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Chapter 1

Introduction

Consider a claim g, sold at time t ≥ 0, of maturity T ≥ t, with underlying Xt,x

satisfying Xt,x(t) = x. In case of a European option, the seller of the claim has to

deliver the payo� g(Xt,x(T )) at terminal date T to the buyer. The natural question

arising then is to determine a price π to be paid at time t to the seller which will

satisfy both the seller and the buyer, so that the risk transfer may occur.

In the so-called complete market case of [BS73, AS92, DS94, HP81], the seller

may replicate the payo� of the claim by dynamically trading on the market. That

is, under good integrability conditions on g(Xt,x(T )), one can �nd y ∈ R as well as

a predictable process ν such that

g (Xt,x(T )) = y +

∫ T

t
νs · dX(s) P-a.s..

The unique fair price is in this case y, since it would lead to arbitrage opportunity

otherwise.

In the more realistic situation of incomplete market, when there are e.g. intrinsic,

non-traded sources of risk, both the valuation and the hedging problems may become

highly non-trivial issues. Considering the no-arbitrage condition leads to an in�nity

of viable prices (see e.g. [DS94]). The risk taker needs thus to de�ne the amount

of money he has to invest at time t in some �nancial portfolio that reduces the risk

in an appropriate way. The pricing of contingent claims in incomplete markets thus

requires a description of preferences of the agents.

Among the di�erent approaches one could think of, we refer to

[BCS98, CPT99, CM96, CK93, EKQ95, KS98] for the super-replication

in incomplete markets, [Dav97] for the marginal utility approach,

[BL89, DR91, SF85, Sch88, Sch91, Sch99] for the quadratic error minimiza-
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tion approach, [Cvi00, FL99, FL00] for the quantile hedging and shortfall risk

minimization point of view.

The aim of this thesis is to contribute to this �eld.

The �rst part of this manuscript is dedicated to the stochastic target approach

introduced by Soner and Touzi [ST02c, ST00, ST02a, ST03a], and recently developed

by Bouchard, Elie and Touzi [BET09] in order to deal with more general frameworks.

More speci�cally, we �rst provide a generalization of the work of [BET09] in the case

of mixed di�usions. This contribution is introduced in Section 1.1.4 below.

Secondly, we establish a game version of the Geometric Dynamic Programming

Principle of [ST02a]. This allows us to deal with a more general stochastic target

problem in which an adverse player is controlling the di�usion. This is related to

hedging problems under Knightian ambiguity. This work is introduced in Section

1.2.1.

We �nally focus on the utility indi�erence pricing framework. Our main aim is

to study hybrid claims (see e.g. Section 1.3.1), that is, claims which are in between

Finance and Insurance. We provide for the �rst time in this hybrid framework an

asymptotic result for general utility functions de�ned on the whole real line, when

the absolute risk aversion converges uniformly towards 0, and the number of sold

claims goes to in�nity. This contribution is introduced in Section 1.3.

1.1 Stochastic Target in Finance and Insurance

In a geometric form, a stochastic target problem can be formulated as follows. Let G

be a Borel subset of a metric space (Z, dZ), and Zνt,z a Z-valued controlled process

with initial conditions Zνt,z(t) = z ∈ Z. Consider the so-called reachability set Λ(t)

of initial conditions z ∈ Z such that Zνt,z(T ) ∈ G P-a.s. for some ν ∈ U , with U the

set of admissible controls:

Λ(t) :=
{
z ∈ Z : there exists ν ∈ U s.t. Zνt,z(T ) ∈ G P-a.s.

}
. (1.1.1)

In [ST02a], Soner and Touzi prove that it satis�es a dynamic programming prin-

ciple, the so-called Geometric Dynamic Programming Principle (hereafter GDP).

This GDP then allows one to perform the derivation of the associated dynamic

programming equation, as it is usual in optimal control.

As we shall see below, the GDP opened the door to a wide range of practical

applications in �nance and insurance. In particular, the results of Chapter 2 heavily

rely on this GDP.
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1.1.1 The Geometric Dynamic Programming and the super-

hedging problem

Fix Z := Rd × R. The GDP of Soner and Touzi [ST02a] reads as follows. In

Markovian Settings, and under good assumptions on the set of controls U , the

reachability set

Λ(t) =
{
z ∈ Z : Zνt,z(T ) ∈ G P-a.s. for some admissible ν

}
coincides with the set Λ̄

Λ̄(t) :=
{
z ∈ Z, Zνt,z(τ) ∈ Λ(τ) P-a.s. for some admissible ν

}
,

for all stopping times τ . Under a "Flow-like" assumption, the �rst inclusion

Λ(t) ⊆ Λ̄(t) is straightforward, whereas the second is the "tricky one". It essentially

relies on a measurable selection theorem (see [BS78, Proposition 7.49]), which is

made possible by the fact that the map (t, z, ν) ∈ [0, T ] × Z × U 7→ Zνt,z(T ) is

Borel-measurable. We refer the interested reader to [ST02a] for the proof (see

[BV10] for an obstacle version).

Fix now Z := (X,Y ) and G := {z := (x, y) ∈ Rd × R s.t. Ψ(x, y) ≥ 0} for

some Borel measurable map Ψ. Consider furthermore that both y 7→ Ψ(·, y) and

y 7→ Y ν
t,x,y(T ) are non-decreasing, for all ν ∈ U . The set Λ(t) can then be identi�ed

to {(x, y) ∈ Rd × R : y ≥ y(t, x)}, with

y(t, x) := inf
{
y ∈ R : there exists ν ∈ U s.t. Ψ

(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ 0 P-a.s.

}
,

whenever the above in�mum is achieved.

Formulated as above, this problem may be seen as a generalization of the so-

called super-replication problem, see e.g. [EKQ95, CK93, CM96, KS98, BCS98,

CPT99].

In the literature, the super-hedging problem is usually solved as follows. The

idea is to consider the dual problem, which is a classical optimal control problem,

see [JK95, EKQ95, CK93, FK97]. Classical dynamic programming allows to derive

the corresponding PDE for the dual value function, which in turns gives a PDE

characterization of the value function y.

Soner and Touzi were the �rst to propose a treatment of this problem in its

primal form, that is, to obtain the PDE characterization of y by means of the GDP.

The main advantage is that the primal approach of [ST00, ST02c, ST02b, ST03b,

ST03b, CST05] applies to general dynamics (such as large investor) or constraints
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(e.g. gamma constraint), whereas the usual dual approach heavily relies on the fact

that the coe�cients of the wealth dynamics are linear in the control variable, and

the stock prices are not in�uenced by the trading strategy.

This approach was further exploited in Touzi [Tou00], Bouchard and Touzi

[BT00], extended to locally bounded jumps in Bouchard [Bou02], and to path de-

pendent constraints in Bouchard and Vu [BV10].

1.1.2 The stochastic target with controlled expected loss in Fi-

nance

The approach developed in Section 1.1.1 is very powerful to study a large family

of non-standard stochastic control problems, in which a target has to be reached

with probability one at time T . As mentioned above, it provides in particular

an extension of the classical super-replication problem. However, in most cases,

the super-hedging price leads to an unbearable cost for the buyer, which is not

reasonable in practice.

Very recently, Bouchard, Elie and Touzi [BET09] relaxed the P-a.s. criterion

Ψ(Zνt,z(T )) ≥ 0 into a moment constraint of the form E[Ψ(Zνt,z(T ))] ≥ p, with p ∈ R
a given threshold. This new approach has opened the door to a wide range of

applications, especially in mathematical �nance.

We shall brie�y present in this section some possible applications of stochastic

target with controlled loss in �nance and insurance.

Let Xν be a process denoting roughly the risks in the portfolio of an agent (one

might think of stocks, but also a �xed number of non-tradeable idiosyncratic sources

of risks, see Section 1.3.1). Fix g, a map de�ned on Rd such that g(Xν
t,x(T )) has

enough regularity. The quantity g(Xν
t,x(T )) may be seen as the random payo� of a

European claim, given the initial conditionXν
t,x(t) = x. The process Y ν

t,x,y represents

the wealth of the agent, with initial value y at time t, where ν denotes his strategy

in terms of Xν . Consider the value function

y(t, x, p) := inf
{
y ∈ R : ∃ ν ∈ U s.t. E

[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]
≥ p
}
. (1.1.2)

For p = 1 and

Ψ : (x, y) 7−→ 1{y≥g(x)},

the value function (1.1.2) represents the super-replication price of the claim

g(Xν
t,x(T ), as discussed above. If p ∈ (0, 1), Equation (1.1.2) may be written as

y(t, x, p) := inf
{
y ∈ R : ∃ ν ∈ U s.t. P

[
Y ν
t,x,y(T ) ≥ g

(
Xν
t,x(T )

)]
≥ p
}
, (1.1.3)
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and allows one for a treatment of the quantile hedging problem introduced in

Föllmer and Leukert [FL99], but in a more general framework, e.g. when the

strategy of the agent may in�uence the value of the risky assets (large investor

model). It also permits to deal with more general investment policies. The original

treatment of the problem by Fölmer and Leukert relies on the fact that this strategy

is linear in the control.

Consider now the case where p ∈ R and Ψ belongs to some general class of utility

functions. More precisely, for an utility function U : R→ R and

Ψ : (x, y) ∈ Rd × R 7−→ U(y − g(x)),

the problem (1.1.2) reads

y(t, x, p) := inf
{
y ∈ R : ∃ ν ∈ U s.t. E

[
U
(
Y ν
t,x,y(T )− g

(
Xν
t,x(T )

))]
≥ p
}
.

That is, �nding the minimum amount of money the investor has to invest in some

strategy ν in order to have his expected utility above a given threshold p. If p

happens to be chosen as

p := sup
ν′∈U

E
[
U
(
Y ν′
t,x,yo(T )

)]
,

a straightforward reformulation of this problem de�nes the value function y as the

utility indi�erence price of the claim g:

y(t, x, p) = inf
{
y ∈ R : ∃ ν ∈ U s.t. E

[
Ψ
(
Xν
t,x(T ), Y ν

t,x,yo+y(T )
)]
≥ p
}
.

Finally, some minor modi�cations in the previous reasoning allow us to consider the

case where Ψ belongs to some class of risk functions,

Ψ : (x, y) ∈ Rd × R 7−→ −ρ([y − g(x)]−)

for some convex non-decreasing loss function ρ : R → R, or the success ratio of

Föllmer and Leukert [FL99]

Ψ : (x, y) ∈ Rd × R 7−→ 1{g(x)≤y}(x, y) +
y

g(x)
1{g(x)>y∧0}.

1.1.3 The extension of the Geometric Dynamic Programming

Principle to moment constraints

When dealing with stochastic target problems with controlled expected loss, the

underlying reachability set (although it is not introduced explicitly in Bouchard,

Elie and Touzi [BET09] or [Mor11]) is now

Λ(t) :=
{

(z, p) ∈ Rd × R : there exists ν ∈ U s.t. E
[
Ψ
(
Zνt,z(T )

)]
≥ p
}
.
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When trying to relate the time-t reachability set to a later time-τ , it is obvious

that the value p ∈ R has to be incorporated as a part of the state process. The

original idea of Bouchard, Elie and Touzi [BET09, Proposition 3.1] (extended to the

mixed di�usion case in Proposition 2.3.2) is to apply the martingale representation

theorem to the conditional expectation E[Ψ(Zνt,z(T ))|F·].
The reachability set may actually be de�ned as

Λ(t) :=

(z, p) ∈ Rd × R : there exists ν ∈ U and M ∈Mt,p

s.t. Ψ̃
(
Zνt,z(T ),M(T )

)
≥ 0

 , (1.1.4)

where Ψ̃ : (z, p) ∈ Rd × R 7−→ Ψ(z) − p and Mt,p denotes a set of martingales M

satisfying M(t) = p. We thus recover a stochastic target problem in P-a.s. criterion
on the state process (Z,M), and the GDP of Soner and Touzi reads in this context

Λ(t) =

(z, p) ∈ Rd × R : there exists ν ∈ U and M ∈Mt,p

s.t.
(
Zνt,z(τ),M(τ)

)
∈ Λ(τ) P-a.s.

 .

We are then able to derive the dynamic programming PDE from the GDP of [ST02a],

up to non-trivial di�culties, as explained below.

1.1.4 The derivation of the PDE in the mixed di�usion case

In Chapter 2, we extend the results of Bouchard, Elie and Touzi [BET09] to the

mixed di�usion case. Namely, we consider a �ltration G generated by a Brownian

motion W and a E-marked right continuous point process J . For 0 ≤ t ≤ T , we are
given two controlled di�usion processes

{
Xν
t,x(s), t ≤ s ≤ T

}
and {Y ν

t,x,y(s), t ≤ s ≤
T} taking their values respectively in Rd and R. These processes satisfy the initial

condition
(
Xν
t,x(t), Y ν

t,x,y(t)
)

= (x, y), and are Rd ×R-valued strong solutions of the

stochastic di�erential equations

dX(s) = µX (X(s), νs) ds+ σX (X(s), νs) dWs

+

∫
E
βX
(
X(s−), ν1

s , ν
2
s (e), e

)
J(de, ds)

dY (s) = µY (Z(s), νs) ds+ σY (Z(s), νs) dWs

+

∫
E
βY
(
Z(s−), ν1

s , ν
2
s (e), e

)
J(de, ds).

In Bouchard, Elie and Touzi [BET09], the �ltration F is generated by the Brownian

motion W , and βX ≡ βY ≡ 0. We shall see brie�y below that this has non-trivial

impacts on both the formulation and the derivation of the associated partial

di�erential equations.
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For a given measurable map Ψ and threshold p, the controller wants to compute:

y(t, x, p) := inf

y ∈ R :
E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]
≥ p

for some ν ∈ U

 . (1.1.5)

As explained in the previous section, increasing the dimension of both the state

and the control processes by use of the martingale representation theorem allows to

reduce this problem into a standard stochastic target problem.

In the present setting, any martingale M ∈Mt,p may be written as

Mα,χ
t,p (·) = p+

∫ ·
t
αs · dWs +

∫ ·
t

∫
E
χs(e)J̃(de, ds), (1.1.6)

for some control processes α and χ, with J̃(de, ds) := J(de, ds)− λ(de)ds being the

compensated measure associated to J . Recalling (1.1.4), we are interested in

y(t, x, p) = inf

y ∈ R :
there exists (ν, α, χ) ∈ Û

s.t. Ψ̃
(
X̂ν,α,χ
t,x,p (T ), Y ν

t,x,y(T )
)
≥ 0

 ,

where X̂ν,α,χ
t,x,p stands for the augmented state process (Xν

t,x(T ),Mα,χ
t,p ), and Û is the

augmented set of controls (ν, α, χ).

In order to understand how we can provide a PDE characterization for y, consider

the following informal reasoning. In the present settings, (x, p, y) ∈ Λ(t) is equivalent

to y ≥ y(t, x, p). Hence, the �rst part of the GDP (the inclusion Λ(t) ⊆ Λ̄(t), recall

Section 1.1.1) gives that, for y ≥ y(t, x, p), there is (ν, α, χ) ∈ Û such that

Y ν
t,x,p(τ) ≥ y

(
τ,Xν

t,x(τ),Mα,χ
t,p (τ)

)
P-a.s. for any stopping time τ ≥ t.

Assuming that y is smooth enough and that the above GDP holds even for y =

y(t, x, p), an application of Itô's Lemma around the initial time t shows that the

control (ν, α, χ) should ensure that

• the volatility of Y ν − y(·, Xν ,Mα,χ) is zero,

• the jumps of Y ν − y(·, Xν ,Mα,χ) are non-negative,

• the drift of Y ν − y(·, Xν ,Mα,χ) is non-negative,

�at the original time t�. This informal reasoning implies that y is a supersolution of

H0,0y(t, x, p) ≥ 0,
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with

Hε,ηy(t, x, p) := sup
(u,a,π)∈Nε,ηy(t,x,p)

{
µY (x, y(t, x, p), u)− Lu,a,π(X,M)y(t, x, p)

}
, (1.1.7)

where Lu,a,π(X,M) denotes the Dynkin operator associated to the di�usion (X,M), and,

for ε > 0, η ∈ [−1, 1] and (t, x, p) ∈ [0, T ]× Rd × R,

Nε,ηy :=


(u, a, π) s.t. |σY (·, y, u)− σ>X(·, u)∂xy − a∂py| ≤ ε

and for λ-a.e. e ∈ E

βY (·, y, u, e)− y(·, ·+ βX(·, u, e), ·+ π(e)) + y ≥ η

 . (1.1.8)

In a Brownian �ltration, where the only additional control is α, the major di�-

culty comes from the fact that the process α has a priori no boundedness properties:

it comes from the martingale representation theorem. In this context, the operator

associated to (1.1.7) typically fails to be semi-continuous.

It is shown in [BET09] that, in the no-jump case, one needs to consider the

relaxed semi-limits as ε ↓ 0 of the operator associated to Hε,0. This relaxation is

local, as it only concerns the space point, the gradient and the Hessian matrix of

the test function at this point.

In our setting, we need two further relaxations to deal with the non-local term in

(1.1.8). Firstly, the semi-limits are taken with respect to the additional parameter

η as it goes to 0. Secondly, an additional non-local relaxation is performed by con-

sidering the semi-continuous envelopes with respect to the test function appearing

in the non-local term of (1.1.8), for the topology of the uniform convergence. This

adds non-trivial technical di�culties.

The precise statement of the PDE characterization and the associated bound-

ary conditions (in the sense of viscosity solutions) are given in Theorems 2.2.5, 2.2.9

and Corollaries 2.3.7, 2.3.17. In particular, we generalize the convex face-lifting phe-

nomenon in the p-variable that was observed in Bouchard, Elie and Touzi [BET09]

in the context of quantile hedging problems to much more general situations.

Finally, we provide in Theorem 2.3.14 a boundary condition in the p-variable

when the function Ψ takes its values in a set of the form [m,M ] with m or/and

M is/are �nite. Theorem 2.3.14 is the counterpart in this framework of [BET09,

Theorem 3.1], up to non trivial di�erences due to the presence of the control χ.

1.1.5 Further references and advances in the �eld of Stochastic

Targets

We conclude this section with some references of recent advances in this �eld. In

Bouchard and Dang [BD10], the authors give a PDE characterization of a singular
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with state constraints version of stochastic target problems. This work allows one

to treat the case of market models with proportional transaction costs, and may

also be applied to order book liquidation issues.

In [BV11], Bouchard and Vu provide a PDE characterization of the minimal

initial endowment required so that the terminal wealth of a �nancial agent can

match a set of constraints in probability. Their original idea was to consider that

the agent has a rough idea on the type of P&L he can a�ord, and that he considers

the latter as a target. It was motivated by the fact that, if the attitude of the

�nancial agent toward risk is usually described in academic literature in terms of

utility or loss function, this is in practice not so trivial for an agent to characterize

precisely his "utility function".

We �nally refer to Bouchard, Elie and Reveillac [BER12] for a BSDE formulation

of this moment criterion, and to Bouchard, Elie and Imbert [BEI10] and Bouchard

and Nutz [BN11] for an optimal stochastic control problem under stochastic target

constraint.

1.2 A robust version of the stochastic target problems

As exempli�ed in Section 1.1.2, the stochastic target problems in expectation form

allow one to deal with several risk approaches, which is useful in incomplete markets.

However, as usual in mathematical �nance, the stochastic target problems rely on

a choice for the controller of a "mathematical model", that is, a speci�cation of the

coe�cients µ, σ and β, as well as their parameters.

In practice, the choice of a model and its calibration give rise to model risk (what

are the consequences of choosing the wrong model?), or model uncertainty (what

strategies to employ when no a-priori information on the true coe�cient is given?).

One way to tackle the model uncertainty is to consider a situation in which an

adverse player, the nature, is playing the unknown coe�cients against the controller.

In the case where the parameters can be observed in a progressive way, this naturally

leads to a game version of the stochastic target problems as discussed in the previous

sections.

In Chapter 3, we introduce for the �rst time this new class of di�erential

games, and provide a version of the GDP which allows us to derive the Hamilton-

Jacobi-Bellman-Isaacs' (in short HJBI) equation associated to the corresponding

reachability set. This requires a game version of the GDP of Soner and Touzi

[ST02a].
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We refer to [BCR05, Rai07, TH07, MØ08, CR09, BCQ11, Bis10] for advance

researches in the �eld of stochastic di�erential games.

1.2.1 The game version of the Geometric Dynamic Programming

Principle

We investigate in Chapter 3 a robust (or game) version of the stochastic target

problems. It takes the form of a one sided game, de�ned as follows.

For a given initial position (t, z) ∈ [0, T ]×Z, the aim of the controller is to �nd

a strategy u[·] ∈ U, in the sense of di�erential games (see Section 3.3.1 for a precise

de�nition), such that the controlled state process Zu[ν],ν
t,z reaches a given target at

time T , whatever the player controlling the adverse controls ν ∈ V could do to

prevent it from happening.

We consider a loss function `, and formulate a target in moment in robust form,

i.e.

E
[
`
(
Z

u[ν],ν
t,z (T )

)]
≥ p for all ν ∈ V.

For t ∈ [0, T ], the corresponding reachability set consists in all initial positions

(z, p) ∈ Z × R enabling the controller to �nd a strategy u that allows him to reach

the target, for every adverse control ν ∈ V:

Λ(t) :=

(z, p) ∈ Z × R : there exists u ∈ U s.t.

J(t, z, u) ≥ p

 , (1.2.1)

with

J(t, z, u) := inf
ν∈V

E
[
`
(
Z

u[ν],ν
t,z (T )

)]
. (1.2.2)

As explained in Section 1.1.3, in the absence of adverse control, one can retrieve the

GDP of [ST02a] by considering the martingale E[`(Zu
t,z(T ))|F·]. Here, the natural

counterpart is the family of submartingales {Sν , ν ∈ V}:

Sν(·) := ess inf
ν̄∈V

E
[
`
(
Z

u[ν⊕·ν̄],ν⊕·ν̄
t,z (T )

)
|F·
]
, (1.2.3)

where ν ⊕s ν̄ means that the two adverse controls ν and ν̄ are pasted at time

s ≥ t. This should be interpreted as the adverse's player value process, if the

controller play the strategy u. Recalling the arguments of Bouchard, Elie and Touzi

[BET09] presented in Section 1.1.3, a rough version of the GDP should be that Λ(t)

coincides with the set of elements (z, p) ∈ Z×R for which there exist a strategy and

an appropriate family of submartingales {Sν , ν ∈ V}, which initial values satisfy

Sν(t) = p for all ν ∈ V, such that(
Z

u[ν],ν
t,z (τ), Sν(τ)

)
∈ Λ(τ) P-a.s. for all ν ∈ V and stopping times τ.
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As we will show in Section 3.2.3, one can actually restrict to the martingale parts

of each Sν :

Λ(t) =

 (z, p) ∈ Z × R : ∃ u ∈ U and {Mν , ν ∈ V} ⊂Mt,p s.t.(
Z

u[ν],ν
t,z (τ),Mν(τ)

)
∈ Λ(τ) P-a.s. ∀ ν ∈ V and stopping times τ

 ,

whereMt,p denotes a suitable set of martingale starting from p at time t. Neglecting

the �nite variation parts of the Sν 's has the advantage of not having to deal with

their possible path irregularities. The fact that the martingale part is enough can be

understood as follows. The worst situation for the controller playing u is when the

adverse player plays the optimal adverse control associated to u. Along an optimal

adverse control, Sν is a martingale.

Observe that the de�nitions in (1.2.2) and (1.2.3) do not guarantee that

J(t, z, u) = Sν(t). From the mathematical point of view, one faces the issue of

dealing with one nullset for every ν ∈ V. One possible answer to handle this prob-

lem could be to follow the arguments of Fleming and Souganidis [FS89], and use

a discrete time approximation argument. In the context of zero-sum di�erential

games, this provides a Dynamic Programming Principle (DPP) for the approximat-

ing problems on the time grids. A limit argument combined with a comparison

result for PDEs allows to conclude. Unfortunately, discrete time DPP is not strong

enough to derive PDEs in the context of stochastic target problems.

Contrary to Section 1.1.3, we therefore use a formulation of (1.2.2) in terms of

essential in�mum as in (1.2.3):

J(t, z, u) := ess inf
ν∈V

E
[
`
(
Z

u[ν],ν
t,z (T )

)
|Ft
]

and

Λ(t) :=

(z, p) ∈ Z × R : there exists u ∈ U s.t.

J(t, z, u) ≥ p P-a.s.

 .

The consideration of essential in�mum is made possible by an argument of Buckdahn

and Li [BL08, Proposition 4.1, Lemma 4.1] (see also Buckdahn, Hu and Li [BHL11,

Lemmata 3.1 and 3.2] for an extension to jump di�usions), which states that, in a

Brownian framework, the random variable

K : (t, z) 7−→ ess sup
u∈U

J(t, z, u) is deterministic. (1.2.4)

One major di�culty in establishing a game version of GDP is that we can not

apply a measurable selection theorem as in the standard context of [ST02a]. This

is due to the presence of strategies for which we do not have a good topological

framework. To surround this, we formulate a weak version based on a covering



12 Chapter 1. Introduction

argument in space, in the spirit of Bouchard and Touzi [BT11] or Bouchard and

Nutz [BN11]. It only relies on "regularity properties" in the space variable. In

particular, we do not impose any time regularity. This issue is solved by a stopping

time approximation argument, which leads to a non-trivial additional relaxation.

More precisely, our GDP is not stated in terms of

Γ := {(t, z, p) ∈ [0, T ]×Z × R s.t. (z, p) ∈ Λ(t)} ,

but in terms of its interior and its closure.

Note that the absence of measurable selection result adapted to the context of

games prevents us to consider more general stochastic target games in which the

terminal constraint is stated in the P-a.s. sense. This highly di�cult issue is left for

further researches.

We �nally observe that, if the weak GDP is �rst stated in Theorem 3.2.1 under

strong regularity assumptions on the (deterministic) map K de�ned in (1.2.4), we

show in Corollary 3.2.3 how to relax these assumptions in case of a continuous

function ` with polynomial growth, and when the state process Z satis�es suitable

estimates.

1.2.2 Derivation of the Hamilton-Jacobi-Bellman-Isaacs' equation

Our weak GDP happens to be su�cient for the derivation of the dynamic program-

ming equation in the viscosity sense. We exemplify this fact with the treatment of a

game version of two general problems introduced by Soner and Touzi [ST02c, ST02a]

in the context of Brownian controlled SDEs, with controls taking their values in a

bounded subset of Rd.
In Theorem 3.3.3, we characterize the reachability set with a Hamilton-Jacobi-

Bellman-Isaacs' (HJBI) equation. Namely, we state the PDE satis�ed, in the vis-

cosity sense, by the indicator function of the complement of the graph of Λ:

χ(t, z, p) := 1− 1Λ(t)(z, p).

In Theorem 3.3.5, we consider a robust version of the stochastic target problem

with controlled expected loss discussed in Section 1.1.2. We hence derive the PDE

satis�ed by a game version of the problem (1.1.2), i.e.

y(t, x, p) := inf

y ∈ R :
there exists u ∈ U s.t. for all ν ∈ V

E
[
`
(
Z

u[ν],ν
t,z (T )|Ft

)]
≥ p P-a.s.

 .

This allows us to give a robust characterization of the problems considered in Section

1.1.2.
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As discussed in Section 1.1.4, these equations are stated in terms of relaxed

HJBI operators, in order to take into account the possible unboundedness of the

controls α, which come from the martingale representation of the additional state

variable.

Finally, we give an example of application to the partial hedging of a European

option, in the case where both the drift and the volatility of the underlying are

uncertain (controlled by the adverse player, which in that case is the market). We

are interested in the problem

y(t, x, p) := inf

y ∈ R :
∃ u ∈ U s.t. for all ν ∈ V

E
[
Ψ
(
Y u,ν
t,x,y(T )− g

(
Xν
t,x(T )

))
|Ft
]
≥ p P-a.s.

 , (1.2.5)

in which Ψ denotes some utility function (concave, non-decreasing), g(Xν
t,x(T )) the

payo� of the claim, ν = (µ, σ) stands for the drift and the volatility of the stock

price process Xν , whereas u is the trading strategy and Y u[ν],ν is the corresponding

wealth process.

In this case, strategies do not take bounded values, and we restrict ourselves to

the set of strategies satisfying an integrability condition of the form:

sup
ν∈V

E

∣∣∣∣∫ T

0
|u[ν]r|2dr

∣∣∣∣
q̄
2

 <∞,
for some q̄ > 2. We extend the PDE characterization obtained for bounded controls

to this context. This allows us to give an explicit characterization of the problem

(1.2.5). Surprisingly, although the hedging criteria is weak, the result is degenerate.

Namely, we prove that

y(t, x, p) = sup
ν∈V0

E
[
g
(
Xν
t,x(T )

)
|Ft
]

+ Ψ−1(p),

where V0 denotes the subset of adverse controls such that the drift µ is degenerate:

µ ≡ 0. This corresponds to the super-hedging price for the shifted option g(·) +

Ψ−1(p) in the (driftless) uncertain volatility model.

1.3 Utility Asymptotics - Pricing of Hybrid claims

These last years have seen the explosion of the number of liabilities combining pure

�nancial and pure insurancial risks. They typically have the following form: an

insurance company sells to each client i ≤ n a claim of maturity T , whose value

depends on the evolution of some tradable �nancial assets S = (St)t≥0 and some
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additional idiosyncratic riskRi. The number n introduced above denotes the number

of claims sold by the company.

In Chapter 4, we investigate the problem of pricing such claims, in the realistic

situation where the Ri's are independent and identically distributed, conditionally

to S.

Our main result concerns the convergence of the utility indi�erence price of a

claim when the absolute risk aversion of a sequence of general utility functions tends

to 0, and the number of sold claims goes to in�nity.

1.3.1 Examples of hybrid products

The wide range of applications in life or non-life insurance justi�es the interest of

both insurance and �nancial mathematics. We list here some examples of such

contracts.

The agents are interested in pricing aggregated claims of the following form

Gn =

n∑
i=1

f (S,Ri) , (1.3.1)

where for each client i ∈ {1, · · · , n}, the Ri's are independent and identically dis-

tributed random variables, n denotes the number of unit claims f(S,Ri) sold, and

f is some measurable function. In the latter, one could think e.g. of unit-linked

contract,

f(S,Ri) = 1{Ri>T}ST ,

or unit-linked with guarantee,

f(S,Ri) = 1{Ri>T}max(ST ,K),

where Ri denotes in both examples the time of death of the customer i, and S a

�nancial index. Contracts with similar features are currently very popular in life

insurance.

We might also think of more elaborated claims, with Ri being for example a

weather index, or a production yield.

Consider for instance a producer of some good (e.g. wheat), which market price

is S, expecting to produce the yield Ki
G at time T , and to sell each unit of this

quantity at least at the price KS . His expected revenue is then KS ×Ki
G, while his

realized revenue is Ri × ST , with Ri his realized production level. In order to cover

himself, he can buy a European put on his revenue:

f i(S,Ri) := (KS ×KG − STRi)+ . (1.3.2)

These revenue guarantees are already widely sold in the U.S. and are about to be

exploited in Europe too.
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1.3.2 Utility Asymptotics

Consider an insurance company selling to the client i a claim with payo� gi, paid at

maturity T , whose value depends on the evolution of some tradable �nancial assets

S = (St)t≥0 and some additional idiosyncratic risk. Typically, recall (1.3.1), for

every i ≤ n, each individual contract gi is of the following form

gi = f(S,Ri).

The gi's are usually not unconditionally independent, but still independent condi-

tionally to S. The company is then interested in the unit premium π(Gn)/n of the

aggregated claim

Gn :=

n∑
i=1

gi,

i.e. the premium associated to the global claim Gn, π(Gn), equally divided by the

number of sold contracts n.

Such contracts, and especially unit-linked contracts, have been studied by actu-

aries since the late sixties. While in �nance, any pricing rule is fundamentally based

on the notion of no-arbitrage and the corresponding set of martingale measures, the

premium principles in insurance are mainly motivated by the application of the law

of large numbers. (see e.g. [Buh70], [GfIE79] or [BoA86]).

In fact, neither the usual actuarial principles nor the arbitrage arguments seem to

be satisfactory to price such claims. Still, it was suggested to combine both. Namely,

the valuation principle proposed in Brennan and Schwartz [BS79a, BS79b] consists

in combining the law of large numbers with a �nancial hedging-based valuation.

The idea is to replace the insured risks by their expected value, so that the modi�ed

claim only contains �nancial uncertainty. It remains then for the insurer to price

and hedge the following modi�ed claim

Ĝn =

N∑
i=1

E [f (S,Ri)|S] .

This pricing rule has been widely used in practice, see e.g. [BH03, MP00, MPY06].

The mathematical insight behind this trivial pricing rule is the following.

If the Ri's are independent and identically distributed given S, then Gn/n →
E[f(S,R1)|S] =: ḡ a.s. for a large number n of sold contracts. If the �nancial

market formed by the asset S is complete (this is the semi-complete market of

Becherer, see [Bec03, Section 4]), then the payo� E[f(S,R1)|S] may be replicated
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from the initial wealth EQ[E[f(S,R1)|S]] by a suitable trading strategy, where Q is

the unique martingale measure on the (complete) pure �nancial market.

However, both the theory of pricing in incomplete markets and the usual actu-

arial principles (recall the notion of safety loading) seem to agree on the fact that

a linear pricing rule corresponds to a risk neutral agent. Roughly speaking, in our

context, selling a large number of claims (necessary for the application of the law

of large numbers) entails a bigger exposition on the �nancial market. If the law of

large numbers does not operate well enough, then the losses may be leveraged by an

unfavorable evolution of the �nancial market. A risk-adverse agent shall take this

fact into account, so that the (linear) trivial pricing rule should not hold for such

agents (see Examples 4.2.3 and 4.2.4 for trivial counterexamples).

This intuitive reasoning leads us to expect this pricing rule to hold only at the

limit for a small level of risk aversion and a large number of sold claims. In Chapter

4, we provide conditions under which the limit unit price is given by this linear

pricing rule.

Given a locally bounded càdlàg (F,P)-semi-martingale S, we denote as usual by

M the set of P-equivalent local martingale measures such that S is a (F,Q)-local

martingale. Let (Un)n∈N be a sequence of utility functions de�ned on the whole real

line and satisfying the usual assumptions (Inada, reasonable asymptotic elasticity,

see Schachermayer [Sch01]). Assume furthermore that M 6= ∅ and that for each

n ∈ N, the corresponding dual problem (see e.g. [Sch01]) is �nite, and de�ne the

unit utility indi�erence prices pn(Gn, Un):

pn(Gn, U) := inf

{
p ∈ R : sup

X
E [U(X + np−Gn)] ≥ sup

X
E [U(X)]

}
, (1.3.3)

with X running over the set of achievable terminal wealth. Moreover the optimal

dual probability and multiplier are given by

(y0
n,Q0

n) := arg min

{
E
[
Vn

(
y
dQ
dP

)]
, (y,Q) ∈ (0,∞)×M

}
,

in which Vn is the usual convex conjugate of Un. We assume that the sequence of

claims (Gn)n≥1 satis�es

sup
n≥1
|Gn/n|L∞ <∞, (1.3.4)

and that

n|rn|∞ −→
n→∞

0 , with rn : x 7→ −U
′′
n(x)

U ′n(x)
, (1.3.5)

and |rn|∞ := supx∈R |rn(x)|. Observe that Assumption (1.3.4) allows us to consider

examples of individual bounded claims, such as the payo� in (1.3.2).



1.3. Utility Asymptotics - Pricing of Hybrid claims 17

We show in Theorem 4.3.2 that

lim
n→∞

pn(Gn, Un) = lim
n→∞

EQ
0
n [Gn/n] . (1.3.6)

One side of the equality (stated in terms of liminf and limsup) is straightforward

with the use of the dual problem (see e.g. Owen [Owe02] or Bouchard, Touzi and

Zeghal [BTZ04]). Surprisingly, the second inequality is obtained directly from the

primal formulation of the problem (contrary to most results on the asymptotic of

utility indi�erence prices, see Section 1.4 below). It relies on a simple second order

Taylor expansion of Un, and crucially on Assumptions (1.3.4) and (1.3.5) .

As a byproduct, under the weaker condition ‖rn‖∞ → 0, and whenever the

sequence (Gn)n≥1 is assumed to be uniformly bounded in L∞, we also provide a

general convergence result for bounded sequences of contingent claims when the

absolute risk aversion vanishes in the sup norm, which is of own interest.

Notice that the right hand side term in (1.3.6) is somehow theoretical. In the

context of a complete pure �nancial market (see De�nition 4.2.1 for a more precise

de�nition of the so-called Half-Complete Market assumption), a similar reasoning

as in [Bec03, Theorem 4.10 and Assertion (4.5)] shows that, if Gn/n→ ḡ as n→∞,

with ḡ a FST -measurable random variable, then

lim
n→∞

EQ
0
n [Gn/n] = EQ

∗
[ḡ],

where Q∗ is the pricing measure on the complete pure �nancial market.

In order to characterize the limit

lim
n→∞

EQ
0
n [Gn/n]

in the incomplete market case, we shall restrict the class of utility functions. First

note that the fact that rn → 0 uniformly as n → ∞ entails that there exists a

sequence (η1
n)n≥1 satisfying η1

n → 0 such that

rn(x) ≤ η1
n for all x ∈ R and n ≥ 1.

We assume in addition that the convergence rn → 0 is not too fast: there exists

another sequence (η2
n)n≥1 such that for all n ≥ 1,

0 < η2
n ≤ rn ≤ η1

n and η2
n/η

1
n −→n→∞ 1.

The sequence (Un)n≥1 is "stucked" in between two sequences of exponential utility

functions with vanishing asymptotically equivalent risk aversions. We thus are able

to show that

EQ
0
n [Gn/n] −→

n→∞
EQ

e
[ḡ],

where Qe is the element ofM which minimizes the relative entropy E
[
dQ
dP log dQ

dP

]
.
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1.4 Further references on Utility Indi�erence Price

Asymptotics

Asymptotic results for utility indi�erence prices have been stated for exponential

utility function in El Karoui and Rouge [EKR00] for Brownian di�usion models,

and in Delbaen et al. [DGR+02] in a general semi martingale setting. In the

above quoted papers, it was shown that the utility indi�erence price converges

toward the super-replication price as the absolute risk aversion tends to in-

�nity. A slightly more general class of utility functions is studied in [Bou00].

Carassus and Rásonyi consider general utility functions, in discrete time models,

in [CR07, CR06], and deal with the continuous time case in the recent paper [CR11].

Importantly, note that Becherer [Bec03] has studied almost similar problems in

the context of exponential utility functions. More precisely, he is interested in the

indi�erence price p1(Gn/n;U) of the mean claim Gn/n, whereas we consider the

unit price of the components of Gn, pn(Gn;U) = p1(Gn, U)/n, recall the notation

(1.3.3).

However, our result can be recovered in his more restrictive context from the

additivity property stated in his Theorem 4.10 and the standard asymptotic result

of his Proposition 3.2.



Notations

In all this manuscript, elements of Rn, n ≥ 1, are identi�ed to column vectors, the

superscript > stands for transposition, · denotes the scalar product on Rn, | · | the
Euclidean norm, and Mn denotes the set of n-dimensional square matrices. We

denote by Sn the subset of elements of Mn which are symmetric. For a subset O of

Rn, n ≥ 1, we denote by O its closure, by Int(O) its interior and by dist(x,O) the

Euclidean distance from x to O with the convention dist(x, ∅) = ∞. Finally, we

denote by Br(x) the open ball of radius r > 0 centered at x ∈ Rn. Given a square

matrix M ∈ Mn, we denote Tr its trace, that is Tr[M ] :=
∑n

i=1Mii. For x, y ∈ R,
we will use x ∨ y := max(x, y), x ∧ y := min(x, y), x+ := x ∨ 0 and x− := (−x) ∨ 0.

Let ϕ ∈ C2(Rd;R) a smooth function; Dϕ denotes the Jacobian matrix of ϕ,

i.e. (Dϕ)i := ∂ϕ
∂xi

, and D2ϕ its Hessian matrix, i.e. (D2ϕ)ij := ∂2ϕ
∂xixj

. In case we

wish to denote a partial derivative of ϕ with respect to one or two of its variable(s),

we shall use the notation ∂xixjϕ := ∂2ϕ
∂xixj

.

Given a locally bounded map v on a subset B of Rn, we de�ne the lower and

upper semicontinuous envelopes

v∗(b) := lim inf
B3b′→b

v(b′) v∗(b) := lim sup
B3b′→b

v(b′), b ∈ B.

The convex hull of a function f will be denoted }(f), and we recall that it is the

greatest convex function lower or equal to f . We will use the same notation for the

convex hull of a subset, i.e. }(A) is the convex hull of the subset A, and we recall

that it is the smallest convex subset containing A, in the sense of inclusion.

In this manuscript, inequalities between random variable have to be understood in

the a.s. sense.
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In this chapter, we consider a mixed di�usion version of the stochastic target

problem introduced in [BET09]. This consists in �nding the minimum initial value

of a controlled process which guarantees to reach a controlled stochastic target with

a given level of expected loss. It can be converted into a standard stochastic target

problem, by increasing both the state space and the dimension of the control. In

our mixed-di�usion setting, the main di�culty comes from the presence of jumps,

which leads to the introduction of a new kind of controls that take values in an

unbounded set of measurable maps. This has non trivial technical impacts on the

formulation and derivation of the associated partial di�erential equations.

Keywords: Stochastic target problem, mixed di�usion process, discontinuous
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Note: The work presented in this chapter is taken from [Mor11], and has been
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2.1 Introduction

For 0 ≤ t ≤ T , and given two controlled di�usion processes
{
Xν
t,x(s), t ≤ s ≤ T

}
and {Y ν

t,x,y(s), t ≤ s ≤ T} with values respectively in Rd and R, satisfying the

initial condition
(
Xν
t,x(t), Y ν

t,x,y(t)
)

= (x, y). We are interested in �nding the

minimal initial condition y for which it is possible to �nd a control ν satisfy-

ing E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]
≥ p for some given Borel measurable map Ψ, non-

decreasing in the y-variable, and for a threshold p. Namely, we want to characterize
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the value function:

v̂(t, x, p) := inf
{
y ≥ −κ : E

[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]
≥ p for some ν

}
, (2.1.1)

in the mixed di�usion case. If Ψ(x, y) := 1{V (x,y)≥0} and p ∈ (0, 1),

v̂(t, x, p) = inf
{
y ≥ −κ : P

[
V
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ 0
]
≥ p for some ν

}
, (2.1.2)

this problem coincides with the quantile hedging problem discussed in Föllmer and

Leukert [FL99], in the context of �nancial mathematics. In this paper, the process

X represents the prices of some given securities. The process Y models the wealth

of an investor, based on some portfolio strategy ν. Importantly, the coe�cients of

the di�usion Y are linear in the control variable and the process X is not a�ected by

the control ν. In this context, Föllmer and Leukert [FL99] used a duality argument

to convert this problem into a classical test problem in mathematical statistics.

In order to deal with the problem (2.1.2) in a more general case, Bouchard, Elie

and Touzi [BET09] introduced an additional controlled di�usion process Pαt,p, which

appears to (essentially) correspond to the conditional probability of reaching the

target V
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ 0. This allowed them to rewrite the problem 2.1.2

in the form

v̂(t, x, p) = inf
{
y ≥ −κ : 1{V (Xν

t,x(T ),Y νt,x,y(T ))≥0} ≥ P
α
t,p(T ) for some (ν, α)

}
,

where α is a predictable square integrable process coming from the martingale rep-

resentation of P
[
V
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ 0 | F·

]
= Pαt,po := po+

∫ ·
t αs ·dWs, for some

po ≥ p. The key point is that this reformulation reduces the original problem (2.1.2)

into a classical stochastic target problem of the form

v̂(t, x, p) := inf
{
y ≥ −κ : V̂

(
Xν
t,x(T ), Pαt,p(T ), Y ν

tx,y,(T )
)
≥ 0 for some ν, α

}
,

as studied in Soner and Touzi [ST02a, ST02c], for an augmented system (X,Y, P )

and an augmented control (ν, α). The major di�erence being that the new control

α can no longer be assumed to take values in a compact set, as it is given by the

martingale representation theorem.

Up to a non-trivial relaxation, Bouchard, Elie and Touzi [BET09] were able to

provide a PDE characterization for the value function v̂ in the sense of discontinuous

viscosity solutions, for a discontinuous operator which corresponds to the one used

in Soner and Touzi [ST02a, ST02c].

The aim of this chapter is to extend the work of Bouchard, Elie and Touzi

[BET09] to the setting of jump di�usions, in its more general form (2.1.1).

Di�using the conditional expectation E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)∣∣Fs] for s ∈ [t, T ],

and considering it as an additional controlled state variable Pα,χt,p will allow us to
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convert this problem into a singular stochastic target problem. Here, the additional

control χ comes from the jump part of the martingale representation.

This leads to technical di�culties, mainly because of this new control χ. The

�rst one was already handled in [Bou02], and consists in the consideration of an

additional (non-local) term in the PDE characterization. Secondly, part of the

control now takes values in an unbounded set of measurable maps, as opposed

to a compact subset of Rd. The local relaxation of the associated HJB operator

introduced in Bouchard, Elie and Touzi [BET09] will not be su�cient to ensure the

semicontinuity needed, and we shall have to introduce a new (non-trivial) relaxation

of the non-local part of the associated operator. Furthermore, this non-local operator

complicates signi�cantly the discussion of the boundary conditions at p = m and

p = M when the map Ψ takes values in [m,M ].

Compared to Bouchard, Elie and Touzi [BET09], where they discuss general

problem of the form (2.1.1), but state their results for the problem (2.1.2), we aim

to state our results for the problem (2.1.1). In particular, we shall see that the

convex face-lifting phenomenon in the p-variable observed in Bouchard, Elie and

Touzi [BET09] for (2.1.2) extends to a much more general context.

This chapter is organized as follows. In Section 2.2, we present the general for-

mulation of stochastic target problem with unbounded measurable map controls, in

mixed di�usion case. It contains the statement of the corresponding dynamic pro-

gramming equation. In Section 2.3, we give the arguments allowing us to translate

the problem of expected controlled loss into the case of singular stochastic target

problem of the previous section. The boundary conditions for the stochastic target

problem with controlled expected loss are discussed in this section.

2.2 Singular stochastic target problems

2.2.1 Problem formulation

Let T > 0 be a �xed time, E a borel subset of R+, equipped with its Borel σ-�eld E ,
J(de, dt) =

∑d
i=1 J

i(de, dt) be a E-marked right-continuous point process de�ned on

a complete probability space (Ω,F ,P). Let W be a Rd-Brownian motion de�ned on

(Ω,F ,P), such that W and J are independent. We denote by G := {Gt, 0 ≤ t ≤ T}
the P-augmented �ltration generated by (W·, J(de, ·)). We assume that G0 is trivial.

The random measure J(de, dt) is assumed to have a predictable (P,G)−intensity
kernel λ(de)dt such that λ(E) < ∞, and we denote by J̃(de, dt) := J(de, dt) −
λ(de)dt the associated compensated random measure. By H2

λ, we denote the set of
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maps χ : Ω× [0, T ]× E → R which are P
⊗
E measurable 1 and such that

‖χ‖H2
λ

:=

(
E
[∫ T

0

∫
E
χt(e)

2λ(de)dt

]) 1
2

<∞.

We can always assume that P [J (E \ supp(λ), [0, T ]) > 0] = 0, and therefore that

E = supp(λ). Let U0 = U1
0 × U2

0 be the collection of predictable processes ν =(
ν1, ν2

)
with ν1 ∈ L2 ([0, T ]× Ω) and ν2 ∈ H2

λ P-a.s., and with values in a given

closed subset U = U1 × L2
λ of Rd × L2

λ. Here L2
λ denotes the set of measurable

functions π : E → R such that ‖π‖2λ <∞, with

‖π‖2λ :=

∫
E
|π(e)|2 λ(de).

For t ∈ [0, T ], z = (x, y) ∈ Rd × R and ν :=
(
ν1, ν2

)
∈ U0, we de�ne Zνt,z :=(

Xν
t,x, Y

ν
t,x,y

)
as the Rd × R-valued solution of the stochastic di�erential equation

X(s) =µX (X(s), νs) ds+ σX (X(s), νs) dWs

+

∫
E
βX
(
X(s−), ν1

s , ν
2
s (e), e

)
J(de, ds)

dY (s) =µY (Z(s), νs) ds+ σY (Z(s), νs) dWs

+

∫
E
βY
(
Z(s−), ν1

s , ν
2
s (e), e

)
J(de, ds)

(2.2.1)

satisfying the initial condition Z(t) = (x, y). Here,

(µX , σX) : Rd × U → Rd ×Md

(µY , σY ) : Rd × R× U → R× Rd

are locally Lipschitz, and are assumed to satisfy, for u := (u1, u2) ∈ U ,

|µY (x, y, u)|+ |µX(x, u)|+ |σY (x, y, u)|+ |σX(x, u)| ≤ K(x, y)
(
1 + |u1|+

∥∥u2
∥∥
λ

)
where K is a locally bounded map. Moreover

βX : Rd × U × E → Rd

βY : Rd × R× U × E → R

are continuous and are assumed to satisfy, for some M ≥ 0,∫
E

(
|βX(x, u(e), e)|2 + |βY (z, u(e), e)|2

)
λ(de) ≤M

(
1 + |z|2 + |u|2

)
∫
E
|βX(x, u(e), e) − βX(x′, u(e), e)|2 λ(de) ≤M

∣∣x− x′∣∣2 (2.2.2)∫
E
|βY (z, u(e), e) − βY (z′, u(e), e)|2 λ(de) ≤M

∣∣z − z′∣∣2 ,
1P denotes the σ-algebra of F-predictable subsets of Ω× [0, T ].
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where we have used the notation u(e) = (u1, u2(e)) and |u|2 := |u1|2 +
∥∥u2
∥∥2

λ
. We

denote by U = U1×U2 a subset of elements of U0 for which (2.2.1) admits an unique

strong solution for all given initial data. We assume furthermore that any constant

controls with values in U belongs to U . We also allow for state constraints and we

denote by X the interior of the support of the controlled process X.

Let V be a measurable map from Rd+1 to R such that, for every �xed x, the

function

y 7−→ V (x, y) is non-decreasing and right continuous.

We then de�ne the stochastic target problem as follows

v(t, x) := inf
{
y ≥ −κ : V

(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ 0 for some ν ∈ U

}
, (2.2.3)

with κ ∈ R+ ∪ {+∞}. At this point, the set U may not be bounded, and we will

see later that dealing with unbounded controls will be required in the analysis of

Section 2.3.

In order to be consistent and avoid the process Y to cross the level −κ, we shall
assume all over this chapter that

µY (x,−κ, u) ≥ 0, σY (x,−κ, u) = 0 and βY (x, y, u, e) ≥ −(y + κ)

for all (x, y, u, e) ∈ X× R× U × E.
(2.2.4)

As usual in this kind of problem, our analysis requires that

y′ ≥ y and y ∈ Γ(t, x)⇒ y′ ∈ Γ(t, x) for all (t, x, y, y′) ∈ [0, T ]× Rd × R× R

where

Γ(t, x) :=
{
y ≥ −κ : V

(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ 0 for some ν ∈ U

}
.

This allows to characterize the closure of Γ(t, x) as [v(t, x),+∞), which will be

of important use in the following. Indeed, let us assume that the in�mum in the

de�nition of v is attained, and let y = v(t, x). Then we can �nd some ν ∈ U such

that V
(
Xν
t,x(T ), Y ν

t,x,y

)
≥ 0. Hence, if we start with y′ > y, we should be able to

�nd some ν ′ ∈ U such that V (Xν′
t,x(T ), Y ν′

t,x,y′) ≥ 0. If this property does not hold,

it is not possible to characterize the set Γ(t, x) by its lower bound v(t, x).

Remark 2.2.1. Let us observe that this problem can be formulated equivalently as

v(t, x) := inf
{
y ≥ −κ : Y ν

t,x,y(T ) ≥ g
(
Xν
t,x(T )

)
for some ν ∈ U

}
,
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where g is the generalized inverse of V at 0:

g(x) := inf {y ≥ −κ : V (x, y) ≥ 0} , (2.2.5)

recall (2.2.4).

Example 2.2.1. Consider the case where X = (0,∞)d and X is de�ned by the

stochastic di�erential equation

dXt,x(s) = µ (Xt,x(s)) ds+ σ (Xt,x(s)) dWs +

∫
E
β (Xt,x(s−), e) J(de, ds)

Xt,x(t) = x ∈ (0,∞)d,

with Y ν
t,x,y given by

Y ν
t,x,y(s) = y +

∫ s

t
ν1
r · dXt,x(r), for s ≥ t and ν =

(
ν1, ν2

)
∈ U .

This corresponds to the situation where the process X is not a�ected by the control:

µX(x, u) = µ(x), σX(x, u) = σ(x)

and βX(x, u(e), e) = β(x, e)
are independent of u

and

µY (x, y, u) := u1 · µ(x), σY (x, y, u) := σ>(x)u1, βY (x, y, u(e), e) := u1 · β(x, e).

In �nancial mathematics, the process X should be interpreted as the price of

d risky securities. Because of the jump di�usions, we are in an incomplete

market, so that the uniqueness of a P-equivalent martingale measure is not

satis�ed. The process Y represents the wealth process induced by the trading strat-

egy ν, where ν1
s indicates the number of units of the assets in the portfolio at time s.

Finally, for some Lipschitz continuous function g : R→ R+ and

V (x, y) := y − g(x),

v(t, x) coincides with the usual superhedging price of the contingent claim

g (Xt,x(T )).

2.2.2 Main results

The main result of this section is the derivation of the dynamic programming equa-

tion corresponding to the stochastic target problem (2.2.3), in the present context

of possibly unbounded controls and jumps.
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Before stating our main results, we need to introduce additional notations. Given

a smooth function ϕ, u ∈ U and e ∈ E, we now de�ne the operators

Luϕ(t, x) := ∂tϕ(t, x) + µX(x, u) ·Dϕ(t, x) +
1

2
Trace

[
σXσ

>
X(x, u)D2ϕ(t, x)

]
Gu,eϕ(t, x) := βY (x, ϕ(t, x), u(e), e)− ϕ (t, x+ βX(x, u(e), e)) + ϕ(t, x),

where ∂tϕ stands for the partial derivative with respect to t, Dϕ and D2ϕ denote

the gradient vector and the Hessian matrix with respect to the x variable. We then

de�ne the following relaxed semi-limits

H∗ (Θ, ϕ) := lim sup
ε↘0,Θ′→Θ
η→0,ψ−→

u.
ϕ

Hε,η

(
Θ′, ψ

)
H∗ (Θ, ϕ) := lim inf

ε↘0,Θ′→Θ
η→0,ψ−→

u.
ϕ

Hε,η

(
Θ′, ψ

)
,

(2.2.6)

where, for Θ = (t, x, y, k, q, q′, A) ∈ R+ × Rd × R × R × Rd × Rd × Sd, ψ ∈
C1,2

(
[0, T ]× Rd;R

)
, ε ≥ 0 and η ∈ [−1, 1],

Hε,η (Θ, ψ) := sup
u∈Nε,η(t,x,y,q′,ψ)

Au(Θ),

with

Au(Θ) := µY (x, y, u)− k − µX(x, u) · q − 1

2
Trace

[
σXσ

>
X(x, u)A

]
,

Nε,η(t, x, y, q′, ψ) :=

{
u ∈ U s.t. |Nu(x, y, q′)| ≤ ε and

∆u,e(t, x, y, ψ) ≥ η for λ-a.e. e ∈E

}
,

Nu(x, y, q′) := σY (x, y, u)− σX(x, u)>q′,

∆u,e(t, x, y, ψ) := βY (x, y, u(e), e)− ψ (t, x+ βX(x, u(e), e)) + y

and the convergence ψ −→
u.

ϕ in (2.2.6) has to be understood in the sense that ψ

converges uniformly towards ϕ.

Also notice that, given η ∈ [−1, 1], (Nε,η)ε≥0 is non-decreasing in ε so that

H∗ (Θ, ϕ) := lim inf
η→0,Θ′→Θ
ψ−→
u.
ϕ

H0,η

(
Θ′, ψ

)
.

For ease of notations, we shall often simply write Hv(t, x) in place of H(t, x, v(t, x),

∂tv(t, x), Dv(t, x), Dv(t, x), D2v(t, x), v). We shall similarly use the notations H∗v

and H∗v.

In order to handle the possible unboundedness of the jumps in Section 2.2.3.1,

we shall need the following de�nition of viscosity super solution.



30 Chapter 2. Controlled Loss with Jump Di�usions

De�nition 2.2.2. We say that a l.s.c. (resp. u.s.c.) function U (resp. V ) is a

viscosity supersolution of H∗U ≥ 0 (resp. subsolution of H∗V ≤ 0) on [0, T ) × Rd

if for every smooth function ϕ ∈ C1,2([0, T ]× Rd;R) of linear growth and (to, xo) ∈
[0, T )×Rd such that min[0,T ]×Rd(U−ϕ) = (U−ϕ)(to, xo) = 0 (resp. max[0,T ]×Rd(V −
ϕ) = (V − ϕ)(to, xo) = 0), we have

H∗ϕ(to, xo) ≥ 0 (resp. H∗ϕ(to, xo) ≤ 0).

We will need for the proof of the supersolution property on [0, T ] × Rd (see

Sections 2.2.3.1 and 2.2.3.2) the following technical assumption. De�ne for sake of

clarity, for any ϕ ∈ C1,2([0, T ]× Rd;R), u ∈ U and (t, x, y, z1, z2) ∈ [0, T ]× R2d+2

LuX,Zϕ̄(t, x, z) := Luϕ(t, x)− µX(x, u) · z1 − µY (x, y, u)z2, (2.2.7)

where z =: (z1, z2) ∈ Rd × R and ϕ̄(t, x, z) := ϕ(t, x)− |z|2.

Assumption 2.2.3. For all ε > 0, η ∈ [−1, 1], (to, xo) ∈ [0, T ]×Rd, ϕ ∈ C1,2([0, T ]×
Rd;R) and �nite C1 satisfying

sup
u∈Nε,η(t,x,y,Dϕ,ϕ)

{µY (x, y, u)− Luϕ(t, x)} ≤ 2C1

for all (t, x) ∈ Bε(to, xo) and y ∈ R s.t. |y − ϕ(t, x)| ≤ ε,

there exists ε′ > 0, η′ ∈ [−1, 1] and a �nite C2 such that

sup
u∈Nε′,η′ (t,x,y,Dϕ,ϕ)

{
µY (x, y, u)− LuX,Zϕ̄(t, x, z)

}
≤ 2C1 + |C1|

for all (t, x, y, z) ∈ [0, T ]× R2d+2 s.t.

 (t, x, z) ∈ Bε′(to, xo, 0)

y ∈ R s.t. |y − ϕ̄(t, x)| ≤ η′,

(2.2.8)

and[
µY (x, y, u)− LuX,Zϕ̄(t, x, z)

]+

1 + |Nu(x, y,Dϕ)|
≤ C2

(
1 + |σY (x, y, u)|+

d∑
i=1

∣∣∣σi,·X (x, u)
∣∣∣)

for all (t, x, y, z) ∈ [0, T ]× R2d+2 s.t.

 (t, x, z1, z2) ∈ Bε′(to, xo, 0)

y ∈ R s.t. |y − ϕ̄(t, x)| ≤ η′,
and u ∈ U such that ∆u,·(t, x, y, ϕ) ≥ η λ-a.e.

(2.2.9)

As in [BET09, ST02a, ST02c], the proof of the subsolution property requires an

additional regularity assumption on the set valued map N0,η(·, f).

Assumption 2.2.4. (Continuity of N0,η(t, x, y, q, f)) For f ∈ C0
(
[0, T ]× Rd

)
, η >

0, let B be a subset of [0, T )×X×R×Rd such that N0,2η(·, f) 6= ∅ on B. Then, for
every ε > 0, (to, xo, yo, qo) ∈ Int(B), and uo ∈ N0,2η (to, xo, yo, qo, f), there exists an

open neighborhood B′ of (to, xo, yo, qo) and a locally Lipschitz map ν de�ned on B′

such that |ν (to, xo, yo, qo)− uo| ≤ ε and ν (t, x, y, q) ∈ N0,η (t, x, y, q, f) on B′.
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We also assume that v is locally bounded, so that v∗ and v∗ are �nite. Our

�rst result characterizes v as a discontinuous viscosity solution of the variational

inequation (2.2.17) in the following sense.

Theorem 2.2.5. Under Assumption 2.2.3, the function v∗ is a viscosity supersolu-

tion on [0, T )×X of

H∗v∗ ≥ 0. (2.2.10)

Under Assumption 2.2.4 holds, the function v∗ is a viscosity subsolution on [0, T )×X
of

min {H∗v∗, v∗ + κ} ≤ 0 (2.2.11)

The proof of this result is reported in Section 2.2.3.

Remark 2.2.6. 1. Note that the operator H∗ would not be upper-

semicontinuous in ϕ, for the uniform convergence, without the relaxation in

the test function on the non-local part. This is the counterpart of the local

relaxation introduced in Bouchard, Elie and Touzi [BET09] on the derivatives

of the test function.

2. Notice that we impose the De�nition 2.2.2 of viscosity solution for integrability

issue. This heavily relies on the relaxation of the operator in its test function

parameter, in terms of uniform convergence. Indeed, consider the case where

the relaxation is stated in terms of uniform convergence on compact sets, and

for every (to, xo) ∈ [0, T ]×Rd and test function ϕ, the family of auxiliary test

functions (ϕι)ι de�ned for each ι > 0 as ϕι(t, x) := ϕ(t, x) ± ι|x − xo|n, for
some n > 0. This family converges uniformly on compact subsets towards ϕ

as ι → 0. However, the presence of the jumps may imply that ϕι(·, X) may

fail to be integrable for n large enough.

3. Assumption 2.2.3 is of technical nature, and is needed in the proof of (2.2.10)

for integrability issues. It was missing in [BET09, Theorems 2.1 and 2.2,

Corollaries 3.1 and 3.2], although it is satis�ed in their Section 4. This con-

dition enable us to control the drift µY − Luϕ in terms of BMO martingales,

and thus to de�ne a change of measure with uniformly integrable martingale,

see Section 2.2.3.1. Equation (2.2.8) essentially stands in an additional relax-

ation of the operator. The relaxation in terms of z1 in (2.2.8) is obvious by

de�nition of H∗, whereas the relaxation in z2 is new. Equation (2.2.9) is also

new, and consists essentially in constraints on the partial derivatives of the

test function, as well as a characterization of the controls of the jump part
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in the Kernel Nε,η; see the proof in Example 2.3.4 in the particular case of

stochastic target under controlled loss.

Example 2.2.2. In the context of Example 2.2.1, �rst notice that the process

X is not in�uenced by the control ν. Hence, Assumption 2.2.3 reduces in this

context in a control of |µY (u)|
|σY (u)| . It is thus trivially satis�ed since these coe�cients are

linear in u. Then, direct computations show that v∗ is a viscosity supersolution on

[0, T )× (0,∞)d of

0 ≤ min

{
−∂tϕ−

1

2
σ2D2ϕ,Dϕ · β(·, e)− ϕ (·+ β(·, e)) + ϕ

}
,

for λ-a.e. e ∈ E

and that v∗ is a viscosity subsolution of

0 ≥ min

{
−∂tϕ−

1

2
σ2D2ϕ,Dϕ · β(·, e)− ϕ (·+ β(·, e)) + ϕ

}
for e ∈ E′ ∈ E s.t. λ(E′) > 0.

We next discuss the terminal conditions on {T} ×X. By the de�nition of the

stochastic target problem, we have

v(T, x) = g(x) for every x ∈ Rd,

where g is de�ned in (2.2.5). However, the possible discontinuities of v might imply

that the limits v∗(T, ·) and v∗(T, ·) do not agree with this boundary condition. We

then need to introduce, as in Bouchard, Elie and Touzi [BET09], the set-valued map

N(t, x, y, q, ψ) :=

(r, s) ∈ Rd × R : ∃ u ∈ U s.t. r = Nu(x, y, q)

and s ≤ ∆u,e(t, x, y, ψ) for λ-a.e. e ∈ E

 ,

together with the signed distance function from its complement Nc to the origin:

δ := dist(0,Nc)− dist(0,N),

where we recall that dist stands for the (unsigned) Euclidean distance. Then,

0 ∈ int (N(t, x, y, q, ψ)) i� δ(t, x, y, q, ψ) > 0. (2.2.12)

The upper and lower-semicontinuous envelopes of δ are respectively denoted by δ∗

and δ∗, and we will abuse notation by writing δ∗v(t, x) = δ∗ (t, x, v(t, x), Dv(t, x), v)

and δ∗v(t, x) = δ∗ (t, x, v(t, x), Dv(t, x), v). For ϕ ∈ C2
(
Rd
)
, we similarly de�ne

δ∗ϕ(x) = δ∗ (T, x, ϕ(x), Dϕ(x), ϕ) and the same de�nition holds for δ∗ϕ(x).
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Remark 2.2.7. From the convention sup∅ = −∞ and the supersolution property

(2.2.10) in Theorem 2.2.5, it follows that

δ∗v∗ ≥ 0 on [0, T )× Rd

in the viscosity sense. Then, if Nc 6= ∅, this means that v is subject to a gradient

constraint.

Remark 2.2.8. 1. Assume that for every (x, y, q) and r ∈ Rd, there is an unique

solution ū(x, y, q, r) to the equation Nu(x, y, q) = r, i.e.

Nu(x, y, q) = r i� u = ū(x, y, q, r).

Assume further that ū is locally Lipschitz continuous, so that Assumption 2.2.4

trivially holds. For ease of notations, we set ūo(x, y, q) := ū(x, y, q, 0). For a bounded

set of controls U , it follows that, for any smooth function ϕ,H∗ϕ(t, x) ≥ 0 implies

that

ūo (x, ϕ(t, x), Dϕ(t, x)) ∈ U, Aūo(·, ϕ, ∂tϕ,Dϕ,D2ϕ)(t, x) ≥ 0

and ∆ūo,e(t, x, ϕ(t, x), ϕ) ≥ 0 for λ-a.e. e ∈ E.

Similarly, H∗ϕ(t, x) ≤ 0 implies that

either ūo (x, ϕ(t, x), Dϕ(t, x)) /∈ intU,

or Aūo(·, ϕ, ∂tϕ,Dϕ,D2ϕ)(t, x) ≤ 0

or ∆ūo,e(t, x, ϕ(t, x), ϕ) < 0 for e ∈ E′ ∈ E s.t. λ(E′) > 0.

The following result states that the constraint discussed in Remark 2.2.7 prop-

agates up to the boundary. Here, the main di�culty is due to the unboundedness

of the set U and the presence of jumps in the di�usions. As discussed in Section

2.3.4 (see Corollary 2.3.17), the unboundedness of the controls may imply that the

condition {H∗v∗(T, ·) <∞} is not satis�ed.

Theorem 2.2.9. Under Assumption 2.2.3, the function x 7→ v∗(T, x) is a viscosity

supersolution of

min
{

(v∗(T, ·)− g∗)1{H∗v∗(T,·)<∞}, δ
∗v∗(T, ·)

}
≥ 0 on X, (2.2.13)

and, under Assumption 2.2.4, x ∈ X 7→ v∗(T, x) is a viscosity subsolution of

min {v∗(T, ·)− g∗, δ∗v∗(T, ·)} ≤ 0 on X. (2.2.14)
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We conclude this section by some remarks. Remark 2.2.11 establishes the link

between this work and those of Soner and Touzi [ST02c], [Bou02] and Bouchard,

Elie and Touzi [BET09]. Remark 2.2.12 was already in Bouchard, Elie and Touzi

[BET09], and Remark 2.2.10 will be of important use in the proofs of Section 2.3.5

below.

Remark 2.2.10. Assume that

ess sup
u∈N·,e∈E

{|βX (·, u(e), e)|+ |βY (·, u(e), e)|} is locally bounded,

and E is compact.
(2.2.15)

Then, the operator H is continuous for the uniform convergence in its ψ ∈ C1,2

parameter. In this case, the test function ψ appearing in the form ψ(t, x +

βX(x, u(e), e)) in the de�nition of H∗ can be replaced by v∗ itself. To see this,

note that for any ε > 0, (to, xo) and ϕ ∈ C1,2 such that (v∗ − ϕ) achieves a strict

minimum at (to, xo), one can �nd a sequence of smooth function ϕεn such that ϕ
ε
n = ϕ

on Bε(to, xo), ϕεn ≤ v∗, and ϕεn ↑ v∗ uniformly on compact sets of (B2ε(to, xo))
c. This

allows to replace the original test function ϕ by v∗ on (B2ε(to, xo))
c. It then su�ces

to send ε→ 0 and use the continuity induced by (2.2.15).

The same remark holds for the subsolution property.

Remark 2.2.11. Note that δ(x, y, q) ≤ 0 whenever int(N(x, y, q)) 6= ∅, so that the

subsolution property does not carry any information. This would be the case when

the control set U has empty interior.

Remark 2.2.12. When the set U is bounded, and βX ≡ βY ≡ 0, i.e. there is

no jumps, it was proved in Soner and Touzi [ST02c] that the value function v is a

discontinuous viscosity solution of

sup
u∈N0(·,v,Dv)(t,x)

{µY (x, v(t, x), u)− Luv(t, x)} = 0, (2.2.16)

where

N0 (x, y, q) := {u ∈ U : Nu(x, y, q) = 0}

and Nu(x, y, q) := σY (x, y, u)− σX(x, u)>q,

with the standard convention sup∅ = −∞. In the case of a convex compact set U ,

with jumps and Rd-valued controls, i.e. U2 = {0}, Bouchard [Bou02] showed that v

is a viscosity solution of an equation of the form

sup
u∈N0(·,v,Dv)(t,x)

{
min

{
Luϕ(t, x), inf

e∈E
Gu,eϕ(t, x)

}}
= 0. (2.2.17)
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Finally the case of unbounded set U with no jumps was considered by Bouchard,

Elie and Touzi [BET09]. In this paper, the authors introduced a relaxation on the

operator (2.2.16), in order to deal with this unboundedness. This relaxation applies

to the space variable x, the function ϕ, its gradient and its Hessian matrix, at

the local point (t, x). Such a relaxation is required in order to ensure that the sub-

solution (resp. super-solution) property is stated in terms of a lower semi-continuous

(resp. upper semi-continuous) operator. In our jump-di�usion framework, a similar

relaxation is required, but it should involve the additional non-local term Gu,e in

(2.2.17). One shall note that this relaxation is introduced in the Kernel Nε with

ε ≥ 0, so that our PDEs do not take the form of (2.2.17). This is however a pure

technical consideration, since we recover the same inequalities when considering

particular frameworks, see e.g. Example 2.2.2.

2.2.3 Derivation of the PDE for singular stochastic target prob-

lems

This section is dedicated to the proof of Theorems 2.2.5 and 2.2.9. We �rst recall

the geometric dynamic programming principle of Soner and Touzi [ST02a], see also

Bouchard and Vu [BV10]. We next report the proof of the supersolution properties

in Sections 2.2.3.1 and 2.2.3.2, and the proof of the subsolution properties in Sections

2.2.3.3 and 2.2.3.4.

Theorem 2.2.13. (Geometric Dynamic Programming Principle) Fix (t, x) ∈
[0, T )×X and let {θν , ν ∈ U} be a family of [t, T ]−valued stopping times. Then,

(GDPj1) If y > v(t, x), then there exists ν ∈ U

Y ν
t,x,y (θν) ≥ v

(
θν , Xν

t,x (θν)
)
.

(GDPj2) For every −κ ≤ y < v(t, x), ν ∈ U ,

P
[
Y ν
t,x,y (θν) > v

(
θν , Xν

t,x (θν)
)]
< 1.

2.2.3.1 The supersolution property on [0, T )×X

We follow the arguments of Bouchard, Elie and Touzi [BET09] up to non trivial

modi�cations due to the presence of the jumps, and the consideration of Assumption

2.2.3.

Step 1: Let (to, xo) ∈ [0, T ) ×X and ϕ be a smooth function of linear growth such

that

min
[0,T )×X

(strict) (v∗ − ϕ) = (v∗ − ϕ) (to, xo) = 0.
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Assume that H∗ϕ(to, xo) =: −4η < 0 for some η > 0, and let us work towards a

contradiction. We de�ne the family {fι, ι > 0} of real valued functions de�ned on

Rd for all ι > 0 by

fι : x ∈ Rd 7−→ 2ι

π

∫ π|x−xo|

0
sin2 udu1{|x−xo|≤1} + ι1{|x−xo|>1}. (2.2.18)

Observe that for each ι > 0,

fι ∈ C2(Rd;R) is of linear growth,

0 = fι(xo) = min
x∈Rd

fι(x),

(fι)ι>0 converges uniformly towards 0 as ι→ 0.

(2.2.19)

We also notice for later use that for all ι > 0, we have

fι(x) ≥ γε,ι := ι

((
ε− sin(2πε)

2π

)
1{|x−xo|≤1} + 1{|x−xo|>1}

)
> 0

for all ε > 0 and x ∈ Rd such that |x− xo| ≥ ε.
(2.2.20)

Set ϕι(t, x) := ϕ(t, x) − fι(x) for ι > 0. By de�nition of H∗ and the fact that

ϕι −→
u.

ϕ as ι → 0, we may �nd ε, ι > 0 small enough, such that, after possibly

changing η > 0

µY (x, y, u)− Luϕι(t, x) ≤ −2η

for all (t, x, y) ∈ [0, T )×X× R s.t.

 (t, x) ∈ Bε(to, xo)

|y − ϕι(t, x)| ≤ η

2
,

for all u ∈ Nε,−η (t, x, y,Dϕι(t, x), ϕι) ,

where we recall that Bε(to, xo) denotes the ball of center (to, xo) and radius ε.

De�ne now for all z := (z1, z2) ∈ X × R and (t, x) ∈ [0, T ] × X the function

ϕ̄ι(t, x, z) := ϕι(t, x) − |z|2, and observe that, since the partial derivatives in (t, x)

of ϕ̄ι and ϕι coincide, we have for every u ∈ U, (t, x, y, z) ∈ [0, T ]×X×R×X×R:

Luϕ̄ι(t, x, z) = Luϕι(t, x).

We recall from (2.3.7), for every u ∈ U , (t, x, z) ∈ [0, T ] ×X2 × R and y ∈ R the

de�nition of the operator

LuX,Zϕ̄ι(t, x, z) = Luϕι(t, x)− µX(x, u) · z1 − µY (x, y, u)z2.

By Assumption 2.2.3, there exists then a �nite constant C > 0 such that, after
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possibly changing ε and η > 0, we have

µY (x, y, u)− LuX,Zϕ̄ι(t, x, z) ≤ −η

for all (t, x, z, y) ∈ [0, T )×X2 × R2 s.t.

(t, x, z) ∈ Bε(to, xo, 0)

|y − ϕ̄ι(t, x, z)| ≤
η

4
,

for all u ∈ Nε,−η (t, x, y,Dϕι(t, x), ϕι)

(2.2.21)

and [
µY (x, y, u)− LuX,Zϕ̄ι(t, x, z)

]+

1 + |Nu(x, y,Dϕι|
≤ C

(
1 + |σY (x, y, u)|+

d∑
i=1

∣∣∣σi,·X (x, u)
∣∣∣)

for all (t, x, z) ∈ Bε(to, xo, 0) and y ∈ R s.t. |y − ϕ̄ι(t, x, z)| ≤
η

4

and for all u ∈ U s.t. ∆u,·(t, x, y, ϕι) ≥ −η λ-a.e.,
(2.2.22)

Notice that we still have

0 = v∗(to, xo)− ϕ̄ι(to, xo, 0) = min
[0,T )×X2×R

(strict) (v∗ − ϕ̄ι) .

Let ∂pBε(to, xo, 0) := {to + ε} × Bε(to, xo, 0) ∪ [to, to + ε) × ∂Bε(xo, 0) denote the

parabolic boundary of Bε(to, xo, 0). Set

ζ := min
∂pBε(to,xo,0)

(v∗ − ϕ̄ι) ,

and observe that ζ > 0 since the above minimum is strict. We now de�ne

Vε(to, xo, 0) := ∂pBε(to, xo, 0) ∪ [to, to + ε) × Bc
ε(xo) × Bε(0), and with γε,ι de�ned

as in (2.2.20), we observe that

(v∗ − ϕ̄ι) (t, x, z) ≥ ζ ∧ γε,ι =: ξ > 0 for (t, x, z) ∈ Vε(to, xo, 0)

since (to, xo, 0) is a strict minimizer, and |x− xo| ≥ ε on Bc
ε(xo), recall (2.2.20).

step 2: Let (tn, xn)n≥1 be a sequence in [0, T ) ×X which converges to (to, xo) and

such that v(tn, xn)→ v∗(to, xo). Set yn := v(tn, xn) + n−1 and observe that

γn := yn − ϕ̄ι(tn, xn)→ 0. (2.2.23)

For each n ≥ 1, we have yn > v(tn, xn). Thus, it follows from (GDPj1) that there

exists some νn ∈ U such that

Y n(t ∧ θn) ≥ v (t ∧ θn, Xn(t ∧ θn)) , t ≥ tn, (2.2.24)
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where

θon := {s ≥ tn : (s,Xn(s), Zn(s)) /∈ Bε(to, xo, 0)}

θn :=
{
s ≥ tn : |Y n(s)− ϕ̄ι (s,Xn(s), Zn(s))| ≥ η

4

}
∧ θon,

(2.2.25)

and
(Xn, Y n, Zn) :=

(
Xνn

tn,xn , Y
νn

tn,xn,yn , Z
νn

tn,xn

)
,

Zν
n

tn,xn(s) :=
1

2

∫ s

tn

µY (Xn(u), Y n(u), νnu )

µX (Xn(u), νnu )

 du.

By the inequalities v ≥ v∗ ≥ ϕι ≥ ϕ̄ι, this implies that

Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn))

≥ 1{t≥θn} [Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn))]

≥ 1{t≥θn}
[
(Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn)))1{θn<θon}

+ (v∗ (t ∧ θn, Xn(t ∧ θn))− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn)))1{θn=θon}
]

≥
[η

4
1{θn<θon} + ξ1{θn=θon}

]
1{t≥θn}

and therefore

Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn)) ≥
(η

4
∧ ξ
)
1{t≥θn} ≥ 0. (2.2.26)

step 3: Since ϕ̄ι is smooth, recall (2.2.19), it follows from Itô's lemma, (2.2.23),

de�nitions of Y n and Zn, and (2.2.26), that

an +

∫ t∧θn

tn

bns ds+

∫ t∧θn

tn

ψns dWs +

∫ t∧θn

tn

∫
E
cn,es J(de, ds)

≥ −
(η

4
∧ ξ
)
1{t<θn},

(2.2.27)

with
an := −

(η
4
∧ ξ
)

+ γn,

bns := µY (Xn(s), Y n(s), νns )− Lν
n
s
X,Zϕ̄ι(s,X

n
s , Z

n(s))

cn,es := ∆νns ,e (s,Xn(s−), Y n(s−), ϕι)

ψns := Nνn (Zns , Dϕι(s,X
n
s )) .

(2.2.28)

In view of (2.2.23), we have

an → −
(η

4
∧ ξ
)
< 0 for n→∞. (2.2.29)

Observe now that, for every n ≥ 1, the de�nition of θn implies that for all s ∈ [tn, θn),

we have

|Y n(s)− ϕ̄ι (s,Xn
s , Z

n(s))| ≤ η

4
.
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Hence, we have

cn,es ≥ −η for λ-a.e.e ∈ E and s ∈ [tn, θn], (2.2.30)

since otherwise we would have

Y n(θn)− ϕ̄ι (θn, X
n(θn), Zn(θn)) ≤ −3η

4
,

which is in contradiction with (2.2.24). Hence, by (2.2.21) and the de�nition of the

Kernel Nε,−η, for all n ≥ 1, s ∈ [tn, θn], we have

|ψns | ≤ ε =⇒ bns ≤ −η. (2.2.31)

step 4: We now introduce, for each n ≥ 1, the set

An := {s ∈ [tn, θn] : bns > −η} .

Observe that, for all n ≥ 1, (2.2.31) implies that the process ψn satis�es

|ψns | > ε for all s ∈ An, (2.2.32)

so that we can de�ne the process αn as

αns :=
−bns
|ψns |2

ψns 1An(s).

Lemma 2.2.1. The stochastic Doleans-Dade exponential

Ln· := E
(∫ ·

tn

αns dWs

)
·∧θn

is well-de�ned and an uniformly integrable martingale, for all n ≥ 1.

This lemma is proved below, and �lls a gap in the previous literature, where

Assumption 2.2.3 is missing (see Remark 2.2.6). Admitting its result for the moment,

by Girsanov's Theorem,

Ŵn
· := W· −

∫ ·∧θn
tn

αns ds

is a Q̂n-Brownian motion, with Q̂n the equivalent probability de�ned by its density
dQ̂n
dP

∣∣∣
G·

:= Ln· . Recalling (2.2.27), we have

an +

∫ t∧θn

tn

bns1Acnds+

∫ t∧θn

tn

ψns dŴ
n
s +

∫ t∧θn

tn

∫
E
cn,es J(de, ds)

≥ −
(η

4
∧ ξ
)
1{t<θn}.

(2.2.33)
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De�ne now for each n ≥ 1 the process

Mn
· := E

(∫ ·
tn

∫
E

(
1

nT (|dns |+ 1)
− 1

)
J̃(de, ds)

)
·∧θn

,

with

dns :=

∫
E
cn,es λ(de)

and where we recall that J̃ is the compensated jump measure. Since∫ ·
tn

∫
E

(
1

nT (|dns |+ 1)
− 1

)
J̃(de, ds) ≥ −1,

Mn is a non-negative local-martingale (see e.g. [Bré81, Theorem T10]), and from

the fact that
1

nT (|dns |+ 1)
≤ 1

nT
, (2.2.34)

together with
∫
E λ(de) < +∞, we deduce from [Bré81, Theorems T10 and T11]

that Mn is uniformly integrable. We may hence de�ne the equivalent martingale

measure dQ̃n
dQ̂n

∣∣∣
G·

:= Mn
· , and by Girsanov's Theorem again, we have∫ ·

tn

∫
E
J̃n(de, ds) :=

∫ ·
tn

∫
E
J(de, ds)−

∫ ·
tn

∫
E

1

nT (|dns |+ 1)
λ(de)ds

is a Q̃n-martingale; notice that Ŵn is a Q̃n-Brownian motion. Hence, (2.2.33) leads

to

an +

∫ t∧θn

tn

bns1Acn +
1

nT

dns
(|dns |+ 1)

ds+

∫ t∧θn

tn

ψns dŴ
n
s +

∫ t∧θn

tn

∫
E
cn,es J̃n(de, ds)

≥ −
(η

4
∧ ξ
)
1{t<θn}.

Recall from the de�nition of θn that θn ≤ T , which combined with (2.2.34) gives

Snt := an +
1

n
+

∫ t∧θn

tn

bns1Acn +

∫ t∧θn

tn

ψns dŴ
n
s +

∫ t∧θn

tn

∫
E
cn,es J̃n(de, ds)

≥ an +

∫ t∧θn

tn

(
bns1Acn +

1

nT

dns
(|dns |+ 1)

)
ds+

∫ t∧θn

tn

ψns dŴ
n
s

+

∫ t∧θn

tn

∫
E
cn,es J̃n(de, ds)

≥ −
(η

4
∧ ξ
)
1{t<θn},

and from de�nition of An, (2.2.2) and the fact that ϕ̄ι is a linear growth in its x vari-

able, Sn is local supermartingale, bounded by below, and hence a supermartingale.

It follows then that

an +
1

n
= Sntn ≥ E

Q̃n [Snθn |Ftn] ≥ −(η4 ∧ ξ)EQ̃n [1{θn<θn}] = 0
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which contradicts (2.2.29) for n large enough.

Proof of Lemma 2.2.1.

By de�nition of θn, (2.2.32), (2.2.22), (2.2.30), we have,

|αns | ≤ C

(
1 + |σY (Xn(s), Y n(s), νns )|+

d∑
i=1

∣∣∣σi,·X (Xn(s), νns )
∣∣∣) ,

for all s ∈ [tn, θn). We claim that processes
∫ θn∧·
tn

σX(Xn(s), νns )dWs and∫ θn∧·
tn

σY (Xn(s), Y n(s), νns )dWs are BMO-martingales, so that
∫ θn∧·
tn

αns dWs is it-

self a BMO-martingale. The required result is then obtained by [Kaz94, Theorem

2.3].

We now prove that
∫ ·
tn
σX(Xn(s), νns )dWs and

∫ ·
tn
σY (Xn(s), Y n(s), νns )dWs

are BMO-martingales. We shall focus on
∫ ·
tn
σX(Xn(s), νns )dWs, the result for∫ ·

tn
σY (Xn(s), Y n(s), νns )dWs following the exact same argument.

Denote for all n ≥ 1 and s ∈ [tn, θn]

∆Xn(s) := Xn(s)−Xn(s−),

with Xn(·−) being the left limit of Xn(·). By smoothness of ϕ̄ι together with the

de�nition (2.2.25) of θn, de�nition of Zn, (2.2.22) and (2.2.2), for each n ≥ 1, there

exists a constant Kn such that for all s < θn

max

(
|Xn(s)| ;

∣∣∣∣∫ s

tn

µX (s,Xn(s), νns ) ds

∣∣∣∣ ; |∆Xn(s)|
)
≤ Kn. (2.2.35)

Being interested in the process
∫ θn∧·
tn

σX(Xn(s), νn(s))dWs, we may restrict our-

selves to stopping times τn taking their values P-a.s. in [tn, θn]. By continuity of

the path: r ∈ [tn, θn] 7→
∫ r
tn
σX(Xn(s), νn(s))dWs, we have, for every τn ∈ [tn, θn)

∫ θn

τn

σX (Xn(s), νn(s)) dWs =Xn(θn−)−Xn(τn)−
∫ θn

τn

µX (Xn(s), νn(s)) ds

−
∑

τn<s<θn

∆Xn(s)
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By (2.2.35) together with Jensen's inequality, we thus have∥∥∥∥E [〈∫ θn

tn

σX (Xn(s), νn(s)) dWs −
∫ τn

tn

σX (Xn(s), νn(s)) dWs

〉
|Fτn

]∥∥∥∥
∞

=

∥∥∥∥E [〈∫ θn

τn

σX (Xn(s), νn(s)) dWs

〉
|Fτn

]∥∥∥∥
∞

=

∥∥∥∥∥E
[∣∣∣∣∫ θn

τn

σX (Xn(s), νn(s)) dWs

∣∣∣∣2 |Fτn
]∥∥∥∥∥
∞

≤ 4

∥∥∥∥∥∥∥∥∥∥∥
E


|Xn(θn−)|2 + |Xn(τn)|2 +

∣∣∣∣∫ θn

τn

µX (Xn(s), νns ) ds

∣∣∣∣2
+

∣∣∣∣∣∣
∑

τn<s<θn

∆Xn(s)

∣∣∣∣∣∣
2 |Fτn



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ 12K2
n

1 +

∥∥∥∥∥∥E
J(E, [τn, θn))

∑
τn<s<θn

|∆Xn(s)|2 |Fτn

∥∥∥∥∥∥
∞


≤ 12K2

n

(
1 +

∥∥E [J(E, [τn, θn))2K2
n|Fτn

]∥∥
∞
)
<∞,

since λ(E) <∞, and so follows the result.

Remark 2.2.14. Note that, in the above proof, the relaxation of the non-local part

of the operator in term of uniform convergence is required in order to pass from the

initial test function ϕ to the penalized one ϕι. It allows to obtain the inequality

v∗ ≥ ϕ̄ι + ξ outside of the ball Bε(xo), which is crucial in our proof. This is not

required in Bouchard, Elie and Touzi [BET09] where processes are continuous. It is

neither required in [Bou02], where the non-local operator is already continuous and

the size of the jump is locally bounded.

2.2.3.2 The supersolution property on {T} ×X

We split the proof in di�erent lemmas.

Lemma 2.2.2. Let xo ∈ X and ϕ ∈ C2(X) be such that

0 = (v∗(T, ·)− ϕ) (xo) = min
X

(strict) (v∗(T, ·)− ϕ)

then

δ∗ϕ(xo) ≥ 0.

The proof relies on the upper semi-continuity of δ∗, and follows the exact same

idea as in [ST02c, Lemma 5.2]. We may however give the main steps of this proof for

sake of completeness. As in Soner and Touzi [ST02c], the key idea is to consider an
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auxiliary test function ϕn, penalized in both space and time, and to consider local

minimizers (tn, xn) of (v∗ − ϕn). After having proved that (tn, xn) → (T, xo), we

prove that lim
n→∞

v∗(tn, xn) = v∗(T, xo), and then conclude that the viscosity property

of v∗ holds in (tn, xn). We conclude by using the upper semi-continuity of δ∗ and

the supersolution property of Theorem (2.2.5) and (2.2.12) on [0, T )×X.

Lemma 2.2.3. Under Assumption 2.2.3, v∗ is a viscosity supersolution of

(v∗(T, ·)− g∗)1{H∗v∗(T,·)<∞} ≥ 0 on X. (2.2.36)

Proof. Let xo ∈ X and ϕ be a smooth function of linear growth such that

min
X

(strict) (v∗(T, ·)− ϕ) = (v∗(T, ·)− ϕ) (xo).

step 1: Assume that H∗v∗(T, xo) <∞, ϕ(xo) = v∗(T, xo) < g∗(xo), and let us work

towards a contradiction. Since v(T, ·) = g by the de�nition of the problem and

g ≥ g∗, there is a constant η > 0 such that ϕ− v(T, ·) ≤ ϕ− g∗ ≤ −η on Bε(xo) for

some ε > 0. Since xo is a strict minimizer, we have

2ζ := min
x∈∂Bε(xo)

v∗(T, x)− ϕ(x) > 0,

and it follows from the lower semi-continuity of v∗ that there exists r > 0 such that

v(t, x)− ϕ(x) ≥ v∗(t, x)− ϕ(x) ≥ ζ > 0

for all (t, x) ∈ [T − r, T ]× ∂Bε(xo),

and hence

v(t, x)− ϕ(x) ≥ ζ ∧ η > 0

for (t, x) ∈ ([T − r, T )× ∂Bε(xo)) ∪ ({T} ×Bε(xo)) =: Vε,r(T, xo).

De�ne ϕι(x) := ϕ(x)−fι(x), for ι > 0 and fι as in (2.2.18). With similar arguments

as those of Section 2.2.3.1 and by (2.2.20), we have

v(t, x)− ϕι(x) ≥ ζ ∧ η ∧ γε,ι =: 4ξ > 0

for (t, x) ∈
(
[T − r, T ]× B̄c

ε(xo)
)
∪ ({T} ×Bε(xo)) .

We now use the fact that H∗ϕ(xo) =: C2 <∞. Set

ϕ̃ι(t, x) := ϕι(x) + (C + 2η)(t− T ) ≤ ϕι(x).

Then, by (2.2.19), for r, ι > 0 su�ciently small and after possibly changing ε, η > 0,

we have

v(t, x)− ϕ̃ι(t, x) ≥ 2ξ > 0 for (t, x) ∈ Vε,r(T, xo) ∪ [T − r, T ]× B̄c
ε(xo),

µY (x, y, u)− Luϕ̃ι(t, x) ≤ −2η for all u ∈ Nε,−η(t, x, y,Dϕ̃ι(t, x), ϕ̃ι)

and (t, x, y) ∈ [T − r, T ]×X× R s.t. x ∈ Bε(xo) and |y − ϕ̃ι(t, x)| ≤ η

2
.
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Indeed, µY (x, y, u) − Luϕ̃ι(t, x) = µY (x, y, u) − Luϕι(x) − C − 2η ≤ −2η as

soon as µY (x, y, u) − Luϕι(x) ≤ C, and we have Nε,−η(t, x, y,Dϕ̃ι(t, x), ϕι) ⊂
Nε,−η(t, x, y,Dϕ̄ι(t, x), ϕ̃ι).

We now de�ne for every (t, x, z) ∈ [0, T ] × Rd × Rd+1 and ι > 0 the function

ϕ̄ι(t, x, z) := ϕ̃ι(t, x) − |z|2. By Assumption 2.2.3, and after possibly changing

ε, η > 0, there is C ′ > 0 such that

v(t, x)− ϕ̄ι(t, x, z) ≥ ξ > 0

for (t, x, z) ∈ V̄ε,r(T, xo, 0) ∪ [T − r, T ]× B̄c
ε(xo)×Bε(0),

µY (x, y, u)− LuX,Zϕ̄ι(t, x, z) ≤ −η for all u ∈ Nε,−η(t, x, y,Dϕ̃ι(t, x), ϕ̃ι)

and (t, x, y, z) ∈ [T − r, T ]× R2d+2 × R s.t.

(x, z) ∈ Bε(xo, 0)

|y − ϕ̃ι(t, x)| ≤ η

4

and [
µY (x, y, u)− LuX,Zϕ̄ι(t, x, z)

]+

|Nu(x, y,Dϕ̃ι|
≤ C ′

(
1 + |σY (x, y, u)|+

d∑
i=1

∣∣∣σi,·X (x, u)
∣∣∣)

for all (t, x, z) ∈ Bε(to, xo, 0) and y ∈ R s.t. |y − ϕ̃ι(t, x)| ≤ η

4

and for all u ∈ U s.t. ∆u,·(t, x, y, ϕ̃ι) ≥ −η λ-a.e.,

where V̄ε,r(T, xo, 0) is constructed around (T, xo, 0) as Vε,r(T, xo).
step 2: Let (tn, xn)n≥1 be a sequence in [T − r, T ]×X which converges to (T, xo, 0)

and such that v(tn, xn)→ v∗(T, xo). Set yn := v(tn, xn) + n−1, and observe that

γn := yn − ϕ̄(tn, xn, 0)→ 0.

For each n ≥ 1, we have yn > v(tn, xn). Then, by (GDPj1), there exists some

νn ∈ U such that

Y n(t ∧ θn) ≥ v (t ∧ θn, Xn(t ∧ θn)) , t ≥ tn,

where

θon := {s ≥ tn : (s,Xn(s), Zn(s)) /∈ Vε,r(T, xo, 0)}

θn :=
{
s ≥ tn : |Y n(s)− ϕ̄ι (s,Xn(s), Zn(s))| ≥ η

4

}
∧ θon,

and
(Xn, Y n, Zn) :=

(
Xνn

tn,xn , Y
νn

tn,xn,yn , Z
νn

tn,xn

)
,

Zν
n

tn,xn =
1

2

∫ s

tn

(
µY (Xn(u), Y n(u), νnu )

µX (Xn(u), νnu )

)
ds.
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Using the inequalities v ≥ v∗ ≥ ϕ̃ι ≥ ϕ̄ι, this implies that

Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn))

≥ [Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn))]1{t≥θn}

≥ 1{t≥θn}
[
(Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn)))1{θn<θon}

+ (v (t ∧ θn, Xn(t ∧ θn))− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn))) 1{θn=θon}
]

≥
[
ε1{θn<θon} + ξ1{θn=θon}

]
1{t≥θn}

and therefore

Y n(t ∧ θn)− ϕ̄ι (t ∧ θn, Xn(t ∧ θn), Zn(t ∧ θn)) ≥ (ε ∧ ξ)1{t≥θn} ≥ 0.

By repeating the arguments of steps 3 and 4 of Section 2.2.3.1, we end up to a

contradiction.

2.2.3.3 The subsolution property on [0, T )×X

The proof of the subsolution property is a straightforward combination of the

arguments of [Bou02] and Bouchard, Elie and Touzi [BET09]. We provide it for

completeness.

step 1: Let (to, xo) ∈ [0, T ) ×X and ϕ be a smooth function of linear growth such

that

0 = (v∗ − ϕ) (to, xo) > (v∗ − ϕ) (t, x) for (to, xo) 6= (t, x) ∈ [0, T )×X.

We assume that v∗(to, xo) > −κ and we show that

H∗ϕ(to, xo) ≤ 0.

Assume to the contrary that

4η := H∗ϕ(to, xo) > 0.

By (2.2.6), and after possibly changing η > 0, we may �nd ε > 0 and ι > 0

su�ciently small such that

µY (x, y, u)− Luϕι(t, x) ≥ 2η

for some u ∈ N0,η (t, x, y,Dϕι(t, x), ϕι), for all (t, x, y) ∈ [0, T ) ×X × R such that

(t, x) ∈ Bε(to, xo) and |y − ϕι(t, x)| ≤ η
4 , where ϕι(t, x) := ϕ(t, x) + fι(x), recall

(2.2.18) and (2.2.19). Observe that we still have

0 = (v∗ − ϕι) (to, xo) = max
[0,T )×X

(strict) (v∗ − ϕι) . (2.2.37)
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For ε su�ciently small, and after possibly changing η > 0, Assumption 2.2.4 then

implies that

min

µY (x, y, ν̂ (t, x, y,Dϕι(t, x)))− Lν̂(t,x,y,Dϕι(t,x))ϕι(t, x),

G ν̂(t,x,y,Dϕι(t,x)),eϕι(t, x)

 ≥ η
for λ-a.e. e ∈ E and for all (t, x, y) ∈ [0, T )×X× R

s.t. (t, x) ∈ Bε(to, xo) and |y − ϕι(t, x)| ≤ η

4
,

(2.2.38)

where ν̂ is a locally Lipschitz map satisfying

ν̂ (t, x, y,Dϕι(t, x)) ∈ N0,η (t, x, y,Dϕι(t, x), ϕι) on Bε(to, xo). (2.2.39)

Observe that, since (to, xo) is a strict maximizer in (2.2.37), we have

−ζ := max
∂pBε(to,xo)

(v∗ − ϕι) < 0

where ∂pBε(to, xo) denotes the parabolic boundary of Bε(to, xo). As in the previous

sections, by (2.2.20), we have for all (t, x) ∈ [0, T )×Bc
ε(xo)

(v∗ − ϕι) (t, x) ≤ −γε,ι.

Thus, for all (t, x) ∈ ([to, to + ε)×Bc
ε (xo)) ∪

(
{to + ε} ×Bε(xo)

)
,

(v∗ − ϕι) (t, x) ≤ − (γε,ι ∧ ζ) =: −ξ < 0. (2.2.40)

step 2: We now show that (2.2.38), (2.2.39) and (2.2.40) lead to a contradiction of

(GDPj2).

Let (tn, xn)n≥1 be a sequence in [0, T )×X which converges to (to, xo) and such that

v(tn, xn)→ v∗(to, xo). Set yn := v(tn, xn)− n−1, and observe that

γn := yn − ϕι(tn, xn)→ 0. (2.2.41)

Also notice that yn ≥ −κ for n large enough.

Let Zn := (Xn, Y n) denote the solution of (2.2.1) associated to the Markovian

control ν̂n := ν̂ (·, Xn, Y n, Dϕι(·, Xn)) and the initial condition Zn(tn) = (xn, yn).

Since ν̂ is locally Lipschitz, this solution is well de�ned up to the stopping time

θn := inf
{
s ≥ tn : |Y n(s)− ϕι (s,Xn(s))| ≥ η

4

}
∧ θon, (2.2.42)

with

θon := inf {s ≥ tn : (s,Xn(s)) /∈ Bε(to, xo)} . (2.2.43)
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Note that (2.2.38), (2.2.41), and a standard comparison theorem implies that

Y n (θn)− ϕι (θn, X
n (θn)) ≥ η

4
on

{
|Y n (θn)− ϕι (θn, X

n (θn))| ≥ η

4

}
for n large enough. Indeed, Y n (θn)−ϕι (θn, X

n (θn)) ≥ γn > −ε for n large enough.

Since −v ≥ −v∗ ≥ −ϕι, we then deduce from (2.2.40), (2.2.42) and (2.2.43) that

Y n(θn)− v (θn, X
n(θn))

≥1{θn<θon} (Y n(θn)− ϕι (θn, X
n(θn)))

+ 1{θn=θon} (Y n(θon)− v∗ (θon, X
n(θon)))

≥η
4
1{θn<θon} + 1{θn=θon} (Y n(θon)− v∗ (θon, X

n(θon)))

≥η
4
1{θn<θon} + 1{θn=θon} (Y n(θon) + ξ − ϕι (θon, X

n(θon)))

≥η
4
∧ ξ + 1{θn=θon} (Y n(θon)− ϕι (θon, X

n(θon))) .

(2.2.44)

We may continue by using Itô's formula:

Y n(θn)− v (θn, X
n(θn)) ≥ η

4
∧ ξ + 1{θn=θon}

(
γn +

∫ θn

tn

α (s,Xn
s , Y

n
s ) ds

+

∫ θn

tn

∫
E
δ (s,Xn

s , Y
n
s , e) J(de, ds)

)
where

α(t, x, y) := µY (x, y, ν̂ (t, x, y,Dϕι(t, x)))− Lν̂(t,x,y,Dϕι(t,x))ϕι(t, x)

δ(t, x, y, e) :=βY (x, y, ν̂ (t, x, y,Dϕι(t, x)) (e), e)

− ϕι (t, x+ βX (x, ν̂ (t, x, y,Dϕι(t, x)) (e), e)) + ϕι(t, x)

and the di�usion coe�cient vanishes by (2.2.39). Recalling (2.2.38), the fact that

γn → 0, and that η, ξ > 0, this implies that

Y n (θn) > v (θn, X
n (θn)) for su�ciently large n.

Since the initial position of the process Y n is yn = v (tn, xn)−n−1 < v (tn, xn), this

is clearly in contradiction with (GDPj2).

2.2.3.4 The subsolution property on {T} ×X

The proof combines arguments used in the two previous sections (2.2.3.2) and

(2.2.3.3). The only di�erence between this proof and the one in Bouchard, Elie

and Touzi [BET09] relies on the presence of the jumps. However, it can be handled
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by following [Bou02]. We then only explain the main steps. Let xo ∈ X and ϕ be a

smooth function of linear growth such that

max
X

(strict) (v∗(T, ·)− ϕ) = (v∗(T, ·)− ϕ) (xo) = 0.

Assume that, for some η > 0,

0 < δ∗ϕ(xo)

0 < 4η < ϕ(xo)− g∗(xo) = v∗(T, xo)− g∗(xo)

Set ϕι(t, x) = ϕ(x)+fι(x)+ ι
√
T − t, recall (2.2.18). Since the partial derivatives in

x of ϕ and ϕι are the same for x = xo, by (2.2.12) and Assumption 2.2.4, together

with (2.2.19), using the fact that ϕι ≥ ϕ, for ι > 0 small enough, after possibly

changing η > 0, we can �nd r, ε > 0 and a locally Lipschitz map ν̂ satisfying,

ν̂ (t, x, y,Dϕι(t, x)) ∈ N0,η (t, x, y,Dϕι(x), ϕι) . (2.2.45)

such that
0 < δ∗ϕι(t, x)

0 < 4η < ϕι(T, xo)− g∗(xo) = v∗(T, xo)− g∗(xo)
(2.2.46)

for all (t, x, y) ∈ [T − r, T ) ×X × R s.t. x ∈ Br(xo) and |y − ϕι(t, x)| ≤ ε. Since

∂tϕι → −∞ as t→ T , we deduce that, for r > 0 small enough,

µY (x, y, ν̂ (t, x, y,Dϕι(t, x)))− Lν̂(t,x,y,Dϕι(t,x))ϕι(t, x) ≥ η (2.2.47)

for all (t, x, y) ∈ [T − r, T ) × X × R s.t. x ∈ Br(xo) and |y − ϕι(t, x)| ≤ η
4 . Also

observe that, since v∗ − ϕι is upper-semicontinuous and (v∗ − ϕι) (T, xo) = 0, we

can choose r > 0 such that

v(t, x) ≤ ϕι(t, x) +
ε

2
for all (t, x) ∈ [T − r, T )×Br(xo). (2.2.48)

Moreover, combining the identity v(T, xo) = g(xo), (2.2.20), (2.2.46), (2.2.47),

(2.2.48), the fact that xo achieves a strict maximum, and using similar arguments

as those of Section 2.2.3.2 above, recall (2.2.20), we see that

v(t, x)− ϕι ≤ − (ζ ∧ γε,ι) =: −ξ (2.2.49)

for all (t, x) ∈
(
[T − r, T ]×Bc

r(xo)
)
∪ ({T} ×Br(xo)) and for some r, ε > 0 small

enough, but so that the above inequalities still hold. By following the arguments in

step 2 of Section 2.2.3.3, we see that (2.2.46), (2.2.45), (2.2.48) and (2.2.49) lead to

a contradiction of (GDPj2).
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2.3 Target reachability with controlled expected loss

2.3.1 Problem reduction

We now turn to the main motivation for the above analysis: the stochastic target

problem with controlled expected loss. Let Ψ be a measurable map from Rd+1 to R
such that, for every �xed x, the function

y 7−→ Ψ(x, y) is non-decreasing and right continuous.

We de�ne L as the closed convex hull of the image of Ψ

L := } (Ψ (X× [−κ,∞))) = [m,M ],

with m < M , m,M ∈ [−∞,+∞]. For p ∈ L, we de�ne the stochastic target

problem with controlled expected loss as follows:

v̂(t, x, p) := inf
{
y ≥ −κ : E

[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]
≥ p for some ν ∈ U

}
, (2.3.1)

with κ ∈ R+ ∪ {+∞}.

The aim of this section is to convert the problem (2.3.1) into the class of

standard stochastic target problems as de�ned in Section 2.2. The dynamic

programming equation for the target reachability with controlled expected loss will

then be deduced directly from Theorem 2.2.5 above.

Following Bouchard, Elie and Touzi [BET09], we introduce an additional con-

trolled state variable

Pα,χt,p (s) := p+

∫ s

t
αr · dWr +

∫ s

t

∫
E
χs,eJ̃(de, ds), s ∈ [t, T ],

where the additional controls α, χ are F-predictable measurable processes, with χ ∈
H2
λ and α is Rd-valued and such that E

[∫ T
0 |αs|

2 ds
]
< ∞. We denote by A the

collection of such processes (α, χ). For ν̂ := (ν, α, χ), we then set X̂ ν̂ := (Xν , Pα,χ).

We also de�ne X̂ := X × L, Û := U × Rd × L2
λ, and denote by Û = U × A the

corresponding set of admissible controls. Abusing notations, we also set Y ν̂ = Y ν .

Finally, we introduce the function

V̂ (x̂, y) := Ψ(x, y)− p, for y ≥ −κ and x̂ = (x, p) ∈ (X× L).

We make the following assumption, which allows us to use the stochastic integral

representation theorem.
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Assumption 2.3.1. Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
is square integrable for all initial condi-

tions (t, x, y) ∈ [0, T ]×X× [−κ,+∞) and controls ν ∈ U .

Following the arguments of Bouchard, Elie and Touzi [BET09], we can now relate

v̂ to a stochastic target problem with unbounded controls, and controls taking the

form of measurable functions on E.

Proposition 2.3.2. For all (t, x̂) := (t, x, p) ∈ [0, T ]× X̂, we have

v̂ (t, x̂) = u (t, x̂) = w (t, x̂) ,

where

u(t, x, p) := inf
{
y ≥ −κ : V̂

(
X̂ ν̂
t,x̂(T ), Y ν̂

t,x,y(T )
)
≥ 0 for some ν̂ ∈ Û

}
(2.3.2)

w(t, x, p) := inf

 y ≥ −κ : V̂
(
X̂ ν̂
t,x̂(T ), Y ν̂

t,x,y(T )
)
≥ 0

and Pα,χt,p ∈ L for some ν̂ ∈ Û

 . (2.3.3)

Proof.

step 1: We �rst show that v̂ ≥ u. For y > v̂(t, x, p), we may �nd ν ∈ U such

that po := E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]
≥ p. By the stochastic integral representation

theorem, recall Assumption (2.3.1), there exists (α, χ) ∈ A such that

Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)

= po +

∫ T

t
αs · dWs +

∫ T

t

∫
E
χs,eJ̃(de, ds) = Pα,χt,po (T ).

Since po ≥ p, it follows that Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ Pα,χt,p (T ), and therefore

y ≥ u(t, x, p) from the de�nition of the problem u.

step 2: We next show that u ≥ v̂. For y > u(t, x, p), we have

V̂
(
X̂ ν̂
t,x̂(T ), Y ν

t,x,y(T )
)
≥ 0

for some ν̂ = (ν, α, χ) ∈ Û . It follows that

E
[
V̂
(
X̂ ν̂
t,x̂(T ), Y ν̂

t,x,y(T )
)]

= E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
− Pα,χt,p (T )

]
≥ 0,

and since Pα,χt,p is a martingale

E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]
≥ p = E

[
Pα,χt,p (T )

]
,

so that y ≥ v̂(t, x, p) by the de�nition of v̂.

step 3: The inequality u ≤ w is obvious. To see that the converse inequality holds,

consider some y > u(t, x, p). Then there exists some ν̂ = (ν, α, χ) ∈ Û such that

Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ Pα,χt,p (T ). (2.3.4)
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De�ne

τ := T ∧ inf
{
s > t : Pα,χt,p (s) ≤ m

}
and

α̃s := αs1{s≤τ},

χ̃s,e :=
[
−
(
χs,e ∨

(
m− Pα,χt,p (s−)

))−
+ (χs,e)

+
]
1{s≤τ} for s ∈ [t, T ] .

Clearly, Pα,χt,p (T ) = P α̃,χ̃t,p (T ) on the event {τ = T}. Since P α̃,χ̃t,p (T ) = m on the event

{τ < T}, it follows from (2.3.4) that

Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ P α̃,χ̃t,p (T ).

We �nally observe that P α̃,χ̃t,p (T ) ≥ m by the de�nition of α̃ and χ̃, and that the last

inequality implies that P α̃,χ̃t,p (T ) ≤ M . By the martingale property of the process

P α̃,χ̃t,p , we conclude that it is valued in the interval [m,M ] = L. Hence, y ≥ w(t, x, p).

Let us observe that the problem (2.3.2) can be alternatively formulated as

v̂(t, x, p) = inf
{
y ≥ −κ : Y ν̂

t,x,y(T ) ≥ ĝ
(
X̂ ν̂
t,x̂(T )

)
for some ν̂ = (ν, α, χ) ∈ Û

}
where ĝ is the generalized inverse of V̂ at 0

ĝ (x̂) := inf
{
y : V̂ (x̂, y) ≥ 0

}
.

Remark 2.3.3. 1. In the case where the in�mum in the de�nition of v̂(t, x, p)

is achieved and there exists a control ν ∈ U satisfying

E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)]

= p

with y = v̂(t, x, p), the above argument shows that the corresponding process

Pα,χt,p coincides with the conditional expectation of Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)
, i.e.

Pα,χt,p (s) = E
[
Ψ
(
Xν
t,x(T ), Y ν

t,x,y(T )
)∣∣Gs] for s ∈ [t, T ].

2. Equation (2.3.3) shows that one can restrict to controls α and χ such that

Pα,χt,p takes values in L. This is rather natural since the latter should be

interpreted as a conditional expectation of Ψ, which convex hull is L, and this

corresponds to the natural domain [m,M ] of the variable p. Notice also that

the value function v̂(·, p) is constant for p < m, and equal ∞ for p > M . In

both cases, the natural domain of v̂ is therefore [0, T ]×X× [m,M ].
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3. Moreover, in the special case where m and/or M are �nite, the fact that Pα,χt,p

takes values in L allows us to consider that the jump coe�cient χ is bounded.

This will be useful in the proofs of Section 2.3.5. Indeed we may write in that

particular case

m− Pα,χt,p (s−) ≤ χs ≤M − Pα,χt,p (s−),

with Pα,χt,p (s−) ∈ [m,M ].

Example 2.3.1. Given a non-negative function h, let us consider the case where

Ψ̌(x, y) = y
h(x) ∧ 1, with the convention y

0 = +∞ for y ∈ R+. For κ = 0, we then

obtain

v̌(t, x, p) = inf

{
y ∈ R+ : E

[
Y ν
t,x,y(T )

g
(
Xν
t,x(T )

) ∧ 1

]
≥ p for some ν ∈ U

}
,

which is the problem of the expected success ratio studied in Föllmer and Leukert

[FL99]. Using (2.3.2), we see that the above problem reduces to

v̌(t, x, p) = inf
{
y ∈ R+ : V̌

(
X̂ ν̂
t,x,p(T ), Y ν̂

t,x,y(T )
)
≥ 0 for some ν̂ = (ν, α, χ) ∈ Û

}
,

where V̌ (x, p, y) = Ψ̌(x, y)− p.

Example 2.3.2. One can similarly recover the problem of stochastic target under

controlled probability of success studied in Bouchard, Elie and Touzi [BET09] and

Föllmer and Leukert [FL99]:

ṽ(t, x, p) := inf
{
y ∈ R+ : P

[
Ψ̃
(
Xν
t,x(T ), Y ν

t,x,y

)
≥ 0
]
≥ p for some ν ∈ U

}
,

for some measurable map Ψ̃ from Rd+1 into R such that, for every �xed x ∈ Rd, the
function y 7→ Ψ̃(x, y) is non-decreasing and right-continuous. The reduction of the

problem (2.3.2) leads to

ṽ(t, x, p) := inf
{
y ∈ R+ : Ṽ

(
X̂ ν̂
t,x,p(T ), Y ν̂

t,x,y

)
≥ 0 for some ν̂ ∈ Û

}
,

where Ṽ (x, p, y) = 1{Ψ̃(x,y)≥0} − p.

2.3.2 PDE characterization in the domain

In view of Proposition 2.3.2, the PDE characterization of Theorem 2.2.5 can be

extended to the problem (2.3.1). Let us �rst introduce notations associated to the

augmented system. For û = (u, α, π) ∈ Û and x̂ = (x, p) ∈ X̂, set

µ̂(x̂, û) :=

 µX(x, u)

−
∫
E
π(e)λ(de)

 , σ̂(x̂, û) :=

(
σX(x, u)

α>

)
,

β̂(x̂, û(e), e) :=

(
βX(x, u(e), e)

π(e)

)
.
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We also introduce the following operators

L̂ûϕ (t, x̂) := ∂tϕ (t, x̂) + µ̂ (x̂, û) ·Dϕ (t, x̂) +
1

2
Tr
[
σ̂σ̂> (x̂, û)D2ϕ (t, x̂)

]
Ĝû,eϕ (t, x̂) := βY (x, ϕ (t, x̂) , u(e), e)− ϕ

(
t, x̂+ β̂ (x̂, û(e), e)

)
+ ϕ (t, x̂) .

Recalling point 3 of Remark 2.3.3, we also introduce, for (x, k, q, A) ∈ R × R ×
Rd+1 × Sd+1, û = (u, α, π) ∈ Û , ε > 0 and η ∈ [−1, 1],

N̂ û(x̂, y, q) := σY (x, y, u)− σ̂(x̂, û)>q = Nu(x, y, qx)− qpα, for q = (qx, qp) ∈ Rd × R,

∆̂û,e (t, x̂, y, ψ) := βY (x, y, u, e)− ψ
(
t, x̂+ β̂ (x̂, û(e), e)

)
+ y

N̂ε,η(t, x̂, y, q, ψ) :=

û ∈ Û s.t.
∣∣∣N̂ û(x̂, y, q)

∣∣∣ ≤ ε, p+ π(e) ∈ [m,M ]

and ∆̂û,e (t, x̂, y, ψ) ≥ η for λ-a.e. e ∈ E

 (2.3.5)

Ĥε,η(Θ̂, ϕ) := sup
û∈N̂ε,η(t,x̂,y,q,ϕ)

Â
û
(Θ̂) (2.3.6)

where

Θ̂ := (t, x̂, y, k, q, A)

Â
û
(

Θ̂
)

:= −k + µY (x, y, u)− µ̂ (x̂, û) · q − 1

2
Tr
[
σ̂σ̂> (x̂, û)A

]
and

N̂(t, x̂, y, q, ψ) :=

(r, s) ∈ Rd × R : ∃ û ∈ Û s.t. r = N̂ û(x̂, y, q)

and s ≤ ∆̂û,e(t, x̂, y, ψ) for λ-a.e. e ∈ E

 ,

δ̂ := dist
(

0, N̂
c
)
− dist

(
0, N̂

)
.

The operators Ĥ∗, Ĥ∗δ̂∗ and δ̂∗ are constructed from Ĥε,η and δ̂ exactly asH∗, H∗, δ∗

and δ∗ are de�ned from Hε,η and δ. Finally, we de�ne the function

ĝ (x̂) := inf
{
y ≥ −κ : V̂ (x̂, y) ≥ 0

}
, x̂ = (x, p) ∈ X× [m,M ] .

As an almost direct consequence of Theorems 2.2.5 and 2.3.2, we obtain the viscosity

property of v̂ under the following assumptions, which are the analogs of Assumptions

2.2.3 and 2.2.4 for the augmented control system X̂. De�ne then as previously for

any ϕ ∈ C1,2,2([0, T ]× Rd × R;R), û ∈ Û and (t, x̂, z1, z2) ∈ [0, T ]× R2d+3

L̂û
X̂,Z

ϕ̄(t, x̂, z) := L̂ûϕ(t, x̂)− µ̂(x̂, u) · z1 − µY (x̂, y, u)z2, (2.3.7)

where z =: (z1, z2) ∈ Rd+1 × R and ϕ̄(t, x̂, z) := ϕ(t, x̂)− |z|2.
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Assumption 2.3.4. For all ε > 0, η ∈ [−1, 1], (to, xo, po) ∈ [0, T ]×Rd× [m,M ], ϕ ∈
C1,2([0, T ]× Rd+1;R) and �nite C1 satisfying

sup
û∈Nε,η(t,x̂,y,Dϕ,ϕ)

{
µY (x, y, u)− L̂ûϕ(t, x̂)

}
≤ 2C1

for all (t, x̂) ∈ Bε(to, x̂o) and y ∈ R s.t. |y − ϕ(t, x̂)| ≤ ε,
(2.3.8)

there exists ε′ > 0, η′ ∈ [−1, 1] and a �nite C2 such that

sup
û∈Nε′,η′ (t,x̂,y,Dϕ,ϕ)

{
µY (x, y, u)− Lu

X̂,Z
ϕ̄(t, x̂, z)

}
≤ 2C1 + |C1|

for all (t, x̂, y, z) ∈ [0, T ]× R2d+4 s.t.

 (t, x̂, z) ∈ Bε′(to, x̂o, 0)

y ∈ R s.t. |y − ϕ̄(t, x̂)| ≤ η′,

(2.3.9)

and [
µY (x, y, u)− Lû

X̂,Z
ϕ̄(t, x̂, z)

]+

1 + |Nu(x, y,Dϕ)|
≤ C2

(
1 + |σY (x, y, u)|+

d∑
i=1

∣∣σ̂i,·(x̂, u)
∣∣)

for all (t, x̂, y, z) ∈ [0, T ]× R2d+4 s.t.

 (t, x̂, z1, z2) ∈ Bε′(to, x̂o, 0)

y ∈ R s.t. |y − ϕ̄(t, x̂, z)| ≤ η′,
and u ∈ U such that ∆u,·(t, x̂, y, ϕ) ≥ η λ-a.e.

(2.3.10)

Assumption 2.3.5. (Continuity of N̂0,η(t, x, p, y, q, f)) Let B be a subset of

[0, T ] ×X × [m,M ] × R × Rd+1, f ∈ C0 ([0, T ]×X× [m,M ]) and η > 0 such that

N̂0,2η(·, f) 6= ∅ on B. Then, for every ε > 0, (to, xo, po, yo, qo) ∈Int(B) and ûo ∈
N̂0,2η (to, xo, po, yo, qo, f), there exists an open neighborhood B′ of (to, xo, po, yo, qo)

and a locally Lipschitz map ν̂ de�ned on B′ such that |ν̂ (to, xo, po, yo, qo)− ûo| ≤ ε,
and ν̂(t, x, p, y, q) ∈ N̂0,η(t, x, y, p, q, f) on B′.

As in Section 2.2.2, we shall need to de�ne the de�nition of viscosity solution we

shall use in this framework.

De�nition 2.3.6. We say that a l.s.c. (resp. u.s.c.) function U (resp. V ) is a

viscosity supersolution of Ĥ∗U ≥ 0 (resp. subsolution of Ĥ∗V ≤ 0) on [0, T )×Rd×R
if for every smooth function ϕ ∈ C1,2([0, T ] × Rd × R,R) of linear growth and

(to, xo, po) ∈ [0, T )×Rd×R such that min[0,T ]×Rd×R(U−ϕ) = (U−ϕ)(to, xo, po) = 0

(resp. max[0,T ]×Rd×R(V − ϕ) = (V − ϕ)(to, xo, po) = 0), we have

H∗ϕ(to, xo, po) ≥ 0 (resp. H∗ϕ(to, xo, po) ≤ 0).

Corollary 2.3.7. Under Assumption 2.3.4, the function v̂∗ is a viscosity superso-

lution of

Ĥ∗v̂∗ ≥ on [0, T )× X̂. (2.3.11)
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Under Assumption 2.3.5, v̂∗ is a viscosity subsolution of

min
{
v̂∗ + κ, Ĥ∗v̂

∗
}
≤ 0 on [0, T )× X̂. (2.3.12)

The supersolution property is a direct consequence of Theorem 2.2.5, the repre-

sentation (2.3.2) and point 3 of Remark 2.3.3. The subsolution property is obtained

similarly.

Example 2.3.3. Consider here the context of both Examples 2.3.1 and 2.3.2, with

the dynamics of Example 2.2.1. If the conditions of Corollary 2.3.7 are satis�ed,

direct computations lead that both v̌∗ and ṽ∗ are viscosity supersolution on [0, T )×X
of

0 ≤ −∂tϕ−
1

2
σ2Dxxϕ

− inf
π∈Π(p)

α∈Rd


1

2
|α|2Dppϕ+ Tr [σαDxpϕ]

−α (Dpϕ)> σ−1µ−Dpϕ

∫
E
π(e)λ(de)

 ,
(2.3.13)

whenever Dppϕ > 0, and with

Π(p) :=

 π ∈ L2
λ s.t., for λ-a.e. e ∈ E, p+ π ∈ [0, 1]

and
(
Dxϕ+ σ−1Dpϕα

)
β(·, e)− ϕ (·, ·+ β(·, e), ·+ π(e)) + ϕ ≥ 0

 .

Notice in this particular context that the process X is not in�uenced by the control

ν. Hence, Assumption 2.3.4 allows to control the possible unboundedness of µY in

its u-parameter, as well as the possible unboundedness of σ̂σ̂> in its a-parameter.

Indeed, recall from point 3. of Remark 2.3.3 that we may reduce to χ bounded.

Assumption 2.3.4 essentially states that σ̂σ̂>(a) is controlled in terms of 1 + |a|. We

refer to Example 2.3.4 for the argument to handle the possible unboundedness of χ.

Example 2.3.4. As we have seen in Example 2.3.3, the fact that we may restrict

to processes χ taking bounded values is crucial for the Assumption 2.3.4 to hold.

Consider for sake of simplicity the dynamics of Example 2.2.1 with d = 1 and the

problem

y(t, x, p) := inf
{
y ≥ −κ : ∃ ν ∈ U s.t. E

[
ρ
(
Y ν
t,x,y(T )− g (Xt,x(T ))

)]
≥ p
}

with g : R → R a continuous function of polynomial growth, and ρ : R → R (one

may think of ρ as an utility function or up to the sign, a loss function) such that

ρ(R) = R. The latter condition entails that the argument allowing to reduce to

controls χ taking bounded values does not hold, and we hence have to characterize

more precisely the controls (u, a, π) ∈ U × R× L2
λ such that

uβ(x, e)− ϕ(t, x+ β(x, e), p+ π(e)) + ϕ(t, x) ≥ η for λ-a.e.e ∈ E
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for some η ∈ [−1, 1] and ϕ a smooth function. This is done by a suitable use

of Assertion (2.3.8). Let the condition of Assumption 2.3.4 hold true for given

ε > 0, η ∈ [−1, 1], (to, xo, po) ∈ [0, T ]×Rd×R, ϕ ∈ C1,2,2([0, T ]×Rd×R) and �nite

C1 (assume without loss of generality that C1 > 0. We recall for (t, x, p, y, qx, qp, ϕ) ∈
[0, T ]× R2d+3 × C1,2,2([0, T ]× Rd × R) the particular form of N̂ε,η in that case

N̂ε,η(t, x, p, y, qx, qp, ϕ) :=


(u, a, π) ∈ R2 × L2

λ s.t. |uσ(x)− qxσ(x)− qpa| ≤ ε

uβ(x, e)− ϕ(t, x+ β(x, e), p+ π(e)) + ϕ(t, x) ≥ η

for λ-a.e. e ∈ E

 .

Hence, by possibly diminishing ε > 0, we have


uµ(x)− ∂tϕ− ∂xϕµ(x) + ∂pϕ

∫
E
π(e)λ(de)

−1

2
∂xxϕσ(x)2 − 1

2
∂ppϕa

2
x,u − σ(x)ax,u∂pxϕ

 (t, x, p) ≤ C1

for all (t, x, p) ∈ Bε(to, xo, po), ζt,x,p, qp ∈ R s.t.


|ζt,x,pσ(x)| ≤ ε

qp ∈ Bε(∂pϕ(to, xo, po))

|qp| ≥ ε/2

and (u, π) ∈ R× L2
λ s.t.

uβ(x, e)− ϕ(t, x+ β(x, e), p+ π(e)) + ϕ(t, x) ≥ η,

for λ-a.e. e ∈ E,

where

ax,u :=
σ(x)

qp
(u− ∂xϕ(t, x, p)− ζt,x,p) .

Hence we have

(
∂pϕ

∫
E
π(e)λ(de) +At,x,p +Bt,x,pu−

1

2
∂ppϕ

σ(x)2

q2
p

u2

)
(t, x, p) ≤ C1, (2.3.14)

with

At,x,p :=

 −∂tϕ− ∂xϕµ(x)− 1

2
∂xxϕσ(x)2

+
σ(x)2

qp
∂pxϕ(ϕx + ζt,x,p)−

σ(x)2

q2
p

∂ppϕ(∂xϕ+ ζt,x,p)

 (t, x, p)

Bt,x,p :=

(
µ(x)− σ(x)2

qp
∂pxϕ+ ∂ppϕ

σ(x)2

q2
p

(∂xϕ+ ζt,x,p)

)
(t, x, p),
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and �nally, since σ > 0, and µ, σ are continuous, there is �nite C ′ > 0 such that(
∂p(t, x, p)ϕ

∫
E
π(e)λ(de)

)+

≤ C ′
(
1 + u2

)
(2.3.15)

for all (t, x, p) ∈ Bε(to, xo, po), ζt,x,p, qp ∈ R s.t.


|ζt,x,pσ(x)| ≤ ε

qp ∈ Bε(∂pϕ(to, xo, po))

|qp| ≥ ε/2
and (u, π) ∈ R× L2

λ s.t. uβ(x)− ϕ(t, x+ β(x), p+ π) + ϕ(t, x) ≥ η.

Observe now that (2.3.14) implies that, after possibly changing ε > 0, we have(
∂pϕ

∫
E
π(e)λ(de) +Aιt,x,p +Bι

t,x,pu−
1

2
∂ppϕ

σ(x)2

q2
p

u2

)
(t, x, p) ≤ 2C1,

for all (t, x, p) ∈ Bε(to, xo, po), ζt,x,p, qp, ι ∈ R s.t.


|ζt,x,pσ(x)| ≤ ε

qp ∈ Bε(∂pϕ(to, xo, po))

|qp| ≥ ε/2
|ι| ≤ ε

and (u, π) ∈ R× L2
λ s.t.

uβ(x, e)− ϕ(t, x+ β(x, e), p+ π(e)) + ϕ(t, x) ≥ η,

for λ-a.e. e ∈ E,

with

Aιt,x,p :=

 −∂tϕ− (∂xϕ+ ι)µ(x)− 1

2
∂xxϕσ(x)2

+
σ(x)2

qp
∂pxϕ(ϕx + ζt,x,p)−

σ(x)2

q2
p

∂ppϕ(∂xϕ+ ζt,x,p)

 (t, x, p)

Bι
t,x,p :=

(
µ(x)(1 + ι)− σ(x)2

qp
∂pxϕ+ ∂ppϕ

σ(x)2

q2
p

(∂xϕ+ ζt,x,p)

)
(t, x, p),

which entails that (2.3.9) holds true.

We now turn to the veri�cation of Assertion (2.3.9), and will consider two cases.

Case 1: ∂pϕ(to, xo, po) 6= 0. Hence, in view of (2.3.15) and since (2.3.9) holds,

after possibly changing ε > 0, we have[
µY (x, y, u)− Lû

X̂,Z
ϕ̄(t, x̂, z)

]+

1 + |Nu(x, y,Dϕ)|
≤ C ′

(
1 + |u|2 + |a|2

)
|uσ(x)− ∂xϕ(t, x, p)σ(x)− a∂pϕ(t, x, p)|

for all (t, x̂, y, z) ∈ [0, T ]× R2d+4 s.t.

 (t, x̂, z1, z2) ∈ Bε′(to, x̂o, 0)

y ∈ R s.t. |y − ϕ̄(t, x̂, z)| ≤ ε′,
and u ∈ U such that ∆u,·(t, x̂, y, ϕ) ≥ η λ-a.e.,

(2.3.16)
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where ϕ̄ is de�ned from ϕ as in Assumption 2.3.4, C ′ is a �nite constant, and with

∂pϕ 6= 0 on Bε(to, xo, po). If the set U happens to be unbounded, this reasoning is

not su�cient to ensure that Assertion (2.3.9) holds, when it is trivial otherwise.

Case 2: Consider now that

∂pϕ(to, xo, po) = 0. (2.3.17)

Recalling the conditions of Assumption 2.3.4, after possibly changing ε > 0, η ∈
[−1, 1]:{
−∂tϕ− µ(x)∂xϕ−

1

2
σ(x)2∂xxϕ− σ(x)a∂xpϕ−

1

2
a2 (∂ppϕ− ε)

}
(to, xo, po) ≤ 2C1

for all (a, π) ∈ R×∆η(a; to, xo, po), with

∆η(a; t, x, p) :=

π ∈ L2
λ s.t.


(
∂xϕ(·) +

a∂pϕ(·)
σ(x)

)
β(x)

−ϕ (t, x+ β(x, e), p+ π(e)) + ϕ(·)

 (t, x, p) ≥ η

 .

Recall from (2.3.17) that ∆η(a; to, xo, po) does not depend on a ∈ R so that, for

π ∈ ∆η(a; to, xo, po) �xed, we have for all a ∈ R{
−∂tϕ− µ(x)∂xϕ−

1

2
σ(x)2∂xxϕ− σ(x)a∂xpϕ−

1

2
a2 (∂ppϕ− ε)

}
(to, xo, po) ≤ 2C1,

and there is then a �nite positive constant C such that

−1

2
a2 (∂ppϕ(to, xo, po)− ε) ≤ C (1 + |a|) .

Taking a large enough gives then ∂pp(to, xo, po)ϕ ≥ ε, and hence, by smoothness of

ϕ, we have ∂ppϕ > 0 on some neighborhood B of (to, xo, po). We �nally have[
µY (x, y, u)− Lû

X̂,Z
ϕ̄(t, x̂, z)

]+

1 + |Nu(x, y,Dϕ)|
≤ C ′

(
1 + |u|2 − ∂ppϕ(t, x, p) |a|2

)
|uσ(x)− ∂xϕ(t, x, p)σ(x)− a∂pϕ(t, x, p)|

for all (t, x̂, y, z) ∈ [0, T ]× R2d+4 s.t.

 (t, x̂, z1, z2) ∈ Bε′(to, x̂o, 0)

y ∈ R s.t. |y − ϕ̄(t, x̂, z)| ≤ ε′,
and u ∈ U such that ∆u,·(t, x̂, y, ϕ) ≥ η λ-a.e.,

(2.3.18)

for some ε′, and again, Assertion (2.3.9) will be obvious in the case where U is

bounded.

2.3.3 Boundary conditions and state constraint

In our general context, the natural domain of P is [m,M ]. In the case where m or

M are �nite, we need to specify the boundary conditions at the end points m and



2.3. Target reachability with controlled expected loss 59

M . By de�nition of the stochastic target problem with controlled expected loss, we

have

v̂(·,M) = v and v̂(·,m) = −κ, (2.3.19)

where

v(t, x) := inf
{
y ≥ −κ : Φ

(
Xν
t,x(T ), Y ν

t,x,y(T )
)
≥ 0 for some ν ∈ U

}
,

with

Φ(x, y) := Ψ(x, y)−M. (2.3.20)

Also, since Ψ is non-decreasing in y, we know that v̂ is non-decreasing in p. Hence,

−κ ≤ v̂∗(·,m) ≤ v̂∗(·, p) ≤ v̂∗(·,M) ≤ v∗ for p ∈ [m,M ],

v̂∗(·, p) = −κ for p < m and v̂∗(·, p) =∞ for p > M,
(2.3.21)

and one can naturally expect that v̂∗(·,m) = −κ and v̂∗(·,M) = v∗. However,

the function v̂ may have discontinuities at p = m or p = M and, in general, the

boundary conditions have to be stated in a weak form, see (2.3.27) and (2.3.61)

below. This corresponds to the classical state-space constraint problems, see

[Bar94, FS06, Son86a, Son86b] and the references therein.

To obtain a characterization of v̂ on these boundaries, we shall appeal to the

following additional assumptions. Assumptions 2.3.10 and 2.3.11 already appeared

in Bouchard, Elie and Touzi [BET09]. Assumptions 2.3.8, 2.3.9 and 2.3.12 will be

used to handled the non-local operator. Also notice that Assumption 2.3.11 linked

with Assumption 2.3.4.

Assumption 2.3.8. The following hold.

(H1) For some integer γ ≥ 1, v̂∗(·,m)+ satis�es the growth condition

sup
[0,T ]×Rd

|w(t, x)|
1 + |x|γ

<∞. (2.3.22)

(H2) There is a function Λ on Rd satisfying

(H2-i) For all x ∈ X and y > Λ(x), there exists ū ∈ U such that

βY (x, y, ū(e), e)− Λ (x+ βX (x, ū(e), e)) + Λ(x) > 0 for λ-a.e. e ∈ E.

(H2-ii) Λ (x) / |x|γ → +∞ as |x| → ∞.

(H2-iii) Λ ≤ −κ on X.



60 Chapter 2. Controlled Loss with Jump Di�usions

Assumption 2.3.9. The set E is �nite and λ(e) > 0 for all e ∈ E.

Assumption 2.3.10. For all (x, y, q) ∈ X× (−κ,∞)× Rd, we have

{u ∈ U : Nu(x, y, q) = 0}  U.

We need for the next assumption to introduce the following set, for (x, y, q) ∈
Rd × R× Rd:

Ñε(x, y, q) := {u ∈ U : |Nu(x, y, q)| ≤ ε} . (2.3.23)

Assumption 2.3.11. For all compact subset D of Rd × R × R × Rd × Sd, there
exists C > 0 such that

sup
u∈Ñε(x,y,q)

{
µY (x, y, u)− k − µX(x, u) · q − 1

2
Tr
[
σXσ

>
X(x, u)A

]}
≤ C

(
1 + ε2

)
for all ε > 0 and (x, y, k, q, A) ∈ D.

Assumption 2.3.12. The maps βX , βY are continuous on X×E and X×R×E
uniformly in u ∈ U . Moreover, βX , βY and σX satisfy the following condition

ess sup
u∈U,e∈E

{|βX(·, u(e), e)|+ |βY (·, u(e), e)|+ |σX(·, u)|} is locally bounded

Since the main concern of this chapter is the analysis of the stochastic target

problem under controlled loss with jumps, we do not establish a comparison result

of viscosity supersolutions of (2.2.10)-(2.2.13) and subsolutions of (2.2.11)-(2.2.14).

Nonetheless, as in Bouchard, Elie and Touzi [BET09], we need such a comparison

result in order to establish the boundary conditions of this section.

Assumption 2.3.13. There is a class of functions C containing all [−κ,+∞) valued

functions dominated by v∗ such that, for every

• v1 ∈ C, lower semi-continuous viscosity supersolution of (2.2.10)-(2.2.13) on

[0, T ]×X

• v2 ∈ C, upper semi-continuous viscosity subsolution of (2.2.11)-(2.2.14) on

[0, T ]×X

we have v1 ≥ v2.

The main results of this section shows that the natural boundary conditions

(2.3.19) indeed holds true, whenever the comparison principle of Assumption 2.3.13

holds and under the above additional conditions.

Theorem 2.3.14. Assume that Assumptions 2.3.5, 2.3.9 and 2.3.12 hold true.
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(i) Assume that m > −∞. Under Assumptions 2.3.8, and 2.3.10, we have

v̂∗(·,m) = −κ on [0, T )×X and v̂∗(·,m) = −κ on [0, T ]×X.

(ii) Assume that M < ∞. Under Assumptions 2.3.11 and 2.3.4, v̂∗(·,M) is a

viscosity supersolution of (2.2.10)-(2.2.13) on [0, T ] × X. In particular, if

in addition the comparison principle of Assumption 2.3.13 is satis�ed, then

v̂∗(·,M) = v̂∗(·,M) = v∗ = v∗ on [0, T ]×X.

The proof is reported in Section 2.3.5.

Remark 2.3.15. This subsection is similar to the one in Bouchard, Elie and Touzi

[BET09], where the authors studied the boundary conditions at p = 0 and p = 1

in the case of target reachability under controlled probability, i.e. Ψ is of the form

Ψ(x, y) = 1{y≥g(x)}. In this paper, the natural domain of P is [0, 1], and the authors

studied the behavior of the value function v̂ when p→ 0 and p→ 1.

Remark 2.3.16. Consider the framework of Example 2.3.4. If the set U happens

to be unbounded, then Assumption 2.3.12 is clearly not satis�ed. Recalling the

discussion in Example 2.3.4, Assumption 2.3.4 is satis�ed if U is bounded. However,

if we are interested in the case where the set U is unbounded, we might consider

the following reasoning.

We introduce the set Un consisting in controls of U taking their values in Un,

where Un is the subset of u ∈ U satisfying ‖u‖ ≤ n, as well as the corresponding

value function

yn(t, x, p) := inf
{
y ≥ −κ : ∃ ν ∈ Un s.t. E

[
ρ
(
Y ν
t,x,y(T )− g (Xt,x(T ))

)]
≥ p
}
.

Considering the problem de�ned in terms of yn instead of y, the previous arguments

entails that Assumption 2.3.4 is satis�ed, so that, by Corollary 2.3.7, yn is a viscosity

supersolution of

Ĥ∗nyn∗ ≥ on [0, T )× X̂, (2.3.24)

where Ĥ∗n is the operator de�ned in terms of controls u ∈ Un. The sequence of

functions (yn)n≥1 is clearly decreasing, and obviously

yn ≥ y.

De�ning y∞ := infn≥1 yn, we clearly have y∞∗ ≥ y∗, where y∞∗ and y∗ denote the

lower semi-continuous envelopes of y∞ and y. On the other hand, standard estimates

imply that, for any ν ∈ U and

νn := ν1{‖ν‖≤n},
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we have

E
[
ρ
(
Y νn

t,x,y(T )− g (Xt,x(T ))
)]
−→
n→∞

E
[
ρ
(
Y ν
t,x,y(T )− g (Xt,x(T ))

)]
.

For any η > 0 and y > y(t, x, p+2η), we thus have y ≥ yn(t, x, p) for n large enough,

so that y∗ ≥ y∞∗ . If the operator H
∗
n corresponding to the controls taking values in

Un happens to have enough regularity, we shall recover from [Bar94, Lemma 4.2]

that y∞∗ is a viscosity supersolution of H∗y∞∗ ≥ 0, where

y∞∗ (t, x, p) := lim inf
n→∞

(t′,x′,p′)→(t,x,p)

yn∗ (t
′, x′, p′).

By construction, we have y∞∗ ≤ y∞∗ , and hence y∞∗ ≤ y. Hence, if we provide an

explicit lower bound for y∞∗ (see e.g. Bouchard, Elie and Touzi [BET09, Section 4]),

we shall have the same lower bound for y.

2.3.4 On the Terminal Condition

The boundary condition at T for v̂∗ and v̂∗ can be easily derived from the charac-

terization of Theorem 2.2.9.

Corollary 2.3.17. Under Assumption 2.3.4, the function x̂ ∈ X̂ 7→ v̂∗(T, x̂) is a

viscosity supersolution of

min
{

(v̂∗(T, ·)− ĝ∗)1{Ĥ∗v̂∗(T,·)<∞}, δ̂
∗v̂∗(T, ·)

}
≥ 0 on X̂.

If in addition, Assumption 2.3.5 holds, then x̂ ∈ X̂ 7→ v̂∗(T, x̂) is a viscosity subso-

lution of

min
{
v̂∗(T, ·)− ĝ∗, δ̂∗v̂∗(T, ·)

}
≤ 0 on X̂.

The condition Ĥ∗v̂∗(T, ·) < ∞ may not be satis�ed because the control (α, χ)

appearing in the de�nition of Ĥ may not be bounded. It follows that the above

boundary condition may be useless in most examples.

The rest of this section is devoted to the discussion of conditions under which a

precise boundary condition can be speci�ed.

Proposition 2.3.18. (i) Assume that for all sequence (tn, xn, yn, pn, νn)n≥1 of

[0, T )×X×R+ × [m,M ]×U such that (tn, xn, yn, pn)→ (T, x, y, p) ∈ {T} ×
X×R+× [m,M ], there exists a sequence of P-absolutely continuous probability
measure (Qn)n≥1, de�ned by dQn

dP =: Hn for some sequence of non-negative
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random variable (Hn)n≥1, such that

lim sup
n→∞

EQ
n [
Y νn
tn,xn,yn

]
≤ y,

lim sup
n→∞

E
[∣∣HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ(xn, pn)
∣∣] = 0

and lim inf
n→∞

E
[
Hn } ĝ

(
Xνn
tn,xn(T ), pn

)]
≥ }ĝ(x, p),

(2.3.25)

where D+
p stands for the right derivative in p. Then, v̂∗(T, x, p) ≥ }ĝ(x, p)

for all (x, p) ∈ X× [0, 1].

(ii) Let the conditions (ii) of Theorem 2.3.14 hold true and assume that v̂∗ is

convex in its p-variable and that v∗(T, x) ≤ g(x). Then v̂∗(T, x, p) ≤ }ĝ(x, p)

for all (x, p) ∈ X× [m,M ].

Proof. (i) Given a sequence (tn, xn, pn)n≥1 in [0, T ) × X × (m,M) such that

(tn, xn, pn) → (T, x, p) and v̂ (tn, xn, pn) → v̂∗(T, x, p) as n → ∞, we can �nd

ν̂n = (νn, αn, χn) ∈ Û such that

V̂
(
X̂ ν̂n
tn,xn,pn(T ), Y ν̂n

tn,xn,yn(T )
)
≥ 0,

where yn := v̂(tn, xn, pn) + n−1 → v̂∗(T, x, p), recall (2.3.2). This implies that

Y ν̂n
tn,xn,yn(T ) ≥ ĝ

(
X̂ ν̂n
tn,xn,pn(T )

)
,

and, by the de�nition of the convex hull of ĝ,

HnY ν̂n
tn,xn,yn(T ) ≥ Hn } ĝ

(
X̂ ν̂n
tn,xn,pn(T )

)
.

Using the convexity of }ĝ then leads to

HnY ν̂n
tn,xn,yn(T )

≥ Hn } ĝ
(
Xνn
tn,xn(T ), pn

)
+HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

) (
Pαn,χntn,pn (T )− pn

)
= Hn } ĝ

(
Xνn
tn,xn(T ), pn

)
+D+

p } ĝ (xn, pn)Pαn,χntn,pn (T )

−HnpnD
+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
+ Pαn,χntn,pn (T )

[
HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ (xn, pn)
]

≥ Hn } ĝ
(
Xνn
tn,xn(T ), pn

)
+D+

p } ĝ (xn, pn)Pαn,χntn,pn (T )

−HnpnD
+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
−M

∣∣HnD+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ (xn, pn)
∣∣ ,

where the last inequality follows from the fact that we can always assume that

Pαn,χntn,pn takes values in [m,M ], see (2.3.3). Taking the expectation under P and
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using the fact that Pαn,χntn,pn is a P-martingale, we obtain

EQ
n
[
Y ν̂n
tn,xn,yn(T )

]
≥ E

[
Hn } ĝ

(
Xνn
tn,xn(T ), pn

)
+ pn

(
D+
p } ĝ (xn, pn)−HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

))
−M

∣∣HnD+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ (xn, pn)
∣∣] .

Passing to the limit, and using (2.3.25) leads to v̂∗(T, x, p) ≥ }ĝ(x, p).

(ii) Using (2.3.21) and the convexity of v̂∗ together with the de�nition of the convex

hull of a function lead to the required result.

Example 2.3.5. In the context of Example 2.3.1, we may easily notice that the

generalized inverse of V̌ at 0,

ǧ(x, p) := inf
{
y ≥ −κ : V̌ (x, p, y) ≥ 0

}
,

satis�es

ǧ(x, p) = pg(x)

and is convex in p. Moreover, for the dynamics of Example 2.2.1, the convexity of

v̌ in its p-variable is quite obvious, since Y ν
t,x,µy(T ) = µY ν

t,x,y(T ) for any µ ∈ [0, 1],

and the expectation operator is linear.

We have already shown in Section 2.3.2 that v̌∗ is a supersolution of (2.3.13). we

deduce that v̌∗ satis�es the boundary conditions

v̌∗(·, 1) = v and v̌∗(·, 0) = 0 on [0, T )×X

and v̌∗(T, x, p) ≥ pg(x) on X× [0, 1].
(2.3.26)

Example 2.3.6. In the context of Example 2.3.2, we de�ne the function

g̃(x, p) := inf
{
y ≥ −κ : Ṽ (x, p, y) ≥ 0

}
and let ψ̃ be the generalized inverse of Ψ̃ at 0, i.e.

ψ̃(x) := inf
{
y ≥ −κ : Ψ̃(x, y) ≥ 0

}
.

Then, g̃(x, p) = ψ̃(x)1{p>0} for x ∈ X and p ∈ [0, 1]. The convexity of ṽ is far

from being obvious. However, one may notice that the convex hull of g̃ in p is

} (ĝ) (x, p) = pg(x), with g = ψ̃−1, and that the condition of Corollary 2.3.7 and (i)

of Proposition 2.3.18 are satis�ed. It follows that, as for the expected success ratio

problem of Example 2.3.5 above, ṽ∗ is a viscosity supersolution on [0, T ]×X× [0, 1]

of (2.3.13) - (2.3.26).
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Remark 2.3.19. In Bouchard, Elie and Touzi [BET09], the authors considered the

case ĝ(x, p) = g(x)1{p>0}, so that }ĝ(x, p) = pg(x), and therefore D+
p } ĝ(x, p) =

g(x). Then, Assumption 2.3.25, in the case of Bouchard, Elie and Touzi [BET09],

should take the form:

lim sup
n→∞

E
[∣∣Hng

(
Xνn
tn,xn(T )

)
− g(x)

∣∣] = 0.

The Assumption 2.3.25 is then almost the counterpart of the one made in their

proposition 3.2. The di�erence comes from a slight error in their proof 2 where they

use the fact that Pαn,χntn,pn is a Q-martingale while it is only a P-martingale, a priori.

2.3.5 Derivation of the boundary conditions for the stochastic tar-

get with controlled expected loss

We now prove Theorem 2.3.14. These boundary conditions need only to be speci�ed

in the case where m and/or M are �nite.

2.3.5.1 The endpoint p = M , �nite

In order to show that v̂∗(·,M) is a viscosity supersolution of (2.2.10)-(2.2.13), it

su�ces to show that v̂∗(·,M) is a viscosity supersolution on [0, T )×X of

max {v̂∗(·,M)− v∗, H∗v̂∗(·,M)} ≥ 0, (2.3.27)

and that v̂∗(T, ·,M) is a viscosity supersolution on X of

max

 v̂∗(T, ·,M)− v∗,

min
{

(v̂∗(T, ·,M)− j∗)1{H∗v̂∗(T,·,M)<∞}, δ
∗v̂∗(T, ·,M)

}
 ≥ 0, (2.3.28)

where j is the generalized inverse of Φ at 0:

j(x) := inf {y ≥ −κ : Φ(x, y) ≥ 0} ,

recall (2.3.20).

To convince ourself, let us show for instance that (2.3.27) implies (2.2.10). Let

(to, xo) be a local minimizer of v̂∗(·,M) − ϕ for some smooth function ϕ of linear

growth. Then

• either v̂∗(to, xo,M) < v∗(to, xo) and then (2.2.10) holds for ϕ at (to, xo)

2The author would like to thank Bruno Bouchard, Romuald Elie and Nizar Touzi for pointing

out this issue and for their explanations on how to �x it in their particular context.
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• or v̂∗(to, xo,M) = v∗(to, xo) so that (to, xo) is a local minimizer of v∗−ϕ, and
(2.2.10) holds for ϕ at (to, xo) by the viscosity property of v∗, see Theorem

2.2.5.

step 1: We �rst show that for any smooth function ϕ of linear growth on [0, T ] ×
X× [m,M ] and (to, xo) ∈ [0, T )×X such that

(strict) min
[0,T )×X×[m,M ]

(v̂∗ − ϕ) = (v̂∗ − ϕ) (to, xo,M) = 0, (2.3.29)

we have

max
{
ϕ(to, xo,M)− v∗(to, xo), Ĥ∗ϕ(to, xo,M)

}
≥ 0.

If not, we can �nd η, ε, ι > 0 such that

max
{
ϕι − v∗(t, x), µY (x, y, u)− L̂ûϕι(t, x, p),

}
≤ −2η

for all û := (u, α, π) ∈ N̂ε,−η (t, x, y,Dϕι(t, x, p), ϕι)

and (t, x, p, y) ∈ [0, T )×X× (m,M ]× R

s.t. (t, x, p) ∈ Bε(to, xo)× [M − ε,M ] and |y − ϕι(t, x, p)| ≤
η

2
,

(2.3.30)

with ϕι(t, x, p) := ϕ(t, x, p)− fι(x)− gι(p), fι de�ned as in (2.2.18), and

gι : p ∈ [m,M ] 7−→ 2ι

π

∫ π|p−M |

0
sin2 udu1{|p−M |≤1} + ι1{|p−M |>1},

recall (2.2.19), and observe that the same results hold for gι. We now de�ne as

previously for all z ∈ X× [m,M ]× R

ϕ̄ι(t, x̂, z) := ϕι(t, x̂)− |z|2.

By Assumption 2.3.4, there exists a �nite constant C > 0 such that, after possibly

changing ε, η > 0, we have

µY (x, y, u)− L̂û
X̂,Z

ϕ̄ι(t, x̂, z) ≤ −η

for all (t, x̂, z, y) ∈ [0, T )× (X× [m,M ])2 × R2 s.t.

(t, x̂, z) ∈ Bε(to, x̂o, 0)

|y − ϕ̄ι(t, x̂, z)| ≤
η

4
,

for all u ∈ Nε,−η (t, x̂, y,Dϕι(t, x), ϕι)

and [
µY (x, y, u)− L̂û

X̂,Z
ϕ̄ι(t, x̂, z)

]+

1 + |Nu(x, y,Dϕι|
≤ C

(
1 + |σY (x, y, u)|+

d∑
i=1

∣∣σ̂i,·(x̂, u)
∣∣)

for all (t, x̂, z) ∈ Bε(to, x̂o, 0) and y ∈ R s.t. |y − ϕ̄ι(t, x̂, z)| ≤
η

4

and for all u ∈ U s.t. ∆u,·(t, x, y, ϕι) ≥ −η λ-a.e.
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Let (tn, xn, pn)n be a sequence in [0, T )×X× (m,M) which converges to (to, xo,M)

and such that v̂(tn, xn, pn)→ v̂∗(to, xo,M). Set yn := v̂(tn, xn, pn)+n−1 and observe

that

γn := yn − ϕι(tn, xn, pn)→ 0.

For each n ≥ 1, we have yn > v̂(tn, xn, pn). Then, by (GDPj1), there exists some

ν̂n := (νn, αn, χn) ∈ Û such that

Y n(θn) ≥ v̂∗ (θn, X
n(θn), Pn(θn)) ≥ ϕ̄ι (θn, X

n(θn), Pn(θn), Zn(θn))

where

θon := {s ≥ tn : (s,Xn(s), Pn(s), Zn(s)) ∈ D}

θn :=
{
s ≥ tn : |Y n(s)− ϕι (s,Xn(s), Pn(s))| ≥ η

4

}
∧ θon

together with

(Xn, Pn, Y n, Zn) :=
(
Xνn

tn,xn , P
αn,χn

tn,pn , Y νn

tn,xn,yn , Z
ν̂n

tn,x̂n

)
,

Z ν̂
n

tn,x̂n(s) =

∫ s

tn

 µ̂
(
X̂n(u), ν̂nu

)
µY

(
X̂n(u), Y n(u), νn(u)

)
 du

and

Vε(to, xo, 0) := ({to + ε} ×Bε(xo, 0)) ∪ ([to, to + ε)× ∂Bε(xo, 0))

D := (Vε(to, xo, 0)× [M − ε,M ]) ∪ (Bε(to, xo)× [M − ε,M ])c ×Bε(0).

It follows from (2.3.30) and (2.3.29), recall (2.2.20), that

ζ := inf
D

(v̂ − ϕ̄ι) > 0.

Using the de�nition of θn and ζ > 0, this implies that

Y n(θn)− ϕ̄ι (θn, X
n(θn), Pn(θn), Zn(θn)) ≥ ζ ∧ η

4
.

By arguing as in Section 2.2.3.1, this leads to a contradiction.

step 2: We now show (2.3.27), i.e. for any smooth function ϕ on [0, T ] × X and

(to, xo) ∈ [0, T )×X such that

(strict) min
[0,T )×X

(v̂∗(·,M)− ϕ) = (v̂∗(·,M)− ϕ) (to, xo) = 0,

we have

max {ϕ(to, xo)− v∗(to, xo), H∗ϕ(to, xo)} ≥ 0. (2.3.31)
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a. The �rst step is similar as in Bouchard, Elie and Touzi [BET09], up to modi�-

cations due the need for linear growth test function in x. For every k, we introduce

the smooth function

ϕk(t, x, p) := ϕ(t, x)−
(
f(x) + (t− to)2 + ψk(p)

)
,

where f is de�ned as in (2.2.18) with ι = 1, and for some ρ > 0,

ψk(p) := −ρk
∫ M

p

e2kM

ek(r+M) − e2kM+1
dr, k > 0. (2.3.32)

Observe that

ψk(p) ≥ 0 for all k > 0, p ∈ [m,M ],

−2ρk ≤ ψ′k(p) =ρk
e2kM

ek(p+M) − e2kM+1
≤ − ρk

2(e− 1)

for k large enough,

(2.3.33)

ψ′′k(p) = −ρk2 ek(p+3M)(
ek(p+M) − e2kM+1

)2 < 0 for all k > 0, (2.3.34)

lim
k→∞

(ψ′k(pk))
2∣∣ψ′′k(pk)
∣∣ = ρ if (pk)k is a sequence in [m,M ]

s.t. lim
k→∞

k(M − pk) = 0.

(2.3.35)

Let (tk, xk, pk) be a minimizer of v̂∗ − ϕk on [0, T ] × BX1 (xo) × [m,M ], where

BX1 (xo) := B1(xo) ∩ X and B1(xo) is the open unit ball centered at xo. Observe

that, by de�nition of (tk, xk, pk) and (to, xo),

(v̂∗(·,M)− ϕ) (to, xo)

= (v̂∗ − ϕk) (to, xo,M)

≥ (v̂∗ − ϕk) (tk, xk, pk)

= (v̂∗(·, pk)− ϕ) (tk, xk) +
(
f(xk) + (tk − to)2 + ψk(pk)

)
≥ (v̂∗(·, pk)− ϕ) (tk, xk) +

(
f(xk) + (tk − to)2 +

ρk

2(e− 1)
(M − pk)

)
,

where the last inequality follows from (2.3.33), for k large enough, and the fact that

ψk(M) = 0. Since v̂∗ ≥ −κ by construction and ϕ is bounded, this implies that the

sequence (tk, xk, pk)k≥1 is bounded, and therefore converges to some (t∗, x∗, p∗) up

to a subsequence. Clearly, p∗ = M , since otherwise we would have k(M −pk)→∞.
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By de�nition of (to, xo), this implies that

(v̂∗(·,M)− ϕ) (to, xo)

≥ lim inf
k→∞

(v̂∗ − ϕk) (tk, xk, pk)

≥ (v̂∗(·,M)− ϕ) (t∗, x∗) +

(
f(x∗) + (t∗ − to)2 + lim inf

k→∞

ρk

2(e− 1)
(M − pk)

)
≥ (v̂∗(·,M)− ϕ) (to, xo) +

(
f(x∗) + (t∗ − to)2 + lim inf

k→∞

ρk

2(e− 1)
(M − pk)

)
.

This shows that, after possibly passing to a subsequence,

(tk, xk, pk)→ (to, xo,M), k(M − pk)→ 0,

and v̂∗(tk, xk, pk)→ v̂∗(to, xo,M).
(2.3.36)

b. We now go on with the arguments of Bouchard, Elie and Touzi [BET09], up to

a non trivial adaptation required by the non-local parts of the operator. In order to

prove (2.3.27), we assume

v̂∗ (to, xo,M)− v∗ (to, xo) < 0 (2.3.37)

and we intend to prove that

H∗ϕ (to, xo) ≥ 0. (2.3.38)

By (2.3.36) and the lower semicontinuity of v̂∗, it follows from (2.3.37) that the se-

quence (tk, xk, pk)k≥1 of minimizers of the di�erence v̂∗−ϕk satis�es ϕk (tk, xk, pk)−
v∗ (tk, xk) < 0, after possibly passing to a subsequence. By Corollary 2.3.7 together

with the result of step 1, Remark 2.2.10, Assumptions 2.3.12 and 2.3.4, and the fact

ϕk is of linear growth in x and p, we deduce that

Ĥ∗
(
tk, xk, pk, ϕk, ∂tϕk, Dϕk, D

2ϕk, v̂∗
)
≥ 0 for every k > 1.

Now observe that, by (2.3.36), and the de�nition of ϕk:(
∂tϕk, Dxϕk, D

2
xxϕk

)
(tk, xk, pk) −→

k→∞

(
∂tϕ,Dxϕ,D

2
xxϕ
)

(to, xo)(
Dpϕk, D

2
xpϕk, D

2
ppϕk

)
(tk, xk, pk) =

(
−ψ′k (pk) , 0,−ψ′′k (pk)

)
∀ k > 1.

(2.3.39)

By de�nition of Ĥ∗, we can �nd sequences (εk)k≥1,
(
x̂0
k

)
k≥1

, (yk)k≥1, (qk)k≥1,

(Ak)k≥1 such that εk > 0, x̂0
k =

(
x0
k, p

0
k

)
∈ X × [m,M ], yk ≥ −κ, qk =

(
qxk , q

p
k

)
∈

Rd × R, Ak is a symmetric matrix of Sd+1, with rows
(
Axxk , A

xp
k

)
∈ Sd × Rd and(

AxpTk , Appk

)
∈ Rd × R,

εk → 0, x̂0
k → (xo,M)

and
∣∣(yk, qk, Ak)− (ϕk, Dϕk, D2ϕk

)
(tk, xk, pk)

∣∣ ≤ k−1,
(2.3.40)
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where
(
tk, x̂

0
k

)
belongs to a compact neighborhood of (to, xo,M), and

Ĥεk,−k−1

(
tk, x̂

0
k, yk, ∂tϕ(to, xo), qk, Ak, v̂∗

)
≥ −k−1. (2.3.41)

By the de�nition of Ĥεk,−k−1 , we may �nd a sequence

(uk, αk, πk) ∈ N̂εk,−2k−1

(
tk, x̂

0
k, yk, qk, v̂∗

)
such that

−∂tϕ (to, xo) + µY
(
x0
k, yk, uk

)
− µX

(
x0
k, uk

)
· qxk −

1

2
Tr
[
σXσ

>
X

(
x0
k, uk

)
Axxk

]
≥ −2k−1 +

1

2
|αk|2Appk + σ>X

(
x0
k, uk

)
Axpk · αk −

∫
E
πk(e)λ(de)qpk

(2.3.42)

and

βY
(
x0
k, yk, uk(e), e

)
− v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
, p0
k + πk(e)

)
+ yk ≥ −2k−1

for λ-a.e. e ∈ E.
(2.3.43)

Recalling (2.3.23), we observe that (uk, αk, πk) ∈ N̂εk,−2k−1 (tk, x̂k, yk, qk, v̂∗) implies

that uk ∈ Ñεk+|qpkαk|
(
x0
k, yk, q

x
k

)
. We deduce then from Assumption 2.3.11 and

(2.3.42) that, for some constant C > 0, (which may change from line to line but

does not depend on k or ρ),

C
(

1 +
∣∣qpkαk∣∣2) ≥ 1

2
|αk|2Appk + σ>X

(
x0
k, uk

)
Axpk · αk −

∫
E
πk(e)λ(de)qpk

≥ 1

2
|αk|2Appk − C

∣∣Axpk ∣∣ |αk| − ∫
E
πk(e)λ(de)qpk

(2.3.44)

where we have used the condition that supu∈U |σX(·, u)| is locally bounded. From

(2.3.33), (2.3.34), (2.3.35), (2.3.36), (2.3.39) and (2.3.40), it follows that

Appk → +∞, Axpk → 0, qpk → +∞ and

(
qpk
)2∣∣Appk ∣∣ → ρ as k →∞. (2.3.45)

Recall from (2.3.5) that

πk ≤M − pk λ-a.e., (2.3.46)

where pk ∈ [m,M ]. We may hence consider that (πk)k≥1 is bounded from above, so

that, by (2.3.44) and the fact that qpk, A
pp
k > 0

C

(
1

Appk
+

∣∣qpk∣∣2
Appk

|αk|2
)
≥ 1

2
|αk|2 − C

∣∣Axpk ∣∣2
Appk

|αk| − C
qpk
Appk

.



2.3. Target reachability with controlled expected loss 71

Hence, (2.3.45) leads to

0 ≥ lim sup
k→∞

((
1

2
− Cρ

)
|αk|2 − C

∣∣Axpk ∣∣2
Appk

|αk|

)
.

Taking ρ small enough implies that

|αk| →
k→∞

0. (2.3.47)

Moreover, since k(M−pk)→ 0, see (2.3.36), there exists εk ↓ 0 such that k(M−pk) ≤
εk. Recalling (2.3.46), this implies that πk ≤ εk

k , so that, by (2.3.33),

qpk (πk(e))
+ → 0 as k →∞ for all e ∈ E. (2.3.48)

Recalling the fact that λ(E) <∞ and that qpk > 0, the above inequalities lead to(∫
E
πk(e)λ(de)qpk

)+

→ 0. (2.3.49)

Also recall that
|qpk|

2

Appk
→ ρ, see (2.3.45), which combined with (2.3.44), (2.3.45),

(2.3.47) and (2.3.49), implies that

C
(

1 + ρAppk |αk|
2
)
≥ 1

2
|αk|2Appk +

(∫
E
πk(e)λ(de)qpk

)−
or equivalently

C
(

1 +
∣∣qpk∣∣2 |αk|2) ≥ 1

2
|αk|2

∣∣qpk∣∣2
ρ

+

(∫
E
πk(e)λ(de)qpk

)−
for some ρ > 0. Taking ρ small enough leads to∣∣Appk ∣∣ |αk|2 ≤ C, ∣∣qpk∣∣2 |αk|2 ≤ Cρ

and C + Cρ ≥
(∫

E
πk(e)λ(de)qpk

)−
.

(2.3.50)

We then deduce from the right hand side bound of (2.3.33) and (2.3.40) that

0 ≥ lim sup
k→+∞

(∫
E
πk(e)λ(de)

)−
.

Combined with (2.3.48), this shows that∫
E
πk(e)λ(de)→ 0 and πk(e)→ 0 for λ-a.e. e ∈ E. (2.3.51)
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c. We now return to (2.3.42) and the middle inequality in (2.3.50) to deduce that

−∂tϕ (to, xo) + µY
(
x0
k, yk, uk

)
− µX

(
x0
k, uk

)
· qxk −

1

2
Tr
[
σXσ

>
X

(
x0
k, uk

)
Axxk

]
≥ −2k−1 + σ>X

(
x0
k, uk

)
Axpk · αk −

(∫
E
πk(e)λ(de)qpk

)+

,

(2.3.52)

and

uk ∈ Ñεk+
√
Cρ

(
x0
k, yk, q

x
k

)
. (2.3.53)

since Appk > 0.

Consider now (2.3.43), i.e.

βY
(
x0
k, yk, uk(e), e

)
− v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
, p0
k + πk(e)

)
+ yk

≥ −2k−1 for λ-a.e. e ∈ E,
(2.3.54)

Using the upper semi-continuity of −v̂∗, the fact that βY is continuous, (2.3.51),

together with p0
k →M as k →∞, we obtain

βY
(
x0
k, yk, uk(e), e

)
− v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
,M
)

+ yk ≥ −2k−1 − ϑek
for k large enough and for λ-a.e. e ∈ E,

with ϑek ≥ 0 such that ϑek → 0 as k → ∞ for all e ∈ E. We now use Assumption

2.3.9 to deduce that there exists ϑk > 0 with ϑk → 0 as k → ∞ such that, for all

e ∈ E and k large enough,

βY
(
x0
k, yk, uk(e), e

)
−v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
,M
)
+yk ≥ −2k−1−ϑk. (2.3.55)

By combining (2.3.52) (2.3.53) and (2.3.55), we �nally obtain

Hεk+
√
Cρ,−2k−1−ϑk

(
tk, x

0
k, yk, ∂tϕ(to, xo), q

x
k , A

xx
k , v̂∗(·,M)

)
≥ −2k−1 −

(
σ>X
(
x0
k, uk

)
Axpk · αk

)−
−
(∫

E
πk(e)λ(de)qpk

)+

,

and we deduce the required result (2.3.38) by sending k → ∞ and then ρ → 0,

and recalling that
(
|αk| , Axpk ,

(∫
E πk(e)λ(de)qpk

)+)→ 0, that σX is locally bounded

uniformly in the control u, and that v̂∗ ≥ ϕ.
step 3: It remains to prove (2.3.28). The fact that v̂∗ (T, ·,M) is a viscosity super-

solution

max {v̂∗ (T, ·,M)− v∗ (T, ·) , δ∗v̂∗ (T, ·,M)} ≥ 0
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is deduced from (2.3.31) of the previous step by using the same arguments as in the

proof of (2.2.2) in Section 2.2.3.2. It remains to show that v̂∗ (T, ·,M) is a viscosity

supersolution of

max
{
v̂∗ (T, ·,M)− v∗ (T, ·) , (v̂∗ (T, ·,M)− j∗)1{H∗v̂∗(T,·,M)<∞}

}
≥ 0.

By combining the arguments of step 1 with those of Section 2.2.3.2, we �rst show

that for any smooth function ϕ̂ on X× [m,M ] and xo ∈ X such that

(strict) min
X×[m,M ]

(v̂∗(T, ·)− ϕ̂) = (v̂∗(T, ·)− ϕ̂) (xo,M) = 0,

we have

max
{
ϕ̂(xo,M)− v∗(T, xo), (ϕ̂(xo,M)− ĝ∗(xo))1{Ĥ∗ϕ̂(xo,M)<∞}

}
≥ 0. (2.3.56)

We then consider a smooth function ϕ on X and xo ∈ X such that

(strict) min
X

(v̂∗(T, ·,M)− ϕ) = (v̂∗(T, ·,M)− ϕ) (xo) = 0 (2.3.57)

and

ϕ(xo) < v̂(T, xo), (2.3.58)

and we assume that

H∗ϕ(T, xo) <∞.

We next follow the construction of step 2 of the modi�ed test functions

ϕk := ϕ(x)− (f(x) + ψk(p)) , (2.3.59)

where ψk is de�ned in (2.3.32). As in the above step 2, one can prove that the

di�erence v̂∗(T, ·) − ϕk has a local minimizer x̂k = (xk, pk) satisfying all estimates

derived in the above step 2 (forgetting about the t variable). In particular, since

H∗ϕk(xk) ≤ C for some constant C > 0 independent of k, recall (2.3.58), we deduce

from the same estimates than in step 2 that Ĥ∗ϕk (x̂k) ≤ 2C for all large k. It

then follows from Corollary 2.3.17, (2.3.56) and (2.3.58) that v̂∗ (T, x̂k) ≥ ĝ∗ (x̂k).

Sending k →∞, this provides v̂∗ (T, xo,M) ≥ ĝ∗(xo,M), and the proof is completed

by observing that ĝ∗(xo,M) = j∗(xo), by de�nition of j.

2.3.5.2 The endpoint p = m, �nite

We organize the proof in four steps. As in the previous section, steps 1, 2 and 3

focus on t < T while step 4 concentrates on t = T . Steps 1 and 4 are similar to

arguments used in Bouchard, Elie and Touzi [BET09]. The main di�erence comes
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from steps 2 and 3.

step 1: We �rst show that for any smooth function ϕ̂ on [0, T ) ×X × [m,M ] and

(t1, x1) ∈ [0, T )×X such that

(strict) max
[0,T )×X×[m,M ]

(v̂∗ − ϕ̂) = (v̂∗ − ϕ̂) (t1, x1,m) = 0, (2.3.60)

we have

min
{
v̂∗ + κ, Ĥ∗ϕ̂

}
(t1, x1,m) ≤ 0. (2.3.61)

The proof is very similar to that of Sections (2.2.3.3) up to the modi�cation explained

in the proof of Corollary 2.3.17, and the fact that we have to handle the state

constraint p = m. For completeness, we report here the entire argument. Assume

to the contrary that

4η := min
{
v̂∗ + κ, Ĥ∗ϕ̂

}
(t1, x1,m) > 0

i.e., for some ε > 0, and after possibly changing η > 0,

min
{
ϕ̂ι (t, x̂) + κ, µY (x, y, û)− L̂ûϕ̂ι (t, x̂)

}
≥ 2η

for some û = (u, α, π) ∈ N̂0,η (t, x̂, y,Dϕ̂ι (t, x̂) , ϕ̂ι)

for all (t, x̂, y) ∈ [0, T )× X̂× R

s.t. (t, x̂) ∈ Bε (t1, x1)× [m,m+ ε], |y − ϕ̂ι (t, x̂)| ≤ ε,

(2.3.62)

where ϕ̂ι (t, x̂) := ϕ̂ (t, x̂) + fι(x) + gι(p) with ι small enough, for fι and gι de�ned

as in (2.2.18) with x1 and m respectively in place of xo. Then, Assumptions 2.3.5

and 2.3.9 imply that

min


ϕ̂ι (t, x̂) + κ,

µY (x, y, ν̂ (t, x̂, y,Dϕ̂ι (t, x̂)))− L̂ν̂(t,x̂,y,Dϕ̂ι(t,x̂))ϕ̂ι (t, x̂) ,

min
e∈E
Ĝ ν̂(t,x̂,y,Dϕ̂ι(t,x̂)),eϕ̂ι (t, x̂)

 ≥ η
for (t, x̂, y) ∈ [0, T ]× X̂× R s.t.

(t, x̂) ∈ Bε (t1, x1)× [m,m+ ε] and |y − ϕ̂ι (t, x̂)| ≤ η

4
,

(2.3.63)

where ν̂ is a locally Lipschitz map satisfying

ν̂ (t, x̂, y,Dϕ̂ι (t, x̂)) ∈ N̂0,η (t, x̂, y,Dϕ̂ι (t, x̂) , ϕ̂ι)

on Bε (t1, x1)× [m,m+ ε].
(2.3.64)

Observe that, since (t1, x1,m) is a strict maximizer in (2.3.60) and by (2.2.20), we

have

− ξ := − (ζ ∧ γε,ι) := max
D

(v̂∗ − ϕ̂ι) < 0, (2.3.65)
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where

D :=
(
{t1 + ε} ×Bε(x1)× [m,m+ ε]

)
∪ ([t1, t1 + ε)× (Bε(x1)× [m,m+ ε))c) .

Also, we deduce from (2.3.62) and the fact that v̂ (·,m) = −κ by de�nition, that

0 > −η ≥ max
Bε(t1,x1)

(v̂ − ϕ̂) (·,m). (2.3.66)

By following the arguments in step 2 of Section 2.2.3.3, we see that (2.3.63),

(2.3.64), (2.3.65) and (2.3.66) lead to a contradiction of (GDPj2).

step 2: Let ϕ be a smooth function on [0, T ]×X and (to, xo) ∈ [0, T )×X such that

(strict) max
[0,T )×X

(v̂∗ (·,m)− ϕ) = (v̂∗ (·,m)− ϕ) (to, xo) = 0.

By de�nition, we have v̂∗(to, xo,m) ≥ −κ. Let us assume that

v̂∗(to, xo,m) + κ =: 4η > 0, (2.3.67)

and work towards a contradiction. De�ne the function ψk as in (2.3.32) with m in

place M :

ψk(p) := ρk

∫ p

m

e2km

ek(r+m) − e2km+1
dr, k > 0,

and for f de�ned as in (2.2.18) for ι = 1,

ϕk(t, x, p) := ϕ(t, x) +
(
f(x) + (t− to)2 + ψk(p)

)
.

Arguing as in step 2 of the preceding section, we see that the di�erence v̂∗−ϕk has
a local maximizer (tk, xk, pk) on ([0, T ]×X× [m,M ]) satisfying

(tk, xk, pk)→ (to, xo,m), k(pk −m)→ 0 and v̂∗(tk, xk, pk)→ v̂∗(to, xo,m),

so that(
∂tϕk, Dxϕk, D

2
xxϕk

)
(tk, xk, pk)→

(
∂tϕ,Dxϕ,D

2
xxϕ
)

(to, xo) as k →∞(
Dpϕk, D

2
xpϕk, D

2
ppϕk

)
(tk, xk, pk) =

(
ψ′k (pk) , 0, ψ

′′
k (pk)

)
.

Since v̂∗(to, xo,m) > −κ, we have v̂∗(tk, xk, pk) > −κ for all k, after possibly passing
to a subsequence. Then, it follows from Corollary 2.3.7, step 1 and the arguments

of Remark 2.2.10 under Assumption 2.3.12, that

Ĥ∗(·, ϕk, ∂tϕk, Dϕk, D2ϕk, v̂
∗)(tk, xk, pk) ≤ 0 for k > 1.

By the de�nition of Ĥ∗, we deduce that there exist sequences (εk)k≥1, (x̂k)k≥1,

(yk)k≥1, (qk)k≥1 and (Ak)k≥1 such that εk > 0, x̂0
k =

(
x0
k, p

0
k

)
∈ X × [m,M ], yk ≥
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−κ, qk =
(
qxk , q

p
k

)
∈ Rd × R, and Ak ∈ Sd+1 with rows

(
Axxk , A

xp
k

)
∈ Sd × Rd and(

AxpTk , Appk

)
∈ Rd × R satisfying

εk → 0, x̂0
k → (xo,m),

and
∣∣(yk, qk, Ak)− (ϕk, Dϕk, D2ϕk

)
(tk, xk, pk)

∣∣ ≤ k−1
(2.3.68)

for which

Ĥεk,k−1 (tk, x̂k, yk, ∂tϕ(to, xo), qk, Ak, v̂
∗) ≤ k−1. (2.3.69)

Fix u ∈ U , π = 0 and set αk := Nu(x0
k, yk, q

x
k)/qpk. Since π = 0, it follows from

(2.3.69) together with (2.3.5), (2.3.6) and Assumption 2.3.9 that either (u, αk, π) ∈
N̂εk,k−1 (t, x̂k, yk, qk, v̂

∗) and then

µY
(
x0
k, yk, u

)
− ∂tϕ(to, xo)− µX

(
x0
k, u
)
· qxk

− 1

2

(
Tr
[
σXσ

>
X(x0

k, u)Axxk

]
+ |α|2Appk + 2σ>X(x0

k, u)Axpk · α
)
≤ k−1

(2.3.70)

or

βY (x0
k, yk, u(ek), ek)− v̂∗

(
tk, x

0
k + βX

(
x0
k, u(ek), ek

)
, p0
k

)
+ yk ≤ k−1, (2.3.71)

for some sequence (ek)k≥1 ⊆ E. Using the same kind of arguments as in step 2 of

the previous section leads to

Appk < 0, qpk < 0 for large k, lim
k→∞

Axpk = 0 and lim
k→∞

(
qpk
)2∣∣Appk ∣∣ = ρ. (2.3.72)

Consider �rst the case where (2.3.70) holds along a subsequence. Using (2.3.70) and

(2.3.72), we then deduce that

∣∣Appk ∣∣ |αk|2 =

∣∣Appk ∣∣(
qpk
)2 ∣∣Nu

(
x0
k, yk, q

x
k

)∣∣2 ≤ C,
for some C > 0 independent of k and ρ. Sending k → ∞ in the above inequality,

we then deduce from (2.3.68) and (2.3.72) that

ρ−1 |Nu (xo, ϕ(to, xo), Dϕ(to, xo))|2 ≤ C.

Since ρ > 0 can be chosen arbitrarily close to 0, this shows that

Nu (xo, ϕ(to, xo), Dϕ(to, xo)) = 0, and the arbitrariness of u ∈ U is in contradic-

tion with Assumption 2.3.10. This contradicts (2.3.67). Hence, if (2.3.67) holds,

then (2.3.71) holds along a subsequence, i.e.

βY (x0
k, yk, u(ek), ek)− v̂∗

(
tk, x

0
k + βX

(
x0
k, u(ek), ek

)
, p0
k

)
+ yk ≤ k−1.
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Sending k → ∞, using the arbitrariness of u ∈ U and Assumption 2.3.9 then leads

to

Ǧv̂∗(to, xo,m) ≤ 0,

where

Ǧϕ = sup
u∈U

min
e∈E
{βY (·, u(e), e)− ϕ(·+ βX(·, u(e), e)) + ϕ} .

Hence

min
{
v̂∗ + κ, Ǧv̂∗

}
(to, xo,m) ≤ 0 (2.3.73)

on [0, T )×X.

step 3: Now observe that, by standard arguments, for every (t, x) ∈ [0, T ) ×X, we

may �nd a sequence of smooth functions (ϕn)n≥1 such that ϕn ↓ v̂∗, (tn, xn, pn)n≥1

converging towards (t, x,m) and such that (ϕn − v̂∗) achieves a maximum at

(tn, xn, pn). We refer to [Bou02, Lemma 6.1] for the approximation argument by

continuous functions. The extension to an approximation by smooth functions is

straightforward.

It thus follows from step 2, that v̂∗(·,m) is a classical subsolution of (2.3.73) on

[0, T ) × X. In order to conclude the proof, we now appeal to the following easy

lemma.

Lemma 2.3.1. Assume that H2 holds. Let w be a upper semi-continuous subsolu-

tion of

min
{
w + κ, Ǧw

}
≤ 0 on X (2.3.74)

such that w+ satis�es the growth condition (2.3.22). Then, w ≤ −κ on X.

Applying Lemma 2.3.1 to v̂∗(to, ·,m) for an arbitrary to ∈ [0, T ) then leads to

v̂∗(·,m) = −κ, since v̂∗(·,m) ≥ −κ and v̂∗− satis�es (2.3.22) by assumption.

step 4: We �nally show that v̂∗(T, ·,m) = −κ on X. Since v̂∗(t, x,m) = −κ for

t < T and x ∈ X, we can �nd a sequence (tn, xn, pn)n≥1 in [0, T )×X× (m,M) such

that (tn, xn, pn)→ (T, x,m) and −κ ≤ v̂(tn, xn, pn) ≤ −κ+ 1
n for all n ≥ 0. Passing

to the limit leads to the required result.

Proof of Lemma 2.3.1.

We assume that supX(w + κ) > 0 and work towards a contradiction. It follows

from the growth condition (2.3.22) on w, (H2-ii) and (H2-iii) that there is some

xo ∈ X such that

max
X

(w − Λ) = (w − Λ)(xo) =: ξ > 0. (2.3.75)
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By (H2-i), Assumption 2.3.9 and (2.3.75), there exists some ū ∈ U such that

min
e∈E

βY (xo, w(xo), ū(e), e)− Λ (xo + βX (xo, ū(e), e)) + Λ(xo) > 0. (2.3.76)

Since w is a subsolution on X of (2.3.74), we have Ǧw(xo) ≤ 0. Recalling Assump-

tion 2.3.9, we may then �nd ê ∈ E such that

βY (xo, w(xo), ū(ê), ê)− w (xo + βX (xo, ū(ê), ê)) + w(xo) ≤ 0.

Combining the last inequality with (2.3.76) leads to

w(xo)− Λ(xo) < w (xo + βX (xo, ū(ê), ê))− Λ (xo + βX (xo, ū(ê))) ,

which contradicts the de�nition of xo in (2.3.75). )
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3.1 Introduction

We study a stochastic (semi) game of the following form. Given an initial condition

(t, z) in time and space, we try to �nd a strategy u[·] such that the controlled

state process Zu[ν],ν
t,z (·) reaches a certain target at the given time T , no matter

which control ν is chosen by the adverse player. The target is speci�ed in terms of

expected loss; that is, we are given a real-valued (�loss�) function ` and try to keep

the expected loss above a given threshold p ∈ R:

ess inf
ν

E
[
`
(
Z

u[ν],ν
t,z (T )

)
|Ft
]
≥ p a.s. (3.1.1)
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Instead of a game, one may also see this as a target problem under Knightian

uncertainty; then the adverse player has the role of choosing a worst-case scenario.

Our aim is to describe, for given t, the set Λ(t) of all pairs (z, p) such that

there exists a strategy u attaining the target. We provide, in a general abstract

framework, a geometric dynamic programming principle (GDP) for this set. To

this end, p is seen as an additional state variable and formulated dynamically via

a family {Mν} of auxiliary martingales with expectation p, indexed by the adverse

controls ν. Heuristically, the GDP then takes the following form: Λ(t) consists of

all (z, p) such that there exists a strategy u and a family {Mν} satisfying(
Z

u[ν],ν
t,z (τ) ,Mν (τ)

)
∈ Λ (τ) a.s.

for all adverse controls ν and all stopping times τ ≥ t. The precise version of the

GDP, stated in Theorem 3.2.1, incorporates several relaxations that allow us to deal

with various technical problems. In particular, the selection of ε-optimal strategies

is solved by a covering argument which is possible due a continuity assumption on

` and a relaxation in the variable p. The martingale Mν is constructed from the

semimartingale decomposition of the adverse player's value process.

Our GDP is tailored such that the dynamic programming equation can be de-

rived in the viscosity sense. We exemplify this in Theorem 3.3.3 for the standard

setup where the state process is determined by a stochastic di�erential equation

(SDE) with coe�cients controlled by the two players; however, the general GDP ap-

plies also in other situations such as singular control. The solution of the equation,

a partial di�erential equation (PDE) in our example, corresponds to the indicator

function of (the complement of) the graph of Λ. In Theorem 3.3.5, we specialize to a

case with a monotonicity condition that is particularly suitable for pricing problems

in mathematical �nance. Finally, in order to illustrate various points made through-

out the chapter, we consider a concrete example of pricing an option with partial

hedging, according to a loss constraint, in a model where the drift and volatility

coe�cients of the underlying are uncertain. In a worst-case analysis, the uncer-

tainty corresponds to an adverse player choosing the coe�cients; a formula for the

corresponding seller's price is given in Theorem 3.4.1.

Stochastic target (control) problems with almost-sure constraints, correspond-

ing to the case where ` is an indicator function and ν is absent, were introduced

in [ST02a, ST02c] as an extension of the classical superhedging problem [EKQ95]

in mathematical �nance. Stochastic target problems with controlled loss were �rst

studied in [BET09] and are inspired by the quantile hedging problem [FL99]. The

present chapter is the �rst to consider stochastic target games. The rigorous treat-

ment of zero-sum stochastic di�erential games was pioneered by [FS89], where the



3.2. Geometric dynamic programming principle 83

mentioned selection problem for ε-optimal strategies was treated by a discretization

and a passage to continuous-time limit in the PDEs. Let us remark, however, that

we have not been able to achieve satisfactory results for our problem using such

techniques. We have been importantly in�uenced by [BL08], where the value func-

tions are de�ned in terms of essential in�ma and suprema, and then shown to be

deterministic. The formulation with an essential in�mum (rather than an in�mum

of suitable expectations) in (3.1.1) is crucial in our case, mainly because {Mν} is
constructed by a method of non-Markovian control, which raises the fairly delicate

problem of dealing with one nullset for every adverse control ν.

The remainder of the chapter is organized as follows. Section 3.2 contains the

abstract setup and GDP. In Section 3.3 we specialize to the case of a controlled SDE

and derive the corresponding PDE, �rst in the general case and then in the monotone

case. The problem of hedging under uncertainty is discussed in Section 3.4.

3.2 Geometric dynamic programming principle

In this section, we obtain our geometric dynamic programming principle (GDP) in

an abstract framework. Some of our assumptions are simply the conditions we need

in the proof of the theorem; we will illustrate later how to actually verify them in a

typical setup.

3.2.1 Problem statement

We �x a time horizon T > 0 and a probability space (Ω,F ,P) equipped with a �ltra-

tion F = (Ft)t∈[0,T ] satisfying the usual conditions of right-continuity and complete-

ness. We shall consider two sets U and V of controls; for the sake of concreteness, we

assume that each of these sets consists of stochastic processes on (Ω,F), indexed by

[0, T ], and with values in some sets U and V , respectively. Moreover, let U be a set

of mappings u : V → U . Each u ∈ U is called a strategy and the notation u[ν] will

be used for the control it associates with ν ∈ V. In applications, U will be chosen

to consist of mappings that are non-anticipating; see Section 3.3 for an example.

Furthermore, we are given a metric space (Z, dZ) and, for each (t, z) ∈ [0, T ] × Z
and (u, ν) ∈ U× V, an adapted càdlàg process Zu[ν],ν

t,z (·) with values in Z satisfying

Z
u[ν],ν
t,z (t) = z. For brevity, we set

Zu,ν
t,z := Z

u[ν],ν
t,z .

Let ` : Z → R be a Borel-measurable function satisfying

E
[∣∣` (Zu,ν

t,z (T )
)∣∣] <∞ for all (t, z, u, ν) ∈ [0, T ]×Z × U× V. (3.2.1)
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We interpret ` as a loss (or �utility�) function and denote by

I(t, z, u, ν) := E
[
`
(
Zu,ν
t,z (T )

)
|Ft
]
, (t, z, u, ν) ∈ [0, T ]×Z × U× V

the expected loss given ν (for the player choosing u) and by

J(t, z, u) := ess inf
ν∈V

I(t, z, u, ν), (t, z, u) ∈ [0, T ]×Z × U

the worst-case expected loss. The main object of this chapter is the reachability set

Λ(t) :=
{

(z, p) ∈ Z×R : there exists u ∈ U such that J(t, z, u) ≥ p P-a.s.
}
. (3.2.2)

These are the initial conditions (z, p) such that starting at time t, the player choos-

ing u can attain an expected loss not worse than p, regardless of the adverse player's

action ν. The main aim of this chapter is to provide a geometric dynamic program-

ming principle for Λ(t). For the case without adverse player, a corresponding result

was obtained in [ST02a] for the target problem with almost-sure constraints and

in [BET09] for the problem with controlled loss.

As mentioned above, the dynamic programming for the problem (3.2.2) requires

the introduction of a suitable set of martingales starting from p ∈ R. This role will be
played by certain families1 {Mν , ν ∈ V} of martingales which should be considered

as additional controls. More precisely, we denote byMt,p the set of all real-valued

(right-continuous) martingales M satisfying M(t) = p P-a.s., and we �x a set Mt,p

of families {Mν , ν ∈ V} ⊂ Mt,p; further assumptions on Mt,p will be introduced

below. Since these martingales are not present in the original problem (3.2.2), we

can choose Mt,p to our convenience; see also Remark 3.2.2 below.

As usual in optimal control, we shall need to concatenate controls and strategies

in time according to certain events. We use the notation

ν ⊕τ ν̄ := ν1[0,τ ] + ν̄1(τ,T ]

for the concatenation of two controls ν, ν̄ ∈ V at a stopping time τ . We also introduce

the set {
ν =(t,τ ] ν̄

}
:=
{
ω ∈ Ω : νs(ω) = ν̄s(ω) for all s ∈ (t, τ(ω)]

}
.

Analogous notation is used for elements of U .
In contrast to the setting of control, strategies can be concatenated only at

particular events and stopping times, as otherwise the resulting strategies would fail

to be elements of U (in particular, because they may fail to be non-anticipating, see

1 Of course, there is no mathematical di�erence between families indexed by V, like {Mν , ν ∈ V},
and mappings on V, like u. We shall use both notions interchangeably, depending on notational

convenience.
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also Section 3.3). Therefore, we need to formalize the events and stopping times

which are admissible for this purpose: For each t ≤ T , we consider a set Ft whose

elements are families {Aν , ν ∈ V} ⊂ Ft of events indexed by V, as well as a set

Tt whose elements are families {τν , ν ∈ V} ⊂ Tt, where Tt denotes the set of all

stopping times with values in [t, T ]. We assume that Tt contains any deterministic

time s ∈ [t, T ] (seen as a constant family τν ≡ s, ν ∈ V). In practice, the sets Ft

and Tt will not contain all families of events and stopping times, respectively; one

will impose additional conditions on ν 7→ Aν and ν 7→ τν that are compatible with

the conditions de�ning U. Both sets should be seen as auxiliary objects which make

it easier (if not possible) to verify the dynamic programming conditions below.

3.2.2 The geometric dynamic programming principle

We can now state the conditions for our main result. The �rst one concerns the

concatenation of controls and strategies.

Assumption (C). The following hold for all t ∈ [0, T ].

(C1) Fix ν0, ν1, ν2 ∈ V and A ∈ Ft. Then ν := ν0 ⊕t (ν11A + ν21Ac) ∈ V.

(C2) Fix (uj)j≥0 ⊂ U and let {Aνj , ν ∈ V}j≥1 ⊂ Ft be such that {Aνj , j ≥ 1} forms a
partition of Ω for each ν ∈ V. Then u ∈ U for

u[ν] := u0[ν]⊕t
∑
j≥1

uj [ν]1Aνj , ν ∈ V.

(C3) Let u ∈ U and ν ∈ V. Then u[ν ⊕t ·] ∈ U.

(C4) Let {Aν , ν ∈ V} ⊂ Ft be a family of events such that Aν1 ∩ {ν1 =(0,t] ν2} =

Aν2 ∩ {ν1 =(0,t] ν2} for all ν1, ν2 ∈ V. Then {Aν , ν ∈ V} ∈ Ft.

(C5) Let {τν , ν ∈ V} ∈ Tt. Then {τν1 ≤ s} = {τν2 ≤ s} for P-a.e. ω ∈ {ν1 =(0,s]

ν2}, for all ν1, ν2 ∈ V and s ∈ [t, T ].

(C6) Let {τν , ν ∈ V} ∈ Tt. Then, for all t ≤ s1 ≤ s2 ≤ T , {{τν ∈ (s1, s2]}, ν ∈ V}
and {{τν /∈ (s1, s2]}, ν ∈ V} belong to Fs2.

The second condition concerns the behavior of the state process.

Assumption (Z). The following hold for all (t, z, p) ∈ [0, T ]×Z×R and s ∈ [t, T ].

(Z1) Zu1,ν
t,z (s)(ω) = Zu2,ν

t,z (s)(ω) for P-a.e. ω ∈ {u1[ν] =(t,s] u2[ν]}, for all ν ∈ V and

u1, u2 ∈ U.
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(Z2) Zu,ν1
t,z (s)(ω) = Zu,ν2

t,z (s)(ω) for P-a.e. ω ∈ {ν1 =(0,s] ν2}, for all u ∈ U and

ν1, ν2 ∈ V.

(Z3) Mν1(s)(ω) = Mν2(s)(ω) for P-a.e. ω ∈ {ν1 =(0,s] ν2}, for all {Mν , ν ∈ V} ∈
Mt,p and ν1, ν2 ∈ V.

(Z4) There exists a constant K(t, z) ∈ R such that

ess sup
u∈U

ess inf
ν∈V

E
[
`(Zu,ν

t,z (T ))|Ft
]

= K(t, z) P-a.s.

The nontrivial assumption here is, of course, (Z4), stating that (a version of)

the random variable ess supu∈U ess infν∈V E[`(Zu,ν
t,z (T ))|Ft] is deterministic. For the

game determined by a Brownian SDE as considered in Section 3.3, this will be true

by a result of [BL08], which, in turn, goes back to an idea of [Pen97] (see also

[LP09]). An extension to jump di�usions can be found in [BHL11].

While the above assumptions are fundamental, the following conditions are of

technical nature. We shall illustrate later how they can be veri�ed.

Assumption (I). Let (t, z) ∈ [0, T ]×Z, u ∈ U and ν ∈ V.

(I1) There exists an adapted right-continuous process Nu,ν
t,z of class (D) such that

ess inf
ν̄∈V

E
[
`
(
Zu,ν⊕sν̄
t,z (T )

)
|Fs
]
≥ Nu,ν

t,z (s) P-a.s. for all s ∈ [t, T ].

(I2) There exists an adapted right-continuous process Lu,ν
t,z such that Lu,ν

t,z (s) ∈ L1

and

ess inf
ū∈U

E
[
`
(
Zu⊕sū,ν
t,z (T )

)
|Fs
]
≥ Lu,ν

t,z (s) P-a.s. for all s ∈ [t, T ].

Moreover, Lu,ν1
t,z (s)(ω) = Lu,ν2

t,z (s)(ω) for P-a.e. ω ∈ {ν1 =(0,s] ν2}, for all u ∈ U
and ν1, ν2 ∈ V.

Assumption (R). Let (t, z) ∈ [0, T ]×Z.

(R1) Fix s ∈ [t, T ] and ε > 0. Then there exist a Borel-measurable partition (Bj)j≥1

of Z and a sequence (zj)j≥1 ⊂ Z such that for all u ∈ U, ν ∈ V and j ≥ 1,

E
[
`(Zu,ν

t,z (T ))|Fs
]
≥ I(s, zj , u, ν)− ε,

ess inf
ν̄∈V

E
[
`(Zu,ν⊕sν̄

t,z (T ))|Fs
]
≤ J(s, zj , u[ν ⊕s ·]) + ε,

K(s, zj)− ε ≤ K(s, Zu,ν
t,z (s)) ≤ K(s, zj) + ε

 P-a.s. on {Zu,ν
t,z (s) ∈ Bj}.
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(R2) lim
δ→0

sup
ν∈V,τ∈Tt

P

[
sup

0≤h≤δ
dZ
(
Zu,ν
t,z (τ + h), Zu,ν

t,z (τ)
)
≥ ε

]
= 0 for all u ∈ U and

ε > 0.

Our GDP will be stated in terms of the closure

Λ̄(t) :=

{
(z, p) ∈ Z × R : there exist (tn, zn, pn)→ (t, z, p)

such that (zn, pn) ∈ Λ(tn) and tn ≥ t for all n ≥ 1

}

and the uniform interior

Λ̊ι(t) :=
{

(z, p) ∈ Z × R : (t′, z′, p′) ∈ Bι(t, z, p) implies (z′, p′) ∈ Λ(t′)
}
,

where Bι(t, z, p) ⊂ [0, T ] × Z × R denotes the open ball with center (t, z, p) and

radius ι > 0 (with respect to the distance function dZ(z, z′) + |p − p′| + |t − t′|).
The relaxation from Λ to Λ̄ and Λ̊ι essentially allows us to reduce to stopping times

with countably many values in the proof of the GDP and thus to avoid regularity

assumptions in the time variable. We shall also relax the variable p in the assertion

of (GDP2); this is inspired by [BN11] and important for the covering argument in

the proof of (GDP2), which, in turn, is crucial due to the lack of a measurable

selection theorem for strategies. Of course, all our relaxations are tailored such that

they will not interfere substantially with the derivation of the dynamic programming

equation; cf. Section 3.3.

Theorem 3.2.1. Fix (t, z, p) ∈ [0, T ] × Z × R and let Assumptions (C), (Z), (I)

and (R) hold true.

(GDP1) If (z, p) ∈ Λ(t), then there exist u ∈ U and {Mν , ν ∈ V} ⊂Mt,p such that(
Zu,ν
t,z (τ) ,Mν (τ)

)
∈ Λ̄ (τ) P-a.s. for all ν ∈ V and τ ∈ Tt.

(GDP2) Let ι > 0, u ∈ U, {Mν , ν ∈ V} ∈Mt,p and {τν , ν ∈ V} ∈ Tt be such that(
Zu,ν
t,z (τν),Mν(τν)

)
∈ Λ̊ι(τ

ν) P-a.s. for all ν ∈ V,

and suppose that
{
Mν(τν)+ : ν ∈ V

}
and

{
Lu,ν
t,z (τ ′)− : ν ∈ V, τ ′ ∈ Tt

}
are uniformly

integrable, where Lu,ν
t,z is as in (I2). Then (z, p− ε) ∈ Λ(t) for all ε > 0.

The proof is stated in Sections 3.2.3 and 3.2.4 below.

Remark 3.2.2. We shall see in the proof that the family {Mν , ν ∈ V} ⊂ Mt,p in

(GDP1) can actually be chosen to be non-anticipating in the sense of (Z3). However,

this will not be used when (GDP1) is applied to derive the dynamic programming

equation. Whether {Mν , ν ∈ V} is an element of Mt,p will depend on the de�nition
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of the latter set; in fact, we did not make any assumption about its richness. In

many application, it is possible to take Mt,p to be the set of all non-anticipating

families inMt,p; however, we prefer to leave some freedom for the de�nition of Mt,p

since this may be useful in ensuring the uniform integrability required in (GDP2).

We conclude this section with a version of the GDP for the case Z = Rd, where
we show how to reduce from standard regularity conditions on the state process and

the loss function to the assumptions (R1) and (I).

Corollary 3.2.3. Let Assumptions (C), (Z) and (R2) hold true. Assume also that

` is continuous and that there exist constants C ≥ 0 and q̄ > q ≥ 0 and a locally

bounded function % : Rd 7→ R+ such that

|`(z)| ≤ C(1 + |z|q), (3.2.3)

ess sup
(ū,ν̄)∈U×V

E
[
|Z ū,ν̄
t,z (T )|q̄|Ft

]
≤ %(z)q̄ P-a.s. and (3.2.4)

ess sup
(ū,ν̄)∈U×V

E
[
|Zu⊕sū,ν⊕sν̄
t,z (T )− Z ū,ν⊕sν̄

s,z′ (T )| |Fs
]
≤ C|Zu,ν

t,z (s)− z′| P-a.s. (3.2.5)

for all (t, z) ∈ [0, T ]× Rd, (s, z′) ∈ [t, T ]× Rd and (u, ν) ∈ U× V.

(GDP1') If (z, p+ ε) ∈ Λ(t) for some ε > 0, then there exist u ∈ U and {Mν , ν ∈
V} ⊂Mt,p such that(

Zu,ν
t,z (τ) ,Mν (τ)

)
∈ Λ̄ (τ) P-a.s. for all ν ∈ V and τ ∈ Tt.

(GDP2') Let ι > 0, u ∈ U, {Mν , ν ∈ V} ∈Mt,p and {τν , ν ∈ V} ∈ Tt be such that(
Zu,ν
t,z (τν),Mν(τν)

)
∈ Λ̊ι(τ

ν) P-a.s. for all ν ∈ V

and assume that {Zu,ν
t,z (τν) , ν ∈ V} is uniformly bounded in L∞. Then (z, p− ε) ∈

Λ(t) for all ε > 0.

We remark that (GDP2') is usually applied in a setting where τν is the exit time

of Zu,ν
t,z from a given ball, so that the boundedness assumption is not restrictive.

(Some adjustments are needed when the state process admits unbounded jumps;

see also [Mor11].)

3.2.3 Proof of (GDP1)

We �x t ∈ [0, T ] and (z, p) ∈ Λ(t) for the remainder of this proof. By the de�ni-

tion (3.2.2) of Λ(t), there exists u ∈ U such that

E [G(ν)|Ft] ≥ p P-a.s. for all ν ∈ V, where G(ν) := `(Zu,ν
t,z (T )). (3.2.6)
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In order to construct the family {Mν , ν ∈ V} ⊂Mt,p of martingales, we consider

Sν(r) := ess inf
ν̄∈V

E [G(ν ⊕r ν̄)|Fr] , t ≤ r ≤ T. (3.2.7)

We shall obtainMν from a Doob-Meyer-type decomposition of Sν . This can be seen

as a generalization with respect to [BET09], where the necessary martingale was

trivially constructed by taking the conditional expectation of the terminal reward.

Step 1: We have Sν(r) ∈ L1(P) and E [Sν(r)|Fs] ≥ Sν(s) for all t ≤ s ≤ r ≤ T
and ν ∈ V.

The integrability of Sν(r) follows from (3.2.1) and (I1). To see the submartin-

gale property, we �rst show that the family {E[G(ν ⊕r ν̄)|Fr], ν̄ ∈ V} is directed
downward. Indeed, given ν̄1, ν̄2 ∈ V, the set

A := {E [G(ν ⊕r ν̄1)|Fr] ≤ E [G(ν ⊕r ν̄2)|Fr]}

is in Fr; therefore, ν̄3 := ν ⊕r (ν̄11A + ν̄21Ac) is an element of V by Assumption

(C1). Hence, (Z2) yields that

E [G(ν ⊕r ν̄3)|Fr] = E [G(ν ⊕r ν̄1)1A +G(ν ⊕r ν̄2)1Ac |Fr]

= E [G(ν ⊕r ν̄1)|Fr]1A + E [G(ν ⊕r ν̄2)|Fr]1Ac

= E [G(ν ⊕r ν̄1)|Fr] ∧ E [G(ν ⊕r ν̄2)|Fr] .

As a result, we can �nd a sequence (ν̄n)n≥1 in V such that E[G(ν⊕r ν̄n)|Fr] decreases
P-a.s. to Sν(r); cf. [Nev75, Proposition VI-1-1]. Recalling (3.2.1) and that Sν(r) ∈
L1(P), monotone convergence yields that

E [Sν(r)|Fs] = E
[

lim
n→∞

E [G(ν ⊕r ν̄n)|Fr] |Fs
]

= lim
n→∞

E [G(ν ⊕r ν̄n)|Fs]

≥ ess inf
ν̄∈V

E [G(ν ⊕r ν̄)|Fs]

≥ ess inf
ν̄∈V

E [G(ν ⊕s ν̄)|Fs]

= Sν(s),

where the last inequality follows from the fact that any control ν⊕r ν̄, where ν̄ ∈ V,
can be written in the form ν ⊕s (ν ⊕r ν̄); cf. (C1).

Step 2: There exists a family of càdlàg martingales {Mν , ν ∈ V} ⊂ Mt,p such

that Sν(r) ≥Mν(r) P-a.s. for all r ∈ [t, T ] and ν ∈ V.

Fix ν ∈ V. By Step 1, Sν(·) satis�es the submartingale property. Therefore,

S+(r)(ω) := lim
u∈(r,T ]∩Q, u→r

Sν(u)(ω) for 0 ≤ r < T and S+(T ) := Sν(T )
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is well de�ned P-a.s.; moreover, recalling that the �ltration F satis�es the usual

conditions, S+ is a (right-continuous) submartingale satisfying S+(r) ≥ Sν(r) P-a.s.
for all r ∈ [t, T ] (c.f. [DM82, Theorem VI.2]). Let H ⊂ [t, T ] be the set of points of

discontinuity of the function r 7→ E[Sν(r)]. Since this function is increasing, H is at

most countable. (If H happens to be the empty set, then S+ de�nes a modi�cation

of Sν and the Doob-Meyer decomposition of S+ yields the result.) Consider the

process

S̄(r) := S+(r)1Hc(r) + Sν(r)1H(r), r ∈ [t, T ].

The arguments (due to E. Lenglart) in the proof of [DM82, Theorem 10 of Ap-

pendix 1] show that S̄ is an optional modi�cation of Sν and E[S̄(τ)|Fσ] ≥ S̄(σ) for

all σ, τ ∈ Tt such that σ ≤ τ ; that is, S̄ is a strong submartingale. Let N = Nu,ν
t,z

be a right-continuous process of class (D) as in (I1); then Sν(r) ≥ N(r) P-a.s. for
all r implies that S+(r) ≥ N(r) P-a.s. for all r, and since both S+ and N are

right-continuous, this shows that S+ ≥ N up to evanescence. Recalling that H is

countable, we deduce that S̄ ≥ N up to evanescence, and as S̄ is bounded from

above by the martingale generated by S̄(T ), we conclude that S̄ is of class (D).

Now the decomposition result of Mertens [Mer72, Theorem 3] yields that there

exist a (true) martingale M̄ and a nondecreasing (not necessarily càdlàg) predictable

process C̄ with C̄(t) = 0 such that

S̄ = M̄ + C̄,

and in view of the usual conditions, M̄ can be chosen to be càdlàg. We can now

de�neMν := M̄ −M̄(t)+p on [t, T ] andMν(r) := p for r ∈ [0, t), thenMν ∈Mt,p.

Noting that M̄(t) = S̄(t) = Sν(t) ≥ p by (3.2.6), we see that Mν has the required

property:

Mν(r) ≤ M̄(r) ≤ S̄(r) = Sν(r) P-a.s. for all r ∈ [t, T ].

Step 3: Let τ ∈ Tt have countably many values. Then

K
(
τ, Zu,ν

t,z (τ)
)
≥Mν(τ) P-a.s. for all ν ∈ V.

Fix ν ∈ V and ε > 0, let Mν be as in Step 2, and let (ti)i≥1 be the distinct

values of τ . By Step 2, we have

Mν(ti) ≤ ess inf
ν̄∈V

E
[
`
(
Z

u,ν⊕ti ν̄
t,z (T )

)
|Fti

]
P-a.s., i ≥ 1.

Moreover, (R1) yields that for each i ≥ 1, we can �nd a sequence (zij)j≥1 ⊂ Z and

a Borel partition (Bij)j≥1 of Z such that

ess inf
ν̄∈V

E
[
`
(
Z

u,ν⊕ti ν̄
t,z (T )

)
|Fti

]
(ω) ≤ J(ti, zij , u[ν ⊕ti ·])(ω) + ε

for P-a.e. ω ∈ Cij := {Zu,ν
t,z (ti) ∈ Bij}.
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Since (C3) and the de�nition of K in (Z4) yield that J(ti, zij , u[ν⊕ti ·]) ≤ K(ti, zij),

we conclude by (R1) that

Mν(ti)(ω) ≤ K(ti, zij) + ε ≤ K(ti, Z
u,ν
t,z (ti)(ω)) + 2ε for P-a.e. ω ∈ Cij .

Let Ai := {τ = ti} ∈ Fτ . Then (Ai ∩Cij)i,j≥1 forms a partition of Ω and the above

shows that

Mν(τ)− 2ε ≤
∑
i,j≥1

K(ti, Z
u,ν
t,z (ti))1Ai∩Cij = K(τ, Zu,ν

t,z (τ)) P-a.s.

As ε > 0 was arbitrary, the claim follows.

Step 4: We can now prove (GDP1). Given τ ∈ Tt, pick a sequence (τn)n≥1 ⊂ Tt
such that each τn has countably many values and τn ↓ τ P-a.s. In view of the last

statement of Lemma 3.2.1 below, Step 3 implies that(
Zu,ν
t,z (τn),Mν(τn)− n−1

)
∈ Λ(τn) P-a.s. for all n ≥ 1.

However, using that Zu,ν
t,z and Mν are càdlàg, we have(

τn, Z
u,ν
t,z (τn),Mν(τn)− n−1

)
→
(
τ, Zu,ν

t,z (τ),Mν(τ)
)

P-a.s. as n→∞,

so that, by the de�nition of Λ̄, we deduce that (Zu,ν
t,z (τ),Mν(τ)) ∈ Λ̄(τ) P-a.s. 2

Lemma 3.2.1. Let Assumptions (C2), (C4), (Z1) and (Z4) hold true. For each

ε > 0, there exists a mapping µε : [0, T ]×Z → U such that

J (t, z, µε(t, z)) ≥ K(t, z)− ε P-a.s. for all (t, z) ∈ [0, T ]×Z.

In particular, if (t, z, p) ∈ [0, T ]×Z × R, then K(t, z) > p implies (z, p) ∈ Λ(t).

Proof. Since K(t, z) was de�ned in (Z4) as the essential supremum of J(t, z, u)

over u, there exists a sequence (uk(t, z))k≥1 ⊂ U such that

sup
k≥1

J
(
t, z, uk(t, z)

)
= K(t, z) P-a.s. (3.2.8)

Set ∆0
t,z := ∅ and de�ne inductively the Ft-measurable sets

∆k
t,z :=

{
J
(
t, z, uk(t, z)

)
≥ K(t, z)− ε

}
\
k−1⋃
j=0

∆j
t,z, k ≥ 1.

By (3.2.8), the family {∆k
t,z, k ≥ 1} forms a partition of Ω. Clearly, each ∆k

t,z (seen

as a constant family) satis�es the requirement of (C4), since it does not depend on

ν, and therefore belongs to Ft. Hence, after �xing some u0 ∈ U, (C2) implies that

µε(t, z) := u0 ⊕t
∑
k≥1

uk(t, z)1∆k
t,z
∈ U,
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while (Z1) ensures that

J (t, z, µε(t, z)) = ess inf
ν∈V

E
[
`
(
Z
µε(t,z),ν
t,z (T )

)
|Ft
]

= ess inf
ν∈V

E

∑
k≥1

`
(
Z

uk(t,z),ν
t,z (T )

)
1∆k

t,z
|Ft


= ess inf

ν∈V

∑
k≥1

E
[
`
(
Z

uk(t,z),ν
t,z (T )

)
|Ft
]
1∆k

t,z
,

where the last step used that ∆k
t,z is Ft-measurable. Since

E
[
`
(
Z

uk(t,z),ν
t,z (T )

)
|Ft
]
≥ J(t, z, uk(t, z))

by the de�nition of J , it follows by the de�nition of {∆k
t,z, k ≥ 1} that

J (t, z, µε(t, z)) ≥
∑
k≥1

J
(
t, z, uk(t, z)

)
1∆k

t,z
≥ K(t, z)− ε P-a.s.

as required.

Remark 3.2.4. Let us mention that the GDP could also be formulated using fam-

ilies of submartingales {Sν , ν ∈ V} rather than martingales. Namely, in (GDP1),

these would be the processes de�ned by (3.2.7). However, such a formulation would

not be advantageous for applications as in Section 3.3, because we would then need

an additional control process to describe the (possibly very irregular) �nite variation

part of Sν . The fact that the martingales {Mν , ν ∈ V} are actually su�cient to

obtain a useful GDP can be explained heuristically as follows: the relevant situation

for the dynamic programming equation corresponds to the adverse player choosing

an (almost) optimal control ν, and then the value process Sν will be (almost) a

martingale.

3.2.4 Proof of (GDP2)

In the sequel, we �x (t, z, p) ∈ [0, T ]×Z×R and let ι > 0, u ∈ U, {Mν , ν ∈ V} ∈Mt,p,

{τν , ν ∈ V} ∈ Tt and L
u,ν
t,z be as in (GDP2). We shall use the dyadic discretization

for the stopping times τν ; that is, given n ≥ 1, we set

τνn =
∑

0≤i≤2n−1

tni+11(tni ,t
n
i+1](τ

ν), where tni = i2−nT for 0 ≤ i ≤ 2n.

We shall �rst state the proof under the additional assumption that

Mν(·) = Mν(· ∧ τν) for all ν ∈ V. (3.2.9)
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Step 1: Fix ε > 0 and n ≥ 1. There exists uεn ∈ U such that

E
[
`
(
Z

uεn,ν
t,z (T )

)
|Fτνn

]
≥ K

(
τνn , Z

u,ν
t,z (τνn )

)
− ε P-a.s. for all ν ∈ V.

We �x ε > 0 and n ≥ 1. It follows from (R1) and (C2) that, for each i ≤ 2n, we

can �nd a Borel partition (Bij)j≥1 of Z and a sequence (zij)j≥1 ⊂ Z such that, for

all ū ∈ U and ν ∈ V,

E
[
`

(
Z

u⊕tn
i
ū,ν

t,z (T )

)
|Ftni

]
(ω) ≥ I(tni , zij , u⊕tni ū, ν)(ω)− ε and (3.2.10)

K (tni , zij) ≥ K
(
tni , Z

u,ν
t,z (tni )(ω)

)
− ε (3.2.11)

for P-a.e. ω ∈ Cνij := {Zu,ν
t,z (tni ) ∈ Bij}.

Let µε be as in Lemma 3.2.1, uεij := µε(tni , zij) and Aνij := Cνij ∩ {τνn = tni }, and
consider the mapping

ν 7→ uεn[ν] := u[ν]⊕τνn
∑

j≥1,i≤n
uεij [ν]1Aνij .

Note that (Z2) and (C4) imply that {Cνij , ν ∈ V}j≥1 ⊂ Ftni for each i ≤ 2n. Similarly,

it follows from (C6) and the de�nition of τνn that the families {{τνn = tni }, ν ∈ V}
and {{τνn = tni }c, ν ∈ V} belong to Ftni . Therefore, an induction argument based

on (C2) yields that uεn ∈ U. Using successively (3.2.10), (Z1), the de�nition of J ,

Lemma 3.2.1 and (3.2.11), we deduce that for P-a.e. ω ∈ Aνij ,

E
[
`
(
Z

uεn,ν
t,z (T )

)
|Fτνn

]
(ω) ≥ I

(
tni , zij , u

ε
ij , ν

)
(ω)− ε

≥ J (tni , zij , µ
ε(tni , zij)) (ω)− ε

≥ K (tni , zij)− 2ε

≥ K
(
tni , Z

u,ν
t,z (tni )(ω)

)
− 3ε

= K
(
τνn (ω), Zu,ν

t,z (τνn )(ω)
)
− 3ε.

As ε > 0 was arbitrary and ∪i,jAνij = Ω P-a.s., this proves the claim.

Step 2: Fix ε > 0 and n ≥ 1. For all ν ∈ V, we have

E
[
`
(
Z

uεn,ν
t,z (T )

)
|Fτνn

]
(ω) ≥Mν(τνn )(ω)− ε for P-a.e. ω ∈ Eνn,

where

Eνn :=
{(
τνn , Z

u,ν
t,z (τνn ),Mν(τνn )

)
∈ Bι

(
τν , Zu,ν

t,z (τν),Mν(τν)
)}
.

Indeed, since
(
Zu,ν
t,z (τν),Mν(τν)

)
∈ Λ̊ι(τ

ν) P-a.s., the de�nition of Λ̊ι entails that(
Zu,ν
t,z (τνn ),Mν(τνn )

)
∈ Λ(τνn ) for P-a.e. ω ∈ Eνn. This, in turn, means that

K
(
τνn (ω), Zu,ν

t,z (τνn )(ω)
)
≥Mν(τνn )(ω) for P-a.e. ω ∈ Eνn.
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Now the claim follows from Step 1. (In all this, we actually have Mν(τνn ) = Mν(τν)

by (3.2.9), a fact we do not use here.)

Step 3: Let Lν := Lu,ν
t,z be the process from (I2). Then

K(t, z) ≥ p− ε− sup
ν∈V

E
[
(Lν(τνn )−Mν(τνn ))− 1(Eνn)c

]
.

Indeed, it follows from Step 2 and (I2) that

E
[
`
(
Z

uεn,ν
t,z (T )

)
|Ft
]

≥ E
[
Mν(τνn )1Eνn |Ft

]
− ε+ E

[
E
[
`
(
Z

uεn,ν
t,z (T )

)
|Fτνn

]
1(Eνn)c |Ft

]
≥ E [Mν(τνn )|Ft]− E

[
Mν(τνn )1(Eνn)c |Ft

]
− ε+ E

[
Lν(τνn )1(Eνn)c |Ft

]
= p− ε+ E

[
(Lν(τνn )−Mν(τνn ))1(Eνn)c |Ft

]
.

By the de�nitions of K and J , we deduce that

K(t, z) ≥ J(t, z, uεn)

≥ p− ε+ ess inf
ν∈V

E
[
(Lν(τνn )−Mν(τνn ))1(Eνn)c |Ft

]
.

Since K is deterministic, we can take expectations on both sides to obtain that

K(t, z) ≥ p− ε+ E
[
ess inf
ν∈V

E [Y ν |Ft]
]
, where Y ν := (Lν(τνn )−Mν(τνn ))1(Eνn)c .

The family {E [Y ν |Ft] , ν ∈ V} is directed downward; to see this, use (C1), (Z2),

(Z3), (C5) and the last statement in (I2), and argue as in Step 1 of the proof of

(GDP1) in Section 3.2.3. It then follows that we can �nd a sequence (νk)k≥1 ⊂ V
such that E [Y νk |Ft] decreases P-a.s. to ess infν∈V E [Y ν |Ft], cf. [Nev75, Proposition
VI-1-1], so that the claim follows by monotone convergence.

Step 4: We have

lim
n→∞

sup
ν∈V

E
[
(Lν(τνn )−Mν(τνn ))− 1(Eνn)c

]
= 0 P-a.s.

Indeed, since Mν(τνn ) = Mν(τν) by (3.2.9), the uniform integrability assump-

tions in Theorem 3.2.1 yield that {(Lν(τνn )−Mν(τνn ))− : n ≥ 1, ν ∈ V} is again
uniformly integrable. Therefore, it su�ces to prove that supν∈V P [(Eνn)c] → 0. To

see this, note that for n large enough, we have |τνn − τν | ≤ 2−nT ≤ ι/2 and hence

P [(Eνn)c] ≤ P
[
dZ
(
Zu,ν
t,z (τνn ), Zu,ν

t,z (τν)
)
≥ ι/2

]
,

where we have used thatMν(τνn ) = Mν(τν). Using once more that |τνn−τν | ≤ 2−nT ,

the claim then follows from (R2).
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Step 5: The additional assumption (3.2.9) entails no loss of generality.

Indeed, let M̃ν be the stopped martingale Mν(· ∧ τν). Then {M̃ν , ν ∈ V} ⊂
Mt,p. Moreover, since {Mν , ν ∈ V} ∈Mt,p and {τν , ν ∈ V} ∈ Tt, we see from (Z3)

and (C5) that {M̃ν , ν ∈ V} again satis�es the property stated in (Z3). Finally, we

have that the set
{
M̃ν(τν)+ : ν ∈ V

}
is uniformly integrable like

{
Mν(τν)+ : ν ∈

V
}
, since these sets coincide. Hence, {M̃ν , ν ∈ V} satis�es all properties required in

(GDP2), and of course also (3.2.9). To be precise, it is not necessarily the case that

{M̃ν , ν ∈ V} ∈ Mt,p; in fact, we have made no assumption whatsoever about the

richness of Mt,p. However, the previous properties are all we have used in this proof

and hence, we may indeed replace Mν by M̃ν for the purpose of proving (GDP2).

We can now conclude the proof of (GDP2): in view of Step 4, Step 3 yields that

K(t, z) ≥ p− ε, which by Lemma 3.2.1 implies the assertion that (z, p− ε) ∈ Λ(t).

2

3.2.5 Proof of Corollary 3.2.3

Step 1: Assume that ` is bounded and Lipschitz continuous. Then (I) and (R1) are

satis�ed.

Assumption (I) is trivially satis�ed; we prove that (3.2.5) implies Assumption

(R1). Let t ≤ s ≤ T and (u, ν) ∈ U × V. Let c be the Lipschitz constant of `.

By (3.2.5), we have∣∣∣E [`(Zu,ν
t,z

(T )
)
− `
(
Zu,ν
s,z′(T )

)
|Fs
]∣∣∣ ≤ cE

[∣∣∣Zu,ν
t,z (T )− Zu,ν

s,z′(T )
∣∣∣ |Fs]

≤ cC
∣∣Zu,ν

t,z (s)− z′
∣∣ (3.2.12)

for all z, z′ ∈ Rd. Let (Bj)j≥1 be any Borel partition of Rd such that the diameter

of Bj is less than ε/(cC), and let zj ∈ Bj for each j ≥ 1. Then∣∣∣E [`(Zu,ν
t,z

(T )
)
− `
(
Zu,ν
s,zj (T )

)
|Fs
]∣∣∣ ≤ ε on Cu,ν

j :=
{
Zu,ν
t,z (s) ∈ Bj

}
,

which implies the �rst property in (R1). In particular, let ν̄ ∈ V, then using (C1),

we have ∣∣∣E [`(Zu,ν⊕sν̄
t,z

(T )
)
− `
(
Zu,ν⊕sν̄
s,zj (T )

)
|Fs
]∣∣∣ ≤ ε on Cu,ν⊕sν̄

j .

Since Cu,ν⊕sν̄
j = Cu,ν

j by (Z2), we may take the essential in�mum over ν̄ ∈ V to

conclude that

ess inf
ν̄∈V

E
[
`
(
Zu,ν⊕sν̄
t,z (T )

)
|Fs
]
≤ J(s, zj , u[ν ⊕s ·]) + ε on Cu,ν

j ,
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which is the second property in (R1). Finally, the last property in (R1) is a direct

consequence of (3.2.12) applied with t = s.

Step 2: We now prove the corollary under the additional assumption that

|`(z)| ≤ C; we shall reduce to the Lipschitz case by inf-convolution. Indeed, if

we de�ne the functions `k by

`k(z) = inf
z′∈Rd

{`(z′) + k|z′ − z|}, k ≥ 1,

then `k is Lipschitz continuous with Lipschitz constant k, |`k| ≤ C, and (`k)k≥1

converges pointwise to `. Since ` is continuous and the sequence (`k)k≥1 is monotone

increasing, the convergence is uniform on compact sets by Dini's lemma. That is,

for all n ≥ 1,

sup
z∈Rd, |z|≤n

|`k(z)− `(z)| ≤ εnk , (3.2.13)

where (εnk)k≥1 is a sequence of numbers such that limk→∞ ε
n
k = 0. Moreover, (3.2.4)

combined with Chebyshev's inequality implies that

ess sup
(u,ν)∈U×V

P
[
|Zu,ν
t,z (T )| ≥ n|Ft

]
≤ (%(z)/n)q̄. (3.2.14)

Combining (3.2.13) and (3.2.14) and using the fact that `k − ` is bounded by 2C

then leads to

ess sup
(u,ν)∈U×V

E
[∣∣`k (Zu,ν

t,z (T )
)
− `
(
Zu,ν
t,z (T )

)∣∣ |Ft] ≤ εnk + 2C(%(z)/n)q̄. (3.2.15)

Let O be a bounded subset of Rd, let η > 0, and let

Ik(t, z, u, ν) = E
[
`k
(
Zu,ν
t,z (T )

)
|Ft
]
. (3.2.16)

Then we can choose an integer nηO such that 2C(%(z)/nηO)q̄ ≤ η/2 for all z ∈ O and

another integer kηO such that ε
nηO
kηO
≤ η/2. Under these conditions, (3.2.15) applied

to n = nηO yields that

ess sup
(u,ν)∈U×V

∣∣∣IkηO(t, z, u, ν)− I(t, z, u, ν)
∣∣∣ ≤ η for (t, z) ∈ [0, T ]×O. (3.2.17)

In the sequel, we �x (t, z, p) ∈ [0, T ]×Rd×R and a bounded set O ⊂ Rd containing
z, and de�ne JkηO , ΛkηO

, Λ̊kηO,ι
and Λ̄kηO

in terms of `kηO instead of `.

We now prove (GDP1'). To this end, suppose that (z, p + 2η) ∈ Λ(t). Then

(3.2.17) implies that (z, p+ η) ∈ ΛkηO
(t). In view of Step 1, we may apply (GDP1)

with the loss function `kηO to obtain u ∈ U and {Mν , ν ∈ V} ⊂Mt,p such that(
Zu,ν
t,z (τ),Mν(τ) + η

)
∈ Λ̄kηO

(τ) P-a.s. for all ν ∈ V and τ ∈ Tt.
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Using once more (3.2.17), we deduce that(
Zu,ν
t,z (τ),Mν(τ)

)
∈ Λ̄(τ) P-a.s. for all ν ∈ V and τ ∈ Tt;

i.e., (GDP1') holds for `. (The last argument was super�uous as ` ≥ `kηO
already

implies Λ̄kηO
(τ) ⊂ Λ̄(τ); however, we would like to refer to this proof in a similar

situation below where there is no monotonicity.)

It remains to prove (GDP2'). To this end, let ι > 0, u ∈ U, {Mν , ν ∈ V} ∈Mt,p

and {τν , ν ∈ V} ∈ Tt be such that(
Zu,ν
t,z (τν),Mν(τν)

)
∈ Λ̊2ι(τ

ν) P-a.s. for all ν ∈ V.

For η < ι/2, we then have(
Zu,ν
t,z (τν),Mν(τν) + 2η

)
∈ Λ̊ι(τ

ν) P-a.s. for all ν ∈ V. (3.2.18)

Let M̃ν := Mν + η. Since {Zu,ν
t,z (τν) , ν ∈ V} is uniformly bounded in L∞, we may

assume, by enlarging O if necessary, that Bι(Z
u,ν
t,z (τν)) ⊂ O P-a.s. for all ν ∈ V.

Then, (3.2.17) and (3.2.18) imply that(
Zu,ν
t,z (τν), M̃ν(τν)

)
∈ Λ̊kηO,ι

(τν) P-a.s. for all ν ∈ V.

Moreover, as ` ≤ C, (3.2.18) implies that M̃ν(τν) ≤ C; in particular, {M̃ν(τν)+, ν ∈
V} is uniformly integrable. Furthermore, as ` ≥ −C, we can take Lu,ν

t,z := −C
for (I2). In view of Step 1, (GDP2) applied with the loss function `kηO then yields

that

(z, p+ η − ε) ∈ ΛkηO
(t) for all ε > 0. (3.2.19)

To be precise, this conclusion would require that {M̃ν , ν ∈ V} ∈Mt,p+η, which is not

necessarily the case under our assumptions. However, since {Mν , ν ∈ V} ∈ Mt,p,

it is clear that {M̃ν , ν ∈ V} satis�es the property stated in (Z3), so that, as in

Step 5 of the proof of (GDP2), there is no loss of generality in assuming that

{M̃ν , ν ∈ V} ∈ Mt,p+η. We conclude by noting that (3.2.17) and (3.2.19) imply

that (z, p− ε) ∈ Λ(t) for all ε > 0.

Step 3:We turn to the general case. For k ≥ 1, we now de�ne `k := (`∧k)∨(−k),

while Ik is again de�ned as in (3.2.16). We also set

nk = max
{
m ≥ 0 : Bm(0) ⊂ {` = `k}

}
∧ k

and note that the continuity of ` guarantees that limk→∞ nk =∞. Given a bounded

set O ⊂ Rd and η > 0, we claim that

ess sup
(u,ν)∈U×V

∣∣∣IkηO(t, z, u, ν)− I(t, z, u, ν)
∣∣∣ ≤ η for all (t, z) ∈ [0, T ]×O (3.2.20)
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for any large enough integer kηO. Indeed, let (u, ν) ∈ U× V; then

|Ik(t, z, u, ν)− I(t, z, u, ν)| ≤ E
[
|`− `k|

(
Zu,ν
t,z (T )

)
|Ft
]

= E
[
|`− `k|

(
Zu,ν
t,z (T )

)
1Zu,ν

t,z (T ) /∈ {` = `k}|Ft
]

≤ E
[∣∣` (Zu,ν

t,z (T )
)∣∣1|Zu,ν

t,z (T )| > nk|Ft
]

≤ CE
[(

1 +
∣∣Zu,ν

t,z (T )
∣∣q)1|Zu,ν

t,z (T )| > nk|Ft
]

by (3.2.3). We may assume that q > 0, as otherwise we are in the setting of Step 2.

Pick δ > 0 such that q(1 + δ) = q̄. Then Hölder's inequality and (3.2.4) yield that

E
[∣∣(Zu,ν

t,z (T )
)∣∣q 1|Zu,ν

t,z (T )| > nk|Ft
]

≤ E
[∣∣(Zu,ν

t,z (T )
)∣∣q̄ |Ft] 1

1+δ P
[
|Zu,ν
t,z (T )| > nk|Ft

] δ
1+δ

≤ ρ(z)
q̄

1+δ (ρ(z)/nk)
q̄δ

1+δ .

Since ρ is locally bounded and limk→∞ nk =∞, the claim (3.2.20) follows. We can

then obtain (GDP1') and (GDP2') by reducing to the result of Step 2, using the

same arguments as in the proof of Step 2. 2

3.3 The PDE in the case of a controlled SDE

In this section, we illustrate how our GDP can be used to derive a dynamic pro-

gramming equation and how its assumptions can be veri�ed in a typical setup. To

this end, we focus on the case where the state process is determined by a stochastic

di�erential equation with controlled coe�cients; however, other examples could be

treated similarly.

3.3.1 Setup

Let Ω = C([0, T ];Rd) be the canonical space of continuous paths equipped with the

Wiener measure P, let F = (Ft)t≤T be the P-augmentation of the �ltration generated

by the coordinate-mapping process W , and let F = FT . We de�ne V, the set of

adverse controls, to be the set of all progressively measurable processes with values

in a compact subset V of Rd. Similarly, U is the set of all progressively measurable

processes with values in a compact U ⊂ Rd. Finally, the set of strategies U consists

of all mappings u : V → U which are non-anticipating in the sense that

{ν1 =(0,s] ν2} ⊂ {u[ν1] =(0,s] u[ν2]} for all ν1, ν2 ∈ V and s ≤ T .

Given (t, z) ∈ [0, T ] × Rd and (u, ν) ∈ U × V, we let Zu,ν
t,z be the unique strong

solution of the controlled SDE

Z(s) = z+

∫ s

t
µ(Z(r), u[ν]r, νr) dr+

∫ s

t
σ(Z(r), u[ν]r, νr) dWr, s ∈ [t, T ], (3.3.1)
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where the coe�cients

µ : Rd × U × V → Rd, σ : Rd × U × V → Rd×d

are assumed to be jointly continuous in all three variables as well as Lipschitz con-

tinuous with linear growth in the �rst variable, uniformly in the two last ones.

Throughout this section, we assume that ` : Rd → R is a continuous function

of polynomial growth; i.e., (3.2.3) holds true for some constants C and q. Since

Zu,ν
t,z (T ) has moments of all orders, this implies that the �niteness condition (3.2.1)

is satis�ed.

In view of the martingale representation theorem, we can identify the setMt,p of

martingales with the set A of all progressively measurable d-dimensional processes

α such that
∫
αdW is a (true) martingale. Indeed, we haveMt,p = {Pαt,p, α ∈ A},

where

Pαt,p(·) = p+

∫ ·
t
αs dWs.

We shall denote by A the set of all mappings a[·]: V 7→ A such that

{ν1 =(0,s] ν2} ⊂ {a[ν1] =(0,s] a[ν2]} for all ν1, ν2 ∈ V and s ≤ T .

The set of all families {P a[ν]
t,p , ν ∈ V} with a ∈ A then forms the set Mt,p, for any

given (t, p) ∈ [0, T ]×R. Furthermore, Tt consists of all families {τν , ν ∈ V} ⊂ Tt such
that, for some (z, p) ∈ Rd×R, (u, a) ∈ U×A and some Borel set O ⊂ [0, T ]×Rd×R,

τν is the �rst exit time of
(
·, Zu,ν

t,z , P
a[ν]
t,p

)
from O, for all ν ∈ V.

(This includes the deterministic times s ∈ [t, T ] by the choice O = [0, s]× Rd × R.)
Finally, Ft consists of all families {Aν , ν ∈ V} ⊂ Ft such that

Aν1 ∩ {ν1 =(0,t] ν2} = Aν2 ∩ {ν1 =(0,t] ν2} for all ν1, ν2 ∈ V.

Proposition 3.3.1. The conditions of Corollary 3.2.3 are satis�ed in the present

setup.

Proof. The above de�nitions readily yield that Assumptions (C) and (Z1)�

(Z3) are satis�ed. Moreover, Assumption (Z4) can be veri�ed exactly as in [BL08,

Proposition 3.3]. Fix any q̄ > q ∨ 2; then (3.2.4) can be obtained as follows. Let

(u, ν) ∈ U × V and A ∈ Ft be arbitrary. Using the Burkholder-Davis-Gundy in-

equalities, the boundedness of U and V , and the assumptions on µ and σ, we obtain

that

E
[

sup
t≤s≤τ

∣∣Zu,ν
t,z (s)

∣∣q̄ 1A] ≤ cE [1 + |z|q̄ 1A +

∫ τ

t
sup
t≤s≤r

∣∣Zu,ν
t,z (s)

∣∣q̄ 1A dr] ,
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where c is a universal constant and τ is any stopping time such that Zu,ν
t,z (· ∧ τ) is

bounded. Applying Gronwall's inequality and letting τ → T , we deduce that

E
[∣∣Zu,ν

t,z (T )
∣∣q̄ 1A] ≤ E[ sup

t≤u≤T

∣∣Zu,ν
t,z (u)

∣∣q̄ 1A] ≤ cE [1 + |z|q̄ 1A
]
.

Since A ∈ Ft was arbitrary, this implies (3.2.4). To verify the condition (3.2.5), we

note that the �ow property yields

E
[∣∣∣Zu⊕sū,ν⊕sν̄

t,z (T )− Z ū,ν⊕sν̄
s,z′ (T )

∣∣∣1A] = E
[∣∣∣∣Z ū,ν⊕sν̄

s,Zu,ν
t,z (s)

(T )− Z ū,ν⊕sν̄
s,z′ (T )

∣∣∣∣1A]
and estimate the right-hand side with the above arguments. Finally, the same

arguments can be used to verify (R2).

Remark 3.3.2. We emphasize that our de�nition of a strategy u ∈ U does not in-

clude regularity assumptions on the mapping ν 7→ u[ν]. This is in contrast to [BY11],

where a continuity condition is imposed, enabling the authors to deal with the selec-

tion problem for strategies in the context of a stochastic di�erential game and use

the traditional formulation of the value functions in terms of in�ma (not essential in-

�ma) and suprema. Let us mention, however, that such regularity assumptions may

preclude existence of optimal strategies in concrete examples (see also Remark 3.4.2).

3.3.2 PDE for the reachability set Λ

In this section, we show how the PDE for the reachability set Λ from (3.2.2) can

be deduced from the geometric dynamic programming principle of Corollary 3.2.3.

This equation is stated in terms of the indicator function of the complement of the

graph of Λ,

χ(t, z, p) := 1− 1Λ(t)(z, p) =

{
0 if (z, p) ∈ Λ(t)

1 otherwise,

and its lower semicontinuous envelope

χ∗(t, z, p) := lim inf
(t′,z′,p′)→(t,z,p)

χ(t′, z′, p′).

Corresponding results for the case without adverse player have been obtain

in [BET09, ST02c]; we extend their arguments to account for the presence of ν and

the fact that we only have a relaxed GDP. We begin by rephrasing Corollary 3.2.3

in terms of χ.

Lemma 3.3.1. Fix (t, z, p) ∈ [0, T ]× Rd × R.
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(GDP1χ) Assume that χ(t, z, p + ε) = 0 for some ε > 0. Then there exist u ∈ U

and {αν , ν ∈ V} ⊂ A such that

χ∗
(
τ, Zu,ν

t,z (τ), Pα
ν

t,p (τ)
)

= 0 P-a.s. for all ν ∈ V and τ ∈ Tt.

(GDP2χ) Let ϕ be a continuous function such that ϕ ≥ χ and let O ⊂ [0, T ]×Rd×R
be a bounded open set containing (t, z, p). Let (u, a) ∈ U×A and η > 0 be such that

ϕ
(
τν , Zu,ν

t,z (τν), P
a[ν]
t,p (τν)

)
≤ 1− η P-a.s. for all ν ∈ V, (3.3.2)

where τν denotes the �rst exit time of
(
·, Zu,ν

t,z , P
a[ν]
t,p

)
from O. Then χ(t, z, p−ε) = 0

for all ε > 0.

Proof. After observing that (z, p + ε) ∈ Λ(t) if and only if χ(t, z, p + ε) = 0

and that (z, p) ∈ Λ̄(t) implies χ∗(t, z, p) = 0, (GDP1χ) follows from Corollary 3.2.3,

whose conditions are satis�ed by Proposition 3.3.1. We now prove (GDP2χ). Since

ϕ is continuous and ∂O is compact, we can �nd ι > 0 such that

ϕ < 1 on a ι-neighborhood of ∂O ∩ {ϕ ≤ 1− η}.

As χ ≤ ϕ, it follows that (3.3.2) implies(
Zu,ν
t,z (τν),Mν(τν)

)
∈ Λ̊ι(τ

ν) P-a.s. for all ν ∈ V.

Now Corollary 3.2.3 yields that (z, p− ε) ∈ Λ(t); i.e., χ(t, z, p− ε) = 0.

Given a suitably di�erentiable function ϕ = ϕ(t, z, p) on [0, T ]× Rd+1, we shall

denote by ∂tϕ its derivative with respect to t and by Dϕ and D2ϕ the Jacobian and

the Hessian matrix with respect to (z, p), respectively. Given u ∈ U , a ∈ Rd and

v ∈ V , we can then de�ne the Dynkin operator

Lu,a,v(Z,P )ϕ := ∂tϕ+ µ(Z,P )(·, u, v)>Dϕ+
1

2
Tr
[
σ(Z,P )σ

>
(Z,P )(·, u, a, v)D2ϕ

]
with coe�cients

µ(Z,P ) :=

(
µ

0

)
, σ(Z,P )(·, a, ·) :=

(
σ

a

)
.

To introduce the associated relaxed Hamiltonians, we �rst de�ne the relaxed kernel

Nε(z, q, v) =
{

(u, a) ∈ U × Rd :
∣∣∣σ>(Z,P )(z, u, a, v)q

∣∣∣ ≤ ε} , ε ≥ 0

for (t, z) ∈ [0, T ] × Rd, q ∈ Rd+1 and v ∈ V , as well as the set NLip(z, q) of all

continuous functions

(û, â) : Rd × Rd+1 × V → U × Rd, (z′, q′, v′) 7→ (û, â)(z′, q′, v′)
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that are locally Lipschitz continuous in (z′, q′), uniformly in v′, and satisfy

(û, â) ∈ N0 on B × V, for some neighborhood B of (z, q).

The local Lipschitz continuity will be used to ensure the local wellposedness of the

SDE for a Markovian strategy de�ned via (û, â). Setting

F (Θ, u, a, v) :=

{
−µ(Z,P )(z, u, v)>q − 1

2
Tr
[
σ(Z,P )σ

>
(Z,P )(z, u, a, v)A

]}
for Θ = (z, q, A) ∈ Rd×Rd+1× Sd+1 and (u, a, v) ∈ U ×Rd×V , we can then de�ne

the relaxed Hamiltonians

H∗(Θ) := inf
v∈V

lim sup
ε↘0,Θ′→Θ

sup
(u,a)∈Nε(Θ′,v)

F (Θ′, u, a, v), (3.3.3)

H∗(Θ) := sup
(û,â)∈NLip(Θ)

inf
v∈V

F (Θ, û(Θ, v), â(Θ, v), v). (3.3.4)

(In (3.3.4), it is not necessary to take the relaxation Θ′ → Θ because infv∈V F is

already lower semicontinuous.) The question whether H∗ = H∗ is postponed to the

monotone setting of the next section; see Remark 3.3.6.

We are now in the position to derive the PDE for χ; in the following, we write

H∗ϕ(t, z, p) for H∗(z, p,Dϕ(t, z, p), D2ϕ(t, z, p)), and similarly for H∗.

Theorem 3.3.3. The function χ∗ is a viscosity supersolution on [0, T )× Rd+1 of

(−∂t +H∗)ϕ ≥ 0.

The function χ∗ is a viscosity subsolution on [0, T )× Rd+1 of

(−∂t +H∗)ϕ ≤ 0.

Proof.

Step 1: χ∗ is a viscosity supersolution.

Let (to, zo, po) ∈ [0, T )× Rd × R and let ϕ be a smooth function such that

(strict) min
[0,T )×Rd×R

(χ∗ − ϕ) = (χ∗ − ϕ) (to, zo, po) = 0. (3.3.5)

We suppose that

(−∂t +H∗)ϕ(to, zo, po) ≤ −2η < 0 (3.3.6)

for some η > 0 and work towards a contradiction. Using the continuity of µ and

σ and the de�nition of the upper-semicontinuous operator H∗, we can �nd vo ∈ V
and ε > 0 such that

−Lu,a,vo(Z,P ) ϕ(t, z, p) ≤ −η

for all (u, a) ∈ Nε (z, p,Dϕ(t, z, p), vo) and (t, z, p) ∈ Bε,
(3.3.7)
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where Bε := Bε(to, zo, po) denotes the open ball of radius ε around (to, zo, po). Let

∂Bε := {to + ε} ×Bε(zo, po) ∪ [to, to + ε)× ∂Bε(zo, po)

denote the parabolic boundary of Bε and set

ζ := min
∂Bε

(χ∗ − ϕ).

In view of (3.3.5), we have ζ > 0.

Next, we claim that there exists a sequence (tn, zn, pn, εn)n≥1 ⊂ Bε× (0, 1) such

that

(tn, zn, pn, εn)→ (to, zo, po, 0) and χ(tn, zn, pn + εn) = 0 for all n ≥ 1. (3.3.8)

In view of χ ∈ {0, 1}, it su�ces to show that

χ∗(to, zo, po) = 0. (3.3.9)

Suppose that χ∗(to, zo, po) > 0, then the lower semicontinuity of χ∗ yields that

χ∗ > 0 and therefore χ = 1 on a neighborhood of (to, zo, po), which implies that ϕ

has a strict local maximum in (to, zo, po) and thus

∂tϕ(to, zo, po) ≤ 0, Dϕ(to, zo, po) = 0, D2ϕ(to, zo, po) ≤ 0.

This clearly contradicts (3.3.7), and so the claim follows.

For any n ≥ 1, the equality in (3.3.8) and (GDP1χ) of Lemma 3.3.1 yield un ∈ U

and {αn,ν , ν ∈ V} ⊂ A such that

χ∗ (t ∧ τn, Zn(t ∧ τn), Pn(t ∧ τn)) = 0, t ≥ tn, (3.3.10)

where

(Zn(s), Pn(s)) :=
(
Zun,vo
tn,zn (s), Pα

n,vo

tn,pn (s)
)

and

τn := inf {s ≥ tn : (s, Zn(s), Pn(s)) /∈ Bε} .

(In the above, vo ∈ V is viewed as a constant element of V.) By (3.3.10), (3.3.5)

and the de�nitions of ζ and τn,

−ϕ(·, Zn, Pn)(t ∧ τn) = (χ∗ − ϕ)(·, Zn, Pn)(t ∧ τn) ≥ ζ1t ≥ τn ≥ 0.

Applying Itô's formula to −ϕ(·, Zn, Pn), we deduce that

Sn(t) := Sn(0) +

∫ t∧τn

tn

δn(r) dr +

∫ t∧τn

tn

Σn(r) dWr ≥ −ζ1t < τn, (3.3.11)
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where

Sn(0) := −ζ − ϕ(tn, zn, pn),

δn(r) := −Lu
n
r [vo],α

n,vo
r ,vo

(Z,P ) ϕ (r, Zn(r), Pn(r)) ,

Σn(r) := −Dϕ (r, Zn(r), Pn(r))> σ(Z,P ) (Zn(r), unr [vo], α
n,vo
r , vo) .

De�ne the set

An := [[tn, τn]] ∩ {δn > −η};

then (3.3.7) and the de�nition of Nε imply that

|Σn| > ε on An. (3.3.12)

Lemma 3.3.2. After diminishing ε > 0 if necessary, the stochastic exponential

En(·) = E
(
−
∫ ·∧τn
tn

δn(r)

|Σn(r)|2
Σn(r)1An(r) dWr

)
is well-de�ned and a true martingale for all n ≥ 1.

This lemma is proved below. Admitting its result for the moment, integration

by parts yields

(EnSn)(t ∧ τn) = Sn(0) +

∫ t∧τn

tn

Enδn1Acn dr

+

∫ t∧τn

tn

En

(
Σn − Sn

δn
|Σn|2

Σn1An

)
dW.

As En ≥ 0, it then follows from the de�nition of An that Enδn1Acn ≤ 0 and so EnSn
is a local supermartingale; in fact, it is a true supermartingale since it is bounded

from below by the martingale −ζEn. In view of (3.3.11), we deduce that

−ζ − ϕ(tn, zn, pn) = (EnSn)(tn) ≥ E [(EnSn)(τn)] ≥ −ζE [1τn < τnEn(τn)] = 0,

which yields a contradiction due to ζ > 0 and the fact that, by (3.3.9),

ϕ(tn, zn, pn)→ ϕ(to, zo, po) = χ∗(to, zo, po) = 0.

Step 2: χ∗ is a viscosity subsolution.

Let (to, zo, po) ∈ [0, T )× Rd × R and let ϕ be a smooth function such that

max
[0,T )×Rd×R

(χ∗ − ϕ) = (χ∗ − ϕ)(to, zo, po) = 0.

In order to prove that (−∂t +H∗)ϕ(to, zo, po) ≤ 0, we assume for contradiction that

(−∂t +H∗)ϕ(to, zo, po) > 0. (3.3.13)
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An argument analogous to the proof of (3.3.9) shows that χ∗(to, zo, po) = 1. Con-

sider a sequence (tn, zn, pn, εn)n≥1 in [0, T )× Rd × R× (0, 1) such that

(tn, zn, pn − εn, εn)→ (to, zo, po, 0) and χ(tn, zn, pn − εn)→ χ∗(to, zo, po) = 1.

Since χ takes values in {0, 1}, we must have

χ(tn, zn, pn − εn) = 1 (3.3.14)

for all n large enough. Set

ϕ̃(t, z, p) := ϕ(t, z, p) + |t− to|2 + |z − zo|4 + |p− po|4.

Then the inequality (3.3.13) and the de�nition of H∗ imply that we can �nd (û, â)

in NLip(·, Dϕ̃)(to, zo, po) such that

inf
v∈V

(
−L(û,â)(·,Dϕ̃,v),v

(Z,P ) ϕ̃
)
≥ 0 on Bε := Bε (to, zo, po) , (3.3.15)

for some ε > 0. By the de�nition of NLip, after possibly changing ε > 0, we have

(û, â) ∈ N0(·, Dϕ̃, ·) on Bε × V. (3.3.16)

Moreover, we have

ϕ̃ ≥ ϕ+ η on ∂Bε (3.3.17)

for some η > 0. Since ϕ̃(tn, zn, pn) → ϕ(to, zo, po) = χ∗(to, zo, po) = 1, we can �nd

n such that

ϕ̃(tn, zn, pn) ≤ 1 + η/2 (3.3.18)

and such that (3.3.14) is satis�ed. We �x this n for the remainder of the proof.

For brevity, we write (û, â)(t, z, p, v) for (û, â)(z, p,Dϕ̃(t, z, p), v) in the sequel.

Exploiting the de�nition of NLip, we can then de�ne the mapping (û, â)[·] : V →
U ×A implicitly via

(û, â)[ν] = (û, â)
(
·, Z û[ν],ν

tn,zn , P
â[ν]
tn,pn , ν

)
1[tn,τν ],

where

τν := inf
{
r ≥ tn :

(
r, Z

û[ν],ν
tn,zn (r), P

â[ν]
tn,pn(r)

)
/∈ Bε

}
.

We observe that û and â are non-anticipating; that is, (û, â) ∈ U × A. Let us

write (Zν , P ν) for (Z û,ν
tn,zn , P

â[ν]
tn,pn) to alleviate the notation. Since χ ≤ χ∗ ≤ ϕ, the

continuity of the paths of Zν and P ν and (3.3.17) lead to

ϕ (τν , Zν(τν), P ν(τν)) ≤ ϕ̃ (τν , Zν(τν), P ν(τν))− η.
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On the other hand, in view of (3.3.15) and (3.3.16), Itô's formula applied to ϕ̃ on

[tn, τ
ν ] yields that

ϕ̃ (τν , Zν(τν), P ν(τν)) ≤ ϕ̃ (tn, zn, pn) .

Therefore, the previous inequality and (3.3.18) show that

ϕ (τν , Zν(τν), P ν(τν)) ≤ ϕ̃ (tn, zn, pn)− η ≤ 1− η/2.

By (GDP2χ) of Lemma 3.3.1, we deduce that χ(tn, zn, pn − εn) = 0, which contra-

dicts (3.3.14).

To complete the proof of the theorem, we still need to show Lemma 3.3.2. To

this end, we �rst make the following observation.

Lemma 3.3.3. Let α ∈ L2
loc(W ) be such that M =

∫
αdW is a bounded martingale

and let β be an Rd-valued, progressively measurable process such that |β| ≤ c(1+ |α|)
for some constant c. Then the stochastic exponential E(

∫
β dW ) is a true martingale.

Proof. The assumption clearly implies that
∫ T

0 |βs|
2 ds < ∞ P-a.s. Since M is

bounded, we have in particular that M ∈ BMO; i.e.,

sup
τ∈T0

∥∥∥∥E [∫ T

τ
|αs|2 ds |Fτ

]∥∥∥∥
∞
<∞.

In view of the assumption, the same holds with α replaced by β, so that
∫
β dW is in

BMO. This implies that E(
∫
β dW ) is a true martingale; cf. [Kaz94, Theorem 2.3].

Proof. [Proof of Lemma 3.3.2] Consider the process

βn(r) :=
δn(r)

|Σn(r)|2
Σn(r)1An(r);

we show that

|βn| ≤ c(1 + |αn,vo |) on [[tn, τn]] (3.3.19)

for some c > 0. Then, the result will follow by applying Lemma 3.3.3 to αn,vo1[[tn,τn]];

note that the stochastic integral of this process is bounded by the de�nition of τn.

To prove (3.3.19), we distinguish two cases.

Case 1: ∂pϕ(to, zo, po) 6= 0. Using that µ and σ are continuous and that U and Bε
are bounded, tracing the de�nitions yields that

|δn| ≤ c
{

1 + |αn,vo |+ |αn,vo |2|∂ppϕ(·, Zn, Pn)|
}

on [[tn, τn]],

while

|Σn| ≥ −c+ |αn,vo ||∂pϕ(·, Zn, Pn)| on [[tn, τn]],
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for some c > 0. Since ∂pϕ(to, zo, po) 6= 0 by assumption, ∂pϕ is uniformly bounded

away from zero on Bε, after diminishing ε > 0 if necessary. Hence, recalling (3.3.12),

there is a cancelation between |δn| and |Σn| which allows us to conclude (3.3.19).

Case 2: ∂pϕ(to, zo, po) = 0. We �rst observe that

δ+
n ≤ c(1 + |αn,vo |)− c−1|αn,vo |2∂ppϕ(·, Zn, Pn) on [[tn, τn]]

for some c > 0. Since δ−n and |Σn|−1 are uniformly bounded on An, it therefore

su�ces to show that ∂ppϕ ≥ 0 on Bε. To see this, we note that (3.3.6) and the

relaxation in the de�nition (3.3.3) of H∗ imply that there exists ι > 0 such that, for

every v ∈ V and all small ε > 0,

− ∂tϕ(to, zo, po) + F (Θι, u, a, v) ≤ −η for all (u, a) ∈ Nε(Θι), (3.3.20)

where Θι = (z0, p0, Dϕ,A
ι) and Aι is the same matrix as D2ϕ(to, zo, po) except

that the entry ∂ppϕ(to, zo, po) is replaced by ∂ppϕ(to, zo, po) − ι. Going back to the

de�nition of Nε, we observe that Nε(Θι) does no depend on ι and, which is the

crucial part, the assumption that ∂pϕ(to, zo, po) = 0 implies that Nε(Θι) is of the

form NU × Rd; that is, the variable a is unconstrained. Now (3.3.20) and the last

observation show that

−(∂ppϕ(to, zo, po)− ι)|a|2 ≤ c(1 + |a|)

for all a ∈ Rd, so we deduce that ∂ppϕ(to, zo, po) ≥ ι > 0. Thus, after diminishing

ε > 0 if necessary, we have ∂ppϕ ≥ 0 on Bε as desired. This completes the proof.

Remark 3.3.4. Lemma 3.3.2 consists in an alternative proof to �x the integrabil-

ity issue in the previous literature (see Assumption 2.2.3 and Remark 2.2.6 of the

previous chapter). More speci�cally, this result should be related to Assumption

2.3.4, where Assumption 2.2.3 and Lemma 2.2.1 allows to deal with the more gen-

eral framework of Bouchard, Elie and Touzi [BET09, Section 2] or [Mor11, Section

2]).

3.3.3 PDE in the monotone case

We now specialize the setup of Section 3.3.1 to the case where the state process Z

consists of a pair of processes (X,Y ) with values in Rd−1 ×R and the loss function

` : Rd−1 × R→ R, (x, y) 7→ `(x, y)

is nondecreasing in the scalar variable y. This setting, which was previously studied

in [BET09] for the case without adverse control, will allow for a more explicit de-

scription of Λ which is particularly suitable for applications in mathematical �nance.
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For (t, x, y) ∈ [0, T ]× Rd−1 × R and (u, ν) ∈ U × V, let Zu,ν
t,x,y = (Xu,ν

t,x , Y
u,ν
t,x,y) be

the strong solution of (3.3.1) with

µ(x, y, u, v) :=

(
µX(x, u, v)

µY (x, y, u, v)

)
, σ(x, y, u, v) :=

(
σX(x, u, v)

σY (x, y, u, v)

)
,

where µY and σY take values in R and R1×d, respectively. The assumptions from

Section 3.3.1 remain in force; in particular, the continuity and growth assumptions

on µ and σ. In this setup, we can consider the real-valued function

γ(t, x, p) := inf{y ∈ R : (x, y, p) ∈ Λ(t)}.

In mathematical �nance, this may describe the minimal capital y such that the

given target can be reached by trading in the securities market modeled by Xu,ν
t,x ; an

illustration is given in the subsequent section. In the present context, Corollary 3.2.3

reads as follows.

Lemma 3.3.4. Fix (t, x, y, p) ∈ [0, T ]×Rd−1 ×R×R and assume that γ is locally

bounded.

(GDP1γ) Assume that y > γ(t, x, p + ε) for some ε > 0. Then there exist u ∈ U

and {αν , ν ∈ V} ⊂ A such that

Y u,ν
t,x,y(τ) ≥ γ∗

(
τ,Xu,ν

t,x (τ), Pα
ν

t,p (τ)
)

P-a.s. for all ν ∈ V and τ ∈ Tt.

(GDP2γ) Let ϕ be a continuous function such that ϕ ≥ γ and let O ⊂ [0, T ] ×

Rd−1×R be a bounded open set containing (t, z, p). Let (u, a) ∈ U×A and η > 0 be

such that

Y u,ν
t,x,y(τ

ν) ≥ ϕ
(
τ,Xu,ν

t,x (τν), P
a[ν]
t,p (τν)

)
+ η P-a.s. for all ν ∈ V,

where τν is the �rst exit time of (·, Xu,ν
t,x , Y

u,ν
t,x,y, P

a[ν]
t,p ) from O. Then y ≥ γ(t, x, p−ε)

for all ε > 0.

Proof. Noting that y > γ(t, x, p) implies (x, y, p) ∈ Λ(t) and that (x, y, p) ∈ Λ(t)

implies y ≥ γ(t, x, p), the result follows from Corollary 3.2.3 by arguments similar

to the proof of Lemma 3.3.1.

The Hamiltonians G∗ and G∗ for the PDE describing γ are de�ned like H∗ and

H∗ in (3.3.3) and (3.3.4), but with

F (Θ, u, a, v) := µY (x, y, u, v)− µ(X,P )(x, u, v)>q − 1

2
Tr
[
σ(X,P )σ

>
(X,P )(x, u, a, v)A

]
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where Θ := (x, y, q, A) ∈ Rd−1 × R× Rd × Sd and

µ(X,P )(x, u, a, v) :=

(
µX(x, u, v)

0

)
, σ(X,P )(x, u, a, v) :=

(
σX(x, u, v)

a

)
,

with the relaxed kernel Nε replaced by

Kε(x, y, q, v) :=
{

(u, a) ∈ U × R :
∣∣∣σY (x, y, u, v)− q>σ(X,P )(x, u, a, v)

∣∣∣ ≤ ε} ,
and NLip replaced by a set KLip, de�ned like NLip but in terms of K0 instead of N0.

We then have the following result for the semicontinuous envelopes γ∗ and γ∗ of γ.

Theorem 3.3.5. Assume that γ is locally bounded. Then γ∗ is a viscosity superso-

lution on [0, T )× Rd−1 × R of

(−∂t +G∗)ϕ ≥ 0

and γ∗ is a viscosity subsolution on [0, T )× Rd−1 × R of

(−∂t +G∗)ϕ ≤ 0.

Proof. The result follows from Lemma 3.3.4 by adapting the proof of [BET09,

Theorem 2.1], using the arguments from the proof of Theorem 3.3.3 to account for

the game-theoretic setting and the relaxed formulation of the GDP. We therefore

omit the details.

We shall not discuss in this generality the boundary conditions as t → T ; they

are somewhat complicated to state but can be deduced similarly as in [BET09].

Obtaining a comparison theorem at the present level of generality seems di�cult,

mainly due to the presence of the sets Kε and KLip (which depend on the solution

itself) and the discontinuity of the nonlinearities at ∂pϕ = 0. It seems more appro-

priate the treat this question on a case-by-case basis. In fact, once G∗ = G∗ (see

also Remark 3.3.6), the challenges in proving comparison are similar as in the case

without adverse player. For that case, comparison results have been obtained, e.g.,

in [BV11] for a speci�c setting (see also the references therein for more examples).

Remark 3.3.6. Let us discuss brie�y the question whether G∗ = G∗. We shall

focus on the case where U is convex and the (nondecreasing) function γ is strictly

increasing with respect to p; in this case, we are interested only in test functions

ϕ with ∂pϕ > 0. It is not hard to see that for such functions, the relaxation

ε↘ 0,Θ′ → Θ in (3.3.3) is super�uous, so we are left with the question whether

inf
v∈V

sup
(u,a)∈K0(Θ,v)

G(Θ, u, a, v) = sup
(û,â)∈KLip(Θ)

inf
v∈V

G(Θ, û(Θ, v), â(Θ, v), v).
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The inequality �≥� is clear. The converse inequality will hold if, say, for each ε > 0,

there exists a locally Lipschitz mapping (ûε, âε) ∈ KLip such that

G(·, (ûε, âε)(·, v), v) ≥ sup
(u,a)∈K0(·,v)

G(·, u, a, v)− ε for all v ∈ V.

Conditions for the existence of ε-optimal continuous selectors can be found in [KN87,

Theorem 3.2]. If (uε, aε) is an ε-optimal continuous selector, the de�nition of K0

entails that a>ε (Θ, v)qp = −σ>X(x, uε(Θ, v), v)qx + σY (x, y, uε(Θ, v), v), where we

use the notation Θ = (x, y, p, (q>x , qp)
>, A). Then uε can be further approximated,

uniformly on compact sets, by a locally Lipschitz function ûε. We may restrict our

attention to qp > 0; so that, if we assume that σ> is (jointly) locally Lipschitz, the

mapping â>ε (Θ, v) := (qp)
−1
(
−σ>X(x, ûε(Θ, v), v)qx + σY (x, y, ûε(Θ, v), v)

)
is locally

Lipschitz and then (ûε, âε) de�nes a su�ciently good, locally Lipschitz continuous

selector: for all v ∈ V ,

G(·, (ûε, âε)(·, v), v) ≥ G(·, (uε, aε)(·, v), v)−Oε(1) ≥ sup
(u,a)∈K0

G(·, u, a, v)−ε−Oε(1)

on a neighborhood of Θ, where Oε(1)→ 0 as ε→ 0. One can similarly discuss other

cases; e.g, when γ is strictly concave (instead of increasing) with respect to p and

the mapping (x, y, qx, u, v) 7→ −σ>X(x, u, v)qx + σY (x, y, u, v) is invertible in u, with

an inverse that is locally Lipschitz, uniformly in v.

3.4 Application to hedging under uncertainty

In this section, we illustrate our general results in a concrete example, and use the

opportunity to show how to extend them to a case with unbounded strategies. To

this end, we shall consider a problem of partial hedging under Knightian uncertainty.

More precisely, the uncertainty concerns the drift and volatility coe�cients of the

risky asset and we aim at controlling a function of the hedging error; the correspond-

ing worst-case analysis is equivalent to a game where the adverse player chooses the

coe�cients. This problem is related to the G-expectation of [Pen07, Pen08], the sec-

ond order target problem of [STZ10] and the problem of optimal arbitrage studied

in [FK11]. We let

V = [µ, µ]× [σ, σ]

be the possible values of the coe�cients, where µ ≤ 0 ≤ µ and σ ≥ σ ≥ 0. Moreover,

U = R will be the possible values for the investment policy, so that, in contrast to

the previous sections, U is not bounded.

The notation is the same as in the previous section, except for an integrability

condition for the strategies that will be introduced below to account for the un-

boundedness of U , moreover, we shall sometimes write ν = (µ, σ) for an adverse
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control ν ∈ V. Given (µ, σ) ∈ V and u ∈ U, the state process Zu,ν
t,x,y = (Xν

t,x, Y
u,ν
t,y ) is

governed by
dXν

t,x(r)

Xν
t,x(r)

= µr dr + σr dWr, Xν
t,x(t) = x

and

dY u,ν
t,y (r) = u[ν]r

(
µr dr + σr dWr

)
, Y u,ν

t,y (t) = y.

To wit, the process Xν
t,x represents the price of a risky asset with unknown drift and

volatility coe�cients (µ, σ), while Y u,ν
t,y stands for the wealth process associated to

an investment policy u[ν], denominated in monetary amounts. (The interest rate

is zero for simplicity.) We remark that it is clearly necessary to use strategies in

this setup: even a simple stop-loss investment policy cannot be implemented as a

control.

Our loss function is of the form

`(x, y) = Ψ(y − g(x)),

where Ψ, g : R→ R are continuous functions of polynomial growth. The function Ψ

is also assumed to be strictly increasing and concave, with an inverse Ψ−1 : R→ R
that is again of polynomial growth. As a consequence, ` is continuous and (3.2.3)

is satis�ed for some q > 0; that is,

|`(z)| ≤ C(1 + |z|q), z = (x, y) ∈ R2. (3.4.1)

We interpret g(Xν
t,x(T )) as the random payo� of a European option written on

the risky asset, for a given realization of the drift and volatility processes, while Ψ

quanti�es the disutility of the hedging error Y u,ν
t,y (T )− g(Xν

t,x(T ). In this setup,

γ(t, x, p) = inf
{
y ∈ R : ∃ u ∈ U s.t. E

[
Ψ(Y u,ν

t,y (T )− g(Xν
t,x(T ))|Ft

]
≥ p P-a.s. ∀ ν ∈ V

}
is the minimal price for the option allowing to �nd a hedging policy such that the

expected disutility of the hedging error is controlled by p.

We �x a �nite constant q̄ > q∨2 and de�ne U to be the set of mappings u : V → U
that are non-anticipating (as in Section 3.3) and satisfy the integrability condition

sup
ν∈V

E

∣∣∣∣∫ T

0
|u[ν]r|2dr

∣∣∣∣
q̄
2

 <∞. (3.4.2)

The conclusions below do not depend on the choice of q̄. The main result of this

section is an explicit expression for the price γ(t, x, p).
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Theorem 3.4.1. Let (t, x, p) ∈ [0, T ] × (0,∞) × R. Then γ(t, x, p) is �nite and

given by

γ(t, x, p) = sup
ν∈V0

E
[
g
(
Xν
t,x(T )

)]
+ Ψ−1(p),

where V0 = {(µ, σ) ∈ V : µ ≡ 0}.
(3.4.3)

In particular, γ(t, x, p) coincides with the superhedging price for the shifted op-

tion g(·) + Ψ−1(p) in the (driftless) uncertain volatility model for [σ, σ]; see also

below. That is, the drift uncertainty has no impact on the price, provided that

µ ≤ 0 ≤ µ. Let us remark, in this respect, that the present setup corresponds to

an investor who knows the present and historical drift and volatility of the underly-

ing. It may also be interesting to study the case where only the trajectories of the

underlying (and therefore the volatility, but not necessarily the drift) are observed.

This, however, does not correspond to the type of game studied in this chapter.

3.4.1 Proof of Theorem 3.4.1

Proof. [Proof of �≥� in (3.4.3).] We may assume that γ(t, x, p) < ∞. Let y >

γ(t, x, p); then there exists u ∈ U such that

E
[
Ψ
(
Y u,ν
t,y (T )− g

(
Xν
t,x(T )

))]
≥ p for all ν ∈ V.

As Ψ is concave, it follows by Jensen's inequality that

Ψ
(
E
[
Y u,ν
t,y (T )− g

(
Xν
t,x(T )

)])
≥ p for all ν ∈ V.

Since the integrability condition (3.4.2) implies that Y u,ν
t,y is a martingale for all

ν ∈ V0, we conclude that

Ψ
(
y − E

[
g
(
Xν
t,x(T )

)])
≥ p for all ν ∈ V0

and hence y ≥ supν∈V0 E
[
g
(
Xν
t,x(T )

)]
+ Ψ−1(p). As y > γ(t, x, p) was arbitrary,

the claim follows.

We shall use Theorem 3.3.5 to derive the missing inequality in (3.4.3). Since

U = R is unbounded, we introduce a sequence of approximating problems γn de�ned

like γ, but with strategies bounded by n:

γn(t, x, p) := inf
{
y ∈ R : ∃ u ∈ Un s.t. E

[
`
(
Zu,ν
t,x,y(T )

)
|Ft
]
≥ p P-a.s. ∀ ν ∈ V

}
,

where

Un = {u ∈ U : |u[ν]| ≤ n for all ν ∈ V}.

Then clearly γn is decreasing in n and

γn ≥ γ, n ≥ 1. (3.4.4)
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Lemma 3.4.1. Let (t, z) ∈ [0, T ]× (0,∞)× R, u ∈ U, and de�ne un ∈ U by

un[ν] := u[ν]1|u[ν]| ≤ n, ν ∈ V.

Then

ess sup
ν∈V

∣∣E [` (Zun,ν
t,z (T )

)
− `
(
Zu,ν
t,z (T )

)
|Ft
]∣∣→ 0 in L1 as n→∞.

Proof. Using monotone convergence and an argument as in the proof of Step 1 in

Section 3.2.3, we obtain that

E
{

ess sup
ν∈V

∣∣E [` (Zun,ν
t,z (T )

)
− `

(
Zu,ν
t,z (T )

)
|Ft
]∣∣}

= sup
ν∈V

E
{∣∣` (Zun,ν

t,z (T )
)
− `
(
Zu,ν
t,z (T )

)∣∣} .
Since V is bounded, the Burkholder-Davis-Gundy inequalities show that there is a

universal constant c > 0 such that

E
{∣∣Zun,ν

t,z (T )− Zu,ν
t,z (T )

∣∣} ≤ cE
[∫ T

t
|u[ν]r − un[ν]r|2 dr

] 1
2

= cE
[∫ T

t
|u[ν]r1|u[ν]r| > n|2 dr

] 1
2

and hence (3.4.2) and Hölder's inequality yield that, for any given δ > 0,

sup
ν∈V

P
{∣∣Zun,ν

t,z (T )− Zu,ν
t,z (T )

∣∣ > δ
}
≤ δ−1 sup

ν∈V
E
{∣∣Zun,ν

t,z (T )− Zu,ν
t,z (T )

∣∣}→ 0

(3.4.5)

for n → ∞. Similarly, the Burkholder-Davis-Gundy inequalities and (3.4.2) show

that {|Zun,ν
t,z (T )| + |Zu,ν

t,z (T )|, ν ∈ V, n ≥ 1} is bounded in Lq̄. This yields, on the

one hand, that

sup
ν∈V, n≥1

P
{∣∣Zun,ν

t,z (T )
∣∣+
∣∣Zu,ν

t,z (T )
∣∣ > k

}
→ 0 (3.4.6)

for k →∞, and on the other hand, in view of (3.4.1) and q̄ > q, that{
`
(
Zun,ν
t,z (T )

)
− `
(
Zu,ν
t,z (T )

)
: ν ∈ V, n ≥ 1

}
is uniformly integrable. (3.4.7)

Let ε > 0; then (3.4.6) and (3.4.7) show that we can choose k > 0 such that

sup
ν∈V

E
[∣∣` (Zun,ν

t,z (T )
)
− `

(
Zu,ν
t,z (T )

)∣∣1{|Zun,ν
t,z (T )|+|Zu,ν

t,z (T )|>k}

]
< ε

for all n. Using also that ` is uniformly continuous on {|z| ≤ k}, we thus �nd δ > 0

such that

sup
ν∈V

E
[∣∣` (Zun,ν

t,z (T )
)
− `
(
Zu,ν
t,z (T )

)∣∣]
≤ 2ε+ sup

ν∈V
E
[∣∣` (Zun,ν

t,z (T )
)
− `
(
Zu,ν
t,z (T )

)∣∣1{|Zun,ν
t,z (T )−Zu,ν

t,z (T )|>δ}

]
.
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By (3.4.5) and (3.4.7), the supremum on the right-hand side tends to zero as n→∞.

This completes the proof of Lemma 3.4.1.

Proof. [Proof of �≤� in (3.4.3).] It follows from the polynomial growth of g and

the boundedness of V that the right-hand side of (3.4.3) is �nite. Thus, the already

established inequality �≥� in (3.4.3) yields that γ(t, x, p) > −∞. We now show the

theorem under the hypothesis that γ(t, x, p) < ∞ for all p; we shall argue at the

end of the proof that this is automatically satis�ed.

Step 1: Let γ∞ := infn γn. Then the upper semicontinuous envelopes of γ and

γ∞ coincide: γ∗ = γ∗∞.

It follows from (3.4.4) that γ∗∞ ≥ γ∗. Let η > 0 and y > γ(t, x, p+2η). We show

that y ≥ γn(t, x, p) for n large; this will imply the remaining inequality γ∗∞ ≤ γ∗.

Indeed, the de�nition of γ and Lemma 3.4.1 imply that we can �nd u ∈ U and

un ∈ Un such that

J(t, x, y, un) ≥ J(t, x, y, u)− εn ≥ p+ η − εn P-a.s.,

where εn → 0 in L1. If Kn is de�ned like K, but with Un instead of U, then it

follows that Kn(t, x, y) ≥ p + η − εn P-a.s. Recalling that Kn is deterministic (cf.

Proposition 3.3.1), we may replace εn by E[εn] in this inequality. Sending n → ∞,

we then see that limn→∞Kn(t, x, y) ≥ p+ η, and therefore Kn(t, x, y) ≥ p+ η/2 for

n large enough.

Step 2: The relaxed semi-limit

γ̄∗∞(t, x, p) := lim sup
n→∞

(t′,x′,p′)→(t,x,p)

γ∗n(t′, x′, p′)

is a viscosity subsolution on [0, T )× (0,∞)× R of

− ∂tϕ+ inf
σ∈[σ,σ]

{
−1

2
σ2x2∂xxϕ

}
≤ 0 (3.4.8)

and satis�es the boundary condition γ̄∗∞(T, x, p) ≤ g(x) + Ψ−1(p).

We �rst show that the boundary condition is satis�ed. Fix (x, p) ∈ (0,∞) × R
and let y > g(x)+Ψ−1(p); then `(x, y) > p. Let (tn, xn, pn)→ (T, x, p) be such that

γn(tn, xn, pn)→ γ̄∗∞(T, x, p). We consider the strategy u ≡ 0 and use the arguments

from the proof of Proposition 3.3.1 to �nd a constant c independent of n such that

ess sup
ν∈V

E
[
|Z0,ν
tn,xn,y(T )− (x, y)|q̄ |Ftn

]
≤ c

(
|T − tn|

q̄
2 + |x− xn|q̄

)
.

Similarly as in the proof of Lemma 3.4.1, this implies that there exist constants

εn → 0 such that

J(tn, xn, y, 0) ≥ `(x, y)− εn P-a.s.
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In view of `(x, y) > p, this shows that y ≥ γn(tn, xn, pn) for n large enough, and

hence that y ≥ γ̄∗∞(T, x, p). As a result, we have γ∗∞(T, x, p) ≤ g(x) + Ψ−1(p).

It remains to show the subsolution property. Let ϕ be a smooth function and

let (to, xo, po) ∈ [0, T )× (0,∞)× R be such that

(γ̄∗∞ − ϕ)(to, xo, po) = max(γ̄∗∞ − ϕ) = 0.

After passing to a subsequence, [Bar94, Lemma 4.2] yields (tn, xn, pn)→ (to, xo, po)

such that

lim
n→∞

(γ∗n − ϕ)(tn, xn, pn) = (γ̄∗∞ − ϕ)(to, xo, po),

and such that (tn, xn, pn) is a local maximizer of (γ∗n−ϕ). Applying Theorem 3.3.5

to γ∗n, we deduce that

sup
(û,â)∈Kn

Lip(·,Dϕ)
inf

(µ,σ)∈V
Gϕ(·, (û, â)(µ, σ), (µ, σ))(tn, xn, pn) ≤ 0, (3.4.9)

where

Gϕ(·, (u, a), (µ, σ)) := uµ− ∂tϕ− µx∂xϕ−
1

2

(
σ2x2∂xxϕ+ a2∂ppϕ+ 2σxa∂xpϕ

)
and Kn

Lip(·, Dϕ)(tn, xn, pn) is the set of locally Lipschitz mappings (û, â) with values

in [−n, n]× R such that

σû(x, qx, qp, µ, σ) = xσqx + qpâ(x, qx, qp, µ, σ) for all σ ∈ [σ, σ]

for all (x, (qx, qp)) in a neighborhood of (xn, Dϕ(tn, xn, pn)). Since the mapping

(0,∞)× R2 × [µ, µ]× [σ, σ]→ R2, (x, qx, qp, µ, σ) 7→ (xqx, 0)

belongs to Kn
Lip(·, Dϕ)(tn, xn, pn) for n large enough, (3.4.9) leads to

−∂tϕ+ inf
σ∈[σ,σ]

{
−1

2
σ2x2∂xxϕ

}
(tn, xn, pn) ≤ 0

for n large. Here the nonlinearity is continuous; therefore, sending n → ∞
yields (3.4.8).

Step 3: We have γ̄∗∞ ≤ π on [0, T ]× (0,∞)× R, where

π(t, x, p) := sup
ν∈V0

E
[
g
(
Xν
t,x(T )

)]
+ Ψ−1(p)

is the right hand side of (3.4.3).

Indeed, our assumptions on g and Ψ−1 imply that π is continuous with polyno-

mial growth. It then follows by standard arguments that π is a viscosity supersolu-

tion on [0, T )× (0,∞)× R of

−∂tϕ+ inf
σ∈[σ,σ]

{
−1

2
σ2x2∂xxϕ

}
≥ 0,
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and clearly the boundary condition π(T, x, p) ≥ g(x) + Ψ−1(p) is satis�ed. The

claim then follows from Step 2 by comparison.

We can now deduce the theorem: We have γ ≤ γ∗ by the de�nition of γ∗ and

γ∗ = γ∗∞ by Step 1. As γ∗∞ ≤ γ̄∗∞ by construction, Step 3 yields the result.

It remains to show that γ < ∞. Indeed, this is clearly satis�ed when g is

bounded from above. For the general case, we consider gm = g ∧m and let γm be

the corresponding value function. Given η > 0, we have γm(t, x, p+ η) <∞ for all

m and so (3.4.3) holds for gm. We see from (3.4.3) that y := 1+supm γm(t, x, p+η)

is �nite. Thus, there exist um ∈ U such that

E
[
Ψ
(
Y um,ν
t,y (T )− gm

(
Xν
t,x(T )

))
|Ft
]
≥ p+ η/2 for all ν ∈ V.

Using once more the boundedness of V , we see that for m large enough,

E
[
Ψ
(
Y um,ν
t,y (T )− g

(
Xν
t,x(T )

))
|Ft
]
≥ p for all ν ∈ V,

which shows that γ(t, x, p) ≤ y <∞.

Remark 3.4.2. We sketch a probabilistic proof for the inequality �≤� in Theo-

rem 3.4.1, for the special case without drift (µ = µ = 0) and σ > 0. We focus on

t = 0 and recall that y0 := supν∈V0 E[g(Xν
0,x(T ))] is the superhedging price for g(·)

in the uncertain volatility model. More precisely, if B is the coordinate-mapping

process on Ω = C([0, T ];R), there exists an FB-progressively measurable process ϑ

such that

y0 +

∫ T

0
ϑs
dBs
Bs
≥ g(BT ) P ν-a.s. for all ν ∈ V0,

where P ν is the law of Xν
0,x under P (see, e.g., [NS11]). Seeing ϑ as an adapted

functional of B, this implies that

y0 +

∫ T

0
ϑs(X

ν
0,x)

dXν
0,x(s)

Xν
0,x(s)

≥ g(Xν
0,x(T )) P -a.s. for all ν ∈ V0.

SinceXν
0,x is non-anticipating with respect to ν, we see that u[ν]s := ϑs(X

ν
0,x) de�nes

a non-anticipating strategy such that, with y := y0 + Ψ−1(p),

y +

∫ T

0
u[ν]r

dXν
0,x(s)

Xν
0,x(s)

≥ g(Xν
0,x(T )) + Ψ−1(p);

that is,

Ψ
(
Y u,ν

0,y (T )− g(Xν
0,x(T )

)
≥ p

holds even P -almost surely, rather than only in expectation, for all ν ∈ V0, and

V0 = V because of our assumption that µ = µ = 0. In particular, we have the
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existence of an optimal strategy u. (We notice that, in this respect, it is important

that our de�nition of strategies does not contain regularity assumptions on ν 7→
u[ν].)

Heuristically, the case with drift uncertainty (i.e., µ 6= µ) can be reduced to the

above by a Girsanov change of measure argument; e.g., if µ is deterministic, then we

can take u[(µ, σ)] := u[(0, σµ)], where σµ(ω) := σ(ω+
∫
µt dt). However, for general

µ, there are di�culties related to the fact that a Girsanov Brownian motion need

not generate the original �ltration (see, e.g., [FS97]), and we shall not enlarge on

this.
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Risk diversi�cation - Abstract

Abstract

In principle, liabilities combining both insurancial risks (e.g. mortal-

ity/longevity, crop yield,...) and pure �nancial risks cannot be priced neither by

applying the usual actuarial principles of diversi�cation, nor by arbitrage-free repli-

cation arguments. Still, it has been often proposed in the literature to combine these

two approaches by suggesting to hedge a pure �nancial payo� computed by taking

the mean under the historical/objective probability measure on the part of the risk

that can be diversi�ed. Not surprisingly, simple examples show that this approach

is typically inconsistent for risk adverse agents. We show that it can nevertheless

be recovered asymptotically if we consider a sequence of agents whose absolute risk

aversions go to zero and if the number of sold claims goes to in�nity simultaneously.

This follows from a general convergence result on utility indi�erence prices which

is valid for both complete and incomplete �nancial markets. In particular, if the

underlying �nancial market is complete, the limit price corresponds to the hedg-

ing cost of the mean payo�. If the �nancial market is incomplete but the agents

behave asymptotically as exponential utility maximizers with vanishing risk aver-

sion, we show that the utility indi�erence price converges to the expectation of the

discounted payo� under the minimal entropy martingale measure.
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4.1 Introduction

These last years have seen the explosion of the number of liabilities combining

pure �nancial and pure insurancial risks. They typically have the following form:

an insurance company sells to the client i a claim with discounted payo� gi paid

at maturity T whose value depends on the evolution of some tradable �nancial

assets S = (St)t≥0 and some additional idiosyncratic risk. The gi's are usually not

unconditionally independent, but still independent conditionally to S.

It is (essentially) the case of many variable annuities schemes in which death

times or withdrawals policies can be assumed to be independent conditionally to

the �nancial market's behavior, see e.g. [BKR08]. This is also the case for crop
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revenue insurance schemes that depend on the production yield of the farmer and

the market price of the crop, see e.g. [GK02]. More examples can be found in [EC00]

or [Bec03].

In such a situation, and if the �nancial market formed by the assets S is complete,

it is tempting to play on the ability to diversify the conditionally idiosyncratic risks

and cover the systemic pure �nancial risk by dynamically trading on the market.

If the gi's are independent and identically distributed given S, then the price of

each of these contingent claims could be de�ned as p̄ := EQ [ḡ(S)] where ḡ(S) :=

E
[
gi|S

]
does not depend on i, and Q denotes the unique martingale measure on

the pure �nancial market (i.e. restricted to S). The rationality behind this is the

following: by an informal application of the law of large numbers conditionally to

S, we obtain the convergence Gn/n :=
∑n

i=1 g
i/n → ḡ(S) a.s. for a large number

n of sold contracts. In the above, the payo� ḡ(S) only depends on S and can thus

be hedged dynamically by trading on the (complete) pure �nancial market. Hence,

by replicating the mean payo� ḡ(S), we end up with a zero net position in mean

(under the initial probability measure P).

This solution has been originally proposed by Brennan and Schwartz [BS79a,

BS79b], and then applied several times, in particular in the literature on variables

annuities, see e.g. [BKR08], [BH03], [MP00] or [MPY06]. However, it seems to

ignore the fact that playing with the law of large numbers on the diversi�able part

of the risk requires selling a large number of contracts, and therefore may lead to

huge positions on the �nancial market. If the law of large numbers does not operate

well enough, then the losses may be leveraged by an unfavorable evolution of the

�nancial market. More generally, the classical central limit theorem that allows to

control the asymptotic distribution of the risk in terms of the Gaussian law will in

general not apply in this context.

One classical solution for pricing such claims is to use the indi�erence pricing

rule of Hodge-Neuberger [HN89], see e.g. [Bec03] for the exponential utility case. As

expected, it typically does not lead to the price p̄ de�ned as above, see Section 4.2.2

for trivial counter-examples. However, one should intuitively recover it asymptoti-

cally when the number of sold contracts is large, so that the conditional law of large

numbers can operate, and the risk aversion is small.

In this note, we provide su�cient conditions under which the above holds

true. Namely, we consider a family of utility functions (Un)n, de�ned on R, with
corresponding absolute risk aversion (rn)n and indi�erence prices (npn)n for the

aggregate claims (Gn)n. Under mild assumptions detailed in Section 4.3.2, we show

that n → ∞ and n|rn|∞ → 0 implies pn → p̄, whenever the underlying �nancial

market formed by the liquid �nancial assets S is complete. This follows from a more
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general asymptotic result derived in Section 4.3.1, which provides a formulation for

the asymptotic unit price limn pn in terms of the sequence of martingales measures

minimizing the corresponding dual problems. The latter applies to incomplete

�nancial markets without providing a clear identi�cation of the asymptotic pricing

measure, except when (Un)n behaves asymptotically like a sequence of exponential

utility functions. In this case, we show that pn → pe := EQe [ḡ(S)] where Qe is the
martingale measure with minimum relative entropy, see Section 4.3.3. This general-

izes to our setting the well-known property that the exponential utility indi�erence

price of a claim converges to the risk neutral price under Qe for vanishing risk

aversion, see [EKR00] and [Bec03]. Note that a similar result is obtained in [Bec03]

for the indi�erence price of the mean payo� Ḡn := Gn/n =
∑n

i=1 g
i/n as n goes to

in�nity and the risk aversion is �xed, which is a completely di�erent situation.

In the following, any assertion involving random variables has to be understood

in the a.s. sense. Given a probability measure Q and a sigma-algebra G, we denote by
L1(Q,G) (resp. L∞(Q,G)) the space of Q-integrable (resp. Q-essentially bounded)

random variables that are G-measurable. We omit the argument Q or G if it is

clearly given by the context.

4.2 Diversi�cation based pricing rules and risk aversion

In this section, we describe the �nancial market and elaborate on the relation be-

tween diversi�cation and utility indi�erence pricing.

4.2.1 The market model

From now on, we �x a time horizon T > 0 to avoid unnecessary technical is-

sues, although for some applications (e.g. mortality/longetivity linked contracts)

it should in principle be in�nite. We consider a model of a security market

which consists of d stocks with price process described by a locally bounded

càdlàg semi-martingale (Si)1≤i≤d de�ned on some complete �ltered probability space

(Ω,F ,F := (Ft)0≤t≤T ,P), with F satisfying the usual assumptions and F = FT . As
usual, we normalize the risk free rate to 0 for simplicity, which can always been done

by considering discounted values.

A (self �nancing) strategy is de�ned as an element ϑ = (ϑi)1≤i≤d of the set Θ

of F-predictable S-integrable processes. Given an initial endowment x ∈ R and a

strategy ϑ ∈ Θ, the induced wealth process Xx,ϑ = (Xx,ϑ
t )0≤t≤T is given by

Xx,ϑ
t = x+

∫ t

0
ϑu · dSu , 0 ≤ t ≤ T .
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In order to avoid doubling strategies, we restrict as usual to strategies leading to

bounded from below wealth processes. We denote by Xb(x) the family of terminal

values of wealth processes starting from x such that the above holds:

Xb(x) :=
{
Xx,ϑ
T : ϑ ∈ Θ, Xx,ϑ ≥ −κ on [0, T ] for some κ ∈ R

}
. (4.2.1)

Note that Xb(x) = x+ Xb(0).

As usual, a probability measure Q is called an equivalent local martingale mea-

sure if it is equivalent to P and if S is a (F,Q)-local martingale. The family of

equivalent local martingales will be denoted by M. We assume throughout this

chapter that

M 6= ∅, (4.2.2)

which ensures the absence of arbitrage opportunities (in the no-free lunch with

vanishing risk sense), see [DS94] for details. In the following, we will often use the

notation Q∗ to denote a �xed element ofM.

Note that we do not impose that FT equals FST , where FS = (FSt )t≤T is the

completion of the right-continuous �ltration generated by S, in order to allow for

additional randomness.

However, we shall often consider that the pure �nancial market is complete in

the following sense.

De�nition 4.2.1. We say that the pure �nancial market is complete, in short

(HCM) holds, if

EQ
∗

[ξ] = EQ[ξ] for all Q ∈M and ξ ∈ L∞(FST ),

where L∞(FST ) denotes the set of essentially bounded FST -measurable random vari-

ables.

Remark 4.2.2. Under (HCM), we must have ξ ∈ Xb(EQ [ξ]) for all ξ ∈ L∞(FST ).

See [DS94].

Remark 4.2.3. Note that, if FST ( FT , then (HCM) only implies that the pure

�nancial market is complete in the sense of Remark 4.2.2, and not thatM is reduced

to a singleton. As an example, assume that we can �nd A ∈ FT such that P [A] > 0

and A is independent of FST given Fs for all s ∈ [0, T ] under P. Set H∗ := dQ∗/dP,
H∗(S) := E

[
H∗|FST

]
and Hε

A := εH∗ + (1 − ε)H∗(S)1A/P [A] for some ε ∈ (0, 1].

Then, for any increasing sequence of FS-stopping times (τk)k≥1 such that S(k) :=
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S·∧τk is bounded on [0, T ] for all k ≥ 1, we have

E
[
Hε
AS

(k)
t |Fs

]
= εE [H∗|Fs]S(k)

s + (1− ε)E
[
E
[
H∗S

(k)
t |FST

]
1A|Fs

]
/P [A]

= εE [H∗|Fs]S(k)
s + (1− ε)E

[
E
[
H∗S

(k)
t |FST

]
|Fs
]
E [1A|Fs] /P [A]

= (εE [H∗|Fs] + (1− ε)E [H∗(S)|Fs]P [A|Fs] /P [A])S(k)
s

= E [Hε
A|Fs]S(k)

s

for 0 ≤ s ≤ t ≤ T , which shows that the measure QεA de�ned by dQεA/dP = Hε
A

belongs toM. In general QεA 6= Q∗.

Remark 4.2.4. The same arguments as in Remark 4.2.3 imply that Q∗(S) de�ned

by dQ∗(S) = E
[
dQ∗/dP|FST

]
dP belongs to M. Note for later use that dQ∗(S) =

E
[
dQ/dP|FST

]
dP for any Q ∈M when (HCM) holds.

Remark 4.2.5. Assume that F can be written as (FSt ∨F⊥t )t≤T for some �ltration

F⊥ = (F⊥t )t≤T independent of FS under P, and satisfying the usual conditions.

Then, any A ∈ F⊥T is independent of FST given Fs for all s ∈ [0, T ] under P. Indeed,
under the above assumption, Fs is generated by elements of the form BS

s ∩B⊥s with

BS
s ∈ FSs and B⊥s ∈ F⊥s . Given ξ ∈ L∞(FST ), we then have

E
[
ξ1BSs ∩B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs

]
E
[
1B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs ∩B⊥s

]
,

so that E
[
ξ|FSs

]
= E [ξ|Fs]. Similarly, E

[
1A|F⊥s

]
= E [1A|Fs]. Moreover,

E
[
ξ1A1BSs ∩B⊥s

]
= E

[
ξ1BSs

]
E
[
1A1B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs

]
E
[
E
[
1A|F⊥s

]
1B⊥s

]
which, combined with the above assertions, leads to

E
[
ξ1A1BSs ∩B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs E

[
1A|F⊥s

]
1B⊥s

]
= E

[
E [ξ|Fs]E [1A|Fs]1BSs ∩B⊥s

]
.

Hence, E [ξ1A|Fs] = E [ξ|Fs]E [1A|Fs].

4.2.2 Diversi�cation and utility based pricing

We are interested in the pricing by utility indi�erence, see [HN89], of aggregated

claims of the form

Gn :=
n∑
i=1

gi, n ≥ 1,

where (gi)i≥1 is a given sequence of random variables.

Although the speci�c structure of the Gn's is not so important from the math-

ematical point of view, we have in mind that each gi corresponds to a contingent
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claim sold by an insurance company to a speci�c agent i, and that the gi's have the

same law and are independent conditionally to FST under P. This means that the

gi's may depend of two sources or risks. One related to the pure �nancial market

behavior, i.e. S, the other one coming from an external source of randomness which

only depends on the agent i.

Example 4.2.1 (Revenue insurance). Let S1 denote the spot price of one quintal of

wheat on the �nancial market and let Y i denotes the number of quintals produced

by the farmer i at time T . The payo� of a revenue insurance takes the form gi =

[K − Y iST ]+ for some strike K > 0 �xed in advance. It compensates the losses

incurred by the farmer i if his revenue Y iST , induced by the sale of the production

at the spot price ST at time T , is less than a targeted level K. If the wheat market

contains enough futures and provides enough liquidity, we can consider that it is

complete. Moreover, we can also consider that the global level of production (at the

level of a su�ciently large area) is already re�ected into the prices so that the Y i's

can be assumed to be independent given FST .

Example 4.2.2 (Mortality derivatives). A simple example takes the form gi =

f(S, ζi) where f is a real valued measurable map on D × ([0, T ] ∪ {∞}), with D
denoting the set of càdlàg Rd-valued functions on [0, T ] (endowed with the Skorohod

topology), and ζi is a [0, T ]-valued random variable denoting the time of death of i

if it is before T and taking the value∞ otherwise. Again, one source of randomness

comes from the �nancial market, while the ζi's can generally be assumed to be

independent and with the same law (at least among a given sub-population).

Under the above interpretation, the global liability of the insurance company

is Gn if the contracts have been subscribed by the clients 1 to n. If the insurance

company does not di�erentiate its clients, then it has to �x the same price pn to

each of them.

If the global market was complete, meaning that M = {Q∗}, and the law of

Gn/n under Q∗ was independent on n, then pn should be equal to p̄ := EQ∗ [Gn/n].

Obviously the completeness of the global market typically fails for the examples

we have in mind. Still, as explained in the introduction, this pricing rule has been

proposed in the literature for the case where (HCM) holds and (gi)i≥1 is a sequence

of independent and identically distributed random variables given FST . The latter

has essentially to be understood in the sense that one can appeal to the law of large

numbers, at least conditionally to FST , so that

Gn/n→ ḡ P-a.s. for some ḡ ∈ L∞(FST ). (4.2.3)
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Under (HCM), one can indeed �nd ϑ ∈ Θ such that

X p̄,ϑ
T = ḡ for p̄ = EQ

∗
[ḡ] ,

recall Remark 4.2.2. Then, (4.2.3) implies that

Xnp̄,nϑ
T −Gn

n
→ 0 P-a.s.

i.e. by replicating nḡ we end up with a hedging error that converges P-a.s. to 0. This

is achieved by considering the strategy nϑ and starting from the n initial premiums,

each equal to p̄.

This is however inconsistent with the typical behavior of a risk adverse agent.

In particular, it has no reason to be in accordance with a (unit) utility indi�erence

price de�ned by

pn(Gn, U) := inf{p ∈ R : sup
X∈Xb(np)

E [U(X −Gn)] ≥ sup
X∈Xb(0)

E [U(X)]}, (4.2.4)

where U is a concave non-decreasing function viewed as a utility function, and

where we restrict to a 0 initial endowment (before selling the claims) without loss of

generality since any �xed initial wealth can be incorporated in the utility function

by a simple translation argument.

We conclude this section with simple counter-examples, where we observe that

the limit of the asymptotic utility indi�erence price pn(Gn, U) indeed does not coin-

cide with the price of ḡ computed under Q∗. In order to �nd conditions under which

this commonly used pricing rule holds at the limit, we will therefore consider in the

next section agents with �almost zero� risk aversion. The �rst example concerns

utility functions with bounded from below domains.

Example 4.2.3 (Utility with bounded from below domain). Let U be concave non-

decreasing with values in R ∪ {−∞} such that |U(0)|+ |U(∞)| <∞ and U(−c) =

−∞ for some c > 0. Let pn := pn(Gn, U) be de�ned as in (4.2.4). Since U(0) > −∞
and U is bounded from above, for each ε > 0, there must exist ξn,ε ∈ Xb(0) such

that npn + ε+ ξn,ε ≥ Gn − c. This implies that pn ≥ supQ∈M EQ [Gn/n]− c/n and

therefore

lim inf
n→∞

pn ≥ lim inf
n→∞

sup
Q∈M

EQ [Gn/n] . (4.2.5)

Let us now concentrate on the case where (gi)i≥1 is de�ned as in Example (4.2.2)

with f bounded. Assume that the ζi's form an independent family with a common
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law under P, and that σ(ζi, i ≥ 1) ⊂ F⊥T with F⊥ satisfying the conditions of Remark

4.2.5. Note that

E
[
H∗(S)f(S, ζi)|F⊥T

]
= E

[
H∗(S)f(S, ζi)|ζi

]
, i ≥ 1 ,

where H∗(S) is de�ned as in Remark 4.2.3. Set ψ := ess supE
[
H∗(S)f(S, ζ1)|ζ1

]
.

For k, n ≥ 1 and ε ∈ (0, 1), we de�ne Ank := {E
[
H∗(S)f(S, ζi)|ζi

]
≥ ψ−k−1, for all

i ≤ n} and Hε
n,k := εH∗ + (1− ε)H∗(S)1Ank /P [Ank ]. Note that P [Ank ] > 0 since the

ζi's are independent and have the same law under P. Then, according to Remarks

4.2.5 and 4.2.3, Qεn,k := Hε
n,k · P ∈M. Recalling (4.2.5), this implies that

lim inf
n→∞

pn ≥ lim inf
n→∞

lim
k→0

lim
ε→0

EQ
ε
n,k [Gn/n] = ψ.

Clearly, the above lower bound is typically strictly larger than EQ∗
[
E
[
f(S, ζ1)|FST

]]
,

while applying the law of large numbers conditionally to FST implies that Gn/n →
ḡ = E

[
f(S, ζ1)|FST

]
P-a.s. For instance, if f is lower-semicontinuous, non-decreasing

with respect to its second parameter, and if each ζi has a support equal to

[ymin, ymax] ⊂ R under P, then ψ = E [H∗(S)f(S, ymax)] = EQ∗ [f(S, ymax)] =

EQ∗ [max{f(S, y), ymin ≤ y ≤ ymax}]. Under (HCM), the later is the hedging price

of max{f(S, y), ymin ≤ y ≤ ymax}, recall Remark 4.2.2, so that pn ≤ ψ for all n ≥ 1,

and therefore pn → ψ.

In general, going through utility function with unbounded domain does not help,

as show in our second example.

Example 4.2.4 (Exponential utility function). Let U be an exponential utility

function of the form Uη(y) = −e−ηy, η > 0. Assume that the gi's have the form

taken in Example (4.2.3), that F⊥t = σ(F⊥,it , i ≥ 1), t ≤ T , for some �ltrations

(F⊥,i)i≥1 such that FST , F
⊥,1
T , F⊥,2T , . . . are independent under P, and that ζi is

F⊥,iT -measurable for each i ≥ 1. Then, it can be shown that pηn := pn(Gn, U
η) =

p1(g1, Uη) =: pη whenever there exists a unique element of M with �nite relative

entropy and whose density is FST -measurable, see [Bec03, Theorem 4.10]. It is in

particular the case if (HCM) holds and Q∗(S) de�ned in Remark 4.2.4 has a �nite

relative entropy. On the other hand, it is well-known that pη converges to the super-

hedging price of g1 as η →∞, see [DGR+02] and [Bec03]. This implies that, for all

ε > 0, we can �nd ηε large enough so that limn p
ηε
n = pηε ≥ supQ∈M EQ

[
g1
]
− ε.

For ε > 0 small enough, this is again typically greater than EQ∗
[
E
[
f(S, ζ1)|FST

]]
.

4.3 Asymptotic diversi�cation rule

As pointed out in the previous examples, the convergence of the mean aggregated

claim Gn/n to a replicable claim ḡ ∈ L∞(FST ) is not enough in order to ensure the
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convergence of its unit utility indi�erence price pn(Gn, U) to EQ∗ [ḡ]. Intuitively, this

can be recovered only if the risk aversion vanishes and the number of sold claims

goes to in�nity.

Hence, we consider from now on a sequence of utility functions (Un)n≥1, which

depends on the number n of sold claims (gi)0≤i≤n, so as to model the asymptotic

situation in which the risk aversion is almost zero and the number of claims is very

large : the purpose of this section is to investigate the asymptotic behavior of the

corresponding unit utility indi�erence price when n times the absolute risk aversion

of Un vanishes to 0 as n goes to ∞.

We �rst provide a general characterization of the asymptotic unit utility indi�er-

ence price in terms of the sequence of associated dual pricing measures. Whenever

the pure �nancial market is complete, i.e. (HCM) is satis�ed, this limit identi�es

to the risk neutral price of ḡ. When the pure �nancial market is incomplete, it does

not seem possible to obtain a precise characterization of the limit price, except when

(Un)n≥1 behaves asymptotically like a sequence of exponential utility functions with

vanishing absolute risk aversion. In this case, we prove that the asymptotic price

coincides with the price of ḡ under the minimal entropy martingale measure.

4.3.1 General convergence result

In this section, we consider a sequence of twice continuously di�erentiable, strictly

concave and increasing utility functions (Un)n≥1 de�ned on the whole real line and

satisfying the Inada conditions:

U ′n(−∞) = lim
x→−∞

U ′n(x) =∞

and U ′n(∞) = lim
x→∞

U ′n(x) = 0 ,
n ≥ 1 . (4.3.1)

Besides, we suppose that all the utility functions have a reasonable asymptotic

elasticity as de�ned in [Sch01], i.e.

lim sup
x→∞

xU ′n(x)

Un(x)
< 1 , lim inf

x→−∞

xU ′n(x)

Un(x)
> 1 , n ≥ 1 . (4.3.2)

We �nally introduce the convex conjugates of the Un's de�ned by

Vn : y ∈ (0,∞) 7→ sup
x∈R
{Un(x)− xy},

and assume that the dual problems are �nite:

{(y,Q) ∈ (0,∞)×M : E [Vn(ydQ/dP)] <∞} 6= ∅ for all n ≥ 1. (4.3.3)

Under the additional uniform boundedness assumption

sup
n≥1
|Gn/n|L∞ <∞, (4.3.4)
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the unit utility indi�erence prices pn(Gn, Un) given by (4.2.4) are well de�ned for

any n ≥ 1 and existence for the optimal dual probability and multiplier, given by

(y0
n,Q0

n) := arg min

{
E
[
Vn

(
y
dQ
dP

)]
, (y,Q) ∈ (0,∞)×M

}
, (4.3.5)

is guaranteed, see e.g. Bouchard, Touzi and Zeghal [BTZ04, Theorem 3.1, Remark

3.3 and Proposition 3.1] (see also [Sch01] for a fomulation in terms of absolutely

continuous local martingale measures).

In the rest of this section, we work under the standing assumption:

Assumption 4.3.1. The conditions (4.3.1), (4.3.2), (4.3.3) and (4.3.4) hold.

In order to derive the asymptotic behavior of the unit indi�erence price, we

shall work under the following additional condition on the asymptotic absolute risk

aversion:

n|rn|∞ −→
n→∞

0 , with rn : x 7→ −U
′′
n(x)

U ′n(x)
, (4.3.6)

and |rn|∞ := supx∈R |rn(x)|.

Theorem 4.3.2. Let (4.3.1) and (4.3.6) hold. Then, the sequence of utility indif-

ference prices satis�es

lim inf
n→∞

pn(Gn, Un) = lim inf
n→∞

EQ
0
n [Gn/n]

and lim sup
n→∞

pn(Gn, Un) = lim sup
n→∞

EQ
0
n [Gn/n] .

Proof. We set pn := pn(Gn, Un) for ease of notations. We only provide the proof

for the lim inf, the other one being similar.

1. Given n ≥ 1, it follows from standard duality arguments, see [Owe02] and

Bouchard, Touzi and Zeghal [BTZ04], that

inf
y>0,Q∈M

E
[
Vn

(
y
dQ
dP

)
+ ynpn − y

dQ
dP

Gn

]
= inf

y>0,Q∈M
E
[
Vn

(
y
dQ
dP

)]
= E

[
Vn

(
y0
n

dQ0
n

dP

)]
,

recall (4.3.5). Taking in particular (y,Q) =
(
y0
n,Q0

n

)
, this implies that

E
[
Vn

(
y0
n

dQ0
n

dP

)
+ y0

nnpn − y0
n

dQ0
n

dP
Gn

]
≥ E

[
Vn

(
y0
n

dQ0
n

dP

)]
,

and therefore pn ≥ EQ
0
n [Gn/n].
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2. On the other hand, it follows from [Sch01] that, for n ≥ 1, we can �nd

X̂n ∈ L0(FT ) such that

sup
X∈Xb(0)

E [Un (XT )] = E
[
Un

(
X̂n
)]

and for which there exists a sequence of optimizers
(
Xk,n

)
k≥1
⊂ Xb(0) such that

Un

(
Xn,k
T

)
L1(P)−→
k→∞

Un

(
X̂n
)
. (4.3.7)

In order to upper-bound pn, we then introduce the following candidate

πn := inf
{
p ∈ R : E

[
Un

(
np+ X̂n −Gn

)]
≥ E

[
Un

(
X̂n
)]}

.

a. We �rst check that

πn ≥ pn, for all n ≥ 1. (4.3.8)

To this purpose, it su�ces to �x n ∈ N and show that

Un

(
np+Xn,k

T −Gn
)
L1(P)−→
k→∞

Un

(
np+ X̂n −Gn

)
∈ L1(P), for all p ∈ R . (4.3.9)

To see that the above holds, �rst note that∣∣∣Un (np+Xn,k
T −Gn

)
− Un

(
np+ X̂n −Gn

)∣∣∣
=

∣∣∣∣∣
∫ Xn,k

T

X̂n

U ′n(np+ t−Gn)dt

∣∣∣∣∣ . (4.3.10)

Consider now the relation

logU ′n(np+ t−Gn)− logU ′n(t) ≤ n
∥∥∥∥U ′′nU ′n

∥∥∥∥
∞

∣∣∣∣p− Gn
n

∣∣∣∣ , t, p ∈ R,

which, together with (4.3.4) and (4.3.6) leads to the existence of a constant Cp
(which only depends on p) such that

U ′n(np+ t−Gn) ≤ CpU ′n(t), for all t ∈ R. (4.3.11)

Plugging (4.3.11) into (4.3.10) gives∣∣∣Un (np+Xn,k
T −Gn

)
− Un

(
np+ X̂n −Gn

)∣∣∣ ≤ Cp

∣∣∣Un (Xn,k
T

)
− Un

(
X̂n
)∣∣∣ .

Hence, (4.3.9) follows from (4.3.7), which proves (4.3.8).

b. We now conclude the proof by providing an upper bound for lim infn→∞ πn.

By de�nition of πn, the continuity of the non-increasing function Un, (4.3.9) and

the monotone convergence theorem, we have

E
[
Un

(
nπn + X̂n −Gn

)]
= E

[
Un

(
X̂n
)]
. (4.3.12)
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This implies that

E
[
Un

(
X̂n
)]

= E
[
Un

(
X̂n
)

+ U ′n

(
X̂n
)

(nπn −Gn) +
1

2
U ′′n (ξn) (nπn −Gn)2

]
,

where ξn is a random variable lying in the (random) interval In formed by X̂n and

nπn + X̂n−Gn. We now use the fact that U ′n
(
X̂n
)

= y0
n
dQ0

n
dP , recall (4.3.5) and see

[Sch01] and Bouchard, Touzi and Zeghal [BTZ04], to deduce that

EQ
0
n

πn − Gn
n
−nrn(ξn)

2

U ′n (ξn)

U ′n

(
X̂n
) (πn − Gn

n

)2
 = 0. (4.3.13)

We shall prove in c. below that

sup
n≥1

∣∣∣∣∣∣ U
′
n (ξn)

U ′n

(
X̂n
) (πn − Gn

n

)2
∣∣∣∣∣∣ ≤ C, (4.3.14)

for some constant C > 0. Combining this last estimate with (4.3.6) and (4.3.13)

leads to

lim inf
n→∞

πn ≤ lim inf
n→∞

EQ
0
n [Gn/n] ,

which together with (4.3.8) and step 1. concludes the proof.

c. It remains to prove the claim (4.3.14). To see that it holds, we �rst appeal

to (4.3.12) to deduce that E
[
U ′n(ξ̃n) (nπn −Gn)

]
= 0 for some random variable ξ̃n

such that ξ̃n ∈ In. Since Un is strictly increasing, we deduce from (4.3.4) that

|πn −Gn/n| =
E
[
U ′n(ξ̃n)|Gn|/n

]
E
[
U ′n(ξ̃n)

] + |Gn/n|

≤ C ′
E
[
U ′n(ξ̃n)

]
E
[
U ′n(ξ̃n)

] + C ′ = 2C ′ , n ≥ 1,

(4.3.15)

for some constant C ′ > 0. Similarly, since ξn ∈ In, we have

log
(
U ′n (ξn)

)
− log

(
U ′n

(
X̂n
))
≤
∥∥∥∥U ′′nU ′n

∥∥∥∥
∞

∣∣∣ξn − X̂n
∣∣∣

≤ n
∥∥∥∥U ′′nU ′n

∥∥∥∥
∞

∣∣∣∣πn − Gn
n

∣∣∣∣ , n ≥ 1 ,

which is bounded uniformly in n thanks to (4.3.6) and (4.3.15). 2

Remark 4.3.3. Let (pϕ(n))n≥1 be a convergent subsequence of (pn(Gn, Un))n≥1.

Then, the same arguments as above show that lim
n→∞

pϕ(n) = lim
n→∞

EQ
0
ϕ(n) [Gϕ(n)/ϕ(n)]

whenever ϕ(n)rϕ(n) → 0.
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Observe that a straightforward adaptation of the previous argumentation allows

to obtain the convergence of the indi�erence prices p1(Gn, Un) under the weaker

condition ‖rn‖∞ → 0, whenever the sequence (Gn)n≥1 is assumed to be uniformly

bounded in L∞. This provides in (4.3.4) below a general convergence result for

bounded sequences of contingent claims when the absolute risk aversion vanishes in

the sup norm, which is of own interest.

Theorem 4.3.4. Let Assumptions 4.3.1, 4.3.2 and 4.3.3 hold. Assume further

that ‖rn‖∞ −→
n→∞

0 and that supn≥1 ‖Gn‖L∞ < ∞. Then, the sequence of utility

indi�erence prices satis�es

lim inf
n→∞

p1(Gn, Un) = lim inf
n→∞

EQ
0
n [Gn] and lim sup

n→∞
p1(Gn, Un) = lim sup

n→∞
EQ

0
n [Gn] .

Remark 4.3.5. In particular, for a constant sequence (Gn)n≥1, Gn = G for all n,

(4.3.4) provides a new insight on the asymptotic behavior of the indi�erence price

of any bounded contingent claim G as the risk aversion of a general utility function

goes to zero. The sequence of dual minimizers (Q0
n)n can be analyzed in such a

situation along the lines of arguments presented in the next sections.

4.3.2 Semi-complete markets

The representation of the asymptotic unit utility indi�erence price presented in

(4.3.2) does not provide a-priori an exact formulation, except in particular cases.

When the pure �nancial market is complete, i.e. (HCM) is satis�ed, and (4.2.3)

holds, we verify hereafter that it coincides with the price under the risk neutral

measure Q∗ of the replicable claim ḡ.

Corollary 4.3.6. Let the conditions of (4.3.2) hold. Assume further that (4.2.3) and

(HCM) are satis�ed. Then the sequence of unit utility indi�erence prices satis�es

lim
n→∞

pn(Gn, Un) = EQ
∗
[ḡ].

Proof. In view of (4.3.2), it su�ces to show that (HCM) implies that the minimal

dual measure Q0
n, see (4.3.5), coincides with Q∗(S) as constructed in Remark 4.2.4,

and to apply the dominated convergence theorem, recall (4.3.4) and (4.2.3):

lim
n→∞

pn(Gn, Un) = lim
n→∞

EQ
0
n [Gn/n] = lim

n→∞
EQ
∗(S)[Gn/n] = EQ

∗(S)[ḡ] = EQ
∗

[ḡ] ,

where the last equality follows from the fact that ḡ is FST -measurable.

To see this, we use the convexity of Vn to obtain that E
[
Vn(y0

n
dQ0

n
dP )

]
≥

E
[
Vn(y0

nH
0
n(S))

]
where H0

n(S) := E
[
dQ0

n
dP |F

S
T

]
= dQ∗(S)/dP by Remark 4.2.4, un-

der (HCM). Since Q∗(S) ∈ M by Remark 4.2.4 again, this proves the claim.

2
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Remark 4.3.7. If the gi's have the same law and form an independent family

conditionally to FST under P, then applying the law of large numbers conditionally

to FST implies ḡ = E
[
g1|FST

]
, so that limn→∞ pn(Gn, Un) = EQ∗

[
E
[
g1|FST

]]
. We

thus retrieve asymptotically the hybrid pricing rule which consists in taking the

mean on the part of the risk that can be diversi�ed and computing the hedging

price of the resulting replicable claim.

Remark 4.3.8. In [Bec03], the author refers to semi-complete product models to

designate situations where the �ltration F and M have the structure speci�ed in

Example 4.2.4, in particular:

(HCMe): there exists only one element Qe(S) ofM with �nite relative entropy

and whose density with respect to P is FST -measurable.

This later condition is weaker than (HCM), up to the restriction related to

the �nite relative entropy. However, if we are only interested in utility functions

of exponential type, the same argument as in the proof of (4.3.6) above shows that

Q0
n = Qe(S) whenever (HCMe) holds. Assuming further that the conditions of

(4.3.2) and (4.2.3) hold, this leads to limn→∞ pn(Gn, Un) = EQe(S)[ḡ].

4.3.3 Incomplete markets and asymptotically exponential utility

behaviors

In a general incomplete framework, it seems to be hopeless to interpret the limit

of EQ0
n [Gn/n] as the expectation under some martingale measure of ḡ, the limit of

Gn/n, except if the Un's are all of exponential type, compare with Remark 4.3.8.

In this section, we show that the convergence result of Remark 4.3.8 remains

true even if the utility functions do not have a constant absolute risk aversion but

only asymptotically behave like a sequence of exponential utility functions in the

following sense.

Assumption 4.3.9. There exist two sequences of strictly positive numbers
(
η1
n

)
n≥1

and
(
η2
n

)
n≥1

converging toward 0 such that

0 < η2
n ≤ rn(x) ≤ η1

n for all x ∈ R and n ≥ 1, (4.3.16)

lim
n→∞

η2
n/η

1
n = 1. (4.3.17)

Remark 4.3.10. The existence of the sequence (η1
n)n≥1 converging to zero is exactly

the content of the assumption (4.3.6). (4.3.9) implies that the function rn is asymp-

totically bounded in between two sequences converging to zero with the same �rst

order convergence rate. In particular, this assumption includes the case of agents

with utility functions of the form Un : x 7→ −(λn)−1e−λnx − (µn)−1e−µn(x+x0),
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for n ≥ 1 and x0 > 0 as long as the positive sequences (λn)n≥1 and (µn)n≥1 are

equivalent as n goes to ∞.

It follows from (4.3.1) below that (4.3.3) is equivalent to{
Q ∈M : E

[
dQ
dP

log

(
dQ
dP

)]
<∞

}
6= ∅, (4.3.18)

whenever (4.3.9) holds. Hence, (4.3.1) can now be formulated as

Assumption 4.3.11. The conditions (4.3.1), (4.3.2), (4.3.18) and (4.3.4) hold.

In the following, we denote by Qe the element ofM that minimizes the relative

entropy,

E
[
dQe

dP
log

(
dQe

dP

)]
= inf

Q∈M
E
[
dQ
dP

log

(
dQ
dP

)]
,

and whose existence is guaranteed by Theorem 2.2 in [Csi75].

Remark 4.3.12. The map y > 0 7→ y log y being strictly convex, it follows from

Remark 4.2.4 that dQe/dP is FST -measurable, recall the argument used in the proof of

(4.3.6). However, we do not impose in (4.3.18) the uniqueness condition of (HCMe)

in Remark 4.3.8.

Theorem 4.3.13. Let (4.3.9), (4.3.11) and (4.2.3) be in force. Then the sequence

of unit utility indi�erence prices satis�es

lim
n→∞

pn(Gn, Un) = EQ
e
[ḡ] .

Remark 4.3.14. When the gi's satisfy the conditions of Remark 4.3.7, the above

result shows that the unit indi�erence prices converges to EQe [E
[
g1|FST

]
]. Again,

this consists in taking the mean over the part of the risk that can be diversi�ed

and computing the price under the minimal entropy martingale measure of the pure

�nancial remaining claim.

In the rest of this section, we provide the proof of (4.3.13). In view of (4.3.2), it

would su�ce to show that

lim
n→∞

EQ
0
n [Gn/n] = EQ

e
[ḡ] , (4.3.19)

where we recall that Q0
n is de�ned in (4.3.5).

In the following, we actually prove that

lim
n→∞

EQ
α
n [Gn/n] = EQ

e
[ḡ] , (4.3.20)
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where (yαn ,Qαn) are de�ned as (y0
n,Q0

n) in (4.3.5) but with

Uαn : x 7→ αn
Un(x)− Un(0)

U ′n(0)
, n ≥ 1

in place of Un. In the above, (αn)n≥1 is a sequence of positive numbers to be chosen

later on, see the proof of (4.3.2) below. This trick is inspired from [CR11] and allows

to reduce to the case where

Uαn (0) = 0 and [Uαn ]′(0) = αn, n ≥ 1. (4.3.21)

Obviously, since Uαn is an a�ne transformation of the utility function Un, we have

pn(Gn, Un) = pn(Gn, U
α
n ). (4.3.22)

Recalling (4.3.2), (4.3.20) is thus su�cient to deduce the result of (4.3.13).

We �rst provide upper and lower bounds for the Fenchel transform V α
n of Uαn

in terms of Fenchel transforms of exponential utility functions with risk aversion η1
n

and η2
n.

Lemma 4.3.1. Let (4.3.9) hold. Then, for each n ≥ 1,

V 1
n (y) ≤ V α

n (y) ≤ V 2
n (y) , y ∈ (0,∞) , (4.3.23)

where the functions V 1
n and V 2

n are de�ned by

V i
n(y) :=

y

ηin
log

(
y

αn

)
+
αn − y
ηin

, y ∈ (0,∞), i = 1, 2.

Proof. It follows from the de�nition of (V i
n)i=1,2 and (4.3.21) that

V α
n (αn) = V i

n(αn) = 0 and [V α
n ]′(αn) = [V i

n]′(αn) = 0, i = 1, 2. (4.3.24)

Since rn = −[Uαn ]′′/[Uαn ]′ and [Uαn ]′′ ◦ ([Uαn ]′)−1 = 1/[V α
n ]′′, we deduce from (4.3.16)

in (4.3.9) that

η2
n ≤

1

y[V α
n ]′′(y)

≤ η1
n , y ∈ (0,∞).

Together with the strict convexity of V α
n , of each V i

n, and the relation η1
n[V 1

n ]′′(y) =

η2
n[V 2

n ]′′(y) = 1/y, this shows that

[V 1
n ]′′ ≤ [V α

n ]′′ ≤ [V 2
n ]′′. (4.3.25)

We now simply deduce from the right-hand side of (4.3.24) and (4.3.25) that

[V 2
n ]′ ≤ [V α

n ]′ ≤ [V 1
n ]′ on (0, αn]

and [V 2
n ]′ ≥ [V α

n ]′ ≥ [V 1
n ]′ on [αn,∞) .

We conclude by using the left-hand side of (4.3.24).
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We can now use the fact that V 1
n and V 2

n interpret as Fenchel transforms of

exponential utility functions, and that the dual probability associated to any expo-

nential utility function is the minimal entropic one Qe, to deduce from (4.3.23) that

the sequence of dual martingale measures (Qαn)n≥1 associated to (Uαn )n≥1 achieves

asymptotically the mininal relative entropy, under (4.3.9) and for a suitable choice

of the sequence (αn)n≥1. We shall see later that this implies convergence to Qe is
the total variation norm.

Lemma 4.3.2. Let (4.3.9) and (4.3.18) hold. Then, there exists a sequence of

positive numbers (αn)n≥1 such that

lim
n→∞

E
[
dQαn
dP

log

(
dQαn
dP

)]
= E

[
dQe

dP
log

(
dQe

dP

)]
. (4.3.26)

Proof. For i = 1, 2, direct computations leads to

inf
y>0,Q∈M

E
[
V i
n

(
y
dQ
dP

)]
= inf

y>0,Q∈M

{
y

ηin
E
[
dQ
dP

log

(
dQ
dP

)]
+

y

ηin
log

(
y

αn

)
+
αn − y
ηin

}
= inf

y>0

{
y

ηin
E
[
dQe

dP
log

(
dQe

dP

)]
+

y

ηin
log

(
y

αn

)
+
αn − y
ηin

}
= E

[
V i
n

(
ŷn
dQe

dP

)]
,

(4.3.27)

where the common minimizer ŷn > 0 is given by

ŷn := αne
−ρ̂ with ρ̂ := E

[
dQe

dP
log

(
dQe

dP

)]
. (4.3.28)

Also note that

E
[
V 2
n

(
ŷn
dQe

dP

)
− V 1

n

(
ŷn
dQe

dP

)]
= (1− e−ρ̂)αn

(
1

η2
n

− 1

η1
n

)
,

so that

lim
n→∞

E
[
V 2
n

(
ŷn
dQe

dP

)
− V 1

n

(
ŷn
dQe

dP

)]
= 0

whenever αn

(
1
η2
n
− 1

η1
n

)
−→
n→∞

0.
(4.3.29)

On the other hand, Lemma 4.3.1 implies

E
[
V 1
n

(
y
dQ
dP

)]
≤ E

[
V α
n

(
y
dQ
dP

)]
≤ E

[
V 2
n

(
y
dQ
dP

)]
, y > 0, (4.3.30)

for any Q ∈M. Picking in particular Q = Qαn, we deduce

inf
Q∈M

E
[
V 1
n

(
y
dQ
dP

)]
≤ E

[
V 1
n

(
y
dQαn
dP

)]
≤ E

[
V α
n

(
y
dQαn
dP

)]
, y > 0.
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Taking the in�mum over y > 0 and recalling (4.3.27), this shows that

E
[
V 1
n

(
ŷn
dQe

dP

)]
≤ E

[
V 1
n

(
yn
dQαn
dP

)]
≤ inf

y>0
E
[
V α
n

(
y
dQαn
dP

)]
, (4.3.31)

where the minimizer yn > 0 associated to the middle term is given by

yn := αne
−ρn with ρn := E

[
dQαn
dP

log

(
dQαn
dP

)]
. (4.3.32)

Similarly, (4.3.27) and (4.3.30) imply

inf
y>0

E
[
V α
n

(
y
dQαn
dP

)]
= inf

y>0,Q∈M
E
[
V α
n

(
y
dQ
dP

)]
≤ E

[
V 2
n

(
ŷn
dQe

dP

)]
,

which, combined with (4.3.31), entails

E
[
V 1
n

(
ŷn
dQe

dP

)]
≤ E

[
V 1
n

(
yn
dQαn
dP

)]
≤ E

[
V 2
n

(
ŷn
dQe

dP

)]
.

If αn
(

1
η2
n
− 1

η1
n

)
−→
n→∞

0, (4.3.29) thus implies that

0 ≤ E
[
V 1
n

(
yn
dQαn
dP

)
− V 1

n

(
ŷn
dQe

dP

)]
−→
n→∞

0,

which, by the de�nitions in (4.3.28) and (4.3.32) of ŷn and yn, is equivalent to

αn
η1
n

(
e−ρ̂ − e−ρn

)
−→
n→∞

0 whenever αn

(
1

η2
n

− 1

η1
n

)
−→
n→∞

0 . (4.3.33)

We now choose the sequence (αn)n≥1 and pick αn := η1
n, so that (4.3.9) implies

αn

(
1

η2
n

− 1

η1
n

)
=

η1
n

η2
n

− 1 −→
n→∞

0 .

Hence, we deduce from (4.3.33) that ρn → ρ̂ as n→∞, i.e. (4.3.26) holds.

We are now in position to complete the proof of (4.3.13).

Proof of (4.3.13). In the following, we let (αn)n≥1 be as in Lemma 4.3.2.

1. We �rst deduce from Lemma 4.3.2 that (Qαn)n≥1 converges to Qe in the

norm of total variation. Since Qe minimizes the entropy with respect to P over the

convex setM, it follows from Theorem 2.2 in [Csi75] that

E
[
dQ
dP

log

(
dQ
dP

)]
≥ EQe

[
dQ
dQe

log

(
dQ
dQe

)]
+ E

[
dQe

dP
log

(
dQe

dP

)]
for any Q ∈M.
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In particular,

0 ≤ EQe
[
dQαn
dQe

log

(
dQαn
dQe

)]
≤ E

[
dQαn
dP

log

(
dQαn
dP

)]
− E

[
dQe

dP
log

(
dQe

dP

)]
, n ≥ 1 .

Hence, (4.3.26) implies that

EQ
e

[
dQαn
dQe

log

(
dQαn
dQe

)]
−→
n→∞

0 .

The fact that

E
[∣∣∣∣dQαndP

− dQe

dP

∣∣∣∣] −→n→∞ 0 (4.3.34)

then follows from Pinsker's inequality, see e.g. [PP09].

2. Combining (4.3.4) and (4.3.34) implies that∣∣∣∣EQαn [Gnn
]
− EQe

[
Gn
n

]∣∣∣∣ =

∣∣∣∣E [Gnn
(
dQαn
dP
− dQe

dP

)]∣∣∣∣ ≤ C E [∣∣∣∣dQαndP
− dQe

dP

∣∣∣∣] −→n→∞ 0,

with C := supn≥1 ‖Gn/n‖L∞ . Besides, (4.2.3) and (4.3.4) imply that

EQe [Gn/n] −→
n→∞

EQe [ḡ]. This shows that (4.3.20) holds. We conclude by using

(4.3.22) and (4.3.2).
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Abstract: The aim of this thesis is to investigate some solutions to the pricing

of contingent claims in incomplete markets. We �rst consider the stochastic target

introduced by Soner and Touzi (2002) for the general super-replication problem, and

extended by Bouchard, Elie and Touzi (2009) in order to deal with more general

approaches. We �rst generalize the work of Bouchard et al to a framework where

the di�usions are subject to jumps. In our particular settings, we need to consider

a control taking the form of unbounded maps, which has non-trivial impacts on the

derivation of the associated PDE. Our second contribution consists in establishing

a version of stochastic target problems which is robust to model uncertainty. We

provide, in a general setup, a relaxed geometric dynamic programming principle

for this problem and derive, for the case of a controlled SDE, the corresponding

dynamic programming equation in the sense of viscosity solutions. We consider an

example of partial hedging under Knightian uncertainty. Finally, we focus on the

problem of pricing hybrid claims. More speci�cally, we intend to give a su�cient

condition for a (very popular) pricing rule, combining actuarial diversi�cation with

arbitrage free replication arguments, to hold.

Résumé: Le but de cette thèse est d'apporter une contribution à la probléma-

tique de valorisation de produits dérivés en marchés incomplets. Nous considérons

tout d'abord les cibles stochastiques introduites par Soner et Touzi (2002) a�n de

traiter le problème de sur-réplication, et récemment étendues a�n de traiter des

approches plus générales par Bouchard, Elie et Touzi (2009). Nous généralisons le

travail de Bouchard et al à un cadre plus général où les di�usions sont sujettes à des

sauts. Nous devons considérer dans ce cas des contrôles qui prennent la forme de

fonctions non bornées, ce qui impacte de façon non triviale la dérivation des EDP

correspondantes. Notre deuxième contribution consiste à établir une version des

cibles stochastiques qui soit robuste à l'incertitude de modèle. Dans un cadre ab-

strait, nous établissons une version faible du principe de programmation dynamique

géométrique de Soner et Touzi (2002), et nous dérivons, dans un cas d'EDS control-

lées, l'équation aux dérivées partielles correspondantes, au sens des viscosités. Nous

nous intéressons ensuite à un exemple de couverture partielle sous incertitude de

Knightian. Finalement, nous nous concentrons sur le problème de valorisation de

produits dérivées hybrides (produits dérivés combinant �nance de marché et assur-

ance). Nous cherchons plus particulièrement à établir une condition su�sante sous

laquelle une règle de valorisation (populaire dans l'industrie), consistant à combiner

l'approches actuarielle de mutualisation avec une approche d'arbitrage, soit valable.
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