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profound feeling that triads and not
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RESUME

L’ANALYSE des réseaux sociaux est un domaine marqué par une

ambiguité constante entre les outils et Iobjet détude. En tant
que praticiens d’une science focalisée lensemble des interactions
humaines, un volume difficile a appréhender, nous sommes voués
a developer la théorie parallelement a Iétudes des données. Pire
encore, la demande pour une analyse quantitative augmentant,
le domaine est confronté a la mesure de notions de plus en plus
intangibles et subjectives.

Ceci est similaire a ce que traversérent les sciences naturelles
au cours du XVIleme siécle, a lexception du fait qu'Isaac Newton
fut capable de décrire la gravitation et les lois du mouvement
sans avoir besoin de définir et quantifier au préalable la notion
méme de longueur. Lanalyse des réseaux sociaux a certes un
certain nombre de statistiques a sa disposition, statistiques qui
peuvent servir & décrire tout ou partie du réseau. Exception faite
de quelques unes de celles ci, telles le coefficient de clustering ou
la densité, il 'y a en général aucune relation immeédiate entre la
quantité et un fait social observable. En conséquence de quoi,
une large partie de notre travail consiste non seulement a trouver
des maniéres de quantifier certains aspects des interactions
sociales de maniére a extraire de l'information du réseau, mais
aussi a prouver que les choix effectués dans [élaboration de la
quantification sont raisonnables et nous permettent de mesurer

précisément un phénomene.
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Dun point de vue plus philosophique, il est intéressant
de mentionner la question de la nature de ces mesures ou
statistiques sociales. Sont-elles ce quAuguste Comte appelait
des “lois invariables” de la nature, ou au contraire rien de plus
que des gadgets mathématiques qui ont le bon gott de corréler
fortement a un fait social ? Je nessayerai pas de répondre a cette
question, bien qu’il me semble nécessaire de noter quil existe a
I'heure actuelle bien peu de lois acceptées en tant que tel, un fait
déja noté par Merton® et qui demeure vrai a cette date :

Malgré les nombreux volumes traitant de I'histoire
des théories sociologiques, et malgré la pléthore
d’investigations empiriques, les sociologues [...]
sont amenés a discuter les critéres logiques des lois
sociologiques sans pour autant citer un seul example

satisfaisant a ces criteres.

Ceci donne un apercu de la raison pour laquelle il existe si peu de
ces lois sociologiques, étant donné la contradiction avec I'une des
LY «r.r . b . 4
premiére propriétés des lois de la nature telles quexprimées par
Feynman® : une telle loi doit rester vrai en toute instance observ-
able, et en au moins une qui doit avoir été rapportée. J’ai attaché un
soin tout particulier, quand cétait possible, dapporter une preuve
mathématique a mes assertions, ou a tout le moins les justifier en

mappuyant sur des données empiriques.

LA DETECTION DE COMMUNAUTES est une branche de I'analyse des

réseaux sociaux — et plus généralement de l'analyse des réseaux —

1 Robert K Merton. On Theoretical Sociology. Free Press. New York, 1967.
2 Richard Phillips Feynman. The character of physical law. Modern Library. 1967.
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qui a attiré une attention considérable ces derniéres années. Les
communautés sont omniprésentes dans les réseaux sociaux, par
exemple on pense intuivement aux familles, groupes damis ou
collegues de travail en tant que communauté. Il y a par ailleurs
une multitude d’application* a la détection de communautés. De
maniere évidente, l'application la plus visible est liée a l'analyse
purement structurelle d'un réseau social de maniére a déterminer
de quelle fagon il est organisé en communautés interconnectées et
recouvrantes.

Prenous par exemple une société confronté a des problémes
d’'ambiance ou de communication. En détectant les communautés
dans le réseau social de communications entre les employés, et en
comparant celui ci a lorganigramme officiel de la société, il devrait
étre possible d'identifier des équipes dysfonctionnels et en tirer
les conséquences nécessaires — par exemple, séparer une équipe,
ou embaucher une personne ayant certaines caractéristiques qui
lui permettrait de s'intégrer a l'interface entre plusieurs commu-
nauteés.

Lexplosion des medias sociaux en ligne tels que Facebook ou
Twitter sest accompagnée d’inquiétudes concernant notamment
la confidentialité des données et le respect de la vie privée. En
utilisant des outils de détection de communauté pour déterminer
algorithmiquement le Gruppengeist, il serait possible de mettre en
correspondance une publication - statut, photos partagées, etc. —

1 Bien que la détection de communautés ait été utilisée dans l'analyse de réseaux
plus généraux, je me concentrerai sur les réseaux sociaux. Il est utile de préciser
que les travaux présentés dans cette thése pourraient sappliquer a létude de
réseaux d’autres nature, mais les résultats présentés ici étant soutenus par des
données sociales, je mai pas de preuve a apporter a une telle généralisation.
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et le groupe d’amis auquel elle est destinée. De la méme maniére,
si lon considére un réseau social o deux personnes sont liées si
elle partagent des centres d’intérét similaires, la connaissance de
leurs communautés peut étre non seulvement utilisée de maniére
a recommander de nouveaux contenus, mais aussi a mettre en

relation des individus partageant des passions communes.

DaNs LE CHAPITRE 2, je présente une particularité du domaine
qui a trait a la diffulté a définir son objet détude, ceci malgré
- ou a cause de - sa simplicité a illustrer par des exemples. En
loccurrence, un grand nombre d’algorithme a été développé de
maniére a trouver des communautés, sans pour autant définir
formellement ce quétait une communautés — un certain nombre
peuvent prétendre introduire une définition quantitative, dans la
limite ou lon considére que donner une formule sans la justifier
empiriquement est une définition.

En juin 2010, jai naivement commencé a réfléchir a
quelques concepts qui, je pensais, permettraient de trouver
des communautés locales et recouvrantes de maniére plus
précise. Sans rentrer dans des détails superflus, dont la plupart
méchappent aujourd’hui, disons simplement que jaccouchai
d’une floppée d’algorithmes desquels je mavais aucun moyen
de déterminer lequel était le pire. Rétrospective, il me semble
évident que mes chances de trouver un bon algorithme de
détection de communautés était faible, ne sachant alors pas ce
quétait une bonne communauté.

Mes premiers instincts furent de me servir de la modularité,
la maniere standard de juger de la pertinence d’une partition

en communautés. Mais non seulement cette notion navait
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aucun sens en terme de communautés recouvrantes, celle ci

b . . . 3, 7
ne sappliquait tout simplement pas au cas d’'une communauté
en elle méme: la modularité na que faire de savoir si une
communauté est bonne ou non, elle ne sintéresse uniquement a
la qualité d’un bon ensemble de communautés. Pire encore, il n’y
avait alors aucun moyen acceptable de juger de la qualité d’une

communauté, je devais donc en trouver un par moi méme.

La réponse marriva subitement, et l'utilisation de triades so-
ciales en lieu et place d'arétes pour définir les aspects structurels
des communautés mapparurent soudain comme une évidence.
Dans le Chapitre 3, je décris la progression intellectuelle qui me
mena a concrétiser cette intuition, des sources sociologiques aux
contraintes quune telle métrique devait suivre et finalement a la
définition de la mesure elle méme - la cohésion, continuant en-
suite a explorer des considérations et propriétés mathématiques et

terminant sur son évaluation sur des réseaux artificiels.

Néanmoins, comme je le disais précédemment, il y a une
longue tradition dans le domaine de proposer des métriques et
statistiques de graphe, balayant leur justification d’'un simple
“on dirait que ¢a fonctionne” Dans le Chapitre 4 je décris
pourquoi et comment jai choisi de suivre le chemin inverse
et ai lancé une expérience de grande envergure de maniére a
valider I'utilisation de la cohésion. Bien qu’ayant mes intuitions,
ce nest quaprés avoir constaté une corrélation forte entre la
cohesion et la perception subjectives des communautés que jai
été certain que la cohésion était un indicateur solide du caractére

communautaire d’'un groupe de personnes.

Ayant a ma disposition une maniére quantitive de définir ce
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quétait une communauté - a savoir un groupe cohésive de per-
sonnes - il était tout naturel de sintéresser a son utilisation pour
élaborer un algorithme de détection de communautés. Le prob-
leme est néanmoins complexe, et je montre dans le Chapitre 5 que
le probléme de trouver une communauté maximalement cohésive
est N'P-dur. Je montre par ailleurs que le probléme dual de trouver
des communautés minimalement cohésive — a taille fixée — est
NP-dur lui aussi, ce qui peut avoir une incidence dans la détec-
tion de communautés molles de maniére a identifier les faiblesses
socio-structurels d’un réseau social.

Etant donné qu'il n¥était donc a priori pas possible de trouver
un algorithme polynomial pour optimiser la cohésion, jai
développé C°, une heuristique que je présente dans le Chapire 6.
C’ a plusieurs avantages comparé aux algorithmes existants:
premiérement, il sappuie sur la cohésion, et en tant que tel il
chercher & maximiser une quantité que lon sait a présent étre
corrélée a la qualité des communautés. Par ailleurs, il détecte des
communautés recouvrantes, ce qui dans le contexte des réseaux
sociaux a plus de sens que l'approche inverse — la partition en
communautés — qui elle assigne un individu a une communauté,
approche absurde sl en est car une personne devrait avoir la
possibilité d'appartenir a la fois a sa famille et & son groupe d’amis.
Finalement, C* sappuie uniquement sur des informations locales
et donc riintroduit pas de fausse dépendance de la communauté
sur lensemble du réseau.

Pour valider lutilisation de C? je décris ensuite son
application & des réseaux d'agrément de votes de sénateurs des
Etats-Unis, pour chacune des sessions du Congres. Dans le

Chapitre 7, je montre que l'algorithme extrait des communautés
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pertinentes, liées aux partis politiques. Il est intéressant de
noter que lon observe une continuité temporelle dans ces
communautés, quand bien méme celles ci sont calculées de
maniére indépendantes a chaque pas de temps. Par conséquent,
je conclus que C? est une heuristique qui non permet de détecter
des communautés pertinentes. Par la suite, je décris ces résultats
d’un point de vue politique et historique.

Un des aspects douloureux de l'analyse des réseaux sociaux
réside, & cause du volume de données a prendre en compte,
est la complexité de la représentation visuelle, intelligible
et informative des résultats. Dans le Chapitre 8, je présente
une extension aux algorithmes de placements physiques qui
est spécialement étudiée pour visualiser des communautés
prédéfinies. Ces algorithmes classiques utilisant un modele
physique pour placer les sommets sur un plan en simulant
des forces dattraction et de répulsion entre les sommets, cette
extension ajoute un nouveau type de force élastique de maniere
contraindre les sommets d'une méme communauté au sein d’'un
cercle. Non seulement l'algorithme RubberBand est con¢u pour
étre compatible avec tout type dalgorithmes de cette sorte — et
peut donc étre adapté dans le futur a de nouveaux algorithmes,
mais il méne de maniére consistante a des résultats plus lisibles
concernant la visualisation de communautés, ce que nous verrons
au travers d’une évaluation quantitative.

Le chapitre final de ma thése porte sur un aspect souvent
ignoré de lanalyse des réseaux sociaux. Contrairement a la
sociologie traditionnelle et a la psychologie dont le point focal
est individu, l'analyse de réseaux sociaux favorise létude des

interactions entre acteurs au détriment de leurs traits personnels.
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En utilisant C* et la visualisation décrite précédement, je
mattacherai dans le Chapitre 9 a étudier conjointement des
données décrivant la personnalité d'utilisateurs de Facebook
et leur réseau social de maniére a mettre en lumiére les liens
entre psychologie et topologie du réseau. Nous verrons quil
y a un impact fort de lextraversion sur lentourage social, et
que cette notion est connectée au nombre damis, nombre de

communautés, leur taille et leur recouvrement.

Les contributiosn de cette thése sont multiples et ont trait a une
variété de domaines. En son cceur, elle introduit la cohésion,
une mesure quantitative définissant la notion sociologique de
communauté. Cette notion est ensuite étudiée du point des vue des
mathématiques et de la théorie des graphes. Algorithmiquement, la
cohésion est une quantité qui est N'P-dure a la fois a maximiser
et a minimiser. De maniére a détecter des communautés cohésives,
jintroduis C°, une heuristique que je valide en notant sa pertinence
dans létude des groupes dagréments du Sénat états-uniens. Je
propose ensuite RubberBand, une extension aux algorithms de
placements physiques classiques utilisés en dessin de graphes,
qui permet une visualisation efficace de la structure dun réseau.
Finalement, jutilise ces contributions pour analyser et représenter
limpact de traits psychologiques sur la structure sociale. En un
sens, cette thése vit a lintersection entre Informatique, Sociology,
Visualisation de donmnées, Politologie et Psychologie, bien que sa
contribution majeure soit issue de la théorie des graphes sous forme

d’une approche quantitative de la cohésion sociale.
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O chestnut-tree, great-rooted blossomer,

Are you the leaf, the blossom or the hole?

O body swayed to music, O brightening glance,
How can we know the dancer from the dance?
Among School Children

WILLIAM BUTLER YEATS

SOCIAL network analysis is a field marked by a constant am-
biguity between the tools and the object. As practitioners of
a young science with a focus set on the difficult to grasp collec-
tion of human interactions, we are vowed to develop the theory
and at the same time conducting our studies. Worse yet, as the
demand for more quantitative analysis arises, the field has to de-
vise ways of measuring more and more intangible and subjective
notions.

This is somehow similar to what happened in the natural sci-
ences in the XVII*h century, except that Isaac Newton was able
to describe universal gravitation and the laws of motion without
needing to go through the hassle of finding a way of defining and
quantifying what a length is. Social network analysis does have
statistics which can be used to describe all or part of the network,
but except for few of them such as clustering or density, there are
usually no immediate relationships between the quantity and an

observable social fact. As such, a large part of our work consists
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not only in finding ways to quantify aspects of social interactions
to extract information from the network, but also to prove that our
choices in building the quantification are sound and allows us to
capture accurately a given phenomenon.

On a more philosophical note, the question of the nature of
those social metrics and statistics is worth mentioning: are they
what Auguste Comte used to refer to as “invariable laws”, or noth-
ing more than useful mathematical gizmos which just happen to
correlate to a social fact ? I will not attempt to answer this question,
although it must be stated that few such laws exist, a fact already

noted by Merton' and remains true today:

Despite the many volumes dealing with the history of
sociological theory and despite the plethora of empir-
ical investigations, sociologists [...] may discuss the
logical criteria of sociological laws without citing a

single instance which fully satisfies these criteria.

This provides insight into why there are so few examples of socio-
logical laws, as it is in contradiction with one of the first properties
of the laws of nature as identified by Feynman:* such a law should
be true in all observable instances, let alone in at least one, which
should be reported. I took particular care to provide, when pos-
sible, a mathematical proof for all statements or at the very least

back those with empirical data.

COMMUNITY DETECTION is an area of social network analysis -
and more generally of network analysis — which has attracted

1 Merton, op. cit.
2 Feynman, op. cit.

10
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important attention this last years. Communities are ubiquitous
in social networks, for example one intuitively thinks of families,
groups of friends or co-workers as communities, and there is
a multiplicity of applications’ to community detection. For
obvious reasons, the most visible application is related to the
purely structural analysis of a social network to determine
how it is architectured into interconnected and overlapping
communities.

Consider for example a company which has been having some
morale or communications issues, by detecting the communities
in the social communication network between employees and
comparing those with the official organization of the company,
it ought to be possible to identify dysfunctional teams and take
appropriate action - e.g. split up some teams or hire individuals
having certain traits which would insert them at the interface
between communities.

With the boom of online social networking websites such as
Facebook and Twitter, there has been an growing concern about
privacy-related issues. By coupling community detection to algo-
rithmically be able to identify the Gruppengeist, one could match
publications such as status updates or uploaded photos to be dis-
played only to the relevant community of friends. Continuing in
this vein, if we consider an interest social network where two in-

dividuals are linked if they share similar interests, the knowledge

1 Although community detection has been used in the analysis of more general
networks, I shall focus on social networks. It should be noted though that the
work presented in this thesis could be used in the study of other complex
networks, but since the validation was done using social data, I have no solid
evidence to back such claims.

11
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of its communities can be exploited to not only recommend new
content to someone but also introduce like-minded people to one
another.

On a more dramatic note, social network analysis has been
used in law enforcement and counter-terrorism. For example,
journalist Chris Wilson argues that social network analysis was
instrumental in Saddam Hussein’s apprehension and provides
a lengthy, well-researched narrative to back it up." Here is
how Maddox, an U.S. interrogator, recounts how suspects
unintentionally divulged useful information in their efforts to

protect what they believed was more critical information:

In piecing together a trail through his network,
Maddox says detainees often simply told him what
he wanted to know. “They’re not going to tell me
about the insurgency”, he explained. “But they’ll
talk about whos drinking buddies with who” In
thinking that they were deflecting the interrogators,
lower-level operators were in fact leading Maddox
closer to his target. These detainees, in a way,
were making precisely the same mistake that the
American military made at the start of the Iraq
war. Institutional information about the insurgency
wouldn’t bring coalition troops closer to Saddam’s
hiding place. The social information that these

lower-level Musslits provided was much more

1 Chris Wilson. Searching for Saddam. Slate Magazine. Feb. 2010. URL: http :
//www.slate.com/articles/news_and_politics/searching_for_saddam/
2010/02/searching_for_saddam_5.single.html.

12


http://www.slate.com/articles/news_and_politics/searching_for_saddam/2010/02/searching_for_saddam_5.single.html
http://www.slate.com/articles/news_and_politics/searching_for_saddam/2010/02/searching_for_saddam_5.single.html
http://www.slate.com/articles/news_and_politics/searching_for_saddam/2010/02/searching_for_saddam_5.single.html

PROLOGUE

valuable. Maddox wanted to know the names of

Saddam’s friends, not his former colleagues.

It can be envisioned that in the future, community detection tech-
niques might be used in order to identify structural inconsisten-
cies between intelligence data and what would be expected from
typical communities. In turn, this could lead to the uncovering of

yet undiscovered and unidentified criminals.

As WE SHALL SEE IN CHAPTER 2, one of the most striking peculiar-
ity of the field of community detection surely is that its object of
study has remained vague despite - or because — being so simple
to illustrate through examples. Without spoiling the pleasure of
the reader, suffice it to say that countless community detection
algorithms have been developed to find something which was not
formally defined - some actually may be considered to have intro-
duced quantitative definitions, insofar as giving a formula without
any experimental validation qualifies as such.

In June of 2010, with the naivety of the newcomer, I started
working on some concepts which I thought would lead to an ac-
curate detection of local overlapping communities. Without going
into superfluous details - much of which I barely remember any-
way - let us just say that I came up with a flurry of algorithms
of which I had no way of telling the least bad apart. In retrospect
it seems obvious that my chances of finding a good community
detection algorithm were slim given that I did not know what a

good community was.

My first instincts were to rely on the modularity, which was

the standard way of rating a partition into communities, but not

13
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only did it made no sense when used on overlapping communities,
the notion did not apply to a community by itself: modularity does
not care if a community is good or bad, only if a partition is a good
enough set of communities. Worse even, there was no acceptable
way of judging the quality of a community, hence I had to come
up with my own.

At some point in time I had an epiphany, and the use of social
triads rather than only links to define the structural aspects of
communities suddenly entered my mind. In Chapter 3, I describe
the intellectual progression which I followed to concretize this in-
tuition, from the sociological underpinnings, to the constraints to
which such a metric ought to obey, to the actual definition of the
metric - the cohesion, to finally some mathematical considera-
tions, properties and evaluation on artificial networks.

However, as stated earlier, there has been along tradition in the
field of proposing graph metrics and statistics with nothing more
that “it seems to work” as a justification of their use. I recount in
Chapter 4 why and how I chose to take the opposite course and
launch a large-scale experiment relying on Facebook to validate
the use of the cohesion. Although I had my intuitions, it is only
after observing a high correlation between the cohesion and the
subjective perception of communities that I could be certain that
the cohesion is a strong indicator of the communitiness of a group
of people.

Having a quantitative way of defining a community - that is,
a strongly cohesive group of people - it was only natural to at-
tempt to make use of the metric in a community detection algo-
rithm. The problem is however a complex one, to the point that

I show in Chapter 5 that the problem of finding such maximally

14
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cohesive subgraphs is AN'P-hard. I should also mention that the
dual problem of finding communities of low cohesion is also N'P-
hard, which might have an impact on some applications relying
on the cohesion to identify the socio-structural weaknesses of a
network.

Since finding a polynomial algorithm to optimize the cohe-
sion was out of the picture, I developed C?, a heuristic algorithm
which I present in Chapter 6. C* has several advantages compared
to existing community detection algorithms: first and foremost it
relies on the cohesion and as such attempts to maximize a quantity
which is known to be correlated to the quality of communities.
It then detects overlapping communities; in the context of social
networks this makes the most sense since the opposite approach,
disjoint communities, only assigns an individual to one commu-
nity, which is absurd as people should surely be allowed to belong
to a group of friends as well as their families. Finally, only taking
into account local information, C* does not introduce a false de-
pendency of the community on the whole of the network.

To validate the use of C*, I will then describe its application
to voting agreement networks of United States Senators for each
session of the U.S. Congress. In Chapter 7 we shall see how the al-
gorithm extracts relevant communities, tightly related to political
parties. More noteworthy is that, when detecting the communi-
ties independently on each agreement network, we shall observe
that there is a continuity in the communities despite the absence
of any temporal consideration in the algorithm. As such, we will
conclude that although C? is a heuristic algorithm it does provide
relevant and cohesive communities, and will relate those result to

historical and political facts.

15
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One of the growing pain points in social network analysis re-
sides, due to the sheer volume of data involved, in the complexity
of representing intelligible and informative results. In Chapter 8
I shall introduce an extension to classical force-directed layout
algorithms which is tailored to visualize predefined communities.
Since those classical layouts use a physical model to place nodes
on a plane by simulating attraction and repulsion between pair
of nodes, the extension adds a new type of force modelled upon
rubber bands to constrain nodes of a same community inside en-
closing circles. Not only was RubberBand designed to be compat-
ible with any type of force-directed algorithm - and as such can
be adapted to most of existing and future algorithms — but we will
also see through quantitative benchmarks that it consistently leads
to a better community visualization than if it was not used.

The final chapter of my thesis is devoted to an oft ignored as-
pect in social network analysis, whereas in traditional sociology
and psychology the focus is primarily set on the individual, so-
cial network analysis tend to favour the study of relationships and
interactions between actors without taking into account their per-
sonal traits. Having at hand both an overlapping community de-
tection which was shown to provide meaningful communities and
a way of visually illustrating the community structure of a net-
work, in Chapter 9 I shall cross a dataset providing subjects’ per-
sonality traits with social network information from Facebook to
observe the way in which psychology shapes the topological struc-
ture of the network. We shall see that there is a deep impact of
the trait of extraversion on the community structure of subjects’
social entourage as it is connected to the number of friends, the

number of communities and size and compartmentalization of
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thereof. This influence is particularly visible when representing

ego-networks using RubberBand.

The contributions of this thesis are multiple and relate to a broad
variety of fields. At its core, it provides the cohesion, a quantitative
way of defining the sociological notion of community; notion which is
then analyzed from an mathematical and graph theory point of view.
Algorithmically, the cohesion is a non-trivial graph metric which is
NP-hard both to maximize and minimize. In order to be able to
detect cohesive communities, I propose C°, a heuristic algorithm which
I validate by noting the relevance of its output on dynamical data
describing the agreement groups of the United States Senate. I then
introduce RubberBand, an extension to classical force-directed layout
algorithms, which allows for the efficient visual representation of a
network’s community structure. C*> and RubberBand are then used
to analyze and represent the impact of psychological traits on social
structure. In a sense, this thesis lies at the intersection between Com-
puter Science, Sociology, Data Visualization, Politology and Psychol-
ogy, although its main contribution is a graph theoretic and quanti-

tative approach to social cohesion.
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THE SOCIOLOGICAL CONSTRUCT
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SOCIAL community is a subjective notion and although the
term is used rather intuitively, it appears that no formal
consensus has been reached on the nature of what qualifies
a community as such. Despite this fact, the concept has been
actively studied in sociology and has attracted a lot of attention in
the last fifty years in the field of Social Network Analysis.

An Omnibus Word

In the last decades, the term community has expanded to encom-
pass a wide array of meanings. From the media often referring to
the “local community”, to the emergence of so-called “online com-
munities”, the term has been alleviated its meaning to the more
general term group, or dare I say, in our times and place, a com-

munity often seems to be no more than a bunch of people.
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Although the focus of their study is on educational communi-
ties, Grossman et al. raise the issue that “this confusion [on the
meaning of community] is most pronounced in the ubiquitous
“virtual community”, where, by paying a fee or typing a password,
anyone who visits a web site automatically becomes a ‘member’ of
a community”."

The term community is not, however, devoid of meaning, and
its existence and use bare reason. Before expliciting the actual
structure which is of interest, I deem important to observe what
intention people, scholars and laymen alike, wish to convey when
employing the word community.

IN HER THESIS,” Stuckey faced the same semantic issue and, in a
section appropriately titled The difficulty of defining community, in-
troduces the term by referring to its etymology — from the Middle
English “communite” meaning citizenry, from Latin “communi-
tas”, fellowship and “communis”, common — and states that the use
of the term has always been open to interpretation, although the
notion of “something shared” is deeply rooted in the term.

In the community entry in the Social Science Encyclopedia,?
Azarya introduces the following interrogation: does the notion of

community refers to a group of people, or does it refer to the sense

1 Pamela Grossman, Sam Wineburg, and Stephen Woolworth. What makes
teacher community different from a gathering of teachers? Tech. rep. Seattle, Dec.
2000.

2 Bronwyn E. Stuckey. “Growing online community: core conditions to support
successful development of community in Internet-mediated communities of
practice” PhD thesis. University of Wollongong, 2007, p. 49.

3 Adam Kuper and Jessica Kuper. The Social Science Encyclopedia. Ed. by Adam
Kuper and Jessica Kuper. 2nd ed. Routledge world reference. London: Routledge,
2003, pp. 195-197.
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of belonging to a group. Interestingly, the fact that the term con-
fusion appears in both Azarya’s and Grossman’s citations should
be taken as an indication of the difficulty of grasping what com-

munity means.

A preliminary confusion arises between community
as a type of collectivity or social unit, and community
as a type of social relationship or sentiment. The root
of the problem could be traced to Tonnies’s Gemein-
schaft, which uses the term to describe both a collec-
tivity and a social relationship. Subsequently, most
scholars have used community to connote a form of
collectivity (with or without Gemeinschaft ties), but
some, such as Nisbet, have kept the community-as-
sentiment approach alive in their emphasis on the
quest for community and their concern with the loss
of community in modern life. These approaches are
clearly mixed with some nostalgia for a glorious past
in which people were thought to be more secure, less
alienated and less atomized.*

Further, Azarya describes Schmalenbach’s theory of the bund
which provides an alternative to Ténnies's Community and Soci-
ety (Gemeinschaft und Gesellschaft). According to Schmalenbach,?
Gemeinschaft implies relationships which emerge naturally from
day-to-day interactions, whereas emotional ties in community-
as-sentiment are better describes by what he called communion

1Ibid., p. 195.
2 Hermann Schmalenbach. “The sociological category of communion”. In:
Theories of society. Theories of society, 1961, pp. 331-347.
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(bund) as they involve a sense of belonging, for example in polit-
ical or religious groups, as opposed to ad-hoc groups that do not
feature such an esprit de corps.

To the extent that Azarya then focuses on the collectivity as-
pect of community rather than the sentiment, and given that this
thesis aims for a quantified approach of social cohesion in terms
of network science, I shall restrict myself to the more observable
community-as-social-unit - that is, I wont attempt to distinguish
a prayer group from a poker group - since the scope of this thesis is
set on structural aspect of the social network which in our defini-
tion does not encompasses the semantics of interactions between
actors of the network.

It is however important to note that the sense of belonging is
distinct from the recognition of a community as such from one of
its members, in the sense that “I can recognize this is my poker
group, because we play poker together, although I might not feel I
belong to the Great Entity of the Poker Group”

THE VAGUENESS OF THE TERM is such that in the past 70 years
a subgenre of sociological papers focused on reviews of the
different definitions of the term have emerged. In 1955, George
Hillery, Jr. analyzed' 94 different sociological definitions of
the term community both from a quantitative and qualitative
standpoint.

All except three of the definitions clearly mention the

presence of a group of people, i.e., persons in social

1 George A. Hillery Jr. “Definitions of community: Areas of agreement”. In: Rural
sociology 20.2 (1955), pp. 111-123.
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interaction.

[...]

The definitions which include social interaction
fall into six categories: those which mention the
presence of some geographic area, those which
mention the presence of some common characteristic
other than area, and four residual categories.

[...]

As should be obvious from the classification scheme
[...], all of the definitions cannot be correct - i.e.,
community cannot be all of the definitions in their
entirety. For example, the logical principle of contra-
diction denies anything the quality of being an area

and not being an area.!

The most striking aspect of his analysis is not that he was actu-

ally able to find 94 different definitions, which, in the authors own
words, “are not all of the definitions of the community. However,
it is believed that the picture given is a fairly representative one’,
but rather that their commonality is reduced to the most general

idea of what a community might be: once again, a bunch of peo-

ple.

1 Ibid.

There is one element, however, which can be found
in all of the concepts, and (if its mention seems
obvious) it is specified merely to facilitate a positive
delineation of the degree of heterogeneity: all of the
definitions deal with people. Beyond this common

basis, there is no agreement. To be sure, people
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who are grouped together will normally engage to
some extent in social interaction, but definitions
were found (in the class termed “Ecological
Relationships”) which deny social interaction as an
essential feature of community life.

[...]

Since these [ecological relationships] are the only
definitions in this survey which exclude social
interaction from the concept of community, and
since social interaction is at least one major concern
of all of the other definitions, these two must be

considered the most radical deviants.®

The essence of Hillery’s study is that the only area of agreement
on the nature of community, at that time, was that communities
dealt with people. He did however find that 69 definitions sug-
gested that community is related to the notion of area, common

ties, and social interaction.

QUARTER OF A CENTURY LATER, Poplin® carried a similar analysis
on 125 sociological definitions only to find consistent evidence
that Hillery’s observation on the core definition of community
stood the trial of time, although he noted that language, descrip-
tion and terminology had evolved.

Finally, Stuckey built on Hillery and Poplins studies and
examined 25 contemporary definitions of community. Most of
her findings are in adequation with the previous works, although

1 Ibid.

2 Dennis E. Poplin. Communities: A survey of theories and methods of research.
Macmillan. 1979.
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she also noted that “definitions included conditions specific to
the context in which the community may be developed”* such as
teaching community or commercial orientation. Moreover, it is
interesting to note that she had to tweak the notion of area to “go
beyond the geographical, to be considered a temporal location
and, to include area as a virtual place online” in order to fit into
Hillery’s categories of communities.

The geographical aspect of communities has also been noted
by Azarya in the Social Science Encyclopedia,” where he intro-
duces the territorial and non-territorial approaches, only to state
that the territorial approach has dimmed with the emergence of
newer communication technologies. In that context, it is legiti-
mate to question the relevance of the concept of area, given that it
might be considered as a subset of common ties, in the sense that
the notion of area extended to include virtual “places” is nothing
more than another trait shared by the members of the commu-
nity.

Community, in the sense of type of collectivity, usu-
ally refers to a group sharing a defined physical space
or geographical area such as a neighborhood, city,
village or hamlet; a community can also be a group
sharing common traits, a sense of belonging and/or
maintaining social ties and interactions which shape
it into a distinctive social entity.

[...]

The non-territorial approach has gained force as a

1 Stuckey, op. cit., pp. 51-54.
2 Kuper and Kuper, op. cit.
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result of modern advances in communication which
have reduced the importance of territorial proximity

as a bases for human association.!

From these reviews, spanning more than fifty years, two points
are of importance. First, that although the study of community has
evolved tremendously in the last seventy years, the meaning of the
term has remained stable - relative to the stability of the sociolog-
ical structural context. And second, that although the notion of
community is difficult to agree upon, most scholars concur on the

notions of social interaction and common ties.

Birth of Social Network Analysis

Although graph theory dates back to the XVII** century, with Eu-
ler’s Seven Bridges of Konigsberg, the notion of understanding soci-
ety through the use of networks did not appear before centuries,
and the fact that the term sociology was not popularized until 1839
should provide an idea as to the why. Without going into specific
details on the history of social network analysis - I refer the in-
terested reader to Freeman’s wonderfully exhaustive Development
of Social Network Analysis* — 1 deem interesting to evoke how the

understanding of community has developed.

IN THE XIX'™ CENTURY, Auguste Comte proposed one of the ear-
liest statement of a structural vision of society. He argued that

sociology was a field with two major aspects, statics and dynamics,
1Ibid., p. 196.

2 Linton C Freeman. The development of social network analysis. a study in the
sociology of science. Booksurge Llc, 2004.
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where the former is focused on the study of the “laws of social
interconnection”

Comte was instrumental in the advent of social science as a
macroscopic understanding of social interactions as opposed to
the observation of social behaviors such as role and position at the
individual level - this has to be considered in the context of the
development of natural sciences in the XIX* century. However,
despite the existence of both a mathematical framework and the
intuition of a macroscopic view of society, it was not until the
XXt century that social network analysis emerged as a scientific
field.

THE ORIGINAL IMPULSE which led to the birth of social network
analysis was given in 1934 by Jacob Levy Moreno, a passionate
although puzzling man whose strength was that he had a profound
structural intuition of the role social structure had on individu-
als. In 1934 was published Who shall survive?,' the outcome of a
sociometric study which involved systematic data collection and
analysis, in which he first used the term “network” in the sense it
is used today.

Moreno was a psychiatrist and a psycho-sociologist. At heart,
his position was that spontaneity and creativity are the forces
which drive human progress. In order to facilitate the treatment
of his patients, he developed the “psychodrama” in which
patients were pushed to gain insights into their lives through
spontaneous dramatization and role playing.

1 Jacob Levy Moreno and Helen Hall Jennings. Who shall survive?: A new
approach to the problem of human interrelations. Washington, DC, US: Nervous
and Mental Disease Publishing Co., 1934.
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Most important from our perspective, Moreno’s sociometry
emerged as an tool to understand individual feelings in respect to
one another in the context of the “sociodrama” - a psychodrama
where the subject is replaced by a group which expresses its issues
as a whole. By observing the attractions and rejections between
group members, the sociometric test aims to exhibit the underly-
ing sociological structure of the group.

ALTHOUGH THE NOTION of group was somehow already present
in Moreno’s view, he viewed the group as a collection of interact-
ing patient rather than a unit which had its own existence in the
network. As a consequence, the idea of algorithmically using the
data to distinguish communities inside a network was not central
to sociometry.

As an alternative to Moreno’s sociogram - the representation
of sociometric data by a graph representation — Leo Katz pro-
posed a matrix based visualization,' arguing that it made possi-
ble “a more detailed analysis of group structure” (Fig. 2.1). His
paper gave rise to considerable discussion, including a ferocious
defence of the sociogram by Moreno, and lead to a follow up ar-
ticle* in which Katz explicit the advantages of the matrix based
approach.

His argument was that the sociogram was an ambiguous
representation, whereas a matricial approach was more objective.

Moreover, he describes an algorithm where groups of people are

1 Elaine Forsyth and Leo Katz. “A matrix approach to the analysis of sociometric
data: preliminary report”. In: Sociometry 9.4 (1946), pp. 340-347.

2 Leo Katz. “On the matric analysis of sociometric data”. In: Sociometry 10.3
(1947), pp- 233-241.
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Figure 2.1 Katz’s example of a matrix representation of a
network, with clusters aligning on the diagonal.

constructed by selecting one actor, and then iteratively adding
other actors as long as the newcomer is tied to at least half the

members of the cluster.

Given that the ordering of rows and columns in a matrix is
arbitrary, it is possible to rearrange the matrix by grouping to-
gether actors in same clusters. In that case, the resulting matrix
is approximately in block diagonal form, which visually brings
to light the subgroups of the network as illustrated in Figure 2.1.
Finally, Katz asserts that the clusters he obtains are cliques in the
sociological sense — or communities. Thus was born the concept

of community detection.
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When minimization is complete, the resulting form
has clusters of positive choices along the main diag-
onal and negative choices have gravitated to the ex-
treme upper right and lower left hand corners. Each
cluster of positive choices corresponds to a few indi-
viduals (their identifications appear in the main di-
agonal of the cluster) whose choices are concentrated
within the cluster. Such individuals form a clique in
the sociological sense. Thus cliques in the group cor-
respond to the clusters obtained in the formal manip-

ulation.!

The Advent of the Partition

The next step in the evolution of community came from Harvard
in the 1970s, where White and his students participated in the
renewed interest in social network analysis. In 1976, White — un-
satisfied with both classical sociology and with Katz methodology

- introduced the notion of blockmodels.>

All sociologists’ discourse rests on primitive
terms - “status’, “role”, “group’, “social control’,
“interaction” and “society” do not begin to
exhaust the list — which require an aggregation
principle in that their referents are aggregates of
persons, collectivities, interrelated “positions”, or

1Ibid.
2Harrison C. White, Scott A. Boorman, and Ronald L. Breiger. “Social structure
from multiple networks. I. Blockmodels of roles and positions”. In: American

journal of sociology (1976), pp. 730-780.
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“generalized actors”. However, sociologists have
been largely content to aggregate in only two
ways: either by positing categorical aggregates (e.g.,
“functional subsystems”, “classes”) whose relation
to concrete social structure has been tenuous; or
by cross-tabulating individuals according to their
attributes (e.g., lower-middle-class white Protestants
who live in inner city areas and vote Democrat).
Both methods have “often led to the neglect of social

structure and of the relations among individuals”.*

Blockmodeling, as defined by White, is not an algorithm but
rather an network analysis methodology built upon the notion of
structural equivalence. Given a set S of actors and {R;}” | m binary
relations on S, u, v € § are said to be structurally equivalent if and
only if the following criterion is satisfied. For all w € S and any

relation R;:

uR;w < vRyw
wRu & wR;u

That is, u and v are structurally equivalent if they have identi-
cal in-neighbors and out-neighbors in all networks defined by R;.
However, real data does not exhibit large numbers of structurally
equivalent pairs of actors, for a variety of reasons. To compensate
this fact, this notion of equivalence had to be relaxed. Instead of
requiring that all actors in a same class are structurally equivalent,
in a blockmodel two actors in a same block only share the ab-
sence of ties towards some identical other actors. More formally,

1 Ibid.
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a blockmodel is a lean fit to a given matrix M if and only if there
exist a permutation of M, leading to a permuted matrix M*, and a
subdivision of M* such that:

1. zeroblocks, which are in White’s terminology sub-matrices
containing only zeroes, in M* correspond to 0 in the block-
model;

2. blocks containing at least a 1 in M* correspond to a 1 in the
blockmodel.

Note that the relaxation comes from the at least, in the previous
constraint. Structural equivalence is achieved when there ifa 1 in
the blockmodel if and only if there are only 1 in the corresponding
block of M*

Blockmodeling departs from classical sociometry in two ways.
First, it eludes the need for an a priori aggregation of individuals
- i.e. there is no need to project multiple networks onto a unique
one - which frees the sociologist from having to combine poten-
tially heterogeneous data into a single dimension of interaction.
One might however argue that this projection is hidden inside the
permutation algorithm and that it deprives the analyst of using
other projections.

Second, given the fact that actors are grouped by the correla-
tion of their ties, it can serve as a way of identifying other social
constructs, such as hierarchical or cooperative structures, rather

than only communities.

AMONG THE CASE STUDIES White reports, the analysis of A

Monastery in Crisis gives a good illustration of how pattern
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Figure 2.2 Image for Esteem network in White’s blockmodel-

ing of the monks interactions. Each row/column represents a

block containing several monks, the value 1 or -1 are assigned

depending on the values in the network submatrix containing
only those monks.

detection differs from community detection. From data obtained
in Sampson’s account of social interactions in an isolated
monastery," eight different networks are constructed based
different type of relationships between the 18 monks - like,
esteem, inﬂuence, praise, antagonism, disesteem, negative inﬂuence
and blame.

Where this approach is different from the sociometric clus-
tering is in the use of configuration “templates” to interpret the
resulting image. For example, considering the esteem network,
they obtain three blocks which are ordered in a linear hierarchy
(Fig. 2.2).

This hierarchy implies that those in the first block only have
esteem for themselves, those second block have esteem for them-
selves and those in the first block, and finally, those in the last
block have esteem for everybody, which is “certainly plausible in
a monastery”* - in the sense that there is a clear hierarchy among

individuals, with an inner circle, regular members of the cloister

1 Samuel F Sampson. “Crisis in a cloister”. PhD thesis. 1969.
2 White, Boorman, and Breiger, op. cit.
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and novices which for the outer shell of the group. Finally, White

is able to recognize Sampson’s observations.

The concrete social structure suggested is [...]: a
top-esteemed block unambivalently positive toward
itself, in conflict with but conceding influence to a
second, more ambivalent, block, to which is attached
a block of losers.

[...]

Sampson’s Loyal Opposition is wholly contained in
the first block; the Young Turks are exactly the men in
the second block; the Outcasts are wholly contained
in the third block. Sampson’s Waverers 8 and 10 are
in the Loyal Opposition block, whereas Waverer 13
is in the Outcast block.*

The question of nature of those three groups remains open:
should those be considered as communities, or are those groups
of people something totally different which only exist under the
prism of hierarchy? This legitimate question does not limit itself
to this case study and can be replicated in any context.

Consider for example a large family, containing children and
parents. Given the asymmetry between the two sets (parents &
children), the children might exhibit similar ties which in turn
are different than those of their parents - if not only because the
former share a child-parent relationship towards the latter. Does
this mean that parents and children are part of two different social
communities, or does this blockmodeling merely distinguish role

inside the family community?

1 Ibid.

34



FroM BLOCKMODELS TO MODULARITY

It is therefore essential to understand that White’s work does
not limit itself to community detection, but to the identification of
social sub-structures which might be caused both by interaction
and role.

ALTHOUGH INTERESTING, the process of generalizing social net-
work analysis to the identification of those patterns - rather than
that of communities — had an unfortunate side-effect which ended
up setting the tone for the next thirty years of the study of com-

munities:

Persons not in cliques are usually disregarded [in so-
ciometry] (i.e., treated as outside the effective socio-
metric system). In contrast, blockmodeling requires
searching for a complete partition, such that sets of
persons can be structurally important regardless of
whether the sets resemble cliques.*

Though White’s approach of communities-as-partition is, as
we will see further, questionable, it does introduce the important
idea that there should be no a priori on the structure one is looking

for in the network, nor in the nature of the interactions.

From Blockmodels to Modularity

In the context of social partitioning, concomitant to White’s
blockmodeling, Breiger introduced coNcoRr,* an algorithm

1Ibid.

2 Ronald L. Breiger, Scott A. Boorman, and Phipps Arabie. “An algorithm
for clustering relational data with applications to social network analysis
and comparison with multidimensional scaling”. In: Journal of Mathematical
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which recursively divides a network into sub-clusters.

Given an n X m matrix M, whose columns are noted v;, 1 <j <
m, the algorithm first computes an m X m matrix M,, where the
(i, j)t value is the correlation coefficient between the two vectors
v; and v;. This same algorithm is then iteratively applied to M, to
obtain M,, Mj;, ...matrices, all of size m X m. Breiger observed,
on empirical data, that this process always converged to a matrix
M, = lim; M; which can be permuted into a two blocked matrix

that can be summarized in the following form:

(27)

From this bipartite split arises a natural 2-partition of the ac-
tors in M, and the algorithm can be recursively applied on each
of those blocks to obtain a finer division. Breiger however does
not address the question of where to stop this recursive split and
exhibit a partition, but rather presents complete hierarchical clus-
tering trees.

COMMUNITY DETECTION - in the modern sense — was born at
the intersection of sociology, physics and computer science. In
2004, Newman suggested' a novel way of partitionning a network:
instead of separating nodes with low similarity — such as pairs of
non-equivalent nodes — he proposed the idea of discriminating on

edge betweenness, where “betweenness” is defined as a way to favor

Psychology 12.3 (1975), pp. 328-383.
1 Mark E.J. Newman and Michelle Girvan. “Finding and evaluating community
structure in networks” In: Physical Review E 69.2 (2004), p. 26113.
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O

Figure 2.3 Newman’s example of the output of his original
algorithm. Each circle at the bottom represent a vertex, which
are joined into larger communities as we move up the tree.
The dashed line indicates the scale at which the partition is
“frozen’, e.g. where the modularity is optimal.

edges who structurally lie between communities such as, among
others:

— shortest-path betweenness, defined as the number of shortest
paths in the network running through a given edge;

- random-walk betweenness, the expected number of times that
a random walk between a particular pair of vertices will pass

down a given edge, summed over all pairs of vertices.

The algorithm is then straightforward: first compute the between-
ness of each edges, identify the edge with the highest betweenness,
remove it and reiterate the process — including the computation of
edges’ betweenness. This in turn gives a hierarchical tree of deleted
edges and thus conversely a tree of clusters.

THE MOST IMPORTANT CONTRIBUTION of the paper, however, is
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not the use of the betweenness in the computation of the com-
munity structure but lies in the evaluation of the algorithm’s out-

put.

In practical situations the algorithms will normally
be used on networks for which the communities are
not known ahead of time. This raises a new problem:
how do we know when the communities found by the
algorithm are good ones? Our algorithms always pro-
duce some division of the network into communities,
even in completely random networks that have no
meaningful community structure, so it would be use-
ful to have some way of saying how good the struc-
ture found is. Furthermore, the algorithms’ output
is in the form of a dendrogram which represents an
entire nested hierarchy of possible community divi-
sions for the network. We would like to know which
of these divisions are the best ones for a given net-
work — where we should cut the dendrogram to get a

sensible division of the network.!

To that effect, Newman introduces the modularity, a function
which associates to a partition of a graph a score between -1 and
1. Consider a division of a network in k communities, and let e be
the symmetric k X k matrix where e; ; is the fraction of all edges of

the network which lie between the communities i and j.

Q=Tre—||e2|| (2.1)

1Ibid., pp. 7-8.
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The modularity as defined by Newman (Eq. 2.1) is the differ-
ence between the fraction of edges which lie between vertices of a
same cluster and the expected fraction of such edges if they were
randomly distributed across the network — but with the same com-
munity structure and same degree distribution. If the fraction of
edges inside a community is not better than random, then Q = 0.
However, values approaching Q = 1 indicate a strong community
structure, as most edges lie inside the communities.

The strength of the metric is that, compared to Breiger’s con-
COR, it is possible to pinpoint inside the dendrogram the exact
point where the partition should be in order to maximize its “com-

munitiness”.

THE FOCUS OF THIS CHAPTER is not to list exhaustively all
algorithms which were built upon the modularity - the interested
reader should turn to Fortunato’s extensive review of the field,*
which does not only cover the modularity but community
detection as a whole - but just as White’s partitionning had
transformed the field into that of the partition, Newman’s
modularity so much refined what “community” had to be about
that its consequences have to be evoked.

Rapidly, people realized that if modularity was used to rate
the quality of a partition, then the best possible algorithms would
surely be those attempting to optimize it. Although Brandes et al.
showed in 2007 that finding a partition with maximal modularity
was N'P-complete,” Blondel et al. came up the year later with the

1 Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3-5
(Jan. 2010), pp. 75-174.
2 Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer,

39



THE SocioLoGICAL CONSTRUCT

Louvain method, a fast and efficient heuristic,® which has since

become a de facto standard in terms of graph partitionning.

ALL ISN’T WELL IN THE LAND OF MODULARITY, as the metric ex-
hibits several flaws which have been largely documented. Of those,
I shall mention three, the first two are tied to mathematical prop-
erties of the expression, and the third one is a more fundamental
disagreement.

First was raised the question of the meaning of modularity
in the context of random networks.> Understandably, partitions
which are selected according to the actual presence of modules
have a legitimate reason to have high modularity, but their is
no apparent justification for the fact that there exist random
networks which may be partitioned in order to achieve a high
value of Q.

Next is the issue of resolution limit. Fortunato has shown? that
itis possible to construct networks which present an unambiguous
community structure which the modularity fails to uncover due
to the fact that it cannot “identify modules smaller than a scale
which depends on the total size of the network and on the degree
of interconnectedness of the modules”

Zoran Nikoloski, and Dorothea Wagner. “On finding graph clusterings with
maximum modularity”. In: Graph-Theoretic Concepts in Computer Science (2007).
1 Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. “Fast unfolding of communities in large networks” In: Journal of
Statistical Mechanics: Theory and Experiment (2008).

2 Jorg Reichardt and Stefan Bornholdt. “When are networks truly modular?” In:
Physica D: Nonlinear Phenomena 224.1-2 (2006), pp. 20—-26.

3 Santo Fortunato and Marc Barthélemy. “Resolution limit in community
detection” In: Proceedings of the National Academy of Sciences 104.1 (2007), p. 36.
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Finally, there remains the notion that communities in social
networks are disjoint — which is inherent to the concept of par-
tition. Although the idea of disjoint sub-structures might have
made sense in the context of White’s blockmodel which aim for
pattern detection, it is absolutely unreasonable in terms of social

community detection.

Ending the Social XOR

Despite the difficulties to define the term community, it is
far easier to find examples of communities just by observing
our social entourage. We have families and co-workers, friends
from high-school and friends from college and more specialized
communities such as the poker group or the tennis club, etc.

The mere possibility of citing all those possible communities
without risking a social collapse points to the major flaw
of communities-as-partition: its disjoint nature. Human have
complex social interactions in different circles which cannot
be translated in terms of partition, except by “forcing” each
actor into one and only one social group. Note that the disjoint
approach still has important uses, in particular in the terms of
pattern detection, as it allows an efficient compression of the
network which enhances the readability of interactions between

patterns.

The ability to find and analyze such groups can pro-
vide invaluable help in understanding and visualiz-

ing the structure of networks.*
1 Newman and Girvan, op. cit.
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However the fact that one actor belongs to one and only one
community is simple nonsense from the point of view of social
network analysis, as would any method which would force one to
“choose” between their family and friends.

IN ORDER TO MODEL more accurately the nature of social com-
munities, the concept of overlapping communities — in which the
one-node-to-one-community constraint disappears — arose quite
naturally. Vastly different methods have been suggested to identify
these enhanced type of communities.

In the continuity of Newman’s work, several authors have ex-
ploited the modularity in some way to try and capture the overlap
of communities. It should first be noted that as defined in Eq. 2.1,
the modularity is of no use in the detection of overlapping com-
munities, as it is clear that the way to achieve the highest possible
value of Q it suffices to consider one community per edge. Never-
theless, there were attempts to tweak the definition or use of the
modularity in order to counter that intrinsic effect of the metric -
a task which is nor trivial nor intuitive, as Fortunato warns in his

2010 review.

If vertices may belong to more clusters, it is not obvi-
ous how to find a proper generalization of modular-

ity. In fact, there is no unique recipe.'

Among other modifications, it has been proposed that
the modified modularity take into account the number of
communities a node belongs to* or that the each node should
1 Fortunato, op. cit.

2 Hua-Wei Shen, Xue-Qi Cheng, and Jia-Feng Guo. “Quantifying and identify-

ing the overlapping community structure in networks”. In: Journal of Statistical
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have a belonging coefficient towards its communities which
should be included into the modularity." Pushing further, some
authors did not rely on the actual metric but on the instability of
the partitions generated by the Louvain method to identify cores
of communities.>

The fundamental flaw of these approach is — in my opinion
- that community detection has recently evolved around a local
maximum centered on the modularity. Although the metric has
a legitimate use in order to partition a network while at the same
time minimizing the densities of cross-cluster edges, their is no
apparent reasons — other than historical - for its use in the detec-

tion of overlapping communities.

ONE OF THE MOST POPULAR technique not inspired by the mod-
ularity is Palla’s Clique Percolation Method? which builds upon
the assumption that the inner density of communities leads to the
formation of cliques - in the graph theory sense of a complete
graph, as opposed to Moreno's sociological clique. Palla’s basic
intuition is that it is unlikely that vertices belonging to distinct
communities are part of a large clique. Two k-cliques, defined as

cliques of size k, are said to be adjacent if they share k—1 nodes and

Mechanics: Theory and Experiment 2009 (2009), Po7042.

1 Vincenzo Nicosia, Giuseppe Mangioni, Vincenza Carchiolo, and Michele
Malgeri. “Extending the definition of modularity to directed graphs with
overlapping communities” In: Journal of Statistical Mechanics: Theory and
Experiment 2009 (2009), P03024.

2 Qinna Wang and Eric Fleury. “Uncovering Overlapping Community Struc-
ture”. In: Complex Networks. 2010.

3 Gergely Palla, Imre Derényi, Illés Farkas, and Tamas Vicsek. “Uncovering the
overlapping community structure of complex networks in nature and society”.
In: Nature 435.7043 (2005), pp. 814-818.
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the union of adjacent k-cliques is called a k-clique chain.

The notion of adjacency of k-cliques is an equivalence rela-
tion which extends the concept of connectivity — the case k = 2
is actually the exact definition of connectivity. This method has
however one drawback, as it has a free parameter k which has to
be set manually, and therefore communities of size smaller than
k are invisible. On the other hand, when setting a small k, the
opposite problem arises: suppose for example that there exist in
a network two 100-cliques which share 10 nodes, if k is smaller
than 10, those two cliques will appear as only one, if k is larger
than 10, it means that no community with less than 10 members

will be found.

FINALLY, ANOTHER APPROACH has revolved around the idea of
finding a quantity descriptive of what a community is in order
detect a community by locally optimizing that quantity. Baumes
et al. proposed’ several ways of weighing a cluster in order to rate
its communitiness: the density of the set of nodes, the proportion of
edges insides the cluster in respect to the number of edges having
one extremity in the cluster and finally the ratio of density located
inside the cluster in respect to that of its neighborhood. They then
propose a heuristic which expands a seed - a set of nodes - of
a graph in order to maximize the chosen weighing function by
iteratively adding and removing nodes to the community as long

as the metric increases.

1 Jeffrey Baumes, Mark Goldberg, Mukkai Krishnamoorthy, Malik Magdon-
Ismail, and Nathan Preston. “Finding communities by clustering a graph
into overlapping subgraphs”. In: International Conference on Applied Computing
(IADIS 2005) (2005), pp- 97-104.
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Incidentally, Clauset independently proposed a similar greedy
algorithm® to optimize a metric similar to Baumes second weight,
with a twist. Clauset notes that the important vertices inside a
community are those at its boundary - i.e. having neighbors both
inside and outside the community. Therefore he specifically tar-
gets the fraction of links from the boundary to the community
with respect to those from the boundary to the rest of the network.
The algorithm he proposes to optimize this quantity is identical to
Baumes’ IS algorithm, although it is specialized to target his local
modularity - it should be noted that he also introduces a parameter
to limit the size of the communities.

Worth mentioning in this section is the work by Moody® in
which he defines a quantity he names “structural cohesion” but
which is nothing more than “node connectivity”. His assertion is
that most subgraph metrics fail to encompass the nature of what a
community is, and that the fact that a community features a solid
structure should be reflected into its mathematical model. How-
ever his proposal does not take into account the relative isolation
of a community from the rest of the network.

>

As we have seen, the history of community and its intersection with
social network analysis has been bumpy. Strong disagreement have

been noticed both in the meaning to give to the term community, as

1 Aaron Clauset. “Finding local community structure in networks”. In: Physical
Review E 72.2 (Aug. 2005).

2 James Moody and Douglas White. “Structural Cohesion and Embeddedness:
A Hierarchical Concept of Social Groups”. In: American Sociological Review 68
(2003), pp. 103-127.
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well as in the ways of identifying them as such in a network. How-
ever, their seems to be a slow convergence towards the idea that, in a
network-centric sense, a community is a set of densely packed actors
isolated from the rest of the network, without constraints imposed
on the relationship between communities — ergo, communities may
overlap. Of course, this assertion is dependant on the actual meaning

given to both the terms densely and isolated.
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Quantifying Communities

Ego will have a collection of close
friends, most of whom are in touch
with one another - a densely knit
clump of social structure.

The Strength of Weak Ties
MARK GRANOVETTER

oTH this chapter and the following ought to be the single
most important contribution of this thesis to the field

of community detection and sociology as a whole. Here I
shall describe the reasoning behind the construction of the
cohesion, a weighing function or metric which rates the quality
- community-wise — of a set of nodes in a network. I shall then
proceed to describe several remarkable mathematical properties
before ending on some thoughts about the fundamental
difference between judging the quality of a community and the

quality of a set of communities.
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Derivation of the Metric

As T have described in the previous chapter, most works on com-
munities have revolved around the idea of dividing a network into
several communities, yet more recently some have taken the dual
approach of attempting to define quantitatively the notion of com-
munity. This thesis is inscribed in the latter school of thought,
for the simple reason that the raw social network data is usually
complex enough to avoid adding a second layer of difficulty to the
problem by trying to look for something one has not even formally
defined.

Let us consider the requirements and constraints one should
impose to such a quantitative definition. In order to start out with a
simple case, let G = (V, E) be an undirected unweighted network.
Our aim is to construct a quality function

Co @ V(G) = [0,1]

which we shall call the cohesion, such that C;(S) = 0 when S is
not a community and C;(S) = 1 when § is a really good commu-
nity.

THE FIRST CONSTRAINT, which is implicitly given above, is that
the cohesion of a set of community should not depend on the
collateral existence of other communities in the network: if not,
the cohesion would not represent an intrinsic quality of the com-
munity, but rather the way it behaves in respect to other commu-
nities.

As T have recalled in the first chapter, Hillery, Poplin or
Stuckey, who have reviewed the notion of communities, agree
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that the notion of community is based on shared traits and social
interaction. In this context, the existence of other communities in
interaction with the one of interest is never mentioned. I would
go as far as to say that the idea that their exist a link between the
quality of a community and the presence of a set of communities
only stems from the tradition of partitionning a network into
disjoint communities.

Next, we should impose on C that it should be local. Obviously,
the people in a group as well as their relationships impact its cohe-
sion. Almost as important, people who are not in the community
but have a relationship with some members influence the overall
cohesion. Thus we are considering, in the elaboration of the met-
ric, the members of the group and its immediate neighborhood.
The question now remains of the impact the rest of the network
should have on the group’s cohesion. I submit that their is no such
impact, and this for two major reasons.

First and foremost, it is intuitive and legitimate to restrict our-
selves to the social neighborhood of the set which is of interest. A
useful example is to consider an individual and the communities
he belongs to; if two people meet in a remote area of the network,
this should not directly affect his communities. Another way to see
it is that the notion of community is an information which exists
emergently in the topology of the network and does not ripple to
those who do not share a connection with the community.

On a practical note, not related to the actual definition of the
community but to its use in social network data is an argument

already raised by Clauset." More and more networks tend to be

1 Clauset, op. cit.
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large in terms of size which makes it impractical to load all the
data in memory just to compute the cohesion of a small set of
nodes. In this context where the network might be prohibitively
expensive or outright impossible to observe, it makes sense to re-
strict the data used to assess the cohesion of a set of nodes to its
neighborhood.

More broadly, one may consider that a social network is nothing
more than a description of a fragment of what one would call The
Social Network', an unmeasurable, exhaustive and dynamic multi-
graph of all social interactions at mankind scale.

For example, Zachary’s famous karate club dataset® is nothing
more than Zachary’s description of a subset of all social interac-
tions, limited in terms of people (members of a karate club in a US
university), nature (friendship) and time (at some point in time
in the 1970s) and therefore can be considered as incomplete and
severely limited snapshot. As such, given that the full knowledge
of The Social Network is unattainable, it makes no sense to add an
arbitrary dependency of the notion of community on the whole of
a dataset which limits are due to measurement constraints rather
than actual social facts.

Those previous points can be formally summarized by stating
that the cohesion of a set S of nodes of G only ought to depend on
the subgraph restricted to S and its neighborhood, as expressed in
Equation. 3.1.

Corsunisn(®) = Co(S) (3.1)

1 No connection to a recent movie whatsoever.
2 Wayne Zachary. “An information flow model for conflict and fission in small
groups”. In: Journal of Anthropological Research 33 (1977), pp. 452-473.
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FINALLY, NOW THAT WE HAVE PINPOINTED the part of the network
which should impact the cohesion, it is almost time to give its
formal definition. What intuitively comes to mind when thinking
about a cohesive set of nodes is twofold: first, it should be dense
for some adequate definition of density. Second it should be iso-
lated from the rest of the network, in the sense their should be a
clear boundary between the content of the group and the exterior
world. Historically, both those notions of density and isolation
have been quantified in terms of edge densities."

This approach has however some limits when considering a
community which may overlap. As an example, the toy network
in Figure 3.1 consists of a group of squares and a group of cir-
cles. Both groups contain the same number (4) of nodes and the
same number (6) of internal edges (connecting two nodes in the
same group). Moreover, both groups have the same number (4)
of external edges (connecting one node inside the group to one
node outside). That is, with a network vision restricted to nodes
and edges, both groups are virtually indistinguishable, and yet one
would say that the circle group is a “good” community, whereas
the square group is a “bad” community — what would be consid-
ered a good community would be the square group to which the
leftmost circle would be added.

IN ORDER TO EXPLAIN THE differences between those two groups,
let us go back in time to 1973 and recall Mark Granovetter’s work.
A few years before his mentor introduced the notion of block-
model, Granovetter - who was one of White’s student - suggested

1 Clauset, op. cit.; Newman and Girvan, op. cit.
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Figure 3.1 Toy Network featuring two sets of nodes of

identical size, featuring the same number of links both inside

the set and towards the rest of the network. Despite those

structural similarities, the set of circles appears to be a better
community than the set of squares.

a radical paradigm shift in the way social graphs were to be an-
alyzed. By that time, of course, it was well understood that all
relationships in a social network did not share nor the same nature
- e.g. family ties, friendships — nor the same intensity.

Granovetter’s contribution® did not lie in the fact that he dis-
tinguished strong ties — between close friends — and weak ties -
between acquaintances, but rather that he was able to exhibit that
the latter play an unequivocal role in the spread of information to
the network.

The macroscopic side of this communications argu-
ment is that social systems lacking in weak ties will
be fragmented and incoherent. New ideas will spread
slowly, scientific endeavors will be handicapped, and
subgroups separated by race, ethnicity, geography, or

1 Mark Granovetter. “The Strength of Weak Ties”. In: American journal of sociology
78.6 (May 1973), pp. 1360-1380; Mark Granovetter. “The strength of weak ties:
a network theory revisited”. In: Sociological Theory 1 (1981), pp. 201-233.
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Figure 3.2 Description of the forbidden triad according to

Rapoport: if A, Band C are such that A shares a strong tie with

both B and C, then B and C must share a tie (be it a strong or
weak tie).

other characteristics will have difficulty reaching a

modus vivendi."

Furthermore, and equally important to our structural endeav-
our, he finally assesses that local bridges - edges which do not
belong to a triangle, that is a set of three pairwise connected nodes
— are weak ties. His reasoning is articulated around the notion of
triadic closure and forbidden triads,” which can be summarized
in the following way: if a node is strongly tied to two other nodes
then those two nodes are tied (Fig. 3.2).

It is important to remember that in Granovetter’s vision, peo-
ple shared either strong ties — between close friends — or weak ties.
Transposing this to the context of communities, we can extend this
notion of triadic closure to take into account the type of ties which
link two individuals: e.g. if A shares a strong family tie towards
both B and C, then B and C share at least a weak tie (of any type).

1 Idem, “The strength of weak ties: a network theory revisited”, p. 202.
2 Anatol Rapoport. “Contributions to the Theory of Random and Biased Nets”.
In: Bulletin of Mathematical Biophysics 19 (1957), pp. 257-277.
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Figure 3.3 Detailed version of the toy network in Figure 3.1.

However, if A shares a strong family tie with B and a strong co-
worker tie with C, this does not provide any information of the

presence or absence of a tie between B and C.

ARMED WITH THIS KNOWLEDGE, let us go back to our previous
toy network and understand how both groups differ. Consider
the two edges e, and e, attached to u (Fig. 3.3), and suppose that
both those edges are strong ties of the same type, then there should
exist at least a weak tie between v; and v, but that is not the case.
Therefore, we can assert that e; and e, are either of different types
or that at least one of those edges is a weak tie.

As a consequence, when considering the group of circles,
the fact that four dotted edges are crossed does not impact the
cohesion of the set because all of those dotted edges are either
weak ties (in respect to the circle community) or ties of different
type. If those are weak ties, they are, in Granovetter’s words,
“a crucial bridge between the two densely knit clumps of close

friend”!
1 Granovetter, loc. cit.
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If those edges are of a different type, then they should not im-
pact the cohesion for obvious reasons. On the other hand how-
ever, this reasoning does not hold when considering the square
community, and this is where a fundamental structural difference
between those two groups arises.

We have seen that the discriminating feature of those
two groups lies in the presence of edges which nature can be
characterized using our extended triadic closure property. As a
consequence, the edges uv, where u € Sand v € V(G) \ S, such
that for all w € S\ { u } the edge uv is not present in the graph
G, should not affect the cohesion. In that case, it is clear that the
quantity which affects the cohesion of a group of nodes is not
only linked to edges but to triads.

GIVEN A GRAPH G we first recall that a triangle is a set of three
pairwise connected nodes. Let S C V(G) be a set of nodes of G, we
now introduce two quantities which capture the inner and outer
triadic connections of the set. We call @(S) the number of in-
bound triangles of S, that is the number of triangles of the graph G
totally contained in S. Similarly, we define the number of outbound
triangles @(S) as the number number of triangles in G which
have exactly an edge in G[S].

D)
&5(S)

[{ u,v,w €S | uv,vw,uw € EG) }|

|{u,v€S,w€ V(G)\Sluv,vw,quE(G)H

RECALL HOW EARLIER we remained vague while asserting that a

community should feature a high density and be relatively isolated
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from the rest of the network. We now have the tools to provide a
formal quantitative definition for both of those terms.

As we have concluded that only taking edges into account is
not sufficient to correctly capture the cohesion of a group, we shall
use a triangular density — as a matter of fact, the transitivity of the
subgraph - in order to describe the strength of the relationships
inside the community.

To rate the isolation from the rest of the network at the bound-
ary of the group, we shall introduce an isolation coefficient which
is the ratio of inbound triangles to the total number of triangles
having an edge inside the group - that is, we both count inbound
and outbound triangles here. The idea behind this metric is that
most triangles adjoining the group should be inside in order to
have a clear cut boundary.

Given that a cohesive community should feature both high
density/transitivity and isolation, we naturally derive from those
two coeflicients the expression of the cohesion C(S) of S in the
graph G (Eq. 3.2).

B y B

Co(S) = (3.2)
(Iil) B (S + &)
PN g y
transitivity isolation

On Figure 3.4, for example, the set of circles contains four
nodes which form two inbound triangles and only one outbound
triangle to the square node on the lower right-hand corner -
the square node on the upper right corner does not form any
outbound triangle since it is only connected to one node of the

2 1

set — which leads to a cohesion of C = 2 x = -,
4 1+2 3
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()

N

Figure 3.4 In this example, the set of circles has a cohesion

=1
C=3.

GOING BACK TO OUR CONSTRAINTS, we can fairly easily check that
if S is a clique in G disconnected from the rest of the network,
C5(S) = 1, therefore the cohesion is 1 when the group is a re-
ally good community. Conversely, if S is a graph with no edges,
which is the worst possible case for a community, then C;(S) =
0. Moreover, the definition of the cohesion only takes into ac-
count S and its neighborhood, from which it comes the locality:
Carsunisn(®) = C6(S).

Finally, the expression is based on the notion of triangles, and
explicitly excludes edges which are not part of triangle and thus
satisfies the last constraint. If we go back to the toy network in
Figure 3.1, we now see that the set of circles is far more cohesive

than the set of squares (C = % <1=Cp).

This provides a quantitative way of discriminating between
groups of nodes which have seemingly identical characteristics
when only taking into account the number of nodes and edges

both inside and across groups.
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Mathematical Properties

Now that we have established the expression of the cohesion and
observed that it complies with the constraints and requirements
we have detailed in the first section of this chapter, let us explore

some interesting mathematical properties of the metric.*

FIRST OFF, remember how Granovetter says that edge which do
not belong to triangles — the so-called local bridges — are weak ties,”
and recall how weak ties are edges which lie between communities.
As such, the presence or absence of such edges should not impact

the cohesion of a set of nodes, which gives us Theorem 1.

THEOREM 1 Let G, be the graph obtained by removing
all local bridges from G. That is, the set of nodes of G,
is V(G,) = V(G), and the set of edges E(G,) is E(G)
restricted to edges which do belong to a triangle of G,
E(G,) = {uv € E(G) | 3w € V(G) s.t. uw € E(G) Avw € E(G) }.
Then, for all set of nodes S C V(G):

Ce(S) = Cg, (9)

Proof When removing the local bridges which, by the definition
given above, do not belong to any triangle, no triangles are added
or removed. Therefore ®(S) = @GA (S) and &(S) = é)GA(S).
Given that the size of the set remains constant, it comes that

Cq(S) = Cg (). O

1 The notations used extensively in this section as well as throughout this thesis
are those of Diestel’s textbook(Reinhard Diestel. Graph theory. Springer Verlag,
Feb. 2006).

2 Granovetter, “The Strength of Weak Ties”, pp. 1364-1365.
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To FoLLOW in the same vein, let us consider an network having at
least two disjoint connected components. Theorem 3 tells us that

the most cohesive groups lie inside each of the components.

LEMMA 2 Let S}, S, C V(G) be two disconnected sets of vertices

((S,XS,)NE(G) = @).IfC(S,) < C(S;US,) then C(S,) > C(S;US,).

Proof Suppose that C(S;) < C(§; U S,) and C(S,) < C(S; U S,),

By’
()
&)’
)
By summing the two lines it comes that:
Q)* , B’
IR

Now, given that §; and S, are disconnected, we have:

< (@(sl) + é(sl)) C(S,US,)

< (@(sz) + é)(82)> C(S, US,)

< (@(81) + &(S5) +B(S,) + é(sz)) C(S,US,)

OGS +B(S) =B(S; VS,)
A(S) + B(S,) = &S, US,)

Therefore,

B’ | By’
+
G 6

< (B, US) +&(5,US,) €5, US))

< @) + @(Sz))2
- (|51|+|Sz|)

3

59



SociaL COHESION

Furthermore, given that |5, |, |S,| > 1, the following holds:

<|S31|>+<|S32|) < <|51|;"Sz|)
From there it comes:
B, BSY _ @) +BS)’
(5 (% (50 + (%

Which simplifies to:

<(|S;|)@<sl> - ('S;')@@))z <0

Hence the contradiction. Therefore, for all §;, S, C V(G), discon-
nected:

C(S,) < C(S; US,) = C(S,) > C(S; US,)

O

THEOREM 3 Let S be a non-connected set of vertices of G. Then
there exist a connected set S C § with higher cohesion C(§') >
C(S).

Proof Let §;,S, € V(G) such that §; US, = V(G) and S, S,
disconnected, then at least one of S; or S, has a higher cohesion
than S per Lemma 2.

If the set with higher cohesion is connected, the result is im-
mediate. If not, the same reasoning applies to that set, which leads
to the conclusion: there exist a connected subset with higher co-

hesion. O
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A commoN MODEL of networks which is often used is the
Erdés-Rényi model of random graph. Although not being
an accurate description of social networks, it is accepted as a
null model to which compare actual social graphs. I deem it
interesting to observe the behavior of the cohesion on such
networks. Let us recall that in this model, the graph denoted by
Gup
having a uniform probability of appearing p independent from

is obtained by randomly connecting #n nodes, each edge

every other edge.

THEOREM 4 Let G, , be a random graph, and § € V(G, ;) a set of

nodes, then:

C(S) =p3|S|——2
3n—2|S| -2

Proof In S, each triad has a probability p* of being a triangle, there-
fore the expected number of triangles in S and the expected num-

ber of triangles of S are given by
_ (18l
A©) =p ( 3 )
_ 3 — tsh (1]
& =pn-|sh("))
Finally, it comes that the cohesion of S is
N
()
o= 1sD(3) + ()

_p S| -2
3n-21S| -2

cS)=p’
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k=2
3n—2k—2
increasing, we observe that the most cohesive group in a random

From Theorem 4, given that the function k — p° is
network is the whole actual network. Put the other way round, it
means that the random graph G,, , does not contain, on average,
any group which is more cohesive that the whole network. This is
to be linked with the fact that in an Erd6és-Rényi random graph the
density is expected to be homogeneous across the network.

THE “POUR GROUPS” TEST was introduced" by Newman and Gir-
van to test the accuracy of their community detection algorithm.
I shall here use the same test to exhibit the pertinence of the cohe-

sion.

Consider a network G of size 4n consisting of 4 groups of size
n. Edges are placed independently between pairs of nodes with a
probability p; for an edge to fall between two nodes of a same
group and a probability p_ . to fall between nodes of two different

groups.

THEOREM 5 The limit of the cohesion of a group S in the “four
groups” test, when [S| = n — +c0 is given by

P’
lim C§) = ————
e p12n + 9p(2)ut

Proof Using the same reasoning that in the proof of Theorem 4,

1 Newman and Girvan, op. cit.
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we have

@®=r3(})
&) = pinplun(})

From there it comes that

Pin(5)
O =P
p?n(g,) +pinp(2)ut3n<2)
And therefore,
5
lim C(S) = Pin
e in + 9p(2)ut

O

What Theorem 5 shows is that, as one would expect, the
cohesion of those groups increases when there density increases
(higher p;,) and decreases when the inter-group density increases

(higher p,,,), as illustrated in Figure 3.5.

To sum UP, this section has listed a few mathematical properties of
the cohesion, which in a sense exhibit that the metric is compatible
with what one would commonly refer to as a community, in a in-
tuitive structural way. The two first theorems establish important
facts regarding the links between the cohesion and the presence or
absence of links in the topology. Theorem 1 does so by showing
that the exclusion of edges which lie between communities are
not detrimental to cohesion of a group and Theorem 3 states that

the most cohesive groups are connected. In layman’s term, if one
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Figure 3.5 Cohesion of the groups in the Newman-Girvan
four group test, as a function of the intra-group probability
P, and the inter-group probability p .

brings a stranger that no one knows in a group, the resulting group

will have a lower cohesion.

Finally, I have presented two results which relate arbitrary
structures which are often used to evaluate algorithms and
metrics. Theorem 4 highlights how an Erdgs-Rényi random
graph is not expected to feature highly cohesive subgroups
and Theorem 5 makes the link between the notion of cohesion
and the popular testing framework suggested by Newman and

Girvan.
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Division and Content

The notion of overlapping community introduces a shift in the
way one thinks about rating communities. For example, behind
the beautiful simplicity of the modularity actually lie two subtly
different measures. First, the modularity encompasses the indi-
vidual and intrinsic quality of each community’s content by com-
paring them to a null model in which edges are randomly rewired
with the constraint that the degree distribution is preserved. Sec-
ond, but no less important, it implicitly judges the quality of the

division into communities.

This makes sense in the context of a partition because both
those aspects are linked, when the content a of community is
changed - i.e. a node is moved to an other community - the
boundaries between communities are affected and therefore the
whole division into communities is changed. There is however no
equivalent notion in an overlapping content , since a node can be

added to several communities.

In the overlapping context, judging the quality of the division
largely depends on the data one wishes to study. On one side of
the spectrum, the case of two completely disjoint communities
$,nS, = @ with very high cohesion form an obvious good division
of the network (§; US,, E). On the other side of the spectrum, two
totally overlapping communities S; = S, = S form a really bad
division of the network (S, E). However, the intermediate overlap-
ping cases are far less trivial.

The factis that, in some occurrences, there is a case for allowing

small fuzzy overlaps in order to model an vertex-based interface
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Figure 3.6 Two overlapping cliques C; and C, of size n; and
n,, where the overlap is |C; N C,| = k.

between groups instead of purely edges. The most minimal ex-
ample of this is that one individual can be part of two groups
which share no other members. On the other hand, there also are
cases where communities should be allowed to overlap at a great
extent — consider for example college classes. Even more extreme,
in some cases, it might be desirable that communities be allowed
to be fully embedded one in another, for example a computer sci-
ence lab is a smaller community inside a larger university com-

munity.

IT 1S IMPORTANT to bare in mind that major part of the argument
above was made with having in mind highly cohesive communi-
ties. Because the cohesion takes into account both the content and
the boundary of a set of nodes, a sufficiently large overlap between
two sets of nodes can lead to the fact that the union of both those
sets are of higher cohesion.

Consider for example a network consisting of two overlapping

cliques C; and C, of sizes |C,| = n; and |C,| = n,, such that there
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intersection is of size |C; N C,| = k (Fig. 3.6).

We therefore have the following cohesions:

(3)

ccy = -

() + = b(;)
(5)

G = e _k)(k)

3 1 2

(5)+ () - ()

CGue) = =
3

The overlap coeflicient of two sets U, V is given by O(U, V) =
[unv|
rn1n|U| |V|
cases as a function of —L and O(C,, C,). Four cases are possible,

On Figure 3.7 we have represented the three possible

although here only three actually appear: in light gray (resp. dark
gray) is represented the area where the larger (resp. smaller) clique
is more cohesive that the union of the two cliques.

In the intermediate gray area, the overlap between the two
cliques is sufficiently low in order for both cliques to have a
higher cohesion than their union. In particular, note how in the
case where both cliques are of the same size, they are still more
cohesive that the union even if both cliques share more than
half there nodes. This illustrate the fact that very highly cohesive
groups are allowed to overlap at a large extent without one being
fully absorbed by the other.

The light gray area is where the union of both cliques have a
higher cohesion than that of the smaller one but not of that of
the larger one. Let us admit that, for obvious reasons, there are

no other subset of this network which have a higher cohesion. We
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Figure 3.7 Overlapping cliques cohesion threshold. Given

two cliques of size n; and n,, having k common nodes, the

cohesion of the union is higher to the cohesion of both cliques

in the darkest area. The cohesion of the union in only higher

than that of the smallest clique in the darker area and both

cliques have a higher cohesion than the union in the lighter
area. Here, n; = 1000.

then obtain that the two best communities of the network are the
large clique and the union of the two cliques, which does lead to a
very important overlap between the best communities but at the
same time preserve the large clique as a community.

Finally, in the white area, both cliques are less cohesive than
their union. The best way of covering the network with commu-
nities is then to choose the whole network as a community. Note
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that this only happens if two conditions are met: both cliques are

of relatively similar size and the almost entirely overlap.

It is however important to realize that this does not mean that
the cohesion has a resolution limit, as opposed to the modularity.
As we have seen earlier, communities which are not connected, or
only connected by weak ties, are always more cohesive than their

union.

LET US GO FURTHER and now consider a case where we relax the
conditions. The setup is similar to the previous case, except that
instead of considering two overlapping cliques we now consider
two overlapping Erdés-Rényi random graphs §; = G, , and
S, = G,,p, sharing k nodes. Furthermore, we suppose that the
probability that an edge appears between two nodes of §; N S, is

p = min(p,, p,). We obtain the following cohesions:

n(%)
sy = 2 /n p
p1(31)+p2(7’12—k)(2)

(%)
ces, = T P
P2( 32) +P2(Vl1 - k)(z)
3(mY 4 p3 (M) _ 53 k
C(SIUSZ) _ p1(3) p2(3) p(3)

(n1+;12 k)

The first thing to notice is that if p; = p,, then the results stated
previously about the clique still hold and that we obtain the same
thresholds as in Figure 3.7. Actually, the only factor which impacts
the variation of the thresholds is the ratio of p, to p,, that is the
relative density & transitivity of both groups.
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Figure 3.8 Overlapping Erd6s-Rényi random graphs cohe-
sion threshold

On Figure 3.8 are represented the different possible cases for
different values of p, and p, — the ratio P2 jncreases from top-left to
bottom right. We have voluntarily limited ourselves to those val-
ues, as more extreme ratios £L lead to results where the cohesion of
one group is larger than that of the union and the cohesion of the
other group is smaller, independently of the values of n, and k. In
other terms, in those omitted cases there clearly are two commu-
nities, one of which is the denser group, and the other one is the
whole network. Back to our figure, we first observe that the sparser
a group is relative to the other one, the smaller the area where that
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group is more cohesive than the union. This makes sense, as the
transitivity of the denser group will tend to compensate that of the
sparser one. Note however that conversely, this area is larger for
the less denser group, which means that it wont absorb the sparser
group unless the overlap is large enough.

One final point to consider is the white area, which we recall is
the area where the union of both groups has higher cohesion that
each of them taken independently. What we can conclude from
this analysis is that although the overlap between two sets of nodes
can impact the cohesion of one of them, the cases where the union
has a higher cohesion only happen for a restricted area of values
of p;, p,> 1, and k.

From a set of both intuitive and sociologically backed constraints we
have constructed a local graph metric which we call the cohesion. The
metric aims to measure the extent to which a set of nodes is a commu-
nity by measuring its density and isolation in terms of closed triads.
Furthermore, we have exhibited notable properties of the cohesion, in
particular that it attains its optimal value in connected components,
that it ignores weak ties which are irrelevant community-wise and that
it does not suffer from a resolution limit. Finally, we have established
the closed-form expression of the cohesion in several cases, among oth-

ers that of interacting cliques and Erdds-Rényi random graphs.
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FELLOWS, A SOCIAL EXPERIMENT
Real-World Validation

The true method of knowledge is ex-
periment.

All Religions are One
WILLIAM BLAKE

DEFINING a new metric of such a subjective notion as “how
community-like is this set of nodes ?” raises the critical
issue of its evaluation - or put another way, how does one defines
the quality of a quality function. Given the subjective nature of the
the notion of community, we have chosen to turn to an empirical
and subjective source to confirm that the cohesion does actually
capture to which extent a set of nodes is a community. In this
chapter, we shall present Fellows®, a large scale online experiment
on Facebook which was conducted in order to provide an empir-
ical evaluation of the cohesion. The main motivation behind Fel-
lows was to quantify the accuracy of the cohesion by comparing it
to subjective ratings given to communities by real persons, rather
than only relying on arbitrary benchmarks.

1http://fellows-exp.com
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Experimental Setting

Fellows was a single page web application which provides
the subject with a short description in several languages -
English, French, Portuguese and Spanish — of the experiment
and its motivations. When a visitor wished to take part in the
experiment, he authorized the application to connect to his
Facebook account and granted access to his personal data on
Facebook. At that point, the application used the Facebook
API' and downloaded the list of the subject’s friends and
the set of interconnections between the pairs of his friends
— that is, for each of his different friends, the list of friends
they have in common - in order to reconstruct his social
neighborhood.

Using a simple greedy algorithm, similar in spirit rather than in
metric to one previously introduced by Clauset,” the application
computed the subject’s communities of friends in their immediate
social neighborhood by recursively adding new friends to a com-
munity as long as the community’s cohesion increases.

It is important to note that all computation was implemented
in JavaScript and ran inside the subject’s browser. This had two
consequences: first, should the experiment turn viral and attract a
lot of users, it could scale using a bare bones HT TP server. Second,
it also meant that no identifiable information was ever transmit-
ted back to the application’s server — the exact pieces of data we
gathered were an anonymous unique identifier for each subject,

along with their age and gender, if those were available.

1 Facebook. Graph API. Tech. rep. 2011.
2 Clauset, op. cit.
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Figure 4.1 Screenshot of the Fellows application displaying a
community and asking the subject to input a rating.

Statistics on each of the communities were then sent to the
server along with an anonymous unique subject identifier and ses-
sion identifier - to be able to exclude subjects participating sev-
eral times. Birth date and gender were also anonymously recorded
when available, both for the subject and his friends.

After those communities were computed, the application dis-
played a list of names and pictures of friends which were present
in the community featuring the highest cohesion (Fig. 4.1). The
subject was the asked to answer the question “would you say that
this list of friends forms a group for you?” — or the relevant trans-
lation in one of the other languages — by giving a numerical rating
between 1 and 4 stars, those options were labelled, respectively,

“absolutely not”, “a little”, “yes” and “absolutely”.

The subject then had the opportunity to create a Friend List on
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Facebook, which is a feature which allows a better control on the
diffusion of the information they publish on the social network:
when the subject would then publish e.g. a status update or a pic-
ture, he would have the possibility to restrict those of his friends
who would be able to see his posting by selecting a Friend List. We
added this feature as an incentive for the subject to take part in the
experiment.

Once the subject had submitted the rating, it was uploaded
to the application server where it was associated to the relevant
community. In case the user had created a Friend List, the name
he had given was also recorded. The user was then presented with
another community and the process was repeated until either 1)
the user exited the application or 11) all communities were rated,
in which case a message was displayed to thank the user for their

involvement.

THE EXPERIMENT WAS LAUNCHED on February 8%, 2011. We pub-
lished a link to the application on their Facebook walls and sent
the URL to several active mailing lists. In less than a day, 500 users
had taken part in the experiment and at the time of writing, par-
ticipation totaled 3310 persons (Fig. 4.2). Although unrelated to
the evaluation of the cohesion, there are several facts which are
interesting in the spread of the experiment. We observed a pattern
of daily increase and nightly stagnation in the number of par-
ticipants, corresponding to Western Europe timezone, which is
coherent with data obtained from Google Analytics' indicating
that of the 15,987 people who visited the website, 8,895 came from

1 A service from Google which provides detailed statistics of visitors access
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Figure 4.2 Evolution of the total number of participants in the
Fellows Experiment through time.

France, 2,098 from the United States, 468 from the United King-
dom and no other country sent more than 350 visitors.
Moreover, the total number of unique users increases by
bursts: observe how on March 23", 2011 the number of users
rises from ~ 1700 to ~ 2000 in a single day after having increased
by 200 in two weeks. We have been able to trace back this sudden
influx of participants to the publication of an article on a high
traffic French blog on that date. Although this event was the
most notable, we have been able to manually track down the
origin of several other bursts — for example an email relaying the
experiment on a large mailing list on February 14, 2011, a tweet
by an influent twitterer on February 28%, 2011 or a comment

posted on an high-traffic blog on July 4th.
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Figure 4.3 Densities of ages of male (blue) and female
(magenta) subjects.

As stated above, during the first months of the experiment,
when a subject started the application for the first time, a message
was automatically published on their Facebook wall to invite their
friends to participate. Despite that fact, during that period, less
than half the incoming traffic on the website came from Facebook.
We conclude unfortunately that either the message was not ap-
pealing enough or that Fellows did not have the same viral poten-
tial as, for example, a double rainbow. This facility was however
restricted by Facebook during the course of the experiment - it
was considered as a form of spam — which further decreased the

visit count.
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Figure 4.4 Distribution of the number of friends of the
subjects.

IN SOME CASES, the contributions were corrupted or incomplete
- e.g. the user temporarily lost their internet connection. Thus,
94 contributions had to be discarded, leaving 3216 valid contri-
butions (2303 males, 830 females and 83 persons of undeclared
gender). The participants were on average 29.99 + 8.92 years old
- male subjects: 30.31 + 8.69 yo, female subjects: 28.92 + 9.34
(the age distributions for male and female subjects are given in
Figure 4.3).

On Facebook, the number of friends one might have cannot
exceed 5000 — a limitation added so that users would only add
“real” friends. The distribution of the number of friends is hetero-
geneous (Fig. 4.4), with 10% users having less than 74 friends and
90% users having less than 612, the median being at 244 friends
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and the average number of friends is 310.

These numbers have to be contrasted with those obtained on
the globality of the network, it was reported by Ugander et al. that
the average number of friends of a Facebook user was of 190 and
that the median of friends was of 99 as of May 2011." The main
reason why we observe those differences in metrics is that there
is a unavoidable indirect bias toward higher degree in any such
experiment. Given that the incentive of the study was to create
Friend Lists on Facebook, those most likely to take part in Fel-
lows were people who make an active use of Facebook and have
a larger number of friends to categorize. On the other hand, we
consider that this bias has a low impact on our conclusions for
the simple reason that the people who sporadically use Facebook
have a higher probability of having incomplete and therefore non

representative networks.

Cohesion and Ratings

This section presents the most fundamental result around which
my thesis is articulated, namely that the cohesion captures well
the extent to which a set of nodes in a network is a community.
Humbly, I consider it to be the climax of my work during this
thesis, as everything up to this point builds up to it and everything
after only holds because of it.

This being said, the 3216 valid subjects lead to the detection
of 86,691 communities, computed as stated before by attempting

1 Johan Ugander, Brian Karrer, Lars Backstrom, and Camero Marlow. “The
anatomy of the facebook social graph”. In: Arxiv preprint arXiv:1111.4503 (2011).
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to maximize their cohesion. Because a subject could stop the ex-
periment at any time, only 62,863 of those communities actually
received a rating, yet it is notable that 76% of the subjects rated
more than 9o% of their communities. There are mainly two expla-
nations to those forfeitures, first that the user felt the communities
they were presented with were of poor quality - the non-rated
communities have on average a cohesion C = 0.105 + 0.103 -
and second, that the subject had too many communities to rate —
although the number of communities was bounded, if a subject
had a lot of friends, that bound could have been be sufficiently
high to discourage him.

Out of the 62,863 rated communities, 25.0% received a rating
of 1 star, 21.3% received 2 stars, 22.2% were rated 3 stars and 31.4%
were awarded 4 stars. It is important to note here that the aim of
the experiment was not to obtain the highest possible proportion
of 4 stars ratings, as this would have just given a way to evaluate
the quality of the rather simple greedy algorithm. Our interest lies
in the evaluation of the cohesion, and, in that context, obtaining
low ratings is perfectly acceptable — and desirable - as long as they
correlate to the cohesion.

WE SHALL NOW EXHIBIT the experimental link between a purely
structural metric, the cohesion C, and the subjective appreciation
of a community’s pertinence expressed as the average rating R
given by users. On Figure 4.5, we discretize the cohesion of all
communities in increments of 0.01 and we represent the average
rating obtained by communities in the same increment. Both
quantities are rank correlated (Spearman’s correlation p = 0.91,

p-value = 4.3 x 10738). Thus, when the cohesion increases, so
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Figure 4.5 Average rating obtained by communities as a
function of their cohesion.

does the average rating, and conversely. Furthermore, log C and
logR are linearly correlated (Pearson’s correlation r = 0.97,
p-value = 3.2 x 107%). A consequence of the strength of this
correlation is that we can provide an equation linking the ratings

1
to the cohesion in the form R « C3.

On Figure 4.6 we plot the distributions of cohesions of each
of the four sets of communities of rating 1, 2, 3 and 4 stars. From
this, we observe that the higher the rating, the higher the prob-
ability of obtaining high cohesions. Therefore, we conclude that
the cohesion in a pertinent measure to evaluate the communiti-
ness of a set of nodes, as it is highly correlated to its subjective

evaluation.
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Figure 4.6 Normalized reversed cumulative distribution of
cohesion for communities rated 1,2,3 or 4 stars (P[C >
X|rating = NJ).

FURTHERMORE, IT IS INTERESTING to look at the relation between
the ratings and other graph metrics, such as the density of the con-
sidered set. On Figure 4.7 we plot the average rating obtained for
communities of a given density. Groups having a density greater
than 0.5 tend to have the same average rating (between 2 and 3
stars). There seems however that for densities smaller than 0.5 the
rating increases with the density. To explain this fact, consider that
the cohesion of a set S is bounded by its transitivity. Given that
A < mﬂ, where m is the number of edges in S, there exist
a bounding relation between density and cohesion as exhibited in
Figure 4.8. Thus, the lower ratings of the sparser communities can
be explained by the fact that those have low cohesion, which itself
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Figure 4.7 Average rating obtained by communities as a
function of their density.

is highly correlated to ratings. Conversely there are communities
with high density but low cohesion, which explains why high den-
sity does not imply high ratings.

For similar reasons, communities having a low clustering coef-
ficient or low conductance display low ratings, because the cluster-
ing coeflicient imposes a higher bound on the number of triangles
in the set of nodes and the conductance imposes a higher bound
on the number of outbound triangle. Yet again, high values of clus-
tering or conductance do not yield high ratings, because the value
of the cohesion can span a far greater range. For example, a com-

munity with high clustering but a lot of outbound triangles might
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Figure 4.8 Kernel density estimation of cohesion as a function
of density.

lead to a lower cohesion than that of a set with lower clustering but
lower number of outbound triangles. As such, we assess that the
cohesion leads to a more refined way of rating communities than

by solely considering density, clustering or conductance.

ALTHOUGH WE HAVE said earlier that the aim of Fellows was no to
evaluate the quality of the simple greedy algorithm, it is neverthe-
less interesting to try and understand why it did not lead to high
ratings all the time. The answer to that is complex, but a direction
is to notice is that the algorithm assigns all nodes of degree greater
than 3 to at least one community. In practice, there is no reason

that all nodes belong to at least one socially cohesive community:
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Figure 4.9 Distribution of (left) the number and (right)
cohesions of people in families, lists, and all data.

for example, a social neighborhood might be constituted of an het-
erogeneous set of communities linked through weak ties and/or
sparse meshes. Moreover, the social topology on Facebook and in
the real world are not isomorphic, not only because people tend to
add more distant acquaintances as Facebook friends, but also due
to the presence of non-human profiles representing brands.

Another interesting bit of information which was revealed in
Fellows is related to the structures of families. Since subjects had
the possibility to create Friend Lists on Facebook, and to do so
had to input a descriptive label which was subsequently recorded
on the server, we extracted the set of communities which had been
given a label hinting that the people in the community formed a
family and observed their sizes and cohesion. This gathering of
those family communities was done by first selecting the subset of
lists with name containing “fam” - as it matches “family”, “famille”,
“familia”, etc. — and then manually filtering this subset to remove

any false positive.
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On Figure 4.9(a), we have represented the reverse cumulative
distribution of sizes of such Family communities, along with the
same metric applied to all communities which led to the creation
of a list, and the whole dataset. Notice how there are relatively
fewer large families than large communities in the two other sub-
sets. More interestingly though is the fact that there when con-
sidering all communities there are a higher proportion of smaller
communities than for families. As a matter of fact, except for a
couple of outliers, family sizes seem to be normally distributed
around a mean size of 9.

Similarly, we have represented on Figure 4.9(b) the reverse cu-
mulative distribution of cohesions for those communitie. We ob-
serve that, as we could have expected, families form more cohesive
communities than those in all other cases. This not only means
that family members tend to add each other on Facebook, but
that there are few non family mutual friends between two family
members. In other words, the data suggests that people do not mix
friendship and family together much.

>

Through the use of a large-scale Facebook experiment that attracted
3310 to take part in the experiment, we have seen that the cohesion
is highly correlated to the subjective perception of communities by
users. As such, we conclude that the cohesion is a good measure of
the extent to which a set of nodes in a network form a social com-
munity. Anecdotally, we have also observed that families, in a sense
the epitome of communities, tend to be the most cohesive groups in a
social neighborhood, which further comforts our use of the cohesion

to rate communities.
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A GLIMPSE OF COMPLEXITY
Party Planners are Here to Stay

It is a mistake to think you can solve
any major problems just with potatoes.

Life, the Universe, and Everything
DouGLAs ADAMS

EARLIER we have seen that the cohesion captures quantitatively
the subjective perception of the quality as a community of a
set of nodes in a graph. In this context, it is only natural to attempt
to find the most cohesive subgraphs of a given network. We shall
first prove that this problem is N'P-hard by reducing the clique
problem. In a second time, we will establish that the dual problem
of finding the less cohesive groups — with a given size — of a graph

is N'P-hard.

Max-COHESION is N'P-hard

In this section we examine the problem of finding a set of vertices
S € V(G) of maximum cohesion in a graph G, i.e. for all subset
S C V,C(S') < C(S). We have shown in Theorem 3 that the set
of vertices with maximum cohesion in a given network is con-

nected, therefore our problem simplifies to finding a connected
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set of vertices with maximum cohesion in G, which associated

decision problem we will call CONNECTED-COHESIVE.

CONNECTED-COHESIVE

Input Agraph G=(V,E),A € Q,1 €[0,1]
Question  Is there a subset connected S of V such that
(S > A2

WE SHALL NOW PROCEED to show that CONNECTED-COHESIVE
is NP-complete. First note that given a set S of vertices of G, it is
possible to verify that S is a solution of CONNECTED-COHESIVE
by computing its cohesion, its size, its connectivity and the
minimum degree of its vertices, all in polynomial time. Therefore
CONNECTED-COHESIVE is in NP.

In order to show that CONNECTED-COHESIVE is NP-
complete, we will show that we can reduce CLIQUE to it. We recall
that CLIQUE is the well known problem of finding a complete

subgraph of size k in a given graph.
CLIQUE

Input Agraph G=(V,E), ke N,k < |V]
Question  Is there a subset S of V such that |S| = k and
the subgraph induced by S is a clique?

Before going into the details of the proof, let us provide a
rough sketch. When looking for a clique of size k in a graph, we
are looking for the existence of a structure in the graph which
does not a contain a non-edge — that is, a pair of nodes u, v such

that uv & E. Therefore, in order to penalize the choice of such
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a non-edge, we will transform an instance of CLIQUE into an
instance of CONNECTED-COHESIVE by connecting all such u
and v and adding a large number of triangles resting on uv. That
way, all sets containing a non-edge will have an arbitrarily low
cohesion, far lower than that of a clique from the original graph,
and we will hence be able to find cliques of given size using a
cohesion threshold.

More formally now, let (G = (V, E), k € N) be an instance of
CLIQUE"'. We can assume that G is connected (if not, we use the
following reasoning separately on each connected component of
G).

In order to construct an instance (G' = (V',E’),1) of
CoNNECTED-COHESIVE, we take several steps. First, for all non
connected nodes u and v in G - i.e. for all non-edges - we add
3n(§) nodes (W?V)1§i§3n(§) and then connect u and v to each of
the w;", effectively adding 3n(:) triangles including the edge
uv to the network. Finally, we construct a ring with the wi", by
connecting together w;” and w(”i‘;l) mod 3n(") in the following,
we shall refer to such a structure stemming from uv as a sprout
and write Sp(uv) = (W;W)lsiSBn(Z) the sprout resting on uv.
This process is described in Algorithm 5.1 and illustrated by

Figure 5.1.

LEMMA 6 There exists a clique of size k in G if and only if there ex-
k=2
3n—2k-2"

ists a connected group of vertices of G’ with cohesion A >

1 We consider here that |G| > 2 and k > 2, although this is not exactly CLIQUE,
this problem is clearly N’P-complete, given that the complexity of CLIQUE does
not arise from those small values.
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Input: G = (V,E),k € N
V=V
E :=E
for uv € V* \ Edo
E « E' u{uv)
fori=1to 3n(;’) do
V< V' u{w)
fori=1to Sn(g) do

E' < E' U {uw!”, vw!" wi'w }

i 7 (i+1) mod 3n(;’)
k=2

! / —
return G' = (VU W, E"),A = Py

Algorithm 5.1 Transforms an instance of CLIQUE into an
instance of CONNECTED-COHESIVE

uv
uv | W, L], uv
Wi P Wik
- uy
uv w
w n
2 \( 3n(3)—1
uv
uv w
w n
1 3n(3)
u .......... ‘V

Figure 5.1 Illustration of adding a sprout to uv using
Algorithm 5.1. At this step, we join u and v, add 3n(§)
triangles resting on uv - i.e, 3n(;’) triangles of the form
(MVW;W)ISi53n(;)' Finally, we join the extremities of those
triangles in order to form a ring around uv.
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Proof Let us first prove the implication. Let K C V, be a clique of
size |K| = k in G. Given that no node or edge are deleted when
constructing G’, G is a subgraph of G’ and thus K is a clique in G’
and @ (0 = (¥).

Moreover, by construction, G'[V] is a clique and for all u in K,
the neighbors of u are also in V. Therefore, each edge in K forms
one triangle with each vertex in V'\ K, which leads to &/ (K) =
(:) (n — k). Finally, this gives a cohesion':

() k-2

(’3‘)_,_(’2‘)(”_]() - 3n—2k -2

Cy(K) =

Conversely, we shall write C, = , we will now prove

that if S C V' is a connected set of vertices such that C(S) > C,,
then there is exist a subset K C S which is a clique of size larger
than kand K C V. In effect, C, will serve as a threshold in cohesion
above which we will be able to establish that there is a clique of size
kin G.

We will now suppose that there is a connected set S such that
S C V' and C(S) > C,. First note that |S| > 3, because by defini-
tion, if |S] < 3, C(S) = 0 which would lead to a contradiction.

We will split S into a union of two disjoint subsets S = Sy, U S,
Sy NS, = @, where Sy, contains the elements of S which are in V'
- in the original graph, and S, the elements of S which are nodes

w!"" which were added during the instance transformation - nodes

1 Note that since a n-clique is a G, ;, this is the same equation, with p = 1, that
we obtained in Chapter 3 for the cohesion of subset of an Erdés-Rényi random
graph
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which are in sprouts. Based on this decomposition, we will con-
sider several cases and show that either they lead to the presence

of a clique of size at least k in the graph, or to a contradiction:

|Sy| >0
CASE1. 4 |S4/ =0
Yu,v€ S,uv € E

In this case, Sisa clique of G of size |S|. As we have seen previously,

we have a cohesion:

S| -2
C(S) = _1Sl=2
3n—2|S| -2
Let fbe the function defined as flx) = 3n:§_ 5 From there it comes
that:
o  3n-6
ox  (3n-—2x-2)
Since n = |G| > 2, g—i > 0, and fif increasing. Therefore, since

C(S) > C;, then S is of size |S| > k, and thus contains a clique of

size k.

ISy >0
CasE2. § |S4] =0
Ju,ve S, uv & E

Here, S is included is G but is not a clique of G. It is however by
design a clique in G’. Moreover, since we include at least a non-
edge which belongs to Sn(:) triangles, the number of outbound
triangles of S is at least equal to & > (lil)(n - |S|)3n(:). Therefore
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the cohesion of S is bounded by:

)

() + (e =18 +3n(2)

C(S) <

For reasons similar to the previous case, this quantity increases as
k increases, therefore the maximal value is obtained for k = n, it

comes:

3
(:) +3n
1

<
14 3n
< mkian

() <

As a consequence, C(S) is smaller than C, for all values of k - in

particular, it is smaller than min, C;, = C; = Ls - hence the

3n—
contradiction. Therefore, if S is a connected set such that S € V'
and CS > C, then S cannot be contained in V and include a non-

edge.

Syl=0
CASE 3. ISyl
1S4l >0

Let us now consider the case where S is included in sprouts. Note
that since S is connected, it is fully included in one sprout — if not, it
would contain atleast a node present in V, which would contradict
|Sy| = 0. Therefore, there exist u, v such that § C Sp(uv).

By construction, the sprout Sp(uv) is a ring, and as such does
not contain any triangles, therefore S does not contain any triangle

and therefore C(S) = 0 < min; C;, hence the contradiction.
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Finally it comes that if S is a connected set such that S C V'
and C(S) > C;, then S cannot be a subset of the nodes which were
added during the transformation.

|Sy| >0
CASE 4. 4 [S41 >0
Yu,v€ Sy, uv € E

More generally, S consists in this case of a clique of G and a number
of nodes which are contained in sprouts. We shall proceed in two
steps here. First we shall suppose that all nodes in S, are inside
one sprout and then we will generalize this result by lifting this

restriction.

Suppose that there exist an edge wuv such that
S, ¢© (W?V)1§i§3n(;’)' Since S is connected and that S does
not contain any non-edge, it comes that exactly one of the two
nodes u and v are contained in S. Without loss of generality, we

shall suppose that this node is u.

From there we derive the number of triangles of §

which are exactly those contained in S and those of the

uv, uv
Sw
i 7 (i4+1) mod 3n(;’)

are in S,. The maximum value of the cohesion

form uw , where the two nodes w;,“’ and

uv
(i+1) mod 3n(§)

is attained when taking |S,| nodes in a sprout such that they

form a chain w? ... w* . In that case, the sum
i (i+1S41) mod 3n(7)

@A(Sy) + &(S,) = 3|Sy| - each of the triangles uvw!” is
outbound, and there are one outbound and one inbound triangle

per edge in the chain, leading to 3|S,|. Therefore we can provide
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the following bound on the cohesion of S:

(*V)+1s,1-1 (57415, 1-1 _
(3\5v|+|sA|) (‘SVI)+(|S3V‘)(n—|SV|)+3|SA| if|S4] > 1

C(S=(SyUSy)) < (\Svl)s 3(|SV|) 2
1 : if1S,] =1

(77 T+ oo

The expression when |S,| > 1 decreases when |S, | increases,
therefore it is minimal when |S,| = 2. Moreover, both the co-

hesions when |S,| = 1 and |S,| = 2 are strictly smaller than

()

——a——— = C(Sy). The case when |S, | = 1is trivial since it
oy~ OV 154!
has the same numerator and strictly higher denominator, whereas
the case where |S,| = 2 is more tedious but can it can be veri-
fied using a Computer Algebra System such as Mathematica that

Eq. 5.1 holds for |Sy/| > 3, | V] > 3.

(|83V|) +1 (IS3v|) +1 (Ingl)
(%) () + - 1syh +6 ) () + (5= 1syD

(5.1)

As a consequence, if S is a connected set which contains both
nodes in the original graph and the sprouts, does not contain non-
edges and is of cohesion C(S) > C,, then C(Sy) > C(S) > C,.
Therefore, the cohesion of the restriction of S to V'also has a higher
cohesion than the threshold C;, and from CASE 1 it comes that S,
(and as a consequence S) contains a clique in V of size larger than
k.

It is easy to generalize to the presence of node in

multiple sprouts by noticing that the quantities @)(S,)
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and &(S,) are linear in [S,|. Therefore, if we consider
that S, is divided into Sy = (sp))ijc, disjoint subsets
which are spread over s sprouts, then the previous formulee
still hold and @(S,) = Zj @(spj) < |S4] — 1 and
A(S,) + B(Sy) = Zj(@(spj) + é(spj)) = 3|S,|. Using exactly
the same reasoning as above, the cohesion of the resulting set
increases when the size |S,| decreases, and as a consequence,
C(Sy) = C(S) > C,. Finally, we conclude that in this case too, S
contains a clique in V of size larger than k.

ISy >0
CASEs5. § [S41 >0
Ju,ve S,s.t.uv ¢ E

The last remaining case is when S contains both nodes of the orig-
inal graph and the sprouts, and contains at least a non-edge. We
build upon CASE 4 in a way similar to how we have added non-
edges to CASE 1 in CASE 2. From there, we obtain an upper bound
of the cohesion in the form:

(51) + 31841 - 2 (1) +318,1 -2

<|sV|J3r|sA|) (|S3v|) + ('SZVl)(n —I1SyD + 3n(:)

CS) <

Given that there is at least one non-edge, this one belongs to at
least 3n(:) triangles, and as such the sum of numbers of inbound
and outbound triangles is at least 3n(:), hence the denominator.
The 3|S,| — 2 at the numerator stems from the fact that each non-
edge forms one inbound triangle with a node in S, and both the
extremities of that non-edge forms a triangle with an edge between

two connected nodes in S ,.
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This quantity decreases like IS_II’ and its maximal value is at-

A
tained for |S,| = 1, that is:

(|S3v|) +1 (|S3v|) +1

(ISV3I+1) (|S3V|) + ('SZ"')(n —1SyD) + 3"(:)

C©S) <

In turn, this quantity increases as |Sy/| increases, and therefore is

maximal for [Sy| = n:

(2) +1 (’;) +1
() () +3n()
1

<
14 3n
< mkian

oS <

Hence the contradiction. Therefore, if S is a connected set such
that S C V' and C(S) > C, then S cannot contain both a non-edge

and nodes in sprouts.

FINALLY, we have shown that all connected sets S such that S C
V' and C(S) > C, are either cliques of size k contained in V, or
supersets of cliques of size k themselves contain in V. Therefore
we conclude that if there is a connected set of cohesion C(S) = C;,
in G, then there is a clique of size k in G. O

THEOREM 7 CONNECTED-COHESIVE is NP-complete.

Proof Per Lemma 6, there exists a clique of size k in G if and only

if there exists a connected subset of vertices of G’ of cohesion

3n—-2k-2’
then there is a

A2 3nk;; 5~ Since a clique of size k has exactly cohesion
k=2

if there is a set of cohesion larger than
3n—2k-2
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clique of size k and thus a set of cohesion 3nk;i >
k=2

if there is a set of cohesion A = EETE then this set is of
k=2

T and thus there is a clique of size k in G.
Therefore there is actually an equivalence between the existence

. Conversely,

cohesion A >

of a clique of size k in G, and the presence of a set of cohesion
k=2

3n—2k—2

polynomial time, CLIQUE is reducible to CONNECTED-COHESIVE

in G’. Since the transformation from G, k to G’, A runs in

and therefore CONNECTED-COHESIVE is NP-hard. Given that
CoNNECTED-COHESIVE is also in NP, the problem is thus
NP-complete. O

THE ASSOCIATED DECISION PROBLEM being NP-complete, the
problem of finding a set of vertices with maximum cohesion is
NP-hard. Note that the problem of finding a set of vertices of
maximum cohesion containing a set of predefined vertices is also

NP-hard, by an immediate reduction.

k-MiIN-COHESION is N'P-hard

Dual to the problem of finding a subset with maximum cohesion
is that of minimizing the cohesion, which can be useful when try-
ing to identify socially weak subgraphs in highly cohesive net-
works. We formulate the k-Min-CoHESION problem in the follow-

ing way:

k-MiIN-COHESION

Input A graph G = (V,E)
Output A subset S C Vsuch that |S| =kandVS CV,
C(S) < C(S
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In order to prove that k-MiN-CoOHESION is N'P-hard, we will
show that the problem of finding a set of nodes of size k with
cohesion 0 is N'P-complete. First note that one can check in poly-
nomial time that a set of nodes has cohesion 0, thus the problem
is in N'P.

Now notice that if a set of nodes has cohesion 0, then in partic-
ular @(S) = 0, which means that S does not contain any triangles.
Conversely, if @(S) = 0 then C(S) = 0, therefore finding a set S
of size k such that C(S) = 0 is equivalent to the problem of finding
a triangle free subgraph of size k. The property of being triangle
free is hereditary: all subgraphs of a triangle-free subgraph is itself
triangle free, and is non trivial: there are infinitely many triangle
free subgraphs, therefore the problem of finding a triangle free
induced subgraph is N'P-complete.’

Although this chapter might seem dry at first glance, it establishes two
fundamental results in cohesion theory. Both the problems of, given
a graph, finding the most cohesive sets and the less cohesive (with
fixed size) sets are N'P-hard and as a consequence, there is no known
fast algorithms to solve those problems. This has broad implications in
social network analysis, as maximizing the cohesion is the way to find
the best communities in the network. Similarly, the dual problem is
interesting in itself, as it would allow to pinpoint the weak underbelly

of a social network.

1 John M Lewis and Mihalis Yannakakis. “The node-deletion problem for
hereditary properties is NP-complete”. In: Journal of Computer and System
Sciences 20.2 (1980), pp. 219—230.
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CoMMUNITIZE, COVER, COMBINE

Pick me! Pick me! Me! Me!
Shrek
DoNKEY

GIVEN that the problem of finding groups with maximal co-

hesion is N'P-hard, in this section we introduce a heuris-
tic algorithm, CommUNITIZE which attempts to find an optimally
cohesive group containing a given node. We then build on this
algorithm to propose a second algorithm, Cover, which outputs
a covering of a given network into communities. Then, to deal with
the overlap between communities which might prove troublesome
we introduce COMBINE to detect which communities should be
merged into one community. Those three heuristics are the build-
ing blocks for C*, our community detection algorithm.

COMMUNITIZE around a node

As stated earlier, in Fellows we used a simple greedy algorithm in
order to find a set of nodes with high cohesion containing one seed

node. One of the main reasons why a greedy algorithm cannot lead
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to optimally cohesive communities — other than the fact that the
problem is N'P-hard - is due to the fact that if the original set of
nodes resides inside a very cohesive community then chances are
that at some point in the iteration of the algorithm there could be
the need to lower the cohesion in order to go through a barrier of
transitivity.

In order to overcome the limitation of this approach, we now
present an enhancement of the greedy algorithm specially tailored
for the problem of maximizing the cohesion. Suppose that we have
a set of nodes S and we wish to add nodes to S in order to poten-
tially find a new set §’ 2 S such that C(S") > C(S). One obvious
solution, and this is the greedy approach, is to start by adding to S
a node which increases its cohesion.

When one thinks about the way the cohesion is defined, it is
possible that no node in the neighborhood of S can increase its co-
hesion on its own, but that adding several nodes at the same time
might. There are in fact two ways of increasing the cohesion, either
increase transitivity or increase its isolation, or a combination of
thereof.

ONE SOLUTION is then to explore the possibility that adding to
S a node which increases its transitivity might lead to a higher
cohesion in the end, if this turns out not to be as successful as
hoped, then we can always revert back to S and try with another
unvisited node. One way of understanding this heuristic is that
the newly added node allows us to dig into the heart of the com-
munity, setting its cohesion aside temporarily.

Now let us consider the idea of adding a node to S in order to

isolate S from the rest of the network. Unfortunately this is a rather
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1: function ISCANDIDATE(S C V,u € V)
2: return false if u & N(S)
return falseif u € S

3:

4 return true if @(S) = 0 and &(S) < &S U {u})
50 return false if @(S) = @S U {u})

6: return true if C(SU {u}) > C(S)

7: return true if @S U {u}) > Ii:—i AS)

8: return false

Algorithm 6.1 Checks if a node u is a valid candidate to add
to S

useless heuristic given that the main idea behind increasing the
isolation is to construct the boundary of the community. In this
context, there is no need to add a node if we have no intention of
going further into that node’s neighborhood.

We shall say that u is a candidate for S if adding it to S either
increases the cohesion or the transitivity. Moreover, we add a few
other constraints which are detailed in Algorithm 6.1. We first
check that the node is a neighbor of our seed group because as
we have seen before the community with maximal cohesion is
connected and we then verify that the node has not already been

added to the community.

After those two validations, we add a special case on Line 4
which acts when the group does not contain any triangles. In that
case the node is a candidate only if we increase the number of
outbound triangles by adding it, the rationale being that we are in
presence of a sparse group which could benefit from new triangles.
Therefore, adding a node which increases & allows us to have

more triangles to choose from at a later step and go deeper into
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what could be the heart of the community.

On Line 5, we forbid nodes who do not create any triangles
inside the community to be added. The main reason the two previ-
ous constraint are added is to be able to deal with the cases where
IS| < 3, in which case S does not contain any triangle and we
need to bootstrap a beginning of community. Finally, we mark as
candidates the nodes which increase the cohesion (Line 6) and the

transitivity (Line 7).

AT THIS POINT, we are now able to select candidates in the net-
work to be added to a set of nodes. The task at hand is then to
discriminate which of those nodes is the best possible candidate.
To that effect, given a set of nodes S and its candidates C, we shall
introduce an order <g on the elements of C. We first define the
importance I(u) of a node u as a tuple consisting of the cohesion
of the set if u was added, the transitivity of the set if u was added,
the number of outbound triangles that # would add and finally the
degree of u (Eq. 6.1).

@S {u})

I(u) = <C(SU{u}), IS[+ 1

&S U{u)) - é)(S),d(u))
(6.1)

We then define the order <g on C in terms of the lexicograph-
ical ordering of the values of I. Given two candidates u,v € C,
u <g vifand onlyifI(u) <., I(v). This means that we first compare
the cohesions after adding each node, if one node has a higher co-
hesion then it ranks higher than the other one. In case of equality,

we move on to compare the transitivities, and so on.
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The third and fourth component of I deserve an explanation.
Suppose that u and v are such that adding both nodes to S lead to
the same cohesion and transitivity, then two cases present them-
selves: first, the cohesion may be different from 0, in which case
the number of new outbound triangles is the same, given that the
transitivity is the same.

Second, and more interesting, is when the cohesion after
adding u or v is 0, there & (SU {u}) and & (SU {v}) may be
different, in which case we decide that the node which would
create the larger number of outbound triangles is the best
candidate.

Bare in mind that the underlying idea is to always increase
the cohesion, in which case it can only be 0 in the first rounds
of adding new nodes to the initial seed, thus adding nodes which
create a lot of outbound triangles is a way of digging into the heart
of the community.

Finally, the last component serve a similar purpose, in the
event that the previous three metrics were equal, we choose to
select as best candidate the node which addition will bring in the

larger amount of potential candidates.

WE Now HAVE the blocks to build the ComMUNITIZE algorithm
(Alg. 6.2) which we define recursively. Given a graph G and a set
of nodes S we first establish the list C of nodes of G which are
candidates with respect to S. Then, for each node u of C, chosen
in decreasing order of <y, if we have not already visited that node,
we compute the best community containing S U {u}. Finally, we
return the community with the highest cohesion in the set {S} U

Uyec COMMUNITIZE(S U {u}).
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1: function COMMUNITIZE(S C V)

2 B« S

C < { u € V| 1sCANDIDATE(S, u) }

for all u € Cin decreasing order of <g do

if u is not marked as visited then

mark u as visited
B’ «— CoMMUNITIZE(S U {u})
if C(B) < C(B’) then

B « B’
return B

e oY v h @

Algorithm 6.2 CoMMUNITIZE expands around a set of nodes
to find the best enclosing community

There are several tweaks and enhancements which can be
added to ComMUNITIZE, which have been omitted for the sake
of clarity. For example, instead of comparing only the cohesion
at line 8, we can discriminate between communities of same
cohesion by always choosing the larger one.

More importantly, computing the cohesion of a set of nodes
has a non negligible cost, as it is done in ©@ (|S U M (S)|3> - as
it involves counting the number of triangles in a graph of size
|SU N(S)|. It is however not mandatory to recompute the cohe-
sion at each step, as we can just track the variations induced by
the addition or deletion of a node. To that effect, we need to keep

count of the following quantities:

the number of inbound triangles @);

the number of outbound triangles &;

for each node u, the number of inbound triangles which would
be added if u was added to $: @), = @ (SU {u}) — A(S);
and similarly, the number of outbound triangles which would
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be added if u was added to S: &, = & (SU {u}) — &(S).

We can then write an UPDATESET function which adds or delete
a node u to S and maintains the correct values of @ and &. Let
0 = 1 when u is added and § = —1 when u is deleted. Note that
if the list of neighbors N{(u) are sorted (e.g. in degree order, or by
identifiers), it is possible to iterate in linear time over the intersec-
tion of two neighborhoods. Overall, we can bring the complexity
of the update down to @ (ZveN(u) d(u) + d(v)).

function UPDATESET(S C V,u € V, 0)
@ < B®+i®,
& < é+8(éu—@u)
for all v € M(u) do

for all w € N(u) n N(v) do
if v € S then

®, < ®, +6
&, &, -6
else

S, <&, +6

Algorithm 6.3 Updates the values of @), & of a set without
counting all triangles

Finally, the list of candidates which may be added to the set
can be updated in a similar fashion. When adding a node u to
S, we update the candidate list and add new candidates which
will all be neighbors of u that are not already present in the set of
candidates. We compute the ordering of those new candidates
in O(d(u)log d(u)) and merge them into the set of candidates in
O(|C| + d(w)). In practice, the cost of this operation is negligible
compared to that of updating the cohesion.
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By MODIFYING the COMMUNITIZE algorithm in order to create a
community which is then modified in place using SETUPDATE,
we obtain an algorithm which optimizes the cohesion by recur-
sively adding nodes to an initial seed and returns the most cohe-

sive group it encounters.

The complexity of adding or deleting a node stems from
the update step which cost is O}, N 4w) + d(v)). Each
node is added and deleted from the community at most once,
which leads to an overall worst case complexity complexity of
O (Luev Lveniw 4w) +d(v)) = O (|V] |E|). Note that if there is
a bound on the degrees d

naxo then the complexity is reduced to
O Vldpay)-

COVER a set of nodes

Although ComMuNITIZE allows us to expand around a set of
nodes in order to obtain a more highly cohesive set of nodes, it is
not always desirable to obtain one and only one community. For
example, let C;, C, be two cliques with a sufficiently low overlap
such that both are more cohesive than the union. Consider
u € G, \ C,, if we simply compute the best community containing
C; U {u} we shall obtain a community S which is neither C; nor
C,, because S would contain C; U {u}, and thus S would be less
cohesive than C; and C,. More generally, we aim to obtain a
covering of C; U C, in communities, i.e. a set (S;) of communities
such that | J; S; = C, U G,.

To that effect, we introduce a second algorithm (Alg. 6.4),
which uses COMMUNITIZE to expand around carefully selected
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function CovEr-NoODES(S C V)
C«0o
for all u € S in increasing order of d(u) do
if u is not marked as covered then
¢ « CoMMUNITIZE({u})
forallv € cdo
mark v as covered

C< CuU{c}
return C

Algorithm 6.4 CovER-NODES computes a set of cohesive
communities such that each node in S is in a community.

nodes of the network. The idea is to choose one node u in S,
find the best community containing u, mark all the nodes in
that community as covered and repeat as long as there are non
covered nodes. We choose to iterate over S by increasing degree
as placing low degree nodes first into their communities allows
us to more precisely capture the community structure around
nodes with a higher degree - this choice was mainly done due to
empirical observations that it lead to better communities.

Although the algorithm only computes one community for
each node this does not lead to a partition because COMMUNITIZE
can add already covered nodes to a community. However, the
algorithm as such misses some communities. For example, in
the four triangles depicted in Figure 6.1, the algorithm will start
by expanding around a node at the periphery, which will yield
one of the outer cliques. It will then repeat the same thing twice
and stop, resulting into three communities of size three, totally
ignoring the presence of the middle clique which has already
been covered.
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Figure 6.1 Those four cliques are incorrectly covered by
Cover-Nobpes which would only find the three encircled
communities and ignore the clique at the center.

In order to compensate this last flaw, we propose a heuristic
which deal with those kinds of effects. Instead of computing the
best community containing a given node u we compute the best
communities containing {u, v}, where v is a non covered neighbor
of u. If all of the neighbors of u are covered, we then compute the
best communities containing {u, v} for all v neighbors of u. In both
cases we obtain a set of community, of which we choose the one
with the highest cohesion (Algorithm 6.5)

THE FINAL IMPROVEMENT we bring to COVER is to reduce the size
of the considered network. As we have seen in the previous chap-
ters, maximal cohesion is attained inside networks which are con-
nected. In practical cases however - that is, in most real world use
cases, except some rare pathological cases — this condition may be
strengthened by considering what we shall call triangle-connected

components.
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function CoOver(S C V)
C«0o
M@
for all u € S\ M in increasing order of d(u) do
C, <@
for all v € M(u) \ M do
¢ « CoMMUNITIZE({u, v})
C, < C,U{c}
M MUc
if C, = @ then
forallv € N(u)n M do
¢ « ComMUNITIZE({u, v})
C, < C,U{c}
M MuUc
C <« Cu{arg maX.ec C(o)}
return C

Algorithm 6.5 COVER is an enhanced version of COVER-

Nobgs which bypasses the non-detection of some communi-
ties in the original algorithm

Let t;,t, be two triangles of G, we will say that t;, and ¢, are

connected if both triangles share a common edge. Now, given a

pair of edges e;, e, € E, we say that they are triangle-connected if

there exist a sequence (t;)y; of triangles such that e, is an edge

of ty, e, isan edge of t; and for all 0 < i < k the triangles t; and ¢,

are triangle-connected. One may notice that it is a reformulation

of Palla’s clique percolation applied with k = 3* and as such is

a natural extension of connectivity taking into account triangles

rather than edges.

1 Palla, Derényi, Farkas, and Vicsek, op. cit.
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function THREEWAY UNION(x, ¥, 2)
xg < FIND(x)
ygr < FIND(y)
zp < FIND(2)
if xz = yr = 2z then return
if xg.rank > y.rank and xp.rank > zy.rank then
Yr-parent « xp
zZp.parent <« xp
if xp.rank = yp.rank or xp.rank = zp.rank then
xg.rank < xp.rank + 1
else if zp.rank > zp.rank then
Xg.parent < yp
zp-parent < yp
if yp.rank = zy.rank then
yr-rank < yp.rank + 1
else
Xp.parent < zp
Yr-parent « zp

Algorithm 6.6 THREEwAY UNION is a variation of Tarjan’s
original union which unifies three elements in one call.

To compute those triangle-connected components, we use
a variation of Tarjan’s Union-Find algorithm" which differs in
the union: for each triangle (u, v, w), instead of unifying each
pair of edges one at a time, we unify the three edges (uv, vw, uw)
by doing a three way union in one sweep as described in
Algorithm 6.6.

1Robert Endre Tarjan and Cornell University. Department of Computer Science.
On the efficiency of a good but not linear set union algorithm. Tech. rep. Nov. 1972.
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We then use the ComPaCT-FORWARD algorithm' to enumerate
all triangles in a given graph and maintain a disjoint-set data struc-
ture using our Threeway-Union/Find algorithm. This gives us sep-
arate triangles connected components on which we apply COVER,
merging the resulting sets of communities at the end.

Finally, we have presented in this section an algorithm which
places each node of a given set in at least one cohesive commu-
nity. Although the resulting algorithm has a worst case complexity
bounded by O(] V| |E|?), this would be the case when each edge
lead to a community containing all the graph without covering
any other edge, which is impossible.

CoMBINE similar groups

Recall that earlier we mentioned the issue of judging the quality
of a covering versus that of a community, and that we concluded
that there is no globally acceptable metric to that effect. We now
present the last pillar of C*, which allows to parametrically control
the amount of overlap which is authorized.

Let us consider a graph G. After running COVER we obtain a
collection of communities (S;)y<;<x- Suppose that we are provided
with a function Ov which rates at which extent two communities
S; and §; overlap — examples of function commonly used to that
effect are given in Table 6.1. Furthermore, suppose that we dispose

of a maximum authorized overlap o,, ... We construct a weighted

max*

graph I where each node u; corresponds to a community S;, and

1 Matthieu Latapy. “Main-memory triangle computations for very large (sparse
(power-law)) graphs”. In: Theoretical Computer Science 407.1 (2008), pp. 458—
473.
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where there are edges between two nodes ; and ; if and only if
Ov(S;, S;) = 0,,,.5> the weight of the edge being Ov(S;, S)).

1

Overlap Contains  Jaccard Dice  Cosine
|$;nS;] s:ns;| [$ins;] 2|8ins;| |$ins;]

min(Iss)  max(stis]) SOl IskSE sl

Table 6.1 Examples of overlap functions Ov(S;, S))

Once the communities are laid out this way, the problem of
finding sets of communities which overlap sufficiently reduces to
a problem of “community” detection in the meta-graph. How-
ever, contrary to the graphs we have encountered until now, I' is
a weighted graph, therefore we have to adapt the definition of the
cohesion in order to be able to recursively use C* to find the meta-

communities.

FORTUNATELY ENOUGH, there are several ways the definition of
the cohesion can be extended to take into account graphs where
edges have weights in [0, 1]. Basically, it suffices to produce a func-
tion which allows to transfer the notion of weights from the edges
uv, uw, vw to the triangle uvw. We suggest two such functions in
Table 6.2.

Product 2outof 3
W(uv)W(uw)
Wuvw) = Wuv)W(uw)Whw) maxq W(uv) W(vw)
W(uw)W(vw)

Table 6.2 Examples of weight functions on triangles

116



COMBINE SIMILAR GROUPS

The first function naturally assigns the product of the weight
of its edges to a triangle. However, when judging the overlap
contained inside a triangle, it might be useful to use the second
function which adds some transitivity to the overlap function.
Using such weights of triangles, the definition of the weighted
cohesion comes immediately, in the weighted version @) is the
sum of the weights of inbound triangles and & becomes the sum
of the weights of outbound triangles.

WE CAN THEN COMPUTE the communities of I by using COVER
and recursively calling CoMBINE on the result. Then, for each
meta-community %, three cases are possible:

- |Z| = 1: the community in ¥ is not affected;

~ |Z| = 2: the communities S;, S, in X are merged;

~ |Z| > 3: the communities in ¥ are merged if CC > Crnerge-

Given that for a graph of size n, COVER gives at most n — 3

communities, the size of the meta-graph is strictly smaller than
that of the original graph, and as such CoMBINE always finishes.
In the end, we obtain cohesive communities while at the same
time controlling the overlap between communities with two

parameters o, and C - in practice, using a small value

X merge

Of Cperge 18 perfectly acceptable, we just need to avoid merging

meta-communities of cohesion 0.

Continuing the algorithmic part of this thesis, since the maximiza-
tion problem is N'P complete, this chapter presents C°, a heuristic

algorithm dedicated to finding cohesive communities in a network.
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C’ works in three steps: first it expands around a seed set in order to
find a cohesive superset, then it repeats that procedure as long as there
are uncommunitized nodes, and finally it merges carefully selected
communities in order to constrain the maximal overlap between com-

munities.

118



DyNamics OF COMMUNITIES
Evolution and Stability of the Agreement
Groups in the United States Senate

However [political parties] may now
and then answer popular ends, they are
likely in the course of time and things,
to become potent engines, by which
cunning, ambitious, and unprincipled
men will be enabled to subvert the
power of the people.

The Farewell Address
GEORGE WASHINGTON

HAVING introduced C* to compute cohesive communities,
we will apply it in this chapter to real-world data, and this
for two reasons. First our aim will be to validate that C* computes
communities which make sense in terms of the semantic behind
the data, and second we are also interested in the amount of non-
trivial information C? is able to unearth from the data. Therefore,
we present a case study of the evolution of the political groups
in the United States Senate, as computed by C°. Using publicly
available data, we construct a graph of voting similarity between

U.S. Senators for each of the 112 U.S. Congresses. We then apply

119



Dy~naMmics oF COMMUNITIES

to each of those groups an extension of C* to weighted and signed
graph in order to determine the communities of voters who are in
agreement. Finally, building on the temporal aspect of communi-
ties which the algorithm does not take into account, along with a
factual and historical analysis of the results, we will establish that
C’® is a valid method to compute overlapping communities.

The Dataset

The United States Senate is the upper house of the United States
legislature. Contrary to the House of Representative which seats
are up for election every two years, Senators serve terms of six
years each. Those terms are however staggered so that approxi-
mately one-third of the Senate is renewed every two years. This

period of two years is called a United State Congress.

Contrary to other countries, data concerning elected officials
and the activity of the houses is openly available in the United
States. We have used the GovTrack® website which provides both
a list of all elected officials and votes both at the Senate and the
Congress to construct graphs of agreement. As seen earlier, each
Senator usually serves, except for unfortunate events, in at least
three consecutive Congresses. Therefore we have decided to focus
on the Senate rather than the House of Representatives as the for-
mer has the particularity of having a continuity of its members,
which would allow to observe more precisely the evolution of po-

litical groups.

1 Civic Impulse, LLC. GovTrack.us. URL: http://www.govtrack.us/.
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THE DATASET

THE DATA WE HAVE OBTAINED consists, for each vote taking place
at the United States Senate during a given Congress, of a list of
those who have voted and the nature of their vote. For each of
the 112 Congresses we shall construct an agreement graph G; =
(V;, E;) where V; is the set of the Senators active during the it®
Congress. Due to some ambiguity in the data, we could not restrict
ourselves to the Senators and actually construct the graph of those
who have casted at least one vote in Senate, this might also include
other elected officials, such as the Vice-President, nevertheless, we
shall qualify our actors of Senators, for clarity’s sake.

All votes we have encountered were choices between two op-
tions which we shall arbitrarily denote A and B, therefore each
Senator had either voted A, or B or did not vote. Usually those al-
ternatives A and B were “Yea” and “Nay”, indicating support or re-
jection of a proposal. For each Congress i we associate to the Sen-
ator s a vote vector V** of dimension the number of votes which

have taken place during that Congress, such that:

1 if s voted A for the kth vote
V;(’S =40 if s did not vote for the kth vote
—1 if s voted B for the kth vote

We can then compute the agreement (or weight) between two Sen-
ators during the ith Congress as the cosine similarity between their

votes:
Vi,sl . Vi,52

Ve vl

For example, if there were three votes during a session, and
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100%
—— First Congress (1789-1791)
80% | ES A A 25t Congress (1837-1839)
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60% |- | 5 ' gress (1887-1889)
- - 75" Congress (1937-1939)
40% |- ---- 100 Congress (1987-1989)
---------- 112 Congress (2011-2013)
20% |
0%

-1 -05 0 0.5 1
Agreement

Figure 7.1 Cumulative distribution of the weights in Senate
agreement graph for six different Congresses.

that two senators s, and s, voted' respectively (Nay, Yea,
_, Nay) and (Yea, Yea, Nay, Yea), their vote vectors would
be V*' = (-1,1,0,-1) and V*" = (1,1,-1,-1). As a
consequence, those two senators would have a similarity
Wi(s1,8,) = ﬁ

The highest agreement W = 1 is attained when s, and s,
have identical vote vectors and the lowest agreement W = —1
is achieved when their vote vectors are opposed. The cosine
similarity allows us to incorporate the absence of votes to the
agreement metric and give them a smaller weight that between
opposite weights. Given those agreement weights, we can now
construct the edges of the agreement graph G;, where we add an
edge of weight W;(s, s,) between s; and s, it W,(s;, s,) # 0.

The cumulative distribution of those weights are given, as an
example, on Figure 7.1. It is notable that in all cases more than

1 The underscore indicates here an absence of casted vote.
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Figure 7.2 Evolution through time of the average agreement
weight between Senators.

50% of the edges have a positive value. We can observe that the
earlier Senates presented a certain balance in the distribution of
the edges: there was a similar number of edges of positive and neg-
ative weights. More recent Senates have a bias towards agreement,
as exemplified by the latest Senate (112" Congress (2011-2013))
where 75% of edges have a positive weight and 45% of edges have
a value greater than 0.5.

This trend is explicit when we observe how the average value
of agreement (Fig. 7.2) evolves. The first thing to notice is that the
average value is always greater than 0, which indicates that despite
being from different political horizons Senators tend to agree more

with each other than to disagree.
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THERE ARE HOWEVER variations in the evolution of the average
agreement. We shall describe a few data points and provide some
historical context which might shed some light on those variations
although for obvious reasons we do not imply causation. During
the first few Congresses, the average agreement increases in a con-
text where the United States are a young nation. There is then a
sudden drop during the Eleventh and Twelfth Congresses, which
took place just before and during the war of 1812, the first major
conflict between the United States and the British Empire since
the end of the American Revolutionary War in 1783. During the
Fifteenth Congress (1817-1819), the average agreement rises to
more than 0.2. Coincidentally, at that time, the United States faced
the “Panic of 18197, its first major financial crisis.

The agreement then steadily decreases, attaining its minimum
during the 27 Congress (1841-1843), in the years of instability
leading of the Civil War and the decreasing in average through
the Reconstruction era. It is only with what Mark Twain dubbed
the “Gilded Age” that the average agreement increases again,
around the time of the 51%t Congress (1889-1891). The next
major increase occurs around the 834 Congress (1953-1955).
In 1953, major political changes occur both in the United
States and the USSR, January is marked by the election of
Dwight D. Eisenhower and after Joseph Stalin’s death in March,
Nikita Khrushchev became the Soviet leader. Those changes
shifted the dynamic of the cold war which had been until
then contained, in particular through the Korean war. At the
same time, Joseph McCarthy started its communist witch
hunt while heading the Senate Permanent Subcommittee on

Investigations.

124



SIGNED & WEIGHTED COHESION

The Cuban Missile Crisis occurred during the 87" Congress
(1961-1963) which marked a temporary decrease in agreement,
although the increase would then continue until the 1027
Congress (1991-1993). In the past two decades, the agreement
has swinged up and down, staying on average higher than o0.18.
Notice how it has attained it has peaked at its maximum during
the 107" Congress (2001-2003), which was marked by the 9/11
attacks.

Signed & Weighted Cohesion

The graphs G; that we have obtained in the previous section have
weights which vary between —1 and 1, therefore we need to extend
the definition of the cohesion in order to take those negative edges
into account. If an edge uv has a negative weight, it means that
u and v are in disagreement and should not be added to a same

community.

In terms of triangle, the consequence is that if a triangle con-
tains at least a negative edge, then it should contribute negatively
to the cohesion. We therefore introduce a the sgn(uvw) function
which gives us the sign of the contribution of a triangle:

-1 if W(uv) < 0 or Wyw) < 0 or W(vw) < 0
sgn(uvw) =
1 in all other cases

From there we can define the signed weight of a triangle
ngn(uvw) = sgn(uyw)W(uvw), where W(uvw) can be any
unsigned triangle weighing function, for example one given in

Table 6.2. Here we shall choose to use the product function,
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defined as W(uvw) = W(uv) W(uw) W(vw).

LET us Now EXTEND the cohesion in order to take into account
the signed weights of triangles and at the same time remain com-
patible with its unsigned version. If a group has negative @ and
positive @, it means that there is more disagreement inside the
group than towards the rest of the network, and therefore the co-
hesion should be low. For similar reasons, if @ if positive and
@ is negative, the group has a high agreement with itself and is
opposed to the rest of the network, which should result into a high
cohesion. Intuitively, if @ and & are of opposite signs, the group
is isolated from the rest of the network and the cohesion is reduced

to the transitivity.

v
o

@<0

® ®

>0

)

® © ,,
N GO+~

& <0 (@ @éso
0

—_
@ 3

N
&>0 %

Table 7.1 Impact of signed triangles weights on the Cohesion.

Finally, there is the case when both @) and & are negative.
In that case the expression of the isolation factor and thus that of
the cohesion remain the same. The formulas for the signed and
weighted cohesion are given in Table 7.1. This new definition of
the cohesion can be used directly in C* without adapting the algo-
rithm. We shall however filter the resulting list of communities to

remove those which have a negative cohesion, as those would not
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Figure 7.3 Evolution through time of the number of commu-
nities in the Senate agreement graphs.

qualify as “good” communities.

Of History, Dynamics and Stability

For each Congress we have computed using C* the communities
of its agreement graph, using the extended cohesion presented in
the previous section. On Figure 7.3 we have displayed the evolu-
tion of the number of communities of agreement through time.
In all but three cases, there are between one and three commu-
nities. The First Congress (1789-1791) has 10 different commu-
nities and both the Second Congress (1791-1793) and the 37t
Congress (1861-1863) have 5 communities.

Concerning the two first Congresses, one has to bear in
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mind that there were no national political parties prior to the
Presidential Election of 1796. The United States were a young
nation and did not have a two-party system, it basically had
George Washington, a president without a party. At that time,
those who served in Congress are best described as either
Administration (i.e. those associated with Vice President John
Adams) or Opposition (i.e. those who surrounded Secretary of
State Thomas Jefferson) but it is important to note that that era
is more an era of faction rather than parties, and thus alliances
would shift at a fast pace in this early era of U.S. political history,
which is visible when looking at the number of communities
during the four first Congresses.

By the start of the Fifth Congress (1797-1799), two national
political parties had emerged from the two aforementioned fac-
tions. Those who had be supporter of the Washington Adminis-
tration became known as the Federalists because they were par-
tisans of a strong Federal Government which could oppose the
importance of individual states. Those who had been in the Oppo-
sition became know as the Republicans because they insisted on
defending the sovereignty of the States against the Federal Gov-
ernment.

Notably, the third extremal point (5 communities for the
37" Congress (1861-1863)) coincides with the beginning of
the American Civil war in 1861 and the larger number of
communities reflects the political turmoil at the time. From
there one, the United States have had a two-party system,
which is visible in the number of communities in the agreement
graph which except the three previously mentioned exceptions

vary between 2 and 3. Furthermore, since the 84™ Congress
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Figure 7.4 Left: Evolution through time of the proportion

of Senators remaining in office between two Congresses

as a function of the Congress number. Right: Cumulative
distribution of the number of terms per Senator.

(1955-1957), there was no more than two communities — and
there were five occurrences where there was only one community.
This diminution in the number of communities is a direct
consequence of the previously mentioned increase in agreement

among Senators.

LET us Now study the dynamics of those graph. The first thing to
notice is that, as we have said earlier, at each Congress, only a third
of the seats are up for election, which means that there should be a
certain continuity in the members of the Senate. On Figure 7.4(a),
we have plot the proportion of the members of the Senate during a
given Congress which remained in position during the following

Congress. This continuity C; is expressed as:

o |Vi n Vi+1|
: 4
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As we expected there is a high continuity between Senate
sessions, in most cases larger than 2/3 - the cases where it is
lower can be explained by the passing of some Senators or other
unfortunate events. It is also interesting to notice that this score
tends to increase as time passes, which is a consequence of the
fact that, more and more, Senators keep there seats for more than

one term.

Figure 7.4(b) represents the cumulative distribution of the
number of terms served by each Senator. More than a third of all
Senators have served more than five terms and almost half of the
Senators have served at least three terms. Contrast this with the
fact that a U.S. President cannot be elected for more than two
terms since the passage of the Twenty-second amendment. The
notion that there should be a term limit in Congress was brought
forth by the Republican Party in the 1990s but the proposal fell
through in the House.

We shall now quantify the evolution of the communities in two
different ways. First, similar to the way we have defined continu-
ity for the whole Senates, we shall define a metric of continuity
between to communities of two consecutive Congresses. Let us
consider the communities (i) and (; +1,) of the ith and i + 1t
Congresses. We shall define then continuity between two com-

munities §;; and S, ; as:

|Si,j n Si+1,k|

|Si,j nU; Si+1,l|

That is, the ratio of Senators present in both groups compared

C(Si,j7 Siv1p) =

to those present in the oldest one and which are also active in
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Figure 7.5 Left: Cumulative distribution of the values

for community continuity between a community and its

successor. Right: Cumulative distribution of the co-presence

ratio for pairs of Senators present in at least one community
together.

the second Congress. The idea is to compare apple-to-apple the
dispersion on the Senators present in a given group, this is why
we restrict ourselves to those who are present in both Congresses
iand i + 1. For each community S;, we shall say that is successor is
the community S, for which ¢(S,, S,) is maximal.

Figure 7.5(a) displays the cumulative distribution of commu-
nity continuities between each group and its successor. It is partic-
ularly notable that in more than 9o% of cases, half of the members
present in a community are also present in its successor — once

again, only counting those present in both sessions.

ANOTHER WAY OF looking at this question is at the level of the Sen-
ators themselves. We shall say that two Senators are co-present to a
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certain degree if they belong to at least one community same com-
munity. Let u and v be two senators, we define their co-presence as
the number of times they appear in the same community divided
by the number of times they are active in a same Congress. Given
that a Senator might be in several different communities, we shall
count one presence for each community, and thus a Senator can
be virtually present more than once during one given Congress.
Let (S;;) be the set of communities for the graph G;, we write 7,

the number of times u and v appear in a same community:
T, = Z Z 15, 15, ()
i

Where 1 is the indicator function. We similarly define S, ,, the

u,v?

number of times u and v appear in the same session. We can then
write the co-presence of u and v as:

u,v

S

u,v

P(u,v) =

Figure 7.5(b) represents the cumulative distribution of the value
of the co-presence for a selected subset of pairs of Senators. We
have voluntarily excluded the pairs who never appear in the same
Congress, that is S, , = 0 as it would make no sense to compare
their communities. Next, we have also removed the pairs which
are never in the same community (7, , = 0), as their inclusion
bring no information on the stability of the communities.

Finally we have chosen to exclude the pairs who only appear in
one Congress and belong to the same community (7, , = S, , =
1), although their inclusion would artificially increase the cumu-

lative distribution we believe it would provide no insight on the
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actual dynamic aspects of communities given that the information
is only extracted from one same time slice. Their remains the pairs
of Senators who appear in at least two Congresses and who are
at least once in the same community. More than 30% of pairs of
Senators are stable through time in respect to their communities,
i.e. they have a co-presence of 1 and therefore always appear to-
gether in the same community. Moreover, 75% of the pairs have a
co-presence greater than 0.5, meaning they are in the same com-
munity in the majority of the Congresses they are active in.

WE HAVE DESCRIBED the evolution of the number of communities
of the agreement graphs through time, which we explained by
referring to the history of the United States Political system and
we have exhibited the continuity in Senate membership between
Congresses. We have then shown that the communities which
were found using C® present a certain stability, as they present
a high continuity and that Senators appearing together in one
community tend to be in the same communities during other
Congresses. It is most notable to observe this kind of stability
given that the data analysis done on each graph was made
independently from the other graphs, which leads us to validate
the use of C® to compute the communities of agreement.

The Blurry Line Between Parties

Until now, we have justified the number of communities by refer-
ring to political parties. Fortunately, we have access to the polit-
ical affiliation of each Senator in our graph which means we can

validate that intuition. We shall say that a party is dominant in a
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community if it has the largest representation, and we shall call
the domination ratio of a community the quotient of the number
of members of the dominant party in the community divided by
the size of the community.

On Figure 7.7 we have represented, for each session, the aver-
age of the domination ratio over all communities. Most commu-
nities have an average domination ratio of 70%, i.e. in most cases

one can identify the community to the political party.

IN PARTICULAR, let us look more precisely at a subset of the
data, ranging from the 105% Congress (1997-1999) to the
112" Congress (2011-2013). The sizes of the communities as
well as the number members of each party represented in the
community are given in Table. 7.2 and a visual representation
of those communities are given in Figure 7.6. First notice that
although the communities are allowed to overlap, there are only
five cases where we witness an overlap, three of which being
because one individual is part of the two communities, one
because seven are shared between the two groups of the 111th
Congress (2009-2011) and the largest overlap is attained during
the 108" Congress (2003-2005) where 10 Senators are part of
both communities.

As stated before, each of those communities has a clearly dom-
inant party, be it the Democrat Party or the Republican Party. It
is however interesting to observe three things. First, even though
the communities have a large majority belonging to a same party,
there are members of the other party which are more in agreement
with there opponents than their political family, and this even in

cases where there is no overlap between communities.
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105" Congress (1997-1999)

100 members

45 Democrat \ 55 Republican
106t Congress (1999-2001) 102 members
45 Democrat 56 Republican
1 Democrat
107t Congress (2001-2003) 101 members
49 Democrat 49 Republican
2 Independent | 1 Democrat
Republican
108t Congress (2003-2005) 100 members
40 Democrat 51 Republican
1 Independent | 18 Democrat
109" Congress (2005-2007) 101 members
44 Democrat 55 Republican
1 Independent | 1 Democrat
110t Congress (2007-2009) 102 members
50 Democrat 41 Republican
2 Independent
11 Republican
111t Congress (2009-2011) 110 members
63 Democrat 35 Republican
2 Independent | 6 Democrat
11 Republican
112 Congress (2011-2013) 101 members
51  Democrat 43 Republican
2 Independent
6 Republican

Table 7.2 Political party breakdown of the communities of the
Senate agreement graph for the 8 last Congresses.
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111t* Congress
(2009-2011

Figure 7.6 Groupflow diagram of the mmunt s in the
Senate agreement graph dur ngth1t8 ons, wththe
politic lp rty breakdown. Each path represents a Senator
and its color indicates the Political party it belongs to. Each
box is a community and the rows of boxes represent the
different Congress sessions. Notice that the overlaps between
communities are visible here (e.g. where a Senator path forks
into two different communities).
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Figure 7.7 Evolution through time of the average domination
of the communities by one political party.

Consider for example Zell Miller, although a member of the
Democratic Party, he backed the Republic President George W.
Bush over the Democratic nominee in the 2004 presidential elec-
tion. Moreover he has been a frequent critic of the Democratic
Party since 2003 and has supported Republican Candidates sev-
eral times. Moreover, Miller also served as the national co-chair
to the campaign of Republican presidential candidate Newt Gin-
grich in 2012. It is then only natural for him to be grouped with
Republicans rather than Democrats in the 106", 107% and 108t
Congresses, which would not be the case had we only taken into
account his political party.

During the 108t Congress (2003-2005) there is a large overlap
between the two communities. We have found that most of the 18

Democrat Senators in the Republican community were members
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of the Democratic Leadership Council, a non-profit corporation
which aim was to steer away the Democratic Party from the left-
ward turn it had taken. This has to be replaced into the context
at the time, which was marked by the beginning of the war in
Iraq.

FINALLY, there are some Congresses where there is a large number
of Republicans in the otherwise Democrat dominated commu-
nity. For example, in the 110% Congress (2007-2009) there are
8 Republicans which are more in the Democrat community of
agreement. Most of whom are either moderates or closer to the
Democrats than to their own party.

Charles Hagel was critic of the Bush Administration which he
described as “the lowest in capacity, in capability, in policy, in
consensus—almost every area” of any presidency in the last forty
years. George Voinovich has been known to oppose lowering taxes
and frequently joined the Democrats on tax issues. John Warner is
a moderate Republican and has centrist stances on many issues, to
the point that he once faced opposition of other members of his
own party when he decided to run for re-election.

Olympia Snowe and Susan Collins are the two Republican Sen-
ators from Maine who are both regarded to be leading moderates
within their party. John McCain used to be described as a moderate
although he began adopting more orthodox conservative views
since his loss in the 2008 Presidential Election. Gordon Smith was
placed in the exact ideological center of the Senate by a National
Journal congressional rating.

Norm Coleman had been a Democrat until he switched parties

in December 1996, although still being considered one of the most
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liberal Republican in the Senate. Finally, Arlen Specter is a Demo-
crat but was a Republican until 2009. Although he switched to the
Democratic Party during the 111t Congress, the data shows us
that his votes had switched long before that.

By computing the groups of agreement of Senators throughout the
history of the United States we have observed that those groups are rel-
atively stable through time. Furthermore we have seen that, although
most communities are largely dominated by a party, there are some
cases where Senators from other parties are present. By looking into
the political profile of those seemingly displaced individuals, we have
found that that in we could explain the community by a misalignment
between the Senators and their official affiliation. This adds to the
validation of C* to compute communities of agreement, given that
no party information nor temporal data was used to calculate the

communities.
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Springs and Rubber bands

Graphics must not quote data out of context.

The Visual Display of Quantitative Information
EDpwWARD TUFTE

NETWORK analysis is a field which usually deals with large
amounts of data. Whereas have previously introduced a
method to compute overlapping communities in such large net-
works, there is an essential need to distillate the resulting analysis
in a form which is easily apprehensible. This is of the utmost im-
portance when studying overlapping communities which might
be present in large quantities and of varying sizes and overlap.
According to the saying, a picture is worth a thousand words, con-
sequently it is natural to attempt to visualize the topology of a net-
work as architectured by social communities as it might provide a
better understanding of the social structure.

Use the Force, Luke

This past decades, several generic graph drawing algorithms have

been proposed, among which the force-directed layout described
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by Fruchterman and Reingold" is one of the most well known.
More generally, force-directed and energy-based algorithms have
gained in popularity, among other reasons, due to their simplicity,
both conceptual and in terms of implementation, the fact that they
usually lead to visually pleasing results, and that there are known
optimizations to their efficiency.”

In data analysis, graph drawing generally serves one of two
purposes related to the intended use of the visualization. A priori,
it allows to make use of visual intuition in order to provide a basic
understanding of the structure of a network. A posteriori, once the
analysis has been conducted and results have been established,
graph drawing is useful to provide an concise representation of
what has been uncovered in the data. Those two purposes require
different strategies in terms of layout, as the use of an exploratory
visualization might pollute the information which should be
conveyed in a illustratory visualization. For example, it has been
shown? that the perception of node centrality and other social
network features are deeply affected by the graph layout.

Given that our aim to obtain a visualization of social commu-
nities, its purpose falls in the latter illustratory category. Keep-

ing this objective in mind, one of the less desirable features of

1 Thomas M. J. Fruchterman and Edward M. Reingold. “Graph Drawing by
Force-directed Placement”. In: Software: Practice and Experience 21.11 (Jan.
1997), pp. 1129-1164.

2 Pawel Gajer, Michael Goodrich, and Stephen Kobourov. “A Multi-dimensional
Approach to Force-Directed Layouts of Large Graphs”. In: Graph Drawing. Ed. by
Joe Marks. Springer Berlin / Heidelberg, 2001, pp. 211-221.

3 Jim Blythe, Cathleen McGrath, and David Krackhardt. “The effect of graph
layout on inference from social network data”. In: Graph Drawing. Ed. by Franz
Brandenburg. Springer Berlin / Heidelberg, 1996, pp. 40-51.
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force-directed methods is that visual clusters tend to emerge and at
the same time the actual communities - computed using another

method - are exploded during the positioning of the nodes.

IN TERMS OF CLUSTERING, research has mainly focused on the as-
pect orthogonal to ours. Since force-directed layout algorithms
have the tendency to create visual clusters, there has been an inter-
est in methods which enhance that effect, going as far as actually
computing clusters based on the visualization.*

Others have proposed algorithms which take into account a
community structure while drawing the graph. Those methods
however enforce constraints which are unreasonable in the visual-
ization of social communities. For example, it has been proposed*
that communities be computed by maximizing the modularity,?
the nodes then being placed with a force-directed algorithm which
assigns a weaker spring force to edges between communities, and
the communities represented by drawing the convex hull contain-
ing the nodes of each communities.

It has also been suggested* that communities obtained by
modularity optimization could be visualized through the use of

a multi-hierarchical force-directed layout. The meta-graph of

1 Andreas Noack. “An Energy Model for Visual Graph Clustering”. In: Graph
Drawing. Ed. by Giuseppe Liotta. Springer Berlin / Heidelberg, 2004, pp. 425-
436.

2 danah boyd and Jeffrey Heer. “Vizster: Visualizing Online Social Networks”. In:
Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on (Sept. 2005),
Pp- 32-39.

3 Newman and Girvan, op. cit.

4 Amanda L Traud, Christina Frost, Peter ] Mucha, and Mason A Porter.
“Visualization of communities in networks” In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 19.4 (2009), p. 041104.
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the communities — where each node represents a community
and those are linked if there is an edge from a node in one
community to a node in the other one - is drawn using the
classical force-directed layout. Only then are the nodes drawn
inside the community using several heuristics concerning their
actual position. In both the previous cases, the use of the
modularity leads to a partition of a network into communities,
and unfortunately none of those can be extended to visualize
overlapping communities.

Another approach has been to create a dummy node for
each cluster in the network," add an attractive force between the
dummy node and members of the cluster and a high repulsive
force between dummy nodes. Although this method yields good
results on partitions as it concentrates clusters around a specific
location, it has the tendency to stretch and rip apart overlapping
communities due to the high repulsion between the dummy
attractors.

Recently, there have been proposals to render overlapping
communities using force-directed layouts. Although impressive,
the method suggested by Simonetto et al.> is impractical at a
large scale. Given that the first pass of the rendering consist
in a planarization of the intersection graph, the different
communities affect the layout globally. As a consequence, in

1Ralf Brockenauer and Sabine Cornelsen. “Drawing clusters and hierarchies”. In:
Drawing graphs (2001), pp. 193—-227; Yaniv Frishman and Ayellet Tal. “Dynamic
drawing of clustered graphs”. In: Information Visualization, 2004. INFOVIS 2004.
IEEE Symposium on (2004), pp. 191-198.

2 Paolo Simonetto, David Auber, and Daniel Archambault. “Fully Automatic
Visualisation of Overlapping Sets”. In: Computer Graphics Forum 28.3 (2009),
pp- 967-974.
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networks containing a large number of overlapping communities

the rendering becomes time consuming.

Laying Out

Although unfit to our current purpose, the works described pre-
viously however indicate a global direction in the continuity of
which we place our contribution. This proposal builds upon the
knowledge of communities in order to affect the placement of the
nodes and the strength of the force between nodes to add con-
straints specific to the visualization of communities. First, we in-
troduce a new attractive force which constrains communities in a
circle of a given radius and second we present a slight modification
to the force of attraction between pairs of connected nodes.

At its most basic level, a force-directed algorithm® is a graph
drawing algorithm which uses a specialized physics based model
to compute the position at which the nodes should be placed. For
clarity’s sake, from now on we will use the term node and write u
when referring to the actual node u € V of a graph G = (V. E),
and particle u” when referring to the object representing this node
in the physical model. To simplify the notations, we will identify
the particles to their position vector, allowing us to write ||u” —v°||
to denote the distance between particles u° and v" in the draw-
ing.

In the models we choose to extend, particles evolve in a 2d
space and can attract or repel one another - traditionally, there

1 Fruchterman and Reingold, op. cit.; Jacomy Mathieu, Heymann Sebastien,
Venturini Tommaso, and Bastian Mathieu. ForceAtlas2, A Graph Layout Algo-
rithm for Handy Network Visualization. Tech. rep. Aug. 2011.
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is a force of repulsion between all pairs of particles and an attrac-
tion between pairs u°v° such that uv € E. In this section, without
loss of generality, we will extend any type of force-directed layout
which applies an attractive force F between two particles u° and
v" such that uv € E - e.g, in the classical Fruchterman-Reingold
algorithm, the attraction force is defined in analogy to Hooke’s law
of elasticity: F(u'v") = k||u” —v°||.

BARING IN MIND that our aim is to represent communities, we
complete classical force-directed layouts to take predefined clus-
ters into account. Rather than laying out a graph G = (V, E), we
shall render a graph covered in communities (G = (V, E), C) where
C = {¢|c; C V} is a set of communities.

To do so, we draw our inspiration several earlier works' and
for each community ¢ € C, we introduce a dummy and virtual
particle ¢’ in the visualization — dummy because ¢” is not associ-
ated to any node belonging to the graph, and intangible because
we won't actually draw that node, only its position is of interest to
us.

We then add another attractive force which only applies
to pairs of particles u°c’ such that the node u belongs to the
community ¢. Furthering the physical analogy, whereas the force
between pairs of particles associated to nodes is modeled after
springs, we model the attraction between a node particle and a
community particle as a rubber band. If a node u € ¢, then the
force of attraction between u” and ¢" is null if both particles are
close enough, and becomes that of a spring (Fig. 8.1 when the

1 Brockenauer and Cornelsen, op. cit.; Frishman and Tal, op. cit.
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Figure 8.1 Rubber band force: the dummy community particle
is represented as a square and each node in the community
is represented by a circle. An attractive force is exerted only
on nodes outside the constraining radius, here represented by
a large circle, whereas all other nodes are connected to the
community node by “loose rubber bands”

distance between particles crosses a certain threshold r:
R@’c”) = max(0, ||u’ — || — r(c))F(u'c’)

In effect, this allows us, when the algorithm converges, to
constrain all nodes of a community ¢ in a circle of radius r(c)
around the dummy community particle ¢*. In the following,
we set this maximum rubber length to a value which takes
into account both the size of the community and its cohesion:
r(c) = M1 — log C(c))\/m . The first factor, A adjusts the scale of
the drawing and the second factor, (1 — logC(c)) implies that
highly cohesive communities should be constrained in a tighter
circle whereas non cohesive communities can spread much

more.
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For example, when C(c) = 1, which is the case when ¢ is an
isolated clique in the network, the radius is equal to r = A4/|c|.
To the contrary, if we assume that ¢ has very low cohesion, then
r — 400 and the community “dissolves” in the drawing of the
network. Finally, we also take into account the size of the com-
munity, for the simple reason that for all u € ¢ there need to have
enough place to position the particle »° inside a circle of radius r,
therefore we make sure that the area of the bounding circle grows
with |¢].

Note that what has been described until now does not affect
the actual layout algorithm in terms of spatial complexity, given
that we only add dummy particles to the rendering and adjust the
actual values of the forces exerted on each particle. As such, we
can use existing layout algorithms - eg. Fruchterman-Reingold or
LinLog - to compute the position of our particles without incur-
ring a large cost in terms of space. We have added a dummy node
for each community, but in practice the number of communities
is bounded by #, and we add ) ;|¢;| = O(n) edges between those
dummy nodes and the members of their communities, therefore,
= O(m + n).

Mrubber = (9(1’1) and M ubber

SINCE THE WHOLE IDEA behind the cohesion is that in graphs
akin to social networks, the fundamental structure is shaped
by triangles rather than solely by edges, we have chosen to
modify the attraction force in order to contract triangles in the
drawing'. We add a dependency of the attractive force on A\ (uv),
the number of triangles an edge uv belongs to and we shall use

1 Note that this enhancement is generic and can be used even when representing
communities which are not computed by maximizing the cohesion
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- O + O
O O

Figure 8.2 Triangle-weighted edges: given the network on the
left, the forces exerted on the black node are displayed on the
right.

A\ pax = Max,,cp /\(uv) as a normalizing factor. We then define

the triangle weighted attraction force as:

Au)

max

Tw'v) = <(1 —a)+a > Fu'v)

where « is a parameter which allows to adjust the relative impor-
tance of edges and triangles. The reason why we choose to focus on
the number of triangles is that in the most extreme case, when a =
1, the force which applies to each node can be decomposed into
a sum of forces exerted by triangles as exemplified in Figure 8.2.
In turn, this leads to a contraction of all triangles towards their
centroid. We have observed that a value of & = % gives a strong
priority to the contraction of triangles while allowing edges which
do not belong to triangles to exert an attraction.

Rendering Communities

Once the position of the nodes have been computed with a force-

directed layout algorithm, we visually render the graph. Contrary
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to what has been proposed by Simonetto et al.,' in order to en-
hance the representation of communities we have chosen to assign
one color to each community. Since a node can belong to several
communities, we divide each node into colored sectors, one per
community it belongs to, which we orient towards the appropriate
community. Our rationale is that this approach is more resilient to
overlap, because in the case of convex hulls, the visual complexity
arises when a large number of communities overlap whereas in
our approach the rendering becomes hard to read only when both
the number of overlapping communities and of communities each
node belong to is large - that is, when the number of sectors is

large.

To VISUALLY DIFFERENTIATE COMMUNITIES, we assign colors in
a manner such that overlapping communities are of sufficiently
different colors to be visually distinguished. Using the HSB color
model, we generate k colors, where k is the number of communi-
ties — at this point no color is actually assigned to communities,
but are just generated to be assigned at a further step. To do so, we
uniformly choose % hues and for each hue we create two colors,
one vivid and bright, the other one less saturated and darker. The

coordinates of the i color is given by:

" . .
col, = ( /2] 360, 3+ (imod 2)’ 3+ (imod 2))
|k/2] 4 4

Once the colors are generated, they must be assigned to the

communities. We use the perceptual color difference AEg,* to

1 Simonetto, Auber, and Archambault, op. cit.
2 M Melgosa, ] ] Quesada, and E Hita. “Uniformity of some recent color metrics
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quantitatively capture the visual difference between colors. As
such, the problem of assigning the color to communities is a
problem of maximizing the minimum color difference between
two overlapping communities, which is a generalization of the
antibandwith problem.' To do so, we initialize all communities
as colorless and use a breadth first search heuristic* to walk the
graph of communities where each community is a node and
two communities are linked if they overlap. We assign, to each
community we visit, the color which maximizes the minimum
distance to its neighbors’ colors — formally, color(c) = i such that
max, ¢ v AEg,(col;, color(c’)) is minimal.

INDEPENDENTLY FROM THE ACTUAL CHOICE of colors, the other
aspect of the rendering to take into account is the placement of
the different sectors representing communities inside a node. Let
u be a node which belongs to k communities, we divide the disc
representing the particle »° in k equal sectors. This means there
are k regions with a 27" angle and that the i sector runs from a +
2in 20+Dr

p toa+ P

the coordinate system. In order to maintain a visual coherence, we

, where « is a rotation parameter with respect to

rotate the node in order to orient the sectors towards the center of

mass of each community c;.

tested with an accurate color-difference tolerance dataset”. In: Appl. Opt. 33.34
(Dec. 1994), pp. 8069-8077.

1 Yifan Hu, Stephen Kobourov, and Sankar Veeramoni. “On maximum dif-
ferential graph coloring” In: Graph Drawing (2011), pp. 274-286; Manuel
Lozano, Abraham Duarte, Francisco Gortazar, and Rafael Marti. “Variable
Neighborhood Search with Ejection Chains for the Antibandwidth Problem”.
In: ().

2Richa Bansal and Kamal Srivastava. “Memetic algorithm for the antibandwidth
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(b) Zoom on a rendering

Figure 8.3 Left: The node u belongs to three communities,

and is divided in three equal sectors which we rotate to

orient each sector towards the center of mass of the related

community. Right: portion of a rendering which displays the
correct orientation of nodes.

Each sector i has a bisector ¥; (Fig. 8) which forms an angle
o+ @ with the horizontal. Let us write «; the angle formed
by the horizontal and the segment joining the center of the disc

u° and the center of mass ¢; of c. To orient the sectors towards the

maximization problemy”. In: Journal of Heuristics 17.1 (2011), pp. 39-60.
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appropriate center of masses, we choose the value of o = % >i—
%ﬂ that minimizes the sum of squares of angular distances - that
is such that ) (a + @

result is given in Figure 8.3(b)).

— «,)* is minimal (an example of the

Visualization and Benchmarks

To illustrate and validate our approach, we have tested it using a set
of ego-networks collected from Facebook — we call ego-network a
subgraph restricted to the friends of a given individual, Ego, and
where edges are present between two of Ego’s friends if those two
are friends together. Note that Ego himself is not present in his
ego-network since it would bring no information as he would be
connected to everyone.

Our enhancements, triangle weighted edges and rubber band
force — which we will collectively refer to as “RubberBand” or
“RB” - were implemented in Gephi', a network visualization
software. Specifically, we have extended two force-directed
algorithms: ForceAtlas2® which is an implementation of an
optimized variant of Fruchterman-Reingold, and LinLog.> Our
test case consists of 40 ego-networks of various sizes, ranging
from 20 to 1066 nodes. We have applied the C* community
detection algorithm to each of those ego-networks and obtained
2675 communities — between 4 and 215 per graph - containing
from 3 to 127 nodes.

1http://gephi.org
2 Mathieu, Sebastien, Tommaso, and Mathieu, op. cit.
3 Noack, op. cit.
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Figure 8.4 Visual Comparison of Layouts Rendering.

CLASSICAL LAYOUTS.

(b) Classic LinLog
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Figure 8.4 Visual Comparison of Layouts Rendering.

RUBBERBAND LAYOUTS.

(d) Rubber LinLog
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WE HAVE REPRESENTED on Figure 8.4, using the sector coloring
described in the previous section, the output of ForceAtlas2
(Fig. 8.4(a)), RB-ForceAtlas2 (Fig. 8.4(c)), LinLog (Fig. 8.4(b))
and RB-LinLog (Fig. 8.4(d)) for a graph of size 91 containing
15 communities. All four rendering have been scaled to fit into
a square frame of same size, and thus, given that they are more
compact, the RB-layouts are more readable than their classic
counterparts.

Moreover, when looking specifically at the color of the nodes,
one notices that whereas in the case of RubberBand all nodes in a
community are close to one another, the communities at the center

in ForceAtlas2, for example, are mixed up.

IN ORDER TO AsSESs more formally the contribution of the rubber
band force to the visual rendering of communities, we conducted
two quantitative benchmarks. Before going into the details, let us
first recall that the goal of the enhancement is to allow a better

visual depiction of pre-existing communities.

In other words, what we aim to observe are compact regions
containing mainly nodes from one community only. We intro-
duce two metrics on communities to capture the differences be-
tween using a classic force-directed layout and a force-directed
layout enhanced with rubber band forces and triangle weighted
edges.

Let ¢ be a community, we will call H(c) the convex hull, in the
computed layout, of all particles u” associated with a node of c. To
capture the extent to which a community is rendered compactly,

we introduce the notion of spatial density of community, which
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we define, depending on the layout £, as:

number of nodes in ¢
area(H(c))/area

DE(C) =

node

Where area, 4, is the area occupied by one particle in the drawing

node
- this allows us to reason with a unitless and scale independent
density. Note that this metric is related the density metric intro-
duced by Frishman et al.' but more precise given that we take
into account the area of the convex hull rather than that of the
bounding box.

We introduce 8, = Dgg_p(c) — D(c), the difference of den-
sities obtained by each communities in both a layout £ and the
same layout using RubberBand. We can see on Figure 8.5(a) that
in the case of ForceAtlas2, 80% of communities are denser when
rendered with RubberBand than without. This is even more pro-
nounced when looking at the results obtained by LinLog, which
has a natural tendency to spread nodes apart, as 95% of commu-
nities are denser when using the RubberBand than when using
the classic LinLog. Which leads us to conclude that communities
are more compact when using RubberBand than without, yet it is
not sufficient to assess that we have attained a good layout for the

communities.

IF WE WERE TO USE the density as sole indicator of the efficiency
of a layout algorithm in representing communities, the solution
yielding the smallest would be to pack all nodes in the same spot,
which is all but what we wish to observe. Therefore, we introduce

1 Frishman and Tal, op. cit.
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Figure 8.5 Cumulative distribution of the difference (left)

in densities between communities using layouts with and

with RubberBand and (right) in consistencies between non

optimally consistent communities using layouts with and with
RubberBand.

a second metric which rates the visual consistency of each com-
munity, the idea being that there should be a penalty given to a
rendering which mixes up communities. Formally, we shall define

the visual consistency as:

number of nodes in ¢

K =
£(© number of nodes rendered in H(c)

The rationale is that in the case of of consistent communities, there
should be few or no intruders in the convex hull - i.e. K = 1 - and
the more nodes which do not belong to ¢ are placed in H(c), the

less consistent the community will be.

First off, it is important to note that using ForceAtlas2, there
were 66.1% of all communities which had a consistency K = 1
both with and without using RubberBand, and similarly, in the
case of the LinLog layout, there were 79.8% such communities.
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Given that in this case there is no room for optimization we con-
clude that in the majority of cases the addition of the rubber force
and triangle weighted edges is at least as good as using one of the
classical layout algorithms. For the sake of exhaustivity, there are a
negligible 2.3% of communities using ForceAtlas2 and 1.5% using
LinLog which have a consistency K = 1 without RubberBand
and a consistency K < 1 with RubberBand, but in those cases we
consistently observe that this value of K is greater than 0.75.

Where it becomes interesting though is in the cases where ei-
ther consistency is not null. On Figure 8.5(b) we have represented
the cumulative distribution of the differences 6 K, (¢) = Kgg.p(c) —
K, (c) of consistencies of communities between the layouts with
and without RubberBand. Observe how in 75% of cases where the
communities are more consistent — that is, (SKc(c) > 0 - in RB-
ForceAtlasz2 than in ForceAtlas2, and in 70% of cases RB-LinLog
leads to more consistent communities than when using only Lin-
Log.

In conclusion, most of the times a RubberBand enhanced
layout algorithm is as good as when not using RubberBand -
that is, in those cases it is actually not possible to obtain a better
consistency. And in cases where both values are not optimal,
then adding RubberBand to the layout increases the consistency

of communities in a large majority of cases.

We have built an enhancement to classical force-directed layout al-
gorithms, called RubberBand, which mainly consists of two additions

to those classical algorithms. To each community we add a dummy
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attractor node which exerts a rubber band like force to the members
of the community. The use of a rubber band rather than a spring force
constrains the community into a circle of parametrized radius cen-
tered around the dummy attractor. And second, we take into account
the number of triangles an edge belongs to in order to adjust the at-
traction to contract triangles. Using benchmarks on a set of real data,
we observed that RubberBand yields drawings where communities are
represented more compactly and more consistently than when using
the same layout algorithms without the RubberBand enhancement.
Therefore we conclude that RubberBand achieves the desired goal of
representing pre-existing communities.
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PERSONALITY AND STRUCTURE
Psychological Aspects of Social Communities

Through others, we become ourselves.

The Genesis of Higher Mental Functions
LEv VYGOTSKY

UNTIL now, we have mostly focused on the structure of the
network without taking into account the characteristics of
the individual involved - a usual approximation in social network
analysis. In this chapter, we shall attempt to take those personal
characteristics into account and identify how individual differ-
ences in psychological traits affect the community structure of so-
cial networks. Rather than neglecting either structural or psycho-
logical properties of an individual, we seek to understand how
social network topology is shaped by the psychological attributes
of interacting individuals. By doing so, we take an individualized
approach to the study of social networks and view the actor as
an individual who actively transforms the structure of his or her
social network differently depending on his own specific proper-

ties.
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When Sociology meets Psychology

In the analysis of social networks, particular attention has
been dedicated to the structural properties of the direct
neighborhood of an individual. This ego-centered approach
has been used broadly in psychology and sociology to help at
better understanding the relationship between an individual and
its proximate social circle, and how individuals are integrated
in social life." The position of a person in a network and,
complementary, the shape of its ego-network is the source
of its social capital. By definition, social capital is considered
to be “the sum of the resources, actual or virtual, that accrue
to an individual or group by virtue of possessing a durable
network of more or less institutionalized relationships of mutual
acquaintances and recognition””

A dense, interconnected network of often strong ties is asso-
ciated to the notion of bonding social, enabling the flow of infor-
mation within the network and containing an element of trust.? In
comparison, open networks, containing many intransitive triads,
are an indicator of bridging social capital, as an individual bridges
structural holes between disconnected others, thereby facilitating
knowledge sharing across the system.*

An important aspect missing in the latter structural studies is a

1 Stanley Wasserman and Katherine Faust. Social Network Analysis. Cambridge
University Press. Nov. 1994.

2 Pierre Bourdieu and Loic ] D Wacquant. An invitation to reflexive sociology.
University Of Chicago Press, July 1992.

3 Ronald S Burt. Brokerage and Closure. An Introduction to Social Capital.
Oxford University Press, Aug. 2005.

4 Ibid.
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Figure 9.1 Screenshot of part of the myPersonality applica-
tion.

characterization of the variability and differences among individ-
uals, and the effect of non-structural attributes on link formation.
A well-known example is homophily* stating that similarity, e.g.
in terms of status or interests, fosters connection, as similar peo-
ple tend to select each other, communicate more frequently and

develop stronger social interactions.

SINCE OUR interest lie in the study of the way psychological traits
are linked to topological features of the social network, we shall
analyze the results of an online psychological test called myPer-
sonality, in relation to the social entourage of the test subjects on
Facebook. myPersonality is a Facebook application which allows
users to take a variety of personality and ability tests (Fig. 9.1).
Users also have the possibility to opt in and give their consent

1 Miller McPherson and Lynn Smith-Lovin. “Birds of a feather: Homophily in
social networks”. In: Annual review of sociology 27 (2001), Pp. 415-444.
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to share their personality scores and their Facebook profile infor-
mation for scientific purposes. It should be noted that the psy-
chological and structural data come from two different sources -
respectively myPersonality and Facebook - and as a consequence
are a priori independent one from the other.

The application undertakes a series of measures to avoid that
users respond in a careless or mischievous way,' and thus to as-
sure the highest quality of its database, e.g. by removing unreliable
results through numerous validity tests. It has been shown that
the quality of the responses is at least as high as in traditional
pen-and-paper studies, with the significant advantage of reaching
a much broader and less biased audience. The benefit in using
the myPersonality data is that is allows to tap in a unique source
which contains both psychological traits of the subjects and link
this psychological profile to social information - list of friends and
friendships between friends - extracted from their social graph on
Facebook.

Personality is measured by the so-called five-factor model of
personality,” which associates to each individual five scores cor-
responding to five main personality dimensions. Each dimension,

labeled as OCEAN, can be summarized as follows:

- OPENNESS, for spontaneity and adventurousness, denotes an
appreciation for emotion, a sensitivity to beauty and intellec-

tual curiosity;

1 Tom Buchanan and John L Smith. “Using the Internet for psychological
research: Personality testing on the World Wide Web”. In: British Journal of
Psychology 90.1 (1999), pp. 125-144.

2 Paul T Costa and Robert R McCrae. NEO Personality Inventory Revised NEO-
PI-R Test Manual. SAGE Publications. May 2005.
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- CONSCIENTIOUSNESS, for ambition and persistence, denotes a
tendency to act dutifully and a planned rather than sponta-
neous behavior;

- EXTRAVERSION, for sociability and excitement seeking,
denotes an energetic and spontaneous personality and the
tendency to seek stimulation in company of others;

- AGREEABLENESS, for trustingness and altruism, denotes a ten-
dency to be compassionate an cooperative towards others;

- NEUROTICISM, for emotional liability and impulsiveness, de-
notes a personality prone to experiencing negative emotions

easily, e.g. anger, anxiety and depression.

The social data - in terms of network and structure — comes
from Facebook, and as such we have, for each subject, both the list
of their friends and the information about pairs of those who are
also friends on Facebook. We adopt an egocentered approach and,
rather than considering the impact of all individuals on the whole
Facebook social network, we will focus on the way the individual
shape the social structure of their ego-network.*

The ego-network approach has a remarkable property, as there
is a direct correspondence between classical network metrics on
the original network and the ego-network. Obviously, the degree
d — or number of friends - of a subject in the original network
is equal to the size of the ego-network. More interestingly, the
clustering coefficient of the subject in the original network is equal

to the density of his ego-network. We will equivalently mention

1 We recall that we defined, in a previous chapter, that the ego-network of a
subject is the subgraph containing only Ego’s friends, excluding Ego.
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Figure 9.2 Cumulative distributions of subjects’ (left) degrees
and (right) extraversions.

the degree of a subject and the size of the ego-network, and simi-
larly the clustering coefficient of a subject and the density of the ego-
network.

Our final dataset consists of a sample of 44,096 Facebook users
who have taken the big five personality test. For each of these
subjects, myPersonality provides their five personality traits, and
thanks to Facebook we have their age, gender and ego-network.
We will focus on the users whose number of friends on Facebook
is comprised between 50 and 2000 (excluding 35 users with
degree greater than 2000 and 3259 users with degree smaller than
50). The final sample contains 49,623 users, whose cumulative
degree distribution is represented in Figure 9.2(a). Given that in
the following we shall mainly focus on the trait of extraversion,
we have represented on Figure 9.2(b) the cumulative distribution
of our sample subjects’ extraversion.

HAVING THIS DATA AT HAND, we are able to study the

relationship between personality and the structural properties of
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ego-networks. In that respect, previous research has consistently
shown that extraversion is associated with the size of the
ego-network and with greater social status." Other dimensions
have also been argued to have an effect on social network
topology,® but findings tend to be inconsistent in the literature,
and no significant correlation has been found in a recent study
on a large sample of users of myPersonality.?

In studies interested in other aspects of the ego-network, it
has been observed that extroverts are not emotionally closer to
individuals in their network,* despite an increased size. It has also
been shown that self-monitors, the chameleons of the social, are
more likely to have a high centrality.> Brokerage also appears to
be related to personality. People whose networks bridge structural

1 Cameron Anderson, Oliver P John, Dacher Keltner, and Ann M Kring. “Who
attains social status? Effects of personality and physical attractiveness in social
groups.” In: Journal of Personality and Social Psychology 81.1 (2001), p. 116;
Diane S. Berry, Julie K. Willingham, and Christine A. Thayer. “Affect and
personality as predictors of conflict and closeness in young adults” friendships”.
In: Journal of Research in Personality 34.1 (2000), pp. 84—-107; Rhonda Swickert,
Christina ] Rosentreter, James B Hittner, and Jane E Mushrush. “Extraversion,
social support processes, and stress”. In: Personality and Individual Differences
32.5 (2002), pp. 877-891; Daniele Quercia, Renaud Lambiotte, Michal Kosinski,
David Stillwell, and Jon Crowcroft. “The personality of popular Facebook users”.
In: Proc. ACM Conf. Comput. Support. Cooperat. Work (2012).

2 Lauri A Jensen Campbell and William G Graziano. “Agreeableness as a
moderator of interpersonal conflict”. In: Journal of personality 69.2 (2001),
pp- 323-362.

3 Quercia, Lambiotte, Kosinski, Stillwell, and Crowcroft, op. cit.

4Thomas V. Pollet, Sam G. B. Roberts, and Robin I. M. Dunbar. “Extraverts Have
Larger Social Network Layers”. In: Journal of Individual Differences (2011).

5 Martin Kilduff and David Krackhardt. “Bringing the individual back in: A
structural analysis of the internal market for reputation in organizations”. In:
Academy of Management Journal (1994), pp. 87-108.
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holes are more likely to have an entrepreneurial personality." In
another study, it was shown that extraversion is positively associ-
ated with closed triads of strong ties and neuroticism with closed
triads of weak ties.

More generally, the five-factor model has been shown to pre-
dict a broad range of real-world behavior,? for instance how mar-
riages turn out and people’s taste in movies.* The five personality
factors also relate to people’s behavior in a broad variety of social
contexts. It is likely that they predispose people’s propensity to
form more or fewer social ties, and may be related to the extent
to which others form relationships with the focal actor. For in-
stance, extroverts are expected to approach others more easily and
engage in more social interaction. Moreover, the existence of dif-
ferent types of structural configurations has also been proposed,
each associated to the social and psychological characteristics of
an individual: people embedded in dense networks, people having
several subsets of alters, etc..

LET Us Now APPLY C’ to the ego-networks we have previously

described in order to obtain a covering of each ego-network with

1 Ronald S Burt, Joseph E Jannotta, and James T Mahoney. “Personality
correlates of structural holes”. In: Social Networks 20 (1998), pp. 63-87.

2 Yuval Kalish and Garry Robins. “Psychological predispositions and network
structure: The relationship between individual predispositions, structural holes
and network closure”. In: Social Networks (2006).

3 Daniel Nettle. Personality: what makes you the way you are. Oxford University
Press. 2007.

4 Olivia Chausson. “Assessing the impact of gender and personality on film
preferences”. In: Cambridge University ().

5 Barry Wellman and University of Toronto. Centre for Urban and Community
Studies. Studying personal communities in East York. Sage. Beverly Hills, 1982.
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overlapping communities for each Ego. Note that, given the def-
inition of the cohesion, isolated nodes and more generally nodes
which do not belong to a triangle are not considered to be part of
any communities As a consequence, contrary to other community
detection algorithms C* does not force people into communities
and therefore the covering might not be complete.

As we wish to study the links between Ego’s psycho-social
characteristics and the community structure of his ego-network,
we will restrict the set of users to those whose surrounding
topology consist at least of 50% of friends present in one or more
community (24,285 subjects). By using C* on our final data set,
we have obtained 974,677 communities.

In order to compare our findings to a baseline, we introduce,
for each subject, a random null model ego-network. Since we wish
to study the impact of the psychological traits on the commu-
nity structure of the ego-network, we need to control for other
topological factors such as size and density of the ego-network. In
order to do so, we will construct the null model ego-network G,
by randomly rewiring edges of the original ego-network G in the
following manner: choose two distinct edges randomly, such that
the ends of those two edges are four distinct nodes, and swap the
ends of those two edges, as illustrated on Figure 9.3. We obtain
the null model ego-network Gy after repeating this procedure m
times, where m is the number of edges in G. During this random
rewiring, each edge has been rewired on average twice, guarantee-
ing a the randomness of the graph Gy.

Note that at each step of the rewiring, no node or edge
are added nor deleted, which guarantees that the null model

ego-network has same size and density that the original
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(a) before rewiring (b) after rewiring

Figure 9.3 Illustration of the rewiring process: first two edges
are chosen and marked with thick lines and we then swap the
ends of the two chosen edges.

ego-network. Furthermore, because at each step we swap the ends
of edges, the degree of each node remains constant, and therefore
the distribution of degrees of both G and Gy are identical.
This means that the null model would be the ego-network of
an individual which would have same degree and clustering
coefficient that the original subject.

We have applied C’ to each null model ego-network and ob-
tained 1,709,883 communities. In the following section, where rel-
evant, we will apply the same computations both to the original
ego-network and the null model in order to highlight the effects
due to the deeper community structure.

Psychology of Structural Features

As stated previously, it has been observed repeatedly that there is a
linear Pearson correlation between the number of social connex-
ions maintained by an individual and his extraversion. Note that

we will consider the logarithm log(d) of the number of contacts (or
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log(d)
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Figure 9.4 Kernel density estimation of degree - number of
friends - as a function of extraversion.

degree) rather than the actual number of friends due to the high
variability of its value. On Figure 9.4, we have represented a kernel
density estimation of log(d) as a function of the extraversion. As
expected, we observe a moderate correlation r = 0.301 (p-value
< 107199 which indicates that the more extroverted users tend to

add more friends on Facebook.

Given this correlation between number of friends and
extraversion, it is only natural to look at the link between
the number of communities in a subject’s ego-network and
extraversion. We also observe a moderate correlation r = 0.293
(p-value < 107190) between extraversion and number of

communities (Fig. 9.5(a)). This result holds in part on the
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Figure 9.5 Kernel density estimations of the number of
communities in the ego-network as a function of extraversion
in the (left) original data and (right) null model.

null model where we observe a somehow smaller correlation
r = 0.196 (p-value 1.2 X 107297) between extraversion and
number of communities (Fig. 9.5(b)).

A possible explanation to this observation is that there is a
strong correlation r = 0.894 (p-value < 107'%°) between the num-
ber of communities log(k) and his number of friends log(d). In-
terestingly, on the null model, we observe a smaller correlation
r = 0.788 (p-value < 1071%°) between these two quantities.

It is important to point out that all the correlations are less im-
portant in the null model than in the original data. This leads us to
conclude that there is a direct contribution of the actual commu-
nity structure in the original ego-networks to correlations. That
is, part of the correlation between extraversion and communities

which cannot only be explained by the degree alone.

As expected, we have observed that more extroverted subjects
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Figure 9.6 Cumulative distributions of average community
size in (left) original data and (right) null model.

tend to have more friends on Facebook. More interestingly,
we have also observed that the friends of more extroverted
subjects are split across more communities. Our data suggest
data suggest that extroverted people not only maintain more
social relationships but also interact with a larger number of

social groups.

SINCE THERE IS a correlation between number of communities and
extraversion, it is legitimate to look at the relationship between the
size of those communities and extraversion. For each user, we will

define the average size s of his communities (c) as:

2. CO)lcl
2. C

We weight the sizes by cohesion in order to give more impor-

s =

tance to good communities. The cumulative distribution of aver-
age sizes represented on Figure 9.6(a) shows that most communi-
ties have a rather small size (50% have s < 4 and 95% have s < 10).
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Figure 9.7 Kernel density estimations of average size weighted
by cohesion as a function of extraversion in the (left) original
data and (right) null model.

In the case of the null model, the average size of communities is
evan smaller, which contrast with the original data, as 95% of the
null model ego-networks have an average community size ~ 3
(Fig. 9.6(b)).

There is a small negative correlation r = —0.11 (p-value
1.57 X 107%%) between log(s) and extraversion, which shows
that more extroverted subjects have smaller communities, and
conversely (Fig. 9.7(a)). Strikingly, this has to be contrasted with
the absence of correlation r = —0.0574 (p-value 4.16 x 107%)
between average size and extraversion in the case of the null
model (Fig. 9.7(b)). From this we conclude that correlations
observed in the original data are mainly due to the community

structure.

We have observed that introverted subjects tend to be in larger
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groups and that extroverts tend to be in smaller groups. This ob-
servation suggests that introverts are more naturally inclined to
blend into larger groups, rather smaller groups, to avoid being the
center of attention. On the contrary, extroverts might prefer being
part of a large number of smaller groups in order to have more
chance of attracting attention.

UNTIL NOW, WE HAVE ANALYZED the community structure in
terms of number of communities of the subjects and in terms of
number of people in those communities, that is the average size
of those communities. We now focus on the the average cohesion
- weighted by size - of a user’s communities, which is defined
as:

2 CO)lcl
2clel

The average cohesion C captures, for each user, to which extent he

C=

is part of socially cohesive environments. Interestingly, we have
found that there is no significant correlation between this quan-
tity and any of the big five personality traits. However, we have
observed a small correlation (r = 0.123, p-value 1.96 X 10782)

between the standard deviation of the cohesion o and extraver-

o ZeldCo - O
€ >, el

In the null model, this correlation is not present (r = 0.0676 p-

sion.

value 7.05 x 1072°) which suggests a relation between extraver-
sion and the heterogeneity of social communities.
This correlation between cohesion variability and extraversion

is related to the fact that that subjects who belong on average to
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larger communities tend to evolve in social groups of similar co-
hesion - there is a strong negative correlation r = —0.806 (p-
value < 107'%°) between g, and log(C). One mechanism may ex-
plain such a correlation: the number of large communities is much
lower, and those are typically of low cohesion, given that a number
of inbound triangles proportional to the cube of the size of the
community would be needed in order to maintain a high cohe-
sion.

We understand the positive correlation between the
cohesion’s standard deviation and extraversion in terms of social
adaptability, which is key in the definition of extraversion:
extroverts are members of different communities with highly
varying cohesion, and are thus members of social communities
which can be tight groups of close friends as well as more sparse
communities of more distant acquaintances. On the other hand,
as we have seen before, introverts tend to hide in larger groups
and those groups tend to have an average cohesion, i.e. introverts
tend to lack highly cohesive communities which would increase
the variability of cohesion.

ANOTHER ASPECT OF COMMUNITIES is the amount of overlap. As
described earlier, one of the strengths of C’ is that it computes
communities without imposing the constraint that a subject be-
longs to one and only one community. As a matter of fact, C* does
not impose the constraint that a subject belongs to at least one
community either: a node might be present in o, 1 or more com-
munities. For the sake of clarity, nodes of an ego-network which
are in at least one community will be referred to as covered.

A simple way to capture the notion that some of the covered
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nodes are in more than one community is to look at the partition
Wd
Xlel”
This partition ratio quantifies the extent to which the commu-

ratiop =

nities of an ego-network are disjoint from one another. It is equal
to 1 when all covered nodes are exactly in one community, that
is when covered nodes are partitioned into communities, and it
decreases as more nodes are present in several communities, i.e.
when the overlap increases.

We observe a small negative correlation r = —0.132 (p-value
1.56 X 107°°) between & and extraversion in the original data
whereas the correlation r = —0.0857 (p-value 1.03 X 10749) is
negligible on the null model.

We observe a negative correlation between extraversion and
the partition ratio, which implies that there is a link between the
compartmentalization of the ego-network and the subjects ex-
traversion. More extroverted subjects tend to be in groups which
are intricately linked to each other whereas less extroverted sub-
jects tend to be in more distinct and separate social groups. This
observation is compatible with the hypothesis that extroverts act
as bridges between communities and introduce individuals form

one community to those in another one.

FINALLY WE EXPLORE the effect of age on network topology. Al-
though not a psychological trait, age is part of the identity of the
subjects and as such has an impact on the structure of their ego-
network. We observe, as it was the case in," that there is a negative
correlation r = —0.194 (p-value 8.51 X 1071%%) between age and

1 Quercia, Lambiotte, Kosinski, Stillwell, and Crowcroft, op. cit.
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degree, which tends to indicate that the elder have a smaller so-
cial neighborhood on Facebook whereas the younger have more
friends.

Our community based approach reveals a moderate correla-
tion r = 0.271 (p-value < 107'%°) between age and the average
cohesion C which is not present in the null model, where the cor-
relation is r = 0.0843 (p-value 2.37 X 10737). This observation
suggests that older individuals belong to denser communities on
Facebook, whereas the younger are part of sparser ones.

Finally, let us mention a small correlation r = 0.171 (p-value
4 x 1071°%) between age and the Conscientiousness factor, which
indicates that the older subjects exhibit less spontaneous behavior
than younger ones. Intriguingly, though, we do not observe any
correlation between degree and conscientiousness, nor between
average cohesion and conscientiousness.

We have observed an impact of age on the structural properties
of ego-networks, as the older a subject gets the less friends he has
on Facebook. This observation can be explained by the fact that
younger subjects are more active on Facebook and tend to add
more friends than older ones. Our analysis also reveals that older
subjects tend to be part of more cohesive groups than the younger
ones, which might come from the fact that younger subjects are
less careful before adding someone as a friend on Facebook.

WE Now Focus on visualizations of ego-networks in order
to illustrate the quantitative findings of the previous sections.
Figure 9.8(a) shows a RubberBand drawing of the ego-network of
a user, which we will call A, with high extraversion (ext = 1.33).

Figure 9.8(b) shows the ego-network of user B who is more
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(a) User A, 26 years old: high extraversion (ext = 1.33), 101 friends of which 91
are split across 15 communities of size varying between 3 and 19, and average
cohesion C = 0.46.

Figure 9.8 Examples of two ego-networks of subjects with
different psychological traits and structural features.
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(b) User B, 19 years old: low extraversion (ext = —1.21), 145 friends of which
136 are split across 4 communities of size 4, 37, 48 and 48, and average cohesion
C=031.

Figure 9.8 Examples of two ego-networks of subjects with
different psychological traits and structural features (cont.).
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introvert (ext = —1.21). Let us recall that an ego-network is the
subgraph containing the neighborhood of Ego, and that Ego
and its links are not represented. Each circle in the visualization
represents a friend of the subject and their community is
represented by their color. If a friend belongs to several
communities, the circle is divided into equal regions and each
slice is colored with the color of a community. This procedure
makes the overlapping community structure of the ego-network
immediately visible.

Notice the differences between both networks. First, user A
has a degree (d, = 101) which is slightly less than B (d = 145)
even if both numbers have the same order of magnitude. More
interestingly, the organization of those friends into communities
is strikingly different. B has four communities, three of which con-
tain more than 35 friends. Moreover, two of those groups are to-
tally isolated from the others. On the other hand, A exhibits 15
communities which are much more interconnected and of smaller
size. This figure illustrates the different ways in which personal-
ity impacts the structure of the ego-network. More specifically, it
shows that a user with low extraversion, such as B, is part of a few
large cohesive groups which are compartementalized, whereas a
user with high extraversion, such as A, evolves in more different
social groups, of smaller sizes, varying cohesion and overlapping

one another.

>

Crossing two datasets, one containing psychological traits of subjects
and the other consisting of social ego-networks extracted from Face-

book, we have shown several ways in which the personality of users
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may affect there social entourage. After verifying that extroverts tend
to have more friends than introverts, we have exhibited that extro-
verts’ networks contain more communities than those of introverts.
Moreover, we have observed that introverts tend to hide into larger
communities, which we hypothesize is to avoid being the center of
attention. We have also noticed that extroverts belong to communi-
ties of varying cohesion, linked to their greater social adaptability,
and that those are less compartmentalized, a sign they might act as
bridges between social groups, introducing unrelated friends to one

another.
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I was born not knowing and have had
only a little time to change that here
and there.

Letter to Armando Garcia |

RicHARD FEYNMAN

THE notion of community, although intuitive, has evaded a

clear and quantitative definition for decades. This thesis in-
troduces the cohesion, a network statistic built upon widely ac-
cepted sociological notions and aimed to capture the extent to
which a set of nodes is a community. Following a large-scale ex-
periment, the use of the cohesion was validated when it was ob-
served that it correlated strongly with the subjective perception
of communities. This work contributes at long last the aforemen-
tioned elusive definition: a community is a strongly cohesive group
of people, with respect to the underlying social network.

Roughly the first half of this work lies at the intersection of
Computer Science and Sociology and is devoted to theoretical
aspects of the cohesion. From the distillation of its heritage, to
its construction and finally to its mathematical and algorithmic
analysis which lead to the proof that finding maximally cohesive
groups is an N'P-hard problem.

On the other hand, the second half is is dedicated to
concrete applications of the cohesion, be it in the form of the
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C’ community detection algorithm, the application of the
algorithm, or its use to understand the links between network
and personality. Although those applications were envisioned
out of a desire to justify the use of the cohesion, they grew into
solid results which can stand by themselves. The C? algorithm has
proven repeatedly that it could extract meaningful communities
from social networks and the RubberBand visualization
algorithm was helpful in the graphical interpretation of those
communities.

Branching out from Computer Science and Sociology, the use
of C? on the United States Senate agreement groups has not only
been useful in the justification of the algorithm but has helped
understand the continuity and stability of political parties. Ex-
tending in another direction, by exhibiting previously unquan-
tified structural differences between extroverts and introverts —
such as the topological proof that introverts tend to find refuge
in larger groups, or that extroverts act like bridges between com-
munities — it has brought valuable information on the intricacies
between psychology and sociology.

MORE THAN JUST A DEFINITION OF COMMUNITY, the cohesion is
a new framework which paves the way to a better understanding
and analysis of social networks structure. Although this thesis pro-
vides the foundations of this framework, I believe only the surface
has been scratched and so much remains to be uncovered.

From a theoretical standpoints, I have believe strongly that not
only the problem of finding maximally cohesive groups is N'P-
hard, but that moreover it is hard to approximate. However, this

does not mean that C? is the most efficient algorithm to optimize

184



EPILOGUE

the cohesion and a future line of work will surely be to try and
refine the algorithm.

On a more practical — or applied - note, there are several
other directions which I believe are worth investigating. One of
my first contacts with communities dates back to 2008, when
I was working on information diffusion. At that time, I had
launched an online experiment aimed at measuring the spread
of a resource across the blogosphere® and of interest here is an
observation I had during the progress of the experiment. As I was
looking at the blogs which had been “infected” by the resource, I
noticed that it actually seemed to be hopping from one semantic
community to another - for example, it stagnated for a few
days in a marketing community before suddenly spreading like
wildfire in a job searching community, before slowing again and
hopping to yet another community.

The fact that there are links between communities and dif-
fusion seems obvious in retrospect, since cohesive communities
are by definition ideally separated by weak ties which are, let us
recall, the ties without which “new ideas [would] spread slowly*”.
There has classically been an assumption that there is somehow a
relation between number of friends and influence, an idea which
seems simplistic upon closer inspection. I do admit that some-
one having more friends might transmit an opinion to more peo-
ple in his immediate neighborhood - due to the simple fact that
there are more people to transmit the opinion to - but consider

1 Adrien Friggeri, Jean-Philippe Cointet, and Matthieu Matthieu Latapy. “A
Real-World Spreading Experiment in the Blogosphere”. In: Complex Systems 19.3
(2011).

2 Granovetter, “The strength of weak ties: a network theory revisited”, p. 202.
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two individuals, one having a large number of friends all part of
the same community, the second one having far fewer friends but
in separate communities. In a sense, the first can be considered
from a topological standpoint as interchangeable with others in
the community, whereas the second one has a more unique profile
in that he acts as a structural hole between disparate communities.
As such, it should be worth investigating the existence of links
between the cohesion and influence.

Another field in which the use of communities might prove
insightful is in terms of traits inference, which can be useful in a
context of social reccommendation. For example, on online social
networks, some users add personnal information such as favorite
brands, music or movies in addition to the actual social ties they
maintain, which information is then used to suggests new centers
of interest or target advertising. There are however some user who
do not wish or know how to add such information to their profiles.
As such, the knowledge of communities can be leveraged to infer
this meta-data from their friends.

For instance, consider an individual having 100 friends,
and suppose that 10 of his friends have stated they liked a
specific restaurant. In the general case, this means that 10%
of his friends share a common trait but does not bring a great
deal of information. However, if those friends form a cohesive
communities, then it is not only 10% of all friends, but 100% of
a community, and as such the probability that the user would
be interested — or already knows - this restaurant is far higher.
Basically, this notion of inference relies on the analysis of the
distribution of a trait among the social neighborhood of the user.

In the cases where the trait is homogeneously spread among his
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friends, not much information is gained, however if it is mostly
located inside a community then the probability the topological
structure of the network can enhance the deduction.

More broadly, this kind of reasoning could be used to iden-
tify the nature of the communities. As such, for the time being,
once communities are computed using C*, we know that the mem-
bers of the community have something in common, but we do not
know what. During the time where Fellows was in progress, a large
number of users asked me how the application knew who were
their family, their chess club or whatever community it had found.
Invariably I answered that the application did not know that, since
it only relied on the social ties of the network. However I believe
that community detection to generate automatic lists of friends —
such as mailing lists in email clients, or friends lists on Facebook —
could benefit from an automatic labeling. For instance one could
identify groups which are families by comparing surnames and
checking for a high age variability among the group as families
span several generation, similarly. More generally, a possible ex-
tension of this work would be in the identification of a minimal
set of meta-data which use could lead to a characterization of a

social community.

IN coNcLUSION, this thesis answers a long-standing open ques-
tion of quantitative sociology by providing a justified, solid and
experimentally validated mathematical definition of community.
Although important theoritical results as well as applications to
diverse fields have already been established in this thesis, it paves
the way to a complementary approach to social network analy-

sis which drills into the network halfway between the individual
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and the global without suffering from the drawbacks of previous
contributions since the cohesion has been shown to be a good
indicator of communitiness, is based on solid sociological groups,
is defined as alocal metric and does not impose restrictions on the

size or overlap between communities.
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Although this thesis is focused on my work on social cohesion, I spent
my first year in the DNET team working on the TubExpo project, a
large-scale deployment of a wireless sensor network in two hospitals to
monitor the interactions between Health Care Workers and patients.
Due to physical constraints, the measure suffered a large amount of
data loss — up to 80% of packets in some cases. I contributed to that
project a signal processing treatment to reconstruct the collected data,
which explains the presence of publications not directly related to com-
munities and the cohesion.
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A Quantitative Theory of
SociaL COHESION

Adrien FRIGGERI

Community, a notion transversal to all areas of Social Network
Analysis, has drawn tremendous amount of attention across the
sciences in the past decades. Numerous attempts to characterize
both the sociological embodiment of the concept as well as its
observable structural manifestation in the social network have to
this date only converged in spirit. No formal consensus has been
reached on the quantifiable aspects of community, despite it being
deeply linked to topological and dynamic aspects of the underly-
ing social network.

Presenting a fresh approach to the evaluation of communities, this
thesis introduces and builds upon the cohesion, a novel metric
which captures the intrinsic quality, as a community, of a set of
nodes in a network. The cohesion, defined in terms of social triads,
was found to be highly correlated to the subjective perception of
communitiness through the use of a large-scale online experiment
in which users were able to compute and rate the quality of their
social groups on Facebook.

Adequately reflecting the complexity of social interactions,
the problem of finding a maximally cohesive group inside a
given social network is shown to be A'P-hard. Using a heuristic
approximation algorithm, applications of the cohesion to broadly
different use cases are highlighted, ranging from its application to
network visualization, to the study of the evolution of agreement
groups in the United States Senate, to the understanding of the
intertwinement between subjects’ psychological traits and the
cohesive structures in their social neighborhood.

The use of the cohesion proves invaluable in that it offers non-
trivial insights on the network structure and its relation to the
associated semantic.
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