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Chapter 1
Introduction

Consider a claim g, sold at time ¢ > 0, of maturity 7" > ¢, with underlying X ,
satisfying X; ;(t) = =. In case of a European option, the seller of the claim has to
deliver the payoff g(X; (7)) at terminal date 1" to the buyer. The natural question
arising then is to determine a price 7 to be paid at time ¢ to the seller which will

satisfy both the seller and the buyer, so that the risk transfer may occur.

In the so-called complete market case of [BS73, AS92, DS94, HP81], the seller
may replicate the payoff of the claim by dynamically trading on the market. That
is, under good integrability conditions on g(X; (7)), one can find y € R as well as

a predictable process v such that

T
9(Xx(T)) =y +/t vs-dX(s) P-as.

The unique fair price is in this case y, since it would lead to arbitrage opportunity

otherwise.

In the more realistic situation of incomplete market, when there are e.g. intrinsic,
non-traded sources of risk, both the valuation and the hedging problems may become
highly non-trivial issues. Considering the no-arbitrage condition leads to an infinity
of viable prices (see e.g. [DS94]). The risk taker needs thus to define the amount
of money he has to invest at time ¢ in some financial portfolio that reduces the risk
in an appropriate way. The pricing of contingent claims in incomplete markets thus
requires a description of preferences of the agents.

Among the different approaches one could think of, we refer to
[BCS98, CPT99, CM96, CK93, EKQ95, KS98] for the super-replication
in incomplete markets, [Dav97] for the marginal utility approach,
[BL89, DRO1, SF85, Sch88, Sch91, Sch99| for the quadratic error minimiza-



2 Chapter 1. Introduction

tion approach, [Cvi00, FL99, FL0O0O| for the quantile hedging and shortfall risk

minimization point of view.
The aim of this thesis is to contribute to this field.

The first part of this manuscript is dedicated to the stochastic target approach
introduced by Soner and Touzi [ST02¢, ST00, ST02a, ST03a|, and recently developed
by Bouchard, Elie and Touzi [BET09] in order to deal with more general frameworks.
More specifically, we first provide a generalization of the work of [BET09] in the case
of mixed diffusions. This contribution is introduced in Section 1.1.4 below.

Secondly, we establish a game version of the Geometric Dynamic Programming
Principle of [ST02a]. This allows us to deal with a more general stochastic target
problem in which an adverse player is controlling the diffusion. This is related to
hedging problems under Knightian ambiguity. This work is introduced in Section
1.2.1.

We finally focus on the utility indifference pricing framework. Our main aim is
to study hybrid claims (see e.g. Section 1.3.1), that is, claims which are in between
Finance and Insurance. We provide for the first time in this hybrid framework an
asymptotic result for general utility functions defined on the whole real line, when
the absolute risk aversion converges uniformly towards 0, and the number of sold

claims goes to infinity. This contribution is introduced in Section 1.3.

1.1 Stochastic Target in Finance and Insurance

In a geometric form, a stochastic target problem can be formulated as follows. Let G
be a Borel subset of a metric space (Z,dz), and Zy , a Z-valued controlled process
with initial conditions Zy,(t) = 2z € Z. Consider the so-called reachability set A(t)
of initial conditions z € Z such that Zy,(T') € G P-a.s. for some v € U, with U the

set of admissible controls:
A(t) :={z € Z: there exists v €U s.t. Z{ (T) € G P-as.}. (1.1.1)

In [STO02a], Soner and Touzi prove that it satisfies a dynamic programming prin-
ciple, the so-called Geometric Dynamic Programming Principle (hereafter GDP).
This GDP then allows one to perform the derivation of the associated dynamic
programming equation, as it is usual in optimal control.

As we shall see below, the GDP opened the door to a wide range of practical
applications in finance and insurance. In particular, the results of Chapter 2 heavily
rely on this GDP.
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1.1.1 The Geometric Dynamic Programming and the super-
hedging problem

Fix Z := R? x R. The GDP of Soner and Touzi [ST02a] reads as follows. In
Markovian Settings, and under good assumptions on the set of controls U, the

reachability set
At)={z€ Z:2/,(T) € G P-as. for some admissible v}
coincides with the set A
A(t) :=={z € 2,2/ () € A(T) P-as. for some admissible v},

for all stopping times 7. Under a "Flow-like" assumption, the first inclusion
A(t) C A(t) is straightforward, whereas the second is the "tricky one". It essentially
relies on a measurable selection theorem (see [BS78, Proposition 7.49|), which is
made possible by the fact that the map (¢,z,v) € [0,7] x Z x U — ZY (T) is
Borel-measurable. We refer the interested reader to [ST02a] for the proof (see
[BV10] for an obstacle version).

Fix now Z := (X,Y) and G := {2z := (z,y) € R x Rs.t. ¥(x,y) > 0} for
some Borel measurable map . Consider furthermore that both y — ¥(-,y) and
y — Y}, ,(T) are non-decreasing, for all v € Y. The set A(t) can then be identified
to {(z,y) € R x R :y > y(t,x)}, with

y(t,z) :=inf {y € R : there exists v € U s.t. ¥ (X}, (T),Y},,(T)) >0 P-as.},

whenever the above infimum is achieved.

Formulated as above, this problem may be seen as a generalization of the so-
called super-replication problem, see e.g. [EKQ95, CK93, CM96, KS98, BCS98,
CPT99].

In the literature, the super-hedging problem is usually solved as follows. The
idea is to consider the dual problem, which is a classical optimal control problem,
see [JK95, EKQ95, CK93, FK97|. Classical dynamic programming allows to derive
the corresponding PDE for the dual value function, which in turns gives a PDE
characterization of the value function y.

Soner and Touzi were the first to propose a treatment of this problem in its
primal form, that is, to obtain the PDE characterization of y by means of the GDP.
The main advantage is that the primal approach of [ST00, ST02¢, ST02b, ST03b,
ST03b, CSTO05| applies to general dynamics (such as large investor) or constraints
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(e.g. gamma constraint), whereas the usual dual approach heavily relies on the fact
that the coefficients of the wealth dynamics are linear in the control variable, and
the stock prices are not influenced by the trading strategy.

This approach was further exploited in Touzi [Tou00], Bouchard and Touzi
[BT00], extended to locally bounded jumps in Bouchard [Bou02], and to path de-
pendent constraints in Bouchard and Vu [BV10].

1.1.2 The stochastic target with controlled expected loss in Fi-
nance

The approach developed in Section 1.1.1 is very powerful to study a large family
of non-standard stochastic control problems, in which a target has to be reached
with probability one at time 7. As mentioned above, it provides in particular
an extension of the classical super-replication problem. However, in most cases,
the super-hedging price leads to an unbearable cost for the buyer, which is not

reasonable in practice.

Very recently, Bouchard, Elie and Touzi [BET09] relaxed the P-a.s. criterion
W (Z¢,(T)) > 0 into a moment constraint of the form E[V(Z},(T))] > p, with p € R
a given threshold. This new approach has opened the door to a wide range of
applications, especially in mathematical finance.

We shall briefly present in this section some possible applications of stochastic

target with controlled loss in finance and insurance.

Let X" be a process denoting roughly the risks in the portfolio of an agent (one
might think of stocks, but also a fixed number of non-tradeable idiosyncratic sources
of risks, see Section 1.3.1). Fix g, a map defined on R such that 9(X¢,(T)) has
enough regularity. The quantity g(X}, (7)) may be seen as the random payoff of a

European claim, given the initial condition X}, (t) = 2. The process ;"

t.z,y TEPrEsents

the wealth of the agent, with initial value y at time ¢, where v denotes his strategy

in terms of X¥. Consider the value function
y(t,z,p):=inf{y eR: v el st. E[¥ (X/,(T),Y" (1)) >p}. (112)

For p=1 and
U (z,y) — Liy>g(a)}s

the value function (1.1.2) represents the super-replication price of the claim
g(X¢,(T), as discussed above. If p € (0,1), Equation (1.1.2) may be written as

y(t,z,p) :==inf{y eR:Jv el st. PV}, (T)>g(X{,(T)] >p}, (1.13)
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and allows one for a treatment of the quantile hedging problem introduced in
Follmer and Leukert [FL99|, but in a more general framework, e.g. when the
strategy of the agent may influence the value of the risky assets (large investor
model). It also permits to deal with more general investment policies. The original
treatment of the problem by Félmer and Leukert relies on the fact that this strategy

is linear in the control.

Consider now the case where p € R and ¥ belongs to some general class of utility

functions. More precisely, for an utility function U : R — R and
U (z,y) € RT X R— Uy — g(x)),
the problem (1.1.2) reads
y(t,z,p) := inf {y cR:3velst. E [U (Yi”xy(T) —g (X;’I(T)))] > p} )

That is, finding the minimum amount of money the investor has to invest in some
strategy v in order to have his expected utility above a given threshold p. If p

happens to be chosen as

p:=sup E [U (Y}";%(T)ﬂ ,
v'el

a straightforward reformulation of this problem defines the value function y as the

utility indifference price of the claim g:
y(t,z,p) =inf{y eR: Ivelst. E[V(X{(T),Y sy y(D)] =p}.

Finally, some minor modifications in the previous reasoning allow us to consider the

case where U belongs to some class of risk functions,
U (,y) €RT xR —p([y — g(2)])

for some convex non-decreasing loss function p : R — R, or the success ratio of
Follmer and Leukert [FL99|

U (2,y) € RY X R Lga)<yy (@, y) + ﬁﬂ{gu»ywk

1.1.3 The extension of the Geometric Dynamic Programming
Principle to moment constraints

When dealing with stochastic target problems with controlled expected loss, the
underlying reachability set (although it is not introduced explicitly in Bouchard,
Elie and Touzi [BET09] or [Morl11]) is now

At) == {(Z,p) €RYx R : there exists v € U s.t. E[¥ (Z/,(T))] > p} :
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When trying to relate the time-t reachability set to a later time-7, it is obvious
that the value p € R has to be incorporated as a part of the state process. The
original idea of Bouchard, Elie and Touzi [BET09, Proposition 3.1] (extended to the
mixed diffusion case in Proposition 2.3.2) is to apply the martingale representation
theorem to the conditional expectation E[W(Zy (T))|F.].

The reachability set may actually be defined as

(z,p) € R x R : there exists v € U and M € M,
At) := ~ , (1.1.4)
s.t. W (Z¢ (T),M(T)) >0

where U : (z,p) € R? x R — W(z) — p and M, denotes a set of martingales M
satisfying M (t) = p. We thus recover a stochastic target problem in P-a.s. criterion
on the state process (Z, M), and the GDP of Soner and Touzi reads in this context

(2,p) €RY x R : there exists v € Y and M € M,
At) =
s.t. (Z¢.(1), M(1)) € A(7) P-as.
We are then able to derive the dynamic programming PDE from the GDP of [ST02a],

up to non-trivial difficulties, as explained below.

1.1.4 The derivation of the PDE in the mixed diffusion case

In Chapter 2, we extend the results of Bouchard, Elie and Touzi [BET09] to the
mixed diffusion case. Namely, we consider a filtration G generated by a Brownian
motion W and a E-marked right continuous point process J. For 0 <t < T, we are
given two controlled diffusion processes { X7, (s),t <s < T} and Y, (8),t<s<
T} taking their values respectively in R? and R. These processes satisfy the initial
condition (X7, (t),YY, ,(t)) = (z,y), and are R? x R-valued strong solutions of the

stochastic differential equations

dX(s) = px (X(s), us> ds + ox (X(s), vs) AWV,

+ | Bx (X(s—),vi,vi(e),€) J(de,ds)
E

dY (s) = py (Z(s),vs)ds + oy (Z(s),vs) dWs

+ Eﬁy(Z(S ),vs,v3(e),€) J(de, ds).

In Bouchard, Elie and Touzi [BET09], the filtration F is generated by the Brownian
motion W, and S8x = By = 0. We shall see briefly below that this has non-trivial
impacts on both the formulation and the derivation of the associated partial

differential equations.
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For a given measurable map ¥ and threshold p, the controller wants to compute:

. E [V (X{,(T), Y%, (T)] > p
y(t,x,p):=infy eR: . (1.1.5)
for some v e U

As explained in the previous section, increasing the dimension of both the state
and the control processes by use of the martingale representation theorem allows to

reduce this problem into a standard stochastic target problem.

In the present setting, any martingale M € M;, may be written as

M&X('):p+/t.oz5'dWs—i—/t./EXs(e)j(de,ds), (1.1.6)

for some control processes o and x, with J(de, ds) := J(de, ds) — \(de)ds being the

compensated measure associated to J. Recalling (1.1.4), we are interested in

there exists (v, a, x) € U
y(t,z,p) =inf y € R:

)

st U (XZ;S;,X(T),XQ’VW(T)) >0

where X;’f‘px stands for the augmented state process (X}, (T), M;}Y), and U is the

augmented set of controls (v, a, x).

In order to understand how we can provide a PDE characterization for y, consider
the following informal reasoning. In the present settings, (x,p,y) € A(t) is equivalent
to y > y(t,z,p). Hence, the first part of the GDP (the inclusion A(t) C A(t), recall
Section 1.1.1) gives that, for y > y(, x, p), there is (v, a, x) € U such that

VY o(1) =y (1, X{ (1), M ;X (7)) P-a.s.  for any stopping time 7 > t.

Assuming that y is smooth enough and that the above GDP holds even for y =
y(t,z,p), an application of Itd’s Lemma around the initial time ¢ shows that the

control (v, «, x) should ensure that
e the volatility of YV — y(-, X¥, M®X) is zero,
e the jumps of YV — y(-, X¥, M®X) are non-negative,
e the drift of YV — y(-, XV, M®X) is non-negative,
“at the original time ¢”. This informal reasoning implies that y is a supersolution of

HO,OY(ta x’p) > 0’
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with

Hepy(t,2,p) = sup Ay (e y(twp)uw) — LT y(hap) b (LLT)
(’U,,(l,ﬂ')e./\/s,ny(t:x’p)

where /f(L)’? ’]7\}) denotes the Dynkin operator associated to the diffusion (X, M), and,

for e > 0,n € [~1,1] and (t,2,p) € [0,T] x R? x R,
(U, a,7r) s.t. ‘O—Y('aY7 U) - U}(vu)axy - aapy’ <e
Neyy = and for \-a.e. e€ E . (1.1.8)

ﬁy('vauve) - Y('v -+ 5X('7ua 6)’ -+ 7'('(6)) +y=2n

In a Brownian filtration, where the only additional control is «, the major diffi-
culty comes from the fact that the process a has a priori no boundedness properties:
it comes from the martingale representation theorem. In this context, the operator
associated to (1.1.7) typically fails to be semi-continuous.

It is shown in [BET09] that, in the no-jump case, one needs to consider the
relaxed semi-limits as € | 0 of the operator associated to H. . This relaxation is
local, as it only concerns the space point, the gradient and the Hessian matrix of
the test function at this point.

In our setting, we need two further relaxations to deal with the non-local term in
(1.1.8). Firstly, the semi-limits are taken with respect to the additional parameter
n as it goes to 0. Secondly, an additional non-local relaxation is performed by con-
sidering the semi-continuous envelopes with respect to the test function appearing
in the non-local term of (1.1.8), for the topology of the uniform convergence. This
adds non-trivial technical difficulties.

The precise statement of the PDE characterization and the associated bound-
ary conditions (in the sense of viscosity solutions) are given in Theorems 2.2.5, 2.2.9
and Corollaries 2.3.7, 2.3.17. In particular, we generalize the convex face-lifting phe-
nomenon in the p-variable that was observed in Bouchard, Elie and Touzi [BET09]
in the context of quantile hedging problems to much more general situations.

Finally, we provide in Theorem 2.3.14 a boundary condition in the p-variable
when the function ¥ takes its values in a set of the form [m, M| with m or/and
M is/are finite. Theorem 2.3.14 is the counterpart in this framework of |[BET09,

Theorem 3.1], up to non trivial differences due to the presence of the control .

1.1.5 Further references and advances in the field of Stochastic
Targets

We conclude this section with some references of recent advances in this field. In

Bouchard and Dang [BD10], the authors give a PDE characterization of a singular
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with state constraints version of stochastic target problems. This work allows one
to treat the case of market models with proportional transaction costs, and may
also be applied to order book liquidation issues.

In [BV11], Bouchard and Vu provide a PDE characterization of the minimal
initial endowment required so that the terminal wealth of a financial agent can
match a set of constraints in probability. Their original idea was to consider that
the agent has a rough idea on the type of P&L he can afford, and that he considers
the latter as a target. It was motivated by the fact that, if the attitude of the
financial agent toward risk is usually described in academic literature in terms of
utility or loss function, this is in practice not so trivial for an agent to characterize

precisely his "utility function".

We finally refer to Bouchard, Elie and Reveillac [BER12] for a BSDE formulation
of this moment criterion, and to Bouchard, Elie and Imbert [BEI10| and Bouchard
and Nutz [BN11] for an optimal stochastic control problem under stochastic target

constraint.

1.2 A robust version of the stochastic target problems

As exemplified in Section 1.1.2, the stochastic target problems in expectation form
allow one to deal with several risk approaches, which is useful in incomplete markets.
However, as usual in mathematical finance, the stochastic target problems rely on
a choice for the controller of a "mathematical model", that is, a specification of the
coeflicients u, o and 3, as well as their parameters.

In practice, the choice of a model and its calibration give rise to model risk (what
are the consequences of choosing the wrong model?), or model uncertainty (what
strategies to employ when no a-priori information on the true coefficient is given?).

One way to tackle the model uncertainty is to consider a situation in which an
adverse player, the nature, is playing the unknown coefficients against the controller.
In the case where the parameters can be observed in a progressive way, this naturally
leads to a game version of the stochastic target problems as discussed in the previous
sections.

In Chapter 3, we introduce for the first time this new class of differential
games, and provide a version of the GDP which allows us to derive the Hamilton-
Jacobi-Bellman-Isaacs’ (in short HJBI) equation associated to the corresponding
reachability set. This requires a game version of the GDP of Soner and Touzi
[ST02a).
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We refer to [BCR05, Rai07, TH07, M08, CR09, BCQ11, Bis10] for advance

researches in the field of stochastic differential games.

1.2.1 The game version of the Geometric Dynamic Programming
Principle

We investigate in Chapter 3 a robust (or game) version of the stochastic target
problems. It takes the form of a one sided game, defined as follows.

For a given initial position (¢, z) € [0,7] x Z, the aim of the controller is to find
a strategy u[-] € U, in the sense of differential games (see Section 3.3.1 for a precise

¥ reaches a given target at

definition), such that the controlled state process ZZ LV
time T, whatever the player controlling the adverse controls v € V could do to
prevent it from happening.

We consider a loss function ¢, and formulate a target in moment in robust form,
ie.

E [E (Z;[;’]’”(T))} >p  forallveV.

For t € [0,T], the corresponding reachability set consists in all initial positions
(z,p) € Z x R enabling the controller to find a strategy u that allows him to reach

the target, for every adverse control v € V:

(z,p) € Z x R : there exists u € 4 s.t.

A(t) := , (1.2.1)
J(t,z,u) > p
with
J(t ) = inf E [e (z;L”L”(T)ﬂ . (1.2.2)

As explained in Section 1.1.3, in the absence of adverse control, one can retrieve the
GDP of [ST02a] by considering the martingale E[¢(Z},(T))|F.]. Here, the natural
counterpart is the family of submartingales {S”,v € V}:

§¥(-) i= essinf E [z (Z;E’@'D}’”EB‘D(T)) \]—"} , (1.2.3)
where v @5 7 means that the two adverse controls v and U are pasted at time
s > t. 'This should be interpreted as the adverse’s player value process, if the
controller play the strategy u. Recalling the arguments of Bouchard, Elie and Touzi
[BET09] presented in Section 1.1.3, a rough version of the GDP should be that A(?)
coincides with the set of elements (z,p) € Z x R for which there exist a strategy and
an appropriate family of submartingales {S”,v € V}, which initial values satisfy
S¥(t) = p for all v € V, such that

( Z;LVW(T), sV(T)) € A(7) P-a.s.  for all v € V and stopping times 7.
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As we will show in Section 3.2.3, one can actually restrict to the martingale parts
of each S¥:

(z,p) € ZxR: Jueland {M",veV}CT M, s.t.

)

A(t) - ufy),v v . .
(Z (), M (T)) € A(7) P-a.s. V v € V and stopping times 7

t,z

where M, ;, denotes a suitable set of martingale starting from p at time ¢. Neglecting
the finite variation parts of the S”’s has the advantage of not having to deal with
their possible path irregularities. The fact that the martingale part is enough can be
understood as follows. The worst situation for the controller playing u is when the
adverse player plays the optimal adverse control associated to u. Along an optimal
adverse control, S¥ is a martingale.

Observe that the definitions in (1.2.2) and (1.2.3) do not guarantee that
J(t,z,u) = SY(t). From the mathematical point of view, one faces the issue of
dealing with one nullset for every v € V. One possible answer to handle this prob-
lem could be to follow the arguments of Fleming and Souganidis [FS89], and use
a discrete time approximation argument. In the context of zero-sum differential
games, this provides a Dynamic Programming Principle (DPP) for the approximat-
ing problems on the time grids. A limit argument combined with a comparison
result for PDEs allows to conclude. Unfortunately, discrete time DPP is not strong
enough to derive PDEs in the context of stochastic target problems.

Contrary to Section 1.1.3, we therefore use a formulation of (1.2.2) in terms of
essential infimum as in (1.2.3):

J(t,z,u) == e?/Seilgle [g (Z;LV]’V(TD ’]:t]

and
(z,p) € Z x R : there exists u € 4l s.t.

A(t) ==
J(t,z,u) > p P-as.
The consideration of essential infimum is made possible by an argument of Buckdahn
and Li [BLO8, Proposition 4.1, Lemma 4.1] (see also Buckdahn, Hu and Li [BHLI11,
Lemmata 3.1 and 3.2| for an extension to jump diffusions), which states that, in a

Brownian framework, the random variable

K : (t,z) — esssup J(t,z,u) is deterministic. (1.2.4)
uci

One major difficulty in establishing a game version of GDP is that we can not
apply a measurable selection theorem as in the standard context of [ST02a]. This
is due to the presence of strategies for which we do not have a good topological

framework. To surround this, we formulate a weak version based on a covering
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argument in space, in the spirit of Bouchard and Touzi [BT11] or Bouchard and
Nutz [BN11]. It only relies on "regularity properties" in the space variable. In
particular, we do not impose any time regularity. This issue is solved by a stopping
time approximation argument, which leads to a non-trivial additional relaxation.

More precisely, our GDP is not stated in terms of
I:={(t,z,p) €[0,T] x Z xR s.t. (z,p) € A(t)},

but in terms of its interior and its closure.

Note that the absence of measurable selection result adapted to the context of
games prevents us to consider more general stochastic target games in which the
terminal constraint is stated in the P-a.s. sense. This highly difficult issue is left for
further researches.

We finally observe that, if the weak GDP is first stated in Theorem 3.2.1 under
strong regularity assumptions on the (deterministic) map K defined in (1.2.4), we
show in Corollary 3.2.3 how to relax these assumptions in case of a continuous
function ¢ with polynomial growth, and when the state process Z satisfies suitable

estimates.

1.2.2 Derivation of the Hamilton-Jacobi-Bellman-Isaacs’ equation

Our weak GDP happens to be sufficient for the derivation of the dynamic program-
ming equation in the viscosity sense. We exemplify this fact with the treatment of a
game version of two general problems introduced by Soner and Touzi [ST02c, ST02a]
in the context of Brownian controlled SDEs, with controls taking their values in a
bounded subset of R

In Theorem 3.3.3, we characterize the reachability set with a Hamilton-Jacobi-
Bellman-Isaacs’ (HJBI) equation. Namely, we state the PDE satisfied, in the vis-

cosity sense, by the indicator function of the complement of the graph of A:

X(tv Z7p) =1- ]-A(t)(z7p)

In Theorem 3.3.5, we consider a robust version of the stochastic target problem
with controlled expected loss discussed in Section 1.1.2. We hence derive the PDE
satisfied by a game version of the problem (1.1.2), i.e.

there exists u € U s.t. forallv € V
y(t,x,p):=infy eR:
E [z (Z;L”]”’(T)mﬂ > p P-as.

This allows us to give a robust characterization of the problems considered in Section
1.1.2.
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As discussed in Section 1.1.4, these equations are stated in terms of relaxed
HJBI operators, in order to take into account the possible unboundedness of the
controls «, which come from the martingale representation of the additional state

variable.

Finally, we give an example of application to the partial hedging of a European
option, in the case where both the drift and the volatility of the underlying are
uncertain (controlled by the adverse player, which in that case is the market). We

are interested in the problem

Jueilst forallveV
y(t,x,p):=inf{y eR: , (1.2.5)

E[W (Yo (T) = 9 (X{o(T))) |F:] = p P-as.

in which ¥ denotes some utility function (concave, non-decreasing), g(X¢ (7)) the
payoff of the claim, v = (u, o) stands for the drift and the volatility of the stock
price process XV, whereas u is the trading strategy and yulrlv ig the corresponding
wealth process.

In this case, strategies do not take bounded values, and we restrict ourselves to

the set of strategies satisfying an integrability condition of the form:

T
/ (u[u], [2dr
0

for some g > 2. We extend the PDE characterization obtained for bounded controls

q
2
supE
veV

< 00,

to this context. This allows us to give an explicit characterization of the problem
(1.2.5). Surprisingly, although the hedging criteria is weak, the result is degenerate.

Namely, we prove that

y(t,x,p) = sup E [g (X{,(T)) |F] + ¥ (p),
veyo
where VY denotes the subset of adverse controls such that the drift x is degenerate:
i = 0. This corresponds to the super-hedging price for the shifted option g(-) +
U~!(p) in the (driftless) uncertain volatility model.

1.3 Utility Asymptotics - Pricing of Hybrid claims

These last years have seen the explosion of the number of liabilities combining pure
financial and pure insurancial risks. They typically have the following form: an
insurance company sells to each client ¢ < n a claim of maturity 7', whose value

depends on the evolution of some tradable financial assets S = (S;)¢>0 and some
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additional idiosyncratic risk R;. The number n introduced above denotes the number
of claims sold by the company.

In Chapter 4, we investigate the problem of pricing such claims, in the realistic
situation where the R;’s are independent and identically distributed, conditionally
to S.

Our main result concerns the convergence of the utility indifference price of a
claim when the absolute risk aversion of a sequence of general utility functions tends

to 0, and the number of sold claims goes to infinity.

1.3.1 Examples of hybrid products

The wide range of applications in life or non-life insurance justifies the interest of
both insurance and financial mathematics. We list here some examples of such
contracts.

The agents are interested in pricing aggregated claims of the following form

Gn=> (SR, (1.3.1)
i=1
where for each client i € {1,--- ,n}, the R;’s are independent and identically dis-

tributed random variables, n denotes the number of unit claims f(S, R;) sold, and
f is some measurable function. In the latter, one could think e.g. of unit-linked
contract,

f(Sv R’L) = 1{RZ>T}ST7

or unit-linked with guarantee,
f(S, R;) = 1{Ri>T} max(St, K),

where R’ denotes in both examples the time of death of the customer i, and S a
financial index. Contracts with similar features are currently very popular in life
insurance.

We might also think of more elaborated claims, with R; being for example a
weather index, or a production yield.

Consider for instance a producer of some good (e.g. wheat), which market price
is S, expecting to produce the yield K& at time 7', and to sell each unit of this
quantity at least at the price Kg. His expected revenue is then Kg x K, é, while his
realized revenue is R; x Sp, with R; his realized production level. In order to cover

himself, he can buy a European put on his revenue:
fYS,R;) :== (Kg x Kg — StR;)". (1.3.2)

These revenue guarantees are already widely sold in the U.S. and are about to be

exploited in Europe too.
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1.3.2 Utility Asymptotics

Consider an insurance company selling to the client 4 a claim with payoff ¢°, paid at
maturity 7', whose value depends on the evolution of some tradable financial assets
S = (St)t>0 and some additional idiosyncratic risk. Typically, recall (1.3.1), for

every i < n, each individual contract ¢’ is of the following form

The ¢*’s are usually not unconditionally independent, but still independent condi-
tionally to S. The company is then interested in the unit premium 7 (Gy)/n of the

aggregated claim
n
Gn = Z gi7
i=1

i.e. the premium associated to the global claim G,, 7(G,), equally divided by the

number of sold contracts n.

Such contracts, and especially unit-linked contracts, have been studied by actu-
aries since the late sixties. While in finance, any pricing rule is fundamentally based
on the notion of no-arbitrage and the corresponding set of martingale measures, the
premium principles in insurance are mainly motivated by the application of the law
of large numbers. (see e.g. [Buh70|, |[GIIET9] or [BoAS6|).

In fact, neither the usual actuarial principles nor the arbitrage arguments seem to
be satisfactory to price such claims. Still, it was suggested to combine both. Namely,
the valuation principle proposed in Brennan and Schwartz [BS79a, BS79b]| consists
in combining the law of large numbers with a financial hedging-based valuation.
The idea is to replace the insured risks by their expected value, so that the modified
claim only contains financial uncertainty. It remains then for the insurer to price

and hedge the following modified claim

N

Gn=) E[f (S, R)|S].

=1

This pricing rule has been widely used in practice, see e.g. [BH03, MP00, MPY06].

The mathematical insight behind this trivial pricing rule is the following.
If the R;’s are independent and identically distributed given S, then G, /n —
E[f(S,R1)|S] =: g a.s. for a large number n of sold contracts. If the financial
market formed by the asset S is complete (this is the semi-complete market of
Becherer, see [Bec03, Section 4]), then the payoff E[f(S, R1)|S] may be replicated
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from the initial wealth EQ[E[f(S, R1)|S]] by a suitable trading strategy, where Q is
the unique martingale measure on the (complete) pure financial market.

However, both the theory of pricing in incomplete markets and the usual actu-
arial principles (recall the notion of safety loading) seem to agree on the fact that
a linear pricing rule corresponds to a risk neutral agent. Roughly speaking, in our
context, selling a large number of claims (necessary for the application of the law
of large numbers) entails a bigger exposition on the financial market. If the law of
large numbers does not operate well enough, then the losses may be leveraged by an
unfavorable evolution of the financial market. A risk-adverse agent shall take this
fact into account, so that the (linear) trivial pricing rule should not hold for such
agents (see Examples 4.2.3 and 4.2.4 for trivial counterexamples).

This intuitive reasoning leads us to expect this pricing rule to hold only at the
limit for a small level of risk aversion and a large number of sold claims. In Chapter
4, we provide conditions under which the limit unit price is given by this linear

pricing rule.

Given a locally bounded cadlag (F,P)-semi-martingale S, we denote as usual by
M the set of P-equivalent local martingale measures such that S is a (F,Q)-local
martingale. Let (U, )nen be a sequence of utility functions defined on the whole real
line and satisfying the usual assumptions (Inada, reasonable asymptotic elasticity,
see Schachermayer [Sch01]). Assume furthermore that M # () and that for each
n € N, the corresponding dual problem (see e.g. [Sch01]) is finite, and define the
unit utility indifference prices p, (G, Up):

Pn(Gr,U) :=inf {p €ER:supE[U(X +np—G,)] >supE [U(X)]} . (1.3.3)

X X

with X running over the set of achievable terminal wealth. Moreover the optimal

dual probability and multiplier are given by

(42, Q0) = arg min {E [Vn @2%)] L (1,Q) € (0,50) % M} ,

in which V,, is the usual convex conjugate of U,. We assume that the sequence of

claims (Gp,)n>1 satisfies

sup |G /n|p~ < 00, (1.34)
n>1
and that U )
. . _YUp X
1|7 so — 0, with 7, :2 — 0 ()’ (1.3.5)

and |7y, |oo = SUp R |7 (x)]. Observe that Assumption (1.3.4) allows us to consider

examples of individual bounded claims, such as the payoff in (1.3.2).
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We show in Theorem 4.3.2 that
. T QY
nhm pn(Gn,Up) = nhm E*n [Gp/n]. (1.3.6)

One side of the equality (stated in terms of liminf and limsup) is straightforward
with the use of the dual problem (see e.g. Owen [Owe02] or Bouchard, Touzi and
Zeghal [BTZ04]). Surprisingly, the second inequality is obtained directly from the
primal formulation of the problem (contrary to most results on the asymptotic of
utility indifference prices, see Section 1.4 below). It relies on a simple second order
Taylor expansion of Uy, and crucially on Assumptions (1.3.4) and (1.3.5) .

As a byproduct, under the weaker condition ||r,|lcc — 0, and whenever the
sequence (Gp)p>1 is assumed to be uniformly bounded in L, we also provide a
general convergence result for bounded sequences of contingent claims when the

absolute risk aversion vanishes in the sup norm, which is of own interest.

Notice that the right hand side term in (1.3.6) is somehow theoretical. In the
context of a complete pure financial market (see Definition 4.2.1 for a more precise
definition of the so-called Half-Complete Market assumption), a similar reasoning
as in [Bec03, Theorem 4.10 and Assertion (4.5)] shows that, if G,,/n — g as n — oo,
with g a ]-"%—measurable random variable, then

lim E® [G,/n] = EY[g],
n—oo
where Q* is the pricing measure on the complete pure financial market.
In order to characterize the limit
lim E@ (G, /n]
n—oo
in the incomplete market case, we shall restrict the class of utility functions. First
note that the fact that r, — 0 uniformly as n — oo entails that there exists a

sequence (n}),>1 satisfying n} — 0 such that
r(x) <nb for all z € R and n > 1.

We assume in addition that the convergence r, — 0 is not too fast: there exists

another sequence (n2),>1 such that for all n > 1,

0<77721§7“n§77711 and 77721/77711 — 1.

n—oo
The sequence (Uy,)n>1 is "stucked" in between two sequences of exponential utility
functions with vanishing asymptotically equivalent risk aversions. We thus are able
to show that
E (G /n] — E¥[g),

n—oo

where Q° is the element of M which minimizes the relative entropy E [% log %].
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1.4 Further references on Utility Indifference Price

Asymptotics

Asymptotic results for utility indifference prices have been stated for exponential
utility function in El Karoui and Rouge [EKRO00] for Brownian diffusion models,
and in Delbaen et al. |[DGR'02| in a general semi martingale setting. In the
above quoted papers, it was shown that the utility indifference price converges
toward the super-replication price as the absolute risk aversion tends to in-
finity. A slightly more general class of utility functions is studied in [Bou00].
Carassus and Résonyi consider general utility functions, in discrete time models,
in [CRO7, CRO6], and deal with the continuous time case in the recent paper [CR11].

Importantly, note that Becherer [Bec03] has studied almost similar problems in
the context of exponential utility functions. More precisely, he is interested in the
indifference price p1(G,/n;U) of the mean claim G, /n, whereas we consider the
unit price of the components of Gy, pn(Gp;U) = p1(Gyp,U)/n, recall the notation
(1.3.3).

However, our result can be recovered in his more restrictive context from the
additivity property stated in his Theorem 4.10 and the standard asymptotic result
of his Proposition 3.2.



Notations

In all this manuscript, elements of R™, n > 1, are identified to column vectors, the
superscript | stands for transposition, - denotes the scalar product on R™, | - | the
Euclidean norm, and M" denotes the set of n-dimensional square matrices. We
denote by S™ the subset of elements of M which are symmetric. For a subset O of
R™, n > 1, we denote by O its closure, by Int(Q) its interior and by dist(x, Q) the
Euclidean distance from z to O with the convention dist(z,()) = oco. Finally, we
denote by B,.(z) the open ball of radius r > 0 centered at z € R™. Given a square
matrix M € M", we denote Tr its trace, that is Tr[M] := > " | M;;. For z,y € R,

we will use z V y := max(x,y), v Ay := min(z,y), 27 :=2 V0 and 2~ := (—z) V0.

Let ¢ € C*(R%R) a smooth function; Dy denotes the Jacobian matrix of ¢,
3%
8xixj :

ie. (Dyp); = g—“o and D2 its Hessian matrix, i.e. (D?%p);; := In case we

;?

wish to denote a partial derivative of ¢ with respect to one or two of its variable(s),

we shall use the notation Oz, ¢ = 832;;]"

Given a locally bounded map v on a subset B of R", we define the lower and

upper semicontinuous envelopes
v+ (b) := liminf v(¥) v*(b) := limsupv(b'),b € B.
Bab' —b B3b —b

The convex hull of a function f will be denoted ®(f), and we recall that it is the
greatest convex function lower or equal to f. We will use the same notation for the
convex hull of a subset, i.e. ©(A) is the convex hull of the subset A, and we recall
that it is the smallest convex subset containing A, in the sense of inclusion.

In this manuscript, inequalities between random variable have to be understood in

the a.s. sense.
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Abstract

Abstract

In this chapter, we consider a mixed diffusion version of the stochastic target
problem introduced in [BET09|. This consists in finding the minimum initial value
of a controlled process which guarantees to reach a controlled stochastic target with
a given level of expected loss. It can be converted into a standard stochastic target
problem, by increasing both the state space and the dimension of the control. In
our mixed-diffusion setting, the main difficulty comes from the presence of jumps,
which leads to the introduction of a new kind of controls that take values in an
unbounded set of measurable maps. This has non trivial technical impacts on the

formulation and derivation of the associated partial differential equations.

Keywords: Stochastic target problem, mixed diffusion process, discontinuous

viscosity solutions, quantile hedging.

Note: The work presented in this chapter is taken from [Morll], and has been

accepted for publication in STAM, Journal on Control and Optimization.
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Stochastic Target With Controlled

Loss in Jump Diffusion Models
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2.1 Introduction

For 0 <t < T, and given two controlled diffusion processes {Xﬁx(s),t <s< T}
and {Y}, ,(s),t < s < T} with values respectively in R? and R, satisfying the
initial condition (th:x(t%Ytl,jx,y(t)) = (x,y). We are interested in finding the

minimal initial condition y for which it is possible to find a control v satisfy-

ing E [V (X7,(T), Y/

t,af,y(T ))] > p for some given Borel measurable map W, non-

decreasing in the y-variable, and for a threshold p. Namely, we want to characterize
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the value function:
o(t,x,p) :=inf {y > —k : E [¥ (X{,(T), Yt”zy(T))] > p for some v},  (2.1.1)
in the mixed diffusion case. If ¥(z,y) := L{y(z,)>0y and p € (0,1),
o(t,z,p) =inf {y > —k : P [V (X{,(T),Y}, ,(T)) > 0] > pfor some v} , (2.1.2)

this problem coincides with the quantile hedging problem discussed in Follmer and
Leukert [FL99], in the context of financial mathematics. In this paper, the process
X represents the prices of some given securities. The process Y models the wealth
of an investor, based on some portfolio strategy v. Importantly, the coefficients of
the diffusion Y are linear in the control variable and the process X is not affected by
the control v. In this context, Follmer and Leukert [FL99| used a duality argument
to convert this problem into a classical test problem in mathematical statistics.

In order to deal with the problem (2.1.2) in a more general case, Bouchard, Elie
and Touzi [BET09] introduced an additional controlled diffusion process Py}, which
appears to (essentially) correspond to the conditional probability of reaching the
target V (X7,.(T), Yt”zy(T)) > 0. This allowed them to rewrite the problem 2.1.2

in the form

0(t, z,p) = inf {y > —K: 1{V(XZI(T)73QTI,y(T))ZO} > P/, (T) for some (v, a)} ,

where « is a predictable square integrable process coming from the martingale rep-
resentation of P [V (X{,(T),Y, ,(T)) > 0| F] = PY, :=po+ [, as-dWi, for some
Do > p- The key point is that this reformulation reduces the original problem (2.1.2)

into a classical stochastic target problem of the form
0(t,z,p) := inf {y > —k:V (X?.(D), Ptofp(T),Y;l;,%(T)) > 0 for some v, a} ,

as studied in Soner and Touzi [ST02a, ST02¢c|, for an augmented system (X,Y, P)
and an augmented control (v, «). The major difference being that the new control
a can no longer be assumed to take values in a compact set, as it is given by the
martingale representation theorem.

Up to a non-trivial relaxation, Bouchard, Elie and Touzi [BET09] were able to
provide a PDE characterization for the value function ¢ in the sense of discontinuous
viscosity solutions, for a discontinuous operator which corresponds to the one used
in Soner and Touzi [ST02a, ST02c].

The aim of this chapter is to extend the work of Bouchard, Elie and Touzi
[BET09] to the setting of jump diffusions, in its more general form (2.1.1).

Diffusing the conditional expectation E [¥ (X}, (T), Y}, (T))| Fs] for s € [t,T],

6T,y
and considering it as an additional controlled state variable P/)* will allow us to
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convert this problem into a singular stochastic target problem. Here, the additional
control x comes from the jump part of the martingale representation.

This leads to technical difficulties, mainly because of this new control y. The
first one was already handled in [Bou02|, and consists in the consideration of an
additional (non-local) term in the PDE characterization. Secondly, part of the
control now takes values in an unbounded set of measurable maps, as opposed
to a compact subset of R%. The local relaxation of the associated HJB operator
introduced in Bouchard, Elie and Touzi [BET09] will not be sufficient to ensure the
semicontinuity needed, and we shall have to introduce a new (non-trivial) relaxation
of the non-local part of the associated operator. Furthermore, this non-local operator
complicates significantly the discussion of the boundary conditions at p = m and
p = M when the map ¥ takes values in [m, M].

Compared to Bouchard, Elie and Touzi [BET09|, where they discuss general
problem of the form (2.1.1), but state their results for the problem (2.1.2), we aim
to state our results for the problem (2.1.1). In particular, we shall see that the
convex face-lifting phenomenon in the p-variable observed in Bouchard, Elie and

Touzi [BET09] for (2.1.2) extends to a much more general context.

This chapter is organized as follows. In Section 2.2, we present the general for-
mulation of stochastic target problem with unbounded measurable map controls, in
mixed diffusion case. It contains the statement of the corresponding dynamic pro-
gramming equation. In Section 2.3, we give the arguments allowing us to translate
the problem of expected controlled loss into the case of singular stochastic target
problem of the previous section. The boundary conditions for the stochastic target

problem with controlled expected loss are discussed in this section.

2.2 Singular stochastic target problems

2.2.1 Problem formulation

Let T' > 0 be a fixed time, E a borel subset of R, equipped with its Borel o-field &,
J(de,dt) = Zle Ji(de, dt) be a E-marked right-continuous point process defined on
a complete probability space (2, F,P). Let W be a R%Brownian motion defined on
(Q, F,P), such that W and J are independent. We denote by G := {G;,0 <t < T}
the P-augmented filtration generated by (W., J(de,-)). We assume that Gy is trivial.
The random measure J(de,dt) is assumed to have a predictable (P, G)—intensity
kernel A(de)dt such that A\(E) < oo, and we denote by J(de,dt) := J(de,dt) —

A(de)dt the associated compensated random measure. By Hi, we denote the set of
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maps x : Q x [0,7] x E — R which are P & € measurable ! and such that

g = ([ [ [ aters dedtD%<oo.

We can always assume that P[J (E \ supp()),[0,7]) > 0] = 0, and therefore that
E = supp()\). Let Uy = Ut x UZ be the collection of predictable processes v =
(v!,v?) with vt € L?([0,T] x Q) and v? € H3 P-a.s., and with values in a given
closed subset U = Ul x ]L?\ of R% x ]L%\. Here Li denotes the set of measurable

functions 7 : E — R such that ||7[3 < oo, with

]2 = /E [m(e)[? A(de).

For t € [0,7T], z = (z,y) € R* xR and v := (v',1?) € Uy, we define Z}/, :=

(X I ) as the R% x R-valued solution of the stochastic differential equation

X(s) = X(s),vs)ds +ox (X(s),vs) dWs
/5x ), vh12(e), ) J(de, ds)
(2.2.1)
dY (s) =py (Z(s),vs) ds + oy (Z(s), vs) AW,
/By ), v, 12(e), ) J(de, ds)

satisfying the initial condition Z(t) = (z,y). Here,

(nx,0x) : REx U — RY x M4
(ny,oy) :REX R x U — R x R?

are locally Lipschitz, and are assumed to satisfy, for u := (u!,u?) € U,
]uy(x,y,u)| + |uX(x,u)\ =+ ‘UY(:vavu)‘ + ‘OX((L’,U)‘ < K(:L',y) (1 + ‘u” + HUQHA)
where K is a locally bounded map. Moreover

Bx :RIx U x E — R?
By RIXRxUxFE—R

are continuous and are assumed to satisfy, for some M > 0,

[ (185 ate). ) + 18y (2 ule), ) Mde) < M (14 ]2+ fuf)
E
/E Bx (2, u(e), e) — Bx (', ule),e)> Mde) < M |z — 2| (2:2.2)

2

)

[ (o). e) = By & u(e). ) Ade) < M|z -2

1P denotes the o-algebra of F-predictable subsets of Q x [0, .
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where we have used the notation u(e) = (u',u?(e)) and |u|? := |u'|? + HuQHi We

denote by U = U' x U? a subset of elements of Uy for which (2.2.1) admits an unique
strong solution for all given initial data. We assume furthermore that any constant
controls with values in U belongs to U. We also allow for state constraints and we
denote by X the interior of the support of the controlled process X.

Let V be a measurable map from R4 to R such that, for every fixed x, the
function

y — V(x,y) is non-decreasing and right continuous.

We then define the stochastic target problem as follows

o(t,z) == inf {y > —k: V (X7, (T),Y/,

t%y(T)) > 0 for some v €U}, (2.2.3)

with k € Ry U {+00}. At this point, the set U may not be bounded, and we will
see later that dealing with unbounded controls will be required in the analysis of
Section 2.3.

In order to be consistent and avoid the process Y to cross the level —x, we shall

assume all over this chapter that
py (x,—k,u) >0, oy(z,—k,u) =0 and By(z,y,u,e)>—(y+K)
for all (z,y,u,e) € X xR x U x E. 224
As usual in this kind of problem, our analysis requires that
y >yandy e T(t,z) =y € D(t,x) forall (t,x,y,9)e0,T] xR xR xR
where

L(t,x) :={y>—r:V (X{(T),Y,,(T)) >0 for some v e U} .

This allows to characterize the closure of I'(¢,x) as [v(t,z),+00), which will be
of important use in the following. Indeed, let us assume that the infimum in the
definition of v is attained, and let y = v(¢,x). Then we can find some v € U such
that V (Xfx(T),Yt”xy) > 0. Hence, if we start with v’ > y, we should be able to
find some v/ € U such that V(XK;,(T), Y;’;y,) > 0. If this property does not hold,

it is not possible to characterize the set I'(¢,x) by its lower bound v(¢, z).

Remark 2.2.1. Let us observe that this problem can be formulated equivalently as

v(t,z) :==inf {y > —k: Yiy(T) > g (X7,(T)) for some v €U},
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where g is the generalized inverse of V' at 0:
g(x) :=inf{y > —k: V(z,y) >0}, (2.2.5)
recall (2.2.4).

Example 2.2.1. Consider the case where X = (0,00)¢ and X is defined by the

stochastic differential equation
dXiz(s) = p(Xeg(s))ds + o (Xia(s)) dWs + / B (Xtz(s—),e) J(de,ds)
E
Xi4(t) =z € (0,00)%,

with Y7,

.y given by
S
Yy (s) =y +/ vp - dXyp(r), for s>t and v=(v',v?) elU.
t
This corresponds to the situation where the process X is not affected by the control:

px(@,u) = p(x),  ox(z,u)=o(x)

are independent of u
and  fx(z,u(e), ) = Blx,e)

and

1

,u,y(a:,y, u) =ue :u’(m)7 O’y(l’,y,u) = O'T(I')’LLl, By(x,y,u(e),e) =u'- 5(1.76)'

In financial mathematics, the process X should be interpreted as the price of
d risky securities. Because of the jump diffusions, we are in an incomplete
market, so that the uniqueness of a P-equivalent martingale measure is not
satisfied. The process Y represents the wealth process induced by the trading strat-

egy v, where v} indicates the number of units of the assets in the portfolio at time s.

Finally, for some Lipschitz continuous function g : R — R and

V(‘T,y) =Y - g(CIT),
v(t,x) coincides with the usual superhedging price of the contingent claim
9 (Xt2(T))-
2.2.2 Main results

The main result of this section is the derivation of the dynamic programming equa-
tion corresponding to the stochastic target problem (2.2.3), in the present context

of possibly unbounded controls and jumps.
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Before stating our main results, we need to introduce additional notations. Given

a smooth function ¢, u € U and e € E, we now define the operators

LY(t,z) = Op(t,x) + px(z,u) - Dp(t,x) + 1Tmce [axa;(x, u)D?p(t, x)
G%%(t, x) == By (z,(t x),ule),e) — @ (1, 33+5X($ u(e), e)) + ¢(t, ),

where ;¢ stands for the partial derivative with respect to t, Dy and D?¢ denote
the gradient vector and the Hessian matrix with respect to the x variable. We then
define the following relaxed semi-limits
H*(©,¢):= limsup H., (@’,1#)
e\0,0'—0
n—=0,4—¢
(2.2.6)

H.(0,¢):= liminf Hey (©'9),
N—=0,9—¢

where, for © = (t,z,9,k,q,¢,A) € Ry x RE x R x R x R? x R? x §%,¢ €
C12([0,T] x R4 R), e > 0 and n € [-1,1],

H,(©0.0)— s  A%O),
wENe 4 (t,2,y,q )

with
1
AY(O) = py(z,y,u) — k — px(z,u) - q— iTrace [JXU;—((m,u)A] ,
ueUst. [IN“(z,y,q¢')] < eand
Ne,n(tax7yv qlvw) =
AYC(t,x,y,¢) >n for \-a.e. e EE
Nu(x7y7q,) = UY(xa Z/7U) - O'X(Jf, u)quv
A (t, @, y,v) = By (z,y,u(e), €) — 1 (t,z + Bx(z,ule), €)) +y

and the convergence ¢ — in (2.2.6) has to be understood in the sense that 1

converges uniformly towards ®.

Also notice that, given n € [~1,1], (N;;).>, is non-decreasing in ¢ so that

H,(©,p):= lim mf Hy,, (O,
(©,¢) 0.6/ 0, ( w)

w—w
For ease of notations, we shall often simply write Hv (¢, z) in place of H (¢, x, v(t, z),
ow(t,z), Dv(t,z), Dv(t,z), D*v(t,z), v). We shall similarly use the notations H*v
and H,v.

In order to handle the possible unboundedness of the jumps in Section 2.2.3.1,

we shall need the following definition of viscosity super solution.
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Definition 2.2.2. We say that a ls.c. (resp. w.s.c.) function U (resp. V) is a
viscosity supersolution of H*U > 0 (resp. subsolution of H,V < 0) on [0,T) x R?
if for every smooth function ¢ € CY2([0,T] x R%R) of linear growth and (t,, ) €
[0, T)xR? such that ming 7xrd (U—9) = (U—¢)(to, To) = 0 (resp. maxpg r)xpa(V —
©) = (V —)(te,z0) = 0), we have

H*o(to,x,) >0 (resp. Hyop(to, o) <0).

We will need for the proof of the supersolution property on [0,T] x R? (see
Sections 2.2.3.1 and 2.2.3.2) the following technical assumption. Define for sake of
clarity, for any ¢ € C12([0,7] x R4 R), w € U and (¢, x,y, 21, 22) € [0,T] x R2¥+2

ﬁg{,Z@(t? z, Z) = Eu@(ﬂ JZ‘) - NX(‘Ta u) "21 ,U/Y($7 Y, u)227 (227)
where z =: (21,22) € R? x R and ¢(t, 2, 2) := ¢(t,x) — |2|2.
Assumption 2.2.3. Foralle > 0,9 € [—1,1], (t,, z,) € [0, T] xR%, ¢ € C12([0,T] x
R R) and finite Cy satisfying

sup {ny (z,y,u) — L%(t, )} < 20
ueNSa"](t7xzy7DSD7$0)
for all (t,x) € Be(to,x0) and y € R s.t. |y — ¢(t,x)| <e¢,

there exists € > 0,7 € [—1,1] and a finite Cy such that

sup {/Ly(x,y,U) - ‘ci)L(,Z@(ta xz, Z)} < 2C1 + |Cl|
uENE/Yn/(t,:c,y,Dcp,go)

/ 2.2.8
o (t,z,2) € Be(to, 70,0) ( )
forall (t,x,y,z) € [0,T] xR s.t.

yER st |y—p(t,z) <7,

and

+
MY(QU,,%U) —,C})L(Z@(t,{ﬂ,Z)} d
’ <Oy (1 E
1+|Nu($,y,Dg0)| > 02 +|UY($7ZI/7U)’+

ag’(' (x,u) D
i=1

i (t,x,21,22) € Bu(to, 75,0)  (2.2.9)
for all (t,x,y,z) € [0,T] x R**2 5.¢.
yeR st |y—pt,x) <7,

and u € U such that A" (t,x,y,¢) >n A-a.e.
As in [BET09, ST02a, ST02c|, the proof of the subsolution property requires an

additional regularity assumption on the set valued map Ny (-, f).

Assumption 2.2.4. (Continuity of No,(t,x,y,q, f)) For f € C° ([O,T] X ]Rd), n>
0, let B be a subset of [0,T) x X x R x R? such that No 2, (-, f) # 0 on B. Then, for
every € > 0, (to, o, Yo, §o) € Int(B), and u, € No 2y (to, To, Yos Qo, f), there exists an
open neighborhood B’ of (to, X0, Yo, qo) and a locally Lipschitz map U defined on B’
such that [V (to, To, Yo, Go) — Uo| < € and U (t,x,y,q) € Noy, (t,z,y,q, f) on B'.
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We also assume that v is locally bounded, so that v, and v* are finite. Our
first result characterizes v as a discontinuous viscosity solution of the variational

inequation (2.2.17) in the following sense.

Theorem 2.2.5. Under Assumption 2.2.3, the function v, is a viscosity supersolu-
tion on [0,T) x X of
H*v, > 0. (2.2.10)

Under Assumption 2.2.4 holds, the function v* is a viscosity subsolution on [0,T)x X
of
min {H,v*,v* + Kk} <0 (2.2.11)

The proof of this result is reported in Section 2.2.3.

Remark 2.2.6. 1. Note that the operator H* would not be upper-
semicontinuous in ¢, for the uniform convergence, without the relaxation in
the test function on the non-local part. This is the counterpart of the local
relaxation introduced in Bouchard, Elie and Touzi [BET09] on the derivatives

of the test function.

2. Notice that we impose the Definition 2.2.2 of viscosity solution for integrability
issue. This heavily relies on the relaxation of the operator in its test function
parameter, in terms of uniform convergence. Indeed, consider the case where
the relaxation is stated in terms of uniform convergence on compact sets, and
for every (to,7,) € [0, 7] x R? and test function ¢, the family of auxiliary test
functions (p,), defined for each ¢ > 0 as ¢, (t,x) := ¢(t,x) + 1|z — z,|", for
some n > 0. This family converges uniformly on compact subsets towards ¢
as ¢t — 0. However, the presence of the jumps may imply that ¢,(-, X) may

fail to be integrable for n large enough.

3. Assumption 2.2.3 is of technical nature, and is needed in the proof of (2.2.10)
for integrability issues. It was missing in [BET09, Theorems 2.1 and 2.2,
Corollaries 3.1 and 3.2|, although it is satisfied in their Section 4. This con-
dition enable us to control the drift uy — L%y in terms of BMO martingales,
and thus to define a change of measure with uniformly integrable martingale,
see Section 2.2.3.1. Equation (2.2.8) essentially stands in an additional relax-
ation of the operator. The relaxation in terms of z; in (2.2.8) is obvious by
definition of H*, whereas the relaxation in zo is new. Equation (2.2.9) is also
new, and consists essentially in constraints on the partial derivatives of the

test function, as well as a characterization of the controls of the jump part
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in the Kernel N ,; see the proof in Example 2.3.4 in the particular case of

stochastic target under controlled loss.

Example 2.2.2. In the context of Example 2.2.1, first notice that the process
X is not influenced by the control v. Hence, Assumption 2.2.3 reduces in this
context in a control of % It is thus trivially satisfied since these coefficients are
linear in u. Then, direct computations show that v, is a viscosity supersolution on

[0,T) x (0,00)% of

0 < min {—atgp — %J2D2<,p, Dy -B(-e) —@(-+B(e)) + s@} ;

for M-a.e. ec E

and that v* is a viscosity subsolution of

0 > min {—&go — %U2D2s0, Dy -B(-,e) =@ (-+ B(-e)) + 90}

fore e E' € £ st. AM(E') > 0.

We next discuss the terminal conditions on {T'} x X. By the definition of the

stochastic target problem, we have
o(T, z) = g(x) for every x € RY,

where ¢ is defined in (2.2.5). However, the possible discontinuities of v might imply
that the limits v, (7, -) and v*(T,-) do not agree with this boundary condition. We
then need to introduce, as in Bouchard, Elie and Touzi [BET09], the set-valued map
(r,8) ERIxR:JuelUst. r=N%z,y,q)
N(t>x7y7Qv¢) = )
and s < A%¢(t,x,y,¢) for \-ae. e€ E

together with the signed distance function from its complement N¢ to the origin:
d := dist (0, N¢) — dist(0,IN),
where we recall that dist stands for the (unsigned) Euclidean distance. Then,
0 € int (N(t,x,y,q,v)) iff 6(t,z,y,q,v) > 0. (2.2.12)

The upper and lower-semicontinuous envelopes of § are respectively denoted by 6*
and 0, and we will abuse notation by writing d.v(t, z) = d. (¢, z,v(¢t, x), Dv(t,x),v)
and 0*v(t,z) = 6* (t,z,v(t,x), Dv(t,z),v). For ¢ € C*(R?), we similarly define
dup(x) = 04 (T, 2, 0(x), Dp(x), p) and the same definition holds for 6*¢(x).
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Remark 2.2.7. From the convention sup() = —oco and the supersolution property
(2.2.10) in Theorem 2.2.5, it follows that

§* v, > 0on [0,T) x R?

in the viscosity sense. Then, if N # (), this means that v is subject to a gradient

constraint.

Remark 2.2.8. 1. Assume that for every (z,y,q) and r € R? there is an unique

solution @(z,y, q,r) to the equation N%(z,y,q) =r, i.e.
N%(z,y,q) =r iff w=u(z,y,qr).

Assume further that @ is locally Lipschitz continuous, so that Assumption 2.2.4
trivially holds. For ease of notations, we set u,(z,y, ¢) := u(z,y,q,0). For a bounded
set of controls U, it follows that, for any smooth function ¢, H*¢(t,x) > 0 implies
that

Uo (:c,gp(t,:p),Dgo(t,x)) eU, Aﬂo('>§0>at90, DgD, D%D)(t,l‘) >0
and A" C(t,z,p(t,x), ) >0 for M\-a.e. e€ E.

Similarly, H.p(t,z) < 0 implies that

either @, (x, p(t,z), Dp(t,x)) ¢ intU,
or A% (-, p,00p, Do, D*¢)(t,x) < 0
or A"t x,0(t,x),p) <0 for ecE €& st. ME)>0.

The following result states that the constraint discussed in Remark 2.2.7 prop-
agates up to the boundary. Here, the main difficulty is due to the unboundedness
of the set U and the presence of jumps in the diffusions. As discussed in Section
2.3.4 (see Corollary 2.3.17), the unboundedness of the controls may imply that the
condition {H*v,(T,-) < oo} is not satisfied.

Theorem 2.2.9. Under Assumption 2.2.3, the function x — v.(T,x) is a viscosity

supersolution of
min { (v (T, ) = g«) L gv.(1,) <00} 6 v(T,) } > 0 on X, (2.2.13)
and, under Assumption 2.2.4, v € X — v*(T, ) is a viscosily subsolution of

min {v*(T,-) — ¢, 0,.0™(T,-)} <0 on X. (2.2.14)
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We conclude this section by some remarks. Remark 2.2.11 establishes the link
between this work and those of Soner and Touzi [ST02c|, [Bou02| and Bouchard,
Elie and Touzi [BET09]. Remark 2.2.12 was already in Bouchard, Elie and Touzi
[BET09], and Remark 2.2.10 will be of important use in the proofs of Section 2.3.5

below.
Remark 2.2.10. Assume that

esssup {|8x (-,u(e),e)| + |By (-, u(e),e)|} is locally bounded,
EN. cCE (2.2.15)

and FE is compact.

Then, the operator H is continuous for the uniform convergence in its ¢ € C1?
parameter. In this case, the test function 1 appearing in the form (t,z +
Bx(z,u(e),e)) in the definition of H* can be replaced by v, itself. To see this,
note that for any € > 0, (t,, %) and ¢ € CH? such that (v. — ¢) achieves a strict
minimum at (¢,, x,), one can find a sequence of smooth function 5 such that ¢, = ¢
on Be(to, o), 95 < v, and ¢ T v, uniformly on compact sets of (Ba:(to, ,))". This
allows to replace the original test function ¢ by vy on (Boc(to, 7,))¢. It then suffices
to send € — 0 and use the continuity induced by (2.2.15).

The same remark holds for the subsolution property.

Remark 2.2.11. Note that (x,y,q) < 0 whenever int(N(z,y,q)) # 0, so that the
subsolution property does not carry any information. This would be the case when

the control set U has empty interior.

Remark 2.2.12. When the set U is bounded, and Bx = By = 0, i.e. there is
no jumps, it was proved in Soner and Touzi [ST02¢| that the value function v is a

discontinuous viscosity solution of

sup {py (z,v(t,z),u) — L(t,x)} =0, (2.2.16)
u€Ny (+,v,Dv)(t,z)
where
No(z,y,q) :={ueU: N*z,y,q) =0}
and Nu(xv Y, Q) = O'Y(ZL’, Y, U) - O-X(:Ev U)TQ7
with the standard convention supf) = —oo. In the case of a convex compact set U,

with jumps and R%valued controls, i.e. U? = {0}, Bouchard [Bou02| showed that v

is a viscosity solution of an equation of the form

sup {min {E“cp(t, x), inf g“’ego(ux)}} =0. (2.2.17)
)(t,2) eck

u€Ny (-,v,Dv
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Finally the case of unbounded set U with no jumps was considered by Bouchard,
Elie and Touzi [BET09]. In this paper, the authors introduced a relaxation on the
operator (2.2.16), in order to deal with this unboundedness. This relaxation applies
to the space variable x, the function ¢, its gradient and its Hessian matrix, at
the local point (¢,z). Such a relaxation is required in order to ensure that the sub-
solution (resp. super-solution) property is stated in terms of a lower semi-continuous
(resp. upper semi-continuous) operator. In our jump-diffusion framework, a similar
relaxation is required, but it should involve the additional non-local term G%€ in
(2.2.17). One shall note that this relaxation is introduced in the Kernel N with
e > 0, so that our PDEs do not take the form of (2.2.17). This is however a pure
technical consideration, since we recover the same inequalities when considering

particular frameworks, see e.g. Example 2.2.2.

2.2.3 Derivation of the PDE for singular stochastic target prob-
lems

This section is dedicated to the proof of Theorems 2.2.5 and 2.2.9. We first recall
the geometric dynamic programming principle of Soner and Touzi [ST02a], see also
Bouchard and Vu [BV10]. We next report the proof of the supersolution properties
in Sections 2.2.3.1 and 2.2.3.2, and the proof of the subsolution properties in Sections
2.2.3.3 and 2.2.3.4.

Theorem 2.2.13. (Geometric Dynamic Programming Principle) Fiz (t,z) €
[0,T) x X and let {6”,v € U} be a family of [t, T]—valued stopping times. Then,

(GDPjl) Ify > v(t,x), then there exists v € U
Yy (07) 2 v (07, X7, (67)) -
(GDPj2) For every —x <y <wv(t,z),v €U,

P [nyx,y (0") > v (0", X7, (0"))] < 1.

2.2.3.1 The supersolution property on [0,7) x X

We follow the arguments of Bouchard, Elie and Touzi [BET09] up to non trivial
modifications due to the presence of the jumps, and the consideration of Assumption
2.2.3.

Step 1: Let (to,2,) € [0,7) x X and ¢ be a smooth function of linear growth such
that

[O,IYI’l)iSX(StriCt) (U — @) = (Vs — @) (to, o) = 0.
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Assume that H*¢(t,,x,) =: —4n < 0 for some 1 > 0, and let us work towards a
contradiction. We define the family {f,,. > 0} of real valued functions defined on
R? for all ¢ > 0 by

2 T|z—20|

fi:zeRI— — ; sin? udull gy 1<1y + tLfjz—z,|>1)- (2.2.18)

Observe that for each ¢ > 0,
f, € C*(R%R) is of linear growth,
0= f,(z5) = min f,(z), (2.2.19)
z€R4
f.)>0 converges uniformly towards 0 as ¢ — 0.
( g y

We also notice for later use that for all + > 0, we have

sin(2mwe
fu(@) > e, =1 <<€ - éw)) Ljo—a,l<1} + ]1{|mo>1}> >0

for all € > 0 and = € R? such that |z — z,| > e.

(2.2.20)

Set ¢, (t,x) = p(t,z) — f,(z) for ¢ > 0. By definition of H* and the fact that

w, — @ as t — 0, we may find ,¢ > 0 small enough, such that, after possibly
u.

changing n > 0

py (2, y,u) — L%, (t,2) < —2n
(t,x) € B:(to,xo)

Ui
ly —eult,z)| < 5

27
for all u € Nz, (¢, 2,9, Do (t, ), 0.)

for all (t,z,y) € [0,T) x X x R s.t.

where we recall that B.(t,,x,) denotes the ball of center (t,,x,) and radius e.
Define now for all z := (z1,22) € X X R and (¢,z) € [0,7] x X the function
@.(t,x,2) := p,(t,z) — |z|?, and observe that, since the partial derivatives in (¢,x)
of @, and ¢, coincide, we have for every u € U, (t,z,y,2) € [0,T] x X x R x X x R:

LYp,(t,x,2) = LY, (t, ).

We recall from (2.3.7), for every u € U, (t,2,2) € [0,T] x X2 x R and y € R the

definition of the operator

EUX,Z(/_)L(tvxv Z) = ﬁu(pL(t,x) - MX(IL’, u) I MY(ma%u)ZQ'

By Assumption 2.2.3, there exists then a finite constant C' > 0 such that, after
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possibly changing € and n > 0, we have

MY(x7y7u) - Eq)l(,Z@L(tﬂmz) <N

(t’ $7 z) 6 Bg(t07$0’ 0)
for all (t,z,2,y) € [0,T) x X2 x R? s.t. 0 (2.2.21)
|y - @L(taxwz)’ S 17

for all u € N,—'r] (t,iL‘,ny%(ta '/I;)vSOL)

and

+
uy(x,y,u)—ﬁungﬁb(t,x,z)} d .
7 <C|(1+4|oy(z,y,u)|+ oy :U,u‘

for all (¢t,z,2) € B:(to,20,0) and y € R s.t. |y — @,(t,x,2)| <

>3

and for all u € U s.t. A" (t,xz,y,¢,) > —n A-a.e.,
(2.2.22)

Notice that we still have

0 = vi(to, o) — @u(to, o,0) =  min  (strict) (ve — @,) .
[0,T)xX2xR

Let 0pB:(to, 20,0) := {to + &} X Be(to, T, 0) U [to,to +€) X dB:(x0,0) denote the
parabolic boundary of B.(t,,x,,0). Set

= min Vg — @
¢ BpBg(to,xo,O)( « =P

and observe that ¢ > 0 since the above minimum is strict. We now define
Ve(to, To,0) := OpBe(to, T0,0) U [to, to + €) X BE(x,) x B-(0), and with 4., defined
as in (2.2.20), we observe that

(e — @) (t,,2) > CAYe, =: & > 0 for (t,z,2) € Ve(to, 20, 0)

since (to, %o, 0) is a strict minimizer, and |z — z,| > € on BE(z,), recall (2.2.20).

step 2: Let (tn, xn)n>1 be a sequence in [0,7") x X which converges to (t,,z,) and
such that v(t,, xn) — Vs(to, To). Set yn := v(tn, r,) +n ! and observe that

Yn = Yn — @L(tm xn) — 0. (2.2.23)

For each n > 1, we have y,, > v(tn, x,). Thus, it follows from (GDPjl) that there

exists some v" € U such that

Y™ (EAG,) > 0 (EA O, XM(EAG)), >t (2.2.24)
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where

00 :={s >ty :(s,X"(s),Z2"(s)) ¢ Be(to,x0,0)}

}A ” (2.2.25)

b= {5 2 tu 2 [Y"(5) = 30 (5. X"(5), 2"(5))] 2

~3

and

(X" Y™ 2Z") = (X, Y

v )
tn,Tn? " tn,Tn,Yn’ “tn,2n)

v —

tn,In (8) T 2

n 1/5 py (X" (w), Y (u), vy)) "

px (X" (u), )
By the inequalities v > v, > ¢, > @,, this implies that

Y™t Abn) — @, (EA Oy X7 (E A B), Z™(t A 6y,))
> Ly Y (A On) — @ (8N On, X" (ENOn), Z™(E A O))]
> 1{t20n} [(Yn(t A 67”) — @ (t N O, Xn(t A Hn)’ Zn(t A en))) 1{0n<03}

+ (Ve (EAOn, X" (EN ) — @y (EA O, X" (EA ), Z7(t A 6n))) Lig, —g01]

2 El{emez} +&l40,=0g} | Hiz0.)
and therefore
Yt A On) — By (E A Oy X (EA ), Z(E A Br)) > (Z A 5) Lyso,y > 0. (2.2.26)

step 3: Since ¢, is smooth, recall (2.2.19), it follows from It6’s lemma, (2.2.23),
definitions of Y and Z", and (2.2.26), that

A0y, A0 A0y,
an—l—/ b;‘ds—l—/ w?dWs—i-/ /cg’eJ(de,ds)
tn tn tn E (2.2.27)

> - <g A 5) 1{t<9n}7

with 0
O 1= — (Z/\g) + Yn,
by = py (X" (s),Y"(s),vy) — ngZgBL(S,X;L, Z"(s))
’ (2.2.28)
=A% (5, X"(s—),Y"(s—),¢.)
Yy = N (2;17 D(pb(st;l)) .
In view of (2.2.23), we have
ap — — (Z /\5) < 0 for n — oo. (2.2.29)

Observe now that, for every n > 1, the definition of 6,, implies that for all s € [t,,, 6,),
we have
Y7 (s) — @ (. X7, 2"(s))| < 7.
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Hence, we have
¢ >—n for Maeeé€ FE and s € [t,,0,], (2.2.30)
since otherwise we would have

Y"(00) = B0 (0, X7 (00), 27(60)) <

which is in contradiction with (2.2.24). Hence, by (2.2.21) and the definition of the
Kernel N, for all n > 1, s € [ty, 6,], we have

| <e == bl < —n. (2.2.31)
step 4: We now introduce, for each n > 1, the set

Ay ={s € [tn, 0] : b > —n}.
Observe that, for all n > 1, (2.2.31) implies that the process ¢" satisfies

e | > e for all s€ Ay, (2.2.32)

so that we can define the process o as

o = WP‘Z’ An(5).

Lemma 2.2.1. The stochastic Doleans-Dade exponential

=& </ a?dWs>
t'L '/\9

is well-defined and an uniformly integrable martingale, for all n > 1.

n

This lemma is proved below, and fills a gap in the previous literature, where
Assumption 2.2.3 is missing (see Remark 2.2.6). Admitting its result for the moment,

by Girsanov’s Theorem,
Al
wh=W. - agds
tn
is a (@”—Brownian motion, with @” the equivalent probability defined by its density

I ) Recalling (2.2.27), we have

tAOn tAO, tAOp,
an +/ b’;]lA%ds +/ ”dW” / / crJ(de,ds)
tn tn tn (2.2.33)

dF | g
> - <Z A 5) 1o,y
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Define now for each n > 1 the process

= ([ [ Grgarsy 1) fae)

ar :—/ cCX(de)
E

and where we recall that .J is the compensated jump measure. Since

/t /E <nT(|dln+1) - 1> J(de,ds) > —

M™ is a non-negative local-martingale (see e.g. |Bré8l, Theorem T10]), and from
the fact that

with

1 1
<
nT (|d?]+1) — nT’
together with [, A(de) < 400, we deduce from [Bré81, Theorems T10 and T11]
that M™ is uniformly integrable. We may hence define the equivalent martingale
dQnr

measure —=—| := M", and by Girsanov’s Theorem again, we have
dQ |g.

/%/Ejn(de’ds) = /t;/EJ(deadS)—/t;/EW)\(de)ds

is a Q"-martingale; notice that W is a Q"-Brownian motion. Hence, (2.2.33) leads

(2.2.34)

to
tAOy, 1 dn tAOn R tAOy, 5
. b1 T AT e J7 (de, d
ot [ S S [ e

> — (Z A «5) 1ti<o,}

Recall from the definition of 8,, that 6,, < T, which combined with (2.2.34) gives

1 tAOy, tAOy, tAOy,
S i= an++/ b?]lA%—F/ YrAW? + / / g (de, ds)
n tn tn tn
t/\Hn 1 d t/\en
> b1 4c —2]d nAW?
_an+/tn (3 An ’I’ZT(|dn|—|—1)> 3+/tn 7/’3 S

tAOn,
/t / "eJ” de, ds)
> ( /\5) lco,y

and from definition of A,, (2.2.2) and the fact that @, is a linear growth in its z vari-
able, S™ is local supermartingale, bounded by below, and hence a supermartingale.
It follows then that

]. n on n n Qn
an+— =8 >EY [S) |F,] > - <Z A 5) EY [15,<0,3] =0
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which contradicts (2.2.29) for n large enough.

Proof of Lemma 2.2.1.
By definition of 6, (2.2.32), (2.2.22), (2.2.30), we have,

o (X" (s), V)

d
|ag| SC<1+\UY(X"(S),Y"(S)W?)IJFZ )
i=1
for all s € [tn,0n). We claim that processes fti"A' ox(X"™(s),v!)dWs and
fti"A' oy (X™(s),Y"(s),v?)dWs are BMO-martingales, so that ftn”A' alldWy is it-
self a BMO-martingale. The required result is then obtained by [Kaz94, Theorem
2.3].
We now prove that [, ox(X"(s),vy)dWs and [, oy (X"(s),Y"(s),v])dWs
are BMO-martingales. We shall focus on ftn ox(X"(s),vl)dWs, the result for
ft‘n oy (X™(s),Y"(s),v?)dW; following the exact same argument.

Denote for all n > 1 and s € [ty, 6,]
AX"(s) := X"(s) — X" (s—),

with X™(-—) being the left limit of X™(-). By smoothness of ¢, together with the
definition (2.2.25) of 6,,, definition of Z", (2.2.22) and (2.2.2), for each n > 1, there

exists a constant K, such that for all s < 6,

max (179

[ 5. X0 (6), 07 ds
tn

;\AX”(s)\> < K,. (2.2.35)

Being interested in the process fti”A' ox(X"™(s),v™(s))dWs, we may restrict our-
selves to stopping times 7, taking their values P-a.s. in [t,,0,]. By continuity of
the path: r € [tp, 0,] — f; ox(X"™(s),v™(s))dWs, we have, for every 7, € [tn,0)

On On
/ ox (X"(s),v"(s)) dWs =X"(0,—) — X" () —/ px (X™(s),v"™(s)) ds

— Z AX"(s)

Tn<s<0n
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By (2.2.35) together with Jensen’s inequality, we thus have

Tn

e |( /9 ox (X~ [ o (X)) 7]

- HE (/ 9 7 (X (6),(6) 4V, ) 7,

‘ o0

‘ o0

2
_ g /e"ax (X7(5), 1" (s)) AW, \an”
_n Gn o0 2 -
X" (002 4+ | X7 () 2 + / ux (X" (s), ) ds
<4|E " 2 |]:Tn
+ Y AX(s)
Tn<8<0On

L - o0

<12K2 (14 ||E | J(E, [70,00) > [AX"(s)]” |7,

Tn<8<0On

<12K2 (1+ ||E [J(E, [ra, 0n))* K2| Fr, ]

o0

|.) < oo,

since A\(E) < oo, and so follows the result.
O

Remark 2.2.14. Note that, in the above proof, the relaxation of the non-local part
of the operator in term of uniform convergence is required in order to pass from the
initial test function ¢ to the penalized one ¢,. It allows to obtain the inequality
ve > @, + & outside of the ball B.(z,), which is crucial in our proof. This is not
required in Bouchard, Elie and Touzi [BET09] where processes are continuous. It is
neither required in [Bou02|, where the non-local operator is already continuous and

the size of the jump is locally bounded.
2.2.3.2 The supersolution property on {7} x X
We split the proof in different lemmas.
Lemma 2.2.2. Let v, € X and ¢ € C*(X) be such that
0= (0u(T ) — ) (o) = min(strict) (v.(T, ) ~ ¢)

then
0 p(zo) > 0.

The proof relies on the upper semi-continuity of §*, and follows the exact same
idea as in [ST02c, Lemma 5.2]. We may however give the main steps of this proof for

sake of completeness. As in Soner and Touzi [ST02¢|, the key idea is to consider an
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auxiliary test function ¢, penalized in both space and time, and to consider local
minimizers (tn,zn) of (vi — ¢yp). After having proved that (t,,z,) — (T,x,), we
prove that nh_)n;@ Vs (tn, Tn) = v4(T, x,), and then conclude that the viscosity property
of v, holds in (t,,x,). We conclude by using the upper semi-continuity of §* and
the supersolution property of Theorem (2.2.5) and (2.2.12) on [0,T) x X.

Lemma 2.2.3. Under Assumption 2.2.5, v, is a viscosily supersolution of
(0«(T,*) = g+) Lo, (7,)<00} = 0 on X. (2.2.36)
Proof. Let z, € X and ¢ be a smooth function of linear growth such that
min(strict) (0.(T, ) = ) = (0a(T,) = ) ()

step 1: Assume that H*v. (T, z,) < 00, p(25) = v«(T, 70) < g«(x,), and let us work
towards a contradiction. Since v(T,-) = g by the definition of the problem and
g > g, there is a constant > 0 such that ¢ —v(T,) < ¢ — g. < —n on B.(z,) for

some ¢ > 0. Since x, is a strict minimizer, we have

2 = 1 * T’ - > 0,
¢ xegg%%)v( r) — o(z)

and it follows from the lower semi-continuity of v, that there exists r > 0 such that

o(t, x) — () Z va(t, ) — p(x) 2 (>0

for all (t,z) € [T —r,T] x 0B:(z,),
and hence
o(t,2) — o) = C Ay >0
for (t,2) € ([T'—7,T) x 0Bc(x,)) U ({T'} x B(,)) =: Ver (T’ zo).

Define ¢, (z) := p(z) — f,(z), for « > 0 and f, as in (2.2.18). With similar arguments
as those of Section 2.2.3.1 and by (2.2.20), we have

o(t,z) —pu(r) > CANAYe, =46 >0

for (¢t,z) € ([T —r,T] x B&(z,)) U ({T} x Be(z,)) .

We now use the fact that H*p(z,) =: % < 00. Set

Pt x) = @ (x) + (C+2n)(t = T) < @),
Then, by (2.2.19), for r,¢ > 0 sufficiently small and after possibly changing €,7 > 0,
we have
v(t,z) — @,(t, ) > 26 > 0 for (t,x) € Ve, (T, 20) U[T — 1, T) x BE(x,),
py (z,y,u) — LY@, (¢, x) < —2n for all u € Nz _,(t,z,y, Dp,(t, ), $.)

and (t,z,y) € [T —r,T] x X xR s.t. € Bo(z,) and |y — ¢,(¢,2)] < g
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Indeed, py(x,y,u) — LY@, (t,x) = py(z,y,u) — LY (x) — C — 2n < —2n as
soon as py(x,y,u) — L%, () < C, and we have N;_,(t,z,y,Dp,(t,z),p,) C
NE,*T)(tvxvya D, (t,z), ).

We now define for every (t,z,z) € [0,T] x R x R¥! and + > 0 the function
@.(t,z,2) == §,(t,x) — |2|>. By Assumption 2.2.3, and after possibly changing
g,n > 0, there is C’ > 0 such that

v(t,z) — @ (t,x,2) > € >0
for (t,z,2) € Ver(T,20,0) U [T —1,T] x BE(x,) x B:(0),
py (z,y,u) — LY 7¢.(t,x,2) < —n for all u € Ne—p(t,z,y, D@, (t, ), §,)
(x,2) € Be(2,,0)

77

and (t,z,y,2) € [T —r, T] x R?2 x R s.t.

and

+
MY(xyyaU)_D)L(z@(ta%Z)} d .
— <O 1+ oy (z,y,u)| + oy a?,u‘
[NU(z,y, Dg,| o (e.y.u) ; Xt u)
n
4

for all (¢t,z,2) € Be(to,%0,0) and yeRst. |[y— @ (t,x)] <
and for all w € U s.t. Ay .(t,z,y,5,) > —n A-ae.,

where )_)W(T7 Zo,0) is constructed around (7, z,,0) as V. ,(T, z,).
step 2: Let (ty, xn)n>1 be a sequence in [T'— 7, T] x X which converges to (7T, z,,0)
and such that v(t,,z,) — v«(T,1,). Set y, := v(ty, z,) +n~1, and observe that

Yn = Yn — @(tn, Tpn,0) — 0.

For each n > 1, we have y,, > v(tn,x,). Then, by (GDPjl), there exists some
v™ € U such that

Y'"tANO,) >v(tAOy, X" (tNO)), t>ty,
where

On = {s = tn: (5, X"(5), Z"(s)) & Ve,r (T, 20,0)}
0, == {s >ty |[Y(s) — @, (s, X"(s), Z7(s))] > 4} AB2,

and
n n ny .__ v v 4
(X ’Y ’ Z ) T (thyil'n’ }/tnﬂnyyn’ Ztnaffn) ’

g 1 / (uy (X" (u), Y"(u), v 3)) n
P2 S\ e (X7 (), )
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Using the inequalities v > v, > ¢, > @,, this implies that
Y'"tANO,) — @, (ENOp, X" (ENO), Z"(t A By))
> [YMEAOn) — @ (ENAOn, X" (A On), Z™(t A\ On))] L0,y
> 10,0 [(Y(EAOR) — @0 (EAOn, X (EAOn), ZM(E A 0))) L9, <g01
F AN, X" (ENOL)) — @, (ENOp, X" (tAOy), Z"(t A\ 6y))) 1{971:9%}]
2 [elgg,<09) + Elppa=02)] 120,
and therefore

Y™ (EA0n) = @0 (EA Oy X (EA0,), Z(EA6n)) > (€ AE) L,y > 0.

By repeating the arguments of steps 3 and 4 of Section 2.2.3.1, we end up to a
contradiction.

O
2.2.3.3 The subsolution property on [0,7) x X

The proof of the subsolution property is a straightforward combination of the
arguments of [Bou02] and Bouchard, Elie and Touzi [BET09]. We provide it for

completeness.
step 1: Let (to,2,) € [0,7) x X and ¢ be a smooth function of linear growth such
that
0= (v*" =) (to, o) > (V" — ) (t, ) for (to,x,) # (t,x) € [0,T) x X.

We assume that v*(t,,z,) > —k and we show that

H.o(to, ) < 0.
Assume to the contrary that

4n = Hop(to, z,) > 0.

By (2.2.6), and after possibly changing n > 0, we may find ¢ > 0 and ¢+ > 0
sufficiently small such that

/Ly(l',y,U) - ‘Cuspb(ta l‘) > 277

for some u € Ny, (t,z,y, Do, (t,x),¢,), for all (t,z,y) € [0,T) x X x R such that
(t,z) € Be(to,wo) and |y — ¢, (t,z)| < §, where ¢,(t,2) 1= ¢(t,z) + fi.(z), recall
(2.2.18) and (2.2.19). Observe that we still have

0= (v*"—¢,) (to,x0) = [Ogﬂliagx(strict) (V" — ). (2.2.37)
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For € sufficiently small, and after possibly changing n > 0, Assumption 2.2.4 then
implies that

[y 8 (0, D1, 2) — £ D 1), |
min A n
gV(t,w,y,DsoL (t,w)),e%(t’ z)

(2.2.38)
for A\-a.e. e € E and for all (¢,z,y) € [0,7) x X xR
st (t,2) € Be(to,x0) and |y — o, (t, )| < Z
where 7 is a locally Lipschitz map satisfying
v(t,z,y,Dp,(t,x)) € Noy (t,z,y, Do, (t,z),p,) on Be(to, z,). (2.2.39)

Observe that, since (t,,,) is a strict maximizer in (2.2.37), we have

—( = Y — <0
Ci=, mmax (=)

where 0,B.(t,, z,) denotes the parabolic boundary of B (t,,x,). As in the previous
sections, by (2.2.20), we have for all (¢,z) € [0,T) x BS(z,)

(v =) (t,x) < Ve
Thus, for all (¢,z) € ([te, o + &) X BE(x,)) U ({to + €} X Be(z,)),
(v =) (t,z) < = (1, AC) = =€ < 0. (2.2.40)

step 2: We now show that (2.2.38), (2.2.39) and (2.2.40) lead to a contradiction of
(GDP;j2).

Let (tn, xn)n>1 be a sequence in [0,7") x X which converges to (., x,) and such that

V(tn, Tn) = v*(to, To)- Set yn := v(ty, x,) —n~t, and observe that
Yo i= Yn — @u(tn, Tn) = 0. (2:2.41)

Also notice that y, > —k for n large enough.

Let Z" := (X™,Y"™) denote the solution of (2.2.1) associated to the Markovian
control o™ := v (-, X", Y" Dy,(-, X™)) and the initial condition Z"(t,) = (zn, Yn)-
Since ¥ is locally Lipschitz, this solution is well defined up to the stopping time

6, = inf {s >ty [Y7(s) — @, (5, X7(5))| > Z} N2, (2.2.42)

with
Oy :=inf {s > t, : (s, X"(s)) ¢ Be(to,%0)} - (2.2.43)
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Note that (2.2.38), (2.2.41), and a standard comparison theorem implies that

Y™ (00) = @0 (0, X" (00)) 2 T on {|Y" (6) = (60 X" (0)) = 7 }

> 1
4 4
0n) —

for n large enough. Indeed, Y™ ( o, (0n, X™ (0))) > v > —e¢ for n large enough.
Since —v > —v* > —¢,, we then deduce from (2.2.40), (2.2.42) and (2.2.43) that

Y™ (0n) — v (0n, X" (0n))
Z1{6n<9%} (Y”(Qn) — ¥ (Qm X”(Qn)))
+ 1gg,—po3 (Y™(65) — v* (65, X™(6)))

> <oy + Loy —agy (V7(62) = o° (62 X7(62))
> g, <oy + Loy (V7(02) 4+ — 0, (62 X7 (02))

>N €+ Lig,magy (Y(62) — 0. (62, X7 (67)).

(2.2.44)

We may continue by using 1t6’s formula:

On
Y™ (0n) — v (0, X" (0n)) > 2 ANE+ 19,—02} <'7n + / a(s, Xy, Y]")ds
t

On
w7 [ sexrvre J(de,ds>>
tn E

where
a(t,z,y) == py (2,9, (t, 2,9, Dp,(t, 2))) — L7E2v Do g (¢, )
o(t,,y,e) =Py (x,y, v (t,x,y, Dp.(t, x)) (e), )
- SOL (ta X + /BX (.T, ]) (tv CU, y’ D@L(t’ I’)) (6)’ 6)) + @L(t7 ':C)
and the diffusion coefficient vanishes by (2.2.39). Recalling (2.2.38), the fact that
vn — 0, and that n,& > 0, this implies that

Y™ (0,) > v(0,, X" (6))) for sufficiently large n.

Since the initial position of the process Y is y, = v (tp, zn) —n "' < v (tn, z,), this
is clearly in contradiction with (GDPj2).
O

2.2.3.4 The subsolution property on {T'} x X

The proof combines arguments used in the two previous sections (2.2.3.2) and
(2.2.3.3). The only difference between this proof and the one in Bouchard, Elie

and Touzi [BET09] relies on the presence of the jumps. However, it can be handled
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by following [Bou02]. We then only explain the main steps. Let xz, € X and ¢ be a

smooth function of linear growth such that
max (strict) (v*(T,-) — @) = (v*(T,-) — ¢) (z,) = 0.
Assume that, for some 1 > 0,
0 < dep(wo)
0 <dn < p(x,) = g (x0) = v* (T’ x0) — g™ (o)

Set o, (t,x) = p(x) + f,(z) +1v/T — t, recall (2.2.18). Since the partial derivatives in
x of ¢ and ¢, are the same for © = z,, by (2.2.12) and Assumption 2.2.4, together
with (2.2.19), using the fact that ¢, > ¢, for ¢ > 0 small enough, after possibly
changing n > 0, we can find r,¢ > 0 and a locally Lipschitz map o satisfying,

v(t,z,y, Dp,(t,x)) € Noy (t,z,y, Do (), ¢,) . (2.2.45)

such that

0<4n < (T, xo) — g* (o) = v*(T, 20) — g*(x,)
for all (t,z,y) € [T —r,T) x X xR s.t. z € By(z,) and |y — ¢, (¢,z)| < e. Since
Orp, — —o0 as t — T, we deduce that, for » > 0 small enough,

py (z,y,0 (t,x,y, Do, (t,2))) — L7E20Petz) o (¢ 1) > (2.2.47)

for all (t,z,y) € [T —r,T) x X xR s.t. x € By(2,) and |y — @ (t,x)] < 7. Also

observe that, since v* — ¢, is upper-semicontinuous and (v* — ¢,) (T, z,) = 0, we
can choose r > 0 such that
v(t,x) < @, (t,x) + g for all (t,z) € [T —r,T) X By(x,). (2.2.48)

Moreover, combining the identity v(T,z,) = g(x,), (2.2.20), (2.2.46), (2.2.47),
(2.2.48), the fact that z, achieves a strict maximum, and using similar arguments
as those of Section 2.2.3.2 above, recall (2.2.20), we see that

U(t>$) — ¥ < — (( A ’YE,L) = _5 (2249)

for all (t,z) € ([T —r,T] x Bi(z,)) U ({T} X By(x,)) and for some r,e > 0 small
enough, but so that the above inequalities still hold. By following the arguments in
step 2 of Section 2.2.3.3, we see that (2.2.46), (2.2.45), (2.2.48) and (2.2.49) lead to
a contradiction of (GDPj2).

O
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2.3 Target reachability with controlled expected loss

2.3.1 Problem reduction

We now turn to the main motivation for the above analysis: the stochastic target
problem with controlled expected loss. Let ¥ be a measurable map from R4 to R

such that, for every fixed x, the function
y — V(z,y) is non-decreasing and right continuous.
We define L as the closed convex hull of the image of ¥
L:=0 (¥ (X X [-k,))) = [m, M],

with m < M, m,M € [—oo,+o0]. For p € L, we define the stochastic target

problem with controlled expected loss as follows:
o(t,z,p) :=inf {y > —k : E [V (X{,(T), Y;”Iy(T))] > p for some v €U}, (2.3.1)

with k € Ry U {+0o0}.

The aim of this section is to convert the problem (2.3.1) into the class of
standard stochastic target problems as defined in Section 2.2. The dynamic
programming equation for the target reachability with controlled expected loss will
then be deduced directly from Theorem 2.2.5 above.

Following Bouchard, Elie and Touzi [BET09|, we introduce an additional con-

trolled state variable
PX(s) ::p+/ ay - dW, —l—/ / Xsed (de,ds), s € [t,T),
t t JE

where the additional controls «, x are F-predictable measurable processes, with y €
H3 and a is R%-valued and such that E [fOT \as\2ds} < 0o0. We denote by A the
collection of such processes (a, x). For ¥ := (v, @, x), we then set X” := (X¥, P*X),
We also define X := X x L,U = U x R? x L3, and denote by U=1Ux A the
corresponding set of admissible controls. Abusing notations, we also set Y = Y.

Finally, we introduce the function

~ [ —

V(z,y) :=¥(x,y) —p, for y>—-k and &= (x,p)e (X xL).

We make the following assumption, which allows us to use the stochastic integral

representation theorem.
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Assumption 2.3.1. ¥ (X (T), Ytl”m’y(T)) is square integrable for all initial condi-
tions (t,x,y) € [0,T] x X X [—K,+00) and controls v € U.

Following the arguments of Bouchard, Elie and Touzi [BET09]|, we can now relate
¥ to a stochastic target problem with unbounded controls, and controls taking the

form of measurable functions on F.
Proposition 2.3.2. For all (t,%) := (t,x,p) € [0,T] X X, we have
0(t,2) =u(t,z) =w(t,z),
where
u(t, z,p) := inf {y > —k:V (XfI(T), Yt’?I’y(T)) >0 for some U € 5[}(2.3.2)

y ==k V (X75(T0),¥E,, (1)) >0

w(t, z,p) := inf (2.3.3)

and P{}X € L for some i € u
Proof.
step 1: We first show that © Z u. For y > o(t,z,p), we may find v € U such
that p, := E [¥ (X}, (T
theorem, recall Assumptlon (2.3.1), there exists («, x) € A such that

Yy )} > p. By the stochastic integral representation

VK ) =pt [ ac Wt [ [ xooltae.ds) = B

t

Since p, > p, it follows that W (X/,(T),YY, ,(T)) > PX(T), and therefore

y > u(t,z,p) from the definition of the problem w.

step 2: We next show that u > 0. For y > u(¢, x,p), we have
V(R75(1), Y, (1) 2 0

for some v = (v, , x) € U. Tt follows that

E [V (R7(1). Y00y (1)) | = B [0 (X{L(T), Y20 (1) = PEX(D)] 2 0,

and since P;;* is a martingale
J.

E [0 (X{,(T), Y%y (T))] > p=E[PNT)],

)

so that y > 0(¢, z,p) by the definition of v.
step 3: The inequality © < w is obvious. To see that the converse inequality holds,

consider some y > u(t,z,p). Then there exists some v = (v, a, x) € U such that

U (X7,(T), Y, (1)) > PEX(D). (2.3.4)
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Define

T:=T Ninf {s > t: P{;¥(s) <m} and
Qg = a51{3§7}>

Xs,e = [— (Xs,e V (m — Pt?l;x(s—)))f + (Xs,e)ﬂ 1is<s) for s € [t,T7.

Clearly, P7)X(T) = Pt‘?f (T) on the event {T = T'}. Since ng(T) = m on the event
{r < T}, it follows from (2.3.4) that

U (X7a(T), Yiay

(1)) > PLY(T).

We finally observe that sz’fz (T') > m by the definition of & and X, and that the last
inequality implies that P;;*(T) < M. By the martingale property of the process
P;;X, we conclude that it is valued in the interval [m, M] = L. Hence, y > w(t, z,p).

O

Let us observe that the problem (2.3.2) can be alternatively formulated as

0(t, z,p) = inf {y > —kK: Yt”xy(T) > g (X” (T)) for some v = (v,a, ) € Z;{}

where § is the generalized inverse of V at 0
g(2) = inf{y : ‘7(§:,y) > 0}.

Remark 2.3.3. 1. In the case where the infimum in the definition of o(¢, z, p)

is achieved and there exists a control v € U satisfying

with y = 0(¢, x, p), the above argument shows that the corresponding process

PoX coincides with the conditional expectation of ¥ (X{,(T), Y, ,(T)), i.e.

PX(s) =B [0 (X[,(T), Y, (T))|Gs]  forselt,T].

2. Equation (2.3.3) shows that one can restrict to controls o and x such that
P;;X takes values in L. This is rather natural since the latter should be
interpreted as a conditional expectation of ¥, which convex hull is L, and this
corresponds to the natural domain [m, M| of the variable p. Notice also that
the value function o(-,p) is constant for p < m, and equal oo for p > M. In

both cases, the natural domain of ¢ is therefore [0, 7] x X x [m, M].
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3. Moreover, in the special case where m and/or M are finite, the fact that P
takes values in L allows us to consider that the jump coefficient x is bounded.
This will be useful in the proofs of Section 2.3.5. Indeed we may write in that
particular case

m— Pt(,)];X(S_) <Xxs<M-— Pto,ééx(s_)v
with P)%(s—) € [m, M].

Example 2.3.1. Given a non-negative function h, let us consider the case where

U(z,y) = % A 1, with the convention § = 4oo for y € Ry. For x = 0, we then

obtain

Yr. (T
0(t,z,p) = inf {y eR,:E [ (t,ac,y( )
g

—>=2 " Al| >pforsomeveld;,
X{,(T)) ] }

which is the problem of the expected success ratio studied in Follmer and Leukert
|[FL99]. Using (2.3.2), we see that the above problem reduces to

0(t,z,p) = inf {y cCR :V (Xfxp(T),foy(T)> > 0 for some U = (v, a, x) € Z;I} ,
where V(z,p,y) = ¥(z,y) — p.

Example 2.3.2. One can similarly recover the problem of stochastic target under
controlled probability of success studied in Bouchard, Elie and Touzi [BET09]| and
Follmer and Leukert [FL99):

0(t,z,p) := inf {y eER;:P [\i/ (X (1), YY) = O] > p for some v € L{} ;

for some measurable map ¥ from R into R such that, for every fixed z € R?, the
function y — W(z,y) is non-decreasing and right-continuous. The reduction of the
problem (2.3.2) leads to

o(t, x,p) ::inf{yeR+ . V(Xu

t,x,p(T)7 Y,

7
t,x,y

) ZOforsomeﬁEa},
where V(,p,9) = 113,50} — P

2.3.2 PDE characterization in the domain

In view of Proposition 2.3.2, the PDE characterization of Theorem 2.2.5 can be
extended to the problem (2.3.1). Let us first introduce notations associated to the

augmented system. For 4 = (u, o, 7) € U and & = (z,p) € X, set

,LL)((.’IJ,U)

A, 1) = 5(3.a) = [ X&YW
M(a)‘ —/ETF(G)A(CZ(B) ’ (7) ( OéT )7
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We also introduce the following operators

| =

Ll (t, ) = Oy (£, 2) + fi (&,4) - Do (t, &) +

G (t,7) 1= By (@, (,2) ,u(e),e) — o (3

Tr [&&T (&,4) D%p (t,;%)}

B ale),e)) + e (k7).

_l_[\D

Recalling point 3 of Remark 2.3.3, we also introduce, for (x,k,q,A) € R x R x
R x S 4 = (u,o, ) € U, e >0 and 5 € [—1,1],

N¥(&,y,q) = oy (z,y,u) — 6(2,4) "¢ = N"(z,y,q:) — gpev, forq:(qx,qp)eRde,
A% (t,2,y,0) = By (@.y.u,0) = ¥ (LE+ B (@ 0le)€) ) +y

o aeU st Nﬁ(:;;,y,q))gs p+(e) € [m, M]
NE,n(t7$7y7Q7w) = PN (235)
and A" (t,2,y,v) >n for \-ae. ec€ F
H.,(6,0)= sup  A"O) (2.3.6)
ﬁeNa,W(t7i7y7Q7¢)
where
O = (t,&,y,k,q, A)
d /A TR 1 A AT /o~
A (@) = —k+ py(z,y,u) — p(z,0) - q— §Tr [aa (Z,a) A}
and

) (r,s)eRdezﬂﬁEﬁs.t.r:Z\Afa(ic\,y,q)
N(t, 2, y,q,¢) := L ;
and s < A“%(t,Z,y,v¢) for \-ae. e€ E

§ = dist (0, NC) _ dist (o, N) .

The operators H*, H,6* and 6, are constructed from I:IE,?7 and gexactly as H*, H,, 0"
and 0, are defined from H,, and ¢. Finally, we define the function

g (2) ::inf{yZ—/{:f/(:ﬁ,y) 20}, z = (x,p) € X x [m, M].

As an almost direct consequence of Theorems 2.2.5 and 2.3.2, we obtain the viscosity
property of ¥ under the following assumptions, which are the analogs of Assumptions
2.2.3 and 2.2.4 for the augmented control system X. Define then as previously for
any p € C122(0, 7] x R? x R;R), @ € U and (t, 2, 21, 22) € [0,T] x R24+3

ﬁ%’z@(t’j7 Z) = ﬁﬁ@(t’j) - ﬂ(i‘,U) 2 HY(‘%’:%U)Z?) (237)

where z =: (21, 20) € R x R and @(t, 2, 2) := o(t, &) — ||
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Assumption 2.3.4. For alle > 0,1 € [~1,1], (to, Zo, Do) € [0, T] xR x [m, M], ¢ €
C12([0,T] x R R) and finite Oy satisfying

sup {,UJY(%?J?U) _ﬁﬂQO(t,i')} S 201
WENe 7 (1,2,y,Dep,p)

for all (t,z) € Be(to,2o) and y € R s.t. |y — p(t,2)| < e,

(2.3.8)

there exists € > 0,1 € [—1,1] and a finite Co such that

s {py(eyu) — L% @t d,2) f <201 +1Cyl
UWEN 1 o (1,2, Do, p) ’
X (1 2.3.9
fO'}n a/ll (t, i’,y,z) E [O,T] >< R2d+4 S.t, (t,:C,Z) E BE (toal'oao) ( )
yeR st |y—o(t, ) <7,

and

14 |oy(z,y,u)| + 5o (&, u
1+ |N*(z,y, Do) | ) ;‘ (@)

(t, z, 2, 22) € Ba’(th Zo, O)

N +
MY(%’,Q,U) _£1§7Z¢(t7i72)} < ( d >
>~ U2

for all (t,z,y,2z) € [0,T] x R4+ ¢ ¢,
yER st ly—o(t, 2,2) <7,
and u € U such that A" (t,2,y,¢) > n A-a.e.
(2.3.10)

Assumption 2.3.5. (Continuity of ./\Afom(t,x,p, y,q,f)) Let B be a subset of
[0,T] x X x [m, M] x Rx R feC0([0,T] x X x [m, M]) and n > 0 such that
J\A/'ogn(-,f) # 0 on B. Then, for every € > 0, (to, %o, Pos Yo, do) EIM(B) and 1, €
/%7277 (tos Toy Pos Yos Qos f), there exists an open neighborhood B’ of (to, To, Dos Yo, o)
and a locally Lipschitz map v defined on B’ such that |0 (to, o, Dos Yo, Qo) — to| < €,
and U(t,x,p,y,q) € /\A/’om(t,w,y,p, q,f) on B'.

As in Section 2.2.2, we shall need to define the definition of viscosity solution we

shall use in this framework.

Definition 2.3.6. We say that a l.s.c. (resp. wu.s.c.) function U (resp. V) is a
viscosity supersolution of H*U > 0 (resp. subsolution of H,V < 0) on [0,T)xR*xR
if for every smooth function ¢ € CY2([0,T] x RY x R,R) of linear growth and
(to, Zoy Po) € [0, T) x R x R such that ming 7xrdxr (U —9) = (U—9¢)(to, To, po) =0
(resp. maxp ) xraxr(V — ) = (V = ¢)(to, To,po) = 0), we have

H*Sp(tmwmpo) >0 (resp. H*(P(tmxmpo) < 0)~

Corollary 2.3.7. Under Assumption 2.3.4, the function 4 is a viscosity superso-
lution of
H*0, > on [0,T) x X. (2.3.11)
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Under Assumption 2.3.5, 0* is a viscosity subsolution of
min {@* + K, Hv} <0 on[0,T) x X. (2.3.12)

The supersolution property is a direct consequence of Theorem 2.2.5, the repre-
sentation (2.3.2) and point 3 of Remark 2.3.3. The subsolution property is obtained

similarly.

Example 2.3.3. Consider here the context of both Examples 2.3.1 and 2.3.2, with
the dynamics of Example 2.2.1. If the conditions of Corollary 2.3.7 are satisfied,
direct computations lead that both 0, and 0, are viscosity supersolution on [0,7) x X
of
L
0 S _atQD - 50' Dxx(p

1
5 \04|2 Dypp + Tr [oaD ] (2.3.13)
— 1nf 9
TEHE | —a (Dpe) o7 — Dy | m(e)(de)

whenever Dp,p > 0, and with

7 €3 st., for l-ae. e€ E, p+7 € [0,1]
II(p) :=
and (DZESO + O-_IDPQOO[) ﬂ(a 6) - ('a C+ ﬂ(a 6)5 -+ 7'['(6)) + >0
Notice in this particular context that the process X is not influenced by the control
v. Hence, Assumption 2.3.4 allows to control the possible unboundedness of uy in
its u-parameter, as well as the possible unboundedness of 66 in its a-parameter.
Indeed, recall from point 3. of Remark 2.3.3 that we may reduce to x bounded.

Assumption 2.3.4 essentially states that 56 (a) is controlled in terms of 14 |a|. We

refer to Example 2.3.4 for the argument to handle the possible unboundedness of x.

Example 2.3.4. As we have seen in Example 2.3.3, the fact that we may restrict
to processes x taking bounded values is crucial for the Assumption 2.3.4 to hold.
Consider for sake of simplicity the dynamics of Example 2.2.1 with d = 1 and the

problem
y(t,x,p) := inf {y >—k:dveldst. E [,0 (}Qi'x’y(T) —g (Xt,x(T)))} > p}

with ¢ : R — R a continuous function of polynomial growth, and p : R — R (one
may think of p as an utility function or up to the sign, a loss function) such that
p(R) = R. The latter condition entails that the argument allowing to reduce to
controls x taking bounded values does not hold, and we hence have to characterize

more precisely the controls (u,a,m) € U x R x L3 such that

uB(z,e) —p(t,x + B(x,e),p+m(e)) + p(t,x) >n for \-aece€ E
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for some n € [—1,1] and ¢ a smooth function. This is done by a suitable use
of Assertion (2.3.8). Let the condition of Assumption 2.3.4 hold true for given
£>0,n€[~1,1], (to, o, p0) € [0,T] x R x R, p € CH22([0, T] x R? x R) and finite
C (assume without loss of generality that C; > 0. Werecall for (¢, x,p, Y, ¢z, ¢p, ©) €
[0, 7] x R2+3 x 01:22([0,T] x R? x R) the particular form of N, in that case

(u,a,7) € R* x L3 s.t. |uo(x) — qzo(x) — gpa| < ¢

~

New(t, 2,0, 9, 4z, G, ) := § uB(z,e) — p(t,x+ B(z,e),p+m(e) + o(t,z) >1n

for M-a.e. ec E

Hence, by possibly diminishing € > 0, we have

uila) = 0o = pn(@) + 3o | w(eN(de)

1

1
_5 :m(pa(x)Q — §8pp90az/.7u - O_(x)a:["uapmgo

(ta x7p) S Cl

|Gtapo(z)] <€
for all (t7$7p) € Ba(tm x07p0)7 Ct,z,p7Qp € R s.t. dp € Be(apcp(tm xovpo))
gp| > €/2

up(z,e) — otz + Bz, e),p+m(e) + ¢(t,z) >,
and (u,m) € R x L3 s.t.
for d-a.e. e€ E,

where
o(z)
Qg = (u — Ozip(t, z,p) — Ct,x,p) .
dp
Hence we have
1 O'(.T,')Q 2
Opp | m(e)A(de) + Atpp + Biapu — Eﬁppghou (t,z,p) < C1, (2.3.14)
E p
with
1 2
—8tg0 — 830@#(37) - 583250900-(3:)
Atacp:: 9 2 (t7$7p)
T, olx o(x
+((1)apx90(()0x + Ctﬂ?,p) - iIQ)aprO(ax@ + th’b‘al?)
p D

o(x)? o(x)?
Biap = (,u,(x) - (q ) Opzp + 8pp90(qQ)(ax80 + Ct,x,p)> (t,z,p),
p D
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and finally, since o > 0, and u, o are continuous, there is finite C’ > 0 such that

+
<8p(t, x,p)go/ W(@)A(d@)) <C'(1+ u2) (2.3.15)
E
Ctapo (@) < €
for all (t,l‘,p) € BE(th $0,po), (t,x,paqp € R s.t. qp € Be(ap@(toa xmpo))

|gp| > €/2
and (u,7) € R x L3 s.t. uf(z) — o(t,z + B(x),p+ 7) + p(t,z) > n.

Observe now that (2.3.14) implies that, after possibly changing € > 0, we have

1 2
<apg0/ ())\(de)+Atxp+thp 5 pp (2) tl’p < 21,
E p
|<tx,po- | <e
6 B t ) b
for all (¢,2,p) € Be(tosTos Do)y Ctapsdpst € R 8.t dp (Opp(to, Tos o))
|gp| > €/2
Il <e

Q) € R x 12 s uf(x,e) —p(t,x + B(x,e),p+m(e)) + p(t,z) >n,
and (u,7) € K X L4 s.t.
for A-a.e. e€ E,

with
1
~0up — (Dutp + )1a(s) — Oraip ()’
Aév%p = ol 2 olr 2 (tvva)
+L6px@(¢x + Ctap) — (72)8271190(896@ + Ctap)

4 p

. o\r 2 o\r 2
B, = (mw)(l . (q S ot Oy T
P P

(6190 + Ct,:r,p)> (ta l‘,p),

which entails that (2.3.9) holds true.
We now turn to the verification of Assertion (2.3.9), and will consider two cases.
Case 1: 0pp(to, o, po) # 0. Hence, in view of (2.3.15) and since (2.3.9) holds,
after possibly changing € > 0, we have

N +
priog) - £ et aa)] (14 fuf? + |aP)

1+ [N%(z,y, Dy)| T Juo(x) = Opp(t,z,p)o(x) — adpp(t, z,p)|
(t> f, 21, 22) S Ba’(th i‘o’ O)

for all (t,2,y,2) € [0,T] x R¥*4 s t.
yeRst. ly—o@t,z,2)] <€,
and u € U such that A" (¢, Z,y,p) > n \-a.e.,
(2.3.16)
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where ¢ is defined from ¢ as in Assumption 2.3.4, C’ is a finite constant, and with
Opp # 0 on B.(t,, o, po). If the set U happens to be unbounded, this reasoning is
not sufficient to ensure that Assertion (2.3.9) holds, when it is trivial otherwise.

Case 2: Consider now that

Ipp(to, To,po) = 0. (2.3.17)

Recalling the conditions of Assumption 2.3.4, after possibly changing € > 0,7 €
[—1,1]:

1 1
{_at@ — () 0pp — ia(x)Zﬁmgp - U(x)aaxp@ - 502 (8171390 - 5)} (to; To,po) < 2C

for all (a,7) € R x Ay(a;to, o, po), With

(w(-) n aip(jg‘)) B(z)

—p (t,x+ B(z,e),p+m(e)) + ()

Ay(ast,z,p) :={ 7€ L3 s.t. (t,z,p) > n

Recall from (2.3.17) that A,(a;ts, o, po) does not depend on a € R so that, for
m € Ay(a;to, To, Do) fixed, we have for all a € R

1 1
{_8tSD — () Opp — 50(%)2&“@ - U(@aawp@ - 5‘12 (app@ - 5)} (to, o, po) < 2C1,

and there is then a finite positive constant C' such that
1
—§a2 (Oppp(to, Toypo) —€) < C (14 al).

Taking a large enough gives then 0y (%o, o, Po)p > €, and hence, by smoothness of
¢, we have dppp > 0 on some neighborhood B of (t,, o, o). We finally have

N . +
,UY(x7yvu) - £1§7Z@(t7x7 Z) < , (1 + ’u‘Q - app(p(t7mvp) |CL|2>
1+ |Nu(x7y7 DSO)| - ‘uo-(x) - 8$§0(t7 l‘,p)O’(l‘) - aapgo(t,:z:,p)\
(t7§;731732) € BE’(toa-fff'mO)

for all (t,2,y,2) € [0,T] x R?+4 gt
yeRst. ly—@(t,z,2)] <€,
and u € U such that A" (¢,2,y, ) > n Ma.e.,
(2.3.18)
for some &', and again, Assertion (2.3.9) will be obvious in the case where U is
bounded.

2.3.3 Boundary conditions and state constraint

In our general context, the natural domain of P is [m, M]. In the case where m or

M are finite, we need to specify the boundary conditions at the end points m and
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M. By definition of the stochastic target problem with controlled expected loss, we

have
(-, M) =v and 0(-,m) = —k, (2.3.19)
where
v(t,z) :=inf{y > —k: @ (XZI(T),Ytl,’m’y(T)) > 0 for some v €U},
with

O(x,y) == VY(z,y) — M. (2.3.20)
Also, since W is non-decreasing in y, we know that ¥ is non-decreasing in p. Hence,

—I€<@*(.,m)§@*(-,p)§f1*(-,M)<v* for pE [m)M]a

(2.3.21)
0*(,p) =—k for p<m and 0°(,p)=oc0 for p> M,

and one can naturally expect that 0.(-,m) = —k and 0*(-, M) = v*. However,

the function © may have discontinuities at p = m or p = M and, in general, the
boundary conditions have to be stated in a weak form, see (2.3.27) and (2.3.61)
below. This corresponds to the classical state-space constraint problems, see
[Bar94, FS06, Son86a, Son86b| and the references therein.

To obtain a characterization of © on these boundaries, we shall appeal to the
following additional assumptions. Assumptions 2.3.10 and 2.3.11 already appeared
in Bouchard, Elie and Touzi [BET09]. Assumptions 2.3.8, 2.3.9 and 2.3.12 will be
used to handled the non-local operator. Also notice that Assumption 2.3.11 linked
with Assumption 2.3.4.

Assumption 2.3.8. The following hold.

(H1) For some integer v > 1,0*(-,m)" satisfies the growth condition

t
sup M < 0. (2.3.22)
0,7)xrd 1+ ||

(H2) There is a function A on R? satisfying
(H2-i) For all x € X and y > A(z), there exists u € U such that
By (z,y,u(e),e) — A (z+ Bx (x,u(e),e)) + A(x) >0 for A-a.e. e € E.

(H2-ii) A(x)/|z|" — 400 as |x| — oo.
(H2-iii) A < —k on X.
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Assumption 2.3.9. The set E is finite and A(e) > 0 for all e € E.

Assumption 2.3.10. For all (z,y,q) € X x (—k,00) x R%, we have
{ueU:N"(z,y,q) =0} & U.

We need for the next assumption to introduce the following set, for (z,y,q) €
R? x R x R%:

Ne(z,y,q) :={ueU:|N“(z,y,q) <e}. (2.3.23)

Assumption 2.3.11. For all compact subset D of R4 x R x R x R? x S¢, there
exists C' > 0 such that

1
sup {uy(w,y,u) —k —px(z,u)-q— 5 I [axa}(x,U)A] } <C(1+¢?)
ueN: (7,y,9)

for all e > 0 and (x,y,k,q,A) € D.

Assumption 2.3.12. The maps Bx, By are continuous on X X E and X xR x E
uniformly in uw € U. Moreover, Bx, By and ox satisfy the following condition

esssup {8x (-, ule), )] + By (-, ule), )| + |ox (- w)|} is locally bounded
uelU,ecE

Since the main concern of this chapter is the analysis of the stochastic target
problem under controlled loss with jumps, we do not establish a comparison result
of viscosity supersolutions of (2.2.10)-(2.2.13) and subsolutions of (2.2.11)-(2.2.14).
Nonetheless, as in Bouchard, Elie and Touzi [BET09]|, we need such a comparison

result in order to establish the boundary conditions of this section.

Assumption 2.3.13. There is a class of functions C containing all [—k, +00) valued

functions dominated by v* such that, for every

o v € C, lower semi-continuous viscosity supersolution of (2.2.10)-(2.2.13) on

[0,7] x X

e vy € C, upper semi-continuous viscosity subsolution of (2.2.11)-(2.2.14) on
0,7] x X

we have v1 > v9.

The main results of this section shows that the natural boundary conditions
(2.3.19) indeed holds true, whenever the comparison principle of Assumption 2.3.13

holds and under the above additional conditions.

Theorem 2.3.14. Assume that Assumptions 2.8.5, 2.8.9 and 2.58.12 hold true.
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(i) Assume that m > —oo. Under Assumptions 2.3.8, and 2.3.10, we have
0*(-;m) = —k on [0,T) x X and 0.(-,m) = —k on [0,T] x X.

(ii) Assume that M < oo. Under Assumptions 2.3.11 and 2.3.4, v*(-,M) is a
viscosity supersolution of (2.2.10)-(2.2.13) on [0,T] x X. In particular, if
i addition the comparison principle of Assumption 2.8.13 is satisfied, then
0 (-, M) =0,(-, M) =ve =v" on [0,T] x X.

The proof is reported in Section 2.3.5.

Remark 2.3.15. This subsection is similar to the one in Bouchard, Elie and Touzi
[BET09], where the authors studied the boundary conditions at p = 0 and p = 1
in the case of target reachability under controlled probability, i.e. ¥ is of the form
U(x,y) = 1{y>¢()}- In this paper, the natural domain of P is [0, 1], and the authors
studied the behavior of the value function ¥ when p — 0 and p — 1.

Remark 2.3.16. Consider the framework of Example 2.3.4. If the set U happens
to be unbounded, then Assumption 2.3.12 is clearly not satisfied. Recalling the
discussion in Example 2.3.4, Assumption 2.3.4 is satisfied if U is bounded. However,
if we are interested in the case where the set U is unbounded, we might consider

the following reasoning.

We introduce the set U™ consisting in controls of U taking their values in U",
where U™ is the subset of u € U satisfying ||u|| < n, as well as the corresponding

value function
y"(t,x,p) := inf {y >—k: dJvelU” st E [p (Ytl”w,y(T) —g (Xt,I(T)))] > p} i

Considering the problem defined in terms of y™ instead of y, the previous arguments
entails that Assumption 2.3.4 is satisfied, so that, by Corollary 2.3.7, y™ is a viscosity
supersolution of

H*y" > on [0,T) x X, (2.3.24)

where ﬁ;; is the operator defined in terms of controls u € U™. The sequence of

functions (y")n>1 is clearly decreasing, and obviously
y'2y.

Defining y*° := inf,,>1 y", we clearly have y3° > y., where y3° and y, denote the
lower semi-continuous envelopes of y* and y. On the other hand, standard estimates

imply that, for any v € U and

V' = vl <ns
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we have

n

E [P (}/tl,/x,y(T) ) (Xt,x(T)))] — K [p (}/tl,/x,y(T) ) (Xt,x (T)))] .

n—oo

For any n > 0 and y > y(¢, z, p+2n), we thus have y > y" (¢, z, p) for n large enough,
so that y,. > y2°. If the operator H corresponding to the controls taking values in
U™ happens to have enough regularity, we shall recover from [Bar94, Lemma 4.2]

that y°° is a viscosity supersolution of H*y?® > 0, where

vy (tx,p) = liminf  yI(¢,2,p").
(t'2"p" )= (t,z.p)
By construction, we have y> < y2°, and hence y> < y. Hence, if we provide an
explicit lower bound for y*° (see e.g. Bouchard, Elie and Touzi [BET09, Section 4]),

we shall have the same lower bound for y.

2.3.4 On the Terminal Condition

The boundary condition at T" for 0, and 0* can be easily derived from the charac-

terization of Theorem 2.2.9.

Corollary 2.3.17. Under Assumption 2.3.4, the function & € X 0:(T, %) is a

viscosity supersolution of
min {(@*(T, )= 3 L freg oo} O 0T, -)} >0 on X.

If in addition, Assumption 2.3.5 holds, then & € X 0*(T, z) is a viscosity subso-

lution of

min {@*(T, ) = §*, 6,05 (T, -)} <0 on X.

The condition FI*@(T,-) < oo may not be satisfied because the control (a, x)
appearing in the definition of H may not be bounded. It follows that the above

boundary condition may be useless in most examples.

The rest of this section is devoted to the discussion of conditions under which a

precise boundary condition can be specified.

Proposition 2.3.18. (i) Assume that for all sequence (tn,:z:n,yn,pn,yn)n21 of
[0,T) x X x Ry x [m, M] xU such that (tn, Tp,Yn,pn) — (T, z,y,p) € {T} X
X xRy x[m, M], there exists a sequence of P-absolutely continuous probability

measure (Q"),~,, defined by d%: =: H" for some sequence of non-negative
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random variable (H"), -, such that

lim sup E¢" [YV" ] <vy,

N0 tn,Tn,Yn

limsupE [|H"D} @ g (X1, (T),pn) — Dyf @ §(zn,pn)|] =0 (2.3.25)

tn,Tn
n—oo

and liminfE [H” © g (XV" (T)vpn)] > ©@g(x,p),

n—o00 tn,Tn
where D;r stands for the right derivative in p. Then, v.(T,x,p) > ©¢(x,p)
for all (x,p) € X x [0,1].

(ii) Let the conditions (ii) of Theorem 2.3.14 hold true and assume that 0* is
convez in its p-variable and that v*(T,x) < g(x). Then v*(T,z,p) < ©§(z,p)
for all (x,p) € X x [m, M].

Proof. (i) Given a sequence (tn,Zn,pn),>; in [0,7) x X x (m, M) such that
(tns Tnypn) — (T,x,p) and 0 (tn, Tn,pn) — 0«(T,z,p) as n — oo, we can find
Up = (Un, Qny Xn) € U such that

~ D
4 (thyxn:pn

(L), Y8, (1) 2 0.

) T tn,Tn,Yn

where y,, 1= 9(tn, Tn,pn) +n "1 = 0.(T, z,p), recall (2.3.2). This implies that
Yo (1) 2 (X000, (1))
and, by the definition of the convex hull of g,
HY (1) 2 H e g (X, , (7).

Using the convexity of @¢ then leads to

Hn}/tl::’xn,yn (T)
> H"© g (X1, (T),pn) + H'D © g (X7, (T),pn) (PEX"(T) — pn)
= H" ©§ (X{",,(T).pn) + Dy © 3§ (wn,pa) P (T)

— H"paDy © § (X{7,,,(T),pn)

+ PLX(T) [HDf @ g (X{7,, (T),pn) — Dy © § (wn, pn)]
> H"© § (X", (T),pn) + Dy © § (20, pn) PL(T)

— H"paD}f © § (X", (T),pn)

~M|H"D}f ©§(Xy",,(T),pa) — Dy © §(2n, pn)

tnvxn

)

where the last inequality follows from the fact that we can always assume that

PmXt takes values in [m, M], see (2.3.3). Taking the expectation under P and
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using the fact that P ")X" is a P-martingale, we obtain

EQn |:}/;l:::$n7yn (T):|
>E[H"©§(X}",,(T),pa) + pn (D © § (20, pa) — H"DJ © g (X}7,. (T),pn))
~M|H"D; ©§ (X}, (T),pn) = Dy @ § (a,pn)[]

tn,Tn

Passing to the limit, and using (2.3.25) leads to 0.(T,z,p) > ©¢(x,p).

(i) Using (2.3.21) and the convexity of 0* together with the definition of the convex
hull of a function lead to the required result. O

Example 2.3.5. In the context of Example 2.3.1, we may easily notice that the

generalized inverse of V at 0,

g(x7p) := inf {y > —K: V(:r,p, y) > 0} 3

satisfies
g(w,p) = pg(x)

and is convex in p. Moreover, for the dynamics of Example 2.2.1, the convexity of
¥ in its p-variable is quite obvious, since V", . (T) = uY, ,(T) for any p € [0,1],
and the expectation operator is linear.
We have already shown in Section 2.3.2 that ¥, is a supersolution of (2.3.13). we
deduce that v, satisfies the boundary conditions
04(+,1) = v and 04(-,0) =0 on [0,7) x X
(2.3.26)
and 0, (T, z,p) > pg(z) on X x [0, 1].

Example 2.3.6. In the context of Example 2.3.2, we define the function
glw,p) i=inf {y > —x: V(z,p,) > 0}
and let 1; be the generalized inverse of U at 0, i.e.

@ZNJ(:L‘) := inf {y > —K: ‘il(x,y) > O} .

Then, g(z,p) = ¥(7)1ypsoy for z € X and p € [0,1]. The convexity of ¢ is far
from being obvious. However, one may notice that the convex hull of g in p is
© (§) (x,p) = pg(x), with g = ¢p~!, and that the condition of Corollary 2.3.7 and (i)
of Proposition 2.3.18 are satisfied. It follows that, as for the expected success ratio
problem of Example 2.3.5 above, 7, is a viscosity supersolution on [0,7] x X x [0, 1]
of (2.3.13) - (2.3.26).
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Remark 2.3.19. In Bouchard, Elie and Touzi [BET09], the authors considered the
case §(z,p) = g(x)1p>oy, so that ©j(z,p) = pg(x), and therefore Dp+ ® g(x,p) =
g(x). Then, Assumption 2.3.25, in the case of Bouchard, Elie and Touzi [BET09],
should take the form:

limsupE [|H"g (X", (T)) — g(z)|] =0.

tn,Tn
n—oo

The Assumption 2.3.25 is then almost the counterpart of the one made in their
proposition 3.2. The difference comes from a slight error in their proof 2 where they

use the fact that P")X" is a Q-martingale while it is only a P-martingale, a priori.

2.3.5 Derivation of the boundary conditions for the stochastic tar-
get with controlled expected loss

We now prove Theorem 2.3.14. These boundary conditions need only to be specified

in the case where m and/or M are finite.

2.3.5.1 The endpoint p = M, finite

In order to show that v.(-, M) is a viscosity supersolution of (2.2.10)-(2.2.13), it

suffices to show that 0,(-, M) is a viscosity supersolution on [0,7") x X of
max {04(-, M) — vy, H 0. (-, M)} > 0, (2.3.27)
and that 0,(T, -, M) is a viscosity supersolution on X of
0u(Ty -, M) — vy,
max >0, (2.3.28)
min { (0x(T, -, M) = j) Ligo, (T, M)<o0}s 0 0x(T, -, M) }
where j is the generalized inverse of ® at 0:

j(x):=inf{y > —k : ®(x,y) > 0},

recall (2.3.20).
To convince ourself, let us show for instance that (2.3.27) implies (2.2.10). Let
(to, o) be a local minimizer of 0,(-, M) — ¢ for some smooth function ¢ of linear

growth. Then

o cither 0,(to, o, M) < v4(to,x,) and then (2.2.10) holds for ¢ at (t,, x,)

2The author would like to thank Bruno Bouchard, Romuald Elie and Nizar Touzi for pointing

out this issue and for their explanations on how to fix it in their particular context.
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o or Uy(to, To, M) = vi(to, o) S0 that (to,x,) is a local minimizer of v, — ¢, and
(2.2.10) holds for ¢ at (t,,x,) by the viscosity property of v, see Theorem

2.2.5.
step 1: We first show that for any smooth function ¢ of linear growth on [0,7] x

X x [m, M] and (t,,x,) € [0,T) x X such that
trict i Uy — = (04 — to, To, M) =0, 2.3.29
(srict) | min (6= 9) = (6. = ¢) (t00: M) (2329
we have
max {gp(to,wo,M) - U*(to,xo),ﬁ*go(to,mo,M)} > 0.
If not, we can find 7,e,¢ > 0 such that
max {QOL - U*(ta Jj)u MY(QL’7 Y, U) - éﬁ@b(t) xvp)) } S _277
for all @ := (u,a,m) € /\77_77 (t,z,y, Dy, (t,x,p),,)
(2.3.30)

sit. (t,z,p) € Be(to,xo) X [M —e, M] and |y —¢.(t, z,p)| < g,

with ¢, (t,z,p) := o(t,z,p) — f.(x) — g.(p), f, defined as in (2.2.18), and
9, [Tlp—M|

g.:p € [m, M| — —
T Jo

recall (2.2.19), and observe that the same results hold for g,. We now define as

sin? udullg,—ar<1y + Lgp—mp>13

previously for all z € X x [m, M] x R
@.(t, 2, 2) == p,(t, &) — |2]°.

By Assumption 2.3.4, there exists a finite constant C' > 0 such that, after possibly

changing €, > 0, we have
MY(I', Y, U) - [’aj(’Z@L(tv :ilv Z) < -n

for all (t,2,z,y) € [0,T) x (X x [m, M])* x R? s.t. n
|y - @L(tvi'vz)’ S 17
for all u € ./\fgj_77 (t,z,y, Do, (t,x),p,)
and
,uy(:x,y,u) - ‘CA&A @L(t7£> Z)]Jr d .
Xz <C<1+Iay(x,y,u)HZ\&“'(:ﬁ,u)o
i=1

>3

1+ |N*(z,y, Do,
for all (¢,2,2) € B:(to,20,0) and y € Rs.t. |y — ¢, (8,2, 2)| <

and for all uw € U s.t. A" (t,z,y,0,) > —n M-a.e.
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Let (tn, n, pn)n be a sequence in [0,7) x X x (m, M) which converges to (t,, 2o, M)
and such that 9(t,,, n, Pn) — V«(to, To, M). Set ypn 1= (tn, Tn, pn)+n "' and observe
that

Yo = Yn — Pu(tn, Tns Pn) — 0.

For each n > 1, we have y, > 0(tp, Zn,pn)- Then, by (GDPjl), there exists some
"= (v, a", x™) € U such that

Y*(0) = 0x (On, X™(0n), P"(0n)) = @0 (On, X" (0n), P"(0), Z" (6n))
where

00 :={s>t,:(s,X"(s),P"(s),Z"(s)) € D}

6, == {s >ty [Y(s) — o (s, X™(s), P"(s))| = Z} AO°

3

together with

(X", P"Y", Z") = (Xt’f,zn, P Y

l/n
tn,pn tnymn’yn7Ztnafn> )

du

s / i (X”(u), ag)
tn \ y (

tn,En (s) = N
X (u), Y™ (u), V”(u))
and

Vo(to, 20,0) = ({to + €} X Be(20,0)) U ([tos to + &) X OB (w0, 0))
D = (Ve(to, 20,0) x [M — &, M]) U (B (to, z0) % [M — &, M])° x B.(0).

It follows from (2.3.30) and (2.3.29), recall (2.2.20), that
¢:= 1%f(v —@,) > 0.
Using the definition of 8,, and ¢ > 0, this implies that

Y™ (0,) — @, (0n, X" (0n), P"(0r),Z"(0,)) > C A

>3

By arguing as in Section 2.2.3.1, this leads to a contradiction.

step 2: We now show (2.3.27), i.e. for any smooth function ¢ on [0,7] x X and
(to, o) € [0,T) x X such that

(strict) [O,IJI“l)iEX (0x(-, M) — ) = (0x(+, M) — @) (to, o) = 0,

we have
max {p(to, o) — Vi(to, o), H @(to, o)} > 0. (2.3.31)
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a. The first step is similar as in Bouchard, Elie and Touzi [BET09], up to modifi-

cations due the need for linear growth test function in x. For every k, we introduce

the smooth function

onlt,,p) = p(t.2) — (F(2) + (£ = to)? + Ue(p) )

where f is defined as in (2.2.18) with = 1, and for some p > 0,

M 2k M
Vi (p) = _Pk/ ok(r+ M) _ 62kM+1dr’ k> 0.
p

Observe that

Yr(p) >0 forall k>0, p€lm,M],

e2kM pk‘

1 (o) —
—2pk < i (p) _pkek(erM) _ e2kM+1 = C2(e—1)

for k large enough,
ek(p+3M)

" — A2
(p) = —pk (H) — e2kM+1)2 <0 forall k>0,

(W (pr))?

=p if (p), is a sequence in [m, M]
koo | ()] F

s.t. lim k(M —pg) =0.
k—ro0

(2.3.32)

(2.3.33)

(2.3.34)

(2.3.35)

Let (tx,Tk,px) be a minimizer of 9. — ¢x on [0,7] x BX(z,) x [m, M], where
BX(x,) := Bi(z,) N X and Bj(x,) is the open unit ball centered at z,. Observe

that, by definition of (tx, zx, pr) and (¢, o),

(

= (0x — k) (to, To, M)
(
(

> (0x — @k) (trs T, D)
= (0 0) — @) (ths ) + (f(2r) + (te — to)® + Vr(pk))
> (’f)*(.’pk) — gp) (tk, a:k) + (f(wk) + (tk — t0)2 + Pk (M —Pk)> )

2(e—1)

where the last inequality follows from (2.3.33), for k large enough, and the fact that

Yrp(M) = 0. Since 0, > —k by construction and ¢ is bounded, this implies that the

sequence (ty, Tk, pr)r>1 is bounded, and therefore converges to some (4, 4, px) up

to a subsequence. Clearly, p. = M, since otherwise we would have k(M — py) — co.
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By definition of (¢,,x,), this implies that
(0 (-, M) — @) (Lo, To)
> liminf (0« — @) (te, T, Pr)
k—o0

> (00, M) — @) (brr22) + (f(w*) (et it 2P pk>)

> (6*(7 M) - 4,0) (th on) + <f(x*) + (t* — t0)2 + hkrggolf Q(prl)(M - pk)> .

This shows that, after possibly passing to a subsequence,
(tk’axkapk) - (tO,IEO,M), k(M_pk) — O’
(2.3.36)
and U4 (tg, Tk, pr) — Us(to, To, M).
b. We now go on with the arguments of Bouchard, Elie and Touzi [BET09], up to

a non trivial adaptation required by the non-local parts of the operator. In order to

prove (2.3.27), we assume
Vs (to, Toy M) — 04 (to, xo) < 0 (2.3.37)

and we intend to prove that
H*p (to, xo) > 0. (2.3.38)

By (2.3.36) and the lower semicontinuity of 0, it follows from (2.3.37) that the se-
quence (tg, :):k,pk)kzl of minimizers of the difference v, — ¢y, satisfies vy, (tx, Tk, pr) —
vx (tg, 1) < 0, after possibly passing to a subsequence. By Corollary 2.3.7 together
with the result of step 1, Remark 2.2.10, Assumptions 2.3.12 and 2.3.4, and the fact
©r is of linear growth in z and p, we deduce that

H* (tk, xk, Py Ok Orpr, Do, D2y, 0,) > 0 for every k> 1.
Now observe that, by (2.3.36), and the definition of yy:

(aﬂpkﬂ ngpk, D%x@k) (tka $k7pk) — (atsoa DQ;SO, D;%;p@) (th xo)
k=00 (2.3.39)

(Do, D2po1s Doyors) (ties wies i) = (=5 (k) 0, =¥ (i) ¥V k> 1.

By definition of f[*, we can find sequences (sk)k21, (ig)kzp (yk)kzp (‘Jk’)kzh

(AR)p>1 such that e, > 0,2] = (29, p}) € X x [m,M],yr > =k, qx = (¢}, q;) €

R? x R, Ay is a symmetric matrix of ST, with rows (AF*, A7F) € S x R and
T

(457", 477) e RY xR,

ep — 0, 20— (20, M)

) (2.3.40)
and ‘(ykvqkaAk) - (()DIWD()OIWDQ()O/C) (tk7xk7pk)| < k 17
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where (tk, :fcg) belongs to a compact neighborhood of (t,, x,, M), and

Ha]w—k‘*l (tkv ﬁjga Yk 6t90<t07 xO)? Ak, Ak7 @*) Z _k_l' (2341)
By the definition of ﬁek’_kq, we may find a sequence

(uk, ag, Tk) € /\A/'Ek,fzk—l (tk,f%yk,%,@)
such that

1
01 (tor 70) + py (2 s we) — px (2 we) - af — 5Tr [ox0k (af we) AR’

11 e
> -2kt + 5 v |2 AP+ ox (wg,uk) AP oy — /Eﬂk(e))\(de)q‘z
(2.3.42)

and

By (2, yr, ur(e),€) — 0 (tr, 2 + Bx (27, ue(e), e) ,pp + mr(e)) +y > —2k~"
for M-a.e. e € E.
(2.3.43)
Recalling (2.3.23), we observe that (ug, ax, 7)) € Nek’,gk—l (tk, Tk, Yk» i, Ux ) implies
that u, € Neﬁ\qﬁiak! (x%,yk,q;f). We deduce then from Assumption 2.3.11 and
(2.3.42) that, for some constant C' > 0, (which may change from line to line but
does not depend on k or p),

C (1 + ‘quzkf)

v

1 x

3 v |2 AP+ ox (2D, ug) AP -y — / mp(e)\(de)qy

) E (2.3.44)
5 loul2 AT — O | AT o] - /Eﬂk(e)/\(de)qz

v

where we have used the condition that sup,cy |ox (-, u)| is locally bounded. From
(2.3.33), (2.3.34), (2.3.35), (2.3.36), (2.3.39) and (2.3.40), it follows that

P2
AP — 400, AP =0, ¢f = +oco and ‘(Z]%zj‘ — pas k — oo. (2.3.45)
Recall from (2.3.5) that
e < M — Pk /\—a.e., (2.3.46)

where py € [m, M]. We may hence consider that (7).~ is bounded from above, so
that, by (2.3.44) and the fact that g}, A7” >0

2 p)2
1 gy 2 Lo Ay @
C (Azp + Azp ]ak| > 5 |Olk| - C Azp |Ozk| — CiAgp
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Hence, (2.3.45) leads to

1 A
0 > limsup ((2 - CP) ’ak’2 - C} ;pp} ]aﬂ) :
k

k—o00

Taking p small enough implies that
lag| — 0. (2.3.47)
k—oo

Moreover, since k(M —pg) — 0, see (2.3.36), there exists € | 0 such that k(M —py) <
¢x. Recalling (2.3.46), this implies that 7, < %, so that, by (2.3.33),

ah (me(e))T -0 as k—oo forallec E. (2.3.48)

Recalling the fact that A(F) < oo and that qﬁ > 0, the above inequalities lead to

< /E wk(e)A(de)qu 0. (2.3.49)

|ap|”

Also recall that “- — p, see (2.3.45), which combined with (2.3.44), (2.3.45),
k
(2.3.47) and (2.3.49), implies that

1
¢ (14 o7 ) 2 gl 42 + [ meriaont)
E

or equivalently

2
2 1 a
P E
for some p > 0. Taking p small enough leads to

AP owl < C, [gf[ Jowl® < Co

- (2.3.50)

and C+Cp> </ ﬂk(e))\(de)qi>
E

We then deduce from the right hand side bound of (2.3.33) and (2.3.40) that

02 lim sup < /E wk(e)A(de)>_ .

Combined with (2.3.48), this shows that

/ mr(e)A(de) = 0 and mi(e) = 0 for A-ae. e€ E. (2.3.51)
E
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c. We now return to (2.3.42) and the middle inequality in (2.3.50) to deduce that

1
—0up (to, o) + py (¥R, yks ur) — px (2 ur) - qf — SIr [UXU)T( (2, uk) Aix}

+
> okt 4 o] (2, ug) AT - ( / m(e»(de)qz) ,
E

(2.3.52)
and
up € N,y (20 vk 1) - (2.3.53)
since AP > 0.
Consider now (2.3.43), i.e.
5Y (.1'2, Yk, uk(e)v 6) — Dy (tk7$2 + 5X (-752,’114{(6), 6) ,pg + ﬂ'k(e)) + Yk (2 ; 54)

> —2k~1 for M-ae. ec E,

Using the upper semi-continuity of —v,, the fact that Sy is continuous, (2.3.51),
together with pg — M as k — oo, we obtain

By (7, Y, uk(e), €) — bs (tr, o + Bx (2, unle),e) , M) +yp > -2k~ — 0§
for k large enough and for A-a.e. e € E,

with 9 > 0 such that 95 — 0 as k — oo for all e € E. We now use Assumption
2.3.9 to deduce that there exists ¥ > 0 with ¥4 — 0 as k — oo such that, for all
e € IV and k large enough,

By (x%,yk,uk(e),e)—ﬁ* (tk,azg + Bx (z%uk(e),e) ,M)+yk > 2k~ —0. (2.3.55)

By combining (2.3.52) (2.3.53) and (2.3.55), we finally obtain

Hsk+m,—2k*1—ﬂk (tka 9527 Yk, 6t§0(to, l’o), qlf’v Aixv ﬁ*('7 M))

>t (oF (o) A7)~ ([ mionaont)

and we deduce the required result (2.3.38) by sending & — oo and then p — 0,
and recalling that <\ak\ AP ([ Wk(e)/\(de)qi’)Jr) — 0, that o is locally bounded
uniformly in the control u, and that 0, > ¢.

step 3: It remains to prove (2.3.28). The fact that v, (T, -, M) is a viscosity super-

solution

max {os (T, -, M) — v, (T,-), 66, (T, -, M)} > 0
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is deduced from (2.3.31) of the previous step by using the same arguments as in the
proof of (2.2.2) in Section 2.2.3.2. It remains to show that v, (7T -, M) is a viscosity

supersolution of
max {0y (T, -, M) — v. (T, ), (0 (T, -, M) = ju) Ligreo (1, M)<o0} } = 0

By combining the arguments of step 1 with those of Section 2.2.3.2, we first show
that for any smooth function ¢ on X x [m, M] and x, € X such that

(sriet) _min _(0.(T,") = §) = (ix(T") = @) (a0, M) =0,

we have
max {@(wo, M) = vi(T', o), (&(20, M) — §s(20)) 1{19*@(%%@0}} >0. (2.3.56)
We then consider a smooth function ¢ on X and z, € X such that
(strict) n;én (0x(T, -, M) — @) = (0:(T, -, M) — ) (x,) =0 (2.3.57)

and
p(z0) < (T, 2), (2.3.58)

and we assume that
H*o(T, x,) < 0.

We next follow the construction of step 2 of the modified test functions

ok = p(x) — (f(x) + ¥r(p)), (2.3.59)

where v, is defined in (2.3.32). As in the above step 2, one can prove that the
difference 0,(T, ) — o has a local minimizer Zj = (x, pr) satisfying all estimates
derived in the above step 2 (forgetting about the ¢ variable). In particular, since
H*pp(z1) < C for some constant C' > 0 independent of &, recall (2.3.58), we deduce
from the same estimates than in step 2 that H*ey (i) < 2C for all large k. It
then follows from Corollary 2.3.17, (2.3.56) and (2.3.58) that 0. (T, Zx) > g« (k).
Sending k — o0, this provides v, (T, 2, M) > G«(x,, M), and the proof is completed
by observing that §.(z,, M) = j«(x,), by definition of j. O

2.3.5.2 The endpoint p = m, finite

We organize the proof in four steps. As in the previous section, steps 1, 2 and 3
focus on t < T while step 4 concentrates on t = T. Steps 1 and 4 are similar to

arguments used in Bouchard, Elie and Touzi [BET09]. The main difference comes
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from steps 2 and 3.

step 1: We first show that for any smooth function ¢ on [0,7) x X x [m, M] and
(t1,21) € [0,T) x X such that

(strict) o) Xn)l(ax)im’M} (0" — @) = (0" — @) (t1, 21, m) = 0, (2.3.60)

we have

min {@* + K, }L@} (t1,21,m) < 0. (2.3.61)

The proof is very similar to that of Sections (2.2.3.3) up to the modification explained
in the proof of Corollary 2.3.17, and the fact that we have to handle the state
constraint p = m. For completeness, we report here the entire argument. Assume

to the contrary that
47 := min {f;* + K, ﬁ*@} (t1,z1,m) >0
i.e., for some € > 0, and after possibly changing n > 0,
min {3, (t,2) + w, py (@,9,0) = L7, (1,3) | > 20
for some 4 = (u,a,7) € /\70777 (t,z,y, Do, (t,2),p,)
for all (t,2,y) €[0,T) x X x R
st.  (t,%) € Be (t1,x21) X [mym +e¢], |y — @, (¢,2)| < e,

(2.3.62)

where ¢, (t,2) := ¢ (t,2) + f.(x) + ¢.(p) with ¢ small enough, for f, and g, defined
as in (2.2.18) with z1 and m respectively in place of z,. Then, Assumptions 2.3.5
and 2.3.9 imply that

&, (8, ) + R,

min { pty (2,9, 0 (t,2,y, D@, (t,7))) — LYGEEVDEEDN G 1 5y L >

mig GrtEy DD e s (4 7) (2.3.63)
ec

for (t,&,y) € [0,T] x X x R s.t.
(taj:) € B (tlaxl) X [m’m+5] and |y_¢b (tai')| <

>3

where 7 is a locally Lipschitz map satisfying

I; (ta j) y> D@L (t> i)) € NO,?? (tv jja y7 ngb (t7 i) 9 &L)
(2.3.64)
on B:(t1,z1) X [m,m + €.
Observe that, since (¢1,z1,m) is a strict maximizer in (2.3.60) and by (2.2.20), we
have
—&=—((Ny) = max (0x — @) <0, (2.3.65)
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where
D := ({t1 + €} x Be(w1) x [m,m+¢€]) U ([t1,t1 +€) X (Be(z1) X [m,m +¢))°).
Also, we deduce from (2.3.62) and the fact that o (-,m) = —k by definition, that

0>-n> max (0—¢@)(-,m). (2.3.66)
B (t1,21)

By following the arguments in step 2 of Section 2.2.3.3, we see that (2.3.63),
(2.3.64), (2.3.65) and (2.3.66) lead to a contradiction of (GDP;}2).

step 2: Let ¢ be a smooth function on [0,7] x X and (¢,,2,) € [0,T) x X such that

(strict) JBaX (0% (-,m) — ) = (6% (-,m) — ¢) (to, z,) = 0.

By definition, we have 0*(t,, x,, m) > —k. Let us assume that
0" (to, To,m) + Kk =:4n > 0, (2.3.67)

and work towards a contradiction. Define the function ¢y, as in (2.3.32) with m in

place M:
e2km

P
sz)k(p) = pk: /7:” ek.(7.+m) _ e2km+1 dr? k > 0’

and for f defined as in (2.2.18) for ¢ =1,

erlt 2,p) = p(t,2) + (f@) + (= o) + (D))

Arguing as in step 2 of the preceding section, we see that the difference v* — ¢y has

a local maximizer (tg, zk, pr) on ([0, 7] x X x [m, M]) satisfying
(tkaxlwpk) — (t07x07m)7 k(pk - m) — O and @*(t/kavpk) — @*(tm x07m)7
so that

(0voks Daors D2, 0k) (tis Tk, pk) — (Oup, Datp, D2pp) (to, z0) as k — oo
(ngpk'a D?gp@k: sz@k;) (tkv xlmpk) = (Tﬁ;g (pk) 707 1%’ (pk)) .

Since v*(to, o, m) > —K, we have 0*(tg, xx, pp) > —k for all k, after possibly passing
to a subsequence. Then, it follows from Corollary 2.3.7, step 1 and the arguments
of Remark 2.2.10 under Assumption 2.3.12, that

H. (-, ¢k, Oprs Diprey D* o1, 0%) (t, 2, i) < 0 for k> 1.

By the definition of H,, we deduce that there exist sequences ()it (kg1
(yk)kzp (%)1@1 and (Ak)k21 such that e > 0, fﬁg = (952,292) € X x [m, M],yx >
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—k,q = (¢f.q}) € RY x R, and Ay € S™ with rows (A7®, A77) € S? x R? and
<AipT, A,]Zp) € R? x R satisfying

e — 0, 5:2 — (T, m),
(2.3.68)
and | (yk, @ Ak) — (0, D, D* 1) (te, w, pre)| < k77

for which
He, 11 (tey Tk Yoo 060 (o, To), iy Ajey 0°) < KL (2.3.69)

Fix u € U, 7 = 0 and set aj, := N“(fcg,yk,q,f)/qz. Since m = 0, it follows from
(2.3.69) together with (2.3.5), (2.3.6) and Assumption 2.3.9 that either (u, ag, ) €
N‘ak,kfl (t, Tk, Yk, q, v*) and then

py (205 s 1) = Oup(to, o) — pux (a3, w) - gf

1 (2.3.70)
~3 (Tr {UXU}(xg,u)Aix] + Jaf® APP 4 20 4 (2, u) AP - a) <kt

or

IBY(xga Yk, U(ek), ek) -0 (tk‘) x% + BX (1:27 u(ek)v ek‘) 7p2) + Yk < k_la (2371)

for some sequence (eg)r>1 C E. Using the same kind of arguments as in step 2 of

the previous section leads to

(2.3.72)

P\ 2
. . (qk)

AP <0, ¢ <O for large k, klggo AP =0 and kl;r{:o A7 =
Consider first the case where (2.3.70) holds along a subsequence. Using (2.3.70) and
(2.3.72), we then deduce that
APP )
‘ ;2 }NU (xgaykhqz)‘ < Ca
(22)
for some C' > 0 independent of k£ and p. Sending k — oo in the above inequality,
we then deduce from (2.3.68) and (2.3.72) that

AP lo” =

PN (o, 9(to, o), Dp(to, 7,))* < C.

Since p > 0 can be chosen arbitrarily close to 0, this shows that
NY (24, p(to, o), Dp(to, x,)) = 0, and the arbitrariness of u € U is in contradic-
tion with Assumption 2.3.10. This contradicts (2.3.67). Hence, if (2.3.67) holds,
then (2.3.71) holds along a subsequence, i.e.

By (2, Y, uler), ex) — 0* (g, 2 + Bx (2, ulex), ex) ,pp) +yp < k1.
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Sending k — oo, using the arbitrariness of © € U and Assumption 2.3.9 then leads

to
Go*(to, 20, m) <0,
where
(;’90 = sup min {BY('a u(e), e) - SO( + BX(? u(e)a 6)) + ()0} .
UEU BEE
Hence
min {9* + &, G*} (to, To,m) < 0 (2.3.73)

on [0,7T) x X.

step 3: Now observe that, by standard arguments, for every (t,z) € [0,T) x X, we
may find a sequence of smooth functions (¢™),>1 such that " | 0%, (tn, Zn, Pn)n>1
converging towards (¢,z,m) and such that (¢™ — 0*) achieves a maximum at
(tn, Tn,pn). We refer to [Bou02, Lemma 6.1] for the approximation argument by
continuous functions. The extension to an approximation by smooth functions is
straightforward.

It thus follows from step 2, that 0*(-,m) is a classical subsolution of (2.3.73) on
[0,7) x X. In order to conclude the proof, we now appeal to the following easy

lemma.

Lemma 2.3.1. Assume that H2 holds. Let w be a upper semi-continuous subsolu-
tion of

min {w + K, Gw} <0 on X (2.3.74)
such that wt satisfies the growth condition (2.3.22). Then, w < —k on X.

Applying Lemma 2.3.1 to 0*(t,,-,m) for an arbitrary ¢, € [0,7) then leads to
0*(-,m) = —k, since v*(-,m) > —k and 0*~ satisfies (2.3.22) by assumption.
step 4: We finally show that 0.(T,-,m) = — on X. Since 0*(t,z,m) = —x for
t < T and z € X, we can find a sequence (t,, Tpn, Pn)n>1 in [0,T) X X x (m, M) such
that (tn, 2, pn) = (T, 2, m) and —k < 9(ty, Tn,pn) < —K+  for all n > 0. Passing
to the limit leads to the required result.

[

Proof of Lemma 2.3.1.

We assume that supx (w + k) > 0 and work towards a contradiction. It follows
from the growth condition (2.3.22) on w, (H2-ii) and (H2-iii) that there is some
T, € X such that

m)%x(w —A)=(w—A)(z,) =: £ >0. (2.3.75)
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By (H2-i), Assumption 2.3.9 and (2.3.75), there exists some w € U such that

lgéiél By (o, w(xo),u(e),e) — A(xo + Bx (20, ule),€)) + A(z,) > 0. (2.3.76)

Since w is a subsolution on X of (2.3.74), we have Gw(z,) < 0. Recalling Assump-
tion 2.3.9, we may then find é € E such that

By (o, w(o), (), €) —w (zo + Bx (70, U(€), ) + w(xo) < 0.
Combining the last inequality with (2.3.76) leads to
w(xo) = A(xo) < w (2o + Bx (o, U(€),€)) — A (0 + Bx (z0,u(8))),

which contradicts the definition of z, in (2.3.75). )
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3.1 Introduction

We study a stochastic (semi) game of the following form. Given an initial condition

(t,z) in time and space, we try to find a strategy u[-] such that the controlled

u
state process Z,

vy

7" (-) reaches a certain target at the given time 7', no matter

which control v is chosen by the adverse player. The target is specified in terms of

expected loss; that is, we are given a real-valued (“loss”) function ¢ and try to keep

the expected loss above a given threshold p € R:

essinf E [z (Z“M’”(T)) ]}}] >p as. (3.1.1)

v t,z
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Instead of a game, one may also see this as a target problem under Knightian
uncertainty; then the adverse player has the role of choosing a worst-case scenario.

Our aim is to describe, for given ¢, the set A(t) of all pairs (z,p) such that
there exists a strategy u attaining the target. We provide, in a general abstract
framework, a geometric dynamic programming principle (GDP) for this set. To
this end, p is seen as an additional state variable and formulated dynamically via
a family {M"} of auxiliary martingales with expectation p, indexed by the adverse
controls v. Heuristically, the GDP then takes the following form: A(t) consists of
all (z,p) such that there exists a strategy u and a family {M"} satisfying

t,z

(Z”[”]”’ (r), M (T)) eA(T) as.

for all adverse controls v and all stopping times 7 > t. The precise version of the
GDP, stated in Theorem 3.2.1, incorporates several relaxations that allow us to deal
with various technical problems. In particular, the selection of e-optimal strategies
is solved by a covering argument which is possible due a continuity assumption on
£ and a relaxation in the variable p. The martingale M" is constructed from the
semimartingale decomposition of the adverse player’s value process.

Our GDP is tailored such that the dynamic programming equation can be de-
rived in the viscosity sense. We exemplify this in Theorem 3.3.3 for the standard
setup where the state process is determined by a stochastic differential equation
(SDE) with coefficients controlled by the two players; however, the general GDP ap-
plies also in other situations such as singular control. The solution of the equation,
a partial differential equation (PDE) in our example, corresponds to the indicator
function of (the complement of) the graph of A. In Theorem 3.3.5, we specialize to a
case with a monotonicity condition that is particularly suitable for pricing problems
in mathematical finance. Finally, in order to illustrate various points made through-
out the chapter, we consider a concrete example of pricing an option with partial
hedging, according to a loss constraint, in a model where the drift and volatility
coefficients of the underlying are uncertain. In a worst-case analysis, the uncer-
tainty corresponds to an adverse player choosing the coefficients; a formula for the
corresponding seller’s price is given in Theorem 3.4.1.

Stochastic target (control) problems with almost-sure constraints, correspond-
ing to the case where ¢ is an indicator function and v is absent, were introduced
in [ST02a, ST02¢| as an extension of the classical superhedging problem [EKQ95]
in mathematical finance. Stochastic target problems with controlled loss were first
studied in [BET09] and are inspired by the quantile hedging problem [FL99|. The
present chapter is the first to consider stochastic target games. The rigorous treat-

ment of zero-sum stochastic differential games was pioneered by [FS89], where the
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mentioned selection problem for e-optimal strategies was treated by a discretization
and a passage to continuous-time limit in the PDEs. Let us remark, however, that
we have not been able to achieve satisfactory results for our problem using such
techniques. We have been importantly influenced by [BL08|, where the value func-
tions are defined in terms of essential infima and suprema, and then shown to be
deterministic. The formulation with an essential infimum (rather than an infimum
of suitable expectations) in (3.1.1) is crucial in our case, mainly because {M"} is
constructed by a method of non-Markovian control, which raises the fairly delicate
problem of dealing with one nullset for every adverse control v.

The remainder of the chapter is organized as follows. Section 3.2 contains the
abstract setup and GDP. In Section 3.3 we specialize to the case of a controlled SDE
and derive the corresponding PDE, first in the general case and then in the monotone

case. The problem of hedging under uncertainty is discussed in Section 3.4.

3.2 Geometric dynamic programming principle

In this section, we obtain our geometric dynamic programming principle (GDP) in
an abstract framework. Some of our assumptions are simply the conditions we need
in the proof of the theorem; we will illustrate later how to actually verify them in a

typical setup.

3.2.1 Problem statement

We fix a time horizon T' > 0 and a probability space (2, F,P) equipped with a filtra-
tion F = (F)sc(0,7] satisfying the usual conditions of right-continuity and complete-
ness. We shall consider two sets U and V of controls; for the sake of concreteness, we
assume that each of these sets consists of stochastic processes on (€, F), indexed by
[0, 7], and with values in some sets U and V, respectively. Moreover, let i be a set
of mappings u : V — U. Each u € { is called a strategy and the notation u[r] will
be used for the control it associates with v € V. In applications, i will be chosen
to consist of mappings that are non-anticipating; see Section 3.3 for an example.
Furthermore, we are given a metric space (Z,dz) and, for each (¢,z) € [0,T] x Z
and (u,v) € U x V, an adapted cadlag process ZZ[:}’V(-) with values in Z satisfying
Zu[zx],zz

t. (t) = z. For brevity, we set

Zy =z,

t,z

Let : Z — R be a Borel-measurable function satisfying

E[|¢(Z7(T))|] <oo forall (t,z,u,v)€[0,T] x Z xUx V. (3.2.1)
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We interpret ¢ as a loss (or “utility”) function and denote by
I(t, z,u,v) :=E[L (20 (T) | F], (& zuv)e0,T]x ZxUxV
the expected loss given v (for the player choosing u) and by

J(t,z,u) :=essinf I(t, z,u,v), (t,z,u) €[0,T] x Z x U

vey

the worst-case expected loss. The main object of this chapter is the reachability set
A(t) := {(z,p) € ZxR : there exists u € 4l such that J(¢,z,u) > pP-as.}. (3.2.2)

These are the initial conditions (z, p) such that starting at time ¢, the player choos-
ing u can attain an expected loss not worse than p, regardless of the adverse player’s
action v. The main aim of this chapter is to provide a geometric dynamic program-
ming principle for A(t). For the case without adverse player, a corresponding result
was obtained in [ST02a] for the target problem with almost-sure constraints and
in [BET09] for the problem with controlled loss.

As mentioned above, the dynamic programming for the problem (3.2.2) requires
the introduction of a suitable set of martingales starting from p € R. This role will be
played by certain families! {M",v € V} of martingales which should be considered
as additional controls. More precisely, we denote by M, , the set of all real-valued
(right-continuous) martingales M satisfying M (t) = p P-a.s., and we fix a set My,
of families {M",v € V} C Myp; further assumptions on 9, will be introduced
below. Since these martingales are not present in the original problem (3.2.2), we
can choose My ;, to our convenience; see also Remark 3.2.2 below.

As usual in optimal control, we shall need to concatenate controls and strategies

in time according to certain events. We use the notation
VDU i= Vl[O,T} + E]‘(T,T]

for the concatenation of two controls v, v € V at a stopping time 7. We also introduce
the set
{v=¢m7}={weQ: v(w) =s(w) for all s € (t,7(w)]}.

Analogous notation is used for elements of U.
In contrast to the setting of control, strategies can be concatenated only at
particular events and stopping times, as otherwise the resulting strategies would fail

to be elements of { (in particular, because they may fail to be non-anticipating, see

! Of course, there is no mathematical difference between families indexed by V, like {M",v € V},
and mappings on V, like u. We shall use both notions interchangeably, depending on notational

convenience.
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also Section 3.3). Therefore, we need to formalize the events and stopping times
which are admissible for this purpose: For each ¢t < T, we consider a set §; whose
elements are families {A”,v € V} C F; of events indexed by V, as well as a set
% whose elements are families {77, v € V} C T;, where T; denotes the set of all
stopping times with values in [t,T]. We assume that T; contains any deterministic
time s € [t,T] (seen as a constant family 77/ = s, v € V). In practice, the sets §;
and T; will not contain all families of events and stopping times, respectively; one
will impose additional conditions on v — A" and v +— 7 that are compatible with
the conditions defining 4. Both sets should be seen as auxiliary objects which make

it easier (if not possible) to verify the dynamic programming conditions below.

3.2.2 The geometric dynamic programming principle

We can now state the conditions for our main result. The first one concerns the

concatenation of controls and strategies.
Assumption (C). The following hold for all t € [0,T).
(C1) Fiz vg,v1,v2 €V and A€ Fy. Then v := vy @ (1114 + 1olye) € V.

(C2) Fiz (uj)j>0 C th and let {AY,v € V}j>1 C §t be such that {A7,j > 1} forms a
partition of Q for each v € V. Then u € U for

uly] == up[v] B¢ Zuj[v]lA]y, ve.
Jj=>1

(C3) Letucsilandv eV. Then ulyv @, -] € 4.

(C4) Let {A”,v € V} C F; be a family of events such that A"* N {11 =gy va} =
A2 0 {v =4 va} for all vi,ve € V. Then {A”,v € V} € §i.

(C5) Let {r",v € V} € T Then {77 < s} = {72 < s} for P-a.e. w € {v1 =
v}, for all vi,vp €V and s € [t,T].

(C6) Let {t",v € V} € %. Then, for allt < s1 < so <T, {{7¥ € (s1,52]},v € V}
and {{7" ¢ (s1,s2]},v € V} belong to Fs,.

The second condition concerns the behavior of the state process.
Assumption (Z). The following hold for all (t,z,p) € [0,T] x ZxR and s € [t,T].

(Z1) Z{27(s)(w) = 2,27 (s)(w) for P-a.e. w € {w1[v] =@ 4 u2[V]}, for allv € V and
ug, uo € 4.
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(22) Z77'(s)(w) = Z;%(s)(w) for P-a.e. w € {v1 =(g4 va}, for all u € U and
vi,vo € V.

(Z3) M™(s)(w) = M"(s)(w) for P-a.e. w € {v1 =g V2}, for all {M",v € V} €
Sﬁt’p and v,V € V.

(Z4) There ezists a constant K(t,z) € R such that

esssupessinf E [((Z}) (T))|F] = K(t,2) P-a.s.
uesl VeV ’

The nontrivial assumption here is, of course, (Z4), stating that (a version of)
the random variable ess sup,ey essinf ey E[((Z;) (T))|F] is deterministic. For the
game determined by a Brownian SDE as considered in Section 3.3, this will be true
by a result of [BLO8|, which, in turn, goes back to an idea of [Pen97| (see also
[LP09]). An extension to jump diffusions can be found in [BHL11].

While the above assumptions are fundamental, the following conditions are of

technical nature. We shall illustrate later how they can be verified.
Assumption (I). Let (t,2) € [0,T] x Z,uc U and v e V.

(I1) There ewists an adapted right-continuous process N; of class (D) such that

essinf E [z (Z;;VW(T)) \fs} > N'(s) P-a.s. for all s € [t, T,

vey

12) There exists an adapted right-continuous process L} such that LY (s) € L
t,z t,z

and

essinf E [E (Zu@5ﬁ’V(T)> \]—"S} > LyY(s) P-a.s. forall s € [t,T].

ey bz

Moreover, L") (s)(w) = Ly ?(s)(w) for P-a.e. w € {v1 =4 v}, for allu e U

and vi1,v9 € V.
Assumption (R). Let (t,z) € [0,T] x Z.

(R1) Fizs e [t,T] ande > 0. Then there exist a Borel-measurable partition (Bj);j>1
of Z and a sequence (2j)j>1 C Z such that for allu e, v eV and j > 1,
E [0(Zy7 (T)|Fs] = 1(s,zj,u,v) — ¢,
essinf E [((Z)2 % (T)|F| < J(s.2p,ulv @, ) +e, § Poas. on {Z}Y(s) € By},
ve ? ’

K(s,zj) —e < K(s,2;7(s)) < K(s,2) +¢
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(R2) lim sup P | sup dz (Z7(t+h), 2} (1)) >¢e| =0 for all u € Y and
0=0peV,reT;  |0<h<s ’ ’
e>0.

Our GDP will be stated in terms of the closure

(0 (z,p) € Z X R : there exist (tn, 2n, pn) — (¢, 2,D)
" | such that (2n,pn) € A(ty) and ¢, >t for alln > 1

and the uniform interior
A(t) == {(z,p) € ZxR: ({',2',p) € B,(t,zp) implies (2,p) € A(t')},

where B,(t,z,p) C [0,T] X Z x R denotes the open ball with center (¢, z,p) and
radius ¢ > 0 (with respect to the distance function dz(z,2') + |p — p'| + |t — t'|).
The relaxation from A to A and A, essentially allows us to reduce to stopping times
with countably many values in the proof of the GDP and thus to avoid regularity
assumptions in the time variable. We shall also relax the variable p in the assertion
of (GDP2); this is inspired by [BN11] and important for the covering argument in
the proof of (GDP2), which, in turn, is crucial due to the lack of a measurable
selection theorem for strategies. Of course, all our relaxations are tailored such that
they will not interfere substantially with the derivation of the dynamic programming

equation; cf. Section 3.3.

Theorem 3.2.1. Fiz (t,z,p) € [0,T] x Z x R and let Assumptions (C), (Z), (I)
and (R) hold true.

(GDP1) If (z,p) € A(t), then there exist u € s and {M",v € V} C My, such that
(257 (1), MY (1)) e A(1) P-as. forallveV and T e Ty
(GDP2) Let v >0, ue i, {M",veV}eM, and {7¥,v € V} € T, be such that
(Z22 (), MV (7)) € A(T") P-a.s. forallv eV,

and suppose that { M"(7")* : v € V} and {L;’Z(T’)_ v eV, 7 €Ty} are uniformly
integrable, where L}, is as in (12). Then (z,p —e) € A(t) for all € > 0.

The proof is stated in Sections 3.2.3 and 3.2.4 below.

Remark 3.2.2. We shall see in the proof that the family {M",v € V} C M;, in
(GDP1) can actually be chosen to be non-anticipating in the sense of (Z3). However,
this will not be used when (GDP1) is applied to derive the dynamic programming
equation. Whether {M",v € V} is an element of 9, will depend on the definition
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of the latter set; in fact, we did not make any assumption about its richness. In
many application, it is possible to take 9;, to be the set of all non-anticipating
families in My ;,; however, we prefer to leave some freedom for the definition of 9%,

since this may be useful in ensuring the uniform integrability required in (GDP2).

We conclude this section with a version of the GDP for the case Z = R?, where
we show how to reduce from standard regularity conditions on the state process and

the loss function to the assumptions (R1) and (I).

Corollary 3.2.3. Let Assumptions (C), (Z) and (R2) hold true. Assume also that
£ is continuous and that there exist constants C > 0 and ¢ > q > 0 and a locally
bounded function o : R — R such that

[£(z)] < C(1+2]7), (3.2.3)
esssup E [\ZE’ZD(T)\‘?].B} <o0(2)? P-a.s. and (3.2.4)
(m,7)eUxV ’

(_esisllllpv {\Zu@su VD) — Zi’g,@sﬁ(T)\ \.7-"5] <C|Z}5(s) = 2| P-as. (3.2.5)
,7) €l

for all (t,2) € [0,T] x RY, (s,2') € [t,T] x R? and (u,v) € U x V.

(GDP1Y’) If (z2,p+¢€) € A(t) for some € > 0, then there exist u € 4 and {M",v €
V} C My, such that

(Z;;’ (1), M (7—)) € A(1) P-as. forallv €V and T € T;.
(GDP2’) Let >0, u € i, {M",v € V} € My, and {7",v € V} € Ty be such that
(Z;,ZV(TV)’MV(TV)) c /O\L(T”) P-a.s. for allv € V

and assume that {Z;" ("), v € V} is uniformly bounded in L>. Then (z,p —¢) €
A(t) for alle > 0.

We remark that (GDP2’) is usually applied in a setting where 7% is the exit time
of Zw?,  from a given ball, so that the boundedness assumption is not restrictive.
(Some adjustments are needed when the state process admits unbounded jumps;
see also [Morl1].)

3.2.3 Proof of (GDP1)

We fix ¢ € [0,T] and (z,p) € A(t) for the remainder of this proof. By the defini-
tion (3.2.2) of A(t), there exists u € i such that

E[GW)|F] >p Pas. forallveV, where G(v):=(Z")(T)). (3.2.6)

)
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In order to construct the family {M",v € V} C My, of martingales, we consider

SY(r) :=essinf E[G(v &, v)|F;], t<r<T. (3.2.7)

vey
We shall obtain MY from a Doob-Meyer-type decomposition of S¥. This can be seen

as a generalization with respect to [BET09|, where the necessary martingale was

trivially constructed by taking the conditional expectation of the terminal reward.

Step 1: We have S¥(r) € LY(P) and E[SY(r)|Fs] > S¥(s) forallt <s<r <T
and v €.

The integrability of S¥(r) follows from (3.2.1) and (I1). To see the submartin-
gale property, we first show that the family {E[G(v @, 7)|F,], v € V} is directed

downward. Indeed, given vy, 5 € V, the set
A={E[Glva, n)|F] <E[Gv &, 1) F]}

is in Fp; therefore, v := v @, (7114 + 2l4¢) is an element of V by Assumption
(C1). Hence, (Z2) yields that

E[G(V D I73)|./r7~] = E G(V ©Dr I71)1A+G(I/ D Dg)lAc|Jrr]
= E[Gv@, m)|F|1la+E[Gv @, 12)|F,] Lae
= E[Gv & n)|F] AE[G(v &, 12)|Fr].

—

As aresult, we can find a sequence (7, ),>1 in V such that E[G(v®, 1y, )| F,] decreases
P-a.s. to S”(r); cf. [Nev75, Proposition VI-1-1]. Recalling (3.2.1) and that S¥(r) €

L' (P), monotone convergence yields that

E[S'0)IF] = E|lm EGW e 7)l 7|7,
= lim E[G(v & 7)|F]
> ess i,?fE (G(v &, V)| Fs]
ve
> essinf B [G(v @5 v)|F]
vey
= SY(s),

where the last inequality follows from the fact that any control v @, v, where v € V,
can be written in the form v &5 (v &, v); cf. (C1).

Step 2: There exists a family of cadlag martingales {M",v € V} C My, such
that S¥(r) > M"Y (r) P-a.s. for allrT € [t,T] and v € V.

Fix v € V. By Step 1, S¥(-) satisfies the submartingale property. Therefore,

+(r)(w) := u€(r Tl]lfri%g u—T SY(u)(w) for0<r <T and Si(T):=5S"(T)
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is well defined P-a.s.; moreover, recalling that the filtration F satisfies the usual
conditions, Sy is a (right-continuous) submartingale satisfying Sy (r) > S¥(r) P-a.s.
for all r € [t,T] (c.f. [DM82, Theorem VI1.2|). Let H C [t,T] be the set of points of
discontinuity of the function r +— E[SY(r)]. Since this function is increasing, H is at
most countable. (If H happens to be the empty set, then S, defines a modification
of S” and the Doob-Meyer decomposition of Sy yields the result.) Consider the
process
S(r) 1= Sy (ue(r) + S () (r), 7€ 7).

The arguments (due to E. Lenglart) in the proof of [DM82, Theorem 10 of Ap-
pendix 1] show that S is an optional modification of S* and E[S(7)|F,] > S(o) for
all 0,7 € T; such that ¢ < 7; that is, S is a strong submartingale. Let N = Ntltj;’
be a right-continuous process of class (D) as in (I1); then S¥(r) > N(r) P-a.s. for
all r implies that Sy(r) > N(r) P-a.s. for all r, and since both S; and N are
right-continuous, this shows that S; > N up to evanescence. Recalling that H is
countable, we deduce that S > N up to evanescence, and as S is bounded from
above by the martingale generated by S(7T'), we conclude that S is of class (D).

Now the decomposition result of Mertens [Mer72, Theorem 3] yields that there
exist a (true) martingale M and a nondecreasing (not necessarily cadlag) predictable
process C with C(¢) = 0 such that

S=M+0C,
and in view of the usual conditions, M can be chosen to be cadlag. We can now
define MV := M — M (t)+p on [t,T] and M¥(r) := p for r € [0,t), then M” € M.
Noting that M(t) = S(t) = S¥(t) > p by (3.2.6), we see that M" has the required
property:
MY (r) < M(r) < S(r) = S”(r) P-as. for all r € [t,T].
Step 3: Let 7 € T; have countably many values. Then
K (1,2} (1)) > M"(1) P-as. for all v e V.

Fix v € V and € > 0, let M be as in Step 2, and let (¢;);>1 be the distinct
values of 7. By Step 2, we have
MY(t)) < essinf E [z (Z;‘j@‘i”(T)) \J—}Z} Pas., i>1.
ve ’
Moreover, (R1) yields that for each i« > 1, we can find a sequence (z;;);>1 C Z and
a Borel partition (B;;);>1 of Z such that
U,I/@tilj

eseintE (€ (2225 () 17| (@) < Tt 2550wl @1, D) + 2

ve

for P-a.e. w € Cj; := {Zf:(tz) € Bi;}.
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Since (C3) and the definition of K in (Z4) yield that J(¢;, zij, ulv @&, -]) < K (i, zi5),
we conclude by (R1) that

M (t;)(w) < K(ti, zij) + € < K(ti, 27 (ti)(w)) +2¢ for P-ae. w € Cyy.
Let A; .= {7 =t;} € F;. Then (A; N Cjj); j>1 forms a partition of 2 and the above
shows that

M(r) =2 < > K(ti, Z£ () 1anc,; = K(1, 217 (1)) P-as.
i,j>1

As € > 0 was arbitrary, the claim follows.

Step 4: We can now prove (GDP1). Given 7 € Ty, pick a sequence (7,)n>1 C Tt
such that each 7, has countably many values and 7, | 7 P-a.s. In view of the last

statement of Lemma 3.2.1 below, Step 3 implies that
(Z;t’:(’]’n), MY (1) — n_l) € A(r,) P-as. foralln > 1.
However, using that Z; 7 and M are cadlag, we have
(Tn,Z;’Zy(Tn),MV(Tn) — n_l) — (T, Z;’ZV(T),MV(T)) P-a.s. as n — oo,
so that, by the definition of A, we deduce that (ZZZ(T), MY (7)) € A(T) P-a.s. O

Lemma 3.2.1. Let Assumptions (C2), (C4), (Z1) and (Z24) hold true. For each
e > 0, there exists a mapping p° : [0,T] X Z — U such that

J(t,z,u5(t,2)) > K(t,2) —e  P-a.s. for all (t,z) € [0,T] x Z.
In particular, if (t,z,p) € [0,T] x Z x R, then K(t,z) > p implies (z,p) € A(t).
Proof. Since K(t,z) was defined in (Z4) as the essential supremum of J(t, z,u)
over u, there exists a sequence (u*(t, z))g>1 C 4 such that

sup J <t,z,uk(t,z)> = K(t,z) P-as. (3.2.8)
k>1

Set AQ’Z := () and define inductively the F;-measurable sets

k—1

AF = {J (t,z,uk(t, z)) > K(t,2) — 5} \jL_JO AL k>

By (3.2.8), the family {Afiz, k > 1} forms a partition of Q. Clearly, each Afiz (seen
as a constant family) satisfies the requirement of (C4), since it does not depend on

v, and therefore belongs to §;. Hence, after fixing some ug € 4, (C2) implies that

pe(t, z) == ug &y Zuk(t, 2) 1k €4,
k>1 ’
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while (Z1) ensures that

J(t,z,u%(t,2)) = essinfE {E (Zt‘i(t’z)’”(T)) ‘]:t}

vey
. k t,2),v
~ essinfE | Y (Z,’;tz( ?) (T)) 1 |7
k>1
. k t,2),v
= eiseléleE [6 <ZZZ( ?) (T)> ]]-"t} 1Af,z ,
k>1
where the last step used that A,’;Z is Fi-measurable. Since

E [e (Z”k(t’z)’”(T)) yft] > J(t, 2, ub(t, 2))

t,z

by the definition of J, it follows by the definition of {Af .,k > 1} that

J(t, z,p(t,2)) > ZJ (t,z,uk(t, z)) Iap, 2 K(t,z) —e P-as.
k>1

as required.

Remark 3.2.4. Let us mention that the GDP could also be formulated using fam-
ilies of submartingales {S”,v € V} rather than martingales. Namely, in (GDP1),
these would be the processes defined by (3.2.7). However, such a formulation would
not be advantageous for applications as in Section 3.3, because we would then need
an additional control process to describe the (possibly very irregular) finite variation
part of S¥. The fact that the martingales {M",v € V} are actually sufficient to
obtain a useful GDP can be explained heuristically as follows: the relevant situation
for the dynamic programming equation corresponds to the adverse player choosing
an (almost) optimal control v, and then the value process S will be (almost) a

martingale.

3.2.4 Proof of (GDP2)

In the sequel, we fix (¢, z,p) € [0,T]x ZxRand let ¢ > 0, u € 8, {M",v € V} € My,
{r¥,v € V} € Ty and L}, be as in (GDP2). We shall use the dyadic discretization

for the stopping times 77; that is, given n > 1, we set

Ty = Z tiyi g en ) (77),  where ! =i27"T for 0<i<2"
0<i<2n-1

We shall first state the proof under the additional assumption that

MY(:)=MY(- A1) forall v € V. (3.2.9)
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Step 1: Fiz e > 0 and n > 1. There exists u;, € 4 such that

E [e (Z“fw”(T)> |f75} > K (r2, 20 (7)) —e  P-as. for allv € V.

t,z n

We fix ¢ > 0 and n > 1. It follows from (R1) and (C2) that, for each i < 2", we
can find a Borel partition (B;j);>1 of Z and a sequence (z;;);>1 C Z such that, for
alueiland v ey,

Byn ity
E [ﬁ (Zu o (T)) ]]—}4 (w) > I(t}zij,u@eu,v)(w) —e and  (3.2.10)

t,z
K (t],25) > K22 (W)~ (3.2.11)
for P-a.e. w € CY; := {2, (t}) € Bij}.

7

Let u° be as in Lemma 3.2.1, uj; := p(t}, z;;) and A, := C}; N {7, = t}'}, and

consider the mapping

Vi ug[v] = uy] @ Z ug[v]Lar.

j>1i<n
Note that (Z2) and (C4) imply that {C};, v € V};>1 C §p for each i < 2. Similarly,
it follows from (C6) and the definition of 7}/ that the families {{7} = t'},v € V}
and {{r;, = t]'}°,v € V} belong to F». Therefore, an induction argument based
on (C2) yields that u}, € 4. Using successively (3.2.10), (Z1), the definition of J,

Lemma 3.2.1 and (3.2.11), we deduce that for P-a.e. w € A7,

o [e <ZZZ’”(T)) \Fﬂ (w) = It 2u5,v) (W) —¢
> St zig, po (47, 2i5)) (w) — €
> K (0, 2) — 2
> K (1,27 (t7)(w)) — 3¢

K (m7(w), 27 (1)) (w)) — 3e.

n n
As € > 0 was arbitrary and U; jA7; = Q P-a.s., this proves the claim.

Step 2: Fiz e >0 andn > 1. For allv €V, we have
E [e (z;j@”m) ]]—“T%] (w) > MY () (w) — ¢ for P-a.e. w € EY,

where

Bl = {(nd, 282 r0), MY (1)) € B+, 202 (), MY (7))}

n

Indeed, since (Z; (7)), M" (7)) € A,(77) P-a.s., the definition of A, entails that

t,z

(Z (), M" (1)) € A(7)) for P-a.e. w € E};. This, in turn, means that

K (7)(w), 2 (7)) (w)) = M¥ (7)) (w) for P-a.e. w € EY.

n » itz \'n
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Now the claim follows from Step 1. (In all this, we actually have M (7)) = M"(7")
by (3.2.9), a fact we do not use here.)

Step 3: Let LV := L;’;’ be the process from (12). Then

K(t,z)>p—e— suEE [(LV(TZ) — MY (1))~ I(E%)c] .
ve

Indeed, it follows from Step 2 and (I12) that

E[e(25%0 1) 17

E[MY(r) 1| 7] — e+ E [E [¢(Z5"(T)) 1Fry] 1yl
E[MY(1))|F] — E [MV(Tﬁ)l(Ez)c‘ft} —e¢+E [LV(T,‘{)l(Ez)c]ft}
= p—ec+E [(LV(T;:) — M" (1)) 1(E%)C|Ft] .

Y

v

By the definitions of K and J, we deduce that

K(t, Z) > J(t,Z,u;)
> p—etessinfE (LY (1) = MY (7)) L(gwye Fi] -

Since K is deterministic, we can take expectations on both sides to obtain that

K(t,z)>p—c+E [ess i\gle [Y”|Ft]} ,  where Y := (LY(7,)) — M"(7}))) 1(g)e-
ve n

The family {E[Y”|F],v € V} is directed downward; to see this, use (Cl), (Z2),
(Z3), (C5) and the last statement in (I2), and argue as in Step 1 of the proof of
(GDP1) in Section 3.2.3. It then follows that we can find a sequence (vg)i>1 C V
such that E [Y"*|F;] decreases P-a.s. to essinf,cp E [YV|F], cf. [Nev75, Proposition

VI-1-1], so that the claim follows by monotone convergence.

Step 4: We have

nh—>Holo ilelgE [(LY(7)) = M"(7}))” L(pyye] =0 P-a.s.

Indeed, since M¥ (7)) = M (7") by (3.2.9), the uniform integrability assump-
tions in Theorem 3.2.1 yield that {(L"(7}) — M"(7}))” : n > 1,v € V} is again
uniformly integrable. Therefore, it suffices to prove that sup,cy, P[(E})¢] — 0. To
see this, note that for n large enough, we have |77 — 77| < 27T < /2 and hence

P((E,)) < Pldz(2, (7). 207 (7)) = 1/2]

n/r <tz

where we have used that MY (1Y) = M" (7). Using once more that |77 —7%| < 27"T,

the claim then follows from (R2).
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Step 5: The additional assumption (3.2.9) entails no loss of generality.

Indeed, let MY be the stopped martingale M”(- A 7). Then {M",v € V} C
M p. Moreover, since {M",v € V} € M, and {77, v € V} € T;, we see from (Z3)
and (C5) that {M",v € V} again satisfies the property stated in (Z3). Finally, we
have that the set {MV(TV)+ : v € V} is uniformly integrable like {M"(7¥)" : v €
V}, since these sets coincide. Hence, {M Y v € V} satisfies all properties required in
(GDP2), and of course also (3.2.9). To be precise, it is not necessarily the case that
{M",v € V} € M;,; in fact, we have made no assumption whatsoever about the
richness of 9 ,. However, the previous properties are all we have used in this proof

and hence, we may indeed replace M” by MY for the purpose of proving (GDP2).

We can now conclude the proof of (GDP2): in view of Step 4, Step 3 yields that
K(t,z) > p—e, which by Lemma 3.2.1 implies the assertion that (z,p —¢) € A(?).
O

3.2.5 Proof of Corollary 3.2.3

Step 1: Assume that ¢ is bounded and Lipschitz continuous. Then (I) and (R1) are
satisfied.

Assumption (I) is trivially satisfied; we prove that (3.2.5) implies Assumption
(R1). Let t < s < T and (u,v) € U x V. Let ¢ be the Lipschitz constant of /.
By (3.2.5), we have

B[ (20 ) - ¢ (222m) 1]

< ||zt - 22|17
< C|Zf (s) - 2| (3.2.12)

for all 2,2’ € RY. Let (B;)j>1 be any Borel partition of R? such that the diameter
of Bj is less than ¢/(cC'), and let z; € B; for each j > 1. Then
‘E [z (Zt“j (T)) iy (z (T)) \fs} <e on O :={Z'(s) € By},

)

which implies the first property in (R1). In particular, let 7 € V, then using (C1),
we have

INZS
pyd <e on(j .

‘IE [E (Z;;V@SE(T)) Ny (Zu,VGBsE(T)) ‘]_-s}

Since C;’V@Sﬂ = C;’V by (Z2), we may take the essential infimum over v € V to

conclude that

essinf E [E <Z”’”®5’7(T)> |]-‘S} < J(s,zj,ulv®s-])+¢€ on C;"”,

ey bz
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which is the second property in (R1). Finally, the last property in (R1) is a direct
consequence of (3.2.12) applied with ¢ = s.

Step 2: We now prove the corollary under the additional assumption that
|¢(z)] < C; we shall reduce to the Lipschitz case by inf-convolution. Indeed, if
we define the functions £ by

0(2) = inf {0(z") + k|2 — 2]}, k>1,
2/ €R4

then ¢4 is Lipschitz continuous with Lipschitz constant k, [(x| < C, and ({x)k>1
converges pointwise to £. Since £ is continuous and the sequence (¢j)x>1 is monotone
increasing, the convergence is uniform on compact sets by Dini’s lemma. That is,
for all n > 1,

sup  |lp(2) —(2)| < €, (3.2.13)

2€R4 |z|<n
where (€})r>1 is a sequence of numbers such that limy_, €} = 0. Moreover, (3.2.4)
combined with Chebyshev’s inequality implies that
esssup P [|Z2(T)] = nlF] < (o(z)/n)", (3.2.14)
(u,v)eUxy '
Combining (3.2.13) and (3.2.14) and using the fact that ¢; — ¢ is bounded by 2C
then leads to

esssup K[| (Z7(T)) — (27 (T))| |F] < e +2C(0(2)/n)T.  (3.2.15)
(u,v)EUXV

Let O be a bounded subset of R?, let n > 0, and let
Ie(t, z,u,v) = E [, (2 (1)) | F] - (3.2.16)

Then we can choose an integer n/, such that 2C(o(z)/nh)? < n/2 for all z € O and
n

another integer k/, such that GZS < n/2. Under these conditions, (3.2.15) applied
(@]

to n = ng, yields that

esssup |Ipn (¢, z,u,v) — I(t,z,u,v)| <n for (t,z) €[0,7] x O. (3.2.17)
(up)euxy ! °
In the sequel, we fix (¢, z,p) € [0,7] x R? x R and a bounded set O C R? containing
z, and define Jyn , Akg, jo\kg,L and ./_ng in terms of £;n instead of £.
We now prove (GDP1’). To this end, suppose that (z,p + 2n) € A(t). Then
(3.2.17) implies that (z,p+1n) € Agy (t). In view of Step 1, we may apply (GDP1)
with the loss function £;n to obtain u € 4 and {M",v € V} C My, such that

(27 (1), MY (1) +n) € /_\kg (1) P-as.forallveVandrteT.

t,z
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Using once more (3.2.17), we deduce that
(2 (1),M"()) € A(1) P-as. forallveV and 7 € T;

i.e., (GDPY’) holds for ¢. (The last argument was superfluous as ¢ > lyy already
implies Agn (7) C A(7); however, we would like to refer to this proof in a similar
situation below where there is no monotonicity.)

It remains to prove (GDP2’). To this end, let ¢« > 0, u e 4, {M",v € V} € M;,,
and {77,v € V} € T; be such that

(Zt‘tvz”(TV), M”(TV)) € IO\QL(TV) P-a.s. for all v € V.
For n < ¢/2, we then have
(Z2(7"), MY (") +2n) € A(7") Pras. forallv € V. (32.18)

Let MY := M" + . Since {Z;"Y (r¥),v € V} is uniformly bounded in L>, we may
assume, by enlarging O if necessary, that B,(Z;7 (")) C O P-a.s. for all v € V.
Then, (3.2.17) and (3.2.18) imply that

(Zu’V(TV), MUU”)) € j\kgw(TV) P-a.s. for all v € V.

t,z

Moreover, as £ < C, (3.2.18) implies that M"(7*) < C; in particular, {M"(t*),v €
V} is uniformly integrable. Furthermore, as £ > —C, we can take L;”) := —C
for (I2). In view of Step 1, (GDP2) applied with the loss function Ekg then yields
that

(zp+n—e) €M (t) foralle>0. (3.2.19)

To be precise, this conclusion would require that {M Y.v eV} e My piy, which is not
necessarily the case under our assumptions. However, since {M", v € V} € My,
it is clear that {MY,v € V} satisfies the property stated in (Z3), so that, as in
Step 5 of the proof of (GDP2), there is no loss of generality in assuming that

{M",v € V} € M pryy. We conclude by noting that (3.2.17) and (3.2.19) imply
that (z,p —e) € A(¢) for all € > 0.

Step 3: We turn to the general case. For k > 1, we now define ¢}, := (¢Ak)V(—k),
while I} is again defined as in (3.2.16). We also set

ng=max{m > 0: By(0) C{{="0}} Ak

and note that the continuity of £ guarantees that limy_,, ny = 0o. Given a bounded
set O C R% and 1 > 0, we claim that

esssup |Iyn (¢, z,u,v) —I(t, z,u, V)‘ <n forall (t,2) €[0,T] x O  (3.2.20)
(up)euxy ! °
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for any large enough integer k/,. Indeed, let (u,v) € & x V; then

I(t,z,m,0) = I(t z,u,0)| < E[|0— 6 (21(T)) |7
= E[|0—&|(21(1))12}7(T) ¢ {€ = (:}| 7]
< E[]6(Z2(T)| 1122 (T)] > ni| ]
< CE[(1+|Z2(D)|") 1Z(T)] > ny| Fi]

by (3.2.3). We may assume that ¢ > 0, as otherwise we are in the setting of Step 2.
Pick § > 0 such that ¢(1 + 0) = g. Then Hoélder’s inequality and (3.2.4) yield that

E [|(Z0(T))|" 112 (T)| > ni) F
< E[|(z@)[1F] ™ B [2T) > ml 7] T
< p(2) T (p(2) /my) 5.

Since p is locally bounded and limg_,o, np = 00, the claim (3.2.20) follows. We can
then obtain (GDP1’) and (GDP2’) by reducing to the result of Step 2, using the

same arguments as in the proof of Step 2. a

3.3 The PDE in the case of a controlled SDE

In this section, we illustrate how our GDP can be used to derive a dynamic pro-
gramming equation and how its assumptions can be verified in a typical setup. To
this end, we focus on the case where the state process is determined by a stochastic
differential equation with controlled coefficients; however, other examples could be

treated similarly.

3.3.1 Setup

Let Q = C([0, T]; R%) be the canonical space of continuous paths equipped with the
Wiener measure P, let F = (F3)¢<7 be the P-augmentation of the filtration generated
by the coordinate-mapping process W, and let F = Fr. We define V, the set of
adverse controls, to be the set of all progressively measurable processes with values
in a compact subset V of R%. Similarly, U is the set of all progressively measurable
processes with values in a compact U C R?. Finally, the set of strategies {{ consists

of all mappings 1 : V — U which are non-anticipating in the sense that
{1 =0, v2} C {u[m1] =4 ufpe]} forallvy,vp €V and s <T.

Given (t,z) € [0,7] x R and (u,v) € 4 x V, we let Z;) be the unique strong
solution of the controlled SDE

Z(s) = z—i—/ts u(Z(r),u[V]T,I/T)dr—i—/tsa(Z(r),u[u]T,l/T)dWr, set,T], (3.3.1)
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where the coefficients
pwREXUXV 5 RY 6:REXU XV — R

are assumed to be jointly continuous in all three variables as well as Lipschitz con-
tinuous with linear growth in the first variable, uniformly in the two last ones.
Throughout this section, we assume that £ : R* — R is a continuous function
of polynomial growth; i.e., (3.2.3) holds true for some constants C' and ¢. Since
Z;7! (T) has moments of all orders, this implies that the finiteness condition (3.2.1)
is satisfied.

In view of the martingale representation theorem, we can identify the set M, ;, of
martingales with the set A of all progressively measurable d-dimensional processes
a such that [‘adW is a (true) martingale. Indeed, we have M, = {Pf,, a € A},

where

ng(.):er/ s dW.
t

We shall denote by 2 the set of all mappings a[-]: V +— A such that
{v1 =0, 2} C {a[] =4 alro]} forall v1,1 € Vand s <T.

The set of all families {P;][f}, v € V} with a € 2 then forms the set 9 ,,, for any
given (t,p) € [0, T] xR. Furthermore, T; consists of all families {7",v € V} C T such
that, for some (z,p) € RYx R, (u,a) € 4x2A and some Borel set O C [0, T] x R x R,

t,z

7Y is the first exit time of (-, zZ"r P;I[JV]> from O, for all v e V.

(This includes the deterministic times s € [t, T] by the choice O = [0, s] x R? x R.)
Finally, §; consists of all families {A”, v € V} C F; such that

A" N {Ul =04 1/2} = A" N {I/1 =(0,4 IJQ} for all vq,v0 € V.

Proposition 3.3.1. The conditions of Corollary 3.2.3 are satisfied in the present

setup.

Proof. The above definitions readily yield that Assumptions (C) and (Z1)-
(Z3) are satisfied. Moreover, Assumption (Z4) can be verified exactly as in [BLOS,
Proposition 3.3]. Fix any g > ¢ V 2; then (3.2.4) can be obtained as follows. Let
(u,v) € U xV and A € F; be arbitrary. Using the Burkholder-Davis-Gundy in-
equalities, the boundedness of U and V', and the assumptions on p and o, we obtain
that

_ _ T _
E | sup ‘Zf’:(s)’qlA} < cE [1+\z|q1A+/ sup |2, (s)|" 1adr],
t<s<rt ’ t t<s<r '
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where ¢ is a universal constant and 7 is any stopping time such that Z; C(AT) s

bounded. Applying Gronwall’s inequality and letting 7 — T', we deduce that

(|22 1] <E | swp [2200] 14

< E[1+]2|714].
t<u<T

Since A € F; was arbitrary, this implies (3.2.4). To verify the condition (3.2.5), we

1

and estimate the right-hand side with the above arguments. Finally, the same

note that the flow property yields

ZY70 () = Zos > (T)

sz -z = |z,

arguments can be used to verify (R2).

Remark 3.3.2. We emphasize that our definition of a strategy u € 4l does not in-
clude regularity assumptions on the mapping v — u[v]. This is in contrast to [BY11],
where a continuity condition is imposed, enabling the authors to deal with the selec-
tion problem for strategies in the context of a stochastic differential game and use
the traditional formulation of the value functions in terms of infima (not essential in-
fima) and suprema. Let us mention, however, that such regularity assumptions may

preclude existence of optimal strategies in concrete examples (see also Remark 3.4.2).

3.3.2 PDE for the reachability set A

In this section, we show how the PDE for the reachability set A from (3.2.2) can
be deduced from the geometric dynamic programming principle of Corollary 3.2.3.
This equation is stated in terms of the indicator function of the complement of the
graph of A,

0 if (z,p) € A(?)

X(t, 2,p) = 1= 1p(2,p) = ,
1 otherwise,

and its lower semicontinuous envelope

«(t, z,p) == lim inf t' 2 p).
i ) (t’,Z’,p’)%(tz,p)X( )
Corresponding results for the case without adverse player have been obtain
in [BET09, ST02c|; we extend their arguments to account for the presence of v and
the fact that we only have a relaxed GDP. We begin by rephrasing Corollary 3.2.3

in terms of y.

Lemma 3.3.1. Fiz (t,2,p) € [0,T] x R x R.
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(GDP1,) Assume that x(t,z,p +¢) = 0 for some ¢ > 0. Then there exist u € Y
and {”,v € V} C A such that

X« (7, Z57 (1), Pto"; (1)) =0 P-as. forallveV and T € T;.

(GDP2,) Let ¢ be a continuous function such that ¢ > x and let O C [0, T]x R¢xR
be a bounded open set containing (t,z,p). Let (u,a) € U x A and n > 0 be such that

® (T”, zZ (), P;LV] (TV)) <1-n P-as. forallveV, (3.3.2)

where TV denotes the first exit time of (‘, zZ"r PGM) from O. Then x(t,z,p—e) =0

t,z) " tp
for all e > 0.

Proof.  After observing that (z,p +¢) € A(¢t) if and only if x(¢,z,p +¢€) =0
and that (z,p) € A(t) implies x.(t,z,p) = 0, (GDP1,) follows from Corollary 3.2.3,
whose conditions are satisfied by Proposition 3.3.1. We now prove (GDP2,). Since

© is continuous and 00 is compact, we can find ¢ > 0 such that

¢ <1 on a t-neighborhood of 00 N {p <1 —n}.
As x < ¢, it follows that (3.3.2) implies

(Z2 (77), MY (7)) € A(7¥) P-as. forall v e V.

Now Corollary 3.2.3 yields that (z,p — ¢) € A(t); i.e., x(t,z,p — ) = 0.

Given a suitably differentiable function ¢ = o(t, z,p) on [0, T] x R, we shall
denote by ;¢ its derivative with respect to ¢ and by D¢ and D?¢ the Jacobian and
the Hessian matrix with respect to (z,p), respectively. Given u € U, a € R? and

v € V, we can then define the Dynkin operator

u,a,v 1
£(7ZV}D)SD = 815%0 + M(Z,P)('? u, U)TDSD + §TI' |:O-(Z,P)U(TZ7P)('7 u, a, v)ngo]

7] o
K(z,p) ‘= 0] 0(z,P)('7a,')f: a |

To introduce the associated relaxed Hamiltonians, we first define the relaxed kernel

with coefficients

N:(z,q,v) = {(u,a) eU x R?: ‘Uz—zvp)(z,u,a,v)q‘ < 6}, e>0

for (t,2) € [0,7] x R% ¢ € R¥! and v € V, as well as the set Np;,(2,q) of all

continuous functions

(G,0) : REX RV 5 U xRY, (2, ¢,0) — (4,a)(2, ¢, v)
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that are locally Lipschitz continuous in (z/,¢’), uniformly in ¢/, and satisfy
(t,a) €e Ny on B xV, for some neighborhood B of (z,q).

The local Lipschitz continuity will be used to ensure the local wellposedness of the

SDE for a Markovian strategy defined via (,a). Setting

1
F(®7 u, a, U) = {_IU'(Z,P) (Z, u, U)Tq - §TI' [U(Z,P)O—EFZ,P) (Za u, a, U)A] }

for © = (2,¢q, A) € R x R* x S¥*1 and (u, a,v) € U x R? x V, we can then define

the relaxed Hamiltonians

H*(©) := inf limsup sup F(O u,a,v), (3.3.3)
VeV £\,0,0’ =6 (u,a)EN- (O )
H,(©) = sup inf F(©,4(0,v),a(0,v),v). (3.3.4)

(1,a)EN i (©) VEV

(In (3.3.4), it is not necessary to take the relaxation ©' — © because inf ey F' is
already lower semicontinuous.) The question whether H* = H, is postponed to the
monotone setting of the next section; see Remark 3.3.6.

We are now in the position to derive the PDE for x; in the following, we write
H*o(t, z,p) for H*(z,p, Do(t, z,p), D*¢(t, z,p)), and similarly for H,.

Theorem 3.3.3. The function X is a viscosity supersolution on [0,T) x R of
(=0 + H")p > 0.

The function x* is a viscosity subsolution on [0,T) x R of
(=0 + Hy)p <0.

Proof.

Step 1: x. s a viscosity supersolution.

Let (to, 20, Po) € [0,T) x R x R and let ¢ be a smooth function such that

trict i e = 9) = (X« — ©) (tos 20, Do) = 0. 3.3.5
(SrIC)[()’Tl)fglﬂgde(x ©) = (xx = ¢) (to, 20, Po) (3.3.5)

We suppose that
(_at + H*)Sp(tm ZOapo) <-2n<0 (336)

for some n > 0 and work towards a contradiction. Using the continuity of p and
o and the definition of the upper-semicontinuous operator H*, we can find v, € V
and € > 0 such that

—Lypy et z,p) <

-n
(3.3.7)
for all (u,a) € Nz (z,p, Dp(t, z,p),v,) and (t, z,p) € Be,
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where B := B:(t,, 20, po) denotes the open ball of radius € around (¢,, 25, p). Let
0B; = {to + 5} X Bz—:(zmpo) U [tmto + 5) X aBE(zmpo)

denote the parabolic boundary of B, and set

¢ :=mn(x. — ¢).

In view of (3.3.5), we have ¢ > 0.
Next, we claim that there exists a sequence (tn, Zn, Pn, €n)n>1 C Be X (0, 1) such
that

(tn, Zns Pns€n) = (to, 20,P0,0) and  X(tn,2zn,pn +en) =0 foralln>1. (3.3.8)
In view of x € {0, 1}, it suffices to show that

X*(towzoapo) =0. (339)

Suppose that xu«(to, 20,P0) > 0, then the lower semicontinuity of y, yields that
X« > 0 and therefore y = 1 on a neighborhood of (,, 2, po), Which implies that ¢

has a strict local maximum in (t,, 2o, po) and thus

8t90(t0a Zoapo) S 07 D@(tm ZO?pO) = 07 D2<)0(t07 Zo,po) S O

This clearly contradicts (3.3.7), and so the claim follows.
For any n > 1, the equality in (3.3.8) and (GDP1,) of Lemma 3.3.1 yield u” € {4
and {a™",v € V} C A such that

Xo (EA Ty ZMEATR), PP(EATR)) =0, >ty (3.3.10)

where
(27(s), P"(s)) = (21022 (), P2l ()
and
Tp = inf{s > t, : (s,2"(s),P"(s)) ¢ B:}.

(In the above, v, € V is viewed as a constant element of V.) By (3.3.10), (3.3.5)

and the definitions of ¢ and 7,,
—(, Z", Pt A1) = (X« —0) (-, Z", P")(t A Tp) > (1t > 1, > 0.

Applying Itd’s formula to —p(-, Z™, P™), we deduce that

tATh tATh
S (t) = Sn(0) +/t 50 (r) dr—l—/t S (r) AW, > —C1t < 7y (3.3.11)
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where
Sn(O) = _C - Qﬁ(tn, vapn)a
Salr) = —LGH o (20 (), PU(r),
Sa(r) = =Dy (r,Z"(r), P"(r))" o(z.p) (Z"(r), u[ve], ™", v,) .

Define the set
Ay = [tn, ] N {0n > —n};
then (3.3.7) and the definition of A imply that

|Xn] > on A,. (3.3.12)

Lemma 3.3.2. After diminishing ¢ > 0 if necessary, the stochastic exponential

Ea() =€ <_ /tA %En(r)lAn(r) dWr>

is well-defined and o true martingale for all n > 1.

This lemma is proved below. Admitting its result for the moment, integration

by parts yields
tATh
(BnSu)(tAT) = Sn(0)+ / Enbulac dr
tn

tATH 5
+/ E, <En - Sn"22n1An> aw.
tn [%n]

As E, > 0, it then follows from the definition of A, that E,6,14¢ < 0 and so E,S,
is a local supermartingale; in fact, it is a true supermartingale since it is bounded

from below by the martingale —CE,,. In view of (3.3.11), we deduce that
—¢— ‘P(tna Znypn) = (EnSn)(tn) >E [(Ensn)(Tn)] > —(CE [1771 < TnEn(Tn)] =0,
which yields a contradiction due to ¢ > 0 and the fact that, by (3.3.9),
QO(tna Zmpn) — 90(t07 207po) = X*(tm Zoapo) =0.
Step 2: x* is a viscosity subsolution.
Let (to, 20, Do) € [0,T) x R x R and let ¢ be a smooth function such that
max (X* - QD) = (X* - @)(tm Zoapo) =0.
[0,T)xRExR

In order to prove that (—0; + H.)@(to, 20, P0) < 0, we assume for contradiction that

(=0 + Hi)p(to, 20,P0) > 0. (3.3.13)
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An argument analogous to the proof of (3.3.9) shows that x*(¢o, 20,p0) = 1. Con-
sider a sequence (tp, 2, Pny €n)n>1 in [0,7) x R x R x (0,1) such that

(tnvzn’pn - Enagn) — (tmzoapmo) and X(tn,ZmPn - 5n) — X*(tmzoapo) =1.

Since x takes values in {0, 1}, we must have

X(tns 2n,Pn — €n) = 1 (3.3.14)

for all n large enough. Set
@(tv'Z?p) = QD(t,Z,p) + |t - tO‘Q + |Z - 20’4 + ‘p _p0’4-

Then the inequality (3.3.13) and the definition of H, imply that we can find (4, a)
in Nrip(-, DP)(to, 20, Do) such that

. (4,a)(-,D@,v),v ~ L
;g‘f/ <_‘C(Z,P) v 90) >0 on B := B (to, 20, Do) » (3.3.15)

for some € > 0. By the definition of Np;,, after possibly changing € > 0, we have
(@,a) € No(-,Dp,-)  on B: X V. (3.3.16)

Moreover, we have
©>p+mn on dB. (3.3.17)

for some 1 > 0. Since @(ty, 2n, Pn) — ©(to, 20, Do) = X*(to, 20, Po) = 1, we can find

n such that
P(tns 2npn) < 1+1n/2 (3.3.18)
and such that (3.3.14) is satisfied. We fix this n for the remainder of the proof.
For brevity, we write (4, a)(t, z,p,v) for (4,a)(z,p, D(t, z,p),v) in the sequel.
Exploiting the definition of Np;,, we can then define the mapping (u,a)[-] : V —
U x A implicitly via

(ﬁ7 a) [V] = (ﬂa &) ('> Zfil,jl;lu7 Pti[zj;nv V) 1[tn,TV})
where
7V .= inf {r >t, <T, Z;T[lji:(r), Pti[l,jzln (r)) ¢ BE} .
We observe that {t and a are non-anticipating; that is, (i,a) € 4 x 2. Let us

write (ZY, P¥) for z5 Py ¢o alleviate the notation. Since X < x* < o, the
2

t’ﬂ 7Zn ’ tn :pn

continuity of the paths of Z¥ and P¥ and (3.3.17) lead to

p (17, 27(r"), PY(17)) < ¢ (77, 27(7"), P* (")) — .
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On the other hand, in view of (3.3.15) and (3.3.16), 1t6’s formula applied to ¢ on
[tn, TV] yields that

@ (1%, Z27(1Y), P*(1")) < & (tn, 20 Pn) -
Therefore, the previous inequality and (3.3.18) show that
@ (7, 2%(r"), P"(1")) < @ (tn, 2n,pn) = < 1 —1/2.

By (GDP2,) of Lemma 3.3.1, we deduce that x (¢, zn, pn — &) = 0, which contra-
dicts (3.3.14).
To complete the proof of the theorem, we still need to show Lemma 3.3.2. To

this end, we first make the following observation.

Lemma 3.3.3. Let a € L} (W) be such that M = [ adW is a bounded martingale

and let B be an R%-valued, progressively measurable process such that |5 < c¢(1+|al)

for some constant c. Then the stochastic exponential E( [ BdW) is a true martingale.

Proof. The assumption clearly implies that fOT |Bs|? ds < oo P-a.s. Since M is
bounded, we have in particular that M € BMO; i.e.,

T
E U o] ds m]

In view of the assumption, the same holds with « replaced by 3, so that [ fdW is in
BMO. This implies that £( [ 8dW) is a true martingale; cf. [Kaz94, Theorem 2.3|.
Proof. [Proof of Lemma 3.3.2] Consider the process

sup < 00.

7€To

’ oo

5
Balr) = En((jf)),an(r)lAn (r);
we show that
|Ba| < (1 + [a™"]) on [tn, 7] (3.3.19)

for some ¢ > 0. Then, the result will follow by applying Lemma 3.3.3 to o™ 1, - 1
note that the stochastic integral of this process is bounded by the definition of 7,.

To prove (3.3.19), we distinguish two cases.

Case 1: Opp(to, 2o, po) # 0. Using that p and o are continuous and that U and B.
are bounded, tracing the definitions yields that

0] < {1+ ||+ o™ 2| 9ppp (-, Z", P} on [tn, ],

while
|Xn| > —c+ o™ ||0pp(-, 2, P™)|  on [tn, ],
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for some ¢ > 0. Since 0y (to, 20,P0) # 0 by assumption, dpp is uniformly bounded
away from zero on B, after diminishing £ > 0 if necessary. Hence, recalling (3.3.12),

there is a cancelation between |0,| and |X,,| which allows us to conclude (3.3.19).

Case 2: Opp(to, 20, P0) = 0. We first observe that
O <e(14 |a™be]) — cil|a"’”0\28ppap(-, Z" P") on [ty, ]

for some ¢ > 0. Since §, and |X,|™! are uniformly bounded on A,, it therefore
suffices to show that Oy, > 0 on B.. To see this, we note that (3.3.6) and the
relaxation in the definition (3.3.3) of H* imply that there exists ¢ > 0 such that, for
every v € V and all small € > 0,

— 04p(to, 20, Do) + F (O, u,a,v) < —ny  for all (u,a) € N-(0"), (3.3.20)

where ©° = (z9,po, Dp, A*) and A* is the same matrix as D?(t,, 20, po) €xcept
that the entry dppe(to, 20, Do) is replaced by Oppp(to, 20, Po) — t. Going back to the
definition of A, we observe that N.(©") does no depend on ¢ and, which is the
crucial part, the assumption that d,p(to, 20, p0) = 0 implies that N:(©") is of the
form NV x R%; that is, the variable a is unconstrained. Now (3.3.20) and the last

observation show that

_(8pp90(t0a Zoy Do) — L)|a|2 <c(1+lal)

for all a € R, so we deduce that Oppp(to, 20, P0) > ¢ > 0. Thus, after diminishing

€ > 0 if necessary, we have d,,¢ > 0 on B as desired. This completes the proof.

Remark 3.3.4. Lemma 3.3.2 consists in an alternative proof to fix the integrabil-
ity issue in the previous literature (see Assumption 2.2.3 and Remark 2.2.6 of the
previous chapter). More specifically, this result should be related to Assumption
2.3.4, where Assumption 2.2.3 and Lemma 2.2.1 allows to deal with the more gen-
eral framework of Bouchard, Elie and Touzi [BET09, Section 2| or [Morll, Section

2]).
3.3.3 PDE in the monotone case

We now specialize the setup of Section 3.3.1 to the case where the state process Z

consists of a pair of processes (X,Y) with values in R%~! x R and the loss function
(:RITIXR SR, (x,y)— lz,y)

is nondecreasing in the scalar variable y. This setting, which was previously studied
in [BET09] for the case without adverse control, will allow for a more explicit de-

scription of A which is particularly suitable for applications in mathematical finance.
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or (t,z,y) € |0, T]| x R xR and (w,v) el x V, let 2, . = ) ) e
F 0,7] x R1 x R and UxV,let 2 XM yhY Y b

tey T \heo Ttwy
the strong solution of (3.3.1) with

(e, y,u,v) = ( MX(%%U)) ) ;o o(x,y,u,0) 1= < ox (@, u,v) >7

uy(x,y,u,v UY(xay7u7v)

where py and oy take values in R and R'*?, respectively. The assumptions from
Section 3.3.1 remain in force; in particular, the continuity and growth assumptions

on p and o. In this setup, we can consider the real-valued function

v(t,z,p) :=inf{y e R: (z,y,p) € A(t)}.

In mathematical finance, this may describe the minimal capital y such that the
given target can be reached by trading in the securities market modeled by tht s an
illustration is given in the subsequent section. In the present context, Corollary 3.2.3

reads as follows.

Lemma 3.3.4. Fiz (t,2,y,p) € [0,T] x R x R x R and assume that ~y is locally
bounded.

(GDP1,) Assume that y > (t,z,p +¢€) for some € > 0. Then there exist u € Y
and {a”,v € V} C A such that

VA7) > e (1, X0 (1), PRy (7)) Peas. forallv €V and 7 € T

(GDP2,) Let ¢ be a continuous function such that ¢ > v and let O C [0,T] x

R~ x R be a bounded open set containing (t,z,p). Let (u,a) € U x A and n > 0 be
such that
Xﬁlgy(T”) > (T, X;’:(TV>, P;I[)V} (T”)) +n P-a.s forallveV,

where TV is the first exit time of (-, X}/, Y, Pa[y]) from O. Theny > ~(t,x,p—e¢)

L “tayr ©Lp
for all e > 0.

Proof. Noting that y > (¢, z,p) implies (z,y,p) € A(t) and that (x,y,p) € A(t)
implies y > (¢, z,p), the result follows from Corollary 3.2.3 by arguments similar
to the proof of Lemma 3.3.1.

The Hamiltonians G* and G, for the PDE describing v are defined like H* and
H, in (3.3.3) and (3.3.4), but with

1
F(@,u,a,v) = MY(xuya U,U) - M(X,P)(xvuu U)Tq - §TI' U(X,P)U(T)(’P)(xvuu CL,’U)A
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where © := (2,7,¢, A) € R x R x R? x S¢ and

T,U,v o (2,1,
px,p) (@, u, a,0) = ( wx( 0 ) ) ,ox,py (T, u,a,v) = ( x{ ’ ) ) ’

with the relaxed kernel N: replaced by
/Cs(f&% q,'U) = {(U, (1) eUxR: ‘O-Y("L‘a Y, U7U) - qTO-(X,P)(maua (I,U)) < 5} ’

and Np;, replaced by a set Kp;,, defined like Nz, but in terms of Ky instead of No.

We then have the following result for the semicontinuous envelopes v* and ~, of .

Theorem 3.3.5. Assume that ~v is locally bounded. Then ~, is a viscosity superso-
lution on [0,T) x R x R of

(=0 +G*)p >0
and v* is a viscosity subsolution on [0,T) x R™! x R of

Proof. The result follows from Lemma 3.3.4 by adapting the proof of [BET09,
Theorem 2.1], using the arguments from the proof of Theorem 3.3.3 to account for
the game-theoretic setting and the relaxed formulation of the GDP. We therefore
omit the details.

We shall not discuss in this generality the boundary conditions as ¢t — T'; they
are somewhat complicated to state but can be deduced similarly as in [BET09].
Obtaining a comparison theorem at the present level of generality seems difficult,
mainly due to the presence of the sets K. and Kp;, (which depend on the solution
itself) and the discontinuity of the nonlinearities at d,¢ = 0. It seems more appro-
priate the treat this question on a case-by-case basis. In fact, once G* = G, (see
also Remark 3.3.6), the challenges in proving comparison are similar as in the case
without adverse player. For that case, comparison results have been obtained, e.g.,

in [BV11] for a specific setting (see also the references therein for more examples).

Remark 3.3.6. Let us discuss briefly the question whether G* = G,. We shall
focus on the case where U is convex and the (nondecreasing) function + is strictly
increasing with respect to p; in this case, we are interested only in test functions
¢ with dp,¢ > 0. It is not hard to see that for such functions, the relaxation
e\, 0,0’ — O in (3.3.3) is superfluous, so we are left with the question whether

inf sup  G(O,u,a,v) = sup inf G(©,4(0,v),a(0,v),v).
VEV (u,a)€K0(O,v) (4,8) €K 1:p(©) VEV
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The inequality “>” is clear. The converse inequality will hold if, say, for each £ > 0,
there exists a locally Lipschitz mapping (4., a.) € Kp;p, such that
G(-, (e, ae)(yv),v) > sup  G(,,u,a,v) —¢cforallveV.
(u,a)€L0(-v)

Conditions for the existence of e-optimal continuous selectors can be found in [KN87,
Theorem 3.2]. If (ue,ac) is an e-optimal continuous selector, the definition of o
entails that al (0,v)q, = —0 (2, u(0,v),v)q: + oy (x,y,u:(O,v),v), where we
use the notation © = (x,y,p, (¢, qp)T,A). Then wu, can be further approximated,
uniformly on compact sets, by a locally Lipschitz function @.. We may restrict our
attention to g, > 0; so that, if we assume that ¢ is (jointly) locally Lipschitz, the
mapping @/ (0,v) = (gp) ' (o % (z,4:(0,v),0)qs + oy (2, y, (0, v),v)) is locally
Lipschitz and then (4., a.) defines a sufficiently good, locally Lipschitz continuous
selector: for all v € V,

G(-, (tg, ac)(-,v),v) > G(+, (ug,ae)(-,v),v) —Oc(1) > sup G(-,u,a,v)—e—0(1)

(u,0)€Ko

on a neighborhood of ©, where O-(1) — 0 as € — 0. One can similarly discuss other
cases; e.g, when ~ is strictly concave (instead of increasing) with respect to p and
the mapping (,y, ¢z, u,v) = —0 (T, u,v)q; + oy (z,y,u,v) is invertible in u, with

an inverse that is locally Lipschitz, uniformly in v.

3.4 Application to hedging under uncertainty

In this section, we illustrate our general results in a concrete example, and use the
opportunity to show how to extend them to a case with unbounded strategies. To
this end, we shall consider a problem of partial hedging under Knightian uncertainty.
More precisely, the uncertainty concerns the drift and volatility coefficients of the
risky asset and we aim at controlling a function of the hedging error; the correspond-
ing worst-case analysis is equivalent to a game where the adverse player chooses the
coefficients. This problem is related to the G-expectation of [Pen07, Pen08], the sec-
ond order target problem of [STZ10| and the problem of optimal arbitrage studied
in [FK11|. We let
V = [l x [0.7]

be the possible values of the coefficients, where p<0<nu and @ > g > 0. Moreover,
U = R will be the possible values for the investment policy, so that, in contrast to
the previous sections, U is not bounded.

The notation is the same as in the previous section, except for an integrability
condition for the strategies that will be introduced below to account for the un-

boundedness of U, moreover, we shall sometimes write v = (u, o) for an adverse
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control v € V. Given (p,0) € V and u € 4, the state process Z;,, = (X{,,Y},) is

governed by

Xtal) o dr 4 ordWy, XPA(E) =
m—ﬂr T+ oraWy, te(t) =2

and

ayyy (r) = ulv], (ue dr + 0. dW,), Y (1) = .

To wit, the process Xy, represents the price of a risky asset with unknown drift and
volatility coefficients (u, o), while Yt“y” stands for the wealth process associated to
an investment policy u[v]|, denominated in monetary amounts. (The interest rate
is zero for simplicity.) We remark that it is clearly necessary to use strategies in
this setup: even a simple stop-loss investment policy cannot be implemented as a
control.

Our loss function is of the form

Uz, y) = V(y — g(x)),

where ¥, g : R — R are continuous functions of polynomial growth. The function ¥
is also assumed to be strictly increasing and concave, with an inverse =1 : R — R
that is again of polynomial growth. As a consequence, ¢ is continuous and (3.2.3)

is satisfied for some g > 0; that is,
02)] < C(1L+ 1217), 2 = (2,y) € B2 (3.4.1)

We interpret g(X{,(T)) as the random payoff of a European option written on
the risky asset, for a given realization of the drift and volatility processes, while W
quantifies the disutility of the hedging error Y;;"(T) — g(X{,(T). In this setup,

v(t,z,p) =inf {y e R: Jue Ust. B[O (T) - g(X{(T)|F] >p P-as. Vv eV}

is the minimal price for the option allowing to find a hedging policy such that the
expected disutility of the hedging error is controlled by p.
We fix a finite constant ¢ > ¢V2 and define 4l to be the set of mappingsu: V — U

that are non-anticipating (as in Section 3.3) and satisfy the integrability condition

/O " o 2dr

The conclusions below do not depend on the choice of §. The main result of this

q
2
supE < 0. (3.4.2)
vey

section is an explicit expression for the price v(t, z, p).
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Theorem 3.4.1. Let (t,x,p) € [0,T] x (0,00) x R. Then ~(t,z,p) is finite and
given by

y(t,x,p) = sup E [g (X}, (T))] + ¥ (p),
ve)0 (343)

where VO = {(u,0) €V : p=0}.

In particular, y(¢, z, p) coincides with the superhedging price for the shifted op-
tion g(-) + ¥~!(p) in the (driftless) uncertain volatility model for [o,5]; see also
below. That is, the drift uncertainty has no impact on the price, provided that
# < 0 < . Let us remark, in this respect, that the present setup corresponds to
an investor who knows the present and historical drift and volatility of the underly-
ing. It may also be interesting to study the case where only the trajectories of the
underlying (and therefore the volatility, but not necessarily the drift) are observed.

This, however, does not correspond to the type of game studied in this chapter.

3.4.1 Proof of Theorem 3.4.1

Proof. [Proof of “>” in (3.4.3).] We may assume that ~v(¢,z,p) < co. Let y >
~(t,z,p); then there exists u € 4 such that

E [ (Y5 (T)—g(X{.(T)))] >p forallveV.

ty

As W is concave, it follows by Jensen’s inequality that

U (E [V, (T) — g (X{,(T))]) =p forallve).

Since the integrability condition (3.4.2) implies that Ytuyl' is a martingale for all
v € V0, we conclude that

U(y—E[g(X/,(T)])>=p foralve)’

and hence y > sup,cyo E [g (X/,(T))] + ¥~ (p). As y > ~(t,z,p) was arbitrary,
the claim follows.

We shall use Theorem 3.3.5 to derive the missing inequality in (3.4.3). Since
U = R is unbounded, we introduce a sequence of approximating problems -, defined

like v, but with strategies bounded by n:
Yn(t,x,p) :=inf {y e R: Jue U st. K[l (Ztuxl’y(T)) | 7] > p P-as. Vv eV},

where
Ut ={ued: |uy]| <nforall veV}

Then clearly ~, is decreasing in n and

Y >y, n>1 (3.4.4)
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Lemma 3.4.1. Let (t,z) € [0,T] x (0,00) x R, u € U, and define u,, € 4 by
up[v] == uyluly]| <n, ve.
Then
esses.]ljlp E [¢ (Z;'Z“”(T)) —/ (Z;’ZV(T)) |F]| =0 in L' as n — oc.

Proof. Using monotone convergence and an argument as in the proof of Step 1 in
Section 3.2.3, we obtain that

E {ess sup ‘E [6 (Z,?;“V(T)) 4 (Z;l’,zy(T» ’E] ‘}

vey

= ilelgE{‘f (Zzl;“ (T)) (Zz?zy )‘}

Since V is bounded, the Burkholder-Davis-Gundy inequalities show that there is a

universal constant ¢ > 0 such that

Bz - 7)) s ][ i o]

= (E [/tT u[v],1ulp],| > nf? dr]é

and hence (3.4.2) and Holder’s inequality yield that, for any given § > 0,
upP {[Z2(T) - Z2(D)] > 6} < 6~ supE {|Z8(T) — ZE(T)} — 0
vey vey

(3.4.5)
for n — oo. Similarly, the Burkholder-Davis-Gundy inequalities and (3.4.2) show
that {|Z;2"(T)| + 12, (T)|, v € V,n > 1} is bounded in L9. This yields, on the
one hand, that

sup P {|Z2"(T)| + |27 (T)| >k} =0 (3.4.6)
vey,n>1

for k — oo, and on the other hand, in view of (3.4.1) and g > ¢, that
{¢ (ZZ’;’V(T)) —0(Z(T):veV,n> 1} is uniformly integrable.  (3.4.7)
Let € > 0; then (3.4.6) and (3.4.7) show that we can choose k > 0 such that

SHPEW (2:27(T) = € (Z2 (M) Ly zow oyjizee )i

for all n. Using also that ¢ is uniformly continuous on {|z| < k}, we thus find 6 > 0
such that
sup B [[¢(2,27(T)) — £(2:2(D)) ]

vey

<2+ supl |6(Z (1) = £ (22 (D) Ly zowrry-zrryss |-
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By (3.4.5) and (3.4.7), the supremum on the right-hand side tends to zero as n — oo.
This completes the proof of Lemma 3.4.1.

Proof. [Proof of “<” in (3.4.3).] It follows from the polynomial growth of g and
the boundedness of V' that the right-hand side of (3.4.3) is finite. Thus, the already
established inequality “>" in (3.4.3) yields that (¢, x,p) > —oo. We now show the
theorem under the hypothesis that (¢, z,p) < oo for all p; we shall argue at the
end of the proof that this is automatically satisfied.

Step 1: Let yoo := inf,, . Then the upper semicontinuous envelopes of v and
Yoo COIRCIdE: ¥ = Yi.

It follows from (3.4.4) that %, > ~v*. Let n > 0 and y > (¢, z,p+2n). We show
that y > v,(t,z,p) for n large; this will imply the remaining inequality 7% < ~v*.
Indeed, the definition of v and Lemma 3.4.1 imply that we can find u € 4 and
u, € U™ such that

J(ta:l:)yﬂvln) > J(tvxayau)_€n2P+7I_€n ]P)_a's'a

where €, — 0 in L'. If K, is defined like K, but with 4" instead of {l, then it
follows that K, (t,z,y) > p+n — €, P-a.s. Recalling that K, is deterministic (cf.
Proposition 3.3.1), we may replace €, by E[e,] in this inequality. Sending n — oo,
we then see that lim,, o Ky, (¢, z,y) > p+n, and therefore K, (t,x,y) > p+n/2 for

n large enough.
Step 2: The relazed semi-limit
i (t,z,p):i=  limsup i (¢, 2, p))
n—oo
is a viscosity subsolution on [0,T) x (0,00) X R of

1
— 0o+ inf {—202m28m<p} <0 (3.4.8)

o0€lo,T]
and satisfies the boundary condition 52 (T, z,p) < g(z) + ¥~ (p).

We first show that the boundary condition is satisfied. Fix (z,p) € (0,00) x R
and let y > g(z)+ Y~ 1(p); then £(x,y) > p. Let (tn, xn,pn) — (T, z,p) be such that
Yn(tn, Tn, Pn) — Vi (T, x,p). We consider the strategy u = 0 and use the arguments

from the proof of Proposition 3.3.1 to find a constant ¢ independent of n such that

ve

Similarly as in the proof of Lemma 3.4.1, this implies that there exist constants
en — 0 such that
J(tn, Tn,y,0) > l(x,y) — e, P-as.
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In view of ¢(z,y) > p, this shows that y > v, (tn, zpn,pn) for n large enough, and
hence that y > 7% (T, z,p). As a result, we have v* (T, z,p) < g(z) + ¥~ 1(p).

It remains to show the subsolution property. Let ¢ be a smooth function and
let (to, o, po) € [0,T) x (0,00) X R be such that

(’7:0 - 30)(25071'07]90) - maX(ﬁ/;o — ()0) = 0

After passing to a subsequence, [Bar94, Lemma 4.2 yields (ty, Zn, pn) — (to, To, Do)
such that

lim (’7;; - (P)(tn, l'napn) = (’7;0 - 90)(t07$oap0)7

n—oo

and such that (¢, zn,py) is a local maximizer of (v} — ¢). Applying Theorem 3.3.5
to v, we deduce that

sup inf Go(-, (@,a) (1, 0), (11,0))(tn, Tn, ) <0, (3.4.9)
(0,0)€KP, (D) (H:0)EV

where

1
Go(-, (uya), (p,0)) :=up — Opp — pxdyp — 3 (02x23m<p + a*Oppp + 202a0,pp)

n
and KLZ-p

in [-n,n| x R such that

(-, DY) (tn, T, pn) is the set of locally Lipschitz mappings (4, ) with values

oW, ¢z, Qp, 11, 0) = £0qy + qpa(z, ¢z, gp, pb,0)  for all o € [, 7]
for all (z, (¢z, gp)) in a neighborhood of (zy, Dy(ty, Ty, pp)). Since the mapping

(0,00) x R? x [, 1] x [0,5) = R%, (2, s, qp, 11, 0) = (25, 0)

belongs to K?ip(-, Do) (ty, Tn,pn) for n large enough, (3.4.9) leads to
. L 5 9
—Op+ inf S ——072%0ppp ¢ (tn, Tn,pn) <0
o€[o,7) 2
for n large. Here the nonlinearity is continuous; therefore, sending n — oo

yields (3.4.8).

Step 3: We have 7}, < m on [0,T] x (0,00) x R, where
w(t,z,p) == sup E [g (X7,(T))] + ¥~ (p)
veV0
is the right hand side of (3.4.3).
Indeed, our assumptions on g and U1 imply that 7 is continuous with polyno-

mial growth. It then follows by standard arguments that 7 is a viscosity supersolu-
tion on [0,7) x (0,00) x R of

1
—0yp 4+ inf {—02.@283”@} >0,

o€lo,7] 2
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and clearly the boundary condition m(7T,x,p) > g(z) + ¥~!(p) is satisfied. The

claim then follows from Step 2 by comparison.

We can now deduce the theorem: We have v < ~* by the definition of v* and
v* =% by Step 1. As 4% < A% by construction, Step 3 yields the result.

It remains to show that v < oo. Indeed, this is clearly satisfied when g is
bounded from above. For the general case, we consider g,, = g A m and let v, be
the corresponding value function. Given 1 > 0, we have ~,,(t,z,p + 1) < oo for all
m and so (3.4.3) holds for g,,. We see from (3.4.3) that y := 1 +sup,, Ym(t,z,p+n)
is finite. Thus, there exist u,, € 4 such that

E (W (Y (T) = gm (X{.(T))) |Ft] = p+n/2 forallveV.
Using once more the boundedness of V| we see that for m large enough,
E [W (Y (T) — g (X{(T)))|F] =p forallveV,
which shows that (¢, z,p) <y < oco.

Remark 3.4.2. We sketch a probabilistic proof for the inequality “<” in Theo-
rem 3.4.1, for the special case without drift (4 = 7z = 0) and o > 0. We focus on
t = 0 and recall that yo := sup,ecyo E[g(Xy . (T))] is the superhedging price for g(-)
in the uncertain volatility model. More precisely, if B is the coordinate-mapping
process on € = C([0, T]; R), there exists an FP-progressively measurable process ¥
such that

T dB
70 +/ Vs 5 > g(Br) PY-as. forallve VY
0

S

where P is the law of X§, under P (see, e.g., [NS11]). Seeing ¥ as an adapted
functional of B, this implies that
g dXg,(s) 0
Yo —I—/ Vs(X( ,) ——~ > 9(Xi,(T)) P-as. for all v € V°.
0 ' X(Z)/,x<3> ’
Since X{ , is non-anticipating with respect to v, we see that u[v]s := J5(Xg ) defines
a non-anticipating strategy such that, with y := yo + ¥~1(p),

dXg,(s)

T
g+ /0 e Sy 2 9T + 97 )

that is,
w (Y1) — g(XE(T)) > p

holds even P-almost surely, rather than only in expectation, for all v € V°, and

VO =V because of our assumption that =1 = 0. In particular, we have the
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existence of an optimal strategy u. (We notice that, in this respect, it is important
that our definition of strategies does not contain regularity assumptions on v —
ufv].)

Heuristically, the case with drift uncertainty (i.e., i # 1) can be reduced to the
above by a Girsanov change of measure argument; e.g., if p is deterministic, then we
can take u[(y, o)] := u[(0,0*)], where o#(w) := o(w+ [ ut dt). However, for general
u, there are difficulties related to the fact that a Girsanov Brownian motion need
not generate the original filtration (see, e.g., [F'S97]), and we shall not enlarge on
this.
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4.1 Introduction

These last years have seen the explosion of the number of liabilities combining
pure financial and pure insurancial risks. They typically have the following form:
an insurance company sells to the client i a claim with discounted payoff ¢¢ paid
at maturity 7" whose value depends on the evolution of some tradable financial
assets S = (S¢)¢>0 and some additional idiosyncratic risk. The ¢g*’s are usually not
unconditionally independent, but still independent conditionally to S.

It is (essentially) the case of many variable annuities schemes in which death
times or withdrawals policies can be assumed to be independent conditionally to

the financial market’s behavior, see e.g. [BKR08]. This is also the case for crop



122 Chapter 4. Utility based pricing: Asymptotic Risk diversification

revenue insurance schemes that depend on the production yield of the farmer and
the market price of the crop, see e.g. [GK02]. More examples can be found in [EC00]
or [Bec03].

In such a situation, and if the financial market formed by the assets S is complete,
it is tempting to play on the ability to diversify the conditionally idiosyncratic risks
and cover the systemic pure financial risk by dynamically trading on the market.
If the ¢%’s are independent and identically distributed given S, then the price of
each of these contingent claims could be defined as p := E2[g(S)] where g(S) :=
E [gi\S] does not depend on ¢, and Q denotes the unique martingale measure on
the pure financial market (i.e. restricted to S). The rationality behind this is the
following: by an informal application of the law of large numbers conditionally to
S, we obtain the convergence Gy, /n := >.1, ¢'/n — §(S) a.s. for a large number
n of sold contracts. In the above, the payoff g(S) only depends on S and can thus
be hedged dynamically by trading on the (complete) pure financial market. Hence,
by replicating the mean payoff §(S), we end up with a zero net position in mean

(under the initial probability measure P).

This solution has been originally proposed by Brennan and Schwartz [BS79a,
BS79b|, and then applied several times, in particular in the literature on variables
annuities, see e.g. [BKRO08|, [BHO03], [MP00] or [MPY06]. However, it seems to
ignore the fact that playing with the law of large numbers on the diversifiable part
of the risk requires selling a large number of contracts, and therefore may lead to
huge positions on the financial market. If the law of large numbers does not operate
well enough, then the losses may be leveraged by an unfavorable evolution of the
financial market. More generally, the classical central limit theorem that allows to
control the asymptotic distribution of the risk in terms of the Gaussian law will in

general not apply in this context.

One classical solution for pricing such claims is to use the indifference pricing
rule of Hodge-Neuberger [HN89], see e.g. [Bec03]| for the exponential utility case. As
expected, it typically does not lead to the price p defined as above, see Section 4.2.2
for trivial counter-examples. However, one should intuitively recover it asymptoti-
cally when the number of sold contracts is large, so that the conditional law of large

numbers can operate, and the risk aversion is small.

In this note, we provide sufficient conditions under which the above holds
true. Namely, we consider a family of utility functions (U )y, defined on R, with
corresponding absolute risk aversion (r,), and indifference prices (npy), for the
aggregate claims (Gy,),. Under mild assumptions detailed in Section 4.3.2, we show
that n — oo and n|ry|e — 0 implies p, — P, whenever the underlying financial

market formed by the liquid financial assets S is complete. This follows from a more
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general asymptotic result derived in Section 4.3.1, which provides a formulation for
the asymptotic unit price lim,, p,, in terms of the sequence of martingales measures
minimizing the corresponding dual problems. The latter applies to incomplete
financial markets without providing a clear identification of the asymptotic pricing
measure, except when (U, ), behaves asymptotically like a sequence of exponential
utility functions. In this case, we show that p, — p¢ := EQ°[§(S)] where Q€ is the
martingale measure with minimum relative entropy, see Section 4.3.3. This general-
izes to our setting the well-known property that the exponential utility indifference
price of a claim converges to the risk neutral price under Q° for vanishing risk
aversion, see [EKR00| and [Bec03]. Note that a similar result is obtained in [Bec03]
for the indifference price of the mean payoff G, := G, /n =3I, g'/n as n goes to

infinity and the risk aversion is fixed, which is a completely different situation.

In the following, any assertion involving random variables has to be understood
in the a.s. sense. Given a probability measure Q and a sigma-algebra G, we denote by
LY(Q,G) (resp. L>®(Q,G)) the space of Q-integrable (resp. Q-essentially bounded)
random variables that are G-measurable. We omit the argument Q or G if it is

clearly given by the context.

4.2 Diversification based pricing rules and risk aversion

In this section, we describe the financial market and elaborate on the relation be-

tween diversification and utility indifference pricing.

4.2.1 The market model

From now on, we fix a time horizon 7' > 0 to avoid unnecessary technical is-
sues, although for some applications (e.g. mortality/longetivity linked contracts)
it should in principle be infinite. We consider a model of a security market
which consists of d stocks with price process described by a locally bounded
cadlag semi-martingale (S i)lgigd defined on some complete filtered probability space
(Q,F,F = (F)o<t<t,P), with [ satisfying the usual assumptions and F = Fr. As
usual, we normalize the risk free rate to 0 for simplicity, which can always been done

by considering discounted values.

A (self financing) strategy is defined as an element ¥ = (9")1<;<q of the set ©
of F-predictable S-integrable processes. Given an initial endowment x € R and a

strategy ¥ € O, the induced wealth process X%V = (Xf’ﬁ)ogtST is given by

t
Xf”“—x+/q9u~d5u, 0<t<T.
0
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In order to avoid doubling strategies, we restrict as usual to strategies leading to
bounded from below wealth processes. We denote by X(z) the family of terminal

values of wealth processes starting from z such that the above holds:
x0(z) = {X%’ﬁ 9 €0, X% >k on [0,T] for some k € ]R} . (4.2.1)

Note that X(z) = x + X°(0).

As usual, a probability measure Q is called an equivalent local martingale mea-
sure if it is equivalent to P and if S is a (F,Q)-local martingale. The family of
equivalent local martingales will be denoted by M. We assume throughout this
chapter that

M £, (4.2.2)

which ensures the absence of arbitrage opportunities (in the no-free lunch with
vanishing risk sense), see [DS94] for details. In the following, we will often use the
notation Q* to denote a fixed element of M.

Note that we do not impose that Fr equals Fy, where F¥ = (F);<r is the
completion of the right-continuous filtration generated by S, in order to allow for
additional randomness.

However, we shall often consider that the pure financial market is complete in

the following sense.

Definition 4.2.1. We say that the pure financial market is complete, in short
(HCM) holds, if

EY [¢] = EQ[¢] for all Q € M and € € L°(F3),

where L>®°(F3) denotes the set of essentially bounded F3-measurable random vari-

ables.

Remark 4.2.2. Under (HCM), we must have £ € XY(EQ[¢]) for all £ € L>(F3).
See [DS94].

Remark 4.2.3. Note that, if ]-'r_,s C Frp, then (HCM) only implies that the pure

financial market is complete in the sense of Remark 4.2.2, and not that M is reduced
to a singleton. As an example, assume that we can find A € Fp such that P[A] > 0
and A is independent of F7 given F for all s € [0, 7] under P. Set H* := dQ* /dP,
H*(S) := E[H*|F?] and HY := eH* + (1 — &) H*(S)1 /P [A] for some ¢ € (0,1].

Then, for any increasing sequence of F¥-stopping times (73)g>1 such that S (k) =
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S.A7, 1s bounded on [0, 7] for all k > 1, we have

E[Hf‘&fk)\}'s} - EE[H*yfs]S§k>+(1—5)E[ [H*st(’“)\fﬂ Mfs} J/P[A]

5 &

= CE[H'|F) P + (1 - )E [E[#s{|1 7] 17| B[4l 7] /P (4]
= (E[H'|F]+ (1 - )E[H(S)| %] PAIF] /P[4]) S
= E[H5|7] 5V

for 0 < s <t < T, which shows that the measure Q% defined by dQ% /dP = H
belongs to M. In general Q% # Q*.

Remark 4.2.4. The same arguments as in Remark 4.2.3 imply that Q*(S) defined
by dQ*(S) = E [dQ*/dP|F3] dP belongs to M. Note for later use that dQ*(S) =
E [dQ/dP|F3] dP for any Q € M when (HCM) holds.

Remark 4.2.5. Assume that F can be written as (F V Fi*)i<7 for some filtration
Ft = (ff)th independent of F¥ under P, and satisfying the usual conditions.
Then, any A € ]-':,% is independent of ]-"rﬁ given F for all s € [0, 7] under P. Indeed,
under the above assumption, F; is generated by elements of the form BY N By with
BY € FS and Bf € Fi-. Given ¢ € L®(F5), we then have

E [5]13%354 =E [E €| 77T ]lB;?: E []lBSL] =E [E €| 77T ]lBgmBSL] ;

so that E [¢|FF] = E [¢|F,]. Similarly, E [14|F;] = E[14]|F,]. Moreover,

E [gnAntmBé} —E [511355] E [nAnBSL: —E [E (| FS] 1135] E [E [nAyfj} 11384
which, combined with the above assertions, leads to
E [fﬂAﬂggmsg} =E {E €1 FS] 1 psE []114\]'?} 1135]
—E [E[IFE[LalF] Lpsan: ]

Hence, E [§1A|fs] =E [f‘Fs] E [1A|~Fs]'

4.2.2 Diversification and utility based pricing

We are interested in the pricing by utility indifference, see [HN89]|, of aggregated

claims of the form

n
Gn ::Zgi, n>1,
i=1

where (g');>1 is a given sequence of random variables.
Although the specific structure of the G,’s is not so important from the math-

ematical point of view, we have in mind that each ¢’ corresponds to a contingent
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claim sold by an insurance company to a specific agent 4, and that the ¢g*’s have the
same law and are independent conditionally to .7:75: under P. This means that the
¢"’s may depend of two sources or risks. One related to the pure financial market
behavior, i.e. S, the other one coming from an external source of randomness which

only depends on the agent 1.

Example 4.2.1 (Revenue insurance). Let S denote the spot price of one quintal of
wheat on the financial market and let Y denotes the number of quintals produced
by the farmer i at time 7. The payoff of a revenue insurance takes the form ¢’ =
[K — Y'Sy|* for some strike K > 0 fixed in advance. It compensates the losses
incurred by the farmer i if his revenue Y?Sp, induced by the sale of the production
at the spot price St at time T, is less than a targeted level K. If the wheat market
contains enough futures and provides enough liquidity, we can consider that it is
complete. Moreover, we can also consider that the global level of production (at the
level of a sufficiently large area) is already reflected into the prices so that the Y?’s

can be assumed to be independent given .7-}@ .

Example 4.2.2 (Mortality derivatives). A simple example takes the form ¢' =
f(S,¢%) where f is a real valued measurable map on D x ([0,7] U {oc}), with D
denoting the set of cadlag R%valued functions on [0, T'] (endowed with the Skorohod
topology), and ¢’ is a [0, T]-valued random variable denoting the time of death of i
if it is before T and taking the value co otherwise. Again, one source of randomness
comes from the financial market, while the (*’s can generally be assumed to be

independent and with the same law (at least among a given sub-population).

Under the above interpretation, the global liability of the insurance company
is G, if the contracts have been subscribed by the clients 1 to n. If the insurance
company does not differentiate its clients, then it has to fix the same price p, to

each of them.

If the global market was complete, meaning that M = {Q*}, and the law of
G, /n under Q* was independent on n, then p, should be equal to p := E2" [G,,/n].
Obviously the completeness of the global market typically fails for the examples
we have in mind. Still, as explained in the introduction, this pricing rule has been
proposed in the literature for the case where (HCM) holds and (g');>1 is a sequence
of independent and identically distributed random variables given ]-'*T9 . The latter
has essentially to be understood in the sense that one can appeal to the law of large

numbers, at least conditionally to F3, so that

Gn/n — g P-a.s. for some g € L°(F2). (4.2.3)
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Under (HCM), one can indeed find ¥ € O such that
x5’ =g for p=E¥ [g],
recall Remark 4.2.2. Then, (4.2.3) implies that

Xnﬁ,nﬂ B Gn
r  -n —0 P—a.s.
n

i.e. by replicating ng we end up with a hedging error that converges P-a.s. to 0. This
is achieved by considering the strategy nv and starting from the n initial premiums,

each equal to p.

This is however inconsistent with the typical behavior of a risk adverse agent.
In particular, it has no reason to be in accordance with a (unit) utility indifference

price defined by

pn(Gn,U):=inf{peR: sup E[UX —-G,)]> sup E[UX)]}, (4.24)
Xexb(np) Xexb(0)

where U is a concave non-decreasing function viewed as a utility function, and

where we restrict to a 0 initial endowment (before selling the claims) without loss of

generality since any fixed initial wealth can be incorporated in the utility function

by a simple translation argument.

We conclude this section with simple counter-examples, where we observe that
the limit of the asymptotic utility indifference price p,, (G, U) indeed does not coin-
cide with the price of g computed under Q*. In order to find conditions under which
this commonly used pricing rule holds at the limit, we will therefore consider in the
next section agents with “almost zero” risk aversion. The first example concerns

utility functions with bounded from below domains.

Example 4.2.3 (Utility with bounded from below domain). Let U be concave non-
decreasing with values in R U {—o0} such that |U(0)| + |U(c0)| < oo and U(—c) =
—oo for some ¢ > 0. Let p,, := pp(Gy, U) be defined as in (4.2.4). Since U(0) > —o0
and U is bounded from above, for each & > 0, there must exist £&¢ € X¥°(0) such
that np, + € +&§™° > G, — ¢. This implies that p, > supgem EQ [G,,/n] — ¢/n and
therefore

lim inf p, > liminf sup E2 [G,,/n]. (4.2.5)

n—oo n—oo @EM

Let us now concentrate on the case where (g');>1 is defined as in Example (4.2.2)

with f bounded. Assume that the ¢*’s form an independent family with a common
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law under P, and that o(¢?,4 > 1) C Fi with F satisfying the conditions of Remark
4.2.5. Note that

E[H*(8)/(S,C)FF| =E[H($)f(S.¢N¢], ix1,

where H*(S) is defined as in Remark 4.2.3. Set ¢ := esssupE [H*(5) f(S, ¢")[¢!].
For k,n > 1and e € (0,1), we define A} := {E [H*(S)f(S,¢)|¢] = ¢ — k™1, for all
i<n}and HS ; :=eH"+ (1 —¢)H*(S)Lap/P[A}]. Note that P[A}] > 0 since the
(Y’s are independent and have the same law under P. Then, according to Remarks
42.5 and 4.2.3, Q; ,, == H, ;- P € M. Recalling (4.2.5), this implies that

lim ioréfpn > lim inf lim lim E%x[G,, /n] = 1.

n— n—oo k—0e—0

Clearly, the above lower bound is typically strictly larger than EQ” [E [ f(S,¢h |f$]] )
while applying the law of large numbers conditionally to .7-"7“? implies that G,,/n —
g=E [f(S, C1)|.7-"7§] P-a.s. For instance, if f is lower-semicontinuous, non-decreasing
with respect to its second parameter, and if each ¢’ has a support equal to
[ymimymaa:] C R under P, then ¢ = E[H*(S)f(57 ymax)] = EY [f(57 ymax)] =
EQ [max{f(S,y), Ymin <Y < Ymaz}]- Under (HCM), the later is the hedging price
of max{f(S,y), Ymin < Y < Ymaaz}, recall Remark 4.2.2, so that p, < ¢ foralln > 1,

and therefore p,, — .

In general, going through utility function with unbounded domain does not help,

as show in our second example.

Example 4.2.4 (Exponential utility function). Let U be an exponential utility
function of the form U"(y) = —e™™ 5 > 0. Assume that the g*’s have the form
taken in Example (4.2.3), that F& = o(F;~",i > 1), t < T, for some filtrations
(F+%);>1 such that F7, ]:7%’1, ]-"%"2,... are independent under P, and that ¢ is
]-"Tl’i—measurable for each i > 1. Then, it can be shown that p;, := p,(G,,U") =
p1(gt,UM) =: p" whenever there exists a unique element of M with finite relative
entropy and whose density is fﬁ—measurable, see [Bec03, Theorem 4.10]. It is in
particular the case if (HCM) holds and Q*(S) defined in Remark 4.2.4 has a finite
relative entropy. On the other hand, it is well-known that p” converges to the super-
hedging price of g! as 7 — oo, see [DGR'02] and [Bec03]. This implies that, for all
e > 0, we can find 7. large enough so that lim, pp° = p" > SUPQe M EQ [gl] — .
For € > 0 small enough, this is again typically greater than EQ" [E [f(S, C1)|]-"§H.

4.3 Asymptotic diversification rule

As pointed out in the previous examples, the convergence of the mean aggregated

claim G, /n to a replicable claim g € L™(F3) is not enough in order to ensure the
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convergence of its unit utility indifference price p,, (G, U) to EQ" [g]. Intuitively, this
can be recovered only if the risk aversion vanishes and the number of sold claims
goes to infinity.

Hence, we consider from now on a sequence of utility functions (Uy)n>1, which
depends on the number n of sold claims (g%)o<i<n, 50 as to model the asymptotic
situation in which the risk aversion is almost zero and the number of claims is very
large : the purpose of this section is to investigate the asymptotic behavior of the
corresponding unit utility indifference price when n times the absolute risk aversion
of U,, vanishes to 0 as n goes to oo.

We first provide a general characterization of the asymptotic unit utility indiffer-
ence price in terms of the sequence of associated dual pricing measures. Whenever
the pure financial market is complete, i.e. (HCM) is satisfied, this limit identifies
to the risk neutral price of g. When the pure financial market is incomplete, it does
not seem possible to obtain a precise characterization of the limit price, except when
(Un)n>1 behaves asymptotically like a sequence of exponential utility functions with
vanishing absolute risk aversion. In this case, we prove that the asymptotic price

coincides with the price of g under the minimal entropy martingale measure.

4.3.1 General convergence result

In this section, we consider a sequence of twice continuously differentiable, strictly
concave and increasing utility functions (Uy)n>1 defined on the whole real line and

satisfying the Inada conditions:

Ul(-) = lim U(z) =00

emmee n>1 (4.3.1)
and U} (o) = ILm Ul(r)=0, B

Besides, we suppose that all the utility functions have a reasonable asymptotic
elasticity as defined in [Sch01], i.e.

lim su Uy ()
ac—)oop Un(l')

/
<1, lim inf 200 (®)

1 >1. 4.3.2
T——00 Un<$) > = ( )

We finally introduce the convex conjugates of the U,’s defined by

Vi 1y €(0,00) = sup{Uy,(x) — 2y},
z€R

and assume that the dual problems are finite:
{(y,Q) € (0,00) x M : E[V,(ydQ/dP)] < oo} #0 for all n>1.  (4.3.3)
Under the additional uniform boundedness assumption

sup |Gp/n|pe < 00, (4.3.4)
n>1



130 Chapter 4. Utility based pricing: Asymptotic Risk diversification

the unit utility indifference prices py(Gp,Uy) given by (4.2.4) are well defined for

any n > 1 and existence for the optimal dual probability and multiplier, given by

0.0 = arguin {E Vi (42 )| @ e 00 x M) 439

is guaranteed, see e.g. Bouchard, Touzi and Zeghal [BTZ04, Theorem 3.1, Remark
3.3 and Proposition 3.1] (see also [Sch01] for a fomulation in terms of absolutely

continuous local martingale measures).

In the rest of this section, we work under the standing assumption:

Assumption 4.3.1. The conditions (4.3.1), (4.3.2), (4.3.3) and (4.3.4) hold.

In order to derive the asymptotic behavior of the unit indifference price, we

shall work under the following additional condition on the asymptotic absolute risk

aversion: U”( )
) x
n|7rn oo n:))o 0, with r,:z+— —UZ(;U) , (4.3.6)

and |7y oo 1= SUpPgeR |70 ().
Theorem 4.3.2. Let (4.3.1) and (4.3.6) hold. Then, the sequence of utility indif-
ference prices satisfies

lim inf p, (G, Uy,) = liminf EQ~ [Gr/n]

n—oo n—oo

and limsup p, (G, U,) = limsup EQ [Gr/n].

n—oo n—oo

Proof. We set p, := p,(Gn, U,) for ease of notations. We only provide the proof
for the liminf, the other one being similar.

1. Given n > 1, it follows from standard duality arguments, see [Owe02] and
Bouchard, Touzi and Zeghal [BTZ04], that

) dQ dQ ) dQ
f E|V,|y— n— Y—Gp| = f E|(Vhly—
y>0.0eM [ (y dP ) TYPn — Y p ] y>0.0eM [ (y dP )]

_ 0dQy
o] (298)]

recall (4.3.5). Taking in particular (y,Q) = (yg, Q%), this implies that

E[Vn< Od@%>+y0npn 040, n] > E[Vn <y0d@2>}

Yn"gp 9 Tgp nqp

and therefore p, > E@[G,,/n].
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2. On the other hand, it follows from [Sch01]| that, for n > 1, we can find
X" € L°(Fr) such that

sup E[U, (X7)] = E [Un (Xn)}

Xexb(0)
and for which there exists a sequence of optimizers (Xk’”)]p1 C X%(0) such that
n,k LI(P) on
U, (XT’ ) —u, (X ) (4.3.7)
— 00

In order to upper-bound p,,, we then introduce the following candidate
Ty, i= inf {p ceR:E [Un (np+X” — Gnﬂ >E [Un (X")] } )

a. We first check that
Tn > Dn, forall n>1. (4.3.8)

To this purpose, it suffices to fix n € N and show that
n,k L (]P)) 1 1
U, (np+ Xk Gn> —=u, (np+ X Gn) e LY(P), forall peR. (4.3.9)
— 00
To see that the above holds, first note that

‘Un (np+X7"Jk - Gn) - U, (np+f(” - Gn>

Xk (4.3.10)
= / Ul (np+t— Gp)dt|.
Xﬂ/
Consider now the relation
1 G
logU (np+t—Gy) —logU/ (t) < n |2 -, t,p e R,
Ul o n

which, together with (4.3.4) and (4.3.6) leads to the existence of a constant C),
(which only depends on p) such that

Ul(np+t—Gp) <CpU,(t), for all ¢t €R. (4.3.11)
Plugging (4.3.11) into (4.3.10) gives

< G,

Un (np + X7 = Gr) = Up (np + X" = G

Un (X7") = 0 (X7)].

Hence, (4.3.9) follows from (4.3.7), which proves (4.3.8).
b. We now conclude the proof by providing an upper bound for lim inf,, . m,.
By definition of m,, the continuity of the non-increasing function U,, (4.3.9) and

the monotone convergence theorem, we have

E [Un (mrn + X" - Gnﬂ ~E [Un (X”)} . (4.3.12)
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This implies that
E [Un (Xn)} — E [Un (X”) LU (X") (7t — Gn) + %U{{ (€) (N7 — Gn)?| |

where &, is a random variable lying in the (random) interval I,, formed by X™ and
nm, + X" — Gy,. We now use the fact that U7, (X”) = yg%, recall (4.3.5) and see
[Sch01] and Bouchard, Touzi and Zeghal [BTZ04], to deduce that

EQ |7, — 7Gn_m“n(§n) Un (&) Ty — —Gn 2 =0 (4.3.13)
" n 2 U’ (Xn) " n . e
We shall prove in c. below that
Uy, (6n) Gn\’
sup | —2——— <7rn — ) <, (4.3.14)
n

)

for some constant C' > 0. Combining this last estimate with (4.3.6) and (4.3.13)
leads to

lim inf 7, < lim inf E@n [Gr/n],

which together with (4.3.8) and step 1. concludes the proof.
c. It remains to prove the claim (4.3.14). To see that it holds, we first appeal
to (4.3.12) to deduce that E {U;L(En) (nmy, — Gn)} = 0 for some random variable &,

such that &, € I,,. Since U, is strictly increasing, we deduce from (4.3.4) that

E |U4(6)(Gnl /]

[T — Gn/n| = ~ + |Gn/n|
E U4 ()]
i (4.3.15)
ElUG)]
<C——7-=+C = 20, n>1,
E |Up ()]
for some constant ¢’ > 0. Similarly, since &, € I,,, we have
"
log (U, (&) —log (U, (X)) < ' =l Je—x
U”OO Gn
S TL‘ Uifl - n - 7 ) n 2 1 )
which is bounded uniformly in n thanks to (4.3.6) and (4.3.15). O

Remark 4.3.3. Let (p,(n))n>1 be a convergent subsequence of (pn(Gr,Un))n>1-
Then, the same arguments as above show that lim p,,) = lim % Gy /(1)
n—oo n—oo

whenever o(n)r,,) — 0.
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Observe that a straightforward adaptation of the previous argumentation allows
to obtain the convergence of the indifference prices p1(Gn,U,) under the weaker
condition ||7,|lec — 0, whenever the sequence (Gp)n>1 is assumed to be uniformly
bounded in L*°. This provides in (4.3.4) below a general convergence result for
bounded sequences of contingent claims when the absolute risk aversion vanishes in

the sup norm, which is of own interest.

Theorem 4.3.4. Let Assumptions 4.3.1, 4.3.2 and 4.3.8 hold. Assume further

that ||ry|l.. — 0 and that sup,> ||Gn|lp« < 00. Then, the sequence of utility
n—oo -

indifference prices satisfies

hn_l)infpl(Gn, U,) = liminf EQn [Gn] and limsuppi(Gp,U,) = limsup EQn [Gr] .

n—00 n—00 n—o0
Remark 4.3.5. In particular, for a constant sequence (Gp,)n>1, Gn, = G for all n,
(4.3.4) provides a new insight on the asymptotic behavior of the indifference price
of any bounded contingent claim G as the risk aversion of a general utility function
goes to zero. The sequence of dual minimizers (QV), can be analyzed in such a

situation along the lines of arguments presented in the next sections.

4.3.2 Semi-complete markets

The representation of the asymptotic unit utility indifference price presented in
(4.3.2) does not provide a-priori an exact formulation, except in particular cases.
When the pure financial market is complete, i.e. (HCM) is satisfied, and (4.2.3)
holds, we verify hereafter that it coincides with the price under the risk neutral

measure Q* of the replicable claim g.

Corollary 4.3.6. Let the conditions of (4.3.2) hold. Assume further that (4.2.3) and
(HCM) are satisfied. Then the sequence of unit utility indifference prices satisfies

nlgrolopn(Gm Un) = EY [g]-
Proof. In view of (4.3.2), it suffices to show that (HCM) implies that the minimal
dual measure QY see (4.3.5), coincides with Q*(S) as constructed in Remark 4.2.4,
and to apply the dominated convergence theorem, recall (4.3.4) and (4.2.3):
Hm pn(Gp,Uy) = lim EQ[G,/n] = lim E¥' (G, /n] = E¥' 9)[g] =E¥ [g],

n—oo n—oo

where the last equality follows from the fact that g is fi’i—measurable.

To see this, we use the convexity of V,, to obtain that E [Vn(yg%)} >

E [V, (yOHO(S))] where HO(S) := E [d% \fg] — dQ*(S)/dP by Remark 4.2.4, un-
der (HCM). Since Q*(S) € M by Remark 4.2.4 again, this proves the claim.
O
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Remark 4.3.7. If the ¢%’s have the same law and form an independent family
conditionally to ]:75: under P, then applying the law of large numbers conditionally
to .7-"75: implies g = E [gl\}'ﬁ], so that limy, e pp(Gn, Uy) = EQ [E [gl|]-':,5:]]. We
thus retrieve asymptotically the hybrid pricing rule which consists in taking the
mean on the part of the risk that can be diversified and computing the hedging

price of the resulting replicable claim.

Remark 4.3.8. In [Bec03], the author refers to semi-complete product models to
designate situations where the filtration F and M have the structure specified in
Example 4.2.4, in particular:

(HCM®): there exists only one element Q°(S) of M with finite relative entropy
and whose density with respect to P is fﬁ—measurable.

This later condition is weaker than (HCM), up to the restriction related to
the finite relative entropy. However, if we are only interested in utility functions
of exponential type, the same argument as in the proof of (4.3.6) above shows that
QY = Q°(S) whenever (HCM®) holds. Assuming further that the conditions of
(4.3.2) and (4.2.3) hold, this leads to lim, oo pp(Gn, Up) = EQ°)[g].

4.3.3 Incomplete markets and asymptotically exponential utility
behaviors

In a general incomplete framework, it seems to be hopeless to interpret the limit
of E@[G,,/n] as the expectation under some martingale measure of g, the limit of

Gy /n, except if the U,,’s are all of exponential type, compare with Remark 4.3.8.

In this section, we show that the convergence result of Remark 4.3.8 remains
true even if the utility functions do not have a constant absolute risk aversion but
only asymptotically behave like a sequence of exponential utility functions in the

following sense.

Assumption 4.3.9. There exist two sequences of strictly positive numbers (77,11)71>1

and (77%)7121 converging toward O such that

0<n2<rp(x)<nl foral z€R and n>1, (4.3.16)
lim n2/nt = 1. (4.3.17)
n—oo

Remark 4.3.10. The existence of the sequence (1)),>1 converging to zero is exactly
the content of the assumption (4.3.6). (4.3.9) implies that the function r, is asymp-
totically bounded in between two sequences converging to zero with the same first
order convergence rate. In particular, this assumption includes the case of agents
with utility functions of the form U, : x + —(\,) te % — (p,,) " Le #n(@t0)
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for n > 1 and xp > 0 as long as the positive sequences (A,)p>1 and (i, )n>1 are

equivalent as n goes to co.

It follows from (4.3.1) below that (4.3.3) is equivalent to

{Q eM : E [flg log <§%>} < oo} # 0, (4.3.18)

whenever (4.3.9) holds. Hence, (4.3.1) can now be formulated as
Assumption 4.3.11. The conditions (4.3.1), (4.3.2), (4.3.18) and (4.3.4) hold.

In the following, we denote by Q° the element of M that minimizes the relative

aQr (dQf\] .. [dQ, (dQ
E{d]? log(duvﬂ - dé%E[cmlongﬂ’

and whose existence is guaranteed by Theorem 2.2 in [Csi75].

entropy,

Remark 4.3.12. The map y > 0 — ylogy being strictly convex, it follows from
Remark 4.2.4 that dQ°¢/dP is ]—}g—measurable, recall the argument used in the proof of
(4.3.6). However, we do not impose in (4.3.18) the uniqueness condition of (HCM?®)
in Remark 4.3.8.

Theorem 4.3.13. Let (4.3.9), (4.3.11) and (4.2.3) be in force. Then the sequence

of unit utility indifference prices satisfies
lim p, (G, Uy) = E¥[g] .
n—oo

Remark 4.3.14. When the ¢*’s satisfy the conditions of Remark 4.3.7, the above
result shows that the unit indifference prices converges to E¢°[E [¢'|F7]]. Again,
this consists in taking the mean over the part of the risk that can be diversified
and computing the price under the minimal entropy martingale measure of the pure

financial remaining claim.

In the rest of this section, we provide the proof of (4.3.13). In view of (4.3.2), it

would suffice to show that

lim B [G,/n] = E%[g] , (4.3.19)

n—oo

where we recall that Q0 is defined in (4.3.5).

In the following, we actually prove that

lim E% (G, /n] = EY[g], (4.3.20)

n—o0
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where (y%, Q%) are defined as (y2, Q%) in (4.3.5) but with

Un(z) — Un(0)

> 1]
o) 0 "'T

.
U,z — ayp

in place of U,,. In the above, (a;,)n>1 is a sequence of positive numbers to be chosen
later on, see the proof of (4.3.2) below. This trick is inspired from [CR11] and allows

to reduce to the case where
U2(0)=0 and [U2](0) = ay, n>1. (4.3.21)
Obviously, since Uy is an affine transformation of the utility function U, we have
(G, Un) = pn(Gn, US). (4.3.22)
Recalling (4.3.2), (4.3.20) is thus sufficient to deduce the result of (4.3.13).

We first provide upper and lower bounds for the Fenchel transform V. of UY
in terms of Fenchel transforms of exponential utility functions with risk aversion n}

and 2.
Lemma 4.3.1. Let (4.3.9) hold. Then, for eachn > 1,

Vily) < Vi) < VXy),  ye(0,00), (4.3.23)

n

where the functions V! and V.2 are defined by

Vi(y) = 2 log <y> + a”nl-_ Y ye(0,0),i=1,2
n

Proof. It follows from the definition of (V);—1 2 and (4.3.21) that
Vi) =Vi{an) =0 and [V (an) = [Vi](an) =0, i =1,2. (4.3.24)
Since 7, = —[U2)"/[US] and [UY]" o ([U2])~ = 1/[V,%]”, we deduce from (4.3.16)
in (4.3.9) that
Mo S s < s Y€ (0,00).
Together with the strict convexity of V., of each V¥, and the relation n}[V,}]"(y) =
n2[V,2]"(y) = 1/y, this shows that
Val” < V21" < V)" (4.3.25)
We now simply deduce from the right-hand side of (4.3.24) and (4.3.25) that
VI <Vl <Vi] on (0,00)]

and [V’ >V >V on  [an, ).

n — n

We conclude by using the left-hand side of (4.3.24). O
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We can now use the fact that V! and V.2 interpret as Fenchel transforms of
exponential utility functions, and that the dual probability associated to any expo-
nential utility function is the minimal entropic one Q¢, to deduce from (4.3.23) that
the sequence of dual martingale measures (Q%),>1 associated to (US)n>1 achieves
asymptotically the mininal relative entropy, under (4.3.9) and for a suitable choice
of the sequence (oy,)n>1. We shall see later that this implies convergence to Q¢ is

the total variation norm.

Lemma 4.3.2. Let (4.3.9) and (4.3.18) hold. Then, there exists a sequence of

positive numbers (au,)n>1 such that
o [des (d0a\] | [dee  (dOf
i 5[ Bg (5] = 5[ (L)) pas
Proof. For ¢ = 1,2, direct computations leads to
inf E [V,ﬁ( dQ)}
y>0,QeM
= inf {2
y>01:<%€/\4{ { ( )] ;L’L g< n>
- e ()] s () 4
y>0 77721 Oy,
. dQe
—E Vi 4
()]
where the common minimizer g, > 0 is given by

; dQ* dQe
Un = ape with p:=E [ ;% og ( ;%) )] : (4.3.28)

} (4.3.27)

Also note that

. dQe . dQe _a 1 1
E[Vf <yn;%)>_vnl (yn(;%’)] = (I-e ")y <7]721_77711>’

so that 10 J0°
lim E [Vn? <ynQ> -V, (yn o >] 0
n—o0 dP dP (4.3.29)
whenever «, (77% — 17%) j 0.

On the other hand, Lemma 4.3.1 implies

E[W( ‘fgﬂ gE[vg (Jﬁﬂ <E {v2< Zg)] , y >0, (4.3.30)

for any Q € M. Picking in particular Q = Qf, we deduce

dQ dQ% o [ dQY
e[ ()| <[ (%)) == [ ()] oo
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Taking the infimum over y > 0 and recalling (4.3.27), this shows that

E [an (yn dgﬂ <E [an <ynd§§>] < infE {v,? (;fﬁgﬂ : (4.3.31)

where the minimizer y, > 0 associated to the middle term is given by

dQy dQy,
Yn = ape” " with  pp :=E [ @, log ( @n>} : (4.3.32)

dP dP

Similarly, (4.3.27) and (4.3.30) imply

: dQy . dQ o~ dQ°
fE V2 n)l= inf E|VE(y— )| <E w1,
>0 [V” <y P )] s>00eM [V” (ydpﬂ . [V" (y aP )]

which, combined with (4.3.31), entails
- dQ* dQy - dQ°
|t ()] <2 ()| <= [ (0% )

If o, ( L il) —5 0, (4.3.29) thus implies that

== —
nn nn n—oo

dQ¥ . dQ*e
<E 1 n vl

which, by the definitions in (4.3.28) and (4.3.32) of ¢, and y,, is equivalent to

R 1 1
OL;‘ (e—/’ — e‘Pn) — 0 whenever a, <2 - 1) — 0. (4.3.33)
n n—r00 5 1y ) n—oo

We now choose the sequence (a,)n>1 and pick as, := 1), so that (4.3.9) implies
1 1 1
an<2_1> = nfn—l — 0.
/r]TL ,'777,
Hence, we deduce from (4.3.33) that p, — p as n — oo, i.e. (4.3.26) holds. O

We are now in position to complete the proof of (4.3.13).

Proof of (4.3.13). In the following, we let (ay,)n>1 be as in Lemma 4.3.2.

1. We first deduce from Lemma 4.3.2 that (Q%),>1 converges to Q° in the
norm of total variation. Since Q¢ minimizes the entropy with respect to P over the
convex set M, it follows from Theorem 2.2 in |Csi75] that

dQ dQ o [ dQ dQ dQe dQe
e ()] 25 g ee (i) -2 s ()

for any Q € M.
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In particular,

Qe [dQy dQy dQy dQp\| - [dQ° dQ°
s [ ()] oo on ()] o)) e

Hence, (4.3.26) implies that

. [dQ2 dQe
EQ ] n ) 0.
| dQe °g<d@e)} S~

The fact that

o []d0s  dor
dP dP

] — 0 (4.3.34)
n—oo

then follows from Pinsker’s inequality, see e.g. [PP09].
2. Combining (4.3.4) and (4.3.34) implies that

o [Ghp e [Gn G, (dQ%  dQ° dQs  dQ°
Qy | X | _mQ° | X || — n n _ < no_
‘E [n} " [n] ’E[n<dP dP)”_C]EHdIP’ dp]n?oo’
with € = sup,>q [|Gn/n| L. Besides, (4.2.3) and (4.3.4) imply that

EQ[G,,/n] — EQ°[g]. This shows that (4.3.20) holds. We conclude by using
(4.3.22) and (4.3.2). 0
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Abstract: The aim of this thesis is to investigate some solutions to the pricing
of contingent claims in incomplete markets. We first consider the stochastic target
introduced by Soner and Touzi (2002) for the general super-replication problem, and
extended by Bouchard, Elie and Touzi (2009) in order to deal with more general
approaches. We first generalize the work of Bouchard et al to a framework where
the diffusions are subject to jumps. In our particular settings, we need to consider
a control taking the form of unbounded maps, which has non-trivial impacts on the
derivation of the associated PDE. Our second contribution consists in establishing
a version of stochastic target problems which is robust to model uncertainty. We
provide, in a general setup, a relaxed geometric dynamic programming principle
for this problem and derive, for the case of a controlled SDE, the corresponding
dynamic programming equation in the sense of viscosity solutions. We consider an
example of partial hedging under Knightian uncertainty. Finally, we focus on the
problem of pricing hybrid claims. More specifically, we intend to give a sufficient
condition for a (very popular) pricing rule, combining actuarial diversification with
arbitrage free replication arguments, to hold.

Résumé: Le but de cette thése est d’apporter une contribution & la probléma-
tique de valorisation de produits dérivés en marchés incomplets. Nous considérons
tout d’abord les cibles stochastiques introduites par Soner et Touzi (2002) afin de
traiter le probléme de sur-réplication, et récemment étendues afin de traiter des
approches plus générales par Bouchard, Elie et Touzi (2009). Nous généralisons le
travail de Bouchard et al & un cadre plus général ou les diffusions sont sujettes & des
sauts. Nous devons considérer dans ce cas des contrbles qui prennent la forme de
fonctions non bornées, ce qui impacte de fagon non triviale la dérivation des EDP
correspondantes. Notre deuxiéme contribution consiste a établir une version des
cibles stochastiques qui soit robuste a l'incertitude de modéle. Dans un cadre ab-
strait, nous établissons une version faible du principe de programmation dynamique
géomeétrique de Soner et Touzi (2002), et nous dérivons, dans un cas d’EDS control-
lées, ’équation aux dérivées partielles correspondantes, au sens des viscosités. Nous
nous intéressons ensuite & un exemple de couverture partielle sous incertitude de
Knightian. Finalement, nous nous concentrons sur le probléme de valorisation de
produits dérivées hybrides (produits dérivés combinant finance de marché et assur-
ance). Nous cherchons plus particulierement & établir une condition suffisante sous
laquelle une régle de valorisation (populaire dans I’industrie), consistant a combiner

I’approches actuarielle de mutualisation avec une approche d’arbitrage, soit valable.
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