaussian process, by virtue of the infinite
superposition of iid contributions propagating along a direction k, as coming from all
of the scattering events [R38].

In order to invoke this result, it is necessary
to have at least an heuristic explanation of why

E(]Ac) the elementary contributions eM(k, w) can be
/ regarded as iid and independent of the direc-
tion k. To this end, we can make reference to

Fig. 1.9: it is clear that after a relatively large
number of interactions, the field measured in
é(m(ic) proximity of the observer will be dominated by
contributions from scattering events occurring
at close range. These events will be very likely

é(nm(k) excited by incoming contributions generated by

previous scattering events and so on. Since each

Figure 1.10 — Random-walk in- event is capable of scattering an incoming wave
terpretation of the complex ampli- over a large fan of output directions, multiple-
tude of the plane-wave spectrum scattering events can be reasonably expected to

along the direction k. The field is
here a scalar complex quantity, for
the sake of simplicity.

provide a plane-wave spectrum statistically in-
dependent of the direction of observation, i.e.,
stationary in k, or isotropic. Counter-examples
of plane-wave spectra with anisotropic statistics
can be expected for structures where a dominant direction of propagation can be iden-
tified, such as periodic media, where the periodicity of their structure implies a quan-
tization of their plane-wave spectrum, thus leading to a reduced number of permitted
directions of propagation, or propagation modes [R8].

The Gaussian nature of a diffuse field can be explained by invoking the central-limit
theorem, but having oriented our whole discussion under a harmonic steady-state con-
dition, complex fields are to be expected. The phase shift of the plane-wave spectrum
can also be shown to be uniformly distributed over [0, 27t], by virtue of the central-limit
theorem [R26].

Propagation through multiple-scattering random media can be effectively treated
by means of random-walk models, where the overall plane-wave spectrum for a given

Large cavities in a harmonic steady state



1.4 - Random plane-wave spectra 33

direction can be visualized as a random path over the complex plane, as shown in
Fig. 1.10: each elementary contribution to the overall plane-wave spectrum is repre-
sented as a random phase shift and amplitude. The statistics of this kind of processes has
been studied for a long time, first to explain Brownian motion [R20] and more recently
in fields such as optics, to model light propagation through diffusive media [R26].

The last property usually associated to diffusive media is that of depolarization: the
plane-wave spectrum of the overall field will be effectively non-polarized, presenting a
polarization matrix [R93], i.e., the covariance matrix of the scalar components of the
plane-wave spectrum,

P(k, ) = (E(k, 0)E"(k, ) (1.59)

proportional to the identity matrix, hence iid scalar components. Again, the reasons
for this outcome are quite intuitive when looking at Fig. 1.9 and recalling that actively
propagating waves must present a polarization normal to their direction of propagation.
Since the directions of propagation are uniformly distributed over 4n steradian, the
polarization vectors are also bound to behave in the same manner.

A diffuse-field approximation therefore implies the following properties:

1. Depolarization

) Se ()
P(k,w)= E3 1,

(1.60)
with SE(C‘)) the spatial spectral power density of the plane-wave spectrum, inde-
pendent of the direction k.

2. Circular Gaussian probability distribution for any scalar component along a di-
rection i1, with zero average and a variance equal to the spatial spectral power
density Sg(a))/B

E(k,w)- 1, € #(0,5;(w)/3). (1.61)

3. Angular invariance of the probability distributions (isotropy) .

The overall field is therefore described as an incoherent process, analogous to ther-
mal radiation [R93]. This representation of the field directly implies field uniformity in
space, i.e., a spectral intensity independent of the position of the observer. Indeed, the
spectral intensity Sg of the electric field

Sg(r,w)= <||E(r, cu)||2> = f f <I§.‘T(Rl, w)é(kz, w)> e+jk°(k1_’22)'rd121d122,
4 J4n
(1.62)
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Figure 1.11 — An example of a speckled field distribution (amplitude shown). The
coherence distance is close to a wavelength and clearly related to the average
dimension of the field spots.

for which the hypothesis of iid plane-wave contributions implies

(E(ky, @B (s, ) = Sy()5(ky — k1), (1.63)

where

Sp(e) = (B, )I?) (1.64)

is the spatial spectral power density, i.e., the average power density of the plane-wave
spectrum. Hence

Sp(w) = 4715}3(03) Vr e, (1.65)

i.e., a statistically uniform intensity of the electric field over space. In a similar manner,
it can be shown that the scalar components of the electric field have the same average
intensity,

Sp(w)= (IE(r,@)-pI*) pe4n (1.66)
yielding

Sp(w) = (|IE(r, )[I*) = 3Sg(w). (1.67)

The most visual product of a diffusive medium is a field distribution known under
the name of speckle distribution, of which an example is given in Fig. 1.11. It results
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from the superposition of a large number of plane waves propagating along random
directions, with random complex amplitude governed by a circular normal distribu-
tion [R26]. This kind of field distribution can be a nuisance in imaging techniques
based on coherent illumination, while its generation is the goal of any reverberation
chamber used for EMC [R34] as well as acoustic tests [R44]. The existence of me-
dia for which the diffuse-field approximation is valid is also at the base of the ideas
discussed in § 3.

The explanations introduced so far to justify the properties and use of the diffuse-
field approximation have been based on the case of a plane wave propagating through
a collection of small scatterers. Its extension to a cavity passes through the acknowl-
edgement that the phenomena occurring in the former case are very similar to those in
a reverberating cavity. As a matter of fact, the presence of highly reflective boundaries
ensures that any locally plane wave would be reflected a large number of times be-
fore seeing its intensity becoming negligible; therefore, for a given original direction of
propagation, the set of plane waves generated by the subsequent reflection/scattering
events will yield a much larger number of inter-dependent plane waves, oriented along
a potentially very large number of directions and polarizations. Similarly to the case of
multiple-scattering events in collections of scatterers, the superposition of a large num-
ber of independent contributions can be expected to lead to a plane-wave spectrum
behaving as for a diffuse-field configuration, thanks to the central-limit theorem [R44].

This qualitative picture of a large cavity as a multiple-scattering rich environment
is often invoked to justify the use of the diffuse-field approximation; though very ef-
fective and simple, it is all too often forgotten that it is indeed an approximation that
is only asymptotically valid for an increasingly large number of independent degrees
of freedom. A number of properties expected for diffusive reverberation chambers are
therefore based on a model which is admittedly never fully satisfied and for which very
qualitative arguments are made to justify its use. Quantitative estimations of the errors
involved in the use of this approximation for not fully diffusive media are usually not
considered, to put it mildly. The extent to which the diffuse-field approximation can be
reasonably invoked is discussed in § 2.1.

The diffuse-field approximation has been widely used in acoustics to model the
properties of the field generated within a reverberation chamber, especially for the pre-
diction of the accuracy of spatial-averaging techniques [R51, R52, R74]. This applica-
tion is revisited in § 2.1, where the diffuse-field approximation is modified to take into
account the concept of a finite number of degrees of freedom.

Independently from its limitations, the diffuse-field model provides important in-
sights in the asymptotic properties of complex media, which can be used to establish
reference results that are independent from the fine details of implementation of a
diffusive medium. Apart from the plane-wave spectrum and spatial field distributions
already discussed, universal spatial correlation functions can also be derived, as defined
in § 1.3. For the case of the electromagnetic field, these functions have been studied in
details in [R32, R35] and will be briefly recalled in the following.
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Ey ()

Figure 1.12 - Expansion of two vec-
Ep @ ) tor fields into longitudinal, E,(r,w)
and transversal components, E,(r,w)
andE, (r,w), for the computation of
their spatial-correlation functions.

With reference to Fig. 1.12, non-trivial spatial-correlation functions for the electro-
magnetic field can be shown to be limited to just four cases

1. Between vector electric fields

SE(Q))pE(r]_, ro, C()) = <E.i.(r1, C()) 'E(rz, (J))> . (1.68)

2. Between the transversal scalar components of the electric field

Sp(@)pe(r1,m3,0) = (Ei(ry, 0)E,(ry, o)), (1.69)
as well as along the  components.

3. Between the longitudinal scalar components of the electric field

Sp(@)pi(r1, 15, 0) = (B (1, @), (ry, ) . (1.70)
4. Between orthogonal transversal scalar components of the electric and magnetic
field
Sp(w)
Tpm(rl,rz, O.)): <E:(r1,(.l))Hn(r2,CO)>, (171)
0

with {, the wave impedance of the filling medium in the cavity.

The above results are based upon the properties of spatial uniformity and depolar-
ization valid under a diffuse-field approximation. Dual expressions can be derived by
considering the magnetic field instead of the electric field. Any other type of spatial
correlation of field components is identically equal to zero.
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Figure 1.13 - The four spatial correlation functions introduced in (1.72)-(1.75),
as functions of the electrical distance d/A.

All these spatial correlation functions can be readily computed by applying the
statistical properties associated with the diffuse-field approximation, as expressed at
page 33, yielding [R32, R35]

pp(d,w) = sinc(kyd) (1.72)
3
pi(d,w) = (Fod)? [sinc(kod) — cos(kod) ] (1.73)
1
pld,w) = o [3pE(d, ®) — pi(d, w)] (1.74)
3
om(d, ) = ~iked [sinc(kod) — cos(kod)] , (1.75)

withd =||ry, — rq]l.

The four spatial-correlation functions are shown in Fig. 1.13 against the electri-
cal distance d/A. The electric-magnetic correlation p,,(d, w) being purely imaginary,
its imaginary part is plotted. Spatial-correlation functions play a fundamental role in
harmonic-driven cavities since they allow estimating the number of independent sam-
ples that can be extracted from measurements taken at different positions (e.g., spatial
averaging), or the statistical coupling between two devices (e.g., mutual influence).
These functions will also be shown to be at the basis of the generation of deterministic
wavefronts within large cavities, as discussed in § 3. In all of these cases, spatial-
correlation functions quantify the idea that having only access to the propagative com-
ponents of the plane-wave spectrum the smallest concentration of energy that can be
generated within a cavity (and in free space, too) is limited to a spot of about half a
wavelength in width, when measuring the spot between two consecutive zero cross-
ings. This limitation goes under the name of diffraction limit (in free space) and is at
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the origin of the impossibility of generating separate adjacent spots of energy without
having them merged into a single contiguous region, if these spots are closer than half
a wavelength.

1.4.2 A hybrid approach

The diffuse-field approximation is an effective response to the need of predicting in a
simple manner the behaviour of fields generated within a large cavity. Unfortunately,
results based on its use are bound to predict an ideal behaviour that is never fully
met in practical configurations (see § 2). The most disturbing implication of a diffuse-
field configuration is that it assumes the existence of an infinite number of degrees of
freedom within a system of finite energy and extent.

The actual limitations of the diffuse-field approximation can be better grasped by
means of an alternative approach which is halfway between a modal expansion and the
diffusive approximation. Basically, it consists in expanding each modal topography into
a plane-wave spectrum

N,

n

en(r) = Bope k", (1.76)

p=1

where N, is the number of plane waves needed to reproduce e,(r) and f,, are the
vector coefficients associated with this expansion. The modal spectra in (1.76) are
assumed to be discrete. There are good reasons for this choice, and we will try to
make our point clearer in the rest of this
section. Although the same approach can
be straightforwardly extended to the case
of continuous plane-wave spectra, we will
stick to the idea of discrete spectra for the
sake of simplicity.
First of all, we need to recall that for
a given field distribution to self-sustain it-
self (resonance condition), its plane-wave
spectrum must be defined in such a way
to have its individual plane waves inter-
fere constructively [R44]; this is the same
idea at the base of any electronic oscilla-
tor, and is sometimes referred to as phase
Figure 1.14 - A schematic illustration of congruence. Constructive interference,
the how the plane-wave spectrum of a leading to resonance, does not necessar-
modal topography e“,(,r) is determined ily require periodic paths, nor a discrete
by the boundary conditions of a cavity. .
plane-wave spectrum. But in the case of
simple geometries for the cavity bound-

Large cavities in a harmonic steady state



1.4 - Random plane-wave spectra 39

aries, especially if approximated by planar surfaces, this condition holds true. In all
other case, even though no periodicity can be observed (chaotic cavities), constructive
interference stays a fundamental condition for the appearance of resonances. For the
sake of simplicity, we will limit our discussion to regular cavities, where plane waves
generating a resonant pattern periodically travel along the same close path or orbit.
These concepts are schematically illustrated in Fig. 1.14 and allow stating that the am-
plitude of each plane wave must be ideally identical in the case of a lossless cavity. A
more general description will be considered at the end of this section.

Second, recalling that only the modes excited around their frequency of resonance
contribute to the overall field distribution, and assuming that the total energy stored in
the cavity is evenly shared, we can write

N, .
Po(wle(r) = f, Y &, e oknr, (1.77)
p=1

for the M dominant modes, while gnp are now complex unit vectors modelling the
polarization of each plane wave, characterized by a uniformly distributed random phase
and a unpolarized state. Coherently with the above discussions about the need, for
a resonant mode, of |||l ~ B,,Vp € [1,N,], the intensity of the plane waves is
controlled by a single parameter.

Substituting (1.77) into (1.15), the plane-wave spectrum of the overall field distri-
bution is derived as

M N, )
E(r) :Z}/nﬁnzgnpe_]k()knp.rz (1-78)
n=1 p=1

i.e., a plane-wave spectrum composed of groups of contributions associated to several
modes. Our qualitative discussion about the inevitable causal links existing between
plane waves belonging to the same mode imply that they should be treated as correlated
random variables. More precisely, they should not be treated as random variables at all,
since a priori knowledge of the geometry and boundary conditions of the cavity allow
a perfect prediction of the entire causal chain of plane waves generated by any one of
them. This idea is illustrated in Fig. 1.14, where the coefficients of two consecutive
plane waves are directly related to the reflection coefficient of the cavity boundary. For
the sake of simplicity, we will consider planar boundaries, thus neglecting the possibility
of a more complex and general scattering scenario. In any case, it would also be possible
to use a similar approach, establishing an iterative relationship

ﬁnp+l :Bp(gnp)ﬁnp7 (1.79)

with I_QP(E np) a dyadic operator modelling the reflection experienced by the np-th plane
wave interacting with the cavity boundary, plus the additional phase-shift cumulated
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through propagation before the next scattering interaction. Due to the highly-reflective
nature of boundaries used in reverberation chambers, it is reasonable to expect

1Bapll = By, Vn € [1,N,], (1.80)

as long as ||1_{p($ N ~1, vé ,P, as found in practice in reverberation chambers.

When considering regular cavities, a single plane wave propagates along a closed
path a number of times until its energy is dissipated. It is useful to introduce partial
plane wave coefficients [3,(1’;), where (k) is an integer indicating the number of time the
plane wave has completed a close orbit; the steady-state coefficients of the plane-wave
spectrum can be computed as

[e8)

Bop=> B (1.81)

k=1

This representation is useful when assessing the effective attenuation experienced
by a plane wave propagating along a resonant path. This can be done by relating
the quality factor of a mode to an effective attenuation coefficient a,, and a resid-
ual phase-shift angle Ay resulting from an imperfect synchronization (imperfect reso-
nance) among each periodic orbit, thus yielding the following relationship between the
phasor of a plane wave at the k 4+ 1-th and the k-th propagation cycle of an orbit of
length L,

k+1) _ gk)o—al,+jAg,
T(lp )_ﬁrgp)e al,HAey (1.82)
ie.,
_ : k
r(ll;) — ﬁr(lg) (e anL+JA<Pn) ) (1.83)

The attenuation a, is a homogenized coefficient taking into account the local dis-
sipation events occurring during the interaction of a wave with imperfectly conductive
boundary conditions and distributed dissipation caused by propagation losses through
the media filling the cavity. The infinite superposition of contributions from each orbit
potentially leads to a resonant build-up if a, ~ 0 and ¢,, ~ 0, thanks to the coherent
summing up of each contribution under a harmonic excitation, resulting into steady-
state coefficients

0 (0)
— )—__ ™
ﬁnp - Z ﬁnp - 1 _ e_anLn+jA(pn > (1.84)
k=0

where the denominator of the resulting fraction shows the resonant nature/origin of
the steady-state coefficients. For a perfectly constructive interference Ay, = 2mm,
corresponding to m = L,/A,, € IN, where A, is one of the wavelengths at which this
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condition is satisfied (respectively, occurring at the frequency f,,). In all other conditions
where the plane-wave coefficients are computed for a slightly different frequency

Ap =2 (1+Af) (1.85)
p=2— —_— 1, .
An fa
where Af = f — f,,. Approximating the resonant part of (1.84) for Af — 0
1 1 1 1.86
1— e_anLn+jA‘pn B . Ln Af i _ankn ’ ( ) )
T— —
AR
and comparing it with the asymptotic expansion of the functions v,(f)
! ! ! (1.87)
fz_fnZ_anzA_f_Fji’ .
le Qn
leads to
27 (1.88)
a,=—, .
" AnQn

which links the effective attenuation coefficient to the quality factor of the mode. If the
main dissipation mechanism is in boundary interactions, then

e~ nln = N, (1.89)

where N, is the number of boundary interactions undergoing during a full orbit of
length L,,, defining the number of plane waves making up the modal topography e, (r).
The parameter

re = (IRE) (1.90)

is the average intensity of the reflection coefficient along a random direction of inci-
dence & over all the boundaries. Noting I', ~ 1 — o

N = 2n L,
" 51"Qn An.

This last result is of interest, since it provides a direct estimate of the order of mag-
nitude of the number of boundary reflections occurring within a lossy cavity, and thus
allows assessing the number of plane waves maintaining a similar intensity associated
to each resonant mode.

We have seen thus far how a modal representation of the field can be recast into a
plane-wave spectrum with elementary contributions within each mode of almost similar
amplitude, as expected for overlapping modes (see § 1.3.1). In order to push further our

(1.91)
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analysis of the validity of the diffuse-field approximation, it is necessary to demonstrate
that these plane waves are indeed statistically independent, as required in § 1.4.1. We
have already seen in § 1.3.3 that the modal coefficients can be reasonably regarded as
independent. Computing the covariance of the plane-wave scalar coefficients

S

(BupBia) = Smn (1Bupl) [ [e 7% = 8 (IBupPYexp | <D i | s>p, (1.92)

i=p i=p

implying uncorrelated plane-wave coefficients when dealing with plane wave associated
to different modes. Restricting our analysis to the case of plane waves associated to the
same mode n, their correlation coefficient becomes

ol — (BB )
V(B2 (1B1cl2)

The direct consequence of (1.93) is that | P;()Tsl)l =1,Vp,s,n, i.e., the assumption of
statistically independent plane waves is not realistic.

This outcome is in contrast with the assumption that each mode can contribute
with a minimum number of independent plane waves [R44], e.g., assuming 8 plane
waves per mode, as would be expected for an empty rectangular cavity. This apparent
incongruence is due to the reasons already recalled in § 1.3: when considering a given
cavity, the field distribution can be treated as a random process only by considering
random sources, if the cavity is static. Under this condition, the only terms in the modal
expansion (1.15) that can be regarded as random variables are those related to the
sources, i.e., the modal weights. Therefore, for plane waves related to a same mode,
their coefficients are inevitably correlated in a deterministic manner.

In many cases, the statistical properties of random media are regarded through
the lens of ensemble theory, of interest in the case one wanted to know the average
properties of a set of random realizations of cavities of different geometrical/electrical
properties, but sharing the same macroscopic parameters, as discussed in § 1.3. If
we applied this idea to the case of the correlation matrix made up by the correlation
coefficients pl()’;) in (1.93), we should compute their ensemble average

<p£’;)>:<exp —ji% > (1.94)
i=p

The argument of the ensemble average is now a random walk process involving
steps with fixed length (equal to one) and random orientations within the complex
plane. This type of processes have been studied in a number of fields, but perhaps the
most relevant one is optical speckle [R26]. This type of random process has very simple

S
=exp —chpl- s>p. (1.93)
i=p
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moments as soon as the phase shifts have no preferential direction, i.e., are uniformly
distributed over the interval [0, 27t]. This condition is reasonable when considering an
ensemble made up of random cavities all maintaining dimensions much larger than a
wavelength. Under these conditions

exXp _j Z Pi = Ops> (1.95)
(=p
ultimately yielding
<p(n)> =1, (1.96)

i.e., uncorrelated plane-wave coefficients. In our opinion, the origin of the misinterpre-
tation of the statistics of plane-wave spectra generated by cavities is to be found in this
result, which does not hold for a single static configuration.

Taking into account the true nature of the statistics of the plane-wave spectrum,
the correlation matrix of the overall plane-wave spectrum in (1.78) must take a block-
diagonal shape

- (1.97)

This outcome appears as a natural consequence of the observation of the physics
of resonant field topographies, and is fundamentally independent from the simplifying
assumptions we have used to make our reasoning simpler and, hopefully, clearer. When
comparing (1.97) with the perfectly diagonal covariance matrix expected in the case
of a diffusive approximation, the resulting differences cannot be neglected. The first
observation is that the actual number of degrees of freedom available in practice can no
longer be thought to coincide with the number of plane waves propagating within the
medium

M
NPW:ZNn, (198)
n=1

but rather the number of modes, M. In other words, the rank of the correlation matrix
of the PWS coefficients is much smaller then its dimension, thus implying a redundant
representation. This conclusion seems to be implied in the fact that a modal expan-
sion based on Helmholtz equation’s eigenfunctions is efficient, so that any equivalent
expansion over a different basis is bound to require a larger number of spectral coef-
ficients. Hence, the latter will have to be substantially redundant, i.e., not statistically
independent.
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Clearly, this reduction in the number of available degrees of freedom has no major
effect when a very large number of modes are available in the first place. Very large
structures studied in their asymptotic regime at high frequencies will behave as pre-
dicted by the diffusion approximation. But as discussed in § 1.3.1 and demonstrated in
§ 2.2, field diffusion should not be taken for granted even though a very high modal
density were potentially available. This mismatch has led (and still leads) to a number
of wrong concepts and assumptions, particularly when cavities are employed as test
facilities, as discussed in the next chapter.

These conclusions are apparently in contradiction with Berry’s conjecture [R81],
which states that for a fully chaotic cavity a single mode implies a continuous PWS,
composed of an infinite number of iid contributions (1.3.2). His conjecture makes
sense from a propagation point of view for what are the directions of arrival of the
plane waves of a mode: the absence of periodic orbits in a chaotic cavity implies indeed
that the boundary conditions will lead to a large number of scattering interactions likely
distributed over a large number of directions of arrival. Now, the problem with this
assumption is that it cannot be verified, since it would imply generating an ensemble
of modes sharing the same macroscopic properties. In our opinion, this is an ill-defined
concept; although resonant modes can share the same frequency of resonance, quality
factor, etc, there is no way of linking two modal topographies in a causal manner,
even for dynamical systems or in the case of the inclusion of small perturbations. An
example should help here: if a single dot of perfect conductor where inserted in an
electromagnetic cavity, at a position where the cavity presents a maximum of field for
a given modal topography, the conductive dot would force the tangential component of
the field to be identically equal to zero for any polarization, because of its infinitesimal
dimensions. What would be the rational in comparing the PWS of the original modal
distribution with the one including the dot?

14
LA
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Chapter 2

Understanding real-life cavities

To kill an error is as good a service as, and sometimes
even better than, the establishing of a new truth or fact

Charles Darwin

HE aim of the previous chapter was to highlight the relationship existing be-
tween the widely used diffuse-field approximation and non-asymptotic mod-
els of wave propagation within reverberating cavities. The underlying idea
was to instill doubts about the wisdom of applying asymptotic approximate

models to physical systems operated at frequencies where they cannot in any manner
provide a sufficiently large number of degrees of freedom. As it will be argued in this
chapter, the faith of most reverberation chamber users in the validity of the diffuse-field
approximation has led to rather imaginative explanations of the non-idealities observed
when operating these tools.

It is therefore natural to ask the following question: is there a way of predicting
under what conditions the field measured within a cavity is well approximated by the
diffuse-field paradigm? Recalling that the diffuse-field hypothesis requires a large num-
ber of degrees of freedom and that this number increases on average with the electrical
dimensions of the cavity, the previous question is typically translated in practical terms
as : is there a minimum frequency starting from which the diffuse-field hypothesis
works well? If yes, how to predict it?

The existence of such a minimum frequency is currently taken for granted, as an
evidence, despite the fact that no precise definition or proof is available, to our knowl-
edge. Referred to as lowest usable frequency (LUF) in EMC or Schroder’s frequency
in acoustics, theoretical or experimental knowledge of this minimum frequency is of
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paramount importance to make any application of large cavities feasible. Hence the
physical and practical interest in its study, as considered in this chapter.

The alternative idea of using random models mimicking a diffusive condition while
enforcing a limited number of degrees of freedom will be applied in this chapter to
several problems. All of them share the necessity of understanding why large cavities
may sometimes behave in a manner that is not accounted for by diffuse-field models,
e.g., presenting statistical anomalies. The simple models introduced in the previous
chapter will be herein developed into theories showing inherent errors of interpretation,
providing explanations for the non-ideal behaviour of large cavities with respect to
the predictions of diffuse-field models. It should be clear from our approach that our
motivation is not the use of complex mathematical tools; we are rather guided by the
need of understanding the physical reasons for the actual behaviour of these peculiar
systems. The results of these analyses will appear to be surprisingly simple in shape,
bearing clear physical insights in the physical limitations of large cavities.

2.1 Spatial ergodicity

The conclusions from § 1.4.2 suggest the idea of considering an alternative random PWS
model, where rather than struggling with correlated plane waves, an equivalent PWS
composed of independent terms could be used. This straightforwardly implies using a
finite number of independent plane waves, equal to the number of modes accessible at
the working frequency. In the case of a pressure field p(r, w) observed under harmonic
excitation, the above ideas can be expressed as

Ny

p(r,w) =Y e ik, @1)
p=1

The single plane waves of the finite PWS in (2.1) are assumed to follow exactly the
same statistics of the infinite PWS associated to a diffuse-field approximation (§ 1.4.1),
but the number of plane waves is regarded as finite and equal to Ny. A finite number
of degrees of freedom is a condition more consistent with the physics of a finite-energy
bounded medium.

A word of caution is necessary : the field distribution (2.1) should not be expected
to be equivalent in a deterministic sense to that associated to random PWS with block-
diagonal correlation matrices. The equivalence operates on two levels: 1) the number
of degrees of freedom is the same as well as 2) all the statistical momenta of the PWS
terms, including the spatial-correlation functions of the overall pressure field as defined
in § 1.4. In this way, a statistical equivalence makes sense and can be defined without
ambiguity. These ideas were introduced in [J14] in the case of acoustic reverberating
rooms for the purpose of studying how far the equivalence between spatial and ensem-
ble averages of the mean-square pressure can be stretched.

Understanding real-life cavities



2.1 - Spatial ergodicity 47

This model can be applied to enforce the availability of only a finite number of de-
grees of freedom, while maintaining most of the properties of the diffuse-field approxi-
mation. It is therefore possible to study how the statistics of field-related quantities can
be expected to appear in a more realistic description; such an approach is of interest not
only in the lower-frequency range of operation of reverberation chambers, where a lim-
ited number of resonant modes exist, but also higher frequencies where the probability
of observing a lower number of modes than expected on average is far from negligible.
This last issue is discussed in § 2.3, and can be regarded as a first step towards a better
understanding of the physical reasons of statistical anomalies (outliers) observed even
at high frequencies where the diffuse-field approximation is taken for granted.

Spatial averaging is widely used as an approximate technique for assessing the av-
erage mean-square pressure [R74, R51, R52, R53]

wp2(@) = (Ip,(r, w)?) (2.2)

within a cavity, a quantity that was shown to be independent of the observer’s position in
(1.65). This quantity is fundamental when estimating the total acoustical power gener-
ated by a source, of practical importance in noise and absorption measurements [R44].
Average mean-square pressure should be assessed by means of ensemble averaging,
e.g., by means of randomization techniques such as random source positioning, ran-
dom geometry modifications of the cavity boundaries, etc [R44].

An alternative is to approximate the ensemble average by considering a single real-
ization of the pressure field distribution, while collecting a set of samples over different
positions within the cavity, i.e., averaging on spatial samples over a region Q' C Q,
rather than on random realizations

N,
1 S
Ppa(@) = (Ip(r, o)) o =+ D P @), rie Vi (2.3)
S =1
postulating
fp2() = pya(e). (2.4)

The reason for this assumed equivalence is that for a reverberating cavity, field-
related quantities are usually expected to be ergodic in space and time: the set of
random realizations of the pressure that would be observed at a single position are
expected to sweep the same range of values (with the same probability distribution)
than the samples collected over space within a single realization.

A simple analogy is to compare the results of the casting of one thousand dices at the
same time with those of a single dice cast one thousand times; intuitively, for fair dices,
one expects the same results, somehow putting on the same level ensemble averages
(the set of dices) with time averages (recasting the dice).
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In fact, ergodicity has been demonstrated only for some classes of geometry, of
which a fundamental example is Sinai’s billiard, a chaotic cavity [R11]. In simple words,
ergodicity requires that a particle launched along any direction will pass through all
points of the entire space of the cavity, crossing them along all possible directions, if
one waited long enough. Without entering this complex topic, it is clear that the very
notion of losses puts this property in jeopardy, limiting the trajectory of the particle
before the end of its infinite journey.

Ergodicity is therefore postulated because of the large number of scattering inter-
actions any wave experiences, redirecting their energy along different directions that
should ensure a complete sweeping of the cavity. From an experimental point of view,
this property cannot be verified easily, due to the fact that the true value of the ensemble
and spatial averages are not know; only estimates are accessible, thus affected by resid-
ual uncertainties. They should be regarded, at their turn, as random variables. Since
residual uncertainties of these estimators are typically far from negligible [R39], the
accuracy of the spatial average estimator cannot be identified against a clear reference.

Our proposal for a finite PWS goes in this same direction, since the direct conse-
quence of limiting the number of degrees of freedom is that the mean-square pressure
will no longer follow a chi-square probability law, presenting an increased statistical dis-
persion, as demonstrated in [J4]. As a consequence, the accuracy of the spatial average
estimator will be reduced.

First of all, the spatial-average estimator can be shown to be an unbiased estimator,
ie.,

<ﬂpz(w)> = pp2(w), (2.5)

whereas its variance is intuitively expected to decrease for an increasingly large num-
ber of independent samples entering the spatial average. Once again, the central limit
theorem is the main reason for this expectation, hence predicting that the estimation
relative error

fp2(w)
g, = ——— — (2.6)
.U'pz(w)
should asymptotically behave as
(e2) ~ o(ND), 2.7)
with @ = —1; i.e., when repeating the same measurements in a large number of cav-

ities all slightly different one from the other (i.e., an ensemble), the residual error of
the estimator, while on average equal to zero, will present a residual statistical disper-
sion. As recalled in § 1.2.3, samples collected in space though behaving as random
quantities cannot be assumed to be independent; residual spatial correlation implies
that the asymptotic convergence predicted by (2.7) is a best-case that cannot be met
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in practice, a fact well-known by users of reverberating rooms [R74, R89]. The sam-
ples are typically arranged over a Cartesian grid with a uniform distance A/2, in order
to minimize the spatial correlation between closest neighbours, while inevitably lead-
ing to residual long-range correlation with the rest of the samples. As demonstrated
in [J14], the resulting convergence rates for (2.7) can now be as low as a = —2/3 for
a three-dimensional grid of measurement points, a significative reduction.

The analysis carried out in [J14] was meant to go a step further, showing that even
the increase in the residual uncertainty due to spatial correlation is still only part of the
whole picture. Having taken into account the finite number N; of degrees of freedom
underpinning the pressure field, (2.7) becomes

<£5> ~AN* + AN, 2.8)

where A;,A, € R™. This result implies that even if the number N, of spatial sam-
ples increased, the second term could set a lower bound depending exclusively on the
number N; of degrees of freedom. Clearly, in the case of an ideally diffuse pressure
(2.8) would converge back to (2.7), as Ny — oco. Previously published experimental
results [R39] presented hints of an increased variability of the spatial-average estima-
tor. No explanation was available within the framework of validity of the diffuse-field
model. Unpublished results from our analysis confirms that assuming one single degree
of freedom per mode, (2.8) is capable of correctly predicting the deterioration of the
accuracy of the spatial estimator. So far, this is the only example of application of this
hybrid model. A similar idea, based on a random spectral model is presented in the
next section.

2.2 Imperfect diffusion

Asrecalled in § 1.1, all test facilities based on the use of reverberating cavities are firmly
founded on the assumption of a perfectly diffuse field distribution. This approximation
is regarded as reasonably accurate as soon as a sufficiently high number of degrees of
freedom are available, by virtue of the central limit theorem [R42, R45].

It is known that the actual number of degrees of freedom is the number of modes
that can be simultaneously accessed at the working frequency [R75, R3], as measured
by the modal overlapping introduced in § 1.3.1 and estimated, e.g., by means of Weyl’s
approximation (1.43). In the light of it, we need to be aware of two issues: 1) within
the context of the EMC community, the vast majority of the users of reverberation cham-
bers are still convinced that a high modal density is sufficient to enable a perfect dif-
fusion [R33, R42, R2]; 2) in either case, no mention is given about the link between
modal density/overlapping and the accuracy of the diffuse-field approximation. The
first point is unfortunately endemic to the EMC community, for reasons not very clear;
anterior research within the acoustics community was much more conclusive, leading
mostly to empirical criteria based on the requirement of a high modal overlapping, as
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the most significant figure of merit to invoke the diffuse-field approximation. Schroder’s
contributions were instrumental in this respect, though he also made large use of the
assumption of a perfectly diffuse field even at relatively low frequencies.

Whatever the field of application, the second issue is still open: how many modes
should overlap on average in order to accept that the diffuse-field approximation is ac-
curate enough? Without going through the surprisingly arbitrary criteria invoked within
the EMC community (see, e.g., [R2, R33]), it can be recalled that acoustic reverbera-
tion rooms are assumed to work properly as soon as at least 3 modes are overlapped on
average [R77], a criterium due to Schroder. An alternative criterium, previously pro-
posed by Schroder, rather required 10 overlapping modes [R72]. The existence of two
criteria points, in our opinion, to the lack of a formal analysis of the physics of resonant
cavities: 3 or 10 modes, these figures were derived on empirical appreciations that the
accuracy of the diffuse-field approximation gets better for higher modal overlapping
and the need for a working compromise. A quantitative assessment of the level of field
diffusion can be obtained by means of the procedure presented in [J4] (reproduced at
page 107) for the case of an electromagnetic cavity, briefly presented in § 2.2.1.

Acknowledging that the diffuse-field model is just an approximation, it is also im-
portant to know how good the predictions based on it are. This issue is particularly
important within the EMC community, since a recent trend has the quality of a rever-
beration chamber assessed by comparing its field statistics against the ideal case of a
diffuse-field. The implications of this approach are discussed in § 2.2.2.

2.2.1 Assessing the accuracy of the diffuse-field approximation

First of all, we need a mean of assessing the quality of the diffuse-field approximation;
this can be done by taking the electric-energy density W(w), herein assumed to be
independent from the position r for the sake of simplicity,

W(w) = e llE(w)I?, (2.9)

where € is the dielectric permittivity of the homogeneous medium filling the cavity,
and computing its relative variability

2
2 (w)= M -1 2.10

S (w) W (2.10)
defined as the ratio of its variance over the square of its average value. Under perfect dif-
fusion, g%v(co) = 1/3, since in that case W (w) would behave as a chi-square-distributed
random variable with 6 degrees of freedom, due to the iid contributions of the real and
imaginary parts of each of the three scalar field components. If the field did not behave
as expected, the variability would allow defining an error

¢z (w)—1/3

173 (2.11)

e2(w)=
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that could be expected to assess the accuracy of the diffuse-field approximation.

Why picking the electric-energy density? There are several reasons; first of all,
it is related to a quadratic form, hence it has nice mathematical properties for the
computation of norms, simplifying the derivation. Second, it is a combination of the
three scalar components of the field, so that it provides a global appreciation of the
behaviour of the electric field. And third, it is more suitable for experimental tests,
since estimators of a chi-square-distributed random variable with six degrees of freedom
are more accurate (lower relative variance) than those of chi-square-distributed random
variables with only two degrees of freedom, as is the case for any scalar field component
under a diffuse-field approximation.

The spectral representation introduced in § 1.2.2 allows expressing in a closed-
form W(w) as a function of the modal parameters. In particular, adopting a random
description as proposed in § 1.3, it can be shown that

3(k+1) 1

2 My(w)’
where k is the kurtosis of the real (and imaginary) part of the modal coefficients. The
above result was derived in [J4] by assuming the existence of an ensemble of cavities
generated by a perfect stirring technique: by this term we consider any randomization
technique capable of ensuring iid random realizations for the modal quantities intro-
duced in § 1.3. These are the same assumption required for a perfectly diffuse-field
configuration: the only difference is that we are now acknowledging and taking fully
into account the fact that the Lorentzian shape of the modal responses implies that only
a limited number of modes will be effectively excited at the working frequency.

It is remarkable to see how the modal overlapping M,,(w) naturally appears to de-
pend on the average number of modes found within the half-power bandwidth (-3 dB)
of the modal responses v ,(w); this value was not arbitrarily chosen, but neatly results
from the computations. Another interesting point is that €_(w) is strictly positive, in-
dicating that any deviation from the ideal diffuse-field configuration translates into an
increased variability: this result is unsurprisingly close to the increased inaccuracy of
the ensemble-average estimator studied in § 2.1.

Assuming Gaussian-distributed modal coefficients, (2.12) simplifies into

e2(w) = (2.12)

6 1

T My (w)’
a remarkably simple expression relating the average number of overlapping modes (as
defined in § 1.3.1) to the excess variability of the electric-energy density.

Equation (2.13) has a direct practical interest since it could be used to predict the
accuracy of the diffuse-field approximation. As opposed to the qualitative criterium re-
quiring a given number of modes to invoke field diffusion [R75, R44], (2.13) provides
a quantitative criterium, by allowing the user of the cavity to decide how many over-
lapping modes should be available on average in order to limit discrepancies between

ea(w)= (2.13)
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Figure 2.1 — Estimates of the standardized variance of the energy density W, as
assessed from experimental results obtained for : (a) an empty cavity (apart for
the excitation antenna) and (b) one loaded with a set of 4 pyramidal absorbers
(about 30 cm high).
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theoretical (diffuse-field models) and experimental results. Such thought should be
pushed a little step further by letting in statistical considerations about the estimators
used during experimental work; the details of these discussions are out of the scope
of this dissertation, but it suffices to recall that since the relative accuracy ¢,, of the
measurements/estimations are a priori known, there is no reason to try to enforce an
average number of overlapping modes so high as to ensure € 2(w) < €p,; it seems there-
fore reasonable to propose a minimum M), such that €_:(w) = €, corresponding to
the best approximation of a diffuse-field configuration, in this case limited by experi-
mental/statistical uncertainties [J4].

More generally, (2.13) proves that there is no universal definition of the minimum
number of modes required to observe a good agreement with the predictions of diffuse-
field models, as it all depends on the requirements of the user/experimenter. An ex-
ample is provided in Fig. 2.1, where the excess variability error was estimated from
experimental data. Being just an estimator, its accuracy is finite, as demonstrated in
[J4, App. B], hence the random fluctuations around the unknown true value, as clearly
apparent in the higher frequency range, where €_2(w) — 0.

Experimental results are compared against theoretical predictions using (2.13) in
conjunction with (1.43), using Weyl’s approximation to predict the average number
of overlapping modes, where the average composite quality factor was again estimated
from experimental data and approximated by a third-degree polynomial curve. This last
operation was defined in such a way as to be a loose upper bound of the experimental
data, as shown in Fig. 2.2; the rationale for this choice was to capture the trend of the
upper bound of € 2(w), but without taking too large a margin. The results in Fig. 2.1 are
quite conclusive, showing a good prediction of the trend of €(w) against frequency.
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Increasing losses in the shape of small absorbers lead to the improvement predicted
by (2.13), because of the increased modal overlapping involved in a lower average
composite quality factor. Still, this fact should not be regarded as a potential solution
to the problem of extending the diffuse-field condition towards the lower frequency
range. Increasing losses can improve the operation of a cavity if small enough to be
treated as perturbations, without modifying the validity of the assumption of iid modal
parameters. In any other case, as demonstrated in [R36], things get worse.

A final observation related to Fig. 2.1 is in order: while the global trend of the high-
est errors is correctly identified, it appears that (2.13) is far from begin a monotonous
function. The intuitive understanding requires that as the frequency increases the av-
erage number of modes increases (see § 1.3.1) as well as the overall losses. How is
it possible to observe on a local scale very strong fluctuations between very large er-
rors and very small ones? Part of the answer is the random nature of the estimator of
€.2(w): this is inherent to its being an estimator of a statistical moment. But while this
explanation can be readily accepted when observing the results in the higher frequency
range of Fig. 2.1, the fluctuations are surprisingly strong at the opposite extreme. The
question that should come to mind is: what is the accuracy of Weyl’s approximation?
Do we really have a clue about the actual number of modes being excited at a given
frequency? The inevitable answer is no, there is no way of knowing it, unless for un-
realistic canonical geometries. An explanation for the origin of these wild fluctuations
is proposed in § 2.3, where the random nature of the modal density is fully taken into
account.

It could be tempting, as it is the case for a number of people within the EMC commu-
nity, to invoke much simpler explanations for local anomalies: 1) experimental errors;
2) inaccurate experimental setups; 3) statistical outliers. A detailed rebuttal of these
oversimplified explanations is out of the scope of this dissertation; we can still suggest
some ideas as to understand how to judge of their scientific pertinence. Although ex-
perimental errors do occur, the first point is one of the oldest techniques to discredit
results that could, if proven right, put in jeopardy well-established, but perhaps not
very accurate, models and explanations. The second point mostly refers to the idea
of the presence of a deterministic residual contribution to the overall field; it can be
observed as soon as a line-of-sight propagation path is possible between the sources
exciting the cavity and the observer. While this scenario, usually referred to as par-
tially developed speckle in optics [R26], results in a distortion of the field statistics, it
has been proven theoretically and experimentally that what are often automatically re-
garded as unstirred components are in fact mathematical artifacts due to an incomplete
statistical analysis; a detailed explanation was presented in [C7]. The third point does
not deserve much attention in our opinion, as it is clearly a gross expedient to hide
one’s inability to explain physical phenomena. As it will be shown in § 2.3, statistical
anomalies (outliers) can be explained on a physical ground.
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2.2.2 Impact on confidence intervals

Despite the fact that (2.13) does not give any hint about the probability density func-
tions of the electric (or magnetic) field, it can be used in order to predict another in-
triguing phenomenon, namely the increased rate of rejection of statistical tests aimed at
assessing how close experimental data are to the probability density functions predicted
by diffuse-field models.

The most widely used technique to measure how close an empirical probability dis-
tribution is to a theoretical one is that of goodness-of-fit tests [R15]. Perhaps the best
known is Pearson’s chi-squared test; within the EMC community, more stringent statis-
tical tests have been adopted over the last 10 years, leading to a stronger preference for
Kilmogorov-Smirnov and Anderson-Darling tests [R46]. A discussion of the rationale
for applying this kind of tests to EMC-related tests is out of the scope of this dissertation,
but some reflections have been presented in [C22].

Accepting the use of such tests as meaningful, it has been noticed that their is a non-
negligible probability of rejecting the diffuse-field hypothesis even at relatively high
frequencies, where a reverberation chamber is typically expected to work in an ideal
state of diffusion [R46, R65]. Rather than resorting to the expedient of invoking rather
unclear explanations [R54, R65, R42], an alternative approach can be devised thanks
to (2.13).

Let us consider a real-life cavity, where the field statistics does not exactly corre-
spond to the asymptotic laws predicted by the diffuse-field approximation. In practical
configurations, quantities of interest are typically averaged over the random realizations
generated by means of stirring techniques, in order to obtain a more accurate estimate
of the true value of the quantity. An example is given by the average power received by
a probe, or the average field intensity observed at a position.

We can exploit this use of averages by recalling that the central-limit theorem states
that the asymptotic probability density function of these arithmetical averages is a Gaus-
sian function. It is therefore sufficient to know the average and variance of each of the
single realizations of the quantity of interest, in order to have a fair approximation of
its probability density function. To this effect, (2.13) already provides the ratio of the
first two moments of the electric-energy density, while it can be very easily modified to
account for the squared-amplitude of any scalar field component.

Sticking to the electric-energy density W, we can measure a set of samples {W;}
of electric-energy densities over a given position, obtained by means of any stirring
technique. Assuming these samples to be iid, the diffuse-field hypothesis would require
the samples to follow a chi-squared probability density function with 6 degrees of free-
dom. If the measurements were taken at sufficiently high frequency, the diffuse-field
hypothesis would likely be taken for granted.

Current wisdom would require to assess this hypothesis by means of statistical tests,
setting the diffuse-field hypothesis as the null hypothesis, i.e., the hypothesis assumed
to hold against which the data will be tested. All of these tests will provide a measure
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of the deviation of the experimental data from the theoretical distribution, by defining
a sort of norm.

Let us focus on the most intuitive one, i.e., the idea of confidence interval [R40], i.e.,
the interval within which a random variable satisfying the null hypothesis will appear
with a given probability 1 — a; a is therefore the probability of observing a sample of
a diffuse field outside the confidence interval, usually referred to as the significance
level of a test. The confidence interval can be predicted for the arithmetic average
(estimator) W computed from N,, samples measured at a given frequency

N,

_ 1
W= W)y, = N—ZWi, (2.14)

m =1

with W asymptotically converging in probability to a Gaussian-distributed random
variable with a variability ga_/ directly related to the variability of the samples {W;} as

2 2
2 :i(<wi>_1):%_ (2.15)

g_
Yo N, \(w)? N,

m

The concept of outliers is based on these very ideas, by considering that the estima-
tor W cannot belong to the reference distribution (null hypothesis) if it is significantly
outside the confidence interval; significance takes here a statistical meaning as it is up to
the experimenter to decide if unlikely extreme values should be regarded as significant
or not. A typical choice is a = 5 %.

Going back to the problem of spotting outliers, if a sample W; falls outside the
confidence interval, then three conclusions are possible:

1. the null hypothesis is valid : the definition of confidence interval allows sam-
ples to fall outside it with a probability a, so it is still possible to satisfy the
null-hypothesis (perfect diffuse-field configuration) while observing some pecu-
liar samples (rare events). Intrinsical to this picture is the idea of observing these
outliers with a probability not significantly different from a;

2. the null hypothesis is assumed to be valid, while the observed rate of samples
falling outside the confidence interval is significantly higher than a. The contra-
diction is solved by invoking experimental errors, such as unstirred components,
operating as systematic errors (biases);

3. the null hypothesis is rejected by assuming the experimental work to be correct,
applying in a strict manner a decision criterium set by statistical tests.

How could (2.13) help in this discussion? The answer is by proving that the con-
fidence intervals computed from the null-hypothesis are too conservative, leading to a
rejection rate that is qualitatively interpreted as a substantial deviation from the ideal
state, while yielding in practice little difference.
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Figure 2.3 — Theoretical quantile-quantile plot of the asymptotic distribution laws
for (W) in the asymptotic and non-asymptotic case, as based on (2.13), for a num-
ber of average overlapped modes M,, = {1,3,10,20,50}. The dashed line stands
for the bisector, which is asymptotically approached as M,, increases. The size of
the sample population is not needed in this type of plots, as it only intervenes in
setting the confidence interval, with no effect on the relationship between the two
quantile distributions.

We are talking about a distortion in the expectation of the confidence interval, which
can be predicted in a straightforward manner. To this end, let us consider a number N,
of independent samples W; large enough as to have their arithmetic average W approx-
imating a Gaussian law, by virtue of the central-limit theorem. We aim at computing
how a confidence margin defined for a significance level a under the hypothesis of a
diffuse-field behavior, translates into another confidence margin whenever M,, happens
not to be high enough. A good and intuitive way of assessing the effect of a finite My,
is to check how the quantiles of the asymptotic case, i.e., M;; — 00, relate to those of
the modal description we have introduced. As we are dealing with this problem under
the approximation of a normally distributed W, the quantiles are given by [R40]

Iy +V2¢perf 1(2p—1) (2.16)

WUy

where p = P(W < qp) is the probability associated to the quantile q,,, while uy is
the expected mean-value of W and gﬁv was defined in (2.15). The central-limit theorem
allows to compute a good approximation of the quantiles of W just by knowing these
two moments, for the case of an ideal xé-distributed W; and for the more realistic case
provided by (2.13). The result of this operation is presented in Fig. 2.3, where any

Understanding real-life cavities



58 2.2 - Imperfect diffusion

100

Figure 2.4 - Apparent signifi-
cance level a’ associated to the
one based on asymptotic statis-
tics (i.e.,the diffuse-field hypoth-
esis), a. As the number of over-
lapped modes M,, decreases,
the statistical interpretation of
the arithmetic mean of experi-
mental samples can be increas-
ingly misleading, due to a higher
variance with respect to the
samples mean.

1 10 100

confidence margin established on the asymptotic case for a given significance level a is
shown to lead to an inevitably larger margin with the same significance level as soon as
M, is found to be finite. It is interesting to notice that the case M,,; = 3, often regarded
as a good compromise for a diffused field in room acoustics, actually provides a more
than twofold increase in the original confidence margin.

The other way round, choosing the same interval margin for the ideal and non-ideal
cases, if this interval corresponds to a significance level a for the former case, this will
lead to a corresponding significance level a’ in the latter, related as

_ M
a'=1-—erf (ql a/2 M ) . (2.17)

V2 18/m + My,

This function is plotted in Fig. 2.4, for several values of a. These results provide a
direct feeling about the increased probability of incurring into samples falling outside
the originally intended confidence margin. The probability a’ of this event increases not
only when M, is relatively low, but also when the significance level a is reduced. This
type of interdependence has a potentially very harmful impact, as « is typically reduced
in order to improve the significance of the results of a statistical test, thus reducing
the number of samples that would be otherwise regarded as outliers: when expecting
asymptotic results from a realistic RC, this risks leading to a higher rate of rejection of
eventual hypothesis tests, i.e., the opposite effect expected in the first place, since the
frequency of occurrence of outliers will inevitably increase.

The results in Fig. 2.4 should be considered with due care. As shown in [J7, App.],
the average number of overlapping modes can be quite low, staying well below 3 at
frequencies where a reverberation chamber is regarded (not only assumed!) as fully
compliant with international standards [R2]. Still, Fig. 2.4 shows that for M;; = 3
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the probability of estimating an average electric-energy density outside the confidence
interval is 5 times higher for a =5 % and 13 times higher if « =1 %. In other words,
despite the fact that in practice the cavity is working properly, the blind application of
statistical concepts would lead to stronger rejection rates, yet not representative of a
more or less important degradation of the performance of the cavity. Further elements
have been added to this discussion in [C22], but the simple analysis here shown proves
that statistical tests should not be used without linking them to practical measures of
degradation of the performance. In the opposite case, the risk of depriving them of any
quantitative meaning, hence usefulness.

2.3 Local statistical anomalies

The statistical anomalies (outliers) observed on a local scale in Fig. 2.1 are intriguing
features of any reverberation chamber. In order to understand their origin, we need to
go back to the definition of modal overlapping and hence of modal density. As recalled
in § 1.3.1, the only estimate of the modal density easily accessible in practice is Weyl’s
approximation. It is therefore natural to wonder how far away from it is the actual
modal density observed for a specific configuration; following this line of thought, what
would be the effect of a deviation from Weyl’s estimate? This issue was studied in [J7]
and its major results are presented in § 2.3.1.

As soon as the idea of a random modal overlapping is considered, it becomes clear
that the very existence of a LUF (or Schroder’s frequency) as currently defined loses any
physical ground. This point is discussed in § 2.3.2, where an alternative definition is
suggested.

2.3.1 Random fluctuations in the modal overlapping

These questions can be answered by developing the results summarized in § 1.3.2:
by knowing the probability density function of the distance between two consecutive
frequencies of resonance, it should be possible to provide an estimate not only of their
average number within a frequency bandwidth, but more generally to estimate the
probability of observing more or less modes than expected on average from Weyl’s
approximation.

Recalling that the modes in which we are interested are those found within the
average modal bandwidth B,;, the above problem can be reformulated as a need to
develop a probabilistic description of the number of modes found within By,;. In order
to stress the difference with the average number of such modes My, predicted by Weyl’s
approximation, the actual number of modes overlapping will be referred to as My,
standing for the number of modes locally overlapping over By,.

Deriving the probability density function of M. from that of the spacing two consec-
utive resonant frequencies is more related to combinatorics than physics. The procedure
developed in [J7] passes through the following steps:
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Figure 2.5 - Modal probability density functions for an integrable cavity : (a)
number of modes observed over a given bandwidth, with respect to Weyl’s formula
estimation (numerical values close to each curve); (b) relative fluctuation of the
local modal overlapping with respect to the estimate based on Weyl’s formula.
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Figure 2.6 — Quantiles of the deviation of the local modal overlapping with respect
to the estimate obtained from Weyl’s formula, for (a) an integrable system and (b)
a GOE chaotic one.
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1. deriving the probability density function of the overall bandwidth S,,

Su= s (2.18)

covered by n + 1 consecutive frequencies of resonance at distances {s;};

2. from S,, the probability of observing n modes within a reference bandwidth B
can be formulated as the probability of fulfilling the condition

S, | <B<S,; (2.19)

3. the effective number of modes observed over the bandwidth B, is therefore di-
rectly obtained as

n _
Mioe = S_BM; (2.20)

n

where the probability density functions of n and S,, are known by now from the
previous steps.

Since the main point to ascertain here is to quantify the random fluctuations of M,
with respect to My, it is natural to consider their ratio, implying

M loc n 1

=—— (2.21)
My Sp My

which is still, though not explicitly, dependent on the reference bandwidth B over which
the local modal overlapping is studied. Examples of the probability density functions of
n and M,./My, computed for an integrable cavity (§ 1.3.2) for several values of My,
are presented in Fig. 2.5. It can be seen that for values of My, < 5, the probability
of observing no resonant mode is not negligible, while more in general the probability
density functions of n are spread over a quite large range of values. The direct conse-
quence is the appearance of fairly large fluctuations in the actual number of overlapping
modes M. with respect to the values predicted by Weyl’s approximation, as visible in
Fig. 2.5(b).

The original motivation for this analysis is better served by Fig. 2.6, where some
quantiles of the probability distribution of M,,./My, are shown for the two ideal cases
of integrable and GOE chaotic cavities.
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The median (50 % quantile) is
very well approximated by the es-
timate My, provided by Weyl’s for-
mula. Hence, there is an equal
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higher or lower modal overlapping.
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ability of observing a lower modal
overlapping. In this respect, when
expecting My, = 1, there is a 10 %
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strong reduction is proven by our
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the variability of the electric-energy
density, as demonstrated in [J4]
and recalled in (2.13). Worse, but
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pear : with a probability of 1 % the
modal overlapping can be found
below 25 % and 44 % of My, .

These results could be expected
to improve when a higher modal
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ered. This value is often taken as
a reference for the appearance of a
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Figure 2.7 — Empirical probability distributions
of the number of overlapped modes M,,. found
in a rectangular cuboid cavity. These results
pertain to the local modal overlapping M,,,
counted over a frequency bandwidth where a
reference overlapping My, is predicted by means
of Weyl’s formula. The thick curves repre-
sent the theoretical probability density func-
tions shown in Fig. 2.5(b).

diffuse-field condition in room acoustics [R75]. Even in this case, M,. can be lower
than 58 % and 72 % of My, with a 10 % probability; with a probability of 1 %, be-
low 34 % and 56 %, again for integrable and GOE cavities. Hence, even at relatively
high modal overlappings, the probability of observing normal strong deviations in the
field statistics should not be underestimated. Recalling that My, = 3 is expected only
at relatively high frequency [J7, App.], the appearance of statistical anomalies from a
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local lack of modal overlapping seems to be very likely in the lower frequency range of
operation of a reverberation chamber.

A probability of 1 % is compatible with the rate of appearance of local non-compliancies
observed in practice, and could thus provide a physical explanation to the observation
of outliers [R42]. It could also serve as an explanation for the existence of local non-
compliancies even at higher frequencies, where the concept of diffuse field is usually
taken for granted.

These predictions were verified by computing the local modal overlapping expected
in a canonical cuboid cavity; analytical formulae are available to predict the frequencies
of resonance of such a cavity [R33]. The bandwidths over which this operation was car-
ried out were computed by taking Weyl’s approximation (1.43), imposing a given My,
finding out the bandwidth My, /my, (f) over which this number of modes are expected
to overlap at a given frequency and counting the actual number of modes. The four
values My, = {1,2,5,10} were considered, and the actual count M, .(f) was computed
over 1000 frequencies (see [J7] for details). The empirical probability distributions thus
obtained are shown in Fig. 2.7, where they are compared to the theoretical probability
density functions shown in Fig. 2.5(b). Disagreements appear as My, increases: in this
case the spacings between adjacent resonance frequencies can no longer be regarded as
independent random variables. Higher-order statistics should be included, as described
in [R81], taking in to account longer-range correlation between spacing realizations.

Among the several approximations employed in this analysis, the hypothesis of a
constant quality factor has hefty consequences on our results, since the quality factor
of resonant modes are known to be strongly fluctuating quantities, too [R13, R25, R3].
This further source of randomness implies that the average modal bandwidth B,, should
also be treated as a random variable, linked to that of the quality factor. Therefore, an
extended model can be proposed by regarding all previous probability density functions
as conditional to a fixed value B, e.g.,

Pumg./my () ~> Dag s, (X1Bag). (2.22)

The probability density function for the modal overlapping could thus be computed
as

leoc/MW(x) = prloc/MW(xly)pBM(y)dy (2.23)

This idea is still a proposal and it has not been pushed further. Nonetheless, (2.23)
can be expected to present an increased statistical dispersion with respect to the sim-
plified case of a fixed average quality factor, thus suggesting that the above results are
in fact best-case results. The rate of increased probability in observing modal-depleted
conditions requires solving (2.23).
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2.3.2 Considerations about the definition of the LUF

It is useful to recall the trajectory of our investigations. We started from the observa-
tion that the usual approach of assuming a threshold frequency beyond which a cavity
supports a diffuse-field model is flawed. The rationale behind this conclusion is that
statistical anomalies appear even at frequencies well above this threshold frequency;
tentative explanations of faulty setups appear rather unconvincing. The establishment
of a formal relationship between modal overlapping and excess statistical dispersion
in the electric-field intensity, while taking into account the random behaviour of modal
spacing, has led to a statistical description of the probability of occurrence of the anoma-
lies observed in the first place.

The natural consequence of this line of investigation is that the idea of a minimum
frequency (LUF), as currently done, has no physical support. There is no minimum
frequency above which the ability of a cavity to behave as a diffuse-field generator
will improve monotonously, since there will always be a probability, though weak, of
observing a local statistical anomaly at a given frequency.

An alternative idea can be introduced, based on our analysis: the LUF can be de-
fined in probabilistic terms as the minimum frequency above which the probability of
observing statistical anomalies reduces below a given value deemed reasonable. This
idea is just a proposal, and is currently under investigation; still, it seems more natural,
and physical, than all of the current rather arbitrary definitions. More importantly, it
has a practical side, since knowledge of the probability of observing statistical anoma-
lies is fundamental in order to assess the accuracy of any experimental result obtained
in a cavity.
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Chapter 3

Coherent field generation

Simplicity does not precede complexity, but follows it

Alan Perlis

EVERBERATING cavities are not always operated in conjunction with harmonic
excitations. For example, multi-tone signals and wide-band noise [R44] are
also used in acoustic reverberating rooms. These non-harmonic excitations
are mainly introduced as an effective way of averaging out the random fluc-

tuations found in the operation of reverberation chambers, e.g., in the case of radiated-
power measurements, or as a randomization procedure, and are also used in the context
of EMC tests when introducing frequency stirring procedures [R31].

In this chapter, we are rather concerned with a very different issue, that of using
non-harmonic excitations in order to control the response of a cavity. The focus will
be on the idea of making coherent applications possible. By this term we consider the
generation of field distributions and propagating wavefronts that appear to be occurring
in a free-space environment, as generated by deterministic sources.

So far we have kept stating that the field distributions generated within a large
reverberating cavity is of non-coherent nature, resulting from a large number of reflec-
tion/diffraction interactions of propagating waves with the cavity boundaries. We have
argued about the more or less diffusive nature of the field distribution in § 2, but have
always taken for granted the non-coherent nature of any field distribution generated in
a cavity, as a requirement for their use as standardized test facilities.

The idea of having coherent wavefronts propagating within a reverberating cavity
as in free-space should therefore definitely come as a surprise. If any harmonic ex-
citation results into a non-coherent field distribution, how could it be possible that a
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collection (eventually continuous) of such distributions at different frequencies could
resemble to free-space propagation conditions? The answer to this apparent paradox
relies upon self-averaging properties of random media, when excited by means of spe-
cial non-harmonic signals. As shown in § 3.2.1, this property is made possible by the
existence of a large number of degrees of freedom over the excitation bandwidth, as
discussed in § 1.2.3. Not only coherent fields can be generated, but their polarization
can also be controlled in a manner that has no equivalent in free-space environments,
as shown in § 3.2.4.

In order to access these properties, the concept of time-reversed excitation will be
introduced in § 3.1, as the fundamental technique upon which the techniques here dis-
cussed are defined. The guiding principle along this chapter will be the idea that the
use of complex media can, under certain conditions, simplify the generation of field
distributions of interest in practical scenarios. All of these properties are possible only
because the diffuse-field approximation can be invoked, as discussed in § 3.3, turn-
ing upside-down the received wisdom that free-space-like environments, e.g., anechoic
chambers, provide the simplest conditions for the generation of coherent field distribu-
tions.

It should be clear from the beginning that our aim is not only to emulate free-space
conditions within a reverberating cavity but more generally, as discussed in § 3.3.2, to
define new procedures capable of offering properties that are not easily found in free-
space environments, bridging the gap between anechoic and reverberating chambers.

3.1 Time reversal of waves

In this section we do not pretend to provide a thorough summary of time reversal, nor
of all of its applications. We rather aim at recalling some of the assumptions that are
necessary in order to have access to the properties of time reversal;, moreover, we want
to highlight some issues that are often neglected and that play a fundamental role in
the limitations of this type of technique, particularly in the context herein considered
for tests based on predefined wave configurations. A panoramic view of available time-
reversal applications is necessary in order to get a better grasp of our contributions to
this technique.

Time reversal is fundamentally the same technique previously known as phase-
conjugation, which originated in optics in the late 70s [R95], primarily intended to
compensate distortions (self-healing) in wavefronts propagating through complex me-
dia, particularly with the aim of focusing energy towards a given position in space. All
of the applications of time reversal are based on one fundamental property of Helmholtz
equation, namely its being time-reversal symmetric, implying an invariance of its solu-
tions to a change of sign in the time variable. This property is apparent when looking
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where u(r,t) is a generic vector solution, or wavefront, and c is the speed of light in
the medium. Time-reversal applications typically exploit this property by coupling it
to Huygens’ principle: as depicted in Figs. 3.1(a)-(b), we can define a two-step proce-
dure where the first step involves a source of radiation generating a diverging wave-
front recorded by an ideally continuous set of transducers (e.g., antennas) deployed
over a closed surface . These transducers are usually referred to, in the context of
time-reversal applications, as a time-reversal mirror (TRM) [R9]. Coupling Huygens’
principle to the time-reversal symmetry of Helmholtz equation implies that by exciting
the transducers with the time-reversed version of the signals received during the first
phase, the TRM will generate an ideally perfect replica of the original wavefront, but
this time converging back at the source, as a consequence of our inverting the direction
of evolution of the time variable [R9].

The time-reversal symmetry of (3.1) is apparently always satisfied: in fact, this prop-
erty is not shared by every solution u(r,t) of (3.1), since the time-reversal symmetry
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is broken at least in two cases: 1) for wavefronts involving evanescent waves (source
region); 2) when dealing with lossy media. This fundamental limitation implies that
focusing wavefronts generated by means of time reversal cannot provide any focusing
beyond the diffraction limit [R79, R58], i.e., the minimum size of the focusing spot
is about the wavelength of the central frequency involved in u(r, t), since the spatial
information related to the evanescent waves cannot survive to the distance from the
source to the TRM and back again. Only evanescent waves allow the reproduction of
spatial field distributions with “faster” spatial variations than those associated to prop-
agative contributions, i.e., related to a wavelength.

An important step in our proposal is the passage from the usually open media ad-
dressed when using the paradigm we just recalled, towards bounded ones, e.g., closed
cavities. This issue was studied in several papers, e.g., [R19, R48], where it was shown
that time reversal can still be applied in configurations where the notion of a continuous
TRM surface is lost, as long as the cavity can be treated as highly-reverberant, in order
to ensure a large number of independent degrees of freedom. In this case, the TRM
can be shrunk to a few transducers with no need to share a portion of a continuous
surface. Without going into details, as this is out of the scope of this dissertation, it is
now the array of images of the actual transducers that constitutes a generalized TRM,;
the main difference is that the signals “applied” or “received” by each of these images
are inevitably replicas of the few signals actually applied/received by the real transduc-
ers. The consequences of this strong interdependence are explored in §§ 3.2 and 3.3,
by means of frequency and spatial correlation functions.

Image theory allows establishing a close relationship between open media and cavi-
ties; hence, the properties of time reversal can be expected to apply to the latter case, as
equivalence theorems [R30] do not require to consider a continuous surface of equiv-
alent sources (here, the TRM transducers). As a result, pulsed wavefronts can be gen-
erated in reverberating cavities, a surprising result that has received much attention
during the last ten years, in particular within the acoustics community [R67, R19].
Concerning the case of electromagnetic reverberation chambers, the first experimental
demonstration was provided in [R48], while theoretical investigations dealing with a
realistic description involving losses was presented in [J2].

The ability to generate pulsed fields within a reverberation chamber is a topic that
deserves a full investigation in its own: as a matter of fact, it is well-known that it is
currently very hard to generate short-pulsed fields as required by some standards [R1]
when testing immunity for EUTs closely exposed to high-power radar pulses: not only
pulsed fields can be generated with time reversal, but it has been demonstrated that
by focusing a part of the energy into a portion of the cavity, the already high energy
efficiency of RCs can be dramatically increased when operating them with wide-band
excitation signals [J3], as recalled in § 3.2.3. Furthermore, it has been recently shown
that the polarization of the field thus generated in an RC can be easily controlled, with
a remarkably pure polarization [J13], a fact discussed in § 3.2.4.

A last point to recall when dealing with time reversal is the development of the
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DORT technique [R64], a French acronym meaning expansion of the time-reversal op-
erator. This approach introduced a new paradigm for time reversal: standard time
reversal considers that what will be the target of the focusing wave during the second
phase (Fig. 3.1(b)), needs to be a source during the first one (Fig. 3.1(a)). The DORT
allows avoiding the target to be a source, whenever it behaves as a point scatteret, i.e.,
as a passive device that will respond with a spherical wavefront to an externally ex-
cited locally plane wave. Under these conditions, the DORT technique implies using
the TRM to generate a testing wavefront (Fig. 3.1(c)), to which the EUT will respond
behaving as a passive scatterer. The DORT has been shown to allow focusing over one
among several targets (Fig. 3.1(d)) as long as these are sufficiently separated in order
to resolve them from an imaging point of view [R27]. The DORT may appear to have
some interest for testing applications, particularly when dealing with passive EUTs that
cannot be operated as active sources.

The problem with these two methods is that in the available literature time-reversal
applications always aim at producing a focusing wavefront at some position in space.
The motivation is never the generation of a wavefront for testing purposes: the reason
why focusing is under consideration is typically either a clearer transmission of signals
through complex media at a given position (e.g., a receiver in underwater [R43] and
wireless communication schemes [R49]) or to improve imaging techniques [R64, R27,
R96]. As we argue in § 3.3, this is not compatible with EUT testing, since EUTs are
often electrically large and present distributed scattering features rather than localized
ones.

3.2 Time-reversed transmissions through complex media

Albeit its being usually defined for the focusing of a wavefront, most (if not all) appli-
cations of time reversal aim at the reproduction of pulsed fields at a given position in
space. For a signal-theory point of view, this problem is equivalent to the transmission
of a signal from a transmitter to a receiver; in the case of pulsed-field generation, the
receiver will just be characterized by an ideal field probe sampling the field without in-
troducing any alteration. Hence our regarding all these applications as a point-to-point
transmission problem.

In this respect, there is hardly any difference between time reversal and a matched-
filter approach. Differences exist, but are to be found not at the position of the receiver,
but around it: time reversal also aims at maximizing the amount of energy observed
around the focal point, where the receiver stands, but this fact has no impact on the
analysis of the quality of the transmission as a matched-filter application.

The transmission by means of any type of wave, be it scalar or vector in nature, will
result in a scalar transfer function, relating the inevitably scalar signals at the trans-
mitting and receiving ends. We will consider in the following that our objective is to
transmit the best reproduction possible of a template signal x(t) through a medium
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with an impulse response h(t). The
@ output signal

y(t) = x(t)*h(t) (3.2)

is typically a very poor reproduction of
x(t) when dealing with complex me-
dia, due to random fluctuations in the
transfer function H(w), especially ran-
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ﬂ ing assumption implies that the band-

width By of x(t) be much larger of

o9 the coherence bandwidth B, of the
: medium transfer function; conversely,
ol x(t) would be properly transmitted
even through complex media, a fact

exploited in sub-carrier communica-

055 =T 5 1 50 tion schemes, such as in orthogonal

frequency-division multiplexing.

In the case of time-reversal com-
munications, the received signal is
rather given by

Normalized time 7 = Byt

Figure 3.2 — An example of impulse re-
sponses measured in Supelec’s reverbera-
tion chamber, for f. = 1.1 GHz and By =
0.5 GHz: (a) direct impulse response h(7)
and (b) equivalent impulse response g(t)
for time-reversal transmissions. Time is nor-
malized to the coherence time 1/B;.

y(t) =h(t) xh(=t)*x(t), (3.3)

having applied the signal x(t) *h(—t)
at the transmitter input port. There-
fore the received signal could be interpreted as being transmitted trough an equivalent
medium characterized by an equivalent transfer function

G(w) = |H(w), (3.4)

directly applying the signal x(t) originally intended for transmission. What has changed
in between a direct transmission and the time-reversal one is that the equivalent transfer
function is now real and positive, so that the main mechanism by which coherence was
lost, namely random phase-shifts, is now absent. The Fourier spectrum of the received
signal is still subject to random fluctuations, but as discussed in § 3.2.1, if By /B, > 1,
the received signal will be a good replica of x(t).

A simple way of understanding this property requires looking back at (3.3): the
equivalent impulse response is
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g(t) =h(t)*h(-t), (3.5)

i.e., the autocorrelation function of the original impulse response. In this last expres-
sion, as in the rest of this work, we will use an anti-causal representation, since h(—t)
should in practice be written as h(T — t), where T is the duration of the impulse re-
sponse. This choice is intended to simplify our notations and has no impact on our
conclusions.

While g(t) has no remarkable difference from h(t) in the case of a free-space en-
vironment, in the case of random media it can be very different. If h(t) bears no self-
resemblance, then its autocorrelation function g(t) will be characterized by a peak
around t ~ 0, while for t Z T,, the coherence time of the medium, it will typically
present a very low average value, fluctuating around the value zero. An example of
these impulse responses is shown in Fig. 3.2, expressed in normalized time 7 = Brt:
while h(7) is dominated by the relaxation time of the cavity with a time-constant of
about 1000, g(7) weakly fluctuates around zero as soon as T 2 2, implying that the lat-
ter is dominated by the coherence time of the cavity impulse response, which is indeed
much shorter than its relaxation time.

It is clear from these ideas that the use of g(t) rather than h(t) in random media
has a strong appeal, since g(t) appears to be a fair approximation of a Dirac delta,
thus potentially allowing the proper transmission of x(t) at the receiver. Hence one of
the reasons for the strong interest time reversal has suscitated in applications involv-
ing complex media. An example of the reproduction of a wide-band pulse within a
reverberation chamber is shown in Fig. 3.3, where it is compared to the original one:
the signal is indeed very well transmitted, even though random fluctuations appear at
the two sides of the pulse. The problem of predicting the average intensity of residual
fluctuations in time-reversal transmissions is addressed in § 3.2.2.

3.2.1 Self-averaging in time-reversal transmissions

Before looking more closely to the characteristics of time-reversal transmissions through
a cavity, it is instructive to push the analysis of the point-to-point transmission a little
further. To this effect, the equivalent transfer function G(w) = |H(w)|? will be regarded
as a random function, subtended by unknown physical phenomena. In this respect, the
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tools introduced in § 1.2.3 will be applied as a suitable black-box approach, by studying
the statistics of the received signal at the time of focusing, i.e., t =0, and the late-time
statistics.

We first bring our attention over the value recorded at the receiver at the time of
focusing,

y(0)= f Glw)X(w)dw. (3.6)
By

Some interesting conclusions can be obtained by writing the above integral as a
discrete summation, discretizing the integral over finite cells Bgl) of identical bandwidth
equal to B, centered around the frequencies w;/27

N
y(O)zZ f . G(w)X(w)dw. (3.7)
i=1JB

with N, = [By/B,] the number of coherence cells covered by the excitation bandwidth.
In the rest of this chapter, we will always assume that the spectrum X(w) of the exci-
tation signal evolves slowly within a single coherence bandwidth. Moreover, since the
signals targeted at the receiving end are often of pulsed nature, their spectra are typi-
cally flat over most of their bandwidth B, thus providing a further justification for this
assumption.

Using the notations

G = 2Re{J G(co)dco}, 3.9
BY
(3.10)

(3.7) can be approximated as

N,
y(0) =Y _XG, (3.11)
i=1

having considered, for the sake of simplicity, X; € R™.

The value taken by y(0) is a random function of the random transfer function G(w).
Ideally, y(0) should be deterministic and predictable in a simple manner from basic
information about the cavity. This condition can be expressed in statistical terms as

o2(0) = ([y(0) - (¥(0))]*) =0. (3.12)
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The presence of a residual statistical dispersion of y(0) can serve as a measure of the
ability of time reversal in ensuring a proper transmission of a signal through a complex
medium. Taking as example what is done in optics [R26], we will consider the contrast

2
A, = b/g—o)), (3.13)
O'y(O)

as a figure of merit of the quality of the transmission, with a meaning closely related to
the concept of signal-to-noise ratio used in signal theory. Here no noise source has been
assumed to exist, so the analogy should not be pushed too far; the role of “noise” is here
played by the statistical dispersion of the received signal, and should be regarded as a
speckle superposed to the ideal transmission expected in (3.12). The contrast (3.13) is
noted by a subscript p since it is measured at the expected time of arrival of the peak of
the signal, for what is typically a pulse around t = 0, thus related at its instantaneous
power; an alternative definition pertaining to the received energy will be proposed in
§3.2.2,

The peak contrast A, can be evaluated by substituting (3.11) into (3.13). The
computation is very straightforward, but the variance of,(O) deserves a little attention;
it takes the shape

02(0) =) X2 (6= (G)[*) +;Xixj (G- (6-(6))) G4

The initial choice of breaking the integral in (3.6) over coherence cells implies that
random values taken by the {G;} can be expected to be weakly correlated, simplifying
(3.14) into

02(0)=» X202, (3.15)
i
where O'é are the variances of the N, iid random variables {G;}. When dealing with
large cavities, even for relatively large bandwidths with By > B,, the statistical mo-
ments of the random function G(w) can be expected to be independent of the frequency
of observation, resulting in identical O'é, Y i. Hence

NC

(y(0)) = G X;=NGX (3.16)
i=1
N,

0'32,(0) = O-éiZXiZZNCO-éinst’ (3.17)

where X and X, are, respectively,the arithmetic and quadratic averages of X(w) over
By; thus (3.13) yields
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Ay =Ag—xK2, (3.18)

where

(3.19)

(3.20)

is a shape factor [J2], with k¥ < 1.

Equation (3.18), though resulting from a heavily simplified analysis, highlights
some interesting properties of time-reversal transmissions. First of all, the received
signal will be characterized by a decreasing uncertainty as the number of coherence
bandwidths covered by the excitation signal increases. The reason for this property, of-
ten referred to as self-averaging [R16, R47, R60], is that in time-reversal transmissions
the N, degrees of freedom available are excited in a coherent way, i.e., in phase, since
eventual random phase-shifts introduced by H(w) are set to zero by phase-conjugated
excitations. Second, (3.18) shows what is the role of the statistics of the propagation
medium, as quantified by the contrast A, of the transfer function. As we pass from a
random to a deterministic medium the Ag, increases asymptotically to infinity, as could
be expected from the presentation of time-reversal propagation in open media in § 3.1.
For the case of a cavity in a diffuse-field configuration, H(w) is well modelled by a com-
plex Gaussian process with iid real and imaginary parts; hence, G(w) can be modelled
as an exponential random process, i.e., Ag, = 1. Third, the shape of the signal to be
transmitted also plays a part that should not be underestimated; while for pulse-like
signals x ~ 1, for more complex shapes with their energy not concentrated around the
time t = 0 but spread over a larger support, the final contrast will be found to be lower
than expected from simpler considerations [R7].

Time-reversed excitation signals appear to remarkably simplify the problem of trans-
mission through complex media: while a direct transmission would result in a strongly
distorted signal, with random amplitude and phase modulation (random transfer func-
tion), non-harmonic signals generated by means of the procedure described in § 3.2
lead to an asymptotically deterministic transmission of the original signal x(t). This
asymptotic value can be derived on the basis of energy-conservation considerations,
i.e., macroscopic ones, which do no require any specific information about the fine
structure of the medium [J5, App. A].

Can these results be expected to hold also for t 7 0? The answer is no, and it can
be understood by studying (3.7) at an instant t:
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N, N,
y(t)=2Re {Z f (_)X(OJ)G(w)€+jwtdw} ~ ZXiGi cos(w;t). (3.21)
i=1 Bcl i=1

The difference between (3.21) and (3.7) is that while the {G;} summed up coher-
ently in (3.7), now they take part to a random-walk process, activated by the random
phase-shifts introduced by the Fourier kernels. The sum passes from coherent at t =0
to incoherent as soon as the phase-shifts are allowed to rotate rapidly, effectively behav-
ing as a uniformly distributed random variable. It is the case, e.g., when between two
consecutive sub-bandwidths Bgi) the phase-shift is far greater than 27, i.e., for t 2 1/B,.
In this case the received signal corresponds to the signal that would be received within a
large cavity under a diffuse-field configuration, since the random-walk process destroys
any would-be coherent transmission. No coherent component is present now, leading
to a fully developed speckle signal [R26] with {y(t)) — 0 and an unchanged variance
with respect to (3.16).

The reason for the absence of coherent transmission is not the fact that x(t) ~ 0
at the time of sampling; even with a non-negligible coherent signal, it could not be
observed at the receiving end, because of the random-walk process.

It is important to bear in mind that the use of non-harmonic signals should not be
interpreted as a need for wide-band signals, as it has been the case in most of the in-
vestigations carried out in acoustics [R94, R22, R17], where relative bandwidths up to
100 % were considered. As proven by the analysis in § 3.2.1, the actual criterium is to
ensure By /B. > 1; the need for wide-band signals in acoustics is likely justified by a
wider coherence bandwidth. In the case of reverberating media, the final bandwidth By
can be narrow enough to regard the signal x(t) as quasi-harmonic; as an example, for
a standard electromagnetic reverberation chamber, at 1 GHz, with Q ~ 10%, the coher-
ence bandwidth would be of the order of 100 kHz, thus resulting in at least 100 degrees
of freedom when applying a transmitting signal with B;/f, ~ 1 %. The resulting peak
contrast A, would be around 20 dB, thus a fairly clear transmission.

3.2.2 Coherent-transmission efficiency through reverberating media

Most of the analyses of the self-averaging property observed in time-reversal transmis-
sions through complex media consider the generation of a strong contrast at the time
of focusing as the most important observable [R18, R23, R41]. Indeed, in some appli-
cations the objective can be to generate a spot of pulsed energy regardless of its time
evolution.A more general approach is to assess the ability of time-reversal transmis-
sions to reproduce specific pulsed shapes at the receiver; the transmission of data is
an example of an application where it is not sufficient to generate a maximum in the
instantaneous power observed at the receiver.

In this respect, an alternative analysis was presented in [J2] for the case of a rever-
berating cavity, where the received signal y(t) was described as the superposition of a
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term coherent with the original signal x(t) and a residual part n(t)

y(t) = px(t)+ n(t). (3.22)

An optimal transmission through time reversal would therefore require that for a
given input energy at the transmitter end, the fraction of energy at the receiver main-
taining a coherence with x(t) be maximized. It is therefore sensible to introduce a
slight modification of the idea of contrast: rather than just assessing the ratio between
the signal at t = 0 over the rms value of the residual late-time fluctuations as done
in (3.18), we will consider the ratio between the energy of the coherent part of the
received signal and the total energy value of the residual part, i.e.,

A=— (3.23)

where the energy &. of the coherent part is given by
& =p2& = szj IX(w)|?dew (3.24)
Br
and the energy &, of the residual part is
<a=2f|x@gmHu@ﬁmu—@ . (3.25)
Br

In practical terms, A is important since it assesses how much of the energy of the
received signal can be used to extract information, as part of a coherent transmission
system. The coherent-transmission efficiency 7, can be defined as

8, A

& +E, 1+N

as a figure of merit assessing the fraction of received energy that is coherent, as
opposed to the random-like behaviour of the residual fluctuations.

Moreover, the original definition of contrast (3.18) can be related to A by approxi-
mating the residual part with an exponential profile, with a time-constant Q/w,, where
Q is the average composite quality factor of the cavity. Knowing &, and its time-
constant, its rms amplitude at t = O can be directly computed, yielding

Ne (3.26)

QBT 2
A, =——K“A , 3.27
p ﬂ'ch (3.27)

where x was introduced in (3.20).

We can gain some insight into the values taken by these three figures of merit,
namely A, A and 7, by applying the random spectral model introduced in § 1.3. In
this respect, the transfer function H(w) can be represented as a discrete sum
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M
H(w) =) ai(e), (3.28)
i=1

where {1;(w)} is the set of modal responses related to resonance frequencies {f;} and
{a;} constant coefficients. Modelling the sets {a;} and {f;} as two sets of iid random
variables leads to a random transfer function H(w), with random figures of merit A,
A and 7.

Proceeding in that same manner, the sets of modal coefficients and the frequencies
of resonance can be modelled as random variables, leading to a random transfer func-
tion H(w) and random figures of merit A,, A and 7.. Their average values have been
studied in [J2, J6], proving that

My

(A) = m (3.29)
(ne) = M+ 1 (3.30)

with M,, the average number of overlapped modes over By (see § 1.3.1). A direct
consequence of (3.29) and (3.30) is that for an increasing number of overlapping modes

(A) — (3.31)

(ne) — (3.32)

1
1
>
a result that can therefore be expected to hold under a diffuse-field approximation.
Hence, the best-case performance of a time-reversal transmission system will be limited
to half the received energy following a time-evolution set by the original signal x(t),
while at least the same amount of energy will be wasted in fluctuations that have no
use. The result is a coherent-transmission efficiency limited to 1/2.

Recalling the example of Fig. 3.3, these asymptotic results could seem counterintu-
itive, since the rms amplitude of the fluctuations appears to be negligible with respect
to the coherent part around ¢t = 0. In fact, the support over which the fluctuations
maintain an almost constant average intensity is, typically, much larger than that of
the coherent part of the signal; while the former is proportional to the relaxation time
of the cavity, i.e., Q/w,, the latter is proportional to 1/By, for a pulsed signal x(t).
Therefore, the application of time reversal to reverberating cavities though allowing
the reception of clear reproductions of a template signal x(t), does that at the expenses
of a reduced energy efficiency, since at least the same amount of energy is wasted into
residual random fluctuations running over a long span of time.
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Figure 3.4 — Frequencies of occurrence for the
energy contrast A as computed from experi-
mental data measured over a bandwidth B; =
100 MHz, centered around the frequencies f, =
{0.5,1,1.5,2,2.5,3} GHz (top to bottom). Each
histogram was obtained from a population of
100 sample transfer functions as measured be-
tween a fixed transmitter antenna and a moving
electro-optical probe.

Results demonstrating the va-
lidity of this prediction are shown
in Fig. 3.4, where A has been
computed from experimental data
and represented as histograms. As
the frequency increases, so does
the average number of overlapping
modes, thus leading to predicted
saturation in the value of A; the
statistical dispersion of A is limited
to less than £1 dB.

A direct comparison between
theoretical and experimental val-
ues observed for m,. is presented
in Fig. 3.5, proving the accuracy
of (3.30). Fig. 3.5 also proves
another important point: the en-
ergy efficiency A does not depend
on the bandwidth of the excitation
signal, but is uniquely identified
by the statistical properties of the
medium. The effect of an increas-
ing bandwidth over the peak effi-
ciency A, is therefore heavily de-
pendent on the shape of the tem-
plate signal x(t), as measured by
k: as a conclusion, it is not at all
enough to increase the bandwidth
in order to improve the accuracy
of the transmission, but it is rather
more important to ensure an effi-
cient use of the bandwidth, in the
sense of providing the maximum
peak intensity for a fixed amount of
energy.

3.2.3 Conversion efficiency

While in a harmonic steady-state
the energy-density is on average

evenly distributed over the entire volume of a cavity (perfect diffusion), the fact that
time reversal can generate a focusing field distribution, implies that at a given time a
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Figure 3.5 — Experimental results for the coherence efficiency of time-reversal
transmissions within an electromagnetic reverberation chamber. Results for a 5 %
(V), 7.5 % (O) and 10 % (o) relative bandwidth are shown; results predicted
by (3.30) are indicated by a full red dot. The bars on the experimental results
refer to measurement uncertainty estimated at £10 % of the nominal value, those
on theoretical ones were obtained by propagating an uncertainty of 30 % on the
estimated Q.

non-negligible fraction of the overall electromagnetic energy &, injected into the cavity
will be more strongly concentrated within a smaller region of space. As a result, one
can expect that time-reversed signals could be used as a straightforward technique to
improve the ability of reverberation chambers in generating high-intensity fields.

This idea was explored in [J3], by means of a diffuse-field approximation, imposing
the same input energy &, injected in the case of a harmonic and time-reversed excita-
tion. In the case of a harmonic excitation, this input energy was set in order to ensure
that a steady-state response was practically reached with a 95 % level. A conversion
efficiency was introduced, defined as

max [le(0)||
=—, 3.33
n & (3.33)
and computed for the two types of excitation signals.
The ability of time reversal in improving the conversion efficiency was therefore
measured by the conversion gain

G=1m® (3.34)

Ncw
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which was proven to be equal to

G= BLQ, (3.35)
nfe
i.e., G o« N,. Once again, a figure of merit for time-reversal applications to reverberation
chambers appear to be proportional to the number of coherence bandwidths covered
by the Fourier spectrum of the excitation signal.

The validity of (3.35) was proven with experimental results in [J3]. The direct con-
sequence is the prediction that time-reversal excitations of a reverberation chamber can
easily outperform harmonic-driven ones by several orders of magnitude, by concentrat-
ing part of the stored energy within a smaller region, for a short instant. It could be
argued that this is not really useful, since reverberation chamber already enable higher
conversion efficiencies than free-space configurations; in fact, when testing aeronauti-
cal devices, field levels as high as 11 kV/m can be required [R1], in order to simulate
the response of an EUT when passing in close range of radar systems, as well as to
test its hardening to high-power microwaves that could be used in electronic warfare.
The generation of such field levels is not a trivial problem, and the power amplifier re-
quired in harmonic-driven chambers are often prohibitively expensive; the extra margin
provided by time-reversed excitations therefore constitute a promising solution to this
problem.

3.2.4 Polarization control

Being capable of transmitting pulsed signals through a complex medium is a remarkable
feat, but in the case of a vector field it would be even more interesting if its polarization
could be controlled, too. This possibility, first investigated in [J13] and [C18], can be
studied by assuming the vector transfer function H(w) between the input port of an
antenna and the electric field measured by an observer within a cavity as known.

Let define an excitation signal w(t) whose Fourier spectrum W (w) be

W(w)=X(w)HY(w)-p, (3.36)

where p is a complex unit vector representing the polarization of the field to be gener-
ated at the observer position. X (w) is the Fourier spectrum of the signal to be transmit-
ted. The resulting electric field observed at the time t ~ 0, generated by applying w(t)
at the antenna, can be written as

e(0)= f X(w)H(w)HY(w) - pdw. (3.37)
Br

Using the same approach introduced in § 3.2.1, breaking By into a discrete sequence
of coherence bandwidths of the scalar components H;(w) of H(w), yields
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NC
e(0) ~ X (Z H(wm)HH(wm)) b, (3.38)

m=1

which, by virtue of the law of large numbers, can be approximated, for N, > 1 as

_B
e(0) =X — (H(wn)H (@) . (3.39)
C
as long as <H (w)H H(w)> is independent of w over B;. The averaged quantity was
already considered in § 1.4.1 for an ideally diffusive medium, with

(H(w)H"(0)) = S(w)1, (3.40)

where S(w) is the spectral power density observed in the medium for a unit-power
excitation. Therefore, for a diffusive medium with S(w) ~ S(w.) and By /B, > 1,

e(O)zXS(wC)&ﬁ, (3.41)
BC
i.e., an electric field with a polarization corresponding to a perfect reproduction of the
vector p. Clearly, residual statistical fluctuations must be expected for this asymptotic
result, with an average intensity reducing as 1/ \/ﬁc, as already discussed in § 3.2.1.

The most interesting implication of (3.41) is that thanks to the definition (3.36)
of the excitation signal w(t), the polarization of the electric field at a given position
can be controlled just by means of a signal synthesis approach, rather than by relying
on the mechanical alignment of a source with a high cross-polarization rejection. An
experimental demonstration of this possibility is given in Fig. 3.6, where the electric
field generated at a fixed position within Supelec’s reverberation chamber is shown
for three different choices of the polarization vector p; it is clear that for t ~ 0 not
only the field is no longer incoherent and, more importantly, it presents a deterministic
polarization, oriented along the direction pointed by p.

What is remarkable is that it is not the source that ensures the generation of a
polarized field, but the diffuse nature of the field propagating within the cavity. This
statement could seem paradoxical, but the above mathematical demonstration shows
that it is the property (3.40), intrinsic to a diffuse-field configuration, that ensures this
result.

3.3 Emulating free-space propagation

The results presented in § 3.2 seem to imply that time-reversed excitation of diffusive
cavities should be regarded as a promising field of investigation with practical applica-
tions. Within the framework of device testing, the ability to generate short pulses in a
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weakly lossy medium together with an accurate control of the field polarization have a
direct appeal to EMC testing, particularly for defense applications.

Unfortunately, such conclusions miss at least two important issues : devices are
seldom smaller than a wavelength and it is not especially useful to control the field
over just one point in space. Test facilities rather require the ability to generate known
and repeatable wavefronts, since most often the characteristics of EUTs are expressed
as functions of their response to extended incident wavefronts.

The problem is that time-reversal techniques in their present state are not suitable
for device testing: they are actually mismatched to practical needs, as they have been
designed to deal with mainly point scatterers, rather than electrically extended ones, as
it is often the case when dealing with real-life EUTs, and this goes without taking into
account the issue of polarization, which leads to an even more complex scenario when
compared to the scalar-wave propagation and scattering undergoing in acoustics.

The standard implementation of time-reversal techniques implies that each time
we wish to generate a new converging wavefront, its diverging version needs to be
generated by a real source in the first phase. Furthermore, as the characteristics of the
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wavefront change, e.g., the direction of arrival or the polarization, the first phase is to
be carried out again. This is clearly a strong limitation when proposing time reversal
for testing applications, since as soon as a wide range of configurations is to be tested,
the repetition of the two phases and the ensuing longer test duration could outweigh
the benefits of time-reversal excitations. Moreover, the question of how to generate the
diverging wavefront in the first place is far from trivial, since the testing wavefront (i.e.,
the converging version) will need to be radiated by a real source that therefore needs
to be tailored to this purpose.

The solution to this mismatch is to shift our attention from the idea of reproducing
a wavefront focusing over one point to the idea of directly generating any focusing
wavefront. By this last term, we consider the ability to control all of the parameters
defining a wavefront, e.g., its time-dependence, polarization, directivity and direction
of arrival. This reflection has motivated our proposing an alternative approach based
on the use of synthetic sources, leading to a new paradigm for time reversal that is not
only suitable for EMC purposes but also brings in new advantages for any test based
on submitting an EUT to impinging wavefronts. This approach, that we have named
the Time-Reversal Electromagnetic Chamber (TREC) was originally introduced in [C25]
while the first experimental demonstration was proposed in [J15].

3.3.1 A change of perspective : wavefront generation

The general case of coherent wavefront generation within a diffusive cavity was the
subject of a recent paper [J5], where the diverging wavefront to be time-reversed is
regarded through the lens of the equivalence theorem [R30]; the idea is to move the
focus from the source to the wavefront it generates. With reference to Fig. 3.7, a virtual
source can be defined, together with a surface % over which equivalent currents can be
defined in such a way as to generate a wavefront radiating away from ¥ identical to
that of the virtual source.

Based on the assumption of knowing the vector transfer functions relating the ex-
citation voltages applied to discrete TRM antennas to the electric and magnetic fields
over %, and that all points over ¥ stand in the far-field region of the virtual source,
it can be shown that the voltages V; that should be applied to the i-th TRM antenna
during the second phase is [J5]

Vi(w) =f Neoi(r', w) - Ep(r', w)dr’, (3.42)
b
with
Ne,i(r5 (J)) R
Negi(r,w) = g—‘H‘ X N (1, w), (3.43)
0

where N, ;(r,w) and N, ;(r, w) are the vector transfer functions relating the electric
and magnetic fields to the input port of the i-th TRM antenna, respectively.
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Equation (3.42) is of direct practical im-
portance because it implies that the first
phase can be totally removed and more
specifically that there is no need for a physi-
cal source in the first place. Our proposal of
using equivalent sources over X as a proxy of
a virtual source could lead to assuming that
a distributed-source network is now neces-
sary; in fact, knowledge of the transfer func-
tions N, ;(r,w) and N, ;(r, ) as measured
by means of field probes allow avoiding such
a complex scenario. Moreover, (3.42) also
states that potentially any wavefront can be

Figure 3.7 — Configuration for the ap-
plication of Love’s equivalence theo-
rem. Equivalent electric and mag-

netic currents are defined over the generated when adopting this improved ver-
surface ¥, representing the wave- sion of time reversal; no assumption has
front E (r, w) that would have been been made on the shape of the target wave-
generated by a synthetic source con- front E,(r,w), nor on the type of vector
tained in the volume bounded by the transfer functions imposed by the propaga-

—

surface =. These elements are em-

ti dium. In oth ds, (3.42 1d
bedded into a complex medium 9. ion medium. In other words, ( ) cou

The i-th TRM antenna is modelled as be regarded as a wavefront-synthesis pro-
an elementary dipole in r;, oriented cedure, directly taking into account the be-
i . . . .
along §;. haviour of the medium as a weighting func-
tion.

Since we are rather interested in the case
of wave-diffusive media, and specifically large cavities, the transfer functions N, ;(r, w)
and N, ;(r, ) can be modelled, as done throughout this dissertation, as random func-
tions of the space and frequency variables. Recalling the property of self averaging
discussed in § 3.2.1, in the case of By /B, > 1, it is possible to assume that all field-
related quantities, if excited by means of time-reversed excitations, will asymptotically
converge to deterministic values, with vanishingly small random fluctuations. There-
fore, by only considering the average values at which these quantities converge, it can
be shown that [J5]

<ETR,i(r’ ("))> = fli(r: r/) (.()) : E:,f(r/a (O)dr/, (344)
%

i.e., the wavefront generated by each TRM antenna is a functional of the target wave-
front through the dyadic operator T,(r,r’, w), defined as
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Iee,i(r’r/’ Cl)) = <Ne,i(r) w)N:,i(r/, Cl))> (345)
Iem,i(r’rlﬂc‘)) = <Ne,i(r: C‘)) |:f'/ X N;kn’i(r/, CO)] > (3.46)
1
T(r,r",0) = g—ozee’i(r,r’,w)—zem’i(r,r’,a)). (3.47)

The above results point out once again that time reversal entirely relies upon the
spatial and frequency correlation properties of the medium; indeed, the three dyadic
operators are nothing else than spatial covariance matrices.

What are the roles of frequency and spatial correlations? The latter sets the spa-
tial resolution of the method, in the sense that it operates as a point-spread func-
tion in (3.44), modifying the target wavefront into the eventually distorted replica

<ETR,i(r: co)> observed in practice.

Conversely frequency correlation has a fun-
damental role, already highlighted in § 3.2.1:
ensuring that the bandwidth B; of the wave-
front will activate enough degrees of freedom
to yield a quasi-deterministic result, with negli-
gible random fluctuations.

Spatial correlation is therefore important
since it provides a limit to the generation of
wavefronts with rapid spatial variations, of im-
portance when dealing with directive wave-
fronts. In the ideal case of a perfectly diffusive
cavity, (3.45) can be expressed in closed form;
to this end we need to introduce the local ref-
erence system depicted in Fig. 3.8, defined by
a longitudinal unit vector p = d/||d||, where
d = r’ — r, a transversal unit vector ¥ lying on
the plane defined by the vectors r and r’ and a
third unit vector 9) = p x ¥. The only non-null
components of (3.45) are therefore

o

Figure 3.8 — The local reference
system based on the orientation of
the r and r’ vectors, defined by
the right-hand set of unit vectors
v, ) and p. This choice is at the
basis of the results derived for the
case of a wave-diffusive medium.
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2

N
(zee)ﬁi) (r,r',w) = ;’avpl(d,w) (3.48)
NZ
(Iee)w (r,riw) = %Pt(dﬂ)) (3.49)
(Iee)’f)’f) (r’ r/’ (O) = (Iee){,{, (r3 r/(r7 r/a a)))’ (3.50)
2
(Tep),, (ror's) = %pm(d,w)f*’ X V- q) (3.51)
N2,
(Lm)vp (r,r,w) = 3&0 pm(d, )P’ X0 -p (3.52)
(Iem)’f)'f) (r’ r/’ (O) = (Iem){;@ (rﬁ r/(ra r/: CL))), (3.53)

where p;(d, w), p,(d,w) and p,,(d, w) are spatial correlation functions that were in-
troduced in (1.73)-(1.75), whereas N, ,,(w)/ V3 represents the rms amplitude of any
scalar components of the electric field that would be generated within the cavity by
a unitary-power harmonic excitation; its value can be easily predicted from power-
conservation considerations, as shown in [J5, App. A].

Whence, the operator T (r,r’, w) reads, for the case of an ideally diffused field

2
e,av

T(r,r',w)= p(r,r',w), (3.54)

380 —

with

p(r,r,0)=pppi(d, &)~ ppu(d, 0P’ x 7+ p+

S L (3.55)
+ @V +97) [p(d, )+ pp(d, )P x¥-9],

introducing the normalized dyadic response p (d, w). As a result, the real and imaginary
parts of the scalar components of this function are now bounded to one, since they
correspond to the degree of spatial coherence of the medium [R93].

The dyadic operator T,(r,r’, ) appearing in (3.44) is therefore independent, on
average, of the position and orientation of the TRM antenna, thanks to the isotropic and
depolarization properties of diffused fields. In particular, all the quantities in (3.48) are
deterministic, so that (3.44) can be solved in order to study the accuracy of the TREC
technique in reproducing a given wavefront.

A graphical representation of p(r,r’,w) is shown in Fig.3.9, where its angular
spreading action is well apparent. ‘The question of how accurately a target wavefront
will be distorted is therefore natural, as well as the reflection about the eventual exis-
tence of a class of wavefronts that will be less subject to these distortions. A qualitative

Coherent field generation



3.3 - Emulating free-space propagation 89

0.8

°
A\ Y
s

P Prg Pry Py Prg Pry 0.6
04
0.2
v
Por Pgg Peo Por Py P [ 10
-0.2
; -0.4
Cor T e a4 Por Pos P M op
(a) (b)

Figure 3.9 — Normalized dyadic function p(r,r’,w) computed for r € © and
r’ = rgx, with ry; = 3A: (a) real and (b) imaginary parts. The 9 terms of the
dyadic response are shown, matrix-wise, considering standard spherical unit vec-
tors, following the order #, & and @, defined with respect to a polar axis vertically
oriented.

answer was proposed in [J5], showing that the resolution of the point-spread function
is consistently better than that potentially generated by any virtual source for which %
stand in its far-field region.

An example of resulting wavefront is shown in Fig. 3.10, where the target wave-
front was that of a square aperture of side A, with uniform electric field linearly polar-
ized. The electric field distribution was computed over a continuous range of distances
from A/10 up to 3 A, limited to a horizontal cut, along the xy plane, starting from
an equivalent-source surface at ry, = 3A. In Fig. 3.10 the two spherical components
E,(r,w) and E.(r, w) of the electric field are shown, Eg(r, ) being identically null by
virtue of symmetry. It is possible to conclude that a focusing of the propagating energy
is indeed occurring, as the electric field builds up converging towards the phase-center
of the synthetic source.

Two notable distances are marked in Fig. 3.10: ry, = 2A and rz = A/2. The target
wavefront (far field) should only present a ¢-oriented field, which is indeed found in the
TREC-generated wavefront, as shown in Fig. 3.10(a)-(b); the purity of the polarization
appears to start degrading as the wavefront crosses rz, when the focusing wavefront
approximates the original field distribution found in what would be the reactive part of
the synthetic source. Since the TREC can only produce propagative waves by means of
distant sources (i.e., the TRM antennas), the diffraction limit ensues, leading to a focal
spot about one wavelength wide. The appearance of a radial component in Fig. 3.10(b)
is due to this phenomenon of approximation of the original source distribution, and it
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Figure 3.10 — Numerical solution of (3.44) for the case of the radiation pattern
of a wideband linearly-polarized square-aperture antenna, one wavelength wide
at the central frequency. The evolution of the electric field is studied over the
half-plane of the xy cut (E-plane cut) along which the time-reversed wavefront is
expected to focus, for radial distances going from A/10 up to 3A: (a) E,(r, w);
() E,(r,w); (o) [|E(r,w)|l; (d) |E(r,w)|lr; (e) angular dependence ||F(r, w)],
proportional to ||E¢(r,w)||r. The outer dashed line represents the Fraunhofer
distance for the synthetic source, whose volume is marked by the inner dashed
line. All results are normalized to the peak-value of E, and expressed in dB.
Radial dashed lines represent the -3 dB and the -10 dB angles. For further details,
refer to page 155.
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Figure 3.11 - Experimental results obtained for a same virtual source oriented
along different directions. A 200 MHz bandwidth with a central frequency of
1.1 GHz was used.

becomes more evident when looking at the total field in Fig. 3.10(c): the wavefront
focuses back onto the source region, with an almost uniform intensity.

The accuracy of the angular distribution of the focusing wavefront is more easily
observed in Fig. 3.10(d), where the wavefront is normalized to Green’s scalar function,
yielding the radiation pattern to be compared to that shown in Fig. 3.10(e). The com-
parison is very good, with the converging wavefront accurately reproducing a radially-
invariant radiation pattern over its far-field region within a £0.2 dB range over the main
lobe. Fig. 3.10(d) also provides a clear picture of the focal spot due to diffraction limit:
directivity is lost, with energy almost equally spread over all directions, and particularly
with a reduction in its increase with respect to an ideal spherical convergence.

These results imply that the loss of directivity is not due to an intrinsic limitation of
the method, as could have been expected from the point-spread function shown in the
previous section. It actually appears that the point-spread function is effectively capable
of reproducing all the phenomena leading to wave focusing under physical conditions,
including the diffraction limitation over the near-field region of the synthetic source.
Practically, no significant distortion occurs over the main-lobe outside the surface Z of
the virtual source.

In short, the TREC approach allows emulating a free-space environment within a
diffusive medium; as discussed in § 3.3.2, this result should not be regarded as a com-
plicated manner of using a reverberation chamber as an anechoic one, but rather as
the first step towards new possible applications. Let just consider the fact that at no
point in the above derivation the direction of arrival of the converging wavefront was
linked in any manner to the position of the TRM antennas. As a result, the TREC is not
just emulating a free-space environment, but it is offering the possibility of generating
wavefronts propagating along any direction without having a source in the line-of-sight
of the observer. Though counterintuitive, this result is a direct consequence of the use
of a diffusive medium: its properties, in particular spatial correlation, is independent
of direction, polarization and position. Hence, wavefronts generated by means of the
TREC approach can emulate any propagation pattern, as long as these wavefronts sat-
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isfy Helmholtz equation. An example of this property is given in Fig. 3.11, where the
wavefront of a virtual source was generated for a varying orientation; the resulting
wavefronts are practically invariant to the rotation.

3.3.2 Potential applications

In the introduction to this chapter we have stated that it is our intention not to apply
time reversal merely as a way of emulating free-space propagation within reverberat-
ing cavities, but rather in order to define a new test facility. As pointed out at the end
of the previous section, the TREC is not only capable of emulating a free-space prop-
agation, but it allows a direct synthesis of wavefronts without requiring a line-of-sight
configuration, a condition that would be necessary in any anechoic environment. The
TREC can therefore be regarded as an alternative to anechoic environments for radi-
ated tests (e.g., radiated immunity in EMC testing), where the proper test phase would
not require any mechanical movement of sources, nor a collection of sources cover-
ing the EUT along all directions of interest. Its intrinsical ability in providing a higher
conversion efficiency is a welcome by-product that highlights the successful merging of
reverberating and anechoic features.

In practice, there is a last problem to be solved: the transfer functions N ;(r, »),
needed for the synthesis of the excitation signals (3.42). A feasible solution is to excite
each TRM antenna with a unitary harmonic excitation and measure the tangential elec-
tric and magnetic field components over X, e.g., by means of a moving probe. Such an
approach would provide all the information needed for the synthesis (3.42); a prelimi-
nary demonstration of the feasibility of this approach was presented in [J15].

Mechanical movements would therefore be still necessary. In order to better under-
stand the difference between standard approaches and the TREC one, Fig. 3.12 presents
the flow of operations needed: while for multiple test configurations anechoic environ-
ments typically require mechanical movements repeated for each test, in a TREC all
movements would be limited to a preliminary phase during which the transfer func-
tions Ny ;(r, w) are collected once and for all; the actual test phase would require no
mechanical movement, speeding it up.

Still, the overall number of movements could be expected to be the same, so that
one could wonder what are the advantages of this procedure. Two points come to
mind: first, since the preliminary phase involves the displacement of a probe rather
than a source, the lighter weight of a probe implies a simpler mechanics and faster
displacement rates, thus an overall shorter duration. Second, (3.42) does not require
any assumption on the nature of the wavefront; it is therefore uncorrect to assume
that one position of the probe corresponds to just one test configuration, as inevitable
for anechoic environments. In fact, (3.42) does not provide for any limitation in this
respect, allowing the generation of a larger number of test wavefronts than possible in
an anechoic environment with a single source. Parameters such as a varying directivity,
polarization, time-dependence, etc., can be changed from data acquired for a single
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direction, whereas for an
anechoic environment this
would require mechanical
modifications in the source,
eventually the use of a col-
lection of sources, resulting : '
. . Selection of Selection of
in longer test durations. wavefront < wavefront <
Moreover, the TREC be- parameters parameters
ing a linear system, it is also
possible to imagine rather Y
peculiar scenarios, e.g., with Antennas / EUT Signal
multiple incidences, with displacement synthesis
more than one wavefront im-
pinging over the EUT along v
different directions.  This
possibility is of direct practi- EM tests EM tests
cal importance, since in prac-
tice an EUT is seldom op-
erated in a free-space envi-
ronment; more often, it in- no no
teracts with boundaries at
least partially reflective, e.g.,
walls, the ground, neigh-
bouring devices, etc. As a
result, tests within anechoic () (b)
environments are bound to
represent an approximate es-

Characterization
phase

Y

Figure 3.12 - Sequences of necessary steps to follow

timate of the actual response when using (a) an anechoic test environment and (b)
of the EUT within more re- a TREC. Shaded blocks represent operations based on
alistic environments. The mechanical displacements or substitution of devices.

TREC can therefore emulate

more complex environments

than anechoic ones, by reproducing echoes corresponding to reflections upon virtual
boundaries.

The case we want to make is that the TREC should not be regarded only as an
emulation of free-space propagation, since it also comes with advantages of its own, not
found with other test facilities. Furthermore, it paves the way to new applications such
as the identification of coupling paths in an EUT and the measurement of its scattering
cross-section. Preliminary tests during the last two years have proven the feasibility of
these ideas. The feasibility of fast antenna measurement have also been demonstrated
in [J9]. For all these reasons, we can conclude by stating that having chosen to work
with a complex environment allows to simplify a number of problems that have not yet
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a simple practical solution. As discussed in § 4, these themes need to be investigated
and will constitute the basis for future investigations.

N
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Chapter 4

Discussions and perspectives

HE previous chapters were intended to summarize our main contributions to the
field of large cavities over the last 4 years. A special attention was placed upon
the use of these media as testing facilities, particularly for radiated tests as
defined for EMC applications. Fundamentally, two topics have been presented

: non-perfectly diffusive cavities under a harmonic steady-state and the generation of
coherent fields within diffusive cavities.

The main tool used for this purpose was a random spectral representation of fields
propagating within these media. It has allowed not only to understand the reasons
of certain non-idealities in field statistics and to predict some remarkable features of
time-reversal driven cavities, but has also shown that without recurring to complex
models, the gap between plane-wave representations and modal ones could be bridged,
providing a simple explanation of the difficulties observed in the low-frequency analysis
of large cavities.

A complete review of our work is out of the scope of this dissertation; indeed, the
same approach has been also used in order to prove the possibility of controlling the
field statistics in the lower-frequency range of a cavity [C15], setting an alternative
to the use of electrically large scatterers as field stirrers, implying the possibility of
reducing the LUF without major modifications in the cavity geometry. Further work
on non-idealities has also highlighted the importance of taking into account even very
weak correlation levels that are typically found between field samples measured in a
cavity [C7] and the debatable use of statistical goodness-of-fit tests as tools for assessing
the correct functioning of a reverberation chamber [C22].

Our aim was to stress the transversal approach we have applied in studying cavities,
without recurring to approaches and assumptions that are too often taken for granted,
at least within the EMC community. An outsider point of view is needed, in our opinion,
if we are to go further in the physical understanding of phenomena that have not yet
been fully taken into account.

Our investigations clearly indicate that the understanding of cavity-based applica-
tions can be improved by taking advantage of the results summarized in the previous
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chapters. In this respect, the ideas we will prospect in the next few years are presented
in § 4.1, and concern field statistics as well as coherent applications based on time re-
versal. Conversely, a long-term vision is presented in § 4.2, where we argue about how
the tools developed in the context of our work on large cavities could be applied to
other domains outside EMC testing.

4.1 Short-term projects

We have highlighted the need for sounder models of cavities in non-perfect diffusive
regime. In this respect, we will work in the next few years on the physics of cavities. In
particular, we aim at completing the track opened, introducing a global statistical model
taking into accounts often neglected effects, e.g., residual spatial/stirrer correlation. As
shown in § 1.4.2, there is room for hybrid models bridging the gap between perfect
diffuse-field random PWS and random spectral models capable of assessing the actual
number of modes actively taking part in the response of a cavity. Such models are
needed in order to introduce a statistically-based definition of the LUF of a reverberation
chamber: as discussed in § 2.3.2, none of the current definitions is capable of accounting
for the imperfect diffusion observed even in very large cavities. Random fluctuations
in the modal density and the modal overlapping are one of the reasons for the use of
statistical approaches; acknowledging the impossibility of observing no local statistical
anomaly requires models capable of predicting the probability of observing a given
number of such anomalies, as a function of macroscopic parameters experimentally
accessible without a priori assumptions.

Hybrid models would also be needed for another issue, namely understanding how
a loaded cavity, i.e., with lossy material inserted in it, behaves. Current models do not
account for the intermediate regime where a cavity is no longer resonant enough to
provide a diffusive environment. This issue should not be confused with that of weak
modal overlapping; on the contrary, increasing losses can be expected to increase modal
overlapping. The problem is rather due to the fact that in the case of substantial losses,
the usual weak-perturbation approach is no longer viable. As a result, predictions of
field uniformity and sample independence based on the use of spectral/plane-wave
models based on the assumption of independent degrees of freedom fail, because there
is no way of estimating beforehand the actual number of degrees of freedom. Correla-
tion between modes or plane waves should be expected, but the issue is how to set the
correlation, and what relationship should be expected with higher loss levels? An an-
swer to this problem should be possible using hybrid plane-wave spectra models as the
one introduced in § 1.4.2, where wave propagation and interaction with lossy bound-
aries can be accounted for and used as a proxy for assessing the effective number of
independent propagation paths observed in practice. A similar idea is used in multiple-
scattering theory, where the ratio between the average length of propagation of a wave
to the average free-path between scattering interactions is used just in the same man-
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ner, i.e., to assess how many degrees of freedom can be expected to be ensured by a
complex medium, for example in the study of the fluctuations in electric conductivity in
mesoscopic quantum systems [R78].

Another issue still open within the EMC community is that of predicting the perfor-
mance of a mechanical stirrer. It is hardly exaggerated to claim that stirrer design is
as random as the samples it is expected to generate: current rules are limited to rather
generic guidelines [R97, R4, R91, R55, R37] whose main merit is to avoid the use of
electrically small stirrers. The main reason for these difficulties lies in the assumption
that the response of a stirrer can be studied only either by experimental tests or by nu-
merical simulations, both to be carried out within the targeted reverberation chamber.
We would rather attempt a different approach, by exploiting the possibility of using
image theory, thanks to the rectangular boundaries preferred by the EMC community:
it seems feasible to link analytically the scattering response of a scatterer in free space
to that it will produce when included within a cavity. To this end, it will likely be nec-
essary to make reference to the literature on propagation in periodic media. Numerical
simulations of a scatterer in a free-space environment would be dramatically faster than
those carried out within a reverberating cavity, because of well-known numerical diffi-
culties in the simulation of systems with strongly pronounced resonances and/or long
relaxation times.

Concerning our work on time-reversal excitation of cavities, but not restricted to the
TREC approach, there are several developments that are already under way. We will
just refer to two of them that constitute the heart of two Ph.D. theses that have only very
recently started. The first topic is the use of cavities with long relaxation times used in
conjunction with time reversal as the basic elements in the amplification of short high-
power microwave pulses. Two novelties are introduced by this work: the first one is
the use of a cavity for the time-spreading of pulses, enabling higher amplification rates,
while the low spatial correlation of large cavities is expected to allow the excitation of
multiple radiation sources at the same time.

The second topic aims at using a TREC as a fast antenna-test facility. The approach
chosen will be opposite to that already explored in [J9]. In this work the TREC is ex-
amined under the lens of estimation/decision theory, by setting up a problem of identi-
fication of the radiation pattern of a source exposed to complex wavefronts generated
by the TREC. The main novelty will be the absence of any simple test wavefront, e.g.,
plane waves, currently used in anechoic facilities. Initial explorations support the idea
that from an estimation point of view, complex wavefronts could outperform local plane
waves when trying to estimate radiation patterns. The flexibility of the TREC in generat-
ing arbitrary wavefronts that could not be easily generated in a free-space environment
is the main asset of this work.

In both the physics of harmonic-driven cavities and applications of the TREC, the
concepts and results summarized in this dissertation will constitute the foundations
upon which new researches will be based. The availability of simple statistical tools of
broad applicability and capable of reproducing experimentally-observed phenomena is
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a fundamental point in the success of these new projects.

4.2 Long-term vision

The TREC approach is expected to require a longer planning for its further development.
Several axis have already been identified; we will just present the main ideas at the basis
of two of them that look particularly promising.

The first development will turn around a feature of the TREC that we have so far
been neglecting, namely wave focusing. Actually, we have made use of it repeatedly, as
soon as a high contrast A was required, as well for high conversion efficiencies and for
any quantity that relies on self-averaging. Still, focusing was a property not exploited
in itself, but rather was a manner of ensuring an almost deterministic response. What
we have neglected in focusing is the idea of spatial resolution it offers; this should
be compared with the total lack of spatial resolution offered by plane waves. Spatial
resolution has a direct practical appeal when recalling that an open problem in EMC
testing is the identification of localized paths through which external waves couple to
the internal space of an EUT; a typical example is a slot in a metallic shielding. The
TREC was conceived as a general tool for the generation of focusing wavefronts; if
these wavefronts were defined in such a way at to focus over a controllable position,
it would be possible to generate wavefronts that would excite only a limited region of
space over the external boundary of an EUT. The idea is therefore to scan an EUT by
using a moving focal spot, and to observe under what conditions the EUT is maximally
stressed; coupling paths could therefore be identified without human intervention, as
the standard approach is still, surprisingly, to manually scan the surface of an EUT with
electric and magnetic probes/sources.

A preliminary investigation was presented in [C14], and has supported the feasi-
bility of this idea. In that work we considered a box where a half-wavelength slot was
cut into it. Generating a focusing wavefront moving across the slot, and sensing the
field level transmitted within the box, it was possible to identify the position of the slot
within a quarter-of-wavelength resolution. The fact that the aperture was a slot rather
than a hole was detected by using two orthogonal polarizations for the electric field:
the anisotropic response of the slot pointed to its orientation in space and its actual
shape.

That preliminary work is the basis for a much more ambitious project. Treating
an EUT as a black-box, it is possible to derive an equivalent macromodel capable of
describing its behaviour in every detail, if a suitably conceived learning phase is con-
sidered. Similar ideas are routinely used in electronics [R80, R85], where even non-
linear responses can be accurately extracted from a few responses of the EUT, excited
by means of cleverly designed stimuli. The appeal of this idea is that if a behavioural
macromodel of an EUT were available, then its response to any configuration could be
extrapolated without requiring further tests: from complex propagation scenarios to
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the case of complex electromagnetic stimuli, the EUT response could be estimated from
its macromodel. The extraction of such an equivalent model is made feasible by the
flexibility of the TREC approach. It would result in a paradigm shift in EUT testing: no
longer using plane wave as the simplest way of interpreting the response of the EUT,
but rather conceiving complex test scenarios in order to extract the maximum amount
of information from a limited number of tests.

The second long-term project we envisage is again based on the TREC and deals
with the estimation of the full scattering response of an EUT. In this case EMC is no
longer the main beneficiary, as this topic is rather found within the core of radar mea-
surements. In order to appreciate the interest of this idea, we should recall that current
radar tests are typically limited to monostatic radar cross sections, where the field scat-
tered by the EUT is measured along the same direction along which it is illuminated.
Although monostatic measurements serve a number of applications, bistatic radars have
been suggested as interesting extensions that would provide more detailed information
about the EUT, particularly in their identification. It is therefore important to be capa-
ble of assessing the bistatic response of an EUT, in laboratory conditions, e.g., during
R&D phases. The problem is that bistatic measurements involve a heavy experimental
setup: for each direction of illumination over a 4n-steradian range of angles, measure-
ments of the scattered field should be taken again over 47 steradian, giving raise to an
overall number of samples that goes like @(f*), while requiring a complex mechanical
system for the joint displacement of the transmission and reception antennas over two
concentric spheres.

The TREC is expected to provide a simpler solution by limiting the number of me-
chanical movements to @(f?2), and just during an initial phase. Preliminary tests were
carried out in 2010 and in 2012, within the framework of Master thesis. Though not yet
published, and still in an embryonic stage, it appears that the idea is indeed feasible,
leading to a simpler and faster procedure to estimate bistatic responses within a facility.

Simpler access to the scattering response of an object has clearly a broader spectrum
of applications than just radar imaging. Use of the TREC for non-destructive testing, as
well as medical imaging does not seem a too far-fetched idea.
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The Role of Losses in the Definition of the
Overmoded Condition for Reverberation Chambers
and Their Statistics

Andrea Cozza

Département de Recherche en Electromagnétisme, SUPELEC
3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France

Abstract—It is commonly acknowledged that in perfectly- strong ties between a high modal density and a well-stirred
stirred reverberation chambers the energy density of the ectric cavity are known in practice [1]. A significant example of the
field follows a x2 law, as long as the overmoded condition applies. low interest the overmoded condition aroused in most previo
This concept, never defined properly, is often confused withhe ; . ; e }
idea of a threshold on the modal density, regardless of the ality W_ork§ IS given In []j]' Where‘ the O_V_ermOd_ed condition is
factor of the cavity. This interpretation is here proven to be dismissed as something seemingly trivial, fulfilled as sas@
inaccurate, as losses play a fundamental role in the naturefdhe  cavity is electrically large. Interestingly, Lehman [3pegded
field statistics and not, as often assumed, just in its scalip In  the assessment of the validity of the overmoded condition as
particular, it is shown how the overmoded condition should k& an open issue.

stated mathematically, highlighting how the cavity quality factor - . .

and the number of eigenmodes excited cannot be regarded as Fulfilling Fhe rgqmrement for an overmoded ca\{lty allows
quantities intervening independently on the field statistcs, but the use of simplified models, as the one presented in [5]dbase
should rather be considered jointly. These results are devied by on the description of the electromagnetic field as a contisuo
means of a modal analysis, with a limited number of assumptits.  plane-wave spectrum: it links in a straightforward maniner t

A quantitative relationship is established between averaggmodal  qaq of a well-stirred cavity to field statistics: an envinoent

overlapping and the rate of convergence of the electric engy h infinit b £ ol te with th
density towards a x2 law. Rather than setting an arbitrary ~WNETe an Infinité numpber of plane waves propagate wi €

threshold on modal overlapping as a necessary condition for Same probability along all the directions and polarization
an overmoded behaviour, the statistical uncertainty due tothe implies that the electric energy density followsy@ law, as
limited n_u_mber of available field samp_lt_es is shown to affectlte g direct consequence of the central-limit theorem [6], [3].
very definition of the overmoded condition. Since this theoretical result is based on the assumption of
Index Terms—Statistics, Cavities, Losses, Error analysis. a well-stirred cavity, the limited efficiency of the stirgn
technique is often regarded as the most likely source of non-
compliancy, especially in the lower frequency range, bseau
of the statistical correlation of contiguous stirrer piosis [7].
Current use of reverberation chambers is based on a numbeBut another potential reason of non-compliancy could come
of commonly accepted rules. Among these, the fact thiom the inadequacy of the assumption of an infinite num-
an overmoded condition is necessary to achieve isotrofgr of propagating plane waves (intrinsically linked to the
uniformity and depolarization of the electromagnetic figld use of a continuous plane-wave spectrum) as this condition
a test volume can be regarded as one of the most fundamienapproximatively fulfilled only asymptotically. In prace,
tal [1], [2], [3]. It is hence surprising that the study of ghi depending on the number of resonant modes excited at the
condition has not received much attention: to the best of oworking frequency, the number of plane waves into which the
knowledge, no clear definition has yet been given in the fiéld field can be decomposed is finite, hence resulting in a non-
Electromagnetic Compatibility, even though a similaremiitm perfect matching between g2 probability law and what is
exists in acoustical reverberation chambers [4], albe#tblen observed from experimental data about electric energyityens
to provide an assessment of the rate of convergence of fiélders of reverberation chambers widely consider that wagrki
statistics to theoretically justified asymptotic laws. at frequencies above the Lowest Usable Frequency (LUF),
As a matter of fact, going through the literature, it appeaes defined in [8], is a sufficient condition to make a cavity
that the concept of an overmoded cavity is somewhat regardee@rmoded. This idea has already been proven to be incor-
as related to a threshold value in the modal density [2]. Thisct [9], [10], as the statistical properties of the field gexted
likely comes from the fact that the availability of a larget frequencies close to the LUF can be quite different from
number of modes resonating at the working frequency ftise ideal asymptotic case treated in most statistical nsodel
necessary, if the field distribution inside the cavity is ® bof reverberation chambers. Nevertheless, it is well aazbpt
complex enough to behave as a random distribution under that working at frequencies well above the LUF ensures an
use of a stirring technique, e.g., by rotating an electiydafge overmoded condition.
mechanical paddle [1], [3]. To the best of our knowledge, no All these results point to the fact that the occurrence of
study has yet clearly defined this threshold level, althoiligh a non-compliancy at high frequency is unlikely, as both the
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modal density and the stirrer efficiency are expected to ¢e. hi makes use of this modal representation, applying the cancep
These facts seem to support again the idea that the overmodesitatistical excitation of the chamber, in order to derve
condition is linked to a threshold in the modal density, with standardized variance of the electric energy densityofatig
taking into account the role of losses. Losses are merghese results, it is shown how the composite quality faatar a
included a posteriori when computing the efficiency of athe modal density of the chamber impact field statistics, and
cavity in converting an input power into a high-intensityldie in particular the fact that the theoretical asymptotic lvéha
An exception is the analysis of how increasingly high lossgsedicted in [5] can be disproved. This leads to a quant&ati
impact statistical uniformity, presented in [11], wheree thdefinition of the overmoded condition in Section 1V, as the on
requirement for a minimum quality factor was investigated. ensuring a limited error with respect to asymptotic statist
this paper, we deal with configurations that are on the othér eSection V then seeks to assess how this deviation affects
of the scale: as a matter of fact, the reverberation chamiler whe probability of rejection in goodness-of-fit tests on diel
always be assumed to be highly resonant, with a quality facgamples. This is achieved by means of numerical simulations
much higher than one, typically several hundreds. Additionbased on the proposed modal representation. Experimental
losses will always be assumed only to affect the relativesults are then presented in Section VI to check the walidit
bandwidth of resonant modes, with no influence on the way these ideas.
resonances are established.

Under these conditions, experimental data have been pre- || M opaL REPRESENTATION AND NOTATIONS
sented in [12], [13], [14], [15], providing clear clues ththe

overmoded condition is actually not based on a threshokl Ie:f. As we are {ntgrested n the stfanstlcal properties of the
|g|d excited within a cavity, we will make use of a modal

for the modal density and that losses can have a benefi tation. bei frective tool to this effect. Wall
impact on field statistics [12], [13]. A similar conclusion/ SPresentation, being an efiective tool to tis efiect. S

was also suggested in a study based on a canonical motagﬁ express the electric field as follows [17], [18]
representation [16], though the lack of an analytic apgnoac >0
hindered the development of predictive/design tools; mmeee Er, f) =Y wi(feil, Hvs(f) (€]
the possibility of non-compliancy above the LUF was not =1
pointed out. Indeed in [14], [15], no doubt could subsisvherer is the position at which the field is being observed and
about the stirrer efficiency at those frequencies where tlfehe working frequency for a harmonic excitation. Three sets
field statistics was shown not to comply with the asymptotiof modal quantities are involved in (1): 1) the modal weights
probability laws predicted by continuous plane-wave speet {~;(f)}, which depend only on frequency for a given config-
models, especially because they occurred over a small suhgation of the excitation sources; 2) the modal topographie
of scattered frequencies. {e;(r, f)} describing the spatial dependence of the field for
This gives room to the idea that the overmoded conditiazach mode and 3) the frequency respor{se$f)} of the res-
is not just a matter of having a large number of modes amthant modes. The computation of the modal weights requires
an ideally perfect stirrer. An eventual role of losses indfiela precise knowledge of the modal topograpHiegr, f)} as
statistics would also cast some doubts on the often invokid former are obtained by projecting the equivalent curren
idea of unstirred components. As soon as field statistics distribution of the sources over the modal topographie$. [17
not comply with asymptotic ones, this is regarded as due toAs rightfully recalled in [2], though this approach is exact
a bad stirring. The results shown in this paper prove that practice it is hardly usable, as the computation of the
statistical non-compliance can also be explained by a wemlodal topographies comes, apart for canonical configursitio
modal overlapping, even though a perfect stirring is assumas a computational burden for most numerical codes. This
and a large number of resonant modes are potentially alailamotwithstanding, the modal approach allows deriving some
This paper proposes a theoretical analysis linking in fandamental results, as will be proven here. To this end, a
formal way the statistical properties of the electromagnetumber of simplifications are required, enforced on threés se
field within a reverberation chamber and two of its mosf modal parameters.
important quantities: the composite quality factor and the Let us recall that the{«;(f)} represent the responses of
number of modes excited at the working frequency. It will bsecond-order systems, defined as follows
shown that losses must be included into modal represengatio f
in order to derive a meaningful statistical analysis of the Vilf) = s >
field within a reverberation chamber. A modal approach is FP+3/2Qi)% — f
employed to this effect, staging a finite number of resonawheref; is the resonance frequency of thth mode andy); its
modes excited at a given frequency. We will not address theality factor. The first set of modal parameters is thusmive
question of statistical uniformity, but rather that of statal by the {f;}. For the sake of simplicity, it is often assumed
convergence for the electric energy density measured &ea githat the quality factors are equal for all the modes closééo t
position. frequency of analysis, approximating them with a composite
The paper is organized as follows: Section Il recalls the bguality factor [19]. This is, clearly, not physical, as tlessdes
sics of modal analysis as derived for metallic enclosurasies of each mode strongly depend on the field topography, a
important notations and concepts are introduced for thefitenwell-known fact in waveguide theory [17]; neverthelesss th
of the derivations presented in the rest of the paper. Setitio approximation is usually capable of capturing the behaviou

@
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the sum in (4) over all of the modes, but just over a reduced
subset#

M =L (N> plea(fOIT @)

wherep is chosen in order to give a significant contribution
from the modes. Hence, (4) is limited to a number of modes
M = #., i.e., the cardinality of#, spanning a frequency
bandwidthB,

®

hereafter referred to as the equivalent bandwidth of the re-
Fig. 1. A graphical depiction of the modal decomposition ofamdom Yerberatlon Chambejr' This concept will be shown to play a,n
realization of the electric field and some of the notationsdusThe dots important role, as it accounts for the fact that a harmonic
represent the level of contribution of the three modes datirig the field at signal excites a number of modes that are to be found over
the working frequency. this bandwidth. These concepts are illustrated in Fig. i.afo
random realization of (1).

B, = max B, ;
¢ icM R

of a cavity and we will make use of a modified version
Appendix A.

We will limit our analysis to a generic positian Introduc-
ing the following factorization for the modal topographies

ei(r7 f) :e‘i(rv f)éz(r f) (3)

we can hence restate (1) as

n

I1l. STATISTICAL MODAL ANALYSIS

Following the previous discussions, we will consider the

simplified model in (9) as the reference for our statistical
analysis

E=) %€, .

ic M

©

oo . where the indexesnow span the se#Z, and having dropped
E(r,f)= Z%(l‘«, ()€ (x, f) (4) the spatial and frequency dependencies, as our analydis wil
i=1 deal with the field statistics at one specific position and
having introduced the equivalent weights frequency at a time.
We focus our analysis on electric energy density
Yi(r f) =v(fe(r. f) (5)

o , W(r, f) = col B(r, f)||? (10)

The second set of parameters is given by the modal weights
{5}, while the modal polarization€; } are the third and last Where ¢ is the dielectric constant for the medium filling
set of parameters that we will consider. the cavity, and the electric field is expressed in root-mean-

The use of (4) allows studying field statistics in a simplgquare units. The model proposed in (9) is fit for studying
way, as soon as the three modal parameter sets are treate@sduantity related to the electric field. The rationale for
random variables. This approach is often used when study#Posing the electric energy density lies in its asymptotic
the asymptotic properties of complex systems, as in [5]ma-coconvergence to a six-degree-of-freedom chi-square laug th
mon practice in statistical mechanics. Under this paradigyn With a standardized variance equal to 1/3, as opposed to the
is entirely defined by the three sets of modal parameteys, sduared amplitude of Cartesian components (directlye it
{f:}, {&} and the composite quality factp. the received power for polarized electrically small ants)n

Recalling that the contribution of each mode is weighted Bfich as dipoles) which follow a two-degree chi-square law,
its frequency responsgy;(f)}, the influence of each modeWith a standardized variance equal to 1. Although this has
is localized around each resonance frequeficyas shown NO impact from a theoretical point of view, it makes a big
in Fig. 1. The extent of the influence of each mode is set Isifference in practice, as the statistical uncertainteetfhg
its quality factor@;, as the mode can be effectively excitednoments estimated from a finite sample population is diyectl
only for working frequencies at most at a distan¢e— f| < dependent on the relative statistical dispersion of thepsesn
Byy,; from the resonance frequency. The distaribg ; is the @S recalled in Appendix B. The experimental results present
bandwidth covered by each mode, from its peakfatto a in Section VI, dealing with the electric energy density, are
reduction of a factop. Typical values ofp are —3 dB and indeed already affected by a non-negligible statisticalesn
—10 dB. For the case op = —3 dB, tainty; use of single Cartesian components of the electld fi

would have resulted in a even higher uncertainty.

= 1 The average spatial uniformity properties f can be

Qi obtained straightforwardly from a continuous modal repre-
a result that will be used later. sentation, as done in [5], where it is proven thEt follows

As we will show, the introduction of the bandwidttis,;; a six-degree-of-freedom chi-squared probability Iaw,)ér
is not necessary, nor the definition of a legelnevertheless, Although such approach allows to understand and explain
this approach simplifies the mathematical derivation, &hiin a simple way some of the most important properties of
effectively pointing out that it is not necessary to carryt oueverberation chambers, it is incapable of providing rssout

B (6)
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for asymptotic conditions. As such, it cannot explain whidfie ~ Modelling the {f;} as random variables leads to having
statistics can deviate from the asymptotig probability law {1;(f)} behaving as random functions. Subsequent analysis
in practical scenarios, where the electromagnetic fieldhiwit will show that their squared modulus play a central role.
a reverberation chamber is given by a discrete plane-wadence, we introduce the moments

spectrum. B n
Let us now consider (9) under a similar statistical viewpoin o =B[N (13)
We will consider the three sets of modal parameters as randaiiich, for n = 2, represent the average power of the

variables. The main assumptions required are that: 1) thdes, and it accounts for how effectively they are made to
modal parameters of different sets are independent ande2) tBsonate on average, as their frequencies of resongfige
parameters within the same set are independent and idgnticare randomly scattered around the working frequeficyhis
distributed (iid). Recalling the physical meaning of thesghould be regarded as a sort of available power, as the actual
parameters, it is clear that they are not independent, gsatlee amount of power in the modes depends on the modal weights
all related to the position and spatial distribution of toeriges. 5;. At the same timey? summarizes how power is shared
Nevertheless this approach is commonly regarded as souahong the different modes. Indeed the average mutual power
and it is the foundation for statistical analysis for revadtion shared by two any modes is
chambers [2]. ) o ) 9 ) 2 2
The modal weights will be regarded as defined by an iid E [ (g5 (NP] =B [lei(HP] E [l (NF] = w3

real and imaginary part . . ) (14)
recalling the independence assumption for the resonaeee fr
Fi=a; +ifi . (11) quencies{f;}. As mutual power is a measure of the overlap-

- o ) ping of the modes, it has an important place in field stasistic
No specific assumption is required on the type of law followed | et us now consider (10). By introducing the Cartesian unit

by the {a;} and{3;}. We define vectorsi, the electric energy densifi/ can be written as
Hn = E[|7:" s (12) 3 .
[5:07) WX IB el )
as then-th order moment of the modulus of the modal weights k=1

{~i}. These moments are identical for all the modal weightgo|iowing (9)
following the iid assumption for the modal quantities.

The modal polarizationg¢;} will be considered as uni- . s
formly distributed over ar-steradian angle, as done in [5], so Uk - Z Yih€;
that all polarizations are equally likely. Resonance fertries 5 e
will be assumed to be distributed uniformly over a bandwidth 211212 a2
B. around the working frequency. These are best-case E“Z{ Z Pl il 1€ - e
assumptions, as they imply that a perfect stirring is aféela

L

k=1

k=1 \ie#

Indeed, in order to meet these requirements, the stirring + S Al (R E - 16
technique must be capable of providing perfectly uncoteela ”26;” A (& ) 8 - ) (16)
samples, following exactly the same probability law. Hence iz

the following results are not only non-conservative, btih@a \hich can be restated as
optimistic, and they should be regarded as lower-bounds for

any use in error estimation. Such choices are meant to model W = €0 > [il*[vil” +

a perfect stirring technique, where for each random rei@iza =

the frequencies of resonance of the cavity will be modified,

with equal probability of finding them over the bandwidg. €0 Z VA i} Z & - an)( 5 ) (17)
Actually, the probability density function for thg f;} L

should account for the fact that the probability of flndlng
a resonance at a given frequency increases with the moda
density of the cavity. As the modal density is not linear 3. . L

with frequency [2], resonance frequencies cannot, in gegner € al>=&I1P=1 . (18)

be distributed uniformly. But as long as the bandwidth k=1

over which the{f;} are observed is small enough (i.e., This model can be used in order to study the actual
for a highly-resonant cavity), the distribution can indemel role of losses in electric energy density statistics. T thi
approximated as uniform. The actual problem with the use end, we propose to compute the first two moments of the
simple probability density functions is that the phenonrenelectric energy density, and to check under what conditions
of mode clustering cannot be modelled properly. For the saltee standardized variance converges to the theoreticaltses

of simplicity this is going to be neglected in the remainder aecalled in [1], [2].

this paper; again, this implies that we are setting our a@msly The average electric energy density can be computed by tak-
in a best-case configuration, as mode clustering would yeldng the ensemble average of (17). Recalling the assumpfion o
stronger deviation from asymptotic results. independence between the modal weights and the frequencies

qalllng that
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of resonance, as well as the fact that the modal weights amember of modes around the working frequency. We should
iid random variables, we get rather consider a levegl — 0, leading toB. — oc and, as
EMW] — eo M 19 a consequencel/ — oo, i.e., let all the modes intervene.
(W] = eoMpavz (19) Clearly, this implies an increasing number of modes invdlve
having applied (12) and (13). in (9), but with a level of energy getting lower as their
Getting on with the computation of the variance of th&equency of resonance gets further away from the working
electric energy density, by squaring (17) and proceedimgfrequencyﬂ This is not in contradiction with our derivation,
by separating the coherent and incoherent parts of the su@8,this fact is accounted for by the moments. The use of
yields the limit is valid as long ag? is high enough to have the
dominant modes confined into a narrow bandwidth arofind

E [WZ] = Muvi+ so that the idea of an average composjtés still physically
) 9 o acceptable.
+ MM =gy | 1+ Under these conditions, we can introduce the standardized
5 variancec?, of the electric energy density, taking the limit
— . a2 of (26) as
+E U SO ) € )| } ) o) %9
k=1 2 . 1 1 Ha . B. Q
) R . Gy = lim ( — =-+—-—— lim —— . (27)
The ensemble average in (20) can be simplified taking note =0\ )y 3 mpz Moo M f
of 3 Since for@ > 1
D)€ i) = &€ (21) B 1
k=1 1\}13100 M om(f) (28)
and since PPN 1 . wherem(f) is the modal density, expressedfifr !, equa-
E [\Si -1 } =3 Vi#j o (22) tion (27) can now be written as
equation (20) can be expressed as o 1 lpg 1
Sw = 5 __ZF (29)
2] = EMpuavs + 2 EM(M — 103 (23) e
E[W#] = M 30 Harz If a resonant mode were centered pnthus with a—3 dB
so that the standardized variance is given by bandwidth Bsqp = f/Q, then My, = m(f)Bsas would be
) ) equal to the number of modes found on average within this
(f) _E w2 _ lpava M-4 (24) bandwidth. In other words),, assesses how strongly the
w)w  (E[W])?2 My3vi 3M modes overlap on average.
Based on the results demonstrated in Appendix A, the
following result holds for@ > 1 (meaning several hundreds) IV. ON THE OVERMODED CONDITION
vi B.Q The result in (29) must be capable of predicting the asymp-

(25)  totic results expected from the theoretical and experialent

) ) ) . ~ analyses presented in [5], [20]. This is the case, as
whereQ is the composite quality factor of the cavity. Attention 1

should be paid about the fact that the definition of this com- lim & ==
posite quality factor is not the same currently used in EMC, M=o 3
i.e., as defined in [8], [2]. In fact, this considers the agera which is the result expected for g probability distribution
efficiency of a reverberation chamber in converting an inplaw [6]. Hereafter, we will refer to this asymptotic value as
power into an electric energy density. This efficiency being,.

based on the notion of average electric energy density ovefThis asymptotic result is met only when the number of over-
the test volume, it is not suitable for statistical conveige |lapped modes increases, as opposed to common understanding
at a specific position. We rather deal with the average timgnhere modal density is regarded as the actual dominating
constant of the cavity at a given point. Hence, it is a funttigparameter. This points to the true conditions that must be
of frequency and position, with a non-smooth behaviour inacted for the cavity to be overmoded: requiring a large
these variables, presenting a large dynamics of values. Tiember of resonant modes is a necessary but not sufficient
notion of average is thus applied to tig of the dominant condition, as long as they are not overlapped. As this last

vi  m f

(30)

modes at the working frequengy event is tightly linked to the bandwidth of the mode response
From (25) the overmoded condition is strongly dependent on the losses
o\ 2 1B, Q M—4 experienced in the reverberation chamber.
(-) =—= /" = 4+ — (26) The roles of the modal density and the composite quality
w)w mwus M f 3M

factor 9 are clarified by Fig. 2, where the standardized
As we anticipated in the beginning of this Section, theariance of the electric energy density, predicted by (29)

definition of B, is redundant. As a matter of fact, (26) iss plotted against a varying modal density and quality facto

approximated as long as we limit the sum in (9) to a finit€hese results show how the idea of the overmoded region
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10 " phenomenon, they are usually assumed to be normally dis-
tributed [5]. Adopting this same approagh/ ;3 = 2, yielding
6 1
€ = I (33)

The ratioss/p3 would not change much with the probability
distribution law; e.g., for the case of uniformly distrikdt
modal weightsus/p3 = 7/5.

The relationship betwee/,,; and the divergence from the
asymptotic law is actually intuitive. Chi-squared laws are
direct consequence of the central-limit theorem, as redall
in [3], a condition approached as the number of degrees of

01— — ,  freedom increases. For a cavity, modal representationsdero
10 10 _1 10 a clear insight, as the number of degrees of freedom is just
Mode density (Hz ) the number of modes effectively resonating (on averagéjeat t

working frequency. Clearly, this requires a potentiallyhni
Fig. 2. The standardized variance predicted by (29), for rging modal NUmMber of modes (modal density), but also the possibility
density and composite quality factor. A working frequenty= 1 GHz was to make them resonate at the working frequency: this is
assumed. directly dependent on the average quality factor of the rapde
the dominant parameter for making a mode accessible when
as a threshold condition could be easily thought as a corrg‘lcqumg at a frequgncy not _equal _to the_ one at Wh'.Ch .'t
N ) . . . B resonates. The merit of (33) is that it provides a quaniiati
definition, since increasing the modal density ultimatelgds farmula, indispensable in order to give a meaningful detinit
to an asymptotic convergence to the standardized varian & ' o
expected for a2 law, i.e., the valuel /3. of the overmoded condition.
; 6 L ) Indeed, (33) clearly shows that the overmoded condition is
It is noteworthy that common understanding looks at modal , " )
) . ) A not given by a universal threshold, but rather dependentien t
density and frequency as being univocally related: thisngro T ] ; . .
. A . . agmlssmle error on the standardized variance. This tojllc w
interpretation has likely originated because of the use

\ " > BE the object of a more detailed discussion in Section V. If
Weyl's formula [2], a smooth approximation not accountin

. 0 ‘ ) ;
for mode clusters. Actually, modal density broadly inceesas%le consider a 10 % errar;z on the standardized variance

with frequency, but it can locally decrease or increase wiffy acceptable, then at least about 20 modes must overlap
a Y, Y within their average—-3 dB bandwidth, centered around the

respect to the smooth behaviour predicted by Weyl's formula " . .
S . working frequency. A quick computation allows to check that
resulting in a non-monotonous function of frequency. - L .
Fig. 2 also shows that an increasing modal density is r]t%ls conqmon is often not met in unload_ed chambers, unless
the only way of achieving the convergence in (30), since fort e working frequency is conspicuously higher than the (L.UF

. . . . Experimental results supporting this claim are presented i
given modal density a relatively small increase of losses al P PP 9 P

leads to convergence Section V1.
. 9 B . . L ._These conclusions are coherent with the findings reported
This phenomenon is not new: in acoustics, this idea i'ﬁ

expressed by Schroeder frequency [4], as the minimum fr‘%_[9], where it was shown that testing against the neegof

- s stribution laws, the minimum frequency for which the test
quency for Wh.'Ch three modes are overlapped W.'th'.n th.ellsr passed can be higher than the conventional LUF derived
;r?l;itgfr b;:éngd;&'e-[ge Fgr?tti)lewoﬁ stt?c?r: tlh'?hngg:'t;llésny applying the standard [8]. In a similar way, experimental

M u quantify gy u results such as those presented in [15] go in this direction:

tric energy density statistics will diverge from the asyotjat they showed that by applying goodness-of-fit tests to the

results obtained for an infinite number of resonating modes, ) ]
A d 1o thi h ider th lati samples collected in what was considered as an overmoded
S 0pposed to this approach, we consider the relallve erig vity (in the sense of standard [8]), the test would fail for

€2 between the result predicted by (29) and the asymptog&tain frequencies. This implied that the overmoded doodi

one 2 2 is not ensured by passing a threshold value, but that it dkpen
WS _ 3 1 more finely on the properties of the cavity at each frequenc

€2 = - =S5 . (31) y on the prop ) L guency.

S m py M Indeed, considering the paradigm we have introduced in this

. . . Section, the well-known fact that the composite qualitytdac
The ratiojus/ 3 is related to the kurtosis of the real (or ¢ 4 cavity follows a frequency trend far from being smooth,

imaginary) part of the modal weights as implies that at frequencies where the quality factor insesa
gy 1 the probability of not passing a goodness-of-fit test can be
== (k+1) . (32) expected to be higher. This conclusion is clearly submitted
1z to the joint variation of the modal density and the composite

In order to compute this error, we need to make sonwiality factor, as the two can compensate each other.
assumptions on the type of probability law followed by The way (33) is defined implies that a high modal density
the modal weights. Although not justified by any physicatan be a sufficient condition, when it goes to infinity, as
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required in asymptotic models [5]. But it also proves thatgo 0.3 0.3
given maximum error, the same statistical compliancy can b Q=300 Q=300
attained by controlling the losses within the cavity. As tfs
the time the modal density is not a design parameter, (33) ce
play an important role in the design of reverberation chambe o

The attentive Reader should avoid thinking that (33) ingplie oaf e T T T T T T 01
that increasing losses is a certain and good solution to th i‘\
limitations of reverberation chambers. From an energetiotp

0.2 0.2

KS

of view, increasing losses is obviously a non-desirablécpol 0 0 200 400 600 0 0 200 400 600
as it would impair the ability of a reverberation chamber in
efficiently generating a high-level electromagnetic field. 03 03
But at the same time, as demonstrated in Section VI Q =1000 Q = 1000
increasing losses provide some benefits, speeding up the cc
vergence towards an asymptotic chi-square law. This nbiwit 0.2 . 0.2
2 N

standing, (33) holds true as long as modal-weight stadistic

and modal density can be regarded as unaffected by increas

losses. Such condition is realistic if losses have a peativd

effect, implying a relatively small increase. Actually,igh

scenario occurs and is of interest in practice, as the ifwius

of lossy EUTs within a reverberation chamber affects the

statistics of the field the latter generates. The availghif a

theory capable of predicting how the field statistics is rfiedi

should come of use in understanding under what condition

the behaviour of an unloaded chamber is not too sensitive 1

the inclusion of EUTs. This clearly is a matter of practical

concern. a
As opposed to the case of a perturbative effect, it has bee ;

highlighted how a strong increase in losses has a negati g2 S __

impact on field statistics, as in [21]. It is noteworthy that i

that study the quality factor was reduced by a factor up to ter 0 200 400 600 0 0 200 400 600

thus strongly modifying the reverberation chamber behayio £z (%) ez (%)

whose relationship with the unloaded configuration shoulc

be questioned. Again, our analysis is incapable of predicti

how a strong reduction of the quality factor affects the nioda

description of a cavity, so that this type of effects are dut §9- 3.  Scatter plots representing the close relationshiptieg between
! e standardized variance &F and Kolmogorov-Smirnov statistic® x 5.

the scope of our work. ) ~ The model (9) was employed with three different values fee tiuality
Attention should be paid to the fact that our analysis fsctor (300, 1000 and 3000), for 200 values of modal densipanning

™ P : H range from10~% Hz~! to 10~* Hz~!. For each configuration, 100
optimistic, as it is based on the assumption that the stlrr@(ﬁependem samples (left column) or 500 independent snfpght column)

technique be capable of ensuring that all the dominant mod%ée generated, from which the relative ereor on the standardized variance
will have the same probability to span thed dB bandwidth and Kilmogorov-Smirnov statistic® x s were computed, and plotted as an
around the working frequency. This means that in the caseg"id“a' point, All results have been computed for a wogdirequency

. . . f =1 GHz. Dashed lines represent the threshold associated tooldrov-
mode clustering, the actual number of modes required Mighinoy test, for accepting the null hypothesis of & distribution law with
be higher. a 95 % confidence margin.

-

KS

3
* /
.
o

# increasing M
& g M,

V. RELATIONSHIP WITH PROBABILITY-LAW TESTING

The results presented so far assess the deviation frgin a It is nevertheless fundamental to have a clue about how
law focusing on the standardized variance. Although this good (33) is as an estimator of the deviation of the entire
a meaningful measure of statistical compliance, it is knowprobability law. As the actual (opposed to the asymptotic)
from the “moment problem” that two probability laws carprobability distribution law of W' cannot be expressed in
be expected to be identical only if all their moments arelosed-form, the link between these two quantities mustsbe a
identical [22]. Hence, from a theoretical point of view, weertained directly studying the electric energy densityi@lfl
cannot draw any conclusion on how close the empirical asdmples. To this end, we have used (9), generating random
asymptotic laws are, unless all of their moments were availalues for the three modal parameter sets (as introduced in
able. Our analysis is limited to the first twvo moments of th8ection Ill), obtaining a population of random samples for
electric energy density; as the estimation of higher momerihe electric energy density¥’, as generated within a per-
from experimental data is a critical issue [6], we regardddctly stirred cavity. This allowed us to estimate two diéfat
such approach as practically unfeasible, as the resuligiteh pieces of information: 1) the standardized variance and 2)
moments would be overwhelmed by statistical uncertainty. the standardized empirical distribution functidfy, (W) of
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0.2f ' ' ' ' ' ] tending the purpose of (33) from an analysis tool for meaning

ful physical understanding, to potentially a predicticsin

tool for practically ensuring the statistical compliance e

0.15f reverberation chamber.
The hypothesis of statistical compliance is based on the
@ validity of the following condition [23]

oo VNDks < Ka (35)

whereN is the number of independent field samples &hd

0.05¢ is a threshold value for a significance level equaktdypical
values of K, for a = 0.05 are about 1.15. This means that

o ‘ ‘ ‘ ‘ ‘ for N > 100, the most important region in Fig. 3 is fer= <

-50 0 50 100 150 200 250 150 %, where the correlation betweep and D g is close to

£z (%) linear. As establishing a closed-form expression linkingse
two quantities is likely difficult, we have rather opted for a

Fig. 4. Numerical data generated by (9), from 500-sampleufadipns (as S|mple linear regression model

in Fig. 3), and the approximation (36) obtained by means @fastisquared o~ )
linear regression (solid line). Dis~m +ipez €220 (36)
which is valid only fore.2 < 250 %. The regression param-
~ etersy; =2.6-107% andn, = 6.5 - 1072 refer to the model
W. From the latter we computed the Kolmogorov-Smirnoynhowed in Fig. 4.

statistic Dy s, defined as [23] Plugging (36) into (35) yields the maximum acceptable error
emax €NSUring statistical compliance
DKS = lIll/"(V]:X FpV (VV) — Fxg(ﬂ/) 5 (34) K
€2 < emax = —2= — L (37)
where Fxé(W> is the standardized probability distribution mVN

function of the asymptotigg law. Standardization of random  Apart as a tool for checking the statistical compliance of a
variables, and hence of their associated probability itlistr reverberation chamber, (37) is also important in the dégimit
tions, is a necessary step, in order to apply goodness+esfit of the overmoded condition. As a matter of fact (37) states th
in a meaningful way, as the reference asymptotic distrdiouti in order to pass Kolmogorov-Smirnov test, it is not necessar
moments are not known and configuration-dependent.  to have a negligible error on the standardized variance. The
The correlation betweea: and Dy s was investigated by actual upper-bound,,.. to apply toe.> can be quite high,
means of scatter plots, as those shown in Fig. 3. Thesesesal the number of sample¥ decreases. This does not mean
show unmistakably that the Kolmogorv-Smirnov statistiss that the conclusions in Section IV are incorrect: as a matter
tightly related to the error on the standardized variande Tof fact, this higher threshold just accounts for the factt tha
parametric analysis in Fig. 3 proves that an increasihg the truee, = is not known, having been estimated from a finite
leads to a stronger deviation from the asymptotf law. population. Hence, it is pointless to try to enforce a cdadit
The scatter plots are actually parametric curves in thel&i on e_. stronger than the precision with which this quantity is
My, as pointed out in Fig. 3, rather than directly dependegrihown.
on variablesn, f andQ. Hence, the results in Fig. 3 are not As an example, using the data shown in Fig. 3, a 500-sample
valid only for a specific configuration, but in general. population would require a relative errar < 39 % in order
The fact that the points in Fig. 3 rather than laying oto accept the hypothesis of an electric energy densityvatig
a curve are scattered should not be interpreted as a him asymptotic chi-square distribution. Applying (33)jsth
of a partial correlation betweey g and e2: as a matter maximum error threshold is translated into a need for about
of fact, these two quantities have been estimated from5aoverlapped modes, a result well looser than the 20 modes
finite population, implying that these estimators are aéfdc required by setting a 10 % error on the standardized vari-
by residual statistical uncertainty (see Appendix B). kdle ance. As a consequence, the definition of overmoded region
increasing the population from 100 to 500 samples showscannot be dissociated from the statistical uncertainty tha
substantial reduction in the uncertainty of the data cati@h. inevitably present when dealing with estimators based on a
Hence, we think that the variance err¢ could be used for finite population of random samples. In other words, it is not
assessing the deviation of the entire distribution lavhalgh statistically meaningful to set a general and arbitrargshold
it only brings information about the first twvo momentsiéf. on the number of overlapped moda&s,,.
The accuracy of this approach is clearly dependent on theEquation (37) can also be used for designing additional
number of available samples. losses aiming at improving the statistics of the electriergn
In any case, the strong link between Kolmogorov-Smirnalensity. Given a working frequencf and an estimate of the
statistics and the standardized variance error validategliea modal densitymn, and computing from (37) the maximum
of using (33) for predicting how changing losses would affeerror e, leading to passing the Kolmogorov-Smirnov test, a
the statistical behaviour of a reverberation chamber, #xs maximum composite quality fact@,,.. is found
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0.3 30 000
0.25 o 25000+
0.2 N o 20 000+
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0 . . . .
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Fig. 5. Scatter plots oD 5 ande_- as derived from experimental data forFig. 6.  Quality factors for the empty and loaded chamberse $imooth
the case of the empty and absorber-loaded chamber. Theesaamgl related curves represent the loose majorants used for deriving thenmum-error
to the entire frequency range 0.7-3 GHz. results in Fig. 7.

to the estimations ofe.= and Dkg is not negligible, as
Qumax = fmffmax (38) already discussed in the previous Section and detailed in
6 Appendix B. Moreover, the actual number of independent
Considering a lowef) would be pointless, as the improvesamples generated by the mechanical stirrer is frequency-
ment on statistics would be undetectable, due to unavadablependent, going from about 30 around 700 MHz, to about 100
statistical uncertainty, while field-strength would dedga at 3 GHz, thus leading to an even higher statistical unaestai
These discussions clearly hold as long as (9) is physicaily the lower frequency range.
sound, i.e., as additional losses have a perturbativeteffec  Having validated the close relationship betweens and
the field within the cavity. An experimental validation ofgh €2, we went further in our validation by focusing on the

model is presented in the next Section. relative errore.2. The next step was to look at how well (33)
allows to predict the maximum deviation of the standardized
VI. EXPERIMENTAL RESULTS variance, knowing a fair estimate of the modal density ard th

| der t lidat findi ) tal test composite quality factor of a reverberation chamber. Ttoug
n order to valldate ,Our Indings, experimental ests Weige |tar can be estimated by means of measurements, modal
carried out in St;pelecs reverberation chamber. This gavi ensity is not something that is routinely measured, atjhou
measuringl 3.8 m?, and equipped with a 100-step mechanic B : '

) . solution to this problem has recently been proposed [24].
stirrer, has its LUF around 550 MHz. In our setup, a Iogl- P Y prop [24]

L . the context of this paper, we have stuck to the current
periodic dipole antenna was used as a source exciting lé:iﬁj

) . . roach consisting in using Weyl's approximation, and we
cavity, over the frequency range 0.7-3 GHz. An optical-lin ave considered the simplest of Weyl's formulas [2]

field probe was used in order to collect data about the three

field components at one position within the test volume of the m(f) ~ 8wV f? (39)
chamber, while the stirrer was made to move over its entire T8 '
range of rotation. With no access to a precise estimate of modal density, any

This approach was used for two configurations, for an empagtempt at finely predicting the standardized deviatiooreis
cavity and with a small piece of RF absorber, made up ofBbund to an error that cannot be estimated easily. For this
pyramids about 30 cm high, standing in the center of the florgason we rather focused on the ability to provide results
of the cavity. As the field probe used was phase sensitilunding the error, and thus capable of giving a warning ibou
we were able to compute the composite quality factor fohe global trend o - over a given frequency range. Following
the cavity over the entire frequency range of test, by poshis point of view, rather than using the quality factor estte
processing the frequency-spectrum data in time domain (se#ained from experimental characterization of our chambe
Fig. 6). we considered a smooth majoring curve. The rationale behind

The field samples were used in order to compute the electifitss approach is that, according to (33), the maximum error
energy density samples. The same procedure exposed indbeurs when a minimum number of overlapped modes is
previous Section was then applied: the aim was to chepkesent, which in turn occurs when the ratio of the modal
whether the same correlation betwePrs and e was to density and the composite quality factor is at a minimum.
be found in practice. The results of this analysis, shown he use of a smooth curve is justified by our interest in the
Fig. 5, confirm those presented in Fig. 3. As the number @end of the error, and not its fine modelling. Furthermane, t
steps is limited to 100, the statistical uncertainty assted information available on the quality factor is often prostt
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estimated with a 95 % confidence margin as detailed in
Appendix B, and is shown in Fig. 7 as shaded areas.

Fig. 7 proves that (33) is indeed capable of predicting the
trend of the maximume.2, as the composite quality factor
and the modal density evolve in frequency, and this for two
chamber configurations. The comparison between the egror
in the case of the empty and loaded chamber is especially
interesting as it is clear that the results predicted by ¢38)
indeed closely following the global trend of the maximum
deviation of the statistics of the electric energy dendityese
results also prove that (33) can be used in practice as a
Frequency (GHz) design tool, as the majorant of the error computed in the

(b) case of inclusion of additional losses correctly preditis t

improvement in the worst-case statistical performancehef t

Fig. 7. Experimentally estimated relative erege as a function of frequency: loaded cavity.
(a) for the empty cavity and (b) for the one loaded with the lsmiasorber. 1 he statistical uncertainty cannot be neglected, as ités th
The results from (33) have been computed from the smootresumajoring  main reason for the residual error at the higher frequency
e S e st ey e, - 1ange. The procedure proposed in Appendix B allows esi-
computed for a 95 % confidence margin as shown in Appendix B. mating a residual error of about 46 % ep, even though

this latter is expected to be close to zero. This result is

independent of the proposed model, and merely based on
by simple predictive models [2], particularly during a dgsi Statistical considerations. This statistical uncertgipresent
phase. even when the reverberation chamber is expected to behave

Fig. 6 shows that we did not use a true majorant. Thdeally, is the reason of existence of the ambiguity in the
reason for this is that it would have provided too conseveatidefinition of the overmoded condition. It is meaningless to
results, as a few points higher than average can lead toeguire an errofe.. smaller than this statistical uncertainty,
strong overestimation af. The approximations we employedas the former cannot be measured precisely enough. It is
were chosen as a compromise between the need of a majoiirigresting to notice that this statistical uncertaintpears to
curve and that of not considering a too strongly overestighatbe smaller than the threshold imposed by (37) for accepting
quality factor. As a consequence, for certain frequendies tthe asymptotic condition (and thus the overmoded condition
relative errof > can be higher than the estimated upper bounas it would be expected, since they are intimately related.
This outcome can also be caused by modal depletion, whoséooking at thec.» estimated from measurements, there exist
frequencies of occurrence are unknown. a lower frequency for which the error seems not to reduce

From these data and (39) we computed the curves shoamymore. This frequency is about 2 GHz and 1.5 GHz for,
in Fig. 7, predicting the maximum deviation of the electricespectively, the empty and loaded chambers. It is wortlewhi
energy density from the asymptotic chi-square law. Theactichecking what is the number of overlapped modéds, at
error e.2 was directly estimated from the experimental datéhese frequencies. An estimate &f,; is shown in Fig. 8,
The statistical uncertainty associated to these resutdoban based on the experimentally evaluated composite quality fa
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tors and the modal density given by (39). For the two frequeit-allows to predict the actual error incurred in field sansple
cies previously mentioned, it seems that a minimum numbehis latter result is fundamental, as it could lead to a seanpl
of 10 overlapped modes is required, in order to have theay of assessing the statistical compliance of a reverierat
better performance possible, according to the limited mmyu chamber, and how relatively small changes in its composite
provided by the residual statistical uncertainty. Thesilte quality factor would affect its statistics.
are actually too restrictive, as a more statistically nated
choice would make use of (37), obtaining 800 MHz for the ACKNOWLEDGEMENTS
empty chamber and a frequency below 700 MHz for the loadedyye wish to acknowledge the contribution of the anonymous
one. This example is meaningful in depicting the intrinsic&eviewers to the present version of this paper, in partithia
ambiguity of a single definition of the overmoded conditiornsyggestion of the existence of an optimal composite quality
and the fundamental insight brought in by (33) and (37). factor.
A final discussion is worthwhile: the validity of (33) impfie
that if the error it predicts is comparable with the one foimd APPENDIX A
practice in a mode-stirred reverberation chamber, thewitlov MOMENTS OF THE|¢);(f)| RANDOM VARIABLES
be wrong, from a Sta.lt'sm.:al point of wew,_tq concludg ayth Following the derivation given in Section IV, two moments
about the eventual inefficiency of'the stirring technlque.a'A'are needed, the second and the fourth. The second-order
matter of fact, (33) has been derived under a perfectisgirri )
) . “moment of|y;(f)| reads
assumption, so that the eventual presence of a poor stirring ‘
is expected to provide an errer> higher than that due to E [[vs(f)?] = / [bi()Pp(f)dfs (40)
a limited modal overlapping. This is all the more true in
the lower frequency range, where the ineffectiveness od fieyhere p(f;) is the probability density function for the fre-
stirring is often regarded as the major source of statistioa- quency of resonance;. As recalled in [11], there exist
compliancy in reverberation chambers: interestingly,lteer  minimum requirements for the composite quality factor of
frequency range is also where poor modal overlapping appearcavity, for it to be compliant with EMC standards. This
more strongly. being coherent with our study, we can assu@e>> 1. As
a consequence, the average relative bandwigith; = f;/Q:
VIl. CONCLUSIONS of each mode can be expected to be much smaller than one.
A discrete modal description of the field within a cavity hasience, thely;(f)| give a non-negligible contribution over an
allowed us to quantify the role that losses play in the dtesis equivalent bandwidthB./f;, = 1/Q; < 1. The ensemble
of the electric energy density generated within reverl@mat integral in (40) can thus be limited over a finite and narrow
chambers. The proposed model has led to the derivationteindwidthB,; this implies that it is reasonable to assume that
a simple formula expressing the error between the actusler this bandwidth all of the modes have the same bandwidth.
standardized variance and the asymptotic one. This errer wa other words, one can consider that thg f) functions are
shown to be dominated by the number of modes superposesjuency-shifted replicas of the same templétg f), i.e.,
within the —3 dB bandwidth of the dominant modes; asp;(f) = vo(f — f;). At the same time, the narrow-band
such, this result goes against common understanding that tgquirement, together with the perfect-stirrer assunmpiothe
overmoded condition is a mere matter of available resogatiheart of our work, allows to consider resonance frequencies
modes. We have proven that the definition of the overmodediformly distributed over3.. As such
condition is not universal, but depends on the maximum

acceptable deviation from asymptotic laws, as well as on E [[vi(£)]°] = %/ [i(f)1Pdfi (41)
the number of independent samples generated by the stirring € Be
technique. The frequency-replica paradigm implies that

By linking the standardized variance errot2 to 5 o 5, 5
Kolmogorov-Smirnov statistics, it was proven that is a ./B [i(f)Fdfi = /B [bo(f—fo)l*dfi = /B [vo(f)*df
meaningful metric for assessing how likely electric energy * ‘ (42)
density samples are to deviate from an asymptgtiprobabil- The last integral is now recognizable as the energy of the

ity law. This same analysis has led to the definition of a maxiemplate function; clearly, this leads to modal functignéf)
mum composite quality factor that should not the exceededwith the same energy. This was shown to be given by [25]
order to ensure statistical compliancy. A fundamentalltésu 1 x Q2 x

that even starting with a perfect-stirring assumption ahija / [Yo(f)Pdf = P ] . (43)
modal density, an electrically large reverberation chancae Be Bri2Qi+1 2Bu

still present a non-asymptotic statistical performandeese Hence x

conclusions have major consequences on other commonly VEop (44)
accepted ideas, such as that non-compliance with asymptoti M,iZe

laws is always a matter of poor stirring and that teshould The fourth-order moment can be obtained by means of the

always be as high as possible. same approach [25], yielding
Experimental results support our findings, both for the Uy~ m (45)
soundness of the proposed deviation metric and the fact that e 4B}, B
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Probability Distributions of Local Modal-Density
Fluctuations in an Electromagnetic Cavity

Andrea CozzaMember, IEEE

Abstract—Results from random-matrix theory are applied
to the modeling of random fluctuations in the modal density
observed in an electrically large cavity. By starting from results
describing the probability distribution of the modal spacing
between adjacent frequencies of resonance, or nearest-ghbor
spacing, we introduce a simple procedure allowing to pass ém

reproducibility of tests carried out in them and in partauthe
need to ensure that the fields generated by any MSRC belong
to the same type of probability law. The current understagdi

of MSRCs is that at suitably high frequencies the electrid an
magnetic fields can be accurately described as complexedalu

the modal spacing to the local modal density as measured over (circular) Gaussian random variables.

a finite bandwidth. This local definition of the modal densityis
more consistent with the physics of reverberation chamberssince
it has been recently shown that the deviation from asymptot
statistics of field samples is dependent on the number of mode
overlapping within a modal bandwidth. It is shown that as
opposed to current interpretation, the number of overlapping
modes is a strongly fluctuating quantity, and that estimatirg it
by taking the frequency derivative of Weyl's formula can lead
to non-negligible errors and misunderstandings. Regardig these
fluctuations as second-order effects is therefore not sounfiom
a physical point of view, since the existence of modal depkd
scenarios can easily explain the appearance of local anones in
the field statistics, particularly, but not exclusively, in the lower
frequency range of operation of reverberation chambers.

Index Terms—Cavities, mode-stirred reverberation chambers,
stochastic fields, test facilities, field statistics, randm-matrix
theory, random fluctuations.

GLOSSARY

Such a probability law is typically assumed as a reasonable
choice due to the (expected) availability of a large number o
normal modes at high frequencies [1], [2], [3], as opposed to
what are regarded as undermoded scenarios, where alternati
reference probability laws have been proposed [4], [5], [6]

Still, as recalled in [7], the Gaussian hypothesis is only
but an approximate model and it is incapable to explain
the appearance of frequencies at which the field statistics
proves to deviate substantially from those of a Gaussian
random variable. Excluding the existence of unconventiona
setup configurations where the excitation source is styongl
coupled to the equipment under test (EUT) [8], experimental
observations of local anomalies in field statistics, appear
as glitches, have been reported in several papers [9], [10],
[11]: these phenomena, though partially tolerated in theecu
operation of MSRC [12], have not yet received a satisfying
physical explanation. Anomalies of this kind usually imply

N(f) Cumulative number of modes up to the fre-statistical dispersions higher than expected for a diffieel

quencyf.
Nw(f) Weyl's smooth approximation oV (f).
Ne(f) Residual fluctuationsV(f) — Nw(f) not ac-
counted for by Weyl's approximation.

(perfect reverberation), taking the form of local deviago
rather than systematic ones over a bandwidth: these aréyusua
referred to as outliers [2], i.e., as samples not belongirthe
reference law and suspected to indicate a problem of some

mw(f)  First derivative ofNw (f), used as an estimate sort in the setup.

of the modal density.

A rather different explanation can be proposed as soon as we

Mw(f) Average number of modes overlapping in aremember that modal representations of the electromagneti

bandwidthB, estimated aB mw (f).

field generated within a MSRC are accurately reproduced by

Mioe(f) Actual number of modes overlapping in aconsidering a finite number of modes, and in particular the

bandwidthB.

average number of modéd),. overlapping within the-3 dB

mic(f) Homogenized local  modal  density bandwidth of a mode [13]. Theoretical and experimental

Moc(f)/B.
& (f)  Normalized variances?/u? of the electric-
energy densityV.

I. INTRODUCTION

results presented in [13] proved thak,. can be quite low (a
few units) even at frequencies where a MSRC is regarded as
fully functional: as a result, the hypothesis of a Gaussian-
distributed field is no longer justified, and its use should
be limited to an educated guess for approximate predictive

HE prediction of the performance of mode-stirred (omodels.

tuned) reverberation chambers (MSRCs) as generatorur previous work in [13] proved that the standardized
of random electromagnetic test scenarios is a fundamer{@il normalized) variance, or variability for simplicityf the
topic both from a theoretical and practical point of view irglectric-energy density, can be predicted on the basis of
the operation of these facilities. The main issue here is thefew macroscopic parameters, such as the frequency, the

A. Cozza is with the Département de Recherche en Electroétiagre,
Laboratoire des Signaux et Systemes (L2S), UMR 8506 SUPELEGIv
Paris-Sud - CNRS, 3 rue Joliot-Curie, 91192 Gif-sur-YvelRmnce. Contact
e-mail: andr ea. cozza@upel ec. fr.

geometrical dimensions of the cavity and an estimate of its
average quality factor. It was intended as a first step in a
better understanding of anomalous field statistics, sugdes

as being basically due to a poor local modal overlapping, a
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fact already recognized [12], [6], without having been more Il. PRELIMINARY DISCUSSIONS

deeply explored. Our analysis takes its start from results already available
The accuracy of the modal density estimated from Weyitge literature: on the one hand the link between the vaitgbil

formula is often taken for granted. In fact, as shown in thif the energy density and the average number of overlapped

paper, this is not a sound approach, as the modal den§ﬂ9d95 observed at the working frequency, and on the other the

should rather be treated as a random quantity, Subjecfégtistics of modal-related quantities derived in the ernof

to non-negligible random fluctuations. The apparent lack &MT. The purpose of this Section is to briefly recall thesdsoo

any available model capable of predicting the likeliness ¥fhile emphasizing some physical concepts and limitatibas t

observing a strong reduction (or increase) in the local rhodday @ fundamental role in the subsequent derivations.

density makes any prediction of the probability of obsegvin

these phenomena practically impossible. A. Local modal density and overlapping

Itis the aim of this paper to introduce the probability lavis o When thinking about the modal density, one intuitively
the modal density as observistally, over a finite bandwidth, associates it to a certain number of modes resonating around
an approach that is better matched to the concept of mot@ working frequency. The modal density can therefore be
overlapping. The average number of modes and ultimatélgfined as the average numbkfs of modes found in a
the local modal density are considered as random quantitiegndwidth3,
according to the concepts of random-matrix theory (RMT) Ma(f)
[14], [15]. Our results are completely general and independ mp(f) = 5 , 1)
from the details of implementation of the MSRC, as they are B
based on universality classes, as defined in the context af RMINd is therefore dependent éhitself. As long asB is large
Interestingly, the probability law of the local modal dagss €nough to encompass several modes, then (1) is an average
entirely characterized by the average modal density piediicthat can be expected to converge to a single valueBftarge
by Weyl's formula and the class of statistics of the MSRC. &nough, predicted by Weyl's approximation [16]

priori knowledge of the average quality factor, the volunfe o oy 4 81V

the cavity and the frequency of operation are thus sufficient mw (f) = ——f* + o(f) = —= + o(f), )
to derive a complete description of the statistics of thelloc “ /

modal density. with V' the volume of the cavitye, the speed of light in

the filling medium andV, the volume measured in cubic

The interest of these models is not merely relegated \;\Pavelengths.

a better physical understanding of MSRCs, but also has arpe gefinition (1) provides a more general framework than
direct impact on their practical use. The results here pssedoqsz)’ since the modal density is considered in a local setting

can be invoked when studying how likely it is that the fielgy, this reason, it will be referred to as the local modal digns
statistics in a reverberation chamber deviates from thal id%ssociated to a specific bandwidth

case usually taken as a reference, by means of the proceduiig js often practical to associate a specific value to the
introduced in [13]: clearly, the model here proposed beingqqq densitym(f), e.g., by taking the limit forB — 0:
derived on physical grounds, the probability of appearasfce o giscrete nature of the set of frequencié’s} at which a
anomalous field statistics can be predicted without recgrio cavity resonates implies that in practioe( f) can only take
phenomenological approaches, such as those based onahe igdg values, i.e., zero if no mode resonates at the working
of fitting empirical field distributions to general theoceti frequency/ or infinity otherwise [14], i.e.,

laws [11].
The paper is organized as follows: Section Il discusses m(f) = lim mp(f) = S o(f — fi)- (3)
various definitions of modal density and overlapping, while ! B—0 5(f) ; ( )

summarizing some major results derived in the context %is outcome is inevitable as the distribution of the normal

_random—matnx the.ory at the ba5|§ of the derlvatlon' presen odes cannot approach the completeness of real numbess, thu
in the rest of this paper. Sections Il and IV 'mmduc?eaving inevitable “gaps” between them

auxiliary results later used in Section V in the derivatidn o The estimatenw (/) is in general different fromm (/)

the probability distributions of the local modal densityn A\Zecause it is not derived as in (3), but in a less direct manner

empty (.:UbO'd cawt_y s used as a test case in Section Iyfirst introducing the functionV(f) describing the overall
supporting our predictions of a strongly fluctuating localdal nymber of modes of a cavity up to the frequenicy
density. Some considerations about the practical impact olf ’

these results are presented in Section VII, with an emplasis _ g
the concept of outliers and local anomalous field statisTibe Ny =#fi: fis fh @)
Appendix presents a detailed general calculation of thebmrm with # the cardinality of a set. This function can be repre-
of overlapping modes that should be expected in a cavigented as the sum of a smooth approximatidg(f) and a
supporting our claim that weak modal overlapping should néitictuating functionV¢(f) with zero average value

be expected only in the lower frequency range, but even in

what is usually expected to be the overmoded region. N(f)=Nw(f)+ Ne(f). (5)
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This smooth approximation was first derived by Weyl andount the number of modes overlapping o¥&y;, rather than
was intended to provide an approximate solution asymptopiassing through (8), since it requires an estimate of thal loc
cally exact at infinite frequency [16]. The fact that the gy modal densitymn,, (f), as defined in (1). This subtle distinc-
of the residual fluctuations grows less quickly thsi (f) as tion makes all the difference and should not be underestidnat

J — oo, thus ensuring it could seem more natural to assume,, () ~ mw (f) and
derive Mo (f) from (8), but in this way we would implicitly
lim Ni(f) ‘ =0 (6) accept the notion of a deterministic and smoothly increasin
f=oo | Nw(/f) 7 modal density, with no random fluctuations, withagy () not

should not be mistaken for an indication that modal density cdepending onB;;. On the other hand, it is tempting to just

be defined as often done, by taking the derivative\gf (f) consider the average modal density (and overlapping)esimc

at the working frequency, leading to the approximation  practice the ensemble-averagerof,, (f) can be quite close
tomw (f); as discussed in Section VII, such an approximation

m(f) = lim Mp o dLV(f) = mw(f). ) directly leads to a fundamental misunderstanding about the
B—=0 B df origin of statistical anomalies, or outliers, originatedgtrong
As a matter of fact, the residuak,,(f) = |mw(f) — random fluctuations in the modal density expected for single

Mp/B| does not converge to zero, singg(f) takes on the realizations of the cavity.

discrete nature ofV(f), thus preserving the results in (3). When directly considering the number of modes overlapping
It could be expected that the accuracy of the approximationer By, the corresponding modal density should rather be
(7) improves as the frequency, and thdgf), increases, defined as in (1), with an implicit local definition depending
hence leading to modes getting close enough to provideoma By. In practice, (1) is an average modal density, but in
sort of approximate continuity. Unfortunately, this is rthe this context the average is not over the realizations (ehkem
case, as well witnessed by the number variance, a measurawgrage), but rather over the bandwidiy, for a single
the intensity of the fluctuations of the modal density f) realization. In other words, it represents a sort of locally
around a smooth approximate, e.gxuw(f), as it will be homogenized modal density, spread equally over the entire
recalled in Section II-B. Not only fluctuations do not vanistmodal bandwidthB,; rather than as a set of singularities
with the frequency, but they actually increase in absolugs in (3). For this reason, we will refer to it as lacal
intensity, though their relative intensity decreasesrasgn by average, in contrast to tremsemble average. It will be shown
studying the number variance, a measure of modal fluctugtion Section VII that this apparently redundant distinctioakes
discussed in Section 1I-B. A practical example is given ia big difference.

Section VII for a cuboid cavity.

As it will be shown in the rest of this paper, these fluc- . . .
tuations cannot be dismissed as minor approximation errol?’é Random matrix theory and universality classes
particularly when the average number of overlapped modedollowing these discussions, what is needed is a probabilis
is not high enough, as happens to be the case eventi@idescription of the local modal densitys,, (f), as defined
frequencies well above the lowest usable frequency (LUF) #s(1). A theory answering to this need is provided in the next
usually defined by thumb rules proposed in practice withiiiree Sections. The starting point is the probability distion
the framework of EMC tests [12] (see the Appendix for moref the spacing between the frequencies of resonance of two
details). adjacent modes, often referred to as nearest-neighboingpac

The differences betweem(f) and mw/(f) play a cen- as derived by means of RMT [14].
tral role when studying the average local modal overlapping This short summary is certainly not intended to serve as
Mo.(f). This quantity represents the average number &fi introduction to RMT, and the interested Reader may refer
modes found within a bandwidti,; equal to the averageto the first three chapters in Stéckmann’s seminal book [14].

—3 dB width of a mode, i.e.By = f/Q, hence Nonetheless, we will give a brief overview of the reasons why
we can apply in practice the results derived in the context
/ = f f h bl f field istics i de-
Mioe(f) = mp,, (f) =, (8) of quantum chaos to our problem of field statistics in mode
‘ Q(f) stirred reverberation chambers.

with Q(f) the ensemble-average composite quality factor of RMT was developed to deal with structures where a direct
a MSRC; the use of ensemblaverages will be indicated by solution of Schrédinger equation is regarded as complex or
means of an overhead bar. simply ill-defined, e.g., when the Hamiltonian operator is
As proven in [13], a high modal density in itself is notinknown. This is the case for complex quantum structures,
a guarantee of a diffuse field, ensuring Gaussian-diseibutsuch as large nuclear compounds or mesoscopic structures
scalar field components; the dominant parameter is rat{€rg., quantum dots). A solution to this type of problems
Mioe(f), which is required to bé/f,..(f) > 1in order to sup- was found by approximating the unknown Hamiltonian op-
port a diffuse field. Therefore, it makes more sense to direcerator by means of a matrix, eventually of asymptotic ininit
dimensions, whose entries are assumed to follow specific
1By this term we consider the ensemble of all the random wiitias  probapility distributions [17]. This idea is directly rédal to
of cavities generated by varying boundary conditions, dwearty stirring . L.
a previous and very successful approach, namely statistica

procedure, but sharing the same macroscopic propertiesaierage quality ! A e :
factor, volume, average energy density, average modaltyleat. [6]. mechanics, where in a similar manner the problem of studying
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the (thermo)dynamics of a large collection of interactirag-p 1

ticles was solved by considering a random description of th:  0.91\  pgisson ensemble
state variables of the particles. The drive in these apemc 4
is not having a fine-level information of the system at the
scale of the individual elements it is composed of: the focu:
is rather on its macroscopic behavior, described by mear o6
of statistical quantities related to the statistical moteesf = .| GOE ensemble
physical quantities of interest and in general by means ¢ £
probability distribution functions.

RMT has been widely successful in this respect, and atlea 0.3
in its basic idea surprisingly simple; the same cannot bé sai
for the mathematical details. The structural similaritysérg
between Helmholtz and Schrédinger equations has motivate
studies comparing the results predicted by RMT to those ok % ; ; ;
served in microwave experiments [18]. It is important toicet
that a major difference between these two equations is the
absence of an Hamiltonian operator in Helmholtz equatioa: tFig. 1: Nearest-neighbor spacing probability density fiors
structure is the same, but the lack of an Hamiltonian hindeiy an integrable and a GOE system, normalized to the
the drawing of a direct parallel between the two equationgisemble-average spacing.

It is for this reason that the application of RMT to cavities

where classical waves (of any nature) propagate had Mytual

to wait for a fundamental piece of work, namely the Bohigaghaotic behavior. Integrable systems are actually reghade
Giannoni-Schmidt conjecture [19], where it was postulatéth extreme case of non-chaotic systems, whereas in practice
that the results of RMT should apply to any complex syster@.certain amount of chaos is often observed [21]. In practice
A number of experimental validations have confirmed thigompletely empty rectangular cuboid cavities are a good ex-
conjecture, which is today widely accepted as a physical fagmple of integrable systems, while the inclusion of a scatte
Of particular interest for the EMC community are the workspurs partially chaotic responses as soon as its dimenaiens
dealing with microwave cavities, i.e., unstirred revegtion comparable to the wavelength. The GOE provides the other
chambers, where the accuracy of the prediction of RMT w&gtreme representation for the ideal case of a fully chaotic
proven beyond any doubt (e.g., [18]). system.

The rationale behind recalling these points is that the An example of direct interest for the EMC community was
nomenclature used in RMT is somewhat cryptic, with deprovided in [22], where it was shown through numerical sim-
initions that make sense in the context of quantum chagtions that a mechanical stirrer is not capable of prowgdi
without having any correspondence in classical wave theogyfully chaotic behavior, with traces of integrable featurk
The apparent validity of the Bohigas conjecture allowed should be clear that the notion of integrable system is by no
direct transfer of the RMT ideas from the former to the lattemeans related to the idea of degeneracy in the frequencies of
hence the potentially confusing terminology. resonance of a cavity, as in the case of an empty rectangular

In this framework, we need to recall that RMT is baseg@avity with widths in rational proportion. Even in the case o
on universality classes allowing to define fundamental syrifrational ratios, such a system will present the same biehav
metry properties of the random matrix approximation of théan any other integrable system.

Hamiltonian, according to fundamental physical propertie The theory introduced in this paper is entirely based on the
of the system under consideration, e.g., energy consenvatistatistics of the nearest-neighbor spacing, defined as
reciprocity, etc., independently from the fine details oé th

system. In this respect, we will consider two configuratiohs si = fiv1 — fi, 9)

practical interest, the case of integrable systems, afeoreel )

to (improperly) as the Poissonian ensemble [20], and th\gpgre si can be regarded, gccordmg to RMT.’ as mﬁ.]
of the Gaussian Orthogonal Ensemble (GOE) [14], Charé{(‘e_ahz'atwn of a random vanaple, the probab!llty densny'
terized by time-reversal invariance, i.e., energy COretém. unctlon§ (qus) ,Of the normalized nearest-neighbor SHACI
A precise definition of the first class is apparently not yi = §/8 with 5 = 1/mw the average nearest-neighbor
available outside the context of quantum chaos, but theggal Spacing between adjacent modes, are [14]

with microwave structures is still maintained. The impatta .

point to consider is that under the category of integrable pe(z) =e™", (10)
systems is considered any system that do not present §§Wa Poisson ensemble and

trace of the features of wave-chaotic systems, in particula
level repulsion and of course exponential sensitivity titidh
conditions. In practice, the fact that frequencies of resme
can cross each other’'s path when a dynamical perturbatfon the GOE case. We are thus confronted to either an
(stirring) is operating, is a direct measure of absence aflg f exponential distribution or a Rayleigh one with a parameter
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pe(a) = Zwe ™, (11)
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by studying their number variancE?(L), defined as the

185 variance in the number of modes observed over a bandwidth

16t Poisson ensemble containing on avgrageL modes, i.e.,Ls = L/mw. The
number variance is equal to

1.4r
_— (L) = L, 12)
2L
A for an integrable system and

0.8F

GOE ensemble 2

0.6 »3(L) = = In(27L) +0.0696 + O(L™"),  (13)

o4 for a GOE chaotic one, as proven in [15].

02r The number variance is a measure of the standard deviation

% P . : s o of fluctuations in the modal density with respect to the agera
L one defined by means of Weyl's formula. As made clear by

Fig. 2, for an increasingd the fluctuations can be quite severe
Fig. 2: Number varianceS? (L) for an integrable and a GOEfor an integrable system, as opposed to a chaotic one. In
chaotic system. particular, the fact that the variance in the number of modes

increases with an increasing bandwidth is a direct proohef t

non-convergent behavior of the approximate modal dengjty (

o2 = 2/x. These two functions are plotted in Fig. 1 where il N€ increasing intensity of the fluctuations supports oaincl
is clear that the nil probability of superposed modes in tibaothat assuming the average modal density as an accurate and
systems is a direct consequence of level repulsion. reliable measure of the availability of a large number of e®d

Two major differences can be noticed in these functio@ Nigh frequency is not correct. Modal depleted frequency
and will have a major impact on the statistics of the loc&andwidths can pop out at any frequency leading to increased
modal density: 1) for chaotic systems, the modal spacing‘@”ab'"ty in the f|e_|d_§tat|st|cs [13], even at frequersadove
decidedly less dispersed than for an integrable systerh, avit the usual LUF definitions. )
probability distribution presenting a mode (peak) clos¢hie ~ Unfortunately, the number variance cannot be employed as
average spacing = 1; 2) for an integrable system, it is clear® predictive _tooI in t_he_ stud_y of t_he probablllty of obseryin
that modes can come in clusters due to a high probability apomalous field statistics, since it does not give any measur
superposition [20], so that in order to maintain a fixed agera®f the way fluctuations evolve for rare events, i.e., towahes
spacing, the clusters must be relatively isolated one frioen (@il Of the pdf of the local modal density.
other, as justified by the longer exponential tail. We caeref RMT is an asymptotical theory capable of accurately pre-
to this phenomenon as modal depletion, i.e., the local ldck icting the statistical properties of the spectrum of a eyst
resonant modes, and it can be conjectured that the prayabif1€re the frequencies of resonance of a cavity) as long as
of incurring into what are often regarded as outliers [2] ban [t admits a sufficiently large number of states. It should
explained by this phenomenon. In other words, it is a natuf3f clear that RMT cannot pretend to be exact when the
and inevitable phenomenon in an integrable system, wher&igctrical dimensions of a cavity become small, i.e., in its
it is to be expected less likely in chaotic systems. lower frequency range where it mainly behaves as a high

According to the type of system we are dealing witrduality factor resonator, allowing only a very limited nuemb

a higher probability of observing a wider nearest-neigthF resonances. Hence, RMT can b_e applied successfully even
spacing has a direct impact on the number of modes that Canaﬁérequer)mes below th_e L_UF' since _the modql _den5|ty s
observed in a fixed bandwidth, as will be derived in Sectin typically h'gh 9”099*‘ to justify a statistical _descnptjon

As already recalled, practical systems are often in betwe nOth(?r unive rsality classes could be cor_13_|deredz suqh as the
these two extreme configurations, although a Poisson erleem aussian unitary ensemble, or GUE, but it is of minor interes

behavior should be expected in the lower frequency ran practice, as it is useful only in the case of n_on-‘recip‘roca
when dealing with rectangular cavities: this result holds ystems. It could nevertheless find some applications in the

long as eventual scatterers in the cavity are electricatlglls case of the testing of devices with ferromagnetic propertie

after which the system moves gradually towards a chaoflE in general employing non-reciprocal materials. Thisecas
gl not be addressed in this paper, but the procedures here

one, as shown experimentally in [18]. Several methods hay lobed id i th f t-neiahb
been devised to assess the degree of chaoticity of a cavity pueloped are valid in any other type of nearest-neighbor

the context of this work, we will restrict our discussiongian>Pacing .Stat'St'CS and can be readily applied to any other
computations to the two extreme classes already introduc%ﬂi’“’ersallty class.
The following results are directly applicable to the more
general case of intermediary statistics for the modal rsare Ill. BANDWIDTH COVERED BY i MODES
neighbor spacing. Access to the nearest-neighbor spacing probability Bistri

A direct measure of the impact on the fluctuations of thion allows deriving that of the bandwidth coveredibynodes.
modal density for the two universality classes can be obthinkKnowledge of the latter is instrumental in the computatién o
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Lar @ The pdfp), (x) implies carrying out: convolutions of the
Ll original pdf of the random variablg/n,
1 pE/n(I) = npf(nz)v (16)
. since (£),, involves the sum ofn such random variables
5:0'8’ that will be assumed to be iid. This procedure implies an
Zosl approximation, as higher-order statistics, involving thetual
} correlations between spacings at different distancesuallys
04l not identically equal to zero [14]. As the average modal dgns
increases, with more packed resonances, the omissioniof the
0.2F correlation can be expected to have an increasing impatanc
In the case of an integrable system, where an exponential
% os distribution is predicted for the nearest-neighbor spgcthe
} result of such operation is available in closed form and & th
25 Gamma probability distribution, witH¢),, € T'(n,1/n). In
(b) the other cases, i.e., the GOE and any other intermediate non
10 fully chaotic system, no closed-form solution is available
2r simple way of deriving the pdf of¢),, is to pass through the
characteristic functionp,,, (t) of pe/, () [23]
15} 5
\H/: 3 @E/n(t) = ]:{pf/n} (t)r (17)
s WL 2 by means of a Fourier transform. In the Fourier domainsthe
convolutions correspond to
1
051 Pe), (1) = [pe/n®)]" (18)
The pdf of the local-average normalized nearest-neighbor
% o I s > 75 A spacing can be retrieved by inverse-transforming its ctara
z istic function
Fig. 3: Probability density functions of the normalizeddéc Py () = F e, } (@), (19)

average nearest-neighbor SDQCMQ"' for (a) an integrable with the total random bandwidth covered hy-1 modes given
system and (b) a GOE chaotic one. Several values afe b

considered, showing the rate of convergence of the two un?—/
versality classes towards the ensemble average valuetedpec S, = ns(e) (20)
from Weyl's formula, corresponding te = 1. " "
Some examples are given in Fig. 3, for the case of integrable
and GOE systems. As expected for iid random variables, as

the number of modes found within a fixed bandwidth and increases, the central-limit theorem requires the pdf eirth

ultimately for the local modal density. average to converge towards a bell-shaped function, asgmpt
The total bandwidthS,, covered byn + 1 modes can be ically approaching a Gaussian function. What is important t
defined as notice is that the two groups of functions inherit the featur
" n of their respective parent law for the modal nearest-neighb
S, = Zsi _ ! Z i (14) spacing. As a result, fp[ the same ensemble—average modal
P mw = nearest-neighbor spacing = 1/my, the integrable case

shows a sensibly larger statistical dispersion, with a much

where then + 1 modes definen random intervals or sub- heavier tail for large nearest-neighbor spacings. Recily
bandwidths obeying to the parent laws introduced in the pr?ﬁs implies that for a fixed bandwidth, the probability of

vious Section. We stick to the use of the normalized nearest- . .
. . . ; - inding a given number of modes should be expected to
neighbor spacing, as this choice allows deriving completely

general results. In this respect, it is better introducireglocal- be S”.”a”er n th? ca;e_of an |ntegrable_system thar_] for a
average of the spacing of consecutive modes chaotic one. Again, this is related to the higher probabdit
9 P 9 ' close modes found in integrable systems, leading to ckister

1 () interleaved with modal depleted regions. A higher rate of
(s)n = ;Zsz' = (15) modal-cluster formation is visible in Fig. 3(a), where the
Ci=1 w probability of finding » modes packed into a bandwidth
where the normalized local average nearest-neighborrapaanarrower than the average one is clearly higher than in the
(&)n = (s)n/5 will have a central role in Section V. GOE case, especially for a smail Although this could be
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Fig. 4: Definitions of some modal-related quantities, stmawi
the convention adopted in order to predict the number o
modes appearing withif3. Each dot represents a frequency
of resonance of a cavity. The first resonance on the lefB of
is taken as a reference in the count, and does not belong
B, being at its left.

interpreted as an advantage of integrable systems witecesp o5}

to GOE ones, generating a higher modal density with non > 9

negligible probability, this comes with an also increasatr oal B 2

of depletion, as clear in the tail of the distributions. i~ " 13\0 3
e 1
= \
203 A’ yu/‘\ \/V\v5
~ \

IV. NUMBER OF MODES IN A FINITE BANDWIDTH 5 Sl

The second element needed to derive the probability dis 02 T
tribution of the local modal density is the probability law
pa(n, B) of finding no more that: modes within a fixed
bandwidthB (see Fig. 4). It can be derived straightforwardly
by recalling that a bandwidti3 contains no more tham
modes if

S, 1 <B<S,. (21) Fig. 5: Probability density functiongas (n, My ) for (a) an
integrable system and (b) a GOE chaotic one for several salue
In order to provide an unambiguous procedure for countirj the average number of modédy . Notice the relatively
these modes, the lower end of the bandwidhwill be high probability of finding no mode in the case of integrable
assumed to coincide with a resonance frequency, as shasystems withi/w < 5, with respect to the GOE case.
in Fig. 4. Clearly, this definition provides a different caun
when other configurations are considered; in fact, this is no
important, as the count is meant as an auxiliary parameter in
Ithe definition of the local modal density. The statisticstaf t P(Ss Sni1) = P(Sns1]Sn)ps.. (Sn)
atter is actually invariant with respect to translatiorisng
the frequency axis, since we are here talking about a fractio = Ps(Sn+1 = Sn)ps,, (Sn),
of the average spacing, so that our convention does not I&afere the conditional probability of observing a bandwidth
to any bias in the pdf of the local modal density. As a resulf  covered byn + 2 modes (counting the reference one)
of this choice, the first mode will not be counted as belongingowing thatn + 1 modes cover the bandwidt$, is actually
to B, so that of then modes found inB3, only n — 1 will be  equivalent to the probability of observing a further modal
counted. In other words, the first frequency of resonance fgarest-neighbor spacing = S,.1 — S, between the last
assumed to be on the left df. two modes. Hence
Hence, according to this convention, the probability law
pum(n, B) is given by

(23)

B o]
pym(n, B) = / / ps(s)ps,, (Sn)dS,ds
J$n=0Js=B-5,
pai(n. B) = P({Sns1 > B} N {8, < BY) B
B o0 22 :/psnx 1— Fy(B —z)]dx,
:/ / p(SmSnJrl)dSndSnJrh ( ) 0 ( )[ ( ]
Sn= Sny1=B " . . . . .
0 where F;(z) is the cumulative distribution function of the

where the joint pdi(S,,, S,+1) is needed. It can be derivednearest-neighbor spacing Settingy = z/5, this result can
by expressing it as a function of conditional probabilities be recast as

(24)
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Mw oo
pu(n, Mw) = /0 ey, (Y) [L = Fe (Mw — y)]dy, (25) {Moe =2} = {;_LBM = x}
n=1 n
where 1 n x
5 “Us-mt e
]\J\N = —- = mwB (26) [eS]
’ -Ufeor -5}
is the average number of modes expected dvefrom an o1 My,

ensemble point of view. In the rest of t.h|s paper we W'Irlecalling (15). Whence, partitioning the above event, weaiob
consider the case wherklyy = mwByy, i.€., the average

number of overlapped modes predicted by means of Weyl's
F[ulw (l‘) =P (]\/Iloc S I) =

formula (2).
Attention should be paid to the fact that the derivation ef th -~ > . My ,
probability function (25) is exact and applies for any numbe =2 P(En> - P (n; Mw) (30)
of modes, but for the case = 0. This case implies that the nt o
closest modes to the bandW|dth are just outside it, i.e., the _ Z {1 — Fle, ( W)] s (n, M),
event (21) should now be substituted by the event- B}. =1 z
Since (25) applies to any € N\ 0, the normalization property .. . ) )
of a pdf can be rather used to derive with My defined by (26). Needless to say, since
0o {]\\iluc _ 777/10c7 (31)
PMm (0, AI\V) =1- Zpk/[(i, ]\/[w) (27) Iw mw
i=1 the same probability function holds also for the local modal

Another property of (25) is that the average number of mod&gNSity- ) ]
E[n] must coincide with that predicted by Weyl's formula, The pdf of Mi,. can then be straightforwardly retrieved
i.e., M. This property has been numerically verified for thbY taking the derivative of (30) with respect to its argument
examples shown in Fig. 5. Expressmg it in terms of the deviation from ‘the overlapping
The results obtained from (25) are shown in Fig. 5, whef¥w Predicted by means of Weyl's formula yields
the increased statistical dispersion encountered fogiatde
systems is remarkably higher than for a chaotic one. Of e )
particular interest is the non-negligible probability diserv- PMyge/Mw (T) = T Zp@n (1/z) par(n, Mw).  (32)
ing no mode whenMyw < 5 in an integrable system, i.e., n=l
of experiencing a modal depletion. This fact is importarffome examples of this pdf are presented in Fig. 6: it is hence
in practice, since an average overlappihfy > 5 is not possible to assess the large domain of variability of theahod
automatically achieved even at relatively high frequesiciss  density, spanning more than one octave with a non negligible
shown in the Appendix. probability even at a relatively high modal overlapping 6f 1
modes, and up to two octaves for the integrable case.
The ensemble averagé,., mode and standard deviation of
the local modal overlapping are shown in Fig. 7, as functions
The local definition introduced in (1) can only account fopf M. The mode and the ensemble average are on either
an integer number of modes ifiy;, whereas in practice we side of the value predicted by Weyl's formula, indicatingtth
are rather interested in fractional values, too. With refiee although the modal density can be higher than expected for
to Fig. 4, the local modal density can be defined as the ratioweak modal overlapping, the most likely issue (mode) is
n/Sy, wheres, is the bandwidth covered by+1 modes (the lower.
first one being used as a reference), according to the definiti The fact that the average local modal density is higher than
(21). Hence the actual number of overlapping modes ovepgedicted by Weyl's approximation (2) is a direct consemeen

V. LOCAL MODAL DENSITY DISTRIBUTIONS

finite bandwidth, observed on a local scale, reads as of Jensen inequality [24], since the modal density is relate
n the nearest-neighbor spacing by means of a convex function.
Moo = S_BM' (28) In practice, a statistical mode systematically below the

average implies that even with a GOE chaotic cavity the
This definition is now capable of capturing all the intermeaumber of overlapping modes is likely lower thady . The
diated cases wher®,, intercepts a fraction of the spacingensemble average for the case of an integrable system is
separating two adjacent modes. For a givén., an infinite  much higher than expected, due to a strong skewness in the
number of modal scenarios can provide the same resgltobability distributions in Fig. 6. Even more important is
The distribution functionFy,, (x) can now be computed the fact that the standard deviation is still comparablehwit
by considering the entire set of events yielding the sanidw even whenMy 2 10, in both cases. This result implies
equivalent modal overlapping ovéty,, i.e. that even a relatively strong modal overlapping is stileaféd
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Fig. 7: Average value, mode and standard deviation of the
local modal overlapping/,., normalized to the expected
F|g 6: Probablllty density functions of the local modal d&'y[ value ]\/[VV predicted by means of Wey|’s formu|a’ for (a) an
normalized to the ensemble-average modal density prefdiciftegrable system and (b) a GOE chaotic one.
by Weyl's formula, i.e., My../Mw, for (a) an integrable
system and (b) a GOE chaotic one.
value converge to the same result, as expected by invoking
the central-limit theorem. In particular for this last ppithe
by non-negligible random fluctuations, of the same order sfandard deviation expected for the GOE case is about half of
magnitude as the average. Of course, their impact decreatbes in the integrable case.
with My as discussed in [13], whel,. = 3, although the ~ We want to stress that these fluctuations in the field stegisti
field will not be yet completely diffused, its deviation fraitme must not be interpreted as non-compliancies or shortcosning
asymptotic statistics will become less sensitive to theiact of reverberation chambers, as they just belong to the normal
number of overlapped modes. A much higher dependence frommge of physical responses expected for such systems. As
M, is to be expected at a weak modal overlapping, wheretade clear by Fig. 6, albeit the probability of experiencing
large statistical dispersion can lead to a dramatic ineréas very low number of modes oves,, decreases a&lyy — oo,
the variability of the electric field. the probability is never equal to zero. In other words, it is
These results, requiring no specific assumption on the finaphysical to expect a reverberation chamber to present no
details of the geometry of a cavity, give an insight intanomalous statistics even at high frequency. We can coaclud
three important issues: 1) for a weak modal overlapping, thigat the concept of outliers as suggested in [2] appears to
deviation of the field statistics predicted in [13] should beriginate from a biased interpretation of otherwise phaic
expected to present a strong statistical dispersion, apauin justified deviations in the field statistics generated by a re
ticular a high probability of leading to even larger dewat verberation chamber. While unlikely, these extreme sdesar
than those predicted when usiddy as an estimate of thedue to mode-depleted frequencies are perfectly within the
modal overlapping; 2) even at high frequencies where a largbysiological response of a cavity.
number of modes are expected to overlap, their actual number
is still affected by a non-negligible statistical dispersi 3) VI. VALIDATION FOR A CUBOID CAVITY
the differences between Poisson and GOE statistics vanishn experimental validation involving modal quantities & f
asymptotically for a large overlapping, e.g., mode and me&om being a trivial task, since as soon as two consecutive
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200 Fig. 9: Local modal density computed frofi(f), averaged
over 0.1 % and 1 % relative bandwidths. The thick black
10} curve is the result predicted by deriving Weyl’s approxiimat
(35). The relative bandwidth over which the average modal
= 0 density should be computed is rathefQ), which is usually
much smaller than the 0.1 % value here considered. Much
_10f stronger fluctuations should be expected in this case, makin
their graphical representation by far less clear.
o0t
It is therefore straightforward to compute the cumulative

8 9 1011121314 number of normal mode¥ (f), by taking due care in counting
in the degeneracies and allowed combinations of the triplet

Fig. 8: Cumulative number of modes for the rectangular cdibof™ 7, ») [25] For the sake of providing a quantitative ex-
cavity taken as an example in Section VI: (a) comparisginPle, the choicer = 2.8 m, b = %5 m, ¢ = 3.2 m,
between the actual coud¥(f) computed with (4) and (33) corresponding to a volum& = 22.4 m® and a fundamental

and Weyl's approximation (34); (b) the residual fluctuagionf€Sonancefy = 71.2 MHz will be considered throughout this
Ne(f). Section. The resulting cumulative number of modégf) is

shown in Fig. 8(a).
A more accurate Weyl's approximation valid for the special
&ise of an empty cuboid [25] will be used as a reference,

7
I/

resonance frequencies are closer than the average m
bandwidth B,;, modal overlapping ensues making it hardly 87Va  (a+b+c) 1
possible to distinguish and thus count the actual number of Nw(f)=—=F"-——F—+73 (34)
resonant frequencies.

A numerical validation is possible exclusively in the casl
of regular geometries, e.g., where Helmholtz equation @n b 87V .,
solved by the method of separation of variables. A cavitya t mw(f) = P - T (35)
shape of an empty rectangular cuboid is of practical interes

within the framework of EMC test facilities, and will thus b . : . ;
taken as an example to illustrate the validity of our results Predicted by (34) and those obtained by directly counting

A note of caution is nevertheless necessary, since thie™ from (4) and (33) is shown in Fig. 8(a): the well-known

analysis of a regular geometry implies an integrable sy"élpility OT Weyl's approximatior_1 in a(_:curately predi_ctinget
tem, hence a Poisson class. As already pointed out, ther&ygnulative number of modes is retrieved. The residual error
experimental evidence [18], [21], [22] that the behavior dic- thg ﬂuctuatlng paVe(f) of N(f) is shown in F'Q- 8(b),
real-life reverberation chambers is at least partiallyatica where it is clea_r thaM(f) <N(f), at I‘east _Wherf/fo R 1
Unfortunately, in this case no closed-form expression Ifier ¢ Note how the Intensity of the fluctuations Increases with th?
resonance frequencies is available. frequ_ency, as predicted by the number variance recalled in
For lateral dimensionga,b,c) of the cuboid cavity its Section 1I-B. . . .

frequencies of resonance can be computed by [25] Nevertheless, as already recalled in Section I, this shoul

not be taken as a gauge of the accuracy of Weyl's approx-
(:[)\/(771)2 (,,/)2 N <p>2 (33) imation when dealing with modal densities. Fig. 9 shows a

C

Jmnp = b} b comparison between the results predicted by (35) and the

gredicting a modal density

comparison between the cumulative number of modes

a
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tor My =1 fluctuating around the value predicted by (35). It is notetwpr

that the relative bandwidth over which the actual modal dgns
ir A should be averaged is equallt¢Q. Now, @ is never as low as
i just a few hundred units. Therefore, even the results coatput
05t \ over a0.1 % bandwidth are optimistic in their display of a
strongly fluctuating local modal density, since the value of
0 —_ 1/Q should rather be expected into the—% — 10~* range,
0 1 2 8 4 5 with even wider fluctuations.
My =2 In order to validate our prediction about the pdf of the
number of overlapping modes, we proceeded to a direct count
based on the definition (28). The bandwidths over which this
operation was carried out were computed by taking Weyl's
approximation (35), imposing a giveilyy and finding out
the bandwidth\/v /mw (f) over which this number of modes
should be expected to overlap at a given frequency. The
4 5 four values Mw = {1,2,5,10} were considered, and the
,‘ \ My =5 actual countM..(f) was computed over 1000 bandwidths
distributed over the entire frequency range, startingf at
2 fo. The empirical probability distributions thus obtainee ar
shown in Fig. 10(a)-(d), where they are compared to the pdfs
shown in Fig. 6(a). The good agreement between these results
prove that in practical configurations the actual number of
overlapping modes can definitely be smaller than expected
4 5 when using Weyl's approximation, even when a relativeljhhig
My = 10 average modal overlapping is expected.
The question of what average modal overlapping should be

expected in practice is treated in detail in the Appendixergh

it is shown that a weak modal overlapping, i.8fw < 3, is

far from unlikely. Experimental results pertaining to tigsue

have also been shown in [13].

4 5 VIl. PRACTICAL CONSIDERATIONS
As already recalled in Section |, these discussions about

Fig. 10: Empirical probability distributions of the numbef random fluctuations in the modal overlapping have a direct
overlapped moded/,,. observed for the rectangular cuboidPractical impact, because of the direct link existing betwe
cavity discussed in Section VI, obtained by observing 104D average local modal density ov@f,, and thus the modal
bandwidths over the entire frequency range shown in Fig. @€rlapping, and the variabilif;, of the energy densitjy” =
These results pertain to the local modal overlappig, ol E[*, as measured at any position inside at least a sub-
counted over a frequency bandwidth where a reference ovéplume of a MSRC, a region usually referred to as working
lapping My is predicted by means of Weyl's approximatioryolume, with o 2

(35). Four values of\/y are shown. The thick black curves g%v = (i> (36)
represent the probability density functions predicted by o o w

model and shown in Fig. 6(a) for an integrable cavity, whil@ndow the standard deviation d/.

the dashed ones are for a GOE cavity, as given in Fig. 6(b). AS demonstrated in the Appendix and already shown in [13],
the number of overlapped modes actually intervening can be
quite low even at frequencies above the LUF estimated by

actual local average modal density obtained over a relative.amsf.of the usgal thumb rules. U_nder such conditions, the

bandwidth of 0.1 % and 1 % around a continuously varyinvg”ab'“ty of W is bound to be higher than expected, as
’ monstrated in [13]

frequencyf. As discussed in Section I, the fluctuations are

Moo/ Mw

now far from negligible, with a high frequency of occurrence ¢ = 1 2 . (37)

of regions of modal depletion, where even at relatively high 3 M

frequency the modal density observed can be very close torhe ensemble-average modal density was considered
zero. in [13], with mp,,(f) in (8) approximated by its ensemble

The minimum frequency at which a cavity can be expecteterage,mg,,(f) ~ mw(f), thus neglecting the random
to be in an overmoded condition is often estimated at 5 fluctuations that inevitably affect it, as proven in the poexs
10 times the fundamental resonanfge Fig. 9 proves that Sections. Having only access to the estimate of the modal
the actual average local modal density is still very strgngtiensity provided by Weyl's formula, only the average dewiat
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100¢ @ in the variability would rather pass from 63 % to 126 %,
if a realization featured half the average density. Theegfo
I depending on the average modal overlap, fluctuations caa hav
e 97.5% a very different impact, with fields behaving with an incregs
statistical dispersion than expected from ideal revetimra
models [2]. From this example it is clear that the strongest
effect will be felt whenM,. < 3.
A useful summary of the probability of occurrence of
il 0% ———— = random fluctuations is given in Fig. 11, where the quantiles
’10%///’/ of the random variablé/,,./My are computed for a varying
%/ My . The median (50 % quantile) is very well approximated
™ 5% by the estimateMyy provided by Weyl's formula. Hence,
o1 | 5% ‘ there is an equal probability of observing either a higher or
01 1 10 lower modal overlapping. In the context of deviations from
M the asymptotic statistics for field samples, the most ingrrt
10r ®) quantiles are those related to the probability of observing
a lower modal overlapping. In this respect, when expecting
r 5% My =1, there is a 10 % probability of observing an actual
95 % modal overlapping below 49 % and 63 % ofw for an
integrable and GOE cavity, respectively. Such strong réadoic
is proven by our derivation to be a normal phenomenon in a
L 50 % large cavity, and not related to any non-ideality in its use.
M 50 % reduction in the modal overlapping leads to a twofold
increase in the additional term of the variability of theatlie
% 506 energy density, as demonstrated in [13] and recalled in. (37)
25% Worse, but perfectly normal, scenarios can appear : with a
probability of 1 % the modal overlapping can be found below
25 % and 44 % ofMy. In other words, rare phenomena

109096

Quantiles of My,./Mwy

— 90 %

|

Quantiles of Moc/My
N

o%1 1 10 of very strong modal depletion can explain the existence of
My anomalous field statistics in a MSRC that is otherwise stahda
compliant.

Fig. 11: Quantiles of the deviation of the local modal over- These results could be expected to improve when a higher
lapping with respect to the estimate obtained from Weylimodal overlapping of\/ywy = 3 is considered. This value is
formula, for (a) an integrable system and (b) a GOE chaotiften taken as a reference for the appearance of a diffuse-fie
one. condition in room acoustics [26]. Even in this cadé,,. can

be lower tharb8 % and72 %, and with a probability of 1 %,

below 34 % and56 %. Hence, even at relatively high modal
can be predicted, or an upper bound, as done in [13]. Theerlappings, the probability of observimprmal strong de-
non-negligible probability of observing a modal overlappi viations in the field statistics should not be underestichate
even weaker than expected has thus a direct and measurabke probability of 1 % is compatible with the rate of ap-
impact on the statistics of the field generated by a revetioera pearance of local non-compliancies as tolerated in current
chamber. As long as the actual number of overlapping modesctice [12], and could thus provide a physical explamatio
M. > 1, this error can be entirely negligible, since (37jo the observation of outliers [2]. It could also serve as an
converges to the valug/3 expected for a diffuse field; but in explanation for the existence of local non-complianciesnev
the case of weak modal overlapping, as already discussed ahdigher frequencies, where the concept of overmodedycavit
proved in [13], very strong statistical deviations can ensuis usually taken for granted.
particularly whenM,. < 3. Of notable importance is the observation of a much higher

The following example should make this point clearer. Istatistical dispersiveness for an integrable case. Intipec

a cavity with an average modal overlappind,. = 1, (37) this scenario is to be expected only when the scatterersnwith
predicts an increase in the variability &7 equal to 0.63, a reverberation chamber are no longer electrically large, i
corresponding to a 191 % relative deviation in the varigbili towards their lower frequency range of operation, close to
¢Z-. Of all the random realizations generated by a stirringpe LUF. It is thus pertinent to wonder if the inclusion of
technique, sharing the same average modal density, thtege passive scatterers within a chamber could improve at
presentingM,. = 1/2 will be affected by an electric energyleast the field statistics, by making the cavity chaotic eath
density with a statistical variability amplified by a factdr than integrable. A similar idea was already vented in previo
i.e., about 380 %, which can easily explain anomalous fiefshpers, but it was rather based on the hope of increasing
statistics on a local scale. As clear from Fig. 6, such @he modal density [27], [28]. Our suggestion is of a différen
event is not unlikely. IfM,. = 3, than the relative deviation order: to reduce the statistical dispersion in modal oygiteg
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by making a cavity chaotic, in order to avoid even strongel  10¢
local deviations in the field statistics, due to modal depiet
justified by stronger random fluctuations for the integrable
case.

VIIl. CONCLUSIONS —~

In this paper we have applied universal results from RMT in E 1
order to derive the probability distributions of modalateld )
quantities of interest to the physics of MSRC. These law:s
are entirely general and just require a handful of macrascop
parameters to be used in practice: the volume of the cavit
V, its average composite quality fact@p, etc. The two
universality classes representing an integrable and a GC o1 5 o
chaotic system serve as extremes in the actual behavior v="r/fo
real-life MSRCs.

The rationale for our analysis is the link proven in [13]:i
between the average number of overlapped modes over
average bandwidth of a mode, directly depending on the lo
modal density and the deV|a_t|c_Jn in the par(_ent_ I_aw of fiel ssy material into a cavity. These results refer to the case
samples, as assessed by their increased variability. of a fundamental resonance &t MHz.

It was shown that the estimate of local modal density, ané
thus modal overlapping, yielded by Weyl's formula has a far
from negligible probability of overestimating the availétly of

. 12: Average modal overlapping predicted by (47) for
iSsipation in antenna loads and non-perfectly conductive
tallic boundaries, neglecting the inclusion of addiion

ith
resonant modes, particularly when modes are already ycar\{\tll -
overlapped, i.e., forMy < 3. Interestingly, the statistical Q, = 167%V, (40a)
dispersion of the modal density appears to be non-negéigibl ) 3V (40b)
I

even at frequencies where a relatively large number of modes 26415
is already overlapping, on average. - 2rV

The inevitable consequence is the appearance of large devi- Qs = AGeq (40c)
ations from the asymptotic Gaussian behavior expectedéor t ) . .
field generated in an overmoded reverberation chambereThd{1€7€ V" is the volume of the cavity anf the surface of its
results are expected to be the basis for a better undersgandietallic boundary. .~ .
of anomalous field statistics; moreover, the fact of beinglfir Q1 models the d|55|pat|on in the antenna load (single
based on physical grounds makes them appealing in the st nna, here), for the special case of a perfectly matched

of the links existing between the physics of large cavitied adn enng;QQ repres_ents Joule di_ssipation over imperf_e_ctly
the statistical properties of real-life reverberation robers. conductive walls, W'tm“’ the re_Iatlve magnetic permea_blllty
of the metal covering the cavity surface andts effective

skin-depthiQs accounts for power loss due to leakage through
the cavity surface and dissipation in lossy materials withie

The Author is grateful to the anonymous Reviewers for thq;l'a\/ity (e.g., absorbers) through an average absorptiosscro
constructive remarks and suggestions. section, since they essentially behave in the same maneer. W
obtain from (38) - (40)
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APPENDIX

AVERAGE MODAL OVERLAPPING My FROM
WEYL’'S APPROXIMATION

M(f) = oo 452+ BT @)
In the lower frequency range, the dominant term in (41) is
The average numbe¥lyy of overlapping modes in a cavity Q1, i.e., dissipation in antenna loads. In this case
can be estimated by means of Weyl's approximation. Since 1
we are mainly interested in knowing the order of magnitude }lgt Mw(f) = 5= ~0.16, (42)

of My, we will consider the basic approximation (2), yielding 2 )
8V a result well below the average overlapping of 3 modes
TV

My (f) = "lw(f)i =2 (38) that is often regarded as ensuring a diffuse-field regime in
Q Q a reverberating cavity [26].
The average composite quality factor can be expressed In order to derive a simple closed-form expression, we will
as the harmonic sum of the three main loss/leakage mech@nsider a cubic cavity, with side and non-magnetic metal

nisms [29] surfaces, i.e.u,, = 1. In this case the fundamental resonance
1 Z‘ 1 frequency is .
Q =Q fo T3a (43)
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Expressing the frequency in terms ¢, as f = v/, the
wavelength becomes = )\, /v, where)\, = v/2a. Hence (41)

can be recast into (1l

167 S0 4 2]

—— =V .

3 N

+459q 2

]\J\)\r(l/) = ﬁ )\2 v
0

(44)
[3]
The last term includes the skin depth, which is frequency
dependent. A simplification is possible by writing 4
ﬁ B p25 3
)\3 \/)\_() \/TF/L(,(Tw(:(]’
whereo,, is the conductivity of the metallic surfaces. For ay
conductivityo,, = 3.5 - 107 S/m (aluminium), (44) becomes

(45) s

7

1 = 2.5
My (v) = o= + 4289, 4947 1042 — . (48)

A Vo
We are now in condition to assess the average number g
overlapping modes predicted by Weyl's approximation. For
a cavity with fo = 20 MHz, i.e., \y = 15 m, with negligible
leakages and no absorbing materials, we should expect [g]

Mw(v) = L +6.37- 107525, (47)

s [10]
which can now be evaluated at multiples of the fundamental
resonance. We shall consider the two most widely applied
thumb rules for overmoded conditions: 1) a frequency abolit]
5 or 10 timesfy, i.e.,»v =5 or v = 10; 2) a frequency where
the cumulative number of modesé > 60, for which Weyl's

approximation (2) implies

[12]

45
T orm

13
W [13]

(48)
corresponding for a cubic cavity @/ ~ 1.92 andv = 2.7.
We obtainMw (2.7) = 0.16, Mw (5) = 0.17 and My (10) =
0.18. In all of these cases\ly < 1, thus making the case for [15]
strong fluctuations in the modal density an important issu&al
as implied by the results shown in Fig. 11 for weak average
modal overlapping and discussed in Section VII. Fig. 12 show
My (v) for a varying frequency, in the case whepg — oc: i
based on dissipation in the antenna load and finite condityctivi1g)
over the cavity boundary, a modal overlappihfy = 1 is to
be expected only above 45 tim¢gs. 19]
Clearly, the presence of a lossy EUT or absorbers within tI[1e
cavity would increasélly . Indeed, for a perfectly absorbing
material, the absorption cross-section would be appraelya (20
equal to its geometrical cross section. Hence, an addltiona
factor 46.,/A? should be included and could be expected 1]
be the dominant one around the LUF. This conclusion agrees
with the observations made in [13], where it was shown that g
unloaded cavity can be incapable of supporting a diffude-fie
condition even above the lowest usable frequency defined in
the IEC standard [12]. The inclusion of additional lossesse |3
to be necessary in the lower frequency range, for the saRrej
of creating more easily reproducible conditions for thedfiel
statistics, i.e., with field statistics approaching thenagiotic
ones derived in [2], [30].

[14]

o

[29]

14
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Statistics of the Performance of Time Reversal in a Lossy Reverberating Medium
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It has been proposed [J. Derosny, Ph.D. Thesis, Université R, 2000] that the performance of time re-
versal at recreating a coherent pulse in a strongly revatibgrmedium is directly proportional to the number
of resonant moded/ actively taking part at the transmission of energy. Thisi@ehere tested against ex-
perimental results, showing that as soon as losses are itatkeaccount, the quality of the focused pulse is a
sublinear function of\/, leading to a saturation phenomenon that was previouslgkmesvledged. This is here
proven to be caused by mutual coupling between lossy resomzafes, thanks to a statistical modal description
of the transmission of signals through the medium. Closedtfrelationships are proposed for the first two
moments of the pulse signal-to-noise ratio, linking thertheoccupied bandwidth, the number of active modes
and the degree of resonance of the medium. These formulggoiad by experimental and numerical results,
prove that the performance of time reversal can be affecyed $trong statistical dispersion. The proposed
analysis also predicts that time reversal is a self-avegagrocess when applied to a reverberating medium,
thus allowing the use of models developed in an ensemblegedramework.

I. INTRODUCTION of the energy can leak out of the reverberating environment
leading to a small perturbation of its behaviour assiméabl
jo an energy loss. Coherently with this scenario, the me-
dia filling the cavity, as well as its boundary surface, wil b

strated in the fields of acoustics as well as electromagﬂ)eticregarded as lossy, introducing power dissipation alongewav
giving rise to a host of applications as diverse as pulsedegn propagation. Following this description, a cavity is ¢

focusing in complex media [1], imaging techniques [2], and! L .
selectivge focusin% 3]. Amon[g]theses,gor?e of theqmost[ s]wprislzed by an infinite but countable set of_resonances, asedc[at
ing features of time reversal is its ability to ensure thedra to the eigenmodes of Helmholtz equation when the reflective-

mission of coherent pulses through reverberating medié[1, surface boundary conditions are enforced [5].
In the context of this paper, we will consider a reverberat- Typically, for a pulse transmitted within such a medium, the
ing medium as a generally inhomogeneous medium where théignal received would be dominated by a long non-coherent
propagation of electromagnetic or acoustic energy is gtyon tail, made up of a large number of echoes of the original pulse
constrained into a finite volume. This region of space can b&onversely, use of time-reversal techniques allows a pnedo
identified by an ideally closed surface imposing highly efle nantly coherent transmission of the pulse. Applicatiortsisf
tive boundary conditions, a configuration often referredgo Property to electromagnetics range from new signal-fognin
a cavity. The provision of a finite volume does not exclude theschemes for telecommunications in multipath channelso6] t
existence of small apertures, through which a limited arhounthe generation of high-intensity local fields for devicetenzl
testing [7]. Although the basics for the physical interptien
of time-reversal in such context are known [4], there is no
available model allowing to predict the statistical belavi
. of this technique when used in a reverberating medium, and
e medium X . R .

in particular how its performance depends on the relative po
sition of the receiver-transmitter pair within the systesed
Fig. 1). In particular, the analyses found in the literafoeus
just on the mean asymptotic performance, without giving any
hint of its statistical dispersion. Furthermore, to thetloésur
knowledge, these models assume the system to be lossless [4]

In this paper we fill this gap by proposing a study of the
performance of time reversal for more realistic scenaass,
sessing how the signal-to-noise ratio (SNR) of receivedgsil
evolves while changing, on the one hand, the positions of
the transducers and, on the other hand, the properties of the
FIG. 1: Synoptic of a generic communication system embedded medium. This is done by studying the statistics of the per-
a reverberating environment. A pulgét) is to be focused at the formance, in particular by proposing closed-form exp@ssi
receiver location by feeding the transmitter with ath hocsignal  for the first two moments of the SNR of the received pulse.
i(t) defined by means of time-reversal techniques. These results should allow predicting more thoroughly the

way time reversal behaves in a reverberating medium, espe-

cially thanks to the knowledge of the variance of the SNR: in-

deed, this is a fundamental piece of data for ensuring, withi
*andr ea. cozza@upel ec. fr a certain confidence margin, a given performance for any po-

The interest of time-reversal techniques has been demo

reverberating

transducers Q-0

QR =it

Selected papers



136

sition of the receiver and transmitter. Moreover, by ackhow 1,
edging the existence of non-negligible loss mechanisnes, th
proposed model predicts phenomena that were not previousl o.s-
highlighted, such as the fact that losses lead to a sataratio
of the SNR, because of the mutual coupling between resonar iRHHIET]
modes through the tails of their frequency spectra. A major B
point is the generality of these results, which are validdfioy
system obeying to a modal resonant description, be it aicoust
or electromagnetic, while requiring a very limited numbér o
simplifying assumptions. 20.
The paper starts with the introduction of tools for assegsin
the quality of the received pulse, generalized to the case 0 g2
lossy media by applying novel definitions with respect to [4]
These tools are then applied for the analysis of experirhente 0.1
results obtained in an electromagnetic reverberation bleam
pointing out some of the previously recalled phenomena tha
have not yet been acknowledged. A theoretical analysigbase g 1
on a modal description is then proposed in Section IIl, legdi
to the first two statistical moments of the SNR; subsequently-0-2

R

\
WA

-0.5r

we focus in Section IV on the asymptotic response, proving 17 18 19 20 21 22 23 24
that thanks to the self-averaging properties of time realers Time (js)
its statistical description is asymptotically indepenidemthe (b)

actual realization of the reverberating medium, and eptire

describable through few global parameters. Numericaltgsu

as well as experimental ones are presented in Section V, valf!G. 21 An example of a pulse transmitted through a revetigra
dating the accuracy of the proposed analysis. Finally, algim medium using time reversal, for the case(®f= 5000,_M = 500,
heuristic interpretation of our findings is given in Sectiop 57 = 100 MHz, central frequency 1 GHz: the region around the

- L . peak of the pulse (a) and a wider perspective highlightimgrésid-
providing a framework for intuitively understanding there ual noise distribution (b). The dark trace is the originalspuo be

sons for the saturation of the SNR. transmitted, whereas the light one is the signal actuatigived, af-
fected by residual noise. The thicker line represents thivalkpnt
noisen. (t).
I1. ON THE QUALITY OF RECEIVED PULSES

A. Mathematical toolsfor quality assessment nant modes will be assumed to exist over this frequency range
with resonance frequencies given by the{sgt}. In a general
In this Section we are concerned by the use of time-revers ay, a transfer functiod (f) ina reverberating med'“”_‘ can
techniques for transmitting a coherent pulse to a given red¢ expressed‘a_s a superp05|t|40n of th_ese modes, weighted by
ceiver placed in a reverberating medium. Hereafter, thik wi complex coefficients. = ay. + B []. i..,
be supposed to be reciprocal. The configuration we deal with v
is depicted in Fig. 1: two transducers are placed within the _
medium, one acting as a transmitter and the other one as a re- Hf) = ]; wHew(f) o felhnfal @
ceiver. Definingi(t) as the impulse response between the two
transducers, it was shown in [4] that by transmitting th@alg ~ The responsey (f) of thek-th mode will be assumed, with
i(t) = x(—t) x h(—t), the received signaj(t) will be a fair  no loss of generality, to be a Lorentzian function. By consid
replica of z(—t), even in a strongly reverberating medium. ering the main effect of losses to lead to a small perturbatio
Due to this feature, time reversal has been proposed as a way these functions, one can write [5]:
of communicating through complex media, and in particular
multipath channels, whose characteristics are well reptes! 12/Qk
by reverberating media [8]. An example of pulse received for on(f) = f2a+i200)* =2 @
this setup is shown in Fig. 2, whergt) is a cardinal sinus
modulating an harmonic carrier. Indeed, it appears that thevhere Q. is the quality factor associated to tleth mode,
received signal is almost undistinguishable from the aagi  which thus has a-3 dB bandwidthBy, . = fr/Qk. The
one around its peak region, whereas it is affected by a strong modal weights{~;, } are functions of the transmitter and re-

modification over the signal tails. ceiver positions and of the spatial field distribution asasted
In the following, we will consider the pulse(t) to have a  to each resonant mode.
spectral content comprised in the frequency rdifgefs], i.e., In order to simplify the notations in the following analysis

with a frequency bandwidtfr = f» — fi centered around we will consider the reference signal to be-t), so that the
the frequencyf. = (f1 + f2)/2. A total number ofM reso-  received one is rather linked iqt). For the same reason, we
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will avoid delaying the time-reversed pulse, and consider a Equation (9) thus measures how much the coherent part of
non-causal description, as this does not affect the finaltses  the transmitted pulse stands out of the residual noise. Now,
Bearing these definitions in mind, the fitness of the focusedhe use of the rms value is consistent only in the case of a loss

pulse can be assessed by computing the compartent= less system, as done in [4], since in this ca&g would have
px(t) that is coherent with respect igt), leading to an infinite energy but a finite non-zero average power. Con-
versely, for the case of a lossy system,,; would be equal to
y(t) = pz(t) +n(t) (3)  zero, since the noise has finite energy; as a matter of fazt, th

. . . . . time-constant characterizing the decay of a mode with tuali
wheren(t) is the residual noise due to the distortion of thefactoer is 7, = Qu/(nfi) = 1/(xBas). We will as-
pulse introduced by the non-flat transfer functidif) ofthe g me that all the modes involved have the same bandwidth,
medium, with 7 (f) the Fourier transform of(¢). Residual gnqasa consequence the same time-constant;., Vk; this
n(t) being orthogonalta(t) by definition,p can be computed - assymption is valid as long @8/ f. is sufficiently smaller
as than one, i.e., for configurations that cannot yet be regarde

fa as wide-band, though not strictly narrow-band. Under such
/ X|HPPX*df conditions,n(¢) will also obey to a time-decay with constant
o= <<Y7 X) _Jh @ 7 therefore, we introduce the equivalent noise signat):

f
X, X) N '
/f CIxpag no(t) = noe— /R 1)

having applied Parseval equality, wheXd f) andY (f) are where(@ is the average quality faqtor, {:md by imposing the
the Fourier spectra of the respective time-domain sigifale. ~ Same overall energy for the two noise signals, we get
brackets stand for the projection operator. It is intenestd Enrf
notice that because of the quadratic form in the previous re- ng = N7 e
sult,p € RT, so that the sign of the peak of the received pulse Q
will always be unchanged. Defining the eneffy of a spec-
trumG(f) as

(12

The equivalent noise..(t) behaves as a smoothed version
of the actual noisex(¢), maintaining the same overall time-

fa decay, and thus the same average instantaneous power con-
Ea = 2/ |G(f)Pdf (5) tent. The example shown in Fig. 2 illustrates this approéch.

fi is now possible to define the peak SNR by considering the
equivalent instantaneous noise energy at the signal peak in

the energys of the coherent part is thus given by f—0

f2 )
Es = p?Ex :2/)2/ X|Pdf (6) _sO_ @

A [X] A, 20w foA ; (13)

whereas the energjjy of the residual noise is wherey = 22(0)/Ex is a factor related to the shapef).
fa This simple relationship between the two SNR definitions al-
En =2 / X2 H|*df - Es (7)  lows focusing on the energy SNR, which is much simpler to

Jh compute in the frequency domain.

Thanks to these definitions, it is possible to predict the per

so that we can introduce the energy SNRs formance of time-reversal transmission for any puldg, just

£q by knowing the transfer functioH (f). Most remarkably, this

S . . .

A=o= - (8)  just requires having access to the absolute values of the spe
N tra X (f) andH(f).

While the energy ratid will be extensively used in the rest of
the paper, the ability of time reversal in transmitting oems . ) o .
pulses is better assessed by means of the peak SN&S B. Experimental investigationsin areverberation chamber
defined as follows [4]:
) In general, the pulse SNR will depend on the relative posi-
_ s°(0) tion of the transmitter and the receiver within the system; i
A, 5 , 9) ; ; ) e
N order to exploit the time-reversal technique for real-#fspli-
cations, it is of paramountimportance to be able to enswate th
having assumed that the peak of the received pulse occurs fgiven minimum SNR be respected for any transducers posi-
t = 0. The quantityn.s is the root-mean-square (rms) value tion, at least with respect to a certain confidence margin. In

of n(t): order to assess the variability of the SNR, we carried out ex-
/2 perimental tests, by considering an electromagnetic bever
2 _ 1 2 ation chamber, with a fixed antenna acting as the transmitter
Nipe = lim — n(t)dt . (10) ; : ;
T=oo T [ _1/5 and a linearly polarized electro-optical sensor (conrietbe
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4

an optical fiber) as a rgc_eiver. This Iast_choice was imposed f. (GHz) Br (MHz) meanA stdA meanA, Q M,
by the fact that a receiving antenna being moved |n3|d¢ the 100 037 0074 187 302
chamber would have changed its fundamental charactetistic 05 200 030 0051 300 3900 644
modifying the setq f} and{~;}, and as thus impairing the 100 0'75 0‘ 1 o, 1287
validity of any comparison. The very weak interaction en- 1.0 ’ ) 5700
sured by the optical sensor means that it can be regarded as an 200 0.7z 0.080 130 2574
almost ideal electric-field probe, minimizing the modifioat 15 100 091 014 243 .., 2896
of the quantity being measured. 200 090 0.10 481 5792

A total of 100 randomly chosen positions and orientations 20 100 09 013 192 ..., 5149
of the receiver were considered, measuring the respective ’ 200 095 0.12 380 10297
transfer functions over six frequency ranges, centereceat f 100 102 013 187 8045
quencies fron).5 GHz to3 GHz, by steps 00.5 GHz. For 2.5 200 100 010 365 20 16000
each central frequency, two bandwidtig were considered, 100 1'02 0'14 188 11584
namely 100 MHz and 200 MHz. 3.0 ’ ’ 8700

200 098 0.10 358 23169

We assumed, for the sake of simpliciyt) to have a flat
spectrum over the frequency ranige, f2]; this would be the
case, e.g., for cardinal sinus pulses. The energy SNR WEFABLE I Statistical moments of the energy SNRand average peak

computed by means of (8), leading to the empirical StatIStI'SNRA,,, as computed from the experimental data presented in Fig. 3.

cal distributions shown in Fig. 3, and the first two statltic the approximate number of moded,, was computed by means
moments ofA resumed in Table |, together with the averageof weyl's formula (14), whereas the average quality facfowas
peak SNRA,,. These results point to three important facts: 1)directly estimated from the time constant of the residui@o(t).
while the average energy SNR increases with the frequency,
its progression slows down at the same time, converging on
an asymptotic value close to one, 2) the actual valug &  similar statistical properties along its three Cartesiamgo-
strongly dispersed, depending on the position of the receiv nents [10].
and, 3) an increasing bandwidth has apparently little efac ~ These results point out that apart from being able to ex-
the average energy SNR, whereas its dispersion decreases. dlain the limitations of time reversal, it is of paramountim
the best of our knowledge, these conclusions have never beg@rtance to have a model predicting the statistical dispers
discussed before, and no theoretical framework is availablof the SNR. These are indeed the basic motivations of this
for interpreting them. pa

The only available model is the one proposed in [4] for a
lossless configuration. It predicts a direct proportidydie-
tween the number of mode® and the average peak SNR I1l. STATISTICAL MOMENTSOF A
A,. In order to apply this model to our experimental results,
we estimated the numbér,, of resonant modes existing in

: ; _ As often done in statistical descriptions, the parameters o
}:a;?grber for a given frequency range through Wey's forthe model will need to be regarded as random variables. This

approachis not just dictated by mathematics, but it com#s wi
V. B2 physical meaning. In particular, the resonance frequencie
My (fe) ~ EBLTVszBT (1 + F;) (14 {f.} are indeed distributed over the bandwidth in a way
¢ that is hardly predictable, unless in canonical configoreti
whereV is the volume of the reverberation chamber arisi ~ For the associated modal weigHts; }, since describing the
the speed of light in the medium filling it. Results obtained f projection of the transducer characteristic response theer
the case of Supelec’s chambéf & 3.08 x 1.84 x 2.44 m?) modal topographies, a modification in the position of the re-
are shown in Table I. By comparinl/,, to the averagey,,  ceiver or the transmitter leads to a modification of{hg}, so
it is clear that their relationship is more complex, and elsar that a random position of the transducers implies a random se
terized by a form of saturation of the performance, sinceeve of modal weights. Moreover, the fact that the modal topogra-
for large increases in/,,, A, is barely affected. phies, as well the excitation of the transducers are, in gen-

The reasons for such a peculiar behaviour are to be sougktal, sign-changing functions, implies that the, } and{;}
in the existence of loss mechanisms in actual reverberatioshould be treated as zero-mean random variables, and they
chambers; we will show in the next Section that this leads tovill be assumed to be independent and identical distributed
mutual couplings between resonant modes, and ultimately t6id). No further assumption will be necessary about theetyp
a saturation of the performance. of distributions.

Concerning the statistical dispersion discussed in p&@nts  In order to simplify the model, they (f) will be assumed
and 3), it has never been addressed before. It is worthwhil® be frequency-shifted replica, with approximately thmea
noticing that the orientation of the probe has little effent ~ bandwidthBy; = fi./Qy, Vk. This also implies that all the
the dispersion, since the cavity was over-moded for all thenodal responses, (/) have the same energy. In principle,
frequency ranges, apart fgr = 0.5 GHz. For such configu- this assumption holds only when relatively narrow bands are
rations, the field is statistically isotropic, and it presevery  considered, although the results shown in Section V praate th
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FIG. 3: Frequencies of occurrence for the energy SN& computed from experimental data measured over a bafd®idt= 100 MHz
(left column) andBr = 200 MHz (right column), centered around the frequencfes= {0.5,1,1.5,2,2.5,3} GHz (top to bottom). Each
histogram was obtained from a population of 100 sample fiearfisnctions as measured between a fixed transmitter antend a moving
electro-optical probe.

this is not necessarily the case. the transducers are let free to change, so that all thet&tatis
Itis important to understand the physical role of the folow Moments will be conditional to the séff.}. The ensemble
ing statistical analysis, which aims at accounting for te i behaviour of the SNR considering randdf.} will be stud-
pact of the random position of the transducers on the regeivé€d in Section IV.
pulse SNR. Indeed, equation (1), when coupled with equa- |n order to simplify our analysis, but with no loss of gener-
tions (6)-(8), leads to the definition dfas a random function, - ity in the conclusions, we will assume the modulustaff)
depending on the probability density functions (pdfsj9f} 1o be directly proportional to the characteristic functiithe
and{fy}. interval [f1, f2], leading tox = 2Bp. This choice corre-
We start our analysis by considering a specific configusponds, e.g., to a cardinal sine excitation in the time-doma
ration for the reverberating medium, i.e., for a given set ofmodulating an harmonic carrier of frequengy as for the ex-
known deterministiq fx }, whereas thé~; } will be regarded ample shown in Fig. 2. Attention should be paid to the fact
as random variables. This scenario corresponds to the cafieat the definitions of the SNR actually depends just on the
of a single realization for the medium, while the positiofis 0 modulus ofX (f), so that an infinite number of pulse shapes
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sharing the same spectral occupation would be charaaferizesame reason, we just consider the first two momentd pf
by the same SNR. andWV,. Thanks to the following expansion

Following this assumption, (8) can be recast as
M

HNOP = > wlPlen()I” +

f 2 =1
</'/ \H|2df) M M
N n ) + 230 3 Re{mrmon(Non()} @2)
f2 f2 k=1m=k+1
43¢ 2
br /f. ] (/ﬂ A df) and assuming thgy; } to be independent from tHgf; }, while

recalling the hypothesis of all the modes having the same en-
ThusA is entirely defined by the properties of the randomergy<&s, as defined in (5), we can write
function| H ( f)|? over the frequency-ranggi, f]. In order to

study the statistical properties &f we introduce the auxiliary EWil{fi}] = 2Mp2€s (23)
random variable$V; € R, as defined as E[Wol{fe}] = 2M (13 + 1a)Ejgp2 +
fa M M
Wi = / |H[Zdf (16) F 163y Y o (24)
Jf1 k=1m=k+1
yielding having introduced the momenys
2 ui = Elat] = B[] . (25)
A I,}Vl . an [og] (8]
BrWy — Wl

Equation (24) differs from (23) in a fundamental aspect,
i.e., the presence of the mutual energigs,,, shared be-
tween each couple of modes of the system. This term can
be shown to be the source of the limitations of the SNR as
' the modal densityl/ /By increases enough to lead to non-
negligible interactions between the modes.

The same type of analysis was carried out for the elements
¥ = E[(W; — E[W;])(W; — E[W;])] of the covariance ma-
trix, but this led to too complex expressions, especially fo
352. We would rather propose approximate results, where the
mutual-energy terms are neglected:

The rationale for introducing these auxiliary variables is
that the statistical moments daf cannot be expressed as a di-
rect function of the{~,} and{f,} moments. Nevertheless
the moments of¥’; can be linked more easily to those{of, }
and{ f; }; an estimation of the moments &fcan then be given
by linearizing (17) around thé’; ensemble averages [11]. For
the sake of simplicity, the following convention is intrazhd:

Wi =EWil{fi}] . (18)

Applying this approach to the average/otonditional to a S~ AMy | (26)
given realizatior{ f;. } yields

) having defined the elements mfas
W,

EA{fi}]  ——
BriVs — W

(19) vy = Ei(m —u3) (27)
Vo = Eg€ippz (napia + p6 — 2413) (28)
In thg same way, the conditional varlarm%\qm} can be ap- Yoy = 5\2@2(“8 + Apapis + p3 — 2ph — 4p2ps) (29)
proximated as
It is worth noting that although interactions between modes
O-/Z\ka} =E[AY{fi}] - E[A{fx}]>~JITT , (20) havebeen neglectedm, th(_a Jacot_;ian in (21) takes therr_1 into
account. It will be shown in Section V that when applied as
where ¥ is the covariance matrix of the random vector an input to (20), these expressions provide a good estinfiate o
[Wh, Wa]™. The column vectod is the Jacobian of as com-  the variance of\, and as thus they are a useful tool in stat-
puted with respect tdl’; andWW,, evaluated atWW, Ws): ing the uncertainty that affects time-reversal perfornesrio
a reverberating medium.
W, 2TV } @

J = B7"7<BTW2 - Wi)z

-Wi

IV.  AVERAGE ASYMPTOTIC PERFORMANCE

A higher-order estimate af could be given, but the re- The formulae presented in the previous Section were de-
sulting expression would be quite unwieldy without deliver rived considering a given deterministic set of resonant fre
ing considerable improvement in the final accuracy. For thejuencieq f;}, and as thus (19) and (20) depends, in principle,
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on the actual realization dff; }. In fact, this dependence sub- 4
sists only in the mutual energi€s, 4, in (24).

In this Section, we consider the performance of time- 3r
reversal when averaged over all the realizationsfp}, hence 2
related to its general trend rather than for a specific configu

ration, proving that under certain conditions, the stiaisof 1r
a single realization are well approximated by the simpler en o _ ‘ ‘ S
semble statistics. 0 0.2 0.4 0.6 0.8 1 1.2

To this end, let us consider the ensemble averagewith
respect to the random sgf;. }; thanks to the linearization of
A, it will suffice to carry out this averaging over thEg;, lead-

ing to: 2r 1
E[Wi] = 2Mus€y (30) |l |
E[Wa] = 2M (53 + pa)€jop +
+ 8uAM(M — )E[Ep0,.] - (31) o,

The double sumin (24) is thus simplified by introducing the
average mutual energy[€y, 4,,]. The result in (24) and (31) 2
would then be identical if the following condition were sati

fied: 15¢
9 MM 1k i
T Eoom =~ BlEg0,] - (32)
A[(]\[ - 1) kzzl nz:Z/H»l + ' 0.5r 7

This requirement corresponds to assuming the systemtob 0
ergodic, approximating the ensemble average over all the re
alizations with the average carried out over the set of mutua
energies within a single realization. The strong law of éarg
numbers [12] states that, if the system is ergodic, the keith
of (32) converges in probability to the ensemble average of
the mutual energy; therefore, for a sufficiently high numtfer FIG. 4: Empirical conditional pdfg(A[{ fi}) for @ = 1000, f. =

active modes\/ one gets 2 G_Hz andBr = 200_MHz, obtained for an increasing number of
active modes. The thicker curve stands for the ensemblageaf
E[A{f:}] ~E[A] . (33) each group of realizations.

This phenomenon, often referred to as self-averaging, had a

ready been experimentally highlighted in [13], althougtain fact, a closed-form expression can be givenE¢f,, »,.] by

different context, as one of the most interesting featufes oexchanging the order of integration:

time reversal, and it implies that its performance in traitsm

ting coherent pulses in a reverberating medium is asymptoti f2 -

cally independent from the actual realization of the seheft  E[€,4,.] = / (/

resonance frequencidgy, }, underpinning the robustness of 1

this technique. . . . " .
An exan?lple highlighting this property is given in Fig. 4, having explpl_ted the fact .that th.{e“’} are iid random vari-

where empirical pdfs are shown for 10 different realizagion ables. Noticing that the Inner !nt'egral does not depend on

{1}, for three values ofiZ, namely 50, 100 and 200, with the actual frequency at which it is computed, as long as

fe = 2 GHz, By = 200 MHz and@Q = 1000. For each re- Br > By, (35) becomes

alization of { f;.}, ten thousand sets of modal weigHtg }

2
were considered. It appears that indeed the pdfs converge El€s.0.] = Br (/‘f2 \be(f )Izp(fk)dfk> (36)
kPm ’ c ¢ v )
f

f2 2
\¢k(f)|2p(fk)dfk) df , (35)

1

toward the ensemble average &sincreases, even for such
small values of\/.

We can now write and by assuming a uniform distribution for th¢ } over the
QME(f) bandwidthB, this yields

Br [(1+ pa/113)E gz + A(M — )E[Eg,5,.]] — 2ME2 &2
v R Elos,) = 5 - 37)
It is clear that the behaviour df[A] could be easily pre-
dicted should the three energy terms be known. As a matter of The two remaining energie$; and&),» can also be ex-

E[A] =
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8
pressed in closed-form as 3 .
Q R08
LT k e =
Eor = frg ~ ~By (38) 2t s
* 2Q7+1 2
TQMHQR+5) T 1t
& = fp— TR L~ =By, 39
|6k kY (Q% 117 oM (39)
. . 0
so that (34) can be restated in a simpler form 0 0.5 1 @ 15 2 2.5
a
M .
E[A] = — - @ ° o - 10000
2 T =1
M+ (1 + pa/p3) 7B 4 N, =250
HenceE[A] is linearly dependent of/ at low modal den-

sity levels, whereas it converges to an asymptotic value fol
an higherM. Thus, in lossy reverberating media, the poten-
tial gain obtained by increasing the number of active modes 00 0.5 1 15
(i.e., increasing the central frequengy) is put in jeopardy O
by the coupling existing between lossy resonant modes, witt 15 ) ) )
E[A] converging to a fixed value. Interestingly, this asymp- Q = 20000

totic value is simply equal to one. The physical significance 10}
of this result will be given a simplified explanation in Sec-
tion VI.

Equation (40) is remarkably simple, and it shows that a
handful of global parameters is sufficient for an accuraée pr
diction of the quality of the received pulse. It is worth not- 9 02 o4 06 08 1 12 14

ing that the central frequency does not appear explicily, a ©)

a consequence of the identical-mode assumption. These rt 39 . . . . .

sults also point to the fact that the most fundamental gtyanti Q = 40000
for understanding the phenomena behind pulse focusing in . 5,1 N, = 1000

reverberating medium B/ B),. This quantity will be here-
after referred to adV,, for reasons that will be made clear in
Section VI, yielding

M/N, 0 -
E[A] = ; . (41) 0 0.2 0.4 0.6 08 1 1.2
M/N,+ (1+ pa/1i3)/(2m) A
This reformulation states that the average performance-is e @

tirely predicted by means of the ratit//Ns;. As soon as

M =z N, the marginal gain brought by the availability of

new modes is increasingly reduced, leading to a saturation f FIG. 5: Empirical pdfs for the energy SNR, depending on

higher)M. the numberM of active modes and the quality factq) of the
medium. The six curves presented in each picture correspmnd
M = {100, 250, 500, 1000, 2500, 5000}, respectively, from left to

V. MODEL VALIDATION right.

In order to check the accuracy of the proposed description, . o
we considered numerical simulations, by synthesizingoand are drawn accordingly to normally distributegl and;; the
realizations of transfer functions, thanks to (1). Theorati €nergy SNR for the transfer functions thus obtained areesubs
nale for this approach is the possibility to closely monttee ~ duently computed thanks to (8). Contrary to the assumpfion o
number of moded/, their quality factor, and so on. Indeed, & constanf/Qx, the¢ (f) were assumed to have a constant
as recalled later in this Section, experimental validatiare ~ quality factorQ = @y, Vk. Therefore, the modal responses
impaired by the impossibility to assess the exact number ofx(f) Will not be identical as assumed in the model deriva-
modes taking part to the transmission. tion.

Thanks to the fact that (40) is not directly dependent on the The first tests aimed at showing how the energy SNR is dis-
central frequencyf., but rather on the bandwidth3; and  tributed as\M and N, = By /B vary, and is more of a qual-
B, the validation can be carried out at any valuefaf We itative investigation. A bandwidti; of 50 MHz was cho-
set for f. = 2 GHz, with a varying bandwidttB; and sev- sen, while four values of) were tested, ranging from 5000
eral average quality factor@. Random complex weightg; to 40000. The number of modes varied from 100 to 5000.
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FIG. 6: Validation tests foE[A]: numerical results obtained from FIG. 7: Validation tests for the standard deviatiom\gffor the same
500 realizations (dots) and the values predicted by (40i)d(nes).  configurations as in Fig. 6. The dashed lines corresponcetedtues
All the presented results were computed for= 2 GHz and for ~ predicted by (20), but considering ensemble-averdgedwhereas
Q={1000, 2000, 5000, 10000, 20000}, while the correspogdii the thick solid ones highlight the model results up to thevedocal
are displayed. maximum, forM < M.

. SNRA, increases monotonically, since the relationship be-
For each set of global parameters ten thousand realizatioRgeen A and Q is actually sublinear. This fact is to be ex-
were generated, in order to establish empirical pdfs; these pected intuitively, and it also confirms the trend predidigd
shown in Fig. 5, and illustrate quite clearly that: 1) in@ie@  the model proposed in [4], since
losses tend to saturate the energy SNR fasteY/ ascreases,
2) decreasing losses slow the saturation down, but redece th lim E[A,)] =M (42)
average energy SNR, as the length of the residual-noise tail Qo0
increases and so does the noise energy, and 3) the SNR eXpgyain, in the case of a cardinal-sinus pulse and gaussiis sta
riences a standard deviation that is far from negligible whe tics for the modal weights.
compared to the average value, althoughyascreases, the  qyantitative validations were then carried out by consider
dispersion appears to decrease. The trend in the simulatggly v, — 2 GHz,Q = {1000, 2500, 5000, 10000, 20000}, and
pdfs recalls that of the experimental ones shown in Fig. 3. 3 varying bandwidtB, = {200,400, 600} MHz. The num-

Even though the energy SNRdecreases witl), the peak  ber of modes spanned the values 100 to 5000, and a population
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of 500 random realization§y;. } per configuration was con- Therefore a direct validation is not feasible; neverthelés
sidered, each configuration representing just a singlézeeal is current practice in electrical engineering to assumatiah
tion of { fi.}. The results thus obtained for the average valudinearly polarized antenna placed in an electrically lasyer-

and the standard deviation &fare shown in Fig. 6 and Fig. 7, berating chamber will excite most of the modes existing over
respectively. Fig. 6 shows that the average value is predlict the frequency range of emission of the antenna. As a conse-
within a few percent points as long 35 = 200. Indeed, (40) quence, Weyl's formula is often used as a reference. Hence,
is unable to predict any energy SNR greater than one; this ime computed the moments of the energy SNR predicted by
actually not due to a bad estimate of the moments of the auxaur model, considering a number of modes equal to three frac-
iliary variablesW;, which are indeed precisely estimated in tions of the estimat@/,, given by Weyl's formula (14).

all of the considered tests, since (30) and (31) do not irvolv  The results are resumed in Table Il, together with the quan-
any approximation. This rather points directly to the cendi tity NV,: the range of variation of the SNR is very well iden-
tions that are necessary for applying the linearizatiorB)y ( tified, both for the average value and the standard deviation
implying that it is necessary for the conditiofy = 200to be  and the experimental results are consistently approached w
fulfilled. We investigated the possibility of including thies-  considering a number of modes clos@ M. Furthermore,
sian term in the expansion (19), but we dropped this optionas expected from the numerical validation, as sooiVade-
since it brought no tangible improvement, thus implyingttha creases towards 200 the experimental averagees beyond

the SNR as a non linear function @f; would require terms  one; in this case, the model will underestimate the stedikti
higher than quadratic ones. moments.

The standard deviation depicts a rather different scenario The fact that considering the same fraction \df, over
Expression (20) neglects any modal interaction in the devar the six frequencies leads to good results, strongly reduces
ance matrix%, but it includes them through the use df;.  the odds that this accuracy be a random result; we thus con-
For this reason, (20) is expected to underperform as soon asder that 90 % of the available modes were indeed effec-
the modal interactions get more important, i.e., as the inodaively excited. The only exception is fof, = 0.5 GHz and
densityM /By increases. The results in Fig. 7 support theseB; = 200 MHz; in fact, the transmitting antenna had a cut-off
ideas, showing that (20) is a very good estimate of the standa frequency around 450 MHz, so that of the 200 MHz pulse to
deviation, as long as it has not yet attained its maximumevalube received, it actually transmitted only three-quartérthe
omax- After this point, (20) is no more a valid estimate, but the signal spectrum, hence exciting roughly three-quarteth®f
actual standard deviation gets to a plateau fairly appratésh  available modes. By taking into account this fact, the dctua
by omax- In general, this value needs to be computed numemumber of modes to be considered is rathét - 0.9M1,, ~
ically, but for the case of modal weights distributed as Gaus2/3M,: indeed, the results agree.

sian random variables, the number of modés for which Overall, it appears that the average/ofs hardly affected
the standard deviation reaches its maximum value can be apy an increase iB7. Actually, this is predictable, since both
proximated by N, and M, are linearly dependent aBr, so that (41) is not
6 modified. Conversely, the peak SNR will increase propottion
M, ~ —N, . (43) ally to Br. At the same time, the standard deviation is sensi-
™

tive to an increasind3y. This was predicted in (44), and the
Knowledge of the saturation point allows extending thedzali reduction of a factot //2 subsequent to a doublirgy is in-

ity of (20) over the entire range of values bf, i.e., deed well confirmed by the experimental results. These find-
ings are of the utmost importance should time-reversaktech
5 JTEN(M) M <M, niques be used for pulse transmission.
AEY WE L oM, “4)

Therefore, the maximum standard deviation goeslijkg¢ N, VI. AN HEURISTIC INTERPRETATION

whereas it is inversely proportional f6, for M < M,,. The
former conclusion explains the behaviour previously high- We will here try to give an interpretation of the reported
lighted, with the standard deviation decreasing whepn phenomena from a more physical, yet approximate, point of
and/or@ increase. view. To this end, let us recall that the maximum value at-
These numerical validations prove the effectiveness of théained by the peak SNR,,, as long asV, = 200, is simply
asymptotic models, even for a relatively low number of modesgiven by N /(2x). Itis thus not dependent on the actual num-
and with no ensemble averagingfiffi, }. This implies thatthe ber of modes\/, but rather to a, usually, much lower quantity.
ergodic assumption formulated in the previous Section does Let us look atN, from a different perspective: knowing
indeed hold. The greatest limitation in the proposed madels that B), is the average bandwidth of the frequency response
the need for (9) to be well approximated by its tangent plan®f each modeN, states the maximum number of modes that
over the range of values spanned by thg requiring N, > could be placed one after the other over the bandwigith
200. The energy SNR corresponding to this configuration is equal
The last validation is a tentative experimental one. As reto one, and it corresponds to the best efficiency time-rebers
called at the beginning of this Section, the exact number o€an provide in concentrating energy in the coherent parerat
modes excited in a reverberating system is usually not knowrthan in the residual noise.

Selected papers



145

11

fe (GHz) Br (MHz) experiments mod2M,, /3 mod.3M, /4 mod.M,, N, M./N,
100 0.37 (0.074) 0.30(0.082) 0.33(0.083) 0.39(0.083) 78

02 200  0.30(0.051) 0.30(0.058) 0.33(0.058) 0.39 (0.058) 1570
10 100 0.75(0.12) 0.70(0.097) 0.73(0.097) 0.78(0.097) 570,
200  0.72(0.080) 0.70(0.069) 0.73(0.069) 0.78 (0.069) 1140
15 100 091(014) 083(011) 089(0.11) 0.92(0.11) 420, ¢
200  0.90 (0.095) 0.88(0.080) 0.89 (0.080) 0.92(0.080) 840
0 100  0.96(0.13) 0.95(0.013) 0.95(0.13) 0.96 (0.13) 315
200  0.95(0.010) 0.95(0.092) 0.95(0.092) 0.96 (0.092) 630
a5 100  1.02(0.13) 0.97(0.14) 0.97 (0.14) 0.98 (0.14) 288
200 1.00(0.12) 0.97 (0.097) 0.97 (0.097) 0.98 (0.097) 576
30 100 1.02(0.14) 0.98(0.14) 0.98(0.14) 0.98 (0.14) 290

200  0.97(0.10) 0.98(0.096) 0.98 (0.096) 0.98 (0.096) 580

TABLE II: Experimental validation against the results meted in Table I: mean values are given directly, while stasdleviations are in
parenthesis. The results computed by means of (40) and @@) ebtained considering a number of active modes equalfe/3, 3M,, /4
andMM,,, due to the uncertainty on the actudl. The reliability of the estimates can be tested by checkiegconditionV, > 200.

1 " " " number of occupied slots, and thus the effective number of
_________________ modesh., is thus simply given by
0.8f e ] .
gl M, = N,(1 —e M/Ney (45)
= 0.6 ) 1 and the related energy SNR
m p y
0.4f ,'/ 1 E[A] ~ M, —1— e,M/Ng ) (46)
. Ns
0.2 | highlighting the dominant role of the quantiy /N, as pre-
viously shown in (41). We could thus dub the quanfity N
% 1 > 3 2 5 as the modal slot occupancy: it defines completely the SNR

MIN and is sufficient for predicting the performance of time reve
sal in any configuration.
The validity of this reasoning is proven in Fig. 8. Indeed,
FIG. 8: Comparison between the mean energy SNR, as predigted for a. low number of modes (with respec_tm) the resu[ts
the modal approach (41) (solid line) and the slot occuparesgip- predicted by (41) and (46) correspond fal.rly We”_' For hlghe
tion (46) (dashed line). slot occupancies, (46) saturates faster, since this mede i
capable of acknowledging the partial superposition of two
modes, something that would just lead to a partial loss of a
degree of freedom. In spite of this over-simplificationstéap-
This fact can be used to give a simple intuitive interpretaproach yields results consistent with those predicted &y, (4
tion, by introducing the idea of a numh®f, of available slots, ~while providing a simple framework for understanding the
to be occupied by the actual number of active modes. AISNR saturation phenomenon.
though simplistic, this vision of the spectrum as a quartifie
space makes sense. Hence, each mode introduces a further de-
gree of freedom only if it can be allocated to a free slot; the VII. CONCLUSIONS
wise, it will be lost, just leading to a different modal wetghs
a function depending on the weights of the modes previously This paper has addressed the main phenomena underlying
allocated to the same slot. Therefore, the performancenef ti the quality of pulses received by a transducer as tranginitte
reversal is not related to the actual number of active modeshrough a reverberating medium, when using time-reversal
but rather to the number of slots being used, which could thugechniques. The quality of the received pulse has been ana-
be regarded as an effective number of modes or degrees bfzed with respect to global parameters identifying theppro
freedom, orM,, leading to an efficiency and, ultimately, to erties of the medium, according to a modal description. Hav-
an energy SNR equal t/. /N;. The allocation of a mode to ing included loss mechanisms, it was proven that the sharing
a specific slot being a “rare” event, this random process canf energy between finite-bandwidth resonant modes is at the
be modelled by a Poisson law, with me&fy N,. The mean origin of the limitations in the SNR of the received pulse. A
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statistical approach has led to general results based gn veintroducing a simplified heuristic description, provingtithe

few assumptions, mainly that of a sufficiently “wide-band” SNR is in fact limited by the finite number of degrees of free-
configuration withBr/Bj; 2 200: the developed model pre- dom available in a lossy reverberating system. These gesult
dicts correctly the first two statistical moments of the SNR,should be useful for both the design of experiments and the
acknowledging its non-negligible statistical dispersiohl- interpretation of their results, and pertain to any type afev
though mainly based on a mathematical approach, the physpropagation problem in a reverberating environment.

cal meaning of these results were explained in plain terms by
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Increasing the Peak-Field Generation Efficiency of a
Reverberation Chamber

Andrea Cozza

ABSTRACT

The use of time-reversal techniques has been shown to allow
focusing energy in a spot about half a wavelength wide. The
fact of being able to concentrate energy into a reduced volume
of space implies higher power densities and, ultimately, higher
field levels. The use of this feature for improving the ability
of a reverberation chamber in converting energy into high-
intensity fields is investigated here. Experimental results are
compared to those predicted by a simple asymptotic model,
revealing the role played by losses and frequency bandwidth
and how the performance of time-reversal techniques depends
on these parameters.

I. INTRODUCTION

Among the several advantages presented by reverberation
chambers (RCs), a special place is certainly held by their
ability to produce high-intensity electromagnetic fields from
relatively low-power sources. The standard harmonic exci-
tation of an RC leads to a statistically uniform spreading
of the electromagnetic energy over the entire volume of the
cavity, essentially because of the fact that the cavity resonances
are excited in an incoherent way. This implies that of all
the energy stored in an RC driven by a continuous wave
(CW) harmonic signal, only a fraction can be used for the
“aggression” of the equipment under test (EUT). But while
carrying out Electromagnetic Compatibility tests, as well as
other types of radiated tests in RC, it would be typically
more useful to be able of concentrating energy only over the
EUT. This scenario can be modified thanks to recent advances
brought by time-reversal techniques [1]: as a matter of fact,
this approach allows to concentrate a bigger share of energy
around and towards the EUT, thus increasing the efficiency
of the RC as a high-intensity field generator for equipment
testing.

In this letter, we prove that higher field-generation effi-
ciencies are indeed made possible by using non-harmonic,
time-reversal-based signals; we focus on how the physical
parameters of the RC (quality factor (), signal bandwidth,
etc. ) affect the performance of time-reversal driven RCs. To
this end, we propose a simple asymptotic model capable of
predicting the average improvement brought by time-reversal
techniques over the standard use of RCs. Its validity is checked
against experimental results obtained in an actual RC.

II. PEAK-FIELD GENERATION EFFICIENCY

For the purpose of our analysis the reverberation chamber
will be represented as a black-box linear system. To this end,

the vector electric field E(f) generated at a certain position,
will be described as

E()=X(N®N) =X (é1 ¢2 ¢5) (D

where X (f) is the power-wave applied at the input port of
the antenna exciting the chamber and ¢,(f) is the transfer
function related to the p-th Cartesian component of the E field.
Two cases will be considered for the excitation of the system:
1) Xcw(/f), a harmonic steady-state signal of frequency f.,
with peak amplitude A, and 2) Xtr(f) = P(f)¢,(f), with
P(f) the spectrum of a pulse signal p(¢), covering a bandwidth
Brp around the central frequency f.. This latter case, i.e.,
of a time-reversal-driven excitation, leads to the generation
of a pulse approximating p(t) [2], dominated by the field
component along the p-th dimension [3]. Defining p(¢) as to
attain its peak value at ¢ = 0, the peak field generated by
applying X1r(f) is, in time-domain,

max [lerr (t)] = [lerr(0)] = 2/ P(H)Hy()Idf (@)
g JBr
having carried out the integral over the positive-frequency
region of the spectrum. Conversely, Xcw(f) yields a non-
polarized field, whose peak value is given by

max [lecw ()] = Al ®(f) - (©)

Before being compared, the peak fields obtained through these
two approaches need to be normalized to the energy £ that is
necessary to apply for their generation, thus leading to the
definition of the peak-field generation efficiency

maxle(t)|

5 “

In the case of a harmonic excitation, 95 % of the steady-
state amplitude is attained after a period equal to 37, with
7 = Q/(nf.) the average time-constant of the RC, @) being
the average quality factor of the RC at f.. Hence, an average
applied energy

n=

3 A?
Eew = §TfQ ©)
which leads to
7 fe
now = 3R ©

Assuming an ideal reverberating chamber [4], the average
quadratic field amplitude would be evenly distributed along
the three field components, so that introducing the quadratic
average @2, (f.)

E [‘¢p(fﬂ)‘2] = d)Zv(fc) Vp € [173] ) (@)
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Fig. 1. Frequencies of occurrence distributions of ncw (left column) and
nrRr (right column), as obtained from transfer functions measured over a
bandwidth By = 100 MHz, at a central frequency f. = {1.0,1.5,2.0} GHz
(top to bottom, respectively). All the results have been normalized to the
average values of now.
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Conversely, time-reversal deals with a finite-energy excita-
tion

Ern =2 /B Xan(f)Pdf =2 /B PP lon(F)Pdf

E [new] =

©

so that its efficiency is given by

(f ) P(f>\¢p(f)|2df>2

[P(F)PIep(f)Pdf

T
Definitions (6) and (10) allow assessing how these two ways
of using RCs manage to convert the same amount of energy
into a peak field, just by knowing the transfer function between
the excitation antenna and the E field component at a point
of interest. It is therefore sensible to define the gain in the
average peak-field efficiency G = E [ncw] /E [nTr]. Applying
Cauchy-Schwarz inequality to (10) yields the following bound

E [re] < 2B [/B Iép(f)\zdf] 2 [ das

JBy

TR = 2 (10)

an
This results in an equality for a constant P(f). The term under
the integral sign is the same as in (7) and assuming it to be
constant over the entire bandwidth of the pulse p(t), we obtain

G < 8@

e (2

f Br ¢ Br@  (o/Wew Q
(GHz) (MHz) 7 fe (e /i) TR

25 60 45 7.7

1.0 50 116 91 9.3 5700
100 218 182 11.9
25 39 34 6.3

1.5 50 80 68 7.0 6300
100 161 135 7.7
25 24 25 6.5

2.0 50 47 50 7.6 6300
100 95 100 8.5

TABLE I

COMPARISON OF THE EFFICIENCY GAIN G ASSESSED FROM
EXPERIMENTAL DATA AND PREDICTED BY (12). ONLY THE RESULTS FOR
THE FIELD GENERATED ALONG THE x-AXIS ARE SHOWN FOR
TIME-REVERSAL EXCITATION. THE RATIO OF THE NORMALIZED
STATISTICAL DISPERSIONS IS SHOWN IN THE FIFTH COLUMN.

This result is of paramount importance, since it allows assess-
ing in a very simple way how time-reversal techniques would
improve the performance of RC. Furthermore, it is a tool for
designing the use of such techniques, as soon as the @ of the
RC is known. In the following experimental validation we will
consider a constant P(f), in order to meet the upper bound.

III. EXPERIMENTAL RESULTS

The performance predicted by (12) was tested against ex-
perimental results measured in Supélec’s RC (3.08 x 1.84 x
2.44 m®), using a log-periodic dipole antenna positioned near
one corner of the chamber, with the dipoles of the antenna
aligned along the vertical direction (z axis), while the direction
of maximum gain was aimed at a corner. The electric field was
sampled by means of an optical E-field probe, manufactured
by Enprobe, model EFS-105. This probe is linearly polarized,
so that three transfer functions were measured for the three
Cartesian field components; to this effect, a styrofoam support
was used. A grandtotal of 40 positions were considered,
uniformly distributed over the lower half of the RC, measuring
the three Cartesian transfer functions by means of a network
analyzer over three sub-bandwidths of By = 100 MHz,
centered around central frequencies f. equal to 1, 1.5 and
2 GHz. Equations (6) and (10) were applied to each transfer
function, obtaining the peak-field generation efficiencies; these
results are presented in Fig. 1, where for each f., the average
ncw was set as reference, with all the results presented
normalized to this value.

This procedure was then repeated with a reduced Br,
namely for 50 MHz and 25 MHz bandwidths, and the gain
G was computed. The results summarized in Table I prove
that (12), despite its simplicity, allows assessing quite ac-
curately the improvement in peak-field generation efficiency
when adopting time-reversal techniques. The agreement is
stronger at higher frequencies, where the field statistics in the
RC are closer to an ideal reverberating medium [4]. Table I
also demonstrates another interesting feature: time-reversal-
driven RCs generate peak fields that are affected by a statistical
dispersion by far lower than for a harmonic excitation. This
feature is related to the self-averaging properties of time-
reversal techniques, as already pointed out in [5] and [6].
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IV. CONCLUSIONS

We have proven that time-reversal techniques are an inter-
esting alternative to the standard harmonic excitation of RCs,
by showing that higher peak-field values can be generated from
the same amount of energy. This feature was demonstrated
experimentally and predicted by means of a simple asymptotic
model. More reliable performances were also observed, with a
strong reduction of the statistical dispersion of the peak-field
amplitude.
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Enforcing a Deterministic Polarization in a
Reverberating Environment

Andrea Cozza and Houmam Moussa

ABSTRACT

We report on a technique for generating coherently-
polarized pulsed fields within highly reverberating environ-
ments. The ability of doing so is predicted theoretically, show-
ing that the purity of the polarization of the electromagnetic
field does not depend on the cross-polarization rejection of the
source antenna, but only on the well-known depolarization
properties of standard reverberation chambers. Experimental
results are provided, proving that our theoretical model is
sound, thus validating the first technique for generating a
coherent arbitrarily polarized field in a reverberating environ-
ment.

I. INTRODUCTION

The success of standard reverberation chambers (RCs) as
an Electromagnetic Compatibility facility is mainly due to
two features: 1) the equipment under test is submitted by
a large number of plane waves whose random directions of
propagation and polarizations can be changed almost instantly
through modal stirring, thus allowing the likely excitation of
all of its weaknesses, 2) high-intensity fields can be generated
from low-power sources. Nevertheless, the field they generate
cannot be set in a deterministic way, and only its statistical
moments are known [1]. In many applications it would be
useful to be able to enforce a deterministic polarization, while
keepipng point 2). This is unfeasible in standard RCs, due to
the strongly incoherent nature of the field polarization. This
notwithstanding, time-reversal techniques have been proven to
be capable of enforcing deterministic properties in intrinsically
complex and random media, as long as losses are low and the
system is time invariant [2]. An example of this ability is
given in Fig. 1, where a pulsed field is transmitted through a
reverberation chamber, and compared to the desired waveform.
In this paper, we prove for the first time that polarization coher-
ence can also be reinstated, showing that it can be controlled
with no limitations by simply modifying the excitation signal
applied to the transmitting antenna, thus allowing a real-time
coherent control of the field, with no need of either mechanical
movements, or of antenna arrays.

II. ASYMPTOTIC POLARIZATION PROPERTIES

‘We consider the same setup as for standard RC applications,
i.e., a transmitting antenna placed within the RC in order to
excite a field distribution. The vector electric field E(f,r)
measured at any point r inside the RC can then be related
to the signal X (f) applied to the antenna as

E(f,;r) = X(N)®(f.r) = X(f) (2. @, &) (fr) ,
(€3]
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Fig. 1. An example of the ability of time-reversal techniques to generate
coherent pulses in a reverberating environment. The blue curve represents
the pulse received at a given location in a RC when applying time-reversal
techniques, as computed by means of an experimentally measured transfer
function. The green curve is the original pulse to be transmitted. The two
peak-normalized curves are indistinguishable around the peak region.

where ®(f,r) is a vector transfer function, made up of three
scalar transfer functions related to each Cartesian polarization
component; these will be referred to as ®;(f,r) with ¢ =
1, ..., 3 for, respectively, the x, y and z components. It is known
that for an overmoded RC, the ®;(f,r) transfer functions are
submitted to the following orthogonality condition [3]:

where E[-] is the expected value operator and C' is a normal-
ization constant. This condition is satisfied only when aver-
aging over the entire space of the random realizations of the
transfer functions, e.g., such as when applying mode-stirring
techniques. By recalling the modal theory underpinning the
resonant phenomena occurring in an RC, a generic scalar
transfer function can be expressed as

M
o(f) =D vvilf) 3

where ;(f) is the frequency response of the i-th resonant
mode supported by the RC, centered around the frequency
fi» while 7; € C models how it is excited. Equation (3) is
defined over a bandwidth Bp centered around fj, where the
RC supports M modes. Let us now assume that the {f;}
and {v;} are ergodic random processes, so that the average
ensemble operator can be approximated through the arithmetic
mean as applied to the different modes defining any transfer
function. Recalling (2), the law of large numbers would then
imply that
lim
M—o0

; () (f)df = ME[D;(fo)®5(fo)] , @

considering the equality as a convergence in probability.
Equation (4) is the cornerstone of the proposed method, since
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it implies that the same performance that would be obtained
only by averaging over a large number of random realizations,
can be fairly approximated when using wide-band signals in
a single deterministic configuration, provided that the RC be
in an overmoded state. This feature is in particular related to
the self-averaging properties of time-reversal, as investigated
in [2].

Having introduced ergodicity and (4), we can now describe
how a coherent deterministic polarization can be enforced. Let
us consider an excitation signal Xt (f) defined as

3
XTR.(f):G(f)Zm:(f>:G(f><I>“p ., O

where G(f) is the spectrum of the pulse g(t) to be generated at
r, with bandwidth By, and H is the Hermitian operator, while
p = (p1 p2 pg)T is a vector containing the complex weights
of the desired polarization pattern to be enforced. Applying
the signal (5) to (1) yields a received field

Erg = G®3"p | ()

having dropped the function arguments for the sake of sim-
plicity. Since we are rather interested in the time-domain field,
and especially over the peak of the pulse at t = 0, we get

+oo
em0)= [ coalpas ~VERNED . )

having introduced the energy matrix £ = diag{&i,...,Es},

with

+oo
&= G\<I>,i|2df:2/ Re{G}|®;?df  (8)
oo Br

and the polarization matrix p, whose elements are defined as

2/ Re {G‘I%‘I);} df
Br

VEE

By applying (4), it can be proven that

pij = 9

lim p=E[p|=1 (10)
M—o0
where 1 is the identity matrix. Recalling that in an over-
moded RC the field is statistically isotropic, i.e., E [|®;]%] =
E [|®,]?] Vi, 4, by applying (4) to this last equation too,
limps 00 & = &, Vi. We can hence claim that

lim eTR(O) = 501) (11)

M—o0

This result proves that without invoking any statistical averag-
ing process, i.e., no stirring, the pulsed field generated through
time-reversal converges, for a sufficiently overmoded RC, to a
deterministic coherently polarized field, directly controlled by
the weight vector p, and this for any static configuration. In
other words, the ®; functions approximate an orthogonal basis.
This result has been derived as an asymptotic property, so that
the actual received field is expected to fulfill (11) on average,
while presenting a statistical dispersion inversely dependent
on M.

[/ [ 10GHz | 15GHz | 20GHz |
& 0.94 (0.12) 0.96 (0.13) 0.96 (0.11)
& 0.92 (0.13) 0.94 (0.12) 097 (0.12)
& 1.00 (0.14) 1.00 (0.14) 1.00 (0.14)

p12 || 0.025 (0.056)
P13 || 0014 (0.045) | 0.004 (0.061) | 0.018 (0.076)
pas || -0.021 (0.068) | -0.024 (0.070) | -0.012 (0.081)
M. 570 720 315

0.003 (0.061) | 0.013 (0.074)

TABLE I
STATISTICS OF THE PERFORMANCE IN PULSE TRANSMISSION AS
OBTAINED FROM THE COLLECTED EXPERIMENTAL DATA. THE AVERAGE
VALUES ARE PRESENTED FOR THE ENERGY MATRIX AND THE
OFF-DIAGONAL TERMS OF MATRIX p, WITH STANDARD DEVIATIONS
GIVEN IN PARENTHESIS.

III. EXPERIMENTAL RESULTS

Experimental validation tests were carried out in Supélec’s
RC (3.08x1.84x2.44 m?), using a log-periodic dipole antenna
(LPDA) positioned near one corner of the chamber, with the
dipoles of the antenna aligned along the vertical direction (z
axis), while the direction of maximum gain was aimed at the
corner. Concerning the receiving transducer, an all-optical E-
field probe was used, manufactured by Enprobe, model EFS-
105. This phase-preserving probe is linearly polarized, with
a cross-polarization rejection of about 40 dB, thus allowing
to measure accurately the cross-polarization of the received
pulse. The probe was mounted over a styrofoam support,
designed in order to ensure the measurement of the three
Cartesian components of the E field. A total of 50 positions
were considered, scattered uniformly over the lower half of the
RC; for each of these, the transfer functions between the LPDA
and the probe was measured along the three polarizations, by
means of a vector network analyzer. Three frequencies were
considered for fy, namely 1, 1.5 and 2 GHz, considering a
bandwidth By = 100 MHz. For all the fy, M is expected
to be higher than 1000, as predicted by Weyl’s formula. The
pulse g(t) was set to be a Gaussian pulse, with a -20 dB
frequency bandwidth Br.

From the spectrum of g(¢) and the transfer functions, the
energy matrix and the polarization matrix p were computed,
as defined in (8) and (9), respectively. We first checked the
validity of the isotropy assumption, by computing how the
energy received along the three polarizations is distributed.
The first two statistical moments were computed, and are
shown in Table I, proving that this assumption makes sense
for the three frequencies we chose, with a maximum error on
the average energy of about 8 % and an average one of 5 %. A
similar statistical analysis was carried out on the off-diagonal
elements of p: the results shown in Table I prove that indeed
the field components orthogonal to the originally addressed
one are on average very close to zero. These results prove
that the ergodic assumption is indeed valid. The fact that the
average is not exactly null is due to mechanical tolerances in
the tracks of the styrofoam support housing the probe: a tilt
of its axis of about 1 degree leads to a 0.02 cross-polarization,
a value that closely matches the actual averages shown in
Table I. Time-domain results are shown in Fig. 2, showing
how the three Cartesian linear polarizations can be separately
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Fig. 2. The field components obtained from experimental results measured
at one position, for a Gaussian pulse at 1.5 GHz. Each plot refers to a weight
vector p corresponding to one Cartesian direction. Top to bottom, the =, y
and z components of the fields are ideally the only excited when the pulse
attains its peak value.

addressed by means of the proposed method.

Concerning the standard deviation of the rejection, it is
directly related to the residual error when considering a finite
number of modes. Nevertheless, it does not change much when
doubling fy. This is due to the limited number of degrees of
freedom actually available when the quality factor ) of the
modes is finite: it was indeed demonstrated in [4] that of M
modes available, a maximum of about M. = BrQ/fo are
actually independent. This interpretation is supported by the
inverse trends followed by the standard deviation and M., as
shown in Table I.

IV. CONCLUSIONS

‘We have introduced the first method for enforcing a coherent
and deterministic polarization upon pulsed fields transmitted
in a highly-reverberating environment. This novel approach is
based jointly on the properties of time-reversal techniques and
the strong depolarization experienced in reverberating media.
In particular, we have proven that the polarization of the field
can be controlled in a precise way by simply operating on the
signal applied to the excitation antenna. Experimental results
support this analysis, demonstrating that actual applications
can be defined, such as high-power microwave testing with
real-time polarization modification.
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Emulating an Anechoic Environment in a
Wave-Diffusive Medium through an Extended
Time-Reversal Approach

Andrea CozzaMember

TRM antennas

Abstract—A generalized time-reversal (TR) technique for the A\ /,
generation of coherent wavefronts within complex media is N N X &
presented in this paper. Although completely general, thisnethod N )
is primarily considered for testing purposes herein, wherean > v
equipment under test is submitted to a series of impinging ’
wavefronts with varying features. Electromagnetic compaibility, D>-—
antenna testing as well as telecommunications facilities vere -

. N N radiating D
complex-wavefront schemes (e.g., multi-path configuratits) are source
required, could benefit from the proposed approach. The main o D
advantages and limitations of current standard TR approacles )> S
are reviewed in this respect, exposing their inadequacy fothis C__TRM surface
particular context. The proposed alternative technique, mmed (a)
Time-Reversal Electromagnetic Chamber (TREC) is introdued
and studied by means of a formal theoretical analysis, showg » |\
how a reverberation chamber (RC) supporting a diffused-fied » \ A ¥
condition can be operated as a generator of deterministic \j> b <f
pulsed wavefronts. The TREC is demonstrated to be capable \j> ) V,‘/v
of generating arbitrary wavefronts with a remarkable accuracy,
allowing to revisit the RC as a deterministic facility: the main >
advantages of RCs and anechoic ones are merged, leading to a
new facility capable of potentially generating in real-time pulsed D3
wavefronts while using low input energies, without requiring scatterer ™
neither mechanical displacements nor any special featuresf the =~ "esPonse M scatterers Beu
sources. L " test
. . . . wavefront

Index Terms—Cavities, random media, test facilities, time- (c) (d)
domain measurements, dyadic Green'’s functions, wave focing),
time reversal. Fig. 1: A schematic representation of the two main TR

techniques currently available: (a)-(b) TR of a radiatiogrse;
(c)-(d) selective focusing over a point scatterer by medns o

) ) ~ the DORT approach.
HE idea of assessing the response of an equipment

under test (EUT) to external electromagnetic radiations

is fundamentally dependent on the availability of faaliti
capable of generating suitable testing scenarios in a repfotest: having made use, at least ideally, of a single plane
ducible and controllable manner. The most classical exampYave, the field scattered by the EUT, the currents induced ove
is certainly the case of a locally-plane wave, typicallymsed its external surface or at its interior are all straightfardly
to propagate within an anechoic environment to simulateligked to a single and well-defined external excitation.
free-space configuration. A number of solutions have beenSuch an approach shows its limitations as soon as a large
developed in the past, giving rise to such facilities as epenumber of testing configurations is required (changingadire
area test sites, compact ranges, TEM cells, and the like. fin of arrival, polarization, etc.), thus leading to theede
of these available solutions are somehow based on effortsofocomplex and time-consuming mechanical displacements
simulate an anechoic environment, a task often achieved d&fythe source or of the EUT. Albeit light-weight antennas
means of anechoic chambers (ACs), which rely on the usearfd EUTs can be easily moved around, the case of large
electromagnetic absorbing materials. EUTs such as those considered in the aerospace industry (e.g

Among the several reasons for choosing this type of esatellites, airplanes) or in electromagnetic compatibiée.g.,
vironment is the simplicity of interpretation of the resulif vehicles) requires complex mechanical solutions. A cldss o

) testing configurations in itself where a similar problem s o

A. Cozza is with the Département de Recherche en Electroétiagre, gerved is that involving the emulation of complex propamati
Laboratoire des Signaux et Systemes (L2S), UMR 8506 SUPELBEGiv . L .
Paris-Sud - CNRS, 3 rue Joliot-Curie, 91192 Gif-sur-YveReance. Contact ENVironments, such as for telecommunication tests: thel nee
e-mail: andr ea. cozza@upel ec. fr. to reproduce multi-path or fading environments comes with

I. INTRODUCTION
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expensive solutions in ACs [1], [2]. through a simple procedure. Our analysis leads to the cenclu
For all these reasons, reverberation chambers (RCs) hai@n that a paradigm shift can be introduced in TR applicatio
gained a wide following even outside the electromagnetichen dealing with reverberation chambers (or more generall
compatibility (EMC) community, especially for the need ofvith wave-diffusive media), since the parameters definirey t
assessing the performances of telecommunication deviceswavefront can be changed in real-time by means of standard
data-transmission schemes through complex environm@&hts pignal-processing techniques, thus introducing the piisgi
Here, the logic of the test is turned upside-down: the tgstimf high-speed testing in reverberation chambers and the gen
conditions do not require anymore moving the sources or teeation of complex, but deterministic, propagation sciesar
EUT, since it is considered that RCs can provide a testing
scenario where a large number of plane waves propagate along
ideally all possible directions [4], [5], [6]. The well-kmm
price to pay for this simplification is the loss of intuitive In this section we do not pretend to provide a thorough
understanding of the undergoing physical phenomena lgadiummary of TR, nor of all of its applications. A panoramic
to the test results, and the important issue of having hardiigw of available TR applications is necessary in order tb ge
repeatable testing conditions. We acknowledge the fadt tigabetter grasp of the advances proposed in this paper.
the average testing conditions are repeatable, but thet exacR is fundamentally the same technique previously known
configuration is actually not. as phase conjugation, which originated in optics in the late
As opposed to these two scenarios, in the last few yeai@'s [12], primarily intended to compensate distortionslfts
it has been shown that the preconceived idea of reverbgratitealing) in wavefronts propagating through complex media,
cavities as capable of supporting only narrow-band exeitat particularly with the aim of focusing energy towards a given
and incoherent fields should be revisited. Time-reversR) (T position in space. All of the applications of TR are based
techniques have been shown to be capable of generatiiiythe TR symmetry of Helmholtz equation, implying an
coherent wavefronts that can behave in a similar way tvariance of its solutions to a change of sign in the time
anechoic environments [7], [8], [9]. The availability ofckua Vvariable.
new way of using RCs is particularly exciting because it doul TR applications typically exploit this property by coumin
be a way of accessing the main features of RCs and ACs at tht® Huygens’ principle: as depicted in Figs. 1(a)-(b), vanc
same time, within the same facility, by taking advantage ofdefine a two-step procedure where the first step involves a
high energy efficiency while being able to generate simpier asource of radiation generating a diverging wavefnatorded
more easily predictable wavefronts. Unfortunately, as iggi@ by an ideally continuous set of transducers (e.g., antgnnas
in the next two sections, currently available TR techniqueteployed over a closed surface. These transducers are
are unsuitable for testing purposes, since they rely onuaually referred to, in the context of TR applications, as a
fixed two-step procedure that does not allow straightfodiyar TR mirror (TRM) [13]. Coupling Huygens’ principle to the
controlling the features of the generated wavefronts. TR symmetry of Helmholtz equation implies that by exciting
A more powerful technique disposing of these limitationthe transducers with the time-reversed version of the #gna
was introduced in [10] and experimentally validated in [8]. received during the first phase, the TRM will generate an
is based on the use of synthetic sources, leading to a geneidgally perfect replica of the original wavefront, but this
ized technique for the generation of time-reversed wawvegro time converging back at the source, as a consequence of our
whose features can be controlled in a very simple manner.ifwerting the direction of evolution of the time variable3]1
this paper, we present a formal analysis of how the equiecalen An important step in our proposal is the passage from
theorem, coupled to a phase conjugation technique allott® usually open media addressed when using the paradigm
generating arbitrary wavefronts within random propagatiove just recalled, towards bounded ones, e.g., closed eswviti
media characterized by weak spatial correlation. Our theor This issue was studied in several papers, e.g., [14], [15],
first introduced for a general medium, requiring only lirigar [16], [11], where it was shown that the presence of reflective
and reciprocity, while in a second time we focus on the specifioundaries allows reducing the number of TRM transducers
case of a medium supporting a diffused field distributiorip just a few, typically one: this number is to be compared
e.g., an overmoded reverberation chamber. The dyadictmperavith the inevitably higher number of sources needed in wave-
describing how a target wavefront will be modified on averageont synthesis in free-space environments [1], [2], a afire
by the proposed technique is derived, and numerical examptensequence of the spatial-sampling theorem [17]. The fise o
are provided to illustrate our results. No experimentaliitss TR signals also allows the generation of short pulses within
provided, since they are already available in the litee{B8}, a reverberation chamber, which is of practical interestiwhe
[11]. testing EUTSs closely exposed to high-power radar pulsefs [18
As opposed to previous works dealing with the focusing The second approach to generating TR wavefronts is the
of time-reversed waves in complex media [9], the propos&DRT technique [19], [20]: while standard TR considers that
method is not limited by the intrinsical inability of standa what will be the target of the focusing wave during the
TR techniques to generate arbitrary wavefronts. A majarltessecond phase (Fig. 1(b)), needs to be a source during the
is the proof that reverberation chambers are not only cepatbl first one (Fig. 1(a)), the DORT allows avoiding the target
generating wideband pulsed fields, but in a more general way be a source, whenever it behaves apant scatterer,
to generate in an accurate way arbitrary coherent wavedrorite., as a passive device that will respond with a spherical

Il. TIME-REVERSED WAVEFRONTS
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wavefront (Fig. 1(d)) to an externally excited locally péan
wave (Fig. 1(c)). The DORT may appear to have a potential
for testing applications, particularly when dealing witispive
EUTSs that cannot be operated as active sources. In fact, as we
argue in the next section, the DORT could hardly be applied
for testing purposes.

The problem with all of these methods is that in the
available literature TR applications always aim at prodga
focusing wavefront at some position in space. The motivatio
is never the generation of a wavefront per se: the reason why
focusing is under consideration is typically either a obear
transmission of signal through complex media at a givdrig. 2: Configuration for the application of Love's equivate
position (e.g., a receiver in sonar [21] or telecommundzati theorem. Equivalent electric and magnetic currents areeiefi
schemes [22]) or to improve imaging techniques [19], [20pver the surfaces, representing the wavefrodt,(r,¢) that
[23]. As we will argue in the next section, this is not compatould have been generated by a synthetic source contained
ible with EUT testing, since EUTSs are often electricallygr in the volume bounded by the surfage These elements are
and present distributed scattering features rather theaiifed embedded into a complex mediuth
ones.

responses of the EUT to a varying, but predefined, testing
wavefront.

Following this short discussion about current TR technigue The problem is that TR techniques in their present state
one may think that it could be interesting to implement the@e not suitable for EUT testing: they are actually mismedtch
within RCs for at least two reasons: 1) to provide a solutid® practical needs, as they have been designed to deal with
to the problem of pulsed field generation; 2) as a way of mofeainly point scatterers, rather than electrically exteholees,
effectively generating high-intensity fields within a rever- as it is often the case when dealing with real-life EUTs, and
ation chamber. Such points are apparently useful only in tH#S goes without taking into account the issue of polaiigt
context of EMC, where the absolute intensity of the testinghich leads to an even more complex scenario when compared
wavefront is of paramount importance. As it will be showito the scalar-wave propagation and scattering undergaing i
in the rest of this paper, the proposed generalized appro&@sioustics.
provides a more powerful rationale for the idea of coupling The solution to this mismatch is to shift our attention from
TR to reverberation chambers; as a matter of fact, a furtiége idea of focusing over a point to the idea of generating
motivation is the ability to control the generated wavefror controllable wavefront. By this last term, we consider the
without any mechanical displacement of the sources, nor adgility to control all of the parameters defining a wavefront
need for complex sources. e.g., its time-dependence, polarization, directivity aticc-

Before passing to the advantages brought in by our methd@n of arrival. This reflection has motivated our proposing
let us us start by looking at the shortcomings of TR from @n alternative approach based on the use of synthetic source
testing point of view. If the standard paradigm depicted itection 1V), leading to a new paradigm for TR that is not only
Figs. 1(a)-(b) were used, how to generate in the first plage tpuitable for EMC purposes but also brings in new advantages
diverging wavefront (first phase) that will be time-reverge for any test based on submitting an EUT to impinging wave-
order to be focused over the EUT? The eventual solution &ents. This approach, that we have named the Time-Reversal
applying auxiliary sources over the EUT in order to radiatglectromagnetic Chamber (TREC) was originally introduced
the first-phase wavefront are bound to fail, since the stahdah [10] while the first experimental validation was proposed
paradigm would require passing through the two phases el8]-
have recalled in the previous section: hence, as soon as a new
direction of incidence is to be established, the auxilianyrses IV. A GENERALIZED TR TECHNIQUE
would need to be moved over the EUT, and a new cycle of Our analysis takes its start from the standard two-step
test would start all over. This is hardly acceptable, as itildo approach recalled in section Il. The application we envisio
require an increased number of manipulations with resgecti$ peculiar in the sense that we do not consider the usual
tests carried out in anechoic chambers. retrieval of the wavefront generated by an elementary surc

A potential solution could be envisaged by recalling theut rather a generic wavefront. In this respect, we intreduc
DORT paradigm (Figs. 1(c)-(d)): in this case, it would nothe function(r, t) describing the space-time dependence of
be possible to chose whatever direction of incidence on ttiee wavefront we aim at generating, i.e., the target wawtfro
EUT, as the DORT can merely select a wavefront among the fact, £,(r,t) is the diverging wavefront that would be
scattering responses of the EUT. If this response is (a® ofgenerated in a free-space environment, whereas the TREC wil
is the case) dominated by a few bright points [24], the choicather be used in order to deliver, idealf¢(r, —t), i.e., the
of the test wavefront will be limited to the intrinsical respse converging version of the wavefront, used to test the EUT
of the EUT, rather than satisfying the need to identify theesponse in a number of potential applications. We are not

IIl. TR FROM A TESTING POINT OF VIEW
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interested in specifying the nature of the source generdhia

original £+ (r, t) wavefront, nor is it necessary: the wavefront

E4:(r,t) can be imagined as the result of an unspecified J,-(r)i Lz

source, to be eventually found within a volume enclosed by th U L —=

surface=, introduced in Fig. 2. This surface will be assumed +

to be spherical for simplicity, with radius=. Knowledge E(r) “1 j

of the electrical dimensiomz/\ provides a direct measure r

of the potential directivity of the wavefronts radiated Ihet T T

source [25]. For reasons that will be clearer at the end of thi

section, we will refer to this source as the synthetic source Zin Zin
The divergent wavefront thus radiated during the first phase - -

can be regarded through the lens of Love's equivalence @) (®)

theorem [26]: by defining a closed surfagebounding the

synthetic source (see Fig. 2), the sampling of the functigfy 3. quivalent models of the TRM antennas used for the
Ewi(r,1) over allows defining equivalent currents capabl@,mp ation of the signals received during the first stathdar
of exactly reproducing the same space-time dependencerglppase and the field generated by them in the second phase:
any position outsid& itself, independently from the eventual(a) receiving-mode model; (b) transmission-mode model.
presence of an EUT.

Two assumptions will be introduced in order to simplify
our analysis, with no loss of generality: the first one cdssisyith
in regardingE¢(r,t) over ¥ as the far-field radiation of

the synthetic source, while the second one is to assume that Jl(r,w) = ,M (4a)
> be a spherical surface. The rationale for requiring a far- , Co .
field radiation is twofold: first, our analysis will be greatl Jp(rw) = Buwi(r,w) x 7. (4b)

simplified, thanks to the simpler relationship existing®tn \yhere ry, is a vector spanning the surface and 6(r) is
electric and magnetic fields, while the fact that time-reeer pjrac's delta distribution.

wavefronts are deprived of reactive components calls fer th Gjyen the distributions of electric and magnetic curretits,
need to remove the reactive components off a wavefront ®efliectric field E(r, w) they generate at any position within a
comparing it to the one generated at the end of the TiRopagation medium can be expressed by means of its dyadic
procedure, since only propagative components are corsentgreen’s functions as

as recalled in section Il. The use of far-field wavefrontevad

for a direct comparison of the target wavefront and the one E(r,w) = /G‘ee(r,r’,w) L (r w)d?r +
actually generated by the proposed procedure. = (5)
According to these assumptions /Gem(r,r’,w) I (! w)d3r.
z
Hoi(r,t) = i,@ X Egi(r,t) TEY (1) where the two dyadic functionséee(nr’,w) and

0 Gem(r,7',w) refer to the Green's functions relating,
respectively, electric and magnetic currents to the etectr

where( is the free-space wave impedance and the radial fjg|q.
unit vector coinciding with the outward pointing unit vecto  The configuration depicted in Fig. 2 presents TRM antennas
normal to ¥, as depicted in Fig. 2. As we are dealing withyssimilable to elementary dipoles, positionedratand ori-
the generation of arbitrary wavefronts, and in particullspd  ented alongy;. These antennas will be operated in receiving
ones, a time-domain description should be the final outcdme g transmitting mode and can thus be described by means of
our analysis. Still, the intermediary steps of our analysils  the equivalent models shown in Fig. 3. In this framework, the
be carried out in the frequency domain. We thus introduggectric field E(r;, w) related to the wavefront will eventually

the wavefront description for the electric fiellw¢(r,w) in  couple with them, leading to an output voltabw)
Fourier frequency domain, defined as
ZL (UJ)
Vi(w)

Eui(r,w) = F{Ew(r,0)}, 6 Z1w) + Zin(@)
where h. ;(w) is the vector effective height of the TRM
where F{-} is Fourier transform, with the magnetic-fieldantennas
spectrum similarly defined. hei(w) = he(w)q;, (]
The equivalent electric and magnetic currents odecan
thus be defined as

E(ri,w) - hei(w),  (6)

having assumed all of the antennas to have an identical
effective heighth. (w).

As recalled in section I, TR applications require the otitpu
Je(r,w) = J(r,w)d(r —rs) (33) signals V;(w) to be time-reversed, or phase-conjugated in
Im(r,w) = J(r,w)d(r—rs), (3b) the frequency domain, and subsequently applied to the TRM
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antennas. The TR of thE (w) output signals would naturally TR excitations are applied to the TRM antennas. Since we
require considering a deldy representing the duration of theare interested in wave-diffusive media, the vector transfe
first phase during which the output signals are recordeds THinctions (11) will be considered as random functions in
delay will be neglected in the rest of the paper, as it onlgseasection VI. The self-averaging property of TR [27], [28]
to a phase-shift term shared by all of the output signald) witmplies that the wavefronts generated by a TREC converge
no impact on the results. towards their ensemble average, independently from the ran
During the second phase of TR, the TRM antennas will lilom realizations of Green'’s dyadic functions. This issue is
excited by means of the signal§, ;(w) = V;(w), where the discussed in Appendix B.
overhead bar stands for phase conjugation. According to theHence, we introduce the average dyadic responses
equivalent model in Fig. 3(b), the antennas will be driven by

a current/; (w) Teoi(r,r,w) = E[Nei(r,w)N.;(r',w)] (15a)
_ ch‘i(w) TCm,i(T7 7',<,W)
Liw) = - Zy(w) + Zin(w)’ ®) E[Nei(r.w)(# x Ny i(r',w))] (15b)
leading to an equivalent electric-current density Ti(r,r/,w) =
1 - -
Ji(ri,w) = Li(w)he(w)d(r — r;). (9) ZTCCJ(TW,’W) — Temi(r, 7', w), (15¢)
0

The electric field thus generated by each TRM antenna, )
during the emission phase can be expressed as with E[-] the ensemble-average operator. These functions are

directly related to the autocorrelation functions of thexeyéc

Erri(r,w) = | Geolr,7,w)- Ji(r' w)dr’ random processV (r,w) and are anisotropic. Finally, (14)
Q B (10) gives place to
= he(W)[; (W) Gee(T, i W) - @ ) )
In order to simplify our notations, we introduce the electri  E [Etri(r,w)] = /Ti(T', W) - Eye(r',w)d®r,  (16)
and magnetic vector transfer functions >
~ . requiring no assumption on the nature of the medium, nor

Nei(r,w) = Geelr,ri,w) - 4 (113) on the type of wavefront distribution, apart the simplifyin

Ny i(r,w) = Gem(r,ri,w)-q;, (11b) assumption of a far-field configuration.

relating the electric or magnetic field observed at a gener'cThe possibility of optaln'lng an agcurate trapsmlssmn
position = to the signals applied to the input port of thdnrough a complex medium is feasible in the special case of
ith TRM antenna. They have units ¢m~2 and m-2 a diffusive medium, which is characterized by a low spatial-

respectively. correlation, thus ensuring an _equivalent Green’s f_uncxtlose
Inserting (5)-(8) into (10), and making use of (11), yieldsto that of a fre_e-space environment (see sectlor_1 VI). The
fundamental point that we want to stress here is that the
Etr,i(r,w) = application of a TR approach allows reproducing a behavior
N , - 2 that is actually closer to a free-space environment, butiwit
—Cw) { EN‘*’i(r’w)Nc’i(r ww) - Jo(r'w)dr , (12) a complex medium supporting a diffused-field configuration.
7 , =, 5 This idea is illustrated in section VIII.
+ /Ne,i(Taw)Nm,z‘(T sw) - I (' w)d } The far-field assumption was introduced as a way of simpli-
. > . . . . , . fying the derivation of the above results, but the equiveden
having exploited the spatial reciprocity of Green’s fuoos, theorem is not affected by the region of radiation of a source
and thus of the vector transfer functlpns (11). The quantify 4 i stay exact even in its reactive region, even thoujii o
C(w) in (12) takes care of the electrical parameters of tP}ﬁe propagative part of the target wavefront will be reprt
TRM antennas o L thus leading to the inevitable diffraction limit in the fau
_ elW LW region [29].
C) = Z0@) + Zn) () + Zn) D
It is noteworthy that the doublets of vector transfer fuoics V. A PARADIGM SHIFT FORTR APPLICATIONS
under the integral signs are dyadic functions. Equivalent
currents (4) can now be inserted, leading to The derivation of (16) implies that as soon as the dyadic
1 B ~ Green’s functions of the medium are known between the
Ergri(r,w) = — /Ne,i(T,w)NC,i(T'M) - Eu¢(r',w)d*’+ points overs and the positions of the TRM antennas, a direct
G Jy relationship can be promptly established between the ttarge
— /Ne.’i(r,w) 7 X N (1, w) - By (r',w)d?r’. wavefront distribution and the one generated by the TREC.
z (14) Moreover, the derivation leading to (16) paves the way
for a change of paradigm in the use of TR techniques:
having assumed excitation signdfs, ;(w) = V;(w)/C(w). indeed, as soon as the vector transfer functidvis, (r,w)
This last result allows linking the space-time descriptioand N, ;(r,w) are known, it is no more necessary to undergo
of the target wavefront to the one actually generated aftire two standard phases of TR. The sigriglev) that would
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N problems in a elegant and simple way. In fact, a preliminary
Characterization L K ! .
phase characterization oflearning phase can be considered during
which the propagation medium is explored, proceeding to
l a direct measurement aN.q ;(r,w) without any need to
formulate any hypothesis on its nature. At this point, the
Selection of Selection of signals that would have been received for any wavefront can
wavefront ) wavefront ) be directly computed by means of (17).
parameters parameters
The use of (17) implies that once a physical target wavefront
l l is defined, the excitation signals needed to apply to the TRM
) antennas are readily available, even though the generation
Antennas / EUT Signal this same wavefront could prove to be difficult when using
displacement synthesis . . .
real-life sources. It is therefore appropriate to refehttime-
reversed wavefronts provided by (17) as generated by syothe
l l sources. The approach here proposed is somewhat reminiscen
of synthetic aperture radar techniques, where post-psoues
EM tests EM tests techniques allow to emulate the availability of a source tha
would be practically unfeasible, while its emulation isuedty
quite straightforward. The difference is that although the
synthetic source does not radiate in the first place, its TR
wavefront is actually generated, not only computed in a-post
no no processing fashion.
The advantages of this approach are clear: passing from
yes yes one wavefront to another just involves the synthesis of new
excitation signals, without any need for further measures)e
as long as the propagation medium has not undergone any
(a) (b) modification, e.g., due to mechanical displacements of the

EUT. Moreover, the linearity of the propagation of waves
Fig. 4: Sequences of necessary steps to follow when usingwithin the medium implies that superposition of effectsdsol
(a) anechoic test environment or a (b) TREC. Shaded blocks a consequence, it is possible to conceive complex test
represent operations based on mechanical displacementsa@narios where multiple wavefronts can be generated to
substitution of devices. impinge onto the EUT from different directions, with any é&/p

of time-dependence associated to each individual wavefron

The generation of similar scenarios by means of state@f-th
result from the recording phase (or first phase) can be straigart facilities would involve a sophisticated system to feleel
forwardly computed for any target wavefront without needinantennas associated to each direction of arrival and dontro
its actually being radiated, since their orientations [1]. As opposed to this need, the TREC is

" 5 theoretically capable of generating arbitrary waveframits a
Vi(w) o (/E Neg,i(r,w) - Bwi(r,w)dr, (A7) reduced number of antennas, typically just one, by expigiti
with the weak spatial correlation of the wave-diffusive media][3
N.i(r,w) . From a practical point of view, this approach allows dramat-
Neg,i(r,w) = *'T + 7 X Nopi(r,0), (18) ically reducing the time needed for generating a new converg

. . . - . ing wavefront, as the only steps needed are the computation
leading to a direct synthesis of the excitation signals far tof the excitation signals and their direct digital syntesi

second phase. . :
o T~ . flow-chart representation of the sequence of operations
This simple modification has deep consequences: as a matter

; ; . . ‘needed when testing with a standard anechoic chamber or a
of fact, the standard implementation of TR techniques ie®pli o i
. ; ; TREC based on an overmoded cavity is proposed in Fig. 4,
that each time that a new converging wavefront is to be o g .
. . . wdqere it is made clear that the modification of the testing
generated, the diverging version of the same wavefrontsiee . ; I
. ) wavefront does not require any physical modification of the
to be generated by an actual source during the first phaf<,e. . b o ;
_ est environment, but only changing excitation signalshBa
Furthermore, as the characteristics of the wavefront odeuangn
e.g., the direction of arrival or the polarization, the fipstase
is to be carried out again. This is clearly a strong limitatio
when proposing TR for testing applications, since as soon
a wide range of configurations is to be tested, the repetitffon The entire procedure here suggested relies on previous
the two phases would be too costly. Moreover, the questionkafowledge of thelV . i(r, w) functions. A detailed discussion
how to generate the diverging wavefront in the first placais fof this issue is out of the scope of this paper, and it was

from trivial. The paradigm shift we propose solves all ofghe partially considered in [8].

an repeating mechanical displacements each time that a
new test configuration is required, these are relegatedeto th
Iggrning phase, before starting a cycle of uninterruptetste
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VI. THE CASE OF A WAVE-DIFFUSIVE MEDIUM v

In this section we address the special case of an ideal wave- "

diffusive medium. By this term we consider any medium, \d> /

not necessarily homogeneous, whose Green'’s functionsean b O)

approximated by means of a superposition of a large number of n

random plane waves propagating with equal probability glon r

any direction [31], ensuring very simple statistical prdjes ”

for the field: a Gaussian-distributed field with spatialanant

moments and a perfect depolarization. Among the several con

figurations where this property can be invoked, large cawiti

such as reverberation chambers are perhaps the simplest wigy 5: The local reference system based on the orientation

of implementing it, as soon as an overmoded condition ¢ the r and +/ vectors, defined by the right-hand set of

satisfied [32], [33]. unit vectors, # and p. This choice is at the basis of the
The hypothesis of perfect diffusion and thus a randofasults derived for the case of a wave-diffusive medium,, e.g

plane-wave spectrum are actually the basis for the asymptain overmoded reverberation chamber.

analysis of reverberation chambers, as proposed, e.g4].in [

As a direct consequence of spatial stationarfy(r, r’,w)

are independent from the position of the TRM antennas apster to the longitudinal the transversal components of the

their orientation, so that it is POSSibIe to drop thimdex and electric field, respectively. These functions are [34]

consider the average resporiBér, r’,w) of the TREC.

o

In order to derive a closed-form expression for the dyadic p(dw) = % [sinc(kd) — cos(kd)] (21a)
operatorT' (r,r’,w), we expand the vector transfer functions é ) 1
(11) over the local reference system depicted in Fig. 5, ddfin p(dw) = isinc(kd) - §Pl(de)> (21b)

by of a longitudinal unit vectop = d/|d||, whered = v’ —r,
a transversal unit vecta? lying on the plane defined by thewith k& = w/c; the wave-number and, the speed of light in
vectorsr andr’ and a third unit vectofy = p x D. the homogeneous medium filling the cavity.

The dyadic operators introduced in (15), e.g., for the céise o In dyadic formalismT'c.(r,r’,w) can be expressed as
the Tee(r,r’,w) dyadic function, can thus be expressed into

Tee ! =
this new basis, yielding scalar components (r,r,w)
Neaww) o . o (22)
(T ) (r W) = 3 [ppp1(d,w) + (DD + i) pi (d, w) ]
ee 'ﬂ,mﬂn k] ) 19 ~
E [t - No(r,w) itn - No(r',w)] | (19) Following the same procedure for th&., (r, ', w) dyadic

function, recalling that only the cross-transversal congras
where 4, is any of the basis unit vectorp, 7 and ©. (defined with respect t) of the electric and magnetic
Recalling that the vector function¥ (r,w) are generic trans- fields are correlated [34], we can state that the only non-zer
fer functions observed within a diffusive medium, the scal@omponents are
terms (19) actually represent the covariances between the

scalar components of two transfer functions evaluated at tw Tem>w (rorw) =
positions within the medium. Hence, the results presented N2, (w)
in [34] apply, leading to %pm(d,w)f‘/ X1 (23a)
0
. N2, 7
(ch> . (r7r’7w) = %(W)pl(d,w) (203) (Tcm> op (T7T/aw) =
pb
N N2 ( Nez,dv(w) ~ - A
(T) (r,r,w) = —‘"*g (”J)pt(d.,w) (20b) T Pm(d, W) x 7 p (23b)
T ! w = 1 ! Tem 3 /a = Tem ) /~/ ) 23c
(Te), (') = (Te), (rr'). (200) (Ten), (1) = (Tew)(rr'). (230)
results that hold for any wave-diffusive medium. where p,,,(d,w) is the mixed correlation function between

In (20), Ne.av(w)/V/3 is the rms amplitude of the electricthe cross-transveral components of the electric and miagnet
field observed along any of its scalar components withfiglds, given by [34]
the region of space where the ideal diffused-field condstion 1.
hold [35]; this quantity is derived in Appendix A. The func- pm(d,w) = 7§Jkdpl(d7w)' (24)
:It?;;ga(l(;’ :gpaennddplég’ﬁlaégtzazzl ‘t;or_rerli‘:‘ltlon functions, so Whence, the operatdF (r, ', w) reads, for the case of an
Apart for the three scalar components shown in (20), tk'l%ea”y diffused field
remaining ones are identically null, as demonstrated ir). [34 - N2, (w)

’ o ~ ’
The two spatial-correlation functiong;(d,w) and p;(d,w) T(r,r'w)= 3G p(r,r'w), (25)
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Fig. 6: Normalized dyadic functiop(r, r’,w) computed forr € ¥ andr’ = rx&, with rg = 3X: (a) real and (b) imaginary
parts. The 9 terms of the dyadic response are shown, maisi-wonsidering standard spherical unit vectors, folhgathe
order, ¥ and ¢, defined with respect to a polar axis vertically oriented.

with is made possible by the assumption ¥fbeing in the far-
field region of the synthetic source. Again we stress the fact

p(r,r' w) = pppi(d,w) — Dp d,w)?’ x 7 p+ h L T . A
plr.r'sw) = pppi(d,w) = bppm(d W) X 0 - p (26) that this choice is not a limitation, but just a simplifying

+ (@0 +0m) [pr(d,w) = pim(d, W) x & -] . assumption. The time-domain representatior€gf (r, t) can
introducing the normalized dyadic responpéd,w). As a thus be expressed as
result, the real and imaginary parts of the scalar compsnent x(t —r/co) . A
of this function are now bounded to one, since they corredpon Ei(r,t) = B — FAF@# W)}, (29)

to the degree of coherence of the medium [36]. The operatolgl tands for th lution int | lied to th
p(r,r',w) behaves as a point-spread function (PSF). wherex, stands for the convolution ntegral applied to the

The PSFp(r, r’,w) will be used in two frameworks: 1) by %rg?o‘éaé}aggigl;ﬁhfeesgILCEISJSS for any= r# in the far-field
. , . ) } .
settingr, 7’ € %, it allows assessing how a TREC-generate Introducing (27) into (16) while using (25) yields

wavefront is distorted with respect to the target one in tre f
field region; 2) withr’ € ¥ and a generiar, it provides a g [gyp (r,£)] oc 2(—t) #; F (p(r, 7, w) #p F(# w)},

direct access to the spatial evolution of a wavefront geadra (3’0)
by the proposed method. wheresx,. is the pseudo-convolution integral required in (16)
and carried out oveE. Comparing (30) with (29) it appears
VIl. ON THE PSFOF THETREC that in order to have a converging version of the target

. . e ) front,p(r, r’, hould ly with the three followi
Albeit the previous results hold for any diffusive medlumwave ront,p(r, ', ) should comply wi © three fofowing

hereafter we will assume that this medium is an overmodgalms 1) it should provide a delay going likgc; 2) a radial

; ) ] pendence liké /r in the far-field region and 3) should not
reverberation chamber, filled by a reciprocal and homog‘me%istort the angular dependend(#,w). The first two points

medium sur_roundmg the EUT. Th_e target wavefront can %‘?e easily verified since the functions (21) appearing in the
expressed, in the frequency domain, as PSF (26) are dominated by terms going likep(£jkor)/r.
Eyi(r,w) = X (w)G(r,w)F(#,w), (27) As ;hown in the examples in_ section VIII, _the coe)fistence
within the PSF of the incoming and outgoing versions of
whereF(,w) is the radiation pattern of the synthetic sourcehe free-space propagator has a simple physical meaning: if
G(r,w) is the far-field Green’s scalar function of the mediuna focusing wavefront is generated, after focusing onto the
phase-center of the synthetic source, it will inevitablyedge
(28) along the opposite direction. The only point requiring aseio
dmr investigation is the third one, i.e., the eventual distortof
and X (w) is related to the excitation signal that would be useithe angular dependence, which is not easily assessable from
to drive the synthetic source. Such a factorized repregenta (16).

e—Jkor

G(r,w) =
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To this effect, it is convenient to study the average wavgfro(in the far-field region) to the one corresponding to the near
E [Err(r,w)] over the equivalent-source surfake The fact field region of the synthetic source. This remark does not
that the PSP (r, 7', w) is dependent on the distaneg/)\ is involve the idea of reproducing the reactive components of
not due to limitations in the equivalent-source approact, bthe field, as the focal region of the wavefront is usually fdun
rather because as; becomes smaller, while the wavefronin the far-field region of the TRM antennas, the actual sairce
in the far-field region shall not be modified, its progressioof the converging wavefront [29]. These considerationsikho
towards the focal spot will indeed lead to a modification dfe clearer when compared with the numerical results predent
the wavefront features, due to diffraction phenomena in tlie section VIII.
focal region [29]. The impact of the PSF on the angular dependence of
Therefore, the properties of the PSH»,r’,w) can be Ergr(r,w) can be assessed by studying the zone of maximum
evaluated in a general manner by setting the dominant gaxrelation in the diagonal terms of the PSF. The null-to-
rameter s/, i.e., deciding how close the observer willnull width of this main lobe can be computed from (21) and
be to the focal spot. The choice of having the equivalenf24) and intercepts an angular resolution anglethat can be
source surface coinciding with that of the observer allowsexpressed (in radians) in a general way as
simpler comparison of how the radiation pattern (considere A
independent of the distance) will eventually be affectedhey P =«
PSF. An example is given in Fig. 6, where the nine components .
of the PSFp(r, +/,w) are shown for the case of vectarsand Where a,, can take the values.89 or 1.45 depending on
' belonging to the same surfake where the choices; — 3) e direction along which the angle, is measured, since
was made. The PSF is expressed with respect to a spherif§ €xamples in Fig. 6 show that the PSF does not present
reference system, for a point-source positioned at’ahosen @ cylindrical symmetry. It is common practice in optics to
to be alongz. approximate the size of the PSF to about a wavelength for
Fig. 6 shows that the PSF is not perfectly isotropic, witi€ diffraction of waves propagating in free-space: we will
diagonal terms depending on the field component, and offdOPt this approximation by taking, = 1, for the sake of
diagonal terms (cross-polarization coupling) not ideaitjc S|mpI|C|ty: We can expect the TREC to be capable of reliably
equal to zero. The weak oscillations outside the peak regidiProducing the target wavefront as long as the angulaofate
present a zero mean-value and can be expected to lead/@gation of the radiation pattern of the wavefront is nattéa
a very low result after the pseudo-convolution (16), asrthd@n that allowed by its PSFs. ) )
overall contribution to the integral will be negligible amg as ~ With reference to Fig. 2, the assumption of an observation
the target pattern undergoes angular variations slower tte surfaceX in the far-field region of the synthetic source requires
pseudo-period of these oscillations. This point will beegiv e r=\ 2
more room in the rest of this section and in the next one. BN >8 <_> (32)

(E10)

Py

A
The six off-diagonal terms share the absence of an evepp|ying that given the radiuss, of the equivalent-source

symmetry positive-valued dominant peak, substituted by-odsyrface, the maximum dimensions of the volubie contain-
symmetry responses. The low-level oscillations presett pgg the synthetic source is given an upper bound, as well as
terns similar to those found in the three direct terms. Of pags maximum gain [25]. A simple estimate can be derived
ticular interest is the fact that the coupling terms arer&Jev  py recalling that for a directive source, e.g., an apertire o
between the two tangential componetitand, which could maximum width2r=, the —3 dB angley of its main lobe
be a source of inaccuracy in the reproduction of the targein e approximated by
wavefront. Still, thedp and @ terms are characterized by a A\
double odd-symmetry, implying that convolution with a even g~ —. (33)
symmetric radiation pattern would result in a zerorati.e., 2rz
no coupling between thé and, components. In other words, From (32), the maximum directivity of the synthetic source,
the original polarization should be expected to be preserver the minimum width of its main lobe, is
Examples are shown in section VIII for the radiation pattern B3
generated by an aperture source, where it is made clear Yr > \/j

. . . . . (>
how the coupling is indeed very weak and negligible in ) ) )
practical configurations. These results are consistehttwizse We can now consider that the PSF will lead to a minor
presented in [37], [38], extending them to the general caseBodification of the radiation pattern as long &3 is small
a wavefront rather than a mere focal spot. enough with respect to the angule_ir varlatlon_m(fn,w), as

For the PSFp(r,r',w) to be expected not to modify themeasyred by its main lobér. To this end, we introduce the

original radiation pattern, it should be real-valued: iny anduantity 2
other case, it would at least imply a phase distortion of the R= w—F7 (35)
wavefront. In practice the imaginary part of the PSF is much Yo
weaker than the real part, but for two componefa#andrp. representing the angular resolution power of the TREC. A
As it will be shown in the examples presented in section VIlhumerical analysis is proposed in section VIII, where the
the role of these two functions is to reproduce the naturquiality of the angular dependence of the wavefront produced
distortion of the wavefront passing from essentially spta@r by the TREC is assessed as a functionof

(34)

Selected papers



164

10

N

=N W s N OO

=4

R
N
w
N
3]
o
~
©
©

Fig. 7: Ranges of values taken by the rafib = ¢p /v, ) ) ) . L
indicating the resolution power of the TREC. This quantityid- 8: The synthetic source considered in the validation
is plotted against the radius of; of the equivalent-source Présented in section VIil. It consists of an ideal rectaagul
surface for two cases: (a) the lightly shaded area correﬁ)oﬁpert_ure of dlmen_5|0r1s andb, W|th_ a u_nlform field distribu-

to a cut along the E plane of the synthetic source, i.e., f§pn linearly polarized along the directigin

a main lobe that is physically lower-bounded by that of a

Hertzian dipole; (b) the domain of existence of the resoluti ) )
power is extended to the more deeply-shaded area W@Hr ch0|_ce was for a rectangular aperture, as the one shown in
dealing with the H plane of a linearly polarized source, i.eFig. 8, with sidess andb, characterized by a uniform electric

its azimuthal plane, where its main lobe can present anyevalif!d linearly polarized along the generic directiprlying on
up to 2 radian. the aperture, radiating towards the half-space identified b

s > 0.
Assuming an aperture initially lying on they plane and
its main-lobe radiating along, its radiation pattern can be

The range of values taken b} can be estimated by ' .
approximated in closed-form as [26]

recalling thatyr is bounded as

oo Fy(P,w) = (1+ cos ) (D0 + @) - p
1/}max > UF > E (36) (37)

sinc (Tl'g:ﬁ . f') sinc <7rég . f'> ,

The lower bound is actually due to the far-field assumption at A A
the base of the proposed analysis, leading to (34), wheheaswhile a generic orientation along the anglésandy, can be
upper-bound comes from the fact that for a linearly polatizeanalyzed by applying standard rotation transformations.
source the main-lobe-3 dB angle is actually limited by a We first proceed by assessing how accurately the radiation
finite value. Considering the E plane of the synthetic saurgeattern is reproduced for a varying electrical distancenfro
the upper limit is given by),,.x = /2 radians for an Hertzian the synthetic-source volume, in the frequency domain, in
dipole, whereas for the H plane it can reachip.x = 2 section VIII-A. The existence of a focusing phenomenon
radians. Accounting for these bounds, the range of variaties proven, while showing up to what distance the angular
of R is shown in Fig. 7, as a function of the electrical sizeependence dictated by target radiation pattern holds.é/e a
of the equivalent-source surfage It appears that? > 1.5 particularly interested in assessing whether distortionthe
as long as® is at least one wavelength in radius. This lowewavefront intervene before its reaching the focal spot,civhi
limit is actually meaningful and even conservative, sinog awould imply a limitation in the accuracy of the TREC even
smaller choice would not allow the observer to be in the faguring the far-field propagation of the wavefront. In a seton
field of even the simplest source: indeed, the basic comditiome, section VIII-B elucidates the existence of a backelob
kors > 1 for the far-field region must also apply, henceontribution, by considering the time-domain evolutiontioé
requiringrs /A 2 1.58. converging wavefront for a non-harmonic excitation.

The results in Fig. 7 prove that for any far-field configu-
rat?on, R V\_/ill_always be higher than 1.5, typically closer top Frequency domain : focusing
2, i.e., radiation patterns will be at least twice largemtliae

PSFEs main lobes. Thanks to (16) and (26), we computed the average field

distribution that would be observed over concentric s@$ac
of radius0.7, 1,3 and5 A, for an aperture of sides=b =1 A
VIII. N UMERICAL RESULTS pointing towards}s = /2, ¢, = 0 with a g-polarized electric
Numerical results are here presented in order to suppbeid (see Fig. 8). The results are shown in Fig. 9, together
our conclusions about the ability of the TREC to reproduceith the target radiation pattern, as a reference. The teats
arbitrary wavefronts within a wave-diffusive medium. Thesexpanded into the three spherical coordinate componeiits, w
have been obtained by numerically solving the convolutidhe target radiation pattern having no radial component (fa
integral in (16), as applied to a reference radiation patteffield radiation). It appears that the TREC approach is indeed
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r/A=0.7 r/A=1 r/A=3 r/A=5 Target wavefront

0

Fig. 9: The electric field distribution of the wavefront gesiied by a TREC as it would be observed at several distances.
The side of incidence of the wavefront is shown, where thelabs value of the field is considered for the three spherical
components of the field, in the ordér., Ey and E,, respectively, from the top to the bottom. The target wavsfobistribution

is given as a reference in the last column. All results arenadized to the peak-amplitude of thi€, component, for each
distance.

capable of very accurately reproducing the target radiatianechoic environment, can only produce propagative waves
pattern even at very close distance, with non-negligibfe diby means of distant sources (i.e., the TRM antennas), the
tortions occurring only within a one-wavelength distananf diffraction limit ensues, leading to a focal spot about one
the phase-center of the synthetic source. The polarizasionwavelength wide. The appearance of a radial component in
also preserved, not only the dominant component algng Fig. 10(b) is due to this phenomenon of approximation of the
but also the cross-polarizatioﬁ. A substantial deformation original source distribution, and it becomes more evidemtmv
of the radiation pattern is observed @7 \, where the PSF looking at the total field in Fig. 10(c): the wavefront focase
component for thepg contribution is clearly recognizable,back onto the source region, with an almost uniform intgnsit
with a more elongated distribution along tte The accuracy of the angular distribution of the focusing
The back-lobe contribution appearing in Fig. 9 will bevavefront is more easily observed in Fig. 10(d), where the
shown in section VIII-B to result from the impinging wavewavefront is normalized to Green’s scalar function, yield-
focusing through the phase-center of the synthetic-scamde ing the radiation pattern to be compared to that shown in
subsequently diverging along the opposite direction. Fig. 10(e). The comparison is very good, with the converging
The same type of computation was carried out over Veavefront accurately reproducing a constant radiatiotepat
continuous range of distances fromi10 up to3 ), limited to a  over its far-field region within a-0.2 dB range over the main
horizontal cut, along they plane, starting from an equivalent-lobe. Fig. 10(d) also provides a clear picture of the focal
source surface ats = 3. These results are shown in Fig. 10spot due to diffraction limit: directivity is lost, with engy
where the two spherical componerfs (r,w) and E,(r,w) almost equally spread over all directions, and particylaith
of the electric field are showr (r) being identically null by a reduction in its increase with respect to an ideal sphlerica
virtue of symmetry. We therefore conclude that a focusing épnvergence.
the propagating energy is indeed occurring, as the eldtic These results imply that the loss of directivity is not due
builds up converging towards the phase-center of the sfintheéo an intrinsic limitation of the method, as could have been

source. expected from the PSF shown in the previous section. It actu-
Two notable distances are marked in Fig. 19 = 2\ ally appears that the PSF is effectively capable of reprinduc
andrz = )\/2. The target wavefront (far field) should onlyall the phenomena leading to wave focusing under physical

present ap-oriented field, which is indeed found in the TREC<onditions, including the diffraction limitation over theear-
generated wavefront, as shown in Fig. 10(a)-(b); the pwity field region of the synthetic source. Practically, no siguifit
the polarization appears to start degrading as the wawefrglistortion occurs over the main-lobe outside the surface
crossedr=, when the focusing wavefront approximate théws implying that there is no need to requike> 1 to avoid
original field distribution found in the reactive part of thedistortions of the far-field distribution of the wavefront.
synthetic source, i.e.y-oriented, as clearly visible in the The generated wavefront deviates from the target one out-

vector representation in Fig. 11. Since the TREC, as anyr otts&de the main lobe, even in the far-field region, within a gang
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Fig. 11: Vector representation of the normalized electetdfi
E[Ergr(r,w)] /G(r,w) shown in Fig. 10: (a) real and (b)
imaginary part. As the wavefront closes onto the focal negio
the electric field passes from the TEM configuration typical
of far-field radiation to aj-oriented configuration, reminiscent
of the original field distribution of the synthetic aperture

Yin

g shown in Fig. 12. Here, the field over thg-cut of  is shown
as an angular distribution function of the time, proving: tiee
back lobe is actually the time-delayed replica of the impigg
-3 wavefront. The delay is equal to a normalized delgyr = 6,

3 2 1 073 2 A1 ; L ; .
W which coincides with a free-space propagation across arephe
of radius 3\, since f.r = 2rg/A = 6. Causality is thus
Fig. 10: Numerical solution of (16) for the case of the raidiat Preserved, indicating that the proposed model is capable of
pattern of the wideband aperture antenna described in gfdrectly assessing time-domain phenomena. In partictiier
body of the text and shown in Fig. 8. The evolution of th@revious results dealing with the focusing of energy can be
electric field is studied over the half-plane of thg cut along Tightly interpreted as due to a convergent wavefront, white
which the time-reversed wavefront is expected to focus, feresence of the back-lobe is necessary for the causalityeof t

radlal distances going from/10 up to 3\: (a) E,(r); (b) solution yielded by (16).

E,(r); (©) |1E()|l; @) | E(r)/G(r)|]; (e) angular dependence A non-ideality of the TREC method is apparent in
|F(r)|, proportional to]| Ey¢(r)/G(r)||. The outer dashed Fig. 12(b): the wavefront emerging from the focal region
line represents the Fraunhofer distance for the syntheticce, is slightly distorted for the directions away from the main
whose volume is marked by the inner dashed line. All resul@be. This fact corresponds to the an error in the position
are normalized to the peak-value b, and expressed in dB. Of the focusing spot of abouk/8, a fact that leaves room

Radial dashed lines represent the -3 dB and the -10 dB anglésthe interpretation of these errors as due to the use of the
approximate model (37). This notwithstanding, these erdor

not affect the conclusions of our work, as the proposed ntetho
of values inversely related to the intensity of the field. Thig clearly capable of a remarkably accurate reproduction of
reason for this phenomenon is not clear and deserves furtfiée-space propagation within a wave-diffusive medium.
investigations. It could indeed be caused by the approximat
radiation pattern (37) used as target, or to intrinsicaitations IX. SUMMARY AND DISCUSSIONS
in the TREC.

o

We reckon that at this point it is important to summarize
) . ) o the main results and ideas introduced in this paper. The
B. Time domain : causality and back-lobe radiation concept of time-reversed wavefronts has been revisited in a
The results in Fig. 9 present a back-lobe radiation relatedvel manner, by looking at an originally diverging wavefro
to the long-range correlation of the PSF. Its physical megnias being radiated by equivalent currents, as opposed to the
becomes clear when studying the PSF in the time domastandard approach based on a physical (and often point-
We have considered the same case as in the previous seclika) source. This different approach allows the introdrect
with an equivalent-source surface of radiis= 3\, imposing of synthetic sources, which can be characterized by ideal
an unchanged radiation pattern over a relative bandwid#atures not easily found in real-life sources. Moreovsese
Br/f. = 10 % around the central frequency. of the features can be changed in real-time through a simple post-
wavefront excitation. All results are normalized to thetcah processing procedure, yielding new excitation signals éo b
frequency. applied to the ports of the TRM antennas. As a result, a wave-
Following these choices, the field distribution over the diffusive medium can be “converted” into an anechoic one
cut of ¥ was computed in the time domain, yielding the resultshere deterministic wavefronts propagate as in a freeespac
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_:—1 The potential use of the TREC as a new kind of testing

facility clearly implies the inclusion of an EUT into the
test-volume defined by:. It goes without saying that the
presence of the EUT can have a dramatic impact on the
-151 7 7150 ] Green’s functions that would be observed with and without
the EUT. As a result, the EUT needs to be present during the
-10f 4 -10f f characterization phase yielding tié. ;(r,r',w) functions.
Without entering into details, the presence of an EUT could
impact the resulting wavefront at two levels: 1) by modifyin
the wavefront radiated by the equivalent currents; 2) byimod
fying the Green’s functions within the cavity. The first pois
actually not a real issue, since the equivalence theorenress
that the use of electric and magnetic currents implies thbt o
1 an outwards radiation (first phase) would take place, this no
interacting with the EUT found within. As a result, the
i average wavefront generated by the TREC should be expected
to be the same with and without an EUT, as long as the diffuse-
field assumption holds, thanks to the self-averaging ptgper
of time reversal [27]. This point is fundamental if the TREC i
to be used as a testing facility, since a reproducible wamefr
005 o0 15 10 2% 45 o0 1 10  independent of the EUT position, orientation and nature is a
Angle Angle necessary condition for any metrology application.
A crucial issue is the question of the energy efficiency of
Fig. 12: Time-domain results for th¢ component of the the proposed procedure. We have not considered this point in
average field generated by a TREC, as computed ovefh@ context of this paper, but it had already received attent
spherical surface of radius; = 3A, for a relative bandwidth in a previous work [39], where it was shown that the TREC
Br/fe = 10 %. The signal was chosen to have a constaglso improves the ability to generate high-intensity peaks
spectrum overBr, i.e., to have a sine cardinal profile inof electromagnetic power by a factor easily exceeding one
the time domain. The results refer to thg-cut of : (a) the hundred, with respect to standard harmonic excitationsnin a
converging wavefront impinging ovex, along the negative Rc.
part of thez-axis; (b) the diverging wavefront observed on grom a practical point of view, the simplifying assumptions
the opposed direction. used throughout the paper should be taken for what they are,
i.e., not requirements, but just simplifications. For ex&mp
whenever the equivalent-current surface is not in the far-
environment; interestingly, no hypothesis is needed akaut field region of the synthetic source, the TREC will reproduce
eventual link between the direction of arrival of the wavelr the propagative part of the radiation pattern, filtering out
and the positions of the TRM antennas, thanks to the diffusivhe reactive part; the often dispersive response of eleictro
nature of the medium. devices and antennas can be compensated when synthesizing
This surprising result entirely relies on the knowledge ahe excitation signals; the average coupling between thél TR
Green’s functions between the equivalent-source sutfzaed antennas can be kept as low as needed since they are operated
the TRM antennas. These data can be readily measurediidy wave-diffusive medium, i.e., with a weak spatial carel
means of low-scattering probes moved over as describe tion.
in [8]. Previous experimental validations of the TREC ap-
proach are indeed already available in the literature. Ia th
paper we rather aimed at providing a deeper insight into the
physics of the TREC, from a theoretical point of view, in arde In this paper we have investigated the potential advantages
to have a better understanding of its intrinsical limitap of applying TR techniques to tests based on the use of prede-
whence our emphasizing theoretical and numerical results.fined wavefronts. Having found that these are not straightfo
What is most surprising is that the coupling of time-revdrsevardly suitable for this purpose, an alternative approdud,
excitations to a diffusive cavity through the use of synithetTREC, has been introduced. A theoretical analysis has grove
sources allows generating any kind of wavefront, on averagmw the TREC enables a number of once held impossible
The question of how far the generated wavefront is from tHeatures in a reverberation chamber, namely the generation
average one can be directly assessed by recalling the donart-pulsed fields and a detailed control of the parameters
of intrinsical SNR due to the inevitable finite number obf wavefronts. More specifically, the use of TR leads to an
degrees of freedom available within the cavity. This issas wequivalent Green’s function that appears to be very close to
studied in [11] and the main results are recalled in AppeBdix that of a free-space environment. The TREC is hence capable
where it is shown that the actual response of a TREC is ves recreating within a reverberation chamber the necessary
close to its ensemble average. conditions for the arbitrary generation of wavefronts.

Normalized time
o
-
.
o
T
.

15+ 4 1sf 1

X. CONCLUSIONS
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As aresult, it was shown that the TREC allows the definition APPENDIXB
of a testing environment sharing the advantages of anechoic FLUCTUATIONS IN TIME-REVERSED WAVEFRONTS
and reverberation chambers, namely the possibility of kngw
exactly the type of EM wavefront (polarization, directioh o
arrival, time-dependence) testing the EUT response, wh

The reason why the results presented in this paper always
qgal with ensemble averages is the self-averaging property

maintaining the high energetic efficiency of reverberatio pical of non-harmonic TR applications [27], [28]. This

chambers. Furthermore, it was shown that the test Wavefr%?perty IS 'f‘he”ted by the fact ‘tha‘t for a finite bandW|_dth
; . . . . 1 of excitation, the coherent excitation of a complex medium
can be ideally steered in real-time, without requiring an

mechanical displacement of the antennas. The use of fas plies an average ové¥r, that can be shown to approximate

steered deterministic test wavefronts could lead to faR&dD an ensemble average.
cycles, giving a clearer information about the responsenof %
EUT to impinging wavefronts.

For the special case of bounded media with low losses, it
as been shown that time-reversed signals are affected by a
residual error in the transmission through the medium, due
to the physical impossibility of efficiently transmittingitain

APPENDIXA spectral components in a steady-state configuration. As 880
RMS VALUE OF THE IN (r,w) TRANSFER FUNCTIONS FOR A frequency-selective media are considered, this residuat,e
DIFFUSIVE REVERBERATION CHAMBER intrinsical to the very procedure of time-reversal trarssitns,

can be assimilated to a background noise, or intrinsicadenoi

Its rms intensity can be straightforwardly linked to a few

parameters, such as the average composite quality Q¢

Vex(w) evaluated at the central frequency and the fractional battdw

Zant(w) Br/f. [11]. By defining the intrinsical SNR\, as the ratio
between the peak instantaneous power of the coherent part

Assuming a purely resistive input impedance for the antegs the time-reversed signal and the rms power of the residual
nas and a perfectly matched generator leads to noise, it can be proven that

[E(r,w)]* _ 4lhe(w)|? : 2
Pav(w) = Zant(w) HNe("'vw)st (39) Ap :A%%’ (43)

Following the conventions introduced in section VI, thediel
radiated by a TRM antenna is given by

E(T,UJ) = Ne(r7w) he(w)' (38)

with P, (w) the available power of the generator. ComputinghereA is the energy SNR, which can be shown to be close
the ensemble average of (39) and recalling the uniformigy one for a diffusive medium [11], while is the ratio of
property for the electric field in a diffusive cavity yields  the real part of the average &f (w) over its rms value, both

defined over the bandwidtB.
N? =E[||N. 2 T
eav(®) [N e(r,w)I] ) 40 Assuming the residual error to behave as a normally-
= Zont () E [”E(T’W)H } , (40) distributed random variable, its rms amplitude coincidéthw
4lhe(w)|? Py (w) its standard deviation,,. The confidence interval within which

thus showing hoijav(w) is related to the average energ)}he flg;tt:/atl_orla are _explectgd tobbetrl;ou_n? W\J;? a probal?m,ty 0
efficiency of the caviy [”E(T’w)HQ/ Pav() } through the ?n'ga'ly remms@#ﬁ;:&yﬁ;ﬂ:ﬂ zro enlg tehre gZi(rszr éngf the
electrical parameters of the TRM antenna. For the spec*al smitted signal 9 u p u

case of a reverberation chamber, the energy efficiency can i 9

estimated in a straightforward manner as [35]

AE 2 _ 2| nf (44)
E P\E(Tsw)HT _ A6 QA (a1) E /A, &\ Q(f)Br

Py (w) T V

As a practical example, let us consider a moderately res-
where Q(w) is the average composite quality factor of thenant cavity withQ = 5 - 10%, Br/f. = 5 % and a sine
cavity, V' is the volume of the medium filling it and cardinal signal excitation, i.es = 1, yielding a range of
the average wavelength corresponding to the frequency flfctuations of about=7 %, with a confidence of 95 %. Such
excitation of the cavity. This result is straightforwardityked a low level of deviations is the reason why having access to a
to the variance of any Cartesian component of the electiit fiemodel of the average response is indeed representative of th
and the covariance of orthogonal components of the electactual response observed for a specific configuration.
and magnetic field as
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