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Submitted for obtaining the degree of

Doctor of the University of Toulouse

Delivered By INSA-Toulouse

In : Automatic Systems and Computer Science

Ecole doctorale Systémes (EDSYS)
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Abstract

Proteins are biological macromolecules that play essential roles in living organisms. Un-

derstanding the relationship between protein structure, dynamics and function is indis-

pensable for advances in fields such as biology, pharmacology and biotechnology. Study-

ing this relationship requires a combination of experimental and computational methods,

whose development is the object of very active interdisciplinary research. In such a

context, this thesis presents a robotics-inspired modeling approach for studying confor-

mational changes in proteins. This approach is based on a mechanistic representation

of proteins that enables the application of efficient methods originating from the field of

robotics. It also provides an accurate method for coarse-grained treatment of proteins

without loosing full-atom details.

The presented approach is applied in this thesis to two different molecular simulation

problems. First, the approach is used to enhance sampling of the conformational space of

proteins using the Monte Carlo method. The modeling approach is used to implement new

and known Monte Carlo trial move classes as well as a mixed sampling strategy. Results

of simulations performed on proteins with different topologies show that this strategy

enhances sampling without demanding higher computational resources. In the second

problem tackled in this thesis, the mechanistic modeling approach is used to implement a

robotics-inspired method for simulating large amplitude motions in proteins. This method

is based on the combination of the Rapidly-exploring Random Tree (RRT) algorithm with

Normal Mode Analysis (NMA), which allows efficient exploration of the high dimensional

conformational spaces of proteins. Results of simulations performed on ten different

proteins of different sizes and topologies show the effectiveness of the proposed method

for studying conformational transitions.
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Résumé

Les protéines sont des macromolécules biologiques qui jouent des rôles essentiels dans les

organismes vivants. La compréhension de la relation entre la structure des protéines, leur

dynamique et leur fonction est indispensable pour progresser dans des domaines tels que la

biologie, la pharmacologie et les biotechnologies. L’étude de cette relation exige une com-

binaison de méthodes expérimentales et de méthodes de calcul, dont le développement

est l’objet d’une recherche interdisciplinaire très active. Dans ce contexte, cette thèse

présente une approche de modélisation inspirée par la robotique pour l’étude des change-

ments conformationnels des protéines. Cette approche est basée sur une représentation

mécanistique des protéines permettant l’application de méthodes efficaces provenant du

domaine de la robotique. Elle fournit également une méthode appropriée pour le traite-

ment Ç gros-grains È des protéines sans perte de détail au niveau atomique.

L’approche présentée dans cette thèse est appliquée à deux types de problèmes de

simulation moléculaire. Dans le premier, cette approche est utilisée pour améliorer

l’échantillonnage de l’espace conformationnel des protéines. Plus précisément, cette ap-

proche de modélisation est utilisée pour implémenter des classes de mouvements pour

l’échantillonnage, aussi bien connues que nouvelles, ainsi qu’une stratégie d’échantillonnage

mixte, dans le contexte de la méthode de Monte Carlo. Les résultats des simulations

effectuées sur des protéines ayant des topologies différentes montrent que cette stratégie

améliore l’échantillonnage, sans toutefois nécessiter de ressources de calcul supplémentaires.

Dans le deuxième type de problèmes abordés ici, l’approche de modélisation mécanistique

est utilisée pour implémenter une méthode inspirée par la robotique et appliquée à la sim-

ulation de mouvements de grande amplitude dans les protéines. Cette méthode est basée

sur la combinaison de l’algorithme RRT (Rapidly-exploring Random Tree) avec l’analyse

en modes normaux (Normal Mode Analysis, ou NMA), qui permet une exploration effi-

cace des espaces de dimension élevée tels les espaces conformationnels des protéines. Les

résultats de simulations effectuées sur un ensemble de protéines de tailles et de topolo-

gies différentes montrent l’efficacité de la méthode proposée pour l’étude des transitions

conformationnelles.
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Introduction

Computer simulations are widely used nowadays to model biomolecules, mimic their be-

havior and gain insight about their physicochemical properties and biological functions.

Indeed, a whole field dedicated to such simulations currently exists under the name of

computational structural biology.

Computational methods have been mostly developed for complementing experimental

methods. For instance, molecular dynamics (MD) [Rapaport 07] and Monte Carlo (MC)

methods [Landau 05] are largely used to study thermodynamic properties and the activity

of proteins from an initial structure determined by X-ray crystallography [Woolfson 97]

or nuclear magnetic resonance (NMR) [Cavanagh 06]. The complementarity between

experimental and computational methods can also be exploited in the other direction,

since simulations can be enhanced using experimental data. An interesting illustration of

that is the use of NMR chemical shifts to restrain MD simulations [Robustelli 10].

Some computational methods go further, aiming to replace experimental methods.

For instance, computational methods can be used to determine the structure of proteins

without prior experimental information [Bonneau 01]. Methods are also available for pre-

dicting molecular interactions (molecular docking) [Lengauer 96], and for understanding

how proteins move from random coils to their native structure (protein folding) [Pain 00].

Nevertheless, the current status of these computational methods is still far from providing

completely accurate and reliable results in all the cases, and the most complex instances

of the aforementioned problems remain out of reach for state-of-the-art methods. For ex-

ample, current computational power permits performing MD simulations that cover up to

some microseconds of the physical time. This is of course insufficient since molecular mo-

tions in some events like protein folding can occur over the range of seconds [Muñoz 08].

MC methods also suffer from shortcomings in their search and sampling of the confor-

mational space of proteins, which is a rugged landscape with many local minima. MC

methods tend to get trapped in these local minima and waste considerable time trying to

escape out of them.

1



For these reasons, active research is currently focused on enhancing simulation tech-

niques (see [Sugita 99, Marinari 92, Laio 02, Shaw 10] for example) and producing alter-

natives for them. This thesis falls under a particular family of such alternative methods,

which are inspired from the field of robot motion planning. Robotics-inspired methods

have been introduced recently for simulating motions of proteins and for studying prob-

lems like protein folding and protein-ligand interactions. They borrow ideas, mainly, from

sampling-based motion planning algorithms [LaValle 06, Choset 05, Tsianos 07], which

have proven to be powerful tools for tackling high-dimensional robot motion planning

problems.

Although the two fields of robotics and molecular simulations seem very distant at

first glance, a closer look reveals many similarities in terms of the formulation of the

tackled problems. In an early survey [Parsons 94], Parsons and Canny have shown that

several of the problems studied in the field of computational structural biology are actu-

ally geometric problems that have counterparts in the field of robotics. This is mainly

due to the fact that motion plays a central role for both robots and proteins. Indeed,

molecular motions make an integral part of the biological processes proteins are involved

in, such as catalysis and signal transmission. Understanding how proteins move is directly

linked to understanding such processes, as well as to understanding dysfunctions and their

contribution to diseases such as the mad cow disease and Alzheimer’s disease [Selkoe 03].

In this thesis, we present a mechanistic modeling approach for proteins and show how

it can be used to enhance molecular simulations. This modeling approach uses notions

from robotics that allow high-level (coarse grained) treatment of molecules without loos-

ing low-level (full-atom) details. We show how this modeling approach can be used to

implement well-known and new Monte Carlo move classes as well as how it can lead to

an overall enhanced sampling of the molecular conformational space. We also propose,

based on this modeling approach, a combined motion planning and Normal Mode Analy-

sis (NMA) [Cui 06] method for studying large amplitude motions in proteins. The use of

the mechanistic modeling approach with the well-known RRT motion planning method

[LaValle 01a] and normal mode analysis provides clear performance gains, which allow us

to show results for the simulation of conformational transitions in proteins with up to one

thousand residues.

In addition to the methodological contribution, this thesis also provides an extensive

survey of the use of motion planning algorithms in molecular simulations. Up to our

knowledge, the literature lacks such a survey, which would be useful for both roboticists

and biologists willing to work in this domain.

The thesis is organized around these contributions as follows. Chapter 1 is dedicated

to surveying and discussing the use of motion planning inspired methods in molecular

simulations. Chapter 2 then presents the details of the mechanistic protein modeling ap-

proach, which acts as a basis for the methods presented in the proceeding two chapters.
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Chapter 3 is dedicated to the applications of the modeling approach in Monte Carlo simu-

lations. Next, Chapter 4 presents the combined RRT-NMA method and shows simulation

studies for conformational transitions in proteins of various sizes. Finally, the thesis ends

with a conclusion and a discussion of future research directions.
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Chapter 1

Motion Planning Algorithms for

Molecular Simulations

Motion planning is a fundamental problem in robotics that has motivated active research

since more than three decades ago. A large variety of algorithms have been proposed

to compute feasible motions of multi-body systems in constrained workspaces. In re-

cent years, some of these algorithms have surpassed the frontiers of robotics, finding

applications in other domains such as industrial manufacturing, computer animation and

computational structural biology. This chapter concerns the latter domain, providing

a survey on motion planning algorithms applied to molecular modeling and simulation.

Both the algorithmic and application sides are discussed, as well as the different issues

to be taken into consideration when extending robot motion planning algorithms to deal

with molecules. From an algorithmic perspective, the chapter gives a general overview

on the different extensions of sampling-based motion planners that have been proposed

in this context. From the point of view of applications, the chapter deals with prob-

lems involving protein folding and conformational transitions, as well as protein-ligand

interactions.

Since motion-planning-inspired algorithms for molecular simulations are relatively

new, to our knowledge, no dedicated reviews have been written on this subject. Nev-

ertheless, there are three works that are noteworthy in this regard. The first is a survey

by Moll et al. [Moll 07] that is dedicated to applications of motion planning roadmap

methods to protein folding only. The second is an online course prepared by Kavraki enti-

tled “Geometric Methods in Structural Computational Biology”[Kavraki 07]. This course

is a good and comprehensive reference on the broad subject of using geometric methods

in computational biology. It is oriented towards explaining in detail the background,

algorithms and the implementation details rather than surveying the current literature;

which is the aim of this chapter. The third one is a very recent survey on computational

models of protein kinematics and dynamics [Gipson 12]. This survey is focused on the



application of robotics-inspired methods together with Markov models to obtain a com-

pact representation of the protein conformational space, which makes it limited in terms

of the discussed methods and applications.

The aim of this chapter is twofold. First, it provides a basis for the next chapters

by explaining concepts related to motion planning and how it can be used in molecular

simulations. Second, it tries to fill the gap in the available literature by providing a

comprehensive survey and discussion of the use of motion planning algorithms in molecular

simulations. For readers in the structural biology community, this kind of survey can be

looked as an introduction to robotics-inspired methods with applications in their domain,

which will hopefully contribute to spreading the word about this new family of methods

in the community. For readers in the robotics community, this kind of survey can incite

them to look at problems in structural biology, which represent a challenging application

domain that motivates the development of improved algorithms for accurate computations

in very-high-dimensional spaces.

The chapter is organized as follows: Section 1.1 begins by introducing the general

problem of motion planning and by presenting basic algorithms, especially sampling-

based algorithms. The discussion then proceeds by explaining the different issues to

be taken into account when moving from motion planning in robotics to performing

molecular simulations. The main molecular simulation methods that are inspired by

robot motion planning are then surveyed and explained in Section 1.2. Next, Section 1.3

discusses the three main application domains in computational structural biology where

these algorithms have been applied. These application domains are: the analysis of

conformational transitions, protein folding and unfolding, and protein-ligand interactions.

For each of these domains, the general problem is presented and then results achieved using

motion-planning-inspired techniques are surveyed and discussed. Finally, Section 1.4

summarizes and concludes the chapter.

1.1 From Robot Motion Planning to Molecular Simulations

This section introduces the motion planning problem and briefly presents some of the algo-

rithms that have been proposed during the last three decades. More attention is given to

the two classes of planning algorithms called Probabilistic Roadmap (PRM) [Kavraki 96]

and Rapidly-Exploring Random Trees (RRT) [LaValle 01a], as robotics-inspired algo-

rithms for molecular simulations mainly follow these approaches. The discussion will

then proceed to how these algorithms can be extended for computing molecular motions.
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1.1.1 Motion Planning in Robotics

The goal of robot motion planning is to decide automatically what motions a robot should

execute in order to achieve a task specified by initial and goal spatial arrangements of

physical objects [Latombe 90]. A frequently used example is: given a piano in a certain

room, what motions should be applied to the piano in order to transfer it from position A

to position B without colliding with any of the room’s furniture? The formalized version

of this problem is known as the Piano Mover’s Problem [Schwartz 83].

Motion planning is generally formulated using the notion of Configuration Space

[Lozano-Peréz 83]. A configuration q describes the pose of the robot (e.g. the x and

y coordinates of a rigid robot translating in a 2D workspace). The configuration space C

is the set of all possible configurations the robot can take, and the number of dimensions

of this space equals the number of degrees of freedom of the robot (i.e. the number of

parameters needed to describe the pose of the robot). Some regions in the configura-

tion space may be considered forbidden due to the presence of obstacles or due to other

constraints. These regions are usually denoted Cobs and the rest of the space is denoted

Cfree. The motion planning problem becomes a search problem in Cfree for paths that

connect the initial and goal configurations.

Early work focused on complete motion planning algorithms, i.e. algorithms that al-

ways report a solution if one exists and report failure otherwise [Goldberg 95, Latombe 90,

LaValle 06]. An excellent overview of different classes of complete motion planning al-

gorithms can be found in [Latombe 90] (Chapters 4 to 6). The problem with these

methods is that they are inapplicable to problems with high dimensions or complex con-

straints. Finding complete solutions to such problems is known to be intractable [Reif 79,

Canny 88]. For this reason, attention has shifted towards practical motion planning al-

gorithms rather than complete ones. Sampling-based motion planners [Lindemann 05,

Tsianos 07, LaValle 06] are such types of algorithms that have gained a lot of momentum

lately. These algorithms trade off completeness for the sake of generality, efficiency and

simplicity of implementation. They guarantee a weaker notion of completeness called

probabilistic completeness, which means that with enough samples, the probability to find

an existing solution converges to one [LaValle 06].

Sampling-based planners sample the configuration space to build a representative

set of configurations instead of an explicit representation of the configuration space.

Sampling-based planners are often classified into two categories: roadmap-based plan-

ners and tree-based planners. Roadmap methods work in two phases: a construction

phase, where a graph that covers the configuration space is built, and a query phase,

where the constructed graph is used to plan the motion between a start and goal config-

uration. These methods are also called multiple-query methods since the built roadmap

can be used multiple times. Tree-based planners, on the other hand, are usually single-
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Figure 1.1: An illustration of a simple PRM.

shot methods. A tree is grown from the start configuration by sampling the space until

a path to the goal configuration is found. Thus, the construction of the tree and the

search for the path are done at the same time. The two algorithms described next, PRM

[Kavraki 96, Geraerts 04] and RRT [LaValle 01b, LaValle 01a], are the most representa-

tive methods of each of these main classes. For more information about motion planning

methods see [Canny 88, Latombe 90, Choset 05, LaValle 06].

Probabilistic Roadmap

The Probabilistic Roadmap (PRM) algorithm was introduced in the 1990s [Kavraki 96]

and was able then to successfully solve motion planning problems with higher dimensions

than what was achieved before. The basic version of PRM works by performing the

following steps iteratively:

1. A random sample is drawn from the configuration space and is checked for collision.

If the sample is a valid configuration, it is added to the roadmap as a node.

2. A search is performed to find the nearest neighbors in the roadmap to the new node.

3. An attempt is made to connect the new node to its neighbors using a local planner

whose definition depends on the constraints imposed by the problem. If a connection

can be established without collision, a new edge is added to the roadmap.

The roadmap is built by repeating the previous steps until a stopping criterion is met.

Another version of the algorithm that performs sampling and connections in separate

loops is also widely used. The produced graph can then be searched for paths using any

of the conventional graph search algorithms such as Dijkstra’s shortest path [Dijkstra 59]

or the A* [Hart 72] algorithms. These basic steps of the PRM have been improved over

the years and several variants have appeared (e.g. [Amato 98, Simeon 00, Wilmarth 02,
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Figure 1.2: Illustration of a simple RRT at an intermediate stage during its construction.

Sánchez 03, Geraerts 04]). However, the general structure of the algorithm remains the

same. Figure 1.1 shows an illustrative example of the basic PRM.

Rapidly Exploring Random Tree

The most popular tree-based motion planner is the Rapidly-exploring Random Tree

(RRT) [LaValle 01b, LaValle 01a]. Rooted at the start configuration, a tree is iteratively

constructed in the configuration space until the goal configuration can be connected to

one of its nodes. An interesting feature of the algorithm is that nodes with larger Voronoi

regions (i.e. the portion of the space that is closer to the node than to other nodes of the

tree) are more likely to be chosen for expansion, and therefore the tree is pulled towards

unexplored areas, spreading rapidly in the configuration space.

The basic version of the RRT works by performing the following steps iteratively:

1. A random configuration qrand is sampled in the configuration space.

2. The tree is searched for a configuration qnear, which is the nearest node in the tree

to qrand.

3. A new configuration qnew is created by moving a predefined distance d from qnear in

the direction of qrand using a local planner or an interpolation method that depends

on the mobile system.

4. If qnew is a valid configuration that falls in Cfree, and if the local path between it

and qnear is collision-free, then qnew is added to the tree as a new node and an edge

is created between qnew and qnear.

This process is repeated until the goal configuration can be connected to the tree or

a maximum number of iterations is reached. Figure 1.2 shows an illustrative exam-

ple of the basic RRT algorithm. Variants of this basic algorithm appeared later on
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(e.g. [Kuffner Jr 00, Bruce 02, Cheng 02, Rodriguez 06]). Moreover, other tree-based

planners that are not directly based on RRT have also been proposed. Some exam-

ples of such planners are: Expansive Spaces Trees [Hsu 97], Path-Directed Subdivision

Trees [Ladd 05] and KPIECE [Şucan 09].

1.1.2 Needed Extensions For Molecular Simulations

Since the algorithms discussed above have been developed with robotic applications in

mind, they need to be extended or adapted in order to suit the requirements for simulating

molecular motion. Generally speaking, there are several issues that need to be taken into

account before applying such algorithms. First, a molecular representation that is suitable

for applying motion planning algorithms needs to be adopted. Next, appropriate similarity

measures (i.e. distance metrics) and collision detection methods for proteins need to

be used. In addition, specific sampling methods can be required to satisfy structural

constraints. Energies of molecular conformations also need to be taken into consideration

since they determine the probability of their existence in reality. Furthermore, the very

high dimensionality of problems involving biological macromolecules needs to be faced.

These issues are discussed in the following along with a quick survey of the relevant

literature.

Molecular Representation

The most straightforward way for representing molecules geometrically is to list the

Cartesian coordinates of all the atoms [Leach 01, Koliński 10]. Bonds can then be con-

structed automatically using the distances between atoms and the knowledge about their

types. This is called the Cartesian representation and it is used by the Protein Data

Bank [Berman 02] to describe proteins. This representation is also frequent among con-

ventional modeling tools based on Molecular Dynamics or Monte Carlo methods. The

problem with such a representation is that it does not directly describe the internal degrees

of freedom of the molecule.

There are three types of variables that can be considered as internal degrees of free-

dom in molecules: bond lengths, bond angles and dihedral angles. A bond length is the

distance between two bonded atoms and a bond angle is the angle between two consecu-

tive bonds. The dihedral angle around the bond between atoms Ai−1 and Ai is the angle

formed by planes Ai−2-Ai−1-Ai and Ai−1-Ai-Ai+1. See Figure 1.3 for an illustration. Al-

though bond lengths and bond angles vary, their variation is known to be very small at

room temperature [Schlick 10]. On the other hand, major conformational changes in the

molecule occur due to variations in dihedral angles. For this reason, a widely adopted

assumption is made, called the rigid geometry assumption [Scott 66], that considers di-

hedral angles to be the only degrees of freedom of the molecule. Hence, the conformation
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Figure 1.3: Parameters defining the relative position of bonded atoms.

of the molecule can be represented as a vector of only the dihedral angles [Leach 01].

This representation is called the internal coordinates representation. Figure 1.4 shows a

protein model together with a representation of the dihedral angles corresponding to one

of its amino acid residues.

Modeling a protein in internal coordinates is very similar to modeling an articulated

robot. Indeed, modeling conventions applied in robotics can also be applied to molecules

[Manocha 95, LaValle 00, Zhang 02, Noonan 05, Jagodzinski 07]. Based on the inter-

nal coordinates representation and the rigid geometry assumption, the protein can be

looked at as an articulated mechanism, where bonds correspond to axes of revolute joints

and atom-groups correspond to rigid links in a kinematic chain (for more about kine-

matic chains see: [Xie 03, Angeles 07, Sciavicco 01]). Finally it should be noted that

the atom coordinates, which are required for some operations like energy computation

and collision detection, can be computed from the internal coordinates using forward

kinematics [Spong 06].

Dimensionality Reduction

Although using internal coordinates with the rigid geometry assumption reduces the num-

ber of variables, the number of degrees of freedom required to model biological macro-

molecules such as proteins remains very large. For example in molecular docking problems

(see Section 1.3.3), ligands typically have 3-15 dihedral angles and receptors have in gen-

eral more than 1000 dihedral angles, which makes the dimension of the combined search

space prohibitively large [Teodoro 01]. This problem of high dimensionality is actually

one of the major difficulties to be faced by computational methods in structural biology.

Several strategies have been used to reduce the dimensionality of the studied problems.

For example, molecular docking problems have been tackled for a long time with the as-

sumption that only the ligand is flexible and that the receptor protein is rigid [Leach 01].

However, since receptors may go through important conformational changes, it has been

shown that this assumption leads to unrealistic solutions [Cavasotto 05b]. Other works
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Figure 1.4: The main image shows a protein model in van der Waals representation
(spherical atoms). The detail shows one of its constituent amino acid residues and the
dihedral angles required to define its conformation.

(for e.g. [Jones 97a, Apostolakis 98, Pak 00]) have made more realistic assumptions based

on prior chemical knowledge of the receptor protein. Using this knowledge, dihedral angles

that contribute most to the motions of the receptor are identified. These dihedral angles

are then assumed to be flexible and the rest of the receptor to be rigid. The drawback

of such methods is that they are problem-dependent and hard to automate [Teodoro 01].

A more general approach proposed in [Thomas 07] identifies automatically which parts

of the protein can be considered rigid using methods that are based on rigidity the-

ory [Thorpe 99, Wells 05]. Another strategy to reduce the dimensionality of the problem

is to assume that secondary structure elements are rigid, and that loops, linkers and

side-chains are flexible. This approach, as in [Cortés 10b], reduces the number of variable

parameters significantly and allows concentrating on important motions of the protein.

A different approach for addressing the problem is to use statistical dimensionality

reduction methods [Fodor 02, van der Maaten 09] to map the current degrees of freedom

into a lower-dimensional space. These methods usually begin with a previously-available

ensemble of structures for the protein under study, which are analyzed in order to create

a reduced set of degrees of freedom. An example of such methods is Principal Component

Analysis (PCA) [Jolliffe 02], which is commonly used in the analysis of near-equilibrium

fluctuations sampled by molecular dynamics simulations [Das 06, Altis 07, Mu 05]. In

spite of the ability of PCA to capture important collective features, it may not be suitable

for accurately representing large-amplitude molecular motions given that it provides a

linear approximation and that molecular motions are generally non-linear. An example of

methods that can capture non-linear features is the Isometric Feature Mapping (IsoMap)

method [Tenenbaum 00]. This method produces a low dimensional space that preserves
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as much as possible the geodesic distances between the conformations in the original

high-dimensional space. This requires the construction of a nearest neighbor graph using

a big number of distance computations, which makes the algorithm suffer when dealing

with large datasets. A scalable version of IsoMap called Scalable IsoMap (ScIMAP)

was introduced and applied to protein modeling applications [Das 06]. This method was

further extended in [Plaku 07a] to be even more efficient by performing distance measures

in yet another projection on a lower dimensional Euclidean space.

Normal Mode Analysis [Cui 06] has also been used in this regard. It has been

shown that large-amplitude motions in proteins are related to low-frequency normal

modes [Hinsen 98, Tama 01]. Consequently, low-frequency normal modes can be used

to predict the direction of large-amplitude motions. In [Kirillova 08], transition pathways

between conformations are computed using an RRT-like algorithm that explores linear

combinations of low-frequency normal modes. An advantage of NMA over methods like

PCA and IsoMap is that normal modes are computed from a single conformation, so that

no dataset of conformations is required to be available a priori.

Distance Metrics

In molecular simulations, one often needs to measure how much a molecular conformation

is different from or similar to another conformation. This notion of similarity (or distance)

is also essential for most motion planning inspired methods. As explained in Section 1.1.1,

RRT-based methods rely on finding the most similar conformation to every new random

sample. PRMs also search for local connections between neighbor nodes corresponding

to similar conformations. This makes the choice of the distance measure critical for the

performance of the whole algorithm.

A widely used and straightforward distance measure is the coordinate root mean

squared deviation (cRMSD), which is measured as the square root of the average squared

distances between corresponding atoms in two molecules. This distance measure requires

the conformations of both molecules to be aligned (superimposed) in order to remove

the effect of any translation or rotation of the whole molecule. Examples of distance

measures based on this idea include [Rao 73, Rossmann 76, Falicov 96]. Another widely

used measure that eliminates the need to align the conformations is the distance root

mean squared deviation (dRMSD). Here, distances are first computed between pairs of

atoms of the same molecular conformation, then the root mean squared deviation is

computed between these distances and the corresponding distances in the other molecular

conformation. For an example of such a distance metric see [Holm 93].

Measuring the root mean squared deviation can also be done using dihedral values

instead of atom coordinates, which is how robot configurations are typically compared

within motion planning algorithms. Yet, it is important to note that in molecular sim-
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ulations we are more interested in distance measures that capture structural differences

in proportion to their effect on the potential energy of the molecule. Fluctuations in the

backbone have generally a stronger effect on the energy than fluctuations in side-chains,

for example. This is not the case with RMSD metrics in general, since they give the

same weight to all-atom fluctuations regardless of how much these fluctuations affect the

potential energy. For a comparison between different distance measures see [Wallin 03].

Computing distances can be a bottleneck for motion planning algorithms, especially if

all-atom measures like dRMSD and cRMSD are used. Hence, several works have resorted

to using approximate metrics instead of the exact ones. The rationale behind using

such metrics is that an exact distance is not always required for the algorithm as a

whole to function well, which justifies trading off exactness for the sake of performance

gain. Several such methods can be found in the literature. One example is the work of

Lotan and Schwarzer [Lotan 04], in which the protein is replaced by a lower dimensional

averaged version that is used instead of the original one. This is done by subdividing

the protein into n subsequences, each of which is replaced by its centroid. The authors

used Haar Wavelet analysis to justify their metric and showed that it is highly correlated

with the exact metric. Another example can be found in [Shehu 10]. In this work, the

conformation of the whole protein is represented by only three variables that capture

the overall topological differences between conformations. These variables are: the mean

atomic distance to the centroid (ctd), the mean atomic distance to the farthest atom

from the centroid (fct), and the mean atomic distance from the atom farthest from fct

(ftf). An even more simplified metric is used in [Cortés 07] for the problem of molecular

disassembly (see section 1.3.3), where the degrees of freedom of the protein side-chains

and the torsions of the ligand are both ignored and only the reference frame associated

with the ligand’s geometric center is used for computing the distance.

A general method to devise simplified distance metrics, which could be applied for

molecular simulations, is proposed in [Plaku 07b]. This method projects the sampled

conformations q to an m-dimensional Euclidean space and performs the distance measures

in that space. The projection is done by first selecting m pivots from q and then replacing

each variable xi in q by a vector of the distances between xi and each of the pivots.

Choosing pivots as far as possible from each other is believed to best preserve the distances

as computed in the higher-dimensional space.

Collision Detection

Another important problem is the detection of collisions between parts of the same

molecule and between different interacting molecules. As explained in Section 1.1.1,

sampling-based algorithms need a collision checker to decide at every step if a new con-

formation is valid, and to check if two adjacent conformations can be connected by a
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collision-free path. Collision detection is indeed intensively performed inside these al-

gorithms. Very efficient collision checkers tailored for molecular models are therefore

necessary for the overall efficiency of the planning algorithms.

Collision detection has been widely studied in the fields of robotics and computer

graphics [Jiménez 01, Lin 03] and several general-purpose collision detection packages

are available (e.g. [Gottschalk 96, van den Bergen 98, Cohen 95]). However, the problem

with most of these methods is that they do not directly address the complex chain-like

structure of large molecules such as proteins. This makes such methods less efficient than

what can possibly be achieved, since the number of pairs considered for collision in the

chain can be significantly reduced by exploiting the structural properties of the chain

(see [Soss 03, Agarwal 04] for some examples of works that address the specific problem

of collision detection in kinematic chains).

Several algorithms dedicated to chain-like molecular models have been proposed. The

technique described in [Lotan 02] exploits the topology of the molecular (kinematic) chain

to avoid testing for self-collision parts that are known to be rigid. It uses a hierarchi-

cal representation of the chain that allows for efficient updates and queries in O(logN)

time, and superimposes on top of this representation a hierarchy of bounding boxes,

which allows for efficient collision detection and distance computation. The algorithm

detects self-collisions with a worst-case complexity of O(N4/3). Another algorithm, called

BioCD [de Angulo 05], was specifically designed to be used within sampling-based motion

planning algorithms applied to proteins described as kinematic chains. It assumes that

only a pre-selected set of the degrees of freedom of the protein can change arbitrarily and

the rest are blocked. The algorithm works by creating a two-level hierarchy that allows

it to avoid detecting collisions between atom pairs whose distance does not change from

one iteration to another.

Loop Closure

Loops are portions of proteins that are highly irregular and varied in terms of their

sequence and structure. They can play important roles in controlling enzyme activ-

ity, and are often found at the interface in protein-protein or protein-DNA/RNA com-

plexes [Rangwala 10]. Sampling such portions of the protein poses a challenge that re-

quires extra care. Conformations of loops must not only satisfy geometric constraints for

collision avoidance, but must also satisfy what is known as the loop-closure constraint.

The two ends of the loop must remain bonded to the rest of the molecule, which greatly

restricts the space of admissible conformations of the molecular chain. Therefore, defin-

ing an appropriate sampling strategy is a prerequisite for any sampling-based exploration

method that takes loop flexibility into consideration.

The protein loop closure problem has often been addressed using robotics-inspired
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methods (e.g. [Coutsias 04, Kolodny 05]). Note however that most such methods are lim-

ited to 6 degrees of freedom, and therefore, extensions are necessary to deal with long

loops. In [Cortés 05a], an algorithm called RLG (short for Random Loop Generator) was

proposed for sampling configurations of long loops. The main idea of RLG is to decom-

pose the loop into several parts: a passive chain and one or two active chains. RLG

progressively constructs a random configuration for the active chains by alternating sam-

pling between them. This sampling is performed in a way that increases the probability

of satisfying loop closure when finding a configuration for the passive chain, which is com-

puted by solving inverse kinematics for 6 consecutive bond torsions. In [Cortés 05b], a

modification was introduced to RLG for enhancing its efficiency. The idea was to include

steric-clash checks during the sampling of the active chains, rather than only after the

complete conformation is generated. In [Yao 08], another sampling strategy for protein

loops is proposed that works in a similar manner to RLG. It decomposes the loop into

three parts called: front-end F, mid-portion M and back-end B, samples F and B first,

and then uses inverse kinematics to find a conformation for M.

An alternative to the methods above, which apply (semi-)analytical inverse kinematics,

is to use optimization-based inverse kinematics. Examples of such methods include the

Cyclic Coordinate Descent (CCD) [Canutescu 03] and the method introduced in [Lee 05].

Energy Computation

As mentioned in Section 1.1.2, there is a high similarity between the representation of

robot configurations and molecular conformations. Yet, there is a fundamental difference

that needs to be taken into account whenever dealing with molecules, which is the po-

tential energy associated to conformations. Each molecular conformation has an energy

level that depends on the interactions between its constituent atoms and with the sur-

rounding molecules (e.g. the solvent). This energy is an indicator of how likely it is for

the molecule to adopt this conformation (conformations with low energy are naturally

preferred over conformations with high energy). Hence, the conformational space of the

protein is not a binary space with only valid or invalid conformations, but a continuous

space with conformations that are more or less likely to occur. For many applications, the

algorithms must be able to find least energy paths rather than geometrically valid ones.

Therefore, sampling-based algorithms need to be adjusted to cope with this by accepting

or rejecting new conformations based on their energy level, and by associating transition

probabilities between conformations based on the energy difference between them.

The energy of a conformation can be computed with high precision using quantum

mechanics [Griffiths 05]; however, it is highly time consuming and can be even intractable

in large molecules, since it deals directly with the electronic structure of the molecule.

Molecular mechanics [Burkert 82] is usually used to provide approximate energy values of
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protein conformations. Functions that compute energy based on molecular mechanics are

usually called molecular force fields. They take as input the atom positions and evaluate

energy based on different terms that vary from one force field to another. Yet, these terms

usually include: changes in bond lengths and bond angles, bond torsions, van der Waals

interactions and electrostatic interactions. The choice of the terms and the shape of the

function affect the accuracy of the computation, its speed, and its suitability to some

types of molecular systems or applications. See [Ponder 03, Mackerell Jr 04] for reviews

on force fields and software packages that are widely used in the study of proteins.

The drawback of using such all-atom force fields is that they are still computation-

ally expensive, and thus their usage can limit the size of the studied molecules and the

time-scale of the performed simulations. This has motivated the introduction of coarse-

grained force fields [Tozzini 05]. These force fields measure interactions between blocks of

functional groups rather than between the individual atoms. This leads to a rough approx-

imation of the actual force field, but also to a significant performance gain. Some examples

of coarse-grained force fields are MARTINI [Monticelli 08] and OPEP [Derreumaux 99].

1.2 Motion Planning Inspired Methods for Molecular Sim-

ulations

A seminal work on the application of motion planning algorithms to the study of proteins

was published in 1999 [Singh 99]. Since that time, many methods inspired by different

motion planning algorithms have appeared and have been applied to a variety of molecular

simulation problems. Most of these methods follow the lines of either PRM or RRT, with

PRM-based methods being more oriented towards the computation of ensemble properties

and RRT-based methods more towards the computation of feasible paths. In this section,

we survey literature related to these methods and provide brief explanations of each of

them.

1.2.1 PRM-Based Methods

Probabilistic Conformational Roadmaps

The method proposed by Singh et al. [Singh 99] builds a roadmap by randomly sampling

the molecular conformation space. Samples are accepted or rejected using a probability

function that favors low energy conformations. This feature makes the method different

from the conventional PRM in robotics that uses collision detection for evaluating new
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samples. The probability function used is as follows:

Paccept(q) =





1 if Eq < Emin
Emax−Eq

Emax−Emin
if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(1.1)

where Eq is the potential energy of conformation q, and Emin and Emax are threshold val-

ues that depend on the molecular system in hand. Neighboring nodes are then connected,

and a weight is associated to each edge. These weights are probabilities that represent the

likelihood of transitions between the connected conformations. For each edge eij , the al-

gorithm generates intermediate conformations {qi = c0, c1, c2, ..., cn = qj} along the path

between the two connected conformations qi and qj . The number of these intermediate

conformations is a user-defined parameter. The weight of the edge eij is then computed

by summing the negative logarithm of the transition probabilities between each of the

consecutive intermediate conformations ci and ci+1:

Pi =
e−(Ei+1−Ei)/KT

e−(Ei+1−Ei)/KT + e−(Ei−1−Ei)/KT
(1.2)

where Ei is the energy of ci, T is the temperature and K is the Boltzmann constant.

A connectivity-enhancement step is also added to this PRM variant, by sampling extra

nodes around nodes that have very few edges.

This method was first introduced for the study of protein-ligand interactions, more pre-

cisely, to identify potential active sites in the proteins. The weights of paths entering and

leaving low energy nodes were also used to estimate energy barriers around active sites and

to distinguish true binding sites from other low-energy active sites. Later, in [Apaydin 01],

this method was given the name of Probabilistic Conformational Roadmaps (PCR), and

was applied to study protein folding.

Stochastic Roadmap Simulations

Stochastic Roadmap Simulations (SRS) [Apaydin 02, Apaydin 03, Apaydin 04, Chiang 06,

Chiang 07] is an evolution of PCR. The main difference between the two methods is found

in the transition probability assigned to edges in the roadmap. SRS uses a transition prob-

ability that is consistent with the Metropolis criterion [Metropolis 53, Frenkel 02], which

allows establishing a connection between SRS and Monte Carlo methods. The transition

probability used in SRS is as follows:

Pij =

{
1
ni

exp(−4Eij

KT ) if 4Eij > 0
1
ni

otherwise
(1.3)
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Pii = 1−
∑

j 6=i
Pij (1.4)

where 4Eij is the difference in potential energy between nodes qi and qj , and ni is

the number of neighbors to qi. As in equation 1.2, T is the temperature and K is the

Boltzmann constant. A self-transition edge is added to each node such that the sum of

transition probabilities for every node is one.

Once the roadmap is constructed, tools from Markov Chain Theory (e.g. First Step

Analysis) can be applied to study ensemble properties like folding rates, phi-values and

the Transition State Ensemble (see Section 1.3.2). Every path in the roadmap can be

considered as a run of the Markov Chain Monte Carlo (MCMC) method. This allows

interpreting the whole roadmap as the result of a set of MCMC explorations being run

simultaneously. In fact in [Apaydin 03], SRS is shown to converge at the limit to the

same sampling distribution as that of MCMC. The difference between MCMC and SRS is

that MCMC provides a single but fine-grained path, whereas SRS provides many coarse-

grained paths covering a wider area of the conformational space. This is of course a

tradeoff, since although SRS covers a wider area of the space in a relatively short time

and overcomes the local minima problem inherent to MCMC, coarse granularity comes

at the cost of possibly losing important information along the paths between nodes.

PRMs for Folding Pathways

Another early research direction is the work led by Nancy Amato [Song 02, Song 03,

Amato 03, Thomas 05, Tang 05, Tapia 07, Thomas 07, Tang 08, Tapia 10]. The PRM-

based algorithms proposed by this group to study protein (un-)folding are largely inspired

by the PCR method. The method builds a roadmap by sampling the conformational space

of the protein with a probability function that is similar to that of PCR (see equation

1.1). New samples are first checked for collisions between atoms and then accepted or

rejected based on the probability function. In this function, Emin is suggested to be set

to the potential energy of the extended chain and Emax to be twice Emin [Tapia 10].

This method also assigns weights to edges in order to find the most likely paths. The

equation to compute these weights is exactly the same as the one used to determine

the move acceptance probability in Monte Carlo methods, usually called the Metropolis

criterion [Metropolis 53, Frenkel 02]:

Pi =

{
e
−4Ei
KT if 4Ei > 0

1 otherwise
(1.5)

where 4Ei = E(ci+1)− E(ci), T is the temperature and K is the Boltzmann constant.

This method has gone through several evolutions over time. Changes mainly con-
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cern the strategy used for sampling new nodes and the method used to analyze folding

pathways. The three main sampling strategies are summarized in the following:

1. In [Song 02, Song 03], sampling was performed around the native fold (which is

assumed to be known) using a set of normal distributions centered around this

conformation with various standard deviations. This was done to ensure capturing

important details close to the native fold using small standard deviations and to

ensure adequate coverage of the conformational space using larger standard devia-

tions.

2. In [Amato 03, Thomas 05] another strategy was proposed since the previous one

worked well only for proteins containing up to 60 residues. The new strategy also

starts from the native fold but generates new conformations by iteratively applying

small perturbations. Conformations are partitioned into bins according to the num-

ber of native contacts present. A native contact is defined as a pair of Cα atoms

that are within 7 Å of each other in the native state. At each round, bins with a

small number of conformations are chosen and sampling is performed around them.

Newly generated conformations are placed at the appropriate bins and the loop

repeats.

3. The last method based on native contacts was also found to scale poorly beyond

proteins with 100 residues. In [Thomas 07], another totally different method was

proposed for sampling based on rigidity analysis. Here, the protein is analyzed to

identify three types of bonds: rigid bonds, flexible bonds whose motion does not

affect other bonds (called independently flexible) and flexible bonds that form a set

such that the motion of any of them affects the rest of the set (called dependently

flexible). The method perturbs rigid bonds with a low probability denoted Prigid

and independently flexible bonds with a high probability denoted Pflex. For each

set of dependently flexible bonds, a number of bonds are chosen randomly and are

perturbed with probability Pflex, whereas the others are perturbed with probability

Prigid. This method was able to characterize the energy landscape more efficiently,

with fewer and more realistic conformations.

Works derived from this method have been proposed more recently by other re-

searchers. An example is the MaxFlux-PRM [Yang 07, Li 08], which uses a slightly differ-

ent edge weight function in order to find temperature-dependent optimal reaction paths.

In this algorithm, edge weights are computed as a function of the exponential variation

of the energy and the distance between conformations.
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1.2.2 RRT-Based Methods

Basic RRT variants for computing molecular motions

The first works on the application of RRT to molecular simulations [Cortés 04, Cortés 05b]

were based on a basic variant of the algorithm. The referred papers present a two-stage

approach. In the first stage, RRT is applied on a mechanistic representation of the

molecular system, only considering geometric constraints. Paths resulting from the first

stage are then analyzed and refined in a second stage using a more accurate energy

model. The advantage of this two-stage approach is that large-amplitude motions can

be computed with few computational resources. The performance of the method was

investigated on several classes of problems involving protein loop motions and protein-

ligand interactions.

A similar approach was proposed in [Enosh 08] for the simulation of conformational

transitions of proteins. The main difference with the aforementioned method concerns the

validity test performed during the RRT construction, which includes an energy evaluation

in addition to the geometric constraints. The authors also proposed a method to cluster

paths computed from several runs of RRT in order to facilitate the analysis performed in

a second stage. The technique, based on path alignment, was also used to compute the

most energetically favorable path in the solution set by combining portions of different

solutions.

An improvement of the aforementioned RRT-based method, called PathRover, was

proposed in [Raveh 09]. In this work, a branch-termination scheme is applied to limit

the exploration to a subset of the conformational space that satisfies a set of constraints

based on prior information. This scheme works by representing partial information from

previous experiments and expert knowledge as predicates that are checked periodically

as the RRT grows. Branches of the tree that do not improve a certain predicate after m

consecutive iterations are terminated (not extended anymore).

Manhattan-Like RRT: Decoupling degrees of freedom

The Manhattan-like RRT (ML-RRT) algorithm proposed in [Cortés 08] was developed

to circumvent the limitations of the basic RRT algorithm to deal with high-dimensional

problems in the particular context of (dis)assembly path planning. This is a variant of the

motion planning problem that consists of finding a path to (dis)assemble two objects, one

of which is considered to be mobile, and the other one to be fixed. In the more general

instance addressed here, both the mobile and the fixed object contain articulated parts.

This problem resembles the problem of computing access/exit paths for a ligand (small

molecule) to/from the active site of a protein (see Figure 1.5 for an illustration).

The main idea of ML-RRT is to divide configuration/conformation parameters into
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Figure 1.5: The image on the left illustrates an academic disassembly planning problem for
two articulated objects. An analogy can be made with the protein-ligand “disassembly”
problem represented in the right-hand image. The red object can be considered as the
ligand and the blue sticks as flexible side-chains of the protein.

two groups, called active and passive, and to generate their motion in a decoupled manner.

Active parameters correspond to parts whose motions are essential for the disassembly

task, whereas passive parameters correspond to parts that need to move only if they hinder

the motions of other mobile parts (active or passive). Roughly speaking, motions of active

parts are planned exactly the same way they are planned using RRT, but when motion is

hindered by a passive part, the conformation of this part is perturbed in order to allocate

free space for the motion of active parts. The performed perturbation may also cause

collisions with other passive parts, which are then perturbed producing a domino-like

effect.

The ML-RRT algorithm presents two main advantages when compared to the basic

RRT. First, it is considerably faster, and second, it allows identifying automatically (with-

out user intervention or the need of prior knowledge) which parts of the protein need to

move in order for the ligand to enter or exit from the active site.

The original ML-RRT algorithm is able to solve efficiently problems involving the flex-

ibility of the ligand and the protein side chains. The extensions proposed in [Cortés 10b]

enable the introduction of the protein backbone flexibility. In this extension, the pro-

tein is represented as groups of rigid bodies connected by flexible loops that are assigned

based on structural knowledge. Additionally, a mobility coefficient is assigned to each

passive parameter. This coefficient is used to differentiate passive parts that are allowed

to move easily from those that should be moved only if the solution path cannot be found

otherwise.
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Transition-RRT: Exploring energy landscapes

Another RRT variant called Transition-RRT (T-RRT) was introduced in [Jaillet 10, Jaillet 11]

for exploring energy landscapes. The algorithm introduces a state transition test inspired

from the Metropolis criterion in MC methods. The goal is to favor the exploration of low-

energy regions. New nodes are accepted and added to the tree with a probability given by

equation 1.5. In this equation, 4Ei is the difference between the energy at the new candi-

date node (qnew) and its nearest neighbor in the tree (qnear). In contrast to MC methods,

where the temperature T is usually a constant for the simulation, T-RRT incorporates a

reactive scheme to dynamically adapt this parameter. To do so, the algorithm keeps track

of the number of consecutive tree expansion rejections. When the T-RRT search reaches

a maximum number of consecutive rejections, the value of T is increased, which increases

the probability to accept subsequent transition tests. In contrast, each time an uphill

transition test succeeds, the value of T decreases, therefore increasing the severity of the

transition test. Thus, the temperature is automatically regulated during the exploration

depending on the shape of the energy landscape. This temperature regulation strategy

is a way to balance the search between unexplored regions and low energy regions. Note

that T-RRT does not yield a Boltzmann-weighted set of conformations. However, it al-

lows finding efficiently energy minima and saddle points in the energy landscape, as well

as likely transition paths between stable conformations.

Recently, the underlying principles of ML-RRT and T-RRT have been combined within

an algorithm called MLT-RRT [Iehl 12]. The combined approach extends the practical

applicability of T-RRT to higher-dimensional problems in which the energy (or cost)

function can be decomposed as a sum of elementary terms associated with subsets of

configuration/conformation parameters.

NMA-RRT: Exploring collective motions

The work by Kirillova et al. [Kirillova 08] proposes an RRT-based method that applies

Normal Mode Analysis (NMA) [Cui 06] for computing global macromolecular motions. As

mentioned in Section 1.1.2, low-frequency normal modes are associated with collective,

large-amplitude molecular motions, and can be used as predictors for the direction of

such motions. This property is exploited by the NMA-RRT method, which performs an

RRT-like exploration in the coordinate space of the low-frequency normal modes. The

goal is to cover the most important areas of the conformational space while exploring a

low-dimensional search space. Although NMA-RRT performs its search in a space that

is defined in terms of the amplitudes of low-frequency normal modes and not in terms

of the degrees of freedom of the molecular model, new conformations are accepted only

if they satisfy the geometric constraints of the mechanistic model (i.e. correct bond

geometry, collision avoidance). Normal mode calculations are iteratively updated during
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the conformational search. This is necessary because the information provided by NMA

is only accurate in a relatively small region around the initial conformation, which causes

the guidance of the RRT search to degrade when exploring larger regions.

1.2.3 Other Methods

In addition to the aforementioned methods, several methods for molecular modeling and

simulation that apply ideas from motion planning algorithms other than PRM and RRT

have been proposed in recent years.

In [Shehu 10], Shehu et al. proposed a tree-based method called Fragment Monte

Carlo Tree Exploration (FeLTr) for protein structure prediction (see Section 1.3.2). This

method grows a tree in the conformational space that tries to guide the search toward

low-energy regions while avoiding oversampling geometrically similar conformations. The

tree is expanded with low-energy conformations through a fragment-based Monte Carlo

sampling strategy. The goal of FeLTr is to locate low energy conformations that are

potentially close to the protein’s native conformation. These native-like conformations

can then act as starting points for a more refined search to obtain the folded conformation.

A similar two-step approach for protein structure prediction, called Model Based

Search (MBS), is described in [Brunette 08]. MBS starts by running short MC simu-

lations with a coarse-grained energy model. A tree-based clustering algorithm is then

used to group the sampled conformations into funnels that represent coherent regions in

the conformational space. Full-atom energy evaluation using Rosetta [Rohl 04] is then

used to identify relevant funnels that are further explored with refined MC runs.

Another motion-planning-based method was introduced in [Haspel 10] for comput-

ing large-amplitude motions between molecular conformations. The method is based on

the Path Directed Subdivision Tree (PDST) algorithm [Ladd 05], which is also a tree-

based sampling-based planner, but which represents samples as path segments rather

than individual states, and uses non-uniform subdivisions of the space to estimate cov-

erage [Ladd 05]. The space subdivision is based on a distance metric defined in terms

of the relative positions between the secondary structure elements. In order to enhance

the performance of the method, a coarse-grained protein model and a simplified energy

function were considered.

1.3 Applications

The methods presented in the previous section have been mainly applied to three types

of problems in computational structural biology: the simulation of conformational tran-

sitions of proteins, the study of the protein folding process, and the analysis of protein-

ligand interactions. This section discusses briefly each of these problems and presents the
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main results achieved by motion planning inspired methods.

1.3.1 Conformational Transitions

The most direct application of robot motion planning methods in molecular simulations

is the computation of transition pathways between two molecular conformations. This

problem requires generating a sequence of feasible intermediate conformations for the

molecule (usually a protein) to link two given states. The problem is analogous to the

motion planning problem in robotics. This problem can be seen as a general instance

of several more specific problems. In protein folding for example, the starting and end

conformations are the unfolded and folded states of the protein, and in molecular docking,

the starting and end conformations are the undocked and docked states of the molecular

complex. These two particular problems are treated in the next subsections. This section

concerns transitions between stable (folded) states of proteins.

The study of protein conformational transitions is important since they can play key

roles in molecular recognition and may be essential for the protein activity. In spite of

their importance, current experimental and computational methods are very limited for

describing large-amplitude conformational changes in proteins at the atomic scale.

Finding transition pathways is usually tackled at different levels of granularity depend-

ing on the studied problem. Some studies are related to large-amplitude motions that

occur over a relatively long period of time and that significantly affect the whole protein

(such motions are often referred to as domain motions). In such cases, the problem can

be tackled at a structural level, with lower resolution than the atom level. In other cases,

interest may be focused on flexible segments of the protein. For example, irregular seg-

ments, called loops and linkers, are generally much more flexible than structured parts of

the protein (i.e. alpha helices and beta sheets). This calls for exploration methods that

are specifically tailored for these flexible regions. Figure 1.6 illustrates these two types of

protein motions.

Loop Motions

The first application of an RRT-based algorithm extended to treat closed kinematic chains

(RLG-RRT) [Cortés 05a] for computing protein loop motions was described in [Cortés 04].

The algorithm was applied to study the mobility of loop 7 in amylosucrase (AS). This

is a long loop involving 17 amino acid residues. The articulated closed-chain model

of the loop contains 51 degrees of freedom. Results showed a possible opening/closing

motion of this loop (similar to that of other enzymes), and served to demonstrate the

effectiveness of motion-planning-based methods for studying the mobility of protein loops.

An improved version of the method, which integrates ideas of ML-RRT, was applied

in [Barbe 11] to investigate the large-scale open-to-closed movement of the lid that controls
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a)

b)

Figure 1.6: Illustration of two classes of large-amplitude motions in proteins. (a) Loop
motions: a segment of the protein (in red) moves significantly, while the rest of the
protein remains mostly static. (b) Domain motions: large portions of the protein move
with respect to each other.

the access to the active site of Burkholderia cepacia lipase (BCL). Results showed that

the lid conformational transition computed with this method is comparable to the one

obtained with molecular dynamics simulations. Nevertheless, the computing time required

by the RRT-based method is several orders of magnitude lower (a few hours on a single

processor compared to weeks on a medium-sized cluster).

Several tests on the application of LoopTK to study motions for 20 different loops are

presented in [Yao 08]. Results show that LoopTK can sample efficiently conformations of

loops ranging from 5 to 25 residues in length. Although the combination of LoopTK with

sampling-based path-planning algorithms such as PRM and RRT seems possible, results

on the application of such a combined strategy to simulate protein loop motions have not

been published yet, as far as we know.

Domain Motions

The results reported in [Kirillova 08] show the good performance of NMA-RRT for com-

puting transition pathways involving domain motions. A set of five proteins for which

structures corresponding to different conformations have been experimentally solved was
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used as a benchmark. The abbreviated names of these proteins are: ADK, ATP, DAP,

EIA and LAO. Further tests on adenylate kinase (ADK) showed that NMA-RRT produces

results that correlate well with previous studies [Maragakis 05]. Remarkably, NMA-RRT

was able to achieve these results using a very low number of normal mode calculations.

Results obtained with PathRover for computing conformational transitions of the

CesT and the Cyanovirin-N proteins are reported in [Raveh 09]. The particular phe-

nomenon studied in these tests is domain swapping, and the achieved results were consis-

tent with experimental results. Moreover, in [Enosh 08], the RRT-based predecessor of

PathRover was implemented within a larger framework of algorithms to generate pathways

between a closed and an open conformation of the KcsA protein, providing interesting

insights into this process.

Conformational transition simulations have also been performed using the PDST-

based method presented in [Haspel 10] (see Section 1.2.3). Results are reported for the

ADK, RBP, GroEL and CVN proteins. These results show that the algorithm signifi-

cantly outperforms a classically used method such as Simulated Annealing [Kirkpatrick 83].

The paper also shows that results of the PDST-based method are consistent with exper-

imental data.

1.3.2 Protein Folding

Protein folding is the process in which proteins move (fold) from random coils to their

native three-dimensional shape. For an illustration, Figure 1.7 represents folded and

unfolded conformations of a small protein. Being in the correct folded state is essential

for proteins to function properly, and, usually, unfolded or incorrectly folded proteins

are inactive or even toxic [Dobson 03, Selkoe 03]. For this reason, it is important to

understand and to characterize protein folding and unfolding pathways. Note that the

study of protein folding should be distinguished from the problem of protein structure

prediction [Zaki 08], in which only the final three-dimensional structure of the protein is

searched, regardless of how the protein actually reaches it. Nevertheless, both problems

are important, and progress in any of them may yield advances in the other.

Several experimental methods have been used for studying protein folding, such as

NMR Spectroscopy [Balbach 95, Dyson 04], Ultrarapid Mixing [Chan 97] and Time-Resolved

Absorption Spectroscopy [Jones 93]. However, these methods are currently limited in

their ability to capture short-lived events and to characterize conformations with a high

spatial resolution. Computational methods have been used side by side with these

experimental methods, either augmenting them or even replacing them (for examples,

see [Unger 93, Sugita 99, Onuchic 04, Dill 08]). Important advances with these computa-

tional methods started with the advent of the energy landscape theory [Bryngelson 95],

which hypothesizes that the energy landscape of a protein is funneled with many path-
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Figure 1.7: A small protein (ubiquitin) in an unfolded state (left) and folded state (right).

ways all leading to the same final folded state. This suggests that a good understanding

and characterization of the energy landscape of a protein will lead to a good under-

standing of how this protein folds. Hence, motion planning inspired methods for protein

folding basically take this theory as a basis. The advantage of such methods over most

conventional methods is their ability to rapidly explore the conformational space with-

out getting trapped in local energy minima, and their capacity to find several pathways

simultaneously.

Computation of Folding Quantifiers

There are several types of quantifiers that are used for studying and expressing proper-

ties of protein folding pathways. These quantifiers can be computed using experimental

methods, which makes them useful also for evaluating the performance of computational

methods. Examples of the most frequently used quantifiers are:

- The probability of folding (Pfold), which is the probability that the structure at a

certain conformation will become completely folded before it becomes completely

unfolded.

- The Transition State Ensemble (TSE), which is the set of conformations with

Pfold = 0.5 (i.e. conformations which make up the energy barrier the protein must

cross in order to fold).

- The folding rate, which corresponds to an experimentally measurable quantity that

determines how fast a protein proceeds from the unfolded state to the native folded

conformation.

- The Φ-value, which measures how close a certain residue is to its native folded state.
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In [Apaydin 03, Apaydin 04], Pfold values were computed and compared using SRS

and Monte Carlo (MC) for two proteins with PDB IDs 1ROP and 1HDD. These pro-

teins were modeled at the secondary structure level with 6 and 12 degrees of freedom

respectively. Results showed that SRS computations improve rapidly as the roadmap size

increases, and that the correlation between SRS and MC computations tends to increase

as more MC runs are performed per node. Nevertheless, SRS produced results at least

four times faster than MC. More extensive tests were presented in [Chiang 06, Chiang 07],

where 16 proteins were analyzed using SRS to compute TSEs, folding rates and Φ-values.

Results were then compared to those obtained with an existing dynamic programming

method and were found to better estimate experimental data when computing TSEs and

folding rates. However, both SRS and the dynamic programming method did not produce

very good estimates for Φ-values.

PRM-based methods have also been applied to compute folding quantifiers together

with two new analysis methods called Map-based Master Equation (MME) and Map-based

Monte Carlo (MMC). These methods were introduced in [Tapia 07] and used in combina-

tion with the conformational exploration method presented in Section 1.2.1 to compute

relative folding rates for proteins G, NuG1 and NuG2. These analysis methods are exten-

sions to the original Master Equation and Monte Carlo techniques, and they are applied

on the constructed roadmap instead of the full conformational space as is convention-

ally done. The computed relative folding rates were found to match the corresponding

experimental data.

Finally, the capacity of FeLTr to predict native-like conformations of small-to-medium

size proteins has been shown in [Shehu 10]. Results in this paper show a good performance

of the method on eight proteins, modeled with 40 to 152 degrees of freedom. The confor-

mations provided by FeLTr can be used as starting points for more detailed biophysical

studies.

Protein (Un)folding Pathways

Results on the performance of PRM-based methods for studying unfolding of several

proteins with up to 100 residues are reported in [Song 02, Song 03, Amato 03, Thomas 05].

The constructed roadmaps were used to extract unfolding pathways and to identify their

secondary structure formation order. The results were found to be in good agreement

with known experimental data. This method was tested on the proteins G and L, as

well as on proteins NuG1 and NuG2, which are two mutants of protein G. Initial tests

in [Song 03] were able to capture the folding differences between proteins G and L, but

not between G and NuG1 or NuG2. However, these differences were correctly captured

after applying the rigidity-based sampling strategy in [Thomas 07].
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RNA (Un)folding Pathways

The combination of the PRM-based exploration with MME and MMC discussed above

has also been used in [Tang 05, Tang 08] to study the problem of RNA (un)folding, which

is a problem that is very similar to protein folding. Results show that the method scales

well for RNA molecules with up to 200 nucleotides. This method was used to compute

relative folding rates, and was found to agree with experimental results. It was also able

to predict the same relative gene expression rate for wild-type MS2 phage RNA and three

of its mutants.

1.3.3 Protein-Ligand Interactions

The study of protein-ligand interactions is essential for understanding many biological

mechanisms. In terms of applications, understanding such molecular interactions is essen-

tial for drug design in pharmacology, or for protein engineering in biotechnology. Different

questions to be studied are the way the protein recognizes a particular ligand, how the

ligand binds with the protein active site, and what conformational changes both molecules

undergo during the ligand’s entrance and exit. Such information allows us to predict the

possibility of association between protein-ligand pairs, the strength of this association, or

the protein activity level. Unfortunately, current experimental methods to obtain accu-

rate (atomic-scale) information about protein-ligand interactions are extremely limited.

Moreover, the large size of the search space to be explored and the long time-scales to be

simulated are extremely challenging for the application of computational methods. This

is especially true when full flexibility of the protein is taken into consideration.

Some software packages for predicting protein-ligand docking are available such as

AutoDock [Goodsell 96], DOCK [Lang 09], FleX [Rarey 96], GOLD [Jones 97b] and ICM

[Abagyan 94]. These packages use algorithms such as Monte Carlo, Molecular Dynamics,

Genetic Algorithms [Goldberg 89], and fragment-based search [Hajduk 07] (for a survey

of methods and software packages see [Sousa 06]). However, none of these software tools

considers full flexibility of the protein. Moreover, these methods focus on finding the final

binding conformation disregarding the ligand access/exit pathway, and without computing

the conformational changes required for enabling such access/exit. An example of such

protein-ligand accessibility problems is illustrated in Figure 1.8. Next, we survey works

that use motion planning inspired methods for predicting binding sites and for computing

access/exit ligand pathways.

Predicting Binding Sites

The algorithm introduced by Singh et. al. in [Singh 99] was tested on the following

three protein-ligand complexes: lactate dehydrogenase with oxamate, tyrosyl-transfer-
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Figure 1.8: Illustration of protein-ligand accessibility problem. The figure shows a
transversal cut of a protein with a ligand (represented with spheric atoms) occupying
different locations: in the active site (orange) and on the surface (red). Some interme-
diate conformations of the ligand along the exit path are represented with red lines, and
some side-chains that change their conformation during the ligand exit are represented
with blue sticks.

RNA synthetase with L-leucyl-hydroxylamine and streptavidin with biotin. The algorithm

was able to find the true binding site for the first two complexes successfully, but not for

the third one. Such partial success corresponds to the overall performance of state-of-the-

art methods.

More recently, Stochastic Roadmap Simulations have also been used in the study of

protein-ligand interactions. In [Apaydin 02], SRS was applied to estimate the escape

time for a ligand from different putative binding sites in a protein. Here, escape time

is the expected amount of time for the ligand to escape from the “funnel of attraction”

at the binding site [Apaydin 02]. Tests were performed on seven different protein-ligand

complexes and results showed that, in five out of seven complexes, the escape time proved

to be a good metric for distinguishing the catalytic site from the other putative binding

sites. It is noteworthy to say that in both this work and in [Singh 99], only the ligand

was assumed to be flexible and the protein was assumed to be rigid. This is possibly one

of the reasons why these methods sometimes failed to predict correct binding sites.

31



Finding Access and Exit Pathways

The RRT-based method presented in [Cortés 05b] was applied to compute geometrically

feasible paths of (R, S)-enantiomers to exit the active site of Burkholderia cepacia lipase

(BCL). The flexibility of the ligand and of 17 side-chains in the catalytic pocket of BCL

were considered. Energy profiles along the path were obtained by performing a rapid local

minimization of intermediate conformations. Results showed a clear similarity between

the computed paths and paths obtained using a pseudo-molecular dynamics approach.

Remarkably, the combined RRT-minimization approach only required a few minutes to

compute the paths, whereas pseudo-molecular dynamics took several days. Results also

showed that the approach is suitable for pointing out protein residues that constrain the

access of the ligand, which is highly valuable information for site directed mutagenesis.

Further investigations about the influence of ligand access/exit on Burkholderia cepacia

lipase enantioselectivity are presented in [Guieysse 08, Lafaquière 09]. These works show

the ability of RRT-based methods to rapidly produce results that present fair qualitative

agreement with experimental studies.

The extended ML-RRT method described in [Cortés 10b], able to deal with the protein

backbone flexibility, was applied to compute the exit pathways of a bound substrate

homolog (TDG) from lactose permease (LacY) and of carazolol from the active site of

the β2-adrenergic receptor. The considered molecular models involved several hundreds of

degrees of freedom, and solution paths were obtained in several minutes. Results showed

a remarkably good agreement with experimental data, as well as with results obtained

with other, much more computationally expensive methods based on molecular dynamics.

1.4 Conclusion

We have surveyed the literature for methods based on robot motion planning algorithms

to solve different problems in computational structural biology. The reviewed algorithms

can be grouped based on the types of problems they have been applied to as shown in

Table 1.1. We have also pointed out the main challenges and issues that need to be taken

into account when extending motion planning methods for molecular simulations. A suit-

able representation for the molecule needs to be adopted, and an appropriate distance

metric needs to be used for comparing molecular conformations. An efficient method

for computing distances between atom pairs and for collision checking also needs to be

considered, as well as a method for sampling conformations that satisfy structural con-

straints. Moreover, the ever-lasting problem of high dimensionality has to be faced, and

an appropriate compromise should be made between the number of considered degrees of

freedom and the amount of accuracy sought. Last but not least, energy needs to be made

into account, and a choice has to be taken for the type of force field to be used.
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Application Domain Related Work

Loop Motions RLG-RRT [Cortés 04, Cortés 05b, Barbe 11],
LoopTK [Yao 08].

Domain Motions NMA-RRT [Kirillova 08],
PathRover [Enosh 08, Raveh 09],
PDST [Haspel 10].

Protein Folding/Unfolding SRS [Apaydin 02, Apaydin 03,
Apaydin 04, Chiang 06, Chiang 07], PRM-
FP [Song 02, Song 03, Amato 03, Thomas 05,
Tapia 07, Thomas 07, Tapia 10], MaxFlux-
PRM [Yang 07, Li 08]

RNA Folding PRM-FP [Tang 05, Tang 08].

Protein Structure Prediction FeLTr [Shehu 10].

Protein-Ligand Interactions PCR [Singh 99, Apaydin 01],
SRS [Apaydin 02], ML-RRT [Guieysse 08,
Lafaquière 09, Cortés 10b].

Table 1.1: Motion planning inspired methods classified according to application domains.

Works reviewed in this chapter show that algorithms originating from robotics are

promising complementary methods to more conventional techniques in computational

structural biology. Their strength lies mainly in their efficiency in exploring highly com-

plex spaces. Compared to classical methods such as MC, sampling-based motion plan-

ning algorithms require fewer iterations to find conformational transition pathways or to

obtain a representative ensemble of conformational states. An additional advantage of

motion planning inspired methods is that they do not require a force-field to drive the

exploration, unlike MD simulations. Therefore, different types of data, including simple

geometric models, can be used to constrain or to bias the search. The use of simple mod-

els leads to general and fast computational methods able to explore large regions of the

conformational space. Results of such exploration can be further refined and analyzed

subsequently using more accurate energy models.

Motion planning inspired methods for molecular simulations are still in their early

stage. They require more improvements and validation on larger classes of systems.

Further tests on real application problems, in tandem with experimental methods, will

provide important feedback to improve the computational methods. Further work is also

needed on the characterization of the results provided by these algorithms, using concepts

of statistical physics.

As we have shown in this survey, the classes of structural biology problems to which

motion planning inspired methods have been applied are still limited, being mainly fo-

cused around protein/RNA flexibility and protein-ligand interactions. Nevertheless, we

believe that the potential of these methods is larger, and that other applications could be
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investigated in the future. Examples of other interesting problems in structural biology

are the prediction of protein-protein interactions and the conformational analysis of large

molecular assemblies.
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Chapter 2

A Mechanistic Model for Proteins

This chapter introduces a mechanistic modeling approach for proteins. This approach is

based on the idea of decomposing the protein into fragments that can be dealt with as

short kinematic chains. Such a decomposition leads to a multi-level representation that

allows working with the protein in a coarse-grained manner, which expectedly leads to

performance gains. At the same time the low level (full-atom) details of the protein are not

lost and can be generated from the high-level representation whenever needed. This kind

of modeling provides also a unified approach for implementing different already-available

and new simulation methods, as will be seen in the next two chapters.

We begin this chapter with a quick overview of the structure of proteins. Next,

we present the basics of modeling kinematic chains. Discussion then proceeds to the

presentation of the proposed model.

2.1 The Structure of Proteins

Proteins are fundamental to all living organisms. They play essential roles in most bi-

ological processes that take place in the cell. They can take the form of enzymes that

catalyze biochemical reactions and that regulate the metabolism process. They can also

take the form of antibodies that bind to foreign substances to neutralize them. They

also participate in biological functions like cell signaling, signal transduction and ligand

transportation. Proteins can also have structural roles by helping the cell maintain its

shape and size, and by producing mechanical forces as in muscle cells and sperm cells.

Molecules that are made of repeating structural units are called polymers. In this

sense, proteins are a special kind of organic polymers, where the repeating structural

unit is an amino acid residue. They are made of one or more chains that can have up

to thousands of amino acid residues (short amino acid chains with less than 50 residues

are often referred to as peptides). A protein usually folds into a stable three dimensional

conformation that largely determines its functional role. Yet, they are not restricted
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Figure 2.1: The chemical structure of an amino acid. The rectangle “R” resembles a side
chain that differs from one amino acid to another.

by this native fold and usually undergo small to large conformational changes during

biological processes.

Generally speaking, knowing the 3D structure of a protein helps in better understand-

ing how it performs its function. Known structures of proteins can usually be found in

the Protein Data Bank (PDB) [Berman 02], which is a free online repository that pro-

vides protein structures in the form of atom Cartesian coordinates. The great majority

of protein structures available at the Protein Data Bank have been determined using

X-Ray Crystallography [Woolfson 97], and most of the remaining structures have been

determined using NMR Spectroscopy [Cavanagh 06]. Detailed statistics about the used

experimental methods can be found at the PDB website1.

The following paragraphs explain quickly notions related to protein structure that are

needed for the discussion in this chapter and what follows. More detailed information

can be found in text books on structural biology and protein structure prediction (the

following are a few examples: [Banaszak 00, Schwede 08, Zaki 08, Sternberg 96]).

2.1.1 Amino Acids and the Primary Structutre

As shown in Figure 2.1, amino acids are chemically composed of a carbon atom (called

Cα) that is connected to a carboxylic acid group (-COOH), an amine group (-NH2), a

hydrogen atom and a side chain (R). Depending on the type of the side chain, amino

acids show different physicochemical properties and are labeled with one of 20 names,

which constitute the names of all the possible amino acid types naturally occurring in the

proteins of living organisms.

Each pair of consecutive amino acids in a polypeptide chain is connected by a covalent

bond (called the peptide bond) between the carbon atom in the carboxyl group of one

amino acid and the nitrogen atom in the amine group of the adjacent amino acid. The

1http://www.rcsb.org/pdb/statistics/holdings.do
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Figure 2.2: Relationship between the different levels of the protein structure hierarchy.

interaction between the carboxyl and amine groups causes an H2O molecule to form and

the carbon and nitrogen atoms to connect. Thus, the linear chain of amino acids has a

carboxyl group (called the C-terminus) at one end and an amine group (called the N-

terminus) at the other end, where in between, amino acid residues are connected with

peptide bonds as explained. Atoms in the polypeptide chain, excluding atoms in side

chains, are often referred to as the main chain or the protein backbone. The sequence of

amino acids in a protein is usually referred to as the primary structure. This sequence is

defined by the genetic code of a gene that is associated with the protein.

2.1.2 Higher-Level Structures

In addition to peptide bonds, hydrogen bonds also form between non-neighbor amino

acids in the polypeptide chain. These bonds create reoccurring secondary structure local

subunits that exhibit more structural stability than other parts of the polypeptide chain.

There are two main types of secondary structure subunits: α-helices and β-sheets. Alpha-

helices form due to interactions between close-by but non-adjacent amino acids in the same

strand of the chain, which gives the strand the shape of a coil. On the other hand, β-sheets

form due to interactions between amino acids in two parallel or anti-parallel strands in
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the polypeptide chain. They are often represented in protein modeling software as arrows

or long sheets. Examples of α-helices and β-sheets can be found in Figure 2.2. The

remaining parts of the protein, which are relatively unstructured fragments, are called

turns or loops.

The tertiary structure is the overall shape of a single polypeptide chain that shows

how secondary structure subunits are connected and placed in reference to each other.

This structure is largely determined by the primary structure. It forms due to long range

and short range interactions that take place between different parts of the polypeptide

chain, as well as due to interactions with the solvent. A single tertiary structure can be

composed of several stable subunits called domains that are connected with more flexible

links. These domains can have different functional roles during biological processes.

The final level in the protein structure hierarchy is the quaternary structure, which

describes the overall arrangement of a protein complex, including all of its constituent

polypeptide chains. These chains can be either repeated identical chains or different

connected ones. Figure 2.2 illustrates the different types of protein structures and the

relationship between them.

2.2 Proteins as Kinematic Chains

A kinematic chain is an assembly of rigid bodies, called links, that are connected by joints.

This connection between rigid bodies creates motion constraints that need to be taken

into account when modeling or dealing with the kinematic chain. The reason behind

discussing kinematic chains in this section is that our proposed model, which will be

introduced in the next section, considers proteins as kinematic chains. In the following,

we quickly review basic notions in the modeling of kinematic chains and then show how

they apply to the modeling of proteins.

2.2.1 Modeling Kinematic Chains

Rigid Bodies

In a three-dimensional (3D) Euclidean space R3, a single freely moving rigid body can

be modeled by specifying the position and orientation of a reference frame attached to it.

The position is conventionally specified using the cartesian coordinates, whereas there are

several different methods for specifying the orientation. We restrict the discussion here to

Euler angles [Taylor 05], which are among the most widely used methods for describing

orientations. Hence, modeling the freely moving rigid body in R3 requires at least six

independent parameters. We need three cartesian coordinates {x, y, z} to describe the

position, and three Euler angles {α, β, γ} to describe the orientation. These Euler angles

are usually referred to as “yaw, pitch and roll”.
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To each rigid body in the space, we attach a Cartesian frame FO that expresses the

six parameters relative to a globally defined reference frame FW . The transformation

of the coordinates from FW to FO can be expressed using the following homogeneous

transformation matrix:

WTO =




cosβ cosα sin γ sinβ cosα− cos γ sinα cos γ sinβ cosα+ sin γ sinα x

cosβ sinα sin γ sinβ sinα+ cos γ cosα cos γ sinβ sinα− sin γ cosα y

− sinβ sin γ cosβ cos γ cosβ z

0 0 0 1




(2.1)

where the upper-left 3 × 3 sub-matrix defines the orientation of the rigid body and the

upper-right 1×3 sub-matrix defines its translation. All points in a rigid body are assumed

to have fixed coordinates relative to each other, which allows obtaining them directly from

the attached frame.

Kinematic Chains

As mentioned before, a kinematic chain is composed of rigid links connected by joints.

Depending on their types, these joints introduce different motion constraints to the rigid

links. For example, the joint can be a simple prismatic joint that allows only a sliding

motion along a single axis, or a revolute joint that allows a hinge motion relative to a

single axis. The joint can also be a complex one that provides more than one degree

of freedom, such as the spherical joint. However, complex joints with n > 1 degrees of

freedom can generally be replaced by n consecutive simple joints of 1 degree of freedom.

To model the complete kinematic chain, a Cartesian frame is rigidly attached to

each link and a transformation matrix is given between FW and each of the attached

frames. Although it is possible to perform all necessary operations using arbitrarily

placed frames, following a systematic approach for placing these frames can simplify

the performed operations. Therefore, we follow in this thesis the widely used modified

Denavit-Hartenberg (mDH) convention [Craig 89], which is one of the most widely used

conventions in robotics. In this convention all joints are assumed to be either prismatic

or revolute, and z-axes are always chosen to be in the direction of the axes of the attached

joints. Given two links with attached frames FAi and FAi−1 , the mDH convention also

mandates the following two conditions:

- The axis xi should be perpendicular to the axis zi−1

- The axis xi should intersect with the axis zi−1

Exploiting these conditions, only four parameters are required for the modeling of

the rigid links instead of six as mentioned before. Given the two frames FAi and FAi−1 ,
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Ẑi−1
Ẑi
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Figure 2.3: The mDH parameters defining the relative location of two links
connected by a one-d.o.f. joint (following the convention in [Craig 89]).

these parameters are specified by the mDH convention as follows (see Figure 2.3 for an

illustration):

- The link length (ai−1) is the distance from zi−1 to zi measured along xi−1.

- The link twist (αi−1) is the angle between zi−1 and zi measured around xi−1

- The link offset (di) is the distance from xi−1 to xi measured along zi.

- The joint angle (θi) is the angle between xi−1 and xi measured about zi.

Depending on the joint type, only one of these parameters is variable and all the rest

are constant. If the joint is a revolute joint, then θi is the variable parameter, whereas if

the joint is a prismatic joint, then the variable parameter is di.

Given the two links with attached frames FAi and FAi−1 , the location of FAi relative to

FAi−1 can now be given, according to the mDH convention, by the following homogeneous

transformation matrix:

i−1Ti =




cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1

sin θi sinαi−1 cos θi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1




(2.2)
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Figure 2.4: Dihedral angles in a polypeptide chain.

The location of a frame FAj relative to the base frame FA0 can be computed from a

sequence of local transformations as follows:

0Tn = 0T1
1T2 . . .

n−1Tn (2.3)

where 0T1 is a transformation that is equivalent to WT1 since 0 is the index of the fixed

base frame. More information about the modeling of kinematic chains can be found in

text books about robotics such as [Xie 03, Angeles 07, Sciavicco 01].

2.2.2 Modeling Proteins

There is a direct correspondence between a polypeptide chain and a kinematic chain.

Based on the internal coordinates representation and the rigid geometry assumption,

both discussed in Section 1.1.2, a polypeptide chain is made of rigid atom-groups that

are connected by bonds. Hence, bond torsions correspond to axes of revolute joints and

atom-groups correspond to rigid links in the kinematic chain (a rigid body can be either

an atom or a rigidly bonded group of atoms).

Figure 2.4 shows different dihedral angles in the backbone of proteins. These dihedral

angles make the revolute joints in the kinematic model of the protein. In our work, we

consider peptide bond angles, ω to be constant. This is because these dihedral angles

are subject to very slight variations since peptide bonds are strong double bonds. Side

chains can also be modeled in the same way. They are much shorter than the backbone

and contain dihedral angles that are usually denoted as χ1, χ2, etc.

Using these notions and following the mDH convention, we can build a kinematic

model for the protein as follows. A Cartesian frame FAi is rigidly attached to each rigid

atom group Ai in the polypeptide chain. All frames are placed in a way that complies

with the mDH conditions mentioned earlier. The relative location of the attached frames

can then be expressed by the homogeneous transformation matrix defined in Equation
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vising Monte Carlo move classes. Nevertheless, the tripeptide-
based protein representation introduced below could be exploited
within other types of methods.

The Monte Carlo (MC) method [4, 6], explores the confor-
mational space through a random walk. At each iteration, the
protein conformation is randomly perturbed, and the trial move
is accepted or rejected with a probability that depends on the po-
tential energies of the old and the new states. The main difficulty
involving the application of the MC method to proteins consists
in devising suitable trial move classes for complex chain-like
molecules. An effective move class would yield a good accep-
tance rate (therefore avoiding futile, expensive energy evalua-
tions), while enabling the exploration of large regions of the con-
formational space. Several types of trial move classes have been
proposed over the years to enhance the efficiency of MCmethods
applied to proteins and other chain-like polymers (e.g. [7–11]).
The approach presented in this paper permits to devise differ-
ent types of move classes and to implement them easily using a
unique representation and a single solver.

The paper presents the general aspects on the mechanistic
protein representation using the tripeptide-based decomposition.
Then, it explains how to implement several move classes based
on this representation. The performance of these move classes is
then analyzed through the application to different types of pro-
teins.

PROTEIN MODEL
Some Basic Notions of Biochemistry

A protein is a biological macromolecule composed by one
or several long polypeptide chains, generally folded in a globular
manner (see molecular modeling textbooks - e.g. [12] - for a de-
tailed structural description of proteins). A polypeptide chain is
a sequence of amino-acid residues connected by covalent bonds,
called peptide bonds, between the amine group of residue i and
the the carboxylic acid group of residue i−1. The concatenation
of these groups, together with the C!H groups that attach them,
forms the main-chain, or backbone, of the protein. This back-
bone is decorated with side-chains, which are specific to each
amino-acid type.

The conformation (i.e. spatial arrangement) of a protein can
be defined by the Cartesian coordinates of all its constituent
atoms, or by a vector of internal coordinates that represent the
relative position of bonded atoms. These internal coordinates
correspond to the bond lengths, bond angles and bond torsions.
A bond length is the distance between two bonded atoms and
a bond angle is the angle between two consecutive bonds. The
bond torsion between atoms Ai−1 and Ai is measured by the di-
hedral angle formed by planes Ai−2-Ai−1-Ai and Ai−1-Ai-Ai+1.
Since the bond lengths and bond angles vary very slightly at
room temperature, they are often considered to be constant pa-
rameters in molecular simulations [13]. Under such assump-

" = #i−1

$ = #i

di

%=const

!i−1

ai−1
zi−1

xi−1

zi

xi

FIGURE 1. GEOMETRIC MODEL OF THE PROTEIN BACK-
BONE AROUND A RIGID PEPTIDE BOND.

tion, the bond torsions are the only degrees of freedom of the
molecule. An additional simplification of molecular models is to
consider that double bonds, such as peptide bonds in proteins, are
rigid connections (i.e. the dihedral angle % associated with the
peptide bond torsion is constant). In summary, the variable pa-
rameters that define the conformation of a protein backbone are
the pairs of dihedral angles, $ and" , of all its constituent amino-
acid residues. The conformation of the side-chains is determined
by a variable number of dihedral angles &i for each residue.

Mechanistic Model
Using the internal coordinate representation described

above, proteins can be modeled as articulated mechanisms. The
bodies of the mechanism correspond to rigidly-bonded atoms,
and the joints are the bond torsions. The kinematic chains cor-
responding to the protein backbone and side-chains can then be
modeled using standard conventions usually applied in robotics.
In this work, we have used the modified Denavit-Hartenberg
(mDH) convention described in [14]. Following this convention,
a Cartesian coordinate system Fi is attached to each rigid atom
group. The relative location of consecutive frames in a kinematic
chain can be then defined by a homogeneous transformation ma-
trix of the form:

i−1Ti =




cos#i −sin#i 0 ai−1
sin#i cos!i−1 cos#i cos!i−1 −sin!i−1 −di sin!i−1
sin#i sin!i−1 cos#i sin!i−1 cos!i−1 di cos!i−1

0 0 0 1




The elements of i−1Ti depend on the bond geometry, being the
bond torsion angle #i the only variable parameter. Fig. 1 illus-
trates the method to assign the frames and to obtain the mDH
parameters when peptide bond torsion angles (%) are considered
to have an arbitrary constant value.

2 Copyright c© 2012 by ASME

Figure 2.5: Kinematic model of the protein backbone around a peptide bond.

(2.2). Here the mDH parameters take the following meanings (See Section 1.1.2 for the

definitions of the bond length, bond angle, and bond torsion):

- The link length (ai−1) is the perpendicular distance between two successive bonds.

- The link twist (αi−1) is the supplementary angle to the bond angle.

- The link offset (di) is the bond length.

- The joint angle (θi) is the bond torsion.

where θi is the only variable parameter since bond torsions correspond to revolute joint

rotations as mentioned earlier. Figure 2.5 illustrates these parameters in the protein

backbone.

2.3 Proposed Model

The protein modeling method we propose in this thesis is based on a multi-level modeling

approach. It consists of a high-level decomposition of the protein into blocks of amino

acids and a method for generating the low-level full-atom coordinates from this high-level

decomposition. The following is an explanation of these two levels.

2.3.1 Decomposition Into Tripeptides

The main idea is to subdivide the polypeptide chain into fragments that contain exactly

three amino acid residues each. We refer to these fragments henceforth as tripeptides.

Depending on the number of residues in the polypeptide chain, which is often not divisible

by three, this decomposition can yield at the end of the chain a fragment with less than

three residues. This end fragment, regardless of its size, along with the first fragment in
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Figure 2.6: An illustration of a polypeptide chain subdivided into tripeptides. Blue circles
represent particles and the highlighted rectangle shows the chemical composition of one
tripeptide.

the chain are not considered as tripeptides in our model and require special treatment.

These fragments of the chain differ from the other inner fragments (tripeptides) in that

they are free at the N-terminal and C-terminal ends, which makes their movement less

restricted than that of the tripeptides.

Each tripeptide in our model can be seen as a robotic manipulator with six revolute

joints (i.e. with six degrees of freedom). This is because every tripeptide has three amino

acid residues and every residue has two movable dihedral angles (ψ and φ) in its backbone.

We attach a Cartesian frame to each atom group in the tripeptide as discussed in the

previous section, however, we particularly label certain frames that are important for our

model. These frames are the first and last frames in every tripeptide, which correspond to

the base and end frames of the robotic manipulator. We refer to base frames henceforth

as (oriented) particles. End frames at each tripeptide can be computed from the particle

of the next tripeptide using constant transformations since tripeptides are connected by

rigid peptide bonds as mentioned earlier. We refer to the model of the protein that

includes only its particles as the simplified particle-set model.

Figure 2.6 shows part of a polypeptide chain that is subdivided into tripeptides, where

the chemical composition of the tripeptide is shown in the highlighted rectangle and

particles are depicted as blue circles. Figure 2.7 also shows an illustration of the proposed

model applied on an SH3 domain (PDB ID: 1V1C). Figure 2.7.a shows the protein model

with a ribbon representing the backbone embedded in the model of the protein surface.

Figure 2.7.b represents the protein backbone trace with the frames corresponding to the

particles. Figures 2.7.c and 2.7.d represent respectively the chemical and the mechanistic

models of the backbone of a tripeptide.
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Figure 2.7: An illustration of the proposed approach. Tripeptides of three amino acid
residues are treated as kinematic chains similar to robotic manipulators.

The main idea behind the proposed model is to enable sampling, deforming and gener-

ally treating the protein using only its simplified particle-set model rather than having to

directly manipulate all of its atoms. Given a spatial configuration of the particle set, gen-

erating the corresponding values of dihedral angles at each tripeptide (and consequently

the full atom model) can be done using inverse kinematics as will be discussed in the

next section. The reason behind choosing to subdivide the protein into tripeptides with

six dihedral angles is that the tripeptide is the shortest fragment with full mobility of

the end-frame relatively to the base-frame. In other words, given the base frame, the end

frame requires at least six dihedral angles in order to have the ability of adopting all the

possible poses.

2.3.2 Solving Inverse Kinematics for a Tripeptide

The inverse kinematics (IK) problem for a kinematic chain is defined as “finding the val-

ues of the joint variables given the position and orientation of the end-effector relative

to the base and the values of all of the geometric link parameters” [Siciliano 08]. In our

case, it is the problem of finding the values of the ψ and φ angles in the backbone of a

tripeptide given the pose of the particles.
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As described in [Siciliano 08], there are two types of methods for solving inverse kine-

matics problems: closed form methods and numerical methods. Closed form methods

are faster and can find all solutions that exist, however, they are not general, but robot

dependent. These methods are restricted to systems with at most six degrees of freedom

and whose geometries conform to certain conditions. Closed form methods use algebraic

or geometric techniques in order to describe the problem in the form of a solvable sys-

tem of equations. Conversely, numerical methods are not robot-dependent and can solve

larger and more general systems. However, such methods are slower, can suffer from con-

vergence issues and may not always be able to find all the existing solutions. Examples

of such methods include [Canutescu 03, Zhao 94]

The method applied in this work for solving the IK problem for a general 6R serial

kinematic chain is a closed form method that has been adapted from the solver proposed

by Renaud [Renaud 00, Renaud 06]. This solver is based on algebraic elimination the-

ory, and develops an ad-hoc resultant formulation inspired by the work of Lie and Liang

[Lee 88b, Lee 88a]. Starting from a system of equations representing the IK problem (the

formulation involves the product of homogeneous transformation matrices), the elimi-

nation procedure leads to an 8-by-8 quadratic polynomial matrix in one variable. The

problem can then be treated as a generalized eigenvalue problem, as was previously pro-

posed by Manocha and Canny [Manocha 94], for which efficient and robust solutions are

available [Golub 96]. Our implementation applies the Schur factorization from LAPACK

[Anderson 99]. Technical details on the applied IK solver are provided in the technical

report of Renaud [Renaud 06].

This solver has been successfully applied in previous works on protein and polymer

modeling [Cortés 04, Cortés 10a]. The advantage of this semi-analytical method with

respect to numerical (optimization-based) methods, such as CCD [Canutescu 03], is that it

provides the exact solution in a single iteration, not suffering from numerical convergence

issues. The solver is very computationally efficient, requiring about 0.2 milliseconds on a

single processor. Note however that our approach is not dependent on this solver, so that

other IK methods (e.g. [Manocha 94, Coutsias 04]) could be applied.

There are often several possible solutions for a single base-end-frame pair, however,

the number of possible solutions for kinematic chains with at most six degrees of freedom

is known to be finite [Craig 89]. In fact, there are no more than sixteen unique solutions

for such chains, provided that the joints are all revolute joints [Siciliano 08]. Depending

on the application at hand, there are several possible strategies for choosing a solution out

of the sixteen possible solutions of the IK problem. For example, a solution may be chosen

at random if the application relies on randomness such as in Monte Carlo simulations.

It is also possible to choose a solution corresponding to the best-energy conformation,

especially in applications where maintaining a low energy profile is important or in appli-
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cations whose goal is to find an energy minima. Another strategy is to choose the closest

solution to the previous conformation of the tripeptide if the application prefers short

moves over large jumps. In all cases, a filtering step may be required in order to ensure

that solutions that cause steric clashes between different parts of the polypeptide chain

are discarded.
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Chapter 3

Enhancing the Monte Carlo

Method

This chapter presents an example application for the use of the tripeptide model intro-

duced in the previous chapter. It shows how this model can be used to facilitate the

implementation of well-established Monte Carlo move classes as well as new ones. This

flexibility of the model allows introducing higher level Monte Carlo sampling schemes

that alternate between several implemented move classes, which enhances the overall

performance of the method.

The first section of this chapter gives an overview of the Monte Carlo method and the

following section discusses the implementation of new Monte Carlo move classes using

the tripeptide model. The last section is dedicated to the discussion of Monte Carlo

simulations that we have performed using the tripeptide model and the new move classes.

3.1 Overview of the Monte Carlo Method

The Monte Carlo (MC) method [Landau 05, Metropolis 53] is one of the most common

computational techniques for studying molecules. It is mainly used for analyzing the

energy landscape of the molecule and for computing thermodynamic properties such as

average energy and heat capacity. Unlike Molecular Dynamics (MD) [Rapaport 07], which

simulates deterministically the motion of atoms based on physical computations of the

forces between them, MC explores the conformational space of the molecule through a

random walk. This random walk favors low energy transitions and produces conformations

that have a higher probability of being adopted by the molecule. Hence, MC is not capable

of providing time-dependent quantities but is more efficient than MD in estimating average

thermodynamic properties [Leach 01].

Starting at some initial conformation of the molecule, the Monte Carlo method itera-

tively performs a trial move by randomly perturbing the current conformation. The trial



move is then accepted or rejected based on a probability that takes into consideration

its potential energy compared to that of the current conformation. This procedure pro-

duces conformations that form a Markov chain, since each trial move depends only on

the current state and not on the other previous steps.

One of the most widely used MC acceptance probabilities is the Metropolis Criterion

[Metropolis 53], which defines the probability of moving from state i to sate j as:

Pij =





1 if Ej < Ei

e−
Ej−Ei

kT if Ej ≥ Ei
(3.1)

where Ej is the energy of the trial move, Ei is the energy of the current conformation, k is

the Boltzmann constant and T is the temperature at which the simulation is performed.

This probability function directly accepts moves that cause a decrease in potential energy

and favors moves that cause a small increase in energy over those that cause high energy

jumps.

A key issue to be addressed when performing simulations using the Monte Carlo

method is the perturbation scheme applied (i.e. move class), especially in large molecular

systems such as proteins. The used move class affects the efficiency of the exploration and

the portion of the conformational space explored. Generally speaking, an effective move

class should produce good coverage of the space with a good acceptance rate. A good

acceptance rate saves the simulation from performing many useless energy computations.

One of the simplest and most frequently used type of moves are pivot moves [Lal 69].

These moves modify a single dihedral angle at a random position in the polypeptide

chain, which causes all the atoms at one of the sides of this dihedral angle to be rotated

as a rigid body accordingly. Such moves are numerically simple and generally effective.

However, they can perform poorly in highly packed protein conformations, since small

moves can cause large changes at the end of the chain, leading to a high rejection rate.

Moreover, these types of moves cause atoms at the end of the polypeptide chain to move

more frequently than middle ones.

To overcome the shortcomings of pivot moves, local moves have been introduced, which

modify an arbitrary segment of the polypeptide chain while keeping all other parts of the

chain intact. An example of such moves are the Concerted Rotation moves, which have

been first proposed by [Gō 70] and then improved in [Dodd 93] and modified to satisfy

detailed balance. These moves modify seven consecutive dihedral angles by rotating the

first one (called the driver) and then adjusting the rest of the six dihedrals to accommodate

this rotation without breaking bond constraints. A variant of this method has been

introduced in [Leontidis 94] that generalizes it to more than seven dihedral angles.

Another example of local moves are CRRUBAR moves [Betancourt 05], whose name

stands for closed rigid-body rotations under bond-angle restraints. These moves rotate
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a window of an arbitrary number of consecutive residues around an axis between two

backbone atoms. They promise a gain in performance over other move types, however,

this comes at the expense of using variable bond angles, which contrasts the assumption

followed in pivot and concerted rotation moves.

3.2 Devising Move Classes Using the Tripeptide Model

This section presents a unified approach for devising different move classes based on the

tripeptide model introduced in the previous chapter. The common factor between the

presented move classes is that they all rely on direct perturbation of the position and

orientation of particles, and consequently, on the use of inverse kinematics to find confor-

mations for tripeptides that are affected by the perturbation. As mentioned in Section

2.3.2, the use of inverse kinematics allows us to find a geometrically valid conformation

for a tripeptide given the pose of the two particles attached to it.

There are several possible schemes for perturbing particles, depending on the number

of particles involved, the perturbation method used, and the presence of a bias or of a mo-

tion correlation between the particles. We show in the following how to implement three

simple and general-purpose move classes. Based on the tripeptide model, these classes,

along with other conventional move classes like pivot and concerted rotations moves, can

be easily combined using a higher-level sampling scheme that alternates between them,

as will be explained at the end of this section.

One Particle Moves

The most straightforward move class using the tripeptide model is the perturbation of

one particle (i.e. the perturbation of its pose). Such a perturbation requires adjusting the

conformation of the two tripeptides whose end and base frames define the particle. This

can be achieved by solving inverse kinematics for each of the two tripeptides. Hence, this

move class introduces modifications to exactly twelve consecutive dihedral angles in the

backbone of the protein. Figure 3.1 illustrates the idea.

This move class is expected to have a similar effect to other local, fixed-end move

classes (e.g. [Gō 70, Dodd 93, Leontidis 94, Wu 99]). One advantage of this move class

compared to other local and non-local move classes, is that a bias in Cartesian coordinates

can be introduced easily to the perturbation of the particle depending on the application.

This is especially interesting in applications where certain parts of the molecule are known

to deform in a certain direction due to an interaction with another molecule for example.
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ConRot

OneTorsion

Figure 3.1: An illustration of the perturbation of one particle.

Figure 3.2: An illustration of the perturbation of three consecutive particles.

Flexible Fragment Moves

A simple extension to the one particle move class is to perturb a number of consecutive

particles instead of only one. Note that perturbing n particles in random directions

requires solving inverse kinematics n+ 1 times in order to adjust the conformation of all

the tripeptides that are linked to the perturbed particles. An example of this move class

with three particles is illustrated in Figure 3.2.

This move class has a similar effect to moves that are based on the cyclic coordinate

descent method (CCD) [Canutescu 03], which are useful for perturbing flexible fragments

of proteins. Generally speaking, these methods work by breaking the flexible protein

fragment into two parts, where the dihedral angles in one part are perturbed and CCD

is used to find a valid conformation for the second part in order to close the loop. The

move class introduced here provides more flexibility in perturbing the fragment by direct

manipulation of the particles and by introducing a bias for some or all the particles if

desired.

Rigid-body Block Moves

Unlike the flexible fragment moves, which perturb n particles independently, this move

class perturbs all the n consecutive particles together as a rigid body. In other words, all

the n particles are translated and/or rotated around an arbitrary axis while preserving

their positions and orientations relative to each other. Hence, the conformations of the

tripeptides between these particles do not change. Nevertheless, the conformations of

the tripeptide before the first particle and the tripeptide after the last particle need to
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Figure 3.3: A rigid body rotation of a segment containing five particles around an axis
defined by the two particles before and after the segment. This rotation simulates a hinge
motion.

be adjusted using inverse kinematics. Figure 3.3 shows an example of this move class

that resembles a hinge motion, where an axis of rotation is defined by two particles.

Note that this move class is most similar to CRRUBAR moves [Betancourt 05], where a

segment of the chain is rotated around an arbitrary axis defined by two atoms. Although

the proposed method involves more complex algebraic operations than CRRUBAR, it

presents the advantage that bond angles do not need to be perturbed and that it can be

easily implemented using the tripeptide model.

Mixing Move Classes

One of the advantages of the proposed tripeptide model is that it provides a unified

approach for implementing several move classes. This allows us to easily create a high-

level sampling strategy that makes use of more than one move class. The rationale behind

implementing such a high-level strategy is that using more than one move class introduces

more variability to the sampled moves, which will expectedly lead to a better coverage of

the conformational space. Performing different types of moves allows exploring a wider

variety of paths and thus helps in overcoming energy barriers. This is clearly illustrated

in the results presented in the next section.

There are many possible ways for combining move classes, which is something that is

subject to investigation depending on the application at hand. One strategy, for exam-

ple, is to randomly choose between the different available move classes using a uniform

distribution. The strategy may also use probabilities that favor certain move classes over

others. It can also equally mix sidechain and backbone moves, or use a probability that

samples sidechains more frequently as they are known to be more flexible. Algorithm 3.1

shows the general steps of the mixing strategy.
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Algorithm 3.1: Monte Carlo With Mixed Sampling

input : Initial conformation cinit, A set of n move classes M
output: A sequence of conformations C
begin

C ← Add(cinit);
while not StopCondition() do

cold ← LastConf(C);
if IsSampleSideChains() then

cnew ← SampleSideChains(cold);

else
m ← SampleMoveClasses(m);
cnew← SampleBackbone(m, cold);

if MetropolisTest(cold, cnew) then
C ← Add(cnew);

end

3.3 Experiments and Results

As a proof of concept, we show and discuss, in the following, results for several MC

simulations implemented using the tripeptide-based model. These results are not meant to

provide new insights into the proteins used in the simulations nor to prove the superiority

of an MC move class over another. The aim of the experiments is to show that the

tripeptide-based model provides flexibility in implementing new MC move classes, which

can lead to a clear performance gain.

3.3.1 Experimental Setup

We have performed four sets of MC simulations using two different proteins (two sets for

each protein). Each set of simulations consists of five independent MC runs performed

using five different move classes. Details of these simulations are described in the following.

Proteins Used

We have chosen for our tests two small proteins that are topologically different. The

first protein is the SH3 domain of obscurin. This protein is composed of 68 amino-

acid residues and has five β-sheets connected by relatively long loops. It can be found

in the Protein Data Bank under the ID: 1V1C. The second protein is an intrinsically

disordered protein called Sic1 protein. It is composed of 77 residues and it lacks any

type of secondary structures (except for one nigligibally small α-helix). The model of

the protein was generated using the Flexible-Meccano method [Bernadu 05] for sampling

a statistically probable backbone conformation, and SCWRL4 [Krivov 09] for the side
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Figure 3.4: Proteins used in the simulations. The SH3 domain is shown in sub-figure (a)
and the Sic1 protein is shown in sub-figure (b)

chains. An illustration of the two proteins can be found in Figure 3.4

Move Classes

We have implemented the following five move classes:

- OneTorsion: This is the simplest type of moves. It involves rotating a randomly

chosen dihedral angle from the backbone of the protein and then propagating the

motion to the end of the chain as shown in Figure 3.5. This move corresponds to

the previously mentioned pivot moves.

- ConRot : This move class is based on the Concerted Rotations of Dodd et al.

[Dodd 93]. We have implemented this move class using the tripeptide model as

follows. A dihedral angle is chosen at random from the backbone of the protein and

is randomly perturbed. Assume that this dihedral angle lies at tripeptide Ti. The

motion caused by the perturbation is then propagated to the end of the tripeptide

Ti. Next, the conformation of the tripeptide Ti+1 is adjusted by solving IK between

the new pose of the end of Ti and the original pose of the end of Ti+1. This move

class is depicted in Figure 3.6

- OneParticle: This move class corresponds to the one particle move described in the

previous section. A randomly chosen particle is perturbed and the conformation of

each of the two adjacent tripeptides is found using IK.

- Hinge: This move class corresponds to the rigid-body block moves described in the

previous section. First, a random starting particle pi and a random segment length

l are chosen. The segment length l is chosen such that it is always larger than 3

and less than a certain predefined constant N . Next, particles between pi and pi+l

53



OneParticle

Figure 3.5: An illustration of a OneTorsion move.

OneParticle
Figure 3.6: An illustration of a ConRot move.

are all rotated (with a random value) as a rigid body simulating a hinge movement.

The rotation is performed around the axis defined by the two particles pi and pi+l.

Conformations of the tripeptide before pi and the tripeptide after pi+l are then

adjusted using IK.

- Mixed : This is simply a mix of the four previous move classes. At each iteration

of the MC method, one of the four move classes is randomly chosen and applied

as shown in Algorithm 3.1. Function SampleMoveClasses chooses uniformly

between the four different classes and function IsSampleSideChain gives equal

weights to performing backbone and sidechain moves.

Parameteriztion

For each of the two proteins, we have performed two sets of simulations using different

step sizes. Table 3.3.1 shows the different step sizes used. These step sizes indicate

maximum perturbations applied to the original values at each move trial. In other words,

if the current value is x and the step size is s, then a random value is chosen in the

interval [x − s, x + s]. Step sizes have been chosen such that they produce comparable

atom displacements in a chain fragment, and at the same time, comparable acceptance

rates.

Each simulation set includes five independent MC runs using the five previously men-

tioned move classes. Before running these simulations, the two proteins were equilibrated

by running an MC simulation using the oneParticle move class and step-size I (see Ta-

ble 3.3.1). This simulation was run until 105 trial moves were accepted. Starting from
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Bond Torsions Particle Translations Particle Rotations

SH3
Step I 0.03 rad. 0.1 Å 0.01 rad.

Step II 0.09 rad. 0.3 Å 0.03 rad.

Sic1
Step I 0.09 rad. 0.3 Å 0.03 rad.

Step II 0.15 rad. 0.5 Å 0.05 rad.

Table 3.1: Sets of perturbation step sizes.

the equilibrated conformations, each MC simulation was run until 106 trial moves were

accepted. Each iteration in all the performed simulations includes the following:

- Randomly choosing between either performing a backbone move or a side-chain

move.

- If a side-chain move is to be performed, then all the dihedrals at a randomly chosen

side-chain are perturbed.

- If a backbone move is to be performed, then the designated move class of the

simulation is applied.

- After performing any move (side-chain or backbone move), the conformation of the

protein is checked for collisions. Non-bonded atoms are considered to be in collision

if the distance between them is less than 70% of the van der Waals equilibrium

distance [Bondi 64].

- Trial moves that fail to find IK solutions or that produce conformations with self-

collisions are directly rejected.

- Energy is evaluated for collision-free conformations and the Metropolis Criterion is

applied to accept or reject them.

All hinge moves have been performed with a segment length that contains between

4 and 10 particles. On the other hand, all simulations have been performed at a tem-

perature of 300K and all energy evaluations have been performed using the OPLS-AA

force field [Jorgensen 96] together with an implicit representation of the solvent using the

Generalized Born approximation.
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3.3.2 Results

We discuss in the following the results of the performed simulations from two perspectives:

- Efficiency of the exploration: Table 4.5 shows computational results that de-

scribe the efficiency of the exploration for each simulation. It shows the number

of energy evaluations performed, the CPU time required to complete the simula-

tion and the acceptance rate, which equals to the number of conformations (106)

divided by the number of trials. Note that simulations were run on a single AMD

Opteron 148 processor at 2.6 GHz. Generally speaking, an efficient move class has

a high acceptance rate (for a comparable step-size), which implies performing less

energy evaluations. Such an efficiency strongly affects the CPU time required for

the method to sample a number of states.

- Quality of the exploration: Quality of the explored set of conformations can

be inferred from the structural distances traveled (structural dissimilarity) and the

energies of the set of samples provided by the MC method. Figures 3.7, 3.8, 3.9

and 3.10 show two types of plots. The first type depicts how the average distance

of sampled conformations from the initial conformation evolves over time, where

the distance is the root mean square deviation (RMSD) of the dihedral angles. The

second type of plots shows how the average energy of sampled conformations evolves

over time. Good coverage implies a higher average of distances and a lower average

of energies.

Efficiency of the Exploration

Looking at the computational results in Table 4.5, it is clear that the OneTorsion move

class is outperformed by all the other move classes in all the simulations in terms of

CPU time. The reason for this is two fold. First, although perturbations performed

by the OneTorsion move class are small, they require all the coordinates of the atoms

following the perturbed dihedral angle to be recomputed. This requires more time than

updating only two tripeptides in the case of ConRot and OneParticle, even though IK

computations are involved. The second reason, which is more significant, is clear from the

poor acceptance rate of OneTorsion compared to the other methods, which led to a higher

number of energy evaluations. This is mainly due to the aforementioned propagation,

which makes the move susceptible to producing large displacements far-away from the

perturbed dihedral angle. Unlike local oneParticle moves, such global moves produce

high energy fluctuations that are more difficult to accept. The performance of OneTorsion

could have been even worse relative to the other move classes if a more intelligent energy

computation method had been used. Currently, energy is completely reevaluated after

each move, where it could have been reevaluated by considering only parts that have
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changed. This reduces the computation time in local moves such as oneParticle and

conRot compared to global moves like oneTorsion.

On the other hand, ConRot and OneParticle exchanged turns across simulations of the

two proteins. ConRot was the best in terms of CPU time in the SH3 simulations, whereas

in the Sic1 simulations OneParticle was the best. Nevertheless, a clear advantage of the

OneParticle move class can be outlined. Looking at the results, OneParticle simulations

performed the least number of energy evaluations in all the simulation sets except the

first one (SH3 with Step Size I). This is even true for cases when the acceptance rate of

OneParticle was not the best, such as in SH3 Step Size II and Sic1 Step Size I. Note that

the acceptance rate depends on finding IK solutions, collision-free conformations as well

as low energy transitions. This feature is especially important for large proteins, where

the cost of energy evaluations is higher and the use of an efficient exploration method is

imperative.

Finally, simulations with the Mixed sampling strategy have achieved intermediate

CPU time results compared to the other move classes. This was expected since this

sampling strategy invokes all the other four move classes, which makes its performance

affected by both the best and worst methods. The Hinge move class also produced stag-

gering results, which means that it requires more care in setting its parameters depending

on the topology of the molecule.

Quality of the Exploration

Looking at Figures 3.7 through 3.10, it is clear that the relationship between the compu-

tational results and the quality of the exploration is not straight forward. For example,

although OneTorsion performed worst than all the other move classes in all the simula-

tions as mentioned before, this did not necessarily translate to a lagging exploration in

all the simulations. Similarly for ConRot and OneParticle, their aforementioned leading

positions did not grant them equivalent positions in the distance and energy plots. In

fact, these three move classes did not show any repeating pattern over the four sets of

simulations.

The main reason behind these observations is that high quality exploration generally

depends on the ability of the method to produce diverse fluctuations that allow visiting

different areas in the conformational space. A high acceptance rate may lead to producing

more quickly a larger number of conformations, however, these conformations may all be

from the same local region. Structural fluctuations need to be large enough to move out

of the vicinity of the starting conformation, and small enough at the same time to avoid

introducing large energy fluctuations that slow down the exploration. Hence, move classes

can perform very differently depending on the step sizes and the topology of the molecule,

which mandates careful parameter setting.
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This discussion leads us to the explanation of the persistently leading performance

of the Mixed sampling strategy, which is evident in all the distance and energy plots.

Simulations performed with the Mixed strategy show a profile of average distance from

the initial conformation that is higher than all the other move classes. This means that

this strategy is able, on average, to visit conformations farther than any of the other four

move classes. At the same time, simulations also show that the Mixed strategy is able

to maintain an average energy profile that is lower than all the other move classes. This

leading performance is a direct consequence of the diversity of the structural fluctuations

achieved by this sampling strategy, since it alternates between four different move classes.

This makes it relatively more capable of exploring the conformational space regardless

of the step size used. Importantly, this good exploration does not come at the expense

of high performance requirements, as the Mixed strategy maintains a fair computational

performance compared to the other move classes as discussed previously.

3.4 Conclusion

The main power of the tripeptide-based protein model is that it provides a unified ap-

proach that enables implementing many of the widely used move classes as well as for

devising new move classes, as seen in this chapter. Moreover, it simplifies implementing

complex move classes, such as the Mixed sampling strategy, which offers a clear enhance-

ment of performance in exploration over other move classes, maintaining at the same time

average CPU time requirements. Using this Mixed strategy, simulations explore relatively

better at a relatively fine speed, regardless of the step size used or what the topology of

the protein is. This is, of course, true as far as the presented initial simulations show.

More experiments are needed to better validate these results and to test other vari-

ations of the mixed strategy. For example, it may be interesting to perform tests that

can lead to knowing the optimal set of move classes. A move class may only be reducing

the acceptance rate or increasing the computation time without adding real value to the

quality of the exploration, which is something that needs further experiments to under-

stand. It is also interesting to test different probabilities for choosing between the move

classes and to try giving more weight to sampling sidechains over sampling the backbone.

Other possible experiments include testing the flexible fragment move class in different

variants. For example, particles in the fragment can be perturbed all with the same step

size, or conversely, with step sizes that are larger for inner particles and smaller for

particles that are closer to the two ends of the fragment. The effect of replacing the

oneParticle move class in the mixed strategy with the flexible fragment move class is also

worth exploring.
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Move Class Acceptance Rate Energy Evaluations. CPU Time

SH3 - Step I

ConRot 0.73 1.3× 106 39 h.

Hinge 0.73 1.3× 106 41 h.

Mixed 0.62 1.4× 106 42 h.

OneParticle 0.61 1.6× 106 49 h.

OneTorsion 0.58 1.7× 106 57 h.

SH3 - Step II

ConRot 0.48 1.7× 106 51 h.

OneParticle 0.45 1.6× 106 53 h.

Mixed 0.42 1.9× 106 57 h.

Hinge 0.47 2.0× 106 64 h.

OneTorsion 0.40 2.3× 106 68 h.

Sic1 - Step I

OneParticle 0.46 1.5× 106 40 h.

Hinge 0.52 1.7× 106 45 h.

ConRot 0.46 1.7× 106 46 h.

Mixed 0.43 1.8× 106 53 h.

OneTorsion 0.44 2.2× 106 57 h.

Sic1 - Step II

OneParticle 0.43 1.6× 106 42 h.

ConRot 0.35 2.1× 106 56 h.

Hinge 0.39 2.2× 106 58 h.

Mixed 0.32 2.4× 106 63 h.

OneTorsion 0.32 2.9× 106 74 h.

Table 3.2: Computational performance of the four simulation sets.
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Figure 3.7: Evolution of the average distance and average energy over time in the simu-
lations performed with the SH3 domain and step size I.

60



������

����	


� ������ ������ ������ ������ �������
���

���

���

���

��	

���


��� ������ ���� ��������� ���������

�� !�"�#"���#�� ������

$
%

��
�

"&
��
��
�
�

"'
�
�
�
��
�
�
(

������

����	


� ������ ������ ������ ������ �������
�����

���	�

�����

���
�

�����

�����

�����

�����

���� ������ ��������� ���������� ����

 !"#��$�%$���%��"�����

&
'
�
��
�
�
$(
�
�
��
)
$*
+
�
�
�,
"
�
�-

������

����	


� ��� ��� ��� ��� ��� ��� ��	
�

�




��

��

��

��

�


���� ���������� ����� ������ �����������

�������� !�������"

#
��

$
%

�
�

�
&
 !

'
"

Figure 3.8: Evolution of the average distance and average energy over time in the simu-
lations performed with the SH3 domain and step size II.
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Figure 3.9: Evolution of the average distance and average energy over time in the simu-
lations performed with the Sic1 protein and step size I.
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Figure 3.10: Evolution of the average distance and average energy over time in the simu-
lations performed with the Sic1 protein and step size II.
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Chapter 4

Exploring Conformational

Transitions

4.1 Overview

This chapter introduces a new method for exploring the conformational space of proteins.

The method is based on the tripeptide protein representation (discussed in Chapter 2)

and applies a combination of the RRT algorithm and Normal Mode Analysis (NMA)

[Cui 06]. This method is particularly useful for analyzing protein conformational transi-

tions, especially those involving domain motions.

As mentioned in Section 1.3.1, studying conformational transitions in proteins is im-

portant for understanding their biological functions, since such motions are generally

related to the capacity of the protein to interact with other molecules. However, captur-

ing this type of dynamic information at the atomic scale is difficult using experimental

methods. Therefore, computational methods like Molecular Dynamics and Monte Carlo

are most commonly used. Nevertheless, these methods also suffer from efficiency problems

when applied to compute large-amplitude conformational changes.

In this context, we propose a computational method that extends the methods intro-

duced in [Cortés 05b, Kirillova 08]. These methods use an RRT to speedup the exploration

of the conformational space, and thus, enable the simulation of large-amplitude protein

motions with few computational resources. The method introduced in [Kirillova 08],

goes even one step further and makes use of normal mode analysis to bias the search of

the RRT towards energy-favorable regions, which allows studying problems with even

higher dimensions. This idea of biasing the RRT using normal modes is rooted in

works such as [Brooks 85, Hinsen 98, Tama 01, Alexandrov 05], which show the abil-

ity of normal modes to predict the direction of collective conformational changes (like

domain motions) in macromolecules. However, since normal modes provide local pre-

dictions and not full conformational trajectories, iterative methods have been intro-
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duced that perform short displacements and recompute the normal modes at each step

[Mouawad 96, Miyashita 03, Jeong 06]. Such methods require a large number of itera-

tions to compute large conformational transitions, which is something that can be avoided

using RRTs as has been shown in [Kirillova 08].

The method proposed here also uses normal modes to bias the search of the RRT.

However, the main difference with [Kirillova 08] is that our method is based on the sim-

plified particle-set model. Such an apparently minor change has nonetheless important

outcomes. Using this model the number of normal modes per protein is reduced at least

by a factor of three, which greatly reduces the time required to compute them. Another

advantage of using the tripeptide model is that it provides an accurate method for mov-

ing between the coarse-grained particle-based representation and the all-atom model. In

[Kirillova 08], the sampling step of the RRT is performed in Cartesian coordinates (as

it relies on the normal modes), whereas all the other steps are performed in internal co-

ordinates in order to ensure producing conformations with valid bond angles and bond

lengths. Therefore, a conversion step is repeatedly performed to move back and forth be-

tween the cartesian and internal coordinates. The approximation implied by the change

of representation make the performance of the algorithm greatly dependent on the topol-

ogy of the protein rather than on its size, which limits the use of the algorithm to certain

types of proteins. In this chapter, we show how our algorithm overcomes this problem

providing an efficient performance that linearly scales with the number of residues.

The main idea of this chapter is to show how the tripeptide-based model, the RRT al-

gorithm and normal mode analysis can create an effective tool for studying conformational

transitions, when combined together. Both, the tripeptide model and RRT, have been

discussed separately in Chapters 1 and 2. Therefore, discussion in Section 4.2 will con-

centrate more on normal mode analysis and on how the three methods can be combined

together. In Section 4.3, we present experiments performed with 10 different proteins of

sizes between 214 and 994 residues, and provide a discussion of the achieved results.

4.2 Method

4.2.1 Elastic Network Models and Normal Mode Analysis

Every molecule has a set of natural vibration modes that depends on the structure of

the molecule. Each mode corresponds to a pattern of motions, in which all atoms of

the molecule move with the same frequency and phase, i.e. all passing through the

equilibrium and maximum points at the same time. These modes are called normal

modes and can be calculated by diagonalizing the Hessian matrix of the potential energy.

It has been shown that low frequency normal modes correspond to collective atomic

motions (or domain motions), whereas high frequency normal modes correspond to local
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fluctuations [Atilgan 01, Gō 90, Hinsen 98].

The approach we adopt for computing normal modes in our method is a simplified one

that is based on considering the molecule as an elastic network [Tirion 96]. The Elastic

Network Model (ENM) represents the molecule as a set of nodes connected by springs.

All the protein atoms can be considered as nodes in this model, however, a more coarse

grained representation is usually applied that considers nodes to be only the Cα atoms

[Tama 01]. Moreover, nodes are connected by virtual springs only if the distance between

them is less than a user-defined cut-off distance Dcut. The potential energy function of

such an elastic network takes the following form:

E =
∑

d0ij<Dcut

C

2
(dij − d0ij)2 (4.1)

where dij is the distance between node i and node j, d0ij is the distance between the

two nodes at the equilibrium state and C is the elastic constant.

This type of simplified elastic networks has been used in many works and for very

different applications [Kim 02, Tama 04, Cavasotto 05a, Jeong 06]. Here, we investigate

going further in the simplification of the elastic network model. Instead of using Cα atoms,

we build the ENM using the simplified particle-set representation (see Section 2.3.1), thus

considering one node per tripeptide. As shown in [Tama 01], using a simplified ENM does

not necessarily lead to a loss of accuracy in the prediction of motion directions, however,

it certainly leads to more performance efficiency. This issue is discussed in more details

in Section 4.3.1. Figure 4.1 shows a protein in the form of an elastic network that is built

from the particles of the tripeptide model.

Normal modes in our method are computed as follows. First the Hessian Matrix of

the elastic network is constructed from the particle positions. The Hessian matrix is the

second partial derivative of the potential energy E, where each element in the matrix is a

3× 3 matrix that corresponds to the interaction between two particles. Hence, the size of

the hessian matrix is 3N × 3N , where N is the number of particles. Each 3× 3 element

can be computed as follows [Atilgan 01, Eyal 06]:

Hij = − C

d2ij




(xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)

(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)

(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)




(4.2)

Hii = −
∑

j|j 6=i

Hij (4.3)

where, i and j correspond to particle indices. If the distance between particles i and j
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Figure 4.1: The ADK protein (PDB ID: 4ake) represented as an elastic network, where
nodes are particles in the tripeptide model.

is more than the cut-off distance, then the whole 3× 3 matrix is replaced by zeros. The

Hesian matrix is then diagonalized to compute the eigenvalues and eigenvectors. Each

eigenvalue and eigenvector pair corresponds to one normal mode, where the eigenvalue

defines the mode frequency and the eigenvector defines displacements for each particle in

the Cartesian space. Note that using particles instead of Cα atoms reduces the matrix

size by a factor of 3, which greatly reduces computation time.

4.2.2 Overall Algorithm

The particular problem addressed in this chapter can be phrased as follows. Given a

starting protein conformation qinit and an end conformation qgoal, the algorithm should

produce a sequence of conformations q1, q2, ..., qn−1, which the protein can possibly adopt

as it moves from qinit to qgoal.

The proposed method works by iteratively creating short consecutive RRTs. Each

iteration consists of: computing the normal modes from an initial conformation qroot,

using these normal modes to bias a short RRT exploration, and then choosing a new qroot

for the new iteration (qroot for the first iteration is qinit). Each RRT explores until it

moves a predefined distance to the target qgoal. Once the RRT stops, the closest node in

the tree qclose to qgoal is identified, and the path between qroot and qclose is extracted and

saved. All nodes on this path are guaranteed to have a collision-free backbone (which

implies having acceptable energy values), since conformations are accepted only if their

backbone atoms are collision-free. In order to rearrange side-chains, a quick minimization

step is performed on qclose, which is then used as the new root of the RRT in the next

iteration and the base for the new computation of the normal modes.

The algorithm keeps iterating until a predefined distance dtarget from qgoal is reached.

The resulting trajectory is then defined by the minimized conformations qclose at each
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Algorithm 4.1: Compute Pathway

input : Initial conformation qinit, final conformation qgoal and minimum distance
to target dtarget

output: The transition pathway p
begin

qroot ← qinit;
while RMSD(qroot, qgoal) > dtarget do

m ← Compute NormalModes(qroot);
t ← Build RRT(m, qroot, qgoal);
qclose ← ClosestToTarget(t, qgoal);
qroot ← Minimize(qclose);
p ← Concatenate(p, qroot);

end

Algorithm 4.2: Build RRT

input : Initial conformation qroot, final conformation qgoal
output: The tree t
begin

t ← InitTree(qroot);
while not StopCondition(t, qgoal) do

qrand ← Sample(t);
qnear ← BestNeighbor(t, qrand);
qnew ← ExpandTree(qnear, qrand);
if IsValid(qnew, t) then

AddNewNode(t, qnew);
AddNewEdge(qnear, qnew);

end

iteration. If a finer grained trajectory is required, then the extracted paths at each

iteration can be used, which may require further minimization. The steps of the algorithm

are summarized in Algorithm 4.1.

4.2.3 Particle-Based RRT

Each individual RRT in the sequence of executed RRTs in the proposed algorithm per-

forms the same steps as the standard RRT steps described in Algorithm 4.2. However,

the distinctive trait of these RRTs is that they sample the coordinate space of the normal

modes instead of the space of the degrees of freedom of the protein. Another important

difference is that these RRTs work on the simplified particle-set representation rather

than directly on the atoms.

As described in Algorithm 4.2 and in Section 1.1.1, the first step at each iteration of

the RRT algorithm is to generate a random conformation qrand. This conformation acts
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as a determinant of the direction towards which the tree is extended. Next, the tree is

searched for a conformation qnear, which is the closest conformation in the tree to qrand.

A new conformation, qnew, is then generated by moving a predefined distance from qnear

towards qrand, and the new conformation is added to the tree if it does not violate any

geometric constraints. The following are the details of how each of qrand, qnear and qnew

are generated in our method.

Sampling Random Conformations

The idea is to generate a random sample qrand that allows the RRT to explore the con-

formational space using information given by the normal modes. To achieve this, the

following steps are performed:

- A sequence of n random weights are sampled in the range of [-1, 1], where n is the

number of particles multiplied by 3, which equals to the number of normal modes.

- Each weight wi corresponds to a normal mode nmi and is multiplied by an ampli-

fication factor f that is the same for all the normal modes. This factor is used to

push the sampled conformation away from qroot.

- An array of n/3 particle positions is created by computing their positions from

a linear combination of all the modes and their weights. More precisely, the x-

coordinate of a particle i is computed as follows:

pnewix = poldix +

j=0∑

j<n

wj ∗ f ∗ nmj (4.4)

where poldix is the x-coordinate of the particle i in qroot

The resulting array of particles acts as qrand in the following steps of the algorithm.

This is because it contains all the necessary information for finding qnear and generating

qnew. Hence, qrand, in our case, is not an all-atom conformation, but a list of particle

positions. These positions have been created by moving the original particles found at

qroot in the directions given by a normal combination of normal modes with randomly

sampled weights.

Finding Nearest Neighbors

In order to find qnear, the tree is searched for the conformation that is closest to qrand.

The distance is computed between every conformation in the tree and qrand, where the

computed distance is the root mean squared deviation (RMSD) between the particle
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positions. An additional bias is also used in our algorithm to pull the exploration towards

the goal conformation. This bias is introduced to the computed distance as follows:

distance(qi, qrand) =
RMSD(qi, qgoal)

RMSD(qinit, qgoal)
RMSD(qi, qrand) (4.5)

In other words, the node that is both closest to qrand and to qgoal is favored over other

nodes. The node with the minimum distance is chosen as qnear which is then extended

towards qrand in order to generate qnew. In this work, we have implemented a simple

brute-force algorithm to find qnear. However, more sophisticated nearest neighbor search

algorithms based on space partitioning techniques (e.g. [Atramentov 02]) could be used

to speed up the process and reduce the number of performed distance measures.

Generating New Conformations

In order to generate qnew, all particle positions in qnear are linearly interpolated towards

qrand with a predefined distance k. Given these interpolated particle positions, the full

atom model of qnew can be generated using inverse kinematics. We apply an iterative

process that solves inverse kinematics for every tripeptide ti using the two interpolated

particles pi and pi+1. If no IK solution is found for a tripeptide or if the solution found

is not collision-free, we slightly perturb the attached particles and try again. A small

perturbation is also applied to the particles’ orientations, since the cause of the problem

can be due to restraints caused by the current orientations of the particles. This process

is repeated until a collision-free IK solution is found or a maximum number of trials has

been reached.

If this process fails to find a collision-free IK soltuion for any tripeptide, failure is

reported and the RRT algorithm goes back to the random sampling step. After generating

IK solutions for all the tripeptides, the only remaining parts of the protein to be addressed

are the two end-fragments attached to the first and last tripeptides. The pose of these

fragments is adjusted such that they are in accordance with the new poses of the first

and last particles respectively. The pose is also adjusted such that changes in the first

and last tripeptides are propagated to these fragments. A random perturbation can also

be applied to the two end fragments depending on the application.

The generated conformation qnew is guaranteed to satisfy hard geometric constraints.

As mentioned before, every generated tripeptide conformation is checked for self collisions

for collisions with other parts of the protein. However, in order to reduce the rejection

rate, sidechains are excluded from the collision checking (only Cβ atoms are considered).

This is because sidechains are known to be very flexible, and resolving their collisions is

easier than resolving collisions in the backbone. Hence, any sidechain collision is assumed

to be resolved during the minimization step at the end of each short RRT execution, as

mentioned in Section 4.2.2.
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4.3 Experiments and Results

This section discusses experiments that we have performed to validate the performance of

the proposed method. First, we begin by addressing the question raised in Section 4.2.1

about the effect of using a coarse grained elastic network model that is built using the

tripeptide-based model. Next, we present experiments that show the good performance

of the proposed method in exploring the conformational space to find conformational

transitions in proteins.

4.3.1 Validating the Elastic Network

Previous works such as [Tama 01, Hinsen 98, Hinsen 99] have shown that simple ENMs

built using Cα atoms perform as well as ENMs built using the all-atom model. This has

been shown to be true as far as the study of dynamic properties in proteins is concerned.

In the following, we compare the ability of ENMs built using the simplified particle-set

model to the ability of ENMs built using the Cα atoms to predict motion directions during

molecular transitions. For this, we use the notion of overlap as proposed in [Marques 95,

Tama 01].

The overlap Ij between a normal mode j and an experimentally observed conforma-

tional change between two conformations (open and closed) qo and qc is defined as a

measure of similarity between the conformational change and the direction given by the

normal mode j [Tama 01]. It can be computed as follows:

Ij =

∣∣∣∣∣
3N∑

aij∆qi

∣∣∣∣∣
[

3N∑
a2ij

3N∑
∆q2i

]1/2 (4.6)

where ∆qi = qoi − qci , is the difference between the ith atomic coordinates of the protein in

conformations qo and qc, aij corresponds to the ith coordinate of the normal mode j and

N is the number of Cα atoms. In our case, the cartesian coordinates of particles i in the

tripeptide model are used in ∆qi instead of Cα atoms, and N corresponds to the number

of particles. A value of 1 for the overlap means that the direction given by the normal

mode matches exactly the conformational change, whereas a value that is around 0.2 or

less means that the normal mode is unable to give any meaningful prediction.

We have measured overlap values for the seven proteins shown in Table 4.1, which

are proteins that have been used also in [Tama 01] for the validation of the Cα ENM.

All the simulations in [Tama 01] have been performed using a cutoff distance of 8 Å as

suggested in [Bahar 97]. A good cutoff distance should create an elastic network that

correctly captures the topology of the protein. However, it can be intuitively inferred
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that the same cutoff distance may not be the optimal choice in our case, since distances

between particles of the tripeptide model are not the same as the distances between Cα

atoms. Hence, we have measured and compared overlap values for the seven proteins with

cutoff distances between 8 and 34 Å to find the optimal one.

Figure 4.2 shows the average overlap value achieved for each cutoff distance over the

seven proteins. The overlap value considered for each protein is the best one found among

the overlap values of all the normal modes. As can be clearly seen in the figure, the highest

averages are for cutoffs 15, 16 and 17. This is expected since tripeptides have three Cα

atoms each, and they usually adopt conformations that are not fully extended. This

means that the optimal cutoff distance is expected to be less than three times the optimal

cutoff used in Cα elastic networks.

In Table 4.2, we show overlap values using a cutoff distance of 16 Å and compare

them to the overlap value presented in [Tama 01] for the Cα ENM. It is clear that both

ENMs give comparable overlap values, which means that our simplified ENM is also able

to capture the topology information necessary for producing normal modes that correctly

predict motion directions. Table 4.3 shows that the overlap values can even be better when

a different (best) cutoff distance is used for each protein separately. The presented values

have been measured for both the case of moving from the open conformation towards the

closed conformation and vice versa.

Protein Residues PDB IDopen PDB IDclosed

Che Y Protein 128 3chy 1chn

LAO binding Protein 238 2lao 1laf

Triglyceride Lipase 256 3tgl 4tgl

Thymidulate Synthase 264 3tms 2tsc

Maltodextrine Binding Protein 370 1omp 1anf

Enolase 436 3enl 7enl

Diphtheria Toxin 523 1ddt 1mdt

Table 4.1: Proteins used in the overlap experiments.
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Protein
Cα Overlap Particles Overlap

Open Close Open Close

Che Y Protein 0.32 0.34 0.52 0.34

LAO binding Protein 0.84 0.40 0.53 0.52

Triglyceride Lipase 0.30 0.17 0.26 0.35

Thymidulate Synthase 0.56 0.40 0.49 0.29

Maltodextrine Binding Protein 0.86 0.77 0.90 0.84

Enolase 0.33 0.30 0.40 0.30

Diphtheria Toxin 0.58 0.37 0.48 0.30

Table 4.2: Comparison between overlap values for ENMs built using the simplified
particle-set model and ENMs built using Cα atoms as presented in [Tama 01]. The
used cutoff distances are 16 and 8 for the two ENM types respectively. Columns labeled
“Open” are for the case of moving from the open to the closed conformation and columns
“Closed” are for the opposite case.
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Figure 4.2: Average overlap over the seven proteins of Table 4.1. Each red line starts at
the 25th percentile of all the overlap values and ends at the 75th percentile, where the
blue circle marks the average overlap value.

74



Protein
Overlapbest Overlap16

Open Close Open Close

Che Y Protein 0.76 0.64 0.52 0.34

LAO binding Protein 0.55 0.63 0.53 0.52

Triglyceride Lipase 0.45 0.42 0.26 0.35

Thymidulate Synthase 0.51 0.37 0.49 0.29

Maltodextrine Binding Protein 0.90 0.84 0.90 0.84

Enolase 0.45 0.45 0.40 0.30

Diphtheria Toxin 0.48 0.36 0.48 0.30

Table 4.3: Overlapbest is the best overlap value achieved using any cutoff distance between
8 and 34, whereas Overlap16 is measured using a cutoff distance of 16.

4.3.2 Finding Conformational Transitions

Experimental Setup

We have applied the proposed method to compute conformational transition pathways for

the 10 proteins shown in Table 4.4. For each protein, there are at least two experimentally

identified conformations, where the difference between these conformations involves large

amplitude domain motions. The size of these motions varies depending on the protein,

where the smallest motion is 2.75 Å Cα-RMSD in NS3 and the largest is 10.96 Å Cα-

RMSD in DDT. All the studied domain motions are shown in Figures 4.7 through 4.16.

We have also chosen the proteins to be of variable sizes, spanning from 214 residues for

ADK to 917 residues for HKC. This variability in the size of the proteins and in the type

of motions presents a challenge for the method, which makes the achieved results a good

indicator of its performance and its ability to scale.

As mentioned in Section 4.2.2, each iteration of the method performs a short RRT

exploration. In our experiments, each RRT exploration runs until it has moved 0.3 Å Cα

RMSD towards the goal. This distance is gradually reduced to 0.15 Å as the distance

to the goal becomes smaller. This is because generating new valid conformations by the

RRT is harder at the vicinity of the closed conformation. Exploration is also stopped after

a certain number of iterations (4000 in our case) regardless of whether it has moved the

required distance or not. This additional stopping condition is introduced to prevent the

RRT from iterating indefinitely when it is unable to move the required distance towards

the goal, which is a problem that may be solved when the normal modes are recomputed.

Once the RRT exploration stops, the conformation in the tree that is closest to to the
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Protein Residues PDB IDinit PDB IDgoal ParRMSDinit Cα-RMSDinit

ADK 214 4ake 1ake 6.52 6.51

LAO 238 2lao 1laf 3.77 3.73

DAP 320 1dap 3dap 3.81 3.78

NS3 436 3kqk 3kql 2.75 2.75

DDT 535 1ddt 1mdt 10.93 10.96

GroEL 547 1aon 1oel 10.38 10.49

ATP 573 1m8p 1i2d 3.79 3.78

BKA 691 1cb6 1bka 4.73 4.75

UKL 876 1ukl 1qgk 6.16 6.17

HKC 917 1hkc 1hkb 2.98 3.00

Table 4.4: Details of the proteins used in the simulations. In this table, ParRMSD is
the RMSD between the initial and goal conformations computed using the particles only,
whereas Cα-RMSD is the RMSD computed using the Cα atoms.

goal is identified and minimized. We have used in our experiments the AMBER software

package [Case 06] for the minimization, however, any other minimization software can be

used. The minimized conformation is then added to the solution path and is considered

to be the starting conformation in the next RRT exploration. Normal modes for the next

iteration are computed from this minimized conformation (we use the Eigen software

library1 to compute the eigenvalues and eigenvectors). Before each iteration, a quick

computation is performed to find the cutoff distance that yields the best overlap value.

Based on the minimized conformation, we compute overlap values using cutoffs from 14

to 18 Å and choose the best cutoff for computing the normal modes.

Results

Table 4.5 summarizes the results achieved by our method for the ten proteins. In this

table, Cα-RMSDend is the distance between the goal conformation and the closest confor-

mation found by our method, which corresponds to the distance between qgoal and qclose

in the last iteration of the algorithm (using the terminology of Algorithm 4.1). The table

also shows the time (in hours) spent by the algorithm exploring using RRTs (TimeRRT )

and the total time spent by the algorithm (Timetotal). The total time includes TimeRRT

plus the time needed for running minimizations and for finding the best cutoff distance at

each iteration. Finally, the number of iterations indicated in this table refers to the num-

ber of times normal modes have been computed. In all of the simulations, the time spent

exploring using the RRT makes more than 90% of the total time spent by the algorithm.

1http://eigen.tuxfamily.org/.
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Protein Cα-RMSDinit Cα-RMSDend Iterations TimeRRT Timetotal

ADK 6.51 1.56 31 1.82 2.00

LAO 3.73 1.32 20 1.52 1.65

DAP 3.78 1.31 16 1.78 1.92

NS3 2.75 1.29 14 2.82 3.00

DDT 10.96 2.88 272 81.54 86.4

GroEL 10.49 2.79 142 40.21 42.17

ATP 3.78 1.45 30 13.46 14.16

BKA 4.75 1.96 74 29.56 31.09

UKL 6.17 2.02 80 80.61 82.62

HKC 3.00 1.64 38 37.91 39.63

Table 4.5: Performance of the method for the ten proteins.

Note that simulations were run on a single AMD Opteron 148 processor at 2.6 GHz.

In all of the performed simulations, our method has been able to find paths to con-

formations that are very close to the given goal conformations. All the distances between

the final and goal conformations, except for DDT and GroEL, are less than or equal to 2

Å (measured using Cα-RMSD), which means that the goal can be considered as reached.

Figures 4.17 to 4.26 show the final and goal conformations superimposed, and shows the

superimposition of the goal and open conformations as a reference2. Looking at Figures

4.21 and 4.22, it is clear that the conformations found by our method for DDT and GroEL

are also very close to the goal conformations, which means that the goal can be consid-

ered as reached for these proteins too. Note that the method could have reached closer

conformations to the goal, however, the general strategy in our simulations was to stop

when the distance to the goal reaches a very slow convergence rate.

To further analyze the time required by our method to compute conformational tran-

sitions, Table 4.6 and Figure 4.3 show the achieved results as a relationship between the

number of residues and the time required by our method to compute a path that is 1Å

long. Knowing this relationship is more important than knowing the exact numbers when

analyzing the scalability of the method. This is because the time required to compute the

path can become better or worst depending on the computers used, whereas the relation-

ship remains the same. As seen in the figure, the scalability is linear, which is a promising

property of the method. Note that the time expected for our method for proteins with

more than 900 residues is better than what is shown in the figure. This is because the

data point has been computed using the results of the HKC protein simulation, which

2The superimposition of the conformations has been performed using the software package PyMol
(http://www.pymol.org/)
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Protein Residues Time (hours) / 1Å

ADK 214 0.4

LAO 238 0.68

DAP 320 0.79

NS3 436 2.11

DDT 535 10.72

GroEL 547 5.84

ATP 573 6.74

BKA 691 11.17

UKL 876 19.96

HKC 917 28.93

Table 4.6: Relationship between the number of residues and the time (in hours) required
to compute a path that is 1Å long.
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Figure 4.3: Relationship between the number of residues and the time (in hours) required
to compute a path that is 1Å long.
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Protein NN Search Collision Checking Inverse Kinematics Sampling (qrand)

ADK 57.2% 14.1% 15.0% 6.3%

LAO 51.3% 20.9% 17.0% 5.4 %

DAP 50.5% 20.6% 11.0% 12.3%

NS3 67.9% 13.4% 6.6% 8.9%

DDT 64.3% 17.1% 6.9% 9.0%

GroEL 60.4% 17.6% 8.9% 9.8%

ATP 57.3% 20.9% 6.8% 11.9%

BKA 55.1% 16.8% 6.1% 19.3%

UKL 62.9% 15.5% 4.1% 15.5%

HKC 68.9% 5.8% 3.3% 18.2%

Average 59.58% 16.27% 8.57% 11.66%

Table 4.7: The main RRT operations and the percentage of the time spent performing
them.

was for a domain motion that starts at the vicinity of the closed conformation (around

3Å away). Exploring at such a distance from a compact conformation requires more time

than exploring farther away (see Figure 4.6).

Table 4.7 shows the percentage of the RRT time spent by our method performing some

of the most time-consuming RRT steps. An interesting observation in this table is that

nearest neighbor search consumes around 60% of the computation time. This is mainly

due to the brute-force nearest neighbor algorithm used in our implementation. As men-

tioned before, more sophisticated nearest neighbor algorithms (for e.g. [Atramentov 02])

can be used to overcome this performance bottleneck. Another possibility to improve the

computational performance is to use simplified distance metrics that consume less time

to perform. Examples of such metrics have been described in Section 1.1.2. Overall, these

first results obtained with an unoptimized implementation could be further improved by

using more sophisticated methods for the low-level operations such as nearest neighbor

search and collision detection.

A Closer Look at Adenylate kinase

Adenylate Kinase (ADK) [Müller 92] is a signal transducing protein that has been stud-

ied widely (for examples see [Miyashita 03, Maragakis 05, Müller 96]). It is made of 214

amino acid residues and its structure is divided into three main domains known as: LID,

CORE and NMPbind [Maragakis 05, Müller 96]. These domains are shown in Figure 4.4.

The conformational transition problem we have studied is between the two conformations

found in the Protein Data Bank with IDs 4ake and 1ake (open and closed respectively).
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The distance between these two conformations is 6.52 Å, measured using the RMSD be-

tween the Cα atoms. It has been observed in previous studies that during this conforma-

tional transition, the LID and NMPbind domains undergo clear conformational changes,

whereas the CORE domain remains almost unchanged [Maragakis 05, Müller 96]. It has

also been observed that the conformational transition goes through a two-step process

where the NMPbind domain moves less clearly than the LID domain at the beginning

and then moves at a faster pace as the transition approaches its end [Maragakis 05].

Figure 4.4 shows the open and closed conformations along with four intermediate

conformations generated by our method. As expected, the LID and NMPbind domains

change significantly compared to the CORE domain. Figure 4.5 shows the displace-

ment of the residues along the conformational transition, where darker regions represent

larger displacements. In the first plot, regions around residues between 20-60 and around

residues between 130-160 are clearly darker than the other parts of the plot. These re-

gions correspond approximately to the NMPbind and LID domains respectively. It is also

clear in the second plot that residues of the NMPbind domain start moving with more

significance around the end of the conformational transition, whereas residues in the LID

domain start at an earlier stage, which reflects the two step nature of the transition dis-

cussed earlier. These results show that the path generated by our method is in agreement

with the previously found results.

We have also found four previously known intermediate conformations of the ADK

protein to be very close to conformations generated by our method on the transition

path. Table 4.8 shows the distance between each of these intermediate conformations

and the closest conformation to it. The table also shows where the closest conformation

is on the transition path. For example, 2RH5 (A) was found to be very close to the

conformation generated by the first iteration, whereas 1E4Y (A) was found to be very

close to the conformation generated by iteration 27. These results are in line with what

has been found before in studies such as [Feng 09, Haspel 10], which further validates

the agreement between the transition path generated by our method and how the ADK

protein is known to move in reality.

Our method has been able to generate the transition pathway in 2 hours using 31

iterations. The time required at each iteration to minimize the closest conformation to

the target and find the best overlap value was 0.35 minutes. The closest conformation to

the target found by our method is 1.56 Å away from it. This distance between the reached

and target conformations is very small, and therefore, the method can be considered to

have reached the goal (See Figure 4.17). Figure 4.6 shows the evolution (over time) of

the distance to the target and the radius of gyration. As can be seen, the method moves

much more quickly when it is far from the target and slows down as it gets close to it.

This is because motions are more restricted around the closed conformation than around

the open one.
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Figure 4.4: Different conformations of the ADK protein along the studied conformational
transition. The LID domain is shown in blue and the NMPbind domain is shown in red.
Conformations (a) and (b) are the start and goal conformations respectively, and (b), (c),
(d) and (e) are conformations that have been generated by our method.

Figure 4.5: Displacement of the residues during the computed transition path. Displace-
ments in the first plot (lef) are computed relative to the first conformation and in the
second plot (right) are relative to the previous conformation. Darker regions in these
plots represent larger displacements.
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PDB ID RMSD Iteration Percent

1DVR (A) 1.48 2 9%

2RH5 (A) 1.80 1 4%

2RH5 (B) 1.91 3 15%

1E4Y (A) 2.20 27 94%

Table 4.8: Known intermediate conformations and their distances to the closest con-
formations found by our method. The table also shows in which iteration the closest
conformation is and where on the transition path it appears (percent).

Figure 4.6: Evolution of the radius of gyration and of the RMSD distance to the goal
over time.

4.4 Conclusion

This chapter has presented an efficient method for computing large amplitude motions

in proteins. This method is based on the idea of combining normal modes and the RRT

to speedup the exploration of the conformational space. The proposed method makes

use of both the efficiency of the RRT in exploration and the ability of normal modes

to locally predict motion directions. Using normal modes alone requires performing a

large number of iterations and using the RRT alone wastes time in exploring irrelevant

parts of the conformational space. Hence, combining the two methods allows overcoming

the problems of each method. The proposed method also relies on the tripeptide-based

representation of the protein, which reduces the number of computed modes and provides

an accurate method for switching between the coarse-grained model and the full atom

model.

Performed experiments have shown that computing normal modes of a protein using its
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simplified particle-set instead of the Cα atoms does not lead to a degradation in the ability

to predict motion directions. Results also have shown that the proposed method is able to

compute paths for conformational transitions of different lengths in proteins of different

sizes and topologies. The performance of the method scales linearly with the number of

residues. Using a single AMD Opteron 148 processor at 2.6 GHz, studying transitions

takes a few hours in small proteins and a few days in large ones depending on the length

of the computed path. Note however that computing times have been shown for a first

unoptimized implementation of the method. Improvements in time-consuming functions

such as nearest neighbor search could significantly speed-up computations. Analysis of

the conformational transition in the ADK protein by our method shows also that it is

able to produce paths that are consistent with previously found results.

An interesting extension of the method that can be investigated is the prediction

of unknown candidate conformations. This problem is more challenging than the one

studied in this chapter since the goal conformation is missing. However, using the normal

modes, the RRT may be able to identify one or more candidate target conformations.

Another interesting extension to test is the use of a bi-directional RRT [Kuffner Jr 00]

that starts two trees rooted at each of the open and closed conformations. It is also worth

to test the effect of using a parallelized version of the RRT as in [Devaurs 11], which could

improve the overall performance of the method. Finally, a possible direction to investigate

is the use of a Mitropolis-like test (as in [Jaillet 10, Jaillet 11]) to accept or reject new

conformations in the tree instead of the purely-geometric test that we currently use.
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Figure 4.7: ADK: 4ake (left) and 1ake (right)

Figure 4.8: LAO: 2lao (left) and 1laf (right)

Figure 4.9: DAP: 1dap (left) and 3dap (right)

Figure 4.10: NS3: 3kqk (left) and 3kql (right)
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Figure 4.11: DDT: 1ddt (left) and 1mdt (right)

Figure 4.12: GroEL: 1aon (left) and 1oel (right)

Figure 4.13: ATP: 1m8p (left) and 1i2d (right)

Figure 4.14: BKA: 1cb6 (left) and 1bka (right)
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Figure 4.15: UKL: 1ukl (left) and 1qgk (right)

Figure 4.16: HKC: 1hkc (left) and 1hkb (right)

Figure 4.17: ADK: qinit (left), final conformation (right) and qgoal (in black).

Figure 4.18: LAO: qinit (left), final conformation (right) and qgoal (in black).
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Figure 4.19: DAP: qinit (left), final conformation (right) and qgoal (in black).

Figure 4.20: NS3: qinit (left), final conformation (right) and qgoal (in black).

Figure 4.21: DDT: qinit (left), final conformation (right) and qgoal (in black).

Figure 4.22: GroEL: qinit (left), final conformation (right) and qgoal (in black).
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Figure 4.23: ATP: qinit (left), final conformation (right) and qgoal (in black).

Figure 4.24: BKA: qinit (left), final conformation (right) and qgoal (in black).

Figure 4.25: UKL: qinit (left), final conformation (right) and qgoal (in black).

Figure 4.26: HKC: qinit (left), final conformation (right) and qgoal (in black).
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Conclusions

We have presented in this thesis a robotics-inspired approach for protein modeling, called

the tripeptide-based model, and have shown how it can be used to enhance molecular

simulations. The modeling approach provides a high-level (coarse-grained) representa-

tion based on a mechanistic subdivision of the protein into short kinematic chains called

tripeptides. At the same time, it provides an accurate method for generating low-level

(full-atom) details using 6R inverse kinematics whenever needed. The advantage of this

kind of modeling, as shown in this thesis, is that it provides a unified method for imple-

menting a variety of simulation algorithms that are able to treat proteins efficiently using

the coarse-grained representation, but without loosing full-atom details.

In addition to the presentation of the tripeptide-based model, we have shown two dif-

ferent applications for its use in enhancing molecular simulations. In the first application,

we have used the tripeptide-based model to implement new Monte Carlo move classes as

well as several others that have been proposed in the last decades for improving protein

backbone sampling. The flexibility of the tripeptide-based model enabled us also to eas-

ily combine these move classes into a mixed sampling strategy that alternates sampling

between them. Simulations performed with two proteins of different sizes and topologies

have validated the applicability of this approach. The performed simulations have also

shown that the mixed sampling strategy provides a clear performance gain over the other

implemented move classes. The mixed strategy was able to explore conformations that

are better than the conformations explored by the other move classes, in terms of energy

and structural variability, without demanding high computational resources.

In the second application, we have presented a motion planning inspired method for

studying large amplitude motions in proteins. This method combines the tripeptide-based

model, RRT and normal mode analysis to explore efficiently conformational transitions

in proteins with more than a thousand degrees of freedom. Although the RRT is known

to quickly explore high dimensional spaces, it can waste considerable time exploring parts

of the space that are not directly relevant to the studied conformational transition. Nev-
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ertheless, information given by the normal modes, allowed us to overcome this limitation

by biasing the exploration of the RRT towards the more relevant parts of the space.

Moreover, the use of the tripeptide-based model reduced the number of computed normal

modes, which enhanced the overall performance of the algorithm. It also provided an

accurate method for keeping track of the full atom details during the exploration. Sim-

ulations performed using our method have shown that elastic networks built using the

tripeptide-based model can predict motion directions with an accuracy that is comparable

to the directions computed using Cα elastic networks. Simulations have also shown that

the introduced method can compute transition paths between conformations in proteins

of different sizes and topologies and provides a performance that scales linearly with the

number of residues. Detailed analysis of the computed path for the ADK protein has also

shown that the method produces paths that are in agreement with results found by other,

more expensive methods.

Future Work

The presented work on the application of the tripeptide-based model for enhancing Monte

Carlo simulations can be extended and further investigated. First of all, new move classes

that are based on the perturbation of a particle or a group of particles need to be tested

and compared in more detail with the other available move classes. Questions that still

need more precise answers concern the type of protein topologies and molecular simulation

problems that are more suited to these move classes, and which variants of these move

classes provide better performance. Similarly, further tests need to be performed in order

to identify optimal combinations of move classes or probabilities of usage in the mixed

strategy for the different protein topologies and molecular simulation problems.

The NMA-guided RRT was used in this thesis to find a transition path between two

known conformations. However, applications of this method surpass this application, as

it can be used to study other types of problems that require an exploration of the confor-

mational space. For example, our method can possibly be used to predict most probable

conformations that the protein can reach from a given conformation. Other possible

research directions have been highlighted also in the conclusion of Chapter 4, such as in-

vestigating the use of parallelized RRTs [Devaurs 11], bi-directional RRTs [Kuffner Jr 00]

and Transition-based RRTs [Jaillet 10, Jaillet 11]. These RRT variants have been shown

to improve the performance of the RRT, which makes them candidates for improving the

performance of our method too.

The methods presented in this thesis are focused on the flexibility of the protein

backbone, while side-chain flexibility has been treated using simplistic approaches such

as random sampling or local energy minimization. More explicit methods for treating side-

chains should be explored in order to allow more control over them during simulations.
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Another issue that would need further investigation is the use of energy models that

are more suitable to the proposed tripeptide-based model. A multi-level model could

be developed to provide coarse-grained (computationally cheap) energy evaluations when

working with the high-level representation of our tripeptide-based model, and a more

accurate (computationally expensive) energy evaluations when dealing with the all-atom

representation.

Our goal in the short future is to investigate introducing more abstraction to the

tripeptide-based model. Currently, the model includes only two levels: the simplified

particle-based representation and the full-atom representation, which can be a limitation,

especially when dealing with very large protein systems. It is possible, for example, to

add another layer that joins several consecutive tripeptides into one fragment. This can

be useful in treating large proteins with limited flexibility. It is also possible to subdivide

the protein into variable-length fragments depending on the flexibility in the different

parts of the protein. Secondary structures, for example, are known to be less flexible than

protein loops, which is why it is reasonable to use fragments that include more than three

residues there.

We also plan to investigate the use of the tripeptide-based model for studying molec-

ular interactions, where considering the full flexibility of the interacting proteins poses

a real challenge. Using the tripeptide-based modeling approach, the flexibility of the

proteins can be treated using the particles instead of having to deal with all the degrees

of freedom. At the same time, the full-atom model of the proteins can be generated

whenever necessary. On the other hand, molecular interactions induce deformations that

are different from those that naturally occur in response to internal forces. One way to

study interactions-induced deformations is to make use of Static Modes [Brut 09], which

provide motion directions that occur in response to the application of external forces.

Hence, Static Modes could replace normal modes in the method discussed in Chapter 4,

in order to guide the exploration towards potential binding conformations.
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Résumé étendu

Introduction

Les simulations numériques sont largement utilisées aujourd’hui pour modéliser les bio-

molécules, imiter leur comportement, et avoir un aperçu de leurs propriétés physico-

chimiques et de leurs fonctions biologiques. En effet, un domaine entièrement dédié à ce

genre de simulation existe sous le nom de biologie structurale computationnelle.

Les méthodes computationnelles ont été essentiellement développées pour compléter

les méthodes expérimentales. Par exemple, la dynamique moléculaire (MD) [Rapaport 07]

et la méthode de Monte Carlo (MC) [Landau 05] sont largement utilisées pour étudier les

propriétés thermodynamiques et l’activité des protéines à partir d’une structure initiale

déterminée par cristallographie aux rayons X [Woolfson 97] ou par résonance magnétique

nucléaire (NMR) [Cavanagh 06]. La complémentarité entre les méthodes expérimentales

et les méthodes informatiques ou computationnelles peut également être exploitée dans

l’autre sens, puisque les simulations peuvent être améliorées en utilisant des données

expérimentales. Une illustration intéressante de cette complémentarité est l’utilisation de

déplacements chimiques de NMR pour restreindre les simulations [Robustelli 10].

Certaines méthodes computationnelles vont plus loin dans le but de remplacer les

méthodes expérimentales. Par exemple, certaines méthodes informatiques peuvent être

utilisées pour déterminer la structure des protéines sans avoir d’information expérimentale

antérieure [Bonneau 01]. Des méthodes sont également disponibles pour évaluer les in-

teractions moléculaires (molecular docking) [Lengauer 96], et pour comprendre comment

les protéines passent d’un état de pelote aléatoire vers leur structure native (protein fold-

ing) [Pain 00]. Néanmoins, l’état actuel de ces méthodes informatiques est encore loin

de leur permettre de fournir des résultats tout-à-fait précis et fiables dans tous les cas.

Les exemples les plus complexes parmi les problèmes mentionnés ci-dessus restent hors

de portée des méthodes de l’état de l’art. Par exemple, la puissance computationnelle

actuelle permet l’exécution de simulations MD couvrant seulement quelques microsecon-
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des de temps physique. Ceci est bien sûr insuffisant car les mouvements moléculaires, lors

de certains processus tels que le repliement de protéine (Protein Folding), peuvent se pro-

duire sur une durée de plusieurs secondes [Muñoz 08]. Les méthodes MC souffrent aussi

de lacunes dans leur exploration et leur échantillonnage de l’espace conformationnel des

protéines, qui est un paysage accidenté avec de nombreux minima locaux. Les méthodes

MC ont tendance à se retrouver bloquées dans ces minima locaux et à perdre un temps

considérable à essayer de s’en échapper.

De ce fait, des recherches actives se concentrent actuellement sur l’amélioration des

techniques de simulation (voir par exemple [Sugita 99, Marinari 92, Laio 02, Shaw 10])

et sur la production de méthodes alternatives. Cette thèse s’inscrit dans une classe par-

ticulière parmi ces méthodes alternatives : celles qui sont inspirées par le domaine de

la planification de mouvement en robotique. Les méthodes inspirées par la robotique

ont été introduites récemment pour simuler les mouvements de protéines et étudier des

problèmes comme le repliement des protéines (Protein Folding) et les interactions entre

protéines et ligands. Ils sont principalement basés sur les algorithmes de planification de

mouvement par échantillonnage [LaValle 06, Choset 05, Tsianos 07], qui se sont révélés

être de puissants outils pour résoudre les problèmes faisant intervenir des espaces de haute

dimension.

Bien que les deux domaines (robotique et simulation moléculaire) semblent très éloignés

au premier abord, une comparaison plus approfondie révèle de nombreuses similarités

en termes de formulation des problèmes abordés. Dans un article présentant l’état de

l’art à ses débuts [Parsons 94], Parsons et Canny ont montré que plusieurs problèmes

étudiés dans le domaine de la biologie structurale computationnelle sont effectivement

des problèmes géométriques qui ont leurs équivalents dans le domaine robotiques. Cette

similarité est due principalement au fait que le mouvement joue un rôle central, que ce

soit pour les robots ou les protéines. En effet, les mouvements moléculaires font partie

intégrante des processus biologiques dans lesquels les protéines sont impliquées, comme

par exemple la catalyse et la transmission du signal. Le fait de comprendre comment

les protéines se déplacent conduit à la compréhension de ces processus, ainsi qu’à la

compréhension de leurs dysfonctionnements et de leur contribution à des maladies telles

que la maladie de la vache folle ou la maladie d’Alzheimer [Selkoe 03].

Dans cette thèse, nous présentons une approche de modélisation mécanistique des

protéines et nous montrons comment elle peut être utilisée pour améliorer les simulations

moléculaires. Cette approche de modélisation utilise des notions de robotique permet-

tant un traitement haut niveau (coarse grained) des molécules, sans perdre les détails

au niveau atomique (all-atom). Nous montrons comment cette approche de modélisation

peut être utilisée pour mettre en œuvre des classes de mouvements de Monte Carlo, et

comment elle peut conduire à une amélioration de l’échantillonnage global de l’espace con-

formationnel moléculaire. Nous proposons également, en nous basant sur cette approche

94



de modélisation, une approche de planification du mouvement combinée avec la méthode

d’analyse en modes normaux (Normal Mode Analysis NMA) [Cui 06] pour étudier les

mouvements de grande amplitude dans les protéines. L’utilisation de l’approche de

modélisation mécanistique avec la méthode RRT de planification de mouvement [LaValle 01a]

et l’analyse en modes normaux NMA offre un clair gain en performance, ce qui nous per-

met de présenter des résultats de simulations de transitions conformationnelles pour des

protéines contenant jusqu’à mille résidus. Outre la contribution méthodologique, cette

thèse propose également une étude exhaustive de l’utilisation des algorithmes de planifica-

tion de mouvement dans les simulations moléculaires. A notre connaissance, la littérature

ne contient pas une telle étude, bien qu’elle puisse être utile aussi bien pour les roboticiens

que pour les biologistes désireux de travailler dans ce domaine.

La thèse est organisée autour de ces contributions comme suit. Le chapitre 1 est

consacré à passer en revue et à analyzer l’utilisation des méthodes inspirées par la plani-

fication de mouvement dans les simulations moléculaires. Ensuite, le chapitre 2 présente

les détails de l’approche mécanistique de modélisation des protéines, qui sert de base pour

les méthodes présentées dans les deux chapitres suivants. Le chapitre 3 est consacré aux

applications de cette approche de modélisation dans les simulations de Monte Carlo. Puis,

le chapitre 4 présente la méthode combinée RRT-NMA ainsi que l’étude de simulations

de transitions conformationnelles dans des protéines de différentes tailles. Enfin, la thèse

se termine par une conclusion et une discussion des directions de recherche futures.

Un bref résumé de chaque chapitre

Chapitre 1: Algorithmes de planification de mouvement pour les simu-

lations moléculaires

Ce chapitre présente un état de l’art concernant les algorithmes de planification de mouve-

ment appliqués à la modélisation moléculaire ainsi qu’à la simulation. Sont discutés dans

ce qui suit, aussi bien les aspects algorithmiques qu’applicatifs. Une attention spéciale

a été portée aux questions concernant l’extension des algorithmes de planification de

mouvement de la robotique au domaine moléculaire. D’un point de vue algorithmique, le

chapitre donne un aperçu général des différents algorithmes de planification de mouvement

par échantillonnage proposés dans ce contexte. D’un point de vue applicatif, le chapitre

traite les problèmes liés au repliement des protéines, aux transitions conformationnelles

ainsi qu’aux interactions de type “protéine-ligand”.

A notre connaissance, les algorithmes de modélisation moléculaire et de simulation

inspirés par la planification de mouvement sont relativement nouveaux. Par conséquent,

il n’existe pas d’étude dédiée à ce sujet. De ce fait, l’objectif de ce chapitre est double.

Premièrement, en expliquant les concepts liés à la planification de mouvement ainsi que
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les applications qui en sont faites dans le domaine moléculaire, ce chapitre pose les bases

des chapitres suivants. Deuxièmement, ce chapitre tente d’enrichir le peu de littérature

existant dans le domaine par une étude exhaustive étayée par une analyse des usages

faits des algorithmes de planification de mouvement en simulation de molécules. Pour

les lecteurs apparentés à la communauté des biologistes, cette étude peut jouer le rôle

d’une introduction aux méthodes inspirées par la robotique et utilisées dans le domaine

de la biologie structurale. Inversement, pour les lecteurs apparentés à la communauté des

roboticiens, cette étude peut jouer le rôle de catalyseur pour l’étude de nouvelles opportu-

nités d’applications liées à la biologie structurale, et inciter de nouveaux développements

ainsi que de nouvelles adaptations et améliorations d’algorithmes pour une résolution plus

fine de problèmes impliquant de larges espaces multidimensionnels.

Des travaux présentés dans ce chapitre, il ressort que les algorithmes inspirés par la

robotique sont des pistes prometteuses, dès lors qu’ils sont combinés à des techniques plus

conventionnelles de calcul en biologie structurale. Leur atout majeur réside principale-

ment dans leur efficacité à explorer des espaces d’une grande complexité. Comparés à des

méthodes plus classiques telles que MC, les algorithmes de planification de mouvement

par échantillonnage ne requièrent que peu d’itérations pour trouver des chemins de transi-

tions conformationnelles ou encore pour obtenir un ensemble représentatif d’états confor-

mationnels. De surcroit, à l’inverse des simulations de type MD, ces algorithmes n’ont pas

besoin d’un champ de force pour guider l’exploration. Il en découle que différents types de

données, y compris de simples modèles géométriques, peuvent être utilisés pour contrain-

dre ou influencer l’exploration. L’utilisation de modèles simples permet l’obtention de

méthodes de calcul générales et rapides, capables d’explorer de larges régions de l’espace

conformationnel. Les résultats d’une telle exploration peuvent être par la suite analysés

et affinés en utilisant un modèle énergétique plus adéquat.

Les méthodes inspirées par la planification de mouvement pour la simulation de

molécules en sont encore à leurs balbutiements. Il est nécessaire d’améliorer ces dernières

et de les valider sur des systèmes à plus large échelle. D’autres tests sur des applications

réelles, menés conjointement avec des méthodes expérimentales, permettront d’améliorer

ces méthodes de calcul. Des travaux supplémentaires utilisant les concepts de la physique

statistique sont également nécessaires pour la caractérisation des résultats fournis par ces

algorithmes.

Les classes de problèmes auquelles les méthodes de planification de mouvement ont été

appliquées en biologie structurale sont très limitées : il s’agit essentiellement de la flexi-

bilité des protéines/RNA et des interactions de type “protéine-ligand”. Néanmoins, nous

pensons que le champ d’application de ces méthodes est plus large et que d’autres applica-

tions peuvent être investiguées. A titre d’exemple, d’autres problèmes en biologie struc-

turale, qui pourraient être adressés, concernent la prédiction des interactions protéine-

protéine ou encore l’analyse conformationnelle de grands assemblages moléculaires.
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Chapitre 2: Un modèle mécanistique pour les protéines

Ce chapitre présente une approche mécanistique pour la modélisation des protéines. L’idée

de cette approche s’articule autour d’une décomposition en fragments qui peuvent être

traités comme des châınes cinématiques courtes. Une telle décomposition produit une

représentation multi-niveaux de la protéine. Celle-ci induit une approche de type gros-

grains et permet d’améliorer significativement les performances. Il n’empêche que les

détails du niveau atomique ne sont pas perdus et peuvent à tout moment être générés à

partir de la représentation de haut niveau. Ce type de modélisation fournit une approche

unifiée pour l’implémentation d’une grande variété de techniques de simulation, aussi bien

existantes que nouvelles. Cela sera le propos des deux prochains chapitres.

La modélisation adoptée subdivise la chaine polypeptidique en fragments contenant

chacun exactement trois résidus d’acides aminés (constituant ainsi un tripeptide). Dans

notre modèle, chaque tripeptide peut être assimilé à un bras articulé avec six articulations

rotöıdes (c’est-à-dire avec six degrés de liberté). En effet, chaque tripeptide possède

trois résidus d’acides aminés, et chaque résidu s’articule autour de deux angles diédraux

mobiles (ψ et φ). Nous associons un repère cartésien à chaque groupe d’atomes dans le

tripeptide. En outre, nous estampillons différemment les repères importants pour notre

modèle. Ces repères sont le premier et le dernier dans chaque tripeptide. Ils correspondent

respectivement à la base ainsi qu’au dernier repère de notre bras articulé. Les repères de

base sont appelés particules (orientées). Au niveau de chaque tripeptide, le dernier repère

peut être calculé à partir de la “particule” du tripeptide suivant, et ce en appliquant des

transformations constantes. Cela est rendu possible par le fait que les tripeptides sont

reliés par des liaisons peptidiques rigides. Nous nous référons au modèle de la protéine

n’incluant que les repères des particules en utilisant le terme simplified particle-set model.

La figure 5 illustre l’application du modèle proposé à un domaine SH3 (PDB ID:

1V1C). La Figure 5.a représente le modèle de la protéine incluant le squelette dans

le modèle de la surface de la protéine. La Figure 5.b illustre la trace du squelette

de la protéine avec les repères correspondants aux particules. Les Figures 5.c and 5.d

représentent respectivement les modèles chimiques et mécanistiques du squelette d’un

tripeptide.

L’idée principale apportée par cette modélisation est de permettre l’échantillonnage,

la déformation, et plus généralement tout traitement de la protéine, en utilisant unique-

ment le modèle simplifié, plutôt que de manipuler tous les atomes. Etant donnée une

configuration spatiale, générer les valeurs des angles diédraux correspondants à chaque

tripeptide, et par conséquent pour le modèle complet (all-atom), peut être effectué à l’aide

de la cinématique inverse. La raison pour laquelle nous avons subdivisé la protéine en

tripeptides avec six angles diédraux repose sur le fait que le tripeptide est le plus court

fragment offrant une mobilité complète du dernier repère par rapport au repère de base.
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b)a)

d)c)

Figure 5: Une illustration de l’approche proposée. Les tripeptides, constitués de trois
résidus d’acides aminés, sont traités comme des châınes cinématiques similaires à des
robots manipulateurs.

En d’autres termes, étant donné le repère de base, le dernier repère requiert au minimum

six angles diédraux afin de pouvoir balayer toutes les positions possibles.

Chapitre 3: Amélioration de la méthode de Monte Carlo

Ce chapitre présente un exemple d’application de l’utilisation du modèle basé sur les

tripeptides, présenté dans le chapitre précédent. Il montre comment ce modèle peut être

utilisé pour faciliter l’implémentation de classes de mouvement de Monte Carlo aussi bien

classiques que nouveaux. L’idée principale est de perturber la pose (position et orien-

tation) des particules, puis d’adapter la conformation des tripeptides afin de maintenir

l’intégrité de la châıne moléculaire tout en conservant la géométrie locale des liaisons

(i.e. une longueur constante des liaisons et des angles de liaison constants). Plusieurs

stratégies peuvent être considérées pour perturber la pose des particules. Le nombre de

particules sélectionnées pour la perturbation, ainsi que la corrélation ou non-corrélation

de la direction du mouvement de plusieurs particules, conduisent à différentes classes de

mouvement. Ce qui suit sont des exemples de classes de mouvement qui peuvent être

implémentées en utilisant le modèle tripeptidique:
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- Déplacement d’une particule : La classe de mouvement la plus simple est la per-

turbation d’une particule (i.e. la perturbation de sa pose). Une telle perturba-

tion exige d’ajuster la conformation des deux tripeptides dont les extrémités et les

repères de base définissent la particule. Cela peut être obtenu par la résolution de

la cinématique inverse pour chacun des deux tripeptides. Par conséquent, ce mou-

vement introduit des modifications au niveau d’exactement douze angles dièdres

consécutifs dans le squelette de la protéine.

- Déplacement d’un fragment flexible : Une simple extension à la classe de mouvement

d’une particule est de perturber un certain nombre de particules consécutives au lieu

d’une seule. Notez que la perturbation de n particules dans des directions aléatoires

nécessite de résoudre une cinématique inverse n+1 fois afin d’ajuster la conformation

de tous les tripeptides qui sont liés aux particules perturbées.

- Déplacement d’un corps rigide en bloc : Contrairement aux mouvements de frag-

ments flexibles qui perturbent de façon indépendante n particules, cette classe de

mouvement perturbe n particules consécutives en même temps, comme un seul corps

rigide. En d’autres termes, les n particules ont été translatées et/ou mises en ro-

tation autour d’un axe arbitraire tout en conservant leurs positions et orientations

relatives. Par conséquent, les conformations des tripeptides entre ces particules

ne changent pas. Cependant, les conformations du tripeptide se situant avant la

première particule et du tripeptide se situant après la dernière particule doivent

être ajustées en utilisant la cinématique inverse.

- Classes de mouvement mixte : Un des avantages du modèle tripeptidique proposé

est qu’il fournit une approche unifiée pour la mise en œuvre de plusieurs classes de

mouvement. Ceci nous permet de créer facilement une stratégie d’échantillonnage de

haut niveau qui fait usage de plus d’une classe de mouvement. L’utilisation de plus

d’une classe de mouvement introduit plus de variabilité au niveau du mouvement

échantillonné, ce qui conduit à une meilleure couverture de l’espace conformationnel.

Nous avons effectué des tests sur deux protéines (formées de 68 et 77 résidus respec-

tivement) afin d’évaluer les classes de mouvement implémentées en utilisant le modèle

tripeptidique, et afin de les comparer à deux classes de mouvements plus traditionnelles

([Lal 69] et [Dodd 93]). Après cent mille étapes d’équilibration, des simulations MC ont

été exécutées en utilisant deux pas différents, et ont été arrêtées après qu’un million

de conformations soient acceptées. Les simulations réalisées avec la stratégie mixte ont

montré un profil de distance moyenne à la conformation initiale qui est supérieur à ceux de

toutes les autres classes de mouvement. Cela signifie que cette stratégie peut, en moyenne,

visiter des conformations plus éloignées que n’importe laquelle des quatre autres classes de

mouvement. Les simulations ont également montré que la stratégie mixte est capable de
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maintenir un profil d’énergie moyenne qui est inférieur à ceux de toutes les autres classes

de mouvement. Cette performance principale est une conséquence directe de la diversité

des fluctuations structurelles obtenues par cette stratégie d’échantillonnage, puisqu’elle

alterne entre quatre classes de mouvement différentes.

Chapitre 4: Exploration des transitions conformationnelles

Ce chapitre introduit une nouvelle méthode pour explorer l’espace conformationnel des

protéines. La méthode est basée sur notre représentation tripeptidique des protéines, et

applique une combinaison de l’algorithme RRT [LaValle 01a, LaValle 01b] et de l’analyse

en mode normal (NMA) [Cui 06]. Cette méthode est particulièrement utile pour analyser

les transitions entre différentes conformations d’une protéine, en particulier celles qui

impliquent des mouvements de domaine.

L’étude des transitions conformationnelles dans les protéines est importante pour com-

prendre leurs fonctions biologiques, parce que ces mouvements sont généralement liés à

la capacité de la protéine d’interagir avec d’autres molécules. Toutefois, la collecte de ce

type d’information dynamique à l’échelle atomique est difficile en utilisant des méthodes

expérimentales. Par conséquent, les méthodes de calcul comme la dynamique moléculaire

et Monte Carlo sont le plus couramment utilisées. Néanmoins, ces méthodes souffrent

également de problèmes d’efficacité lorsqu’elles sont utilisées pour évaluer les changements

conformationnels de grande amplitude.

Dans ce contexte, nous proposons une méthode de calcul qui étend les méthodes in-

troduites dans [Cortés 05b, Kirillova 08]. Ces méthodes utilisent un RRT pour accélérer

l’exploration de l’espace conformationnel, et donc permettre la simulation de mouve-

ments de grande amplitude dans les protéines, avec peu de ressources de calcul. La

méthode introduite dans [Kirillova 08] va encore une étape plus loin et utilise la méthode

d’analyse en mode normal pour orienter la recherche du RRT vers les régions d’énergie

favorable, ce qui permet d’étudier des problèmes avec un nombre de dimensions encore

plus élevé. Cette idée de biaiser l’exploration du RRT en utilisant les modes normaux

est ancrée dans des travaux tels que [Brooks 85, Hinsen 98, Tama 01, Alexandrov 05],

qui montrent la capacité des modes normaux à prédire la direction des changements con-

formationnels collectifs (comme les mouvements de domaines) dans les macromolécules.

Toutefois, comme les modes normaux fournissent des prévisions locales et pas des tra-

jectoires conformationnelles complètes, des méthodes itératives ont été introduites qui

effectuent des déplacements courts et recalculent les modes normaux à chaque étape

[Mouawad 96, Miyashita 03, Jeong 06]. De telles méthodes nécessitent un grand nombre

d’itérations pour calculer les grandes transitions conformationnelles, ce qui peut être évité

en utilisant RRT, comme cela a été montré dans [Kirillova 08].

La méthode proposée ici utilise également les modes normaux pour biaiser la recherche
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du RRT. Cependant, la principale différence avec [Kirillova 08] est que notre méthode

est basée sur notre modèle tripeptidique. Un tel changement, en apparence mineur, a

néanmoins des conséquences importantes. En utilisant ce modèle, le nombre de modes nor-

maux par protéine est réduit d’un facteur au moins trois, ce qui diminue considérablement

le temps nécessaire pour les calculer. Un autre avantage d’utiliser le modèle tripeptidique

est qu’il fournit une méthode précise pour se déplacer entre la représentation de haut

niveau basée sur les particules et le modèle atomique.

L’idée principale de ce chapitre est de montrer comment le modèle tripeptidique,

l’algorithme RRT et l’analyse en mode normal peuvent créer un outil efficace pour étudier

les transitions conformationnelles, lorsqu’ils sont combinés ensemble. Les expériences

réalisées ont montré que le calcul des modes normaux d’une protéine en utilisant les par-

ticules au lieu des atomes Cα ne conduit pas à une dégradation de la capacité de prédire les

directions du mouvement. Les résultats ont également montré que la méthode proposée

est capable de calculer des chemins pour les transitions conformationnelles de différentes

longueurs dans des protéines de différentes tailles et de différentes topologies. La per-

formance de notre méthode varie linéairement en fonction du nombre de résidus. En

utilisant un seul processeur AMD Opteron 148 à 2,6 GHz , l’étude des transitions prend

quelques heures dans de petites protéines et quelques jours dans de grandes protéines, en

fonction de la longueur du trajet calculé. Notez cependant que les temps de calcul ont

été montrés seulement pour une première implémentation non-optimisée de la méthode.

L’amélioration des fonctions les plus coûteuses, telles que la recherche du plus proche

voisin, pourrait considérablement accélérer les calculs. L’analyse de la transition confor-

mationnelle de la protéine ADK par notre méthode montre également qu’elle est capable

de produire des chemins qui sont compatibles avec les résultats obtenus précédemment.

Conclusion

Nous avons présenté dans cette thèse une approche, appelée modèle tripeptidique, in-

spirée par la robotique, pour la modélisation des protéines, et nous avons montré com-

ment elle peut être utilisée pour améliorer les simulations moléculaires. Notre approche de

modélisation fournit une représentation de haut niveau (gros grains), basée sur une sub-

division mécanistique de la protéine sous forme de châınes cinématiques courtes, appelées

tripeptides. Elle fournit également une méthode précise pour générer une représentation

détaillée de bas niveau (plein atome) à l’aide de la cinématique inverse 6R en cas de besoin.

L’avantage de ce type de modélisation, comme illustré dans cette thèse, est qu’il propose

une méthode unifiée pour la mise en œuvre d’une variété d’algorithmes de simulation qui

permettent de traiter efficacement les protéines en utilisant la représentation gros grains,

mais sans perte de détail au niveau atomique.

En plus de la présentation du modèle tripeptidique, nous avons montré deux applica-
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tions de son utilisation pour l’amélioration de simulations moléculaires. Dans la première

application, nous avons utilisé le modèle tripeptidique pour la mise en œuvre de nouvelles

classes de mouvements pour l’échantillonnage avec Monte Carlo, ainsi que plusieurs autres

classes proposées dans ces dernières décennies, et ce afin d’améliorer l’échantillonnage du

squelette de la protéine. La flexibilité du modèle tripeptidique nous a également permis

de combiner facilement ces classes de mouvement dans une stratégie d’échantillonnage

mixte alternant l’utilisation de ces différentes classes. Les simulations effectuées avec deux

protéines de différentes tailles et différentes topologies ont validé l’applicabilité de cette ap-

proche. Les simulations effectuées ont également montré que la stratégie d’échantillonnage

mixte fournit un gain de performance évident sur les autres classes de mouvement. La

stratégie mixte a été en mesure d’explorer des conformations qui sont meilleures que les

conformations explorées par les autres classes de mouvement, à la fois en termes d’énergie

et de variabilité structurelle, sans exiger d’importantes ressources de calcul.

Dans la deuxième application, nous avons présenté une méthode de planification de

mouvement pour l’étude des mouvements de grande amplitude dans les protéines. Cette

méthode combine le modèle tripeptidique, RRT et l’analyse en mode normal, pour ex-

plorer efficacement les transitions conformationnelles dans des protéines ayant plus de

mille degrés de liberté. Bien que RRT soit connu pour explorer rapidement des espaces

de grande dimension, il peut passer un temps considérable à explorer des parties de

l’espace qui ne sont pas directement pertinentes pour la transition conformationnelle

étudiée. Cependant, les informations fournies par les modes normaux nous ont permis

de surmonter cette limitation en biaisant l’exploration de RRT vers les parties les plus

pertinentes de l’espace. En outre, l’utilisation du modèle tripeptidique a réduit le nombre

de modes normaux calculés, ce qui a amélioré la performance globale de l’algorithme.

Ce modèle a également fourni une méthode précise pour garder une trace des détails au

niveau atomique lors de l’exploration. Les simulations réalisées à l’aide de notre méthode

ont montré que les réseaux élastiques construits en utilisant le modèle tripeptidique peu-

vent permettre de prédire la direction du mouvement avec une précision comparable à

celle des directions calculées en utilisant les réseaux élastiques Cα. Les simulations ont

aussi montré que la méthode introduite peut calculer des chemins de transition entre des

conformations de protéines de différentes tailles et de différentes topologies, et que ses per-

formances varient linéairement en fonction du nombre de résidus. Une analyse détaillée de

la trajectoire calculée pour la protéine ADK a également montré que la méthode produit

des chemins qui sont en accord avec les résultats obtenus avec d’autres méthodes plus

coûteuses.
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Travaux futurs

Le travail présenté sur l’application du modèle tripeptidique pour améliorer les simula-

tions de Monte Carlo peut être étendu et approfondi. Tout d’abord, les nouvelles classes

de mouvement, qui sont basées sur la perturbation d’une particule ou d’un groupe de

particules, doivent être testées et comparées plus en détail avec les autres classes de

mouvement disponibles. Les questions qui demandent encore des réponses plus précises

concernent le type de topologie des protéines et les problèmes de simulation moléculaire

qui sont le plus adaptés à ces classes de mouvement, et quelles variantes de ces classes

de mouvement offrent les meilleures performances. De même, des tests supplémentaires

doivent être effectués afin d’identifier des combinaisons optimales de classes de mouvement

ou les probabilités d’utilisation dans la stratégie mixte pour les différentes topologies de

protéines et les problèmes de simulation moléculaire.

Le RRT guidé par les modes normaux a été utilisé dans cette thèse pour trou-

ver un chemin de transition entre deux conformations connues. Toutefois, les applica-

tions de cette méthode dépassent largement ce contexte, car elle peut être utilisée pour

étudier d’autres types de problèmes qui nécessitent une exploration de l’espace confor-

mationnel. Par exemple, notre méthode peut être utilisée pour prédire les conformations

les plus probables que la protéine peut atteindre à partir d’une conformation donnée.

D’autres axes de recherche possibles ont été mis en évidence également dans la conclu-

sion du chapitre 4, telles que l’utilisation des RRT parallélisés [Devaurs 11], du RRT

bi-directionnel [Kuffner Jr 00] et du RRT avec Transitions [Jaillet 10, Jaillet 11]. Ces

variantes de RRT ont permis d’améliorer les performances de RRT, ce qui fait d’elles

des candidates pour l’amélioration des performances de notre méthode. Une autre direc-

tion de recherche est l’exploration de voies possibles pour le traitement de la flexibilité

des châınes latérales, pour remplacer l’étape de minimisation actuellement effectuée dans

notre méthode.

Notre objectif à court terme est l’introduction de plus d’abstraction dans le modèle

tripeptidique. Actuellement, le modèle ne comporte que deux couches : la procédure

simplifiée de représentation à base de particules et la représentation atomique. Ceci peut

être une limitation, en particulier lorsque de très grosses protéines sont traitées. Il serait

possible, par exemple, d’ajouter une autre couche reliant plusieurs tripeptides consécutifs

en un fragment. Cela peut être utile pour le traitement de grosses protéines avec une

flexibilité limitée. Il est également possible de subdiviser la protéine en fragments de

longueurs variables en fonction de la souplesse des différentes parties de la protéine. Les

structures secondaires, par exemple, sont connues pour être moins souples que les boucles

des protéines, ce qui permet d’affirmer qu’il serait raisonnable d’utiliser des fragments

comprenant plus de trois résidus à ce niveau là. Un autre objectif à court terme est

d’utiliser (ou de développer) un modèle énergétique plus approprié pour le modèle tripep-
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tidique. Le choix du modèle énergétique est connu pour avoir un effet important sur les

résultats obtenus, ce qui explique pourquoi il est indispensable d’étudier plus avant dans

cette direction.

Nous prévoyons également d’évaluer l’utilisation du modèle tripeptidique pour l’étude

des interactions moléculaires, où la flexibilité totale des protéines en interaction pose un

véritable défi. En utilisant notre modèle tripeptidique, la flexibilité des protéines peut

être traitée grâce aux particules, au lieu d’avoir à faire face à tous les degrés de liberté.

De plus, les modèles atomiques des protéines peuvent être générés chaque fois que cela

est nécessaire. D’autre part, les interactions moléculaires induisent des déformations

qui sont différentes de celles qui se produisent naturellement, en réponse à des forces

internes. Une façon d’étudier les déformations induites par les interactions est d’utiliser

les modes statiques [Brut 09], qui fournissent des directions de mouvement se produisant

en réponse à l’application de forces extérieures. Par conséquent, les modes statiques

pourraient remplacer les modes normaux dans la méthode exposée dans le chapitre 4, afin

de guider l’exploration vers de potentielles conformations induites par les interactions.
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Siméon & V. Tran. A path planning approach for computing large-
amplitude motions of flexible molecules. Bioinformatics, vol. 21,
no. suppl 1, pages i116–i125, 2005.

[Cortés 07] J. Cortés, L. Jaillet & T. Siméon. Molecular disassembly with RRT-
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of lipase enantioselectivity by engineering the substrate binding site
and access channel. ChemBioChem, vol. 10, no. 17, pages 2760–
2771, 2009.

[Laio 02] A. Laio & M. Parrinello. Escaping free-energy minima. Proceedings
of the National Academy of Sciences of the United States of America,
vol. 99, no. 20, pages 12562–12566, 2002.
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