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Preface

This memoir was written in partial fulfillment of the requirements of the “Habilitation
à Diriger des Recherches” degree, as defined by the French law. It is therefore intended
as a summary of my research activity and vision developed during the last 4 years, since
I have started working on reverberation chambers.

Because of the specific nature of this document, it should not be regarded as a sort of
monograph about large cavities: in no possible way it could be considered as complete
enough for such a purpose; discussions are often on an informal level and mostly the
main results from my work are presented. It should be regarded as more of an overview
of my work than a self-contained presentation on the physics of large cavities.

This memoir is organized into four chapters. The first chapter introduces the main
ideas and concepts that allow modelling large cavities in a harmonic steady-state, where
the field distribution can often be modelled as a random process: the two main theoret-
ical approaches currently employed are then introduced, with the aim of showing why
most of the current activities surrounding reverberation chambers in the electromag-
netic compatibility (EMC) community is wanting; original contributions are then pre-
sented, showing how getting back to simple first-principle approaches can shed some
light on misunderstandings mainly affecting the EMC community.

The second chapter is a direct continuation of the first one, focused on the use of
simple statistical models in order to understand why real-life cavities naturally behave
in a manner that can be very different from the ideal case of a diffusive medium.

The third chapter introduces the idea of merging the statistical properties of large
cavities with those of time-reversed waves, in order to make a coherent propagation out
of a random medium. The theoretical and practical feasibility of emulating propagation
environments from free-space propagation to multipath ones is discussed, together with
ideas of future developments and applications based on these concepts.

The fourth and final chapter discusses how these contributions point to a coherent
approach that let foresee a number of future contributions directly motivated and sup-
ported by my current research activities. The appendices present a short curriculum
vitæ, together with selected papers and a complete list of my publications.
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Chapter 1

Large cavities in a harmonic steady state

The method of science depends on our attempts to de-
scribe the world with simple theories: theories that are
complex may become untestable, even if they happen to
be true. Science may be described as the art of systematic
over-simplification – the art of discerning what we may
with advantage omit.

Karl Raimund Popper

C AVITIES could appear as a peculiar choice for research. They basically consist
of a contiguous (eventually multiply-connected) region of space surrounded
by impenetrable and weakly absorbing boundary conditions. Propagation of
waves through this type media is seldom treated in graduate courses, giving a

large preference for free-space propagation while introducing diffraction from medium
discontinuities often as local-perturbation phenomena.

In fact, free-space-like propagation based on the idea of line-of-sight propagation is
hardly found in practice. The feeling that line-of-sight propagation should be taken as
the obvious reference in radio-wave propagation is probably due to the fact that radio-
links are often designed (or at least presented) in such a way as to provide a point-to-
point link from a transmitter A to a receiver B. More complex propagation scenarios are
found in radio-wave applications, e.g., in indoor and urban environments, but are often
presented as special cases at the end of an electrical-engineer degree cursus.

At the antipodes of line-of-sight propagation lies wave diffusion. Wave diffusion can
be stated as a peculiar configuration where an observer experiences a large number of
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Figure 1.1 – Non-specular scatter-
ing from a generic surface.

waves directed at him, covering with the same
frequency of occurrence all directions of ar-
rival. As a result, no preferential direction of
arrival can be identified, nor their common ori-
gin. This kind of phenomenon basically occurs
in two configurations: 1) wave scattering over a
rough surface and 2) multiple-scattering events.
In the framework of this dissertation, we will
not discuss about the first case, since it is of
limited interest for microwave cavities, though
some attempts at introducing rough surfaces
within such cavities has been made in the past
within the electromagnetic compatibility (EMC)
community [R63, R62], as inspired by previous
work in acoustics [R76, R44, R14].

When thinking about our daily experience
it is self-evident that most wave-propagation
events occur more often within at least partially

bounded structures than in a free-space-like scenario. For microwaves, most radio-
links typically involve waves interacting with the interior or exterior of buildings or
geological structures, and in a similar manner acoustic waves and visible light. Wave
diffusion should therefore be regarded as a common phenomenon occurring in a num-
ber of practical situations. For instance, scattering of light from most of natural surfaces
has strongly diffusive characteristics, as well known to scientists working in computer
graphics, where the efforts to render realistic scenes passes through the use of physical
models representing wave diffusion by rough surfaces.

Wave diffusion should not be expected exclusively for wave propagating through
open media prone to wave scattering, such as the case of Rayleigh scattering of Solar
visible radiation through the atmosphere [R88], but is similarly found in practice when
waves are excited within a bounded medium with sufficiently reflective boundaries, i.e.,
a cavity with boundaries such that an incident local plane wave E i(r̂ ,ω) propagating
along the direction r̂ i is scattered along a set of directions r̂ s into a field Es(r̂ s,ω) with
negligible loss of power, i.e.,

∫

‖Es(r̂ s,ω)‖2dr̂ s ' ‖E i(r̂ i ,ω)‖2, (1.1)

where the integral is computed over all directions pointing away from the region of
impact of the impinging wave and towards the inside of the cavity; this situation is
depicted in Fig. 1.1. The present dissertation will be limited to this special case of
diffusive media. Weak dissipation is not the only assumption that will be taken for
granted; cavities will also be assumed to be much larger than the wavelength imposed

Large cavities in a harmonic steady state



1.1 - Large cavities as test facilities 3

by the medium inside the cavity, i.e., electrically large cavities. The rationale for this
condition will be discussed in §§ 1.3.1 and 2.2.

Under these conditions, the field generated and propagating within a cavity can
often be approximated as a diffuse field, as introduced earlier in this section. Here is
to be found one of the two major themes of this dissertation: as every approximation,
even the most effective holds only within given bounds imposed by the context of its
application. Wave-diffusion models can be used for large weakly dissipative cavities,
but their accuracy depends on what we need to compute in our investigations.

Some reflections pertaining to this question are presented in § 2, showing how
diffuse-field models can be misleading when forgetting under what conditions this ap-
proximation is valid. To this end, we present a simplified discussion in this chapter
showing how wave-diffusion models can be expected to work, and what other models
can be applied in order to understand their limitations.

1.1 Large cavities as test facilities

A large variety of practical configurations can be approximated by large cavities: urban
setting, rooms, the interior of airplanes and any system equipped with a metallic shield,
lasers, quantum wells, cavity interferometers, etc. Although the scale and dimensional-
ity change, the phenomena are fundamentally the same, with the appearance of natural
resonances as soon as the boundary conditions of the cavity are highly reflective.

While the physical phenomena are shared by all of the previous examples, the ability
of cavities to generate resonances can be regarded as a nuisance or an advantage. For
example, wireless communications within indoor media typically require some clever
signal processing and coding, due to their strongly frequency-selective response, which
would otherwise make wide-band communications through indoor media an unlikely
idea. On the contrary, resonances have been exploited within the framework of two
generic groups of applications: 1) to design very selective filters; 2) to design diffusive
media. The first one can be accessed when at least one of the cavity’s dimensions is
comparable to the working wavelength; in this case, the resonances are typically not
overlapping and cavity filters (e.g., in microwaves but also surface acoustic-wave filters)
can provide very narrow pass-band/stop-band responses. As soon as the frequency
increases, a larger number of resonances are allowed, leading to increasingly more
likely overlapping of their frequency responses. An example of these two trends is
given in Fig. 1.2.

If the interest of the single-resonance regime is obvious, it could be less clear why
a complex frequency selective system should be of any use. In order to have an in-
tuitive understanding, we should rather switch to a wave-propagation point of view.
Fig. 1.3(a) shows, in a very simplified way, how a single source within a large cavity
(i.e., with respect to the working wavelength) generates a large number of waves prop-
agating along very diverse trajectories. Intuitively, if the structure of the cavity were

Large cavities in a harmonic steady state
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Figure 1.2 – An example of frequency response measured in Supélec’s reverber-
ation chamber, over its low to intermediate region before the establishment of a
diffuse-field condition.

complex enough, it could be expected that each point of the cavity would be crossed by
waves propagating along every direction. This idea becomes even more natural if we
think about what makes a room having a good “acoustics”: it is typically the fact of en-
suring an experience, as a listener, that is practically independent from our position and
orientation, as well as a frequency response that is flat (no distortion); distinguishable
echoes should not exist. In fact, this is exactly what happens within a reverberating cav-
ity, where echoes are so close to each other to be indistinguishable, while the multipath
propagation of waves practically annihilates any difference related to frequency, direc-
tion and orientation. The result is a diffuse field, identical on average everywhere. It is
therefore not surprising that the field of acoustics, and in particular room acoustics, has
been the first to thoroughly investigate the physics of large cavities [R69, R73, R44].

Large cavities are not only important to ensure a good experience to concert-goers;
the same ideas and requirements are at the base of their use as test facilities. Reverber-
ating cavities capable of supporting a diffuse-field regime, are fundamental tools in a
large number of fields, from microwaves to acoustics passing through optics. Their main
use is given by a simple observation: if a source radiates a scalar field F(k̂) along the
directions k̂, then the signal Vo received by an isotropic transducer would be (Fig. 1.3)

Vo =
N
∑

n=1

αnF(k̂n), (1.2)

where N is the total number of echoes or propagation paths between the source and the
transducer. Each contribution arriving along different directions k̂n will be weighted by

Large cavities in a harmonic steady state



1.1 - Large cavities as test facilities 5
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Figure 1.3 – Wave diffusion in a cavity, exploited to : (a) collect data about the
radiation of a source along all possible directions; (b) simultaneously excite an
EUT along a large number of directions.

a random coefficient αn, as in the case of a listener in a concert hall. By taking the
squared modulus of Vo and repeating this operation a number of times in different
configurations (moving the source, the transducer, etc.), yields

¬

|Vo|2
¶

=
N
∑

n=1

¬

|αn|2
¶

|F(k̂n)|2 (1.3)

where 〈·〉 is the result of averaging over all the different test configurations. If the cavity
generates a diffuse field, then

¬

|α|2
¶

= α2
rms and

¬

|Vo|2
¶

= α2
rms

N
∑

n=1

|F(k̂n)|2 ∝
∫

4π

|F(k̂)|2dk̂, (1.4)

since the number N of random directions {k̂n} would be ideally infinite, implying that
(1.4) is nothing else than an excellent Monte Carlo approximation of the total radiated
power integral. The averaging therefore appears to allow passing from an integral over
angles to one over random realizations, a property related to the ergodicity of the field
in diffusive cavities. Realizations involving different sets of {αn} can be generated with
a number of techniques, but they are all intended to lead to an ensemble of cavities. The
integrating property of large cavities is exploited in the characterization of sources of
propagating waves, in a very general way. In the case of optics, integrating spheres are
also equipped with diffusive boundaries which allow a further averaging mechanism.
For longer wavelengths, e.g., in acoustics and microwaves, scatterers are routinely in-
serted within the cavity for the same reason.

Reciprocity implies Fig 1.3(b): now the transducer is the source of radiation, and
an equipment under test (EUT) is submitted to a large number of waves with random

Large cavities in a harmonic steady state



6 1.1 - Large cavities as test facilities

amplitude, direction of arrival and (eventually) polarizations. The average power im-
pinging over the EUT is known: it is therefore possible, from simple computations based
on power conservation, to assess the power absorbed by the EUT. This further applica-
tion is important in acoustics (e.g., assessing the performance of absorbers for phonic
insulation, but also the amount of power lost in comfortable seats), as well as in the
characterization of any material.

In all of these examples, reverberation chambers allow reducing the overall duration
of tests, since if the same operations were carried out within anechoic environments,
it would be necessary to scan an EUT along all possible directions, in order to collect
enough data: in this case, a source could only generate line-of-sight excitations.

These ideas are given a twist in the case of EMC [R33, R45, R42], where the EUT is
now an electronic system, in which impinging waves can disrupt its nominal behaviour.
A well-known example of this problem is the requirement to turn off radiating devices
on airplanes. Another important specificity of EMC tests is that in order to ensure a good
safety margin, reverberation chambers are not only used to reduce the test duration,
but also as an effective way of generating very strong fields from relatively low-power
sources. Resonances take on their full importance in EMC tests, since field levels as
high as 10 kV/m can be required in aeronautics, in order to simulate the conditions
experienced when passing close to radars.

It is important to understand that the diffuse-field condition is not only invoked as
a simple ideal approximation. The most important point is that when a field is diffuse,
its statistical properties does not depend any longer on the fine details of the cavity, by
definition. The direct consequence is that the results of a test can be expected to be
independent from the cavity, i.e., they can be reproduced in other test facilities. It is
this simplification that is important, since it ensures that reverberating cavities can be
regarded as fit for metrology tasks. The rich literature dealing with the study of the
behaviour of reverberating cavities is largely justified by this need of assessing their
accuracy.

It is worth mentioning that cavities, in particular microwave cavities, are also the
backbone of another field of investigation, that of wave-chaos theory [R81]. In this
case, the motivation is by far less practical: the problem is to find a simple way of
experimentally verifying the theoretical predictions of quantum-chaos theory, as well as
of the mathematical theory of billiards [R11].

In short, cavities are a rather familiar component in many experimental fields of
investigation. Perhaps less familiar are the modelling tools used in order to understand
their peculiarities. The rest of this dissertation is concerned with this topic, together
with the introduction of even more peculiar features enabled by time-reversed excita-
tions.

Large cavities in a harmonic steady state



1.2 - Wave-propagation modelling in large cavities 7

1.2 Wave-propagation modelling in large cavities

When thinking about models capable of representing the propagation of waves within
cavities, and in general bounded media, their nature strongly depends on the context
of application. While in wireless communications the most important issue is to predict
figures of merit such as the power-delay spread and the number of degrees of free-
dom, in wave-chaos theory one would rather look for the statistical behaviour of the
frequencies of resonance and the field distribution, whereas in radiated tests the spatial
invariance of statistical moments would be more important.

As a result, a number of methods have been proposed independently in each field
of application, with scant cross-fertilization, leading to a collection of techniques that
are tuned to each specific need. The peculiarity of this situation, far from being the
only such case in physics, is that imporrtant results are scattered over a number of
domains where it is not always possible to browse through them easily. This problem
will be apparent in § 2, where notions that have been available in acoustics and wave-
chaos theory for some decades have been practically unknown to the electromagnetic
community; tools and concepts routinely applied in statistical optics are scantly used,
too.

This section will not try to sort out these models, though such operation would
be badly needed. We would rather limit our discussions to two antipodal approaches
available for the goals we have set ourselves for §§ 2 and 3, namely understanding
the physical phenomena at the basis of harmonic and time-reversal excitation of large
cavities. Our discussions will be the starting point for the introduction of surprisingly
simple models based on random spectral representations; passing from a rigid deter-
ministic point of view to a statistical one, we will argue in § 1.4 that there is room
for misunderstandings about the interpretation and use of these methods. This same
discussion will constitute the foundation for the analyses introduced in § 2.

1.2.1 Green’s functions

In the context of linear systems studied under a harmonic steady state, the most general
technique employed to deal with their spatiotemporal evolution is that of Green’s func-
tions [R56, R21], which generalizes the concept of impulse response. In the context
of this dissertation we will just need to recall the main ideas needed to introduce the
spectral representation of Green’s functions, as applied in § 1.3 and § 2.

Green’s functions can be introduced for a linear system of which we want to observe
the evolution of a given quantity, here referred to as u(r ). This quantity depends, in
a general way, on the value taken by a parameter; for our discussion, we will consider
the position r in a multidimensional space where u(r ) is sampled (measured). The
region of space Ω where the phenomena of interest occur will be considered finite in
our discussions, and with a simple topology (e.g., Fig 1.4). The choice of the variable
r should not mislead into regarding it as merely representing space, but can more

Large cavities in a harmonic steady state



8 1.2 - Wave-propagation modelling in large cavities
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Figure 1.4 – A typical configuration for a rever-
berating cavity, delimited by reflective bound-
aries (external boundaries), including reflective
scatterers (internal boundaries) and at least a
source region. The space Ω delimited by the
external and internal boundaries is filled by a
homogeneous medium, assumed to be air, for
simplicity.

generally include time as well. Typ-
ically, for a practical configuration,
the quantities of interest are state
variables used to define the phase-
space of a system; being dependent
on r , they are by definition fields
and we will assume a scalar field in
this section for the sake of simplic-
ity.

When the problem at hand is
the propagation of waves through
a medium, the field of interest is
causally excited by a physical event
f (r ), such as a variation in pres-
sure or electric current; knowledge
of the physical laws underpinning
the phenomena of interest allow
writing a formal relationship be-
tween cause and effect

L(r )u(r ) = f (r ) r ∈ Ω, (1.5)

where L(r ) is a linear operator. In a general way, it is also necessary to specify a set of
auxiliary equations describing boundary or initial conditions over, e.g., the border ∂Ω
of the region of existence of u(r )

B(r )u(r ) = g(r ) r ∈ ∂Ω. (1.6)

Observation of (1.5) shows that it cannot be directly used in practical settings: as a
matter of fact, we are typically more interested in predicting the outcome u(r ) due to a
cause f (r ), so that the following equation would be of more direct help

L−1(r ) f (r ) = u(r ), (1.7)

where the exponent in L−1(r ) should clearly be interpreted as a symbolic convention
indicating the inverse operator. Green’s functions actually provide a way of computing
this inverse operator, by solving (1.5) for a special case, where

u(r ) = G(r , r ′) (1.8)

f (r ) = δ(r − r ′), (1.9)

with r , r ′ ∈ Ω. Clearly, the above problem is still submitted to the constraints imposed
by (1.6).

Large cavities in a harmonic steady state



1.2 - Wave-propagation modelling in large cavities 9

Once the Green’s function G(r , r ′) is available, it is possible to show that any solu-
tion of (1.7) is readily accessible for a given excitation [R56]

u(r ) =

∫

Ω
G(r , r ′) f (r )dr ′. (1.10)

An example of interest involving vector fields is the operator linking electric currents
J e(r ) to the electric field E(r ) they generate; it can be directly derived from Maxwell’s
equations and put in operator form as

L(r ) · E(r ) = J e(r ), (1.11)

where L(r ) is now a dyadic operator (second-rank tensor). This last case is the one of
interest in this dissertation, where (1.10) can now be written as [R56]

E(r ) =

∫

Ω
Gee(r , r ′) · J e(r )dr ′, (1.12)

with · the inner vector product. The dyadic Green’s function Gee(r , r ′) used in this
case is intended to link the electric field to electric currents, hence the subscript “ee”.
Other Green’s functions can therefore be considered, linking electric/magnetic fields to
electric/magnetic currents.

In practice, the problem of finding a solution G(r , r ′) is far from trivial, and only
for very simple canonical geometries it is possible to express it in closed form [R87].
Numerical techniques are most often needed, but as they do not allow the derivation of
predictive models, they will not be considered in the context of this dissertation.

This is where spectral approaches come in handy, by allowing to break down the
problem of Green’s functions into simpler problems, particularly when dealing with
cavities. As we will discuss in the rest of this section, the spectral approach in itself
does not provide any simpler solution to the above problem, but rather a short-cut to
(and an informal justification for) the use of simple, but very effective, approximations
based on statistical considerations.

Moreover, spectral representations provide a direct insight into the physical mecha-
nisms responsible for certain properties of a system. This last claim is particularly true
for resonant cavities, as we will show in § 2 when discussing the importance of available
degrees of freedom.

1.2.2 Spectral representations

The problem of modelling wave propagation through the use of Green’s functions can
be simplified by the use of spectral expansions. This standard procedure [R56, R81]
consists of expressing the Green’s functions as a linear combination of the eigensolutions
{ψn(r )} of Helmholtz equation, defined as

Large cavities in a harmonic steady state



10 1.2 - Wave-propagation modelling in large cavities

∇2ψn(r ) + k2
nψn(r ) = 0, (1.13)

submitted to the boundary conditions (1.6), whereψn(r ) takes the place of the generic
solution u(r ) in the special case of a sourceless configuration. The set {ψn(r )} of eigen-
functions can be shown to form a complete basis of orthogonal functions, thus capable
of representing any field distribution satisfying the boundary conditions imposed by the
configuration of the cavity.

The set {ψn(r )} can be normalized in such a way as to ensure their orthonormality,
i.e.,

�

ψm

�

�ψn

�

=

∫

Ω
ψ†

m(r ) ·ψm(r )dr = δmn, (1.14)

where † stands for the Hermitian transpose and δmn is Kronecker’s delta.
When considering the Gee(r , r ′) dyadic Green’s function the eigenfunctions could

be of two natures: solenoidal or irrotational field distributions. Being interested in the
behaviour of electromagnetic reverberation chambers, we will just focus our attention
on the former group of eigenfucntions and note them as {en(r )}; as a matter of fact, ir-
rotational solutions are related to TEM modes that are not of practical interest in the use
of reverberating chambers, since they are not associated to resonant phenomena [R87].
As a result, the electric field within a cavity can be expressed as[R56, R87]

E(r ,ω) =
∞
∑

n=1

γnen(r )φn(ω) (1.15)

with

γn =
�

J e

�

�en

�

(1.16)

the modal coefficients and

φn(ω) =
1

k2− k2
n

(1.17)

the modal responses, with kn the square root of the eigenvalue associated to the eigen-
fucntion en(r ) and k = k(ω) the wave number.

What should be the advantage of using (1.15) rather than (1.10)? There are several
reasons for choosing the former, such as a more efficient model with reduced complex-
ity, but in the context of resonating media (here cavities) we will mainly stick to the
physical insight brought in by the presence of the modal responses {φn(ω)} in (1.15).

In order to understand their role, we should start by observing that their modulus
essentially correspond to a Lorentzian function, and are related to the response of a
damped harmonic resonator. In the ideal case of undamped resonances, the generic kn
is purely real and corresponds to a resonance frequency
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fn =
knc0

2π
, (1.18)

with c0 the average speed of light in the medium filling the cavity.
In practice, dissipation mechanisms lead to the appearance of an imaginary part

in kn, whose amplitude is typically much smaller than the real part. This scenario of
weakly damped resonances implies that the dissipation mechanisms can be treated as
weak perturbations, by having the singularities of φn(ω) not laying on the real axis any
longer, requiring [R87]

kn  kn(1− j/Qn), (1.19)

where Qn is the quality factor of the resonance associated to the n-th eigenfunction, or
normal mode. The quality factors involved in electromagnetic reverberation chambers
are very easily higher that several thousand units, so that the frequency of resonance
can be regarded as unaffected by the introduction of losses, which thus behave as a
weak perturbation.

The frequency evolution of a generic φn(ω) is represented in Fig. 1.5, for several
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Figure 1.5 – Some examples of peak-
normalized modal response φn(ω), plot-
ted against the normalized frequency
k/kn for a varying quality factor Q.

values of Qn. While for an increasing
Qn the peak-value of φn(ω) increases,
the function becomes more tightly con-
centrated around its resonance frequency.
The width of the modal response can be
assessed by introducing the half-power
modal bandwidth BM ,n

BM ,n

fn
'

1

Qn
, Qn� 1. (1.20)

which implies that the {φn(ω)} essen-
tially act as very effective narrow-band
filters. A different way of looking at this
result is to observe that each mode brings
a non-negligible contribution limited to
frequencies very close to the resonance
frequency. It is therefore possible to as-
sociate a notion of locality to the spec-
tral expansion; as it will be discussed in
§ 1.3, this interpretation has important
consequences on the statistical modelling
of the fields generated within large cavi-
ties, with direct impact on practical appli-
cations, as shown in §2.
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12 1.2 - Wave-propagation modelling in large cavities

In a similar way, the electric energy U(ω) stored in a cavity at a single frequency
can be expressed as

U(ω) = ε0

∫

Ω
‖E(r ,ω)‖2dr = ε0

∞
∑

n=1

|γn|2|φn(ω)|2, (1.21)

having exploited the orthonormality of the eigenfunctions en(r ). As a result of being
a spectral expansion, the energy can be easily computed as a discrete sum rather than
as an integral. The real-valued nature of (1.21) allows a simple graphical illustration,
as proposed in Fig. 1.6: each mode contributes with a degree of freedom only for a
narrow bandwidth around its frequency of resonance, thus implying that for a given
working frequency only the few modes within this bandwidth will actively contribute to
the overall field distribution. This maximum bandwidth, here referred to as Be, allows
estimating the number of degrees of freedom underpinning the field distribution within
a cavity, as discussed in §§ 1.3.1 and 2.2. As demonstrated in [J4], Be corresponds to
the average modal bandwidth.

Hence, it is possible to approximate the infinite sum (1.21) by a finite one, limited
to the set of M modesM = {m : | fm− f |< Be/2}, i.e.,

U(ω) = ε0

∑

m∈M
|γm|2|φm(ω)|2. (1.22)

Clearly, the same line of reasoning can be applied to the overall electric field.

Be

ff i

BM,i

Figure 1.6 – A schematic illustration of the local
contributions provided to the electric energy by
each resonant mode within a cavity. Only the
modes with a frequency of resonance within a
distance Be/2 from the working frequency ac-
tively contribute.

The idea of limiting the in-
finite summation (1.15) to a fi-
nite number of terms can be re-
garded as a fundamental advan-
tage of the spectral expansion, al-
lowing a reduced-order modelling
of reverberating structures. But we
deem that the main interest of this
approach is the clear and natural
appearance of the concept of de-
grees of freedom in a cavity: it is
this concept that subtend all the
results we have introduced during
the last 4 years. In the rest of
this chapter, these ideas will be
largely invoked as a powerful yet
simple way of drawing general con-
clusions about the behaviour of a
cavity.
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1.2.3 Black-box (empirical) statistical modelling

Before passing to the core of this dissertation, we need to introduce several ideas that
constitute the foundation of the statistical modelling of wave propagation in complex
media. It was already noted at the beginning of § 1.2.1 that Green’s functions in analyt-
ical form are hardly available but for canonical configurations. Numerical approaches
can be applied to compute Green’s functions, but this implies a clear assumption : that
the details of the system/medium in which we are interested are available. As strange
as it could appear to a first reading, this is seldom the case. Examples abound, but we
will stick to the case of cavity-like media: the case of indoor and urban propagation
media is perhaps the first example that comes to mind to an electrical engineer, because
of its omnipresence in wireless communication settings. Numerical approaches would
be put in jeopardy by three very practical difficulties :

1. the geometrical details of the propagation medium are typically unknown : let just
think of the position of furniture, walls, buildings, their geometrical dimensions,
etc. ;

2. the electrical characteristics of the material making up the elements of the medium
are also typically unknown;

3. even if these details were known, the Green’s functions associated to the medium
could be accessed only by means of numerical simulations. Since in practice in-
door/urban setups span regions of space well larger than a wavelength, numerical
models would involve a quickly untractable number of unknowns.

Clearly, these limitations do not mean that it is impossible to predict any trend
in complex media, but that we should rather change our perspective in propagation
modelling. We should ask ourselves what kind of information we really need in order
to satisfyingly engineer a system based on the propagation of waves in complex media.
As an example, in wireless communications the main issue is ensuring a given level of
received power, i.e., a good coverage, with a given probability, rather than a perfect
knowledge of the actual level at the receiver. In other words, a probabilistic approach
is often sufficient.

As a result an alternative, and more importantly viable, approach is that of describ-
ing wave propagation in statistical terms. A number of statistical quantities can be
defined to this effect; we will just introduce the most basic ones, as they will also be
needed in the rest of this dissertation. Statistical descriptions often correspond to phe-
nomenological approaches, where one can only assess the effects of the medium struc-
ture on wave propagation rather than the causes of specific behaviours. Data needed
to the extraction of statistical models can be obtained from extensive measurement
campaigns or parametric numerical simulations.

From the receiver point of view, the amplitude of the received signal is of paramount
importance. Therefore it makes sense to study the probability density function pH(x ,ω)
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14 1.2 - Wave-propagation modelling in large cavities

of the value x taken by the complex transfer function H(ω) between a transmitter and
a receiver ports. In many practical configurations, this probability density function can
be set beforehand, as soon as certain conditions are satisfied; an example is given by
the family of media displaying Rice/Rayleigh statistics, requiring a diffusive propaga-
tion [R66]. More details about these ideas will be presented in § 1.4.

It is therefore possible to predict the probability of observing a given level at the re-
ceiver, even though hardly any detail of the propagation medium are known. The price
to pay for this simplification is the difficulty of establishing/identifying any causal rela-
tionship between the physical parameters of the medium and the statistical properties
of waves propagating through it: as a result, we are somewhat stuck with a functional
approach that only allows blind design procedures. Other quantities of physical and
practical interest can be modelled in this way, providing a large scope for this type
of approaches: angles of arrival of waves and time-delay spread profiles are but two
examples of interest in wireless communications [R84, R70].

Once probability density functions are introduced, any statistical moment can be
computed for a quantity modelled as a random variable; for a random scalar variable
X ∈R, the moment of order n is defined as

〈X n〉=
∫

X npX (x)dx , (1.23)

where the integral is taken over all the possible random realizations of X , while pX (x)
is its probability density function. The brackets notation will be used in the rest of this
dissertation as a compact notation for averages computed over all the possible values
taken by X . The first-order moment (average value) is instrumental to the definition
of centered moments, where the zero mean-valued random variable X − 〈X 〉 is now
considered in (1.23) instead of X . The most widely used centered moment is certainly
the variance, σ2

X =
¬

(X − 〈X 〉)2
¶

and the associated standard deviation σX .
In the case of X ∈ C, complex-valued moments can be considered, but in order to

be assimilable to a distance, the Euclidean norm is typically used, i.e., σ2
X =

¬

|X |2
¶

.
A further generalization is needed when dealing with random vector quantities, e.g.,
noted as X ; the main modification is in moments greater than one, where they take the
shape of n-rank tensors, where n is also the order of the statistical moment. We will
just consider the case of the covariance matrix C X , defined as

C X =
¬

(X − 〈X〉)(X − 〈X〉)†
¶

. (1.24)

In practice, the random vector could be any vector transfer function, for instance
the one relating the excitation signal applied to a transduced to the electric field it
generates at a given position r , i.e., X = H(r ,ω).

While C X assesses the statistical dependence between the single scalar elements of
vector X , a similar idea can be introduced to study the global statistical dependence
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of, e.g., the vector transfer functions observed at two different positions r 1 and r 2,
introducing the spatial correlation

C(r 1, r 2) =
¬

H(r 1,ω)† ·H(r 2,ω)
¶

, (1.25)

often expressed as a function of the variances by introducing the spatial-correlation
function

ρ(r 1, r 2,ω) =

¬

H(r 1,ω)† ·H(r 2,ω)
¶

p




‖H(r 1,ω)‖2
�


‖H(r 2,ω)‖2
�

, (1.26)

with |ρ(r 1, r 2,ω)| ∈ [0, 1]; in (1.26), H(r ,ω) was assumed to have a zero average
value. A spatial correlation close to one implies that though the field observed at two
positions can still be modelled as two random variables, they essentially present a non-
fully stochastic nature, with a partially deterministic relationship linking them. The
simplest such representation is provided by a first-order regression model

H(r 2,ω)' T (r 1, r 2)H(r 1,ω) +δH(ω), (1.27)

where T (r 1, r 2) ∈ C3×3 (e.g., for a three-component vector field) is a dyadic opera-
tor, in general anisotropic, while δH(ω) is a fully random process, independent from
H(r 1,ω). In practice, the relative contributions of the deterministic and random parts
in (1.27) are functions of the offset vector d = r 2− r 1, but this point is out of the scope
of this dissertation.

Typically ρ(r 1, r 2,ω) depends only on the offset vector d, while the absolute posi-
tions r i affects only the scaling of the covariance through the field variances in (1.26).
In this case, spatial correlation is virtually independent of the absolute position and will
be expressed as ρ(d,ω). The same ideas can be applied to other parameters on which
H(r ,ω) depends, most notably the frequency.

Spatial correlation and covariance are important since the use of probability den-
sity functions could suggest the modelling of wave propagation as a random process
H(r ,ω), where r and ω just act as parameters leading to independent random pro-
cesses, i.e.,

¬

H(r 1,ω) ·H†(r 2,ω)
¶

∝ δ(r 2− r 1) (1.28)
¬

H(r ,ω1) ·H†(r ,ω2)
¶

∝ δ(ω2−ω1). (1.29)

Even in the case of very complex media, e.g., diffusive ones, correlations are typi-
cally present. These express physical mechanisms of varying nature: e.g., spatial cor-
relation are always limited by the wavelength of propagating waves, effectively setting
a minimum spatial resolution that is of fundamental importance when dealing with
time-reversed signals (§ 3).
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16 1.3 - Random spectral models

In practice, ρ(d,ω) is a smooth function of the distance d = ‖d‖ between the two
observation points and typically characterized by an infinite support, i.e., it is never
identically equal to zero beyond a given minimum distance (§ 1.4.1). It is nonetheless
possible to define a minimum distance Dc , called the coherence distance [R93], beyond
which the spatial correlation is always smaller than a given maximum value

Dc(ω) =min
�

d : |ρ(d,ω)|< ρmax
	

, (1.30)

or, alternatively, as the distance at which the spatial correlation crosses the zero value
for the first time when incrementing ‖d‖ from zero to infinity. The minimum in (1.30)
is taken over the Euclidean norm of the offset vectors d. Since the spatial correlation
is typically anisotropic (§ 1.4.1), Dc should rather be expressed as a function of the
direction d̂ linking r 1 and r 2; the maximum of all observed correlation distances can
therefore be taken as

Dc(ω) =max
d̂

Dc(d̂,ω), (1.31)

and provides a simple manner of assessing the distance beyond which two samples of
the field can always be approximated as statistically uncorrelated.

The correlation distance is at the basis of the definition of the coherence cell of a
random field distribution, defined as the region of space

C = {d : ‖d‖¶ Dc(d̂,ω)}. (1.32)

It bears important insight in statistical modelling, especially for phase-space rep-
resentations [R93, R81], e.g., in the prediction of the number of spatial degrees of
freedom of the field generated within a cavity [R50, R93]. Moreover, the presence of
statistical correlation also has a major impact on any averaging method, as discussed
in §§ 1.4 and 2.1. Spatial correlation appears in a number of configurations, of which
the memory effect [R24] highlighted in wave-propagation through multiple-scattering
media is just an example.

The fact that correlations involve two quantities leads to their being referred to as
second-order statistics. We will neglect even higher order statistics, although they play
a fundamental role in statistical field theories [R81].

These ideas can be directly transposed to the analysis of the correlation between
field samples observed at two different frequencies, but over the same position in space.
A coherence bandwidth can therefore be defined, which will play an important role in
§ 3.

1.3 Random spectral models

The modelling tools introduced in the two previous sections are somewhat extreme
approaches, switching from the rigid framework of a perfectly detailed deterministic
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representation to a black-box statistical description based on phenomenological obser-
vations, without any physical insight. In between them, there exists a class of statistical
models based on the physical representation offered by the spectral models introduced
in § 1.2.2.

Their rationale is very pragmatic. Spectral models are capable of capturing some
important features, such as the existence of a discrete set of degrees of freedom, un-
der the shape of resonant modes actively excited at the working frequency. While the
precise value of the modal quantities introduced in (1.15) is typically not accessible, it
is actually not always important to know the details of the field distribution, or of the
frequency response of a complex medium. The main reason for this point of view is that
it is simply not possible most of the time.

But there are more sensible reasons involving the fact that the geometry of the
medium may change from one random realization to another, with these realizations
still sharing some common features. A simple example is the case of cavities with exactly
the same volume and nature of the boundaries, while presenting an infinite number
of random realizations for their detailed shape. Similarly, families of cavities can be
identified by the amount of average overall dissipation losses experienced by waves
propagating through them, or a given geometry can be excited in an infinite number
of ways by changing the position and orientation of a given group of sources. All of
these examples share the idea of at least a common macroscopic feature which can be
at the same time found in a large (ideally infinite) number of random and independent
sub-configurations. In this case, it makes sense to wonder what would be the average
behaviour of field-related quantities, as a function of the macroscopic parameters. For
instance, it is of practical importance to understand how the behaviour of a cavity
changes when its volume is increased. This kind of problem cannot be easily answered
in either of the two extreme modelling approaches introduced so far; conversely, the
approach presented in this section will be shown to be capable of providing insight
even without knowing anything about the details of a single realization.

The origin of this idea of modelling the average behaviour of a complex system can
be traced back to the work of J.C. Maxwell and L.E. Boltzmann about the statistical-
mechanical explanation of the thermodynamical laws of gases [R83]. The problem
they faced was very similar to ours: the dynamics of gases was studied by introducing
the idea of an infinite number of collections of particles each one provided of a ran-
dom position and velocity. The deterministic solution of such a system was and still
is practically impossible, but for the sake of thermodynamical laws it was not a mat-
ter of importance. The microscopic details of the state of each particle is not the focus
in this context, whereas the average state of the system is fundamental, particularly if
related to macroscopic quantities such as the temperature, volume or pressure of the
system. The idea of an ensemble was therefore introduced as a clever way of bypassing
a complex problem, allowing to extract still useful information from first-principle laws
coupled to a statistical analysis. A more recent and complex example of interest in our
discussion is that of wave chaos (see § 1.3.2), where the focus is set on the properties
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of eigenvalues, rather than of field-related quantities [R81].
In a similar manner, the microscopic degrees of freedom in a spectral representation

are the modes, or energy levels in quantum mechanics, of the system. Their state is now
modelled by their modal coefficients, while the equivalent of the macroscopic features
are the overall electric field observed at a given position. The analogy could be thought
as complete, but there is a fundamental difference that still generates much confusion
and misunderstanding: the number of degrees of freedom in the case of gases is simply
huge, with orders of magnitude set by Avogadro’s number; comparing this number
to the few modes typically excited within a cavity (as discussed in § 1.3.1) under a
harmonic steady state should appear as a formidable obstacle to the application of the
ideas of statistical physics to the case of cavities. Unfortunately, because of the lack
of simpler alternative approaches, this problem is often not acknowledged, leading to
expectations that are simply not realized in practice; examples will be presented from
the field of electromagnetic compatibility in the next chapter.

This mismatch was the motivation of some of the analyses that we have carried out,
where the focus was on a specific macroscopic parameter, namely the number of degrees
of freedom actually available in a cavity. As discussed in the next chapter, things get
even more confused by the fact that it is not even the availability of a large number of
modes that enables diffuse-field approximation (see § 1.4.1) but rather the overlapping
of their frequency responses. This type of questions can be very effectively answered by
means of a statistical analysis of (1.15).

In order to enable these results, the modal quantities in (1.15) are modelled as
random variables, hence the idea of random spectral models. Randomness can originate
on a number of levels

• frequencies of resonance { fn} : their number, position and interdistance;

• modal topographies {en(r )} : changing boundary conditions, through material
and/or geometry modifications or displacements (e.g., of scatterers);

• modal coefficients {γn}: a direct consequence of randomness in the sources J e(r )
and/or the modal topographies, as implied by (1.16).

Modelling any of these parameters as random variables requires the definition of
suitable probability density functions capable of capturing the variations observed in
practice due to randomness. In certain cases, it is possible to justify these choices on
the basis of physical models, such as in the case of elementary excitations of the kind

J e(r ,ω) = J0(ω)δ(r − r 0), (1.33)

where r 0 is the randomly chosen position of the current; the modal coefficients defined
in (1.16) are therefore given by

γn = J0(ωn) · en(r 0), (1.34)
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corresponding to a random sampling of the modal topographies. In the case of canonical
geometries for the cavity boundaries, these functions are known, so that setting the
probability density function of the random position r 0 can be readily translated into
the probability density function of the random modal coefficients.

In most cases, though, this physically-based procedure is not feasible, forcing to
choose axiomatic distributions. An example is given by the assumption of Gaussian-
distributed modal coefficients, which is typically regarded as reasonable when assuming
an ensemble of cavities: randomness is here justified on the impossibility to know the
exact modal topographies.

Without going into the details of this issue, recalling the statistical convergence en-
sured by the central limit theorem in presence of a large number of independent and
identically distributed (iid) random contributions implies that whatever choice made
for the individual (microscopic) contributions would inevitably lead to the same kind
of overall probability distribution. The actual difference in the choice of the probabil-
ity distributions of the modal coefficients (and similarly for other parameters) has an
impact only on the dispersion of the overall field, not on its statistical nature. For this
reason we do not attach a great importance on the choice of the microscopic-level prob-
ability density functions, as long as this choice is not motivated on physical grounds,
but rather presented as axiomatic.

A counterexample is discussed in § 1.3.2, where random-matrix theory results pro-
vide physical-based, though asymptotic, probability laws for the spacing that should be
expected between two consecutive frequencies of resonance.

It is fundamental to take into account the actual conditions of operation of a cav-
ity before applying any assumptions on the probability laws underpinning the modal
parameters. An example is given by the case of a cavity with a fixed geometry, where
the observer position can be regarded as random; if we were interested in studying
the average field intensity observed, while treating the modal parameters as random
variables, only a single random realization should be considered to represent the elec-
tromagnetic behaviour of the entire cavity. In this case there is no ensemble of cavities,
since the problem is centered around the statistics of the field for a given cavity geome-
try, rather than the average behaviour expected for a group of cavities sharing the same
macroscopic quantities. We should therefore consider two levels of randomness:

1. a single realization for the random modal coefficients;

2. a random ensemble for the position of observation of the field.

The second point will therefore be at the basis of the computation of the average
field intensity, being the only random variable that could be expected to change. Ensem-
ble averages should be applied only when dealing with a different problem, e.g., when
computing the average field intensity observed within any cavity with a given volume.
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In this case, an ensemble average should also be computed across all the possible real-
izations of the modal coefficients, as dictated by the random boundaries underpinning
the concept of an ensemble of random cavities.

This apparently superfluous difference has important consequences when dealing
with the estimation of the number of degrees of freedom available within a cavity and
will be at the center of § 1.4.2, when considering the asymptotic validity of the diffuse-
field approximation.

In the following sections we present further information about the use of this kind
of approach, particularly for what concerns the use of random-matrix theory as a tool
for predicting modal statistics. The notions here discussed are then applied to the
question of modal-coefficient independence and to the fundamental problem of how to
assess the degrees of freedom in a cavity, in view of the application of the diffuse-field
approximation (see § 1.4.1).

1.3.1 Modal density and overlapping

When thinking about the modal density, one intuitively associates it to a certain number
of modes resonating around the working frequency. The modal density can therefore
be defined as the average number MB of modes found in a bandwidth B,

mB( f ) =
MB( f )

B
, (1.35)

and is therefore dependent on B itself. As long as B is large enough to encompass
several modes, then (1.35) is an average value that can be expected to converge to a
single value, for B large enough, predicted by Weyl’s approximation [R86]

mW( f ) =
8πV

c3
0

f 2+ o( f ) =
8πVλ

f
+ o( f ), (1.36)

with V the volume of the cavity, c0 the speed of light in the filling medium and Vλ the
volume measured in cubic wavelengths.

The definition (1.35) provides a more general framework than (1.36), since the
modal density is considered in a local setting: for this reason, it will be referred to as
the local modal density, associated to a specific bandwidth.

It is often practical to associate a specific value to the modal density m( f ), e.g., by
taking the limit for B→ 0: the discrete nature of the set of frequencies { fi} at which a
cavity resonates implies that in practice m( f ) can only take two values, i.e., zero if no
mode resonates at the working frequency f or infinity otherwise [R81], i.e.,

m( f ) = lim
B→0

mB( f ) =
∞
∑

i=1

δ( f − fi). (1.37)

This outcome is inevitable as the distribution of the normal modes cannot approach the
completeness of real numbers, thus leaving inevitable “gaps” between them.
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The estimate mW( f ) is in general different from mB( f ) because it is not derived as
in (1.37), but in a less direct manner, by first introducing the function N( f ) describing
the overall number of modes of a cavity up to the frequency f

N( f ) = #{ fi : fi ¶ f }, (1.38)

with # the cardinality of a set. This function can be represented as the sum of a smooth
approximation NW( f ) and a fluctuating function Nf( f ) with zero average value

N( f ) = NW( f ) + Nf( f ). (1.39)

This smooth approximation was first derived by Weyl and was intended to provide
an approximate solution asymptotically exact at infinite frequency [R86]. The fact that
the intensity of the residual fluctuations grows less quickly than NW( f ) as f →∞, thus
ensuring

lim
f→∞

�

�

�

�

Nf( f )
NW( f )

�

�

�

�

= 0, (1.40)

should not be mistaken for an indication that modal density can be defined as often
done, by taking the derivative of NW( f ) at the working frequency f , leading to the
approximation

m( f ) = lim
B→0

MB

B
∼=

dNW( f )
d f

= mW( f ). (1.41)

As a matter of fact, the residual Rm( f ) = |mW( f ) − MB/B| does not converge to
zero, since Nf( f ) takes on the discrete nature of N( f ), thus preserving the results in
(1.37). It could be expected that the accuracy of the approximation (1.41) improves as
the frequency, and thus N( f ), increases, hence leading to modes getting close enough
to provide a sort of approximate continuity; unfortunately, this is not the case and these
fluctuations should not be dismissed as minor approximation errors, particularly when
the average number of overlapped modes is not high enough, as happens to be the case
even at frequencies well above the lowest usable frequency (or LUF) as usually defined
by thumb rules proposed in practice within the framework of EMC tests [R2].

The differences between m( f ) and mW( f ) play a central role when studying the
average local modal overlapping Mloc( f ). This quantity represents the average number
of modes found within a bandwidth BM equal to the average −3 dB width of a mode,
i.e., BM = f /Q̄, hence

Mloc( f ) = mBM
( f )

f

Q̄( f )
, (1.42)

with Q̄( f ) the ensemble-average composite quality factor of a MSRC.
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As proven in [J4], a high modal density in itself is not a guarantee of a diffuse
field, ensuring Gaussian-distributed scalar field components; the dominant parameter
is rather Mloc( f ), which is required to be Mloc( f )� 1 in order to support a diffuse field.
Therefore, it makes more sense to directly count the number of modes overlapping over
BM , rather than passing through (1.42), since it requires an estimate of the local modal
density mBM

( f ), as defined in (1.35). This apparently subtle distinction makes all the
difference and should not be underestimated: it could seem more natural to assume
mBM
( f )' mW ( f ) and derive Mloc( f ) from (1.42), i.e.,

MW ( f ) =
8πVλ
Q̄( f )

+ o(1), (1.43)

assuming

Mloc( f )' MW ( f ), (1.44)

but in this way we would implicitly accept the notion of a deterministic and smoothly
increasing modal density, with no random fluctuations, with an mW ( f ) not depending
on BM , thus neglecting the discrete nature of the distribution of the frequencies of
resonance. On the other hand, it is tempting to just consider the average modal density
(and overlapping), since in practice the ensemble-average of mBM

( f ) can be quite close
to mW ( f ); as discussed in § 2.3, such an approximation directly leads to a fundamental
misunderstanding about the origin of statistical anomalies, or outliers, originated by
strong random fluctuations in the modal density expected for single realizations of the
cavity.

When directly considering the number of modes overlapping over BM , the corre-
sponding modal density should rather be defined as in (1.35), with an implicit local
definition depending on BM . In practice, (1.35) is an average modal density, but in
this context the average is not over the realizations (ensemble average), but rather over
the bandwidth BM for a single realization. In other words, it represents a sort of lo-
cally homogenized modal density, spread equally over the entire modal bandwidth BM
rather than as a set of singularities as in (1.37). For this reason, we will refer to it as a
local average, in contrast with the ensemble average. It will be shown in § 2.3 that this
apparently redundant distinction makes a big difference.

We can already consider a representative example shown in Fig. 1.7, where the
modal density predicted by (1.36) is compared to a direct count of the number of
modes within a 1 % and 0.1 % relative bandwidths for a cuboid cavity. As stated at
the beginning of this section, the local modal density is well approximated by (1.36)
when dealing with relatively large local bandwidths; but when recalling that the modal
bandwidth is typically very narrow, large fluctuations naturally appear. In order to
have access to the probability density function of the local modal density, results from
random-matrix theory are needed, as presented in § 1.3.2; the consequences of these
results will be discussed in § 2.3.
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Figure 1.7 – Local modal density for a cuboid cavity characterized by a fundamen-
tal resonance at f0, averaged over 0.1 % and 1 % relative bandwidths. The thick
black curve is the result predicted by deriving Weyl’s approximation (1.36). The
relative bandwidth over which the average modal density should be computed is
rather 1/Q̄, which is usually much smaller than the 0.1 % value here considered.
Much stronger fluctuations should be expected in this case, making their graphical
representation by far less clear.

1.3.2 Some elements of random-matrix theory

This short summary is certainly not intended to serve as an introduction to random-
matrix theory (RMT) and the interested Reader should refer to the first three chapters
in Stöckmann’s seminal book [R81]. Nonetheless, we will give a brief overview of the
reasons why we can apply in practice the results derived in the context of quantum
chaos to our problem of field statistics in mode-stirred reverberation chambers.

RMT was developed to deal with structures where a direct solution of Schrödinger
equation is regarded as complex or simply ill-defined, e.g., when the Hamiltonian oper-
ator is unknown. This is the case for complex quantum structures, such as large nuclear
compounds or mesoscopic structures (e.g., quantum dots). A solution to this type of
problems was found by approximating the unknown Hamiltonian operator by means of
a matrix, eventually of asymptotic infinite dimensions, whose entries are assumed to
follow specific probability distributions [R92]. This idea is directly related to a previous
and very successful approach, namely statistical mechanics, where in a similar man-
ner the problem of studying the (thermo)dynamics of a large collection of interacting
particles was solved by considering a random description of the state variables of the
particles. The drive in these approaches is not having a fine-level information of the
system at the scale of the individual elements it is composed of: the focus is rather on
its macroscopic behavior, described by means of statistical quantities related to the sta-
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tistical moments of physical quantities of interest and in general by means of probability
distribution functions.

RMT has been widely successful in this respect, and at least in its basic idea sur-
prisingly simple; the same cannot be said for the mathematical details. The struc-
tural similarity existing between Helmholtz and Schrödinger equations has motivated
studies comparing the results predicted by RMT to those observed in microwave ex-
periments [R82]. It is important to notice that a major difference between these two
equations is the absence of an Hamiltonian operator in Helmholtz equation: the struc-
ture is the same, but the lack of an Hamiltonian hinders the drawing of a direct parallel
between the two equations. It is for this reason that the application of RMT to cavities
where classical waves (of any nature) propagate had virtually to wait for a fundamen-
tal piece of work, namely the Bohigas-Giannoni-Schmidt conjecture [R6], where it was
postulated that the results of RMT should apply to any complex system. A number of ex-
perimental validations have confirmed this conjecture, which is today widely accepted
as a physical fact. Of particular interest for the EMC community are the works dealing
with microwave cavities, i.e., unstirred reverberation chambers, where the accuracy of
the prediction of RMT was proven beyond any doubt (e.g., [R82]).

The rationale behind recalling these points is that the nomenclature used in RMT
is somewhat cryptic, with definitions that make sense in the context of quantum chaos
without having any correspondence in classical wave theory. The apparent validity of
the Bohigas conjecture allowed a direct transfer of the RMT ideas from the former to
the latter, hence the potentially confusing terminology.

In this framework, we need to recall that RMT is based on universality classes al-
lowing to define fundamental symmetry properties of the random matrix approximation
of the Hamiltonian, according to fundamental physical properties of the system under
consideration, e.g., energy conservation, reciprocity, etc., independently from the fine
details of the system. In this respect, we will consider two configurations of practical
interest, the case of integrable systems, also referred to (improperly) as the Poissonian
ensemble [R5], and that of the Gaussian Orthogonal Ensemble (GOE) [R81], charac-
terized by time-reversal invariance, i.e., energy conservation. A precise definition of the
first class is apparently not yet available outside the context of quantum chaos, but the
analogy with microwave structures is still maintained. The important point to consider
is that under the category of integrable systems is considered any system that do not
present any trace of the features of wave-chaotic systems, in particular level repulsion
and of course exponential sensitivity to initial conditions. In practice, the fact that fre-
quencies of resonance can cross each other’s path when a dynamical perturbation (stir-
ring) is operating, is a direct measure of absence of a fully chaotic behavior. Integrable
systems are actually regarded as an extreme case of non-chaotic systems, whereas in
practice a certain amount of chaos is often observed [R29]. In practice, completely
empty rectangular cuboid cavities are a good example of integrable systems, while the
inclusion of a scatterer spurs partially chaotic responses as soon as its dimensions are
comparable to the wavelength. The GOE provides the other extreme representation for

Large cavities in a harmonic steady state



1.3 - Random spectral models 25

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

p
ξ
(x

)

GOE ensemble

Poisson ensemble

Figure 1.8 – Nearest-neighbor
spacing probability density func-
tions for an integrable and a
GOE system, normalized to the
ensemble-average spacing.

the ideal case of a fully chaotic system. It should be clear that the notion of integrable
system is by no means related to the idea of degeneracy in the frequencies of resonance
of a cavity, as in the case of an empty rectangular cavity with widths in rational propor-
tion. Even in the case of irrational ratios, such a system will present the same behavior
than any other integrable system.

We will limit our analysis to the modal spacing, defined as

si = fi+1− fi , (1.45)

where si can be regarded, according to RMT, as the i-th realization of a random vari-
able s, the probability density functions of the normalized nearest-neighbor spacing
ξ = s/s̄, with s̄ = 1/mW the average nearest-neighbor spacing between adjacent
modes, are [R81]

pξ(x) = e−x , (1.46)

for a Poisson ensemble and

pξ(x) =
π

2
xe−πx2/4, (1.47)

for the GOE case. We are thus confronted to either an exponential distribution or a
Rayleigh one with a parameter σ2 = 2/π. These two functions are plotted in Fig. 1.8
where it is clear that the nil probability of superposed modes in chaotic systems is a
direct consequence of level repulsion.

Two major differences can be noticed in these functions and will have a major im-
pact on the statistics of the local modal density (see § 1.3.1): 1) for chaotic systems, the
modal spacing is decidedly less dispersed than for an integrable system, with a proba-
bility distribution presenting a mode (peak) close to the average spacing ξ = 1; 2) for
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an integrable system, it is clear that modes can come in clusters due to a high proba-
bility of superposition [R5], so that in order to maintain a fixed average spacing, the
clusters must be relatively isolated one from the other, as justified by the longer expo-
nential tail. We can refer to this phenomenon as modal depletion, i.e., the local lack of
resonant modes, and it can be conjectured that the probability of incurring into what
are often regarded as outliers [R42] can be explained by this phenomenon. In other
words, it is a natural and inevitable phenomenon in an integrable system, whereas it
should be expected to be less likely in chaotic systems.

According to the type of system we are dealing with, a higher probability of observ-
ing a wider nearest-neighbor spacing has a direct impact on the number of modes that
can be observed in a fixed bandwidth, as will be recalled in § 2.3.

As already recalled, practical systems are often in between these two extreme con-
figurations, although a Poisson ensemble behavior should be expected in the lower
frequency range when dealing with rectangular cavities: this result holds as long as
eventual scatterers in the cavity are electrically small, after which the system moves
gradually towards a chaotic one, as shown experimentally in [R82]. Several meth-
ods have been devised to assess the degree of chaoticity of a cavity: in the context of
this work, we will restrict our discussions and computations to the two extreme classes
already introduced.

RMT is an asymptotical theory capable of accurately predicting the statistical prop-
erties of the spectrum of a system (here the frequencies of resonance of a cavity) as long
as it permits a sufficiently large number of stable states. It should be clear that RMT
cannot pretend to be exact when the electrical dimensions of a cavity become small,
i.e., in its lower frequency range where it mainly behaves as a high quality factor res-
onator, allowing only a very limited number of resonances. Hence, RMT can be applied
successfully even at frequencies below the LUF, since the modal density is typically high
enough to justify a statistical description.

1.3.3 Correlation of the modal coefficients

Random spectral models are typically based on axiomatic assumptions on the probabil-
ity density functions of the modal parameters. A further difficulty is deciding whether
these parameters should be regarded as independent random variables or correlated
ones. This issue has been the focus of theoretical investigations for the frequencies
of resonance, as discussed in the previous section; conversely, modal coefficients are
typically assumed to be independent without any proof: e.g., see [R90].

The random nature of the modal coefficients can appear due to a number of random
processes, of which the random positioning and orientation of a source is of practical
interest. This problem has recently been considered in [J8], where the source was as-
sumed to have no impact on the modal topographies of the cavity under analysis; this
assumption allows separating the randomization effects of changing boundary condi-
tions due to moving sources, from those of the modification of the modal coefficients

Large cavities in a harmonic steady state



1.3 - Random spectral models 27

for a changing set of equivalent current distributions. In practice, these two phenomena
are intertwined and cannot be separated. The question asked here is whether a random
positioning of the current distributions is sufficient to assume uncorrelated modal coef-
ficients.

The analysis presented in [J8] is based on the statistical analysis of the projection
(1.16), and more specifically on the computation of its covariance matrix elements

σ2
i j = 〈γiγ̄ j〉, (1.48)

where the independence assumption implies σ2
i j = σ

2
γδi j . The use of a common vari-

ance σ2
γ translate the assumption of a uniformly sharing of the total energy over all of

the available modes, which is reasonable in the case of an ensemble of sources, as it is
the case here, since the changing nature of the source can be expected to sweep all of
the positions/orientations that will lead to an effective excitation of all the modes with
the same intensity.

In practice, recalling (1.16)

σ2
i j =

∫

Ω
dr e†

i (r ) ·
∫

Ω
dr ′ C (r , r ′) · e j(r ), (1.49)

where C (r , r ′) can be referred to as the coupling dyad, defined as

C (r , r ′) =
¬

J e(r )J
†
e(r
′)
¶

. (1.50)

The coupling dyad is basically the covariance matrix of the scalar components of the
current distribution of the sources, submitted to random orientation and positioning.
Since the coupling dyad operates in (1.50) as a kernel weighting in the orthonormality
relation (1.14), the condition (1.48) would be valid as soon as the inner integral in
(1.49) did not alter the modal topographies e j(r ).

In [J8], it was shown that this requirement is satisfied for a coupling dyad with
spherical symmetry (isotropy), unpolarized, i.e., diagonal, and invariant with respect
to the space variables. These conditions are satisfied only when the position and orien-
tation of the sources have no preferential value over the entire set of possible positions
and orientations.

Since these conditions are typically valid in practice, particularly in EMC reverber-
ation chambers, equipped with complex-shaped stirrers acting as source randomizers,
the modal coefficients can be assumed to be uncorrelated. The extension to indepen-
dence is less trivial but can be simplified by recalling that if the modal coefficients could
be modelled as Gaussian-distributed random variables, then uncorrelation would rhyme
with independence. It happens that this assumption is systematically taken for granted
[R90], but without any formal proof, to the best of our knpowledge. In fact, this as-
sumption is formally correct only in the case of chaotic ensembles [R81]. We will not
go further on this topic, but it is clear that the actual statistics of the modal coefficients
are far from a closed subject of investigation.
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1.4 Random plane-wave spectra

A close observation of (1.15) shows that the main limitation of random spectral mod-
els is the absence of information about the behaviour of the modal field topographies
{en(r )}; while this is not a fundamental problem when modelling the field behaviour at
one single position, it hinders any attempt at extrapolating its spatial evolution. Spatial-
related quantities are of interest in a number of applications, but for the special case of
EMC, spatial uniformity is the main quantity of interest.

The main approach used to cope with this issue consists in extending the random
spectral approach to modal topographies. The eigenfunctions {en(r )} are now regarded
as random processes, by treating them as random functions of the spatial coordinate
r ; more generally, a space-frequency approach can be applied, modelling the eigen-
functions as random functions of the 4-dimensional coordinate (r ,ω). This type of
description is reminiscent of the statistical modelling discussed in § 1.2.3, where phys-
ical phenomena are no more directly accessible but behave as a hidden-variable model
where only a few observables allow to probe the underlying physics of the system by
observing its behaviour.

How to proceed with this further approximation? The simplest approach consists
in expanding the modal topographies {en(r )} into a suitable basis of functions, i.e., a
further spectral expansion. The main difference with respect to what we did in § 1.2.2
is that this new basis need not present any specific physical significance as it was the
case when using the eigensolutions of Helmholtz equation. In that case the modal
expansion bore physical significance and naturally yielded the concept of degrees of
freedom associated to the number of resonant modes.

This further expansion is rather a mathematical technique to simplify the descrip-
tion of random processes depending on a multidimensional variable, the modal to-
pographies. In this respect, any choice of basis functions is equivalent, as long as they
are capable of effectively representing realistic modal topographies. Among the several
potential candidates that are up to this task, the Fourier basis is perhaps the simplest
option. First of all, it is likely the most widely studied basis, with a number of specific
properties relating spatial and spectral representations [R59, R61]. Second, the spatial
and spectral representations of a vector function, respectively g (r ) and g̃ (k) are linked
through a Fourier-transform pair,

g (r ,ω) = F−1{g̃ }(r ,ω) =

∫

Cd

g̃ (k,ω)e−jk·r dk (1.51)

g̃ (k,ω) = F{g }(k,ω) =

∫

Cd

g (r ,ω)e+jk·r dr , (1.52)

with d the dimensionality of the space in which the cavity is defined. The availability of
numerical codes based on fast Fourier transforms implies that this choice is numerically
efficient.
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Third, the Fourier kernel does have a direct physical meaning of interest : it repre-
sents a plane wave propagating along the direction k corresponding to the a propaga-
tion constant ‖k‖. This fact is one of the main reasons for its large use in the modelling
of wave-propagation phenomena, from Fourier optics [R57] to X-ray diffraction from
crystals [R28]. This property is of fundamental importance for the understanding of
the phenomena occurring within a cavity, as discussed in the next chapter: multiple-
incidence scenarios become apparent through the use of Fourier basis. Fourier spectra
applied to functions of the spatial variable are therefore typically referred to as plane-
wave spectra (PWS), where the original function is represented as a superposition of
plane waves propagating along a set of directions [R12].

Finally, plane-wave spectra allow a direct access to the physical phenomena under-
pinning the appearance of resonant patterns, i.e., the modal topographies as discussed
in § 1.4.2.

Getting back to the idea of using the Fourier kernel as a complete basis, we need to
acknowledge that this is a complete basis capable of representing any field distribution
only if the entire domain of the spectrum if accessible, i.e., any value of the variable k.
In practice, the value taken by k provides important physical information about the na-
ture of the plane wave associated: the spherical surface defined by ‖k‖= k0 identifies a
subregion of the reciprocal space representing plane waves propagating at the speed of
light set by the medium filling the cavity. Other values cannot be associated to propa-
gating waves, but are rather related to the reactive components of the spectrum [R12],
thus localized to a region of space attached to sources, primary or secondary (scatter-
ers). It is therefore reasonable to assume a plane-wave spectrum mainly composed of
propagating contributions, i.e.,

ẽn(k) =
◦
en(k̂)δ(k− k0), (1.53)

where it is sufficient to specify the direction of propagation of the plane waves, since
they all share the same wavenumber k0. The function

◦
en(k̂) therefore contains the

entire information needed to reproduce the original spatial distributions, as

en(r ) =

∫

4π

◦
en(k̂)e

−jk0 k̂·r dk̂. (1.54)

Being solely dependent on the angular direction k̂,
◦
en(k̂) is sensibly referred to as

the angular spectrum in some texts.
Although (1.51) seems to suggest that the plane-wave spectrum of the overall field

distribution can be directly accessed from the original spatial distribution, it should
be clear that there is a mismatch: Fourier-transform pairs are defined for an infinite
support, whereas field distributions can only be defined within the cavity itself. Direct
application of a spatial Fourier transform as done in (1.51) would require a continu-
ation of the spatial distribution to the outside of the cavity. The choice of setting the
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outside field to zero would imply an extended discontinuity over the frontier of the cav-
ity, which would be translated in the plane-wave spectrum through the appearance of
reactive components, required to represent local discontinuities, thus leading to fictive
contributions to the spectrum. While the passage from the plane-wave spectrum to the
spatial distribution can be carried out by means of a Fourier transform, the opposed
passage is much more critical and requires estimation methods not relying on the or-
thonormality of the Fourier kernel, such as those at the base of MUSIC and ESPRIT
algorithms [R71, R68].

We have introduced these tools and ideas in the first place to cope with our inability
to predict the eigenfunctions {en(r )}. Defining a plane-wave spectrum representation
can be a simpler task, since the entire spatial distribution is now captured by a set
of coefficients, potentially finite (see § 2.1). The question is how to choose a plane-
wave spectrum in such a way as to represent a realistic field distribution in a complex
medium? Two answers will be considered in § 1.4.1 and § 1.4.2, both relying on wave
propagation in media complex enough as to make the idea of a random ensemble ac-
ceptable.

1.4.1 Diffuse-field approximation

The first solution to the problem of modelling the field distribution in a complex me-
dia is based on a very pragmatic observation. Let us consider a medium structured
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Figure 1.9 – A multiple-scattering propagation
scenario, due to the presence of a large number
of small scatterers interacting with each other,
excited by a single incident wave. Each scat-
terer contributes to the overall non-coherent
field with an elementary plane-wave spectrum.

in such a way as to force any in-
coming wave to undergo a very
large number of scattering phe-
nomena. Reverberating cavities are
an example of such media, but it is
more intuitive to consider the ex-
ample given in Fig. 1.9, where scat-
terers of lateral dimensions well
smaller than a wavelength are dis-
tributed in a random manner. Ran-
domness is here required in order
to avoid the appearance of a dis-
crete set of eigensolutions, or prop-
agation modes, that would be pos-
sible in the case of periodic struc-
tures [R8].

When dealing with this kind of
media, as an incoming plane wave
interacts with the first scatterers
the portion of the wave directly af-
fected by each scatterer will be dis-

Large cavities in a harmonic steady state



1.4 - Random plane-wave spectra 31

tributed over a continuous set of directions through Rayleigh scattering [R38]. Each
scattering interaction can effectively be represented through plane-wave expansions, as
schematically depicted in Fig. 1.9, making each scatterer a secondary source of plane
waves propagating along a larger number of directions than the original one, with each
event yielding a contribution

◦
e(n)(k̂) to the overall plane-wave spectrum.

This scenario is reiterated for all of the scatterers, intuitively leading to a pragmatic
conclusion: in a medium presenting a number of scattering events large enough, with
potentially multiple-interaction events (see Fig. 1.9), an observer deep enough within
the medium would be unable to identify the direction of arrival of the original wave,
since exposed to a very large number of waves providing each one a fraction of the
original energy, propagating along any possible direction of arrival. This concept is
usually referred to as diffuse-field approximation and it has a prominent role in wave
propagation through complex media, from stellar nebulae to ultrasound imaging [R38].

Modelling the complex amplitudes of the overall plane-wave spectrum as a collec-
tion of iid random variables, this state of propagation can be defined by the observation
that the Poynting vectors Si of each wave satisfy the following conditions, similarly as
to what is done in the analysis of percolation [R56]

‖ 〈S(ω)〉 ‖ �
p




‖Si(ω)‖2
�

(1.55)

with

S(ω) =
∑

i

Si(ω), (1.56)

implying that the net flux of power across any surface is negligible with respect the
root-mean-square flux contributed by each wave.

The passage from a relatively unperturbed free-space-like propagation to a diffuse-
field one implies some sort of spatial transient; this problem is at the core of the
radiative-transfer theory, first introduced to understand how light propagating through
stellar nebulae is affected [R10]. In the context of this dissertation, our interest will be
limited to the properties of diffuse-field propagation under a spatial steady-state con-
dition, i.e., when the field has lost any trace of the original coherence of the incoming
wave.

This approximation allows a strong simplification of the problem that has led us to
use plane-wave spectra in order to represent modal topographies. To understand them,
let recall that under a diffuse-field approximation the overall field is expressed as a
superposition of the contributions generated by an infinite number of scattering events
(see Fig. 1.9)

E(r ,ω) =
∞
∑

n=1

∫

4π

◦
e(n)(k̂,ω)e−jk0 k̂·r dk̂, (1.57)
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where each such event contributes with a plane-wave spectrum
◦
e(n)(k̂,ω), i.e., an over-

all plane-wave spectrum

◦
E(k̂,ω) =

∞
∑

n=1

◦
e(n)(k̂,ω). (1.58)

This last consideration allows a direct derivation of the statistical properties of
diffuse-field scenarios. If we assume that each contribution

◦
e(n)(k̂,ω) is statistically

independent from the others, and of similar intensity, then the central-limit theorem
allows stating that

◦
E(k̂,ω) will behave as a Gaussian process, by virtue of the infinite

superposition of iid contributions propagating along a direction k̂, as coming from all
of the scattering events [R38].
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Figure 1.10 – Random-walk in-
terpretation of the complex ampli-
tude of the plane-wave spectrum
along the direction k̂. The field is
here a scalar complex quantity, for
the sake of simplicity.

In order to invoke this result, it is necessary
to have at least an heuristic explanation of why
the elementary contributions

◦
e(n)(k̂,ω) can be

regarded as iid and independent of the direc-
tion k̂. To this end, we can make reference to
Fig. 1.9: it is clear that after a relatively large
number of interactions, the field measured in
proximity of the observer will be dominated by
contributions from scattering events occurring
at close range. These events will be very likely
excited by incoming contributions generated by
previous scattering events and so on. Since each
event is capable of scattering an incoming wave
over a large fan of output directions, multiple-
scattering events can be reasonably expected to
provide a plane-wave spectrum statistically in-
dependent of the direction of observation, i.e.,
stationary in k̂, or isotropic. Counter-examples
of plane-wave spectra with anisotropic statistics

can be expected for structures where a dominant direction of propagation can be iden-
tified, such as periodic media, where the periodicity of their structure implies a quan-
tization of their plane-wave spectrum, thus leading to a reduced number of permitted
directions of propagation, or propagation modes [R8].

The Gaussian nature of a diffuse field can be explained by invoking the central-limit
theorem, but having oriented our whole discussion under a harmonic steady-state con-
dition, complex fields are to be expected. The phase shift of the plane-wave spectrum
can also be shown to be uniformly distributed over [0,2π], by virtue of the central-limit
theorem [R26].

Propagation through multiple-scattering random media can be effectively treated
by means of random-walk models, where the overall plane-wave spectrum for a given
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direction can be visualized as a random path over the complex plane, as shown in
Fig. 1.10: each elementary contribution to the overall plane-wave spectrum is repre-
sented as a random phase shift and amplitude. The statistics of this kind of processes has
been studied for a long time, first to explain Brownian motion [R20] and more recently
in fields such as optics, to model light propagation through diffusive media [R26].

The last property usually associated to diffusive media is that of depolarization: the
plane-wave spectrum of the overall field will be effectively non-polarized, presenting a
polarization matrix [R93], i.e., the covariance matrix of the scalar components of the
plane-wave spectrum,

P (k̂,ω) =
D ◦

E(k̂,ω)
◦
E†(k̂,ω)

E

(1.59)

proportional to the identity matrix, hence iid scalar components. Again, the reasons
for this outcome are quite intuitive when looking at Fig. 1.9 and recalling that actively
propagating waves must present a polarization normal to their direction of propagation.
Since the directions of propagation are uniformly distributed over 4π steradian, the
polarization vectors are also bound to behave in the same manner.

A diffuse-field approximation therefore implies the following properties:

1. Depolarization

P (k̂,ω) =
S ◦

E
(ω)

3
1, (1.60)

with S ◦
E
(ω) the spatial spectral power density of the plane-wave spectrum, inde-

pendent of the direction k̂.

2. Circular Gaussian probability distribution for any scalar component along a di-
rection ûn, with zero average and a variance equal to the spatial spectral power
density S ◦

E
(ω)/3

◦
E(k̂,ω) · ûn ∈ N (0, S ◦

E
(ω)/3). (1.61)

3. Angular invariance of the probability distributions (isotropy) .

The overall field is therefore described as an incoherent process, analogous to ther-
mal radiation [R93]. This representation of the field directly implies field uniformity in
space, i.e., a spectral intensity independent of the position of the observer. Indeed, the
spectral intensity SE of the electric field

SE(r ,ω) =
¬

‖E(r ,ω)‖2
¶

=

∫

4π

∫

4π

D ◦
E†(k̂1,ω)

◦
E(k̂2,ω)

E

e+jk0(k̂1−k̂2)·r dk̂1dk̂2,

(1.62)
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Figure 1.11 – An example of a speckled field distribution (amplitude shown). The
coherence distance is close to a wavelength and clearly related to the average
dimension of the field spots.

for which the hypothesis of iid plane-wave contributions implies

D ◦
E†(k̂1,ω)

◦
E(k̂2,ω)

E

= S ◦
E
(ω)δ(k̂2− k̂1), (1.63)

where

S ◦
E
(ω) =

D

‖
◦
E(k̂,ω)‖2

E

(1.64)

is the spatial spectral power density, i.e., the average power density of the plane-wave
spectrum. Hence

SE(ω) = 4πS ◦
E
(ω) ∀r ∈ Ω, (1.65)

i.e., a statistically uniform intensity of the electric field over space. In a similar manner,
it can be shown that the scalar components of the electric field have the same average
intensity,

SE(ω) =
¬

|E(r ,ω) · p̂|2
¶

p̂ ∈ 4π (1.66)

yielding

SE(ω) =
¬

‖E(r ,ω)‖2
¶

= 3SE(ω). (1.67)

The most visual product of a diffusive medium is a field distribution known under
the name of speckle distribution, of which an example is given in Fig. 1.11. It results
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from the superposition of a large number of plane waves propagating along random
directions, with random complex amplitude governed by a circular normal distribu-
tion [R26]. This kind of field distribution can be a nuisance in imaging techniques
based on coherent illumination, while its generation is the goal of any reverberation
chamber used for EMC [R34] as well as acoustic tests [R44]. The existence of me-
dia for which the diffuse-field approximation is valid is also at the base of the ideas
discussed in § 3.

The explanations introduced so far to justify the properties and use of the diffuse-
field approximation have been based on the case of a plane wave propagating through
a collection of small scatterers. Its extension to a cavity passes through the acknowl-
edgement that the phenomena occurring in the former case are very similar to those in
a reverberating cavity. As a matter of fact, the presence of highly reflective boundaries
ensures that any locally plane wave would be reflected a large number of times be-
fore seeing its intensity becoming negligible; therefore, for a given original direction of
propagation, the set of plane waves generated by the subsequent reflection/scattering
events will yield a much larger number of inter-dependent plane waves, oriented along
a potentially very large number of directions and polarizations. Similarly to the case of
multiple-scattering events in collections of scatterers, the superposition of a large num-
ber of independent contributions can be expected to lead to a plane-wave spectrum
behaving as for a diffuse-field configuration, thanks to the central-limit theorem [R44].

This qualitative picture of a large cavity as a multiple-scattering rich environment
is often invoked to justify the use of the diffuse-field approximation; though very ef-
fective and simple, it is all too often forgotten that it is indeed an approximation that
is only asymptotically valid for an increasingly large number of independent degrees
of freedom. A number of properties expected for diffusive reverberation chambers are
therefore based on a model which is admittedly never fully satisfied and for which very
qualitative arguments are made to justify its use. Quantitative estimations of the errors
involved in the use of this approximation for not fully diffusive media are usually not
considered, to put it mildly. The extent to which the diffuse-field approximation can be
reasonably invoked is discussed in § 2.1.

The diffuse-field approximation has been widely used in acoustics to model the
properties of the field generated within a reverberation chamber, especially for the pre-
diction of the accuracy of spatial-averaging techniques [R51, R52, R74]. This applica-
tion is revisited in § 2.1, where the diffuse-field approximation is modified to take into
account the concept of a finite number of degrees of freedom.

Independently from its limitations, the diffuse-field model provides important in-
sights in the asymptotic properties of complex media, which can be used to establish
reference results that are independent from the fine details of implementation of a
diffusive medium. Apart from the plane-wave spectrum and spatial field distributions
already discussed, universal spatial correlation functions can also be derived, as defined
in § 1.3. For the case of the electromagnetic field, these functions have been studied in
details in [R32, R35] and will be briefly recalled in the following.
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Figure 1.12 – Expansion of two vec-
tor fields into longitudinal, Eρ(r ,ω)
and transversal components, Eν(r ,ω)
andEη(r ,ω), for the computation of
their spatial-correlation functions.

With reference to Fig. 1.12, non-trivial spatial-correlation functions for the electro-
magnetic field can be shown to be limited to just four cases

1. Between vector electric fields

SE(ω)ρE(r 1, r 2,ω) =
¬

E†(r 1,ω) · E(r 2,ω)
¶

. (1.68)

2. Between the transversal scalar components of the electric field

SE(ω)ρt(r 1, r 2,ω) =
¬

E∗ν(r 1,ω)Eν(r 2,ω)
¶

, (1.69)

as well as along the η components.

3. Between the longitudinal scalar components of the electric field

SE(ω)ρl(r 1, r 2,ω) =
D

E∗ρ(r 1,ω)Eρ(r 2,ω)
E

. (1.70)

4. Between orthogonal transversal scalar components of the electric and magnetic
field

SE(ω)
ζ0

ρm(r 1, r 2,ω) =
¬

E∗ν(r 1,ω)Hη(r 2,ω)
¶

, (1.71)

with ζ0 the wave impedance of the filling medium in the cavity.

The above results are based upon the properties of spatial uniformity and depolar-
ization valid under a diffuse-field approximation. Dual expressions can be derived by
considering the magnetic field instead of the electric field. Any other type of spatial
correlation of field components is identically equal to zero.
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Figure 1.13 – The four spatial correlation functions introduced in (1.72)-(1.75),
as functions of the electrical distance d/λ.

All these spatial correlation functions can be readily computed by applying the
statistical properties associated with the diffuse-field approximation, as expressed at
page 33, yielding [R32, R35]

ρE(d,ω) = sinc(k0d) (1.72)

ρl(d,ω) =
3

(k0d)2
�

sinc(k0d)− cos(k0d)
�

(1.73)

ρt(d,ω) =
1

2

�

3ρE(d,ω)−ρl(d,ω)
�

(1.74)

ρm(d,ω) = −
3

2jk0d
�

sinc(k0d)− cos(k0d)
�

, (1.75)

with d = ‖r 2− r 1‖.
The four spatial-correlation functions are shown in Fig. 1.13 against the electri-

cal distance d/λ. The electric-magnetic correlation ρm(d,ω) being purely imaginary,
its imaginary part is plotted. Spatial-correlation functions play a fundamental role in
harmonic-driven cavities since they allow estimating the number of independent sam-
ples that can be extracted from measurements taken at different positions (e.g., spatial
averaging), or the statistical coupling between two devices (e.g., mutual influence).
These functions will also be shown to be at the basis of the generation of deterministic
wavefronts within large cavities, as discussed in § 3. In all of these cases, spatial-
correlation functions quantify the idea that having only access to the propagative com-
ponents of the plane-wave spectrum the smallest concentration of energy that can be
generated within a cavity (and in free space, too) is limited to a spot of about half a
wavelength in width, when measuring the spot between two consecutive zero cross-
ings. This limitation goes under the name of diffraction limit (in free space) and is at
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the origin of the impossibility of generating separate adjacent spots of energy without
having them merged into a single contiguous region, if these spots are closer than half
a wavelength.

1.4.2 A hybrid approach

The diffuse-field approximation is an effective response to the need of predicting in a
simple manner the behaviour of fields generated within a large cavity. Unfortunately,
results based on its use are bound to predict an ideal behaviour that is never fully
met in practical configurations (see § 2). The most disturbing implication of a diffuse-
field configuration is that it assumes the existence of an infinite number of degrees of
freedom within a system of finite energy and extent.

The actual limitations of the diffuse-field approximation can be better grasped by
means of an alternative approach which is halfway between a modal expansion and the
diffusive approximation. Basically, it consists in expanding each modal topography into
a plane-wave spectrum

en(r ) =
Nn
∑

p=1

βnpe−jk0 k̂np·r , (1.76)

where Nn is the number of plane waves needed to reproduce en(r ) and βnp are the
vector coefficients associated with this expansion. The modal spectra in (1.76) are
assumed to be discrete. There are good reasons for this choice, and we will try to

np+1bbnpbb

W
npxx

^

Figure 1.14 – A schematic illustration of
the how the plane-wave spectrum of a
modal topography en(r ) is determined
by the boundary conditions of a cavity.

make our point clearer in the rest of this
section. Although the same approach can
be straightforwardly extended to the case
of continuous plane-wave spectra, we will
stick to the idea of discrete spectra for the
sake of simplicity.

First of all, we need to recall that for
a given field distribution to self-sustain it-
self (resonance condition), its plane-wave
spectrum must be defined in such a way
to have its individual plane waves inter-
fere constructively [R44]; this is the same
idea at the base of any electronic oscilla-
tor, and is sometimes referred to as phase
congruence. Constructive interference,
leading to resonance, does not necessar-
ily require periodic paths, nor a discrete
plane-wave spectrum. But in the case of
simple geometries for the cavity bound-
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aries, especially if approximated by planar surfaces, this condition holds true. In all
other case, even though no periodicity can be observed (chaotic cavities), constructive
interference stays a fundamental condition for the appearance of resonances. For the
sake of simplicity, we will limit our discussion to regular cavities, where plane waves
generating a resonant pattern periodically travel along the same close path or orbit.
These concepts are schematically illustrated in Fig. 1.14 and allow stating that the am-
plitude of each plane wave must be ideally identical in the case of a lossless cavity. A
more general description will be considered at the end of this section.

Second, recalling that only the modes excited around their frequency of resonance
contribute to the overall field distribution, and assuming that the total energy stored in
the cavity is evenly shared, we can write

ψn(ω)en(r )' βn

Nn
∑

p=1

ξ̂npe−jk0 k̂np·r , (1.77)

for the M dominant modes, while ξ̂np are now complex unit vectors modelling the
polarization of each plane wave, characterized by a uniformly distributed random phase
and a unpolarized state. Coherently with the above discussions about the need, for
a resonant mode, of ‖βnp‖ ' βn,∀p ∈ [1, Nn], the intensity of the plane waves is
controlled by a single parameter.

Substituting (1.77) into (1.15), the plane-wave spectrum of the overall field distri-
bution is derived as

E(r ) =
M
∑

n=1

γnβn

Nn
∑

p=1

ξ̂npe−jk0 k̂np·r , (1.78)

i.e., a plane-wave spectrum composed of groups of contributions associated to several
modes. Our qualitative discussion about the inevitable causal links existing between
plane waves belonging to the same mode imply that they should be treated as correlated
random variables. More precisely, they should not be treated as random variables at all,
since a priori knowledge of the geometry and boundary conditions of the cavity allow
a perfect prediction of the entire causal chain of plane waves generated by any one of
them. This idea is illustrated in Fig. 1.14, where the coefficients of two consecutive
plane waves are directly related to the reflection coefficient of the cavity boundary. For
the sake of simplicity, we will consider planar boundaries, thus neglecting the possibility
of a more complex and general scattering scenario. In any case, it would also be possible
to use a similar approach, establishing an iterative relationship

βnp+1 = Rp(ξ̂np)βnp, (1.79)

with Rp(ξ̂np) a dyadic operator modelling the reflection experienced by the np-th plane
wave interacting with the cavity boundary, plus the additional phase-shift cumulated
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through propagation before the next scattering interaction. Due to the highly-reflective
nature of boundaries used in reverberation chambers, it is reasonable to expect

‖βnp‖ ' βn,∀n ∈ [1, Nn], (1.80)

as long as ‖Rp(ξ̂)‖ ' 1,∀ξ̂, p, as found in practice in reverberation chambers.
When considering regular cavities, a single plane wave propagates along a closed

path a number of times until its energy is dissipated. It is useful to introduce partial
plane wave coefficients β (k)np , where (k) is an integer indicating the number of time the
plane wave has completed a close orbit; the steady-state coefficients of the plane-wave
spectrum can be computed as

βnp =
∞
∑

k=1

β (k)np . (1.81)

This representation is useful when assessing the effective attenuation experienced
by a plane wave propagating along a resonant path. This can be done by relating
the quality factor of a mode to an effective attenuation coefficient αn and a resid-
ual phase-shift angle ∆ϕ resulting from an imperfect synchronization (imperfect reso-
nance) among each periodic orbit, thus yielding the following relationship between the
phasor of a plane wave at the k + 1-th and the k-th propagation cycle of an orbit of
length Ln

β (k+1)
np = β (k)np e−αLn+j∆ϕn , (1.82)

i.e.,

β (k)np = β
(0)
np

�

e−αn L+j∆ϕn
�k

. (1.83)

The attenuation αn is a homogenized coefficient taking into account the local dis-
sipation events occurring during the interaction of a wave with imperfectly conductive
boundary conditions and distributed dissipation caused by propagation losses through
the media filling the cavity. The infinite superposition of contributions from each orbit
potentially leads to a resonant build-up if αn ' 0 and ϕn ' 0, thanks to the coherent
summing up of each contribution under a harmonic excitation, resulting into steady-
state coefficients

βnp =
∞
∑

k=0

β (k)np =
β (0)np

1− e−αn Ln+j∆ϕn
, (1.84)

where the denominator of the resulting fraction shows the resonant nature/origin of
the steady-state coefficients. For a perfectly constructive interference ∆ϕn = 2mπ,
corresponding to m = Ln/λn ∈ N, where λn is one of the wavelengths at which this
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condition is satisfied (respectively, occurring at the frequency fn). In all other conditions
where the plane-wave coefficients are computed for a slightly different frequency

∆ϕ = 2
Ln

λn

�

1+
∆ f

fn

�

, (1.85)

where ∆ f = f − fn. Approximating the resonant part of (1.84) for ∆ f → 0

1

1− e−αn Ln+j∆ϕn
'

1

j2π
Ln

λn

1
∆ f

fn
+ j
αnλn

2π

, (1.86)

and comparing it with the asymptotic expansion of the functions ψn( f )

1

f 2− f 2
n

'
1

2 f 2
n

1
∆ f

fn
+ j

1

Qn

, (1.87)

leads to

αn =
2π

λnQn
, (1.88)

which links the effective attenuation coefficient to the quality factor of the mode. If the
main dissipation mechanism is in boundary interactions, then

e−αn Ln = ΓNn
e , (1.89)

where Nn is the number of boundary interactions undergoing during a full orbit of
length Ln, defining the number of plane waves making up the modal topography en(r ).
The parameter

Γe =
¬

‖R(ξ̂)‖
¶

(1.90)

is the average intensity of the reflection coefficient along a random direction of inci-
dence ξ̂ over all the boundaries. Noting Γe ' 1−δΓ

Nn =
2π

δΓQn

Ln

λn
. (1.91)

This last result is of interest, since it provides a direct estimate of the order of mag-
nitude of the number of boundary reflections occurring within a lossy cavity, and thus
allows assessing the number of plane waves maintaining a similar intensity associated
to each resonant mode.

We have seen thus far how a modal representation of the field can be recast into a
plane-wave spectrum with elementary contributions within each mode of almost similar
amplitude, as expected for overlapping modes (see § 1.3.1). In order to push further our
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analysis of the validity of the diffuse-field approximation, it is necessary to demonstrate
that these plane waves are indeed statistically independent, as required in § 1.4.1. We
have already seen in § 1.3.3 that the modal coefficients can be reasonably regarded as
independent. Computing the covariance of the plane-wave scalar coefficients

¬

βnpβ
∗
ms

¶

= δmn

¬

|βnp|2
¶

s
∏

i=p

e−jϕi = δmn

¬

|βnp|2
¶

exp






−j

s
∑

i=p

ϕi






s > p, (1.92)

implying uncorrelated plane-wave coefficients when dealing with plane wave associated
to different modes. Restricting our analysis to the case of plane waves associated to the
same mode n, their correlation coefficient becomes

ρ(n)ps =

¬

βnpβ
∗
ns

¶

q

¬

|βnp|2
¶




|βns|2
�

= exp






−j

s
∑

i=p

ϕi






s > p. (1.93)

The direct consequence of (1.93) is that |ρ(n)ps | = 1,∀p, s, n, i.e., the assumption of
statistically independent plane waves is not realistic.

This outcome is in contrast with the assumption that each mode can contribute
with a minimum number of independent plane waves [R44], e.g., assuming 8 plane
waves per mode, as would be expected for an empty rectangular cavity. This apparent
incongruence is due to the reasons already recalled in § 1.3: when considering a given
cavity, the field distribution can be treated as a random process only by considering
random sources, if the cavity is static. Under this condition, the only terms in the modal
expansion (1.15) that can be regarded as random variables are those related to the
sources, i.e., the modal weights. Therefore, for plane waves related to a same mode,
their coefficients are inevitably correlated in a deterministic manner.

In many cases, the statistical properties of random media are regarded through
the lens of ensemble theory, of interest in the case one wanted to know the average
properties of a set of random realizations of cavities of different geometrical/electrical
properties, but sharing the same macroscopic parameters, as discussed in § 1.3. If
we applied this idea to the case of the correlation matrix made up by the correlation
coefficients ρ(n)ps in (1.93), we should compute their ensemble average

D

ρ(n)ps

E

=

*

exp






−j

s
∑

i=p

ϕi







+

. (1.94)

The argument of the ensemble average is now a random walk process involving
steps with fixed length (equal to one) and random orientations within the complex
plane. This type of processes have been studied in a number of fields, but perhaps the
most relevant one is optical speckle [R26]. This type of random process has very simple
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moments as soon as the phase shifts have no preferential direction, i.e., are uniformly
distributed over the interval [0,2π]. This condition is reasonable when considering an
ensemble made up of random cavities all maintaining dimensions much larger than a
wavelength. Under these conditions

*

exp






−j

s
∑

i=p

ϕi







+

= δps, (1.95)

ultimately yielding

¬

ρ(n)
¶

= 1, (1.96)

i.e., uncorrelated plane-wave coefficients. In our opinion, the origin of the misinterpre-
tation of the statistics of plane-wave spectra generated by cavities is to be found in this
result, which does not hold for a single static configuration.

Taking into account the true nature of the statistics of the plane-wave spectrum,
the correlation matrix of the overall plane-wave spectrum in (1.78) must take a block-
diagonal shape









ρ(1) 0
. . .

0 ρ(M)









(1.97)

This outcome appears as a natural consequence of the observation of the physics
of resonant field topographies, and is fundamentally independent from the simplifying
assumptions we have used to make our reasoning simpler and, hopefully, clearer. When
comparing (1.97) with the perfectly diagonal covariance matrix expected in the case
of a diffusive approximation, the resulting differences cannot be neglected. The first
observation is that the actual number of degrees of freedom available in practice can no
longer be thought to coincide with the number of plane waves propagating within the
medium

NPW =
M
∑

n=1

Nn, (1.98)

but rather the number of modes, M . In other words, the rank of the correlation matrix
of the PWS coefficients is much smaller then its dimension, thus implying a redundant
representation. This conclusion seems to be implied in the fact that a modal expan-
sion based on Helmholtz equation’s eigenfunctions is efficient, so that any equivalent
expansion over a different basis is bound to require a larger number of spectral coef-
ficients. Hence, the latter will have to be substantially redundant, i.e., not statistically
independent.

Large cavities in a harmonic steady state



44 1.4 - Random plane-wave spectra

Clearly, this reduction in the number of available degrees of freedom has no major
effect when a very large number of modes are available in the first place. Very large
structures studied in their asymptotic regime at high frequencies will behave as pre-
dicted by the diffusion approximation. But as discussed in § 1.3.1 and demonstrated in
§ 2.2, field diffusion should not be taken for granted even though a very high modal
density were potentially available. This mismatch has led (and still leads) to a number
of wrong concepts and assumptions, particularly when cavities are employed as test
facilities, as discussed in the next chapter.

These conclusions are apparently in contradiction with Berry’s conjecture [R81],
which states that for a fully chaotic cavity a single mode implies a continuous PWS,
composed of an infinite number of iid contributions (1.3.2). His conjecture makes
sense from a propagation point of view for what are the directions of arrival of the
plane waves of a mode: the absence of periodic orbits in a chaotic cavity implies indeed
that the boundary conditions will lead to a large number of scattering interactions likely
distributed over a large number of directions of arrival. Now, the problem with this
assumption is that it cannot be verified, since it would imply generating an ensemble
of modes sharing the same macroscopic properties. In our opinion, this is an ill-defined
concept; although resonant modes can share the same frequency of resonance, quality
factor, etc, there is no way of linking two modal topographies in a causal manner,
even for dynamical systems or in the case of the inclusion of small perturbations. An
example should help here: if a single dot of perfect conductor where inserted in an
electromagnetic cavity, at a position where the cavity presents a maximum of field for
a given modal topography, the conductive dot would force the tangential component of
the field to be identically equal to zero for any polarization, because of its infinitesimal
dimensions. What would be the rational in comparing the PWS of the original modal
distribution with the one including the dot?

X
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Chapter 2

Understanding real-life cavities

To kill an error is as good a service as, and sometimes
even better than, the establishing of a new truth or fact

Charles Darwin

T HE aim of the previous chapter was to highlight the relationship existing be-
tween the widely used diffuse-field approximation and non-asymptotic mod-
els of wave propagation within reverberating cavities. The underlying idea
was to instill doubts about the wisdom of applying asymptotic approximate

models to physical systems operated at frequencies where they cannot in any manner
provide a sufficiently large number of degrees of freedom. As it will be argued in this
chapter, the faith of most reverberation chamber users in the validity of the diffuse-field
approximation has led to rather imaginative explanations of the non-idealities observed
when operating these tools.

It is therefore natural to ask the following question: is there a way of predicting
under what conditions the field measured within a cavity is well approximated by the
diffuse-field paradigm? Recalling that the diffuse-field hypothesis requires a large num-
ber of degrees of freedom and that this number increases on average with the electrical
dimensions of the cavity, the previous question is typically translated in practical terms
as : is there a minimum frequency starting from which the diffuse-field hypothesis
works well? If yes, how to predict it?

The existence of such a minimum frequency is currently taken for granted, as an
evidence, despite the fact that no precise definition or proof is available, to our knowl-
edge. Referred to as lowest usable frequency (LUF) in EMC or Schröder’s frequency
in acoustics, theoretical or experimental knowledge of this minimum frequency is of
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paramount importance to make any application of large cavities feasible. Hence the
physical and practical interest in its study, as considered in this chapter.

The alternative idea of using random models mimicking a diffusive condition while
enforcing a limited number of degrees of freedom will be applied in this chapter to
several problems. All of them share the necessity of understanding why large cavities
may sometimes behave in a manner that is not accounted for by diffuse-field models,
e.g., presenting statistical anomalies. The simple models introduced in the previous
chapter will be herein developed into theories showing inherent errors of interpretation,
providing explanations for the non-ideal behaviour of large cavities with respect to
the predictions of diffuse-field models. It should be clear from our approach that our
motivation is not the use of complex mathematical tools; we are rather guided by the
need of understanding the physical reasons for the actual behaviour of these peculiar
systems. The results of these analyses will appear to be surprisingly simple in shape,
bearing clear physical insights in the physical limitations of large cavities.

2.1 Spatial ergodicity

The conclusions from § 1.4.2 suggest the idea of considering an alternative random PWS
model, where rather than struggling with correlated plane waves, an equivalent PWS
composed of independent terms could be used. This straightforwardly implies using a
finite number of independent plane waves, equal to the number of modes accessible at
the working frequency. In the case of a pressure field p(r ,ω) observed under harmonic
excitation, the above ideas can be expressed as

p(r ,ω) =
Nd
∑

p=1

γpe−jk0 k̂p·r . (2.1)

The single plane waves of the finite PWS in (2.1) are assumed to follow exactly the
same statistics of the infinite PWS associated to a diffuse-field approximation (§ 1.4.1),
but the number of plane waves is regarded as finite and equal to Nd . A finite number
of degrees of freedom is a condition more consistent with the physics of a finite-energy
bounded medium.

A word of caution is necessary : the field distribution (2.1) should not be expected
to be equivalent in a deterministic sense to that associated to random PWS with block-
diagonal correlation matrices. The equivalence operates on two levels: 1) the number
of degrees of freedom is the same as well as 2) all the statistical momenta of the PWS
terms, including the spatial-correlation functions of the overall pressure field as defined
in § 1.4. In this way, a statistical equivalence makes sense and can be defined without
ambiguity. These ideas were introduced in [J14] in the case of acoustic reverberating
rooms for the purpose of studying how far the equivalence between spatial and ensem-
ble averages of the mean-square pressure can be stretched.
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This model can be applied to enforce the availability of only a finite number of de-
grees of freedom, while maintaining most of the properties of the diffuse-field approxi-
mation. It is therefore possible to study how the statistics of field-related quantities can
be expected to appear in a more realistic description; such an approach is of interest not
only in the lower-frequency range of operation of reverberation chambers, where a lim-
ited number of resonant modes exist, but also higher frequencies where the probability
of observing a lower number of modes than expected on average is far from negligible.
This last issue is discussed in § 2.3, and can be regarded as a first step towards a better
understanding of the physical reasons of statistical anomalies (outliers) observed even
at high frequencies where the diffuse-field approximation is taken for granted.

Spatial averaging is widely used as an approximate technique for assessing the av-
erage mean-square pressure [R74, R51, R52, R53]

µp2(ω) =
¬

|pω(r ,ω)|2
¶

(2.2)

within a cavity, a quantity that was shown to be independent of the observer’s position in
(1.65). This quantity is fundamental when estimating the total acoustical power gener-
ated by a source, of practical importance in noise and absorption measurements [R44].
Average mean-square pressure should be assessed by means of ensemble averaging,
e.g., by means of randomization techniques such as random source positioning, ran-
dom geometry modifications of the cavity boundaries, etc [R44].

An alternative is to approximate the ensemble average by considering a single real-
ization of the pressure field distribution, while collecting a set of samples over different
positions within the cavity, i.e., averaging on spatial samples over a region Ω′ ⊆ Ω,
rather than on random realizations

µ̂p2(ω) =
¬

|p(r ,ω)|2
¶

Ω′
=

1

Ns

Ns
∑

i=1

|p(r i ,ω)|2, r i ∈ Ω′ ∀ i (2.3)

postulating

µ̂p2(ω)' µp2(ω). (2.4)

The reason for this assumed equivalence is that for a reverberating cavity, field-
related quantities are usually expected to be ergodic in space and time: the set of
random realizations of the pressure that would be observed at a single position are
expected to sweep the same range of values (with the same probability distribution)
than the samples collected over space within a single realization.

A simple analogy is to compare the results of the casting of one thousand dices at the
same time with those of a single dice cast one thousand times; intuitively, for fair dices,
one expects the same results, somehow putting on the same level ensemble averages
(the set of dices) with time averages (recasting the dice).
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In fact, ergodicity has been demonstrated only for some classes of geometry, of
which a fundamental example is Sinai’s billiard, a chaotic cavity [R11]. In simple words,
ergodicity requires that a particle launched along any direction will pass through all
points of the entire space of the cavity, crossing them along all possible directions, if
one waited long enough. Without entering this complex topic, it is clear that the very
notion of losses puts this property in jeopardy, limiting the trajectory of the particle
before the end of its infinite journey.

Ergodicity is therefore postulated because of the large number of scattering inter-
actions any wave experiences, redirecting their energy along different directions that
should ensure a complete sweeping of the cavity. From an experimental point of view,
this property cannot be verified easily, due to the fact that the true value of the ensemble
and spatial averages are not know; only estimates are accessible, thus affected by resid-
ual uncertainties. They should be regarded, at their turn, as random variables. Since
residual uncertainties of these estimators are typically far from negligible [R39], the
accuracy of the spatial average estimator cannot be identified against a clear reference.

Our proposal for a finite PWS goes in this same direction, since the direct conse-
quence of limiting the number of degrees of freedom is that the mean-square pressure
will no longer follow a chi-square probability law, presenting an increased statistical dis-
persion, as demonstrated in [J4]. As a consequence, the accuracy of the spatial average
estimator will be reduced.

First of all, the spatial-average estimator can be shown to be an unbiased estimator,
i.e.,

¬

µ̂p2(ω)
¶

= µp2(ω), (2.5)

whereas its variance is intuitively expected to decrease for an increasingly large num-
ber of independent samples entering the spatial average. Once again, the central limit
theorem is the main reason for this expectation, hence predicting that the estimation
relative error

εµ =
µ̂p2(ω)

µp2(ω)
− 1 (2.6)

should asymptotically behave as

D

ε2
µ

E

∼ O (Nαs ), (2.7)

with α = −1; i.e., when repeating the same measurements in a large number of cav-
ities all slightly different one from the other (i.e., an ensemble), the residual error of
the estimator, while on average equal to zero, will present a residual statistical disper-
sion. As recalled in § 1.2.3, samples collected in space though behaving as random
quantities cannot be assumed to be independent; residual spatial correlation implies
that the asymptotic convergence predicted by (2.7) is a best-case that cannot be met
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in practice, a fact well-known by users of reverberating rooms [R74, R89]. The sam-
ples are typically arranged over a Cartesian grid with a uniform distance λ/2, in order
to minimize the spatial correlation between closest neighbours, while inevitably lead-
ing to residual long-range correlation with the rest of the samples. As demonstrated
in [J14], the resulting convergence rates for (2.7) can now be as low as α = −2/3 for
a three-dimensional grid of measurement points, a significative reduction.

The analysis carried out in [J14] was meant to go a step further, showing that even
the increase in the residual uncertainty due to spatial correlation is still only part of the
whole picture. Having taken into account the finite number Nd of degrees of freedom
underpinning the pressure field, (2.7) becomes

D

ε2
µ

E

∼ A1Nαs + A2N−1
d , (2.8)

where A1, A2 ∈ R+. This result implies that even if the number Ns of spatial sam-
ples increased, the second term could set a lower bound depending exclusively on the
number Nd of degrees of freedom. Clearly, in the case of an ideally diffuse pressure
(2.8) would converge back to (2.7), as Nd → ∞. Previously published experimental
results [R39] presented hints of an increased variability of the spatial-average estima-
tor. No explanation was available within the framework of validity of the diffuse-field
model. Unpublished results from our analysis confirms that assuming one single degree
of freedom per mode, (2.8) is capable of correctly predicting the deterioration of the
accuracy of the spatial estimator. So far, this is the only example of application of this
hybrid model. A similar idea, based on a random spectral model is presented in the
next section.

2.2 Imperfect diffusion

As recalled in § 1.1, all test facilities based on the use of reverberating cavities are firmly
founded on the assumption of a perfectly diffuse field distribution. This approximation
is regarded as reasonably accurate as soon as a sufficiently high number of degrees of
freedom are available, by virtue of the central limit theorem [R42, R45].

It is known that the actual number of degrees of freedom is the number of modes
that can be simultaneously accessed at the working frequency [R75, R3], as measured
by the modal overlapping introduced in § 1.3.1 and estimated, e.g., by means of Weyl’s
approximation (1.43). In the light of it, we need to be aware of two issues: 1) within
the context of the EMC community, the vast majority of the users of reverberation cham-
bers are still convinced that a high modal density is sufficient to enable a perfect dif-
fusion [R33, R42, R2]; 2) in either case, no mention is given about the link between
modal density/overlapping and the accuracy of the diffuse-field approximation. The
first point is unfortunately endemic to the EMC community, for reasons not very clear;
anterior research within the acoustics community was much more conclusive, leading
mostly to empirical criteria based on the requirement of a high modal overlapping, as
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the most significant figure of merit to invoke the diffuse-field approximation. Schröder’s
contributions were instrumental in this respect, though he also made large use of the
assumption of a perfectly diffuse field even at relatively low frequencies.

Whatever the field of application, the second issue is still open: how many modes
should overlap on average in order to accept that the diffuse-field approximation is ac-
curate enough? Without going through the surprisingly arbitrary criteria invoked within
the EMC community (see, e.g., [R2, R33]), it can be recalled that acoustic reverbera-
tion rooms are assumed to work properly as soon as at least 3 modes are overlapped on
average [R77], a criterium due to Schröder. An alternative criterium, previously pro-
posed by Schröder, rather required 10 overlapping modes [R72]. The existence of two
criteria points, in our opinion, to the lack of a formal analysis of the physics of resonant
cavities: 3 or 10 modes, these figures were derived on empirical appreciations that the
accuracy of the diffuse-field approximation gets better for higher modal overlapping
and the need for a working compromise. A quantitative assessment of the level of field
diffusion can be obtained by means of the procedure presented in [J4] (reproduced at
page 107) for the case of an electromagnetic cavity, briefly presented in § 2.2.1.

Acknowledging that the diffuse-field model is just an approximation, it is also im-
portant to know how good the predictions based on it are. This issue is particularly
important within the EMC community, since a recent trend has the quality of a rever-
beration chamber assessed by comparing its field statistics against the ideal case of a
diffuse-field. The implications of this approach are discussed in § 2.2.2.

2.2.1 Assessing the accuracy of the diffuse-field approximation

First of all, we need a mean of assessing the quality of the diffuse-field approximation;
this can be done by taking the electric-energy density W (ω), herein assumed to be
independent from the position r for the sake of simplicity,

W (ω) = ε0‖E(ω)‖2, (2.9)

where ε0 is the dielectric permittivity of the homogeneous medium filling the cavity,
and computing its relative variability

ς2
W (ω) =

¬

W 2(ω)
¶

〈W (ω)〉2
− 1, (2.10)

defined as the ratio of its variance over the square of its average value. Under perfect dif-
fusion, ς2

W (ω) = 1/3, since in that case W (ω) would behave as a chi-square-distributed
random variable with 6 degrees of freedom, due to the iid contributions of the real and
imaginary parts of each of the three scalar field components. If the field did not behave
as expected, the variability would allow defining an error

ες2(ω) =
ς2

W (ω)− 1/3

1/3
(2.11)
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that could be expected to assess the accuracy of the diffuse-field approximation.
Why picking the electric-energy density? There are several reasons; first of all,

it is related to a quadratic form, hence it has nice mathematical properties for the
computation of norms, simplifying the derivation. Second, it is a combination of the
three scalar components of the field, so that it provides a global appreciation of the
behaviour of the electric field. And third, it is more suitable for experimental tests,
since estimators of a chi-square-distributed random variable with six degrees of freedom
are more accurate (lower relative variance) than those of chi-square-distributed random
variables with only two degrees of freedom, as is the case for any scalar field component
under a diffuse-field approximation.

The spectral representation introduced in § 1.2.2 allows expressing in a closed-
form W (ω) as a function of the modal parameters. In particular, adopting a random
description as proposed in § 1.3, it can be shown that

ες2(ω) =
3(κ+ 1)

2π

1

MM (ω)
, (2.12)

where κ is the kurtosis of the real (and imaginary) part of the modal coefficients. The
above result was derived in [J4] by assuming the existence of an ensemble of cavities
generated by a perfect stirring technique: by this term we consider any randomization
technique capable of ensuring iid random realizations for the modal quantities intro-
duced in § 1.3. These are the same assumption required for a perfectly diffuse-field
configuration: the only difference is that we are now acknowledging and taking fully
into account the fact that the Lorentzian shape of the modal responses implies that only
a limited number of modes will be effectively excited at the working frequency.

It is remarkable to see how the modal overlapping MM (ω) naturally appears to de-
pend on the average number of modes found within the half-power bandwidth (-3 dB)
of the modal responses ψn(ω); this value was not arbitrarily chosen, but neatly results
from the computations. Another interesting point is that ες2(ω) is strictly positive, in-
dicating that any deviation from the ideal diffuse-field configuration translates into an
increased variability: this result is unsurprisingly close to the increased inaccuracy of
the ensemble-average estimator studied in § 2.1.

Assuming Gaussian-distributed modal coefficients, (2.12) simplifies into

ες2(ω) =
6

π

1

MM (ω)
, (2.13)

a remarkably simple expression relating the average number of overlapping modes (as
defined in § 1.3.1) to the excess variability of the electric-energy density.

Equation (2.13) has a direct practical interest since it could be used to predict the
accuracy of the diffuse-field approximation. As opposed to the qualitative criterium re-
quiring a given number of modes to invoke field diffusion [R75, R44], (2.13) provides
a quantitative criterium, by allowing the user of the cavity to decide how many over-
lapping modes should be available on average in order to limit discrepancies between

Understanding real-life cavities



52 2.2 - Imperfect diffusion

0.5 1 1.5 2 2.5 3
−100

0

100

200

300

400

500

Frequency (GHz)

ε ς2 
(%

)

 

 

(a)

0.5 1 1.5 2 2.5 3
−100

0

100

200

300

400

500

Frequency (GHz)

ε ς2 
(%

)

 

 

Empty RC

Loaded RC

(b)

Figure 2.1 – Estimates of the standardized variance of the energy density W , as
assessed from experimental results obtained for : (a) an empty cavity (apart for
the excitation antenna) and (b) one loaded with a set of 4 pyramidal absorbers
(about 30 cm high).
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Figure 2.2 – Quality
factors for the empty and
loaded chambers. The
smooth curves represent
the loose majorants
used for deriving the
maximum-error results in
Fig. 2.1.

theoretical (diffuse-field models) and experimental results. Such thought should be
pushed a little step further by letting in statistical considerations about the estimators
used during experimental work; the details of these discussions are out of the scope
of this dissertation, but it suffices to recall that since the relative accuracy εm of the
measurements/estimations are a priori known, there is no reason to try to enforce an
average number of overlapping modes so high as to ensure ες2(ω)¶ εm; it seems there-
fore reasonable to propose a minimum MM such that ες2(ω) = εm, corresponding to
the best approximation of a diffuse-field configuration, in this case limited by experi-
mental/statistical uncertainties [J4].

More generally, (2.13) proves that there is no universal definition of the minimum
number of modes required to observe a good agreement with the predictions of diffuse-
field models, as it all depends on the requirements of the user/experimenter. An ex-
ample is provided in Fig. 2.1, where the excess variability error was estimated from
experimental data. Being just an estimator, its accuracy is finite, as demonstrated in
[J4, App. B], hence the random fluctuations around the unknown true value, as clearly
apparent in the higher frequency range, where ες2(ω)→ 0.

Experimental results are compared against theoretical predictions using (2.13) in
conjunction with (1.43), using Weyl’s approximation to predict the average number
of overlapping modes, where the average composite quality factor was again estimated
from experimental data and approximated by a third-degree polynomial curve. This last
operation was defined in such a way as to be a loose upper bound of the experimental
data, as shown in Fig. 2.2; the rationale for this choice was to capture the trend of the
upper bound of ες2(ω), but without taking too large a margin. The results in Fig. 2.1 are
quite conclusive, showing a good prediction of the trend of ες2(ω) against frequency.
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Increasing losses in the shape of small absorbers lead to the improvement predicted
by (2.13), because of the increased modal overlapping involved in a lower average
composite quality factor. Still, this fact should not be regarded as a potential solution
to the problem of extending the diffuse-field condition towards the lower frequency
range. Increasing losses can improve the operation of a cavity if small enough to be
treated as perturbations, without modifying the validity of the assumption of iid modal
parameters. In any other case, as demonstrated in [R36], things get worse.

A final observation related to Fig. 2.1 is in order: while the global trend of the high-
est errors is correctly identified, it appears that (2.13) is far from begin a monotonous
function. The intuitive understanding requires that as the frequency increases the av-
erage number of modes increases (see § 1.3.1) as well as the overall losses. How is
it possible to observe on a local scale very strong fluctuations between very large er-
rors and very small ones? Part of the answer is the random nature of the estimator of
ες2(ω): this is inherent to its being an estimator of a statistical moment. But while this
explanation can be readily accepted when observing the results in the higher frequency
range of Fig. 2.1, the fluctuations are surprisingly strong at the opposite extreme. The
question that should come to mind is: what is the accuracy of Weyl’s approximation?
Do we really have a clue about the actual number of modes being excited at a given
frequency? The inevitable answer is no, there is no way of knowing it, unless for un-
realistic canonical geometries. An explanation for the origin of these wild fluctuations
is proposed in § 2.3, where the random nature of the modal density is fully taken into
account.

It could be tempting, as it is the case for a number of people within the EMC commu-
nity, to invoke much simpler explanations for local anomalies: 1) experimental errors;
2) inaccurate experimental setups; 3) statistical outliers. A detailed rebuttal of these
oversimplified explanations is out of the scope of this dissertation; we can still suggest
some ideas as to understand how to judge of their scientific pertinence. Although ex-
perimental errors do occur, the first point is one of the oldest techniques to discredit
results that could, if proven right, put in jeopardy well-established, but perhaps not
very accurate, models and explanations. The second point mostly refers to the idea
of the presence of a deterministic residual contribution to the overall field; it can be
observed as soon as a line-of-sight propagation path is possible between the sources
exciting the cavity and the observer. While this scenario, usually referred to as par-
tially developed speckle in optics [R26], results in a distortion of the field statistics, it
has been proven theoretically and experimentally that what are often automatically re-
garded as unstirred components are in fact mathematical artifacts due to an incomplete
statistical analysis; a detailed explanation was presented in [C7]. The third point does
not deserve much attention in our opinion, as it is clearly a gross expedient to hide
one’s inability to explain physical phenomena. As it will be shown in § 2.3, statistical
anomalies (outliers) can be explained on a physical ground.
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2.2.2 Impact on confidence intervals

Despite the fact that (2.13) does not give any hint about the probability density func-
tions of the electric (or magnetic) field, it can be used in order to predict another in-
triguing phenomenon, namely the increased rate of rejection of statistical tests aimed at
assessing how close experimental data are to the probability density functions predicted
by diffuse-field models.

The most widely used technique to measure how close an empirical probability dis-
tribution is to a theoretical one is that of goodness-of-fit tests [R15]. Perhaps the best
known is Pearson’s chi-squared test; within the EMC community, more stringent statis-
tical tests have been adopted over the last 10 years, leading to a stronger preference for
Kilmogorov-Smirnov and Anderson-Darling tests [R46]. A discussion of the rationale
for applying this kind of tests to EMC-related tests is out of the scope of this dissertation,
but some reflections have been presented in [C22].

Accepting the use of such tests as meaningful, it has been noticed that their is a non-
negligible probability of rejecting the diffuse-field hypothesis even at relatively high
frequencies, where a reverberation chamber is typically expected to work in an ideal
state of diffusion [R46, R65]. Rather than resorting to the expedient of invoking rather
unclear explanations [R54, R65, R42], an alternative approach can be devised thanks
to (2.13).

Let us consider a real-life cavity, where the field statistics does not exactly corre-
spond to the asymptotic laws predicted by the diffuse-field approximation. In practical
configurations, quantities of interest are typically averaged over the random realizations
generated by means of stirring techniques, in order to obtain a more accurate estimate
of the true value of the quantity. An example is given by the average power received by
a probe, or the average field intensity observed at a position.

We can exploit this use of averages by recalling that the central-limit theorem states
that the asymptotic probability density function of these arithmetical averages is a Gaus-
sian function. It is therefore sufficient to know the average and variance of each of the
single realizations of the quantity of interest, in order to have a fair approximation of
its probability density function. To this effect, (2.13) already provides the ratio of the
first two moments of the electric-energy density, while it can be very easily modified to
account for the squared-amplitude of any scalar field component.

Sticking to the electric-energy density W , we can measure a set of samples {Wi}
of electric-energy densities over a given position, obtained by means of any stirring
technique. Assuming these samples to be iid, the diffuse-field hypothesis would require
the samples to follow a chi-squared probability density function with 6 degrees of free-
dom. If the measurements were taken at sufficiently high frequency, the diffuse-field
hypothesis would likely be taken for granted.

Current wisdom would require to assess this hypothesis by means of statistical tests,
setting the diffuse-field hypothesis as the null hypothesis, i.e., the hypothesis assumed
to hold against which the data will be tested. All of these tests will provide a measure
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of the deviation of the experimental data from the theoretical distribution, by defining
a sort of norm.

Let us focus on the most intuitive one, i.e., the idea of confidence interval [R40], i.e.,
the interval within which a random variable satisfying the null hypothesis will appear
with a given probability 1− α; α is therefore the probability of observing a sample of
a diffuse field outside the confidence interval, usually referred to as the significance
level of a test. The confidence interval can be predicted for the arithmetic average
(estimator) W̄ computed from Nm samples measured at a given frequency

W̄ =



Wi
�

Nm
=

1

Nm

Nm
∑

i=1

Wi , (2.14)

with W̄ asymptotically converging in probability to a Gaussian-distributed random
variable with a variability ς2

W̄
directly related to the variability of the samples {Wi} as

ς2
W̄ =

1

Nm

 ¬

W 2
i

¶




Wi
�2 − 1

!

=
ς2

Wi

Nm
. (2.15)

The concept of outliers is based on these very ideas, by considering that the estima-
tor W̄ cannot belong to the reference distribution (null hypothesis) if it is significantly
outside the confidence interval; significance takes here a statistical meaning as it is up to
the experimenter to decide if unlikely extreme values should be regarded as significant
or not. A typical choice is α= 5 %.

Going back to the problem of spotting outliers, if a sample Wi falls outside the
confidence interval, then three conclusions are possible:

1. the null hypothesis is valid : the definition of confidence interval allows sam-
ples to fall outside it with a probability α, so it is still possible to satisfy the
null-hypothesis (perfect diffuse-field configuration) while observing some pecu-
liar samples (rare events). Intrinsical to this picture is the idea of observing these
outliers with a probability not significantly different from α;

2. the null hypothesis is assumed to be valid, while the observed rate of samples
falling outside the confidence interval is significantly higher than α. The contra-
diction is solved by invoking experimental errors, such as unstirred components,
operating as systematic errors (biases);

3. the null hypothesis is rejected by assuming the experimental work to be correct,
applying in a strict manner a decision criterium set by statistical tests.

How could (2.13) help in this discussion? The answer is by proving that the con-
fidence intervals computed from the null-hypothesis are too conservative, leading to a
rejection rate that is qualitatively interpreted as a substantial deviation from the ideal
state, while yielding in practice little difference.
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Figure 2.3 – Theoretical quantile-quantile plot of the asymptotic distribution laws
for 〈W 〉 in the asymptotic and non-asymptotic case, as based on (2.13), for a num-
ber of average overlapped modes MM = {1,3, 10,20, 50}. The dashed line stands
for the bisector, which is asymptotically approached as MM increases. The size of
the sample population is not needed in this type of plots, as it only intervenes in
setting the confidence interval, with no effect on the relationship between the two
quantile distributions.

We are talking about a distortion in the expectation of the confidence interval, which
can be predicted in a straightforward manner. To this end, let us consider a number Nm
of independent samples Wi large enough as to have their arithmetic average W̄ approx-
imating a Gaussian law, by virtue of the central-limit theorem. We aim at computing
how a confidence margin defined for a significance level α under the hypothesis of a
diffuse-field behavior, translates into another confidence margin whenever MM happens
not to be high enough. A good and intuitive way of assessing the effect of a finite MM
is to check how the quantiles of the asymptotic case, i.e., MM →∞, relate to those of
the modal description we have introduced. As we are dealing with this problem under
the approximation of a normally distributed W̄ , the quantiles are given by [R40]

qp

µW̄
= 1+

p
2ςW̄ erf−1(2p− 1) , (2.16)

where p = P(W̄ < qp) is the probability associated to the quantile qp, while µW̄ is
the expected mean-value of W̄ and ς2

W̄
was defined in (2.15). The central-limit theorem

allows to compute a good approximation of the quantiles of W̄ just by knowing these
two moments, for the case of an ideal χ2

6 -distributed Wi and for the more realistic case
provided by (2.13). The result of this operation is presented in Fig. 2.3, where any
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tics (i.e.,the diffuse-field hypoth-
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confidence margin established on the asymptotic case for a given significance level α is
shown to lead to an inevitably larger margin with the same significance level as soon as
MM is found to be finite. It is interesting to notice that the case MM = 3, often regarded
as a good compromise for a diffused field in room acoustics, actually provides a more
than twofold increase in the original confidence margin.

The other way round, choosing the same interval margin for the ideal and non-ideal
cases, if this interval corresponds to a significance level α for the former case, this will
lead to a corresponding significance level α′ in the latter, related as

α′ = 1− erf

 

q1−α/2p
2

r

MM

18/π+MM

!

. (2.17)

This function is plotted in Fig. 2.4, for several values of α. These results provide a
direct feeling about the increased probability of incurring into samples falling outside
the originally intended confidence margin. The probability α′ of this event increases not
only when MM is relatively low, but also when the significance level α is reduced. This
type of interdependence has a potentially very harmful impact, as α is typically reduced
in order to improve the significance of the results of a statistical test, thus reducing
the number of samples that would be otherwise regarded as outliers: when expecting
asymptotic results from a realistic RC, this risks leading to a higher rate of rejection of
eventual hypothesis tests, i.e., the opposite effect expected in the first place, since the
frequency of occurrence of outliers will inevitably increase.

The results in Fig. 2.4 should be considered with due care. As shown in [J7, App.],
the average number of overlapping modes can be quite low, staying well below 3 at
frequencies where a reverberation chamber is regarded (not only assumed!) as fully
compliant with international standards [R2]. Still, Fig. 2.4 shows that for MM = 3
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the probability of estimating an average electric-energy density outside the confidence
interval is 5 times higher for α = 5 % and 13 times higher if α = 1 %. In other words,
despite the fact that in practice the cavity is working properly, the blind application of
statistical concepts would lead to stronger rejection rates, yet not representative of a
more or less important degradation of the performance of the cavity. Further elements
have been added to this discussion in [C22], but the simple analysis here shown proves
that statistical tests should not be used without linking them to practical measures of
degradation of the performance. In the opposite case, the risk of depriving them of any
quantitative meaning, hence usefulness.

2.3 Local statistical anomalies

The statistical anomalies (outliers) observed on a local scale in Fig. 2.1 are intriguing
features of any reverberation chamber. In order to understand their origin, we need to
go back to the definition of modal overlapping and hence of modal density. As recalled
in § 1.3.1, the only estimate of the modal density easily accessible in practice is Weyl’s
approximation. It is therefore natural to wonder how far away from it is the actual
modal density observed for a specific configuration; following this line of thought, what
would be the effect of a deviation from Weyl’s estimate? This issue was studied in [J7]
and its major results are presented in § 2.3.1.

As soon as the idea of a random modal overlapping is considered, it becomes clear
that the very existence of a LUF (or Schröder’s frequency) as currently defined loses any
physical ground. This point is discussed in § 2.3.2, where an alternative definition is
suggested.

2.3.1 Random fluctuations in the modal overlapping

These questions can be answered by developing the results summarized in § 1.3.2:
by knowing the probability density function of the distance between two consecutive
frequencies of resonance, it should be possible to provide an estimate not only of their
average number within a frequency bandwidth, but more generally to estimate the
probability of observing more or less modes than expected on average from Weyl’s
approximation.

Recalling that the modes in which we are interested are those found within the
average modal bandwidth B̄M , the above problem can be reformulated as a need to
develop a probabilistic description of the number of modes found within B̄M . In order
to stress the difference with the average number of such modes MW predicted by Weyl’s
approximation, the actual number of modes overlapping will be referred to as Mloc,
standing for the number of modes locally overlapping over B̄M .

Deriving the probability density function of Mloc from that of the spacing two consec-
utive resonant frequencies is more related to combinatorics than physics. The procedure
developed in [J7] passes through the following steps:
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Figure 2.5 – Modal probability density functions for an integrable cavity : (a)
number of modes observed over a given bandwidth, with respect to Weyl’s formula
estimation (numerical values close to each curve); (b) relative fluctuation of the
local modal overlapping with respect to the estimate based on Weyl’s formula.
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Figure 2.6 – Quantiles of the deviation of the local modal overlapping with respect
to the estimate obtained from Weyl’s formula, for (a) an integrable system and (b)
a GOE chaotic one.
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1. deriving the probability density function of the overall bandwidth Sn

Sn =
n
∑

i=1

si (2.18)

covered by n+ 1 consecutive frequencies of resonance at distances {si};

2. from Sn, the probability of observing n modes within a reference bandwidth B
can be formulated as the probability of fulfilling the condition

Sn−1 ¶ B < Sn; (2.19)

3. the effective number of modes observed over the bandwidth B̄M is therefore di-
rectly obtained as

Mloc =
n

Sn
B̄M , (2.20)

where the probability density functions of n and Sn are known by now from the
previous steps.

Since the main point to ascertain here is to quantify the random fluctuations of Mloc
with respect to MW , it is natural to consider their ratio, implying

Mloc

MW
=

n

Sn

1

mW
, (2.21)

which is still, though not explicitly, dependent on the reference bandwidth B over which
the local modal overlapping is studied. Examples of the probability density functions of
n and Mloc/MW computed for an integrable cavity (§ 1.3.2) for several values of MW
are presented in Fig. 2.5. It can be seen that for values of MW < 5, the probability
of observing no resonant mode is not negligible, while more in general the probability
density functions of n are spread over a quite large range of values. The direct conse-
quence is the appearance of fairly large fluctuations in the actual number of overlapping
modes Mloc with respect to the values predicted by Weyl’s approximation, as visible in
Fig. 2.5(b).

The original motivation for this analysis is better served by Fig. 2.6, where some
quantiles of the probability distribution of Mloc/MW are shown for the two ideal cases
of integrable and GOE chaotic cavities.
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Figure 2.7 – Empirical probability distributions
of the number of overlapped modes Mloc found
in a rectangular cuboid cavity. These results
pertain to the local modal overlapping Mloc
counted over a frequency bandwidth where a
reference overlapping MW is predicted by means
of Weyl’s formula. The thick curves repre-
sent the theoretical probability density func-
tions shown in Fig. 2.5(b).

The median (50 % quantile) is
very well approximated by the es-
timate MW provided by Weyl’s for-
mula. Hence, there is an equal
probability of observing either a
higher or lower modal overlapping.
In the context of deviations from
the asymptotic statistics for field
samples, the most important quan-
tiles are those related to the prob-
ability of observing a lower modal
overlapping. In this respect, when
expecting MW = 1, there is a 10 %
probability of observing an actual
modal overlapping below 49 % and
63 % of MW , for an integrable and
a GOE cavity, respectively. Such
strong reduction is proven by our
derivation to be a normal phe-
nomenon in a large cavity, and not
related to any non-ideality in its
use. A 50 % reduction in the modal
overlapping leads to a twofold in-
crease in the additional term of
the variability of the electric-energy
density, as demonstrated in [J4]
and recalled in (2.13). Worse, but
perfectly normal scenarios can ap-
pear : with a probability of 1 % the
modal overlapping can be found
below 25 % and 44 % of MW .

These results could be expected
to improve when a higher modal
overlapping of MW = 3 is consid-
ered. This value is often taken as
a reference for the appearance of a
diffuse-field condition in room acoustics [R75]. Even in this case, Mloc can be lower
than 58 % and 72 % of MW with a 10 % probability; with a probability of 1 %, be-
low 34 % and 56 %, again for integrable and GOE cavities. Hence, even at relatively
high modal overlappings, the probability of observing normal strong deviations in the
field statistics should not be underestimated. Recalling that MW = 3 is expected only
at relatively high frequency [J7, App.], the appearance of statistical anomalies from a
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local lack of modal overlapping seems to be very likely in the lower frequency range of
operation of a reverberation chamber.

A probability of 1 % is compatible with the rate of appearance of local non-compliancies
observed in practice, and could thus provide a physical explanation to the observation
of outliers [R42]. It could also serve as an explanation for the existence of local non-
compliancies even at higher frequencies, where the concept of diffuse field is usually
taken for granted.

These predictions were verified by computing the local modal overlapping expected
in a canonical cuboid cavity; analytical formulae are available to predict the frequencies
of resonance of such a cavity [R33]. The bandwidths over which this operation was car-
ried out were computed by taking Weyl’s approximation (1.43), imposing a given MW ,
finding out the bandwidth MW/mW ( f ) over which this number of modes are expected
to overlap at a given frequency and counting the actual number of modes. The four
values MW = {1, 2,5, 10} were considered, and the actual count Mloc( f ) was computed
over 1000 frequencies (see [J7] for details). The empirical probability distributions thus
obtained are shown in Fig. 2.7, where they are compared to the theoretical probability
density functions shown in Fig. 2.5(b). Disagreements appear as MW increases: in this
case the spacings between adjacent resonance frequencies can no longer be regarded as
independent random variables. Higher-order statistics should be included, as described
in [R81], taking in to account longer-range correlation between spacing realizations.

Among the several approximations employed in this analysis, the hypothesis of a
constant quality factor has hefty consequences on our results, since the quality factor
of resonant modes are known to be strongly fluctuating quantities, too [R13, R25, R3].
This further source of randomness implies that the average modal bandwidth B̄M should
also be treated as a random variable, linked to that of the quality factor. Therefore, an
extended model can be proposed by regarding all previous probability density functions
as conditional to a fixed value B̄M , e.g.,

pMloc/MW
(x)  pMloc/MW

(x |B̄M ). (2.22)

The probability density function for the modal overlapping could thus be computed
as

pMloc/MW
(x) =

∫

pMloc/MW
(x |y)pB̄M

(y)dy. (2.23)

This idea is still a proposal and it has not been pushed further. Nonetheless, (2.23)
can be expected to present an increased statistical dispersion with respect to the sim-
plified case of a fixed average quality factor, thus suggesting that the above results are
in fact best-case results. The rate of increased probability in observing modal-depleted
conditions requires solving (2.23).
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2.3.2 Considerations about the definition of the LUF

It is useful to recall the trajectory of our investigations. We started from the observa-
tion that the usual approach of assuming a threshold frequency beyond which a cavity
supports a diffuse-field model is flawed. The rationale behind this conclusion is that
statistical anomalies appear even at frequencies well above this threshold frequency;
tentative explanations of faulty setups appear rather unconvincing. The establishment
of a formal relationship between modal overlapping and excess statistical dispersion
in the electric-field intensity, while taking into account the random behaviour of modal
spacing, has led to a statistical description of the probability of occurrence of the anoma-
lies observed in the first place.

The natural consequence of this line of investigation is that the idea of a minimum
frequency (LUF), as currently done, has no physical support. There is no minimum
frequency above which the ability of a cavity to behave as a diffuse-field generator
will improve monotonously, since there will always be a probability, though weak, of
observing a local statistical anomaly at a given frequency.

An alternative idea can be introduced, based on our analysis: the LUF can be de-
fined in probabilistic terms as the minimum frequency above which the probability of
observing statistical anomalies reduces below a given value deemed reasonable. This
idea is just a proposal, and is currently under investigation; still, it seems more natural,
and physical, than all of the current rather arbitrary definitions. More importantly, it
has a practical side, since knowledge of the probability of observing statistical anoma-
lies is fundamental in order to assess the accuracy of any experimental result obtained
in a cavity.

X
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Chapter 3

Coherent field generation

Simplicity does not precede complexity, but follows it

Alan Perlis

R EVERBERATING cavities are not always operated in conjunction with harmonic
excitations. For example, multi-tone signals and wide-band noise [R44] are
also used in acoustic reverberating rooms. These non-harmonic excitations
are mainly introduced as an effective way of averaging out the random fluc-

tuations found in the operation of reverberation chambers, e.g., in the case of radiated-
power measurements, or as a randomization procedure, and are also used in the context
of EMC tests when introducing frequency stirring procedures [R31].

In this chapter, we are rather concerned with a very different issue, that of using
non-harmonic excitations in order to control the response of a cavity. The focus will
be on the idea of making coherent applications possible. By this term we consider the
generation of field distributions and propagating wavefronts that appear to be occurring
in a free-space environment, as generated by deterministic sources.

So far we have kept stating that the field distributions generated within a large
reverberating cavity is of non-coherent nature, resulting from a large number of reflec-
tion/diffraction interactions of propagating waves with the cavity boundaries. We have
argued about the more or less diffusive nature of the field distribution in § 2, but have
always taken for granted the non-coherent nature of any field distribution generated in
a cavity, as a requirement for their use as standardized test facilities.

The idea of having coherent wavefronts propagating within a reverberating cavity
as in free-space should therefore definitely come as a surprise. If any harmonic ex-
citation results into a non-coherent field distribution, how could it be possible that a
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collection (eventually continuous) of such distributions at different frequencies could
resemble to free-space propagation conditions? The answer to this apparent paradox
relies upon self-averaging properties of random media, when excited by means of spe-
cial non-harmonic signals. As shown in § 3.2.1, this property is made possible by the
existence of a large number of degrees of freedom over the excitation bandwidth, as
discussed in § 1.2.3. Not only coherent fields can be generated, but their polarization
can also be controlled in a manner that has no equivalent in free-space environments,
as shown in § 3.2.4.

In order to access these properties, the concept of time-reversed excitation will be
introduced in § 3.1, as the fundamental technique upon which the techniques here dis-
cussed are defined. The guiding principle along this chapter will be the idea that the
use of complex media can, under certain conditions, simplify the generation of field
distributions of interest in practical scenarios. All of these properties are possible only
because the diffuse-field approximation can be invoked, as discussed in § 3.3, turn-
ing upside-down the received wisdom that free-space-like environments, e.g., anechoic
chambers, provide the simplest conditions for the generation of coherent field distribu-
tions.

It should be clear from the beginning that our aim is not only to emulate free-space
conditions within a reverberating cavity but more generally, as discussed in § 3.3.2, to
define new procedures capable of offering properties that are not easily found in free-
space environments, bridging the gap between anechoic and reverberating chambers.

3.1 Time reversal of waves

In this section we do not pretend to provide a thorough summary of time reversal, nor
of all of its applications. We rather aim at recalling some of the assumptions that are
necessary in order to have access to the properties of time reversal; moreover, we want
to highlight some issues that are often neglected and that play a fundamental role in
the limitations of this type of technique, particularly in the context herein considered
for tests based on predefined wave configurations. A panoramic view of available time-
reversal applications is necessary in order to get a better grasp of our contributions to
this technique.

Time reversal is fundamentally the same technique previously known as phase-
conjugation, which originated in optics in the late 70s [R95], primarily intended to
compensate distortions (self-healing) in wavefronts propagating through complex me-
dia, particularly with the aim of focusing energy towards a given position in space. All
of the applications of time reversal are based on one fundamental property of Helmholtz
equation, namely its being time-reversal symmetric, implying an invariance of its solu-
tions to a change of sign in the time variable. This property is apparent when looking
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Figure 3.1 – A schematic
representation of the
two main time-reversal
techniques currently
available: (a)-(b) time-
reversal of a radiating
source; (c)-(d) selecting
focusing over a point
scatterer by means of the
DORT approach.

at the definition of the equation in a homogeneous and source-less medium
�

∇2+
1

c2

∂ 2

∂ t2

�

u(r , t) = 0, (3.1)

where u(r , t) is a generic vector solution, or wavefront, and c is the speed of light in
the medium. Time-reversal applications typically exploit this property by coupling it
to Huygens’ principle: as depicted in Figs. 3.1(a)-(b), we can define a two-step proce-
dure where the first step involves a source of radiation generating a diverging wave-
front recorded by an ideally continuous set of transducers (e.g., antennas) deployed
over a closed surface Σ. These transducers are usually referred to, in the context of
time-reversal applications, as a time-reversal mirror (TRM) [R9]. Coupling Huygens’
principle to the time-reversal symmetry of Helmholtz equation implies that by exciting
the transducers with the time-reversed version of the signals received during the first
phase, the TRM will generate an ideally perfect replica of the original wavefront, but
this time converging back at the source, as a consequence of our inverting the direction
of evolution of the time variable [R9].

The time-reversal symmetry of (3.1) is apparently always satisfied: in fact, this prop-
erty is not shared by every solution u(r , t) of (3.1), since the time-reversal symmetry
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is broken at least in two cases: 1) for wavefronts involving evanescent waves (source
region); 2) when dealing with lossy media. This fundamental limitation implies that
focusing wavefronts generated by means of time reversal cannot provide any focusing
beyond the diffraction limit [R79, R58], i.e., the minimum size of the focusing spot
is about the wavelength of the central frequency involved in u(r , t), since the spatial
information related to the evanescent waves cannot survive to the distance from the
source to the TRM and back again. Only evanescent waves allow the reproduction of
spatial field distributions with “faster” spatial variations than those associated to prop-
agative contributions, i.e., related to a wavelength.

An important step in our proposal is the passage from the usually open media ad-
dressed when using the paradigm we just recalled, towards bounded ones, e.g., closed
cavities. This issue was studied in several papers, e.g., [R19, R48], where it was shown
that time reversal can still be applied in configurations where the notion of a continuous
TRM surface is lost, as long as the cavity can be treated as highly-reverberant, in order
to ensure a large number of independent degrees of freedom. In this case, the TRM
can be shrunk to a few transducers with no need to share a portion of a continuous
surface. Without going into details, as this is out of the scope of this dissertation, it is
now the array of images of the actual transducers that constitutes a generalized TRM;
the main difference is that the signals “applied” or “received” by each of these images
are inevitably replicas of the few signals actually applied/received by the real transduc-
ers. The consequences of this strong interdependence are explored in §§ 3.2 and 3.3,
by means of frequency and spatial correlation functions.

Image theory allows establishing a close relationship between open media and cavi-
ties; hence, the properties of time reversal can be expected to apply to the latter case, as
equivalence theorems [R30] do not require to consider a continuous surface of equiv-
alent sources (here, the TRM transducers). As a result, pulsed wavefronts can be gen-
erated in reverberating cavities, a surprising result that has received much attention
during the last ten years, in particular within the acoustics community [R67, R19].
Concerning the case of electromagnetic reverberation chambers, the first experimental
demonstration was provided in [R48], while theoretical investigations dealing with a
realistic description involving losses was presented in [J2].

The ability to generate pulsed fields within a reverberation chamber is a topic that
deserves a full investigation in its own: as a matter of fact, it is well-known that it is
currently very hard to generate short-pulsed fields as required by some standards [R1]
when testing immunity for EUTs closely exposed to high-power radar pulses: not only
pulsed fields can be generated with time reversal, but it has been demonstrated that
by focusing a part of the energy into a portion of the cavity, the already high energy
efficiency of RCs can be dramatically increased when operating them with wide-band
excitation signals [J3], as recalled in § 3.2.3. Furthermore, it has been recently shown
that the polarization of the field thus generated in an RC can be easily controlled, with
a remarkably pure polarization [J13], a fact discussed in § 3.2.4.

A last point to recall when dealing with time reversal is the development of the
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DORT technique [R64], a French acronym meaning expansion of the time-reversal op-
erator. This approach introduced a new paradigm for time reversal: standard time
reversal considers that what will be the target of the focusing wave during the second
phase (Fig. 3.1(b)), needs to be a source during the first one (Fig. 3.1(a)). The DORT
allows avoiding the target to be a source, whenever it behaves as a point scatterer, i.e.,
as a passive device that will respond with a spherical wavefront to an externally ex-
cited locally plane wave. Under these conditions, the DORT technique implies using
the TRM to generate a testing wavefront (Fig. 3.1(c)), to which the EUT will respond
behaving as a passive scatterer. The DORT has been shown to allow focusing over one
among several targets (Fig. 3.1(d)) as long as these are sufficiently separated in order
to resolve them from an imaging point of view [R27]. The DORT may appear to have
some interest for testing applications, particularly when dealing with passive EUTs that
cannot be operated as active sources.

The problem with these two methods is that in the available literature time-reversal
applications always aim at producing a focusing wavefront at some position in space.
The motivation is never the generation of a wavefront for testing purposes: the reason
why focusing is under consideration is typically either a clearer transmission of signals
through complex media at a given position (e.g., a receiver in underwater [R43] and
wireless communication schemes [R49]) or to improve imaging techniques [R64, R27,
R96]. As we argue in § 3.3, this is not compatible with EUT testing, since EUTs are
often electrically large and present distributed scattering features rather than localized
ones.

3.2 Time-reversed transmissions through complex media

Albeit its being usually defined for the focusing of a wavefront, most (if not all) appli-
cations of time reversal aim at the reproduction of pulsed fields at a given position in
space. For a signal-theory point of view, this problem is equivalent to the transmission
of a signal from a transmitter to a receiver; in the case of pulsed-field generation, the
receiver will just be characterized by an ideal field probe sampling the field without in-
troducing any alteration. Hence our regarding all these applications as a point-to-point
transmission problem.

In this respect, there is hardly any difference between time reversal and a matched-
filter approach. Differences exist, but are to be found not at the position of the receiver,
but around it: time reversal also aims at maximizing the amount of energy observed
around the focal point, where the receiver stands, but this fact has no impact on the
analysis of the quality of the transmission as a matched-filter application.

The transmission by means of any type of wave, be it scalar or vector in nature, will
result in a scalar transfer function, relating the inevitably scalar signals at the trans-
mitting and receiving ends. We will consider in the following that our objective is to
transmit the best reproduction possible of a template signal x(t) through a medium
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Figure 3.2 – An example of impulse re-
sponses measured in Supelec’s reverbera-
tion chamber, for fc = 1.1 GHz and BT =
0.5 GHz: (a) direct impulse response h(τ)
and (b) equivalent impulse response g(τ)
for time-reversal transmissions. Time is nor-
malized to the coherence time 1/BT .

with an impulse response h(t). The
output signal

y(t) = x(t) ∗ h(t) (3.2)

is typically a very poor reproduction of
x(t) when dealing with complex me-
dia, due to random fluctuations in the
transfer function H(ω), especially ran-
dom phase shifts that are capable of
destroying the coherence of any non-
harmonic signal. Clearly, this work-
ing assumption implies that the band-
width BT of x(t) be much larger of
the coherence bandwidth Bc of the
medium transfer function; conversely,
x(t) would be properly transmitted
even through complex media, a fact
exploited in sub-carrier communica-
tion schemes, such as in orthogonal
frequency-division multiplexing.

In the case of time-reversal com-
munications, the received signal is
rather given by

y(t) = h(t) ∗ h(−t) ∗ x(t), (3.3)

having applied the signal x(t) ∗ h(−t)
at the transmitter input port. There-

fore the received signal could be interpreted as being transmitted trough an equivalent
medium characterized by an equivalent transfer function

G(ω) = |H(ω)|2, (3.4)

directly applying the signal x(t) originally intended for transmission. What has changed
in between a direct transmission and the time-reversal one is that the equivalent transfer
function is now real and positive, so that the main mechanism by which coherence was
lost, namely random phase-shifts, is now absent. The Fourier spectrum of the received
signal is still subject to random fluctuations, but as discussed in § 3.2.1, if BT/Bc � 1,
the received signal will be a good replica of x(t).

A simple way of understanding this property requires looking back at (3.3): the
equivalent impulse response is
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Figure 3.3 – An example of time-
reversal transmission of a Gaussian
pulse through Supélec’s reverbera-
tion chamber, for a bandwidth BT =
50 MHz. Random fluctuations out-
side the central-pulse region are vis-
ible.

g(t) = h(t) ∗ h(−t), (3.5)

i.e., the autocorrelation function of the original impulse response. In this last expres-
sion, as in the rest of this work, we will use an anti-causal representation, since h(−t)
should in practice be written as h(T − t), where T is the duration of the impulse re-
sponse. This choice is intended to simplify our notations and has no impact on our
conclusions.

While g(t) has no remarkable difference from h(t) in the case of a free-space en-
vironment, in the case of random media it can be very different. If h(t) bears no self-
resemblance, then its autocorrelation function g(t) will be characterized by a peak
around t ' 0, while for t ¦ Tc , the coherence time of the medium, it will typically
present a very low average value, fluctuating around the value zero. An example of
these impulse responses is shown in Fig. 3.2, expressed in normalized time τ = BT t:
while h(τ) is dominated by the relaxation time of the cavity with a time-constant of
about 1000, g(τ) weakly fluctuates around zero as soon as τ¦ 2, implying that the lat-
ter is dominated by the coherence time of the cavity impulse response, which is indeed
much shorter than its relaxation time.

It is clear from these ideas that the use of g(t) rather than h(t) in random media
has a strong appeal, since g(t) appears to be a fair approximation of a Dirac delta,
thus potentially allowing the proper transmission of x(t) at the receiver. Hence one of
the reasons for the strong interest time reversal has suscitated in applications involv-
ing complex media. An example of the reproduction of a wide-band pulse within a
reverberation chamber is shown in Fig. 3.3, where it is compared to the original one:
the signal is indeed very well transmitted, even though random fluctuations appear at
the two sides of the pulse. The problem of predicting the average intensity of residual
fluctuations in time-reversal transmissions is addressed in § 3.2.2.

3.2.1 Self-averaging in time-reversal transmissions

Before looking more closely to the characteristics of time-reversal transmissions through
a cavity, it is instructive to push the analysis of the point-to-point transmission a little
further. To this effect, the equivalent transfer function G(ω) = |H(ω)|2 will be regarded
as a random function, subtended by unknown physical phenomena. In this respect, the
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tools introduced in § 1.2.3 will be applied as a suitable black-box approach, by studying
the statistics of the received signal at the time of focusing, i.e., t = 0, and the late-time
statistics.

We first bring our attention over the value recorded at the receiver at the time of
focusing,

y(0) =

∫

BT

G(ω)X (ω)dω. (3.6)

Some interesting conclusions can be obtained by writing the above integral as a
discrete summation, discretizing the integral over finite cells B(i)c of identical bandwidth
equal to Bc centered around the frequencies ωi/2π

y(0)'
Nc
∑

i=1

∫

B(i)c

G(ω)X (ω)dω. (3.7)

with Nc = dBT/Bce the number of coherence cells covered by the excitation bandwidth.
In the rest of this chapter, we will always assume that the spectrum X (ω) of the exci-
tation signal evolves slowly within a single coherence bandwidth. Moreover, since the
signals targeted at the receiving end are often of pulsed nature, their spectra are typi-
cally flat over most of their bandwidth BT , thus providing a further justification for this
assumption.

Using the notations

X i = X (ωi) (3.8)

Gi = 2Re

(

∫

B(i)c

G(ω)dω

)

, (3.9)

(3.10)

(3.7) can be approximated as

y(0) =
Nc
∑

i=1

X iGi , (3.11)

having considered, for the sake of simplicity, X i ∈R+.
The value taken by y(0) is a random function of the random transfer function G(ω).

Ideally, y(0) should be deterministic and predictable in a simple manner from basic
information about the cavity. This condition can be expressed in statistical terms as

σ2
y(0) =

¬

�

y(0)−



y(0)
��2¶= 0. (3.12)
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The presence of a residual statistical dispersion of y(0) can serve as a measure of the
ability of time reversal in ensuring a proper transmission of a signal through a complex
medium. Taking as example what is done in optics [R26], we will consider the contrast

Λp =




y(0)
�2

σ2
y(0)

, (3.13)

as a figure of merit of the quality of the transmission, with a meaning closely related to
the concept of signal-to-noise ratio used in signal theory. Here no noise source has been
assumed to exist, so the analogy should not be pushed too far; the role of “noise” is here
played by the statistical dispersion of the received signal, and should be regarded as a
speckle superposed to the ideal transmission expected in (3.12). The contrast (3.13) is
noted by a subscript p since it is measured at the expected time of arrival of the peak of
the signal, for what is typically a pulse around t = 0, thus related at its instantaneous
power; an alternative definition pertaining to the received energy will be proposed in
§ 3.2.2.

The peak contrast Λp can be evaluated by substituting (3.11) into (3.13). The
computation is very straightforward, but the variance σ2

y(0) deserves a little attention;
it takes the shape

σ2
y(0) =

∑

i

X 2
i

D

�

�Gi −



Gi
�

�

�

2
E

+
∑

i 6= j

X iX j

D

�

Gi −



Gi
��

�

G j −
¬

G j

¶�∗E
. (3.14)

The initial choice of breaking the integral in (3.6) over coherence cells implies that
random values taken by the {Gi} can be expected to be weakly correlated, simplifying
(3.14) into

σ2
y(0) =

∑

i

X 2
i σ

2
Gi

, (3.15)

where σ2
Gi

are the variances of the Nc iid random variables {Gi}. When dealing with
large cavities, even for relatively large bandwidths with BT � Bc , the statistical mo-
ments of the random function G(ω) can be expected to be independent of the frequency
of observation, resulting in identical σ2

Gi
, ∀ i. Hence




y(0)
�

= Ḡi

Nc
∑

i=1

X i = Nc Ḡi X̄ (3.16)

σ2
y(0) = σ2

Gi

Nc
∑

i=1

X 2
i = Ncσ

2
Gi

X 2
rms, (3.17)

where X̄ and Xrms are, respectively,the arithmetic and quadratic averages of X (ω) over
BT ; thus (3.13) yields
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Λp = ΛGi

BT

Bc
κ2, (3.18)

where

ΛGi
=

Ḡi
2

σ2
Gi

, (3.19)

is the contrast of G(ω) sampled at the frequencies ωi/2π and

κ=
X̄

Xrms
(3.20)

is a shape factor [J2], with κ¶ 1.
Equation (3.18), though resulting from a heavily simplified analysis, highlights

some interesting properties of time-reversal transmissions. First of all, the received
signal will be characterized by a decreasing uncertainty as the number of coherence
bandwidths covered by the excitation signal increases. The reason for this property, of-
ten referred to as self-averaging [R16, R47, R60], is that in time-reversal transmissions
the Nc degrees of freedom available are excited in a coherent way, i.e., in phase, since
eventual random phase-shifts introduced by H(ω) are set to zero by phase-conjugated
excitations. Second, (3.18) shows what is the role of the statistics of the propagation
medium, as quantified by the contrast ΛGi

of the transfer function. As we pass from a
random to a deterministic medium the ΛGi

increases asymptotically to infinity, as could
be expected from the presentation of time-reversal propagation in open media in § 3.1.
For the case of a cavity in a diffuse-field configuration, H(ω) is well modelled by a com-
plex Gaussian process with iid real and imaginary parts; hence, G(ω) can be modelled
as an exponential random process, i.e., ΛGi

= 1. Third, the shape of the signal to be
transmitted also plays a part that should not be underestimated; while for pulse-like
signals κ ' 1, for more complex shapes with their energy not concentrated around the
time t = 0 but spread over a larger support, the final contrast will be found to be lower
than expected from simpler considerations [R7].

Time-reversed excitation signals appear to remarkably simplify the problem of trans-
mission through complex media: while a direct transmission would result in a strongly
distorted signal, with random amplitude and phase modulation (random transfer func-
tion), non-harmonic signals generated by means of the procedure described in § 3.2
lead to an asymptotically deterministic transmission of the original signal x(t). This
asymptotic value can be derived on the basis of energy-conservation considerations,
i.e., macroscopic ones, which do no require any specific information about the fine
structure of the medium [J5, App. A].

Can these results be expected to hold also for t 6= 0? The answer is no, and it can
be understood by studying (3.7) at an instant t:
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y(t) = 2Re

(

Nc
∑

i=1

∫

B(i)c

X (ω)G(ω)e+jωtdω

)

'
Nc
∑

i=1

X iGi cos(ωi t). (3.21)

The difference between (3.21) and (3.7) is that while the {Gi} summed up coher-
ently in (3.7), now they take part to a random-walk process, activated by the random
phase-shifts introduced by the Fourier kernels. The sum passes from coherent at t = 0
to incoherent as soon as the phase-shifts are allowed to rotate rapidly, effectively behav-
ing as a uniformly distributed random variable. It is the case, e.g., when between two
consecutive sub-bandwidths B(i)c the phase-shift is far greater than 2π, i.e., for t ¦ 1/Bc .
In this case the received signal corresponds to the signal that would be received within a
large cavity under a diffuse-field configuration, since the random-walk process destroys
any would-be coherent transmission. No coherent component is present now, leading
to a fully developed speckle signal [R26] with




y(t)
�

→ 0 and an unchanged variance
with respect to (3.16).

The reason for the absence of coherent transmission is not the fact that x(t) ' 0
at the time of sampling; even with a non-negligible coherent signal, it could not be
observed at the receiving end, because of the random-walk process.

It is important to bear in mind that the use of non-harmonic signals should not be
interpreted as a need for wide-band signals, as it has been the case in most of the in-
vestigations carried out in acoustics [R94, R22, R17], where relative bandwidths up to
100 % were considered. As proven by the analysis in § 3.2.1, the actual criterium is to
ensure BT/Bc � 1; the need for wide-band signals in acoustics is likely justified by a
wider coherence bandwidth. In the case of reverberating media, the final bandwidth BT
can be narrow enough to regard the signal x(t) as quasi-harmonic; as an example, for
a standard electromagnetic reverberation chamber, at 1 GHz, with Q̄ ' 104, the coher-
ence bandwidth would be of the order of 100 kHz, thus resulting in at least 100 degrees
of freedom when applying a transmitting signal with BT/ fc ' 1 %. The resulting peak
contrast Λp would be around 20 dB, thus a fairly clear transmission.

3.2.2 Coherent-transmission efficiency through reverberating media

Most of the analyses of the self-averaging property observed in time-reversal transmis-
sions through complex media consider the generation of a strong contrast at the time
of focusing as the most important observable [R18, R23, R41]. Indeed, in some appli-
cations the objective can be to generate a spot of pulsed energy regardless of its time
evolution.A more general approach is to assess the ability of time-reversal transmis-
sions to reproduce specific pulsed shapes at the receiver; the transmission of data is
an example of an application where it is not sufficient to generate a maximum in the
instantaneous power observed at the receiver.

In this respect, an alternative analysis was presented in [J2] for the case of a rever-
berating cavity, where the received signal y(t) was described as the superposition of a
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term coherent with the original signal x(t) and a residual part n(t)

y(t) = ρx(t) + n(t). (3.22)

An optimal transmission through time reversal would therefore require that for a
given input energy at the transmitter end, the fraction of energy at the receiver main-
taining a coherence with x(t) be maximized. It is therefore sensible to introduce a
slight modification of the idea of contrast: rather than just assessing the ratio between
the signal at t = 0 over the rms value of the residual late-time fluctuations as done
in (3.18), we will consider the ratio between the energy of the coherent part of the
received signal and the total energy value of the residual part, i.e.,

Λ =
Ec

En
, (3.23)

where the energy Ec of the coherent part is given by

Ec = ρ
2EX = 2ρ2

∫

BT

|X (ω)|2dω , (3.24)

and the energy En of the residual part is

En = 2

∫

BT

|X (ω)|2|H(ω)|4dω−Ec . (3.25)

In practical terms, Λ is important since it assesses how much of the energy of the
received signal can be used to extract information, as part of a coherent transmission
system. The coherent-transmission efficiency ηc can be defined as

ηc =
Ec

Ec + En
=
Λ

1+Λ
, (3.26)

as a figure of merit assessing the fraction of received energy that is coherent, as
opposed to the random-like behaviour of the residual fluctuations.

Moreover, the original definition of contrast (3.18) can be related to Λ by approxi-
mating the residual part with an exponential profile, with a time-constant Q̄/ωc , where
Q̄ is the average composite quality factor of the cavity. Knowing En and its time-
constant, its rms amplitude at t = 0 can be directly computed, yielding

Λp =
Q̄

π

BT

fc
κ2Λ , (3.27)

where κ was introduced in (3.20).
We can gain some insight into the values taken by these three figures of merit,

namely Λp, Λ and ηc , by applying the random spectral model introduced in § 1.3. In
this respect, the transfer function H(ω) can be represented as a discrete sum
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H(ω) =
M
∑

i=1

αiψi(ω), (3.28)

where {ψi(ω)} is the set of modal responses related to resonance frequencies { fi} and
{αi} constant coefficients. Modelling the sets {αi} and { fi} as two sets of iid random
variables leads to a random transfer function H(ω), with random figures of merit Λp,
Λ and ηc .

Proceeding in that same manner, the sets of modal coefficients and the frequencies
of resonance can be modelled as random variables, leading to a random transfer func-
tion H(ω) and random figures of merit Λp, Λ and ηc . Their average values have been
studied in [J2, J6], proving that

〈Λ〉 =
MM

MM + 1/π
(3.29)




ηc
�

=
MM

2MM + 1/π
, (3.30)

with MM the average number of overlapped modes over BT (see § 1.3.1). A direct
consequence of (3.29) and (3.30) is that for an increasing number of overlapping modes

〈Λ〉 → 1 (3.31)



ηc
�

→
1

2
, (3.32)

a result that can therefore be expected to hold under a diffuse-field approximation.
Hence, the best-case performance of a time-reversal transmission system will be limited
to half the received energy following a time-evolution set by the original signal x(t),
while at least the same amount of energy will be wasted in fluctuations that have no
use. The result is a coherent-transmission efficiency limited to 1/2.

Recalling the example of Fig. 3.3, these asymptotic results could seem counterintu-
itive, since the rms amplitude of the fluctuations appears to be negligible with respect
to the coherent part around t = 0. In fact, the support over which the fluctuations
maintain an almost constant average intensity is, typically, much larger than that of
the coherent part of the signal; while the former is proportional to the relaxation time
of the cavity, i.e., Q̄/ωc , the latter is proportional to 1/BT , for a pulsed signal x(t).
Therefore, the application of time reversal to reverberating cavities though allowing
the reception of clear reproductions of a template signal x(t), does that at the expenses
of a reduced energy efficiency, since at least the same amount of energy is wasted into
residual random fluctuations running over a long span of time.
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Figure 3.4 – Frequencies of occurrence for the
energy contrast Λ as computed from experi-
mental data measured over a bandwidth BT =
100 MHz, centered around the frequencies fc =
{0.5, 1,1.5, 2,2.5, 3} GHz (top to bottom). Each
histogram was obtained from a population of
100 sample transfer functions as measured be-
tween a fixed transmitter antenna and a moving
electro-optical probe.

Results demonstrating the va-
lidity of this prediction are shown
in Fig. 3.4, where Λ has been
computed from experimental data
and represented as histograms. As
the frequency increases, so does
the average number of overlapping
modes, thus leading to predicted
saturation in the value of Λ; the
statistical dispersion of Λ is limited
to less than ±1 dB.

A direct comparison between
theoretical and experimental val-
ues observed for ηc is presented
in Fig. 3.5, proving the accuracy
of (3.30). Fig. 3.5 also proves
another important point: the en-
ergy efficiency Λ does not depend
on the bandwidth of the excitation
signal, but is uniquely identified
by the statistical properties of the
medium. The effect of an increas-
ing bandwidth over the peak effi-
ciency Λp is therefore heavily de-
pendent on the shape of the tem-
plate signal x(t), as measured by
κ: as a conclusion, it is not at all
enough to increase the bandwidth
in order to improve the accuracy
of the transmission, but it is rather
more important to ensure an effi-
cient use of the bandwidth, in the
sense of providing the maximum
peak intensity for a fixed amount of
energy.

3.2.3 Conversion efficiency

While in a harmonic steady-state
the energy-density is on average

evenly distributed over the entire volume of a cavity (perfect diffusion), the fact that
time reversal can generate a focusing field distribution, implies that at a given time a

Coherent field generation



3.2 - Time-reversed transmissions through complex media 81

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (GHz)

E
[η

c]
5 % 10 %

7.5 %

Figure 3.5 – Experimental results for the coherence efficiency of time-reversal
transmissions within an electromagnetic reverberation chamber. Results for a 5 %
(Ï), 7.5 % (�) and 10 % (◦) relative bandwidth are shown; results predicted
by (3.30) are indicated by a full red dot. The bars on the experimental results
refer to measurement uncertainty estimated at ±10 % of the nominal value, those
on theoretical ones were obtained by propagating an uncertainty of ±30 % on the
estimated Q̄.

non-negligible fraction of the overall electromagnetic energy Ein injected into the cavity
will be more strongly concentrated within a smaller region of space. As a result, one
can expect that time-reversed signals could be used as a straightforward technique to
improve the ability of reverberation chambers in generating high-intensity fields.

This idea was explored in [J3], by means of a diffuse-field approximation, imposing
the same input energy Ein injected in the case of a harmonic and time-reversed excita-
tion. In the case of a harmonic excitation, this input energy was set in order to ensure
that a steady-state response was practically reached with a 95 % level. A conversion
efficiency was introduced, defined as

η=
max

t
‖e(t)‖2

Ein
, (3.33)

and computed for the two types of excitation signals.
The ability of time reversal in improving the conversion efficiency was therefore

measured by the conversion gain

G =
ηTR

ηCW
, (3.34)
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which was proven to be equal to

G =
BT Q̄

π fc
, (3.35)

i.e., G ∝ Nc . Once again, a figure of merit for time-reversal applications to reverberation
chambers appear to be proportional to the number of coherence bandwidths covered
by the Fourier spectrum of the excitation signal.

The validity of (3.35) was proven with experimental results in [J3]. The direct con-
sequence is the prediction that time-reversal excitations of a reverberation chamber can
easily outperform harmonic-driven ones by several orders of magnitude, by concentrat-
ing part of the stored energy within a smaller region, for a short instant. It could be
argued that this is not really useful, since reverberation chamber already enable higher
conversion efficiencies than free-space configurations; in fact, when testing aeronauti-
cal devices, field levels as high as 11 kV/m can be required [R1], in order to simulate
the response of an EUT when passing in close range of radar systems, as well as to
test its hardening to high-power microwaves that could be used in electronic warfare.
The generation of such field levels is not a trivial problem, and the power amplifier re-
quired in harmonic-driven chambers are often prohibitively expensive; the extra margin
provided by time-reversed excitations therefore constitute a promising solution to this
problem.

3.2.4 Polarization control

Being capable of transmitting pulsed signals through a complex medium is a remarkable
feat, but in the case of a vector field it would be even more interesting if its polarization
could be controlled, too. This possibility, first investigated in [J13] and [C18], can be
studied by assuming the vector transfer function H(ω) between the input port of an
antenna and the electric field measured by an observer within a cavity as known.

Let define an excitation signal w(t) whose Fourier spectrum W (ω) be

W (ω) = X (ω)HH(ω) · p̂, (3.36)

where p̂ is a complex unit vector representing the polarization of the field to be gener-
ated at the observer position. X (ω) is the Fourier spectrum of the signal to be transmit-
ted. The resulting electric field observed at the time t ' 0, generated by applying w(t)
at the antenna, can be written as

e(0) =

∫

BT

X (ω)H(ω)HH(ω) · p̂dω. (3.37)

Using the same approach introduced in § 3.2.1, breaking BT into a discrete sequence
of coherence bandwidths of the scalar components Hi(ω) of H(ω), yields
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e(0)' X̄

 

Nc
∑

m=1

H(ωm)H
H(ωm)

!

· p̂, (3.38)

which, by virtue of the law of large numbers, can be approximated, for Nc � 1 as

e(0)' X̄
BT

Bc

¬

H(ωm)H
H(ωm)

¶

· p̂, (3.39)

as long as
¬

H(ω)HH(ω)
¶

is independent of ω over BT . The averaged quantity was
already considered in § 1.4.1 for an ideally diffusive medium, with

¬

H(ω)HH(ω)
¶

= S(ω)1, (3.40)

where S(ω) is the spectral power density observed in the medium for a unit-power
excitation. Therefore, for a diffusive medium with S(ω)' S(ωc) and BT/Bc � 1,

e(0)' X̄ S(ωc)
BT

Bc
p̂, (3.41)

i.e., an electric field with a polarization corresponding to a perfect reproduction of the
vector p̂. Clearly, residual statistical fluctuations must be expected for this asymptotic
result, with an average intensity reducing as 1/

p

Nc , as already discussed in § 3.2.1.
The most interesting implication of (3.41) is that thanks to the definition (3.36)

of the excitation signal w(t), the polarization of the electric field at a given position
can be controlled just by means of a signal synthesis approach, rather than by relying
on the mechanical alignment of a source with a high cross-polarization rejection. An
experimental demonstration of this possibility is given in Fig. 3.6, where the electric
field generated at a fixed position within Supelec’s reverberation chamber is shown
for three different choices of the polarization vector p̂; it is clear that for t ' 0 not
only the field is no longer incoherent and, more importantly, it presents a deterministic
polarization, oriented along the direction pointed by p̂.

What is remarkable is that it is not the source that ensures the generation of a
polarized field, but the diffuse nature of the field propagating within the cavity. This
statement could seem paradoxical, but the above mathematical demonstration shows
that it is the property (3.40), intrinsic to a diffuse-field configuration, that ensures this
result.

3.3 Emulating free-space propagation

The results presented in § 3.2 seem to imply that time-reversed excitation of diffusive
cavities should be regarded as a promising field of investigation with practical applica-
tions. Within the framework of device testing, the ability to generate short pulses in a
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weakly lossy medium together with an accurate control of the field polarization have a
direct appeal to EMC testing, particularly for defense applications.

Unfortunately, such conclusions miss at least two important issues : devices are
seldom smaller than a wavelength and it is not especially useful to control the field
over just one point in space. Test facilities rather require the ability to generate known
and repeatable wavefronts, since most often the characteristics of EUTs are expressed
as functions of their response to extended incident wavefronts.

The problem is that time-reversal techniques in their present state are not suitable
for device testing: they are actually mismatched to practical needs, as they have been
designed to deal with mainly point scatterers, rather than electrically extended ones, as
it is often the case when dealing with real-life EUTs, and this goes without taking into
account the issue of polarization, which leads to an even more complex scenario when
compared to the scalar-wave propagation and scattering undergoing in acoustics.

The standard implementation of time-reversal techniques implies that each time
we wish to generate a new converging wavefront, its diverging version needs to be
generated by a real source in the first phase. Furthermore, as the characteristics of the
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wavefront change, e.g., the direction of arrival or the polarization, the first phase is to
be carried out again. This is clearly a strong limitation when proposing time reversal
for testing applications, since as soon as a wide range of configurations is to be tested,
the repetition of the two phases and the ensuing longer test duration could outweigh
the benefits of time-reversal excitations. Moreover, the question of how to generate the
diverging wavefront in the first place is far from trivial, since the testing wavefront (i.e.,
the converging version) will need to be radiated by a real source that therefore needs
to be tailored to this purpose.

The solution to this mismatch is to shift our attention from the idea of reproducing
a wavefront focusing over one point to the idea of directly generating any focusing
wavefront. By this last term, we consider the ability to control all of the parameters
defining a wavefront, e.g., its time-dependence, polarization, directivity and direction
of arrival. This reflection has motivated our proposing an alternative approach based
on the use of synthetic sources, leading to a new paradigm for time reversal that is not
only suitable for EMC purposes but also brings in new advantages for any test based
on submitting an EUT to impinging wavefronts. This approach, that we have named
the Time-Reversal Electromagnetic Chamber (TREC) was originally introduced in [C25]
while the first experimental demonstration was proposed in [J15].

3.3.1 A change of perspective : wavefront generation

The general case of coherent wavefront generation within a diffusive cavity was the
subject of a recent paper [J5], where the diverging wavefront to be time-reversed is
regarded through the lens of the equivalence theorem [R30]; the idea is to move the
focus from the source to the wavefront it generates. With reference to Fig. 3.7, a virtual
source can be defined, together with a surface Σ over which equivalent currents can be
defined in such a way as to generate a wavefront radiating away from Σ identical to
that of the virtual source.

Based on the assumption of knowing the vector transfer functions relating the ex-
citation voltages applied to discrete TRM antennas to the electric and magnetic fields
over Σ, and that all points over Σ stand in the far-field region of the virtual source,
it can be shown that the voltages Vi that should be applied to the i-th TRM antenna
during the second phase is [J5]

Vi(ω) =

∫

Σ
Neq,i(r

′,ω) · E∗wf(r
′,ω)dr ′, (3.42)

with

Neq,i(r ,ω) =
N e,i(r ,ω)

ζ0
+ r̂ × Nm,i(r ,ω), (3.43)

where N e,i(r ,ω) and Nm,i(r ,ω) are the vector transfer functions relating the electric
and magnetic fields to the input port of the i-th TRM antenna, respectively.
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Figure 3.7 – Configuration for the ap-
plication of Love’s equivalence theo-
rem. Equivalent electric and mag-
netic currents are defined over the
surface Σ, representing the wave-
front Ewf(r ,ω) that would have been
generated by a synthetic source con-
tained in the volume bounded by the
surface Ξ. These elements are em-
bedded into a complex medium Ω.
The i-th TRM antenna is modelled as
an elementary dipole in r i , oriented
along q̂ i .

Equation (3.42) is of direct practical im-
portance because it implies that the first
phase can be totally removed and more
specifically that there is no need for a physi-
cal source in the first place. Our proposal of
using equivalent sources over Σ as a proxy of
a virtual source could lead to assuming that
a distributed-source network is now neces-
sary; in fact, knowledge of the transfer func-
tions N e,i(r ,ω) and Nm,i(r ,ω) as measured
by means of field probes allow avoiding such
a complex scenario. Moreover, (3.42) also
states that potentially any wavefront can be
generated when adopting this improved ver-
sion of time reversal; no assumption has
been made on the shape of the target wave-
front Ewf(r ,ω), nor on the type of vector
transfer functions imposed by the propaga-
tion medium. In other words, (3.42) could
be regarded as a wavefront-synthesis pro-
cedure, directly taking into account the be-
haviour of the medium as a weighting func-
tion.

Since we are rather interested in the case
of wave-diffusive media, and specifically large cavities, the transfer functions N e,i(r ,ω)
and Nm,i(r ,ω) can be modelled, as done throughout this dissertation, as random func-
tions of the space and frequency variables. Recalling the property of self averaging
discussed in § 3.2.1, in the case of BT/Bc � 1, it is possible to assume that all field-
related quantities, if excited by means of time-reversed excitations, will asymptotically
converge to deterministic values, with vanishingly small random fluctuations. There-
fore, by only considering the average values at which these quantities converge, it can
be shown that [J5]

¬

ETR,i(r ,ω)
¶

=

∫

Σ
T i(r , r ′,ω) · E∗wf(r

′,ω)dr ′, (3.44)

i.e., the wavefront generated by each TRM antenna is a functional of the target wave-
front through the dyadic operator T i(r , r ′,ω), defined as
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T ee,i(r , r ′,ω) =
D

N e,i(r ,ω)N∗e,i(r
′,ω)

E

(3.45)

T em,i(r , r ′,ω) =
D

N e,i(r ,ω)
h

r̂ ′× N∗m,i(r
′,ω)

iE

(3.46)

T i(r , r ′,ω) =
1

ζ0
T ee,i(r , r ′,ω)− T em,i(r , r ′,ω). (3.47)

The above results point out once again that time reversal entirely relies upon the
spatial and frequency correlation properties of the medium; indeed, the three dyadic
operators are nothing else than spatial covariance matrices.

What are the roles of frequency and spatial correlations? The latter sets the spa-
tial resolution of the method, in the sense that it operates as a point-spread func-
tion in (3.44), modifying the target wavefront into the eventually distorted replica
¬

ETR,i(r ,ω)
¶

observed in practice.
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Figure 3.8 – The local reference
system based on the orientation of
the r and r ′ vectors, defined by
the right-hand set of unit vectors
ν̂ , η̂ and ρ̂. This choice is at the
basis of the results derived for the
case of a wave-diffusive medium.

Conversely frequency correlation has a fun-
damental role, already highlighted in § 3.2.1:
ensuring that the bandwidth BT of the wave-
front will activate enough degrees of freedom
to yield a quasi-deterministic result, with negli-
gible random fluctuations.

Spatial correlation is therefore important
since it provides a limit to the generation of
wavefronts with rapid spatial variations, of im-
portance when dealing with directive wave-
fronts. In the ideal case of a perfectly diffusive
cavity, (3.45) can be expressed in closed form;
to this end we need to introduce the local ref-
erence system depicted in Fig. 3.8, defined by
a longitudinal unit vector ρ̂ = d/‖d‖, where
d = r ′ − r , a transversal unit vector ν̂ lying on
the plane defined by the vectors r and r ′ and a
third unit vector η̂ = ρ̂ × ν̂ . The only non-null
components of (3.45) are therefore
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�

T ee

�

ρ̂ρ̂
(r , r ′,ω) =

N2
e,av

3
ρl(d,ω) (3.48)

�

T ee

�

ν̂ ν̂
(r , r ′,ω) =

N2
e,av

3
ρt(d,ω) (3.49)

�

T ee

�

η̂η̂
(r , r ′,ω) =

�

T ee

�

ν̂ ν̂
(r , r ′(r , r ′,ω)), (3.50)

�

T em

�

ν̂ ν̂
(r , r ′,ω) =

N2
e,av

3ζ0
ρm(d,ω)r̂ ′× ν̂ · η̂ (3.51)

�

T em

�

ν̂ ρ̂
(r , r ′,ω) =

N2
e,av

3ζ0
ρm(d,ω)r̂ ′× η̂ · ρ̂ (3.52)

�

T em

�

η̂η̂
(r , r ′,ω) =

�

T em

�

ν̂ ν̂
(r , r ′(r , r ′,ω)), (3.53)

where ρl(d,ω), ρt(d,ω) and ρm(d,ω) are spatial correlation functions that were in-
troduced in (1.73)-(1.75), whereas Ne,av(ω)/

p
3 represents the rms amplitude of any

scalar components of the electric field that would be generated within the cavity by
a unitary-power harmonic excitation; its value can be easily predicted from power-
conservation considerations, as shown in [J5, App. A].

Whence, the operator T (r , r ′,ω) reads, for the case of an ideally diffused field

T (r , r ′,ω) =
N2

e,av

3ζ0
ρ(r , r ′,ω), (3.54)

with

ρ(r , r ′,ω) = ρ̂ρ̂ρl(d,ω)− ν̂ ρ̂ρm(d,ω)r̂ ′× η̂ · ρ̂+

+ (ν̂ ν̂ + η̂η̂)
�

ρt(d,ω) +ρm(d,ω)r̂ ′× ν̂ · η̂
�

,
(3.55)

introducing the normalized dyadic response ρ(d,ω). As a result, the real and imaginary
parts of the scalar components of this function are now bounded to one, since they
correspond to the degree of spatial coherence of the medium [R93].

The dyadic operator T i(r , r ′,ω) appearing in (3.44) is therefore independent, on
average, of the position and orientation of the TRM antenna, thanks to the isotropic and
depolarization properties of diffused fields. In particular, all the quantities in (3.48) are
deterministic, so that (3.44) can be solved in order to study the accuracy of the TREC
technique in reproducing a given wavefront.

A graphical representation of ρ(r , r ′,ω) is shown in Fig.3.9, where its angular
spreading action is well apparent. The question of how accurately a target wavefront
will be distorted is therefore natural, as well as the reflection about the eventual exis-
tence of a class of wavefronts that will be less subject to these distortions. A qualitative
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(a) (b)

Figure 3.9 – Normalized dyadic function ρ(r , r ′,ω) computed for r ∈ Σ and
r ′ = rΣ x̂ , with rΣ = 3λ: (a) real and (b) imaginary parts. The 9 terms of the
dyadic response are shown, matrix-wise, considering standard spherical unit vec-
tors, following the order r̂ , ϑ̂ and ϕ̂, defined with respect to a polar axis vertically
oriented.

answer was proposed in [J5], showing that the resolution of the point-spread function
is consistently better than that potentially generated by any virtual source for which Σ
stand in its far-field region.

An example of resulting wavefront is shown in Fig. 3.10, where the target wave-
front was that of a square aperture of side λ, with uniform electric field linearly polar-
ized. The electric field distribution was computed over a continuous range of distances
from λ/10 up to 3 λ, limited to a horizontal cut, along the x y plane, starting from
an equivalent-source surface at rΣ = 3λ. In Fig. 3.10 the two spherical components
Eϕ(r ,ω) and Er(r ,ω) of the electric field are shown, Eϑ(r ,ω) being identically null by
virtue of symmetry. It is possible to conclude that a focusing of the propagating energy
is indeed occurring, as the electric field builds up converging towards the phase-center
of the synthetic source.

Two notable distances are marked in Fig. 3.10: rΣ = 2λ and rΞ = λ/2. The target
wavefront (far field) should only present aϕ-oriented field, which is indeed found in the
TREC-generated wavefront, as shown in Fig. 3.10(a)-(b); the purity of the polarization
appears to start degrading as the wavefront crosses rΞ, when the focusing wavefront
approximates the original field distribution found in what would be the reactive part of
the synthetic source. Since the TREC can only produce propagative waves by means of
distant sources (i.e., the TRM antennas), the diffraction limit ensues, leading to a focal
spot about one wavelength wide. The appearance of a radial component in Fig. 3.10(b)
is due to this phenomenon of approximation of the original source distribution, and it
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Figure 3.10 – Numerical solution of (3.44) for the case of the radiation pattern
of a wideband linearly-polarized square-aperture antenna, one wavelength wide
at the central frequency. The evolution of the electric field is studied over the
half-plane of the x y cut (E-plane cut) along which the time-reversed wavefront is
expected to focus, for radial distances going from λ/10 up to 3λ: (a) Eϕ(r ,ω);
(b) Er(r ,ω); (c) ‖E(r ,ω)‖; (d) ‖E(r ,ω)‖r; (e) angular dependence ‖F(r ,ω)‖,
proportional to ‖Ewf(r ,ω)‖r. The outer dashed line represents the Fraunhofer
distance for the synthetic source, whose volume is marked by the inner dashed
line. All results are normalized to the peak-value of Eϕ and expressed in dB.
Radial dashed lines represent the -3 dB and the -10 dB angles. For further details,
refer to page 155.
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Figure 3.11 – Experimental results obtained for a same virtual source oriented
along different directions. A 200 MHz bandwidth with a central frequency of
1.1 GHz was used.

becomes more evident when looking at the total field in Fig. 3.10(c): the wavefront
focuses back onto the source region, with an almost uniform intensity.

The accuracy of the angular distribution of the focusing wavefront is more easily
observed in Fig. 3.10(d), where the wavefront is normalized to Green’s scalar function,
yielding the radiation pattern to be compared to that shown in Fig. 3.10(e). The com-
parison is very good, with the converging wavefront accurately reproducing a radially-
invariant radiation pattern over its far-field region within a±0.2 dB range over the main
lobe. Fig. 3.10(d) also provides a clear picture of the focal spot due to diffraction limit:
directivity is lost, with energy almost equally spread over all directions, and particularly
with a reduction in its increase with respect to an ideal spherical convergence.

These results imply that the loss of directivity is not due to an intrinsic limitation of
the method, as could have been expected from the point-spread function shown in the
previous section. It actually appears that the point-spread function is effectively capable
of reproducing all the phenomena leading to wave focusing under physical conditions,
including the diffraction limitation over the near-field region of the synthetic source.
Practically, no significant distortion occurs over the main-lobe outside the surface Ξ of
the virtual source.

In short, the TREC approach allows emulating a free-space environment within a
diffusive medium; as discussed in § 3.3.2, this result should not be regarded as a com-
plicated manner of using a reverberation chamber as an anechoic one, but rather as
the first step towards new possible applications. Let just consider the fact that at no
point in the above derivation the direction of arrival of the converging wavefront was
linked in any manner to the position of the TRM antennas. As a result, the TREC is not
just emulating a free-space environment, but it is offering the possibility of generating
wavefronts propagating along any direction without having a source in the line-of-sight
of the observer. Though counterintuitive, this result is a direct consequence of the use
of a diffusive medium: its properties, in particular spatial correlation, is independent
of direction, polarization and position. Hence, wavefronts generated by means of the
TREC approach can emulate any propagation pattern, as long as these wavefronts sat-
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isfy Helmholtz equation. An example of this property is given in Fig. 3.11, where the
wavefront of a virtual source was generated for a varying orientation; the resulting
wavefronts are practically invariant to the rotation.

3.3.2 Potential applications

In the introduction to this chapter we have stated that it is our intention not to apply
time reversal merely as a way of emulating free-space propagation within reverberat-
ing cavities, but rather in order to define a new test facility. As pointed out at the end
of the previous section, the TREC is not only capable of emulating a free-space prop-
agation, but it allows a direct synthesis of wavefronts without requiring a line-of-sight
configuration, a condition that would be necessary in any anechoic environment. The
TREC can therefore be regarded as an alternative to anechoic environments for radi-
ated tests (e.g., radiated immunity in EMC testing), where the proper test phase would
not require any mechanical movement of sources, nor a collection of sources cover-
ing the EUT along all directions of interest. Its intrinsical ability in providing a higher
conversion efficiency is a welcome by-product that highlights the successful merging of
reverberating and anechoic features.

In practice, there is a last problem to be solved: the transfer functions Neq,i(r ,ω),
needed for the synthesis of the excitation signals (3.42). A feasible solution is to excite
each TRM antenna with a unitary harmonic excitation and measure the tangential elec-
tric and magnetic field components over Σ, e.g., by means of a moving probe. Such an
approach would provide all the information needed for the synthesis (3.42); a prelimi-
nary demonstration of the feasibility of this approach was presented in [J15].

Mechanical movements would therefore be still necessary. In order to better under-
stand the difference between standard approaches and the TREC one, Fig. 3.12 presents
the flow of operations needed: while for multiple test configurations anechoic environ-
ments typically require mechanical movements repeated for each test, in a TREC all
movements would be limited to a preliminary phase during which the transfer func-
tions Neq,i(r ,ω) are collected once and for all; the actual test phase would require no
mechanical movement, speeding it up.

Still, the overall number of movements could be expected to be the same, so that
one could wonder what are the advantages of this procedure. Two points come to
mind: first, since the preliminary phase involves the displacement of a probe rather
than a source, the lighter weight of a probe implies a simpler mechanics and faster
displacement rates, thus an overall shorter duration. Second, (3.42) does not require
any assumption on the nature of the wavefront; it is therefore uncorrect to assume
that one position of the probe corresponds to just one test configuration, as inevitable
for anechoic environments. In fact, (3.42) does not provide for any limitation in this
respect, allowing the generation of a larger number of test wavefronts than possible in
an anechoic environment with a single source. Parameters such as a varying directivity,
polarization, time-dependence, etc., can be changed from data acquired for a single
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Figure 3.12 – Sequences of necessary steps to follow
when using (a) an anechoic test environment and (b)
a TREC. Shaded blocks represent operations based on
mechanical displacements or substitution of devices.

direction, whereas for an
anechoic environment this
would require mechanical
modifications in the source,
eventually the use of a col-
lection of sources, resulting
in longer test durations.

Moreover, the TREC be-
ing a linear system, it is also
possible to imagine rather
peculiar scenarios, e.g., with
multiple incidences, with
more than one wavefront im-
pinging over the EUT along
different directions. This
possibility is of direct practi-
cal importance, since in prac-
tice an EUT is seldom op-
erated in a free-space envi-
ronment; more often, it in-
teracts with boundaries at
least partially reflective, e.g.,
walls, the ground, neigh-
bouring devices, etc. As a
result, tests within anechoic
environments are bound to
represent an approximate es-
timate of the actual response
of the EUT within more re-
alistic environments. The
TREC can therefore emulate
more complex environments
than anechoic ones, by reproducing echoes corresponding to reflections upon virtual
boundaries.

The case we want to make is that the TREC should not be regarded only as an
emulation of free-space propagation, since it also comes with advantages of its own, not
found with other test facilities. Furthermore, it paves the way to new applications such
as the identification of coupling paths in an EUT and the measurement of its scattering
cross-section. Preliminary tests during the last two years have proven the feasibility of
these ideas. The feasibility of fast antenna measurement have also been demonstrated
in [J9]. For all these reasons, we can conclude by stating that having chosen to work
with a complex environment allows to simplify a number of problems that have not yet
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a simple practical solution. As discussed in § 4, these themes need to be investigated
and will constitute the basis for future investigations.

X

Coherent field generation



Chapter 4

Discussions and perspectives

T HE previous chapters were intended to summarize our main contributions to the
field of large cavities over the last 4 years. A special attention was placed upon
the use of these media as testing facilities, particularly for radiated tests as
defined for EMC applications. Fundamentally, two topics have been presented

: non-perfectly diffusive cavities under a harmonic steady-state and the generation of
coherent fields within diffusive cavities.

The main tool used for this purpose was a random spectral representation of fields
propagating within these media. It has allowed not only to understand the reasons
of certain non-idealities in field statistics and to predict some remarkable features of
time-reversal driven cavities, but has also shown that without recurring to complex
models, the gap between plane-wave representations and modal ones could be bridged,
providing a simple explanation of the difficulties observed in the low-frequency analysis
of large cavities.

A complete review of our work is out of the scope of this dissertation; indeed, the
same approach has been also used in order to prove the possibility of controlling the
field statistics in the lower-frequency range of a cavity [C15], setting an alternative
to the use of electrically large scatterers as field stirrers, implying the possibility of
reducing the LUF without major modifications in the cavity geometry. Further work
on non-idealities has also highlighted the importance of taking into account even very
weak correlation levels that are typically found between field samples measured in a
cavity [C7] and the debatable use of statistical goodness-of-fit tests as tools for assessing
the correct functioning of a reverberation chamber [C22].

Our aim was to stress the transversal approach we have applied in studying cavities,
without recurring to approaches and assumptions that are too often taken for granted,
at least within the EMC community. An outsider point of view is needed, in our opinion,
if we are to go further in the physical understanding of phenomena that have not yet
been fully taken into account.

Our investigations clearly indicate that the understanding of cavity-based applica-
tions can be improved by taking advantage of the results summarized in the previous
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chapters. In this respect, the ideas we will prospect in the next few years are presented
in § 4.1, and concern field statistics as well as coherent applications based on time re-
versal. Conversely, a long-term vision is presented in § 4.2, where we argue about how
the tools developed in the context of our work on large cavities could be applied to
other domains outside EMC testing.

4.1 Short-term projects

We have highlighted the need for sounder models of cavities in non-perfect diffusive
regime. In this respect, we will work in the next few years on the physics of cavities. In
particular, we aim at completing the track opened, introducing a global statistical model
taking into accounts often neglected effects, e.g., residual spatial/stirrer correlation. As
shown in § 1.4.2, there is room for hybrid models bridging the gap between perfect
diffuse-field random PWS and random spectral models capable of assessing the actual
number of modes actively taking part in the response of a cavity. Such models are
needed in order to introduce a statistically-based definition of the LUF of a reverberation
chamber: as discussed in § 2.3.2, none of the current definitions is capable of accounting
for the imperfect diffusion observed even in very large cavities. Random fluctuations
in the modal density and the modal overlapping are one of the reasons for the use of
statistical approaches; acknowledging the impossibility of observing no local statistical
anomaly requires models capable of predicting the probability of observing a given
number of such anomalies, as a function of macroscopic parameters experimentally
accessible without a priori assumptions.

Hybrid models would also be needed for another issue, namely understanding how
a loaded cavity, i.e., with lossy material inserted in it, behaves. Current models do not
account for the intermediate regime where a cavity is no longer resonant enough to
provide a diffusive environment. This issue should not be confused with that of weak
modal overlapping; on the contrary, increasing losses can be expected to increase modal
overlapping. The problem is rather due to the fact that in the case of substantial losses,
the usual weak-perturbation approach is no longer viable. As a result, predictions of
field uniformity and sample independence based on the use of spectral/plane-wave
models based on the assumption of independent degrees of freedom fail, because there
is no way of estimating beforehand the actual number of degrees of freedom. Correla-
tion between modes or plane waves should be expected, but the issue is how to set the
correlation, and what relationship should be expected with higher loss levels? An an-
swer to this problem should be possible using hybrid plane-wave spectra models as the
one introduced in § 1.4.2, where wave propagation and interaction with lossy bound-
aries can be accounted for and used as a proxy for assessing the effective number of
independent propagation paths observed in practice. A similar idea is used in multiple-
scattering theory, where the ratio between the average length of propagation of a wave
to the average free-path between scattering interactions is used just in the same man-
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ner, i.e., to assess how many degrees of freedom can be expected to be ensured by a
complex medium, for example in the study of the fluctuations in electric conductivity in
mesoscopic quantum systems [R78].

Another issue still open within the EMC community is that of predicting the perfor-
mance of a mechanical stirrer. It is hardly exaggerated to claim that stirrer design is
as random as the samples it is expected to generate: current rules are limited to rather
generic guidelines [R97, R4, R91, R55, R37] whose main merit is to avoid the use of
electrically small stirrers. The main reason for these difficulties lies in the assumption
that the response of a stirrer can be studied only either by experimental tests or by nu-
merical simulations, both to be carried out within the targeted reverberation chamber.
We would rather attempt a different approach, by exploiting the possibility of using
image theory, thanks to the rectangular boundaries preferred by the EMC community:
it seems feasible to link analytically the scattering response of a scatterer in free space
to that it will produce when included within a cavity. To this end, it will likely be nec-
essary to make reference to the literature on propagation in periodic media. Numerical
simulations of a scatterer in a free-space environment would be dramatically faster than
those carried out within a reverberating cavity, because of well-known numerical diffi-
culties in the simulation of systems with strongly pronounced resonances and/or long
relaxation times.

Concerning our work on time-reversal excitation of cavities, but not restricted to the
TREC approach, there are several developments that are already under way. We will
just refer to two of them that constitute the heart of two Ph.D. theses that have only very
recently started. The first topic is the use of cavities with long relaxation times used in
conjunction with time reversal as the basic elements in the amplification of short high-
power microwave pulses. Two novelties are introduced by this work: the first one is
the use of a cavity for the time-spreading of pulses, enabling higher amplification rates,
while the low spatial correlation of large cavities is expected to allow the excitation of
multiple radiation sources at the same time.

The second topic aims at using a TREC as a fast antenna-test facility. The approach
chosen will be opposite to that already explored in [J9]. In this work the TREC is ex-
amined under the lens of estimation/decision theory, by setting up a problem of identi-
fication of the radiation pattern of a source exposed to complex wavefronts generated
by the TREC. The main novelty will be the absence of any simple test wavefront, e.g.,
plane waves, currently used in anechoic facilities. Initial explorations support the idea
that from an estimation point of view, complex wavefronts could outperform local plane
waves when trying to estimate radiation patterns. The flexibility of the TREC in generat-
ing arbitrary wavefronts that could not be easily generated in a free-space environment
is the main asset of this work.

In both the physics of harmonic-driven cavities and applications of the TREC, the
concepts and results summarized in this dissertation will constitute the foundations
upon which new researches will be based. The availability of simple statistical tools of
broad applicability and capable of reproducing experimentally-observed phenomena is
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a fundamental point in the success of these new projects.

4.2 Long-term vision

The TREC approach is expected to require a longer planning for its further development.
Several axis have already been identified; we will just present the main ideas at the basis
of two of them that look particularly promising.

The first development will turn around a feature of the TREC that we have so far
been neglecting, namely wave focusing. Actually, we have made use of it repeatedly, as
soon as a high contrast Λ was required, as well for high conversion efficiencies and for
any quantity that relies on self-averaging. Still, focusing was a property not exploited
in itself, but rather was a manner of ensuring an almost deterministic response. What
we have neglected in focusing is the idea of spatial resolution it offers; this should
be compared with the total lack of spatial resolution offered by plane waves. Spatial
resolution has a direct practical appeal when recalling that an open problem in EMC
testing is the identification of localized paths through which external waves couple to
the internal space of an EUT; a typical example is a slot in a metallic shielding. The
TREC was conceived as a general tool for the generation of focusing wavefronts; if
these wavefronts were defined in such a way at to focus over a controllable position,
it would be possible to generate wavefronts that would excite only a limited region of
space over the external boundary of an EUT. The idea is therefore to scan an EUT by
using a moving focal spot, and to observe under what conditions the EUT is maximally
stressed; coupling paths could therefore be identified without human intervention, as
the standard approach is still, surprisingly, to manually scan the surface of an EUT with
electric and magnetic probes/sources.

A preliminary investigation was presented in [C14], and has supported the feasi-
bility of this idea. In that work we considered a box where a half-wavelength slot was
cut into it. Generating a focusing wavefront moving across the slot, and sensing the
field level transmitted within the box, it was possible to identify the position of the slot
within a quarter-of-wavelength resolution. The fact that the aperture was a slot rather
than a hole was detected by using two orthogonal polarizations for the electric field:
the anisotropic response of the slot pointed to its orientation in space and its actual
shape.

That preliminary work is the basis for a much more ambitious project. Treating
an EUT as a black-box, it is possible to derive an equivalent macromodel capable of
describing its behaviour in every detail, if a suitably conceived learning phase is con-
sidered. Similar ideas are routinely used in electronics [R80, R85], where even non-
linear responses can be accurately extracted from a few responses of the EUT, excited
by means of cleverly designed stimuli. The appeal of this idea is that if a behavioural
macromodel of an EUT were available, then its response to any configuration could be
extrapolated without requiring further tests: from complex propagation scenarios to
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the case of complex electromagnetic stimuli, the EUT response could be estimated from
its macromodel. The extraction of such an equivalent model is made feasible by the
flexibility of the TREC approach. It would result in a paradigm shift in EUT testing: no
longer using plane wave as the simplest way of interpreting the response of the EUT,
but rather conceiving complex test scenarios in order to extract the maximum amount
of information from a limited number of tests.

The second long-term project we envisage is again based on the TREC and deals
with the estimation of the full scattering response of an EUT. In this case EMC is no
longer the main beneficiary, as this topic is rather found within the core of radar mea-
surements. In order to appreciate the interest of this idea, we should recall that current
radar tests are typically limited to monostatic radar cross sections, where the field scat-
tered by the EUT is measured along the same direction along which it is illuminated.
Although monostatic measurements serve a number of applications, bistatic radars have
been suggested as interesting extensions that would provide more detailed information
about the EUT, particularly in their identification. It is therefore important to be capa-
ble of assessing the bistatic response of an EUT, in laboratory conditions, e.g., during
R&D phases. The problem is that bistatic measurements involve a heavy experimental
setup: for each direction of illumination over a 4π-steradian range of angles, measure-
ments of the scattered field should be taken again over 4π steradian, giving raise to an
overall number of samples that goes like O ( f 4), while requiring a complex mechanical
system for the joint displacement of the transmission and reception antennas over two
concentric spheres.

The TREC is expected to provide a simpler solution by limiting the number of me-
chanical movements to O ( f 2), and just during an initial phase. Preliminary tests were
carried out in 2010 and in 2012, within the framework of Master thesis. Though not yet
published, and still in an embryonic stage, it appears that the idea is indeed feasible,
leading to a simpler and faster procedure to estimate bistatic responses within a facility.

Simpler access to the scattering response of an object has clearly a broader spectrum
of applications than just radar imaging. Use of the TREC for non-destructive testing, as
well as medical imaging does not seem a too far-fetched idea.
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The Role of Losses in the Definition of the
Overmoded Condition for Reverberation Chambers

and Their Statistics
Andrea Cozza

Département de Recherche en Électromagnétisme, SUPELEC
3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France

Abstract—It is commonly acknowledged that in perfectly-
stirred reverberation chambers the energy density of the electric
field follows aχ2

6 law, as long as the overmoded condition applies.
This concept, never defined properly, is often confused withthe
idea of a threshold on the modal density, regardless of the quality
factor of the cavity. This interpretation is here proven to be
inaccurate, as losses play a fundamental role in the nature of the
field statistics and not, as often assumed, just in its scaling. In
particular, it is shown how the overmoded condition should be
stated mathematically, highlighting how the cavity quality factor
and the number of eigenmodes excited cannot be regarded as
quantities intervening independently on the field statistics, but
should rather be considered jointly. These results are derived by
means of a modal analysis, with a limited number of assumptions.
A quantitative relationship is established between average modal
overlapping and the rate of convergence of the electric energy
density towards a χ2

6 law. Rather than setting an arbitrary
threshold on modal overlapping as a necessary condition for
an overmoded behaviour, the statistical uncertainty due tothe
limited number of available field samples is shown to affect the
very definition of the overmoded condition.

Index Terms—Statistics, Cavities, Losses, Error analysis.

I. I NTRODUCTION

Current use of reverberation chambers is based on a number
of commonly accepted rules. Among these, the fact that
an overmoded condition is necessary to achieve isotropy,
uniformity and depolarization of the electromagnetic fieldin
a test volume can be regarded as one of the most fundamen-
tal [1], [2], [3]. It is hence surprising that the study of this
condition has not received much attention: to the best of our
knowledge, no clear definition has yet been given in the field of
Electromagnetic Compatibility, even though a similar criterium
exists in acoustical reverberation chambers [4], albeit unable
to provide an assessment of the rate of convergence of field
statistics to theoretically justified asymptotic laws.

As a matter of fact, going through the literature, it appears
that the concept of an overmoded cavity is somewhat regarded
as related to a threshold value in the modal density [2]. This
likely comes from the fact that the availability of a large
number of modes resonating at the working frequency is
necessary, if the field distribution inside the cavity is to be
complex enough to behave as a random distribution under the
use of a stirring technique, e.g., by rotating an electrically large
mechanical paddle [1], [3]. To the best of our knowledge, no
study has yet clearly defined this threshold level, althoughthe

strong ties between a high modal density and a well-stirred
cavity are known in practice [1]. A significant example of the
low interest the overmoded condition aroused in most previous
works is given in [1], where the overmoded condition is
dismissed as something seemingly trivial, fulfilled as soonas a
cavity is electrically large. Interestingly, Lehman [3] regarded
the assessment of the validity of the overmoded condition as
an open issue.

Fulfilling the requirement for an overmoded cavity allows
the use of simplified models, as the one presented in [5], based
on the description of the electromagnetic field as a continuous
plane-wave spectrum: it links in a straightforward manner the
idea of a well-stirred cavity to field statistics: an environment
where an infinite number of plane waves propagate with the
same probability along all the directions and polarizations,
implies that the electric energy density follows aχ2

6 law, as
a direct consequence of the central-limit theorem [6], [3].
Since this theoretical result is based on the assumption of
a well-stirred cavity, the limited efficiency of the stirring
technique is often regarded as the most likely source of non-
compliancy, especially in the lower frequency range, because
of the statistical correlation of contiguous stirrer positions [7].

But another potential reason of non-compliancy could come
from the inadequacy of the assumption of an infinite num-
ber of propagating plane waves (intrinsically linked to the
use of a continuous plane-wave spectrum) as this condition
is approximatively fulfilled only asymptotically. In practice,
depending on the number of resonant modes excited at the
working frequency, the number of plane waves into which the
field can be decomposed is finite, hence resulting in a non-
perfect matching between aχ2

6 probability law and what is
observed from experimental data about electric energy density.
Users of reverberation chambers widely consider that working
at frequencies above the Lowest Usable Frequency (LUF),
as defined in [8], is a sufficient condition to make a cavity
overmoded. This idea has already been proven to be incor-
rect [9], [10], as the statistical properties of the field generated
at frequencies close to the LUF can be quite different from
the ideal asymptotic case treated in most statistical models
of reverberation chambers. Nevertheless, it is well accepted
that working at frequencies well above the LUF ensures an
overmoded condition.

All these results point to the fact that the occurrence of
a non-compliancy at high frequency is unlikely, as both the
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modal density and the stirrer efficiency are expected to be high.
These facts seem to support again the idea that the overmoded
condition is linked to a threshold in the modal density, without
taking into account the role of losses. Losses are merely
included a posteriori, when computing the efficiency of a
cavity in converting an input power into a high-intensity field.
An exception is the analysis of how increasingly high losses
impact statistical uniformity, presented in [11], where the
requirement for a minimum quality factor was investigated.In
this paper, we deal with configurations that are on the other end
of the scale: as a matter of fact, the reverberation chamber will
always be assumed to be highly resonant, with a quality factor
much higher than one, typically several hundreds. Additional
losses will always be assumed only to affect the relative
bandwidth of resonant modes, with no influence on the way
resonances are established.

Under these conditions, experimental data have been pre-
sented in [12], [13], [14], [15], providing clear clues thatthe
overmoded condition is actually not based on a threshold level
for the modal density and that losses can have a beneficial
impact on field statistics [12], [13]. A similar conclusion
was also suggested in a study based on a canonical modal
representation [16], though the lack of an analytic approach
hindered the development of predictive/design tools; moreover,
the possibility of non-compliancy above the LUF was not
pointed out. Indeed in [14], [15], no doubt could subsist
about the stirrer efficiency at those frequencies where the
field statistics was shown not to comply with the asymptotic
probability laws predicted by continuous plane-wave spectrum
models, especially because they occurred over a small subset
of scattered frequencies.

This gives room to the idea that the overmoded condition
is not just a matter of having a large number of modes and
an ideally perfect stirrer. An eventual role of losses in field
statistics would also cast some doubts on the often invoked
idea of unstirred components. As soon as field statistics do
not comply with asymptotic ones, this is regarded as due to
a bad stirring. The results shown in this paper prove that
statistical non-compliance can also be explained by a weak
modal overlapping, even though a perfect stirring is assumed
and a large number of resonant modes are potentially available.

This paper proposes a theoretical analysis linking in a
formal way the statistical properties of the electromagnetic
field within a reverberation chamber and two of its most
important quantities: the composite quality factor and the
number of modes excited at the working frequency. It will be
shown that losses must be included into modal representations,
in order to derive a meaningful statistical analysis of the
field within a reverberation chamber. A modal approach is
employed to this effect, staging a finite number of resonant
modes excited at a given frequency. We will not address the
question of statistical uniformity, but rather that of statistical
convergence for the electric energy density measured at a given
position.

The paper is organized as follows: Section II recalls the ba-
sics of modal analysis as derived for metallic enclosures; some
important notations and concepts are introduced for the benefit
of the derivations presented in the rest of the paper. Section III

makes use of this modal representation, applying the concept
of statistical excitation of the chamber, in order to derivethe
standardized variance of the electric energy density. Following
these results, it is shown how the composite quality factor and
the modal density of the chamber impact field statistics, and
in particular the fact that the theoretical asymptotic behaviour
predicted in [5] can be disproved. This leads to a quantitative
definition of the overmoded condition in Section IV, as the one
ensuring a limited error with respect to asymptotic statistics.
Section V then seeks to assess how this deviation affects
the probability of rejection in goodness-of-fit tests on field
samples. This is achieved by means of numerical simulations
based on the proposed modal representation. Experimental
results are then presented in Section VI to check the validity
of these ideas.

II. M ODAL REPRESENTATION AND NOTATIONS

As we are interested in the statistical properties of the
field excited within a cavity, we will make use of a modal
representation, being an effective tool to this effect. We shall
thus express the electric field as follows [17], [18]

E(r, f) =

∞∑

i=1

γi(f)ei(r, f)ψi(f) , (1)

wherer is the position at which the field is being observed and
f the working frequency for a harmonic excitation. Three sets
of modal quantities are involved in (1): 1) the modal weights
{γi(f)}, which depend only on frequency for a given config-
uration of the excitation sources; 2) the modal topographies
{ei(r, f)} describing the spatial dependence of the field for
each mode and 3) the frequency responses{ψi(f)} of the res-
onant modes. The computation of the modal weights requires
a precise knowledge of the modal topographies{ei(r, f)} as
the former are obtained by projecting the equivalent current
distribution of the sources over the modal topographies [17].

As rightfully recalled in [2], though this approach is exact,
in practice it is hardly usable, as the computation of the
modal topographies comes, apart for canonical configurations,
as a computational burden for most numerical codes. This
notwithstanding, the modal approach allows deriving some
fundamental results, as will be proven here. To this end, a
number of simplifications are required, enforced on three sets
of modal parameters.

Let us recall that the{ψi(f)} represent the responses of
second-order systems, defined as follows

ψi(f) =
f

f2
i (1 + j/2Qi)2 − f2

, (2)

wherefi is the resonance frequency of thei-th mode andQi its
quality factor. The first set of modal parameters is thus given
by the {fi}. For the sake of simplicity, it is often assumed
that the quality factors are equal for all the modes close to the
frequency of analysis, approximating them with a composite
quality factor [19]. This is, clearly, not physical, as the losses
of each mode strongly depend on the field topography, a
well-known fact in waveguide theory [17]; nevertheless, this
approximation is usually capable of capturing the behaviour
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Be

ff i

BM,i

Fig. 1. A graphical depiction of the modal decomposition of arandom
realization of the electric field and some of the notations used. The dots
represent the level of contribution of the three modes dominating the field at
the working frequencyf .

of a cavity and we will make use of a modified version in
Appendix A.

We will limit our analysis to a generic positionr. Introduc-
ing the following factorization for the modal topographies

ei(r, f) = ei(r, f)ξ̂i(r, f) , (3)

we can hence restate (1) as

E(r, f) =

∞∑

i=1

γ̃i(r, f)ψi(f)ξ̂i(r, f) , (4)

having introduced the equivalent weights

γ̃i(r, f) = γi(f)ei(r, f) . (5)

The second set of parameters is given by the modal weights
{γ̃i}, while the modal polarizations{ξ̂i} are the third and last
set of parameters that we will consider.

The use of (4) allows studying field statistics in a simple
way, as soon as the three modal parameter sets are treated as
random variables. This approach is often used when studying
the asymptotic properties of complex systems, as in [5], a com-
mon practice in statistical mechanics. Under this paradigm, (4)
is entirely defined by the three sets of modal parameters{γ̃i},
{fi}, {ξ̂i} and the composite quality factorQ.

Recalling that the contribution of each mode is weighted by
its frequency response{ψi(f)}, the influence of each mode
is localized around each resonance frequencyfi, as shown
in Fig. 1. The extent of the influence of each mode is set by
its quality factorQi, as the mode can be effectively excited
only for working frequencies at most at a distance|fi − f | <
BM,i from the resonance frequency. The distanceBM,i is the
bandwidth covered by each mode, from its peak atfi, to a
reduction of a factorρ. Typical values ofρ are −3 dB and
−10 dB. For the case ofρ = −3 dB,

BM,i =
fi

Qi
, (6)

a result that will be used later.
As we will show, the introduction of the bandwidthsBM,i

is not necessary, nor the definition of a levelρ; nevertheless,
this approach simplifies the mathematical derivation, while
effectively pointing out that it is not necessary to carry out

the sum in (4) over all of the modes, but just over a reduced
subsetM

M = {i : |ψi(f)| > ρ|ψi(fi)|} , (7)

whereρ is chosen in order to give a significant contribution
from the modes. Hence, (4) is limited to a number of modes
M = #M , i.e., the cardinality ofM , spanning a frequency
bandwidthBe

Be = max
i∈M

BM,i , (8)

hereafter referred to as the equivalent bandwidth of the re-
verberation chamber. This concept will be shown to play an
important role, as it accounts for the fact that a harmonic
signal excites a number of modes that are to be found over
this bandwidth. These concepts are illustrated in Fig. 1, for a
random realization of (1).

III. STATISTICAL MODAL ANALYSIS

Following the previous discussions, we will consider the
simplified model in (9) as the reference for our statistical
analysis

E =
∑

i∈M

γ̃iψiξ̂i , (9)

where the indexesi now span the setM , and having dropped
the spatial and frequency dependencies, as our analysis will
deal with the field statistics at one specific position and
frequency at a time.

We focus our analysis on electric energy density

W (r, f) = ǫ0‖E(r, f)‖2 , (10)

where ǫ0 is the dielectric constant for the medium filling
the cavity, and the electric field is expressed in root-mean-
square units. The model proposed in (9) is fit for studying
any quantity related to the electric field. The rationale for
choosing the electric energy density lies in its asymptotic
convergence to a six-degree-of-freedom chi-square law, thus
with a standardized variance equal to 1/3, as opposed to the
squared amplitude of Cartesian components (directly related to
the received power for polarized electrically small antennas,
such as dipoles) which follow a two-degree chi-square law,
with a standardized variance equal to 1. Although this has
no impact from a theoretical point of view, it makes a big
difference in practice, as the statistical uncertainty affecting
moments estimated from a finite sample population is directly
dependent on the relative statistical dispersion of the samples,
as recalled in Appendix B. The experimental results presented
in Section VI, dealing with the electric energy density, are
indeed already affected by a non-negligible statistical uncer-
tainty; use of single Cartesian components of the electric field
would have resulted in a even higher uncertainty.

The average spatial uniformity properties ofW can be
obtained straightforwardly from a continuous modal repre-
sentation, as done in [5], where it is proven thatW follows
a six-degree-of-freedom chi-squared probability law, orχ2

6.
Although such approach allows to understand and explain
in a simple way some of the most important properties of
reverberation chambers, it is incapable of providing results but
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for asymptotic conditions. As such, it cannot explain why field
statistics can deviate from the asymptoticχ2

6 probability law
in practical scenarios, where the electromagnetic field within
a reverberation chamber is given by a discrete plane-wave
spectrum.

Let us now consider (9) under a similar statistical viewpoint.
We will consider the three sets of modal parameters as random
variables. The main assumptions required are that: 1) the
modal parameters of different sets are independent and 2) the
parameters within the same set are independent and identically
distributed (iid). Recalling the physical meaning of these
parameters, it is clear that they are not independent, as they are
all related to the position and spatial distribution of the sources.
Nevertheless this approach is commonly regarded as sound,
and it is the foundation for statistical analysis for reverberation
chambers [2].

The modal weights will be regarded as defined by an iid
real and imaginary part

γ̃i = αi + jβi . (11)

No specific assumption is required on the type of law followed
by the{αi} and{βi}. We define

µn = E [|γ̃i|n] , (12)

as then-th order moment of the modulus of the modal weights
{γi}. These moments are identical for all the modal weights,
following the iid assumption for the modal quantities.

The modal polarizations{ξ̂i} will be considered as uni-
formly distributed over a4π-steradian angle, as done in [5], so
that all polarizations are equally likely. Resonance frequencies
will be assumed to be distributed uniformly over a bandwidth
Be around the working frequencyf . These are best-case
assumptions, as they imply that a perfect stirring is available.
Indeed, in order to meet these requirements, the stirring
technique must be capable of providing perfectly uncorrelated
samples, following exactly the same probability law. Hence,
the following results are not only non-conservative, but rather
optimistic, and they should be regarded as lower-bounds for
any use in error estimation. Such choices are meant to model
a perfect stirring technique, where for each random realization
the frequencies of resonance of the cavity will be modified,
with equal probability of finding them over the bandwidthBe.

Actually, the probability density function for the{fi}
should account for the fact that the probability of finding
a resonance at a given frequency increases with the modal
density of the cavity. As the modal density is not linear
with frequency [2], resonance frequencies cannot, in general,
be distributed uniformly. But as long as the bandwidthBe

over which the {fi} are observed is small enough (i.e.,
for a highly-resonant cavity), the distribution can indeedbe
approximated as uniform. The actual problem with the use of
simple probability density functions is that the phenomenon
of mode clustering cannot be modelled properly. For the sake
of simplicity this is going to be neglected in the remainder of
this paper; again, this implies that we are setting our analysis
in a best-case configuration, as mode clustering would yielda
stronger deviation from asymptotic results.

Modelling the {fi} as random variables leads to having
{ψi(f)} behaving as random functions. Subsequent analysis
will show that their squared modulus play a central role.
Hence, we introduce the moments

νn = E [|ψi(f)|n] , (13)

which, for n = 2, represent the average power of the
modes, and it accounts for how effectively they are made to
resonate on average, as their frequencies of resonance{fi}
are randomly scattered around the working frequencyf . This
should be regarded as a sort of available power, as the actual
amount of power in the modes depends on the modal weights
γ̃i. At the same time,ν2

2 summarizes how power is shared
among the different modes. Indeed the average mutual power
shared by two any modes is

E
[
|ψ⋆

i (f)ψj(f)|2
]

= E
[
|ψi(f)|2

]
E
[
|ψj(f)|2

]
= ν2

2 ,
(14)

recalling the independence assumption for the resonance fre-
quencies{fi}. As mutual power is a measure of the overlap-
ping of the modes, it has an important place in field statistics.

Let us now consider (10). By introducing the Cartesian unit
vectorsûk, the electric energy densityW can be written as

W = ǫ0

3∑

k=1

|E · ûk|2 . (15)

Following (9)

W = ǫ0

3∑

k=1

∣∣∣∣∣ûk ·
∑

i∈M

γ̃iψξ̂i

∣∣∣∣∣

2

= ǫ0

3∑

k=1

{ ∑

i∈M

|γ̃i|2|ψi|2|ξ̂i · ûk|2 +

+
∑

i,j∈M
j 6=i

γ̃iγ̃
⋆
jψiψ

⋆
j (ξ̂i · ûk)(ξ̂

⋆

j · ûk)

}
(16)

which can be restated as

W = ǫ0
∑

i∈M

|γ̃i|2|ψi|2 +

+ ǫ0
∑

i,j∈M
j 6=i

γ̃iγ̃
⋆
jψiψ

⋆
j

3∑

k=1

(ξ̂i · ûk)(ξ̂
⋆

j · ûk) (17)

recalling that

3∑

k=1

|ξ̂i · ûk|2 = ‖ξ̂i‖2 = 1 . (18)

This model can be used in order to study the actual
role of losses in electric energy density statistics. To this
end, we propose to compute the first two moments of the
electric energy density, and to check under what conditions
the standardized variance converges to the theoretical results
recalled in [1], [2].

The average electric energy density can be computed by tak-
ing the ensemble average of (17). Recalling the assumption of
independence between the modal weights and the frequencies

110

Selected papers



5

of resonance, as well as the fact that the modal weights are
iid random variables, we get

E [W ] = ǫ0Mµ2ν2 , (19)

having applied (12) and (13).
Getting on with the computation of the variance of the

electric energy density, by squaring (17) and proceeding again
by separating the coherent and incoherent parts of the sum,
yields

E
[
W 2
]

= ǫ20Mµ4ν4 +

+ ǫ20M(M − 1)µ2
2ν

2
2

(
1 +

+ E

[∣∣∣
3∑

k=1

(ξ̂i · ûk)(ξ̂
⋆

j · ûk)
∣∣∣
2
])

(20)

The ensemble average in (20) can be simplified taking note
of

3∑

k=1

(ξ̂i · ûk)(ξ̂
⋆

j · ûk) = ξ̂i · ξ̂⋆

j (21)

and since
E
[
|ξ̂i · ξ̂

⋆

j |2
]

=
1

3
∀ i 6= j , (22)

equation (20) can be expressed as

E
[
W 2
]

= ǫ20Mµ4ν4 +
4

3
ǫ20M(M − 1)µ2

2ν
2
2 , (23)

so that the standardized variance is given by
(
σ

µ

)2

W

=
E
[
W 2
]

(E [W ])2
− 1 =

1

M

µ4

µ2
2

ν4
ν2
2

+
M − 4

3M
. (24)

Based on the results demonstrated in Appendix A, the
following result holds forQ ≫ 1 (meaning several hundreds)

ν4
ν2
2

≃ Be

π

Q

f
, (25)

whereQ is the composite quality factor of the cavity. Attention
should be paid about the fact that the definition of this com-
posite quality factor is not the same currently used in EMC,
i.e., as defined in [8], [2]. In fact, this considers the average
efficiency of a reverberation chamber in converting an input
power into an electric energy density. This efficiency being
based on the notion of average electric energy density over
the test volume, it is not suitable for statistical convergence
at a specific position. We rather deal with the average time
constant of the cavity at a given point. Hence, it is a function
of frequency and position, with a non-smooth behaviour in
these variables, presenting a large dynamics of values. The
notion of average is thus applied to theQi of the dominant
modes at the working frequencyf .

From (25)
(
σ

µ

)2

W

=
1

π

µ4

µ2
2

Be

M

Q

f
+
M − 4

3M
. (26)

As we anticipated in the beginning of this Section, the
definition of Be is redundant. As a matter of fact, (26) is
approximated as long as we limit the sum in (9) to a finite

number of modes around the working frequency. We should
rather consider a levelρ → 0, leading toBe → ∞ and, as
a consequence,M → ∞, i.e., let all the modes intervene.
Clearly, this implies an increasing number of modes involved
in (9), but with a level of energy getting lower as their
frequency of resonance gets further away from the working
frequencyf . This is not in contradiction with our derivation,
as this fact is accounted for by theνn moments. The use of
the limit is valid as long asQ is high enough to have the
dominant modes confined into a narrow bandwidth aroundf ,
so that the idea of an average compositeQ is still physically
acceptable.

Under these conditions, we can introduce the standardized
varianceς2W of the electric energy density, taking the limit
of (26) as

ς2W = lim
ρ→0

(
σ

µ

)2

W

=
1

3
+

1

π

µ4

µ2
2

lim
M→∞

Be

M

Q

f
. (27)

Since forQ ≫ 1

lim
M→∞

Be

M
=

1

m(f)
, (28)

wherem(f) is the modal density, expressed inHz−1, equa-
tion (27) can now be written as

ς2W =
1

3
+

1

π

µ4

µ2
2

1

MM
. (29)

If a resonant mode were centered onf , thus with a−3 dB
bandwidthB3dB = f/Q, thenMM = m(f)B3dB would be
equal to the number of modes found on average within this
bandwidth. In other words,MM assesses how strongly the
modes overlap on average.

IV. ON THE OVERMODED CONDITION

The result in (29) must be capable of predicting the asymp-
totic results expected from the theoretical and experimental
analyses presented in [5], [20]. This is the case, as

lim
MM →∞

ς2W =
1

3
, (30)

which is the result expected for aχ2
6 probability distribution

law [6]. Hereafter, we will refer to this asymptotic value as
ς2
χ2
6
.

This asymptotic result is met only when the number of over-
lapped modes increases, as opposed to common understanding,
where modal density is regarded as the actual dominating
parameter. This points to the true conditions that must be
enacted for the cavity to be overmoded: requiring a large
number of resonant modes is a necessary but not sufficient
condition, as long as they are not overlapped. As this last
event is tightly linked to the bandwidth of the mode response,
the overmoded condition is strongly dependent on the losses
experienced in the reverberation chamber.

The roles of the modal density and the composite quality
factor Q are clarified by Fig. 2, where the standardized
variance of the electric energy densityς2W predicted by (29)
is plotted against a varying modal density and quality factor.
These results show how the idea of the overmoded region
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Fig. 2. The standardized variance predicted by (29), for a varying modal
density and composite quality factor. A working frequencyf = 1 GHz was
assumed.

as a threshold condition could be easily thought as a correct
definition, since increasing the modal density ultimately leads
to an asymptotic convergence to the standardized variance
expected for aχ2

6 law, i.e., the value1/3.
It is noteworthy that common understanding looks at modal

density and frequency as being univocally related: this wrong
interpretation has likely originated because of the use of
Weyl’s formula [2], a smooth approximation not accounting
for mode clusters. Actually, modal density broadly increases
with frequency, but it can locally decrease or increase with
respect to the smooth behaviour predicted by Weyl’s formula,
resulting in a non-monotonous function of frequency.

Fig. 2 also shows that an increasing modal density is not
the only way of achieving the convergence in (30), since for a
given modal density a relatively small increase of losses also
leads to convergence.

This phenomenon is not new: in acoustics, this idea is
expressed by Schroeder frequency [4], as the minimum fre-
quency for which three modes are overlapped within their
−3 dB bandwidth. The problem is that this definition is
arbitrary and unable to quantify how strongly the actual elec-
tric energy density statistics will diverge from the asymptotic
results obtained for an infinite number of resonating modes.

As opposed to this approach, we consider the relative error
ǫς2 between the result predicted by (29) and the asymptotic
one

ǫς2 =
ς2W − ς2

χ2
6

ς2
χ2
6

=
3

π

µ4

µ2
2

1

MM
. (31)

The ratioµ4/µ
2
2 is related to the kurtosisκ of the real (or

imaginary) part of the modal weights as

µ4

µ2
2

=
1

2
(κ+ 1) . (32)

In order to compute this error, we need to make some
assumptions on the type of probability law followed by
the modal weights. Although not justified by any physical

phenomenon, they are usually assumed to be normally dis-
tributed [5]. Adopting this same approachµ4/µ

2
2 = 2, yielding

ǫς2 =
6

π

1

MM
. (33)

The ratioµ4/µ
2
2 would not change much with the probability

distribution law; e.g., for the case of uniformly distributed
modal weightsµ4/µ

2
2 = 7/5.

The relationship betweenMM and the divergence from the
asymptotic law is actually intuitive. Chi-squared laws area
direct consequence of the central-limit theorem, as recalled
in [3], a condition approached as the number of degrees of
freedom increases. For a cavity, modal representations provide
a clear insight, as the number of degrees of freedom is just
the number of modes effectively resonating (on average) at the
working frequency. Clearly, this requires a potentially high
number of modes (modal density), but also the possibility
to make them resonate at the working frequency: this is
directly dependent on the average quality factor of the modes,
the dominant parameter for making a mode accessible when
working at a frequency not equal to the one at which it
resonates. The merit of (33) is that it provides a quantitative
formula, indispensable in order to give a meaningful definition
of the overmoded condition.

Indeed, (33) clearly shows that the overmoded condition is
not given by a universal threshold, but rather dependent on the
admissible error on the standardized variance. This topic will
be the object of a more detailed discussion in Section V. If
we consider a 10 % errorǫς2 on the standardized variance
as acceptable, then at least about 20 modes must overlap
within their average−3 dB bandwidth, centered around the
working frequency. A quick computation allows to check that
this condition is often not met in unloaded chambers, unless
the working frequency is conspicuously higher than the (LUF).
Experimental results supporting this claim are presented in
Section VI.

These conclusions are coherent with the findings reported
in [9], where it was shown that testing against the need ofχ2

distribution laws, the minimum frequency for which the test
is passed can be higher than the conventional LUF derived
by applying the standard [8]. In a similar way, experimental
results such as those presented in [15] go in this direction:
they showed that by applying goodness-of-fit tests to the
samples collected in what was considered as an overmoded
cavity (in the sense of standard [8]), the test would fail for
certain frequencies. This implied that the overmoded condition
is not ensured by passing a threshold value, but that it depends
more finely on the properties of the cavity at each frequency.
Indeed, considering the paradigm we have introduced in this
Section, the well-known fact that the composite quality factor
of a cavity follows a frequency trend far from being smooth,
implies that at frequencies where the quality factor increases,
the probability of not passing a goodness-of-fit test can be
expected to be higher. This conclusion is clearly submitted
to the joint variation of the modal density and the composite
quality factor, as the two can compensate each other.

The way (33) is defined implies that a high modal density
can be a sufficient condition, when it goes to infinity, as
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required in asymptotic models [5]. But it also proves that for a
given maximum error, the same statistical compliancy can be
attained by controlling the losses within the cavity. As most of
the time the modal density is not a design parameter, (33) can
play an important role in the design of reverberation chambers.

The attentive Reader should avoid thinking that (33) implies
that increasing losses is a certain and good solution to the
limitations of reverberation chambers. From an energetic point
of view, increasing losses is obviously a non-desirable policy,
as it would impair the ability of a reverberation chamber in
efficiently generating a high-level electromagnetic field.

But at the same time, as demonstrated in Section VI,
increasing losses provide some benefits, speeding up the con-
vergence towards an asymptotic chi-square law. This notwith-
standing, (33) holds true as long as modal-weight statistics
and modal density can be regarded as unaffected by increased
losses. Such condition is realistic if losses have a perturbative
effect, implying a relatively small increase. Actually, this
scenario occurs and is of interest in practice, as the inclusion
of lossy EUTs within a reverberation chamber affects the
statistics of the field the latter generates. The availability of a
theory capable of predicting how the field statistics is modified
should come of use in understanding under what conditions
the behaviour of an unloaded chamber is not too sensitive to
the inclusion of EUTs. This clearly is a matter of practical
concern.

As opposed to the case of a perturbative effect, it has been
highlighted how a strong increase in losses has a negative
impact on field statistics, as in [21]. It is noteworthy that in
that study the quality factor was reduced by a factor up to ten,
thus strongly modifying the reverberation chamber behaviour,
whose relationship with the unloaded configuration should
be questioned. Again, our analysis is incapable of predicting
how a strong reduction of the quality factor affects the modal
description of a cavity, so that this type of effects are out of
the scope of our work.

Attention should be paid to the fact that our analysis is
optimistic, as it is based on the assumption that the stirrer
technique be capable of ensuring that all the dominant modes
will have the same probability to span the−3 dB bandwidth
around the working frequency. This means that in the case of
mode clustering, the actual number of modes required might
be higher.

V. RELATIONSHIP WITH PROBABILITY-LAW TESTING

The results presented so far assess the deviation from aχ2
6

law focusing on the standardized variance. Although this is
a meaningful measure of statistical compliance, it is known
from the “moment problem” that two probability laws can
be expected to be identical only if all their moments are
identical [22]. Hence, from a theoretical point of view, we
cannot draw any conclusion on how close the empirical and
asymptotic laws are, unless all of their moments were avail-
able. Our analysis is limited to the first two moments of the
electric energy density; as the estimation of higher moments
from experimental data is a critical issue [6], we regarded
such approach as practically unfeasible, as the resulting higher
moments would be overwhelmed by statistical uncertainty.
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Fig. 3. Scatter plots representing the close relationship existing between
the standardized variance ofW and Kolmogorov-Smirnov statisticsDKS .
The model (9) was employed with three different values for the quality
factor (300, 1000 and 3000), for 200 values of modal density,spanning
the range from10−6 Hz−1 to 10−4 Hz−1. For each configuration, 100
independent samples (left column) or 500 independent samples (right column)
were generated, from which the relative errorǫς2 on the standardized variance
and Kilmogorov-Smirnov statisticsDKS were computed, and plotted as an
individual point. All results have been computed for a working frequency
f = 1 GHz. Dashed lines represent the threshold associated to Kilmogorov-
Smirnov test, for accepting the null hypothesis of aχ2

6 distribution law with
a 95 % confidence margin.

It is nevertheless fundamental to have a clue about how
good (33) is as an estimator of the deviation of the entire
probability law. As the actual (opposed to the asymptotic)
probability distribution law ofW cannot be expressed in
closed-form, the link between these two quantities must be as-
certained directly studying the electric energy density offield
samples. To this end, we have used (9), generating random
values for the three modal parameter sets (as introduced in
Section III), obtaining a population of random samples for
the electric energy densityW , as generated within a per-
fectly stirred cavity. This allowed us to estimate two different
pieces of information: 1) the standardized variance and 2)
the standardized empirical distribution functionFW (W ) of
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Fig. 4. Numerical data generated by (9), from 500-sample populations (as
in Fig. 3), and the approximation (36) obtained by means of a least-squared
linear regression (solid line).

W . From the latter we computed the Kolmogorov-Smirnov
statisticDKS , defined as [23]

DKS = max
W

∣∣∣FW (W ) − Fχ2
6
(W )

∣∣∣ , (34)

where Fχ2
6
(W ) is the standardized probability distribution

function of the asymptoticχ2
6 law. Standardization of random

variables, and hence of their associated probability distribu-
tions, is a necessary step, in order to apply goodness-of-fittests
in a meaningful way, as the reference asymptotic distribution
moments are not known and configuration-dependent.

The correlation betweenǫς2 andDKS was investigated by
means of scatter plots, as those shown in Fig. 3. These results
show unmistakably that the Kolmogorv-Smirnov statistics is
tightly related to the error on the standardized variance. The
parametric analysis in Fig. 3 proves that an increasingQ
leads to a stronger deviation from the asymptoticχ2

6 law.
The scatter plots are actually parametric curves in the variable
MM , as pointed out in Fig. 3, rather than directly dependent
on variablesm, f andQ. Hence, the results in Fig. 3 are not
valid only for a specific configuration, but in general.

The fact that the points in Fig. 3 rather than laying on
a curve are scattered should not be interpreted as a hint
of a partial correlation betweenDKS and ǫς2 : as a matter
of fact, these two quantities have been estimated from a
finite population, implying that these estimators are affected
by residual statistical uncertainty (see Appendix B). Indeed,
increasing the population from 100 to 500 samples shows a
substantial reduction in the uncertainty of the data correlation.
Hence, we think that the variance errorǫς2 could be used for
assessing the deviation of the entire distribution law, although
it only brings information about the first two moments ofW .
The accuracy of this approach is clearly dependent on the
number of available samples.

In any case, the strong link between Kolmogorov-Smirnov
statistics and the standardized variance error validates the idea
of using (33) for predicting how changing losses would affect
the statistical behaviour of a reverberation chamber, thusex-

tending the purpose of (33) from an analysis tool for meaning-
ful physical understanding, to potentially a prediction/design
tool for practically ensuring the statistical compliance of a
reverberation chamber.

The hypothesis of statistical compliance is based on the
validity of the following condition [23]

√
NDKS < Kα , (35)

whereN is the number of independent field samples andKα

is a threshold value for a significance level equal toα. Typical
values ofKα for α = 0.05 are about 1.15. This means that
for N > 100, the most important region in Fig. 3 is forǫς2 .
150 %, where the correlation betweenǫς2 andDKS is close to
linear. As establishing a closed-form expression linking these
two quantities is likely difficult, we have rather opted for a
simple linear regression model

DKS ≃ η1 + η2ǫς2 ǫς2 ≥ 0 , (36)

which is valid only forǫς2 . 250 %. The regression param-
etersη1 = 2.6 · 10−2 andη2 = 6.5 · 10−2 refer to the model
showed in Fig. 4.

Plugging (36) into (35) yields the maximum acceptable error
ǫmax ensuring statistical compliance

ǫς2 < ǫmax =
Kα

η2
√
N

− η1
η2

. (37)

Apart as a tool for checking the statistical compliance of a
reverberation chamber, (37) is also important in the definition
of the overmoded condition. As a matter of fact (37) states that
in order to pass Kolmogorov-Smirnov test, it is not necessary
to have a negligible error on the standardized variance. The
actual upper-boundǫmax to apply to ǫς2 can be quite high,
as the number of samplesN decreases. This does not mean
that the conclusions in Section IV are incorrect: as a matter
of fact, this higher threshold just accounts for the fact that
the trueǫς2 is not known, having been estimated from a finite
population. Hence, it is pointless to try to enforce a condition
on ǫς2 stronger than the precision with which this quantity is
known.

As an example, using the data shown in Fig. 3, a 500-sample
population would require a relative errorǫς2 < 39 % in order
to accept the hypothesis of an electric energy density following
the asymptotic chi-square distribution. Applying (33), this
maximum error threshold is translated into a need for about
5 overlapped modes, a result well looser than the 20 modes
required by setting a 10 % error on the standardized vari-
ance. As a consequence, the definition of overmoded region
cannot be dissociated from the statistical uncertainty that is
inevitably present when dealing with estimators based on a
finite population of random samples. In other words, it is not
statistically meaningful to set a general and arbitrary threshold
on the number of overlapped modesMM .

Equation (37) can also be used for designing additional
losses aiming at improving the statistics of the electric energy
density. Given a working frequencyf and an estimate of the
modal densitym, and computing from (37) the maximum
error ǫmax leading to passing the Kolmogorov-Smirnov test, a
maximum composite quality factorQmax is found
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Fig. 5. Scatter plots ofDKS andǫς2 as derived from experimental data for
the case of the empty and absorber-loaded chamber. The samples are related
to the entire frequency range 0.7-3 GHz.

Qmax =
π

6
mfǫmax . (38)

Considering a lowerQ would be pointless, as the improve-
ment on statistics would be undetectable, due to unavoidable
statistical uncertainty, while field-strength would degrade.

These discussions clearly hold as long as (9) is physically
sound, i.e., as additional losses have a perturbative effect on
the field within the cavity. An experimental validation of this
model is presented in the next Section.

VI. EXPERIMENTAL RESULTS

In order to validate our findings, experimental tests were
carried out in Supelec’s reverberation chamber. This cavity,
measuring13.8 m3, and equipped with a 100-step mechanical
stirrer, has its LUF around 550 MHz. In our setup, a log-
periodic dipole antenna was used as a source exciting the
cavity, over the frequency range 0.7-3 GHz. An optical-link
field probe was used in order to collect data about the three
field components at one position within the test volume of the
chamber, while the stirrer was made to move over its entire
range of rotation.

This approach was used for two configurations, for an empty
cavity and with a small piece of RF absorber, made up of 4
pyramids about 30 cm high, standing in the center of the floor
of the cavity. As the field probe used was phase sensitive,
we were able to compute the composite quality factor for
the cavity over the entire frequency range of test, by post-
processing the frequency-spectrum data in time domain (see
Fig. 6).

The field samples were used in order to compute the electric
energy density samples. The same procedure exposed in the
previous Section was then applied: the aim was to check
whether the same correlation betweenDKS and ǫς2 was to
be found in practice. The results of this analysis, shown in
Fig. 5, confirm those presented in Fig. 3. As the number of
steps is limited to 100, the statistical uncertainty associated
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Fig. 6. Quality factors for the empty and loaded chambers. The smooth
curves represent the loose majorants used for deriving the maximum-error
results in Fig. 7.

to the estimations ofǫς2 and DKS is not negligible, as
already discussed in the previous Section and detailed in
Appendix B. Moreover, the actual number of independent
samples generated by the mechanical stirrer is frequency-
dependent, going from about 30 around 700 MHz, to about 100
at 3 GHz, thus leading to an even higher statistical uncertainty
in the lower frequency range.

Having validated the close relationship betweenDKS and
ǫς2 , we went further in our validation by focusing on the
relative errorǫς2 . The next step was to look at how well (33)
allows to predict the maximum deviation of the standardized
variance, knowing a fair estimate of the modal density and the
composite quality factor of a reverberation chamber. Though
the latter can be estimated by means of measurements, modal
density is not something that is routinely measured, although
a solution to this problem has recently been proposed [24].
In the context of this paper, we have stuck to the current
approach consisting in using Weyl’s approximation, and we
have considered the simplest of Weyl’s formulas [2]

m(f) ≃ 8πV f2

c3
. (39)

With no access to a precise estimate of modal density, any
attempt at finely predicting the standardized deviation error is
bound to an error that cannot be estimated easily. For this
reason we rather focused on the ability to provide results
bounding the error, and thus capable of giving a warning about
the global trend ofǫς2 over a given frequency range. Following
this point of view, rather than using the quality factor estimate
obtained from experimental characterization of our chamber,
we considered a smooth majoring curve. The rationale behind
this approach is that, according to (33), the maximum error
occurs when a minimum number of overlapped modes is
present, which in turn occurs when the ratio of the modal
density and the composite quality factor is at a minimum.
The use of a smooth curve is justified by our interest in the
trend of the error, and not its fine modelling. Furthermore, the
information available on the quality factor is often provided
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Fig. 7. Experimentally estimated relative errorǫς2 as a function of frequency:
(a) for the empty cavity and (b) for the one loaded with the small absorber.
The results from (33) have been computed from the smooth curves majoring
the composite Q derived from the experimental data and shownin Fig. 6.
Shaded areas stand for the 95 % statistical uncertainty of the estimatedǫς2 ,
computed for a 95 % confidence margin as shown in Appendix B.

by simple predictive models [2], particularly during a design
phase.

Fig. 6 shows that we did not use a true majorant. The
reason for this is that it would have provided too conservative
results, as a few points higher than average can lead to a
strong overestimation ofQ. The approximations we employed
were chosen as a compromise between the need of a majoring
curve and that of not considering a too strongly overestimated
quality factor. As a consequence, for certain frequencies the
relative errorǫς2 can be higher than the estimated upper bound.
This outcome can also be caused by modal depletion, whose
frequencies of occurrence are unknown.

From these data and (39) we computed the curves shown
in Fig. 7, predicting the maximum deviation of the electric
energy density from the asymptotic chi-square law. The actual
error ǫς2 was directly estimated from the experimental data.
The statistical uncertainty associated to these results has been
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Fig. 8. Estimated average number of overlapped modesMM , for the
unloaded and loaded configurations.

estimated with a 95 % confidence margin as detailed in
Appendix B, and is shown in Fig. 7 as shaded areas.

Fig. 7 proves that (33) is indeed capable of predicting the
trend of the maximumǫς2 , as the composite quality factor
and the modal density evolve in frequency, and this for two
chamber configurations. The comparison between the errorǫς2
in the case of the empty and loaded chamber is especially
interesting as it is clear that the results predicted by (33)are
indeed closely following the global trend of the maximum
deviation of the statistics of the electric energy density.These
results also prove that (33) can be used in practice as a
design tool, as the majorant of the error computed in the
case of inclusion of additional losses correctly predicts the
improvement in the worst-case statistical performance of the
loaded cavity.

The statistical uncertainty cannot be neglected, as it is the
main reason for the residual error at the higher frequency
range. The procedure proposed in Appendix B allows esti-
mating a residual error of about 46 % onǫς2 , even though
this latter is expected to be close to zero. This result is
independent of the proposed model, and merely based on
statistical considerations. This statistical uncertainty, present
even when the reverberation chamber is expected to behave
ideally, is the reason of existence of the ambiguity in the
definition of the overmoded condition. It is meaningless to
require an errorǫς2 smaller than this statistical uncertainty,
as the former cannot be measured precisely enough. It is
interesting to notice that this statistical uncertainty appears to
be smaller than the threshold imposed by (37) for accepting
the asymptotic condition (and thus the overmoded condition),
as it would be expected, since they are intimately related.

Looking at theǫς2 estimated from measurements, there exist
a lower frequency for which the error seems not to reduce
anymore. This frequency is about 2 GHz and 1.5 GHz for,
respectively, the empty and loaded chambers. It is worthwhile
checking what is the number of overlapped modesMM at
these frequencies. An estimate ofMM is shown in Fig. 8,
based on the experimentally evaluated composite quality fac-
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tors and the modal density given by (39). For the two frequen-
cies previously mentioned, it seems that a minimum number
of 10 overlapped modes is required, in order to have the
better performance possible, according to the limited accuracy
provided by the residual statistical uncertainty. These results
are actually too restrictive, as a more statistically motivated
choice would make use of (37), obtaining 800 MHz for the
empty chamber and a frequency below 700 MHz for the loaded
one. This example is meaningful in depicting the intrinsical
ambiguity of a single definition of the overmoded condition,
and the fundamental insight brought in by (33) and (37).

A final discussion is worthwhile: the validity of (33) implies
that if the error it predicts is comparable with the one foundin
practice in a mode-stirred reverberation chamber, then it would
be wrong, from a statistical point of view, to conclude anything
about the eventual inefficiency of the stirring technique. As a
matter of fact, (33) has been derived under a perfect-stirring
assumption, so that the eventual presence of a poor stirring
is expected to provide an errorǫς2 higher than that due to
a limited modal overlapping. This is all the more true in
the lower frequency range, where the ineffectiveness of field
stirring is often regarded as the major source of statistical non-
compliancy in reverberation chambers: interestingly, thelower
frequency range is also where poor modal overlapping appears
more strongly.

VII. C ONCLUSIONS

A discrete modal description of the field within a cavity has
allowed us to quantify the role that losses play in the statistics
of the electric energy density generated within reverberation
chambers. The proposed model has led to the derivation of
a simple formula expressing the error between the actual
standardized variance and the asymptotic one. This error was
shown to be dominated by the number of modes superposed
within the −3 dB bandwidth of the dominant modes; as
such, this result goes against common understanding that the
overmoded condition is a mere matter of available resonating
modes. We have proven that the definition of the overmoded
condition is not universal, but depends on the maximum
acceptable deviation from asymptotic laws, as well as on
the number of independent samples generated by the stirring
technique.

By linking the standardized variance errorǫς2 to
Kolmogorov-Smirnov statistics, it was proven thatǫς2 is a
meaningful metric for assessing how likely electric energy
density samples are to deviate from an asymptoticχ2

6 probabil-
ity law. This same analysis has led to the definition of a maxi-
mum composite quality factor that should not the exceeded in
order to ensure statistical compliancy. A fundamental result is
that even starting with a perfect-stirring assumption and ahigh
modal density, an electrically large reverberation chamber can
still present a non-asymptotic statistical performance. These
conclusions have major consequences on other commonly
accepted ideas, such as that non-compliance with asymptotic
laws is always a matter of poor stirring and that theQ should
always be as high as possible.

Experimental results support our findings, both for the
soundness of the proposed deviation metric and the fact that

it allows to predict the actual error incurred in field samples.
This latter result is fundamental, as it could lead to a simple
way of assessing the statistical compliance of a reverberation
chamber, and how relatively small changes in its composite
quality factor would affect its statistics.
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APPENDIX A
MOMENTS OF THE|ψi(f)| RANDOM VARIABLES

Following the derivation given in Section IV, two moments
are needed, the second and the fourth. The second-order
moment of|ψi(f)| reads

E
[
|ψi(f)|2

]
=

∫
|ψi(f)|2p(fi)dfi , (40)

where p(fi) is the probability density function for the fre-
quency of resonancefi. As recalled in [11], there exist
minimum requirements for the composite quality factor of
a cavity, for it to be compliant with EMC standards. This
being coherent with our study, we can assumeQi ≫ 1. As
a consequence, the average relative bandwidthBM,i = fi/Qi

of each mode can be expected to be much smaller than one.
Hence, the|ψi(f)| give a non-negligible contribution over an
equivalent bandwidthBe/fi = 1/Qi ≪ 1. The ensemble
integral in (40) can thus be limited over a finite and narrow
bandwidthBe; this implies that it is reasonable to assume that
over this bandwidth all of the modes have the same bandwidth.
In other words, one can consider that theψi(f) functions are
frequency-shifted replicas of the same templateψ0(f), i.e.,
ψi(f) = ψ0(f − fi). At the same time, the narrow-band
requirement, together with the perfect-stirrer assumption at the
heart of our work, allows to consider resonance frequencies
uniformly distributed overBe. As such

E
[
|ψi(f)|2

]
=

1

Be

∫

Be

|ψi(f)|2dfi . (41)

The frequency-replica paradigm implies that
∫

Be

|ψi(f)|2dfi =

∫

Be

|ψ0(f−fi)|2dfi =

∫

Be

|ψ0(f)|2df .

(42)
The last integral is now recognizable as the energy of the

template function; clearly, this leads to modal functionsψi(f)
with the same energy. This was shown to be given by [25]

∫

Be

|ψ0(f)|2df =
1

BM,i

π

2

Q2
i

Q2
i + 1

≃ π

2BM,i
. (43)

Hence
ν2 ≃ π

2BM,iBe
. (44)

The fourth-order moment can be obtained by means of the
same approach [25], yielding

ν4 ≃ π

4B3
M,iBe

(45)
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and finally
ν4
ν2
2

≃ Be

π

Q

f
, (46)

having introduced the approximationBM,i ≃ BM , where
BM = f/Q is the average−3 dB bandwidth of the dominant
modes at the working frequencyf and Q the associated
composite quality factor.

APPENDIX B
STATISTICAL UNCERTAINTY FOR A FINITE POPULATION

In the experimental evaluation of the errorǫς2 in the
standardized variance, estimators are used for the average
value and the variance ofW . Having been derived from a finite
population ofN independent samples, these estimators are
affected by a residual statistical uncertainty that is important
to acknowledge and estimate. This can be done by applying a
local linearization of the definition of the errorǫς2 , obtaining
the following propagation-of-error model [6]

σ2
ǫ̂ς2

=

(
∂ǫς2

∂µW

)2

σ2
µ̂W

+

(
∂ǫς2

∂σ2
W

)2

σ2
σ̂2

W
, (47)

where µ̂W and σ̂2
W are unbiased estimators of, respectively,

µW , the average electric energy density andσ2
W , its variance,

as derived from theN available samples [6]. The derivatives
are evaluated over the average values of these estimators.
These estimators behave as random variables, with average
values equal to those they should estimate (unbiased estima-
tors) and variancesσ2

µ̂W
andσ2

σ̂W
. Assuming theN samples

to be iid, the estimator variances can be approximated as [6]

σ2
σ̂2

W
= σ4

W

(
2

N − 1
+
κW − 3

N

)
(48)

σ2
µ̂W

=
σ2

W

N
(49)

where κW is the kurtosis of the random variableW . As
this value is not known for the random variableW , we will
approximate it by means of its asymptotic value for aχ2

6

distribution law, i.e.,κW = 5. This yields

σ2
ǫ̂ς2

≃ 4

3N
(1 + ǫς2)

3
+

(
2

N − 1
+
κW − 3

N

)
(1 + ǫς2)

2
,

(50)
which is the square of the root-mean-square uncertainty of
theǫς2 estimator. Attention should be paid to the fact that (50)
depends on the exact errorǫς2 , which is only known by means
of its estimatêǫς2 . In the higher frequency range, asǫς2 → 0,
(50) simplifies to

lim
ǫς2→0

σ2
ǫ̂ς2

≃ 16

3N
, (51)

which is the residual statistical uncertainty that hindersthe
enforcement of a single definition of the overmoded condition.
For N = 100 the standard deviation of the estimation error
is about 23 %. Assuming it to be normally distributed, the
maximum residual error is about twice as such, for a 95 %
confidence level, i.e., about 46 %.
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Probability Distributions of Local Modal-Density
Fluctuations in an Electromagnetic Cavity

Andrea Cozza,Member, IEEE

Abstract—Results from random-matrix theory are applied
to the modeling of random fluctuations in the modal density
observed in an electrically large cavity. By starting from results
describing the probability distribution of the modal spacing
between adjacent frequencies of resonance, or nearest-neighbor
spacing, we introduce a simple procedure allowing to pass from
the modal spacing to the local modal density as measured over
a finite bandwidth. This local definition of the modal density is
more consistent with the physics of reverberation chambers, since
it has been recently shown that the deviation from asymptotic
statistics of field samples is dependent on the number of modes
overlapping within a modal bandwidth. It is shown that as
opposed to current interpretation, the number of overlapping
modes is a strongly fluctuating quantity, and that estimating it
by taking the frequency derivative of Weyl’s formula can lead
to non-negligible errors and misunderstandings. Regarding these
fluctuations as second-order effects is therefore not soundfrom
a physical point of view, since the existence of modal depleted
scenarios can easily explain the appearance of local anomalies in
the field statistics, particularly, but not exclusively, in the lower
frequency range of operation of reverberation chambers.

Index Terms—Cavities, mode-stirred reverberation chambers,
stochastic fields, test facilities, field statistics, random-matrix
theory, random fluctuations.

GLOSSARY

N(f) Cumulative number of modes up to the fre-
quencyf .

NW(f) Weyl’s smooth approximation ofN(f).
Nf(f) Residual fluctuationsN(f) − NW(f) not ac-

counted for by Weyl’s approximation.
mW(f) First derivative ofNW(f), used as an estimate

of the modal density.
MW(f) Average number of modes overlapping in a

bandwidthB, estimated asB mW(f).
Mloc(f) Actual number of modes overlapping in a

bandwidthB.
mloc(f) Homogenized local modal density

Mloc(f)/B.
ς2
W (f) Normalized varianceσ2/µ2 of the electric-

energy densityW .

I. I NTRODUCTION

T HE prediction of the performance of mode-stirred (or
tuned) reverberation chambers (MSRCs) as generators

of random electromagnetic test scenarios is a fundamental
topic both from a theoretical and practical point of view in
the operation of these facilities. The main issue here is the

A. Cozza is with the Département de Recherche en Électromagnétisme,
Laboratoire des Signaux et Systèmes (L2S), UMR 8506 SUPELEC- Univ
Paris-Sud - CNRS, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France. Contact
e-mail: andrea.cozza@supelec.fr.

reproducibility of tests carried out in them and in particular the
need to ensure that the fields generated by any MSRC belong
to the same type of probability law. The current understanding
of MSRCs is that at suitably high frequencies the electric and
magnetic fields can be accurately described as complex-valued
(circular) Gaussian random variables.

Such a probability law is typically assumed as a reasonable
choice due to the (expected) availability of a large number of
normal modes at high frequencies [1], [2], [3], as opposed to
what are regarded as undermoded scenarios, where alternative
reference probability laws have been proposed [4], [5], [6].

Still, as recalled in [7], the Gaussian hypothesis is only
but an approximate model and it is incapable to explain
the appearance of frequencies at which the field statistics
proves to deviate substantially from those of a Gaussian
random variable. Excluding the existence of unconventional
setup configurations where the excitation source is strongly
coupled to the equipment under test (EUT) [8], experimental
observations of local anomalies in field statistics, appearing
as glitches, have been reported in several papers [9], [10],
[11]: these phenomena, though partially tolerated in the current
operation of MSRC [12], have not yet received a satisfying
physical explanation. Anomalies of this kind usually imply
statistical dispersions higher than expected for a diffusefield
(perfect reverberation), taking the form of local deviations
rather than systematic ones over a bandwidth: these are usually
referred to as outliers [2], i.e., as samples not belonging to the
reference law and suspected to indicate a problem of some
sort in the setup.

A rather different explanation can be proposed as soon as we
remember that modal representations of the electromagnetic
field generated within a MSRC are accurately reproduced by
considering a finite number of modes, and in particular the
average number of modesMloc overlapping within the−3 dB
bandwidth of a mode [13]. Theoretical and experimental
results presented in [13] proved thatMloc can be quite low (a
few units) even at frequencies where a MSRC is regarded as
fully functional: as a result, the hypothesis of a Gaussian-
distributed field is no longer justified, and its use should
be limited to an educated guess for approximate predictive
models.

Our previous work in [13] proved that the standardized
(or normalized) variance, or variability for simplicity, of the
electric-energy density, can be predicted on the basis of
a few macroscopic parameters, such as the frequency, the
geometrical dimensions of the cavity and an estimate of its
average quality factor. It was intended as a first step in a
better understanding of anomalous field statistics, suggested
as being basically due to a poor local modal overlapping, a
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fact already recognized [12], [6], without having been more
deeply explored.

The accuracy of the modal density estimated from Weyl’s
formula is often taken for granted. In fact, as shown in this
paper, this is not a sound approach, as the modal density
should rather be treated as a random quantity, subjected
to non-negligible random fluctuations. The apparent lack of
any available model capable of predicting the likeliness of
observing a strong reduction (or increase) in the local modal
density makes any prediction of the probability of observing
these phenomena practically impossible.

It is the aim of this paper to introduce the probability laws of
the modal density as observedlocally, over a finite bandwidth,
an approach that is better matched to the concept of modal
overlapping. The average number of modes and ultimately
the local modal density are considered as random quantities,
according to the concepts of random-matrix theory (RMT)
[14], [15]. Our results are completely general and independent
from the details of implementation of the MSRC, as they are
based on universality classes, as defined in the context of RMT.
Interestingly, the probability law of the local modal density is
entirely characterized by the average modal density predicted
by Weyl’s formula and the class of statistics of the MSRC. A
priori knowledge of the average quality factor, the volume of
the cavity and the frequency of operation are thus sufficient
to derive a complete description of the statistics of the local
modal density.

The interest of these models is not merely relegated to
a better physical understanding of MSRCs, but also has a
direct impact on their practical use. The results here proposed
can be invoked when studying how likely it is that the field
statistics in a reverberation chamber deviates from the ideal
case usually taken as a reference, by means of the procedure
introduced in [13]: clearly, the model here proposed being
derived on physical grounds, the probability of appearanceof
anomalous field statistics can be predicted without recurring to
phenomenological approaches, such as those based on the idea
of fitting empirical field distributions to general theoretical
laws [11].

The paper is organized as follows: Section II discusses
various definitions of modal density and overlapping, while
summarizing some major results derived in the context of
random-matrix theory at the basis of the derivation presented
in the rest of this paper. Sections III and IV introduce
auxiliary results later used in Section V in the derivation of
the probability distributions of the local modal density. An
empty cuboid cavity is used as a test case in Section VI,
supporting our predictions of a strongly fluctuating local modal
density. Some considerations about the practical impact of
these results are presented in Section VII, with an emphasison
the concept of outliers and local anomalous field statistics. The
Appendix presents a detailed general calculation of the number
of overlapping modes that should be expected in a cavity,
supporting our claim that weak modal overlapping should not
be expected only in the lower frequency range, but even in
what is usually expected to be the overmoded region.

II. PRELIMINARY DISCUSSIONS

Our analysis takes its start from results already availablein
the literature: on the one hand the link between the variability
of the energy density and the average number of overlapped
modes observed at the working frequency, and on the other the
statistics of modal-related quantities derived in the context of
RMT. The purpose of this Section is to briefly recall these tools
while emphasizing some physical concepts and limitations that
play a fundamental role in the subsequent derivations.

A. Local modal density and overlapping

When thinking about the modal density, one intuitively
associates it to a certain number of modes resonating around
the working frequency. The modal density can therefore be
defined as the average numberMB of modes found in a
bandwidthB,

mB(f) =
MB(f)

B
, (1)

and is therefore dependent onB itself. As long asB is large
enough to encompass several modes, then (1) is an average
that can be expected to converge to a single value, forB large
enough, predicted by Weyl’s approximation [16]

mW(f) =
8πV

c3
0

f2 + o(f) =
8πVλ

f
+ o(f), (2)

with V the volume of the cavity,c0 the speed of light in
the filling medium andVλ the volume measured in cubic
wavelengths.

The definition (1) provides a more general framework than
(2), since the modal density is considered in a local setting:
for this reason, it will be referred to as the local modal density,
associated to a specific bandwidth.

It is often practical to associate a specific value to the
modal densitym(f), e.g., by taking the limit forB → 0:
the discrete nature of the set of frequencies{fi} at which a
cavity resonates implies that in practicem(f) can only take
two values, i.e., zero if no mode resonates at the working
frequencyf or infinity otherwise [14], i.e.,

m(f) = lim
B→0

mB(f) =

∞∑

i=1

δ(f − fi). (3)

This outcome is inevitable as the distribution of the normal
modes cannot approach the completeness of real numbers, thus
leaving inevitable “gaps” between them.

The estimatemW(f) is in general different frommB(f)
because it is not derived as in (3), but in a less direct manner,
by first introducing the functionN(f) describing the overall
number of modes of a cavity up to the frequencyf

N(f) = #{fi : fi 6 f}, (4)

with # the cardinality of a set. This function can be repre-
sented as the sum of a smooth approximationNW(f) and a
fluctuating functionNf(f) with zero average value

N(f) = NW(f) + Nf(f). (5)
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This smooth approximation was first derived by Weyl and
was intended to provide an approximate solution asymptoti-
cally exact at infinite frequency [16]. The fact that the intensity
of the residual fluctuations grows less quickly thanNW(f) as
f → ∞, thus ensuring

lim
f→∞

∣∣∣∣
Nf(f)

NW(f)

∣∣∣∣ = 0, (6)

should not be mistaken for an indication that modal density can
be defined as often done, by taking the derivative ofNW(f)
at the working frequencyf , leading to the approximation

m(f) = lim
B→0

MB

B
∼= dNW(f)

df
= mW(f). (7)

As a matter of fact, the residualRm(f) = |mW(f) −
MB/B| does not converge to zero, sinceNf(f) takes on the
discrete nature ofN(f), thus preserving the results in (3).
It could be expected that the accuracy of the approximation
(7) improves as the frequency, and thusN(f), increases,
hence leading to modes getting close enough to provide a
sort of approximate continuity. Unfortunately, this is notthe
case, as well witnessed by the number variance, a measure of
the intensity of the fluctuations of the modal densitym(f)
around a smooth approximate, e.g.,mW(f), as it will be
recalled in Section II-B. Not only fluctuations do not vanish
with the frequency, but they actually increase in absolute
intensity, though their relative intensity decreases, as proven by
studying the number variance, a measure of modal fluctuations
discussed in Section II-B. A practical example is given in
Section VII for a cuboid cavity.

As it will be shown in the rest of this paper, these fluc-
tuations cannot be dismissed as minor approximation errors,
particularly when the average number of overlapped modes
is not high enough, as happens to be the case even at
frequencies well above the lowest usable frequency (LUF) as
usually defined by thumb rules proposed in practice within
the framework of EMC tests [12] (see the Appendix for more
details).

The differences betweenm(f) and mW(f) play a cen-
tral role when studying the average local modal overlapping
Mloc(f). This quantity represents the average number of
modes found within a bandwidthBM equal to the average
−3 dB width of a mode, i.e.,BM = f/Q̄, hence

Mloc(f) = mBM (f)
f

Q̄(f)
, (8)

with Q̄(f) the ensemble-average composite quality factor of
a MSRC; the use of ensemble† averages will be indicated by
means of an overhead bar.

As proven in [13], a high modal density in itself is not
a guarantee of a diffuse field, ensuring Gaussian-distributed
scalar field components; the dominant parameter is rather
Mloc(f), which is required to beMloc(f) ≫ 1 in order to sup-
port a diffuse field. Therefore, it makes more sense to directly

†By this term we consider the ensemble of all the random realizations
of cavities generated by varying boundary conditions, due to any stirring
procedure, but sharing the same macroscopic properties, i.e., average quality
factor, volume, average energy density, average modal density, etc. [6].

count the number of modes overlapping overBM , rather than
passing through (8), since it requires an estimate of the local
modal densitymBM (f), as defined in (1). This subtle distinc-
tion makes all the difference and should not be underestimated:
it could seem more natural to assumemBM (f) ≃ mW (f) and
deriveMloc(f) from (8), but in this way we would implicitly
accept the notion of a deterministic and smoothly increasing
modal density, with no random fluctuations, with amW (f) not
depending onBM . On the other hand, it is tempting to just
consider the average modal density (and overlapping), since in
practice the ensemble-average ofmBM (f) can be quite close
to mW (f); as discussed in Section VII, such an approximation
directly leads to a fundamental misunderstanding about the
origin of statistical anomalies, or outliers, originated by strong
random fluctuations in the modal density expected for single
realizations of the cavity.

When directly considering the number of modes overlapping
over BM , the corresponding modal density should rather be
defined as in (1), with an implicit local definition depending
on BM . In practice, (1) is an average modal density, but in
this context the average is not over the realizations (ensemble
average), but rather over the bandwidthBM for a single
realization. In other words, it represents a sort of locally
homogenized modal density, spread equally over the entire
modal bandwidthBM rather than as a set of singularities
as in (3). For this reason, we will refer to it as alocal
average, in contrast to theensemble average. It will be shown
in Section VII that this apparently redundant distinction makes
a big difference.

B. Random matrix theory and universality classes

Following these discussions, what is needed is a probabilis-
tic description of the local modal densitymBM (f), as defined
in (1). A theory answering to this need is provided in the next
three Sections. The starting point is the probability distribution
of the spacing between the frequencies of resonance of two
adjacent modes, often referred to as nearest-neighbor spacing,
as derived by means of RMT [14].

This short summary is certainly not intended to serve as
an introduction to RMT, and the interested Reader may refer
to the first three chapters in Stöckmann’s seminal book [14].
Nonetheless, we will give a brief overview of the reasons why
we can apply in practice the results derived in the context
of quantum chaos to our problem of field statistics in mode-
stirred reverberation chambers.

RMT was developed to deal with structures where a direct
solution of Schrödinger equation is regarded as complex or
simply ill-defined, e.g., when the Hamiltonian operator is
unknown. This is the case for complex quantum structures,
such as large nuclear compounds or mesoscopic structures
(e.g., quantum dots). A solution to this type of problems
was found by approximating the unknown Hamiltonian op-
erator by means of a matrix, eventually of asymptotic infinite
dimensions, whose entries are assumed to follow specific
probability distributions [17]. This idea is directly related to
a previous and very successful approach, namely statistical
mechanics, where in a similar manner the problem of studying
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the (thermo)dynamics of a large collection of interacting par-
ticles was solved by considering a random description of the
state variables of the particles. The drive in these approaches
is not having a fine-level information of the system at the
scale of the individual elements it is composed of: the focus
is rather on its macroscopic behavior, described by means
of statistical quantities related to the statistical moments of
physical quantities of interest and in general by means of
probability distribution functions.

RMT has been widely successful in this respect, and at least
in its basic idea surprisingly simple; the same cannot be said
for the mathematical details. The structural similarity existing
between Helmholtz and Schrödinger equations has motivated
studies comparing the results predicted by RMT to those ob-
served in microwave experiments [18]. It is important to notice
that a major difference between these two equations is the
absence of an Hamiltonian operator in Helmholtz equation: the
structure is the same, but the lack of an Hamiltonian hinders
the drawing of a direct parallel between the two equations.
It is for this reason that the application of RMT to cavities
where classical waves (of any nature) propagate had virtually
to wait for a fundamental piece of work, namely the Bohigas-
Giannoni-Schmidt conjecture [19], where it was postulated
that the results of RMT should apply to any complex system.
A number of experimental validations have confirmed this
conjecture, which is today widely accepted as a physical fact.
Of particular interest for the EMC community are the works
dealing with microwave cavities, i.e., unstirred reverberation
chambers, where the accuracy of the prediction of RMT was
proven beyond any doubt (e.g., [18]).

The rationale behind recalling these points is that the
nomenclature used in RMT is somewhat cryptic, with def-
initions that make sense in the context of quantum chaos
without having any correspondence in classical wave theory.
The apparent validity of the Bohigas conjecture allowed a
direct transfer of the RMT ideas from the former to the latter,
hence the potentially confusing terminology.

In this framework, we need to recall that RMT is based
on universality classes allowing to define fundamental sym-
metry properties of the random matrix approximation of the
Hamiltonian, according to fundamental physical properties
of the system under consideration, e.g., energy conservation,
reciprocity, etc., independently from the fine details of the
system. In this respect, we will consider two configurationsof
practical interest, the case of integrable systems, also referred
to (improperly) as the Poissonian ensemble [20], and that
of the Gaussian Orthogonal Ensemble (GOE) [14], charac-
terized by time-reversal invariance, i.e., energy conservation.
A precise definition of the first class is apparently not yet
available outside the context of quantum chaos, but the analogy
with microwave structures is still maintained. The important
point to consider is that under the category of integrable
systems is considered any system that do not present any
trace of the features of wave-chaotic systems, in particular
level repulsion and of course exponential sensitivity to initial
conditions. In practice, the fact that frequencies of resonance
can cross each other’s path when a dynamical perturbation
(stirring) is operating, is a direct measure of absence of a fully
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Fig. 1: Nearest-neighbor spacing probability density functions
for an integrable and a GOE system, normalized to the
ensemble-average spacing.

chaotic behavior. Integrable systems are actually regarded as
an extreme case of non-chaotic systems, whereas in practice
a certain amount of chaos is often observed [21]. In practice,
completely empty rectangular cuboid cavities are a good ex-
ample of integrable systems, while the inclusion of a scatterer
spurs partially chaotic responses as soon as its dimensionsare
comparable to the wavelength. The GOE provides the other
extreme representation for the ideal case of a fully chaotic
system.

An example of direct interest for the EMC community was
provided in [22], where it was shown through numerical sim-
ulations that a mechanical stirrer is not capable of providing
a fully chaotic behavior, with traces of integrable features. It
should be clear that the notion of integrable system is by no
means related to the idea of degeneracy in the frequencies of
resonance of a cavity, as in the case of an empty rectangular
cavity with widths in rational proportion. Even in the case of
irrational ratios, such a system will present the same behavior
than any other integrable system.

The theory introduced in this paper is entirely based on the
statistics of the nearest-neighbor spacing, defined as

si = fi+1 − fi, (9)

where si can be regarded, according to RMT, as thei-th
realization of a random variables, the probability density
functions (pdfs) of the normalized nearest-neighbor spacing
ξ = s/s̄, with s̄ = 1/mW the average nearest-neighbor
spacing between adjacent modes, are [14]

pξ(x) = e−x, (10)

for a Poisson ensemble and

pξ(x) =
π

2
xe−πx2/4, (11)

for the GOE case. We are thus confronted to either an
exponential distribution or a Rayleigh one with a parameter
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Fig. 2: Number variancesΣ2(L) for an integrable and a GOE
chaotic system.

σ2 = 2/π. These two functions are plotted in Fig. 1 where it
is clear that the nil probability of superposed modes in chaotic
systems is a direct consequence of level repulsion.

Two major differences can be noticed in these functions
and will have a major impact on the statistics of the local
modal density: 1) for chaotic systems, the modal spacing is
decidedly less dispersed than for an integrable system, with a
probability distribution presenting a mode (peak) close tothe
average spacingξ = 1; 2) for an integrable system, it is clear
that modes can come in clusters due to a high probability of
superposition [20], so that in order to maintain a fixed average
spacing, the clusters must be relatively isolated one from the
other, as justified by the longer exponential tail. We can refer
to this phenomenon as modal depletion, i.e., the local lack of
resonant modes, and it can be conjectured that the probability
of incurring into what are often regarded as outliers [2] canbe
explained by this phenomenon. In other words, it is a natural
and inevitable phenomenon in an integrable system, whereas
it is to be expected less likely in chaotic systems.

According to the type of system we are dealing with,
a higher probability of observing a wider nearest-neighbor
spacing has a direct impact on the number of modes that can be
observed in a fixed bandwidth, as will be derived in Section III.

As already recalled, practical systems are often in between
these two extreme configurations, although a Poisson ensemble
behavior should be expected in the lower frequency range
when dealing with rectangular cavities: this result holds as
long as eventual scatterers in the cavity are electrically small,
after which the system moves gradually towards a chaotic
one, as shown experimentally in [18]. Several methods have
been devised to assess the degree of chaoticity of a cavity: in
the context of this work, we will restrict our discussions and
computations to the two extreme classes already introduced.
The following results are directly applicable to the more
general case of intermediary statistics for the modal nearest-
neighbor spacing.

A direct measure of the impact on the fluctuations of the
modal density for the two universality classes can be obtained

by studying their number varianceΣ2(L), defined as the
variance in the number of modes observed over a bandwidth
containing on averageL modes, i.e.,Ls̄ = L/mW. The
number variance is equal to

Σ2(L) = L, (12)

for an integrable system and

Σ2(L) =
2

π2
ln(2πL) + 0.0696 + O(L−1), (13)

for a GOE chaotic one, as proven in [15].
The number variance is a measure of the standard deviation

of fluctuations in the modal density with respect to the average
one defined by means of Weyl’s formula. As made clear by
Fig. 2, for an increasingL the fluctuations can be quite severe
for an integrable system, as opposed to a chaotic one. In
particular, the fact that the variance in the number of modes
increases with an increasing bandwidth is a direct proof of the
non-convergent behavior of the approximate modal density (2).
The increasing intensity of the fluctuations supports our claim
that assuming the average modal density as an accurate and
reliable measure of the availability of a large number of modes
at high frequency is not correct. Modal depleted frequency
bandwidths can pop out at any frequency leading to increased
variability in the field statistics [13], even at frequencies above
the usual LUF definitions.

Unfortunately, the number variance cannot be employed as
a predictive tool in the study of the probability of observing
anomalous field statistics, since it does not give any measure
of the way fluctuations evolve for rare events, i.e., towardsthe
tails of the pdf of the local modal density.

RMT is an asymptotical theory capable of accurately pre-
dicting the statistical properties of the spectrum of a system
(here the frequencies of resonance of a cavity) as long as
it admits a sufficiently large number of states. It should
be clear that RMT cannot pretend to be exact when the
electrical dimensions of a cavity become small, i.e., in its
lower frequency range where it mainly behaves as a high
quality factor resonator, allowing only a very limited number
of resonances. Hence, RMT can be applied successfully even
at frequencies below the LUF, since the modal density is
typically high enough to justify a statistical description.

Other universality classes could be considered, such as the
Gaussian unitary ensemble, or GUE, but it is of minor interest
in practice, as it is useful only in the case of non-reciprocal
systems. It could nevertheless find some applications in the
case of the testing of devices with ferromagnetic properties
or in general employing non-reciprocal materials. This case
will not be addressed in this paper, but the procedures here
developed are valid in any other type of nearest-neighbor
spacing statistics and can be readily applied to any other
universality class.

III. B ANDWIDTH COVERED BY n MODES

Access to the nearest-neighbor spacing probability distribu-
tion allows deriving that of the bandwidth covered byn modes.
Knowledge of the latter is instrumental in the computation of
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Fig. 3: Probability density functions of the normalized local-
average nearest-neighbor spacing〈ξ〉n, for (a) an integrable
system and (b) a GOE chaotic one. Several values ofn are
considered, showing the rate of convergence of the two uni-
versality classes towards the ensemble average value expected
from Weyl’s formula, corresponding tox = 1.

the number of modes found within a fixed bandwidth and
ultimately for the local modal density.

The total bandwidthSn covered byn + 1 modes can be
defined as

Sn =

n∑

i=1

si =
1

mW

n∑

i=1

ξi, (14)

where then + 1 modes definen random intervals or sub-
bandwidths obeying to the parent laws introduced in the pre-
vious Section. We stick to the use of the normalized nearest-
neighbor spacingξ, as this choice allows deriving completely
general results. In this respect, it is better introducing the local-
average of the spacing ofn consecutive modes,

〈s〉n =
1

n

n∑

i=1

si =
〈ξ〉n

mW
, (15)

where the normalized local average nearest-neighbor spacing
〈ξ〉n = 〈s〉n/s̄ will have a central role in Section V.

The pdfp〈ξ〉n
(x) implies carrying outn convolutions of the

original pdf of the random variableξ/n,

pξ/n(x) = npξ(nx), (16)

since 〈ξ〉n involves the sum ofn such random variables
that will be assumed to be iid. This procedure implies an
approximation, as higher-order statistics, involving themutual
correlations between spacings at different distances is usually
not identically equal to zero [14]. As the average modal density
increases, with more packed resonances, the omission of their
correlation can be expected to have an increasing importance.

In the case of an integrable system, where an exponential
distribution is predicted for the nearest-neighbor spacing, the
result of such operation is available in closed form and is the
Gamma probability distribution, with〈ξ〉n ∈ Γ(n, 1/n). In
the other cases, i.e., the GOE and any other intermediate non-
fully chaotic system, no closed-form solution is available. A
simple way of deriving the pdf of〈ξ〉n is to pass through the
characteristic functionϕξ/n(t) of pξ/n(x) [23]

ϕξ/n(t) = F
{
pξ/n

}
(t), (17)

by means of a Fourier transform. In the Fourier domain then
convolutions correspond to

ϕ〈ξ〉n
(t) =

[
ϕξ/n(t)

]n
. (18)

The pdf of the local-average normalized nearest-neighbor
spacing can be retrieved by inverse-transforming its character-
istic function

p〈ξ〉n
(x) = F−1

{
ϕ〈ξ〉n

}
(x), (19)

with the total random bandwidth covered byn+1 modes given
by

Sn = ns̄〈ξ〉n. (20)

Some examples are given in Fig. 3, for the case of integrable
and GOE systems. As expected for iid random variables, as
n increases, the central-limit theorem requires the pdf of their
average to converge towards a bell-shaped function, asymptot-
ically approaching a Gaussian function. What is important to
notice is that the two groups of functions inherit the features
of their respective parent law for the modal nearest-neighbor
spacing. As a result, for the same ensemble-average modal
nearest-neighbor spacinḡs = 1/mW, the integrable case
shows a sensibly larger statistical dispersion, with a much
heavier tail for large nearest-neighbor spacings. Reciprocally,
this implies that for a fixed bandwidth, the probability of
finding a given number of modes should be expected to
be smaller in the case of an integrable system than for a
chaotic one. Again, this is related to the higher probability of
close modes found in integrable systems, leading to clusters
interleaved with modal depleted regions. A higher rate of
modal-cluster formation is visible in Fig. 3(a), where the
probability of finding n modes packed into a bandwidth
narrower than the average one is clearly higher than in the
GOE case, especially for a smalln. Although this could be
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i

Fig. 4: Definitions of some modal-related quantities, showing
the convention adopted in order to predict the number of
modes appearing withinB. Each dot represents a frequency
of resonance of a cavity. The first resonance on the left ofB
is taken as a reference in the count, and does not belong to
B, being at its left.

interpreted as an advantage of integrable systems with respect
to GOE ones, generating a higher modal density with non-
negligible probability, this comes with an also increased rate
of depletion, as clear in the tail of the distributions.

IV. N UMBER OF MODES IN A FINITE BANDWIDTH

The second element needed to derive the probability dis-
tribution of the local modal density is the probability law
pM (n, B) of finding no more thatn modes within a fixed
bandwidthB (see Fig. 4). It can be derived straightforwardly
by recalling that a bandwidthB contains no more thann
modes if

Sn−1 6 B < Sn. (21)

In order to provide an unambiguous procedure for counting
these modes, the lower end of the bandwidthB will be
assumed to coincide with a resonance frequency, as shown
in Fig. 4. Clearly, this definition provides a different count
when other configurations are considered; in fact, this is not
important, as the count is meant as an auxiliary parameter in
the definition of the local modal density. The statistics of this
latter is actually invariant with respect to translations along
the frequency axis, since we are here talking about a fraction
of the average spacing, so that our convention does not lead
to any bias in the pdf of the local modal density. As a result
of this choice, the first mode will not be counted as belonging
to B, so that of then modes found inB, only n − 1 will be
counted. In other words, the first frequency of resonance is
assumed to be on the left ofB.

Hence, according to this convention, the probability law
pM (n, B) is given by

pM (n, B) = P ({Sn+1 > B} ∩ {Sn 6 B})

=

∫ B

Sn=0

∫ ∞

Sn+1=B

p(Sn, Sn+1)dSndSn+1,
(22)

where the joint pdfp(Sn, Sn+1) is needed. It can be derived
by expressing it as a function of conditional probabilities
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Fig. 5: Probability density functionspM (n, MW) for (a) an
integrable system and (b) a GOE chaotic one for several values
of the average number of modesMW. Notice the relatively
high probability of finding no mode in the case of integrable
systems withMW < 5, with respect to the GOE case.

p(Sn, Sn+1) = P (Sn+1|Sn)pSn(Sn)

= ps(Sn+1 − Sn)pSn(Sn),
(23)

where the conditional probability of observing a bandwidth
Sn+1 covered byn + 2 modes (counting the reference one)
knowing thatn+1 modes cover the bandwidthSn is actually
equivalent to the probability of observing a further modal
nearest-neighbor spacings = Sn+1 − Sn between the last
two modes. Hence

pM (n, B) =

∫ B

Sn=0

∫ ∞

s=B−Sn

ps(s)pSn(Sn)dSnds

=

∫ B

0

pSn(x) [1 − Fs(B − x)] dx,

(24)

where Fs(x) is the cumulative distribution function of the
nearest-neighbor spacings. Settingy = x/s̄, this result can
be recast as
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pM (n, MW) =

∫ MW

0

p〈ξ〉n
(y) [1 − Fξ (MW − y)] dy, (25)

where

MW =
B

s̄
= mWB (26)

is the average number of modes expected overB from an
ensemble point of view. In the rest of this paper we will
consider the case whereMW = mWBM , i.e., the average
number of overlapped modes predicted by means of Weyl’s
formula (2).

Attention should be paid to the fact that the derivation of the
probability function (25) is exact and applies for any number
of modes, but for the casen = 0. This case implies that the
closest modes to the bandwidth are just outside it, i.e., the
event (21) should now be substituted by the event{s > B}.
Since (25) applies to anyn ∈ N\0, the normalization property
of a pdf can be rather used to derive

pM (0, MW) = 1 −
∞∑

i=1

pM (i, MW). (27)

Another property of (25) is that the average number of modes
E [n] must coincide with that predicted by Weyl’s formula,
i.e., MW. This property has been numerically verified for the
examples shown in Fig. 5.

The results obtained from (25) are shown in Fig. 5, where
the increased statistical dispersion encountered for integrable
systems is remarkably higher than for a chaotic one. Of
particular interest is the non-negligible probability of observ-
ing no mode whenMW < 5 in an integrable system, i.e.,
of experiencing a modal depletion. This fact is important
in practice, since an average overlappingMW > 5 is not
automatically achieved even at relatively high frequencies, as
shown in the Appendix.

V. L OCAL MODAL DENSITY DISTRIBUTIONS

The local definition introduced in (1) can only account for
an integer number of modes inBM , whereas in practice we
are rather interested in fractional values, too. With reference
to Fig. 4, the local modal density can be defined as the ratio
n/Sn, whereSn is the bandwidth covered byn+1 modes (the
first one being used as a reference), according to the definition
(21). Hence the actual number of overlapping modes over a
finite bandwidth, observed on a local scale, reads as

Mloc =
n

Sn
BM . (28)

This definition is now capable of capturing all the interme-
diated cases whereBM intercepts a fraction of the spacing
separating two adjacent modes. For a givenMloc, an infinite
number of modal scenarios can provide the same result.
The distribution functionFMloc

(x) can now be computed
by considering the entire set of events yielding the same
equivalent modal overlapping overBM , i.e.

{Mloc = x} =

∞⋃

n=1

{
n

Sn
BM = x

}

=
∞⋃

n=1

{
n

Sn
s̄ =

x

MW

}

=

∞⋃

n=1

{
〈ξ〉−1

n =
x

MW

}
,

(29)

recalling (15). Whence, partitioning the above event, we obtain

FMloc
(x) = P (Mloc 6 x) =

=

∞∑

n=1

P

(
〈ξ〉n > MW

x

)
pM (n, MW)

=
∞∑

n=1

[
1 − F〈ξ〉n

(
MW

x

)]
pM (n, MW),

(30)

with MW defined by (26). Needless to say, since

Mloc

MW
=

mloc

mW
, (31)

the same probability function holds also for the local modal
density.

The pdf of Mloc can then be straightforwardly retrieved
by taking the derivative of (30) with respect to its argument.
Expressing it in terms of the deviation from the overlapping
MW predicted by means of Weyl’s formula yields

pMloc/MW
(x) = x−2

∞∑

n=1

p〈ξ〉n
(1/x) pM (n, MW). (32)

Some examples of this pdf are presented in Fig. 6: it is hence
possible to assess the large domain of variability of the modal
density, spanning more than one octave with a non negligible
probability even at a relatively high modal overlapping of 10
modes, and up to two octaves for the integrable case.

The ensemble averagēMloc, mode and standard deviation of
the local modal overlapping are shown in Fig. 7, as functions
of MW. The mode and the ensemble average are on either
side of the value predicted by Weyl’s formula, indicating that
although the modal density can be higher than expected for
a weak modal overlapping, the most likely issue (mode) is
lower.

The fact that the average local modal density is higher than
predicted by Weyl’s approximation (2) is a direct consequence
of Jensen inequality [24], since the modal density is related to
the nearest-neighbor spacing by means of a convex function.

In practice, a statistical mode systematically below the
average implies that even with a GOE chaotic cavity the
number of overlapping modes is likely lower thanMW. The
ensemble average for the case of an integrable system is
much higher than expected, due to a strong skewness in the
probability distributions in Fig. 6. Even more important is
the fact that the standard deviation is still comparable with
MW even whenMW & 10, in both cases. This result implies
that even a relatively strong modal overlapping is still affected
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Fig. 6: Probability density functions of the local modal density,
normalized to the ensemble-average modal density predicted
by Weyl’s formula, i.e.,Mloc/MW, for (a) an integrable
system and (b) a GOE chaotic one.

by non-negligible random fluctuations, of the same order of
magnitude as the average. Of course, their impact decreases
with MW: as discussed in [13], whenMloc & 3, although the
field will not be yet completely diffused, its deviation fromthe
asymptotic statistics will become less sensitive to the actual
number of overlapped modes. A much higher dependence from
Mloc is to be expected at a weak modal overlapping, where a
large statistical dispersion can lead to a dramatic increase in
the variability of the electric field.

These results, requiring no specific assumption on the fine
details of the geometry of a cavity, give an insight into
three important issues: 1) for a weak modal overlapping, the
deviation of the field statistics predicted in [13] should be
expected to present a strong statistical dispersion, and inpar-
ticular a high probability of leading to even larger deviations
than those predicted when usingMW as an estimate of the
modal overlapping; 2) even at high frequencies where a large
number of modes are expected to overlap, their actual number
is still affected by a non-negligible statistical dispersion; 3)
the differences between Poisson and GOE statistics vanish
asymptotically for a large overlapping, e.g., mode and mean
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Fig. 7: Average value, mode and standard deviation of the
local modal overlappingMloc, normalized to the expected
valueMW predicted by means of Weyl’s formula, for (a) an
integrable system and (b) a GOE chaotic one.

value converge to the same result, as expected by invoking
the central-limit theorem. In particular for this last point, the
standard deviation expected for the GOE case is about half of
that in the integrable case.

We want to stress that these fluctuations in the field statistics
must not be interpreted as non-compliancies or shortcomings
of reverberation chambers, as they just belong to the normal
range of physical responses expected for such systems. As
made clear by Fig. 6, albeit the probability of experiencinga
very low number of modes overBM decreases asMW → ∞,
the probability is never equal to zero. In other words, it is
unphysical to expect a reverberation chamber to present no
anomalous statistics even at high frequency. We can conclude
that the concept of outliers as suggested in [2] appears to
originate from a biased interpretation of otherwise physically
justified deviations in the field statistics generated by a re-
verberation chamber. While unlikely, these extreme scenarios
due to mode-depleted frequencies are perfectly within the
physiological response of a cavity.

VI. VALIDATION FOR A CUBOID CAVITY

An experimental validation involving modal quantities is far
from being a trivial task, since as soon as two consecutive
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Fig. 8: Cumulative number of modes for the rectangular cuboid
cavity taken as an example in Section VI: (a) comparison
between the actual countN(f) computed with (4) and (33)
and Weyl’s approximation (34); (b) the residual fluctuations
Nf(f).

resonance frequencies are closer than the average modal
bandwidthBM , modal overlapping ensues making it hardly
possible to distinguish and thus count the actual number of
resonant frequencies.

A numerical validation is possible exclusively in the case
of regular geometries, e.g., where Helmholtz equation can be
solved by the method of separation of variables. A cavity in the
shape of an empty rectangular cuboid is of practical interest
within the framework of EMC test facilities, and will thus be
taken as an example to illustrate the validity of our results.

A note of caution is nevertheless necessary, since the
analysis of a regular geometry implies an integrable sys-
tem, hence a Poisson class. As already pointed out, there is
experimental evidence [18], [21], [22] that the behavior of
real-life reverberation chambers is at least partially chaotic.
Unfortunately, in this case no closed-form expression for the
resonance frequencies is available.

For lateral dimensions(a, b, c) of the cuboid cavity its
frequencies of resonance can be computed by [25]

fmnp =
c0

2

√(m

a

)2

+
(n

b

)2

+
(p

c

)2

, (33)
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Fig. 9: Local modal density computed fromN(f), averaged
over 0.1 % and 1 % relative bandwidths. The thick black
curve is the result predicted by deriving Weyl’s approximation
(35). The relative bandwidth over which the average modal
density should be computed is rather1/Q̄, which is usually
much smaller than the 0.1 % value here considered. Much
stronger fluctuations should be expected in this case, making
their graphical representation by far less clear.

It is therefore straightforward to compute the cumulative
number of normal modesN(f), by taking due care in counting
in the degeneracies and allowed combinations of the triplet
(m, n, p) [25]. For the sake of providing a quantitative ex-
ample, the choicea = 2.8 m, b = 2.5 m, c = 3.2 m,
corresponding to a volumeV = 22.4 m3 and a fundamental
resonancef0 = 71.2 MHz will be considered throughout this
Section. The resulting cumulative number of modesN(f) is
shown in Fig. 8(a).

A more accurate Weyl’s approximation valid for the special
case of an empty cuboid [25] will be used as a reference,

NW(f) =
8πVλ

3
− (a + b + c)

λ
+

1

2
, (34)

predicting a modal density

mW(f) =
8πV

c3
0

f2 − (a + b + c)

c0
. (35)

A comparison between the cumulative number of modes
predicted by (34) and those obtained by directly counting
them from (4) and (33) is shown in Fig. 8(a): the well-known
ability of Weyl’s approximation in accurately predicting the
cumulative number of modes is retrieved. The residual error,
i.e., the fluctuating partNf(f) of N(f) is shown in Fig. 8(b),
where it is clear thatNf(f) ≪ N(f), at least whenf/f0 & 1.
Note how the intensity of the fluctuations increases with the
frequency, as predicted by the number variance recalled in
Section II-B.

Nevertheless, as already recalled in Section II, this should
not be taken as a gauge of the accuracy of Weyl’s approx-
imation when dealing with modal densities. Fig. 9 shows a
comparison between the results predicted by (35) and the
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Fig. 10: Empirical probability distributions of the numberof
overlapped modesMloc observed for the rectangular cuboid
cavity discussed in Section VI, obtained by observing 1000
bandwidths over the entire frequency range shown in Fig. 9.
These results pertain to the local modal overlappingMloc

counted over a frequency bandwidth where a reference over-
lappingMW is predicted by means of Weyl’s approximation
(35). Four values ofMW are shown. The thick black curves
represent the probability density functions predicted by our
model and shown in Fig. 6(a) for an integrable cavity, while
the dashed ones are for a GOE cavity, as given in Fig. 6(b).

actual local average modal density obtained over a relative
bandwidth of 0.1 % and 1 % around a continuously varying
frequencyf . As discussed in Section II, the fluctuations are
now far from negligible, with a high frequency of occurrence
of regions of modal depletion, where even at relatively high
frequency the modal density observed can be very close to
zero.

The minimum frequency at which a cavity can be expected
to be in an overmoded condition is often estimated at 5 to
10 times the fundamental resonancef0. Fig. 9 proves that
the actual average local modal density is still very strongly

fluctuating around the value predicted by (35). It is noteworthy
that the relative bandwidth over which the actual modal density
should be averaged is equal to1/Q̄. Now, Q̄ is never as low as
just a few hundred units. Therefore, even the results computed
over a0.1 % bandwidth are optimistic in their display of a
strongly fluctuating local modal density, since the value of
1/Q̄ should rather be expected into the10−6 − 10−4 range,
with even wider fluctuations.

In order to validate our prediction about the pdf of the
number of overlapping modes, we proceeded to a direct count
based on the definition (28). The bandwidths over which this
operation was carried out were computed by taking Weyl’s
approximation (35), imposing a givenMW and finding out
the bandwidthMW/mW(f) over which this number of modes
should be expected to overlap at a given frequency. The
four valuesMW = {1, 2, 5, 10} were considered, and the
actual countMloc(f) was computed over 1000 bandwidths
distributed over the entire frequency range, starting atf =
2f0. The empirical probability distributions thus obtained are
shown in Fig. 10(a)-(d), where they are compared to the pdfs
shown in Fig. 6(a). The good agreement between these results
prove that in practical configurations the actual number of
overlapping modes can definitely be smaller than expected
when using Weyl’s approximation, even when a relatively high
average modal overlapping is expected.

The question of what average modal overlapping should be
expected in practice is treated in detail in the Appendix, where
it is shown that a weak modal overlapping, i.e.,MW < 3, is
far from unlikely. Experimental results pertaining to thisissue
have also been shown in [13].

VII. PRACTICAL CONSIDERATIONS

As already recalled in Section I, these discussions about
random fluctuations in the modal overlapping have a direct
practical impact, because of the direct link existing between
the average local modal density overBM , and thus the modal
overlapping, and the variabilityς2

W of the energy densityW =
ǫ0‖E‖2, as measured at any position inside at least a sub-
volume of a MSRC, a region usually referred to as working
volume, with

ς2
W =

(σW

W̄

)2

(36)

andσW the standard deviation ofW .
As demonstrated in the Appendix and already shown in [13],

the number of overlapped modes actually intervening can be
quite low even at frequencies above the LUF estimated by
means of the usual thumb rules. Under such conditions, the
variability of W is bound to be higher than expected, as
demonstrated in [13]

ς2
W =

1

3
+

2

πMloc
. (37)

The ensemble-average modal density was considered
in [13], with mBM (f) in (8) approximated by its ensemble
average,m̄BM (f) ≃ mW(f), thus neglecting the random
fluctuations that inevitably affect it, as proven in the previous
Sections. Having only access to the estimate of the modal
density provided by Weyl’s formula, only the average deviation
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Fig. 11: Quantiles of the deviation of the local modal over-
lapping with respect to the estimate obtained from Weyl’s
formula, for (a) an integrable system and (b) a GOE chaotic
one.

can be predicted, or an upper bound, as done in [13]. The
non-negligible probability of observing a modal overlapping
even weaker than expected has thus a direct and measurable
impact on the statistics of the field generated by a reverberation
chamber. As long as the actual number of overlapping modes
Mloc ≫ 1, this error can be entirely negligible, since (37)
converges to the value1/3 expected for a diffuse field; but in
the case of weak modal overlapping, as already discussed and
proved in [13], very strong statistical deviations can ensue,
particularly whenMloc . 3.

The following example should make this point clearer. In
a cavity with an average modal overlappinḡMloc = 1, (37)
predicts an increase in the variability ofW equal to 0.63,
corresponding to a 191 % relative deviation in the variability
ς2
W . Of all the random realizations generated by a stirring

technique, sharing the same average modal density, those
presentingMloc = 1/2 will be affected by an electric energy
density with a statistical variability amplified by a factor2,
i.e., about 380 %, which can easily explain anomalous field
statistics on a local scale. As clear from Fig. 6, such an
event is not unlikely. IfM̄loc = 3, than the relative deviation

in the variability would rather pass from 63 % to 126 %,
if a realization featured half the average density. Therefore,
depending on the average modal overlap, fluctuations can have
a very different impact, with fields behaving with an increased
statistical dispersion than expected from ideal reverberation
models [2]. From this example it is clear that the strongest
effect will be felt whenM̄loc . 3.

A useful summary of the probability of occurrence of
random fluctuations is given in Fig. 11, where the quantiles
of the random variableMloc/MW are computed for a varying
MW. The median (50 % quantile) is very well approximated
by the estimateMW provided by Weyl’s formula. Hence,
there is an equal probability of observing either a higher or
lower modal overlapping. In the context of deviations from
the asymptotic statistics for field samples, the most important
quantiles are those related to the probability of observing
a lower modal overlapping. In this respect, when expecting
MW = 1, there is a 10 % probability of observing an actual
modal overlapping below 49 % and 63 % ofMW for an
integrable and GOE cavity, respectively. Such strong reduction
is proven by our derivation to be a normal phenomenon in a
large cavity, and not related to any non-ideality in its use.A
50 % reduction in the modal overlapping leads to a twofold
increase in the additional term of the variability of the electric
energy density, as demonstrated in [13] and recalled in (37).
Worse, but perfectly normal, scenarios can appear : with a
probability of 1 % the modal overlapping can be found below
25 % and 44 % ofMW. In other words, rare phenomena
of very strong modal depletion can explain the existence of
anomalous field statistics in a MSRC that is otherwise standard
compliant.

These results could be expected to improve when a higher
modal overlapping ofMW = 3 is considered. This value is
often taken as a reference for the appearance of a diffuse-field
condition in room acoustics [26]. Even in this case,Mloc can
be lower than58 % and72 %, and with a probability of 1 %,
below 34 % and56 %. Hence, even at relatively high modal
overlappings, the probability of observingnormal strong de-
viations in the field statistics should not be underestimated.

A probability of 1 % is compatible with the rate of ap-
pearance of local non-compliancies as tolerated in current
practice [12], and could thus provide a physical explanation
to the observation of outliers [2]. It could also serve as an
explanation for the existence of local non-compliancies even
at higher frequencies, where the concept of overmoded cavity
is usually taken for granted.

Of notable importance is the observation of a much higher
statistical dispersiveness for an integrable case. In practice,
this scenario is to be expected only when the scatterers within
a reverberation chamber are no longer electrically large, i.e.,
towards their lower frequency range of operation, close to
the LUF. It is thus pertinent to wonder if the inclusion of
large passive scatterers within a chamber could improve at
least the field statistics, by making the cavity chaotic rather
than integrable. A similar idea was already vented in previous
papers, but it was rather based on the hope of increasing
the modal density [27], [28]. Our suggestion is of a different
order: to reduce the statistical dispersion in modal overlapping
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by making a cavity chaotic, in order to avoid even stronger
local deviations in the field statistics, due to modal depletions
justified by stronger random fluctuations for the integrable
case.

VIII. C ONCLUSIONS

In this paper we have applied universal results from RMT in
order to derive the probability distributions of modal-related
quantities of interest to the physics of MSRC. These laws
are entirely general and just require a handful of macroscopic
parameters to be used in practice: the volume of the cavity
V , its average composite quality factor̄Q, etc. The two
universality classes representing an integrable and a GOE
chaotic system serve as extremes in the actual behavior of
real-life MSRCs.

The rationale for our analysis is the link proven in [13]
between the average number of overlapped modes over the
average bandwidth of a mode, directly depending on the local
modal density and the deviation in the parent law of field
samples, as assessed by their increased variability.

It was shown that the estimate of local modal density, and
thus modal overlapping, yielded by Weyl’s formula has a far
from negligible probability of overestimating the availability of
resonant modes, particularly when modes are already scantly
overlapped, i.e., forMW . 3. Interestingly, the statistical
dispersion of the modal density appears to be non-negligible
even at frequencies where a relatively large number of modes
is already overlapping, on average.

The inevitable consequence is the appearance of large devi-
ations from the asymptotic Gaussian behavior expected for the
field generated in an overmoded reverberation chamber. These
results are expected to be the basis for a better understanding
of anomalous field statistics; moreover, the fact of being firmly
based on physical grounds makes them appealing in the study
of the links existing between the physics of large cavities and
the statistical properties of real-life reverberation chambers.
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APPENDIX

AVERAGE MODAL OVERLAPPINGMW FROM

WEYL’ S APPROXIMATION

The average numberMW of overlapping modes in a cavity
can be estimated by means of Weyl’s approximation. Since
we are mainly interested in knowing the order of magnitude
of MW, we will consider the basic approximation (2), yielding

MW(f) = mW(f)
f

Q̄
=

8πVλ

Q̄
. (38)

The average composite quality factor̄Q can be expressed
as the harmonic sum of the three main loss/leakage mecha-
nisms [29]

1

Q̄
=

3∑

i=1

1

Q̄i
, (39)
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Fig. 12: Average modal overlapping predicted by (47) for
dissipation in antenna loads and non-perfectly conductive
metallic boundaries, neglecting the inclusion of additional
lossy material into a cavity. These results refer to the case
of a fundamental resonance at20 MHz.

with

Q̄1 = 16π2Vλ (40a)

Q̄2 =
3V

2δµwS
(40b)

Q̄3 =
2πV

λσ̄eq
, (40c)

whereV is the volume of the cavity andS the surface of its
metallic boundary.

Q̄1 models the dissipation in the antenna load (single
antenna, here), for the special case of a perfectly matched
antenna;Q̄2 represents Joule dissipation over imperfectly
conductive walls, withµw the relative magnetic permeability
of the metal covering the cavity surface andδ its effective
skin-depth;Q̄3 accounts for power loss due to leakage through
the cavity surface and dissipation in lossy materials within the
cavity (e.g., absorbers) through an average absorption cross
section, since they essentially behave in the same manner. We
obtain from (38) - (40)

MW(f) =
1

2π
+ 4

σ̄eq

λ2
+

16π

3
µw

Sδ

λ3
. (41)

In the lower frequency range, the dominant term in (41) is
Q̄1, i.e., dissipation in antenna loads. In this case

lim
f→0

MW(f) =
1

2π
≃ 0.16, (42)

a result well below the average overlapping of 3 modes
that is often regarded as ensuring a diffuse-field regime in
a reverberating cavity [26].

In order to derive a simple closed-form expression, we will
consider a cubic cavity, with sidea and non-magnetic metal
surfaces, i.e.,µw = 1. In this case the fundamental resonance
frequency is

f0 =
c0√
2a

. (43)
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Expressing the frequency in terms off0, as f = νf0, the
wavelength becomesλ = λ0/ν, whereλ0 =

√
2a. Hence (41)

can be recast into

MW(ν) =
1

2π
+ 4

σ̄eq

λ2
0

ν2 +
16π

3

Sδ

λ3
0

ν3. (44)

The last term includes the skin depth, which is frequency
dependent. A simplification is possible by writing

Sδ

λ3
=

ν2.5

√
λ0

3√
πµ0σwc0

, (45)

whereσw is the conductivity of the metallic surfaces. For a
conductivityσw = 3.5 · 107 S/m (aluminium), (44) becomes

MW(ν) =
1

2π
+ 4

σ̄eq

λ2
0

ν2 + 2.47 · 10−4 ν2.5

√
λ0

. (46)

We are now in condition to assess the average number of
overlapping modes predicted by Weyl’s approximation. For
a cavity withf0 = 20 MHz, i.e., λ0 = 15 m, with negligible
leakages and no absorbing materials, we should expect

MW(ν) =
1

2π
+ 6.37 · 10−5ν2.5, (47)

which can now be evaluated at multiples of the fundamental
resonance. We shall consider the two most widely applied
thumb rules for overmoded conditions: 1) a frequency about
5 or 10 timesf0, i.e., ν = 5 or ν = 10; 2) a frequency where
the cumulative number of modes isN ≥ 60, for which Weyl’s
approximation (2) implies

Vλ =
45

2π
(48)

corresponding for a cubic cavity toa/λ ≃ 1.92 andν = 2.7.
We obtainMW(2.7) = 0.16, MW(5) = 0.17 andMW(10) =
0.18. In all of these cases,MW < 1, thus making the case for
strong fluctuations in the modal density an important issue,
as implied by the results shown in Fig. 11 for weak average
modal overlapping and discussed in Section VII. Fig. 12 shows
MW(ν) for a varying frequency, in the case whereQ̄3 → ∞:
based on dissipation in the antenna load and finite conductivity
over the cavity boundary, a modal overlappingMW = 1 is to
be expected only above 45 timesf0.

Clearly, the presence of a lossy EUT or absorbers within the
cavity would increaseMW. Indeed, for a perfectly absorbing
material, the absorption cross-section would be approximately
equal to its geometrical cross section. Hence, an additional
factor 4σ̄eq/λ2 should be included and could be expected to
be the dominant one around the LUF. This conclusion agrees
with the observations made in [13], where it was shown that an
unloaded cavity can be incapable of supporting a diffuse-field
condition even above the lowest usable frequency defined in
the IEC standard [12]. The inclusion of additional losses seems
to be necessary in the lower frequency range, for the sake
of creating more easily reproducible conditions for the field
statistics, i.e., with field statistics approaching the asymptotic
ones derived in [2], [30].
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It has been proposed [J. Derosny, Ph.D. Thesis, Université Paris VI, 2000] that the performance of time re-
versal at recreating a coherent pulse in a strongly reverberating medium is directly proportional to the number
of resonant modesM actively taking part at the transmission of energy. This idea is here tested against ex-
perimental results, showing that as soon as losses are takeninto account, the quality of the focused pulse is a
sublinear function ofM , leading to a saturation phenomenon that was previously unacknowledged. This is here
proven to be caused by mutual coupling between lossy resonant modes, thanks to a statistical modal description
of the transmission of signals through the medium. Closed-form relationships are proposed for the first two
moments of the pulse signal-to-noise ratio, linking them tothe occupied bandwidth, the number of active modes
and the degree of resonance of the medium. These formulae, supported by experimental and numerical results,
prove that the performance of time reversal can be affected by a strong statistical dispersion. The proposed
analysis also predicts that time reversal is a self-averaging process when applied to a reverberating medium,
thus allowing the use of models developed in an ensemble-average framework.

I. INTRODUCTION

The interest of time-reversal techniques has been demon-
strated in the fields of acoustics as well as electromagnetics,
giving rise to a host of applications as diverse as pulsed-energy
focusing in complex media [1], imaging techniques [2], and
selective focusing [3]. Among these, one of the most surpris-
ing features of time reversal is its ability to ensure the trans-
mission of coherent pulses through reverberating media [1,4].
In the context of this paper, we will consider a reverberat-
ing medium as a generally inhomogeneous medium where the
propagation of electromagnetic or acoustic energy is strongly
constrained into a finite volume. This region of space can be
identified by an ideally closed surface imposing highly reflec-
tive boundary conditions, a configuration often referred toas
a cavity. The provision of a finite volume does not exclude the
existence of small apertures, through which a limited amount

i(t)

y(t)
transducers

reverberating
medium

FIG. 1: Synoptic of a generic communication system embeddedinto
a reverberating environment. A pulsey(t) is to be focused at the
receiver location by feeding the transmitter with anad hocsignal
i(t) defined by means of time-reversal techniques.

∗andrea.cozza@supelec.fr

of the energy can leak out of the reverberating environment
leading to a small perturbation of its behaviour assimilable
to an energy loss. Coherently with this scenario, the me-
dia filling the cavity, as well as its boundary surface, will be
regarded as lossy, introducing power dissipation along wave
propagation. Following this description, a cavity is character-
ized by an infinite but countable set of resonances, associated
to the eigenmodes of Helmholtz equation when the reflective-
surface boundary conditions are enforced [5].

Typically, for a pulse transmitted within such a medium, the
signal received would be dominated by a long non-coherent
tail, made up of a large number of echoes of the original pulse;
conversely, use of time-reversal techniques allows a predomi-
nantly coherent transmission of the pulse. Applications ofthis
property to electromagnetics range from new signal-forming
schemes for telecommunications in multipath channels [6] to
the generation of high-intensity local fields for device/material
testing [7]. Although the basics for the physical interpretation
of time-reversal in such context are known [4], there is no
available model allowing to predict the statistical behaviour
of this technique when used in a reverberating medium, and
in particular how its performance depends on the relative po-
sition of the receiver-transmitter pair within the system (see
Fig. 1). In particular, the analyses found in the literaturefocus
just on the mean asymptotic performance, without giving any
hint of its statistical dispersion. Furthermore, to the best of our
knowledge, these models assume the system to be lossless [4].

In this paper we fill this gap by proposing a study of the
performance of time reversal for more realistic scenarios,as-
sessing how the signal-to-noise ratio (SNR) of received pulses
evolves while changing, on the one hand, the positions of
the transducers and, on the other hand, the properties of the
medium. This is done by studying the statistics of the per-
formance, in particular by proposing closed-form expressions
for the first two moments of the SNR of the received pulse.
These results should allow predicting more thoroughly the
way time reversal behaves in a reverberating medium, espe-
cially thanks to the knowledge of the variance of the SNR: in-
deed, this is a fundamental piece of data for ensuring, within
a certain confidence margin, a given performance for any po-
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sition of the receiver and transmitter. Moreover, by acknowl-
edging the existence of non-negligible loss mechanisms, the
proposed model predicts phenomena that were not previously
highlighted, such as the fact that losses lead to a saturation
of the SNR, because of the mutual coupling between resonant
modes through the tails of their frequency spectra. A major
point is the generality of these results, which are valid forany
system obeying to a modal resonant description, be it acoustic
or electromagnetic, while requiring a very limited number of
simplifying assumptions.

The paper starts with the introduction of tools for assessing
the quality of the received pulse, generalized to the case of
lossy media by applying novel definitions with respect to [4].
These tools are then applied for the analysis of experimental
results obtained in an electromagnetic reverberation chamber,
pointing out some of the previously recalled phenomena that
have not yet been acknowledged. A theoretical analysis based
on a modal description is then proposed in Section III, leading
to the first two statistical moments of the SNR; subsequently,
we focus in Section IV on the asymptotic response, proving
that thanks to the self-averaging properties of time reversal,
its statistical description is asymptotically independent on the
actual realization of the reverberating medium, and entirely
describable through few global parameters. Numerical results,
as well as experimental ones are presented in Section V, vali-
dating the accuracy of the proposed analysis. Finally, a simple
heuristic interpretation of our findings is given in SectionVI,
providing a framework for intuitively understanding the rea-
sons for the saturation of the SNR.

II. ON THE QUALITY OF RECEIVED PULSES

A. Mathematical tools for quality assessment

In this Section we are concerned by the use of time-reversal
techniques for transmitting a coherent pulse to a given re-
ceiver placed in a reverberating medium. Hereafter, this will
be supposed to be reciprocal. The configuration we deal with
is depicted in Fig. 1: two transducers are placed within the
medium, one acting as a transmitter and the other one as a re-
ceiver. Definingh(t) as the impulse response between the two
transducers, it was shown in [4] that by transmitting the signal
i(t) = x(−t) ⋆ h(−t), the received signaly(t) will be a fair
replica of x(−t), even in a strongly reverberating medium.
Due to this feature, time reversal has been proposed as a way
of communicating through complex media, and in particular
multipath channels, whose characteristics are well represented
by reverberating media [8]. An example of pulse received for
this setup is shown in Fig. 2, wherex(t) is a cardinal sinus
modulating an harmonic carrier. Indeed, it appears that the
received signal is almost undistinguishable from the original
one around its peak region, whereas it is affected by a stronger
modification over the signal tails.

In the following, we will consider the pulsex(t) to have a
spectral content comprised in the frequency range[f1, f2], i.e.,
with a frequency bandwidthBT = f2 − f1 centered around
the frequencyfc = (f1 + f2)/2. A total number ofM reso-
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FIG. 2: An example of a pulse transmitted through a reverberating
medium using time reversal, for the case ofQ = 5000, M = 500,
BT = 100 MHz, central frequency 1 GHz: the region around the
peak of the pulse (a) and a wider perspective highlighting the resid-
ual noise distribution (b). The dark trace is the original pulse to be
transmitted, whereas the light one is the signal actually received, af-
fected by residual noise. The thicker line represents the equivalent
noisene(t).

nant modes will be assumed to exist over this frequency range,
with resonance frequencies given by the set{fk}. In a general
way, a transfer functionH(f) in a reverberating medium can
be expressed as a superposition of these modes, weighted by
complex coefficientsγk = αk + jβk [5], i.e.,

H(f) =

M∑

k=1

γk(f)φk(f) , f ∈ [f1, f2] . (1)

The responseφk(f) of thek-th mode will be assumed, with
no loss of generality, to be a Lorentzian function. By consid-
ering the main effect of losses to lead to a small perturbation
of these functions, one can write [5]:

φk(f) =
f2

k/Qk

f2
k (1 + j/2Qk)2 − f2 , (2)

whereQk is the quality factor associated to thek-th mode,
which thus has a−3 dB bandwidthBM,k = fk/Qk. The
modal weights{γk} are functions of the transmitter and re-
ceiver positions and of the spatial field distribution associated
to each resonant mode.

In order to simplify the notations in the following analysis,
we will consider the reference signal to bex(−t), so that the
received one is rather linked tox(t). For the same reason, we
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will avoid delaying the time-reversed pulse, and consider a
non-causal description, as this does not affect the final results.
Bearing these definitions in mind, the fitness of the focused
pulse can be assessed by computing the components(t) =
ρx(t) that is coherent with respect tox(t), leading to

y(t) = ρx(t) + n(t) , (3)

wheren(t) is the residual noise due to the distortion of the
pulse introduced by the non-flat transfer functionH(f) of the
medium, withH(f) the Fourier transform ofh(t). Residual
n(t) being orthogonal tox(t) by definition,ρ can be computed
as

ρ =
〈Y, X〉
〈X, X〉 =

∫ f2

f1

X |H |2X⋆df

∫ f2

f1

|X |2df

, (4)

having applied Parseval equality, whereX(f) andY (f) are
the Fourier spectra of the respective time-domain signals.The
brackets stand for the projection operator. It is interesting to
notice that because of the quadratic form in the previous re-
sult,ρ ∈ R+, so that the sign of the peak of the received pulse
will always be unchanged. Defining the energyEG of a spec-
trumG(f) as

EG = 2

∫ f2

f1

|G(f)|2df , (5)

the energyES of the coherent part is thus given by

ES = ρ2EX = 2ρ2

∫ f2

f1

|X |2df , (6)

whereas the energyEN of the residual noise is

EN = 2

∫ f2

f1

|X |2|H |4df − ES , (7)

so that we can introduce the energy SNRΛ as

Λ =
ES

EN
. (8)

While the energy ratioΛ will be extensively used in the rest of
the paper, the ability of time reversal in transmitting coherent
pulses is better assessed by means of the peak SNRΛp as
defined as follows [4]:

Λp =
s2(0)

n2
rms

, (9)

having assumed that the peak of the received pulse occurs in
t = 0. The quantitynrms is the root-mean-square (rms) value
of n(t):

n2
rms = lim

T→∞
1

T

∫ T/2

−T/2

n2(t)dt . (10)

Equation (9) thus measures how much the coherent part of
the transmitted pulse stands out of the residual noise. Now,
the use of the rms value is consistent only in the case of a loss-
less system, as done in [4], since in this casen(t) would have
an infinite energy but a finite non-zero average power. Con-
versely, for the case of a lossy system,nrms would be equal to
zero, since the noise has finite energy; as a matter of fact, the
time-constant characterizing the decay of a mode with quality
factor Qk is τk = Qk/(πfk) = 1/(πBM,k). We will as-
sume that all the modes involved have the same bandwidth,
and as a consequence the same time-constantτ = τk, ∀k; this
assumption is valid as long asBT /fc is sufficiently smaller
than one, i.e., for configurations that cannot yet be regarded
as wide-band, though not strictly narrow-band. Under such
conditions,n(t) will also obey to a time-decay with constant
τ ; therefore, we introduce the equivalent noise signalne(t):

ne(t) = n0e
−πfct/Q , (11)

whereQ is the average quality factor, and by imposing the
same overall energy for the two noise signals, we get

n2
0 =

ENπfc

Q
. (12)

The equivalent noisene(t) behaves as a smoothed version
of the actual noisen(t), maintaining the same overall time-
decay, and thus the same average instantaneous power con-
tent. The example shown in Fig. 2 illustrates this approach.It
is now possible to define the peak SNR by considering the
equivalent instantaneous noise energy at the signal peak in
t = 0,

Λp =
s2(0)

n2
e(0)

=
Q

πfc
χΛ , (13)

whereχ = x2(0)/EX is a factor related to the shape ofx(t).
This simple relationship between the two SNR definitions al-
lows focusing on the energy SNR, which is much simpler to
compute in the frequency domain.

Thanks to these definitions, it is possible to predict the per-
formance of time-reversal transmission for any pulsex(t), just
by knowing the transfer functionH(f). Most remarkably, this
just requires having access to the absolute values of the spec-
traX(f) andH(f).

B. Experimental investigations in a reverberation chamber

In general, the pulse SNR will depend on the relative posi-
tion of the transmitter and the receiver within the system; in
order to exploit the time-reversal technique for real-lifeappli-
cations, it is of paramount importance to be able to ensure that
a given minimum SNR be respected for any transducers posi-
tion, at least with respect to a certain confidence margin. In
order to assess the variability of the SNR, we carried out ex-
perimental tests, by considering an electromagnetic reverber-
ation chamber, with a fixed antenna acting as the transmitter
and a linearly polarized electro-optical sensor (connected to
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an optical fiber) as a receiver. This last choice was imposed
by the fact that a receiving antenna being moved inside the
chamber would have changed its fundamental characteristics,
modifying the sets{fk} and{γk}, and as thus impairing the
validity of any comparison. The very weak interaction en-
sured by the optical sensor means that it can be regarded as an
almost ideal electric-field probe, minimizing the modification
of the quantity being measured.

A total of 100 randomly chosen positions and orientations
of the receiver were considered, measuring the respective
transfer functions over six frequency ranges, centered at fre-
quencies from0.5 GHz to3 GHz, by steps of0.5 GHz. For
each central frequency, two bandwidthsBT were considered,
namely 100 MHz and 200 MHz.

We assumed, for the sake of simplicity,x(t) to have a flat
spectrum over the frequency range[f1, f2]; this would be the
case, e.g., for cardinal sinus pulses. The energy SNR was
computed by means of (8), leading to the empirical statisti-
cal distributions shown in Fig. 3, and the first two statistical
moments ofΛ resumed in Table I, together with the average
peak SNRΛp. These results point to three important facts: 1)
while the average energy SNR increases with the frequency,
its progression slows down at the same time, converging on
an asymptotic value close to one, 2) the actual value ofΛ is
strongly dispersed, depending on the position of the receiver
and, 3) an increasing bandwidth has apparently little effect on
the average energy SNR, whereas its dispersion decreases. To
the best of our knowledge, these conclusions have never been
discussed before, and no theoretical framework is available
for interpreting them.

The only available model is the one proposed in [4] for a
lossless configuration. It predicts a direct proportionality be-
tween the number of modesM and the average peak SNR
Λp. In order to apply this model to our experimental results,
we estimated the numberMw of resonant modes existing in
the chamber for a given frequency range through Weyl’s for-
mula [9]

Mw(fc) ≃ 8πV

c3 f2
c BT

(
1 +

B2
T

12f2
c

)
, (14)

whereV is the volume of the reverberation chamber andc is
the speed of light in the medium filling it. Results obtained for
the case of Supelec’s chamber (V = 3.08 × 1.84 × 2.44 m3)
are shown in Table I. By comparingMw to the averageΛp,
it is clear that their relationship is more complex, and charac-
terized by a form of saturation of the performance, since even
for large increases inMw, Λp is barely affected.

The reasons for such a peculiar behaviour are to be sought
in the existence of loss mechanisms in actual reverberation
chambers; we will show in the next Section that this leads to
mutual couplings between resonant modes, and ultimately to
a saturation of the performance.

Concerning the statistical dispersion discussed in points2)
and 3), it has never been addressed before. It is worthwhile
noticing that the orientation of the probe has little effecton
the dispersion, since the cavity was over-moded for all the
frequency ranges, apart forfc = 0.5 GHz. For such configu-
rations, the field is statistically isotropic, and it presents very

fc (GHz) BT (MHz) meanΛ stdΛ meanΛp Q Mw

0.5
100 0.37 0.074 187

3900
322

200 0.30 0.051 300 644

1.0
100 0.75 0.12 272

5700
1287

200 0.72 0.080 130 2574

1.5
100 0.91 0.14 243

6300
2896

200 0.90 0.10 481 5792

2.0
100 0.96 0.13 192

6300
5149

200 0.95 0.12 380 10297

2.5
100 1.02 0.13 187

7200
8045

200 1.00 0.10 365 16090

3.0
100 1.02 0.14 188

8700
11584

200 0.98 0.10 358 23169

TABLE I: Statistical moments of the energy SNRΛ and average peak
SNRΛp, as computed from the experimental data presented in Fig. 3.
The approximate number of modesMw was computed by means
of Weyl’s formula (14), whereas the average quality factorQ was
directly estimated from the time constant of the residual noisen(t).

similar statistical properties along its three Cartesian compo-
nents [10].

These results point out that apart from being able to ex-
plain the limitations of time reversal, it is of paramount im-
portance to have a model predicting the statistical dispersion
of the SNR. These are indeed the basic motivations of this
paper.

III. STATISTICAL MOMENTS OF Λ

As often done in statistical descriptions, the parameters of
the model will need to be regarded as random variables. This
approach is not just dictated by mathematics, but it comes with
physical meaning. In particular, the resonance frequencies
{fk} are indeed distributed over the bandwidthBT in a way
that is hardly predictable, unless in canonical configurations.
For the associated modal weights{γk}, since describing the
projection of the transducer characteristic response overthe
modal topographies, a modification in the position of the re-
ceiver or the transmitter leads to a modification of the{γk}, so
that a random position of the transducers implies a random set
of modal weights. Moreover, the fact that the modal topogra-
phies, as well the excitation of the transducers are, in gen-
eral, sign-changing functions, implies that the{αk} and{βk}
should be treated as zero-mean random variables, and they
will be assumed to be independent and identical distributed
(iid). No further assumption will be necessary about the type
of distributions.

In order to simplify the model, theφk(f) will be assumed
to be frequency-shifted replica, with approximately the same
bandwidthBM = fk/Qk, ∀k. This also implies that all the
modal responsesφk(f) have the same energyEφ. In principle,
this assumption holds only when relatively narrow bands are
considered, although the results shown in Section V prove that
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FIG. 3: Frequencies of occurrence for the energy SNRΛ as computed from experimental data measured over a bandwidth BT = 100 MHz
(left column) andBT = 200 MHz (right column), centered around the frequenciesfc = {0.5, 1, 1.5, 2, 2.5, 3} GHz (top to bottom). Each
histogram was obtained from a population of 100 sample transfer functions as measured between a fixed transmitter antenna and a moving
electro-optical probe.

this is not necessarily the case.

It is important to understand the physical role of the follow-
ing statistical analysis, which aims at accounting for the im-
pact of the random position of the transducers on the received
pulse SNR. Indeed, equation (1), when coupled with equa-
tions (6)-(8), leads to the definition ofΛ as a random function,
depending on the probability density functions (pdfs) of{γk}
and{fk}.

We start our analysis by considering a specific configu-
ration for the reverberating medium, i.e., for a given set of
known deterministic{fk}, whereas the{γk} will be regarded
as random variables. This scenario corresponds to the case
of a single realization for the medium, while the positions of

the transducers are let free to change, so that all the statistical
moments will be conditional to the set{fk}. The ensemble
behaviour of the SNR considering random{fk} will be stud-
ied in Section IV.

In order to simplify our analysis, but with no loss of gener-
ality in the conclusions, we will assume the modulus ofX(f)
to be directly proportional to the characteristic functionof the
interval [f1, f2], leading toχ = 2BT . This choice corre-
sponds, e.g., to a cardinal sine excitation in the time-domain,
modulating an harmonic carrier of frequencyfc, as for the ex-
ample shown in Fig. 2. Attention should be paid to the fact
that the definitions of the SNR actually depends just on the
modulus ofX(f), so that an infinite number of pulse shapes

139

Selected papers



6

sharing the same spectral occupation would be characterized
by the same SNR.

Following this assumption, (8) can be recast as

Λ =

(∫ f2

f1

|H |2df

)2

BT

∫ f2

f1

|H |4df −
(∫ f2

f1

|H |2df

)2 . (15)

ThusΛ is entirely defined by the properties of the random
function|H(f)|2 over the frequency-range[f1, f2]. In order to
study the statistical properties ofΛ, we introduce the auxiliary
random variablesWi ∈ R+, as defined as

Wi =

∫ f2

f1

|H |2idf , (16)

yielding

Λ =
W 2

1

BT W2 − W 2
1

. (17)

The rationale for introducing these auxiliary variables is
that the statistical moments ofΛ cannot be expressed as a di-
rect function of the{γk} and{fk} moments. Nevertheless,
the moments ofWi can be linked more easily to those of{γk}
and{fk}; an estimation of the moments ofΛ can then be given
by linearizing (17) around theWi ensemble averages [11]. For
the sake of simplicity, the following convention is introduced:

W i = E[Wi|{fk}] . (18)

Applying this approach to the average ofΛ conditional to a
given realization{fk} yields

E[Λ|{fk}] ≃ W
2

1

BT W 2 − W
2

1

. (19)

In the same way, the conditional varianceσ2
Λ|{fk} can be ap-

proximated as

σ2
Λ|{fk} = E[Λ2|{fk}] − E[Λ|{fk}]2 ≃ JTΣJ , (20)

where Σ is the covariance matrix of the random vector
[W1, W2]

T. The column vectorJ is the Jacobian ofΛ as com-
puted with respect toW1 andW2, evaluated at(W 1, W 2):

J = BT
W 1(

BT W 2 − W
2

1

)2

[
2W2

−W1

]
. (21)

A higher-order estimate ofΛ could be given, but the re-
sulting expression would be quite unwieldy without deliver-
ing considerable improvement in the final accuracy. For the

same reason, we just consider the first two moments ofW1

andW2. Thanks to the following expansion

|H(f)|2 =

M∑

k=1

|γk|2|φk(f)|2 +

+ 2

M∑

k=1

M∑

m=k+1

Re {γkγ⋆
mφk(f)φ⋆

m(f)} (22)

and assuming the{γk} to be independent from the{fk}, while
recalling the hypothesis of all the modes having the same en-
ergyEφ, as defined in (5), we can write

E[W1|{fk}] = 2Mµ2Eφ (23)

E[W2|{fk}] = 2M(µ2
2 + µ4)E|φ|2 +

+ 16µ2
2

M∑

k=1

M∑

m=k+1

Eφkφm (24)

having introduced the momentsµi

µi = E[αi
k] = E[βi

k] . (25)

Equation (24) differs from (23) in a fundamental aspect,
i.e., the presence of the mutual energiesEφkφm shared be-
tween each couple of modes of the system. This term can
be shown to be the source of the limitations of the SNR as
the modal densityM/BT increases enough to lead to non-
negligible interactions between the modes.

The same type of analysis was carried out for the elements
Σij = E[(Wi − E[Wi])(Wj − E[Wj ])] of the covariance ma-
trix, but this led to too complex expressions, especially for
Σ22. We would rather propose approximate results, where the
mutual-energy terms are neglected:

Σ ≃ 4Mν , (26)

having defined the elements ofν as

ν11 = E2
φ(µ4 − µ2

2) (27)

ν12 = EφE|φ|2(µ2µ4 + µ6 − 2µ3
2) (28)

ν22 = E2
|φ|2(µ8 + 4µ2µ6 + µ2

4 − 2µ4
2 − 4µ2

2µ4) (29)

It is worth noting that although interactions between modes
have been neglected inΣ, the Jacobian in (21) takes them into
account. It will be shown in Section V that when applied as
an input to (20), these expressions provide a good estimate of
the variance ofΛ, and as thus they are a useful tool in stat-
ing the uncertainty that affects time-reversal performances in
a reverberating medium.

IV. AVERAGE ASYMPTOTIC PERFORMANCE

The formulae presented in the previous Section were de-
rived considering a given deterministic set of resonant fre-
quencies{fk}, and as thus (19) and (20) depends, in principle,
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on the actual realization of{fk}. In fact, this dependence sub-
sists only in the mutual energiesEφkφm in (24).

In this Section, we consider the performance of time-
reversal when averaged over all the realizations of{fk}, hence
related to its general trend rather than for a specific configu-
ration, proving that under certain conditions, the statistics of
a single realization are well approximated by the simpler en-
semble statistics.

To this end, let us consider the ensemble average ofΛ with
respect to the random set{fk}; thanks to the linearization of
Λ, it will suffice to carry out this averaging over theWi, lead-
ing to:

E[W1] = 2Mµ2Eφ (30)

E[W2] = 2M(µ2
2 + µ4)E|φ|2 +

+ 8µ2
2M(M − 1)E[Eφkφm ] . (31)

The double sum in (24) is thus simplified by introducing the
average mutual energyE[Eφkφm ]. The result in (24) and (31)
would then be identical if the following condition were satis-
fied:

2

M(M − 1)

M∑

k=1

M∑

m=k+1

Eφkφm ≃ E[Eφkφm ] . (32)

This requirement corresponds to assuming the system to be
ergodic, approximating the ensemble average over all the re-
alizations with the average carried out over the set of mutual
energies within a single realization. The strong law of large
numbers [12] states that, if the system is ergodic, the left hand
of (32) converges in probability to the ensemble average of
the mutual energy; therefore, for a sufficiently high numberof
active modesM one gets

E[Λ|{fk}] ≃ E[Λ] . (33)

This phenomenon, often referred to as self-averaging, had al-
ready been experimentally highlighted in [13], although ina
different context, as one of the most interesting features of
time reversal, and it implies that its performance in transmit-
ting coherent pulses in a reverberating medium is asymptoti-
cally independent from the actual realization of the set of the
resonance frequencies{fk}, underpinning the robustness of
this technique.

An example highlighting this property is given in Fig. 4,
where empirical pdfs are shown for 10 different realizations
{fk}, for three values ofM , namely 50, 100 and 200, with
fc = 2 GHz, BT = 200 MHz andQ = 1000. For each re-
alization of{fk}, ten thousand sets of modal weights{γk}
were considered. It appears that indeed the pdfs converge
toward the ensemble average asM increases, even for such
small values ofM .

We can now write

E[Λ] =
2ME2

φ

BT

[
(1 + µ4/µ2

2)E|φ|2 + 4(M − 1)E[Eφkφm ]
]
− 2ME2

φ

.

(34)
It is clear that the behaviour ofE[Λ] could be easily pre-

dicted should the three energy terms be known. As a matter of
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FIG. 4: Empirical conditional pdfsp(Λ|{fk}) for Q = 1000, fc =
2 GHz andBT = 200 MHz, obtained for an increasing number of
active modes. The thicker curve stands for the ensemble average of
each group of realizations.

fact, a closed-form expression can be given forE[Eφkφm ] by
exchanging the order of integration:

E[Eφkφm ] =

∫ f2

f1

(∫ f2

f1

|φk(f)|2p(fk)dfk

)2

df , (35)

having exploited the fact that the{fk} are iid random vari-
ables. Noticing that the inner integral does not depend on
the actual frequencyf at which it is computed, as long as
BT ≫ BM , (35) becomes

E[Eφkφm ] = BT

(∫ f2

f1

|φk(fc)|2p(fk)dfk

)2

, (36)

and by assuming a uniform distribution for the{fk} over the
bandwidthBT , this yields

E[Eφkφm ] =
E2

φ

BT
. (37)

The two remaining energiesEφ andE|φ|2 can also be ex-
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pressed in closed-form as

Eφk
= fk

π

2

Qk

Q2
k + 1

≃ π

2
BM (38)

E|φk|2 = fk
π

4

Q3
k(Q2

k + 5)

(Q2
k + 1)3

≃ π

4
BM , (39)

so that (34) can be restated in a simpler form

E[Λ] =
M

M + (1 + µ4/µ2
2)

BT

2πBM

. (40)

HenceE[Λ] is linearly dependent onM at low modal den-
sity levels, whereas it converges to an asymptotic value for
an higherM . Thus, in lossy reverberating media, the poten-
tial gain obtained by increasing the number of active modes
(i.e., increasing the central frequencyfc) is put in jeopardy
by the coupling existing between lossy resonant modes, with
E[Λ] converging to a fixed value. Interestingly, this asymp-
totic value is simply equal to one. The physical significance
of this result will be given a simplified explanation in Sec-
tion VI.

Equation (40) is remarkably simple, and it shows that a
handful of global parameters is sufficient for an accurate pre-
diction of the quality of the received pulse. It is worth not-
ing that the central frequency does not appear explicitly, as
a consequence of the identical-mode assumption. These re-
sults also point to the fact that the most fundamental quantity
for understanding the phenomena behind pulse focusing in a
reverberating medium isBT /BM . This quantity will be here-
after referred to asNs, for reasons that will be made clear in
Section VI, yielding

E[Λ] =
M/Ns

M/Ns + (1 + µ4/µ2
2)/(2π)

. (41)

This reformulation states that the average performance is en-
tirely predicted by means of the ratioM/Ns. As soon as
M & Ns the marginal gain brought by the availability of
new modes is increasingly reduced, leading to a saturation for
higherM .

V. MODEL VALIDATION

In order to check the accuracy of the proposed description,
we considered numerical simulations, by synthesizing random
realizations of transfer functions, thanks to (1). The ratio-
nale for this approach is the possibility to closely monitorthe
number of modesM , their quality factor, and so on. Indeed,
as recalled later in this Section, experimental validations are
impaired by the impossibility to assess the exact number of
modes taking part to the transmission.

Thanks to the fact that (40) is not directly dependent on the
central frequencyfc, but rather on the bandwidthsBT and
BM , the validation can be carried out at any value offc. We
set forfc = 2 GHz, with a varying bandwidthBT and sev-
eral average quality factorsQ. Random complex weightsγk
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FIG. 5: Empirical pdfs for the energy SNRΛ, depending on
the numberM of active modes and the quality factorQ of the
medium. The six curves presented in each picture correspondto
M = {100, 250, 500, 1000, 2500, 5000}, respectively, from left to
right.

are drawn accordingly to normally distributedαk andβk; the
energy SNR for the transfer functions thus obtained are subse-
quently computed thanks to (8). Contrary to the assumption of
a constantfk/Qk, theφk(f) were assumed to have a constant
quality factorQ = Qk, ∀k. Therefore, the modal responses
φk(f) will not be identical as assumed in the model deriva-
tion.

The first tests aimed at showing how the energy SNR is dis-
tributed asM andNs = BT /BM vary, and is more of a qual-
itative investigation. A bandwidthBT of 50 MHz was cho-
sen, while four values ofQ were tested, ranging from 5000
to 40000. The number of modes varied from 100 to 5000.
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FIG. 6: Validation tests forE[Λ]: numerical results obtained from
500 realizations (dots) and the values predicted by (40) (solid lines).
All the presented results were computed forfc = 2 GHz and for
Q={1000, 2000, 5000, 10000, 20000}, while the corresponding Ns

are displayed.

For each set of global parameters ten thousand realizations
were generated, in order to establish empirical pdfs; theseare
shown in Fig. 5, and illustrate quite clearly that: 1) increasing
losses tend to saturate the energy SNR faster, asM increases,
2) decreasing losses slow the saturation down, but reduce the
average energy SNR, as the length of the residual-noise tails
increases and so does the noise energy, and 3) the SNR expe-
riences a standard deviation that is far from negligible when
compared to the average value, although, asQ increases, the
dispersion appears to decrease. The trend in the simulated
pdfs recalls that of the experimental ones shown in Fig. 3.

Even though the energy SNRΛ decreases withQ, the peak
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FIG. 7: Validation tests for the standard deviation ofΛ, for the same
configurations as in Fig. 6. The dashed lines correspond to the values
predicted by (20), but considering ensemble-averagedWi, whereas
the thick solid ones highlight the model results up to the curve local
maximum, forM < Mσ.

SNR Λp increases monotonically, since the relationship be-
tweenΛ andQ is actually sublinear. This fact is to be ex-
pected intuitively, and it also confirms the trend predictedby
the model proposed in [4], since

lim
Q→∞

E[Λp] = M , (42)

again, in the case of a cardinal-sinus pulse and gaussian statis-
tics for the modal weights.

Quantitative validations were then carried out by consider-
ingfc = 2 GHz,Q = {1000, 2500, 5000, 10000, 20000}, and
a varying bandwidthBT = {200, 400, 600} MHz. The num-
ber of modes spanned the values 100 to 5000, and a population
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of 500 random realizations{γk} per configuration was con-
sidered, each configuration representing just a single realiza-
tion of {fk}. The results thus obtained for the average value
and the standard deviation ofΛ are shown in Fig. 6 and Fig. 7,
respectively. Fig. 6 shows that the average value is predicted
within a few percent points as long asNs & 200. Indeed, (40)
is unable to predict any energy SNR greater than one; this is
actually not due to a bad estimate of the moments of the aux-
iliary variablesWi, which are indeed precisely estimated in
all of the considered tests, since (30) and (31) do not involve
any approximation. This rather points directly to the condi-
tions that are necessary for applying the linearization in (9),
implying that it is necessary for the conditionNs & 200 to be
fulfilled. We investigated the possibility of including theHes-
sian term in the expansion (19), but we dropped this option,
since it brought no tangible improvement, thus implying that
the SNR as a non linear function ofWi would require terms
higher than quadratic ones.

The standard deviation depicts a rather different scenario.
Expression (20) neglects any modal interaction in the covari-
ance matrixΣ, but it includes them through the use ofW i.
For this reason, (20) is expected to underperform as soon as
the modal interactions get more important, i.e., as the modal
densityM/BT increases. The results in Fig. 7 support these
ideas, showing that (20) is a very good estimate of the standard
deviation, as long as it has not yet attained its maximum value
σmax. After this point, (20) is no more a valid estimate, but the
actual standard deviation gets to a plateau fairly approximated
by σmax. In general, this value needs to be computed numer-
ically, but for the case of modal weights distributed as Gaus-
sian random variables, the number of modesMσ for which
the standard deviation reaches its maximum value can be ap-
proximated by

Mσ ≃ 6

π
Ns . (43)

Knowledge of the saturation point allows extending the valid-
ity of (20) over the entire range of values ofM , i.e.,

σ2
Λ ≃

{
(JTΣJ)(M) M ≤ Mσ

1.7π
Ns

M > Mσ
. (44)

Therefore, the maximum standard deviation goes like1/
√

Ns,
whereas it is inversely proportional toNs for M ≪ Mσ. The
former conclusion explains the behaviour previously high-
lighted, with the standard deviation decreasing whenBT

and/orQ increase.
These numerical validations prove the effectiveness of the

asymptotic models, even for a relatively low number of modes
and with no ensemble averaging in{fk}. This implies that the
ergodic assumption formulated in the previous Section does
indeed hold. The greatest limitation in the proposed modelsis
the need for (9) to be well approximated by its tangent plane
over the range of values spanned by theWi, requiringNs &
200.

The last validation is a tentative experimental one. As re-
called at the beginning of this Section, the exact number of
modes excited in a reverberating system is usually not known.

Therefore a direct validation is not feasible; nevertheless, it
is current practice in electrical engineering to assumed that a
linearly polarized antenna placed in an electrically largerever-
berating chamber will excite most of the modes existing over
the frequency range of emission of the antenna. As a conse-
quence, Weyl’s formula is often used as a reference. Hence,
we computed the moments of the energy SNR predicted by
our model, considering a number of modes equal to three frac-
tions of the estimateMw given by Weyl’s formula (14).

The results are resumed in Table II, together with the quan-
tity Ns: the range of variation of the SNR is very well iden-
tified, both for the average value and the standard deviation,
and the experimental results are consistently approached when
considering a number of modes close to0.9Mw. Furthermore,
as expected from the numerical validation, as soon asNs de-
creases towards 200 the experimental averageΛ goes beyond
one; in this case, the model will underestimate the statistical
moments.

The fact that considering the same fraction ofMw over
the six frequencies leads to good results, strongly reduces
the odds that this accuracy be a random result; we thus con-
sider that 90 % of the available modes were indeed effec-
tively excited. The only exception is forfc = 0.5 GHz and
BT = 200 MHz; in fact, the transmitting antenna had a cut-off
frequency around 450 MHz, so that of the 200 MHz pulse to
be received, it actually transmitted only three-quarters of the
signal spectrum, hence exciting roughly three-quarters ofthe
available modes. By taking into account this fact, the actual
number of modes to be considered is rather3/4 · 0.9Mw ≃
2/3Mw: indeed, the results agree.

Overall, it appears that the average ofΛ is hardly affected
by an increase inBT . Actually, this is predictable, since both
Ns andMw are linearly dependent onBT , so that (41) is not
modified. Conversely, the peak SNR will increase proportion-
ally to BT . At the same time, the standard deviation is sensi-
tive to an increasingBT . This was predicted in (44), and the
reduction of a factor1/

√
2 subsequent to a doublingBT is in-

deed well confirmed by the experimental results. These find-
ings are of the utmost importance should time-reversal tech-
niques be used for pulse transmission.

VI. AN HEURISTIC INTERPRETATION

We will here try to give an interpretation of the reported
phenomena from a more physical, yet approximate, point of
view. To this end, let us recall that the maximum value at-
tained by the peak SNRΛp, as long asNs & 200, is simply
given byNs/(2π). It is thus not dependent on the actual num-
ber of modesM , but rather to a, usually, much lower quantity.

Let us look atNs from a different perspective: knowing
thatBM is the average bandwidth of the frequency response
of each mode,Ns states the maximum number of modes that
could be placed one after the other over the bandwidthBT .
The energy SNR corresponding to this configuration is equal
to one, and it corresponds to the best efficiency time-reversal
can provide in concentrating energy in the coherent part rather
than in the residual noise.
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fc (GHz) BT (MHz) experiments mod.2Mw/3 mod.3Mw/4 mod.Mw Ns Mw/Ns

0.5
100 0.37 (0.074) 0.30 (0.082) 0.33 (0.083) 0.39 (0.083) 785

0.41
200 0.30 (0.051) 0.30 (0.058) 0.33 (0.058) 0.39 (0.058) 1570

1.0
100 0.75 (0.12) 0.70 (0.097) 0.73 (0.097) 0.78 (0.097) 570

2.3
200 0.72 (0.080) 0.70 (0.069) 0.73 (0.069) 0.78 (0.069) 1140

1.5
100 0.91 (0.14) 0.88 (0.11) 0.89 (0.11) 0.92 (0.11) 420

6.9
200 0.90 (0.095) 0.88 (0.080) 0.89 (0.080) 0.92 (0.080) 840

2.0
100 0.96 (0.13) 0.95 (0.013) 0.95 (0.13) 0.96 (0.13) 315

16
200 0.95 (0.010) 0.95 (0.092) 0.95 (0.092) 0.96 (0.092) 630

2.5
100 1.02 (0.13) 0.97 (0.14) 0.97 (0.14) 0.98 (0.14) 288

28
200 1.00 (0.12) 0.97 (0.097) 0.97 (0.097) 0.98 (0.097) 576

3.0
100 1.02 (0.14) 0.98 (0.14) 0.98 (0.14) 0.98 (0.14) 290

40
200 0.97 (0.10) 0.98 (0.096) 0.98 (0.096) 0.98 (0.096) 580

TABLE II: Experimental validation against the results presented in Table I: mean values are given directly, while standard deviations are in
parenthesis. The results computed by means of (40) and (20) were obtained considering a number of active modes equal to2Mw/3, 3Mw/4
andMw, due to the uncertainty on the actualM . The reliability of the estimates can be tested by checking the conditionNs & 200.
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FIG. 8: Comparison between the mean energy SNR, as predictedby
the modal approach (41) (solid line) and the slot occupancy descrip-
tion (46) (dashed line).

This fact can be used to give a simple intuitive interpreta-
tion, by introducing the idea of a numberNs of available slots,
to be occupied by the actual number of active modes. Al-
though simplistic, this vision of the spectrum as a quantified
space makes sense. Hence, each mode introduces a further de-
gree of freedom only if it can be allocated to a free slot; other-
wise, it will be lost, just leading to a different modal weight, as
a function depending on the weights of the modes previously
allocated to the same slot. Therefore, the performance of time
reversal is not related to the actual number of active modes,
but rather to the number of slots being used, which could thus
be regarded as an effective number of modes or degrees of
freedom, orMe, leading to an efficiency and, ultimately, to
an energy SNR equal toMe/Ns. The allocation of a mode to
a specific slot being a “rare” event, this random process can
be modelled by a Poisson law, with meanM/Ns. The mean

number of occupied slots, and thus the effective number of
modesMe, is thus simply given by

Me = Ns(1 − e−M/Ns) , (45)

and the related energy SNR

E[Λ] ≃ Me

Ns
= 1 − e−M/Ns , (46)

highlighting the dominant role of the quantityM/Ns, as pre-
viously shown in (41). We could thus dub the quantityM/Ns

as the modal slot occupancy: it defines completely the SNR
and is sufficient for predicting the performance of time rever-
sal in any configuration.

The validity of this reasoning is proven in Fig. 8. Indeed,
for a low number of modes (with respect toNs) the results
predicted by (41) and (46) correspond fairly well. For higher
slot occupancies, (46) saturates faster, since this model is in-
capable of acknowledging the partial superposition of two
modes, something that would just lead to a partial loss of a
degree of freedom. In spite of this over-simplification, this ap-
proach yields results consistent with those predicted by (41),
while providing a simple framework for understanding the
SNR saturation phenomenon.

VII. CONCLUSIONS

This paper has addressed the main phenomena underlying
the quality of pulses received by a transducer as transmitted
through a reverberating medium, when using time-reversal
techniques. The quality of the received pulse has been ana-
lyzed with respect to global parameters identifying the prop-
erties of the medium, according to a modal description. Hav-
ing included loss mechanisms, it was proven that the sharing
of energy between finite-bandwidth resonant modes is at the
origin of the limitations in the SNR of the received pulse. A
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statistical approach has led to general results based on very
few assumptions, mainly that of a sufficiently “wide-band”
configuration withBT /BM & 200: the developed model pre-
dicts correctly the first two statistical moments of the SNR,
acknowledging its non-negligible statistical dispersion. Al-
though mainly based on a mathematical approach, the physi-
cal meaning of these results were explained in plain terms by

introducing a simplified heuristic description, proving that the
SNR is in fact limited by the finite number of degrees of free-
dom available in a lossy reverberating system. These results
should be useful for both the design of experiments and the
interpretation of their results, and pertain to any type of wave
propagation problem in a reverberating environment.
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Increasing the Peak-Field Generation Efficiency of a
Reverberation Chamber

Andrea Cozza

ABSTRACT

The use of time-reversal techniques has been shown to allow
focusing energy in a spot about half a wavelength wide. The
fact of being able to concentrate energy into a reduced volume
of space implies higher power densities and, ultimately, higher
field levels. The use of this feature for improving the ability
of a reverberation chamber in converting energy into high-
intensity fields is investigated here. Experimental results are
compared to those predicted by a simple asymptotic model,
revealing the role played by losses and frequency bandwidth
and how the performance of time-reversal techniques depends
on these parameters.

I. INTRODUCTION

Among the several advantages presented by reverberation
chambers (RCs), a special place is certainly held by their
ability to produce high-intensity electromagnetic fields from
relatively low-power sources. The standard harmonic exci-
tation of an RC leads to a statistically uniform spreading
of the electromagnetic energy over the entire volume of the
cavity, essentially because of the fact that the cavity resonances
are excited in an incoherent way. This implies that of all
the energy stored in an RC driven by a continuous wave
(CW) harmonic signal, only a fraction can be used for the
“aggression” of the equipment under test (EUT). But while
carrying out Electromagnetic Compatibility tests, as well as
other types of radiated tests in RC, it would be typically
more useful to be able of concentrating energy only over the
EUT. This scenario can be modified thanks to recent advances
brought by time-reversal techniques [1]: as a matter of fact,
this approach allows to concentrate a bigger share of energy
around and towards the EUT, thus increasing the efficiency
of the RC as a high-intensity field generator for equipment
testing.

In this letter, we prove that higher field-generation effi-
ciencies are indeed made possible by using non-harmonic,
time-reversal-based signals; we focus on how the physical
parameters of the RC (quality factor Q, signal bandwidth,
etc. ) affect the performance of time-reversal driven RCs. To
this end, we propose a simple asymptotic model capable of
predicting the average improvement brought by time-reversal
techniques over the standard use of RCs. Its validity is checked
against experimental results obtained in an actual RC.

II. PEAK-FIELD GENERATION EFFICIENCY

For the purpose of our analysis the reverberation chamber
will be represented as a black-box linear system. To this end,

the vector electric field E(f) generated at a certain position,
will be described as

E(f) = X(f)Φ(f) = X(f)
(

ϕ1 ϕ2 ϕ3

)T (1)

where X(f) is the power-wave applied at the input port of
the antenna exciting the chamber and ϕp(f) is the transfer
function related to the p-th Cartesian component of the E field.
Two cases will be considered for the excitation of the system:
1) XCW(f), a harmonic steady-state signal of frequency fc,
with peak amplitude A, and 2) XTR(f) = P (f)ϕ⋆

p(f), with
P (f) the spectrum of a pulse signal p(t), covering a bandwidth
BT around the central frequency fc. This latter case, i.e.,
of a time-reversal-driven excitation, leads to the generation
of a pulse approximating p(t) [2], dominated by the field
component along the p-th dimension [3]. Defining p(t) as to
attain its peak value at t = 0, the peak field generated by
applying XTR(f) is, in time-domain,

max
t

∥eTR(t)∥ = ∥eTR(0)∥ = 2

∫

BT

P (f)|Hp(f)|2df (2)

having carried out the integral over the positive-frequency
region of the spectrum. Conversely, XCW(f) yields a non-
polarized field, whose peak value is given by

max
t

∥eCW(t)∥ = A∥Φ(fc)∥ . (3)

Before being compared, the peak fields obtained through these
two approaches need to be normalized to the energy E that is
necessary to apply for their generation, thus leading to the
definition of the peak-field generation efficiency

η =
max

t
∥e(t)∥2

E . (4)

In the case of a harmonic excitation, 95 % of the steady-
state amplitude is attained after a period equal to 3τ , with
τ = Q/(πfc) the average time-constant of the RC, Q being
the average quality factor of the RC at fc. Hence, an average
applied energy

ECW =
3

2

A2Q

πfc
(5)

which leads to

ηCW =
2

3

πfc

Q
∥Φ(fc)∥2 . (6)

Assuming an ideal reverberating chamber [4], the average
quadratic field amplitude would be evenly distributed along
the three field components, so that introducing the quadratic
average ϕ2

av(fc)

E
[
|ϕp(fc)|2

]
= ϕ2

av(fc) ∀p ∈ [1, 3] , (7)
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Fig. 1. Frequencies of occurrence distributions of ηCW (left column) and
ηTR (right column), as obtained from transfer functions measured over a
bandwidth BT = 100 MHz, at a central frequency fc = {1.0, 1.5, 2.0} GHz
(top to bottom, respectively). All the results have been normalized to the
average values of ηCW .

yields

E [ηCW] =
2πfc

Q
ϕ2

av(fc) . (8)

Conversely, time-reversal deals with a finite-energy excita-
tion

ETR = 2

∫

BT

|XTR(f)|2df = 2

∫

BT

|P (f)|2|ϕp(f)|2df ,

(9)
so that its efficiency is given by

ηTR = 2

(∫

BT

P (f)|ϕp(f)|2df

)2

∫

BT

|P (f)|2|ϕp(f)|2df

. (10)

Definitions (6) and (10) allow assessing how these two ways
of using RCs manage to convert the same amount of energy
into a peak field, just by knowing the transfer function between
the excitation antenna and the E field component at a point
of interest. It is therefore sensible to define the gain in the
average peak-field efficiency G = E [ηCW] /E [ηTR]. Applying
Cauchy-Schwarz inequality to (10) yields the following bound

E [ηTR] ≤ 2E

[∫

BT

|ϕp(f)|2df

]
= 2

∫

BT

ϕ2
av(f)df .

(11)
This results in an equality for a constant P (f). The term under
the integral sign is the same as in (7) and assuming it to be
constant over the entire bandwidth of the pulse p(t), we obtain

G ≤ BT Q

πfc
. (12)

f BT G
BT Q

πfc

(σ/µ)CW

(σ/µ)TR

Q(GHz) (MHz)

1.0
25 60 45 7.7

570050 116 91 9.3
100 218 182 11.9

1.5
25 39 34 6.3

630050 80 68 7.0
100 161 135 7.7

2.0
25 24 25 6.5

630050 47 50 7.6
100 95 100 8.5

TABLE I
COMPARISON OF THE EFFICIENCY GAIN G ASSESSED FROM

EXPERIMENTAL DATA AND PREDICTED BY (12). ONLY THE RESULTS FOR
THE FIELD GENERATED ALONG THE x-AXIS ARE SHOWN FOR

TIME-REVERSAL EXCITATION. THE RATIO OF THE NORMALIZED
STATISTICAL DISPERSIONS IS SHOWN IN THE FIFTH COLUMN.

This result is of paramount importance, since it allows assess-
ing in a very simple way how time-reversal techniques would
improve the performance of RC. Furthermore, it is a tool for
designing the use of such techniques, as soon as the Q of the
RC is known. In the following experimental validation we will
consider a constant P (f), in order to meet the upper bound.

III. EXPERIMENTAL RESULTS

The performance predicted by (12) was tested against ex-
perimental results measured in Supélec’s RC (3.08 × 1.84 ×
2.44 m3), using a log-periodic dipole antenna positioned near
one corner of the chamber, with the dipoles of the antenna
aligned along the vertical direction (z axis), while the direction
of maximum gain was aimed at a corner. The electric field was
sampled by means of an optical E-field probe, manufactured
by Enprobe, model EFS-105. This probe is linearly polarized,
so that three transfer functions were measured for the three
Cartesian field components; to this effect, a styrofoam support
was used. A grandtotal of 40 positions were considered,
uniformly distributed over the lower half of the RC, measuring
the three Cartesian transfer functions by means of a network
analyzer over three sub-bandwidths of BT = 100 MHz,
centered around central frequencies fc equal to 1, 1.5 and
2 GHz. Equations (6) and (10) were applied to each transfer
function, obtaining the peak-field generation efficiencies; these
results are presented in Fig. 1, where for each fc, the average
ηCW was set as reference, with all the results presented
normalized to this value.

This procedure was then repeated with a reduced BT ,
namely for 50 MHz and 25 MHz bandwidths, and the gain
G was computed. The results summarized in Table I prove
that (12), despite its simplicity, allows assessing quite ac-
curately the improvement in peak-field generation efficiency
when adopting time-reversal techniques. The agreement is
stronger at higher frequencies, where the field statistics in the
RC are closer to an ideal reverberating medium [4]. Table I
also demonstrates another interesting feature: time-reversal-
driven RCs generate peak fields that are affected by a statistical
dispersion by far lower than for a harmonic excitation. This
feature is related to the self-averaging properties of time-
reversal techniques, as already pointed out in [5] and [6].
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IV. CONCLUSIONS

We have proven that time-reversal techniques are an inter-
esting alternative to the standard harmonic excitation of RCs,
by showing that higher peak-field values can be generated from
the same amount of energy. This feature was demonstrated
experimentally and predicted by means of a simple asymptotic
model. More reliable performances were also observed, with a
strong reduction of the statistical dispersion of the peak-field
amplitude.
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Enforcing a Deterministic Polarization in a
Reverberating Environment

Andrea Cozza and Houmam Moussa

ABSTRACT

We report on a technique for generating coherently-
polarized pulsed fields within highly reverberating environ-
ments. The ability of doing so is predicted theoretically, show-
ing that the purity of the polarization of the electromagnetic
field does not depend on the cross-polarization rejection of the
source antenna, but only on the well-known depolarization
properties of standard reverberation chambers. Experimental
results are provided, proving that our theoretical model is
sound, thus validating the first technique for generating a
coherent arbitrarily polarized field in a reverberating environ-
ment.

I. INTRODUCTION

The success of standard reverberation chambers (RCs) as
an Electromagnetic Compatibility facility is mainly due to
two features: 1) the equipment under test is submitted by
a large number of plane waves whose random directions of
propagation and polarizations can be changed almost instantly
through modal stirring, thus allowing the likely excitation of
all of its weaknesses, 2) high-intensity fields can be generated
from low-power sources. Nevertheless, the field they generate
cannot be set in a deterministic way, and only its statistical
moments are known [1]. In many applications it would be
useful to be able to enforce a deterministic polarization, while
keepipng point 2). This is unfeasible in standard RCs, due to
the strongly incoherent nature of the field polarization. This
notwithstanding, time-reversal techniques have been proven to
be capable of enforcing deterministic properties in intrinsically
complex and random media, as long as losses are low and the
system is time invariant [2]. An example of this ability is
given in Fig. 1, where a pulsed field is transmitted through a
reverberation chamber, and compared to the desired waveform.
In this paper, we prove for the first time that polarization coher-
ence can also be reinstated, showing that it can be controlled
with no limitations by simply modifying the excitation signal
applied to the transmitting antenna, thus allowing a real-time
coherent control of the field, with no need of either mechanical
movements, or of antenna arrays.

II. ASYMPTOTIC POLARIZATION PROPERTIES

We consider the same setup as for standard RC applications,
i.e., a transmitting antenna placed within the RC in order to
excite a field distribution. The vector electric field E(f, r)
measured at any point r inside the RC can then be related
to the signal X(f) applied to the antenna as

E(f, r) = X(f)Φ(f, r) = X(f)
(

Φx Φy Φz

)T
(f, r) ,

(1)
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Fig. 1. An example of the ability of time-reversal techniques to generate
coherent pulses in a reverberating environment. The blue curve represents
the pulse received at a given location in a RC when applying time-reversal
techniques, as computed by means of an experimentally measured transfer
function. The green curve is the original pulse to be transmitted. The two
peak-normalized curves are indistinguishable around the peak region.

where Φ(f, r) is a vector transfer function, made up of three
scalar transfer functions related to each Cartesian polarization
component; these will be referred to as Φi(f, r) with i =
1, ..., 3 for, respectively, the x, y and z components. It is known
that for an overmoded RC, the Φi(f, r) transfer functions are
submitted to the following orthogonality condition [3]:

E
[
Φi(f, r)Φ

⋆
j (f, r)

]
= Cδij , (2)

where E[·] is the expected value operator and C is a normal-
ization constant. This condition is satisfied only when aver-
aging over the entire space of the random realizations of the
transfer functions, e.g., such as when applying mode-stirring
techniques. By recalling the modal theory underpinning the
resonant phenomena occurring in an RC, a generic scalar
transfer function can be expressed as

Φ(f) =
M∑

i=1

γiψi(f) (3)

where ψi(f) is the frequency response of the i-th resonant
mode supported by the RC, centered around the frequency
fi, while γi ∈ C models how it is excited. Equation (3) is
defined over a bandwidth BT centered around f0, where the
RC supports M modes. Let us now assume that the {fi}
and {γi} are ergodic random processes, so that the average
ensemble operator can be approximated through the arithmetic
mean as applied to the different modes defining any transfer
function. Recalling (2), the law of large numbers would then
imply that

lim
M→∞

∫

BT

Φi(f)Φ⋆
j (f)df = ME

[
Φi(f0)Φ

⋆
j (f0)

]
, (4)

considering the equality as a convergence in probability.
Equation (4) is the cornerstone of the proposed method, since
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it implies that the same performance that would be obtained
only by averaging over a large number of random realizations,
can be fairly approximated when using wide-band signals in
a single deterministic configuration, provided that the RC be
in an overmoded state. This feature is in particular related to
the self-averaging properties of time-reversal, as investigated
in [2].

Having introduced ergodicity and (4), we can now describe
how a coherent deterministic polarization can be enforced. Let
us consider an excitation signal XTR(f) defined as

XTR(f) = G(f)
3∑

i=1

piΦ
⋆
i (f) = G(f)ΦHp , (5)

where G(f) is the spectrum of the pulse g(t) to be generated at
r, with bandwidth BT , and H is the Hermitian operator, while
p = (p1 p2 p3)

T is a vector containing the complex weights
of the desired polarization pattern to be enforced. Applying
the signal (5) to (1) yields a received field

ETR = GΦΦHp , (6)

having dropped the function arguments for the sake of sim-
plicity. Since we are rather interested in the time-domain field,
and especially over the peak of the pulse at t = 0, we get

eTR(0) =

∫ +∞

−∞
GΦΦHpdf =

√
Eρ

√
Ep , (7)

having introduced the energy matrix E = diag{E1, ..., E3},
with

Ei =

∫ +∞

−∞
G|Φi|2df = 2

∫

BT

Re {G} |Φi|2df (8)

and the polarization matrix ρ, whose elements are defined as

ρij =

2

∫

BT

Re
{
GΦiΦ

⋆
j

}
df

√
EiEj

. (9)

By applying (4), it can be proven that

lim
M→∞

ρ = E [ρ] = 1 , (10)

where 1 is the identity matrix. Recalling that in an over-
moded RC the field is statistically isotropic, i.e., E

[
|Φi|2

]
=

E
[
|Φj |2

]
,∀i, j, by applying (4) to this last equation too,

limM→∞ Ei = E0,∀i. We can hence claim that

lim
M→∞

eTR(0) = E0p (11)

This result proves that without invoking any statistical averag-
ing process, i.e., no stirring, the pulsed field generated through
time-reversal converges, for a sufficiently overmoded RC, to a
deterministic coherently polarized field, directly controlled by
the weight vector p, and this for any static configuration. In
other words, the Φi functions approximate an orthogonal basis.
This result has been derived as an asymptotic property, so that
the actual received field is expected to fulfill (11) on average,
while presenting a statistical dispersion inversely dependent
on M .

f 1.0 GHz 1.5 GHz 2.0 GHz
E1 0.94 (0.12) 0.96 (0.13) 0.96 (0.11)
E2 0.92 (0.13) 0.94 (0.12) 0.97 (0.12)
E3 1.00 (0.14) 1.00 (0.14) 1.00 (0.14)
ρ12 0.025 (0.056) 0.003 (0.061) 0.013 (0.074)
ρ13 0.014 (0.045) 0.004 (0.061) 0.018 (0.076)
ρ23 -0.021 (0.068) -0.024 (0.070) -0.012 (0.081)
Me 570 420 315

TABLE I
STATISTICS OF THE PERFORMANCE IN PULSE TRANSMISSION AS

OBTAINED FROM THE COLLECTED EXPERIMENTAL DATA. THE AVERAGE
VALUES ARE PRESENTED FOR THE ENERGY MATRIX AND THE

OFF-DIAGONAL TERMS OF MATRIX ρ, WITH STANDARD DEVIATIONS
GIVEN IN PARENTHESIS.

III. EXPERIMENTAL RESULTS

Experimental validation tests were carried out in Supélec’s
RC (3.08×1.84×2.44 m3), using a log-periodic dipole antenna
(LPDA) positioned near one corner of the chamber, with the
dipoles of the antenna aligned along the vertical direction (z
axis), while the direction of maximum gain was aimed at the
corner. Concerning the receiving transducer, an all-optical E-
field probe was used, manufactured by Enprobe, model EFS-
105. This phase-preserving probe is linearly polarized, with
a cross-polarization rejection of about 40 dB, thus allowing
to measure accurately the cross-polarization of the received
pulse. The probe was mounted over a styrofoam support,
designed in order to ensure the measurement of the three
Cartesian components of the E field. A total of 50 positions
were considered, scattered uniformly over the lower half of the
RC; for each of these, the transfer functions between the LPDA
and the probe was measured along the three polarizations, by
means of a vector network analyzer. Three frequencies were
considered for f0, namely 1, 1.5 and 2 GHz, considering a
bandwidth BT = 100 MHz. For all the f0, M is expected
to be higher than 1000, as predicted by Weyl’s formula. The
pulse g(t) was set to be a Gaussian pulse, with a -20 dB
frequency bandwidth BT .

From the spectrum of g(t) and the transfer functions, the
energy matrix and the polarization matrix ρ were computed,
as defined in (8) and (9), respectively. We first checked the
validity of the isotropy assumption, by computing how the
energy received along the three polarizations is distributed.
The first two statistical moments were computed, and are
shown in Table I, proving that this assumption makes sense
for the three frequencies we chose, with a maximum error on
the average energy of about 8 % and an average one of 5 %. A
similar statistical analysis was carried out on the off-diagonal
elements of ρ: the results shown in Table I prove that indeed
the field components orthogonal to the originally addressed
one are on average very close to zero. These results prove
that the ergodic assumption is indeed valid. The fact that the
average is not exactly null is due to mechanical tolerances in
the tracks of the styrofoam support housing the probe: a tilt
of its axis of about 1 degree leads to a 0.02 cross-polarization,
a value that closely matches the actual averages shown in
Table I. Time-domain results are shown in Fig. 2, showing
how the three Cartesian linear polarizations can be separately
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Fig. 2. The field components obtained from experimental results measured
at one position, for a Gaussian pulse at 1.5 GHz. Each plot refers to a weight
vector p corresponding to one Cartesian direction. Top to bottom, the x, y
and z components of the fields are ideally the only excited when the pulse
attains its peak value.

addressed by means of the proposed method.
Concerning the standard deviation of the rejection, it is

directly related to the residual error when considering a finite
number of modes. Nevertheless, it does not change much when
doubling f0. This is due to the limited number of degrees of
freedom actually available when the quality factor Q of the
modes is finite: it was indeed demonstrated in [4] that of M
modes available, a maximum of about Me = BTQ/f0 are
actually independent. This interpretation is supported by the
inverse trends followed by the standard deviation and Me, as
shown in Table I.

IV. CONCLUSIONS

We have introduced the first method for enforcing a coherent
and deterministic polarization upon pulsed fields transmitted
in a highly-reverberating environment. This novel approach is
based jointly on the properties of time-reversal techniques and
the strong depolarization experienced in reverberating media.
In particular, we have proven that the polarization of the field
can be controlled in a precise way by simply operating on the
signal applied to the excitation antenna. Experimental results
support this analysis, demonstrating that actual applications
can be defined, such as high-power microwave testing with
real-time polarization modification.
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Emulating an Anechoic Environment in a
Wave-Diffusive Medium through an Extended

Time-Reversal Approach
Andrea Cozza,Member

Abstract—A generalized time-reversal (TR) technique for the
generation of coherent wavefronts within complex media is
presented in this paper. Although completely general, thismethod
is primarily considered for testing purposes herein, wherean
equipment under test is submitted to a series of impinging
wavefronts with varying features. Electromagnetic compatibility,
antenna testing as well as telecommunications facilities where
complex-wavefront schemes (e.g., multi-path configurations) are
required, could benefit from the proposed approach. The main
advantages and limitations of current standard TR approaches
are reviewed in this respect, exposing their inadequacy forthis
particular context. The proposed alternative technique, named
Time-Reversal Electromagnetic Chamber (TREC) is introduced
and studied by means of a formal theoretical analysis, showing
how a reverberation chamber (RC) supporting a diffused-field
condition can be operated as a generator of deterministic
pulsed wavefronts. The TREC is demonstrated to be capable
of generating arbitrary wavefronts with a remarkable accuracy,
allowing to revisit the RC as a deterministic facility: the main
advantages of RCs and anechoic ones are merged, leading to a
new facility capable of potentially generating in real-time pulsed
wavefronts while using low input energies, without requiring
neither mechanical displacements nor any special featuresof the
sources.

Index Terms—Cavities, random media, test facilities, time-
domain measurements, dyadic Green’s functions, wave focusing,
time reversal.

I. I NTRODUCTION

T HE idea of assessing the response of an equipment
under test (EUT) to external electromagnetic radiations

is fundamentally dependent on the availability of facilities
capable of generating suitable testing scenarios in a repro-
ducible and controllable manner. The most classical example
is certainly the case of a locally-plane wave, typically assumed
to propagate within an anechoic environment to simulate a
free-space configuration. A number of solutions have been
developed in the past, giving rise to such facilities as open-
area test sites, compact ranges, TEM cells, and the like. All
of these available solutions are somehow based on efforts to
simulate an anechoic environment, a task often achieved by
means of anechoic chambers (ACs), which rely on the use of
electromagnetic absorbing materials.

Among the several reasons for choosing this type of en-
vironment is the simplicity of interpretation of the results of

A. Cozza is with the Département de Recherche en Électromagnétisme,
Laboratoire des Signaux et Systèmes (L2S), UMR 8506 SUPELEC- Univ
Paris-Sud - CNRS, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France. Contact
e-mail: andrea.cozza@supelec.fr.
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(c) (d)

radiating
source

TRM antennas

TRM surface

scatterers

test
wavefront

scatterer
response

Fig. 1: A schematic representation of the two main TR
techniques currently available: (a)-(b) TR of a radiating source;
(c)-(d) selective focusing over a point scatterer by means of
the DORT approach.

a test: having made use, at least ideally, of a single plane
wave, the field scattered by the EUT, the currents induced over
its external surface or at its interior are all straightforwardly
linked to a single and well-defined external excitation.

Such an approach shows its limitations as soon as a large
number of testing configurations is required (changing direc-
tion of arrival, polarization, etc.), thus leading to the need
of complex and time-consuming mechanical displacements
of the source or of the EUT. Albeit light-weight antennas
and EUTs can be easily moved around, the case of large
EUTs such as those considered in the aerospace industry (e.g.,
satellites, airplanes) or in electromagnetic compatibility (e.g.,
vehicles) requires complex mechanical solutions. A class of
testing configurations in itself where a similar problem is ob-
served is that involving the emulation of complex propagation
environments, such as for telecommunication tests: the need
to reproduce multi-path or fading environments comes with
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expensive solutions in ACs [1], [2].
For all these reasons, reverberation chambers (RCs) have

gained a wide following even outside the electromagnetic
compatibility (EMC) community, especially for the need of
assessing the performances of telecommunication devices for
data-transmission schemes through complex environments [3].
Here, the logic of the test is turned upside-down: the testing
conditions do not require anymore moving the sources or the
EUT, since it is considered that RCs can provide a testing
scenario where a large number of plane waves propagate along
ideally all possible directions [4], [5], [6]. The well-known
price to pay for this simplification is the loss of intuitive
understanding of the undergoing physical phenomena leading
to the test results, and the important issue of having hardly
repeatable testing conditions. We acknowledge the fact that
the average testing conditions are repeatable, but the exact
configuration is actually not.

As opposed to these two scenarios, in the last few years
it has been shown that the preconceived idea of reverberating
cavities as capable of supporting only narrow-band excitations
and incoherent fields should be revisited. Time-reversal (TR)
techniques have been shown to be capable of generating
coherent wavefronts that can behave in a similar way to
anechoic environments [7], [8], [9]. The availability of such a
new way of using RCs is particularly exciting because it could
be a way of accessing the main features of RCs and ACs at the
same time, within the same facility, by taking advantage of a
high energy efficiency while being able to generate simpler and
more easily predictable wavefronts. Unfortunately, as we argue
in the next two sections, currently available TR techniques
are unsuitable for testing purposes, since they rely on a
fixed two-step procedure that does not allow straightforwardly
controlling the features of the generated wavefronts.

A more powerful technique disposing of these limitations
was introduced in [10] and experimentally validated in [8].It
is based on the use of synthetic sources, leading to a general-
ized technique for the generation of time-reversed wavefronts
whose features can be controlled in a very simple manner. In
this paper, we present a formal analysis of how the equivalence
theorem, coupled to a phase conjugation technique allows
generating arbitrary wavefronts within random propagation
media characterized by weak spatial correlation. Our theory is
first introduced for a general medium, requiring only linearity
and reciprocity, while in a second time we focus on the specific
case of a medium supporting a diffused field distribution,
e.g., an overmoded reverberation chamber. The dyadic operator
describing how a target wavefront will be modified on average
by the proposed technique is derived, and numerical examples
are provided to illustrate our results. No experimental result is
provided, since they are already available in the literature [8],
[11].

As opposed to previous works dealing with the focusing
of time-reversed waves in complex media [9], the proposed
method is not limited by the intrinsical inability of standard
TR techniques to generate arbitrary wavefronts. A major result
is the proof that reverberation chambers are not only capable of
generating wideband pulsed fields, but in a more general way
to generate in an accurate way arbitrary coherent wavefronts,

through a simple procedure. Our analysis leads to the conclu-
sion that a paradigm shift can be introduced in TR applications
when dealing with reverberation chambers (or more generally
with wave-diffusive media), since the parameters defining the
wavefront can be changed in real-time by means of standard
signal-processing techniques, thus introducing the possibility
of high-speed testing in reverberation chambers and the gen-
eration of complex, but deterministic, propagation scenarios.

II. T IME-REVERSED WAVEFRONTS

In this section we do not pretend to provide a thorough
summary of TR, nor of all of its applications. A panoramic
view of available TR applications is necessary in order to get
a better grasp of the advances proposed in this paper.

TR is fundamentally the same technique previously known
as phase conjugation, which originated in optics in the late
70’s [12], primarily intended to compensate distortions (self-
healing) in wavefronts propagating through complex media,
particularly with the aim of focusing energy towards a given
position in space. All of the applications of TR are based
on the TR symmetry of Helmholtz equation, implying an
invariance of its solutions to a change of sign in the time
variable.

TR applications typically exploit this property by coupling
it to Huygens’ principle: as depicted in Figs. 1(a)-(b), we can
define a two-step procedure where the first step involves a
source of radiation generating a diverging wavefrontrecorded
by an ideally continuous set of transducers (e.g., antennas)
deployed over a closed surfaceΣ. These transducers are
usually referred to, in the context of TR applications, as a
TR mirror (TRM) [13]. Coupling Huygens’ principle to the
TR symmetry of Helmholtz equation implies that by exciting
the transducers with the time-reversed version of the signals
received during the first phase, the TRM will generate an
ideally perfect replica of the original wavefront, but this
time converging back at the source, as a consequence of our
inverting the direction of evolution of the time variable [13].

An important step in our proposal is the passage from
the usually open media addressed when using the paradigm
we just recalled, towards bounded ones, e.g., closed cavities.
This issue was studied in several papers, e.g., [14], [15],
[16], [11], where it was shown that the presence of reflective
boundaries allows reducing the number of TRM transducers
to just a few, typically one: this number is to be compared
with the inevitably higher number of sources needed in wave-
front synthesis in free-space environments [1], [2], a direct
consequence of the spatial-sampling theorem [17]. The use of
TR signals also allows the generation of short pulses within
a reverberation chamber, which is of practical interest when
testing EUTs closely exposed to high-power radar pulses [18].

The second approach to generating TR wavefronts is the
DORT technique [19], [20]: while standard TR considers that
what will be the target of the focusing wave during the
second phase (Fig. 1(b)), needs to be a source during the
first one (Fig. 1(a)), the DORT allows avoiding the target
to be a source, whenever it behaves as apoint scatterer,
i.e., as a passive device that will respond with a spherical
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wavefront (Fig. 1(d)) to an externally excited locally plane
wave (Fig. 1(c)). The DORT may appear to have a potential
for testing applications, particularly when dealing with passive
EUTs that cannot be operated as active sources. In fact, as we
argue in the next section, the DORT could hardly be applied
for testing purposes.

The problem with all of these methods is that in the
available literature TR applications always aim at producing a
focusing wavefront at some position in space. The motivation
is never the generation of a wavefront per se: the reason why
focusing is under consideration is typically either a clearer
transmission of signal through complex media at a given
position (e.g., a receiver in sonar [21] or telecommunication
schemes [22]) or to improve imaging techniques [19], [20],
[23]. As we will argue in the next section, this is not compat-
ible with EUT testing, since EUTs are often electrically large
and present distributed scattering features rather than localized
ones.

III. TR FROM A TESTING POINT OF VIEW

Following this short discussion about current TR techniques,
one may think that it could be interesting to implement them
within RCs for at least two reasons: 1) to provide a solution
to the problem of pulsed field generation; 2) as a way of more
effectively generating high-intensity fields within a reverber-
ation chamber. Such points are apparently useful only in the
context of EMC, where the absolute intensity of the testing
wavefront is of paramount importance. As it will be shown
in the rest of this paper, the proposed generalized approach
provides a more powerful rationale for the idea of coupling
TR to reverberation chambers; as a matter of fact, a further
motivation is the ability to control the generated wavefront
without any mechanical displacement of the sources, nor any
need for complex sources.

Before passing to the advantages brought in by our method,
let us us start by looking at the shortcomings of TR from a
testing point of view. If the standard paradigm depicted in
Figs. 1(a)-(b) were used, how to generate in the first place the
diverging wavefront (first phase) that will be time-reversed in
order to be focused over the EUT? The eventual solution of
applying auxiliary sources over the EUT in order to radiate
the first-phase wavefront are bound to fail, since the standard
paradigm would require passing through the two phases we
have recalled in the previous section: hence, as soon as a new
direction of incidence is to be established, the auxiliary sources
would need to be moved over the EUT, and a new cycle of
test would start all over. This is hardly acceptable, as it would
require an increased number of manipulations with respect to
tests carried out in anechoic chambers.

A potential solution could be envisaged by recalling the
DORT paradigm (Figs. 1(c)-(d)): in this case, it would not
be possible to chose whatever direction of incidence on the
EUT, as the DORT can merely select a wavefront among the
scattering responses of the EUT. If this response is (as often
is the case) dominated by a few bright points [24], the choice
of the test wavefront will be limited to the intrinsical response
of the EUT, rather than satisfying the need to identify the
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Fig. 2: Configuration for the application of Love’s equivalence
theorem. Equivalent electric and magnetic currents are defined
over the surfaceΣ, representing the wavefrontEwf(r, t) that
would have been generated by a synthetic source contained
in the volume bounded by the surfaceΞ. These elements are
embedded into a complex mediumΩ.

responses of the EUT to a varying, but predefined, testing
wavefront.

The problem is that TR techniques in their present state
are not suitable for EUT testing: they are actually mismatched
to practical needs, as they have been designed to deal with
mainly point scatterers, rather than electrically extended ones,
as it is often the case when dealing with real-life EUTs, and
this goes without taking into account the issue of polarization,
which leads to an even more complex scenario when compared
to the scalar-wave propagation and scattering undergoing in
acoustics.

The solution to this mismatch is to shift our attention from
the idea of focusing over a point to the idea of generating
a controllable wavefront. By this last term, we consider the
ability to control all of the parameters defining a wavefront,
e.g., its time-dependence, polarization, directivity anddirec-
tion of arrival. This reflection has motivated our proposing
an alternative approach based on the use of synthetic sources
(section IV), leading to a new paradigm for TR that is not only
suitable for EMC purposes but also brings in new advantages
for any test based on submitting an EUT to impinging wave-
fronts. This approach, that we have named the Time-Reversal
Electromagnetic Chamber (TREC) was originally introduced
in [10] while the first experimental validation was proposed
in [8].

IV. A GENERALIZED TR TECHNIQUE

Our analysis takes its start from the standard two-step
approach recalled in section II. The application we envision
is peculiar in the sense that we do not consider the usual
retrieval of the wavefront generated by an elementary source,
but rather a generic wavefront. In this respect, we introduce
the functionEwf(r, t) describing the space-time dependence of
the wavefront we aim at generating, i.e., the target wavefront:
in fact, Ewf(r, t) is the diverging wavefront that would be
generated in a free-space environment, whereas the TREC will
rather be used in order to deliver, ideally,Ewf(r,−t), i.e., the
converging version of the wavefront, used to test the EUT
response in a number of potential applications. We are not
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interested in specifying the nature of the source generating the
originalEwf(r, t) wavefront, nor is it necessary: the wavefront
Ewf(r, t) can be imagined as the result of an unspecified
source, to be eventually found within a volume enclosed by the
surfaceΞ, introduced in Fig. 2. This surface will be assumed
to be spherical for simplicity, with radiusrΞ. Knowledge
of the electrical dimensionrΞ/λ provides a direct measure
of the potential directivity of the wavefronts radiated by the
source [25]. For reasons that will be clearer at the end of this
section, we will refer to this source as the synthetic source.

The divergent wavefront thus radiated during the first phase
can be regarded through the lens of Love’s equivalence
theorem [26]: by defining a closed surfaceΣ bounding the
synthetic source (see Fig. 2), the sampling of the function
Ewf(r, t) over Σ allows defining equivalent currents capable
of exactly reproducing the same space-time dependence at
any position outsideΣ itself, independently from the eventual
presence of an EUT.

Two assumptions will be introduced in order to simplify
our analysis, with no loss of generality: the first one consists
in regardingEwf(r, t) over Σ as the far-field radiation of
the synthetic source, while the second one is to assume that
Σ be a spherical surface. The rationale for requiring a far-
field radiation is twofold: first, our analysis will be greatly
simplified, thanks to the simpler relationship existing between
electric and magnetic fields, while the fact that time-reversed
wavefronts are deprived of reactive components calls for the
need to remove the reactive components off a wavefront before
comparing it to the one generated at the end of the TR
procedure, since only propagative components are conserved,
as recalled in section II. The use of far-field wavefronts allows
for a direct comparison of the target wavefront and the one
actually generated by the proposed procedure.

According to these assumptions

Hwf(r, t) =
1

ζ0
r̂ × Ewf(r, t) r ∈ Σ, (1)

whereζ0 is the free-space wave impedance andr̂ is the radial
unit vector coinciding with the outward pointing unit vector
normal toΣ, as depicted in Fig. 2. As we are dealing with
the generation of arbitrary wavefronts, and in particular pulsed
ones, a time-domain description should be the final outcome of
our analysis. Still, the intermediary steps of our analysiswill
be carried out in the frequency domain. We thus introduce
the wavefront description for the electric fieldEwf(r, ω) in
Fourier frequency domain, defined as

Ewf(r, ω) = F{Ewf(r, t)}, (2)

where F{·} is Fourier transform, with the magnetic-field
spectrum similarly defined.

The equivalent electric and magnetic currents overΣ can
thus be defined as

Je(r, ω) = J ′
e(r, ω)δ(r − rΣ) (3a)

Jm(r, ω) = J ′
m(r, ω)δ(r − rΣ), (3b)
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i V

inZ

E (   )ri

Ii

J (  )ri

(a) (b)

+

inZ

Zg

Fig. 3: Equivalent models of the TRM antennas used for the
computation of the signals received during the first standard
TR phase and the field generated by them in the second phase:
(a) receiving-mode model; (b) transmission-mode model.

with

J ′
e(r, ω) = −Ewf(r, ω)

ζ0
(4a)

J ′
m(r, ω) = Ewf(r, ω) × r̂. (4b)

where rΣ is a vector spanning the surfaceΣ and δ(r) is
Dirac’s delta distribution.

Given the distributions of electric and magnetic currents,the
electric fieldE(r, ω) they generate at any position within a
propagation medium can be expressed by means of its dyadic
Green’s functions as

E(r, ω) =

∫

Σ

G̃ee(r, r
′, ω) · J ′

e(r
′, ω)d2r′+

∫

Σ

G̃em(r, r′, ω) · J ′
m(r′, ω)d2r′.

(5)

where the two dyadic functionsG̃ee(r, r
′, ω) and

G̃em(r, r′, ω) refer to the Green’s functions relating,
respectively, electric and magnetic currents to the electric
field.

The configuration depicted in Fig. 2 presents TRM antennas
assimilable to elementary dipoles, positioned atri and ori-
ented alonĝqi. These antennas will be operated in receiving
and transmitting mode and can thus be described by means of
the equivalent models shown in Fig. 3. In this framework, the
electric fieldE(ri, ω) related to the wavefront will eventually
couple with them, leading to an output voltageVi(ω)

Vi(ω) =
ZL(ω)

ZL(ω) + Zin(ω)
E(ri, ω) · he,i(ω), (6)

where he,i(ω) is the vector effective height of the TRM
antennas

he,i(ω) = he(ω)q̂i, (7)

having assumed all of the antennas to have an identical
effective heighthe(ω).

As recalled in section II, TR applications require the output
signals Vi(ω) to be time-reversed, or phase-conjugated in
the frequency domain, and subsequently applied to the TRM
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antennas. The TR of theVi(ω) output signals would naturally
require considering a delayT representing the duration of the
first phase during which the output signals are recorded. This
delay will be neglected in the rest of the paper, as it only leads
to a phase-shift term shared by all of the output signals, with
no impact on the results.

During the second phase of TR, the TRM antennas will be
excited by means of the signalsVex,i(ω) = V̄i(ω), where the
overhead bar stands for phase conjugation. According to the
equivalent model in Fig. 3(b), the antennas will be driven by
a currentIi(ω)

Ii(ω) = − Vex,i(ω)

Zg(ω) + Zin(ω)
, (8)

leading to an equivalent electric-current density

J i(ri, ω) = Ii(ω)he(ω)δ(r − ri). (9)

The electric field thus generated by each TRM antenna
during the emission phase can be expressed as

ETR,i(r, ω) =

∫

Ω

G̃ee(r, r
′, ω) · J i(r

′, ω)d3r′

= he(ω)Ii(ω)G̃ee(r, ri, ω) · q̂i.

(10)

In order to simplify our notations, we introduce the electric
and magnetic vector transfer functions

N e,i(r, ω) = G̃ee(r, ri, ω) · q̂i (11a)

Nm,i(r, ω) = G̃em(r, ri, ω) · q̂i, (11b)

relating the electric or magnetic field observed at a generic
position r to the signals applied to the input port of the
i-th TRM antenna. They have units ofΩm−2 and m−2,
respectively.

Inserting (5)-(8) into (10), and making use of (11), yields

ETR,i(r, ω) =

− C(ω)

{∫

Σ

Ne,i(r, ω)N̄e,i(r
′, ω) · J̄ ′

e(r
′, ω)d2r′

+

∫

Σ

N e,i(r, ω)N̄m,i(r
′, ω) · J̄

′
m(r′, ω)d2r′

} , (12)

having exploited the spatial reciprocity of Green’s functions,
and thus of the vector transfer functions (11). The quantity
C(ω) in (12) takes care of the electrical parameters of the
TRM antennas

C(ω) =
|he(ω)|2

Zg(ω) + Zin(ω)

Z̄L(ω)

Z̄L(ω) + Z̄in(ω)
. (13)

It is noteworthy that the doublets of vector transfer functions
under the integral signs are dyadic functions. Equivalent
currents (4) can now be inserted, leading to

ETR,i(r, ω) =
1

ζ0

∫

Σ

Ne,i(r, ω)N̄e,i(r
′, ω) · Ēwf(r

′, ω)d2r′+

−
∫

Σ

N e,i(r, ω) r̂′ × N̄m,i(r
′, ω) · Ēwf(r

′, ω)d2r′.

(14)

having assumed excitation signalsVex,i(ω) = V̄i(ω)/C(ω).
This last result allows linking the space-time description

of the target wavefront to the one actually generated after

TR excitations are applied to the TRM antennas. Since we
are interested in wave-diffusive media, the vector transfer
functions (11) will be considered as random functions in
section VI. The self-averaging property of TR [27], [28]
implies that the wavefronts generated by a TREC converge
towards their ensemble average, independently from the ran-
dom realizations of Green’s dyadic functions. This issue is
discussed in Appendix B.

Hence, we introduce the average dyadic responses

T̃ ee,i(r, r
′, ω) = E

[
N e,i(r, ω)N̄ e,i(r

′, ω)
]

(15a)

T̃ em,i(r, r
′, ω) =

E
[
Ne,i(r, ω)(r̂′ × N̄m,i(r

′, ω))
]

(15b)

T̃ i(r, r
′, ω) =

1

ζ0
T̃ ee,i(r, r

′, ω) − T̃ em,i(r, r
′, ω), (15c)

with E [·] the ensemble-average operator. These functions are
directly related to the autocorrelation functions of the generic
random processN(r, ω) and are anisotropic. Finally, (14)
gives place to

E [ETR,i(r, ω)] =

∫

Σ

T̃ i(r, r
′, ω) · Ēwf(r

′, ω)d2r′, (16)

requiring no assumption on the nature of the medium, nor
on the type of wavefront distribution, apart the simplifying
assumption of a far-field configuration.

The possibility of obtaining an accurate transmission
through a complex medium is feasible in the special case of
a diffusive medium, which is characterized by a low spatial-
correlation, thus ensuring an equivalent Green’s functionclose
to that of a free-space environment (see section VI). The
fundamental point that we want to stress here is that the
application of a TR approach allows reproducing a behavior
that is actually closer to a free-space environment, but within
a complex medium supporting a diffused-field configuration.
This idea is illustrated in section VIII.

The far-field assumption was introduced as a way of simpli-
fying the derivation of the above results, but the equivalence
theorem is not affected by the region of radiation of a source,
and will stay exact even in its reactive region, even though only
the propagative part of the target wavefront will be reproduced,
thus leading to the inevitable diffraction limit in the focus
region [29].

V. A PARADIGM SHIFT FORTR APPLICATIONS

The derivation of (16) implies that as soon as the dyadic
Green’s functions of the medium are known between the
points overΣ and the positions of the TRM antennas, a direct
relationship can be promptly established between the target
wavefront distribution and the one generated by the TREC.

Moreover, the derivation leading to (16) paves the way
for a change of paradigm in the use of TR techniques:
indeed, as soon as the vector transfer functionsNe,i(r, ω)
andN r,i(r, ω) are known, it is no more necessary to undergo
the two standard phases of TR. The signalsVi(ω) that would
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no
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(a) (b)

Fig. 4: Sequences of necessary steps to follow when using an
(a) anechoic test environment or a (b) TREC. Shaded blocks
represent operations based on mechanical displacements or
substitution of devices.

result from the recording phase (or first phase) can be straight-
forwardly computed for any target wavefront without needing
its actually being radiated, since

Vi(ω) ∝
∫

Σ

N eq,i(r, ω) · Ewf(r, ω)d2r, (17)

with

N eq,i(r, ω) = −Ne,i(r, ω)

ζ0
+ r̂ × Nm,i(r, ω), (18)

leading to a direct synthesis of the excitation signals for the
second phase.

This simple modification has deep consequences: as a matter
of fact, the standard implementation of TR techniques implies
that each time that a new converging wavefront is to be
generated, the diverging version of the same wavefront needs
to be generated by an actual source during the first phase.
Furthermore, as the characteristics of the wavefront change,
e.g., the direction of arrival or the polarization, the firstphase
is to be carried out again. This is clearly a strong limitation
when proposing TR for testing applications, since as soon as
a wide range of configurations is to be tested, the repetitionof
the two phases would be too costly. Moreover, the question of
how to generate the diverging wavefront in the first place is far
from trivial. The paradigm shift we propose solves all of these

problems in a elegant and simple way. In fact, a preliminary
characterization orlearning phase can be considered during
which the propagation medium is explored, proceeding to
a direct measurement ofN eq,i(r, ω) without any need to
formulate any hypothesis on its nature. At this point, the
signals that would have been received for any wavefront can
be directly computed by means of (17).

The use of (17) implies that once a physical target wavefront
is defined, the excitation signals needed to apply to the TRM
antennas are readily available, even though the generationof
this same wavefront could prove to be difficult when using
real-life sources. It is therefore appropriate to refer to the time-
reversed wavefronts provided by (17) as generated by synthetic
sources. The approach here proposed is somewhat reminiscent
of synthetic aperture radar techniques, where post-processing
techniques allow to emulate the availability of a source that
would be practically unfeasible, while its emulation is actually
quite straightforward. The difference is that although the
synthetic source does not radiate in the first place, its TR
wavefront is actually generated, not only computed in a post-
processing fashion.

The advantages of this approach are clear: passing from
one wavefront to another just involves the synthesis of new
excitation signals, without any need for further measurements,
as long as the propagation medium has not undergone any
modification, e.g., due to mechanical displacements of the
EUT. Moreover, the linearity of the propagation of waves
within the medium implies that superposition of effects holds:
as a consequence, it is possible to conceive complex test
scenarios where multiple wavefronts can be generated to
impinge onto the EUT from different directions, with any type
of time-dependence associated to each individual wavefront.
The generation of similar scenarios by means of state-of-the-
art facilities would involve a sophisticated system to feedthe
antennas associated to each direction of arrival and control
their orientations [1]. As opposed to this need, the TREC is
theoretically capable of generating arbitrary wavefrontswith a
reduced number of antennas, typically just one, by exploiting
the weak spatial correlation of the wave-diffusive media [30].

From a practical point of view, this approach allows dramat-
ically reducing the time needed for generating a new converg-
ing wavefront, as the only steps needed are the computation
of the excitation signals and their direct digital synthesis.
A flow-chart representation of the sequence of operations
needed when testing with a standard anechoic chamber or a
TREC based on an overmoded cavity is proposed in Fig. 4,
where it is made clear that the modification of the testing
wavefront does not require any physical modification of the
test environment, but only changing excitation signals. Rather
than repeating mechanical displacements each time that a
new test configuration is required, these are relegated to the
learning phase, before starting a cycle of uninterrupted tests.

The entire procedure here suggested relies on previous
knowledge of theN eq,i(r, ω) functions. A detailed discussion
of this issue is out of the scope of this paper, and it was
partially considered in [8].
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VI. T HE CASE OF A WAVE-DIFFUSIVE MEDIUM

In this section we address the special case of an ideal wave-
diffusive medium. By this term we consider any medium,
not necessarily homogeneous, whose Green’s functions can be
approximated by means of a superposition of a large number of
random plane waves propagating with equal probability along
any direction [31], ensuring very simple statistical properties
for the field: a Gaussian-distributed field with spatial-invariant
moments and a perfect depolarization. Among the several con-
figurations where this property can be invoked, large cavities
such as reverberation chambers are perhaps the simplest way
of implementing it, as soon as an overmoded condition is
satisfied [32], [33].

The hypothesis of perfect diffusion and thus a random
plane-wave spectrum are actually the basis for the asymptotic
analysis of reverberation chambers, as proposed, e.g., in [4].
As a direct consequence of spatial stationarity,T̃ i(r, r

′, ω)
are independent from the position of the TRM antennas and
their orientation, so that it is possible to drop thei index and
consider the average responseT̃ (r, r′, ω) of the TREC.

In order to derive a closed-form expression for the dyadic
operatorT̃ (r, r′, ω), we expand the vector transfer functions
(11) over the local reference system depicted in Fig. 5, defined
by of a longitudinal unit vector̂ρ = d/‖d‖, whered = r′−r,
a transversal unit vector̂ν lying on the plane defined by the
vectorsr andr′ and a third unit vector̂η = ρ̂ × ν̂.

The dyadic operators introduced in (15), e.g., for the case of
the T̃ ee(r, r

′, ω) dyadic function, can thus be expressed into
this new basis, yielding scalar components

(
T̃ ee

)
ûmûn

(r, r′, ω) =

E
[
ûm · N e(r, ω) ûn · N̄ e(r

′, ω)
]
,

(19)

where ûm is any of the basis unit vectorŝρ, η̂ and ν̂.
Recalling that the vector functionsN(r, ω) are generic trans-
fer functions observed within a diffusive medium, the scalar
terms (19) actually represent the covariances between the
scalar components of two transfer functions evaluated at two
positions within the medium. Hence, the results presented
in [34] apply, leading to

(
T̃ ee

)
ρ̂ρ̂

(r, r′, ω) =
N2

e,av(ω)

3
ρl(d, ω) (20a)

(
T̃ ee

)
ν̂ν̂

(r, r′, ω) =
N2

e,av(ω)

3
ρt(d, ω) (20b)

(
T̃ ee

)
η̂η̂

(r, r′, ω) =
(
T̃ ee

)
ν̂ν̂

(r, r′, ω), (20c)

results that hold for any wave-diffusive medium.
In (20), Ne,av(ω)/

√
3 is the rms amplitude of the electric

field observed along any of its scalar components within
the region of space where the ideal diffused-field conditions
hold [35]; this quantity is derived in Appendix A. The func-
tionsρt(d, ω) andρl(d, ω) are spatial correlation functions, so
they only depend on the distanced = |r − r′|.

Apart for the three scalar components shown in (20), the
remaining ones are identically null, as demonstrated in [34].
The two spatial-correlation functionsρl(d, ω) and ρt(d, ω)

r

d

r’

r’

r
h

n

O

^

^

^
^

Fig. 5: The local reference system based on the orientation
of the r and r′ vectors, defined by the right-hand set of
unit vectorsν̂, η̂ and ρ̂. This choice is at the basis of the
results derived for the case of a wave-diffusive medium, e.g.,
an overmoded reverberation chamber.

refer to the longitudinal the transversal components of the
electric field, respectively. These functions are [34]

ρl(d, ω) =
3

(kd)2
[sinc(kd) − cos(kd)] (21a)

ρt(d, ω) =
3

2
sinc(kd) − 1

2
ρl(d, ω), (21b)

with k = ω/c0 the wave-number andc0 the speed of light in
the homogeneous medium filling the cavity.

In dyadic formalism,T̃ ee(r, r
′, ω) can be expressed as

T̃ ee(r, r
′, ω) =

N2
e,av(ω)

3

[
ρ̂ρ̂ρl(d, ω) + (ν̂ν̂ + η̂η̂)ρt(d, ω)

]
.

(22)

Following the same procedure for thẽT em(r, r′, ω) dyadic
function, recalling that only the cross-transversal components
(defined with respect tôρ) of the electric and magnetic
fields are correlated [34], we can state that the only non-zero
components are

(
T̃ em

)
ν̂ν̂

(r, r′, ω) =

N2
e,av(ω)

3ζ0
ρm(d, ω)r̂′ × ν̂ · η̂ (23a)

(
T̃ em

)
ν̂ρ̂

(r, r′, ω) =

N2
e,av(ω)

3ζ0
ρm(d, ω)r̂′ × η̂ · ρ̂ (23b)

(
T̃ em

)
η̂η̂

(r, r′, ω) =
(
T̃ em

)
ν̂ν̂

(r, r′, ω), (23c)

where ρm(d, ω) is the mixed correlation function between
the cross-transveral components of the electric and magnetic
fields, given by [34]

ρm(d, ω) = −1

2
jkdρl(d, ω). (24)

Whence, the operator̃T (r, r′, ω) reads, for the case of an
ideally diffused field

T̃ (r, r′, ω) =
N2

e,av(ω)

3ζ0
ρ̃(r, r′, ω), (25)
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(a) (b)

Fig. 6: Normalized dyadic functioñρ(r, r′, ω) computed forr ∈ Σ andr′ = rΣx̂, with rΣ = 3λ: (a) real and (b) imaginary
parts. The 9 terms of the dyadic response are shown, matrix-wise, considering standard spherical unit vectors, following the
order r̂, ϑ̂ and ϕ̂, defined with respect to a polar axis vertically oriented.

with

ρ̃(r, r′, ω) = ρ̂ρ̂ρl(d, ω) − ν̂ρ̂ρm(d, ω)r̂′ × η̂ · ρ̂+

+ (ν̂ν̂ + η̂η̂)
[
ρt(d, ω) − ρm(d, ω)r̂′ × ν̂ · η̂

]
.

(26)

introducing the normalized dyadic responseρ̃(d, ω). As a
result, the real and imaginary parts of the scalar components
of this function are now bounded to one, since they correspond
to the degree of coherence of the medium [36]. The operator
ρ̃(r, r′, ω) behaves as a point-spread function (PSF).

The PSFρ̃(r, r′, ω) will be used in two frameworks: 1) by
settingr, r′ ∈ Σ, it allows assessing how a TREC-generated
wavefront is distorted with respect to the target one in the far-
field region; 2) withr′ ∈ Σ and a genericr, it provides a
direct access to the spatial evolution of a wavefront generated
by the proposed method.

VII. O N THE PSFOF THE TREC

Albeit the previous results hold for any diffusive medium,
hereafter we will assume that this medium is an overmoded
reverberation chamber, filled by a reciprocal and homogeneous
medium surrounding the EUT. The target wavefront can be
expressed, in the frequency domain, as

Ewf(r, ω) = X(ω)G(r, ω)F (r̂, ω), (27)

whereF (r̂, ω) is the radiation pattern of the synthetic source,
G(r, ω) is the far-field Green’s scalar function of the medium

G(r, ω) =
e−jk0r

4πr
(28)

andX(ω) is related to the excitation signal that would be used
to drive the synthetic source. Such a factorized representation

is made possible by the assumption ofΣ being in the far-
field region of the synthetic source. Again we stress the fact
that this choice is not a limitation, but just a simplifying
assumption. The time-domain representation ofEwf(r, t) can
thus be expressed as

Ewf(r, t) =
x(t − r/c0)

4πr
∗t F−1 {F (r̂, ω)} , (29)

where ∗t stands for the convolution integral applied to the
time variable; this result holds for anyr = rr̂ in the far-field
region of the synthetic source.

Introducing (27) into (16) while using (25) yields

E [ETR(r, t)] ∝ x(−t) ∗t F−1
{
ρ̃(r, r′, ω) ∗r′ F̄ (r̂′, ω)

}
,

(30)
where∗r′ is the pseudo-convolution integral required in (16)
and carried out overΣ. Comparing (30) with (29) it appears
that in order to have a converging version of the target
wavefront,ρ̃(r, r′, ω) should comply with the three following
points: 1) it should provide a delay going liker/c0; 2) a radial
dependence like1/r in the far-field region and 3) should not
distort the angular dependenceF (r̂, ω). The first two points
are easily verified since the functions (21) appearing in the
PSF (26) are dominated by terms going likeexp(±jk0r)/r.
As shown in the examples in section VIII, the coexistence
within the PSF of the incoming and outgoing versions of
the free-space propagator has a simple physical meaning: if
a focusing wavefront is generated, after focusing onto the
phase-center of the synthetic source, it will inevitably diverge
along the opposite direction. The only point requiring a closer
investigation is the third one, i.e., the eventual distortion of
the angular dependence, which is not easily assessable from
(16).
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To this effect, it is convenient to study the average wavefront
E [ETR(r, ω)] over the equivalent-source surfaceΣ. The fact
that the PSF̃ρ(r, r′, ω) is dependent on the distancerΣ/λ is
not due to limitations in the equivalent-source approach, but
rather because asrΣ becomes smaller, while the wavefront
in the far-field region shall not be modified, its progression
towards the focal spot will indeed lead to a modification of
the wavefront features, due to diffraction phenomena in the
focal region [29].

Therefore, the properties of the PSF̃ρ(r, r′, ω) can be
evaluated in a general manner by setting the dominant pa-
rameter rΣ/λ, i.e., deciding how close the observer will
be to the focal spot. The choice of having the equivalent-
source surface coinciding with that of the observer allows a
simpler comparison of how the radiation pattern (considered
independent of the distance) will eventually be affected bythe
PSF. An example is given in Fig. 6, where the nine components
of the PSF̃ρ(r, r′, ω) are shown for the case of vectorsr and
r′ belonging to the same surfaceΣ, where the choicerΣ = 3λ
was made. The PSF is expressed with respect to a spherical
reference system, for a point-source positioned at anr′ chosen
to be alongx̂.

Fig. 6 shows that the PSF is not perfectly isotropic, with
diagonal terms depending on the field component, and off-
diagonal terms (cross-polarization coupling) not identically
equal to zero. The weak oscillations outside the peak regions
present a zero mean-value and can be expected to lead to
a very low result after the pseudo-convolution (16), as their
overall contribution to the integral will be negligible as long as
the target pattern undergoes angular variations slower than the
pseudo-period of these oscillations. This point will be given
more room in the rest of this section and in the next one.

The six off-diagonal terms share the absence of an even-
symmetry positive-valued dominant peak, substituted by odd-
symmetry responses. The low-level oscillations present pat-
terns similar to those found in the three direct terms. Of par-
ticular interest is the fact that the coupling terms are stronger
between the two tangential componentsϑ andϕ, which could
be a source of inaccuracy in the reproduction of the target
wavefront. Still, theϑ̂ϕ̂ andϕ̂ϑ̂ terms are characterized by a
double odd-symmetry, implying that convolution with a even-
symmetric radiation pattern would result in a zero atr′, i.e.,
no coupling between theϑ andϕ components. In other words,
the original polarization should be expected to be preserved.
Examples are shown in section VIII for the radiation pattern
generated by an aperture source, where it is made clear
how the coupling is indeed very weak and negligible in
practical configurations. These results are consistent with those
presented in [37], [38], extending them to the general case of
a wavefront rather than a mere focal spot.

For the PSFρ̃(r, r′, ω) to be expected not to modify the
original radiation pattern, it should be real-valued: in any
other case, it would at least imply a phase distortion of the
wavefront. In practice the imaginary part of the PSF is much
weaker than the real part, but for two components:r̂ϑ̂ andr̂ϕ̂.
As it will be shown in the examples presented in section VIII,
the role of these two functions is to reproduce the natural
distortion of the wavefront passing from essentially spherical

(in the far-field region) to the one corresponding to the near-
field region of the synthetic source. This remark does not
involve the idea of reproducing the reactive components of
the field, as the focal region of the wavefront is usually found
in the far-field region of the TRM antennas, the actual sources
of the converging wavefront [29]. These considerations should
be clearer when compared with the numerical results presented
in section VIII.

The impact of the PSF on the angular dependence of
ETR(r, ω) can be assessed by studying the zone of maximum
correlation in the diagonal terms of the PSF. The null-to-
null width of this main lobe can be computed from (21) and
(24) and intercepts an angular resolution angleψρ that can be
expressed (in radians) in a general way as

ψρ = αρ
λ

rΣ
, (31)

where αρ can take the values0.89 or 1.45 depending on
the direction along which the angleψρ is measured, since
the examples in Fig. 6 show that the PSF does not present
a cylindrical symmetry. It is common practice in optics to
approximate the size of the PSF to about a wavelength for
the diffraction of waves propagating in free-space: we will
adopt this approximation by takingαρ ≃ 1, for the sake of
simplicity. We can expect the TREC to be capable of reliably
reproducing the target wavefront as long as the angular rateof
variation of the radiation pattern of the wavefront is not faster
than that allowed by its PSFs.

With reference to Fig. 2, the assumption of an observation
surfaceΣ in the far-field region of the synthetic source requires

rΣ
λ
> 8

(rΞ
λ

)2

, (32)

implying that given the radiusrΣ of the equivalent-source
surface, the maximum dimensions of the volumeVΞ contain-
ing the synthetic source is given an upper bound, as well as
its maximum gain [25]. A simple estimate can be derived
by recalling that for a directive source, e.g., an aperture of
maximum width2rΞ, the −3 dB angleψF of its main lobe
can be approximated by

ψF ≃ λ

2rΞ
. (33)

From (32), the maximum directivity of the synthetic source,
or the minimum width of its main lobe, is

ψF >

√
2λ

rΣ
. (34)

We can now consider that the PSF will lead to a minor
modification of the radiation pattern as long asψρ is small
enough with respect to the angular variation inF (r̂, ω), as
measured by its main lobeψF . To this end, we introduce the
quantityR

R =
ψF

ψρ
, (35)

representing the angular resolution power of the TREC. A
numerical analysis is proposed in section VIII, where the
quality of the angular dependence of the wavefront produced
by the TREC is assessed as a function ofR.

163

Selected papers



10

Fig. 7: Ranges of values taken by the ratioR = ψF /ψρ,
indicating the resolution power of the TREC. This quantity
is plotted against the radius ofrΣ of the equivalent-source
surface for two cases: (a) the lightly shaded area corresponds
to a cut along the E plane of the synthetic source, i.e., for
a main lobe that is physically lower-bounded by that of a
Hertzian dipole; (b) the domain of existence of the resolution
power is extended to the more deeply-shaded area when
dealing with the H plane of a linearly polarized source, i.e.,
its azimuthal plane, where its main lobe can present any value
up to 2π radian.

The range of values taken byR can be estimated by
recalling thatψF is bounded as

ψmax > ψF >

√
2λ

rΣ
. (36)

The lower bound is actually due to the far-field assumption at
the base of the proposed analysis, leading to (34), whereas the
upper-bound comes from the fact that for a linearly polarized
source the main-lobe−3 dB angle is actually limited by a
finite value. Considering the E plane of the synthetic source,
the upper limit is given byψmax = π/2 radians for an Hertzian
dipole, whereas for the H plane it can reach upψmax = 2π
radians. Accounting for these bounds, the range of variation
of R is shown in Fig. 7, as a function of the electrical size
of the equivalent-source surfaceΣ. It appears thatR > 1.5
as long asΣ is at least one wavelength in radius. This lower
limit is actually meaningful and even conservative, since any
smaller choice would not allow the observer to be in the far-
field of even the simplest source: indeed, the basic condition
k0rΣ ≫ 1 for the far-field region must also apply, hence
requiringrΣ/λ & 1.58.

The results in Fig. 7 prove that for any far-field configu-
ration,R will always be higher than 1.5, typically closer to
2, i.e., radiation patterns will be at least twice larger than the
PSFs main lobes.

VIII. N UMERICAL RESULTS

Numerical results are here presented in order to support
our conclusions about the ability of the TREC to reproduce
arbitrary wavefronts within a wave-diffusive medium. These
have been obtained by numerically solving the convolution
integral in (16), as applied to a reference radiation pattern.

ns
^

qs

fsx

y

z

b

a

p^

Fig. 8: The synthetic source considered in the validation
presented in section VIII. It consists of an ideal rectangular
aperture of dimensionsa andb, with a uniform field distribu-
tion linearly polarized along the direction̂p.

Our choice was for a rectangular aperture, as the one shown in
Fig. 8, with sidesa andb, characterized by a uniform electric
field linearly polarized along the generic directionp̂ lying on
the aperture, radiating towards the half-space identified by r̂ ·
n̂s > 0.

Assuming an aperture initially lying on thexy plane and
its main-lobe radiating alonĝz, its radiation pattern can be
approximated in closed-form as [26]

F wf(r̂, ω) = (1 + cosϑ)(ϑ̂ϑ̂ + ϕ̂ϕ̂) · p̂

sinc
(
π
a

λ
x̂ · r̂

)
sinc

(
π
b

λ
ŷ · r̂

)
,

(37)

while a generic orientation along the anglesϑs andϕs can be
analyzed by applying standard rotation transformations.

We first proceed by assessing how accurately the radiation
pattern is reproduced for a varying electrical distance from
the synthetic-source volume, in the frequency domain, in
section VIII-A. The existence of a focusing phenomenon
is proven, while showing up to what distance the angular
dependence dictated by target radiation pattern holds. We are
particularly interested in assessing whether distortionsof the
wavefront intervene before its reaching the focal spot, which
would imply a limitation in the accuracy of the TREC even
during the far-field propagation of the wavefront. In a second
time, section VIII-B elucidates the existence of a back-lobe
contribution, by considering the time-domain evolution ofthe
converging wavefront for a non-harmonic excitation.

A. Frequency domain : focusing

Thanks to (16) and (26), we computed the average field
distribution that would be observed over concentric surfaces
of radius0.7, 1, 3 and5 λ, for an aperture of sidesa = b = 1 λ
pointing towardsϑs = π/2, ϕs = 0 with a ŷ-polarized electric
field (see Fig. 8). The results are shown in Fig. 9, together
with the target radiation pattern, as a reference. The results are
expanded into the three spherical coordinate components, with
the target radiation pattern having no radial component (far-
field radiation). It appears that the TREC approach is indeed
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r/λ = 0.7 r/λ = 1 r/λ = 3 r/λ = 5 Target wavefront

Fig. 9: The electric field distribution of the wavefront generated by a TREC as it would be observed at several distances.
The side of incidence of the wavefront is shown, where the absolute value of the field is considered for the three spherical
components of the field, in the orderEr, Eϑ andEϕ respectively, from the top to the bottom. The target wavefront distribution
is given as a reference in the last column. All results are normalized to the peak-amplitude of theEϕ component, for each
distance.

capable of very accurately reproducing the target radiation
pattern even at very close distance, with non-negligible dis-
tortions occurring only within a one-wavelength distance from
the phase-center of the synthetic source. The polarizationis
also preserved, not only the dominant component alongϕ̂,
but also the cross-polarization̂ϑ. A substantial deformation
of the radiation pattern is observed at0.7 λ, where the PSF
component for thêϕϕ̂ contribution is clearly recognizable,
with a more elongated distribution along theϕ̂.

The back-lobe contribution appearing in Fig. 9 will be
shown in section VIII-B to result from the impinging wave
focusing through the phase-center of the synthetic-sourceand
subsequently diverging along the opposite direction.

The same type of computation was carried out over a
continuous range of distances fromλ/10 up to3 λ, limited to a
horizontal cut, along thexy plane, starting from an equivalent-
source surface atrΣ = 3λ. These results are shown in Fig. 10,
where the two spherical componentsEϕ(r, ω) andEr(r, ω)
of the electric field are shown,Eϑ(r) being identically null by
virtue of symmetry. We therefore conclude that a focusing of
the propagating energy is indeed occurring, as the electricfield
builds up converging towards the phase-center of the synthetic
source.

Two notable distances are marked in Fig. 10:rΣ = 2λ
and rΞ = λ/2. The target wavefront (far field) should only
present âϕ-oriented field, which is indeed found in the TREC-
generated wavefront, as shown in Fig. 10(a)-(b); the purityof
the polarization appears to start degrading as the wavefront
crossedrΞ, when the focusing wavefront approximate the
original field distribution found in the reactive part of the
synthetic source, i.e.,̂y-oriented, as clearly visible in the
vector representation in Fig. 11. Since the TREC, as any other

anechoic environment, can only produce propagative waves
by means of distant sources (i.e., the TRM antennas), the
diffraction limit ensues, leading to a focal spot about one
wavelength wide. The appearance of a radial component in
Fig. 10(b) is due to this phenomenon of approximation of the
original source distribution, and it becomes more evident when
looking at the total field in Fig. 10(c): the wavefront focuses
back onto the source region, with an almost uniform intensity.

The accuracy of the angular distribution of the focusing
wavefront is more easily observed in Fig. 10(d), where the
wavefront is normalized to Green’s scalar function, yield-
ing the radiation pattern to be compared to that shown in
Fig. 10(e). The comparison is very good, with the converging
wavefront accurately reproducing a constant radiation pattern
over its far-field region within a±0.2 dB range over the main
lobe. Fig. 10(d) also provides a clear picture of the focal
spot due to diffraction limit: directivity is lost, with energy
almost equally spread over all directions, and particularly with
a reduction in its increase with respect to an ideal spherical
convergence.

These results imply that the loss of directivity is not due
to an intrinsic limitation of the method, as could have been
expected from the PSF shown in the previous section. It actu-
ally appears that the PSF is effectively capable of reproducing
all the phenomena leading to wave focusing under physical
conditions, including the diffraction limitation over thenear-
field region of the synthetic source. Practically, no significant
distortion occurs over the main-lobe outside the surfaceΞ,
thus implying that there is no need to requireR ≫ 1 to avoid
distortions of the far-field distribution of the wavefront.

The generated wavefront deviates from the target one out-
side the main lobe, even in the far-field region, within a range
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Fig. 10: Numerical solution of (16) for the case of the radiation
pattern of the wideband aperture antenna described in the
body of the text and shown in Fig. 8. The evolution of the
electric field is studied over the half-plane of thexy cut along
which the time-reversed wavefront is expected to focus, for
radial distances going fromλ/10 up to 3λ: (a) Eϕ(r); (b)
Er(r); (c) ‖E(r)‖; (d) ‖E(r)/G(r)‖; (e) angular dependence
‖F (r)‖, proportional to‖Ewf(r)/G(r)‖. The outer dashed
line represents the Fraunhofer distance for the synthetic source,
whose volume is marked by the inner dashed line. All results
are normalized to the peak-value ofEϕ and expressed in dB.
Radial dashed lines represent the -3 dB and the -10 dB angles.

of values inversely related to the intensity of the field. The
reason for this phenomenon is not clear and deserves further
investigations. It could indeed be caused by the approximate
radiation pattern (37) used as target, or to intrinsical limitations
in the TREC.

B. Time domain : causality and back-lobe radiation

The results in Fig. 9 present a back-lobe radiation related
to the long-range correlation of the PSF. Its physical meaning
becomes clear when studying the PSF in the time domain.
We have considered the same case as in the previous section,
with an equivalent-source surface of radiusrΣ = 3λ, imposing
an unchanged radiation pattern over a relative bandwidth
BT /fc = 10 % around the central frequencyfc of the
wavefront excitation. All results are normalized to the central
frequency.

Following these choices, the field distribution over thexy-
cut ofΣ was computed in the time domain, yielding the results

3 2 1 0
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Fig. 11: Vector representation of the normalized electric field
E [ETR(r, ω)] /G(r, ω) shown in Fig. 10: (a) real and (b)
imaginary part. As the wavefront closes onto the focal region,
the electric field passes from the TEM configuration typical
of far-field radiation to ây-oriented configuration, reminiscent
of the original field distribution of the synthetic aperture.

shown in Fig. 12. Here, the field over thexy-cut ofΣ is shown
as an angular distribution function of the time, proving that the
back lobe is actually the time-delayed replica of the impinging
wavefront. The delayτ is equal to a normalized delayfcτ = 6,
which coincides with a free-space propagation across a sphere
of radius 3λ, since fcτ = 2rΣ/λ = 6. Causality is thus
preserved, indicating that the proposed model is capable of
correctly assessing time-domain phenomena. In particular, the
previous results dealing with the focusing of energy can be
rightly interpreted as due to a convergent wavefront, whilethe
presence of the back-lobe is necessary for the causality of the
solution yielded by (16).

A non-ideality of the TREC method is apparent in
Fig. 12(b): the wavefront emerging from the focal region
is slightly distorted for the directions away from the main
lobe. This fact corresponds to the an error in the position
of the focusing spot of aboutλ/8, a fact that leaves room
to the interpretation of these errors as due to the use of the
approximate model (37). This notwithstanding, these errors do
not affect the conclusions of our work, as the proposed method
is clearly capable of a remarkably accurate reproduction of
free-space propagation within a wave-diffusive medium.

IX. SUMMARY AND DISCUSSIONS

We reckon that at this point it is important to summarize
the main results and ideas introduced in this paper. The
concept of time-reversed wavefronts has been revisited in a
novel manner, by looking at an originally diverging wavefront
as being radiated by equivalent currents, as opposed to the
standard approach based on a physical (and often point-
like) source. This different approach allows the introduction
of synthetic sources, which can be characterized by ideal
features not easily found in real-life sources. Moreover, these
features can be changed in real-time through a simple post-
processing procedure, yielding new excitation signals to be
applied to the ports of the TRM antennas. As a result, a wave-
diffusive medium can be “converted” into an anechoic one
where deterministic wavefronts propagate as in a free-space
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Fig. 12: Time-domain results for thêϕ component of the
average field generated by a TREC, as computed over a
spherical surface of radiusrΣ = 3λ, for a relative bandwidth
BT /fc = 10 %. The signal was chosen to have a constant
spectrum overBT , i.e., to have a sine cardinal profile in
the time domain. The results refer to thexy-cut of : (a) the
converging wavefront impinging overΣ, along the negative
part of thex-axis; (b) the diverging wavefront observed on
the opposed direction.

environment; interestingly, no hypothesis is needed aboutan
eventual link between the direction of arrival of the wavefront
and the positions of the TRM antennas, thanks to the diffusive
nature of the medium.

This surprising result entirely relies on the knowledge of
Green’s functions between the equivalent-source surfaceΣ and
the TRM antennas. These data can be readily measured by
means of low-scattering probes moved overΣ, as describe
in [8]. Previous experimental validations of the TREC ap-
proach are indeed already available in the literature. In this
paper we rather aimed at providing a deeper insight into the
physics of the TREC, from a theoretical point of view, in order
to have a better understanding of its intrinsical limitations,
whence our emphasizing theoretical and numerical results.

What is most surprising is that the coupling of time-reversed
excitations to a diffusive cavity through the use of synthetic
sources allows generating any kind of wavefront, on average.
The question of how far the generated wavefront is from the
average one can be directly assessed by recalling the concept
of intrinsical SNR due to the inevitable finite number of
degrees of freedom available within the cavity. This issue was
studied in [11] and the main results are recalled in AppendixB,
where it is shown that the actual response of a TREC is very
close to its ensemble average.

The potential use of the TREC as a new kind of testing
facility clearly implies the inclusion of an EUT into the
test-volume defined byΣ. It goes without saying that the
presence of the EUT can have a dramatic impact on the
Green’s functions that would be observed with and without
the EUT. As a result, the EUT needs to be present during the
characterization phase yielding theN eq,i(r, r

′, ω) functions.
Without entering into details, the presence of an EUT could
impact the resulting wavefront at two levels: 1) by modifying
the wavefront radiated by the equivalent currents; 2) by modi-
fying the Green’s functions within the cavity. The first point is
actually not a real issue, since the equivalence theorem ensures
that the use of electric and magnetic currents implies that only
an outwards radiation (first phase) would take place, thus not
interacting with the EUT found withinΣ. As a result, the
average wavefront generated by the TREC should be expected
to be the same with and without an EUT, as long as the diffuse-
field assumption holds, thanks to the self-averaging property
of time reversal [27]. This point is fundamental if the TREC is
to be used as a testing facility, since a reproducible wavefront
independent of the EUT position, orientation and nature is a
necessary condition for any metrology application.

A crucial issue is the question of the energy efficiency of
the proposed procedure. We have not considered this point in
the context of this paper, but it had already received attention
in a previous work [39], where it was shown that the TREC
also improves the ability to generate high-intensity peaks
of electromagnetic power by a factor easily exceeding one
hundred, with respect to standard harmonic excitations in an
RC.

From a practical point of view, the simplifying assumptions
used throughout the paper should be taken for what they are,
i.e., not requirements, but just simplifications. For example,
whenever the equivalent-current surface is not in the far-
field region of the synthetic source, the TREC will reproduce
the propagative part of the radiation pattern, filtering out
the reactive part; the often dispersive response of electronic
devices and antennas can be compensated when synthesizing
the excitation signals; the average coupling between the TRM
antennas can be kept as low as needed since they are operated
in a wave-diffusive medium, i.e., with a weak spatial correla-
tion.

X. CONCLUSIONS

In this paper we have investigated the potential advantages
of applying TR techniques to tests based on the use of prede-
fined wavefronts. Having found that these are not straightfor-
wardly suitable for this purpose, an alternative approach,the
TREC, has been introduced. A theoretical analysis has proved
how the TREC enables a number of once held impossible
features in a reverberation chamber, namely the generationof
short-pulsed fields and a detailed control of the parameters
of wavefronts. More specifically, the use of TR leads to an
equivalent Green’s function that appears to be very close to
that of a free-space environment. The TREC is hence capable
of recreating within a reverberation chamber the necessary
conditions for the arbitrary generation of wavefronts.
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As a result, it was shown that the TREC allows the definition
of a testing environment sharing the advantages of anechoic
and reverberation chambers, namely the possibility of knowing
exactly the type of EM wavefront (polarization, direction of
arrival, time-dependence) testing the EUT response, while
maintaining the high energetic efficiency of reverberation
chambers. Furthermore, it was shown that the test wavefront
can be ideally steered in real-time, without requiring any
mechanical displacement of the antennas. The use of fast-
steered deterministic test wavefronts could lead to fasterR&D
cycles, giving a clearer information about the response of an
EUT to impinging wavefronts.

APPENDIX A
RMS VALUE OF THE N (r, ω) TRANSFER FUNCTIONS FOR A

DIFFUSIVE REVERBERATION CHAMBER

Following the conventions introduced in section VI, the field
radiated by a TRM antenna is given by

E(r, ω) = N e(r, ω)
Vex(ω)

Zant(ω)
he(ω). (38)

Assuming a purely resistive input impedance for the anten-
nas and a perfectly matched generator leads to

‖E(r, ω)‖2

Pav(ω)
=

4|he(ω)|2
Zant(ω)

‖N e(r, ω)‖2, (39)

with Pav(ω) the available power of the generator. Computing
the ensemble average of (39) and recalling the uniformity
property for the electric field in a diffusive cavity yields

N2
e,av(ω) = E

[
‖N e(r, ω)‖2

]

=
Zant(ω)

4|he(ω)|2 E
[‖E(r, ω)‖2

Pav(ω)

]
,

(40)

thus showing howN2
e,av(ω) is related to the average energy

efficiency of the cavityE
[
‖E(r, ω)‖2/Pav(ω)

]
through the

electrical parameters of the TRM antenna. For the special
case of a reverberation chamber, the energy efficiency can be
estimated in a straightforward manner as [35]

E
[‖E(r, ω)‖2

Pav(ω)

]
=

4ζ0
π

Q(ω)λ

V
. (41)

whereQ(ω) is the average composite quality factor of the
cavity, V is the volume of the medium filling it andλ
the average wavelength corresponding to the frequency of
excitation of the cavity. This result is straightforwardlylinked
to the variance of any Cartesian component of the electric field
and the covariance of orthogonal components of the electric
and magnetic field as

E
[
|ûm · N e(r, ω)|2

]
=

N2
e,av(ω)

3
(42a)

E
[
ûm · N e(r, ω) ûn · N̄m(r, ω)

]
=

N2
e,av(ω)

3ζ0
,(42b)

with ûm · ûn = 0. The above result relies on the average
isotropy of the electric and magnetic fields in a diffusive cavity.

APPENDIX B
FLUCTUATIONS IN TIME-REVERSED WAVEFRONTS

The reason why the results presented in this paper always
deal with ensemble averages is the self-averaging property
typical of non-harmonic TR applications [27], [28]. This
property is inherited by the fact that for a finite bandwidth
BT of excitation, the coherent excitation of a complex medium
implies an average overBT , that can be shown to approximate
an ensemble average.

For the special case of bounded media with low losses, it
has been shown that time-reversed signals are affected by a
residual error in the transmission through the medium, due
to the physical impossibility of efficiently transmitting certain
spectral components in a steady-state configuration. As soon as
frequency-selective media are considered, this residual error,
intrinsical to the very procedure of time-reversal transmissions,
can be assimilated to a background noise, or intrinsical noise.
Its rms intensity can be straightforwardly linked to a few
parameters, such as the average composite quality factorQ(fc)
evaluated at the central frequency and the fractional bandwidth
BT /fc [11]. By defining the intrinsical SNRΛp as the ratio
between the peak instantaneous power of the coherent part
of the time-reversed signal and the rms power of the residual
noise, it can be proven that

Λp = Λ
Q(fc)κ

2

π

BT

fc
, (43)

whereΛ is the energy SNR, which can be shown to be close
to one for a diffusive medium [11], whileκ is the ratio of
the real part of the average ofX(ω) over its rms value, both
defined over the bandwidthBT .

Assuming the residual error to behave as a normally-
distributed random variable, its rms amplitude coincides with
its standard deviationσn. The confidence interval within which
the fluctuations are expected to be found with a probability of,
e.g., 95 %, is thus simply given by the interval±2σn, resulting
in a relative confidence margin around the peak value of the
transmitted signal

∆E

E
=

2√
Λp

=
2

κ

√
πfc

Q(fc)BT
. (44)

As a practical example, let us consider a moderately res-
onant cavity withQ = 5 · 104, BT /fc = 5 % and a sine
cardinal signal excitation, i.e.,κ = 1, yielding a range of
fluctuations of about±7 %, with a confidence of 95 %. Such
a low level of deviations is the reason why having access to a
model of the average response is indeed representative of the
actual response observed for a specific configuration.
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