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Champ asservi sur un état de Fock par rétroaction quantique
utilisant des corrections à photon unique

Résumé La rétroaction quantique est un outil prometteur pour la préparation et la protec-
tion d’un état quantique. Elle entraîne un système quantique vers un état cible par l’action
répétée d’une boucle de sonde-contrôlleur-actionneur. Néanmoins, sa réalisation expérimen-
tale est très difficile, car elle doit surmonter une difficulté fondamentale: le processus de
mesure modifie inévitablement et de façon aléatoire par une action en retour le système à
contrôler. Nous avons réalisé un protocole de rétroaction quantique continue dans le cadre
de l’électrodynamique quantique en cavité. Le système à contrôler est un mode de champ
électromagnétique piégé dans une cavité Fabry-Pérot micro-onde de très haute finesse. Des
atomes de Rydberg circulaires interagissant avec le champ dispersivement servent de sondes.
Ils effectuent des mesures quantiques non destructives du nombre de photons. Étant donnés
les résultats de ces mesures, et connaissant toutes les imperfections expérimentales, un ordi-
nateur de contrôle estime en temps réel l’état du champ. Il commande ensuite la préparation
des atomes de Rydberg circulaires à résonance pour absorber ou émettre des photons dans le
but de stabiliser le champ autour de l’états de Fock cible. De cette façon, nous avons réussi à
préparer à la demande et à protéger des états de Fock contenant 1 à 7 photons.

Mots-clés CQED, rétroaction quantique, atomes de Rydberg, états de Fock, décohérence,
actionneur atomique

Field locked to Fock state by quantum feedback with single pho-
ton corrections

Abstract Quantum feedback is a promising tool for preparing and protecting a quantum
state. It drives a quantum system towards a target state by the repeated action of a sensor-
controller-actuator loop. Nevertheless its experimental implementation is very challenging, as
it must overcome a fundamental difficulty: the sensor measurement causes a random back-
action on the system. We have implemented a continuous quantum feedback protocol in the
context of cavity quantum electrodynamics. The system to be controlled is a mode of the
electromagnetic field confined in a very high finesse microwave cavity in the Fabry-Pérot con-
figuration. Circular Rydberg atoms interacting dispersively with the field serve as sensors.
They perform quantum non-demolition measurements of the photon number. Knowing the
results of these measurements, and knowing all the experimental imperfections, a classical
computer estimates in real time the field state. It then commands the preparation of resonant
circular Rydberg atoms to absorb or to emit photons in order to stabilize the field around
target Fock state. In this way, we have been able to prepare on demand and protect Fock
states containing 1 to 7 photons.

Keywords CQED, quantum feedback, Rydberg atoms, Fock states, decoherence, atomic
actuator
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Introduction en français

La mécanique quantique, développée au début du XXe siècle, révèle un monde contre-intuitif
dans lequel les notions d’onde et particules sont intimement mélangées. D’une part, la lumière
se comporte à la fois comme une onde continue et en comme un ensemble de photons, exci-
tations élémentaires du champ électromagnétique quantifié. D’autre part, les objets perçus
comme particules bien localisées, tels que des électrons, présentent également des comporte-
ments d’onde. Par exemple, dans une expérience d’interférences à deux fentes réalisée par
Tonomura et al. [1], une série d’électrons individuels formèrent progressivement des figures
d’interférence similaires aux figures d’interférence optiques observées dans l’expérience origi-
nale de Young.

La physique quantique permet également des phénomènes contre-intuitifs comme les états
chat de Schrödinger et la non-localité quantique. Les premiers furent observés dans une
expérience [2] au cours de laquelle une superposition mésoscopique d’états quantiques évolue
progressivement vers un mélange statistique du fait de la décohérence. La seconde s’est avérée
être une caractéristique spécifique de théorie quantique, qui ne peut pas être expliquée par
des modèles classiques utilisant des «variables cachées» [3, 4, 5].

Dans la théorie quantique, la description de la mesure est également assez différente de
son équivalent classique. Un principe bien connu de la physique quantique dit que la mesure
modifie en général l’état du système mesuré. Comme postulé par la mécanique quantique, la
mesure de l’observable Ô sur un système quantique est soumise aux règles suivantes :

• Les résultats ne peuvent être que des valeurs propres de Ô ;
• Après avoir obtenu une certaine valeur propre, le système est projeté dans l’état propre

correspondant.

Une telle mesure est dite projective ou de von Neumann [6]. Les mesures quantiques non
destructives (QND) [7, 8, 9, 10], dans lequel l’observable Ô commute avec le hamiltonien H
du système, assurant la répétabilité de la mesure, en constituent un cas particulier.

Le fait qu’un système quantique soit modifié après avoir été mesuré est exploité pour des
applications pratiques. Par exemple, un protocole sécurisé de distribution de clés quantiques
(QKD) fut proposé par Bennett et Brassard en 1984 [11]. Dans ce schéma, la sécurité du
QKD repose sur les postulats de la mesure de la théorie quantique. Un espion extrayant
des informations à partir du canal quantique partagé par deux communicants est démasqué,
puisque sa mesure modifie le système mesuré.

Une autre application possible de la théorie quantique exploite la non-localité quantique et
l’intrication. Initialement proposé par Bennett et al. en 1993 [12], un protocole de téléportation
quantique fut réalisé expérimentalement par D. Bouwmeester et al. en 1997 [13]. Dans cette
expérience, l’expéditeur, «Alice», et le récepteur, «Bob», partagent une paire de photons
intriqués. Alice fait une mesure commune sur son photon et un état quantique inconnu, puis
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envoie à Bob le résultat classique de sa mesure. Connaissant ce résultat, Bob peut convertir
l’état de son photon en une réplique exacte de l’état inconnu détruit par Alice.

L’application la plus ambitieuse de la théorie quantique est probablement son appariement
avec l’informatique [14], donnant ainsi naissance à l’ordinateur quantique. Un ordinateur quan-
tique opère sur des données codées sur des qubits (bits quantiques) et effectue des calculs basés
entièrement sur les propriétés quantiques des données et des opérations. Cela est nécessaire
car si les bits sont aussi petits qu’un atome, leur nature quantique peut changer profondément
le calcul lui-même. Un tel ordinateur peut fonctionner plus efficacement que son équivalent
classique pour certains problèmes, comme celui de la factorisation des grands nombres [15].
Des expériences de principe ont été menées dans lequel des opérations de calcul quantique ont
été exécutées sur un petit nombre de qubits [16, 17].

Les applications de la théorie quantique reposent sur la capacité à manipuler les systèmes
composés d’objets quantiques. On pourrait citer les paires de photons intriqués, les ions piégés,
les atomes froids, les boîtes quantiques dans les semi-conducteurs, les qubits supraconducteurs,
les résonateurs micro-ondes ou opto-mécaniques, etc. Parmi ces systèmes, certains sont plus
adaptés à des fonctions spécifiques. Par exemple, les paires de photons intriqués sont des
candidats idéaux pour la communication quantique, alors que les atomes froids sont plus
adaptés pour une mémoire quantique. Cependant, les applications réelles pourront impliquer à
l’avenir plus généralement un réseau quantique [18], dans lequel plusieurs systèmes de différente
nature entrent en jeu.

Dans le cadre de la manipulation des systèmes quantiques, préserver la cohérence de leurs
états s’avère être difficile. Le couplage inévitable des systèmes quantiques à leur environnement
conduit à une fuite d’information et donc à la décohérence des systèmes. Dans le cadre du
traitement quantique de l’information, la décohérence des qubits peut induire des erreurs
dans le calcul quantique. Afin de lutter contre les erreurs, de nombreuses méthodes ont été
proposées, comme les codes correcteurs d’erreurs, qui utilisent des qubits auxiliaires [19], ou
le codage de l’information quantique dans des sous-espaces sans décohérence [20]. Une autre
méthode basée sur des boucles de rétroaction a également été proposée [21]. Dans cette
méthode, le système à contrôler est amené à interagir avec une sonde qui est ensuite détectée.
Le signal détecté est ensuite traité et réinjecté dans le système par quelque actionneur. Un
état prédéfini peut donc être préparé et préservé.

Plusieurs expériences ont été faites, réalisant certains aspects du protocole de rétroaction.
Smith et al. [22] démontra la possibilité de geler et de libérer l’évolution d’un état non-classique
d’un ensemble d’atomes couplé au mode d’une cavité, en exploitant la rétroaction quantique.
Le mode de cavité est faiblement pompé par une source laser. Initialement, le système atome-
cavité est dans un état stable. Un photon s’échappant du système le projette dans une nouvel
état dans lequel le système atome-champ subit des oscillations de Rabi. Après un intervalle de
temps bien choisi après à la détection de ce photon, l’intensité du laser de contrôle est modifiée,
de telle sorte que le système s’installe dans un nouvel état d’équilibre : les oscillations de Rabi
sont supprimées. Une fois l’intensité de pompe initiale restaurée, les oscillations de Rabi
redémarrent avec la même amplitude et la même phase.

Cook et al. [23] accomplirent une discrimination optimale entre deux états cohérents op-
tiques en utilisant la rétroaction quantique en temps réel. Puisque les états cohérents ne
sont pas orthogonaux, la mécanique quantique interdit toute mesure qui peut distinguer par-
faitement deux tels états. Une mesure optimale, dite mesure «par état chat», nécessite la
préparation d’un état chat de Schrödinger, mais sa réalisation expérimentale est délicate.
Dans l’expérience de Cook et al., le champ cohérent à discriminer est détecté par comptage de
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photons et manipulé par des déplacements optiques de contrôle. La longueur de l’impulsion
correspondant au champ cohérent optique fixe la durée de la mesure. À chaque instant, la
discrimination des états est réalisée en sélectionnant celui des deux états qui maximise la
probabilité des résultats de comptage de photons, compte tenu de toute l’histoire des déplace-
ments optiques qui ont déjà été appliqués. Le déplacement optique qui minimise la probabilité
d’erreurs de discrimination pour le temps de mesure restant est alors fait. De cette façon, ils
ont pu distinguer deux états cohérents avec une probabilité d’erreurs inférieure au bruit de
grenaille et même proche de la limite quantique.

Gillett et al. [24] réalisèrent une expérience dans laquelle des mesures faibles et des correc-
tions par rétroaction furent combinées pour corriger des «phase flips» d’un qubit photonique.
Le qubit préparé dans l’un de deux états non orthogonaux est transmis à travers un canal
quantique bruité qui peut induire des «phase flips». La mesure faible sur le qubit transmis
fournit un résultat, qui est utilisé pour déterminer la rotation optimale pour le qubit, afin de
ramener le qubit aussi proche que possible de son état initial.

Geremia et al. [25] essayèrent d’utiliser un processus de rétroaction quantique continu
pour préparer des états comprimés de spin atomique dans un gaz d’atomes froids. Néanmoins,
l’article fut rétracté par la suite, ce qui réflète la difficulté de réaliser une rétroaction quantique
continue.

Dans ce qui suit, nous nous intéressons aux expériences de rétroaction quantique continu
réalisées dans le cadre de électrodynamique quantique en cavité (CQED). La CQED est parti-
culièrement adaptée à l’étude de l’interaction entre photons et atomes. Un champ électromag-
nétique piégé dans une cavité de haute finesse est quasi-isolée de son environnement. Le champ
quantifié et l’atome individuel qui interagit avec lui constituent un système idéal pour réaliser
des expériences de test illustrant les principes fondamentaux de la mécanique quantique. Par
exemple, nous pouvons citer l’observation de l’émission spontanée d’un seul atome exaltée par
la cavité [26], un effet prédit par Purcell il y a des décennies [27], l’observation des oscillations
de Rabi quantiques révélant la nature de quantification du champ de rayonnement [28] et la
détection non destructive d’un seul photon [29].

Au cours des dernières années, grâce à l’amélioration de la durée de vie de mode de la
cavité, notre groupe a été capable de réaliser des mesures QND répétées sur des champs de
photons. Pour cette mesure, le champ micro-ondes piégé dans la cavité et les atomes à deux
niveaux interagissent en régime dispersif, de telle sorte que l’échange d’énergie soit évitée.
L’interaction induit des déplacements lumineux sur les états atomiques, qui dépendent du
nombre de photons. La lecture de ces déplacements en utilisant un interféromètre de Ramsey
correspond à une mesure QND du nombre de photons. Le groupe a ainsi observé des sauts
quantiques de la lumière [30] et enregistré la projection progressive d’un champ cohérent dans
les états nombre de photons [31]. Le groupe a également reconstruit plusieurs états non
classiques des photons, comme des états de Fock et des états chat de Schrödinger [32]. En
prenant des clichés de ces états à des instants successifs, nous avons enregistré le processus de
décohérence en cours, illustration parfaite de la transition entre états quantiques et classiques
d’un système microscopique couplé à son environnement. Lorsque cette dernière expérience a
été réalisée, j’effectuais un stage dans le groupe avant de commencer officiellement ma thèse,
et j’ai donc eu l’occasion de participer à la mesure.

Les états du champ non-classiques sont des outils indispensables pour explorer la frontière
quantique-classique. En outre, leur préparation est également un aspect important pour des
applications à la science de l’information. Par exemple, les états comprimés sont utilisés dans
la métrologie et de la communication quantique; les états chat de Schrödinger sont exploitées
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pour l’étude de la décohérence; les états de nombre de photons trouvèrent des applications
dans l’information quantique. De nombreuses méthodes ont été utilisées pour préparer les
états de nombre de photons. en 2000, Varcoe et al. prépara les états |1〉 et |2〉 en exploitant
les «trapping states» [33]. Dans cette expérience, l’atome préparé dans son état excité fut à
résonance avec le champ dans la cavité et a subi une impulsion de Rabi de 2π dans l’état
cible, de telle sorte que le champ fut pris au piège dans cet état. Dans [31], nous utilisâmes les
mesures QND répétées pour projeter un champ cohérent dans les états de nombre de photons.
En 2009, Hofheinz et al. démontrèrent la préparation des états de photons arbitraires dans
une expérience de «circuit QED». Le qubit de phase supraconductrice, agissant comme une
atome artificielle à deux niveaux, fut à résonance avec le résonateur coplanaire et pompa des
photons dans le résonateur cohérentement.

Néanmoins, les états de Fock préparés subissent à la décohérence et peuvent perdre leur
non-classicisme rapidement [34, 35]. Ainsi les protéger est une tâche exigeante. La procédure
déterministe qui alimente quanta un à la fois dans le champ du résonateur, utilisé par Hofheinz
et al., ne peut pas lutter contre la décohérence, car elle ne fournit pas d’informations en temps
réel sur l’état du champ actuel. La préparation des états de Fock en utilisant la mesure QND
ne peut pas préparer un état de Fock sur demande, parce que les différents états de Fock
sortent au hasard avec des probabilités données par la distribution du nombre de photons du
champ initial. Néanmoins, cette méthode fournit des informations en temps réel sur l’état du
champ. Cette information peut être utilisée pour une direction déterministe du champ vers un
état de Fock cible, ainsi que pour la détection et la correction ultérieure des sauts quantiques
induits par le décohérence. Ainsi, en combinant la mesure QND et un processus de rétroaction
peut nous permettre non seulement de préparer des états de Fock sur demande, mais aussi
pour les protéger de la décohérence.

Figure 1. Schéma de l’expérience de rétroaction quantique de «actionneur cohérente». La
cavité C de haute finesse est pris en sandwich par les deux zones de Ramsey R1 et R2, qui
forment un interféromètre de Ramsey. L’atome de Rydberg circulaires est préparés dans la
boîte B et détectée dans D. Le résultat de détection est introduit dans l’ordinateur K (Adwin
Pro-II), qui estime l’état du champ et commande une injection petite de champ micro-ondes.
L’injection est réalisée par la source S, avec l’amplitude A et le phase Φ contrôlé par K.

Inspiré par la proposition de Geremia [36], nous avons conçu un protocole de rétroaction
quantique continue [37] et a réalisé l’expérience qui prépare et stabilise les états nombre de
photons sur demande [38]. Le dispositif expérimental est affiché dans la figure 1. Les actions
des actionneurs sont des injections de champ micro-onde cohérente. Donc, nous appelons cette
expérience un expérience rétroaction quantique de «actionneur cohérente».
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Dans cette expérience, si nous préparons et protégeons l’état cible |nt〉, un champ cohérent
avec l’amplitude réelle

√
nt est d’abord injecté dans la cavité par la source S. Le champ est

alors mesuré par des atomes de sonde effectuant des mesures QND. La détection de chaque
atome dans D fournit des informations partielles sur le nombre de photons dans C. Basée du
le résultat de la détection, l’ordinateur K estime l’état du champ en prenant en compte toutes
ses connaissances disponibles, telles que l’état du champ initial, le résultat de la détection et
de tous les imperfections expérimentales (amortissement du champ, l’efficacité du détecteur,
des erreurs de détection, etc.). Il calcule ensuite l’amplitude d’une injection de micro-ondes,
visant à apporter l’état du champ proche de l’état cible. Cette injection est ensuite réalisée
par la source S, avec l’amplitude A et le phase Φ tous les deux contrôlés par l’ordinateur K.

En utilisant ce schéma, nous avons réussi à préparer et stabiliser des états de Fock avec un
maximum de 4 photons. Néanmoins, la performance de ce régime est limité par l’incapacité
de l’actionneur classique pour inverser un saut quantique en une seule étape. La disparité
entre le classicisme de la source micro-ondes et le quantumness de l’état cible et de ses sauts
quantiques limite la vitesse de la correction de ces sauts, et limite ainsi la procédure à nombre
de photons faible. La participation à cette expérience constitue une partie importante de ma
thèse. Je n’en discute pas ici plus loin. Au lieu de cela, je présente une expérience conduisant
à une meilleure performance de rétroaction.

Figure 2. Schéma de l’expérience de rétroaction quantique de «actionneur atomique». La
cavité C de haute finesse est pris en sandwich par les deux zones de Ramsey R1 et R2, qui
forment un interféromètre de Ramsey. L’atome de Rydberg circulaires est préparés dans la
boîte B et détectée dans D. Le résultat de détection est introduit dans l’ordinateur K (Adwin
Pro-II), qui estime l’état du champ et applique des rétroactions aux atomes d’actionneur en
contrôlant le potentiel (V) sur l’un des miroirs de la cavité et les impulsions micro-ondes
dans R1 (S1) et R2 (S2).

Afin d’améliorer la performance de la procédure de rétroaction, nous remplaçons le source
micro-ondes classique S par des objets quantiques: atomes de Rydberg circulaires à résonance,
qui échangent des photons avec le champ dans la cavité et agissent comme des émetteurs ou
absorbeurs de photon. Le schéma montrant le principe de cette expérience est donné dans la
figure 2. Puisque dans cette expérience, les actionneurs sont des atomes de Rydberg circulaires,
il est donc désigné comme l’expérience de rétroaction de «actionneur atomique».

Les algorithmes d’estimation de l’état du champ et du choix des rétroaction diffèrent
de l’expérience précédente. Après l’obtention de l’état estimé, l’ordinateur K choisit une
rétroaction afin d’apporter l’état actuel près de la cible. L’action peut être mise en l’atome
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d’actionneur comme un émetteur ou un absorbeur. qui est réalisé à travers la maîtrise du
potentiel V sur l’un des miroirs de la cavité et les impulsions micro-ondes dans R1 (à travers
S1) et R2 (à travers S2). Le potentiel V change les régimes d’interaction entre le champ et les
atomes: soit dispersif soit à résonance. L’impulsion micro-ondes dans R1 prépare un bon état
atomique initial. L’impulsion dans R2 est utilisé pour former un interféromètre de Ramsey.
En utilisant ce schéma, nous avons préparé et stabilisé les états de nombre de photons avec
un maximum de 7 photons.

Ce manuscrit décrit l’expérience et présente les résultats, et il est organisé comme suit.
Dans le chapitre I, nous d’abord donnons un aperçu de la dispositif expérimentale, puis présen-
tons les outils fondamentaux de nos expériences: des atomes et des photons, sur les aspects
techniques et théoriques. L’interaction des deux systèmes dans le régime dispersif est ensuite
discuté et le principe de la mesure QND de nombre de photons est présenté.

Chapitre II est consacrée à l’estimation d’état dans le protocole de rétroaction. Les in-
teractions des atomes avec le champ dans la cavité et leur détection ultérieure transforment
l’état du champ, avec les transformations décrites par des cartes quantiques. Dans ces inter-
actions, les imperfections expérimentales entrent en jeu, qui sont évalués et intégrés dans les
cartes quantiques associés à les interactions dispersif et à résonance. A la fin, on obtient une
estimation de l’état adapté à la situation expérimentale.

Dans le chapitre III, nous présentons les algorithmes réalistes pour l’estimateur d’état
quantique et le contrôleur. Avec ces algorithmes, nous effectuons des simulations numériques,
ce qui nous guident dans l’optimisation de certains paramètres du processus de rétroaction.

La réalisation expérimentale du processus de rétroaction est présentée dans le chapitre
IV. Nous expliquons d’abord les systèmes de contrôle expérimentales et de la structure d’une
séquence expérimentale. Ensuite, nous montrons plusieurs trajectoires quantiques individu-
elles et les distributions moyennes de nombre de photons obtenus en faisant la moyenne sur
plusieurs milliers de telles trajectoires. A la fin, nous discutons de la façon dont le contrôleur
fonctionne.



Introduction in English

Quantum mechanics, developed at the beginning of the 20th century, unveils a counter-intuitive
world in which the notions of wave and particle are intimately mixed. On the one hand, light
appears at the same time as a continuous wave and as an ensemble of photons, which are
elementary excitations of the quantized electromagnetic field. On the other hand, the ob-
jects perceived as well-localized particles, such as electrons, also exhibit wave behaviors. For
instance, in a double-slit interference experiment done by Tonomura et al. [1], a series of incom-
ing single electrons gradually formed interference patterns similar to the optical interference
patterns observed in the original Young’s experiment.

Quantum physics also allows such counter-intuitive phenomena as Schrödinger’s cat states
and quantum nonlocality. The former was observed in an experiment [2], in which a meso-
scopic superposition of quantum states gradually evolved into a statistical mixture due to
decoherence. The latter was also demonstrated to be a specific feature associated to quantum
theory, which cannot be explained by classical models involving “hidden variables” [3, 4, 5].

In quantum theory, the description of measurement is also quite different from its classical
counterpart. A well-known tenet of quantum physics says that measurement in general modi-
fies the state of the measured system. As postulated in quantum mechanics, the measurement
with observable Ô on a quantum system satisfies the following rules:

• The measurement outcomes can only be the eigenvalues of Ô.

• After obtaining a certain eigenvalue, the system is projected to the corresponding eigen-
state.

Such a measurement is called a projective or von Neumann measurement [6]. A special type of
such measurement is the quantum nondemolition measurement (QND) [7, 8, 9, 10], in which
the observable Ô commutes with the Hamiltonian H of the system, ensuring the repeatability
of the measurement.

The fact that measuring a quantum system in general modifies it is also exploited for
practical applications. For example, a secure quantum key distribution (QKD) scheme was
proposed by Bennett and Brassard in 1984 [11]. In this scheme, the security of the QKD
traces back to the measurement postulates of quantum theory. An eavesdropper extracting
information from the quantum channel shared by two communicators discloses himself, since
his measurement modifies the measured system.

Another possible application of quantum theory exploits quantum nonlocality and entan-
glement. Initially proposed by Bennett et al. in 1993 [12], a quantum teleportation protocol
was first demonstrated experimentally by D. Bouwmeester et al. in 1997 [13]. In this exper-
iment, the sender, “Alice”, and the receiver, “Bob”, share an entangled pair of photons. Alice
makes a joint measurement on her photon and an unknown quantum state, then sends Bob

7
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the classical result of her measurement. Knowing this result, Bob can convert the state of his
photon into an exact replica of the unknown state destroyed by Alice.

The most ambitious application of quantum theory may be its combination with com-
puter science [14], which leads to the concept of a quantum computer. A quantum computer
operates on data represented by qubits (quantum bits) and carries out computations based
completely on the quantum properties of data and operations. This is necessary because if
the bits of computation scale down to the size of individual atoms, the quantum nature of
these bits may change profoundly computation itself. Such a computer can work more effi-
ciently than its classical counterpart for some computation problem, e.g. the factorization of
a large number [15]. Proof-of-principle experiments have been carried out in which quantum
computational operations were executed on a small number of qubits [16, 17].

The applications of quantum theory rely on the ability to manipulate systems made of
quantum objects. These systems include, to name a few, entangled photon pairs, trapped
ions, cold atoms, semiconductor quantum dots, superconducting qubits, microwave oscilla-
tors, opto-mechanical oscillators, etc. Among these systems, certain are more suitable for
specific functions. For instance, entangled photon pairs are ideal candidates for quantum
communication, whereas cold atoms are suitable for acting as a quantum memory. However,
the real applications in future may involve a more general quantum network [18], in which
several different systems come into play.

While manipulating quantum systems, a challenging task is to preserve the coherence of
their states. The inevitable coupling of the quantum systems to their environments leads
to leakage of information and thus decoherence of the systems. In the context of quantum
information processing, decoherence of the qubits may induce errors in the quantum compu-
tation. In order to fight against the errors, many methods have been proposed, such as the
error correcting codes by exploiting auxiliary qubits [19], or the coding of quantum informa-
tion in decoherence-free subspaces [20]. Another method based on feedback loops was also
proposed [21]. In this method, the system to be controlled is brought to interact with a probe
which is subsequently detected. The detected signal is then processed and fed back to the
system through some actuator. A predefined state can thus be prepared and preserved.

Several experiments have been performed, which achieve some aspects of the feedback
protocol. Smith et al. [22] demonstrated the ability to freeze and release the evolution of a
non-classical coupled state of a cavity mode and an atom ensemble, by exploiting quantum
feedback. The cavity mode was weakly driven by a laser source. Initially the coupled atom-
cavity system was in a steady state. A photon escaping from the system projected the state into
a new one in which the atom ensemble and the cavity mode underwent Rabi oscillations. After
a properly chosen time interval following the detection of the escaping photon, the intensity
of the driving laser was modified, such that the system settled down to a new steady state
and the Rabi oscillations were suppressed. Once the initial driving intensity was reinstalled,
the Rabi oscillations returned with the same amplitude and phase.

Cook et al. [23] accomplished an optimized discrimination between two optical coherent
states using real-time quantum feedback. Since coherent states are not orthogonal to each
other, quantum mechanics precludes any measurement that can discriminate perfectly two
such states. An optimal measurement, the so-called “cat-state" measurement, requires the
preparation of a Schrödinger’s cat state, and is considered very difficult for experimental
implementation. In the experiment of Cook et al., the coherent field to be discriminated was
detected by photon counting and manipulated by feedback-mediated optical displacements.
The optical pulse length of the coherent field set the duration of the measurement. At each
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moment within the measurement, field discrimination was performed by selecting one of the
two states that maximized the likelihood of the photon counting results, given the whole
history of already-applied optical displacements. A new optical displacement was chosen
to minimize the probability of discrimination errors over the remainder of the measurement
duration. In this way, they could discriminate two coherent fields with probability of errors
lower than shot noise and even approaching the quantum limit.

Gillett et al. [24] performed an experiment in which weak measurements and feedback
control were combined to correct phase flip errors of a photonic qubit. The qubit prepared
in one of two nonorthogonal states was transmitted through a noisy quantum channel that
could induce a phase flip error. The weak measurement on the transmitted qubit provided a
result, which was used for determining an optimal rotation to the qubit, aiming at recovering
the qubit as close as possible to its noiseless initial state.

Geremia et al. [25] tried using a continuous quantum feedback process to prepare atomic
spin-squeezing states in an ensemble of cold atoms. Nevertheless, the paper was later retracted,
reflecting the difficulty of implementing a continuous quantum feedback.

In the following, we discuss continuous quantum feedback experiments implemented in the
context of cavity quantum electrodynamics (CQED). CQED is particularly adapted to study-
ing the interaction between photons and atoms. An electromagnetic field confined in a high
finesse cavity is quasi-isolated from its environment. The quantized field and the individual
atom interacting with it constitute an ideal system for performing test experiments illustrating
the fundamental principles of quantum mechanics. For example, let us mention the observa-
tion of cavity-enhanced single-atom spontaneous emission [26], an effect predicted by Purcell
decades ago [27]; the observation of quantum Rabi oscillations revealing the quantization
nature of the radiation field [28]; and the non destructive detection of a single photon [29].

In recent years, thanks to the improvement of the lifetime of cavity mode, our group has
been able to perform repeated QND measurement on photon fields. In this measurement,
the microwave field confined in the cavity and the two-level atoms interact in the dispersive
regime, such that no energy exchange occurs. The interaction induces light shifts on the
atomic states, which depend on the photon number. Reading out these shifts using a Ramsey
interferometer amounts to a QND measurement of the photon number. The group thus
observed the quantum jumps of a light field [30] and monitored the progressive projection
of a coherent field into photon number states [31]. The group also reconstructed several
non classical photon states, such as the Fock states and the Schrödinger’s cat states [32].
By taking snapshots of these states at successive times, we monitored decoherence process
in progress, which clearly illustrated the transition from quantum to classical states of a
microscopic system coupled to its environment. When the last experiment was performed, I
was taking an internship in the group before officially starting my Ph.D. work, and thus had
the opportunity to participate in the measurement.

Non-classical field states are indispensable tools for exploring the quantum-classical bound-
ary. Moreover, their preparation is also an important aspect of the applications to information
science. For example, squeezed states are used in metrology and quantum communication;
Schrödinger’s cat states are exploited for studying decoherence; and photon number states
find applications in quantum information processes. Many methods have been used to pre-
pare photon number states. In 2000, Varcoe et al. prepared the states |1〉 and |2〉 by exploiting
the trapping states [33]. In this experiment, the atom prepared in its excited state interacted
resonantly with the cavity field and underwent a Rabi 2π pulse in the target state, such that
the field was trapped in this state. In [31], we used repeated QND measurement to collapse
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a coherent field into individual photon number states. In 2009, Hofheinz et al. demonstrated
the preparation of arbitrary photon states in a circuit-QED experiment. The superconducting
phase qubit, acting as an artificial two-level atom, interacted resonantly with the coplanar
resonator and phase-coherently pumped photons into the resonator.

Nevertheless, the prepared Fock states undergo decoherence and can lose their non-classicality
rapidly [34, 35]. Thus protecting them is a demanding task. The deterministic procedure which
feeds quanta one at a time into the resonator field, used by Hofheinz et al., cannot counter-
act decoherence because it does not provide real time information on the actual field state.
The preparation of the Fock states using the QND measurement cannot prepare a Fock state
on demand, because different Fock states come out randomly with probabilities given by the
photon number distribution of the initial field. Nevertheless, this method provides real time
information about the field state. This information can be used for a deterministic steering
of the field towards a target Fock state, as well as for detection and subsequent correction of
decoherence-induced quantum jumps. Thus, combining the QND measurement and a feed-
back process can enable us not only to prepare Fock states on demand but also to protect
them from decoherence.

Inspired by the proposal of Geremia [36], we have designed a protocol for continuous
quantum feedback [37] and performed the experiment which prepares and stabilizes photon
number states on demand [38]. The experimental scheme is displayed in Fig. 3. The actions of
the actuators are injections of coherent microwave field. So we call this experiment a “coherent
actuator” quantum feedback experiment.

Figure 3. Scheme of the “coherent actuator” quantum feedback experiment. The high
finesse cavity C is sandwiched by the two Ramsey zones R1 and R2, which form a Ramsey
interferometer. The circular Rydberg atom is prepared in box B and detected in D. The
detection result is fed into the computer K (ADwin Pro-II), which estimates the field state
and commands a small injection of microwave field. The injection is performed by the source
S, with the amplitude A and phase Φ controlled by K.

In this experiment, if we prepare and protect the target Fock state |nt〉, a coherent field
with the real amplitude

√
nt is first fed into the cavity by the source S. The field is then

probed by sensor atoms performing QND measurements. The detection of each atom in D
provides partial information about the photon number in C. Based on the detection result,
the computer K estimates the field state by taking into account all available knowledge, such
as the initial field state, the detection result and all experimental imperfections (cavity decay,
detector efficiency, detection errors, etc.). It then computes the amplitude of a microwave
injection, aiming at bringing the field state closer to the target Fock state. This injection is
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then carried out by the source S, with the amplitude A and phase Φ both controlled by the
computer K.

Using this scheme, we succeeded in preparing and stabilizing the Fock states with up
to 4 photons. Nevertheless, the performance of this scheme is limited by the inability of
the classical actuator to reverse a quantum jump in a single step. The mismatch between
the classicality of the microwave source and the quantumness of the target state and of its
quantum jumps limits the speed of correcting these jumps, and thus limits the procedure to
low photon number states. The participation in this experiment constitutes an important
part of my Ph.D. work. I do not discuss it here any further. Instead, I present an experiment
leading to better feedback performance.

In order to improve the performance of the feedback procedure, we substitute the classical
microwave source S by quantum objects: resonant circular Rydberg atoms, which exchange
photons with the cavity field and act as photon emitters or absorbers. The scheme showing the
principle of this experiment is given in Fig. 4. Since in this experiment, the actuators are the
circular Rydberg atoms, it is thus referred to as the “atomic actuator” feedback experiment.

Figure 4. Scheme of the “atomic actuator” quantum feedback experiment. The high finesse
cavity C is sandwiched by the two Ramsey zones R1 and R2, which form a Ramsey interfer-
ometer. The circular Rydberg atom is prepared in box B and detected in D. The detection
result is fed into the computer K (ADwin Pro-II), which estimates the field state and applies
feedback actions to the actuator atoms by controlling the potential (V) on one of the cavity
mirrors and the microwave pulses in R1 (S1) and R2 (S2).

The algorithms for estimating the field state and choosing feedback actions differ from the
former experiment. After obtaining the estimated state, the computer K chooses a feedback
action in order to bring the current state closer to the target. The action can be setting the
actuator atom as a photon emitter or absorber. which is implemented through controlling
the potential V on one of the cavity mirrors and the microwave pulses in R1 (through S1)
and R2 (through S2). The potential V switches the interaction regimes between the cavity
field and atoms: either dispersive or resonant. The microwave pulse in R1 prepares a proper
initial atomic state. The pulse in R2 is used for forming a Ramsey interferometer. Using this
scheme, we have prepared and stabilized photon number states with up to 7 photons.

This manuscript explains the experiment and presents the results, and it is organized as
follows. In chapter I, we first give an overview of the experimental setup, then present the
fundamental tools of our experiments: atoms and photons, on both technical and theoretical
aspects. The interaction of the two systems in the dispersive regime is then discussed and the
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principle of the QND measurement of photon numbers is presented.
Chapter II is devoted to state estimation in the feedback protocol. The interactions of

atoms with the cavity field and their subsequent detection transform the field state, with
transformations described by quantum maps. In these interactions, experimental imperfec-
tions come into play, which are measured and incorporated into the quantum maps associated
to both the dispersive and resonant interactions. At the end, we obtain a state estimation
adapted to the experimental situation.

In chapter III, we present the realistic algorithms for the quantum state estimator and
controller. Based on these algorithms, we perform numerical simulations, which guide us in
optimizing certain parameters of the feedback process.

The experimental implementation of the feedback process is presented in chapter IV. We
first explain the experimental control systems and the structure of an experimental sequence.
Then we show several individual quantum trajectories and the average photon number dis-
tributions obtained by averaging over thousands of such trajectories. At the end, we discuss
how the controller operates.



Chapter I

Atoms and photons in cavity

We investigate the interaction between two-level atoms and few photons confined in a very high
Q cavity. The current setup we use was completed during the thesis of Sébastien Gleyzes [39].
The long lifetime of the field confined in the cavity during which we can measure the field
about 800 times enables us to perform a feedback experiment. This chapter is devoted to
the introduction of the experimental tools. We first show the experimental scheme, then
present the two-level atoms, the high Q cavity, the theories describing their interactions and
measurement of the field state.

In section I.1, we present the circular Rydberg states of Rubidium atoms, including their
special properties as two-level systems, the preparation and detection methods. Besides these
technical aspects, we also explain the theoretical description of these two-level systems. At
the end, we discuss the principle of a Ramsey interferometer. In section I.2, we introduce
the high Q cavity and the description of the photon field. The coupling of the field to its
environment is also discussed. In section I.3, we present the theory describing the interaction
between the atoms and photons. Depending on their relative frequencies, the two systems
may interact dispersively or resonantly. In section I.4, we discuss the quantum nondemolition
(QND) measurement of photon numbers. We start by recalling the postulates on measurement
in quantum mechanics, then explain the principle of the QND measurement. Afterwards, we
explain the methods for field state reconstruction and measurement of phase shift per photon.

Experimental setup

The experimental scheme is displayed in Fig. I.1. Let us follow the long blue arrow showing
the direction of the atomic beam to briefly present the main components of the setup.

Oven

Rubidium atoms are stored in the oven. They are heated up, then diffuse out of it through
a small hole. After the velocity selection process, only the atoms with a selected velocity
participate in experiments.

Circularization box

The atoms are excited to the circular Rydberg states in B. This process involves several lasers,
microwave and RF fields, etc. The small entrance hole on this box and the exit hole of the
oven define the quasi unidimensional atomic beam.

13
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Figure I.1. The experimental scheme. The long blue arrows shows the atomic beam. The
torus-shaped elements represent circular atoms.
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Ramsey zones and cavities

The two Ramsey zones R1, R2 and the high Q cavity C constitute the core part of the
experiment. They are shielded from thermal and magnetic fields by a metal box. The box is
cooled down to 0.8 K, by combining a Nitrogen cryostat, a 4He cryostat and a 3He refrigerator.
The almost completely closed structure of the box suppresses the leakage of thermal photons
into it, thus guarantees a well thermally equilibrated environment at 0.8 K for the cavity field.
The two Ramsey zones are fed by the same microwave synthesizer through holes on one of
their mirrors. The cavity is fed by another microwave synthesizer from one side. This design
avoids damaging the mirror surface with a coupling hole and helps to obtain a high finesse
cavity.

Detector

We apply an electric field between the two electrodes of D. The atom is then ionized, leaving
a free electron focused by electric lens and detected by an electron multiplier.

I.1 Two-level atoms

I.1.1 Circular Rydberg atoms

The atom with an electron excited to energy levels with very high principal quantum numbers
n is called a Rydberg atom. It is further designated as a “circular” Rydberg atom if that
electron is excited to the level with maximal orbital and magnetic quantum numbers, i.e.
l = m = n− 1, because in this situation the electron has a circular orbit in the classical limit.
Let us use |nc〉 to denote such circular states. In our experiment we use the two circular levels
|50c〉 and |51c〉 of 85Rb, which are also denoted as |g〉 and |e〉, respectively. Figure I.2 shows
these levels and their energy difference. Their properties, preparation and detection will be
described in the following.

Figure I.2. Energy levels of the circular Rydberg states used in our experiments.

I.1.1.a Properties

Hydrogen-like energy levels

In the circular states |g〉 and |e〉, the valence electron is far away from the nucleus (the distance
is much larger than the Bohr radius), the Rb atom thus has a hydrogen-like structure, in
which the nucleus and all inner core electrons serve as a “heavier proton”. Within a very good
approximation, the energy levels of this system can be written as

En = −Ry
n2
,

where Ry is the slightly modified Rydberg constant that takes into account the mass of the
“heavier proton” [39].
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Under the condition n � 1, the transition frequency between two neighboring circular
levels reads

ωn =
Ry
~

(
1

(n− 1)2 −
1

n2

)
' Ry

~
�

2

n3
.

For states with n ∼ 50, the transition frequency 51.099 GHz falls in the microwave regime,
a regime where there exist high quality field resonators, facilitating the search for high Q
cavities.

Large electric dipole

The |nc〉 ←→ |(n− 1)c〉 transition is σ+-circularly polarized. Its dipole matrix element is
given by [40, p. 254]

dn = n2 |q|a0√
2
, (I.1)

with q being the electron charge and a0 = 0.53Å the Bohr radius.
Note that this value is proportional to n2, since the radius of a Rydberg atom is propor-

tional to n2 in a hydrogen-like approximation. For the transition |50c〉 ←→ |51c〉, we have
d51 = 1776|q|a0, which is a large number on the atomic scale.

Long lifetime

Among all states with a given principal quantum number, the circular states have the longest
radiative lifetime [41]. In fact, the circular Rydberg state can only decay to the first lower
circular level by spontaneous emission, i.e. |nc〉 −→ |(n− 1) c〉, according to the selection
rules. This transition occurs at a frequency ωn ∝ n−3, with dn ∝ n2. So the lifetime of the
circular level reads:

Tat = γ−1
at =

(
ω3
nd

2
n

3πε0~c

)−1

∝ n5. (I.2)

We see that Tat is proportional to n5. Particularly, the circular levels |50c〉 and |51c〉 have
lifetimes 28.5 ms and 31.5 ms, respectively.

Quadratic Stark effect

Circular Rydberg atoms have long lifetimes and strong coupling to microwave field, which
enable them to be good candidates as two-level systems. However, they are also very fragile in
the sense that they can mix with other levels which have the same principal quantum number
n, the so-called “elliptical” levels, because all these levels are degenerate in the absence of
external electric or magnetic fields. These elliptical and circular states form the hydrogenic
multiplicity of principal quantum number n.

The application of an external electric field F lifts this degeneracy. In this situation, l is
no longer a good quantum number, since F breaks the spherical symmetry. But m, related to
the symmetry around the z axis, remains as a good quantum number. The new eigenstates of
the Hamiltonian can be denoted as |n;n1;m〉, with n1 being the parabolic quantum number
and satisfying 0 ≤ n1 ≤ (n− |m| − 1). Circular states have n1 = 0. It can be shown [42] that
with a development up to the second order in F , the energy levels in the multiplicity of n can
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be expressed as E = E(0) + E(1) + E(2), with the three terms given by

E(0) = − 1

2n2
(I.3)

E(1) =
3

2
knF (I.4)

E(2) = − 1

16

(
17n2 − 3k2 − 9m2 + 19

)
n4F 2, (I.5)

with k = 2n1−n+ |m|+ 1. The energy and field amplitude are expressed in the atomic units.
States |e〉 and |g〉 together with the related elliptical levels are shown in Fig. I.3.

Figure I.3. Energy levels of the multiplicity of n = 50 and n = 51 in the presence of an
external electric field.

Note that the linear Stark effect lifts the degeneracy between the circular level (m = n−1)
and the levels with m = n − 2 in the same multiplicity by ±100 MHz/(V/cm). Thus in the
presence of even a relatively weak electric field, the transitions starting from |(n− 1)c〉 to
|nc〉 (∆m = +1) or to elliptical levels |n;n1;m = n− 2〉 (∆m = 0) can be well distinguished.
The σ− transition as depicted in Fig. I.3 has a frequency very close to that between the two
circular levels. However, the matrix element of its electric dipole |d|σ− = 27|q|a0 is much
smaller than that of the circular levels |d|σ+ = 1776|q|a0, making it negligible. To summarize,
by applying an external electric field, we obtain a system with two levels well separated from
other levels. This electric field, known as a guiding electric field, should have non zero values
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along the whole path of the circular Rydberg atoms in order to avoid mixing between the
circular and elliptical levels. But its amplitude and direction can vary smoothly.

Also note that the linear Stark effect is zero for a circular level, but a quadratic term
remains and shifts the frequency of |g〉 ←→ |e〉 transition by −255 kHz/(V/cm)2. This effect
is quite useful for tuning the atomic frequency in experiments. For instance, the atoms can
be tuned to be on or off resonance with the cavity field by adjusting the static electric field
between the cavity mirrors.

I.1.1.b Preparation

The preparation of circular atoms is a complex process, in which we need to transfer a lot
of energy and angular momentum to the atoms being initially in their ground state. The
whole process, involving the participation of several lasers, RF field and varying electric field,
etc., is shown in Fig. I.4. Since detailed explanation can be found in the thesis of Tristan
Meunier [43], here we only outline the main procedures.

Circularization of Rubidium atoms

The excitation of atoms to the circular levels is performed in the presence of a magnetic field of
18 G. The atoms are first excited from the fundamental level

∣∣5S1/2, F = 3,mF = +3
〉
to the

Rydberg level |52f,m = 2〉 by three lasers at the wavelengths 780 nm, 776 nm and 1.26µm.
The laser at 780 nm also plays a role of optical pumping, which brings atoms at other sub-levels
of
∣∣5S1/2, F = 3

〉
to
∣∣5S1/2, F = 3,mF = +3

〉
. This laser is also pulsed with a typical duration

of 2µs, which defines a time origin for all following pulses.
The laser excitation process is performed in the absence of electric field. Then the electric

field is gradually switched on and lifts the degeneracy of the multiplicity of n = 52. Atoms
are then transferred to the level |n = 52, n1 = 1,m = 2〉. The electric field is then swept and
a RF field is turned on at the same time, transferring atoms to the circular level |52c〉 through
a rapid adiabatic passage during which 49 photons at 255 MHz are absorbed. In this process,
the degeneracy of σ+ and σ− transitions are lifted by the magnetic field at 18 G. This field,
however, needs to be shielded in order not to perturb, by the Zeeman effect, the circular levels
going into the cavity. In the setup, we use a cylinder container made of superconducting
Niobium to shield the magnetic field. It is in this container, also called the circularization box,
that the circular levels are prepared.

Nevertheless, the prepared circular states are not pure, because some atoms may end up
in one of the elliptical states during the adiabatic passage. So after the preparation of state
|52c〉, a purification microwave is switched on, which brings atoms to |51c〉 by one-photon
transition at 48.2 GHz, or |50c〉 by two-photon transition at 49.6 GHz. Eventually, the atoms
staying on the levels of n = 52, no matter circular or elliptical, are ionized by a strong electric
field at the exit of the circularization box. At the end, we can obtain pure circular levels |e〉
or |g〉. In all experiments discussed in this manuscript, the atoms are prepared in the state
|g〉 in this process.
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Figure I.4. Preparation of circular Rydberg states.
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Controlling atomic position and velocity

Controlling the transverse profile of the atomic beam is necessary in order to reduce the effect
of inhomogeneous static electric field and to let the atoms pass through the center of the
cavity, such that strongest coupling to the cavity field is achieved. A quasi unidimensional
atomic beam is selected by the exit hole of the oven and the entrance hole of the circularization
box. The Rubidium atoms contained in the oven are heated up to about 185 ◦C. They diffuse
out of the oven at their thermal velocities through a 0.7 mm hole and need to pass through
another 0.7 mm hole at the entrance of the circularization box before entering the cavity. The
two holes, separated by 550 mm, thus select an atomic beam with a transverse diameter of
about 0.7 mm.

Thermal velocities of the atoms satisfy a Maxwell-Boltzmann distribution, which has a
width of about 270 m/s. In experiments, we need to know the position of atoms at a given
time, in other words, the velocity of atoms should be well selected and controlled. This is
done by two techniques: the first is velocity selection using Doppler effect and the second is
flight time selection. The principle of the first technique is shown in Fig. I.5.

Figure I.5. Velocity selection using Doppler effect. (a) Directions of the de-pumper and re-
pumper lasers relative to the atomic beam. (b) Hyperfine structure of the atomic levels. The
de-pumper laser depopulates the level |F = 3〉 by pumping atoms to |F = 2〉 via |F ′ = 3〉. (c)
The re-pumper laser brings atoms with velocity v = ∆ωλrep/2π cos θ from |F = 2〉 to |F = 3〉
via |F ′ = 3〉. Another velocity class v′ = ∆ω′λrep/2π cos θ is also selected via |F ′ = 2〉.

The de-pumper laser, resonant with the transition
∣∣5S1/2, F = 3

〉
←→

∣∣5P3/2, F
′ = 3

〉
,

is always on. It depopulates the level
∣∣5S1/2, F = 3

〉
by pumping all atoms to the lower

hyperfine level
∣∣5S1/2, F = 2

〉
. The re-pumper laser, at an angle θ ≈ 63◦ to the atomic beam,

is detuned by ∆ω with respect to the transition
∣∣5S1/2, F = 2

〉
←→

∣∣5P3/2, F
′ = 3

〉
. Due to

Doppler effect, only the atoms with velocity v = ∆ωλrep/2π cos θ see a laser frequency shift
which compensates ∆ω. They are thus pumped to the level |F = 3〉 via |F ′ = 3〉. Beside this
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Figure I.6. Velocity distributions of the atoms. Black broad: Maxwell-Boltzmann distri-
bution of the thermal velocity; blue double peaked: selection using Doppler effect with
re-pumper laser always on; red thin (see inset): with re-pumper laser pulsed with a duration
of 4µs.

velocity class, another class v′ = ∆ω′λrep/2π cos θ can also be selected via F ′ = 2. The double
peaked curve in Fig. I.6 shows the selected velocity classes.

The full width at half maximum (FWHM) of the velocity distribution after selection by
the Doppler effect is about ∆v = 30 m/s. It leads to a longitudinal dispersion of about 3 cm
at the position of the detector, which is much larger than the 6 mm hole on the detector. So
we use flight time selection to further reduce the velocity dispersion. As mentioned before,
the excitation laser at 780 nm is pulsed, with a typical duration of 2µs. Since the re-pumper
laser is separated from this laser by about 340 mm, we can also make the re-pumper laser
pulsed, with its timing adjusted such that only atoms with the selected velocity can arrive in
B when the excitation process starts. The velocity distribution thus obtained around 250 m/s
is shown in the inset of Fig. I.6. As an example, using a 4µs pulse for re-pumper laser, we
can obtain a velocity class of (250± 2) m/s, resulting in a longitudinal length of about 4 mm,
which is smaller than the hole on the detector.

Atom number per sample

The preparation process of the circular states is not deterministic, i.e. the prepared atom
number is not fixed. We use the term atomic sample to describe the atom ensemble obtained by
a preparation process. The atom numbers in an atomic sample satisfies a Poisson distribution:

Pn = e−nat
nnat

n!
, (I.6)

with Pn denoting the probability for containing n atoms, and nat representing the average
atom number in the sample.

The standard deviation of this distribution is
√
nat, which means that the more atoms the

sample contains the broader the atom number distribution is. We usually choose a relatively
weak nat, such that the probability for an atomic sample to contain more than two atoms can
be neglected. The value of nat can be tuned by varying pulse duration of the re-pumper laser.
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For instance, pulses with durations of 2µs or 4µs lead to nat = 0.4 or 0.6 with dispersions in
velocity of about 2 m/s or 4 m/s.

I.1.1.c Detection

Experimental measurements are performed by state resolved detections of the atoms. Since
the Rydberg atom has a valence electron far away from the nucleus, it can be easily ionized.
For instance, a static electric field on the order of 100 V/cm is sufficient to ionize atoms
with n ∼ 50. Moreover, this ionization field is state dependent [44]. Detailed information
concerning the detection process can be found in the thesis of Alexia Auffèves-Garnier [45].
Here we only explain briefly the operation principle of the detector.

Figure I.7. State resolved detection of atoms. (a) Operation principle of the detector. A
variable potential applied on one of the cathode ionizes the atoms above the hole. The free
electron is then focused by the electron lens and detected by the electron multiplier. (b)
Ionization signal resolving atomic states. By applying a potential ramp, the atoms with
different n are ionized at different times. The three well separated circular levels are |52c〉,
|51c〉, and |50c〉.

The structure of the detector and detected signals are shown in Fig. I.7. The ionization
part of the detector consists of a plane cathode and an anode containing a 6 mm hole. When
the atom is just above the hole, a potential ramp, also known as ionization ramp, is applied
on the cathode while the anode stays at a constant potential. The atom is then ionized,
and the free electron is guided by the electron lens and eventually detected by the electron
multiplier. Since the ionization electric field is state dependent, the three circular levels with
n = 50, 51, 52 are well separated into different time windows. Summation of the atom counts
in each time window defined by the dotted lines in Fig. I.7 gives us the total count of each
state.
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I.1.2 Theory of two-level systems

This section presents the theoretical description of a two-level system. We use the ground and
excited states of the circular Rydberg atoms to denote the two levels:

|g〉 ≡ |−〉z |e〉 ≡ |+〉z. (I.7)

They are the eigenstates of the Hamiltonian

Hat =
~ωat

2
σz, (I.8)

where ωat is the angular frequency of the transition |g〉 ←→ |e〉 and σz is one of the three
Pauli operators, which can be written in the matrix forms as:

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 . (I.9)

The three Pauli operators plus the unity operator Îat constitute a basis in the operator space
for two-level systems.

I.1.2.a Atomic pseudo spin and Bloch sphere

By analogy to electron spins, we can define a atomic pseudo spin S = ~σ/2, where σ =
(σx, σy, σz), is the vector formed by Pauli matrices. This definition paves the way for depicting
the quantum state of a two-level system in a geometrical representation. Consider the arbitrary
pure state

|ψa〉 = cos
θ

2
|e〉+ eiϕ sin

θ

2
|g〉, (I.10)

with the two angles constrained by 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.
As shown in Fig. I.8, |ψa〉 can be denoted by |+〉n, since the expectation value 〈ψa|σ|ψa〉

is a unitary vector n with (θ, φ) being its spherical coordinates. If the parameters θ and ϕ
vary, the ending points of this unitary vector form a spherical surface, known as Bloch sphere.
The unitary vector n is called a Bloch vector. The state with the parameters (π − θ, π + φ)
is orthogonal to |ψa〉 and can be represented by |−〉n. The state pairs |±〉n also constitute a
vector basis of the Hilbert space.

Now let us consider the evolution of state |ψa〉 under the Hamiltonian (I.8). After simple
calculations we obtain the evolving state:

|ψa (t)〉 = e−ωatt/2

(
cos

θ

2
|e〉+ ei(ϕ+ωatt) sin

θ

2
|g〉
)
. (I.11)

This shows a picture of Larmor precession of the atomic pseudo spin around the quantization
axis z.
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Figure I.8. Bloch sphere representation of the states of a two-level system

I.1.2.b Manipulation of atomic states

The two states |e〉 and |g〉 have opposite parities. In the Hilbert space spanned by the basis
{|e〉, |g〉}, the odd parity electric dipole operator D = qR is purely non-diagonal and can be
expressed as [40]:

D = d(εaσ− + ε∗aσ+), (I.12)

with d being the dipole matrix element of the atomic transition (assumed to be real without
loss of generality), εa being the unit vector describing the polarization of the atomic transition,
and the atomic raising and lowering operators σ± defined as:

σ+ = |e〉〈g| σ− = |g〉〈e|. (I.13)

Let ux, uy, uz denote respectively the unitary vectors along the axes Ox, Oy and Oz in
real space, then we have εa = (ux ± iuy) /

√
2 for a σ± -polarized transition, and εa = uz for

a π -polarized transition.
The interaction Hamiltonian of the dipole with a classical electric field Er is given by

Hr = −D ·Er(t), (I.14)

where

Er(t) = iEr
(
εre
−i(ωrt+ϕ0) + ε∗re

i(ωrt+ϕ0)
)
, (I.15)

with Er, ωr and εr representing respectively the amplitude, angular frequency and polarization
of the electric field. By considering the problem in a reference frame rotating at ωr, and making
a secular approximation which neglects the fast rotating terms, the Hamiltonian (I.14) becomes
time-independent and can be expressed as:

H̃ =
~∆r

2
σz − i

~Ωr

2

[
e−iϕ0σ+ − eiϕ0σ−

]
, (I.16)
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where ∆r = ωat−ωr, is the atom-field frequency detuning, Ωr is the classical Rabi frequency,
which is assumed, without loss of generality, to be real and takes the form

Ωr =
2d

~
Erε∗a · εr. (I.17)

After substituting the expressions σ± = (σx ± iσy) /
√

2 into the Hamiltonian (I.16), we can
show that it reads:

H̃ =
~Ω′r

2
σ ·n. (I.18)

By analogy with the Hamiltonian (I.8), we can identify Ω′r as an effective precession fre-
quency and n as a unitary vector on the Bloch sphere along the axis of precession. They are
given by

Ω′r =
√

Ω2
r + ∆2

r , n =
1

Ω′r
[∆rez + Ωr (− sinϕ0ex + cosϕ0ey)] . (I.19)

Note that:

• if Ωr = 0, then n = ez,

• if ∆r = 0, then n is in the equatorial plane of the Bloch sphere, and Ω′r = Ωr.

In the second case, it is the phase of electric field ϕ0 that determines the precession axis n.
An example of this precession with ϕ0 = 0 is given in Fig. I.9.

Figure I.9. Manipulation of atomic states. In the presence of a resonant oscillating elec-
tric field, the atomic state can be rotated continuously from |e〉 to a superposition state(
|e〉+ eiϕ0 |g〉

)
/
√

2, then to |g〉. The phase ϕ0 determines the rotation axis n. The rotation
“speed” is the classical Rabi frequency Ωr.

Consider that an atom initially in state |e〉 or |g〉 interacts with a resonant oscillating
electric field during a time t which satisfies the condition

Ωrt = π/2. (I.20)



26 Chapter I. Atoms and photons in cavity

Then the Bloch vector is rotated to the equatorial plane, and the corresponding state is a
superposition of |e〉 and |g〉 with equal probabilities:

|e〉 −→ 1√
2

(
|e〉+ eiϕ0 |g〉

)
|g〉 −→ 1√

2

(
−e−iϕ0 |e〉+ |g〉

)
. (I.21)

In the following, this elementary manipulation of atomic states is called as π/2 pulse. Similarly,
the interaction with time 2t realizing the following transformations:

|e〉 −→ eiϕ0 |g〉 |g〉 −→ −e−iϕ0 |e〉, (I.22)

is called a π pulse.

I.1.2.c Ramsey interferometer

The scheme of a Ramsey interferometer is shown in Fig. I.10, with R1 and R2 denoting the
two Ramsey zones where π/2 pulses are applied.

Figure I.10. Scheme of the Ramsey interferometer. R1 and R2 denote the two Ramsey zones
where π/2 pulses are applied. D is a state resolved detector. The oscillating signal shows
the probability for detecting state |g〉 as a function of the phase shift Φ.

The first π/2 pulse in R1 transfers the atom from state |e〉 to a superposition state

|e〉 −→ 1√
2

(|e〉+ |g〉) . (I.23)

On the path to R2, a phase shift element changes the atomic state to

1√
2

(
|e〉+ eiΦ|g〉

)
. (I.24)

Another π/2 pulse in R2 at a phase φr relative to that of the first one transforms the atomic
state to

1

2

[(
1− ei(φr−Φ)

)
|e〉+ eiΦ

(
1 + ei(φr−Φ)

)
|g〉
]
. (I.25)

The probabilities for detecting |e〉 or |g〉 are then given by

πg(Φ, φr) =
1

2
+

1

2
cos(φr − Φ) πe(Φ, φr) =

1

2
− 1

2
cos(φr − Φ). (I.26)

First, consider the case with φr = 0, in which the probabilities for πg and πe are oscillating
functions depending only on Φ. These oscillations can be seen as an atomic interference
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process, since there are two indistinguishable quantum paths leading the atom from the initial
to the final state. As an example, for the detected state |g〉, the atom may be transferred
to the state |g〉 either in R1 or in R2. To obtain the final probability we must sum the two
corresponding amplitudes. The Ramsey fringes appear as a result of the interference between
these two amplitudes.

Secondly, consider the situation with Φ = 0. The expressions (I.25) then lead to oscillating
functions of φr. In this situation, the oscillating probabilities for observing the atomic states
are obtained by varying the observation axis defined by φr. Varying φr can be achieved by
using two microwave sources for R1 and R2 with well controlled tunable phase differences. But
this is not convenient in practice. In fact, in experiments we use the same microwave source
for R1 and R2 and scan its frequency. This technique is effectively equivalent to varying φr,
as explained in the following.

Suppose that the microwave at frequency ωr is on resonance with the atom. It implements
a π/2 pulse in R1 and prepares a superposition state according to the transformation (I.23).
Once the microwave field is switched off, the atomic state evolves under the Hamiltonian (I.8)
and stays still in the reference frame rotating at ωr, since ωat = ωr. Nevertheless, if ωr is
slightly changed such that ∆r = ωat−ωr 6= 0, but the resonant condition is still satisfied, i.e.:

|∆r| � Ωr, (I.27)

the atomic state then rotates at the angular frequency ∆r. After a flight time Tf , the atom
arrives at R2, and the phase of the microwave source has accumulated a difference φr = −∆rTf
with respect to that of the atomic coherence. Hence, the second π/2 pulse is effectively applied
with a different phase from that of the first one.

This method is constrained by the condition (I.27), which guarantees the implementation
of the two π/2 pulses. In fact, this requirement can be easily fulfilled in our experiments. The
two Ramsey zones R1 and R2 are separated by 9 cm, which leads to a flight time Tf = 360µs
for atoms with a velocity 250 m/s. A detuning ∆r = 2.8 kHz is sufficient for accumulating a
phase of 2π. By contrast, the classical Rabi frequency Ωr is about 125 kHz. Thus the condition
in (I.27) can be easily satisfied.

I.2 Photons in cavity

A cavity confining several quanta of an electromagnetic field is an experimental realization of
the “photon box” used in the gedanken experiments for illustrating the fundamental principles
of quantum mechanics in its early days. Nowadays, very high Q cavities which can confine
microwave field by up to 0.1 s already exist [46] and have been used to study the quantum
nature of light. In this section, we first give some detailed information about the cavity
we use, then present the theoretical descriptions of a quantized field and its coupling to the
environment.

I.2.1 The high finesse Fabry-Pérot cavity

We use a cavity in the Fabry-Pérot configuration to isolate a mode of electromagnetic field in
the microwave range. The mode should have a frequency close to that of the two-level atoms
and a lifetime long enough for reaching the strong coupling regime. To achieve these, the
geometry, material and fabrication method of mirrors need to be carefully optimized.
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Geometrical parameters

The geometrical structure of the cavity and individual mirrors are shown in Fig. I.11. In
the paraxial approximation, the modes of a spherical Fabry-Pérot cavity can be calculated.
Particulary, the mode TEMq00, which has q antinodes between the two mirrors and a Gaussian
transverse profile has a frequency

νq =
c

2d

(
q +

1

π
arccos

(
1− d

R

))
, (I.28)

with c, d, and R being the speed of light in vacuum, distance between the two mirror centers
and the radius of curvature of the mirror surface, respectively.

Figure I.11. Geometrical parameters of the cavity and mirrors. (a) Top and side view of a
mirror. (b) Cavity scheme and the TEM900 mode of the microwave field. The values in the
figure are in unit of millimeter.

The mode that we use has q = 9, which corresponds to a frequency of 51.1 GHz. The
electric field of this mode has a cylindrical symmetry with respect to the cavity axis z, and is
given by

E0(r) = E0(r, z) ≡ E0f(r, z), (I.29)

with f(r, z) being the spatial profile of the mode, which can be expressed in the cylindrical
coordinates as

f(r, z) =
w0

w(z)
cos

(
kz − arctan

(
λz

πw0
2

)
+

r2k

2R(z)

)
e
− r2

w(z)2 , (I.30)

where λ = c/ν = 5.87 mm is the wavelength, and k = 2π/λ is the wavenumber. The waist of
the mode is given by

w0 =

(
λ

2π

√
d(2R− d)

)1/2

≈ 5.96 mm. (I.31)
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The radius of curvature and mode width vary as position changes. This dependence is given
by

R(z) = z

[
1 +

(
πw2

0

λz

)2
]

w(z) = w0

√
1 +

(
λz

πw0

)2

. (I.32)

We can also deduce the volume of the mode:

V =

∫
|f(r)|2d3r =

πw2
0d

4
' 769 mm3, (I.33)

and the amplitude of electric field associated to one photon:

E0 =

√
~ωc
2ε0V

' 1.5 · 10−3 V/m. (I.34)

We see that strong confinement of the field results in a large electric field even for a single
photon.

The theoretical analysis above is based on spherical mirrors, whose cylindrical symmetry
about the axis z results in the frequency degeneracy of two linear polarization modes being
perpendicular to each other and labeled as x and y. However, in practice, machining of the
mirror surface can hardly achieve a perfect spherical geometry. In this situation, the two modes
x and y have slightly different frequencies, which can both couple to the atoms. In order to
avoid the simultaneous coupling of atoms to two cavity modes, it is better to purposely break
the frequency degeneracy of the two modes and make them far away from each other (much
farther than the cavity-atom coupling strength). Based on this argument, the mirrors used
for our cavity actually have two slightly different radii of curvature along the axis x and y,
such that the two modes are separated by about 1.26 MHz.

High finesse

The mirror substrate is made from copper, which can be machined to have a very smooth
surface. On its surface, a 12µm thick Niobium layer is deposited by cathode sputtering [47].
Niobium becomes superconducting below 9 K, such that the surface loss of the mode is even-
tually reduced.

The cavity used in current experiments has a lifetime of Tcav = 65 ms for the TEM900

mode. This value is linked to the spectral width δν by [48]

2πδνTcav = 1. (I.35)

So the width of the cavity spectrum is about δν = 2.5 Hz as shown Fig. I.12. Correspondingly
the Q factor and finesse of the cavity are:

Q = ν/δν = 2.1 · 1010 F = Q/q = 2.3 · 109. (I.36)

Control of cavity frequency

In experiments, the frequency of the cavity mode needs to be finely tuned and precisely
controlled. This is achieved by four piezoelectric transducer (PZT) tubes mounted at the
corners of the cavity block, as shown in panel (a) of Fig. I.13. By applying a voltage difference
on the PZT tubes, we slightly change the distance between the two mirrors, and thus the
frequency of the cavity mode. As displayed in panel (b) of Fig. I.13, the voltage-frequency
conversion is about 2.4 kHz/V. With a high voltage source that goes up to 2000 V, we can
tune the cavity frequency by about ±5 MHz with a precision of 2.4 kHz.
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Figure I.12. Spectrum of the cavity mode (a value ν0 w 51.1 GHz is taken as the frequency
origin in the figure). The cavity is fed by a microwave field at the frequency ν. The atoms
prepared in state |g〉 pass through the cavity and interact resonantly with the microwave
field. The probability for transferring to state |e〉 is plotted (solid squares) and fitted using
a Lorentz distribution. The FWHM δν is about 2.5 Hz.

Figure I.13. Mounts of PZT tubes and adjustment of cavity frequency. (a) PZT tubes are
mounted between the two plates holding the mirrors. (b) Variation of cavity frequency as a
function of the voltage difference on the PZT tubes.

I.2.2 Theoretical description

I.2.2.a A quantized field

The high Q cavity confines a mode of the electromagnetic field at frequency ωc. This quantized
field can be described by the Hamiltonian of a harmonic oscillator [49]:

Hc = ~ωc
(
a†a+

1

2

)
≡ ~ωc

(
N̂ +

1

2

)
. (I.37)

Here we have introduced the annihilation and creation operators, a and a†, being the Hermi-
tian conjugates of each other. N̂ = a†a is the photon number operator, whose eigenstates are
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the photon number states |n〉, also known as Fock states. These states are also the eigenstates
of the Hamiltonian (I.37). The operators introduced above have the following properties:

a|n〉 =
√
n|n− 1〉 a†|n〉 =

√
n+ 1|n+ 1〉 N̂ |n〉 = n|n〉. (I.38)

Let us also introduce the eigenstate of the annihilation operator a, denoted as |α〉 [50],
which satisfies the relationship

a|α〉 = α|α〉. (I.39)

The state |α〉 describes a coherent field and can be expressed as

|α〉 = e−
|α|2

2

∑
n>0

αn√
n!
|n〉, (I.40)

with the average photon number given by

〈N̂〉 = 〈α|N̂ |α〉 = |α|2. (I.41)

The photon number distribution P (n) in a coherent field |α〉 obeys the Poisson distribution:

P (n) = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
. (I.42)

Let us also introduce the electric field operator

Ê(r) = E0 (r)
(
εa+ ε∗a†

)
, (I.43)

with ε denoting its polarization and E0 (r) = E0f (r) being its amplitude.
The evolution of a coherent field in the Hamiltonian (I.37) leads to

|α(t)〉 = e−i
ωct
2

∣∣αe−iωct
〉
. (I.44)

We see that the state remains coherent, but the complex amplitude rotates at the frequency
of the field. The average electromagnetic field in this state evolves exactly in the same way as
its classical counterpart. This can be easily verified by evaluating Ê(r) in |α(t)〉.

I.2.2.b Coupling to the environment

The electromagnetic field confined in the cavity is not an isolated system. The surrounding
environment at 0.8 K serves as a big reservoir, which can exchange energy with the cavity field.
Due to this effect, a field in the cavity relaxes and eventually reaches a thermal equilibrium
state.

In an equilibrium thermal field at temperature T , the mode at frequency ωc has a photon
number distribution given by the Bose-Einstein statistics:

Pth(n) =
1

en~ωc/kBT − 1
, (I.45)

with kB being the Boltzmann constant and ~ being the reduced Planck constant. The average
photon number is

nth =
1

e~ωc/kBT − 1
. (I.46)
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At the frequency of the cavity mode ωc = 2π × 51.1 GHz, nth ' 0.05 at T = 0.8 K.
The master equation governing the evolution of the field can be expressed in the Lindblad

form [40]:

dρ

dt
= − i

~
[H, ρ] + Lρ, (I.47)

Lρ =
∑

µ={+,−}

(
LµρL

†
µ −

1

2
L†µLµρ−

1

2
ρL†µLµ

)
, (I.48)

with the jump operators describing the gain or loss of one photon defined as

L+ =
√
κ+a

† L− =
√
κ−a. (I.49)

The first term in (I.47), corresponding to the unitary evolution under the Hamiltonian
H, can be removed by switching to an interaction representation with respect to H. In this
representation, the relaxation term remains unchanged. The evolution of the field from time
t to t+ dt can be expressed as

ρ(t+ dt) = (1 + dtL) ρ(t). (I.50)

The probabilities per unit time for a quantum jump to occur are given by

p+ = Tr
(
L†+L+ρ

)
= κ+Tr

(
aa†ρ

)
= κ+(1 + 〈N̂〉)

p− = Tr
(
L†−L−ρ

)
= κ−Tr

(
a†aρ

)
= κ−〈N̂〉. (I.51)

At thermal equilibrium, these two probabilities should be equal, leading to:
κ+

κ−
=

nth

nth + 1
' 0.05, (I.52)

which tells that the field has a probability for losing one photon about 20 times larger than
that of gaining one photon. Furthermore, we can introduce the notation κ for relaxation rate,
and express the rate for gaining or losing one photon as

κ+ = nthκ κ− = (1 + nth)κ. (I.53)

Substituting (I.53) into (I.48) and (I.50), we can evaluate the effect of field relaxation on
P (n) and obtain the rate equation:

dP (n)

dt
= κ(1 + nth)(n+ 1)P (n+ 1)

− [κ(1 + nth)n+ κnth(n+ 1)]P (n)

+ κnthnP (n− 1). (I.54)

After simple calculations, we also obtain the evolution of the average photon number 〈N̂〉 =∑
n>0

nP (n):

d〈N̂〉
dt

= −κ
(
〈N̂〉 − nth

)
. (I.55)

Consider the situation with T = 0, which leads to nth = 0. The equation (I.55) tells that the
average photon number decays exponentially with a rate κ, which is related to the lifetime of
the cavity mode by Tcav = 1/κ. From the equation (I.54), we see that the decay rate of a
Fock state |n〉 is nκ, giving rise to a lifetime Tcav/n.
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I.3 Coupling the two systems

In the previous sections, we presented separately the circular Rydberg atoms as two-level
systems and the photon field confined in a high Q cavity as a harmonic oscillator. Now let
us combine the two systems and consider their interactions. We first introduce the Jaynes-
Cummings model, then discuss the resonant and dispersive interactions. Afterwards, we ex-
plain the principle of the rapid adiabatic passage, which is used in experiments.

Jaynes-Cummings model

The Hamiltonian describing the coupled atom-field system includes three terms:

H = Hcav +Hat +Hint, (I.56)

with Hcav and Hat being the free uncoupled Hamiltonians of the field and the atoms. The
interaction term can be written as

Hint = −D · Ê (r)

= −dE0 (r) (εaσ− + ε∗aσ+) ·
(
εa+ ε∗a†

)
= −dE0 (r)

(
εaε
∗σ−a

† + ε∗aεσ+a+ εaεσ−a+ ε∗aε
∗σ+a

†
)
. (I.57)

We see that Hint includes four possible processes, with the first two being atomic level moving
down by emitting and moving up by absorbing one photon. In the situation ωat ∼ ωc, these
two terms dominate over the other two, which can thus be neglected. This is essentially
equivalent to making a rotating wave approximation in the case of a classical field [40], as
mentioned in paragraph I.1.2.b. After making this approximation, Hint can be written as

Hint =
~Ω0 (r)

2

(
σ+a+ σ−a

†
)
, (I.58)

with

Ω0 (r) = −2dE0εa · ε
~

f (r) ≡ Ω0f (r) , (I.59)

where f (r) denotes the profile of the cavity field amplitude, and Ω0 is the frequency of vacuum
Rabi oscillations characterizing the coupling strength of the two systems.

The total Hamiltonian (I.56) can then be expressed in the Jaynes-Cummings form:

HJC =
~ωat

2
σz + ~ωc

(
a†a+

1

2

)
+

~Ω0

2

(
σ+a+ σ−a

†
)
f(r). (I.60)

This Hamiltonian couples the states |e, n〉 with |g, n+ 1〉 (n > 0), and the subspace Sn =
{|e, n〉, |g, n+ 1〉} remains closed1. In the subspace Sn, HJC can be expressed in the matrix
form:

Hn = ~

ωc (n+ 1) + δ/2 Ωnf(r)/2

Ωnf(r)/2 ωc (n+ 1)− δ/2

 , (I.61)

1The state |g, 0〉 does not couple to any other states.
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with δ = ωat − ωc being the atom-field frequency detuning, and

Ωn = Ω0

√
n+ 1 (I.62)

being the Rabi frequency of the oscillation |e, n〉 ←→ |g, n+ 1〉.
At the center of the cavity mode, f(r) = 1, and the eigenstates ofHn can then be expressed

as:

|+, n〉 = cos
Θn

2
|e, n〉+ sin

Θn

2
|g, n+ 1〉 (I.63)

|−, n〉 = sin
Θn

2
|e, n〉 − cos

Θn

2
|g, n+ 1〉. (I.64)

with the angle Θn defined by

tan Θn =
Ωn

δ
, (I.65)

and constrained by 0 6 Θn < π. These states are called the dressed states of the atom-field
system, and their corresponding eigenenergies are

E±,n = ~ωc(n+ 1)± ~
2

√
Ω2
n + δ2. (I.66)

Figure I.14. Energies of dressed states as functions of the ratio between detuning and Rabi
frequency

Figure I.14 shows E±,n as functions of the ratio between detuning and Rabi frequency.
From the energy spectrum, we can identify two regimes of the atom-field interaction. One
is the dispersive regime2 with |δ| � Ωn, in which the uncoupled bare states remain good
approximations of the dressed states. The other is the resonant regime with δ = 0, in which
the degeneracy of the bare states is lifted by the coupling Hamiltonian, resulting in an energy
gap given by the Rabi frequency Ωn between the two dressed states. We discuss in more detail
these two regimes in the following paragraphs.

2More precisely, the far detuned dispersive regime.
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I.3.1 Resonant regime

In the resonant regime, δ = 0, then the Hamiltonian (I.61) reduces to

Hn = ~ωc(n+ 1) +
~Ωn

2

0 1

1 0

 . (I.67)

This Hamiltonian is effectively the same as that given by (I.18) after setting n = ex, Ω′r = Ωn

and making the following analogy:

|e〉 −→ |e, n〉 (I.68)
|g〉 −→ |g, n+ 1〉. (I.69)

We can thus conclude that Hn describes a quantum Rabi oscillation between |e, n〉 and
|g, n+ 1〉 with the frequency Ωn. Consider the evolution of the coupled state |e, n〉. After
omitting a global phase factor, the state at time t can be written as

|ψac (t)〉 = cos

(
Ωnt

2

)
|e, n〉 − i sin

(
Ωnt

2

)
|g, n+ 1〉 , (I.70)

leading to the probability for detecting the atomic state |g〉:

πg (t) =
1

2
[1− cos (Ωnt)] . (I.71)

Figure I.15 shows these oscillations in different photon number states, using Ω0/2π = 46 kHz
which is close to the measured value in our setup.
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π g

I n t e r a c t i o n  t i m e  ( µs )
Figure I.15. Quantum Rabi oscillations in different photon number states |n〉. The photon
numbers are n = 0 (black solid), 1 (red dashed), and 2 (blue dotted). The atom is prepared
in the state |e〉 before entering the cavity.
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I.3.2 Dispersive regime

In the far detuned dispersive regime, |δ| � Ωn, the interaction term Hint can be treated in a
perturbative way. The bare states remain good approximations3 of the dressed states:

|+, n〉 ' |e, n〉 and |−, n〉 ' |g, n+ 1〉 if δ > 0 (I.72)
|+, n〉 ' |g, n+ 1〉 and |−, n〉 ' |e, n〉 if δ < 0, (I.73)

but the corresponding energies are modified:

Ee,n = E0
e,n +

~Ω2
0

4δ
(n+ 1)

Eg,n+1 = E0
g,n+1 −

~Ω2
0

4δ
(n+ 1), (I.74)

where the notations with the superscript “0” correspond to the energies of the unperturbed
bare states. The energy shift with respect to that of the unperturbed bare state is called a
light shift.

In fact, the energy shift can be described by an effective Hamiltonian4 with the bare states
as eigenstates:

Hdisp
JC = Hcav +

~
2

[
ωat +

Ω2
0

2δ

(
a†a+

1

2

)]
σz. (I.75)

The second term in Hdisp
JC can be considered as an energy shift either to the field state or to

the atomic state. If we consider it as an energy shift to the atomic state, then the atomic
frequency ωat is shifted by

∆ωat(n) =
Ω2

0

2δ

(
n+

1

2

)
, (I.76)

with n denoting the photon number of the field, and the term 1/2 describing the light shift
due to the vacuum field, i.e. the Lamb shift.

Due to these light shifts, the interaction with the photon state |n〉 during time tint leads
to a phase shift on the atomic coherence:

∆ωat(n)tint = φ0

(
n+

1

2

)
≡ φ(n) +

φ0

2
, (I.77)

with

φ0 =
Ω2

0tint

2δ
(I.78)

being the phase shift per photon. It can be tuned in experiments by adjusting the atom-field
frequency detuning δ or the interaction time tint. The phase shift φ0/2, due to the Lamb shift,

3The modification of wave functions is on the order of Ωn/δ, which results in a modification to the state
probability on the order of (Ωn/δ)

2.
4In this Hamiltonian, a constant term ~Ω2

0
8δ

has been omitted, since it can be compensated by redefining the
energy origin.
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is independent of the photon number, and can be compensated by redefining a phase origin
for the atomic coherence. It is thus omitted in the following analysis.

The phase shift φ(n) tells that an atom prepared in (|e〉+ |g〉) /
√

2 ends up in a state5

|+〉n ≡
1√
2

(
|e〉+ eiφ(n)|g〉

)
, (I.79)

after interacting with the cavity field during time tint. In the Bloch sphere representation, the
Bloch vectors of |+〉n, as shown in Fig. I.16, point to different directions in the equatorial
plane depending on photon numbers.

Figure I.16. Evolution of the Bloch vector after interacting dispersively with a Fock state
|n〉. The global phase shift φ0/2 is not shown and the phase shift per photon is assumed to
be a constant φ0.

Non linear phase shift

So far, we have assumed the far detuning condition |δ| � Ωn. This condition is necessary for
obtaining the expressions (I.74), which lead to a constant phase shift per photon φ0.

However, since Ωn ∝
√
n+ 1, the condition |δ| � Ωn may not hold for higher photon

numbers. In this situation, we need to use the exact formula (I.66) and deduce the modification
terms [51]:

∆Ee,n =
~
2

(√
Ω2
n + δ2 − |δ|

)
(I.80)

∆Eg,n = −~
2

(√
Ω2
n−1 + δ2 − |δ|

)
. (I.81)

We can then define the phase shifts as:

φ(n) =
1

~
(∆Ee,n −∆Eg,n) tint. (I.82)

We can further define a phase shift operator φ(N̂), such that

〈n|φ(N̂)|n〉 = φ(n). (I.83)
5A global phase factor has been omitted.
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I.3.3 Rapid adiabatic passage

In previous sections, we considered the interactions between the atom and cavity field with
a fixed frequency detuning. In the current section, we discuss the rapid adiabatic passage
(RAP), in which the atom-field frequency detuning is swept. This technique leads to an
efficient photon transfer between the cavity field and atom. In our experiments, it is used for
absorbing residual photons in order to prepare the cavity field in its vacuum state.

The principle of the RAP is shown in panel (a) of Fig. I.17. For sweeping the atom-
field detuning, we keep the field frequency fixed and tune the atomic frequency through the
quadratic Stark effect. The latter is achieved by varying the potential applied on one of the
cavity mirrors. The applied potential and the corresponding detuning are displayed in the
panel (b).

Initially, the coupled state is |g, n+ 1〉, and the detuning has a positive large value, i.e.
δ0 � Ω0. Then the amplitude of the static electric field increases, and the atomic frequency is
tuned down. The detuning passes through 0 and stops at a large negative value. The coupled
state is then transformed from |g, n+ 1〉 to |e, n〉. Hence, one photon is transferred from the
cavity field to the atom.

Figure I.17. Rapid adiabatic passage. (a) the principle of the RAP. (b) the applied potential
(black dashed) and corresponding detuning δ (red solid).

I.4 Measurement of field state

In this section, we discuss the measurement of the field state. We first recall the postulates on
measurement in quantum mechanics, then explain the principle of the QND measurement of
the photon number and its backactions. We also explain the methods for state reconstruction
and measurement of the phase shift per photon.
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I.4.1 General measurement theory

Projective measurement

Consider a system S in a pure state represented by a vector |Ψ〉 in the Hilbert space H . The
measured observable is described by a Hermitian operator Ô in H with eigenvalues oi, which
are the only possible results of the measurement. The observable Ô can be expressed as

Ô =
∑
i

oiP̂i,

with P̂i being the projective operator onto the eigenspace with eigenvalue oi, and satisfies

P̂ †i = P̂i = P̂ 2
i

∑
i

P̂i = Î .

The postulates in quantum mechanics tell that

1. The measurement results oi come out randomly, with probabilities given by

πi = 〈Ψ|P̂i|Ψ〉.

2. After obtaining the result oi, the state is projected onto the corresponding sub-space

|Ψ〉 7−→ P̂i|Ψ〉√
πi

.

More generally, suppose that the system S is in a statistical mixture represented by the
density matrix ρ. Those postulates can then be generalized to:

1. The measurement results oi come out randomly, with the probability given by

πi = Tr
(
ρP̂i

)
. (I.84)

2. After obtaining the result oi, the state becomes

ρ 7−→ ρi =
P̂iρP̂i
πi

. (I.85)

Remark :

• If the observable Ô commutes with the Hamiltonian of the system S, the projective
measurement is repeatable, i.e. once obtaining the result oi, the following measurement
of the same observable always leads to the same result oi.

• If the measurement is unread, the density matrix becomes

ρ 7−→
∑
i

πiρi =
∑
i

P̂iρP̂i.

We see that only the diagonal elements (in the basis spanned by the eigenvectors of the
observable Ô) of the density matrix are preserved. The off diagonal elements related to
coherence are suppressed.
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Now let us apply these postulates in an experimental situation [40]. Consider a meter
system A which performs a measurement on the system S by being entangled to it with a
proper unitary operator ÛM . Suppose that ÔA is an observable of A with eigenvalues oAi
and corresponding eigenvectors

∣∣uAi 〉, which form an orthnormal basis. The operator ÛM
transforms A from its initial state

∣∣0A〉 to the state
∣∣uAi 〉 while making a transformation

described by an operator M̂i on the state of S, i.e.:

ÛM
∣∣ΨS

〉
⊗
∣∣0A〉 =

∑
i

〈
uAi
∣∣ÛM ∣∣0A〉∣∣ΨS

〉
⊗
∣∣uAi 〉

≡
∑
i

M̂i

∣∣ΨS
〉
⊗
∣∣uAi 〉. (I.86)

If we now perform a projective measurement on the meter system A and obtain the outcome
oAi , A is then projected onto the state

∣∣uAi 〉. Correspondingly, the state of S is transformed
according to ∣∣ΨS

〉
7−→

M̂i

∣∣ΨS
〉

√
πi

, (I.87)

with

πi =
〈
ΨS
∣∣M̂ †i M̂i

∣∣ΨS
〉

(I.88)

being the probability for obtaining the result oAi .
More generally, if S is in a statistical mixture ρS =

∑
i
pi
∣∣ΨS

i

〉〈
ΨS
i

∣∣, with each
∣∣ΨS

i

〉
being

linearly transformed according to (I.87), then the operator ÛM transforms the coupled state
according to

ÛM
(
ρS ⊗

∣∣0A〉〈0A∣∣) Û †M =
∑
i,j

M̂iρ
SM̂ †j ⊗

∣∣uAi 〉〈uAj ∣∣. (I.89)

Again the projective measurement of ÔA is performed on A, and we assume that the result
oAi shows up. Then the state of S is transformed according to

ρS 7−→
M̂iρ

SM̂ †i
πi

, (I.90)

with

πi = Tr
(
ρSM̂ †i M̂i

)
(I.91)

being the probability for obtaining oAi .
By analogy with the postulates given in (I.84) and (I.85), we see that the ensemble of op-

erators M̂i also describes a type of measurement, which is known as generalized measurement.

Generalized measurement

In this type of measurement, the operators M̂i are not required to be Hermitian, but since
the probabilities of all possible measurement outcomes sum to one regardless of ρS , i.e.:∑

i

Tr
(
ρSM̂ †i M̂i

)
= 1 ∀ρS , (I.92)
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they should satisfy ∑
i

M̂ †i M̂i = Î . (I.93)

In the example above, if the projective measurement on A is unread, the density matrix
of S is given by (the superscript of ρ is removed for simplicity):

ρ 7−→
∑
i

M̂iρM̂
†
i . (I.94)

This is a linear process for the density matrix. In general, the linear process transforming
a density matrix to another is called a quantum map, which is described by a superoperator.
Furthermore, quantum maps can always be expressed in the form of a Kraus sum represen-
tation [40]. The transformation (I.94) is already cast into this representation, with M̂i being
the Kraus operators.

We can further define an ensemble of operators, which are positive and Hermitian:

Êi = M̂ †i M̂i

∑
i

Êi = Î . (I.95)

Such an ensemble of operators constitutes a positive operator valued measure (POVM). The
probability for obtaining the result corresponding to the element Êi of the POVM is given by

πi = Tr
(
ρÊi

)
In short, the generalized measurement does not involve more quantum postulate than

those for the projective measurement. But it serves as a useful tool to formulate practical
measurements, such as the QND measurement to be explained in the following, destructive
photon counting using a photon multiplier and destructive ionization of atomic states, etc. [40].

I.4.2 Quantum nondemolition measurement of photon numbers

Using dispersive coupling between atom and photon fields, we can perform a QND measure-
ment of photon numbers [52]. This measurement is one type of the generalized measurements,
in which the probe atoms serve as meter systems.

I.4.2.a Measurement principle

Suppose that the superposition state (|e〉+ |g〉) /
√

2 is prepared by applying a π/2 pulse in
the first Ramsey zone to the state |e〉. Let us now consider its dispersive interaction with a
Fock state |n〉 confined in the cavity. After interaction, the atom-field state becomes

|n〉 ⊗ 1√
2

(|e〉+ |g〉) −→ 1√
2

(
e−i(φ(n)+φ0)/2|n〉 ⊗ |e〉+ eiφ(n)/2|n〉 ⊗ |g〉

)
. (I.96)

A second π/2 pulse applied in the second Ramsey zone with a phase φr relative to that of the
first one transforms the state into

− ie−i(φr+φ0/2)/2 sin

(
φ0/2 + φ(n)− φr

2

)
|n〉 ⊗ |e〉

+ ei(φr−φ0/2)/2 cos

(
φ0/2 + φ(n)− φr

2

)
|n〉 ⊗ |g〉. (I.97)
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Note that the detection of the atomic state, no matter it is in |g〉 or |e〉, leaves |n〉 unchanged.
This characteristic originates from the fact that photon number states are pointer states of
this measurement.

Let us now consider an arbitrary field state expressed as |ψc〉 =
∑
n>0

cn|n〉. Based on the

transformation (I.97), we can obtain∑
n>0

cn|n〉 ⊗
1√
2

(|e〉+ |g〉) −→ · · · (I.98)

−→− ie−i(φr+φ0/2)/2
∑
n>0

sin

(
φ0/2 + φ(n)− φr

2

)
cn|n〉 ⊗ |e〉 (I.99)

+ ei(φr−φ0/2)/2
∑
n>0

cos

(
φ0/2 + φ(n)− φr

2

)
cn|n〉 ⊗ |g〉. (I.100)

By analogy with (I.86), we see that the detection of the atomic state in the basis {|e〉, |g〉}
amounts to a generalized measurement of the field state. Omitting irrelevant global phase
factors, we can express the Kraus operators as

M̂e = sin

(
φ(N̂)− φr

2

)
M̂g = cos

(
φ(N̂)− φr

2

)
, (I.101)

where φ(N̂) is the phase operator defined in (I.83). The Lamb shift term φ0/2 is independent
of photon number, and has been included in the Ramsey phase φr. The POVMs associated
to these Kraus operators are given by

Êe =
1− cos

(
φr − φ(N̂)

)
2

Êg =
1 + cos

(
φr − φ(N̂)

)
2

. (I.102)

The probability for detecting the atomic state |g〉 in a Fock state |n〉 is

π(g|n) = Tr
(
|n〉〈n|Êg

)
=

1

2
+

1

2
cos (φr − φ(n)) . (I.103)

Remark: Comparing the probability π(g|n) with that given in (I.26), we recognize that
in the QND measurement the photon field serves as the phase shift element, which causes
phase shifts dependent on photon numbers. By reading out these phase shifts, the Ramsey
interferometer can thus extract information about the photon field.

I.4.2.b Modification of photon number distribution

Detecting the atomic state i = {|e〉, |g〉} transforms the field state according to

ρ′ =
M̂iρM̂

†
i

Tr
(
ρM̂ †i M̂i

) . (I.104)

The new photon number distribution P (n|i) is then given by

P (n|i) = Tr

 M̂iρM̂
†
i

Tr
(
ρM̂ †i M̂i

) |n〉〈n|
 . (I.105)
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Since the Kraus operators M̂i commute with |n〉〈n|, we can express (I.105) as

P (n|i) =
Tr
[
Êiρ|n〉〈n|

]
Tr
(
ρÊi

) =
〈n|Êi|n〉

Tr
(
ρÊi

)〈n|ρ|n〉, (I.106)

where the second equality is obtained from the fact that the operators Êi are diagonal in the
Fock basis.

We can easily identify the three terms: 〈n|ρ|n〉 = P (n) is the probability of state |n〉
in ρ; 〈n|Êi|n〉 = π(i|n) is the probability for detecting state i in |n〉; and Tr

(
ρÊi

)
= πi =∑

n>0
P (n)π(i|n) is the probability for detecting i in ρ. The probability (I.106) can thus be

written in an explicit form:

P (n|i) =
π(i|n)

πi
P (n). (I.107)

This equation tells that after detecting the atomic state i, the probability of |n〉 is modified
by a multiplication factor which is proportional to the probability for detecting i if the field is
in |n〉. This is simply the Bayes law on the inversion of conditional probability [53]. This law
holds because of the QND nature of this measurement, which ensures that |n〉 is not coupled
to other Fock states and thus no population transfer between different photon number states
occurs during the interaction.

Figure I.18 illustrates the modification of the photon number distribution P (n) after one
atomic detection. Here we assume an initial field with a flat bounded photon number distri-
bution, and that the measurement is performed with a Ramsey phase φr = 0 and a phase shift
per photon φ0 = π/4. The histograms in panels (a), (b) and (c) correspond to the initial P (n),
the modified distributions P (n|g) and P (n|e) if the atom is detected in |g〉 or |e〉, respectively.
The solid squares in panel (a) shows the probabilities π(g|n).

If the atom is detected in |g〉, the probability of |0〉 is doubled while that for |4〉 becomes
zero. This is because a field with 0 photon leads to a probability 100% of detecting |g〉. Since
now we detect |g〉, the field is “more probably” in |0〉. As for the suppression of |4〉, it can
be understood like this: the probability for detecting |g〉 is zero in |4〉, we now detect |g〉, so
there should be no such a state in the field.

If the atom is unread, the field is transformed according to

ρ′ =
∑

i={e,g}

M̂iρM̂
†
i . (I.108)

One can easily verify that the photon number distribution P (n) is not changed, a feature
related to the QND nature of this measurement.

Decimation and field collapse

The QND measurement performed by one atom is a weak measurement, in the sense that it
does not project the field onto its pointer state. It only modifies P (n) by a multiplication
factor depending on the probability π(i|n), which is also called a decimation function.

The probability π(i|n) is a periodical function of n, and the period is 8 with φ0 = π/4. So
based on this decimation function, we actually measure the photon numbers modulo 8. This
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Figure I.18. Modification of P (n) by one atomic detection with a Ramsey phase φr = 0
and a phase shift per photon φ0 = π/4. (a) Initial photon number distribution (histogram)
is assumed to be flat with up to 7 photons. The points display the conditional probability
π(g|n) of detecting |g〉 in |n〉. (b) Photon number distribution if the atom is detected in |g〉.
(c) Photon number distribution if the atom is detected in |e〉.

is also why we truncate the one atom decimation process shown in Fig. I.18 at 7 photons. It
is illustrating to relate this periodicity to the atomic pseudo spins. As shown in the left panel
of Fig. I.19, after interacting with the field, the Bloch vectors of states |+〉n point to different
directions in the equatorial plane, with those of |+〉n+8 and |+〉n overlapping. The atomic
detection thus cannot distinguish the two states |n〉 and |n+ 8〉.

Moreover, under the conditions φr = 0 and φ0 = π/4, we have π(i|1) = π(i|7), π(i|2) =
π(i|6) and π(i|3) = π(i|5). The results of these equalities can be seen from panels (b) and (c)
of Fig. I.18, where there are such grouped states as |1〉 and |7〉 with P (1) = P (7). This feature
means that we cannot distinguish these two states using only the measurement with φr = 0.
In order to distinguish them, we need to exploit another Ramsey phase, e.g. φr = π/2. In
fact, although 2 orthogonal ones are enough in principle, it is better to use 4 Ramsey phases
to resolve the 8 photon number states from |0〉 to |7〉, as explained in the following paragraph.

From the curve of π(g|n) shown in Fig. I.19, we see that the setting φr = 0 is optimal
for distinguishing |2〉 and |6〉 from all other states, because π(g|2) = π(g|6) = 50% differs
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Figure I.19. Decimation process illustrated in the Bloch sphere representation. On the
left: Equatorial plane of the Bloch sphere showing the Bloch vectors of atomic states after
interacting with the states from |0〉 to |7〉, with φ0 = π/4. The four axes a, b, c, d are possible
observation axes as explained in the text. On the right: Conditional probabilities π(g|n),
which are equal to the spin component Sx plus a constant term.

maximally from all other π(g|n). The same argument also holds for the states, such as |3〉
and |7〉, |0〉 and |4〉, |1〉 and |5〉, i.e. they can also be optimally distinguished from the others
by choosing a proper Ramsey phase. For example, if φr = π/2, π(g|0) = π(g|4) = 50% and
the two states |0〉 and |4〉 can be maximally distinguished from the others. Consequently, it is
better to use 4 Ramsey phases to resolve the states from |0〉 to |7〉. A possible setting is the
4 phases labeled as a, b, c, d shown in Fig. I.19, with neighboring ones separated by π/4.

Repeating the weak measurements with alternating 4 Ramsey phases allows us to follow
the progressive state collapse of an initial field [31]. Figure I.20 shows two individual quantum
trajectories of such a measurement. Initially a small coherent field (to make sure that the
truncation up to 7 photon is valid) is injected into the cavity. Then atomic samples with
alternating phases a, b, c, d perform weak measurements. After having detected about 50
atoms, the field is randomly projected to a photon number state. So the repeated weak
measurements amount to a strong measurement that projects the field into a pointer state.

I.4.2.c Reconstruction of photon number distributions

In the previous section, we discussed the collapse of an initial field into photon number states
by repeated 4-phase QND measurements. In this section, we present a method which allows
us to reconstruct the photon number distribution P real(n) of the initial field.

In this method, we also perform the 4-phase QND measurements on the initial field. As a
first step, let us consider the decimation on an initial guess P0(n) performed by Nat atoms in
an individual quantum trajectory denoted by (P). In this case, the decimation can be easily
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(a)

i ddcbccabcdaadaabadddbadbc

j ggegggggggggeegggeggegggg

i dababbaacbccdadccdcbaaacc

j egegeeggegegegeggegeggggg

i ddcaddabbccdccbcdaabbccab

j eeegeeeggeggeeeeeegegegge

i bcdaddaabbbbdbdcdccadaada

j eeegegegeeeeegeeegggeggeg

(b)

Figure I.20. Progressive decimation of photon number distribution for two individual quan-
tum trajectories. The initial field is assumed to have a flat photon number distribution with
up to 7 photons. (a) Results of the first 50 atomic detections. The Ramsey phase and the
corresponding result of atomic detection is given by i and j. (b) Progressive evolution of
the photon number distributions.

obtained by applying the transformation relationship (I.107) Nat times, i.e.

P
(P)
1 (n) =

Nat∏
k=1

[
π
(
ik|n, φkr

)
πik (φkr )

](P)

P0(n)

=
1

Z(P)
Π

(P)
Nat

(n)P0(n), (I.109)

where ik denotes the detection result of the kth atom, φkr denotes the Ramsey phase used for
this atom. In the second line, Z(P) is a normalization constant, and the decimation function
of Nat atoms Π

(P)
Nat

(n) is defined as

Π
(P)
Nat

(n) =

Nat∏
k=1

[
π
(
ik|n, φkr

)](P)
. (I.110)

For measuring the initial field, the measurement time should be short such that the field
relaxation can be neglected during the measurement. In the decimation process discussed in
the previous section, the field is collapsed into photon number states by the detection of 110
atoms, a measurement time of about 45 ms6. Considering the cavity lifetime Tcav = 130 ms,

6In this measurement, the average detected atom number is about 0.2/sample. So we need to use about
550 atomic samples on average.
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the effect of field relaxation cannot be neglected during this time. In order to reduce the
measurement time, we need to reduce the number of atoms Nat. However, if Nat is small, the
weak measurements may not be able to collapse the field state into individual photon number
states. In this situation, the obtained P (P)

1 (n) keeps the memory of the initial guess P0(n),
which, for example, is supposed to be a flat bounded distribution in the previous section. To
overcome this problem, we can take an ensemble average over a large number of individual
quantum trajectories (e.g. ∼ 8000) and obtain a new guess of the photon number distribution:

P1(n) = P
(P)
1 (n)

(P)

. (I.111)

Since P1(n) contains the information from the measurement results, it is a better guess for
the initial field than P0(n). We can feed this better guess into the transformation (I.109) and
make the average (I.111) again. In fact, we can repeat this process many times and obtain

Pm+1(n) =
1

Z(P)
Π

(P)
Nat

(n)Pm(n)
(P)

. (I.112)

Suppose that at one moment we get the initial field P real(n) and substitute it into the
transformation (I.112). Since the atoms perform QND measurements on the photon numbers,
we have

P real(n) =
1

Z(P)
Π

(P)
Nat

(n)P real(n)
(P)

, (I.113)

which means that the real photon number distribution is a fixed point of the transformation
(I.112). Consequently, a sufficiently large number of iterations (e.g. ∼ 20) starting from an
initial guess P0(n) can reach the fixed point of the transformation (I.112), which is actually
P real(n).

In fact, the method used here is one example of the maximum-likelihood reconstruction,
analogy to the method discussed in [54]. In this article, the authors try to find the fixed point
of the following transformations:

ρ 7→ R(ρ)ρ ρ 7→ ρR(ρ), (I.114)

with R(ρ) being a matrix constructed in a similar way as the decimation function (I.110).
The fixed point of these transformations is the density matrix, which maximizes the likelihood
function, i.e. the probability for leading to the measured results.

Remark: Since the POVMs associated to the QND measurement are diagonal in the Fock
basis, the reconstruction method outlined above cannot provide information about the non-
diagonal elements of the density matrix. So this method enables us to reconstruct the photon
number distribution of the field, but not the entire density matrix.

I.4.2.d Phase shifts in photon number states

Phase shifts φ(n) can be calculated according to the formula (I.82), and can also be measured
experimentally. In this section we explain the principle and method for measuring φ(n).

Let us consider again the atomic pseudo spins shown in Fig. I.19. By relating their direc-
tions to the conditional probabilities πg (n, φr) ≡ π (g|n, φr) (Here and afterwards, φr is shown
explicitly in the expression of πg for clarity), we see that the detections with Ramsey phases
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φr = 0 and φr = π/2 correspond respectively to measurements of the x and y components of
the pseudo spins, i.e.

πg (n, φr = 0) = cos2

(
φ(n)

2

)
=

1

2
+
〈Ŝx〉n
~

(I.115)

πg (n, φr = π/2) = sin2

(
φ(n)

2

)
=

1

2
+
〈Ŝy〉n
~

. (I.116)

From the picture of atomic pseudo spins, it is clear that if we can determine precisely the x
and y components of the Bloch vector associated to each state |+〉n, the phase shifts φ(n) can
then be obtained as

φ(n) = atan

(
〈Ŝy〉n
〈Ŝx〉n

)
. (I.117)

.
It is the Ramsey phase φr that chooses which spin component we measure. In order to

make a full spin tomography, we need to use at least two Ramsey phases (ideally orthogonal to
each other). But in fact, with φ0 = π/4, it is better to use 4 Ramsey phases with neighboring
ones separated by π/4. One possible setting is the 4 phases labeled as a, b, c, d in Fig. I.19.
The spin component corresponding to each phase setting is given by

〈Ŝi〉 =
~
2

[πg (φi)− πe (φi)] , i = a, b, c, d. (I.118)

If we group the phases which are quasi-orthogonal7, e.g. (φa, φc) → (φ1, φ2) or (φb, φd) →
(φ1, φ2), we can express the x and y components of the atomic spin as

〈Ŝx〉 =
〈Ŝ1〉 sinφ2 − 〈Ŝ2〉 sinφ1

sin (φ2 − φ1)
〈Ŝy〉 =

−〈Ŝ1〉 cosφ2 + 〈Ŝ2〉 cosφ1

sin (φ2 − φ1)
. (I.119)

The values obtained from (φa, φc) and (φb, φd) are then averaged to get the two components
of the pseudo spin.

The measurement goes as follows: a small coherent field with roughly 4 photons is first
injected into the cavity. Then atomic samples with alternating 4 phases are sent successively
into the cavity. On average, about 0.2 atoms are detected in each sample. Each quantum
trajectory includes 500 samples, which lead to about 100 detected atoms. In this trajectory
we define a sliding “voting” segment of 60 detected atoms (i.e. from 1 to 60, 2 to 61..., etc.),
which are used to calculate the spin components according to (I.118). The same measurement
is then repeated 4000 times to have sufficient statistics.

The total numbers of spins in phase intervals of the size 0.02π are shown in Fig. I.21, and
fitted using a sum of 7 Gaussian functions with the same width. The center of each Gaussian
function corresponds to the phase shift in a photon number state. By fitting these phase shifts
with a quadratic function, we obtain the phase shifts8 φ(n):

φ(n) = (0.252± 0.001)π n− (0.001± 0.0004)π n2. (I.120)

7In the experimental situation, the separation between neighboring phases is not precisely π/4.
8The phase shift due to the vacuum state is taken as the origin of these shifts.
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Figure I.21. Phase shifts in photon number states. (a) Numbers of atomic pseudo spins
as a function of their phases. The counts are fitted using a sum of 7 Gaussian functions
(blue dashed lines) with the same width. The red solid line shows the fit result. (b) The
solid squares correspond to the phase shifts φ(n) in unit of π. The line is a second order
polynomial fit to the measured data.

Conclusion

In this chapter, we have introduced the experimental tools: atoms and photons. We have
explained the properties, preparation and detection of circular Rydberg atoms and the the-
oretical description of a two-level system. We have also presented the characteristics of the
high Q cavity we use and the theory describing a quantized field and its coupling to the
environment.

We have introduced the Jayne-Cummings model and discussed the resonant and dispersive
interactions between the atoms and the cavity field. In the resonant regime, the atom and
cavity exchange photons and we observe Rabi oscillations. In the dispersive regime, the
coupling induces light shifts to the atomic states. Thus the dispersive interaction leads to a
phase shift dependent on photon number to the atomic coherence. Reading out this shift using
a Ramsey interferometer enables us to perform a QND measurement of photon numbers. We
have analyzed the backactions of such a measurement performed by one atom, and discussed
the collapse of a field state by repeated measurements. We have explained the method for
measuring and reconstructing a field state. We have also presented the method for measuring
phase shifts in photon number states and given the results.
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Chapter II

Quantum feedback: state estimation

II.1 General principle

II.1.1 From classical to quantum feedback

Feedback loops are widely used in our everyday life and scientific research. For instance,
in refrigerator or incubators where temperature should be stabilized, in laser systems which
should operate at a well fixed frequency, etc. In these loops, as displayed in the upper panel
of Fig. II.1, a signal is obtained by the sensor performing measurement on the system S.
After signal processing, we obtain the current state parameter Sc (e.g. temperature) of S.
By comparing Sc with the preset target St, an error signal ε is generated. The controller C
transforms ε into a feedback action c, which is then carried out by the actuator and stabilizes
S around St.

Quantum feedback, referring to the generalization of this feedback method to control a
quantum system, must overcome a fundamental difficulty: the measurement has a back action
on the system which needs to be controlled. The lower panel of Fig. II.1 shows the loop
structure of a quantum feedback process. Comparing it with its classical counterpart, we
can identify the four basic components: sensor, quantum state estimator (signal processor),
controller and actuator.

The sensor performs measurements on the system S. Unlike in a classical feedback loop,
the backactions of the measurements need to be considered.

The quantum state estimator is an algorithm that estimates the current state ρk of
S, by taking into account all available information, such as the measured signal, the previous
estimated state ρk−1 stored in its memory, and the applied control action, etc. By contrast,
in a classical feedback loop, the state estimate can be done based only on the measurement
result.

The controller is another algorithm that chooses a feedback action in order to bring
the current state ρk closer to the target state ρt. In classical feedback loops, e.g. a PID
(proportional-integral-derivative) loop, the feedback action can be defined as a function of the
error signal. However, in quantum feedback loops, the choice of feedback actions does not rely
only on the error signal generated by the state comparison.

The actuator applies the feedback action c to S.

51
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Figure II.1. Comparison of classical and quantum feedback loops. In a quantum feedback
loop, the backactions of the sensor should be considered. The state estimator and controller
are also different from their classical counterparts.

II.1.2 Principle of the quantum feedback experiment

The scheme of the feedback experiment is displayed in Fig. II.2. We use quantum feedback
to prepare and stabilize photon number states in the high finesse cavity C. In the feedback
loops, the atomic samples performing QND measurements serve as sensors and are labeled
as “QND”. The samples which interact resonantly with the cavity field and exchange photons
with it act as actuators. They can be prepared either in |e〉 or in |g〉 for emitting or absorbing
photons, and are labeled as “RE” (resonant |e〉) or “RG” (resonant |g〉), respectively.

In order to illustrate the principle of the experiment without involving too much compli-
cation, we outline a simplified version of the feedback procedure in this chapter. Initially, the
cavity field is prepared in the vacuum state. An atomic sample performs the QND measure-
ment on the field and gets detected by the detector D. The detection result is then fed into
the quantum state estimator, which estimates the current field state based on this result and
all other knowledge it has, such as the initial field state, field relaxation, etc. Once a new
estimated state is obtained, the controller commands a feedback action on the next atomic
sample, aiming at bringing the field state closer to the target state. The “closeness” between
these two states is characterized by a distance function, which will be carefully defined later.
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Figure II.2. The scheme of the feedback experiment. C: the cavity; D: the detector; R1 and
R2: the two Ramsey zones. The torus-shape elements represent the circular Rydberg atoms.
The black arrow shows the atomic beam. The grey arrows display indicatively the feedback
loop.

The feedback actions are: (i) an RE sample serving as a photon emitter; (ii) an RG sample
serving as a photon absorber, (iii) a QND sample, if photon exchange is unnecessary. Later,
the sample carrying this feedback action interacts with the cavity field and gets detected, trig-
gering the next feedback loop. A sequence of equally spaced atomic samples passes through
the cavity and get detected one by one, such that the feedback process runs continuously.

The samples of different types require different initial atomic states before entering C,
which are RE: |e〉; RG: |g〉; QND: (|e〉+ |g〉)/

√
2. The state |g〉 is prepared before the sample

enters R1. The other atomic states are prepared by applying Ramsey pulses to |g〉 in R1. A π
pulse is required for a RE sample and a π/2 pulse for a QND sample. So in order to prepare
the corresponding atomic state, the type of the sample should be determined before it enters
R1.

The sensor samples interact dispersively with the cavity field, whereas the actuator samples
resonantly. The goal of this chapter is to discuss these two types of interactions.

The ideal QND measurement has been explained in I.4.2. However, in practice, experimen-
tal imperfections, such as the probabilistic atom number in an atomic sample, inhomogeneous
static fields, preparation and detection errors of the atomic states, detector efficiency, etc.
come into play. We extend the description of the ideal dispersive interaction to take into
account these imperfections in section II.2.

In the feedback experiment, the detection of the actuator samples also provides information
on the cavity field, and transforms the field state. The quantum maps corresponding to these
transformations are presented in section II.3. Starting from discussing the ideal cases, the
experimental imperfections are measured and gradually added into the ideal quantum maps.

In section II.4, we give the algorithm of the state estimation.

II.2 Sensor samples

The sensor samples interact dispersively with the cavity field and perform QND measurements.
As given in (I.101), the ideal Kraus operators associated to the detection results |e〉 and |g〉
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read

M̂e = sin

(
φ(N̂)− φr

2

)
M̂g = cos

(
φ(N̂)− φr

2

)
. (II.1)

In the following, we take into account the experimental imperfections and construct the quan-
tum maps adapted to the real experiments.

Probabilistic atom number

In practice, the atomic samples interacting with the cavity field do not have a deterministic
atom number, due to the probabilistic preparation process. The probabilities for different
atom numbers in a sample are approximately described by a truncated Poisson distribution
Pn with n ∈ {0, 1, 2}, i.e.

Pn = e−nat
nnat

n!
/

 ∑
m∈{0,1,2}

e−nat
nmat

m!

 , (II.2)

where nat is the average atom number per sample. Considering up to 2 atoms in an atomic sam-
ple, the possible detection results by a virtual ideal detector constitute a set Si ≡ {0, e, g, ee, eg, gg}
(the detection results “eg” and “ge” are indistinguishable and both considered as “eg”).

How do we describe the dispersive interaction between the cavity field and 2 atoms? In
fact, if two atoms interact with the cavity field simultaneously, the interaction process is more
complicated than that with only one atom. Cavity-assisted collision is possible [55], in which
the two atoms may exchange their states without modifying the photon number in the cavity,
i.e. |eg, n〉 ↔ |ge, n〉. This process reduces the contrast of the Ramsey fringes. Nevertheless,
we have verified with numerical simulations that, for the large atom-cavity detuning (250 kHz)
used in our experiments, this process is negligible and the modification of the field state induced
by 2 atoms simultaneously passing through the cavity is equivalent to that induced by 2 atoms
passing through the cavity one after another. We thus consider the simultaneous dispersive
interaction of the cavity field with 2 atoms as two successive interactions with 1 atom.

Consequently, the Kraus operators associated to the detection results q ∈ Si can be ex-
pressed as

Ŝ0 =
√
P0Î ,

Ŝe =
√
P1M̂e,

Ŝg =
√
P1M̂g,

Ŝee =
√
P2M̂

2
e , (II.3)

Ŝeg =
√

2P2M̂eM̂g,

Ŝgg =
√
P2M̂

2
g ,

with Î being the identity operator. It can be easily verified that
∑
q∈Si

Ŝ†q Ŝq = Î. In Ŝeg, a

factor
√

2 appears, because we consider both “eg” and “ge” as “eg”.
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Effective detection errors

In the operators (II.3), we need also to take into account other experimental imperfections,
which result in imperfect Ramsey fringes. Figure II.3 displays typical experimental Ramsey
fringes. In Fig. II.3 and the following figures, while presenting the experimental data, we
use ed (gd) to denote the event that a signal in generated in the detection channel |e〉 (|g〉).
We use πgd to denote the ratio between the number of the detection events gd over the total
number of detection events Ntot. The errors are thus the binomial statistical errors given by√
πgd
(
1− πgd

)
/Ntot.

Figure II.3. Typical experimental Ramsey fringes. The probability for detecting gd is plotted
as a function of the Ramsey phases. The meaning of gd is explained in the text.

Compared with ideal fringes, the measured fringes have a reduced contrast. This may
be due to the experimental imperfections, such as imperfect Ramsey π/2 pulses, preparation
and detection errors of the atomic states, and inhomogeneous static fields. In fact, it can be
shown that the quantum map associated to the Ramsey interferometer in the presence of these
different imperfections is effectively the same as if all of them were considered as detection
errors [51]. This leads to the effective detection errors, which need to be determined.

Due to the effective detection errors, the detection events ed and gd contain contributions
from both states |e〉 and |g〉. The effective detection errors can be expressed as the conditional
probabilities for the atomic states to be erroneously detected:

η̃de = P (gd|e) η̃dg = P (ed|g). (II.4)

Let us now derive πgd (φr) from the ideal Ramsey fringes expressed as πg (φr) = (1 + cosφr) /2.
Taking into account (II.4), the measured Ramsey fringes are given by:

πgd (φr) = πg (φr)
(

1− η̃dg
)

+ (1− πg (φr)) η̃
d
e

=
1− η̃dg + η̃de

2
+

1− η̃dg − η̃de
2

cosφr

≡ π0 +
C

2
cosφr. (II.5)
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By identifying the terms corresponding to the offset and the contrast, we obtain

η̃de = π0 −
C

2
, (II.6)

η̃dg = 1− π0 −
C

2
. (II.7)

The fit of the data in Fig. II.3 using the formula (II.5) gives the values C = (75.0±0.3)% and
π0 = 0.510±0.001. We then get the following values: η̃de = 0.140±0.002 and η̃dg = 0.120±0.002.

Detector efficiency

Besides the probabilistic atom number in an atomic sample and the imperfections accounted
for by the effective detection errors, another imperfection is that the atoms in a sample may
not be detected. As explained in section I.1.1.c, the atoms are ionized, leaving the free electron
to be guided by the electron lens and eventually detected by the electron multiplier. Since
neither the electron lens nor the electron multiplier works ideally, the atoms may fail to be
detected. This results in a limited detector efficiency εd, which is defined as the ratio between
the number of detected atoms over the total number of atoms arriving at the detector.

An efficiency smaller than 1 causes mixing of different atom numbers in the detection
results, just like a nonzero detection error causes mixing of the states |e〉 and |g〉. For instance,
if εd < 1, a detection result 0d denoting no atom detected may result from three possibilities:
the sample contains 0 atom, or the sample contains 1 or 2 atoms which are missed by the
detector. Consequently, the quantum map associated to the detection result 0d involves those
associated to 0, 1 and 2 atoms. In order to determine this mixing, we need to measure the
detector efficiency.

The method is as follows. The cavity field is first prepared in its vacuum state. An
injector atomic sample is prepared in the state |e〉 and interacts resonantly with the cavity
field. It may deposit one photon into the cavity by undergoing a Rabi π pulse. The atomic
flux of the injector is weak, e.g. with an average detected atom number ndat ' 0.06, such
that the probability of containing more than 1 atom in the injector can be neglected. This
condition will be checked later. The atom has a limited injection efficiency P (1ph|1at), which
is essentially the conditional probability for injecting 1 photon into the cavity if the it contains
1 atom. Since one photon is deposited if the prepared state |e〉 changes to |g〉, the probability
P (1ph|1at) can then be measured as the ratio between the number of detection events in |g〉 for
the injector sample and the atom number ndat. We had P (1ph|1at) = 0.70 while performing the
measurements1. We then measure the number of deposited photons when no atom is detected
for the injector sample, an event denoted as 0d. Let us use P (1at|0d) to denote the conditional
probability for the injector to contain 1 atom while no atom is detected. Applying the Bayes’
law to P (1at|0d), we obtain

P (1at|0d) =
P (1at)

P (0d)
P (0d|1at)

=
ndat/εd

1− ndat

(1− εd) =
1/εd − 1

1/ndat − 1
. (II.8)

1As will be seen later, e.g. in Fig. II.7, we can get a value for P (1ph|1at) up to 88% in a Rabi π pulse.
Here, the π pulse was done in a different experimental situation (different atom-cavity detuning). We suspect
that the π pulse was not optimized.
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Since an empty sample cannot inject photons into the cavity, the conditional probability for
depositing one photon into the cavity can then be expressed as:

P (1ph|0d) = P (1ph|1at)P (1at|0d). (II.9)

Combining (II.8) and (II.9), we can express εd as

εd =

[
1 +

P (1ph|0d)
P (1ph|1at)

1− ndat

ndat

]−1

, (II.10)

where the only undetermined parameter now is P (1ph|0d).
In order to measure P (1ph|0d), we record Ramsey fringes π0d

gd
(φr) after the injector ten-

tatively depositing one photon into the cavity but conditioned on 0d, which are effectively a
statistical mixture of the fringes in the vacuum field πgd (φr) and those in the Fock state |1〉
π

1ph

gd
(φr), i.e.:

π0d

gd (φr) = P (0ph|0d)πgd (φr) + P (1ph|0d)π
1ph

gd
(φr)

=
[
1− P (1ph|0d)

]
πgd (φr) + P (1ph|0d)π

1ph

gd
(φr) . (II.11)

To enhance the sensitivity of the Ramsey fringes to a single photon, we tune the phase shift
per photon φ0 to π. The equation (II.11) can then be expressed as

π0d

gd (φr) =
[
1− P (1ph|0d)

]
πgd (φr) + P (1ph|0d)πgd (φr − π)

= π0 +
C

2

[
1− 2P (1ph|0d)

]
cos (φr) . (II.12)

Then we record the fringes π0d

gd
(φr) and πgd (φr), as shown in Fig. II.4.

Figure II.4. Calibration of the detector efficiency. Ramsey fringes in the vacuum state
πgd (φr) (larger contrast), and π0d

gd (φr) (smaller contrast). The solid curves are fits to the
data.
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From the fits of the curves, we get P (1ph|0d) = 0.13. Given that P (1ph|1at) = 0.70 and
ndat = 0.06, we obtain

εd = 0.25± 0.02, (II.13)

with the error on the measured value estimated by repeating the same measurement several
times. With this efficiency, the real atomic flux is given by nat = ndat/εd = 0.24, which leads to
a probability of having more than 1 atom Pn>1 ' 2.5%. This number is negligible, supporting
our approximation of neglecting events with more than 1 atom in the entire calculation.

Mixing of the Kraus operators

Knowing the detector efficiency and the effective detection errors, we are able to construct
the quantum maps associated to all possible detection results. In order to distinguish the
detection results from the ideal detection results listed in Si, we add a superscript ‘d’ to these
states, which also constitute a set Sd defined as

Sd ≡ {0d, ed, gd, eded, edgd, gdgd}. (II.14)

If a state q ∈ Si is detected by a virtual ideal detector, the field state is transformed, with
the quantum map described by the operator Ŝq. However, in the experimental situation, we
do not have access to q. Instead, our detector provides the result qd ∈ Sd, which may result
from several ideal detection results. In order to obtain the corresponding quantum map, we
need first to determine the contribution of all possible q to qd, i.e. the conditional probabilities
P (qd|q). They are given in Table. II.1.

HHH
HHHqd
q

0 e g ee eg gg

0d 1 1−εd 1−εd (1−εd)2 (1−εd)2 (1−εd)2

ed 0 εd(1−η̃de ) εdη̃
d
g 2εd(1−εd)(1−η̃de ) εd(1−εd)(1−η̃de + η̃dg) 2εd(1−εd)η̃dg

gd 0 εdη̃
d
e εd(1−η̃dg) 2εd(1−εd)η̃de εd(1−εd)(1 + η̃de−η̃dg) 2εd(1−εd)(1−η̃dg)

eded 0 0 0 ε2d(1−η̃de )2 ε2dη̃
d
g(1−η̃de ) ε2dη̃

d2
g

edgd 0 0 0 ε2dη̃
d
e (1−η̃de ) ε2d(η̃

d
e η̃
d
g + (1−η̃de )(1−η̃dg)) 2ε2dη̃

d
g(1−η̃dg)

gdgd 0 0 0 ε2dη̃
d2
e ε2dη̃

d
e (1−η̃dg) ε2d(1−η̃dg)2

Table II.1. The conditional probabilityP (qd|q) related to the detector efficiency and the
effective detection errors, which account for the imperfect Ramsey fringes.

Eventually, the quantum map associated to a detection result qd ∈ Sd is simply a statistical
mixture of all quantum maps associated to the ideal detection results q which may lead to qd,
i.e.:

MQND
qd

ρ =

∑
q∈Si

P (qd|q)ŜqρŜ†q

Tr

( ∑
q∈Si

P (qd|q)ŜqρŜ†q

) . (II.15)
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If the atomic state is not yet detected, the quantum map can be expressed as:

NQNDρ =
∑
q∈Si

ŜqρŜ
†
q . (II.16)

II.3 Actuator samples

Having completely described the interaction between sensors and the cavity field, let us now
consider the actuators. Same as for the sensors, we also consider up to 2 atoms for the
actuators. The cases with 1 and 2 atoms are presented following the same plan: first we explain
the ideal interaction between the atom and cavity field, then we measure the experimental
imperfections. At the end, we give the quantum maps associated to all possible detection
results of a sample.

II.3.1 Sample with 1 atom

II.3.1.a Ideal resonant interaction

In this part, we consider the ideal resonant interaction between the cavity field and an atom
prepared in |e〉 or |g〉. After interaction, the detection of the atomic states provides information
on the cavity field, and transforms the field state.

Atoms in |e〉
Consider the interaction of an atom prepared in the state |e〉 with a Fock state |n〉. As in
(I.70), the evolving atom-cavity state is given by

|ψac (t)〉 = cos θn |e, n〉 − i sin θn |g, n+ 1〉, (II.17)

where we have defined

θn =
Ωnt

2
. (II.18)

If the field in the cavity is initially in |ψc〉 =
∑
cn|n〉 (here and afterwards, the summations

are taken over all non-negative integers), its interaction with an atom prepared in |e〉 leads to∑
cn|e, n〉 −→

∑
cn cos θn |e, n〉 − i

∑
cn sin θn |g, n+ 1〉. (II.19)

The projective detection of the atomic state transforms the field state, with the quantum maps
described by the following Kraus operators:

R̂e,e =
∑

cos θn |n〉〈n|,

R̂e,g =
∑

sin θn |n+ 1〉〈n|, (II.20)

where the irrelevant phase factor −i has been omitted in the definition of R̂e,g. The operator
R̂e,e (R̂e,g) corresponds to the transformation if the state |e〉 (|g〉) is detected. As a convention
in this manuscript, the subscript letters X,Y (e.g. e, e) denote atomic states with X being
the prepared state and Y being the detected state.
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The transformations of the field state are given by

ρ 7−→ R̂e,eρR̂
†
e,e

Tr
(
R̂e,eρR̂

†
e,e

) ρ 7−→ R̂e,gρR̂
†
e,g

Tr
(
R̂e,gρR̂

†
e,g

) . (II.21)

Since these transformations do not couple the diagonal elements of ρ to the non-diagonal
elements, we have the following transformations of the photon number distribution:

Pe,e (n) =
P (n)πe,e(n)∑
P (m)πe,e(m)

Pe,g (n) =
P (n− 1)πe,g(n− 1)∑
P (m− 1)πe,g(m− 1)

, (II.22)

where the probabilities πe,e(n) or πe,g(n) for detecting |e〉 or |g〉 as functions of n are defined
as:

πe,e(n) ≡ cos2 θn,

πe,g(n) ≡ sin2 θn. (II.23)

Here and afterwards, we define P (−1) = 0.
Let us illustrate the transformations (II.22) by considering an example. Suppose that a

field with a flat photon number distribution truncated at 7 photons interacts with an atom
prepared in |e〉. The interaction time t is adjusted such that the interaction amounts to a 2π
pulse in |4〉. The initial and modified photon number distributions are shown in Fig. II.5.

The panel (a) shows the initial P (n) and the probabilities πe,e(n). From panel (b), we
see that if |e〉 is detected, the probabilities for |4〉 and neighboring Fock states are enhanced,
whereas those for states like |0〉 or |7〉 are reduced. This is because Pe,e(n) is proportional to
πe,e(n), so it takes a form similar to that of πe,e(n) shown in the panel (a). On the other hand,
if the state |g〉 is detected, the transformed photon number distribution, as shown in the panel
(c), has the following characteristics. First, the state |5〉 disappears, because πe,g(4) = 0,
which means that the initial field cannot be in |4〉, otherwise the atom could not have emitted
a photon. As a result, the state |5〉 cannot exist in the transformed field. In fact, in this
example the state |4〉 is a trapping state [33] of the field. Once the field state reaches |4〉, no
more photons can be emitted into the cavity. Secondly, P (0) = 0, since we know that the
atom has transferred energy to the cavity, so the cavity field cannot be in the vacuum state
now. Thirdly, the state |8〉 beyond the truncated subspace appears in the field, because |7〉
leads to |8〉 after absorbing one photon from the atom.

If the atom is not yet detected, the field state transformation reads

ρ 7−→ R̂e,eρR̂
†
e,e + R̂e,gρR̂

†
e,g. (II.24)

The new photon number distribution is then given by

Pe,x (n) = P (n)πe,e(n) + P (n− 1)πe,g(n− 1), (II.25)

with the letter “x” in the subscript of P meaning that the atomic state is not yet detected.
Pe,x (n) contains two contributions, one depending on P (n − 1) and the other depending
on P (n). The former manifests the coupling between neighboring Fock states. In general,
Pe,x (n) 6= P (n), which means that the photon number distribution of the field is modified even
if the atom is not yet detected! On the contrary, the atom performing the QND measurement
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Figure II.5. Modification of the photon number distribution by the resonant interaction
with an atom prepared in |e〉 and the subsequent detection of its state. The interaction time
is chosen such that the interaction amounts to a 2π pulse in |4〉. The solid squares in (a)
show the probabilities for detecting the state |e〉. The histograms show the photon number
distributions: initial flat bounded (a); after detecting the state |e〉 (b); after detecting the
state |g〉 (c); atomic state is not yet detected (d).

leaves the photon number distribution unchanged, if it is not yet detected. The panel (d) of
Fig. II.5 shows Pe,x (n), where the state |8〉 appears and |0〉 is reduced. On the average, an
atom in |e〉 emits photons into the cavity.

Remark: The fact that the field state may go beyond the truncated subspace warns us
that in our calculations we need to be careful when choosing the size of the truncated Hilbert
space.

Atoms in |g〉

Similarly, if the atom is initially in |g〉, we have:

∑
cn|n〉 ⊗ |g〉 −→− i

∑
cn+1 sin θn |e, n〉+

∑
[cn+1 cos θn |g, n+ 1〉+ c0|g, 0〉] . (II.26)

The projective detection of the atomic state also transforms the field state, with the
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quantum maps described by the following Kraus operators:

R̂g,e =
∑

sin θn |n〉〈n+ 1|,

R̂g,g =
∑

cos θn |n+ 1〉〈n+ 1|+ |0〉〈0|. (II.27)

The transformations of the density matrix can be obtained by substituting the operators R̂e,e
and R̂e,g with R̂g,e and R̂g,g in (II.21). Here I only give the transformation of the photon
number distributions:

Pg,e (n) =
P (n+ 1)πg,e(n+ 1)∑
P (m+ 1)πg,e(m+ 1)

Pg,g (n) =
P (n)πg,g(n)∑
P (m)πg,g(m)

, (II.28)

where the probabilities πg,e(n) or πg,g(n) for detecting |e〉 or |g〉 as functions of n are defined
as

πg,e(n) ≡ sin2 θn−1,

πg,g(n) ≡ cos2 θn−1, (II.29)

One example of these modifications of the photon number distribution is shown in Fig.
II.6. The interaction time t is adjusted such that the interaction amounts to a 2π pulse in |4〉.
The panel (a) shows the initial flat bounded photon number distribution and the probability
πg,g(n). As with the atomic state |e〉, if the detected atomic state is the same as the prepared
one, P (n) is simply modified by a multiplication factor πg,g(n), leading to Pg,g(n), as shown
in the panel (b). In this case, the 2π pulse in |4〉 corresponds to a π pulse in |1〉. So if the
initial cavity field was in |1〉 before the interaction, the atom would have absorbed a photon,
leading to a vacuum field. Otherwise, since the atomic state is not changed, the cavity field
cannot be transformed into |1〉. Consequently, we see that Pg,g(1) = 0. If the atom is detected
in |e〉, the transformed photon number distribution Pg,e(n) is shown in the panel (c). In this
case, Pg,e(3) = 0, because the initial field cannot be in |4〉, otherwise the atom could not have
absorbed one photon. As a result, |3〉 cannot exist in the transformed field.

If the atom is not yet detected, the photon number distribution is given by

Pg,x (n) = P (n)πg,g(n) + P (n+ 1)πg,e(n+ 1). (II.30)

Pg,x (n) also includes two terms, with the latter resulting from the coupling of neighboring
Fock states, and in general Pg,x (n) 6= P (n). The panel (d) of Fig. II.6 shows Pg,x (n). On
the average, an atom in |g〉 absorbs photons from the cavity field.

II.3.1.b Imperfect Rabi oscillations

The ideal Kraus operators (II.20) and (II.27) are obtained by assuming ideal Rabi oscillations
in the Fock states. However, in real experiments, this is not exactly true. Let us show the
measured Rabi oscillations in vacuum and see how to modify the ideal Kraus operators.

Vacuum Rabi oscillations

The experimental procedure for recording the vacuum Rabi oscillations is as follows. About
20 atoms prepared in |g〉 absorb residual thermal photons by undergoing a rapid adiabatic
passage, eventually preparing the cavity in the vacuum state. We then send an atomic sample
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Figure II.6. Modification of the photon number distribution by the resonant interaction
with an atom prepared in |g〉 and the subsequent detection of its state. The interaction time
is chosen such that the interaction amounts to a 2π pulse in |4〉. The solid squares in (a)
show the probabilities for detecting the state |g〉. The histograms show the photon number
distributions: initial flat bounded (a); after detecting the state |g〉 (b); after detecting the
state |e〉 (c); atomic state is not yet detected (d).

prepared in the state |e〉, which is tuned to be on resonance with the cavity field by applying
a potential pulse on one of the cavity mirrors, with the pulse center fixed at the moment when
the sample arrives at the center of the cavity. The duration Tint of the pulse determining
the interaction time is varied. Since the field mode has a Gaussian profile along the direction
of the atomic beam, the sample sees different field amplitudes and thus has different Rabi
frequencies along its path. To account for the variations of the Rabi frequencies, we can define
an effective interaction time Teff by

∫ +Tint/2

−Tint/2
Ω0f(vt)dt ≡ Ω0Teff . (II.31)

where f(vt) = e
− (vt)2

w2
0 describes the amplitude profile of the microwave electric field, with v

being the velocity of the sample, and w0 being the waist of the mode.
The probability of the detection events gd as a function of Teff is shown in Fig. II.7. The
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Figure II.7. Vacuum Rabi oscillations. The solid squares with error bars are the experimental
data. The solid curve is a fit to the data with a formula given in the text.

solid curve is a fit to the data with a phenomenological function:

y(t) = yc −
A

2
e−t/τ0 cos(Ω0t). (II.32)

The fit gives the following parameters: offset yc = 0.49±0.02, contrast A = 0.90±0.03, vacuum
Rabi frequency Ω0/2π = 46.3±0.3 kHz, damping time τ0 = 50±8µs. We see that the vacuum
Rabi oscillation has a contrast of 90% and damping time about twice its oscillation period.
These imperfections may be due to inhomogeneous atom-cavity detuning, inhomogeneity of
the vacuum Rabi frequency, preparation and detection errors of the atomic states.

Damping of the contrast

In the resonant regime, δ = 0. But what if the detuning is not always 0? In fact, in order
to tune the atom and the cavity field on resonance, we apply a potential ∼ −2.5 V on one of
the cavity mirrors while the other remains at 0 V. The potential difference generates a static
electric field ∼ 0.9 V/cm. Since the mirror surface is curved and since the atomic beam has a
transverse diameter of about 0.7 mm, the atoms actually see different amplitudes of the static
electric field while interacting with the cavity field. Due to the quadratic Stark effect, these
different field amplitudes result in nonuniform values of δ. According to our estimation, the
variation of δ during the interaction time is about 5 kHz. Given that Ω0/2π = 46.3 kHz, this
inhomogeneity shifts the offset of the vacuum Rabi oscillations by about 1% and reduces the
contrast by about 2%. So this imperfection cannot account alone for the reduced contrast of
the Rabi oscillations shown in Fig. II.7.

Another possible inhomogeneity can occur on the vacuum Rabi frequency Ω0, because
the amplitude of the cavity field varies along the axis of the cavity. The profile of the field
amplitude as a function of the vertical position z can be approximately expressed as:

E(z) = E0

∣∣∣∣cos

(
2π

λ
z

)∣∣∣∣ , (II.33)
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with λ = 5.87 mm.
Since the spread of the atomic beam along the z axis is about 0.7 mm, the microwave field

amplitude can have a variation of up to about 10%, which leads to a variation of Ω0 of about
∆ = 5 kHz. But in fact, we suspect that the atomic beam is also displaced with respect to
the center of the cavity, because we now have a vacuum Rabi frequency of 46.3 kHz instead of
49 kHz measured several years ago. The current position of the atomic beam was chosen by
maximizing the detected atom number. It could be that at this position the beam does not
pass through the center of the cavity. We estimate that a displacement of 0.3 mm is enough
to reduce the Rabi frequency from 49 kHz to 46.3 kHz. In this case, within the spread of the
atomic beam, the Rabi frequency varies by up to 15 kHz, which contributes to the damping
of the contrast.

Besides a displacement of the atomic beam, there might be other unknown imperfections
which deteriorate the vacuum Rabi oscillation. For the time being, we do not search for all
those imperfections. But instead, we introduce an effective inhomogeneity denoted as ζ to
Ω0 in order to account for the observed exponential damping of the contrast. The value of ζ
has an unknown probability density function p(ζ). Based on the fact that (II.32) fits well the
data, we can write down:∫

p(ζ) cos [(Ω0 + ζ) t] dζ ' e−t/τ0 cos (Ω0t) . (II.34)

Here, I have assumed implicitly that the integration is taken within a proper range of ζ, and
that the integral exists. For the state |e, n〉, we have∫

p(ζ) cos
[√
n+ 1 (Ω0 + ζ) t

]
dζ ' e−t

√
n+1/τ0 cos

(
Ω0t
√
n+ 1

)
≡ e−t/τn cos (Ωnt) . (II.35)

We find that the damping rate 1/τn is also proportional to
√
n+ 1, i.e.:

1/τn =
√
n+ 1/τ0. (II.36)

Since the vacuum Rabi oscillations are damped, the ideal Kraus operators (II.20) and
(II.27) need to be modified. After this modification, the Kraus operators can be expressed as:

R̂e,e =
∑√

1 + e−t/τn cos (Ωnt)

2
|n〉〈n|

R̂e,g =
∑√

1− e−t/τn cos (Ωnt)

2
|n+ 1〉〈n| (II.37)

and

R̂g,e =
∑√

1− e−t/τn cos (Ωnt)

2
|n〉〈n+ 1|

R̂g,g =
∑√

1 + e−t/τn cos (Ωnt)

2
|n+ 1〉〈n+ 1|+ |0〉〈0|, (II.38)

where Ωn and 1/τn denote the Rabi frequency and damping rate of the oscillations |e, n〉 ←→
|g, n+ 1〉.
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Let us consider the Rabi oscillations in the Fock state |n〉. Suppose that the atoms in the
states |e〉 and |g〉 interact ideally with the field. The interaction during time t leads to the
probabilities (II.23) and (II.29). But as discussed before, in order to account for the damping of
the contrast, we need to introduce exponentially damping terms into the oscillating functions.
After this modification, those probabilities can be expressed as:

π̃e,g (n, t) =
1

2

(
1− e−t/τn cos (Ωnt)

)
π̃g,g (n, t) =

1

2

(
1 + e−t/τn−1 cos (Ωn−1t)

)
, (II.39)

Reduction of the contrast and shift of the offset

So far, we have discussed the damping of the contrast of the Rabi oscillations. Besides this
imperfection, we also notice that πgd(t = 0) 6= 0 on the curve in Fig. II.7. The value πgd(0) is
only related to the preparation and detection of the atomic states. Its nonzero value means
that either the initial atomic state is not pure or that the state |e〉 is erroneously detected as
|g〉 or both. These imperfections are characterized by the preparation and detection errors.

The detection errors ηdg or ηde are defined as the probabilities that the atomic states |g〉 or
|e〉 are erroneously detected:

ηde = P (gd|e) ηdg = P (ed|g), (II.40)

where gd and ed, as introduced in section II.2, denote the events that a signal is generated
in the detection channel |g〉 and |e〉, respectively. It is worth to emphasize that the detection
errors defined here are only related to the imperfections of the detector itself, instead of being
parameters that account for several experimental imperfections as those in (II.4).

The preparation errors are defined as:

ηpg = P (e|gp) ηpe = P (g|ep) , (II.41)

where ep and gp denote the prepared states of an atom. In real experimental situation, we
prepare a RE (RG) sample, which may contain 0, 1 or 2 atoms. If the sample contains 1
atom, it is denoted as ep (gp). If the sample contains 2 atoms, it is denoted as epep (gpgp) in
the following. Since the current section is devoted to the “one-atom” event, we only consider
the samples with 1 atom. In fact, ep and gp are statistical mixtures of |e〉 and |g〉. They are
described by the following density matrices:

ρep = (1− ηpe) |e〉〈e|+ ηpe |g〉〈g| (II.42)
ρgp = ηpg |e〉〈e|+

(
1− ηpg

)
|g〉〈g|. (II.43)

Let us consider the Rabi oscillations starting from the mixture ep in |n〉 or gp in |n〉.
By exploiting the expressions (II.39), the probabilities for detecting |g〉 (by a virtual ideal
detector) can be expressed as

π̃ep,g (n, t) = (1− ηpe) π̃e,g (n, t) + ηpe π̃g,g (n, t)

π̃gp,g (n, t) = ηpg π̃e,g (n, t) +
(
1− ηpg

)
π̃g,g (n, t) . (II.44)
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Due to the detection errors, the atomic states |e〉 and |g〉 can both be detected as gd or ed.
The detection of atomic states then leads to the following probabilities for obtaining gd:

π̃ep,gd (n, t) =
(

1− ηdg
)
π̃ep,g (n, t) + ηde (1− π̃epg (n, t)) ,

π̃gp,gd (n, t) =
(

1− ηdg
)
π̃gp,g (n, t) + ηde (1− π̃gp,g (n, t)) . (II.45)

Combining equations (II.39), (II.44) and (II.45), we obtain the following expressions:

π̃ep,gd (n, t) =
1 + ηde − ηdg

2
+

1− ηdg − ηde
2

[
ηpee
−t/τn−1 cos (Ωn−1t)− (1− ηpe) e−t/τn cos (Ωnt)

]
π̃gp,gd (n, t) =

1 + ηde − ηdg
2

+
1− ηdg − ηde

2

[(
1− ηpg

)
e−t/τn−1 cos (Ωn−1t)− ηpge−t/τn cos (Ωnt)

]
.

(II.46)

Particularly, the vacuum Rabi oscillations starting from ep in |0〉 or gp in |1〉 are given by

π̃ep,gd (0, t) =
1 + ηde − ηdg

2
−

1− ηdg − ηde
2

(1− ηpe) e−t/τ0 cos (Ω0t) (II.47)

π̃gp,gd (1, t) =
1 + ηde − ηdg

2
+

1− ηdg − ηde
2

[(
1− ηpg

)
e−t/τ0 cos (Ω0t)− ηpge−t/τ1 cos (Ω1t)

]
.

(II.48)

By comparing (II.47) with (II.32), we see that the preparation and detection errors can
shift the offset and reduce the contrast of the vacuum Rabi oscillations. In order to determine
these errors, we record oscillations starting from ep in |0〉 and gp in the prepared “photon
number state” ρ1p , with the results shown in Fig. II.8. Here and afterwards, we use ρnp to
denote a prepared state with np photons, which is actually a statistical mixture of several
photon number states. The state ρ1p is prepared by the QND decimation process. Initially a
coherent field is injected into the cavity. Repeated 4-phase QND measurements performed by
∼ 100 successive atoms project the field into photon number states randomly, among which
those states with P (1) > 90% are post-selected. In this way, we obtain a photon number
distribution with P (1) = 93.4%, P (0) = 4.5%, P (2) = 2.1%, and sum of the others smaller
than 0.1%.

Note that the data in the panel (a) are not the same as those in Fig. II.7, although their
parameters, such as contrast, offset, frequency and damping time are essentially identical
within error bars. Here, I use the data in the panel (a), because they are taken under the
same experimental conditions as those of the data in the panel (b).

From (II.47) and (II.48), we obtain

π̃ep,gd (0, t = 0) = ηde + ηpe , (II.49)

π̃gp,gd (1, t = 0) = ηdg + ηpg , (II.50)

where since
(
ηde , η

p
e , ηdg , η

p
g

)
� 1, the second order terms have been neglected. From the

measured values of πgd(0), we get

ηdg + ηpg = 0.03± 0.01

ηde + ηpe = 0.07± 0.01 (II.51)
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Figure II.8. Vacuum Rabi oscillations starting from ep in |0〉 (a) or gp in ρ1p (b). The inset
of (b) shows the P (n) of the prepared state ρ1p . The curves are fits to the data with a
method explained in the text.

Let us first discuss ηpg and ηdg . As explained in section I.1.1.b, the state |g〉 is prepared by
a two-photon transition from the circular level |52c〉, during which the transition to |e〉 is
negligible, because it is far off resonance. So the prepared state should be pure, i.e. ηpg = 0.
Hence, we consider that ηdg = 0.03± 0.01.

Since the errors ηde and ηpe are linked by (II.51), the Rabi oscillations can be fitted with
the three parameters: Ω0, τ0 and ηpe . It is worth to mention that since the prepared state ρ1p

is not pure, we need also to take into account the effect of other Fock states in the fit process.
The main contamination is the neighboring states, i.e. |2〉 and |0〉. The measured histogram
of P (n) is shown in the inset of the panel (b). In the fit, the frequency and damping rate of
the Rabi oscillations starting from |g, 2〉 are set as

√
2Ω0 and

√
2/τ0 as has been assumed in

(II.36).
We fit the data in the panels (a), (b) together and obtain the following parameters:

Ω0/2π = 46.0± 0.3 kHz 1/τ0 = 0.022± 0.006µs−1, (II.52)

and the values for preparation and detection errors as given in Table. II.2. Substituting these
values into (II.47), we obtain an offset of 0.50 ± 0.01 and a contrast of 0.91 ± 0.01 for the
vacuum Rabi oscillations, which agree well with the fit using (II.32).

ηpe ηpg ηde ηdg

0.04± 0.01 0 0.03± 0.01 0.03± 0.01

Table II.2. Preparation and detection errors of the atomic states.

II.3.1.c Rabi oscillations in the Fock states

In order to explain the damping of the contrast of the vacuum Rabi oscillations, we introduced
an effective inhomogeneity to Ω0, which leads to the expression (II.36). In this section, we



II.3. Actuator samples 69

check this expression experimentally by recording Rabi oscillations in the prepared photon
number states with up to 6 photons.

The photon states are prepared by the QND decimation process on a coherent field. Re-
peated 4-phase QND measurements performed by ∼ 100 successive atoms project the field into
photon number states randomly. An atom prepared in state ep or gp interacts resonantly with
the cavity field during a variable interaction time Tint, which is converted into Teff according
to (II.31). A state is declared to be prepared in the state ρnp , with 1 6 np 6 6, once the
probability of having np is larger than a certain threshold, i.e. P (np) > F (np). We choose
F (np) to be 90%, 85%, 80%, 75%, 70% and 60% for np from 1 to 6, respectively. Their
interactions with the atoms lead to the probabilities πgd (Teff) displayed in Fig. II.9 and Fig.
II.10.

From the measured data, we can already see oscillating signals. But they are not directly
the Rabi oscillations in Fock states, because the preparation and detection errors of atomic
states come into play, and because that the prepared states are not pure Fock states. So in
order to extract the parameters for the Rabi oscillations of a pure atomic state in a Fock state,
we perform a fit to the data.

The main contaminations to the prepared states ρnp come from the neighboring states
|np ± 1〉 (see the inset of each panel, the probabilities of these three states sum to more than
98%). In the fit process, we only consider the three states |np〉 and |np ± 1〉 for each prepared
state ρnp , with their contributions weighed by their probabilities P (n).

The preparation and detection errors have already been determined. Since their values are
only related to the atomic preparation and detection processes, they should remain the same
regardless of the cavity field with which the atom interacts. Thus these parameters are fixed
at values given in Table II.2 in the fit.

The Rabi frequency Ωn and damping time τn for the Rabi oscillations starting from a pure
atomic state in a Fock state are then set as free parameters, i.e.:

• Ωe
n, τ

e
n : for oscillations starting from |e, n〉, with 0 6 n 6 7

• Ωg
n, τ

g
n : for oscillations starting from |g, n+ 1〉, with 0 6 n 6 6

Inserting the photon number distributions of the states ρnp , all fixed and free parameters
mentioned above into the expressions (II.46), the ensemble of data in Fig. II.9 and Fig. II.10
are thus fitted. The solid curves show the results of the fit.
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Figure II.9. Rabi oscillations in prepared photon number states with atoms prepared in
the state ep. From (a) to (f): prepared photon number states ρnp with np = 1 to 6. The
insets show P (n) for each prepared states. The error bars for the data are calculated using
the binomial statistical error model. The solid curves are fits of the data with a method
described in the text.
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Figure II.10. Rabi oscillations in prepared photon number states with the atoms prepared
in state gp. From (a) to (f): prepared photon number states ρnp with np = 1 to 6. The
insets show P (n) for each prepared states. The error bars for the data are calculated using
the binomial statistical error model. The solid curves are fits of the data with a fit method
described in the text.
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In the fit process, the Rabi oscillations starting from |e, n〉 or |g, n+ 1〉 are considered
separately, and we use two sets of free parameters for {Ωn, τn}. The obtained two sets of
{Ωn, τn} are displayed in Fig. II.11 as functions of

√
n+ 1.

Figure II.11. Frequencies and damping rates of the Rabi oscillations in the Fock states. The
squares correspond to the data {Ωen, 1/τen}. The triangles correspond to the data {Ωgn, 1/τgn}.
In both panels, the two sets of data are fitted together, with the lines showing the results of
the fits.

In fact, since the underlying dynamics of the Rabi oscillations staring from |e, n〉 or
|g, n+ 1〉 are the same, the two sets of values {Ωe

n, τ
e
n} and {Ωg

n, τ
g
n} are parameters of the

same process. Thus they are fitted together using the functions Ωn/2π = α
√
n+ 1 and

1/τn = β
√
n+ 1. We obtain {α = 46.0± 0.5 kHz, β = 0.020± 0.009µs−1}. We see that these

results agree with the values given in (II.52). But we also notice that the relative error of the
Rabi frequency is only about 1%, whereas that of the damping rate is about 45%.

In summary, we can conclude that Ωn = Ω0

√
n+ 1 holds in our setup, whereas 1/τn =√

n+ 1/τ0 only holds qualitatively. The latter may be due to unknown experimental imper-
fections that cannot be considered as inhomogeneities on the vacuum Rabi frequency.

II.3.1.d Mixing of the Kraus operators

Having determined the preparation and detection errors of the atomic states and checked the
expression (II.36), we now construct the quantum maps associated to the resonant interaction
between a single atom and the cavity field.

The Kraus operators R̂i,q given in (II.37) and (II.38) describe the field transformation
induced by an atom which is initially in the state i ∈ Si and gets detected in the state q ∈ Si
after interacting with the cavity field, where Si denotes the set of ideal detection results2:

Si ≡ {e, g}. (II.53)

Nevertheless, in real experiments, we do not have access to i or q. Instead, what we know
is the prepared state ip ∈ Sp ≡ {ep, gp} and the detection result qd ∈ Sd ≡ {0d, ed, gd}. Due

2Different from its definition before, here Si is defined to contain only the states of an atom.



II.3. Actuator samples 73

to the preparation errors, ip is a statistical mixture of i ∈ Si. Similarly, due to the detection
errors, qd also contains the contributions of many pure states q ∈ Si. So in order to determine
the quantum map associated to the transition ip −→ qd, we need to determine the mixing of
ip and i, as well as q and qd.

Figure II.12. Scheme showing the atomic states from a prepared state to possible detection
results. The prepared state ep is actually a mixture of |e〉 and |g〉, due to preparation errors.
After interacting with the cavity field, the atomic states may lead to three possible detection
results 0d, ed and gd with the weights also shown in the figure.

Let us take the prepared state ep as an example. Figure II.12 represents the atomic states
at different stages in a real experimental situation. The state ep is actually a mixture of
states |e〉 and |g〉, with weights (1 − ηpe) and ηpe , respectively. The atoms in these two states
interact with the cavity field and end up in states |e〉 or |g〉 (detection results by a virtual
ideal detector), transforming the field state with the quantum maps described by the Kraus
operators (II.37) and (II.38). Once the atoms are detected, the true atomic states |e〉 and |g〉
can lead to the detection results 0d, ed or gd, with the weights also shown in Fig. II.12.

The question is: how is the field state transformed if the prepared state ip ∈ Sp leads to
the detection result qd ∈ Sd? To answer this question, we follow the arrows in Fig. II.12 and
analyze the atomic states step by step.

First, the probabilities for having the states i in the prepared states ip, i.e. P (i|ip) are
given in Table II.3. Secondly, the atomic state transition i→ q transforms the field state with
a quantum map described by the Kraus operator R̂i,q. Finally, the conditional probability
P
(
qd|q

)
for detecting the state qd ∈ Sd while the atomic state is in q are given in Table II.4.

In summary, the quantum map associated to the ip −→ qd transition can be expressed as
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HHH
HHHi
ip

ep gp

|e〉 1− ηpe ηpg

|g〉 ηpe 1− ηpg

Table II.3. The conditional probability P (i|ip) related to the preparation errors.

HH
HHHHqd

q |e〉 |g〉

0d 1− εd 1− εd
ed εd

(
1− ηde

)
εdη

d
g

gd εdη
d
e εd

(
1− ηdg

)
Table II.4. The conditional probability P

(
qd|q

)
, related to the detector efficiency and the

detection errors.

a statistical mixture of the maps associated to all transitions i −→ q that lead to ip −→ qd:

Mip

qdρ =

∑
q∈Si

∑
i∈Si

P
(
qd|q

)
R̂i,qρR̂†i,qP (i|ip)

Tr

( ∑
q∈Si

∑
i∈Si

P (qd|q) R̂i,qρR̂†i,qP (i|ip)

) . (II.54)

If the atom is not yet detected, the quantum map is then given by

Ni
p
ρ =

∑
q∈Si

∑
i∈Si
R̂i,qρR̂†i,qP (i|ip) . (II.55)

II.3.2 Sample with 2 atoms

In the previous section, we have discussed the resonant interaction between a single atom
and the cavity field. But in practice, we also need to consider the simultaneous interaction
of two atoms with the cavity field. In fact, for the RE or RG samples, we use an atomic
flux ndat w 0.1, which leads to a negligible probability of about 0.4% for detecting two atoms
simultaneously. However, the real atomic flux is nat = ndat/εd w 0.4, leading to P2 w 5%,
which is not negligible. As explained in section II.3.1.a, after the resonant interaction with
an atom, the photon number distribution of the field is modified even if the atomic state is
unread. So although we rarely detect events with two atoms, their presence and interaction
with the cavity field should still be considered. This is the topic of the current section.

II.3.2.a Ideal resonant interaction

Suppose that N independent two-level atoms, which are not interacting with each other,
couple to the cavity field identically. The Hamiltonian of the system can be written as [40]

H = ~ωatJz + ~ωc
(
â†â+

1

2

)
+

~Ω0

2

(
J+â+ J−â

†
)
, (II.56)
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where the operators Jz and J± are defined as the sum of corresponding individual pseudo
spins:

Jz =
1

2

∑
j

σz,j J± =
∑
j

σ±,j ,

with σz,j , σ+,j , and σ−,j being the z component of the Pauli matrices, the atomic raising and
lowering operators associated to the jth atom.

The Hamiltonian (II.56) conserves the total angular momentum of the N atoms. In the
case of N = 2, the basis {|ee, n− 1〉,

∣∣(eg + ge) /
√

2, n
〉
, |gg, n+ 1〉} with n > 1 forms a closed

subspace of the Hilbert space. In this subspace, the Hamiltonian can be expressed in the
matrix form:

Hn = ~


ωc (n+ 1/2)

√
2nΩ0/2 0

√
2nΩ0/2 ωc (n+ 1/2)

√
2 (n+ 1)Ω0/2

0
√

2 (n+ 1)Ω0/2 ωc (n+ 1/2)


By diagonalizing it, we obtain the eigenenergies:

ξ0 = 0

±ξ(n) = ±~Ω0

2

√
2 (2n+ 1).

Here, without loss of generality, a common term ~ωc (n+ 1/2) in ξ0 and ξ(n) has been removed
by redefining the energy origin.

The corresponding eigenstates and the evolution of the system are given in Appendix A.
Based on these results we can define the Kraus operators with interaction time t:

R̂ee,ee =
∑[

1 +
n+ 1

2n+ 3

(
cos

ξ(n+ 1)t

~
− 1

)]
|n〉〈n|,

R̂ee,eg =
∑√

n+ 1

2n+ 3
sin

ξ(n+ 1)t

~
|n+ 1〉〈n|, (II.57)

R̂ee,gg =
∑√

(n+ 1) (n+ 2)

2n+ 3

(
cos

ξ(n+ 1)t

~
− 1

)
|n+ 2〉〈n|.

R̂eg,ee =
∑√

n+ 1

2n+ 3
sin

ξ(n+ 1)t

~
|n〉〈n+ 1|,

R̂eg,eg =
∑

cos
ξ(n)t

~
|n〉〈n|, (II.58)

R̂eg,gg =
∑√

n+ 1

2n+ 1
sin

ξ(n)t

~
|n+ 1〉〈n|.

R̂gg,ee =
∑√

(n+ 1) (n+ 2)

2n+ 3

(
cos

ξ(n+ 1)t

~
− 1

)
|n〉〈n+ 2|,

R̂gg,eg =
∑√

n+ 1

2n+ 1
sin

ξ(n)t

~
|n〉〈n+ 1|, (II.59)

R̂gg,gg =
∑[

1 +
n

2n− 1

(
cos

ξ(n− 1)t

~
− 1

)]
|n〉〈n|.

where ξ(−1) is defined to be zero.
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II.3.2.b Vacuum Rabi oscillations of two atoms

In order to check the theoretical model leading to the ideal Kraus operators (II.57), (II.58) and
(II.59), we record vacuum Rabi oscillations of two atoms both prepared in ep. The theoretical
vacuum Rabi oscillations of two atoms both in |e〉 and coupled to the field can be easily
obtained by setting n = 1 in (A.2). The probabilities for detecting the three states of the
atomic pair are then given by

π(2)
ee,ee (t) =

1

2
+

1

18
cos
(√

6Ω0t
)

+
4

9
cos

(√
6Ω0t

2

)
,

π(2)
ee,gg (t) =

1

3
+

1

9
cos
(√

6Ω0t
)
− 4

9
cos

(√
6Ω0t

2

)
, (II.60)

π(2)
ee,eg (t) =

1

6
− 1

6
cos
(√

6Ω0t
)
.

Figure II.13 shows the measured vacuum Rabi oscillations. The atomic flux is chosen
such that the average detected atom number is ndat = 0.06. Only the events with two atoms
detected are selected for calculating the probabilities shown in Fig. II.13. But due to the
limited detector efficiency, the samples containing more than 2 atoms may also contribute.

Figure II.13. Vacuum Rabi oscillations of two atoms both prepared in ep and coupled to the
cavity field. The points are the measured data and the lines are fits to the data. Here eded,
edgd and gdgd represent the three detected states of the atomic pair.

In order to analyze the data using the formulae (II.60), we need first to introduce phe-
nomenological damping terms into the cosine functions. Based on the same argument leading
to (II.36), we can introduce a damping time τ (2)

n into the oscillations with the frequency
2ξ(n)/~, according to

τ (2)
n =

Ω0τ0

2ξ(n)/~
. (II.61)
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We then use the following functions to fit the data:

π̃(2)
ee,ee (t) = a1 + b1e

−
√

6t/τ0 cos
(√

6Ω0t
)

+ c1e
−
√

6t/2τ0 cos

(√
6Ω0t

2

)

π̃(2)
ee,gg (t) = a2 + b2e

−
√

6t/τ0 cos
(√

6Ω0t
)
− c1e

−
√

6t/2τ0 cos

(√
6Ω0t

2

)
(II.62)

π̃(2)
ee,eg (t) = (1− a1 − a2)− (1− b1 − b2)e−

√
6t/τ0 cos

(√
6Ω0t

)
,

with Ω0, τ0, a1, b1, c1, a2 and b2 chosen as free parameters. The preparation and detection
errors of the atomic states are not included in the fit explicitly. But they are already incor-
porated into the parameters for the oscillation amplitudes and offsets, such as a1, b1, c1, etc.
From the fits, we obtain the parameters shown in Table II.5. As a comparison, the theoretical
values of these parameters according to (II.60) are also shown in the table.

Ω0/2π τ0 a1 b1 c1 a2 b2

fit 45.7 kHz 35µs 0.43 0.08 0.42 0.27 0.15

theory - - 0.50 0.06 0.44 0.33 0.11

Table II.5. Theoretical and fitted parameters of the vacuum Rabi oscillations of two atoms
both coupled to the cavity field.

The fit results qualitatively agree with the theoretical values. This means that the theo-
retical model seems to be a reasonably good approximation for describing the simultaneous
resonant interaction of two atoms with the cavity field. But at the same time, we also notice
the relatively large discrepancy between the measured data and the fit for π(2)

edgd
(Teff). This

reflects the limitation of our theoretical model. But given the relatively low probability for a
two-atom event to occur in real experiments (about 4 times lower than that of an one-atom
event), we expect that this small deviation in the theoretical model may have very limited
effect on the overall performance of the model including both 1 and 2 atom events.

Similar to the situation of the one-atom event, the damping terms introduced in (II.61)
should also be included in the ideal Kraus operators (II.57), (II.58) and (II.59). Here I omit
the explicit expressions for the modified Kraus operators, but simply give their notations:

R̂i,q i, q ∈ {ee, eg, gg} (II.63)

The preparation and detection errors of the atomic states result in mixing of these operators,
which is presented in the following section.

II.3.3 Quantum maps

So far, we have obtained the Kraus operators associated to 1 and 2 atoms in the presence
of the experimental imperfections. But in the experimental situation, we deal with atomic
samples which contain nondeterministic atom numbers. The detection of an atomic sample
involves mixing of different atom numbers, since the detector has a limited efficiency. In the
current section, we discuss how to express the quantum map associated to an atomic sample.
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We tentatively prepare an atomic sample in |e〉 (|g〉) for an actuator sample with the RE
(RG) type. Since the atom number in the sample is probabilistic, we need first to determine
the probabilities of having 0, 1 and 2 atoms in a sample p ∈ {RE,RG}. These conditional
probabilities P (ip|p) related to the Poisson distribution of the atom number per sample are
given in Table II.6. We also need to enlarge the set Sp in order to include the two-atom and
0 atom events:

Sp ≡ {0p, gp, gpgp, ep, epep} (II.64)

HH
HHHHip

p
RE RG

0p P0 P0

ep P1 0

epep P2 0

gp 0 P1

gpgp 0 P2

Table II.6. The conditional probability P (ip|p), with Pn, n ∈ {0, 1, 2}, as defined in (II.2).

Once we know the prepared state ip, the following steps are similar to those outlined for
the one-atom event. Before proceeding, we need first to enlarge the sets Si and Sd to include
the two-atom and 0 atom events:

Si ≡ {0, e, g, ee, eg, gg} (II.65)

and

Sd ≡ {0d, ed, gd, eded, edgd, gdgd}. (II.66)

Next we enlarge the Tables II.3 and II.4 and get new values for P (i|ip) and P (q|qd), as given
in Tables II.7 and II.8.

Exploiting the same methodology as that in deriving (II.54), we can express the quantum
map corresponding to a detection result qd ∈ Sd of a sample p ∈ {RE,RG} as:

Mp
qd
ρ =

∑
q∈Sr

∑
i∈Sr

∑
ip∈Sp

P
(
qd|q

)
R̂i,qρR̂†i,qP (i|ip)P (ip|p)

Tr

( ∑
q∈Sr

∑
i∈Sr

∑
ip∈Sp

P (qd|q) R̂i,qρR̂†i,qP (i|ip)P (ip|p)

) . (II.67)

If the atomic sample is not yet detected, the quantum map is given by

Npρ =
∑
q∈Si

∑
i∈Si

∑
ip∈Sp

R̂i,qρR̂†i,qP (i|ip)P (ip|p) . (II.68)
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HHH
HHHi
ip

0p ep gp epep gpgp

0 1 0 0 0 0

|e〉 0 1− ηpe ηpg 0 0

|g〉 0 ηpe 1− ηpg 0 0

ee 0 0 0 (1− ηpe)2
ηp2g

eg 0 0 0 2 (1− ηpe) ηpe 2 (1− ηpg) ηpg
gg 0 0 0 ηp2e (1− ηpg)2

Table II.7. The conditional probability P (i|ip) related to the preparation errors.

HH
HHHHqd

q
0 e g ee eg gg

0d 1 1−εd 1−εd (1−εd)2 (1−εd)2 (1−εd)2

ed 0 εd(1−ηde ) εdη
d
g 2εd(1−εd)(1−ηde ) εd(1−εd)(1−ηde + ηdg) 2εd(1−εd)ηdg

gd 0 εdη
d
e εd(1−ηdg) 2εd(1−εd)ηde εd(1−εd)(1 + ηde−ηdg) 2εd(1−εd)(1−ηdg)

eded 0 0 0 ε2d(1−ηde )2 ε2dη
d
g(1−ηde ) ε2dη

d2
g

edgd 0 0 0 ε2dη
d
e (1−ηde ) ε2d(η

d
eη
d
g + (1−ηde )(1−ηdg)) 2ε2dη

d
g(1−ηdg)

gdgd 0 0 0 ε2dη
d2
e ε2dη

d
e (1−ηdg) ε2d(1−ηdg)2

Table II.8. The conditional probability P
(
qd|q

)
related to the detector efficiency and the

detection errors.

II.4 State estimation

In the feedback loop, atomic samples of 3 different types interact with the cavity field. We
have derived the quantum maps associated to the detection results of these samples. Now let
us discuss in more detail how the quantum state estimator operates.

Suppose that the initial field state is ρ0. A sequence of equally spaced atomic samples,
separated in time by Ta, pass through the cavity and get detected one by one. Suppose that
the kth sample with the type µk ∈ {QND,RE,RG}, leads to the detection result qdk ∈ Sd.
If we use ρk to denote the estimated state in the kth loop, we can then write down the
transformation:

ρk = TMµk
qdk
ρk−1, (II.69)

where Mµk
qdk

denotes the quantum map associated to the detection of the kth sample and T
describes the field relaxation during Ta. It is defined as:

Tρ ≡ (1 + TaL) ρ, (II.70)
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where the approximation in the first order of Ta/Tcav has been used, and the operator L is
given in (I.48). Starting from the initial field state ρ0, the current estimated state ρk can be
expressed as

ρk =
k∏
j=1

(
TMµj

qdj

)
ρ0. (II.71)

Conclusion

This chapter is mainly devoted to the descriptions of the dispersive and resonant interactions in
the presence of experimental imperfections. Starting by presenting the principle and procedure
of the feedback experiment, we have discussed the quantum maps associated to the sensor and
actuator samples.

For the sensor samples, we have first recalled the Kraus operators associated to an ideal
QND measurement, then gradually taken into account the experimental imperfections, such
as the probabilistic atom number in an atomic sample, reduced contrast and shifted offset of
the Ramsey fringes and the detector efficiency. The imperfections of the Ramsey fringes are
accounted for by the effective detection errors. Finally, we gave the quantum maps adapted
to real experimental situations.

For the actuator samples, we have discussed the samples containing one or two atoms.
In both cases, we first presented the ideal Kraus operators associated to their interactions
with the cavity field, then gradually took into account the experimental imperfections. These
imperfections include the damped contrast of the vacuum Rabi oscillations, the preparation
and detection errors of atomic states, etc. To measure them, we recorded Rabi oscillations in
the Fock states with up to 6 photons, and the Rabi oscillations of two atoms simultaneously
coupled to the field. At the end, we obtained the quantum maps associated to an actuator
sample, and presented a general formula for state estimation.



Chapter III

Quantum feedback: algorithms and
optimizations

In the previous chapter, we have presented the quantum maps associated to the sensors and
actuators. Based on these maps, we have expressed the estimated state after the detection of
each atomic sample. In practice, the sample cannot be detected immediately once it exits the
cavity, since the cavity and detector are spatially separated. In fact, at the moment when the
kth sample is detected, several others after it have already interacted with the cavity field.
They need to be taken into account in the state estimation, leading to a modified algorithm
for the quantum state estimator.

Besides modifying the algorithm for the state estimation, we also discuss the algorithm of
the controller in this chapter. We first present the spatial configuration of the atomic samples
when we choose the feedback actions and explain how to implement different sample types,
in section III.1. These are necessary for understanding the algorithms of the quantum state
estimator and controller, which are then presented in the two subsequent sections III.2 and
III.3. Knowing the algorithms, we perform numerical simulations and present the results in
section III.4. Based on these simulations, we optimize several parameters of the feedback
process.

III.1 Complete timing of the feedback experiment

Spatial configuration of the atomic samples

In our experiments, we use a sequence of atomic samples separated by Ta = 82µs. So if we
take a snapshot of the experiment at the moment when the kth sample is detected, the spatial
configuration of the samples is shown in panel (a) of Fig. III.1.

The detection result of the kth sample is fed into the quantum state estimator, which
carries out calculations and provides an estimate on the current field state. During this
process, the samples have moved. When the controller chooses a feedback action, their spatial
configuration is as that shown in panel (b) of Fig. III.1. At this moment, the samples from
k+1 to k+5 have interacted with the cavity field and remain in an entangled state with the
field. The algorithm of the state estimation in which those not-yet-detected samples are taken
into account will be presented in section III.2.

The sample k+8 has just entered R1 and can be chosen as RE or RG to emit or absorb
photons, or as QND to perform a measurement. The samples k+6 and k+7 have not entered

81
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Figure III.1. Spatial configurations of the atomic samples when the sample k is detected (a)
and when the controller chooses a feedback action (b). C: the cavity; R1 and R2: the first
and second Ramsey zones; D: the detector. The torus-shape elements represent the atomic
samples: sensor samples (green) and control samples (red). The black solid arrow shows the
atomic beam. The black dashed arrows link the same samples at the two moments. Several
samples are labeled with their corresponding numbers.

the cavity and their interactions with the cavity field may still be changed. So we use these 3
samples to carry out feedback actions. Nevertheless, for the samples k+6, k+7, we have fewer
options, since they have passed R1 and their atomic states cannot be modified. In practice,
for the types RE or RG, we need to apply potential pulses across C in order to tune the field
and sample on resonance by the Stark effect. This provides us a means of controlling the
interaction of a sample with the cavity field without modifying its atomic state. For example,
if the samples k+6 or k+7 have resonant types (RE or RG), we can decide not to apply
the potential pulses associated to them. As a result, we change the resonant interaction to a
dispersive one and avoid emitting or absorbing photons. In this case, the sample is effectively
discarded and labeled as DS (discarded sample). It does not modify the field state, and can
be completely neglected in the feedback process. The algorithm of the controller in which we
use multiple samples to carry out feedback actions will be presented in section III.3.

In our experiments, a feedback action is to add or subtract a photon. Ideally, this process
requires an atom. On the contrary, for gaining information about the field, we need many
sensors, since each of them provides one bit information (binary detection results for the
atomic state). So in the sequence of atomic samples, we introduce a partition of sensor and
control samples. We first define a structure consisting of a segment of Ns sensor samples and
another segment of Nc control samples. The typical values1 are Ns = 12 and Nc = 4. Then

1These values are chosen for optimizing the performance of the feedback process. Later in this chapter, we
will come back to discuss this choice.
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a sequence of atomic samples is simply many repetitions of this structure. While the sensor
samples have fixed QND type and perform the QND measurements, the control samples can
be chosen to be RE, RG or QND by the controller. As shown in Fig. III.1, the red (green)
atomic samples correspond to the control (sensor) samples.

Implementation of different sample types

The atomic samples in a sequence have different types. In the following paragraphs, we
discuss, on the level of hardware, the requirements of these different types. This is necessary
for understanding the algorithm of the controller presented later.

In the feedback experiment, there are essentially two types of interactions between the
atomic samples and the cavity field: dispersive and resonant. The atomic and field frequencies
are tuned to be off resonance while the potential on one of the cavity mirrors is at −0.62 V
(a default value). They are tuned on resonance by applying potential pulses on that mirror,
which can go up to −2.5 V. To implement different sample types, we need to control these
potential pulses. Moreover, different types also require different manipulations on their atomic
states. So we also need to control the microwave pulses in R1 and R2. In summary, the pulses
corresponding to different types are shown in Fig. III.2, with their functions explained in the
following text.

Figure III.2. Microwave pulses and potential pulses for implementing different sample types.
A QND sample requires microwave pulses in both R1 and R2, while the potential in C remains
at the default value. A RE sample requires a microwave pulse in R1 and a potential pulse in
C. A RG sample only requires a potential pulse in C. The RE or RG samples are effectively
changed to the DS type, if we do not apply the potential pulses associated to them.



84 Chapter III. Quantum feedback: algorithms and optimizations

• QND : the microwave pulse in R1 is a π/2 pulse, which transforms the atomic state from
|g〉 to a superposition state (|e〉+ |g〉) /

√
2. The potential on the cavity mirror remains

at its default value such that the atomic sample and the cavity field interact dispersively.
The microwave pulse in R2 is another π/2 pulse.

• RE : the microwave pulse in R1 is a π pulse, which transforms the atomic state from |g〉
to |e〉. A potential pulse applied across C tunes the sample to be on resonance with the
cavity field. After interaction, the atomic state is no more manipulated in R2.

• RG : no microwave pulse in either R1 or R2. The sample enters the cavity in the state
|g〉 and is tuned to be on resonance with the cavity field by a potential pulse across C.

• DS : default potential value in C and no microwave pulse in R2, despite the microwave
pulses in R1

Remark: The resonant samples (RE or RG) require potential pulses across C, which can
go up to −2.5 V. The potential difference between the two mirrors of the cavity generates an
extra inhomogeneous static electric field. Due to the Stark effect, this inhomogeneous static
field results in inhomogeneity in the atomic frequencies of their neighboring QND samples.
These samples accumulate different phases between the two π/2 pulses applied in R1 and R2,
and lead to suppressed Ramsey fringes. In this situation, the measurements performed by the
QND samples can no longer extract information about the field state. So they are omitted
while estimating the field state.

III.2 Quantum state estimator

Photon number distribution versus density matrix

In the whole feedback process, all involved quantum maps, such as those associated to the
dispersive or resonant interactions and that associated to the field relaxation, do not couple the
diagonal elements of the density matrix ρ to the non-diagonal elements. Hence, all calculations
in the state estimation and the controller can be based on the diagonal elements of ρ, i.e. the
photon number distribution P (n). Moreover, since in our experiments the field is initially in
its vacuum state, the non-diagonal elements of the density matrix are actually zero during the
whole feedback process. So we only need to follow the evolution of P (n).

Following the evolution of P (n) instead of ρ enables us to carry out calculations based on
NH -dimensional vectors, rather than a NH ×NH -dimensional matrices, with NH denoting
the size of a truncated Hilbert space. This saves calculation time for the quantum state
estimator and controller. Furthermore, since not-yet-detected QND samples do not modify
P (n), all calculations involving such samples can be simplified.

Although in experiments and simulations, all calculations are based on P (n), I use the
density matrix more often in this manuscript for simplicity and clarity of expressions. While
reading these expressions, the readers just need to bear in mind that all these density matrices
are actually diagonal.

Algorithm of the state estimation

In section II.4, we have given the state estimation (II.71). Nevertheless, in practice, this state
estimation should be modified in order to take into account the 5 samples from k+1 to k+5,
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which have already interacted with the cavity field at the moment when we choose a feedback
action.

Suppose that the initial state of the cavity field is ρ0. We now consider the estimated state
given in (II.71) as an auxiliary state, which would be the field state after the detection of the
kth sample, if the 5 samples did not exist.

ρ′k =
k∏
j=1

(
TMµj

qj

)
ρ0. (III.1)

The state ρ′k satisfies the following recursive relationship:

ρ′k = TMµk
qk
ρ′k−1. (III.2)

Since those 5 samples are not yet detected, we can only consider them as unread measurements.
Consequently the estimated state of the cavity field reads

ρk =
k+5∏
l=k+1

(TNµl) ρ′k. (III.3)

where Nµl denotes the quantum map associated to a not-yet-detected sample introduced in
(II.16) and (II.55).

In practice, since ρ′k can be obtained based solely on the detection result of the kth sample
and ρ′k−1, we can store it in the memory of the quantum state estimator and use it for the
next loop. So in experiments, we combine the expressions (III.2) and (III.3) to calculate the
estimated state of the cavity field.

III.3 Controller

After obtaining the estimated state ρk, the controller chooses a feedback action to bring the
state closer to the target Fock state ρt = |nt〉〈nt|. Before presenting the algorithm of the
controller, let us first explain how to measure the “closeness” of an arbitrary state ρ to our
target state.

III.3.1 Measure of distance

We can use the fidelity F [56] between two quantum states to measure their “closeness”. For
two pure states |ψ1〉 and |ψ2〉, the natural choice for F would be their overlap:

Fp(|ψ1〉, |ψ2〉) = |〈ψ1|ψ2〉|2. (III.4)

This definition, however, cannot be easily generalized to describe statistical mixtures. A
widely used generalization takes the form [57]:

Fm(ρ1, ρ2) =

[
Tr

(√√
ρ1ρ2
√
ρ1

)]2

. (III.5)

Particularly, since ρt = |nt〉〈nt|, the fidelity between ρt and an arbitrary state ρ can be
expressed as:

Fm(ρt, ρ) = Pρ (nt) , (III.6)
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with Pρ(nt) denoting the probability to have nt photons in the state ρ. We see that Fm (ρt, |nt〉〈nt|) =
1 and Fm (ρt, |n〉〈n|) = 0, ∀n 6= nt.

Let us consider 1 − Fm(ρt, ρ) as a fidelity-defined distance between ρt and ρ. We see
that this distance only reduces to zero once the target state is reached, i.e. ρ = ρt. For all
other Fock states it has the same maximum value of 1. Thus using this distance, the controller
cannot tell the difference between the state with n� nt (or n� nt) and those with n = nt±1
representing the results of quantum jumps by one photon.

In order to reflect that the states |n〉 with n� nt are “farther” from |nt〉 than |nt ± 1〉, we
define the distance between a state with the photon number distribution P (n) and the target
state |nt〉 as

d (P (n), nt) =
∑
m

P (m) (m− nt)2

= (n− nt)2 + ∆n2, (III.7)

with ∆n2 and n denoting the photon number variance and mean value, respectively. The
minimization of d (P (n), nt) can then be interpreted as pushing the average photon number
towards nt and narrowing the photon number distribution.

We can also write (III.7) in the following form:

d (ρ, ρt) = Tr
(
ρD̂nt

)
, (III.8)

in which the distance operator D̂nt is defined as

D̂nt ≡
∑
n

dnt(n)|n〉〈n|, (III.9)

with

dnt(n) = (n− nt)2 . (III.10)

III.3.2 Decision making

As mentioned briefly in section III.1, the controller uses the samples k+6, k+7 and k+8 to
carry out feedback actions. For the sample k+8, we can choose its type to be RE, RG or
QND. For the samples k+6, k+7, their interactions with the cavity field may be modified,
only if they have the types RE or RG in the first place. For instance, we can set them to
the DS type by not applying the potential pulses associated to them. Or we may change our
mind again and reinstall the potential pulses associated to them. Since the atomic states of
the samples are not modified, the samples are recovered to their original types (RE or RG).

Let us use {νk+8, νk+7, νk+6} to denote one possible choice for the types of the 3 samples.
The controller estimates the average field state resulting from the pending interaction of the
cavity field with these samples, by considering them performing unread measurements. Then
we can calculate the distance between the resulted state and the target state:

d{νk+8,νk+7,νk+6} = Tr
[
(TNνk+8TNνk+7TNνk+6ρk) D̂nt

]
. (III.11)
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Among all possible choices, we find the one {ν ′k+8, ν
′
k+7, ν

′
k+6} which minimizes the distance.

These types are then assigned to the corresponding samples correspondingly, i.e.:

µk+6 = ν ′k+6,

µk+7 = ν ′k+7, (III.12)
µk+8 = ν ′k+8.

The chosen types for the samples k+7 and k+8 may still be modified in subsequent loops.

III.4 Simulations and optimization of parameters

So far, we have explained the algorithms of the quantum state estimator and the controller.
The current section is then devoted to numerical simulations of the feedback experiment and
optimizations of certain parameters.

The experiment is simulated using the quantum Monte Carlo method [58, 59], in which
each quantum trajectory is generated by dice tossing for the probabilistic events, such as the
atom number in a sample, the prepared atomic states, the result of a virtual ideal detection
and the nature of a quantum jump. The field state obtained in this way is denoted by PR(n),
which is only known by a virtual observer. In the mean time, we perform state estimation on
PR(n) using the algorithm present in section III.2 and obtain an estimated state denoted by
P (n). Based on P (n), the controller chooses feedback actions according to the algorithm given
in section III.3. A detailed procedure for the simulation process can be found in Appendix B.
In the following, we summarize the parameters for the simulations and present the results.

III.4.1 Parameters for the simulations

In the simulations, we use the measured experimental parameters, such as the cavity lifetime,
the detector efficiency, the preparation and detection errors, etc. These parameters have been
given before. The other not-yet determined parameters are as follows.

We use a partition for the sensor and control samples Ns = 12 and Nc = 4, except for the
results presented in III.4.3.a, where we vary this parameter in order to check its effect on the
performance on the feedback process.

We use the distance defined in (III.7), except for the results presented in III.4.3.b, where
we use different definitions for the distance in order to check its effect on the performance on
the feedback process.

The settings for the sensors and actuators are discussed in the following paragraphs.

The sensors

As explained in section I.4.2, in order to distinguish the states from |0〉 to |7〉, we have chosen
a phase shift per photon φ0 ' π/4. In the feedback loops, the sensitivity of the sensor samples
to deviations from the target Fock states is determined by the Ramsey phase φr. As given in
(I.102), the ideal POVMs associated to the dispersive interaction plus detection of the atomic
state read

Êe =
1− cos

(
φr − φ(N̂)

)
2

Êg =
1 + cos

(
φr − φ(N̂)

)
2

. (III.13)
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For a target state |nt〉, a straightforward choice for the Ramsey phase would be

φr = φ(nt) +
π

2
, (III.14)

such that the probability of detecting |e〉 or |g〉 is 50%, and that the sensitivity to photon
number deviation around nt is maximized. To illustrate the setting (III.14), we show the
probabilities for detecting the state |g〉 as a function of n in Fig. III.3, with nt = 3 or 5.
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Figure III.3. Probabilities for detecting the atomic state |g〉 in different Fock states for a
sensor atom. The Ramsey phases are set such that πg (nt) = 0.5.

From Fig. III.3a, we see that the states with n < 3, e.g. |0〉, |1〉 and |2〉, as well as those
with n > 3, e.g. |4〉, |5〉 and |6〉 can be well distinguished from |3〉. Consequently, the state
estimator can efficiently estimate if there are fewer or more photons than 3 in the cavity field,
and the controller can then react correspondingly. Nevertheless, πg (3) = πg (7), which means
that |7〉 cannot be distinguished from |3〉 straightforwardly. But field relaxation can help to
remove this ambiguity rapidly2. Once |7〉 decays to |6〉, the controller can then realize that the
field contains more photons than wanted (since πg(6) > πg(3)), and send photon absorbers
to further reduce the photon number. So the state |7〉 is actually an unstable state while the
feedback process is running.

This instability originates from the fact that the function πg(n) has opposite slopes for
the states |3〉 and |7〉. So correspondingly, if nt = 7, the state |3〉 is then an unstable state in
the feedback process. In our experiments, there exist other such state pairs, such as |1〉 and
|5〉, |2〉 and |6〉. Figure III.3b shows the setting of the Ramsey phase for nt = 5. With this
setting, the state |1〉 is an unstable state while the feedback process is running. The field can
eventually be stabilized around |5〉.

The actuators

The actuators interact resonantly with the cavity field during a certain time interval, denoted
by te(nt) for the RE samples, and tg(nt) for the RG samples. A possible choice for these
interaction time is given by the conditions of a trapping state [33]: making a Rabi 2π pulse
in the target state for both RE and RG samples. The corresponding interacting time are
denoted by t2πe (nt) and t2πg (nt), respectively. Under these conditions, if the field is in |nt〉, it

2The time needed for this process can be roughly estimated as the lifetime of |7〉, which is Tcav/7 w 9ms.
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is left unchanged (assuming ideal Rabi oscillations). Whereas, if it is in other photon number
states, it may gain or lose photons and move towards |nt〉. For the following simulations, we
use these interaction time, except in section III.4.3.c, where we adjust the interaction time in
order to optimize the performance of the feedback process.

III.4.2 Results of the simulations

Individual quantum trajectory

A typical individual quantum trajectory with the target state |nt = 3〉 is shown in Fig. III.4.

Figure III.4. Individual quantum trajectory with nt = 3. (a) detected results of the sensor
samples, with e or g denoting that 1 atom is detected in the states |e〉 or |g〉, and 2e or
2g denoting that 2 atoms are detected in the states |e〉 or |g〉; (b) the samples chosen as
actuators (the samples chosen as QND type are not shown in this figure); (c) distance
between the current and the target states; (d) estimated photon number distribution, with
P (3) (green), P (n > 3) (red), P (n < 3) (blue); (e) the photon number distribution of the
real field, with PR(3) (green), PR(4) (red), PR(2) (blue) and others not shown here.

Panel (a) showing the detection results of the sensor samples. The field is initially in
the vacuum state. Once the feedback process is started, the controller commands many RE
samples in order to inject photons, as we can see in panel (b). Then the distance between the
current and the target state decreases as shown in panel (c). The estimated field state are
given in panel (d). We see that the probability of |3〉 (green curve in (d)) in the estimated
state gradually increases until about t = 26 ms when the quantum state estimator realizes
the occurrence of a quantum jump to |2〉. This jump actually occurred at about t = 20 ms
in the real field, as shown in panel (e). Comparing the results in (d) and (e), we see that
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the evolution of the estimated state lags behind the real state of the field. Whenever there
is a sudden quantum jump, the estimator needs some time to realize it, e.g. ∼ 6 ms for the
case mentioned above. Nevertheless, if the real field remains at a specific state for a relatively
long time, e.g. the period between about 48 ms to 65 ms and from 90 ms till the end of the
trajectory, the quantum state estimator reaches a relatively close estimate of the real state,
thanks to the measurements performed by many sensor samples during these periods.

The stationary regime

Instead of looking at an individual trajectory, we can also take an ensemble average of many of
them. Figure III.5 shows the average P (n, t) of 2000 individual quantum trajectories. In fact,
the average P (n, t) is identical to the average PR(n, t) (not shown here), meaning that the field
state is correctly estimated from an ensemble point of view [60]. We see that once the feedback
process is started, P (0) quickly drops and P (1), P (2) and probabilities of other higher photon
number states grow. In about 20 ms, the distribution P (n, t) reaches a stationary regime, in
which P (n, t) remain generally stable but with small visible variations. These small variations,
related to the periodical structure of the partition (Nc, Ns) in the sample sequence, will be
discussed in more detail while analyzing the experimental results in section IV.3.

Figure III.5. Evolution of the P (n, t) averaged over 2000 individual quantum trajectories,
with nt = 3.

In the stationary regime, we can average the photon number distribution over the period
Nc + Ns to smooth out the small variations and obtain the P (n) shown in Fig. III.6. Here,
the field reaches a fidelity of about 53%, called a steady state fidelity in the following.

Convergence speed

On the individual trajectories, we see that P (nt, t) can reach fidelities higher than the steady
state fidelity. So instead of looking at the steady state P (n), which is equivalent to terminating
the feedback process at a random time in the stationary regime, we can terminate the feedback
process once the estimated fidelity of the target state reaches a certain value, say, 80%. In
this case, we would ask: how fast can the individual trajectories reach that fidelity?
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Figure III.6. Photon number distribution P (n) of the steady state, with nt = 3.

Figure III.7. Converged fraction as a function of time. The dotted line shows the 63% level.

The results of 2000 individual trajectories are shown in Fig. III.7. In this simulation, an
individual trajectory is declared to be converged, once the fidelity of the target state reaches
80% in 3 successive feedback loops. The fraction of the converged trajectories Cfr(t) as a
function of time, defined as the ratio between the number of trajectories converged before t
and the total number of trajectories, is thus obtained. We can further define a convergence
time tconv, which is the time needed for 1 − e−1 = 63% of the trajectories to reach the
convergence criterion. The level of 63% is highlighted by the dotted line in Fig. III.7. In the
current simulation, tconv w 50 ms.

III.4.3 Optimizations

Now we know the steady state fidelity and the speed of convergence. We can then finely tune
the parameters of the feedback process to optimize its performance on both aspects.
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III.4.3.a The partition of samples

In section III.1, we have explained the structure of the sample sequence, in which we define a
partition of the sensor and control samples. We then use numerical simulations to search for
the optimal partition (Nc, Ns).

Figure III.8. Steady state fidelity of the target state and convergence time as functions of
different partitions (Ns, Nc), with nt = 3. (a) Steady state fidelity as a function of (Ns, Nc).
The relatively high fidelity is obtained below the solid line. (b) Same simulations as in panel
(a), but with 10 times more trajectories and thus smaller statistical errors. (c) Convergence
time for different partitions, based on the same data as in (b).

With |3〉 being the target state, Fig. III.8 displays the simulation results on the steady
state fidelity and the convergence time as functions of Ns and Nc. In panel (a), both Ns

and Nc are varied from 1 to 19 with the total number limited by 20. For each partition,
200 individual quantum trajectories are averaged. Note that the pairs (Nc, Ns) leading to
relatively high fidelities concentrate within the region below the solid line, in which we have
Ns > Nc. On the contrary, if we have very few QND samples (on the left-most region),
the fidelity is generally low. The panel (b) shows the simulation results in the region with
Ns > Nc. Each point is obtained by averaging over 2000 quantum trajectories, such that the
statistical error is below 0.5%. The panel (c) shows the convergence time, based on the same
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data as those in panel (b). The fastest convergence also occurs in the right bottom corner.
The partition (2, 14) seems to be an optimal setting, because it leads to not only the highest
fidelity, but also one of the shortest convergence time.

We performed experiments with the partition (Nc, Ns) = (2, 14), and several other parti-
tions with different ratios between Nc and Ns, while keeping their sum constant. We found
that the partition (Nc, Ns) = (4, 12) led to a steady state fidelity about 5% higher than that
obtained by the partition (2, 14), although the convergence time for both was almost the same.
This small discrepancy between simulations and experiments may originate from certain ex-
perimental conditions not full taken into account in the models used in the simulations. In
the end, we kept the partition (Nc, Ns) = (4, 12) in experiments.

III.4.3.b Distance functions

In section III.3.1, we define a distance to the target state by (III.7). Compared with the
fidelity-defined distance, it can tell the relative “closeness” of different Fock states to the
target state |nt〉. In fact, for the purpose of revealing the relative “closeness” of different Fock
states to |nt〉, we can define many other functions, such as dnt(n) = |n− nt|Λ, with different
values for Λ. Does the performance of the feedback process depend on the distance function?
To answer this question, we perform simulations with several values for Λ.

The results are summarized in Fig. III.9. The panel (a) shows the fidelity-defined distance
function and the functions dnt(n) with Λ = 0.5, 1, 1.5, 2. These functions are normalized to
have a maximum value of 1. The panel (b) shows the obtained steady state photon number
distributions.

Figure III.9. Different distance functions (a) and the corresponding steady state photon
number distributions P (n) (b). The distance functions dnt(n) are labeled with number 1 to
5. The P (n) are arranged such that from left to right they correspond to the dnt

(n) from 1
to 5. They are also linked to each other by the same color.

We see that the fidelity-defined distance leads to a steady state fidelity about 6% lower than
that obtained by using the distance function with Λ = 2. The corresponding convergence time
(not shown here) is also longer by about 20%. However, the performances using the distance
functions 3 to 5 are almost the same. This means that the feedback process is not very
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sensitive to the form of the distance function. Eventually, we choose the function with Λ = 2,
which leads to the distance defined in (III.7).

III.4.3.c The interaction time for actuators

So far, we use the interaction time t2πe (nt) and t2πg (nt) in simulations, which would leave the
target state unchanged if the Rabi oscillations were ideal. Nevertheless, in practice the Rabi
oscillations have a limited contrast. As a result, these interaction time does not suppress
photon exchange even if the field is in the target state. For instance, in experiments, with
interacting time t2πe (3) or t2πg (3), the probability for photon exchange, although minimal, is
still about 20% in |3〉. So in this situation, are the conditions of the “trapping state” still an
optimal choice? To answer this question, we perform simulations with different interaction
times.

The steady state fidelities of the target states |2〉 and |3〉 as functions of the interaction
time te(nt) and tg(nt) are shown in Fig. III.10. The coordinates of the solid circles in the
figure show the interaction times used in the simulations, while all other parameters remain
the same. The figures are generated by interpolation within the measured values.

Figure III.10. Steady state fidelities of the target states |2〉 (left) and |3〉 (right) obtained
with different settings for te(nt) and tg(nt). The coordinates of the solid circles show the
parameters for different runs of the simulations.

We see that the highest fidelity is obtained using the setting close to te(nt) = 0.8t2πe (nt)
and tg(nt) = 1.2t2πg (nt). Compared with the results using the conditions of the “trapping
states”, the fidelity is increased from about 53% to 57% for |3〉 and from about 58% to 62%
for |2〉. The convergence time (not shown here) is also slightly optimized.

Discussion

The actuator samples exchange photons with the cavity field. In order to stabilize the field
state around |nt〉, this exchange process should be constrained by several requirements. First,
it should be avoided in |nt〉 (ideally). Secondly, the RE sample should emit a photon efficiently
for the states with n < nt and inefficiently for those with n > nt. Thirdly, the RG type should
absorbe a photon efficiently in states with n > nt and inefficiently in the states with n < nt.



III.4. Simulations and optimization of parameters 95

In practice, the photon exchange process is achieved by switching on the resonant inter-
action during a certain time interval. In simulations, we see that the performance of the
feedback process is optimized, if we reduce (by ∼ 20%) the interaction time for a RE sample
and increase (by ∼ 20%) the interaction time for the RG sample. This phenomenon essen-
tially originates from a trade-off between minimizing the perturbation to the target state and
enhancing the efficiency for absorbing (RG) or emitting (RE) photons while the field state
deviates from the target state.

To illustrate this point, we make a comparison of the interactions with different interaction
time. Based on the non ideal Kraus operators in (II.37) and (II.38), the triangles in Fig. III.11
display the probabilities for emitting Pemi(n) or absorbing Pabs(n) a photon in different Fock
states with interaction time t2πe (nt) and t2πg (nt) for nt = 3. We see that the probability for
photon exchanges in |3〉 is minimized, but still has a value of about 20%.

Figure III.11. Probability for photon exchanges in different photon number states with
nt = 3. (a) Probabilities for emitting one photon by an atom in |e〉. The triangles correspond
to the probabilities with the interaction time t2πe (3). The squares correspond to those with
0.8t2πe (3). (b) Probabilities for absorbing one photon by an atom in |g〉. The triangles
correspond to the probabilities with t2πg (3). The squares correspond to those with 1.2t2πg (3).

As a comparison, the squares in Fig. III.11 show the probabilities of photon exchanges for
the interaction time te(nt) = 0.8t2πe (nt) (panel (a)) and tg(nt) = 1.2t2πg (nt) (panel (b)). Here
only the photon numbers satisfying |n− nt| 6 2 are shown, because these states are actually
the most relevant ones in a feedback experiment with the target state |nt〉. The probabilities
for photon exchanges in |3〉 are enhanced from 20% to about 40%. However, the probabilities
in other Fock states are modified in a desirable way. For instance, the probability Pemi(n) is
enhanced for the states with n < 3 and reduced for states with n > 3. So we can expect that
a RE sample works more efficiently as a photon emitter. Similarly, the probability Pabs(n)
becomes larger in states with n > 3 and smaller in states with n < 3. So we may also expect
that the RG sample work more efficiently as a photon absorber.

In summary, balancing the effects of the actuators to the target and other states, a compro-
mise is found with the following interacting time te(nt) = 0.8t2πe (nt) and tg(nt) = 1.2t2πg (nt),
which are used in our experiments.



96 Chapter III. Quantum feedback: algorithms and optimizations

Conclusion

In the very beginning of this chapter, we present the sequence of atomic samples. Their spatial
configuration at the moment when we choose a feedback action and their implementation in
experiments are necessary information for understanding the algorithms of the quantum state
estimator and the controller. We then present the algorithms for the state estimator and the
controller, which are used in the simulations. Based on the simulation results, we optimize
certain parameters of the feedback process. For instance, we have chosen a partition3 for
sensor and control samples (Nc, Ns) = (4, 12). We have also checked our choice for the distance
function (III.7), which does lead to a better performance than a distance merely relying on
fidelity. We have also chosen the interaction time for the actuator samples: te(nt) = 0.8t2πe (nt)
and tg(nt) = 1.2t2πg (nt) and discussed why this setting is better than the conditions of the
“trapping state”.

3This partition is inspired by simulations, and then chosen according to experimental performances.
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Experimental implementation

In this chapter, we present the experimental implementation of the feedback process. We first
explain the control systems in section IV.1, and the experimental sequence in section IV.2. We
then present the results in section IV.3. These results include individual quantum trajectories
showing how the feedback procedure operates and the photon number distributions averaged
over many individual trajectories. We also study how the controller makes decisions.

IV.1 Control systems

An experimental control system usually consists of two parts: software and hardware. In the
software, we program a sequence of experimental events, which is essentially a series of digital
(TTL) pulses and analog waveforms. These signals are then output by the hardware. In
former experiments, we used a control software developed by Stefan Kuhr, in which we first
programmed a complete sequence of events and uploaded it to various output boards. Using
this system, we cannot modify the sequence while running experiments. Thus we call it a
“Passive system” in the following.

In the feedback experiment, we need to modify the control events in real time according
to calculation results of the quantum state estimator and the controller. So we need to have a
control system which can both carry out calculations and output digital and analog signals. We
thus introduced an additional control system: “ADwin Pro-II” developed by Jäger Messtechnik
and adapted to our experiments by Igor Dotsenko. This new system is designated as “Active
system”. In the following paragraphs, we explain its role in the feedback experiment and the
functions of its modules.

IV.1.1 Organization of the control systems

The Passive and Active systems fulfil different tasks, with the main ones displayed in Fig.
IV.1. The Active system controls the digital and analog signals which need to be modified in
real time. All the other signals, as well as experimental parameters which do not need to be
modified in real time are still controlled by the Passive system.

97
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Figure IV.1. Organization of the control systems. Basic components of the experimental
setup: the circularization box B, two Ramsey zones R1 and R2, the cavity C and the detector
D. The dotted line shows the atomic beam. The tasks fulfilled by the Passive and Active
systems are displayed by the solid and dashed lines. The dashed lines also indicate the input
signals for the Active system
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The specific tasks fulfilled by the two systems are as follows:

Passive system

• Control pulses for the excitation lasers, circularization ramps, etc. in B for preparing
circular Rydberg atoms

• Frequency and power of the microwave sources coupled to the Ramsey zones

• Ionization ramp in D for detecting the atomic samples

• Synchronization trigger sent to the Active system, which triggers the execution of a
feedback loop and serves as a common time reference for the two systems

• Potential trigger sent to the Active system for outputting the potential waveform asso-
ciated to an atomic sample

• Detection gates sent to the Active system, which define the time windows for detecting
states |e〉 and |g〉

Besides the tasks listed above, the Passive system also controls such experimental parameters
as the period of the atomic samples, the number of samples in a sequence, and the number of
repetitions of the sequence, etc.

Active system

• Calculations of quantum state estimator and controller (not shown in the figure)

• Duration of microwave pulses in R1 and R2 by controlling switches S1 and S2, respec-
tively.

• Potential waveforms on C for changing the interaction regimes: dispersive or resonant.

• Voltages on the two mirrors of R2 for setting a phase for the Ramsey interferometer

• Registration of detection results received as TTL pulses

IV.1.2 Main components of the Active system

Figure IV.2 displays the front panel of the Active system, on which the individual modules
are highlighted. In the following paragraphs, we explain briefly their functions.

The CPU carries out the calculations for state estimation and choosing feedback actions.
It has an operating frequency of 300 MHz and a very stable timing. Its response to the
synchronization trigger received through the port “Event IN” is rapid and precise (about
300 ± 30 ns). These features are important for the synchronization between the Passive and
Active systems, as well as for controlling precisely the timings of subsequent pulses.

The CPU has an internal memory of 250 kB, which can be accessed rapidly and is mainly
used for carrying out calculations in real time. It also has an external memory of 250 MB,
which has a longer and relatively less stable access time. It provides ample space for storing
matrices, arrays, and other parameters used in the calculations.



100 Chapter IV. Experimental implementation

Figure IV.2. Front panel of the ADwin Pro-II system showing the following modules: CPU,
Digital output I and II, Counter, and Analog output. Their functions are explained in the
text. The arrow shows the input port of the synchronization trigger.

The Digital output I (DIO32 board) uses two digital output channels to control the
durations of the microwave pulses in R1 and R2. It outputs signals through a FIFO stack
(first in, first out), which is filled by the CPU.

The Digital output II (DIO32 board with a processor) is used for applying voltage
waveforms on the cavity. It uses 16 bits to encode a voltage in a binary format and outputs
it every 100 ns. The digital signal is converted to an analog signal by a home-made external
digital-to-analog convertor (DAC) (not shown in Fig. IV.2).

The counter (DIO32 board) is used to register the detection results of the atomic
states. The board receives two sets of TTL signals, one being the detection gates which define
the beginning and ending of the time windows corresponding to the atomic states |e〉 and |g〉,
the other being the detection clicks corresponding to detected atoms.

The analog output is used to control the voltages on the mirrors of R2. It has 8 channels
in total (2 of them are used in our experiments). All of them have a time resolution of about
2µs, and are controlled by the CPU.

IV.2 Sequence

An experimental sequence consists of many equally spaced atomic samples, which can be
divided into three groups. The first one includes 50 atomic samples. It prepares the cavity field
in the vacuum state and is called an initialization sequence. The principle of this process has
been explained in section I.3.3. The second group is used for the feedback process and is called
a feedback sequence. The third group performs an independent 4-phase QND measurement as
introduced in section I.4.2.b and is called ameasurement sequence. In the following paragraphs,
we explain the main experimental events associated to one sample, then discuss the feedback
and measurement sequences in more detail.
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IV.2.1 Experimental events for one sample

For each atomic sample, the pulsed laser at 780 nm defines a time origin for all subsequent
events. A space-time diagram of one sample is given in Fig. IV.3. Several main experimental
events associated to this sample are shown in the figure and explained in the following text.

Figure IV.3. Space-time diagram of one atomic sample (not to scale). The horizontal bars
show the following components: the circularization box B, the field modes of two Ramsey
zones R1, R2 and the cavity C, and the detector D. The timings of the pulsed laser at
780 nm, the Ramsey pulse in R1, the potential waveform, the Ramsey pulse in R2 and the
detection of the sample are 0µs, 586µs, 768.4µs, 948µs, 1104µs, respectively.

• At t = 0, the atomic sample is excited to the state |g〉 in B.

• At t = 586µs, the sample arrives at the center of R1, in which a π/2 pulse, π pulse, or
no pulse may be applied, depending on the type of this sample.

• At t = 768.4µs, the sample arrives at the center of C. By default, the sample and the
cavity field interact dispersively. The resonant interaction is achieved by applying a
potential waveform.

• At t = 948µs, the sample arrives at the center of R2, where it may experience a π/2
pulse or not, depending on its type.

• At t = 1104µs, an ionization ramp is triggered, and the sample is detected in D.

IV.2.2 The feedback sequence

At the beginning of each sequence, 8 samples are set as sensors. They are then followed by the
structure of Nc = 4 control samples and Ns = 12 sensor samples. This structure is typically
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repeated 110 times. So in total we have 1768 atomic samples in the feedback sequence. Given
the period of the samples Ta = 82µs, the total duration of this sequence is 144 ms w 2.2Tcav.

We associate a synchronization trigger to each atomic sample. It is sent at t = 556µs
(with respect to the time origin of the sample), which is chosen such that the kth sample
has just been detected when the trigger associated to the sample k+7 is sent to the Active
system. Figure IV.4 shows the space-time diagram, in which the timing of the pulsed laser
of the sample k+7 is chosen as the time origin. After receiving the synchronization trigger,
the Active system executes a predefined program, in which it retrieves from its counter the
detection result of the sample k, estimates the field state and chooses a feedback action using
the algorithms presented in sections III.2 and III.3. Besides these, it also outputs signals to
the corresponding hardware for the following 82µs. This time interval is highlighted by the
two vertical lines in the upper panel and zoomed in in the lower panel of Fig. IV.4.

As shown in Fig. IV.4, the samples k+7, k+5 and k+3 will reach the center of R1, C and
R2 at t = 586µs, 604.4µs and 620µs, respectively. The Active system first identifies their
types, then outputs the corresponding signals shown in Fig. III.2.

The digital signals to R1 and R2 are directly applied from the module “Digital output I”.
The constant potentials corresponding to the Ramsey phase of sample k+3 are applied on
the two mirrors of R2 directly from the module “Analog output”1. The potential waveforms
on C are applied as follows. We predefine several potential waveforms in digital format and
store them in the memory of the board “Digital output II”. The application of the waveform
is then divided into two steps. First, the Active system identifies the potential waveform that
the sample k+5 requires and sets it as the next one to output. Second, the board outputs the
waveform after receiving the potential trigger associated to the sample k+5. The waveform,
in a digital format, is then converted into an analogy signal by the DAC and applied on C.

IV.2.3 The measurement sequence

During the feedback process, the quantum state estimator provides an estimated field state
by incorporating a lot of a priori information about the field, including the field relaxation,
the backactions of the sensor and actuator samples. The theoretical models describing the
field relaxation and the backactions of the sensor samples were checked while performing the
feedback experiments presented in [61], and agreed well with the 4-phase QND measurement.
The theoretical description of the resonant interaction between the actuators and the field is a
new element of the current experiment. In order to check this description, and to evaluate the
performance of the feedback process, we perform an independent 4-phase QND measurement
on the field state.

The method of the 4-phase QND measurement and state reconstruction have been in-
troduced in section I.4.2.b. With a phase shift per photon φ0 w π/4, it can distinguish 8
consecutive Fock states, e.g., from n = 0 to 7, 1 to 8, 2 to 9, etc. To perform the mea-
surement, the feedback sequence is followed by 10 atomic samples with 4 alternating Ramsey
phases. Given an average detected atom number 0.33/sample, we actually use 3 detected
atoms on average to perform the measurement, with a duration Tmes = 820µs.

The lifetime of the Fock state |n〉 is Tcav/n. Field relaxation during the QND measurement
may not be negligible for high photon number n. On average, the field decays by Tmes/2
during the measurement. The probability for a Fock state |n〉 to lose one photon is Ploss(n) =

1This signal is not shown in Fig. IV.4
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Figure IV.4. Space-time diagram of the feedback sequence (not to scale). The components
of the experimental setup are the same as those given in Fig. IV.3. The upper panel shows
a whole view of the samples. The sample k+7 sends a synchronization trigger to the Active
system at t = 556µs. In the following 82µs, the Active system needs to retrieve the detection
result of sample k (purple) and output signals to the hardware for the samples k+3 (red),
k+5 (green) and k+7 (blue). These signals are shown in the lower panel, which is a zoom
in of the region between the two vertical lines.

exp [−n(1 + nth)Tmes/2Tcav]. Given that nth = 0.05 and Tcav = 65 ms, we get Ploss(n) w 0.6%,
w 1.3%, w 2.0%, w 2.6%, w 3.3%, w 3.9% and w 4.5% corresponding to n = 1 to 7. Since
these probabilities are small, we may neglect the effect of field relaxation during the QND
measurement.
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IV.3 Results

We now present the experimental results. In order to illustrate how the feedback procedure
operates, we first show several individual quantum trajectories. Then we present the results
of the QND measurement on thousands of trajectories. We also study the chosen types for
the control samples and analyze the behavior of the controller.

IV.3.1 Individual trajectories

Typical individual quantum trajectories with target states from nt = 1 to 7 are shown in
Figs. IV.5 to IV.11. In these figures, panel (a) shows the detection results of sensor samples.
Panel (b) shows the types µk of the control samples which are used as actuators. Panel (c)
displays the distance d (ρt, ρk) between the current and the target states. Panel (d) shows
the estimated photon number distribution P (n, t), with P (nt, t) (green), P (n > nt, t) (red),
and P (n < nt, t) (blue). For the trajectories with nt = 1 to 4, certain events, such as initial
convergence, quantum jumps and recoveries, are also indicated in the figures.

Initially, the cavity is prepared in its vacuum state. We see that at the beginning of each
trajectory, many control samples are set as RE types in order to inject photons into the cavity.
The field state gradually converges to the target state and reaches a relatively high fidelity, a
process referred to as initial convergence in the following.

Once the target state reaches a high fidelity, the controller finds that photon emission
or absorption is unnecessary and sets all the control samples to the QND type. Suddenly
a quantum jump occurs, which can be either a jump down or up. In either case, the state
estimator reveals that the field state deviates from the target state, and thus the distance
increases. The controller then chooses the RE or RG samples to reduce the distance, i.e. to
correct this jump. Finally, the target state is recovered and the following control samples are
again set to the QND type. Within the trajectory, we can see many such jumps, especially
for higher photon numbers, because the lifetime of a Fock state |n〉 is Tcav/n, thus the higher
the photon number is, the more frequent quantum jumps occur. So the controller needs to
command corrections more frequently for stabilizing a state with higher nt. We can also see
that the quantum jumps towards lower n are more frequent than those towards higher n,
since photon losses induced by cavity decay dominates over photon gains induced by thermal
excitation.
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Figure IV.5. Individual quantum trajectory with nt = 1. (a) Detection results of the sensor
samples, with e or g denoting that 1 atom is detected in the states |e〉 or |g〉, and 2e or 2g
referring to events with two atoms detected in |e〉 or |g〉. (b) the types µk of the control
samples chosen as actuators. (c) the distance between the current and the target states.
(d) the photon number distributions: P (nt, t) (green), P (n > nt, t) (red) and P (n < nt, t)
(blue). The events, such as initial convergence to the target state, quantum jumps and
recovery are indicated by the arrows.
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Figure IV.6. Individual quantum trajectory with nt = 2. See the caption of Fig. IV.5 for
explanations.
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Figure IV.7. Individual quantum trajectory with nt = 3. See the caption of Fig. IV.5 for
explanations.
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Figure IV.8. Individual quantum trajectory with nt = 4. See the caption of Fig. IV.5 for
explanations.
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Figure IV.9. Individual quantum trajectory with nt = 5. See the caption of Fig. IV.5 for
explanations.
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Figure IV.10. Individual quantum trajectory with nt = 6. See the caption of Fig. IV.5 for
explanations.
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Figure IV.11. Individual quantum trajectory with nt = 7. See the caption of Fig. IV.5 for
explanations.
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Sequential preparation

Besides preparing a single target state, the feedback process can also prepare a series of pre-
programmed states. In this experiment, called sequential preparation, the controller switches
from one nt to the next one, once P (nt) reaches 80% in 3 successive feedback loops. Then
the setting of the Ramsey phase is changed, such that φr = φ(nt) + π/2 is guaranteed. The
parameters for the quantum maps associated to the sensors and actuators are also changed
correspondingly in the quantum state estimator and controller.

Figure IV.12. Individual quantum trajectory of a sequential preparation experiment. See
the caption of Fig. IV.5 for the explanations of the three upper panels. The lowest panel
shows the photon number distribution P (n, t) (color scale), the mean photon number n(t)
(thick black line) and the sequence of target states (thin blue line).

Figure IV.12 shows an individual trajectory for the sequential preparation experiment, in
which the target states {3, 1, 4, 2, 6, 2, 5} are prepared successively. The lowest panel shows
the photon number distribution P (n, t) (color scale), the mean photon number n(t) (thick
black line) and the sequence of target states (thin blue line). We see that whenever the target
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state is changed, the distance increases suddenly and the controller reacts correspondingly by
commanding many actuator samples. The field then converges towards the new target state
as clearly shown in the lowest panel. The ability of steering the field state towards different
target states reflects the flexibility of the feedback process.

IV.3.2 Photon number distributions

The feedback process is flexible for preparing different photon number states. But we also
notice that it becomes more difficult to stabilize the states with higher n. In order to evaluate
the efficiency for stabilizing different photon number states, we repeat the feedback process
many times and study its performance from an ensemble point of view.

We repeat the feedback process and obtain 4000 individual quantum trajectories for each
nt. Each trajectory is terminated according to a predefined criterion, and followed by the
4-phase QND measurements. Bases on these measurements, the field states are reconstructed.

We may terminate the feedback process in two ways. In one way, we terminate it at a
fixed time within the stationary regime. The QND measurement thus reconstructs the photon
number distribution in the stationary regime. In the other way, we terminate the feedback
process by setting a threshold on the fidelity of the target state. Both cases are studied in our
experiments, and the results are presented in the following.

IV.3.2.a Stationary regime

The feedback process is terminated at t = 145 ms, which is well within the stationary regime.
The 4-phase QND measurement leads to a reconstructed photon number distribution denoted
by PQND(n), shown as histograms in Fig. IV.13. In each panel, the solid bars correspond
to PQND(n) obtained using the “atomic actuator” feedback process, and the patterned bars
correspond to those of the “coherent actuator” feedback. The step lines show the theoretical
Poisson distributions of P (n) in a coherent field |α〉, with α =

√
nt. The hollow circles show the

estimated photon number distribution P (n) when the feedback process is terminated. Com-
pared with coherent fields, PQND(n) obtained using both feedback processes become narrower
around the target states. The fidelities of the target states are about 2 times the maximum
possible values in coherent fields.

In the panels (a) to (d), we compare PQND(n) of the “atomic actuator” and “coherent
actuator” feedback processes. For all 4 target states, the “atomic actuator” feedback process
leads to fidelities higher by more than 10% than those obtained by its “coherent actuator”
counterpart. Moreover, the photon number distributions are also narrower around the target
states. In order to make a quantitative comparison of this “narrowness”, we calculate the
relative dispersion σ defined as

σ =

√
〈N̂2〉 − 〈N̂〉2

〈N̂〉
,

which has the value 1 for a coherent field. The fidelities of the target states and values of σ for
PQND(n) are given in Table IV.1. The fact σ < 1 means that the field state has a sub-Poisson
distribution. Smaller values for σ are obtained in the “atomic actuator” feedback process. In
summary, compared with its “coherent actuator” counterpart, the “atomic actuator” feedback
process leads to not only higher fidelities for the target states, but also narrower photon
number distributions.
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Figure IV.13. Photon number distributions in the stationary regime. From (a) to (g), nt = 1
to 7. The step lines show the theoretical Poisson distribution P (n) of a coherent field |α〉,
with α =

√
nt. The hollow circles represent the estimated state when the feedback process is

terminated. The histograms show the reconstruction results PQND(n) by the 4-phase QND
measurement, with the solid bars corresponding to the “atomic actuator” feedback process
and the patterned bars corresponding to the “coherent actuator” feedback process (only from
(a) to (d)).



IV.3. Results 115

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉

PQND(nt)
atomic 69% 61% 52% 45% 43% 38% 33%

coherent 61% 49% 44% 37% - - -

σ
atomic 0.70 0.51 0.50 0.55 0.52 0.52 0.62

coherent 0.95 0.79 0.69 0.69 - - -

Table IV.1. Fidelities of the target states and relative dispersions of the reconstructed photon
number distributions. Both the results using the “atomic actuator” and “coherent actuator”
feedback processes are shown.

It is not surprising to see that the “atomic actuator” feedback process outperforms the
“coherent actuator” feedback process. In the latter, the injection of a small coherent field
simply broadens the photon number distribution for most of the time. It is the sensor samples
which pin down the field towards the target state. This mismatch between the classical
nature of the actuators and the quantumness of the target states limits the speed of correcting
quantum jumps, thus limits the ability of stabilizing higher photon number states (e.g |5〉,
|6〉 and |7〉). On the contrary, the quantum actuator used in the “atomic actuator” feedback
emits or absorbs one photon at a time2. This is thus particularly suitable for reversing photon
jumps.

We also notice the discrepancy between PQND(n) and the estimated state P (n). The esti-
mator seems more optimistic than the QND measurement. This may be due to the following
reasons.

• The resonant interaction between the actuators and the cavity field is not perfectly
described. As we can see in section II.3.1.c, the damping rates of the Rabi oscillations
in the Fock states only satisfy the relationship 1/τn =

√
n+ 1/τ0 qualitatively. As a

result, the Kraus operators based on (II.36) may not describe accurately the interaction
between the actuator samples and the cavity field. Moreover, the resonant interaction of
2 atoms coupled to the cavity field is not perfectly described either. As can be seen from
section II.3.2, the theoretical model only agrees with the measured data qualitatively.

• Fluctuation of the atom number. The actuator sample has an flux of about 0.5/sample on
average (averaged over the 4000 trajectories), which is used to calculate the probabilities
for different atom numbers in a sample. However, in practice, the average atom number
per sample (over an individual trajectory) fluctuates by about ±50% among different
quantum trajectories. These fluctuations result in different probabilities for the atom
numbers 0, 1 and 2 from the preset values in our model. This may also lead to inaccurate
description of the resonant interaction.

2In fact, the atom number in an atomic sample is probabilistic and the samples have an atomic flux of about
0.5/sample. The probability for photon exchanges is about 50% on average. So more precisely, we should say
that an actuator sample has a 25% probability for exchanging one photon with the cavity field.
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IV.3.2.b Termination by a threshold on fidelity

Terminating all trajectories at a fixed time is essentially equivalent to terminating the indi-
vidual trajectories at a random time within the stationary regime. So in this case, we actually
neglect the knowledge of the quantum state estimator. In this section, we discuss the results
obtained by terminating the quantum trajectories relying on real-time information about the
field.

The feedback process is terminated once the fidelity of the target state reaches 80% in
3 successive feedback loops, and the trajectory is declared to be converged. In practice, a
trajectory can be terminated at the position of either a sensor or a control sample. In either
case, we use the next segment of Ns sensor samples to perform the QND measurement3. The
reconstruction results based on about 4000 individual trajectories are shown in Fig. IV.14.
From the panels (a) to (g), the target states are from nt = 1 to 7. The histograms show
the reconstructed photon number distributions PQND(n): lighter bars corresponding to the
stationary regime and darker bars corresponding to the converged trajectories. The hollow
circles show the estimated states P (n) when the feedback process is terminated. The solid
lines show the theoretical Poisson distributions as those in Fig. IV.13.

As expected, we obtain better results by relying on the knowledge of the state estimator,
in which the fidelities of the target states are higher and the distributions are narrower.
For the feedback processes with nt = 1 or nt = 2, we also see good agreement between
the estimated states and those reconstructed by the QND measurement. Nevertheless, the
discrepancy between them becomes larger as nt increases. We think there are two reasons for
this discrepancy. First, since quantum jumps become more frequent for the Fock states with
larger n, there is less time for the sensor samples to perform measurements between two jumps.
As a result, the state estimator fails to detect these jumps and provides an estimate different
from the real field. Second, once the trajectory is terminated, the QND measurement cannot
be started immediately, since we need to wait till the next Ns sensor samples. On average, the
waiting time is about 1 ms, which leads to a probability of about 10% for losing one photon
for the state |7〉. So field relaxation also contributes to the observed discrepancy.

3Within these 12 samples, we only use the detection results of the first 10 samples.



IV.3. Results 117

0 1 2 3 4 5 6 7 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

( g )

( e )

( d )

( c )

( b )

P(n
)

( a )

0 1 2 3 4 5 6 7 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

P(n
)

0 1 2 3 4 5 6 7 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

P(n
)

0 1 2 3 4 5 6 7 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

P h o t o n  n u m b e r ,  n

P(n
)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9
P h o t o n  n u m b e r ,  n

0 1 2 3 4 5 6 7 8 9

( f )

Figure IV.14. Photon number distributions of the converged trajectories. From (a) to (g),
nt = 1 to 7. The step lines show the theoretical Poisson distribution P (n) of a coherent field
|α〉, with α =

√
nt. The hollow circles correspond to the estimated state when the feedback

process is terminated. The histograms show the reconstructed results PQND(n), with the
lighter bars corresponding to the converged trajectories and the darker bars corresponding
to the stationary regime.
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Convergence speed

Having obtained the photon number distributions, we want to check how fast the trajectories
reach the predefined criterion. As defined in section III.4.2, the function Cfr(t) represents the
probability for the trajectories to reach the termination criterion before time t. The functions
corresponding to different nt are shown in Fig. IV.15.

Figure IV.15. Probabilities for individual trajectories to reach the termination criterion as
functions of time. The target states are nt = 1 to 7. The horizontal line shows the 63%
level.

On each curve Cfr(t), we see an initial time interval within which no trajectory is con-
verged. This time interval depends on nt and varies from ∼ 2 ms to ∼ 12 ms for nt = 1 to
7. This is the time needed for pumping photons into the cavity and for acquiring enough
information about the field state through the sensors. The convergence time tconv, which is
defined as the time needed for 1 − e−1 = 63% of the trajectories to reach the predefined
criterion, for different target states are given in Table IV.2. As a comparison, we also show
the convergence time for nt = 1 to 4 of the “coherent actuator” feedback process. Roughly
speaking, the convergence speed in the “atomic actuator” feedback process is about twice as
fast as those achieved by the “coherent actuator” process.

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉

atomic 12 ms 19 ms 27 ms 37 ms 38 ms 53 ms 69 ms

coherent 26 ms 31 ms 49 ms 58 ms - - -

Table IV.2. Convergence time in different feedback processes.
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IV.3.3 Behavior of the controller

On the individual trajectories, we see that once a quantum jump down (up) occurs, the
controller commands several RE (RG) samples to reverse this jump. In order to look into the
way by which the controller makes choices, we analyze the chosen types for the control samples.
We first analyze how the controller chooses sample types at different time in the stationary
regime, then analyze its choice dependent on the mean photon number of the estimated field
state.

IV.3.3.a Sample types in the stationary regime

The average photon number distribution P (n, t) is obtained by making an ensemble average
of P (n, t) over 4000 individual trajectories. Figure IV.16 shows the distribution with nt = 3.
We see small oscillations of P (n): P (3) increases while P (n < 3) decreases4. A zoom in of
P (3) is shown in the lower panel. The fidelity of |3〉 oscillates between 61% and 58% with a
period (Ns +Nc)Ta.

Figure IV.16. Evolution of the average photon number distribution with nt = 3. The upper
panel shows the evolutions of P (nt, t) (green), P (n > nt, t) (red) and P (n < nt, t) (blue).
The lower panel is a zoom in of P (nt, t) in the selected region. The numbers of the samples
are Ns = 12 and Nc = 4.

Although the oscillation amplitude is small, it is worth to emphasize that the fidelity
decreases within the segments of the sensor samples and increases within the segments of the
control samples. Since the sensor samples cannot inject photons into the cavity, photon losses
induced by the cavity decay cannot be corrected. As a result, the probability P (3) decreases
while P (n < 3) increases. Nevertheless, within the segments of the control samples, photon
losses can be corrected by the feedback actions, eventually recovering the fidelity of the target

4Due to overshoots of the feedback actions, P (n > 3) also oscillates following the same trend as that of
P (3), but on a much smaller scale. So the major interplay is between P (3) and P (n < 3).
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state. Consequently, we see that the fidelity of the target state increases within each control
segment and saturates at the maximum value at the end.

Now let us check how the controller makes decisions in this situation. Figure IV.17 shows
the probabilities Πp(t) for choosing different types for the control samples as functions of time.
The subscript p refers to the types QND, RE or RG.

Figure IV.17. Probabilities of commanding control sample types Πp(t), with p = QND
(green squares), RE (red triangles), or RG (blue circles). The lower panel is a zoom in of
the selected region in the upper panel.

As shown in the upper panel, within the stationary regime, about 70% of the control
samples are set as sensors. From the lower panel, we see that the first sample in the control
segment has a probability of about 20% for being an RE type. The probability then decreases
and reaches a value of about 5% for the last sample in the same segment. In the meantime,
the probabilities for the RG type has the same behavior, but with a value about 3 times
smaller. This behavior reflects the fact that at the beginning the controller tries to correct
the deviation of the field state from the target, then it quiets down as it finds that any more
action could lead the field state farther to the target.

Figure IV.18. Probabilities of different sample types as functions of nt. The type p = QND
(green squares), RE (red triangles), or RG (blue circles).
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In fact, for the feedback processes with other target states, we see qualitatively the same
behavior for the control samples. Here, we do not show the graphs for all nt. But instead, we
average the probabilities Πp(t) over t within the stationary regime and obtain the probabilities
Πp(nt) for different target states, which are shown in Fig. IV.18. As expected, for all the
target states, the controller commands more RE than RG samples, reflecting that photon
losses dominates over photon gains. Furthermore, for higher nt, the controller commands
more RE samples, since photon losses become more frequent.

IV.3.3.b Sample types dependent on the mean photon number

In order to have an intuitive understanding about how the controller chooses different sample
types, we also study the choices of the controller dependent on the average photon number n
estimated at a given time. The results for nt = 1 to 7 are given in Fig. IV.19.

Figure IV.19. Probabilities Πp(n) of the types chosen for the control samples as functions
of the average photon number n of the estimated field. The types are p = QND (green
solid line), RE (red dashed line), or RG (blue dash-dot line). The panels from (a) to (g)
correspond to the target states with nt = 1 to 7.
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The inspection of these results reveals that the controller effectively works under a simple
rule: when n < nt − 0.4, it commands RE samples; when n > nt + 0.6, it commands RG
samples; and in between it commands QND samples. The domain of n within which the QND
type is chosen has a width δn w 1, and is centered at a value slightly larger than nt, reflecting
that field relaxation alone reduces n.

Based on these results, we may think of a simpler algorithm than the one presented in
section III.3 for the controller. In this simpler algorithm, the controller only needs to calculate
n at a moment, and compare it with nt. Depending on whether there are “fewer” or “more”
photons than wanted, the controller simply commands a photon emitter or absorber corre-
spondingly. We have performed numerical simulations using this simpler algorithm while all
the other settings remain the same. The results are, however, worse than the current results.
The fidelity of the target state is about 10% smaller. This may be because of the difference
between the two algorithms at the boundary domains (n w nt + 0.6 and n w nt − 0.4). In
these domains, the fractions of the actuator and sensor samples change sharply in the simpler
algorithm, whereas in the other algorithm they have small overlaps. Although the algorithm
used in our experiments involves more complex calculations, it justifies its value by leading to
better performance for the feedback process.



Conclusion

In this manuscript, we present quantum feedback experiments which prepare and stabilize
photon number states with up to 7 photons. Circular Rydberg atoms are used either as
sensors performing QND measurements or as actuators exchanging photons with the cavity
field. The quantum nature of the actuators is matched to that of the single-photon quantum
jumps induced by the field relaxation. Consequently, we achieve better performance than that
using the “coherent actuator” feedback process, as presented in [61].

To perform the feedback experiments, we need to know the backactions of the sensors
and actuators on the feild. The theoretical description of the QND measurement was first
presented. The experimental imperfections were then measured and taken into account in
this description, leading to the quantum maps associated to the sensors in the experimental
situation. Similarly, for the actuators, we first provided an ideal theoretical description on their
interactions with the cavity field, then gradually took into account experimental imperfections
and obtained the quantum maps in real experiments.

Having fully described the interactions of cavity field with the sensors and actuators, we
gave the algorithms of the quantum state estimator and controller. Based on these algorithms,
we performed numerical simulations to check whether the feedback process works or not, and
to optimize certain feedback parameters. Through optimization, we gained in both the steady
state fidelity of the target state and the convergence speed. The optimized parameters were
then used in the experiments.

In order to perform real-time state estimation and feedback control, we introduced the AD-
win Pro-II system. After briefly explaining its operation and the structure of an experimental
sequence, we presented the experimental results, which demonstrated our ability to prepare
and stabilize photon number states with up to 7 photons. In the first place, we showed the
individual quantum trajectories, which gave us an intuitive picture about how the feedback
process operated. Afterwards, we presented the results averaged over 4000 trajectories. We
terminated the feedback process either at a fixed time or once the fidelity of the target state
reached a predefined value. In both cases, we performed independent QND measurements
and reconstructed the photon field. We then compared these results with those obtained us-
ing the “coherent actuator” feedback process. Thanks to the quantum nature of the actuators,
the “atomic actuator” feedback process outperformed its “coherent actuator” counterpart in
several aspects. It led to higher fidelities for the target states and narrower photon number
distributions. It also made the field converge to the target state faster. In the end, we ana-
lyzed the behavior of the controller and revealed that its algorithm actually made intuitively
simple choices.
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Perspectives

The feedback process may be optimized in two aspects: the sensors and the actuators. First,
instead of using fixed Ramsey phase φr and phase shift per photon φ0 for the sensors, we can
use adaptive ones. The field starts in its vacuum state and gradually climbs the ladders of
Fock states till the target state. We may use different φr and φ0 at different stages, such that
the sensors are most sensitive to any variations of the current field state. The sensitivity of
the sensors to the cavity field is thus maximized during the whole feedback process. Second,
for the actuators, we may use several interaction times for both the RE and RG types. In this
way, we expect to enhance the efficiency of photon exchange, thus ameliorate the corrections
of quantum jumps.

Using adaptive φr and φ0 also enables us to improve the QND measurement of photon
numbers. So far, in our measurements, we keep a constant φ0 and choose randomly the Ram-
sey phases of the atomic samples among 4 possible options. Nevertheless, this method is not
optimal as far as the measurement speed concerned. An optimal method for distinguishing
different photon numbers was proposed in [40, 62]. In this method, after the detection of each
atom, φ0 is divided by 2 and a proper Ramsey phase depending on the previous detection
result is chosen for the next atom. The method only needs log2(N) atoms for distinguishing
N photon number states in an ideal situation. We have incorporated the experimental imper-
fections and performed numerical simulations. Using 3 velocity classes for the atomic samples,
corresponding to φ0 = π, π/2 and π/4, we can distinguish photon number states from |0〉 to
|7〉 by detecting 13 atoms. To make a comparison, in the experiments presented in [31], we
used 110 atoms to distinguish those 8 Fock states. So we expect that performing the QND
measurement in this adaptive way would reduce dramatically the measurement time.

Another perspective is to exploit the feedback procedure to prepare and protect Schrödinger’s
cat states. To this end, we choose φ0 = π. The measurement of photon numbers thus reduces
to the measurement of parity. The parity operator is defined as:

P̂ |n〉 = +|n〉 if n is even,
= −|n〉 if n is odd.

A single parity measurement on the coherent field |α〉 transforms it into the Schrödinger’s
cat states. The “even” and “odd” cat states are:

|ψe〉 =
1√
2

(|α〉+ |−α〉) |ψo〉 =
1√
2

(|α〉 − |−α〉) ,

which are eigenstates of the parity operator and satisfy the following relationship:

P̂ |ψe〉 = |ψe〉 P̂ |ψo〉 = −|ψo〉.

The state |ψe〉 only contains the Fock states with even photon numbers, whereas the state
|ψo〉 only those with odd photon numbers.

Consider that we have prepared the even cat state |ψe〉. If decoherence induces the loss of
a photon, the field is then projected into the odd cat state |ψo〉. The sensor atoms performing
parity measurement can reveal this quantum jump. The feedback process then commands
the injection of a photon to recover the original field state. In this way, we can stabilize the
Schrödinger’s cat states [63, 64].
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We see that the current feedback scheme can be easily adapted to this experiment, since the
resonant atoms can emit or absorb a photon at a time. Nevertheless, in practice, the actuator
is the atomic sample, which contains a nondeterministic atom number. The probabilistic
nature of the atom number in a sample stands as an obstacle for this experiment, since
an atomic sample may be empty or contains more than 1 atom, we cannot be sure that one
photon is deposited at a time. Moreover, the limited detector efficiency is also a concern, since
an atom may deposit a photon and be missed by the detector. In this case, the controller
fails to realize that the jump has been corrected. But these obstacles may be overcome by
adopting the strategy used in the current feedback experiment, i.e. introduce a partition of
sensor and control samples. Then we do not rely on the detection of the actuator samples but
the subsequent sensor samples to judge if one photon is successfully deposited or not. This
protocol can be checked and optimized in numerical simulations.
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Appendix A

Two-atom Rabi oscillations

The basis {|ee, n− 1〉,
∣∣(eg + ge) /

√
2, n
〉
, |gg, n+ 1〉} with n > 1 forms a closed subspace of

the Hilbert space. The atomic states constitute a spin triplet state with MJ = 0,±1. To
simplify the notation, we make the following substitutions:

∣∣M1
J

〉
≡ |ee, n− 1〉

∣∣M0
J

〉
≡
∣∣∣(eg + ge) /

√
2, n
〉 ∣∣M−1

J

〉
≡ |gg, n+ 1〉 (A.1)

The eigenstates corresponding to the eigenenergies ξ0 and ±ξ(n) are:

|ψ0〉 =
1√

2n+ 1

(√
n+ 1

∣∣M1
J

〉
−
√
n
∣∣M−1

J

〉)
|ψ±〉 =

1√
2 (2n+ 1)

(
±
√
n
∣∣M1

J

〉
+
√

2n+ 1
∣∣M0

J

〉
±
√
n+ 1

∣∣M−1
J

〉)
.

The coupled states in (A.1) can then be expressed in terms of these eigenstates:

∣∣M1
J

〉
=

1√
2n+ 1

(√
n

2
(|ψ+〉 − |ψ−〉) +

√
n+ 1 |ψ0〉

)
∣∣M0

J

〉
=

1√
2

(|ψ+〉+ |ψ−〉)

∣∣M−1
J

〉
=

1√
2n+ 1

(√
n+ 1

2
(|ψ+〉 − |ψ−〉)−

√
n |ψ0〉

)
.

After time t, these states evolve to:

∣∣M1
J

〉
(t) =

[
1 +

n

2n+ 1

(
cos

ξ(n)t

~
− 1

)]
|1〉

− i
√

n

2n+ 1
sin

ξ(n)t

~
|0〉

+

√
n (n+ 1)

2n+ 1

(
cos

ξ(n)t

~
− 1

)
|−1〉 , (A.2)
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∣∣M0
J

〉
(t) = −i

√
n

2n+ 1
sin

ξ(n)t

~
|1〉

+ cos
ξ(n)t

~
|0〉

− i
√

n+ 1

2n+ 1
sin

ξ(n)t

~
|−1〉 , (A.3)

∣∣M−1
J

〉
(t) =

√
n (n+ 1)

2n+ 1

(
cos

ξ(n)t

~
− 1

)
|1〉

− i
√

n+ 1

2n+ 1
sin

ξ(n)t

~
|0〉

+

[
1 +

n+ 1

2n+ 1

(
cos

ξ(n)t

~
− 1

)]
|−1〉 , (A.4)

with ξ(n) defined as

ξ(n) ≡ ~
Ω0

2

√
2 (2n+ 1). (A.5)



Appendix B

Simulation procedure

While simulating the evolution of ρR, we exploit the following properties.

• The atom number and atomic state of each sample are known.

• Virtual ideal detection of the atomic state: 100% detector efficiency and no detection
errors.

• The field relaxation in a small time period Ta � Tcav is considered as quantum jumps.

In the following, we consider the quantum maps induced on ρRk by the virtual ideal detec-
tion of the atomic state and the field relaxation separately. We thus introduce the notations
given in Fig. B.1. The detection of the atomic sample k transforms the field state ρRk−1 to
ρR
k− 1

2

, which is transformed to the state ρRk by the field relaxation.

Figure B.1. Notations of the transformed states.

Simulating the evolution of the cavity field

1. The cavity field is initially prepared in the vacuum state:

ρR0 = |0〉〈0|. (B.1)

2. The atomic sample k interacts with the cavity field. The virtual ideal detection of its
atomic state transforms the field state ρRk−1. To express these transformations, we need
to determine its atom number, atomic state and the results of the detection.
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Atom number

The Poisson distribution of the atom number in a sample is simulated by generating a
random number 0 6 χ < 1 and determining the atom number according to

• 0, if χ 6 P0,

• 1, if χ 6 P0 + P1,

• 2, otherwise,

where P0 and P1 denote the probabilities given by the truncated Poisson distribution
(II.2). In our simulations, we consider up to 2 atoms for each atomic sample. But here
for simplicity of expressions, I only consider up to 1 atom. The cases with 2 atoms can
be analyzed similarly.

If the sample k contains 0 atom, the transformation leaves ρRk−1 unchanged. In the
following we consider the case of 1 atom.

Atomic state

Due to the preparation errors of atomic states, the sample of type RE or RG may be
either in state |e〉 or |g〉. So we need first to determine the true atomic state.

We draw a random number 0 6 χ1 < 1 and determine the atomic states as follows.

• Type RE

– If χ1 6 η
p
e , the state is |g〉.

– Otherwise, the state is |e〉.
• Type RG

– If χ1 6 η
p
g , the state is |e〉.

– Otherwise, the state is |g〉.

Virtual ideal detection

After detection of the atomic state, the field state is transformed. The quantum maps
are described by the Kraus operators K̂e, and K̂g, corresponding to the detection results
|e〉 or |g〉, respectively. These operators are as follows.

• For the sample with the type QND: K̂e = M̂e and K̂g = M̂g.

• For the sample with the type RE or RG:

– If the atomic state is |e〉, K̂e = R̂e,e and K̂g = R̂e,g.
– If the atomic state is |g〉, K̂e = R̂g,e and K̂g = R̂g,g.

The probabilities for detecting the states |e〉 for |g〉 are

πe = Tr
(
K̂eρ

R
k−1K̂

†
e

)
πg = 1− πe. (B.2)

We draw a random number 0 6 χ2 < 1 to determine the outcome of the virtual ideal
detection:
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• If χ2 6 πe, the atom is detected in |e〉, and ρRk−1 is transformed to

ρR
k− 1

2

=
K̂eρ

R
k−1K̂

†
e

πe
. (B.3)

• If χ2 > πe, the atom is detected in |g〉, and ρRk−1 is transformed to

ρR
k− 1

2

=
K̂gρ

R
k−1K̂

†
g

πg
. (B.4)

Result of the realistic detection

If the sample k contains 0 atom, the result of the realistic detection is 0d.

For the case of 1 atom, in order to obtain the result of the realistic detection, we need first
to determine whether the atom misses detection, then to determine in which detection
channel it is detected.

We draw a random number 0 6 χ3 < 1 and determine the realistic detection result as
follows.

• If χ3 > εd, the atom misses detection, leading to a detection result 0d.

• If χ3 6 εd, the atom generates a detection click. We need further to determine
whether it leads to ed or gd. Suppose the result of the virtual ideal detection is
j ∈ {e, g}. We draw a random number 0 6 χ4 < 1 and determine the detection
result as:1.

– If χ4 > ηdj , the atom is correctly detected, leading to the result jd

– Otherwise, the atom is erroneously detected, leading to the result other than
jd.

3. Take into account the field relaxation during Ta.

Recall the jump operators associated to the field relaxation:

L̂+ =
√
κ+a

† L̂− =
√
κ−a. (B.5)

The probabilities of quantum jumps within time Ta are given by:

p+ = κ+TaTr
(
aa†ρR

k− 1
2

)
p− = κ−TaTr

(
a†aρR

k− 1
2

)
. (B.6)

We draw a random number 0 6 χ5 < 1 to determine whether a quantum jump occurs.

• if χ5 6 p+, a jump up occurs and the state is transformed to

ρRk =

(
a†ρR

k− 1
2

a
)

Tr

(
aa†ρR

k− 1
2

) . (B.7)

1For the QND sample, the detection errors should be substituted by the effective detection errors.
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• if p+ < χ5 6 p+ + p−, a jump down occurs and the state is transformed to

ρRk =

(
a ρR

k− 1
2

a†
)

Tr

(
a†aρR

k− 1
2

) . (B.8)

• if p+ + p− < χ5, no jump occurs and the state is transformed to

ρRk =
1

p0

[
(1− TaĴ) ρR

k− 1
2

(1− TaĴ)
]
, (B.9)

with the operator Ĵ defined as

Ĵ =
1

2

(
L̂†+L̂+ + L̂†−L̂−

)
=

1

2

(
κ+aa

† + κ−a
†a
)
. (B.10)

Performing the feedback experiment

1. Decide whether we close the feedback loop or not.

If the 3 samples k+6, k+7 and k+8 belong to the predefined sensor segment in the
sample sequence, we do not close the feedback loop.

Otherwise, we close the feedback loop by executing the procedure listed in the following
box.

2. Estimate the state based on which we choose the feedback action using the algorithm
given in section III.2.

3. Choose a feedback action using the algorithm given in section III.3.
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