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 ngular elocity  cceleration                      
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1 Introduction

ature is full of ìows and many of them are turbulent and transport objects n nature
one encounters such particleladen ìows for example as rain droplets in a thundercloud
transport of pollen and seeds with the wind or of sediments in a river hey play an
important role in industrial applications too e it the atomizing of gasoline in a motor
sewage treatment chemical mixers or weather balloons
he turbulent motion of ìows itself is a yet unsolved problem characterized by its high

irregularity and its ìuctuations in both time and space oreover turbulence covers a
large range of scales nergy is injected at large scales where it drives the creation of large
eddies which continuously break up into new eddies he whirls interact and disperse
until they reach a size where viscosity plays a role and their kinetic energy is dissipated
into heat articles immersed in such a ìow are consequently subject to a complicated
interaction with eddies of all sizes

ince the time of uler avier and tokes huge progress has been made in understanding
the motion of spherical particles of size D much smaller than the smallest length scale of
the ìow the olmogorov scale η    ecause of the small size of the particle
the ìow around it is locally laminar – see ig  – therefore the equation governing
the particle velocity v can be determined by solving the ìuid equations once the ìuid
velocity u is known n the simplest case the particles are subject to the tokes drag and
the added mass term   thus the velocity v can be determined by solving a simple
differential equation or D → 0 the velocity of a neutrally buoyant particle reduces to
the ìuid velocity u so the particle behaves as a ìuid tracer his property is crucial for
several experimental techniques 
ith the advent of agrangian measurement techniques material particles are gaining

attention hese particles have a size larger than η but are still small compared to the
largest scales in the ìow s suggested by ig  their case is conceptually much more
difficult
y studying the acceleration statistics of a particle one can infer on the dynamics of the

forces acting on it xperiments have shown that upon increasing the ratioD/η from 1 to
40 the variance of the particle acceleration i.e. of the forces decreases as (D/η)−2/3 
 evertheless the ìuctuations of force remain non–gaussian up to D/η ≲ 40 
  ince material particles decrease their acceleration variance with increasing size
they share common properties with heavy inertial particles for which the behavior is
well determined by their size ratio D/η till large neutrallybuoyant particles cluster
differently than inertial particles   t present a full derivation of the equation of
motion of a large particle is still not available
espite its importance in many technical ìows the motion of particles with a size com

11



parable to the large scales is surprisingly little studied his is partially due to the fact the
description of a solid object freely advected in a ìuid requires in addition to its transla
tional degrees of freedom characterizing its position three rotational degrees of freedom
specifying its orientation with respect to a reference frame he evolution of its position
and of its orientation depends according to ewtons laws on the forces and torque act
ing on the particle at each instant which result from the interaction between the object
and the turbulent ìow
n the preceding work of oann asteuil  it was observed that a neutrally buoyant
sphere of a size D ∼ 0.6Lint i.e. comparable to the large scales of the ìow is highly
intermittent in both translation and rotation imulations at low turbulence levels show
that particles of D/Lint ∼ 1 alter the surrounding ìow up to a distance of twice their
diameter  ecently this has been supported by imon lein athieu ibert and
others  who simultaneously followed tracer particles and rigid gel spheres in a highly
turbulent environment

Figure 1.1: ketch of a small and a large particle superimposed on local stream lines
hereas the ìow around the small particle is smooth it exhibits signiëcant spatial varia
tions around the large particle

he present experimental study investigates themotion of neutrally buoyant spheres whose
diameter D is of the order of the integral scale Lint n addition we aim at resolving the
six degrees of freedom of the particle dynamics herefore we developed a novel mea
surement technique which enables us to obtain a simultaneous tracking in time of the
particles position and its absolute orientation with respect to a reference frame
revious studies focused on directly measuring the angular velocity without resolving

the absolute orientation as a function of time e and oco  tracked dots painted
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on a particle with high speed cameras and computed the angular velocity from their dis
placement between two consecutive frames ecently lein et al.  adapted a particle
tracking system to this approach luorescent tracer particles sticked to the surface of
transparent gel spheres and tracer particles suspended in the carrier ìow are tracked in
space the spheres rotation is then given by the relative displacement of the sticked parti
cles owever identifying which are attached to a moving spheres surface and which are
moving freely with respect to the others is a nontrivial task  completely different ansatz
was taken by rish and ebb  who created an ulerian technique measuring one
component of the angular velocity using specially engineered transparent particles which
contain an embedded mirror he reported particle diameter is less than µm which
is of the order of the olmogorov length scale η ur approach is completely different
it consists in painting the particle with a suitable layout and in retrieving its orientation
or algorithmic efficiency and robustness this is not done step by step but for the entire
trajectory using a global path extraction he experimental setup and the technique are
presented in chapter 

aving access to particles translation and rotation enables us to study the forces and
torques acting on a large inertial particle thus permitting to ask yet fundamental ques
tions about their dynamics ore speciëcally three questions are addressed irst general
features of the translation are presented in chapter  ext we turn to the rotation of a
solid large particle chapter  and show that despite the highly turbulent ìow rotation
and translation couple according to the lift force Flift = Clift vrel × ω istorically a
coupling between the rotation and translation was ërst reported by  agnus in 
in his article Über die Abweichung der Geschosse, und: Über eine auffallende Erscheinung bei
rotierenden Körpern1  and a lift has been measured in laboratory experiments when
the ìow is steady and laminar    t has further been observed for stationary
objects in a rotating ìows but to our knowledge we report here the ërst observation of a lift
force for a freely moving sphere in a turbulent ìow n the third part chapter  we test
how the particle exchanges momentum with the ìuid or that purpose we analyze the
ìuctuations of the particles kinetic energy by means of the ìuctuation theorem  

urthermore in collaboration with mart a young startup on the  campus and
building upon the work of oann asteuil et al.  we present a novel measurement
apparatus for characterizing ìows in chapter  n instrumented particle which contin
uously transmits its threedimensional agrangian acceleration he particle embarks a
small battery a  accelerometer operating at 316z and a wireless transmission system
its signal is then received and processed on a control computer fter a general presen
tation of the apparatus the developed methods for the interpretation of the acceleration
signal are explained e further test its precision by tracking the position and orientation
of the particle while simultaneously recording its acceleration signal

ome parts explored during the ½ years of this thesis do not fully ët within the storyline
of the manuscript hese sidetracks are therefore presented separately in appendix 

1n the deviation of projectiles and n a striking phenomenon of rotating bodies
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2 A very intermittent introduction to
turbulence

his chapter recalls some features and concepts of turbulence and the tools used n a way
its as intermittent as our particles motion  slower and less intermittent introduction
can be found in the following books
ope Turbulent Flows  audau and ifschitz Hydrodynamics  achelor an intro-
duction to îuid dynamics  risch Turbulence: e Legacy of A. N. Kolmogorov  and
in ennekes and umley A First Course in Turbulence   comprehensive source
of information on the various experimental techniques which were developed in ìuid
dynamics research is found in the Springer Handbook of Experimental FluidDynamics 

2.1 Fluid dynamics & Scales
t some point during ones study of physics or engineering one learns that the motion
of a ìuid is govern by the aviertokes equation n most cases this is restricted to
incompressible ìuid of constant viscosity ν and constant ìuid density ρf [

∂

∂t
+ u ∇

]
u = −∇p

ρf
+ ν∇2u +

1

ρf
f 

where u is the velocity ëeld p the pressure and f external forces per body volume n
addition the ìuid is subject to the continuum equation ∇ u = 0 and the boundary
conditions he term (u ∇)u is quadratic and only for some special cases one can ënd
analytical solutions ost of those fall into the regime when viscous forces dominate –
i.e. ν∇2u > (u ∇)u – and one therefore introduces the socalled Reynolds number
as a dimensionless parameter relating the inertial and viscous term

Re =
agnitude [(u ∇)u]

agnitude [ν∇2u]
=

U L

ν


where L and U represent the characteristic length and velocity scale of the ìow one can
interpret the eynolds number as an indicator of the level of turbulence orRe ≪ 1 the
viscous term dominates and small perturbations arising from the boundaries or body forces
acting on the ìuid are damped out he ìow is then organized in stationary streamlines
ne can picture its structure as ìuid lamina which glide along each other but do not cross
ence this type of ìow is called laminar
or an increasing eynolds number perturbations arising from the boundaries or body
forces acting on the ìuid are not damped out anymore and the lamina break up into
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Re=26
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Re=10 000

Figure 2.1: low behind a cylinder at different eynolds numbers xtract from the album
of ìuid motion  t very low eynolds number Re = 0.16 the ìow is organized
in streamlines passing smoothly around the cylinder a socalled creeping or tokes ìow
but with increasing eynolds number more and more eddies of different sizes appear in
the ìow

many eddies which are advected with the meanìow he system evolves into a spatio
temporal chaotic system which is called turbulence n this regime mixing is enhanced
but also the drag force acting on a body moving through the ìow is higher in a turbulent
ìow than in the laminar case o illustrate this transition ig  shows extracts from
the album of ìuid motion for the ìow around a cylinder at four different eynolds
numbers t Re = 0.16 the ìow is organized in streamlines passing smoothly around
the object this conëguration is also called a creeping or tokes ìow ut with increasing
eynolds number more structures of different sizes appear in ìow heir interaction yields
the complex multiscale nature in both time and space of fully turbulent ìows ne
therefore turns towards a statistical description of turbulent ìows

Richardson cascade ichardson formulated the multiscale nature of turbulence in
his famous poem

Big whorls have little whorls that feed on their velocity,
and little whorls have smaller whorls and so on to viscosity.

n  olmogorov published groundbreaking articles translating this idea into math
ematical language nergy is injected at a length scale Lint characterizing the biggest ed
dies hese eddies break up into smaller eddies which again break up into even smaller
whirls he cascade stops when viscosity becomes nonnegligible and injected energy is
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Figure 2.2: ketch of the ichardson cascade he system of size Lapp injects energy at
the size Lint characterizing the biggest whirls hese whirls break up into smaller whirls
which break up into even smaller eddies and so forth his process is stopping in the
dissipative range when viscosity becomes nonnegligible and the injected energy is ënally
converted to heat his model does not describe the dynamics of the eddies

converted into heat nergy conservation dictates that the energy injected at large scales
must be the energy dissipated at the small scales ne therefore deënes the energy trans
fer rate1 ε as the injected power per mass unit imensional arguments relate the energy
transfer rate to the velocity ul of an eddy of length l

εl ∼
u3
l

l


olmogorov then assumes that far away from the energy injection scales the eddies lost
their memory of their creation f dissipation is still negligible then the statistics are fully
determined by ε this is the socalled inertial range he end of the cascade is referred to
as dissipative range which is fully characterized by viscosity ν and energy injection rate
ε hen the smallest characteristic length scale η and time scale τη of the ìow are

η =
(
ν3/ε

)1/4 a

τη = (ν/ε)1/2 b

ne generally speaks of η and τη as olmogorov scales ne can further deriveidentify an
intermediate scale situated between the largest and the smallest eddies he aylor micro
scale λ and it is common to specify the turbulence level at this scale by the eynolds

1he terms energy injection rate energy transfer rate and energy dissipation rate are equal
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number based on the aylor micro scale Rλ ≈
√
15Re ne can further relate the

olmogorov scales to the biggest or integral scales of the ìow

η/Lint ∝ Re−3/4 a

τη/Tint ∝ Re−1/2 b

where Tint is the time scale of the large eddies of the ìow  consequence of the equations
 is that the olmogorov scales and the biggest scales of the ìow become more sepa
rated with increasing Re his conclusion is sometimes referred to as Kolmogorov’s idea of
scale separation n illustration of the cascade is provided in ig  ll measurements
presented within this manuscript consider particles whose diameter is a fraction of the
integral length scale and much larger than the olmogorov scale
ne should keep in mind that the ichardson cascade does not describe the dynamics

within the cascade imilarly olmogorovs derivations assume that the turbulent ìuctu
ations are locally homogeneous and isotropic stablishing such conditions in the lab is a
demanding task and outside a research facility they are almost never encountered ore
over lum et al. showed for a variety of turbulence creating apparatuses and eynolds
numbers that a signature of the large scales can still be found in the small scales 
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2.2 Euler, Lagrange & the motion of particles

There are some things in life which are
more fun doing than watching

(Jean-François Pinton)

s for many things there are at least two perspectives one can either observe at ëxed
position without participating in the ìuids motion or one can be advected by the ìow and
describe the local interaction along ones trajectory through the ìow he descriptions are
the socalled Eulerian and Lagrangian frame athematically the ulerian frame works
with spatiotemporal ëelds of either vector quantities like the ìuid velocity u(x, t) or
scalars ϕ(x, t) e.g. the temperature n contrast thereto the agrangian frame measures
a vector or scalar quantity along a trajectory Y (t)

he two perspectives yield a different view on the dynamics but in the limit of inënite
resolution or an inënite amount of trajectories through the ìow ëeld both expressions can
be converted into the other he agrangian frame is the natural choice when describing
the motion of objects advected in the ìow

ormally one choses the description which is suitable for the problem asked omplex
problems necessitate information from both sides e.g. to predict the spread of volcano ash
it is important to ask how do dust particles usually behave as well as how is the wind
today

Figure 2.3: moke visualization of the ìow around a baseball spinning at 630 rpm in a
windtunnel at 23.5m/s xtract from the album of ìuid motion  ote the turbu
lent wake which extends over several particle diameters he streamlines are bent down
wards due to the rotation of the sphere
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Particles bjects in ìows come in many shapes e focus here on homogeneous rigid
spheres which are characterized by their diameter Dpart and their density ρp he inìu
ence of their surface roughness is neglected n order to compare different experiments
one usually takes the ratio of the diameter to the biggest Dpart/Lint or smallest Dpart/η
length scale and of the particles density to that of the ìuid

β ≡ 3 ρf
2 ρp + ρf



ll data presented in this manuscript is gained with neutrally buoyant particles – i.e.
ρp = ρf β = 1

fter deëning these parameters one can ask what happens if a particle is inserted into a
ìow ig  shows a visualization of the ìow around a spinning baseball one sees how
the stream lines are bent by the particle he wake is clearly turbulent and extends over
several particle diameters oreover one observes the inìuence of the rotation on the
streamlines  derivation of the equation of motion for such a realworld example is an
extremely complex problem
n the case of small particles one can assume that the ìow is modiëed only locally

evertheless one has to take care of the noslip condition the ìuid velocity matches
the particle velocity at the surface  priori the particle can and does rotate hence
the noslip condition induces the forces and torques acting on the particle n order to
characterize the ìow on the scale of the particle one deënes a eynolds number based on
the particle

Rep =
Dpart

∣∣vslip
∣∣

ν


where the slip velocity vslip is the velocity difference between particle and surrounding
ìow
he equation of motion for a small particle with a small particle eynolds number has

been derived by axey and iley  and independently by atignol 

ρp
d
dt

vpart = ρf

[
∂

∂t
+ u ∇

]
u

∣∣∣∣
Y (t)︸ ︷︷ ︸

pressure gradient

+(ρp − ρf ) g︸ ︷︷ ︸
buoyancy force

− ρf
2

d
dt

(
vslip −

a2

10
∇2u

∣∣∣
Y (t)

)
︸ ︷︷ ︸

added mass

− 9νρf
2a2

(
vslip −

a2

6
∇2u

∣∣∣
Y (t)

)
︸ ︷︷ ︸

viscous drag

−CL ρf vslip × ωp︸ ︷︷ ︸
lift force

− 9ρf
2a

√
ν

π

∫ t

0

(t− τ)−
1
2
d
dτ

(
vslip(τ)−

a2

6
∇2u

∣∣
Y (t)

)
dτ︸ ︷︷ ︸

history force

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t is u the ìow ëeld in absence of the particle a = Dpart/2 the particle radius Y (t) the
particle position and vpart its velocity vslip = vpart(t)−u [Y (t), t] is the velocity difference
between particle and unaltered ìow u at the particle position Y (t) ∇2u

∣∣
Y (t)

stems
from the axén corrections which take into account the nonuniformity at the scale of
the particle of the ìow hey vanish in a locally uniform ìow ëeld
he different terms tell of the various forces acting on the sphere buoyancy and pressure

are the direct ìuidmechanical counterpart of ewton mechanics s the particle moves
through the ìow is has to accelerate its surrounding ìuid and thus loses momentum his
effect appears as an added mass ince the ìow is homogeneous at the scale of the particle
the classical tokes force is an adequate description of the viscous drag he wake of the
particle acts back on the particle and has some memory of its motion his is accounted
for with the history force term ince its calculation is extremely demanding this term
is very often omitted n the case of a creeping or tokes ìow Rep ≪ 1 around the
particle rotation and translation decouple and there is no backreaction from the torque
on the particle velocity n this case it is furthermore possible to reduce equation  to
the tokes drag and the added mass term   he inertiadensity of the particle is
then represented by the time scale τp in which it reacts to changes in the ìow and the so
called Stokes number becomes the sole nondimensional parameter relating the particles
inertia to the smallest time scale of the ìow

St ≡ τp
τη

=
D2

part

12 ν β

1

τη
=

1

12β

(
Dpart

η

)2



t should be stressed that this simpliëcation is limited to small particles Dpart ≲ η 

or higher Rep a rotating particle experiences a lift or agnus force his nonlinear

and invsicid contribution couples rotation and translation of the particle he term is not
part of the original axeyiley equation  t was added later by uton   e
discuss it and the rotation of larger particle in more detail at the beginning of chapter 
enée atignol further derived the torques acting on a particle 

d
dt

(Jωp) = T = − 8πρf ν a
3 (ωp − ωf/2)︸ ︷︷ ︸
drag torque

+
8

15
π a5 ρf

[
∂

∂t
+ u ∇

]
ωf︸ ︷︷ ︸

ìuid vorticity

− 8πρf ν a
3

3

∫ t

0

d (ωp − ωf/2)

dτ
exp
(
ν (t− τ)

a2

)
erf

√
ν (t− τ)

a2
dτ︸ ︷︷ ︸

history torque 

− 8πρf a
4

3

√
ν

π

∫ t

0

(t− τ)−
1
2
d (ωp − ωf/2)

dτ
dτ︸ ︷︷ ︸

history torque 



t is ωp and ωf the angular velocity of the particle and the ìuid i.e. the vorticity J is
the inertia tensor of the spherical particle he particles angular momentum is resisted
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by drag torque and the two history terms and it is driven by the angular acceleration of
the underlying ìow he torque does not have an equivalent of the added mass term in
q  n most conditions all terms except the ërst are neglected and one obtains

T = −8πρf ν a
3 (ωp − ωf/2) 

or a solid homogeneous sphere one can then compute the response time to a torque

τ rotp =
|J|

8πρf ν a3
=

a2

15ν


gain this is only meaningful for small particles

articles much larger than the olmogorov scale are not governed by these equations
nfortunately no equation exists yet for the motion of large particles oreover direct
numerical simulations of the aviertokes equation which take into account the bound
ary conditions of a moving object are computationwise extremely expensive n 
urore aso  published work on a ëxed particle in a turbulent ìow at Rλ = 20 for
comparison the turbulence in a cup of coffee has Rλ ≈ 100
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2.3 Von Kármán swirling flows

Co–rotationCounter–rotation

Figure 2.4: low structure in a von ármán ìow with co and counterrotating impellers
image adapted from  ote that the impellers are housed in a square vessel through
out this thesis

he von ármán swirling ìow is a tank with two opposing propellers that create an
axisymmetric ìow ëeld he propellers2 can be either co or counterrotating leading
to different ìow conëgurations lades on the impellers work similar to a centrifugal
pump and add a poloïdal circulation at each propeller n the counterrotating case the
ìow is highly turbulent and within a small region in the center the mean ìow is little
and the local characteristics approximate homogeneous turbulence owever at a large
scale it is known to have a large scale anisotropy   n extensive characterization
can be found in the thesis of lorent avelet  e showed  that with increas
ing propeller speed the ìow undergoes a transition through several chaotic states until it
reaches a fully developed turbulent state which is characterized by the fact that the ìuc
tuations in velocity grow linearly with the propeller speed n other words the ìow is
fully turbulent if 

(
v(fprop)

)
/fprop = const. ccording to  and as illustrated

in ig  the transition to fully developed turbulence occurs at a eynolds number
of Ret = 2πR2fprop/ν ≈ 3500 in this dissertation all experiments were performed at
Re > 4000 ence the ìow was always fully turbulent
he high turbulence level and conëned ìow in an apparatus that ëts on a lab bench

makes this apparatus highly appealing for agrangianmeasurements the von ármán ìow

2he terms pro and impeller are equally employed
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Figure 2.5: ransition to fully developed turbulence in a cylindrical von ármán ìow
ëgure adapted from  ote that the eynolds number Re is here simply based
on the propeller radius R and the propeller speed fprop Ret marks the transition to fully
developed turbulence ll measurements presented in this thesis haveRe > 4000 ence
the ìow is fully turbulent

became a standard tool for turbulence research  ome people even refer to it as the
workhorse of turbulence and also the rench washing machine3
n the other hand corotating impellers create a ìow similar to a hurricane lose to

the axis of rotation the ìow is weak followed by a strong toroidal component and an
additional poloidal circulation induced by blades on the impellers t the same propeller
speed a corotating driving creates less turbulence than counterrotating impellers but the
ìow is still highly turbulent atherine imand  has examined the properties of co
rotating von ármán ìow in detail during her thesis ithin this manuscript corotating
driving is used as a crosscheck but the focus lies on counterrotating impellers
 visualization of the ìow structures is provided in ig 

lthough most experiments reported in the literature are carried out in a cylinder the
von ármán ìow of this thesis has a container built with transparent ìat side walls hus
the cross section of the vessel is square his rectangular design enables us to perform
direct optical measurements over almost the whole ìow domain t also reduces a solid
body rotation a comparable effect can be achieved by adding baffles to a cylinder he
impellers are ëtted with straight blades such that we observe the characteristic poloidal
circulation due to the pumping ore details on the apparatus are found in section 

3his is an urban legend the rench have the same washing machines as everybody else
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2.3.1 On estimating flow parameters

hen estimating the motion based on general parameters of the ìow one has the choice
between olmogorov and large scale apparatus type arguments s explained earlier the
former evaluates ìow parameters e.g. the olmogorov scales ητη in the dissipative and
inertial range based on energy injection rate ε and viscosity ν he derivation assumes
that the ìow behaves locally homogeneous and isotropic in a statistical sense
hen investigating large particles with a size Dpart comparable to the integral length

scale Lint moving through the whole mixer these assumptions are most likely no longer
valid imilar to the thesis and articles by avelet   one can then focus on di
mensional arguments which stem from the apparatus hese are in our case the propeller
speed fprop the particle diameter Dpart and the radius of the propeller R lthough these
two choices are different in their physical background they yield similar dimensional pre
dictions hat is due to scaling relations of fully developed turbulence like ε ∝ f 3

prop and
 (v) ∝ fprop or a clear distinction we differentiate between the terms Kolmogorov-
type and dimensional arguments
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3 Setup, Technique & Measurements

ince ewton it is known that the motion of an object is determined by the forces and
torques acting on it ts interaction with the various whirls in a ìow results in a complex
translation and rotation of the latter or simplicity we limit our investigation to material
spherical particles yet we do not restrict their mass distribution
ver the last  years a set of measurement techniques has become available to extract a

particles velocity and acceleration and yielded important information on the interactions
with the ìow  or a detailed survey on these techniques the reader is referred to the
Handbook of Experimental Fluid Dynamics 
aser or coustic oppler elocimetry have direct access to the velocity nfortunately
they cannot be extended to measure the rotation and are therefore not further discussed
here article racking elocimetry  on the other hand follows the particles po
sition by means of multiple high speed cameras elocity and acceleration are then the
derivatives of the position timeseries urthermore this technique is able to track several
particles simultaneously which enables the study of multiparticle statistics like how fast
they spread
he rotational component of the particles motion can be obtained by tracking the dis

placement of dots on the spheres surface his was ërst introduced by e and oco 
unfortunately a h student had to identify all dots by hand t was recently picked up
by athieu ibert imon lein et al.  who use a  system to track ìuorescent
particles which are attached to large transparent gel spheres dding tracer particles to the
ìow allows him to directly access the ìow of the ìuid around the spheres n addition no

Figure 3.1: llustration of a trajectory containing both position and orientation
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student is forced anymore to identify the dots by hand owever identifying which trac
ers are attached to a moving spheres surface and which are moving freely is a nontrivial
task
rish and ebb  demonstrated a completely different technique with the vorticity
optical probe hey engineered transparent particles that embedded a mirror n inci
dent laser beam is then reìected with an angle depending on the particles orientation
he focal point of a spherical lens depends on the angle between optical axis and incident
beam hus an image sensor placed at the focal point can detect the angle of the incident
beam he reported particle diameter is less than 50µm which is of the order of the
olmogorov length scale η heir technique can therefore measure two components of
the ìuid vorticity
ll these techniques can trace the angular velocity however they do not have access to the
orientation of the particle ut the absolute orientation is important for problems where
there is a preferential direction—such as when there is a global rotation a temperature
gradient an imposed magnetic ëeld or a  accelerometer in a rotating instrumented
particles he latter case is presented in chapter 
s illustrated in ig  we therefore developed a novel measurement technique which

can follow the full six degrees of freedom – i.e. position and absolute orientation – of a
sphere advected by the ìow he angular and linear velocity and acceleration are then
the derivatives thereof
he position is carried out with standard particle tracking techniques and two highspeed
video cameras racking the absolute orientation of the particle is muchmore challenging
both because of the speciëcs of angular variables and because of the speciëc algorithmic
requirements n contrast to the previous techniques we simply paint the particle with a
suitable layout and then retrieve its orientation by a pattern recognition algorithm or
algorithmic efficiency and robustness this is not done step by step but for the entire
trajectory using a global optimization scheme

his chapter is organized as follows

> e present the experimental setup section 

> ext the tracking of several particles is explained section 

> he orientation tracking is presented in three steps after establishing important
features of the orientation algebra in  section  the actual algorithm is
explained section  and tested section 

>  summary of the data runs is given at the end of this chapter

ome parts follow tightly our article published in eview of cientiëc nstruments 
owever some parts contain more technical details now and information on the tracking
of several particles is added or readability some calculations are moved to the annexes
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Figure 3.2: ketch of the experimental setup a) sketch of the camera arrangement b) ërst
version of the von ármán mixer c) upgraded stainless steel version the cooling circuit
is now integrated into the metal walls d) a textured particle at different orientations

3.1 Experimental Setup

3.1.1 Von Kármán flow

 turbulent ìow is generated in the gap between two either co or counterrotating im
pellers of radiusR = 9.5 cm ∼= 10 cm ëtted with straight blades 1 cm in height he ìow
domain in between the impeller has characteristic length H = 2R = 20 cm n order to
be able to perform direct optical measurements the container is build with ìat lexiglas
olymethyl methacrylate side walls so that the cross section of the vessel is square
he total volume is 11.4 l  small opening at the top enables us to conveniently add or
remove particles from the container ore details on von ármán swirling ìow can be
found in section  and a sketch of the setup is provided in ig  ince parts of the
apparatus served already in the thesis of icolas ordant  and his successor oann
asteuil  it is still called KLAC short for von Kármán Lagrangian Acoustics
he working ìuid – either deionized water or a ënely tuned waterglycerol mixture –

is chosen such that its density matches the density of the particle  cryothermostat con
tinuously pumps water of wellcontrolled temperature through a cooling circuit thereby
controlling the ìuids temperature  fast degassing can be achieved by heating the ìuid
to 65 ◦ while the motors and the ëlter system are running ur ëlter system consists
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simply of a centrifugal pump which pumps ìuid from a bubble trap through a ëlter back
into the apparatus two high points of the vessel are connected back to the bubble trap
he plumbing consist mainly of standard garden hose from the  store and ardena
quick connectors valves etc all made of plastic
t should be noted that the apparatus was upgraded the ërst version  was built

mainly with brass parts and the propellers were driven bymotors mounted to a 1 : 2.5
reductor owever this setup is limited to noncorrosive ìuids herefore all parts are
now made of stainless steel he propellers are now directly driven by brushless 
motors eroyomer each controlled by a variator e house both in a control cabinet
he improved apparatus is easier to use and able to work with corrosive working ìuids
e.g. a potassium salt  water mixture which is less viscous than the waterglycerol mixture

 second apparatus is brieìy used in this thesis the Lagrangian ExplorationModule LEM
here twelve independently driven impellers produce turbulence in a closed icosahedral
water tank of 140 l and it was shown that this apparatus creates homogeneous isotropic
turbulence with little mean ìow urther details are found in section  and in  

e estimate the energy injection rate ε by measuring the active power of the delivered
motors in water and in air the active power is a direct output of the variators ig 
shows the energy injection rate for co and counterrotating impellers or comparison
we further provide ε in the  ere ε was obtained from  measurements 
in the center of the apparatus and independently from the active power injected by the
twelve motors he two energy injection rates differ by a factor of 20 imilar discrepancy
between the two methods of determining ε has been noted in the apparatus in öttin
gen  too
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Figure 3.3: nergy injection rate ε for the  ε is based on the energy consumption
of the motors n the agrangian xploration odule  ε was obtained from
 measurements in the center of the apparatus and independently from the total energy
injected by the  motors imilar discrepancy between the two methods of determining
ε has been noted in the apparatus in öttingen  too

3.1.2 Particles

wo types of particles have been used

PolyAmid spheres olid white olymid  spheres with the following diameters
D = 6mm, 10mm, 15mm, 18mm, and 24mm accuracy 0.01mm arteau 
emarié rance were used heir density is ρp = 1.14 g. cm−3 and can be
matched by addition of glycerol to water

Instrumented particles he instrumented particle which is explained in detail in chap
ter  consists of a 1capsule embarking a circuit which continuously transmits
the signal of a  accelerometer to an exterior receiver he capsules color is light
gray its total density is close to that of water and can be adjusted by adding weight
inside

n both cases the density mismatch measured from sedimentation speeds is found to be
of the order of ∆ρ /ρ = 10−4 n order to track the orientation the particle is textured
black and white by hand using blackink permanent marker exture as well as suitable

1olyetheretherketone
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pens and nail polish2 have been identiëed by trial and error methods est results were
obtained with dding ΢ industry permanent marker but in general inks which are
not watersoluble perform well ig d) shows a textured  sphere at four different
views he particles are left unpainted white if we just aimed onmeasuring the translation

3.1.3 Image acquisition & processing

he motion is tracked by two highspeed video cameras hantom  ision esearch
which record synchronously two views at approximately  degree he ìow is illumi
nated by high power s and sequences of –bit gray scale images are recorded at a
sufficiently high frame rate see table  page  t should be stressed that a short
exposure time is crucial for observing a sharp round shape in the movies oth cameras
and illumination are mounted to a custommade structure made of aluminum proëles
oschexroth and ewport
oth cameras observe the measurement region with a resolution of approximately 650×
650 pixels covering a volume of 15 × 15 × 15 [cm] corresponding to 4.2 pixel/mm
ence the particle diameter ranges 25 to 110 pixels
n our conëguration the camera can store on the order of 15 000 frames in onboard

memory thus limiting the duration of continuous tracks he movies are downloaded
to a  waiting to be processed he processing is done on a gaming  with a state
of the art graphics card he code is written in atlab using the image and signal pro
cessing toolboxes as well as the sychtoolbox extension   which provide pen
wrappers for atlab ur image processing is mostly based on the documentation of the
atlabs image processing toolbox the book Morphological image analysis: principles and
applications  nspiration was further found on eter ovesis web site andatlab
entral 

2ail polish was abandoned because it alters the surface roughness of the particle
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3.2 Position Tracking

lthough the identiëcation of a large sphere from the camera images causes no particular
conceptual difficulty the fact that the sphere is textured raises some practical issues 
simple thresholding returns only either the white or the black part of the particle e
ìections from the impellers continuously change the background and small impurities in
the ìow and possible bubbles add sharp gradient noise to the images urthermore the
illumination of the ìow is not perfectly uniform and thus shadows as well as reìections
occur s the experiment evolved over the time of this thesis light conditions working
ìuid and unfortunately also the scratches on the box changed ence the arrangement
of light camera and background as well as the image processing were carefully adjusted
for each experiment n either case we compute the background view as the average of an
equally distributed subset of its images for each movie of each camera
hree different conëgurations were explored within the scope of this thesis3

> several unpainted white particles with different diameters in front of a dark back
ground

> one painted particle in front of a light background

> several painted particles in front of a light background all particles having a clearly
different diameter associated to a speciëc unique texture

Unpainted Particles oth cameras are equipped with a 90mmmacro objective am
ron and placed at 1.5m distance from the center of the vessel ence the diameter of a
particles projection varies by less than 10 inside the apparatus e therefore estimate
the areaApart covered by particles beforehand or each frame we then subtract the back
ground and threshold such that at least Apart pixels are white or round unconnected
blobs we directly save their location (x, y) on the image in pixels plus their diameter
2 r the deviation from the spherical shape serves as an error estimator onnected blobs
are split using the maxima of the distance transform  of the blob  sketch of the
blobsplitting is provided in ig 

One textured particle or one painted particle we ërst subtract the background and
perform a Difference of Gaussians blob detection he threshold is adjusted by hand for
each camera and light arrangement e then identify blobs with a round shape and a
diameter close to that of the particle hadows bubbles and reìections might be found
during blob detection because of their sharp separation from the background but they
are of uniform texture and hence characterized by a small value of the variance of light
intensity across the blob he blob with highest variance and closest resemblance to a
sphere is considered to be the particle he precise position of the particle is reëned using
aCanny edge detection or standard deviation ëlter in a tight region around the blob gain

3he temporal order is slightly different we ërst worked on one painted then several unpainted and
ënally on multiple painted particles
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Figure 3.4: ketch of the lobsplitting technique verlapping particles form a blob
he distance transform then returns for each white pixel the euclidian distance to the
closest black pixel leaning can be achieved by rejecting all pixels with a distance smaller
than the smallest expected particle radius he local maxima of the distance transform are
possible particle positions with their associated radii often more maxima than particles
are detected and one has to remove artifacts tarting from the largest radius one itera
tively excludes wrong detections which are within a bigger particle solid red circles ne
obtains position (x, y) and radius r of the remaining real particles dotted and dashed
circle

for each time step we record the position (x, y) of the particle on the image in pixels
plus its diameter 2 r the deviation from the spherical shape serves as an error estimator
t is further necessary to store a precise crop of the particle image in order to extract its
orientation

Several textured particles he technique for several painted particles combines ideas
from the former two cases iven that the texture strongly deviates from the background
a sliding standard deviation ëlter returns regions of high contrast corresponding to the
edges of the particle and its texture  hysteresis thresholding based on an estimate of
the area covered with particles yields the outlines of the spheres atlab then detects and
ëlls closed outlines f necessary the resulting blob is split osition diameter images
and error estimates are stored rom ig  it becomes clear that if particles overlap the
uncertainty in the orientation measurement increases signiëcantly e therefore skip
these cases and use only the image of the second camera which is typically exploitable
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Figure 3.5: verlapping particles the position is extractable but the uncertainty in orien
tation increases signiëcantly f particles overlap we restrict the orientation measurement
to the view of the other camera

Stereo-matching o obtain the particle position in  a standard stereomatching
technique as sketched in ig  is employed e model the cameras as pinhole cameras
with an additional radial distortion as proposed by sai  he projection of a particle
on the sensor of the cameras is projected back into  where it forms a lineofsight he
particles position in  is the point which has minimal distance to both linesofsight
or setups with two cameras this point can be computed analytically  he calibration
of the camera contains the position of the camera plus its rotation with respect to the lab
coordinate system which is needed later for the orientation processing

Top Camera

Front Camera

Figure 3.6: tereomatching he particle position is the point which has minimal dis
tance to both linesofsight

Track assembly he track assembly is straight forward if exactly one particle is placed
into the ìow he algorithm may temporarily loose the particle for short times because
of bad light reìection blurs  this is compensated by the large oversampling and gaps
of less than  frames are interpolated to obtain longer tracks utliers are identiëed using
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a leastsquare spline and replaced by an interpolation  careful setup and cameras with
short exposure time reduce signiëcantly the probability of losing particles
f multiple particles are in the ìow we still know the possible physical dimensions ex

actly he cameras are placed such that the particles projected diameters cover well dis
tinct ranges his enables us to convert their observed diameter 2r in pixels to their real
particle diameterDpart in meter articles of the same diameter are then stereomatched
he tracking building is then done in two steps irst particles of the identical size are

connected using a earesteighbor track connection which allows short interpolations
he tracks break easily when trajectories cross in any of the two cameras due to the large
size of the particles or that reason the reconnection algorithm suggested by aitao
u  is applied t considers both position and velocity at beginning and end of the
tracks thereby ensuring a little number misconnections n our case the acceleration of the
particle is neglected that corresponds towa = 0 in  e further modiëed the search
area from a cylinder to a cone the maximum distance between two tracks separated by∆t
is dmax(∆t) = d0+

∆t
∆tmax

dmax(∆t) = const. was the choice in  his modiëcation
was added by aitao u cf page  in  to take into account that the uncertainty
of the extrapolation increases with time n a last step we identify and eliminate outliers
with a leastsquare spline
s a result we obtain less but signiëcantly longer tracks n most cases a particle track now
ends when the particle leaves the observation volume
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3.3 Orientation Tracking

3.3.1 Math

he parametrization of an angular position in  space causes a number of difficulties
which are brieìy addressed in this section see e.g.     for a more complete
presentation ne of them is caused by the degeneracy of the axes of rotation for certain
orientations the gimbal lock problem nother is the choice of a suitable measure of
distance between two orientations n further issue is that mathematically two angular
velocities exist hereas ωP describes the rotation of the particle with respect to the ëxed
lab coordinate system ωL ëxes the particle and rotates the lab system his is somewhat
similar to quantum mechanics where one has the choice between the eisenberg and the
chrödinger picture to incorporate a dependency on time e found no particular use for
ωL in our analysis and name it here just for completeness n the later chapters which
analyze and present the results we focus only on the angular velocity which rotates the
particle ωP herefore unless otherwise stated the superscript P is omitted and we always
rotate the particle
t should be noted that throughout this manuscript the units of angle degree [◦] radiant

[rad] and revolution are equally employed t is left to the reader to convert the units if
needed e try to specify the propeller frequency in revolution/s = z and measured
angles in degree

3.3.1.1 Describing Orientations

s stated by the uler rotation theorem  parameters are needed to describe any rotation
in  e use here uler angles with the aitryan convention as shown in ig 
n the transformation from ab to article coordinate system we ërst apply a rotation
around the z−axis of angle θz followed by a rotation around the intermediate y−axis of
angle θy and last a rotation of angle θx around the new x−axis he rotations work on
the object using a right handed coordinate system and right handed direction of rotation
e will denote an orientation triplet by an underscore e.g. θ in order to distinguish them
from vectors which are typeset in bold font e.g. ω
he orientation of the object is fully described by an orthogonal 3 × 3 matrix R ob

tained from the composition of the  elementary rotations4

R(θx, θy, θz) = Rx(θx)Ry(θy)Rz(θz) = cθy cθz −cθy sθz sθy
sθx sθy cθz + cθx sθz −sθx sθy sθz + cθx cθz −sθx cθy
−cθx sθy cθz + sθx sθz cθx sθy sθz + sθx cθz cθx cθy

 

with c  = cos (  ) and s  = sin (  ) onsequently from any rotation matrix the  uler

4n classical mechanics it is common to turn the coordinate system instead of the object which changes
the sign of each angle i.e. R′ = R(−θx,−θy,−θz)
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Figure 3.7: aitryan rotation sequence describing the spheres orientation he object
is ërst rotated around the z−axis with angle θz followed by a rotation around the interme
diate y−axis of angle θy and last a rotation of angle θx around the new x−axis e work
with a right handed coordinate system and right handed rotations turning the object

angles can be extracted using

θ = {θx, θy, θz} =

atan(−R12,R11)
asin(R13)

atan(−R23,R33)

 , 

enforcing θx, θz ∈ [0, 2π[ and θy ∈ [−π/2, π/2] t should be pointed out that multiples
of 2π can be added to each angle without changing the resultingmatrix n other words θy
samples only half of the real numbers R ut according to q  it is θy ∈ R without
any restrictions herefore the choice of q  cannot be unique and there is indeed a
second triplet with R (θx + π, sign(θy) π − θy, θz + π) = R (θx, θy, θz) n important
practical consequence is that even for small changes in orientation the difference between
two uler angle triplets θ1 and θ2 has formally four possible results he unwrapping of
a time series of uler angles is explained in appendix 
he curvilinear coordinate θ is related to the angular velocity ωP in the particle frame
by

ωP
(
θ(t)

)
=

1 0 sθy
0 cθx −sθx cθy
0 sθx cθx cθy

 
d
dt

θx
θy
θz


= H(θx, θy) 

d
dt

θx
θy
θz

 

or cos (θy) ≈ 0 the determinant of the matrix H det(H) vanishes and its inverse
is not deëned n other words ënite body rotations need inënite change in the uler
angles his singularity is called a gimbal lock and is a wellknown problem in robotics
and aerospace engineering eometrically the second rotation turns the ërst axis parallel
to the third axis of rotation and the rotation loses two degrees of freedom an illustration
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and some more details can be found in appendix  nfortunately gimbal locks cannot
be avoided by a wise choice of representation

n order to meaningful compare orientations one needs to deëne a distance between two
arbitrary orientations which is immune to this type of singularity  natural distance
between two arbitrary orientation matrixes A and B is

r
(
(A−B) (A−B)T

)
= 6− 2r

(
ABT

)
= 4
(
1− cos (ϕ)

) 

using AAT = BBT = 1 and that ABT is a rotation matrix with the eigenvalues
1, eiϕ, e−iϕ he distance is thus a growing function of ϕ e measure here the distance
between two rotation matrices by

d (A,B) ≡ acos
(
1

2

[
r
(
ABT

)
− 1
])



ecause it works directly on the orientation matrices it is neither sensitive to gimbal locks
nor to the choice of the representation and thus an important tool in our algorithm t
should be noted that d (A,B) is the angle of the rotation which turned the orientation
from A to B

n the search of the particles orientation one last inconvenience of uler angles is that
they are not locally orthogonal in the sense that

d
(
{θx, θy, θz} , {θx +∆θx, θy +∆θy, θz +∆θz}

)2
≈ ∆θ2x +∆θ2y +∆θ2z + 2∆θx ∆θz  sin (θy)



for a small variation∆ = {∆θx,∆θy,∆θz} s a consequence a uniform spacing of the
uler angles in θx, θy, θz does not sample the space of possible orientations in an optimal
way n particular near gimbal locks the sampling rate would be higher at no higher
accuracy he socalled attman angles 

{θ+, θ, θ−} ≡ {θx + θz, θy, θx − θz} 

fulëll local orthogonality since they verify

d
(
{θ+, θ, θ−} , {θ+ +∆θ+, θ +∆θ, θ− +∆θ−}

)2
≈ ∆θ2+

1 + sin θ
2

+ ∆θ2 +∆θ2−
1− sin θ

2



s they are locally orthogonal it is sufficient for sampling purposes to keep a constant
stepping

∆θ = ∆θ+

√
1 + sin θ

2
= ∆θ−

√
1− sin θ

2
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fter a constant sampling of N values of θ with ∆att ≡ ∆θ = π/(N − 1) the step
ping in θ+ and θ− can be computed with ∆θ+(θ) = ∆att/sin

(
θ
2
+ π

2

)
and ∆θ−(θ) =

∆att/sin
(
π
2
− θ

2

)
 t should be stressed that θ− ∈ [0, 2π[ whereas θ+ ∈ [0, 4π[ he

attman angles allow us to sample the set of orientations in an optimal way in terms of
achieving the best resolution from the point of view of the metric given by q  and
also from an algorithmic point of view
inally in several instances it is convenient to describe a rotation by the direction of an
axis n̂ about which the system is rotated by an amount ϕ he corresponding rotation
matrix can be computed using the odrigues ormula  

R (n̂, ϕ) =

 cϕ+ n2
xA −nzsϕ+ nxnyA nysϕ+ nxnzA

nzsϕ+ nxnyA cϕ+ n2
yA −nxsϕ+ nynzA

−nysϕ+ nxnzA nxsϕ+ nynzA cϕ+ n2
zA

 

with A = (1− cosϕ) q  also allows us to extract the axis n̂  and the angle ϕ
from any arbitrary rotation matrix s a result changing the coordinate system or chang
ing the representation of rotation can be done by expressing the orientation in its matrix
form applying the transformation which changes the coordinate system and extracting
the desired representation

3.3.1.2 Angular Velocity & Acceleration

ngular velocity and acceleration are often obtained by direct differentiation of a time
series of uler angles e.g. using q  owever it is possible to obtain the angular
velocity in the particle frame directly from the matrices his technique is not sensitive to
gimbal locks because of the uniqueness of the orientation matrices
et eP,k

x,y,z be the particle coordinate system at time step k whereas the ëxed lab coor
dinate system is eL

x,y,z or two timesteps k and k + m we know the corresponding
orientation matrices which rotate the particle

R(θk) : eL
x,y,z

R(θk)−−−→ eP,k
x,y,z

R(θk+m) : eL
x,y,z

R(θk+m)−−−−−→ eP,k+m
x,y,z

T : eP,k
x,y,z

R(θk+m) R(θk)
T

−−−−−−−−−→ eP,k+m
x,y,z

in which the matrix T is the change in orientation in other words the matrix represen
tation of the discrete angular velocity for a given time difference he change is with
respect to the particle coordinate system at time k eP,k

x,y,z T expressed in the axisangle
convention see q  returns a direction vector n̂  of length unity and an angle∆ϕ
meaning that between times k and k +m the particles has rotated an angle ∆ϕ around
the vector n̂  he time difference ∆t between the steps is a function of m herefore
an estimator of angular velocity is

ωP
(
t(k)

)
=

∆ϕ

∆t(m)

(
nx  eP,k

x + ny  eP,k
y + nz  eP,k

z

)

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veraging n̂∆ϕ
∆t

over several separations m returns the angular velocity in the particle
frame without a prior unwrapping nor problems near gimbal locks he angular velocity
which ëxes the particle and rotates the lab coordinate system is deëned as

ωL
(
t(k)

)
= R (θk)

T ωP
(
t(k)

)


he angular acceleration in either particle or lab frame is deëned as

αL/P =
d
dt

ωL/P 

n practice it is obtained from a convolution of the angular velocity time series with the
derivative of a gaussian kernel his technique has proved to be efficient in removing
noise  e remind the reader here that we found no particular use for ωL and αL
in the analysis the superscript P is omitted and we work only with the angular variable
rotating the object
t should be pointed out that this algorithm can be applied to a set of particles attached

to a rigid body which are tracked using standard particle tracking algorithms f one
records the positions in space of  or more points P1 . . .PN at time t and t+∆t their
motion can be split up into a translation of their center of mass plus a rotation nce the
translation part is subtracted one needs to determine the rotation matrix Rkabsch which
turns the points P1 . . .PN around their center of mass easurement uncertainties in the
position of the particles render the system of equations degenerate i.e. no exact solution
can be found urthermore for more than  points this deënes an overdetermined system
of equations
owever abschs   algorithm can efficiently compute an optimal solution5
Rkabsch is then the matrix representation of the change in orientation and the angular
velocity ωP in the particle reference frame at time t can be extracted as done here t
should be pointed out that one does not gain access to neither the angular velocity in the
lab reference frame ωL nor to the absolute orientation θ

5 brief sketch of his algorithm is given in annex  abschs algorithm is needed in our technique
which determines the texture of a painted particle from a set of images
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3.3.2 Tracking

he algorithm used to process the camera images and obtain a time series of orientations
and angular velocities can be split into three parts

> y comparison of the spheres picture with synthetic images the algorithm identiëes
a set of possible orientations

> rom the set of possible candidates at successive instants a Flow algorithm identiëes
a likely time series

>  posttreatment adjusts remaining ambiguities

hese steps are described in details in this section

Texturing a sphere n the choice of the particle texture several features have to be
considered

>  single view should correspond to a unique orientation

> llumination inhomogeneities may cause regions to look similar in the camera im
ages ptically resembling views should correspond to clearly distinct orientations

> he cameras are grayscale so the texture has to be of high lightness variation such
that the gray scale image of the particle contains exactly two distinct colors black
and white ainting with black ink on a whitish particle is the convenient choice

> or imageprocessing reasons the number of black and white pixel should be ap
proximately the same in every possible view

> he inkpaint has to be resistant to the working ìuid at temperatures up to 60 ◦
as well as to continuous impacts with the wall and the propellers he surface
roughness should be left unaltered

3.3.2.1 Candidate Finding

Synthetic images.  ërst step is to obtain a  projection S(θ) of a sphere with
known texture and size at an arbitrary orientation θ his rendering is achieved using
pen via the sychtoolbox extensions for atlab – for a disk image of about  pix
els the algorithm can render several thousand orientations per second see ig  for
an illustration
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Figure 3.8: omputing the texture from a set of images wo images are ërst projected
onto a half sphere he colored dots depict features each feature has a unique namecolor
hen the rotation matrix which turn the common features from the upper view to the
lower view is computed and applied to the lower halfsphere ne can thus partially see
behind the upper view

Obtaining the texture for a set of images ne can paint the particle according
to a pattern already known to atlab however the uncertainty in the texture is then
dominated by the artistic skills of the painter or this reason we developed a procedure
to compute the texture of a sphere from a set of images
e ërst paint the sphere and then add small dots with a different pen hese dots are

socalled features and are removed before the actual experiment e then take pictures of
the particle at arbitrary orientations with a  camera and a high quality macro objective
he images are editedcleaned in hotohop setting the background the two colors of the
texture and the dotsfeatures to known distinct colors
ince every image is the  projection of textured halfsphere we can revert the pro

jection ne thus obtains a set of colored  vectors f each feature has a unique name
we can identify the rotation which turns the view in image A to a second view B and
thus look partially behind the sphere6 ypically  images have to be used to obtain a
well resolved texture  sketch of the procedure is provided in ig  he technique to
assign unique feature names with user interaction is explained in the appendix
he texture of each particle has to be known before inserting it into the apparatus

because its texture continuously degrades during the experiment mainly due to impacts
with the propellers t lasts for several days and it is much faster to paint a new fresh
texture than wasting ones time on repairing a wornout texture

Texture extraction. nce the particle position and diameter are known one extracts
a disk subset of the image centered on the particle G n a ërst step the contrast is

6his is like a superposition of rotated hedgehogs with colored spikes
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adjusted such that the global histogram of intensity contains at least b percent of black
and w percent of white pixels the algorithm only takes into account the disk  particle
region in G he adjustable parameters b w are ëxed to b = w ∼ 30 which is the
minimum amount of blackwhite pixel in an arbitrary orientation n a second step the
image is thresholded by using tsus method  for the global histogram o reëne this
ërst rough thresholding we developed and tested successfully

> hresholding in smaller moving regions

> hysteresis thresholding and

> identifying the edges between black and white regions with either a anny or stan
dard deviation ëlter ithin each enclosed region the color is a priori uniform and
therefore set to its medium value

ither way the thresholded image I is adjusted such that pixels outside the particle  disk
are set to 0 whereas black is −1 and white +1 hese steps are shown in ig  gain
wellsetup illumination short exposure time and high quality ink for texture reduce the
complexity of the image processing steps signiëcantly

Raw Image, G Contrast adjusted Thresholded, I
Synthetic
S(θ)={θx|θy|θz}

Binary 
Ressemblance

Figure 3.9: exture extraction and comparison with a synthetic image he resemblance
between the image I and the synthetic projectionS at angle θ is estimated using q 

Comparison, possible orientations. he image I with diameter 2 r obtained as
above is ready for comparison with synthetic images he resemblance to a rendered image
S(θ) with orientation θ is estimated by

T (I, θ) =
1

2
+

1

2πr2

∑
i

∑
j

Ii,j Si,j(θ) , 

which is ratio of the number of correct pixels to the total number of pixels
t this point we note that the computational cost of directly comparing an image
I to synthetic ones S(θ) covering the set of possible orientation {θ} scales roughly as(
1/∆att

)3 where ∆att is the grid spacing in the orientation space here is also the ad
ditional difficulty that the particle apparent diameter changes slightly as the sphere moves
in the ìows or efficiency and physical correctness we use the following strategy instead
of ënding at any time step the best images we identify a set of possible candidates for all
time steps and then extract globally the time series of orientations
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Figure 3.10: ynthetic  projections of the particle for a range of orientations using
pen  camera image of themoving particle is shown in the upper left corner contrast
enhanced note the driving disks on either side

irst we render images S({θcoarse}) covering all possible orientations with a coarse grid
– in practice ∆att ≈ 12◦ attman angles are locally orthogonal and thus more efficient
in creating such grids he size of the rendered images is ëxed to approximately one half
of the particles real diameter ince their size does not change these images are kept in
the computer memory and do not need to be recomputed for every new image
he thresholded particle image I is then resized to the size of the renderings Icoarse

and compared to all synthetic images S ({θcoarse}) as shown in ig  using q 
ll angles θ satisfying T (Icoarse, θ) > max

(
T (Icoarse, {θcoarse})

)
− δcoarse are considered to

be possible orientations ere δcoarse is an arbitrary thresholding value with inspection
showing that a value equal to  gives good results
xperience shows that the identiëed possible orientations usually cover several broad

classes hey are thus separated into groups of images whose orientations differ by less
than a rough threshold approximately 30 − 45◦ or each group synthetic images are
further added using a ëne grid spacing ∆ëne = 3◦ at this point bad images may cause
the code to runaway they are dropped and the code advances to the next time step he
possible orientations are then rendered in real size and compared using q  to the
image I or each group the code returns the ënal best guess i.e. the orientation with the
maximum resemblance thus drawing a list of candidates see ig  for an example of
a particle with its corresponding candidates
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Figure 3.11: article camera image left and corresponding candidates after analysis of
the possible orientations

3.3.2.2 Track Assembly

fter identifying the candidates for each time step the most likely orientation for each
time step has to be determined owever the candidate with the highest count of correct
pixels is not necessarily the best choice lthough counterintuitive the direct use of two
cameras seeing the particle at different angles does not simplify the problem because in
the case of a bad image one camera falsiëes the choice of the candidates found by the
other camera oreover gimbal locks prevent the use of a predictorcorrector scheme for
the prediction of the orientation owever the norm of angular velocity is assumed to
be smooth and we search the time series which globally minimizes the sum

∑
t ξ(t) along

the time series of the so called direct neighbor distance function

ξ(t) ≡
∣∣ω(θ(t), θ(t+∆t)

)∣∣ = d
(
θ(t), θ(t+∆t)

)
∆t

. 

 direct neighbor is the next valid time step at t+∆t he distance between two orienta
tions does not depend on the representation ensuring the robustness of the algorithm even
at gimbal locks inimizing

∑
t ξ(t) is only meaningful for small changes in orientation

between two time steps another requirement for high oversampling rates
low algorithms are highly efficient in ënding a global optimum for a discrete set of

candidates he following is done for each camera without considering the extra informa
tion from the second camera n a ërst step all candidates with a resemblance T < squality
are removed – in practice squality = 0.5 hen a directed graph is built which connects all
candidates at time step t with all their direct neighbors at the nonempty time step t+∆t
he cost function is chosen such that it takes into account both the change in orientation
and the quality of the matching

C
(
{θA, TA}, {θB, TB}

)
= d
(
θA, θB

) 2− TA − TB

∆t
, 

with {θA, TA} a candidate at time t and {θB, TB} a directly neighboring candidate at
t+∆t
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Figure 3.12: ketch of a graph connecting the possible candidates using the cost function
C cf q  or each time step t we have b(t) candidates with an orientation θtb and
a resemblance T t

b  n the time series t = 1 . . . N  the candidates are labeled k ∈ 1 . . . K
he directed graph C connects all candidates at t to all their next valid time step t+∆t
gaps are skipped as indicated for time step Č

 ijkstra path ënding algorithm returns the sequence of candidates having a global
minimum of the total cost i.e. the global minimum of change of orientation weighted
by the image quality cf ig  n most cases this algorithm returns directly the
time series of absolute orientation evertheless bad images introduce false candidates
forcing the path ënding algorithm to take a different nonphysical path hese points
manifest as spikes in the direct neighbor distance function ξ(t) fter a spike there is no
guarantee that the path is still physical herefore we segment the timeseries based on
the spikes he second view from the second camera treated with the same algorithm
contains the information to correct such wrong segments he rotation matrix which
transforms the orientations seen by one camera into the coordinate system of the other
one is known from the camera calibration herefore both views are expressed in an
intermediate common coordinate system where the segments with d

(
θcam, θcam

)
≳ 30◦

can be corrected

he algorithm presented so far assumes an orthographic view his condition holds only
true if the particle center is on the optical axis of the camera or in the case one uses tele
centric lenses n the present experiments we do not and the perspective effect alters the
measured orientation note that the parallax displacement corresponds to a change in the
 projection and hence to a rotation he distortion induced by the perspective is
characterized by the position of the particle center in the camera image X  and the focal
length f  ommon camera objectives allow only small angles γpersp ≡ atan (∥X∥ /f) ≲
15◦ s a consequence we assume that the shape of the particle does not change and
we introduce an orientation matrix Rpersp taking advantage of the odrigues formula
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Figure 3.13: xample of particle tracks and orientations the green and blue arrows mark
orthouth and astest directions respectively

q 

Rpersp
(
X = (x, y), f

)
= R

(
(−y, x, 0)√
x2 + y2

, atan
(
∥X∥
f

))


such that the measured orientation is related to the absolute orientation θabs by
R ∼= Rpersp R

(
θabs
)
 he perspective distortion can then be removed from the orientation

time series
inally after correcting for perspective distortion a combined timeseries of orientation
can be built using the information from both views if they are expressed in the same
coordinate system uler angles are not locally orthogonal hence we use the weighted
mean of the orientation expressed in the axisangle representation he variance within a
moving window of the direct neighbor distance function ξ(t) proves to be a good error
estimator of the noise since for short times the particle is assumed to rotate smoothly 
sample orientation track is shown in the upper panel of ig  and in  in ig 

3.3.3 Robustness

he accuracy and robustness of our technique dependsmainly on the quality of the particle
image and the texture lthough the resolution of the texture in the computer depends
mostly on the carefulness of the researcher the textures of the particle degrades due to
the constant contact with the working ìuid and impacts with the propellers or walls
 well chosen7 ink and adaptive thresholding enable us to perform several experiments

7e tested almost all permanent markers available at adiopares and various office suppliers
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Figure 3.14:  sample orientation track it is θx = ◦ θy = + θz = □ the bottom plot
shows the distance in degrees between the independent orientation measurements from
the  cameras

with the same particle t is further advantageous to perform the experiments as fast as
possible which avoidsreduces the dissolving of the ink by the ìuid omputer cameras
and gigabit ethernet network are tweaked to support jumbo frames thereby decreasing the
download time by a factor of 2 dditionally the computer hosts  erabytes of storage
to continuously record over a few days
roblems with the images are mainly caused by reìections shadows and objects such

as bubbles or dirt particles between the particle and the camera he setup light con
ditions and particle texture must be ërst tuned in order to optimize these parameters –
by trial and error methods t is further possible to run the ëlter system of the apparatus
while the cameras are downloading
or the orientation algorithm per se we have used a series of synthetic images of known

orientation e found that the measurement error is ◦ which is smaller than the size
of the ëne grid ∆ëne = 3◦ used in the image processing cf paragraph  
ëner grid would improve the resolution for ideal images but not for real images which
as stated above always contain some amount of distortions or impurities n addition
the fast dynamics of the particle and high frame rate ensure that wrong detection do not
persist for longer than a few frames s a result most defects are detected and skipped
or interpolated or handled as part of postprocessing wrong orientations correspond to
jumps in the direct neighbor distance function
e illustrate the accuracy of the detection on two examples he ërst one concerns

the agreement between the orientation as estimated from each camera measurement n

50



0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

d(θcam1,θcam2)  [deg]

PD
F

 

 
Perspective removed
Raw data

Figure 3.15: robability density function  of the distance d between the orienta
tions measured from cameras  and  with • and without × correction for perspective
distortion

the upper panel of ig  the combined three angles with respect to the lab coordinate
system are plotted he lower panel shows the distance in degrees of angle between
the two estimations d (θcam, θcam) he probability density function  of these
distances computed with and without processing for perspective corrections are shown in
ig  orrecting the systematic error induced by the perspective distortion reduces
the mean value and width of the distribution he remaining error is of random nature
ombining the two independent views as described early leads to a weighted error of
approximately 3◦

3.3.4 Efficiency & further development

n an offtheshelf gaming  processing a movie set containing two movies of 14 000
frames each takes 2−3 hours to extract the position and 2−5 hours to ënd the orientation
candidates he ërst step is speed up by either the arallel computing toolbox or by
launching multiple instances of atlab he later step is harder to optimize only one
process can access the renderer due to limitations in the pen wrappers for atlab
and moreover this process blocks one screen of the 8 hus the other computers in the
office are used at night for helping imewise the bottleneck in this step is the transfer of
rendered images from the graphics card back to atlab his step could be avoided if one
instead transfers the thresholded particle image I into the graphics card and then uses the
heavy parallel computing capabilities of modern graphic cards to perform the comparison
deëned by q  he  or pen framework seems suitable for such a task

8ctually it looks like a psychedelic screen saver y the way it doesnt block the screen on a ac
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3.4 Data runs
he results are analyzed in detail in chapter  and  able  lists the performed tracking
experiments

run propeller speed article sizes frame rate density date
[z] [mm] [ fps] [ g/cm]



2
25

500
1.0 ug 

3 800


 3 18 600 1.14 un 


pa
in
t 1.5

6, 10, 15, 18, 24
500

1.14 eb 2.5 850
3.5 10, 15, 18, 24 1000


m
ul
t

0.5

2× 6,
2× 10,
15,
18,
24

120

1.14 an 

1 500
2 800
3 1000
4 1500
4.5 1800
2 700
3 900

Table 3.1: ata runs the particles were always neutrally buoyant  denotes the instru
mented particle i.e. we ëlmed and simultaneously recorded its accelerometer signal he
PAmult runs contain only the translation f the density is 1 g/cm water was used as
working ìuid whereas 1.14 g/cm needed to be density matched with a waterglycerol
mixture he kinematic viscosity ν is approximately 8 times higher than pure water in
that case
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4 How they move

ven when restricting to round dead objects particles in turbulent ìows come in a va
riety of densities and size hey can be either lighter e.g. bubbles or neutrally buoyant
or heavier e.g. sediments  droplets than the carrier ìuid ikewise their size ranges
from much smaller than the olmogorov scale η up to the integral scale Lint articles
smaller than the olmogorov scale η have drawn much attention due to their ability to
follow the ìow as tracers if they are neutrally buoyant and the available theoretical de
scription   n  oth et al.  reported the ërst agrangian measurements
which compared the dynamics of ënitesized particles to that of tracers nd in the last
decade more and more experiments were done investigating particles of sizes up to the
intermediate aylor length scale λ   or particle diameters Dpart/η ≲ 40 it has
been established that upon increasing the ratio Dpart/η the variance of the particle accel
eration decreases as (Dpart/η)

−2/3 but the ìuctuations remain non–gaussian within this
range    comprehensive study on the oneparticle statistics can be found in the
dissertation of auman ureshi 
owever the behavior of particles whose size is comparable to the largest scales of the

ìow Lint has still received little attention

Particles & Flow-types n this chapter we present results on the translation of neutrally
buoyant spheres in a von ármán ìow he tested diameters are Dpart = 6mm 10mm
15mm 18mm and 24mm he uncertainty in diameter is less the 0.02mm and the
sphericity 0.01mm he particles are made of white olymid  which has a density
of 1.14 g/cm  densityadjusted waterglycerol mixture serves as working ìuid the side
walls of the apparatus are temperaturecontrolled at 20 ◦ he observation volume is
approximately 15× 15× 15 [cm] large
wo different ways of driving are tested the impellers are either co or counterrotating

but in all cases both impellers run at the same propeller speed fprop e list the key
parameters of the counterrotating driving in table  he corotation is mostly used
as a crosscheck and we do not attempt to estimate the olmogorov scales or eynolds
number here  picture of the experiment is provided in ig 
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fprop[z] Re Rλ ε[m/s] η[µm] τη[ms] Tint[s] Dpart/η

co
un

te
r
ro
t

0.5 4200 75 0.01 425 24.3 2.00 14 . . . 56
1.0 8400 105 0.10 253 8.6 1.00 24 . . . 95
2.0 16900 150 0.56 165 3.7 0.50 36 . . . 145
3.0 25300 185 1.85 122 2.0 0.33 49 . . . 196
4.0 33700 215 4.39 99 1.3 0.25 61 . . . 243
4.5 37900 225 6.15 91 1.1 0.22 66 . . . 265

Table 4.1: eyparameters of the counterrotating ìow conëgurations he integral time
scale is deëned as Tint = 1/fprop and the integral length scale is estimated to be Lint =
3 cm ∼ R/3  consequently Dpart/Lint = 0.2 . . . 0.8 e use the following deënition

for the eynolds numbers Re = 2πR2fprop/ν and Rλ =
√

15
ν
 2πL2

intfprop ote
that we follow particles in a 15 × 15 × 15 [cm] region where the ìow is known to be
inhomogeneous and anisotropic hus Rλ and the olmogorov scales are only rough
estimates

Figure 4.1: arge unpainted spheres in our von ármán mixer the red light stems from
highpower  illumination the blue tape reduces reìections he ìuid is density
matched to 1.14 g/cm
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4.1 Motion
imensional arguments tell that particle velocity v and acceleration a are proportional
to fprop and f 2

prop respectively ig  shows the standard deviation  of the com
ponents of v and a for the co and counterrotation and different propeller frequencies
o take into account the dimensional arguments we normalize by the speed 2π R  fprop
and the centrifugal force 4π2 R  f 2

prop at the tip of the propeller R e ënd that both
acceleration and velocity are following well the propeller motion with an effective radius
Reff ≈ 0.15R n other words  (v) /

(
2πfprop

)
∼  (a) /

(
4π2f 2

prop
)
 his con

ërms that all measurements were performed in the fully turbulent ìow regime 
imilar to conventions for cylindrical coordinates we denote y and z which lie in the

plane of the rotation the polar and x the longitudinal component e ënd that the polar
components y and z collapse whereas x which is parallel to the rotation axis is slightly
weaker s anticipated the corotation separates the velocity components stronger than a
counterrotation at the same propeller speed owever the effect is less pronounced for
the acceleration his signature of the anisotropy of the von ármán ìow has been known
for a long time and as one may expect the anisotropy is less pronounced for small scale
quantities like the acceleration e.g. in    
he motion diminishes with increasing particle diameter i.e. smaller particle move

faster and shakier or the velocity the change seems linear but we observe a non
trivial spacing for the acceleration e therefore plot the  as a function of the
particle diameter in ig  he different frequencies collapse for each particle size and
component he velocity  diminishes linearly withDpart the dependence is stronger
for the longitudinal component x or the acceleration the dependence is most likely
a powerlaw ased on olmogorov scaling arguments oth et al.  extended the
eisenbergaglom scaling to ënite size particles

⟨
a2
⟩
= a0 ε

3/2 ν−1/2

(
Dpart

η

)−2/3

= a0 ε
4/3D−2/3

part 

with η =
(

ν3

ϵ

)1/4
the olmogorov length scale and a0 a constant1 of order 1 he

energy injection rate ε is proportional to the propeller speed ε ∝ f 3
prop urthermore

we worked with the  of a i.e. the square root of the acceleration variance ⟨a2⟩ hus

(a)
f 2
prop

∝ D−1/3
part 

n contrast to the prediction we note that (a)/f 2
prop is better compensated with

D−0.53±0.06
part than with D

−1/3
part  illustrated by the thick black line in ig  his has

partially been seen by omain olk et al.  lso one should keep in mind that
q  and q  are based on the assumption of locally homogeneous and isotropic
turbulence as well as smaller particles hat is clearly not the case in our experiment where

1n practice a0 varies weakly with ìow turbulence level and other things 
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Figure 4.2:  of velocity vi and acceleration ai for different diameters normalized
by the rotation of the propeller illed symbols indicate corotating driving he motion
of the particles is dominated by the propellers n a fully turbulent von ármán ìow the
velocity variance is a fraction of the propeller tip speed  ince  (v) /

(
2πfprop

)
∼

 (a) /
(
4π2f 2

prop
)
we conclude that the ìow is fully turbulent n contrast to a cylin

drical von ármán ìow one observes that co and counterrotating impellers create com
parable turbulence n all cases the components in the plane of the rotation y and z
collapse whereas x which is parallel to the rotation axis is slightly weaker he inìuence
of the particle diameter is shown in ig 

larger particles are tracked over the whole ìow domain urthermore experiments show
that a0 varies weakly with the eynolds number see for example 

t is interesting that the corotation produces acceleration ìuctuations which are weaker
but comparable to counterrotating forcing s reported by atherine imand  one
expects a much bigger difference to counterrotating driving in a smooth cylinder with co
rotating smooth disks owever our apparatus has square crosssection which acts similar
to baffles in a cylinder n addition the blades on the propellers induce centrifugal pump
ing and help producing a much more turbulent ìow ne notices that in this apparatus
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Figure 4.3:  of velocity vi and acceleration ai for different diameters normalized
by the rotation of the propeller illed symbols correspond to corotating impellers ote
that in the right plot we shifted the corotation ëlled symbols by −0.1 he data is the
same as in ig  only the arrangement changed he solid line is a ët to the data
(a)/

(
4π2Rf 2

prop
)
= (0.5± 0.1) D−0.53±0.06

part  n contrast thereto eisenberg
aglom scaling predicts (a)/f 2

prop ∝ D−1/3

the acceleration magnitude alone is not sufficient to distinguish co from counterrotating
driving

4.1.1 PDFs

ig  depicts the normalized probability density function  of the components
of the velocity v for the counterrotating runs he three components are approximately
normal distributed oreover the s are independent of propeller speed and diameter
hen comparing in detail one notices a slight difference between polar and longitudinal
components n addition the curves become subgaussian for values larger three standard
deviations

s shown in ig  the s of the components of the acceleration a for the counter
rotating runs superimpose independent of particle diameter and propeller frequency he
 themselves displays weakly stretchedexponential tails and clearly no aussian dis
tribution or a quantitative comparison to previous measurements e.g.    
we use the stretched exponential ëtting function

Πs(x) =
e3s

2/2

4
√
3

(
1− erf

(
ln
∣∣x/√3

∣∣+ 2s2

s
√
2

))

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Figure 4.4:  shifted of the velocity components all counterrotating runs with all
diameters are plotted he s are shifted and the order is x y z starting from the
bottom or comparison the dashed lines indicate a normal distribution

which has been used extensively in the analysis of the intermittency of the translational
motion of agrangian tracers  – it stems from the approximation that the norm of the
acceleration has a lognormal distribution he parameter s is related to the ìatness  by

(s) =
9

5
exp
(
4 s2
)

⇔ s =
1

2

√
ln
(
5

9

)



hen determining s for each diameter propeller speed and component we ënd that
s increases with propeller speed t slowly approaches s ≈ 0.62 a value reported by
ureshi et al.   difference between polar and longitudinal components remains s
expected bigger particles develop narrower tails in the  than smaller particles he
covered range of s corresponds to ìatness values from 4.2 to 8.8 with  (⟨s⟩) = 6.1
or the corotating driving we notice that the longitudinal component is almost unal

tered he polar components however show clear signs of the different ìow the velocity
 has a hat shape and the acceleration  shows two peaks2 which are symmetric
to 0 his is linked to the fact that we have centrifugal pumping he poloidal component
of the ìow ëeld is comparable for the two ways of driving the ìow

2 shaped 
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Figure 4.5: robability density function  of the acceleration components all
counterrotating runs with all diameters are plotted he dotted line shows a aus
sian whereas the dashed line is a stretchedexponential

Πs(x) = e3s
2/2

4
√
3

(
1− erf

(
ln|x/√3|+2s2

s
√
2

))
with s = 0.62 as reported by

ureshi et al. 
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Figure 4.6: nìuence of the subtraction of a local or global mean on the autocorrelation for
|v| and |a| 18mm, 2z counterrotating the effect is less pronounced for quantities
which can have both signs

4.1.2 Auto-correlations

hen computing autocorrelations one has two choices irst on each individual track
one can either subtract the mean of all trajectories or the average computed for exactly
this trajectory e denote these two approaches global and local mean respectively
heir difference is illustrated for |v| and |a| in ig  ubtracting a local mean causes
the positive quantities |v| and |a| to drop faster and moreover to cross zero n general
correlation time scales are found to be approximately twice as large when using the global
mean
econdly one can choose between the biased and the unbiased deënition of the auto

correlation where the former is obtained from the inverse ourier transform of the ower
pectrum and the latter from the ⟨s(t)s(t+ τ)⟩ ue to the way we handle tracks we
always use the unbiased deënition ore details can be found in appendix 
e show here only the timescale derived from the autocorrelation of velocity and ac

celeration here we discuss the unbiased correlation function with prior subtraction of the
global mean τcorr is deëned as the time when the autocorrelation passes below a threshold
of 1/e for the ërst time  threshold of 0 is not stable because the correlationmight fall fast
to 0 but not become negative he timescales of the counterrotating runs are provided in
ig  or both velocity and acceleration components only little dependence of τcorr
on the propeller speed is found gain longitudinal and polar components are separated
or the velocity only the polar components seem to weakly depend on the diameter they
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Figure 4.7: orrelation times for velocity and acceleration counter rotating forcing
he unbiased correlation function with prior subtraction of the global mean was used
or both velocity and acceleration we ënd τcorr ∝ f−1

prop he time scales vary only little
with particle diameter for the velocity data whereas the acceleration correlation time is
approximately linear dependent on Dpart

increase from τcorr(v, 6mm) ≈ 0.16Tint to τcorr(v, 24mm) ≈ 0.20Tint
he dependence on diameter is much clearer for the acceleration based time scales

ere τcorr(a) doubles fromDpart = 6mm to 24mm oreover the ratio between veloc
ity and acceleration timescale τcorr(v)/τcorr(a) decreases from ∼ 3 at Dpart = 6mm to
∼ 1.5 at 24mm

4.1.3 Viscosity & density

he question arises to which extent the ìuid viscosity and density determine the motion
of large particles n contrast to the measurements presented in this chapter the charac
terization of the instrumented particle was done in water i.e. at a viscosity approximately
 times lower than the here used waterglycerol mixture and a density of 1 g/cm in
stead of 1.14 g/cm ortunately its diameter of 25mm is close to the largest  sphere
Dpart = 24mm e therefore compare the runs with the solid 24mm  sphere to
the instrumented particle he forcing is counterrotating propellers at fprop = 2z and
fprop = 3z nstrumented particle and solid sphere are indicated by SP and PA in the
following equations t should be noted that the instrumented particle deviates slightly
from a rigid sphere ainly it has inhomogeneous inertia a small imbalance and the gap
between the two hemispheres might act as a trip wire he technical details are found in
chapter 
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or both velocity and acceleration we ënd no difference in the normalized probability
density functions  of the single components between the two particle ut as stated
in table  the instrumented particle has an acceleration  which is ∼ 1.25 times
larger than that of the solid sphere imilarly we ënd the longitudinal and polar velocity
components to be 1.17 and 1.07 larger e found in the previous section that the ìow
structure is independent of the propeller speed ere the propeller frequency is identical
for both particles and can thus not account for the change hemotion of tracers and small
material particle is determined by viscosity and energy transfer rate ut it is remarkable
that density and viscosity of the ìuid are still playing a role for a particle this large
ne ërst notices that the density ratio ρ (glyc.–)

/
ρ () = 1.14 is close to

the increase in velocity  oreover
(
ρ (glyc.–)

/
ρ ()

)2
= 1.29 ∼ 1.25

i.e. the square of the density change is close to the difference in the acceleration 
too owever the equation of motion cf section  page  contains only the density
ratio which is unity in both cases hus the correlation between density and motion is
most likely a coincidence tokes drag on the other hand is ruled out as it yields particle
response times with τ p /τp ∼ 8 ne can further experiment with an equation which
stems from the motion of tracer he eisenbergaglom equation  tells that the
acceleration  of tracers is  (ai) ∼ ε3/4ν−1/4 ccordingly the change in viscosity
would increase the  by


(
ai
)

 (ai )
∼
(
ν(glyc.–)

ν ()

)1/4

∼ 1.6 ̸= 1.25

s expected the increased acceleration  cannot be explained by a formula derived for
much smaller particles
 possible explanation for the difference might lie in their preferential sampling of the

ìow cf the next section espite their close size the instrumented particles samples the
ìow in a more homogeneous way than the solid  sphere t might thus explore the
more active regions of the ìow leading to a higher acceleration variance
o conclude more measurements at different viscosities are necessary

Table 4.2: atios of the velocity and acceleration  of the instrumented particle to
a solid 24mm  sphere oth viscosity and density are smaller for the instrumented
particle its diameter is 25mm

 (instr part)
/
 (solid sphere) vx vy vz ax ay az

fprop = 2z 1.17 1.10 1.09 1.28 1.37 1.23
fprop = 3z 1.19 1.07 1.07 1.22 1.24 1.24
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4.1.4 Sampling

umming up we see two reoccurring features

> he motion scales well with the propeller frequency and

> the motion depends in a nontrivial way on the particle size

ne can thus ask if the motion changes because the particles see a reduced part of the
turbulent spectrum or because they explore different regions of the ìow his preferential
sampling of the ìow has been observed for particles which are not neutrally buoyant bub
bles concentrate in regions of high vorticity whereas heavy particles tend to lowvorticity
regions ensity effects can be neglected here as the ìuid is densitymatched such that the
settling velocity of each particle was less than 1 cm/s the corresponding density mismatch
is of the order − or better e focus here on the inìuence of the complex large scale
ìow structure on the dynamics of the particles revious studies have mainly focused on
the modiëcation of small scale clustering in the presence of a homogeneous mean shear
n order to evaluate the sampling of the ìow we bin the particle position in cylindrical

coordinates into rings of diameter r and longitudinal position x with a width of∆r and
∆x dequate normalization yields then the   of the particles longitudinal x and
radial position r
n agreement with our previous observations we notice no dependence of the sampling

on the propeller frequency owever by gradually increasing the diameter the s
change signiëcantly from almost homogenous sampling at Dpart = 6mm to being lo
cated in two toruses near the propellers ach torus core is situated at approximately 1

2
R

away from propeller and rotation axis s an illustration we provide the x, r at
fprop = 3z for Dpart = 6mm, 15mm, 24mm in ig  t is noteworthy the pref
erential sampling of the 24mm sphere is more pronounced than for the instrumented
particle cf ig  on page  he two measurements differ mainly in their work
ing ìuid the viscosity and density are 8 times and 0.87 times smaller for the latter but
the propeller speed was the same in both experiments e plan on redoing the experi
ment with a different ìuid viscosity while keeping to particle neutrally buoyant in order
to understand this difference
ne can further compute the mean ìow ëeld ⟨v⟩ (r, x)  sing the same binning we

then build the average velocity3 ⟨vx⟩ (r, x)⟨vr⟩ (r, x)⟨vθ⟩ (r, x) for each ring
hemean ìow is almost identical to the ìow structures described in section  see also

the sketch in ig  and to results for a cylindrical von ármán ìow  ⟨vθ⟩ (r, x)
shows two counterrotating eddies with their vortex core at R ∼ 8 cm and approximately
5 cm = 1

2
R away from the impeller oreover the ìow is in average circulating around

these eddies y eye the stagnation point is in the center of the apparatus at x = r = 0
and the ìow is symmetric to x = 0 i.e.

⟨vx⟩ (r, |x|) ≈ −⟨vx⟩ (r,− |x|) and ⟨vθ⟩ (r, |x|) ≈ −⟨vθ⟩ (r,− |x|)

3expressed in cylindrical coordinates
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Figure 4.8: referential sampling of the different diameters he sampling depends only
little on the propeller speed here we show counterrotating propellers at fprop = 3z
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omparing to the  of position one notes that bigger particles stay preferably close
to the eddy core urprisingly the shape of the mean ìow is not altered by the parti
cle diameter o compare the ìow ëelds of different particle diameters we compare the
toroïdal vθ to the poloïdal 

√
v2r + v2x component along two lines the ìow ëeld s

shown in ig  we ënd that the dependence on the particle diameter is weak nly
close to the two big eddies blue vectors in the sketch in ig  bigger particles exhibit
a stronger toroidal motion his analysis also reveals that the stagnation point of the ìow
is at x ≈ −1.5 cm i.e. it does not exactly coincide with geometric center of the vessel
orotating impeller form only one eddy in ⟨vθ⟩ (r, x) but the circulation in x and r

towards the propellers persists ts stagnation point is slightly offcenter at x = −1 cm ∼
−0.1R and for r < 4 cm ∼ 0.4R the components ⟨vx⟩ and ⟨vx⟩ vanish n total the
general structure of the corotating ìow is in good agreement with the results reported in
atherine imands h thesis 
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Figure 4.9: ependence of the mean ëeld on the particle size we compare the toroidal

⟨vθ⟩ to the poloidal
√
⟨vr⟩2 + ⟨vx⟩2 component along a line trough the mean ìow ëeld

at r = 0.4R and r = 0.7R ote that instead of simple ratio the arctan is used atan is
less sensitive if one component is close to 0 or both lines the maximum of the poloidal
component is ∼ 0.3m/s it varies only weakly with the particle diameter
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Figure 4.10: ean ìow ëeld for co and counterrotation here fprop = 3z(
⟨vX⟩2 + ⟨vr⟩2

)1/2
has typical values of 0.25m/s and 0.13m/s for counter and co

rotation he top pictures sketches the large scale ìow structure image based on 
corotation similar to  and we observe the identical behavior for counterrotation
⟨vθ⟩ (r, x) shows two eddies with opposite rotation sense sketch blue vectors and we
see a circulation around these eddies similar to the red arrows in the sketch or the co
rotation only one eddy in ⟨vθ⟩ (r, x) is formed and circulation in x and r towards the
propellers persists he stagnation point is at x ≈ −1 cm ∼ −0.1R
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5 How they spin

n this chapter we focus on the rotational dynamics and their inìuence on the translation
of the particle lthough we recently took data of multiple painted particles at different
propeller speeds we did not yet ënish1 the processing e therefore limit the evaluation
to the data presented in a hysical eview etter  and the two runs with the painted
instrumented particle

he motion of a sphere in a ìow is deëned by the aviertokes equation of the ìow
possibly buoyancy and the noslip condition t the surface the ìuid velocity matches
the particles velocity f the eynolds number based on the particle Rep is small one
can derive its equation of motion   cf chapter  or ìows that creep around
the particle Rep ≪ 1 the translation and rotation decouple and the particles rota
tion becomes a measure of the ìuids vorticity  ith increasing Rep the separation
between linear and angular motion disappears and one can observe a coupling between
translation and rotation hat was ërst reported by agnus  when he studied the
motion of rotating artillery projectiles and thereafter rotating cylinders in a windtunnel
in his article Über die Abweichung der Geschosse, und: Über eine auffallende Erscheinung bei
rotierenden Körpern n order to quantify the rscheinung one therefore decomposes the
hydrodynamics forces into contributions parallel and perpendicular to the relative veloc
ity vslip ≡ v (x, t) − u (x, t) of the particle with respect to the ìow  generalization
of the lift or agnus force  acting on a body of volume V  as derived in an inviscid
laminar ìow of density ρf is then

Flift = ρfV 
(
Clift vslip × ωP

)


and it appears as a natural possibility of a force acting perpendicular2 to vslip   t
is worthwhile noting that the lift force is independent of the viscosity of the ìow he
parameter Cift can be negative and positive in general it depends on the relative linear
and angular velocity but also on the surface roughness his leads to astonishing trajec
tories in ball games mastering the lift force can easily increase the income of a football
player by a factor of  or more
 lift force has been observed where the ìow is steady and laminar    urning

to turbulent ìows with high particle eynolds numbers one encounters several problems
as sketched in ig  n fact the very deënition of the ìuid velocity around the particle
is very ambiguous or this reason we reduce the expression for the lift force to∝ v×ωP
where v is the particle velocity t is furthermore not clear if and how the ìuid drives

1due to a broken foot
2he formula given by uton  uses u − v = −vslip
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Figure 5.1: ketch of particles of increasing sizes superimposed on local velocity gradi
ents hereas the ìow around the small particle is smooth it exhibits signiëcant spatial
variations around the large particle

the rotation of the sphere n simple estimate of the particles response time τ rotp from
q  tells3 that the cases investigated here have a response time of several integral
timescales Tint he existence of a signiëcant rotation and a lift force in such conditions
is thus not evident
athematically two angular velocities exist hereas ωP describes the rotation of the
particle with respect to the ëxed lab coordinate system ωL ëxes the particle and rotates
the lab system his is somewhat similar to quantum mechanics where one has the choice
between the eisenberg and the chrödinger picture to incorporate a dependency on
time e found no particular use for ωL in our analysis and will thus work only with
the angular velocity which rotates the particle ωP he superscript P is omitted in the
following

n this chapter we present data from two experiments which differ both in particle and
working ìuid

> he ërst successful measurement of the tracking was done with a single ho
mogenous olymid sphere in a densityadjusted waterglycerol mixture of vis
cosity ν = 8.5  − m/s he sphere is 18mm in diameter hus the particle
response time is τ rotp () = 0.8 s = 2.5Tint e indicate the run by PA18

> e also exploit the  tracking of the instrumented particle ote that these runs

3τ rotp = J/8πρf ν a
3 = a2/15ν
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were originally performed to better understand the instrumented particle conse
quently the amount of data points is less oreover the ìuid is water with a
viscosity of ν = 1.004  − m/s and the particle is 25mm in diameter with a
nonhomogeneous inertia lthough we adjusted the position of its center of mass
such that is close to the geometrical center there is as remaining small displacement
between the two ence the particle has a preferred direction of its pole ddi
tionally it consists of two hemispheres which are screwed together that adds a little
deviation < 0.5mm from a spherical shape he remaining gap between the two
capsules might furthermore act similar to a tripwire e denote the two data sets
SP 2Hz and SP 3Hz respectively he particle response time is τ rotp () = 10.4 s
which is  and  times larger than the integral time scale Tint

n all cases the impellers are counterrotating and the particles are neutrallybuoyant

he analysis is grouped into the following parts

> e ërst present statistics on the angular velocity and acceleration urther the
rotational and translational energy are compared

> ext we investigate the coupling between rotation and translation section 
his is done in the spirit of the agnus force Flift = ρfV 

(
Clift vslip × ω

)
 he

socalled Frenet frame proved to be helpful in this investigation of the coupling
between rotation and translation and is presented here at the beginning of section


arts of this chapter are close to the article published in hysical eview etters  and
the conference proceeding for the th uropean urbulence onference 
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Figure 5.2: he employed mixer and particles in this chapter
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5.1 Rotational dynamics
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Figure 5.3:  of the absolute orientation (θx, θz) for the instrument particle 
at fprop = 2z  3z and the solid  sphere fprop = 3z ne can clearly see the
preferred orientation of the instrumented particle

efore focusing on the actual motion of the particle one can ask if the space of ori
entation is homogeneously sampled by the particle or if preferred alignments exist e
therefore plot the twodimensional  of the absolute orientation (θx, θz) in ig 
hereas the solid particle samples the (θx, θz) plane in a homogenous way we spot regions
of preferred orientations for the instrumented particle he spots are more distinct at the
lower propeller speed fprop which is in agreement with the signal from the accelerometer
inside he preferred direction is most likely caused by a small mismatch between its cen
ter of mass and its geometric center as we adjust the mass of the particle by adding extra
weight inside he technical origin is explained in section 
e note that the (θy) is in all three cases distributed close to cos(θy) which is the

shape for a homogeneous sampling q  in section 

5.1.1 Angular velocity & acceleration

e now turn to the angular velocity4 ω or both solid particle and instrumented
particle the three components ìuctuate around a zero mean value urthermore their
distributions are symmetric and slightly nonaussian with a ìatness  ∼ 4 he s
reveal no preferred orientation and their  amplitude is approximately 1

3
of the pro

peller frequency fprop t also corresponds to the rotation that would result from imposing

4ote that we omit the indicator P in the following
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Figure 5.4: s of the translational and rotational velocity and acceleration run 
fprop = 3z he s are shifted for readability and the dashed lines show a gaussian

and a stretched exponential Πs(x) = e3s
2/2

4
√
3

(
1− erf

(
ln|x/√3|+2s2

s
√
2

))
 with s = 0.65

that corresponds to a ìatness (s) = 9.8

a velocity difference of the order of urms across the particle diameterD he  of angu
lar velocity components of the solid sphere are shown in ig  he  amplitude of
the angular acceleration α is about  rads2 again of the order of (urms/Dpart)

2 he
 of α is strongly nonaussian the ìatness is F = 7 ± 1 ence the s of the
angular velocity increments become broader when the timelag τ decreases from τ ∼ Tint
to τ ∼ τη the angular dynamics is intermittent
n agreement with the observation for the single components we further ënd that the

magnitude of angular velocity is mostly depending on the propeller speed ig  shows
the  of |ω| /

(
2πfprop

)
for the solid and the instrumented particle at  propeller

speeds he average rotation rate for fprop = 3z is |ω| ∼ 0.60  2πfprop and the
80 percentile is found at 0.83  2πfprop t fprop = 2z the values are ∼ 8 lower
 |ω| ∼ 0.56  2πfprop and 0.76  2πfprop
he little difference between the three data sets is striking since the instrumented par

ticle is 40 larger than the solid particle in ìuid which a 8 times less viscous and has
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an inhomogenous mass distribution ccordingly they have particle eynolds numbers
of Rep (3z) ∼ 1200 Rep (2z) ∼ 8400 and Rep (3z) ∼ 12500 espite
the fact that viscosity and eynolds number are varied by an order of magnitude we do
not observe any signiëcant difference in their angular motion dditionally we ënd that
the response time of a particle to a torque τ rotp  is 2.5 to 30 times larger than the integral
time scale Tint his is in contrast to the observed rotation rates t becomes evident that
formulas derived for the motion of small spheres do no longer apply to the case of large
particles
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Figure 5.5:  of the magnitude of angular velocity |ω| normalized by the propeller
speed fprop t should pointed out that instrumented particle  and solid particle
 differ by 40 in diameter a factor 8 in viscosity and their mass distribution t is
|ω| ∼ 0.6  2πfprop and the 80 percentile is at 0.8  2πfprop
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5.1.2 Energy

e now investigate the kinetic energy of the particle ince the particles translation
and rotation is in average well approximated by the propeller speed one can estimate
Etrans =

1
2
mv2 and Erot =

1
2
J ω2 beforehand n the case of a solid particle of diameter

Dpart their ratio is

Etrans

Erot
=

1
2
mv2

1
2

(
1
10
mD2

part

)
ω2

≈ 10 
(
Ctrans  2π fprop
Crot  2π fprop

R

Dpart

)2



Ctrans andCrot are factors which relate |v| and |ω| to the propeller speedR is the propeller
radius ased on chapter  and ig  it is Ctrans/Crot ∼ 1/2 herefore

Etrans

Erot
∼ 2.5 

(
R

Dpart

)2



he largest particle has a diameter of Dpart = 1/4R hence Etrans ≫ Erot he inho
mogeneous inertia of the instrumented particle complicates Erot to Erot =

1
2
ωT J ω n

addition the inertia tensor is changing its orientation ut the inertia tensor has only two
unique eigenvalues cf section  one 50 smaller and one 50 larger than the in
ertia of a solid sphere of the same diameterDpart = 25mm onsequently the statement
Etrans ≫ Erot holds also for the instrumented particle
he left plot of ig  shows the  of the translation as well as the rotation en

ergy n agreement to the estimate above we ënd that the ratio of Erot/ (Erot + Etrans)
is in average 2.7 with the 80 percentile at 3.5 – the rotational energy is negligible
compared to the translation e also investigated the auto correlation of both parts of the
kinetic energy right plot in ig 
n all three experiments we ënd that the normalized autocorrelation of Etrans follows

approximately an exponential decay which passes 1/e at τcorr ∼ 0.16Tint e further
ënd the rotational energy to stay about twice as long correlated or the solid particle we
notice that the autocorrelation of Erot shows two different time scales e need here to
process the remaining data runs to be sure that this is not an artifact owever lain
umir and ichael ilkinson modeled the tumbling of a spherical particle and also ënd
two timescales in the autocorrelation 
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Figure 5.6: otational Erot =
J
2
ω2 and translational Etrans =

m
2

v2 energy of the solid
particle 
Left  of Erot and Etrans ote that Ėĉ × Erot is compared to Etrans he ratio of
Erot/ (Erot + Etrans) is in average 2.7 and the 80 percentile is at 3.5 – the rotational
energy is negligible compared to the translation
Right uto correlation of Erot and Etrans
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5.2 Coupling between rotation & translation

5.2.1 Frenet frame

he renet formulas deëne a local coordinate system which is attached to and moving
with the trajectory x(t)

T (t) =
ẋ(t)

|ẋ(t)|
a

N (t) = B(t)× T (t) =
ẋ × ẍ

|ẋ × ẍ|
× ẋ

|ẋ|
b

B(t) =
ẋ × ẍ

|ẋ × ẍ|
c

(T ,N ,B) are the socalled tangent normal and binormal unit vectors xpressing
the trajectory in the renet frame (T ,N ,B) yields

v(t) = |v(t)| T (t) 

and for the acceleration

a(t) =
d
dt
(
|v(t)| T (t)

)
=

d |v(t)|
dt

T (t) + κ |v(t)|2 N (t) 

1/κ is the radius of the circle in the (T −N )−plane which approximates the trajectory at
x(t) best onsequently aN = κ |v(t)|2 is the wellknown centrifugal acceleration n
addition the acceleration vector lies in the (T − N )−plane and the velocity is pointing
with T  n illustration of the equations is given in ig  and further details can be
found in appendix  and in  

5.2.2 Preferential alignment

y construction  all forces expressed in the renet frame lie in the (T − N)−plane
 lift force of the form Flift = Clift vslip×ω is perpendicular to vslip and as a consequence
it can only contribute to aN i.e. in direction of N  nfortunately our measurement
technique can not measure the ìow around the particle and we cannot access the relative
velocity vslip but only its absolute velocity v o check for an alignment of the angular
velocity to the trajectory one can express the direction of ω in the T  N  B frame by
spherical coordinates (ϕ, θ) as sketched in ig 
he twodimensional probability density function  of the direction of ω within

the renet frame is depicted for the solid particle in ig  and a threedimensional
visualization thereof is provided in ig 
n the following we deëne ωB ≡ ω B e ënd that ⟨ωB⟩ > 0  with the peak of the

 being at θ ≈ 30◦ y construction it is v = |v| T and B × T = N  therefore
⟨ωB⟩ > 0 implies that the parameter Clift of the lift force is positive
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θ

φ

Figure 5.7: Left ketch of the comoving renet coordinate system as deëned by the par
ticle trajectory y deënition all forces are in the T −N plane he curvature κmeasures
the bending of the trajectory in that plane
Right irection of angular velocity ω of the particle with respect to the renet frame
he texture of the sphere presents the  of alignment for run 

oreover ω is aligned perpendicular to N  onsequently ω × v lies in the T ,N 
plane and is parallel with N  his observation is consistent with a agnus force alift N 
however the fairly sharp distribution of the direction of ω on the sphere is remarkable
he von ármán ìow is known for its large scale inhomogeneities cf e.g.  

herefore we veriëed our observations by using only data points within a box of edge
length d in the center cf the middle and right plot in ig  espite a signiëcant
reduction in the amount of data we ënd that preferential alignment is robust and not an
artifact of the large scale ìow of the apparatus n ig  we showed that the kinetic en
ergy decorrelates within∼ 1

2
Tint ithin this time the particle moved approximately one

propeller radius R along its nonstraight trajectory hus for the smaller observation
volumes the particle lost all possible trace of the impellers
e further test if the alignment persists in the case of the instrumented particle espite

its inhomogeneous inertia the lesser viscosity and the preferential orientation of the parti
cle as such we still ënd an alignment of ω with the trajectory ut as shown in ig  it is
much weaker than for the solid particle n agreement with the ëndings in section 
the sampling becomes more uniform with increasing propeller frequency
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Figure 5.8: lignment of the angular velocity ω with the renet frame here we show the
solid particle o ensure that the alignment is not due to contacts with walls and impellers
the  is calculated for the whole volume as well as in two smaller boxes in the center
  rendering is provided in ig 
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Figure 5.9: lignment of the angular velocity ω with the renet frame in the case of the
instrumented particle at  propeller frequencies ne still observes a preferential align
ment although the particle is known to be inhomogeneous and in a less viscid ìuid than
the solid particle
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5.2.3 Influence on the centrifugal force
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Figure 5.10: nìuence of the rotation on the centrifugal force
Left ormal acceleration aN  conditioned on the component of angular velocity parallel
to the binormal renet vector ωB ≡ ω B
Right verage bending of the trajectory 1/κ conditioned on ωB ote that the varia
tions in radius are much larger than average
n both cases we test the robustness by restricting the data to smaller boxes of edge length
d in the center

he lift force Flift ∝ ω×v expressed in the renet coordinate system suggests a contri
bution of |v|×ωB to the accelerationi.e. force aN  ig  shows the amplitude of the
acceleration aN  conditioned on the amplitude of ωB he averaged normal acceleration
conditioned on ωB increases by 50 from 6 to 9 ms2 when the particle rotation varies
in the range ±2 z = 12 rads he effect is stronger if ωB is positive however this
observation might be biased due to the fact that much less data is available for ωB < 0
cf ig  y restricting the data to smaller regions in the center of the apparatus we
veriëed that the dependence of aN on ωB does not depend on the large scale mean ìow
of the apparatus ig  t should be noted that the ratio of normal to lift force

aN
aift

=
κ |v|2

ω × v
=

κ |v|
ωB

probes the dependence of curvature κ on ωB e therefore investigate the dependence of
the bending radius5 of the trajectory 1/κ on ωB ver the range ωB = −3z . . .+5z

5veraging κ corresponds to building the inverse of the harmonic mean of the bending radius
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a clear decrease of the bending radius with increasing ωB is observed n other words the
particle moves in a tighter spiral trajectory if the rotation is in the sense of the agnus
force
n agreement with their weak preferential alignment no clear inìuence of the rotation

on the centrifugal force is found for the instrumented particle
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6 How they fluctuate

 material particle which is advected in ìow is a priori interacting with the ìow he
basic interaction of a material particle can be illustrated by a persons movement in a
crowd of people as they are for example found at erman christmas markets or rench
train stations n such environments moments alternate where one is being pushed by
other people and where one pushes back
urning back to the particle if it is moving faster than the surrounding ìuid it has to

push it away and decelerates ikewise if the particle is slower than ìow it is accelerated
y changing its speed it is exchanging energy with the ìow
n the limit of particle small compared to the smallest scales the neutrallybuoyant

particle behaves as a tracer of the ìuid motion ts dynamics are close to that of the ìow
or particles e.g. those presented in this thesis which are much larger than the smallest
eddies the situation becomes complicated e demonstrate in chapter  that the rotation
and translation couple in agreement with the lift force Flift ∝ v × ω dditionally
a large particle is no longer a tracer of the ìuid motions t has a relative velocity and
acceleration with respect to its surroundings s a result it is sometimes pushes the
surrounding ìuid and conversely sometimes it looses momentum to the ìuid nergy
ìows in both directions and we will show that this exchange is characterized by large
deviations from its meane approach the particles complex motions from a statistical
physics point of view the îuctuation theorem can be used to describe the particle in a
turbulent ìow as a system in interaction with a heat source and a heat sink
ur investigation is strongly motivated by an article by ergio iliberto et al. 

where it was shown that the forces acting on an obstacle inside a von ármán swirling
ìow obey the ìuctuation theorem n the following we ërst discuss the kinetic energy of
the particle hen we test if the dynamics of the particles kinetic energy are governed by
the theorem e therefore follow tightly the mentioned article
he ìuctuation theorem stems from the mathematical theory of large deviations which

has strong links to thermodynamics and the description of chaotic systems   de
scriptive analogon of entropy and phase space contraction rate in turbulent ìows has yet
to be found

6.1 Kinetic Energy

he total kinetic energy of the particle as such has two contributions ne associated with
the translation

Etrans =
1

2
mv2 
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and one for the rotation

Erot =
1

2
ωTJω 

or a solid homogeneous sphere of mass m and diameter Dpart the latter simpliëes to
Erot =

1
20
mD2

part ω
2 and we showed in section  that their ratio is

Etrans

Erot
=

1
2
mv2

1
2

(
1
10
mD2

part

)
ω2

≈ 2.5

(
R

Dpart

)2



ven for the largest particle it is Dpart =
1
4
R ence we neglect the contribution of the

rotation to the total kinetic energy
 change in kinetic energy translates to energy being exchanged with the ìow ne

can thus deëne an instantaneous energy exchange rate εva

εva(t) ≡
1

m

d
dt
Etrans(t) = v(t) a(t) 

everal questions arise from this equation he apparatus can be modeled as a thermo
dynamic system in contact to two thermal reservoirs – the propellers a heat source and
dissipation a heat sink t equilibrium the energy injected equals the energy transferred
equals the dissipated energy ne therefore expects that the integral over the whole ap
paratus d

dt

∫
V v2dx = 0 if the ìow is homogeneous n contrast thereto we focus here on

the agrangian motion of large particles in a ënite measuring volume where the energy is
injected by the propellers outside this region he particle gains energy in active regions
of the ìow and along their ensuing trajectory the kinetic energy is dissipated back to the
ìow until the particle gets pushed by the ìow again n other words the particle is mostly
loosing energy during its motion but we will see strong ìuctuations around a small mean
value
t should be pointed out that εva is no substitute for the common methods based on

structure functions as discussed in detail e.g. in   e aim here only at investigating
the energy exchange of one moving particle with its surrounding ìuid by means of the
ìuctuation theorem and do not propose a new method for obtaining the energy transfer
rate eginald ill  proposed a method which computes the mean energy transfer
rate from agrangian trajectories of tracer particles owever we are interested in the
ìuctuations and consequently his method cannot be used in our context

6.1.1 Distribution of εv.a

e ërst notice that for all runs ⟨εva⟩ < 0 i.e. the particle is in average loosing energy
he mean is small compared to the ìuctuations ts  is approximately tentimes the
average value  (εva) ∼ 10 ⟨εva⟩ hen looking on the probability distribution of
εva we remark that it differs strongly from a aussian distribution it has wide tails and the
skewness is order −1 ence the particle experiences large ìuctuations in kinetic energy
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Figure 6.1: istribution of the energy exchange rate εva = v a for different particle
diameters he propellers are counterrotating at fprop = 4z he dashed curve displays
a gaussian distribution εva is has a nongaussian distribution with wide tails ote that
we plot here the centered s which are normalized in an uncommon way s suggested
by the ìuctuation theorem εva is rescaled by its mean instead of its  value hus
the tails appear ∼ 10 times wider than the common normalization
o demonstrate the skewness ⟨εva⟩ is negative its absolute value is taken εva/ |⟨εva⟩|−1
n the lower plot we show |ξ3   ξ| in order to demonstrate that the  of εva is
skewed

along its trajectory and it is more likely to push the ìuid and thereby loose kinetic energy
lthough trivial this also implies that the particle stops moving shortly after one switches
off the motors n other words the interaction with the ìow drives the particle out of
equilibrium  typical distribution of εva is shown in ig 

ne can further compare the energy exchange rate εva to the energy injection rate based
on the power injected by the motors εmotor he latter has been measured at frequen
cies from fprop = 1 . . . 10z cf ig  in chapter  t should be noted that we set
εmotor > 0 s shown in ig  we ënd that ⟨εva⟩ /εmotors ∼ −0.1 e further ënd that
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 (εva) /εmotor is of order 1 with a dependency on the particle diameter and a weak
dependency on the propeller frequency fprop hat is consistent with the previous ënd
ings for the translation of large spheres which showed that smaller spheres have a higher
acceleration 
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Figure 6.2: nergy exchange rate εva = v a for different propeller speeds fprop and
particle diameters
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Figure 6.3:  typical timeseries of εva(t) normalized by its mean value he used par
ticle diameter is Dpart = 10mm and the propellers are counterrotating at fprop = 4z
ne can see that the energy is ìowing in both directions with a short correlation time
and strong events

6.1.2 Time scales

e now turn to the correlation time of the energy exchange rate εva  typical timeseries
of εva(t) is provided in ig  e observe that energy is ìowing in both directions
with a short correlation time and isolated strong events lso no signiëcant asymmetry
between receiving and giving energy is perceived
n chapter  we saw that the time τa1/e for which the autocorrelation of acceleration

passes 1/e increases linear from τa1/e(6mm) = 0.06Tint to τa1/e(24mm) = 0.13Tint
owever even for the largest diameter τa1/e is smaller than the correlation time of velocity
τ v1/e ∼ 0.18 ow εva is the product of velocity and acceleration ne thus expects
that it decorrelates faster than both acceleration and velocity his is the case e ënd
that the time when the autocorrelation of εva crosses 0 is almost the time τa1/e when the
correlation function of acceleration passes 1/e imilar to the autocorrelation it depends
on the particle size too s a representative example we plot in ig  the autocorre
lation of εva for counterrotating propellers running at fprop = 4z umming up the
characteristic time scale of the variations of the energy exchange rate is τ0(εva) ∼ 0.1Tint
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Figure 6.4: utocorrelation of εva for the ëve particle diameters here we show counter
rotating propellers with fprop = 4z he time when the autocorrelation of εva crosses
0 is almost the time τ1/e when the correlation function of acceleration a passes 1/e
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6.2 A step-by-step test of the fluctuation theorem
ne knows that one has to constantly stir to keep a ìuid in motion and that the ìow
in e.g. a bowl of soup or a cup of coffee stops fast after the forcing was stopped n
other words a ìow is only at equilibrium when it does not move n the other hand
turbulence is a farfrom equilibrium state where permanent forcing establishes a stationary
ìow of energy from the large scales to the small scales lthough the energy injection as
such is steady one observes the well known large variations in velocity and acceleration
owever it is legit to ask if energy can also ìow for short times in the reverse direction
i.e. going from the small scales to the large scales his problem is for example addressed
in a readable manner in 
rom a more abstract point of view the second law of thermodynamics tells that no

process is possible whose sole result is the transfer of heat from a body of lower temper
ature to a body of higher temperature1 tatistical physics extended this statement such
that for short times the second law can be violated and one can observe energy ìowing
from the cold to the warm he allavotti and ohen ìuctuation theorem considers the
dynamics of the energy ìux ìuctuations in a driven dissipative farfromequilibrium sys
tem  issipation causes the phase space of such a system to contract and the rate
of contraction is related to the rate at which energy heat or momentum ìows out of the
system s the reversed coldtowarm energy ìux is forbidden in the long time average
it investigates the possibility of such a reversed ìux by looking at averages computed for
larger and larger time scales t should be noted that the theorem is related to stochastic
differential equations s we saw earlier the energy exchange of large material spheres in a
turbulent ìow is dissipative with large deviations e will investigate now if its dynamics
are governed by this theorem

Simple version of the theorem et j denote a variable related to this energy ìux in
our case j ≡ εva ne then deënes the sliding average of the ìux normalized by its mean
i.e. 

Yτ =
1

τ

∫ t+τ

t

j(t′)

⟨j⟩
dt′ 

ote that we nondimensionalize the ëlter width τ  by the integral length scale Tint he
probability density function of the ëltered ìux Yτ is then deëned as

πτ (Y ) =  (Yτ ) 

ote that the second law of thermodynamics dictates π∞(Y ) = δ (Y − 1) with δ the
elta function he theorem now states that if τ is larger than a characteristic time scale
of the system the shape of the  comports as

ln
(
πτ (+Y )

πτ (−Y )

)
= τ σ Y 

1udolf lausius s gibt keine ustandsänderung deren einziges rgebnis die bertragung vonärme
von einem örper niederer auf einen örper höherer emperatur ist
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where σ is related to the phase space contraction rate and its inverse is sometimes called
a temperature he proportionality ln (πτ (+Y )/πτ (−Y )) ∝ Y is thus imposing the
general shape of the  of the energy ìux for a given ëlter width τ  q  further tells
that the  becomes linearly narrower and more skewed with increasing ëlter width τ 
earranging q  yields

σ =
1

τ Y
ln
(
πτ (+Y )

πτ (−Y )

)


f the theorem is satisëed σ is independent of Y and τ  i.e. σ(Y, τ) = σ

6.2.1 πτ

e ërst investigate how the  of the energy exchange rate εva evolves with ëltering
n order to avoid showing  plots we illustrate the procedure on the 10mm particle in
a counterrotating ìow at fprop = 4z t was veriëed that the other runs behave in a
similar manner
nserting εva into q  and q  yields the  of the ëltered εva

πτ (Y ) = 
(

1

⟨εva⟩ τ

∫ t+τ

t

εva(t
′)dt′

)


n our setup we have many trajectories of different length and a priori one should apply
the sliding average to each track that is longer than the ëlter width and reject all data biased
by the track ends nfortunately this leads to a strong reduction in data and we test also
a quickdirty method where all trajectories are concatenated to one large track o
check if this concatenating does not introduce artifacts we further apply the procedure
after shuffling the concatenated track he implications are discussed soon
ig  depicts the  πτ (Y ) with τ = 0.2 and 1Tint for the three different ways

of ëlteringhandling the data ince ⟨εva⟩ < 0 the  is mirrored and has now posi
tive skewness n agreement with q  and intuition πτ (Y ) becomes narrower with
increasing ëlter width urthermore we observe a clear reduction in data for the trajec
tory wise ëltering and statistical convergence is not given for trajectorywise ëltering with
τ > Tint but one integral time scale is still accessible he theorem mentions a char
acteristic time scale which is close to the correlation time of the energy exchange rate
τ0(εva) ∼ 0.1Tint hus one integral time scale corresponds to about ten characteristic
time scales
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Figure 6.5: he  πτ (Y ) of the ëltered energy exchange rate for a ëlter width of
τ = 0.2Tint and 1Tint counterrotating propellers Dpart = 10mm fprop = 4z
hree ways of handling to the data are tested
– he sliding average is applied to each track that is sufficiently long leading to a strong
reduction in data
– he trajectories are concatenated to one large track
– he data of the concatenated track is shuffled
dequate binning was chosen to achieve converged statistics n all three cases we observe
that the  become narrower andmore skewed with increasing ëlter width τ  owever
trajectorywise and concatenating method deviate stronger with increasing ëlter width
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6.2.2 FIR filter and their implications on Lagrangian data

he sliding average of window length τ belongs to the family of ënite impulse response
ëlters hat means nothing which happens before the beginning of the ëlter window does
inìuence its output  lower cutoff frequency i.e.more smoothing can only be achieved
by increasing the ëlter width his is different to nënite mpulse esponse  lowpass
ëlters e.g. utterworth ëlters where one adjusts the cutoff frequency without changing
the ëlter width
t is trivial that a ëlter necessitates a number of data points larger than its window length
n other words for a ëlter width of 1Tint only tracks which are longer than 1Tint can be
used lthough this does not pose a problem for many ulerian measurement techniques
where one traces a quantity e.g. pressure velocity or temperature locally over extremely
long times it is suboptimal for agrangian tracking techniques here the acquisition
time is mainly limited by the time a particle stays in the observation volume hus one
can have an ensemble of tracks with different temporal length ut without periodic
boundary conditions it is almost impossible to follow one particle over very long time
iltering with a window length of τ = Tint removes one integral time from each track
and all tracks which are shorter than 1Tint are excluded from the data set e ënd that in
general the probability of a track length decays exponentially and that tracks longer than
3Tint are extremely rare o illustrate that we provide the histogram of counterrotating
forcing with fprop = 4z in ig  n our experiment the maximum ëlter width is
limited to ≲ 1Tint
n order to overcome this limitation one can also concatenate all the trajectories construct
one giant trajectory and then compute the moving average on this track bviously much
more data is available in this method his quick  dirty method works suspiciously
well hus one has to verify if concatenating is legit and does not introduce artifacts n
extreme way of concatenating is to shuffle the data points t is clear that this operation
leaves (εva) unaltered but removes all correlation and thus the underlying informa
tion of the ìow within εva i.e. the dataset becomes deltacorrelated onsequently the
 of the ëltered dataset will differ from the other two methods which are both not
deltacorrelated
he terms trajectory-wise concatenating and shuffled are employed for the three different

ways of ëlteringhandling the data
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Figure 6.6: istogram of the track length counterrotating propellers fprop = 4z
he probability of a track length decays exponentially he moving average ëlter which
is needed for the ìuctuation theorem can use less and less data with increasing window
width

6.2.3 Shape of πτ
e now test the ìuctuation theorem on the 10mm particle in a counterrotating ìow at
fprop = 4z he  for two different ëlter widths were depicted earlier in ig 
earranging q  the ìuctuation theorem states for τ larger a characteristic time that

Ξ(Y, τ) ≡ Tint

τ
ln
(
πτ (+Y )

πτ (−Y )

)
= σ Y = Ξ(Y ) 

onsequently

σ =
1

Y

Tint

τ
ln
(
πτ (+Y )

πτ (−Y )

)


n other words the ìuctuation theorem requires that Ξ(Y, τ) is a straight line passing
through 0 and σ(Y, τ) = Ξ(Y, τ)/Y is independent of Y and τ 

ig  provides Ξ(Y, τ) for the trajectorywise and concatenating method t further
contains an estimate of σ for the latter method
or both methods Ξ(Y ) forms an approximately straight line which passes through

0 owever the slope depends strongly on the way the data is handled or τ ⩾ 1
2
Tint we
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Figure 6.7: volution of the shape of πτ with the ëlter width counterrotating propellers
Dpart = 10mm fprop = 4z he dashed line corresponds to σ = 0.4 in all  subëgures

ënd slopes of 0.2 0.4 and 10 for trajectorywise concatenating and shuffled respectively
ence concatenating is not a legit workaround to access longer ëlter widths
e applied the procedure to all co and counterrotating runs nfortunately the

statistics did not converge in some runs and in general only rough estimates of the slope
can be obtained evertheless we observe that

> he ìuctuation theorem is not satisëed for corotating impellers

> ut for counterrotating driving we ënd evidence that the dynamics of εva are gov
erned by the ìuctuation theorem

> hen normalizing σ with the propeller speed i.e. the integral time scale it is
σ Tint ≈ 0.1− 0.4 n other words σ ∝ fprop
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> he ìuctuation theorem is clearer and more pronounced for smaller particles di
ameters and unfortunately the results for the 24mm particle did not allow any
conclusion artially this size effect can be attributed to the higher amount of data
points for smaller particles cf ig  urprisingly no signiëcant dependency
of σ on the particle diameter is found

6.3 Summary
n this chapter we investigated the dynamics of the kinetic energy of the particle e
ënd that the energy exchange rate is nongaussian distributed he  shows wide
tails negative skewness small negative mean and a standard deviation  times larger
than the mean dditionally the energy exchange rate decorrelates within ∼ 1

10
of the

integral time scale hus the energy exchange of the sphere with the ìuid falls within the
mathematical theory of large deviations  e therefore tested if the dynamics of the
energy exchange are governed by the ìuctuation theorem     ur procedure
was similar to  where it was demonstrated that the force acting on a ëxed obstacle
in a von ármán ìow ìuctuates as stated in the theorem ere we investigated a freely
moving sphere in a turbulent ìow which conceptually different from the force acting on a
ëxed object as the sphere explores the whole volume wo ways – co and counterrotating
– of driving the ìow were tested e ënd that the ìuctuation theorem is not satisëed for
corotating impellers but we have ërst positive evidence for the counterrotating driving –
i.e. the energy exchange of the sphere with the ìuid is governed by the ìuctuation theorem
if the propellers are counterrotating e estimate the phase space contraction rate σ as
about 0.2T−1

int – i.e. σ ∝ fprop oreover no signiëcant inìuence of the particle diameter
is observed but it became evident that more data and more importantly longer trajectories
are needed lso we did not perform a stringent analysis if the energy exchange is coupled
to the other particles which were in the box at the same time hough a ërst inspection
revealed nothing remarkable
t is remarkable that albeit both ìow conëgurations are clearly turbulent the theorem

is only observed for the counter but not for the corotating propellers t the same time
we know that the mean ìow differs strongly between the forcings e thus suspect that
the ìuctuation theorem is related to the large scale structure
he ìuctuation theorem states that σ is related to the phase space contraction rate o

illustrate that rather abstract quantity one can ask what happens if the forcing suddenly
stops f the motors are running the injected energy equals the dissipation and the phase
space does not contract owever it contracts the moment the forcing disappears s
suming a simple exponential decay V(t) ∼ V0 exp (−σ  t) ≈ V0 exp (−0.2/Tint  t) tells
that the ìow stops within  to  integral time scales his is close to our observations
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7 An instrumented particle measuring
Lagrangian acceleration

undamental ìuid dynamics research in the lab consists of an interplay of suitable ìow
generation devices working ìuids measurement techniques and analysis owever in
the world outside the lab one is often limited he apparatus comes as it is providing no
or little access for probing the ìow ven if the ìuid is transparent the injection of tracer
particles might be still not allowed or unsuitable due to biomedical or food regulations
or the chemical properties of the ìuid
t the same time a good understanding of the ìow and the mixing within the apparatus

is crucial for optimizing both its output and energy consumption lthough ulerian
measurements are wellknown and largely available agrangian measurement techniques
have proven to give insights on the ìow from a different promising perspective 
istorically similar problems where encountered in oceanography and meteorology

 simple local measurement on ground level or the surface of the sea does tell little about
the ocean or the atmosphere herefore in these ëelds ocean ìoaters and weather bal
loons were developed hese instrumented vessels ìoat in air or water  respectively and
they contain a series of instruments e.g. for temperature and pressure plus a transmission
system and a battery to work autonomously s one can imagine they hardly ët on a lab
bench nevertheless they are small compared to the large scales of the targeted ìow
n  eanrançois inton oann asteuil oodrow hew and others  
presented an instrumented particle measuring temperature that is suitable for convection
experiments in the lab ts working principle is close to an ocean ìoater  small plastic
capsule with embarked electronics has thermistors on its surface whose resistance is mod
ulated on a carrier radio frequency he signal is then received with an antenna outside
the experiment demodulated and converted into the measured physical temperature he
ensemble of capsule thermistors battery and transmission circuitry is ∼ 16mm large
neutrally buoyant in water operates autonomously for several hours and transmits the
temperature in real time as it is advected with the ìow ence it falls into the family of
agrangian measurement techniques

ere we present a new instrumented particle that continuously transmits its agrangian
threedimensional acceleration – i.e. it measures the forces acting on it n contrast to the
swimming thermometer which was designed for convection experiments this particle is
intended for turbulent ìows andmore speciëcally for the characterization of devices where
optical measurement techniques are not applicable evertheless the basic construction
is similar a round leaktight plastic capsule contains battery digitizing and radio trans
mission system and a  accelerometer he density of the ensemble can be adjusted
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in a range of 0.8 − 1.4 g/cm and the sphere is 25mm in diameter hanks to its ra
dio transmission it is suitable for opaque ìuids or apparatuses without access for optical
measurement techniques ts continuous operation is advantageous over article rack
ing echniques which have to operate in chunks as the memory of the tracking cameras
is necessarily limited oreover the particle might be allowed in pharmaceutical mixers
if it passes the regulations of the  mark for medical devices1
owever as the particle is advected in a ìow it rotates and consequently continuously

changes its orientation with respect to the laboratory frame hereby the signals of the
accelerometer are altered in a nontrivial way ne is therefore in need of a detailed char
acterization and methods which extract meaningful information about the ìow from its
acceleration signals his is addressed twofold e demonstrate how some quantities such
as correlation times and the moments of the acceleration can be derived directly from the
signals s a crosscheck these quantities are compared against the motion of large solid
spheres
n order to get a better understanding of its motion and to verify that its transmitted ac
celeration is well related to its motion we apply our sixdimensional tracking method to
track the particles position and absolute orientation while simultaneously acquiring its
agrangian acceleration signal he absolute orientation is a crucial step here as it en
ables us to reexpress the agrangian acceleration in the coordinate system of the tracking
system ence we can compare these independent measurements

his chapter is organized as follows

> irst we present the instrumented particle and additional techniques needed for its
characterization section 

> e then present an analysis of the results obtained in two different mixers ere
the necessary methods are developed and tested section 

> inally we show results of the tracking of position and orientation of the instru
mented particle while simultaneously recording its acceleration signal section 

womixers – a vonármánmixer KLAC and the agrangian xplorationodule LEM
– are used in this chapter hey are described brieìy in ig  and in more detail in
chapter  and annex 
n contrast to the experiments with olymid spheres we adjust the weight of the

particle instead of the density of the ìuid hus the working ìuid in this chapter is
deionized water at 20 ◦

1arts of the requirements are that the particle is always extractable in one piece from the mixer and that
it survives sterilization he approval procedure concerns only smart and is not further discussed
in this document
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Figure 7.1: he mixers used for the characterization of the instrumented particle ost
experiments including the combined measurement with the tracking were per
formed in a square von ármán ìow the socalled KLAC the sphere in the image is
a smartart he ìow was driven with counterrotating and corotating impellers n
instrumented particle was injected into the agrangian xploration odule LEM too
he green light in the picture stems from a laser which was switched on only for its beauty
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7.1 An instrumented particle

he apparatus described in the following is designed and built by smart  a
young startup situated on the  de yon campus t builds mainly on the work of
oann asteuil during his thesis  the particle which measures temperature  
as well as developments carried out in the  yon he device consists of

> an instrumented particle the socalled smartPART  a spherical particle which em
barks an autonomous circuit with acceleration sensor a coin cell and a wireless
transmission system and

> an antenna which is connected to

> a data acquisition center the socalled smartCENTER which acquires decodes
processes and stores the signal of the smart

he system smart and smart enables us to measure the three dimen
sional acceleration vector acting on the particle in the ìow he received signals can be
displayed analyzed and stored for further processing

7.1.1 Design & Technical Details

7.1.1.1 Sensor

he central component of the particle is the   nalog evice – a three axis
accelerometer t belongs to the category of microelectromechanical systems 
ach of the three axes returns a voltage proportional to the force acting on a small movably
mounted massload suspended by microfabricated springs see ig  he three axes
of the   are decoupled and form an orthogonal coordinate system attached to the
chip package rom this construction arises a permanent measurement of the gravitational
forceacceleration g ≡ 9.8m/s  êg = g  êg ach axis has a guaranteed minimum full
scale range of±3g however we observe a typical range of±3.6g = 35m/s per axis y
design the x− and y−axis have an internal cutoff frequency of 1.6 kz whereas the z−axis
ëlters at 0.5 kz he sensor has to be calibrated to compute the physical accelerations
from the voltages of the accelerometer

7.1.1.2 smartPART

he signals from the   are ërstorder lowpass ëltered at fc = 160z and then
digitized at 12 bits and 316z sampling rate  multiplexer prior the signal digitization
induces a small time shift between the components of 0.64ms he output is then re
shaped into small packets and sent via radio frequency  free 2 band at 433.9z
is used as the carrier frequency he ensemble is powered by a coin cell  voltage regu
lator ensures a stable supply voltage and thus a constant quality of the measurement 

2hat are radio frequency bands which are reserved for industrial scientiëc and medical equipment e
vices operating in this range must tolerate the radio signals from other devices
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Figure 7.2: a)  b) the instrumented particle socalled smartPART  and its data control
acquisition unit socalled smartCENTER he coin cell is 20mm in diameter ables
and antenna are not shown here he diagram in c) sketches how the acceleration mea
surement is transmitted to and processed at the smartenter

all switch allows one to powerdown most components and thereby drastically increase
the life time of the battery  sketch explaining how the different components are related
is provided in ig 
he   is soldered to the printed circuit board such that it is situated close

to the geometrical center of the particle he particle itself is spherical with a diameter
of  mm he walls are made of olyetheretherketone  which is known for
its excellent mechanical and chemical robustness t is leakproof and its density can be
matched by adding extra weight to the interior to ìuids to a range of .− . g/cm
 relative density match of better than 10−4 is achievable he particle is thus suited for
most experiments in water and waterbased solutions epending on the power needed
to transmit the acceleration signals the life time ranges from 12 to 36 hours
umming up the smart transmits in realtime the accelerations acting on the

particle as it is advected in the ìow he accelerations are observed in a moving and
rotating coordinate system and consist of four contributions gravity translation noise
and possibly a weak contribution of the rotation around the center of the particle itself
t should be noted that the mass distribution inside the particle is neither homogeneous

nor isotropic dditionally the density matching is achieved by adding ungsten paste to
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Figure 7.3: nterior of the   accelerometer image based on   a mass
load is supported by springs parts b & c he x and y digitated sense capacitors measure
lateral movement part a whereas the z−axis is formed between the proof mass and the
underlying plate hat is also the reason for the lower resolution in z

the inside of the two capsules t is therefore possible that the particle is outofbalance
i.e. the center of mass does not coincide with the geometrical center he imbalance can
be adjusted to some extent as sketched in ig   particle which is outofbalance
has a strong preferred orientation and wobbles similar to a kicked physical pendulum
e therefore assume and prove later that its movement deviates from the classical case
of solid homogenous particles or that reason most experiments are performed with a
well balanced particle which rotates easily in the ìow n section  we show that the free
rotation is actually desirable he particles inertia is best described by a heavy disk of
20mm diameter  the battery  a spherical shell and patches of tungsten paste ne of
the eigenaxes of inertia coincides approximately with the z−axis of the accelerometer
he other two are within the x− y plane due to the rotational symmetry

c) d)a) b)

Figure 7.4: ossible mass distributions of the particle ts inertia consists mainly of a disk
and a spherical shell however the density adjustment also sets the imbalance of the particle
parts c  d ost of the experiments with the smart are done in conëguration c

7.1.1.3 smartCENTER

he signals from the smart are received by an antenna connected to a radio recep
tion processing and display unit the socalled smartCENTER nce the raw signal is
acquired the smart decodes in realtime the packets to obtain the raw voltages
of the   he physical acceleration aSP  sensed by the smartart can then be
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computed according to q 

aSP =

 a1
a2
a3

 =

 (A1 −O1)/S1

(A2 −O2)/S2

(A3 −O3)/S3

 

where Ai Oi and Si are the measured raw signal the offset and the sensitivity of each
axis respectively ffset and sensitivity have to be calibrated beforehand the procedure
is described in section  he resulting timeseries are saved for further processing

7.1.1.4 Contributions to the Acceleration

he acceleration sensor measures the forces acting on it as it moves in the ìow he
following contributions can be identiëed

Gravity y construction gravity g is always contributing to a ince the particle is a pri
ori oriented arbitrarily in space g is projected to all  axes otations of the sensor
around the axis of gravity do not change the measured signal

Translation he agrangian acceleration atrans =
d2
dt2 x(t) will be projected onto the sen

sor owever the projection changes if the sensor is rotating

Rotation f the sensor is placed by r outside the geometrical center of the sphere one
observes two centrifugal forces acf = ω × (ω × r) and acc =

( d
dtω
)
× r

ccording to the technical drawing it is r ≈ 3mm  êz

Coriolis he construction of the   and the fact that the circuit is ëxed within
the sphere ensure that the oriolis force is zero

Noise & spikes n ideal situations the smartart has a noise of less than 0.01g for each
axis which can be handled by a low pass ëlter rong detections appear as strong
deviations from the signal and are hard to distinguish from high acceleration events
due to the turbulent ìow or contacts with e.g. the propellers

Orientation of the sensor he orientation of the particle is a priori changing as it is
advected in the ìow he orientation of the sensor can be described by an absolute
orientation with respect to a reference coordinate system R(θ(t)) plus a constant
rotation matrix R which handles the orientation of the sensor with respect to
an outer texture as well as the arbitrary choice of the reference frame f needed
one can incorporate R into the timeseries of absolute orientation R(θ(t)) or
simplicity R = 1 in most cases

ombining the different terms yields

aSP = RT
R

(
θ
)T [

g +
d2

dt2
x(t) + ω × (ω × r) +

dω

dt
× r

]
and

R
(
θ
)
R aSP = g +

d2

dt2
x(t) + ω × (ω × r) +

dω

dt
× r


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xtracting meaningful information on the ìow from the smartart is explained later in
section 

7.1.2 Calibration & Resolution

he offset and sensitivity of the   have to be calibrated in order to convert the
measured voltages into a physical acceleration he axes of the accelerometer form an
orthogonal coordinate system according to q  t rest one always observes grav
ity projected on the sensor at an arbitrary orientation he observed raw values deëne
consequently a translated ellipsoid 

aSP aSP =
(Ax −Ox)

2

S2
x

+
(Ay −Oy)

2

S2
y

+
(Az −Oz)

2

S2
z

= |g|2 = 1 

or simplicity |g| ≡ 1 q  can be arranged to

1 = ζ1 A
2
x + ζ2A

2
y + ζ3A

2
z − 2ζ4 Ax − 2ζ5 Ay − 2ζ6 Az 

with ζ1 . . . ζ6 six parameters containing offset and sensitivity  sufficient number of
measurements with different orientation deënes a set of equations which is solved using
a linear least squares technique  to  data points are necessary to certainly obtain
stable results ffset and sensitivity are then computed from the resulting ζ1 . . . ζ6 he
calculations can be found in appendix 
e found that a particle at rest has an average noise of σx = σy ≈ 2.3[q] and σz ≈ 3.5[q]
1 q is the quantization of the digitizer n physical units that corresponds to σx = σy =
0.006g and σz = 0.008g and |σ| =

√∑
i σ

2
i = 0.012g n analysis using the residuals

showed an slightly higher resolution of

σx = σy = 0.005g , σz = 0.003g and |σ| = 0.008g . 

hese values are thus the absolute errors of our measurement  second different cali
bration method based on geometrical construction results in a comparable resolution

7.1.2.1 Reproducibility & Robustness

he temperature in an experiment is not necessarily ëxed hen for example monitoring
an industrial mixer the temperate can vary within short time by several elvin oreover
the slowly discharging of the battery might induce a slow drift
he   has amongst other things been chosen for its weak temperature depen

dence its offset varies by typically 1mg/◦ ≈ 0.4 q/◦and its sensitivity by 0.015/◦
o check that the smart – i.e. the ensemble of accelerometer digitizing and radio
emission circuitry – works comparably we calibrated after it swam for several minutes
in a water bath of known temperature ig  shows that the temperature dependence
is nonzero but comparable to the speciëcations of the   owever for high
precision measurements it is advised to calibrate at experiment temperature shortly before
doing the experiment
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Figure 7.5: emperature dependence of a sample smart the x y z component are
red green and blue respectively

ig  shows the long time behavior of the particle at rest ere the radio emission
power was set to medium which corresponds to capturing its signal at up to 10m in air
and 0.5m in deionized water he x− and y− axes do stay constant and show only little
increase in noise as the coin cell slowly discharges he z−axis has a slow drift of the order
of 2 q

h  he usable life time is 32 hours followed by a few hours with signiëcantly higher
noise until the particle fully stops working he particle is that sensitive that ground
vibrations caused by people walking in the officelab are detected
 stronger radio emission power can be required if

> he apparatus builds a araday cage i.e. an electricallyconnected metal structure
surrounds the ìow

> lectroagnetic noise is present e.g. caused by badly isolated motors or electro
magnetic shakers

> he signal has to pass a longer distance in more water in a bigger apparatus

> olutions with a high conductivity e.g. salt water are likely to damp the radio
signal

he receiverdemodulation unit of the smartenter works best within a range of radio
power i.e. particles which are emitting either too strong or too weak are undesirable
hereas medium power was optimal in the  strong radio emission has to be used
in the  in order to continuously receive the particles signal evertheless particles
with stronger radio emission still last 6 to 12 hours which is sufficient in most cases
onsidering the mechanical robustness the smart survived several hours in the

 and the  oth have impellers which are equipped with sharp edged blades in
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Figure 7.6: ong time behavior of a sample smart

order to achieve an inertial forcing ut the shell cracked once when the edge of a blade
damaged the underlying thread t then ëlled with water and sank to the bottom the
circuit was fully functional after drying

7.1.3 Orientation of the sensor within the capsule

he sensor is ëxed within the capsule such that it doesnt move owever the circuit is
inserted by hand between the two half spheres hus its orientation with respect to an
outer texture is not known and has to be determined if one wishes to perform simultaneous
acquisitions of its signal and its sixdimensional trajectory
he following is an extension of the procedure to ënd the texture as stated in para

graph  pictures of the particle at arbitrary orientations are taken o determine
the position of the sensor it is additionally necessary to simultaneously acquire its signal
and to know the exact orientation of g its magnitude is wellknown he latter can be
achieved by placing the camera such that its optical axis coincides with the axis of gravity
and the particle center or simplicity we set g = g  ez which tells us how to reproject
g on the half sphere for each image3
hus we have N tuples each consisting of an image its measured acceleration a(k)

and its orientation θ(k) with respect to a base view he accelerometer can be seen as

3or an image k with an arbitrary but known orientation θ(k) its position with respect to an unrotated
sphere and therefore on the texture can be computed by g(k) = R(θ(k))T ez 
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three independent sensors each measuring the projection of g on axis ci ci is ëxed with
respect to the texture or simplicity we focus on only one sensor at a time ai(k) is then
the projection of g onto ci at the k−th image

ai(k) ≡ g(k)  ci 

ll points ξ with
g(k)  ξ = ai(k) 

are possible candidates for ci because of rotations around the axis of gravity do not alter
the measured acceleration q  hese points form a circle on the surface of a
sphere4
or more than one measurement the circles cross at ci because it is the only point

which fulëlls q  for multiple measurements  sketch is provided in ig 
hus we can determine where the three axes of the accelerometer point on the texture

easurement errors might cause that the three axes are not perfectly orthogonal and
thereby resulting in a bad rotation matrix abschs algorithm cf appendix  is then
used to compute a valid rotation matrix R verifying RR

T
 = 1 and det(R) = 1

-1
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1
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g(2)
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Figure 7.7: ketch explaining how to ënd the position of the sensor he circles are
g(1)  ξ = ai(1) = g(1)  ci and g(2)  ξ′ = ai(2) = g(2)  ci respectively he cir
cles cross at ci

4isualizing them in the ϕ, θ coordinates of the texture is less intuitive
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7.1.4 Runs

easurements were performed in a von ármán ìow the  and the agrangian
xploration odule  in all the runs presented we kept the propeller frequency
fprop constant during the measurement and the density of the particle was adjusted to
that of water  list of the runs where we only recorded its signal is provided in table 
e also performed two experiments where we acquired the particles acceleration signal
and simultaneously tracked its position and absolute orientation hey were done in the
 counterrotating impellers running at a speed of 2z and 3z

runs particle infos frequencies [z]




 c c counterrotating im
pellers

0.25 0.33 0.66 1 1.25 1.5
1.66 2 2.33 2.5  2.75 3
3.25 3.5 4

corot c co rotating impellers 1, 1.5, 2
c c counterrotating im

pellers strong imbalance
0.5, 1, 1.5


  c all motors 1, 2, 3, 4, 5

Table 7.1: data runs with only the smart particle the working ìuid was always water ll
runs were done in ugust  and all particles except cďčĖ are well balanced
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7.2 Directly accessible quantities
s explained in section  we have to deal with the orientation of the sensor in ad
dition to the gravitational translational and rotational forces acting on the particle when
describingunderstanding the particles signal ccording to q  one measures

a = R
T
R

(
θ
)T [

g +
d2

dt2
x(t) + ω × (ω × r) +

dω

dt
× r

]


with r = 3mm  êz the displacement with respect to the geometrical center of the particle
xperiments on the rotation of solid spheres in a von ármán ìow showed that the angular
velocity ω of the particle is of the order of the propeller frequency fprop he rotational
forces are of order r ω2 ∼ r  (4π2 f 2

prop) ≲ 1
10

atrans and q  reduces to

a ≈ R
(
θ
)T

[g + atrans] ⇔ R
(
θ
)

a ≈ g + atrans 

his simpliëcation will be veriëed experimentally later in section 

s the particle is advected by the ìow it also rotates freely and more important in an a pri-
ori unknown way onsequently one has to investigate how common quantities mainly
mean and variance of the acceleration time series as well as auto correlation functions are
altered by the continuously changing orientation of the sensor R

(
θ
)
 n the following

the abbreviation R = R
(
θ(t)

)
is applied for readability

7.2.1 “Shakiness”

aking the average of q  yields

⟨a⟩ =
⟨
RTg

⟩
+
⟨
RTatrans

⟩


lthough the particle is carefully prepared its moment of inertia is not that of a solid
sphere and the particles center of mass does not perfectly coincide with its geometrical
center onsequently the particle becomes slightly outofbalance with a preferred ori
entation at in calm ìows ence q  becomes ⟨a⟩ = RT (g + ⟨atrans⟩) at a low
turbulence level onsidering the low turbulence level and the fact that most ìows are
conëned this can further be simpliëed to ⟨a⟩ ≈ RTg and |⟨a⟩| ≈ g ith increas
ing impeller frequency and consequently higher turbulence level the particle starts to
explore all orientations meaning g and atrans are randomly projected in all directions and
the mean ⟨a⟩ diminishes q  is thus merely a detector for the rotation of the
particle
ig  shows ⟨a⟩ as a function of the propeller speed fprop and the forcing s

expected the mean accelerations are becoming smaller with increasing propeller frequency
lthough it is trivial it should be pointed out that

|atrans| ≥ |a| − g 
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Figure 7.8: volution of ⟨a⟩ with the propeller speed fprop ëlled symbols ◦ indicate
corotating propellers n all cases the particle explored the ìow for a sufficient amount
of time for the statistics to converge n good agreement with q  |⟨a⟩| contin
uously decreases from 1 g to 0 g as the propeller frequency increases

n other words |a| is not a justiëable quantity to estimate themean acceleration i.e. force
seen by the particle
imilar arguments show that the variance of a and therefore the standard deviation
 is altered by the rotation too oreover the variance of a component a,i of
a depends strongly on its mean value ⟨ai⟩ s shown before gravity renders ⟨ai⟩
nonnegligible dditionally we observed at weak turbulence levels fprop ≲ 1z that
particles are able to stay in an orientation for several seconds ence a global mean of
the complete timeseries is not a meaningful quantity lthough subtracting a moving
average with a window length of several 10 s performs well in estimating the variance it is
not efficient in a computational sense nstead we apply a loworder bandpass ëlter with
flow ≈ 1

10
z and fhigh ≈ 100z to the time series flow is chosen such that it is much

smaller that the expected slow timescales of the ìow or a possible rotation of the particle
igh frequency noise associated to the electronics is handled by fhigh his technique also
works if a global mean is applicable
ig  shows the dependence of the  of the components a,i of a on the

propeller speed fprop e found no preferred direction in any of the axes imensional
arguments and the results from chapter  tell that atrans ∝ f 2

prop n contrast thereto we
observe a linear or in the case of the  sublinear scaling with the propeller frequency
e further investigated |a| and noticed that  of the norm is always smaller than the
 of the components conërming experimentally the simple inequality of q 
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Figure 7.9: volution of the  of the components of a with the propeller speed
fprop a bandpass ëlter is used to subtract the mean he error bars indicate the spread
within the three components or comparison we also show  ai for solid spheres
cf ig  lthough not shown here (|a|) is always smaller than the  of
the single components of ai
n opposition to dimensional arguments and results for solid spheres in similar ìow con
ditions the  is not proportional to f 2

prop

ne can further look at the  of the components of a ig  provides as an
example the  of the balanced particle c104 at low and high turbulence hereas at
low propeller speeds the  are skewed and shifted they become centered and symmet
ric with increasing propeller speed he   saturates if the accelerations exceed
±3.6g we exclude these points from the analysis his removal diminishes the observed
acceleration and the bias increases with the forcing n the case of ig  almost 3
of all data points were removed at fprop = 4z hat is two orders of magnitude more
than for fprop = 1z s we will see in the following the saturation of the accelerometer
leads to an underestimation of the moments of the  of atrans
xcluding data points with ai > 3.6g alters the observable variance and ìatness

Résumé: ecapitulating both mean and variance of the raw signals do contain only
little information on the ìow hat means that naivedirect approaches on raw signals
risk to evaluate the shakiness of the signals instead of the underlying physics ence well
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Figure 7.10:  of the components of a at low 1z and high 4z turbulence
he latter has been shifted for readability oints where axes of the accelerometer saturated
are deactivated and not used in the analysis he saturation of the accelerometer leads to
an underestimation of the moments of the  of atrans

adapted methods are needed to extract informations on the ìow from the instrumented
particles n the next section we will develop these methods
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7.2.2 Moments of atrans

n most ìows one expects ⟨atrans⟩ ≈ 0 ne is therefore interested in the  of atrans
lthough we dont have direct access to atrans and its  we can compute the even
central moments of its 

Variance he variance of a is5⟨
a2

⟩
=
⟨
RTg RTg

⟩
+
⟨
RTatrans RTatrans

⟩
+ 2

⟨
RTg RTatrans

⟩
= g2 +

⟨
a2
trans
⟩
+ 2g ⟨az⟩

≃ g2 +
⟨
a2
trans
⟩ 

az ≡ êz atrans has zero mean if the particle is neutrally buoyant and the ìow is conëned
hat is the case for most ìows and we obtain an estimator for the standard deviation of
atrans

arms ≡
√

⟨a2
trans⟩ ∼=

√
⟨a2

⟩ − g2 

lthough arms is independent of gravity a bad calibration e.g. caused by longterm drift
or temperature change can introduce a systematic offset to arms t is thus advised to
always recalibrate before doing the actual experiment he left plot in ig  depicts
the evolution of arms with the driving ne ërst notices that arms depends on the mixer
the acceleration is much smaller in the  than in the  n agreement with di
mensional analysis arms

(
fprop

)
describes a parabola however one could also argue that

arms
(
fprop

)
is linear for fprop larger than some threshold t should be kept in mind that

each axis of the smartarts accelerometer is limited to ±3.6 g ven if the ìow induces
events of higher acceleration these are not detectable cf ig  and therefore not
included in the observed variance f one likes to investigate the behavior at large fprop
the   has to be replaced by a different model supporting higher accelerations
ne also has to ensure that both apparatus and particle mechanically support the forces
occurring at higher propeller speeds

Flatness n the spirit of q  one can estimate the higher moments ofatrans which
we demonstrate here for the forth central moment the îatness6 t is⟨

|a|4
⟩

=
⟨[
g2 + a2

trans + 2 g atrans
] [

g2 + a2
trans + 2 g atrans

]⟩
=
⟨
|atrans|4

⟩
+ g4 + 2g2

⟨
|atrans|2

⟩
+ 4g2

⟨
|az|2

⟩
+ 4 g3 ⟨az⟩+ 4g

⟨
|atrans|2 az

⟩
≈
⟨
|atrans|4

⟩
+ g4 +

10

3
g2a2rms



5he dot product of two vectors in other words the angle between them is invariant to choice of the
coordinate system herefore

(
R1a

)

(
R2b

)
=
(
RT

2 R1a
)
 b = a 

(
RT

1 R2b
)
for R1,R2 arbitrary

rotation matrixes
6lso known as kurtosis
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Figure 7.11:  and latness of atrans

Left arms(fprop) ≡ (atrans) ∼=
√⟨

a2
(fprop)

⟩
− g2

Right estimate of the ìatness of atrans

ssuming no preferred direction in atrans it is 4g2
⟨
|az|2

⟩
≈ 4/3 g2 a2

trans gain the
terms 4 g3 ⟨az⟩ and 4g

⟨
|atrans|2 az

⟩
are expected to have zeromean he ìatnessF (atrans)

is then

F (atrans) =

⟨
|atrans|4

⟩
⟨a2

trans⟩
2 =

⟨
|a|4

⟩
− g4 − 10

3
g2a2rms

a4rms


s shown in ig  we observe a ìatness of the order of 10 in the  which is close to
our ënding for solid particles in the  we ënd F ∼ 40 lthough these values seem
plausible one has to be careful in their interpretation he uncertainty in the ìatness
can partially be attributed to an uncertainty in g and stems from the resolution noise
and measurement range of the smartart but also from the particles weak temperature
dependence and drift t is furthermore biased by contacts with the impellers and walls
ore surprisingly the ìatness decreases in both apparatuses with the forcing his decline
is due to the measurement range of the   t high accelerations the sensor
saturates and thereby sets 

(
atrans

∣∣ |ai| > 3.6g
)
= 0 ince the ìatness is the forth

moment of the  and as such highly sensitive to high accelerations we ënd a decrease
although solid large spheres in the same ìow have an increasing ìatness cf chapter 
ossibly the uncertainty in the ìatness estimate can be reduced by ëltering or improved

electronics owever it is evident that calculating moments of even higher order is out
of reach
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7.2.3 Influence of inertia & imbalance

s explained in section  the imbalance of the particle is adjustable to some extent
he runs cďčĖ correspond to a particle which is strongly out of balance whereas the other
particles cďčď and cďčĘ show little imbalance he inertia can be approximated as the
sum of a spherical shell the capsule a cylinder  the battery and circuit and two point
masses the added weight he ensemble has one axis of symmetry which by construction
coincides with the z−axis of the accelerometer ence the smartarts inertia has exactly
two unique moments – Jz for rotations around the z−axis and Jxy for the perpendicular
case imple estimates based on the technical drawings yield Jz ≈ 2  −kg m and
Jxy ≈ 3.5 Jz he resonance frequency of a physical pendulum with displacement rdisp
and mass m is approximately7

T = 2 π

√
J

gmrdisp


n imbalanced particle behaves similar to such a physical pendulum which is in addition
drivenkicked by the ìow ssuming a difference between center of mass and geometrical
center of rdisp = 2 mm one ënds T (Jz) ≈ 0.2s and T (Jxy) ≈ 0.4s he resonance
frequencies are thus f(Jxy) ≈ 2.5z and f(Jz) ≈ 5z they are in a ërst approximation
independent on the forcing
ig  shows the power spectral density of the imbalanced particle cďčĖ at propeller

speeds of 0.5z 1z and 1.5z he x and y axes coincide and differ clearly from
the z−axis ne peak for x and y and two clear peaks for the z−axis can be identiëed
in either case their position is independent of the forcing oreover the peak position
correspond to the  resonant frequencies f(Jxy) and f(Jz) which were estimated from
the technical drawings  wellbalanced smartart at the same propeller speed shows
neither the distinct peaks nor do the axes differ t is clear that the peaks alter the auto
correlation functions in an unwanted way

7small angle approximation
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Figure 7.12: ower spectral density of imbalanced particle cďčĖ at propeller speeds of
0.5z, 1z, 1.5z x coincides with y • and is not plotted for readability ne
peak for x and y and two clear peaks for z □ can be identiëed in either case their
position is independent of the forcing oreover the peak position can be estimated
from the technical drawings o peaks and no difference in the three components is
found for a wellbalanced particle ▲ cďčĘ
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7.2.4 Auto-correlations

t is remarkable that based only on arms one cannot clearly distinguish between a counter
rotating and a corotating ìow although it is known that these two forcings induce two
clearly different ìow types deally one would want to compute the autocorrelation of
the translational force e.g. ⟨atrans (t) atrans (t+ τ)⟩ to estimate correlation time scales
of the ìow gain the constantly changing orientation of the smartart blocks any direct
access to atrans (t) and quantities derived thereof e hence need to ënd quantities which
are either not altered by the orientation of the smartart or extract information on its
rotation

7.2.4.1 An Auto-correlation invariant to the rotation of the sensor

n the spirit of q  and q  one can construct the auto correlation function
of the magnitude of |a|2⟨

|a(t)|2 |a(t+ τ)|2
⟩

=
⟨[
g2 + a2

trans(t) + 2 g atrans(t)
] [

g2 + a2
trans(t+ τ) + 2 g atrans(t+ τ)

]⟩
=
⟨
|atrans(t)|2 |atrans(t+ τ)|2

⟩
+ g4 + g2

(⟨
|atrans(t)|2

⟩
+
⟨
|atrans(t+ τ)|2

⟩)
+ 2 g2 (⟨g atrans(t+ τ)⟩+ ⟨g atrans(t)⟩) + 2

⟨
|atrans(t)|2 g atrans(t+ τ)

⟩
+ 2

⟨
|atrans(t)|2 g atrans(t+ τ)

⟩
+ 4 ⟨(g atrans(t+ τ)) (g atrans(t))⟩

=
⟨
|atrans(t)|2 |atrans(t+ τ)|2

⟩
+ g4 + 2g2

⟨
|atrans|2

⟩
+ 4g2 ⟨az(t) az(t+ τ)⟩

+ 4 g3 ⟨az⟩+ 2g
⟨
|atrans(t+ τ)|2 az(t)

⟩
+ 2g

⟨
|atrans(t)|2 az(t+ τ)

⟩
≈
⟨
|atrans(t)|2 |atrans(t+ τ)|2

⟩
+ g4 + 2 g2a2rms + 4g2 ⟨az(t) az(t+ τ)⟩



gain the terms containing az ≡ êz atrans are expected to have zero mean owever
4g2 ⟨az(t) az(t+ τ)⟩ = 4g2

⟨
|az|2

⟩
for τ ≈ 0 ssuming no preferred direction in

atrans this can be approximated as 4/3 g2 a2rms n contrast to q  we preferably
compute the autocorrelation of the ìuctuations8 around the mean9 ⟨a2

SP ⟩ ence the
autocorrelation of the norm can be negative e further normalize the autocorrelation
such that it is 1 at τ = 0 or more details please see appendix 
ig  displays

⟨
|a(t)|2 |a(t+ τ)|2

⟩
for three different conëgurations at a pro

peller speed of 1.5z  balanced and an imbalance particle in the same ìow conëgu
ration show only little difference in the autocorrelation function hat is in contrast to
paragraph  which demonstrated that imbalance causes distinct peaks in the power
spectrum of the single components of a espite their different rotational dynamics

8very merican should have above average income and my dministration is going to see they get
it ill linton on the campaign trail

9
⟨(

|a(t)|2 − µ
)(

|a(t+ τ)|2 − µ
)⟩

with µ =
⟨
a2
SP

⟩
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particles extract almost identical time scales of the ìow heir autocorrelation should be
well approximated by a sum of exponential decays or the transient function of a critical
damped oscillator
n contrast to the counterrotating ìow we observe that corotating impellers corre

spond to an autocorrelation function which resembles a weaklydamped oscillator his
means that this forcing creates more coherence in the large scale motion of the corotating
ìow oreover this difference in the ìow structure is observable with an instrumented
particle his is in agreement with ulerian measurements  where pressure probes
were mounted in a von ármán ìow hereas the counterrotating ìow produces typical
pressure spectra the same probe in the corotating case yields a spectrum which peaks at
multiples of the propeller frequency imilar behavior has been reported for the magnetic
ëeld in a von ármán ìow  ëlled with liquid allium

umming up
⟨
|a(t)|2 |a(t+ τ)|2

⟩
is insensitive to the particular rotational dynamics

of the particle t gives necessary information to determine the type of ìow

7.2.4.2 An Auto-correlation related to the tumbling of the particle

ne can further focus on the rotation of the particle by considering the dot product of
a(t) a(t+ τ)

⟨a(t) a(t+ τ)⟩

=
⟨[
R (θ(t))T (g + atrans(t))

]

[
R (θ(t+ τ))T (g + atrans(t+ τ))

]⟩
=
⟨[
R
(
θ(t+ τ)

)
R
(
θ(t)

)T
(g + atrans(t))

]
 [(g + atrans(t+ τ))]

⟩
= ⟨g  [T (t, τ)g]⟩+ ⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩

+ ⟨[T (t, τ)g] atrans(t+ τ)⟩+ ⟨[T (t, τ)atrans(t)]  g⟩

≈ g2 ⟨êz  [T (t, τ)êz]⟩+ ⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩



he termT (t, τ) ≡ R
(
θ(t+τ)

)
R
(
θ(t)

)T is a rotationmatrix related to the instantaneous
angular velocity ω of the particle as explained in section  gain the two terms
containing products of g and a vanish if the particle is neutrally buoyant he term
g2 ⟨êz  [T (t, τ)êz]⟩ is related to the tumbling of a spherical particle 
n contrast to the other autocorrelation q  one cannot subtract a mean value

prior computing ⟨a(t) a(t+ τ)⟩ o estimate the ratio between g2 ⟨êz  [T (t, τ)êz]⟩
and ⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩ it is helpful to normalize by g2 f ⟨a(t) a(t+ τ)⟩
becomes uncorrelated is does not necessarily vanish f uncorrelated

g2 ⟨êz  [T (t, τ)êz]⟩ = g2
⟨
R (θ(t))T êz R (θ(t+ τ))T êz

⟩
= g2

⟨
RT êz

⟩2 ⩾ 0

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Figure 7.13: otationinvariant and rotationsensitive autocorrelation functions⟨
|a(t)|2 |a(t+ τ)|2

⟩
rescaled and ⟨a(t) a(t+ τ)⟩ /g2 n all cases the

propeller speed is 1.5z  logarithmic scale was chosen for the abscissae as it displays
both short and long time contributions to the correlations
or the rotation invariant

⟨
|a(t)|2 |a(t+ τ)|2

⟩
we ënd that the imbalanced particle

cďčĖ shows only little difference to the balanced one cďčĘ which is in contrast to
paragraph  dditionally the autocorrelation signiëcantly differs between counter
and corotating impellers
⟨a(t) a(t+ τ)⟩ /g2 shows a clear impact of the balance

hat means ⟨a(t) a(t+ τ)⟩ approaches a plateau whose height is determined by the
average orientation of the particle
he lower plot in ig  depicts ⟨a(t) a(t+ τ)⟩ /g2 for three different conëgura
tions at a propeller speed of 1.5z or comparison to

⟨
|a(t)|2 |a(t+ τ)|2

⟩
only the

autocorrelation function changed the conëguration and fprop are unaltered n contrast
to the rotationinvariant function all three curves are different and reach a plateau for
τ ≳ 1s
o investigate the role of the plateau we plot the autocorrelation of the wellbalanced
particle for increasing fprop in ig  or fprop ≲ 1z one ënds little change with
the plateau at almost 1 or fprop ≈ 2z the plateau drops but is still nonzero urther
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Figure 7.14: ependence of ⟨a(t) a(t+ τ)⟩ /g2 on the propeller speed balanced
particle cďčĘ counterrotating propellers he bottom plot shows the same data after
subtracting the plateau and rescaling ⟨a(t) a(t+ τ)⟩

increase in fprop the plateau vanishes t the same frequency range we observe that the
 of the components of a becomes centered and symmetric
n order to gain access to the ìuctuations around a mean value µ one can subtract the

plateau and then rescale his is done for in the top plot of ig 
t becomes clear that a more detailed investigation of the particles trajectory is needed

n section  we present results from the acquisition of the signal and the simultaneous
dimensional tracking of the instrumented particle
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7.2.5 Time scales

he autocorrelation functions contain one or more timescale which are related to the
movement of the particle in the ìow he functions resemble transient functions of a
harmonic oscillator ig  demonstrates the two scenarios of weakly damped and
overdamped oscillation e therefore tried the following techniques to extract meaning
ful timescales of a sample autocorrelation function A(τ)

value-crossing his straightforward ansatz determines whenA(τ) is smaller some thresh
old A0 for the ërst time he resulting timescale τcorr strongly depends on the
choice of the threshold oreover in some runs A(τ) falls close to 0 but stays pos
itive one should thus not set A0 ≈ 0 his method underestimates the correlation
time of the oscillating case

fit inceA(τ) reminds one of the driven harmonic oscillator we ët the weakly damped

fo(τ) = a0 exp (−τ/τcorr)  sin (2πfosc + ϕ0) 

and the critically damped transient function

fd(τ) = exp (−τ/τcorr)  (a0 + a1 τ) 

to A(τ) τcorr, fosc and a0, a1, ϕ0 are ëtparameters e return τcorr from the test
function which performs better in approximating A (τ) fosc enables us to estimate
the tumbling frequency of the particle e also tested the overdamped case which
is a sum of exponential decays but it showed to be not numerically robust

slope ne can further determine the slope of A(τ) near τ = 0 i.e. the derivative at
τ ≈ 0 or the stronglydamped case this corresponds to ëtting an exponential
decay fe(τ) = exp (−τ/τcorr) to A (τ) owever in the case of an oscillating
A (τ) one obtains a value proportional to the frequency of the oscillation but not
to decorrelation

Mittag-Leffler e stumbled upon the ittageffler function which performs surpris
ingly well in approximating A(τ) t is related to fractional differential equations
owever we do not yet understand its full meaning and how to extract timescales

integral he integral of the autocorrelation function gave no valid results

he ët method performs best and is thus selected

ig  shows τcorr as a function of the propeller speed and driving or the rotation
invariant function

⟨
|a(t)|2 |a(t+ τ)|2

⟩
we ënd that τcorr of the balanced particle in

a counterrotating ìow or the  follows roughly a f−1.5
prop powerlaw his powerlaw

would be suggested by the scaling of the olmogorov time scale τη ∝ ε−1/2 and ε ∝ f 3
prop

too owever this is probably a coincidence since the obtained correlation times are  to
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 times larger than τη evertheless it is as expected τcorrcounterrotation<τcorrco
rotation t should be pointed out that corotating impellers induce only small variations
in τcorr but an oscillation frequency following the propeller speed with fosc ∼ 2

3
fprop not

shown in ëgure urprisingly the imbalance particle behaves completely different than
its balanced counterpart
fter removing the plateau and renormalizing one can apply the same method to the
rotation sensitive function ⟨a(t) a(t+ τ)⟩ whereas this method performs poorly
for the  data we note the runs in the  are almost alike and follow the same
f−1.5
prop powerlaw
urthermore one gains access to the tumbling frequency fosc cf right plot in ig 
fosc varies only little with propeller speed n the case of the imbalanced smartart we ënd
fosc ≈ 2.4z which is close to the resonance frequency found earlier urther it is
foscimbalanced∼ 2.5foscbalanced ith T = 2π

√
J/
(
g m rdisp

)
q  one

thus estimates that the displacement between center of mass and geometric center of
balanced particles is  times smaller than for the imbalanced particle
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e

Figure 7.15: ime scales of ìow and particle tumbling τcorr is determined from the ro
tation invariant autocorrelation and the tumbling of the particle fosc from the rotation
sensitive function he dashed line left plot indicates a f−1.5

prop powerlaw which stems
from the scaling of the olmogorov time scale τη ∝ ε−1/2 and ε ∝ f 3

prop
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7.3 Estimating flow parameters
f key parameters of the ìow can be estimated with an instrumented particle this novel
apparatus becomes a promising tool for engineers n order to compare between simula
tions and mixers one would like to know the energy transfer rate ε eddy diffusivity νeddy
correlation time scales τcorr and the turbulence level n the section before we gained
access to the moments of the translation and times scales of the ìow
n the following we develop suitable approximations based thereon

7.3.1 Energy transfer rate

ased on the particle diameter D its acceleration arms and a time τcorr one can con
struct10 an estimate of the energy transfer rate ε he following four combinations of
these three quantities yield the unit [m/s] of the energy injection rate

DSP · arms · τ−1
corr lthough this estimate is not based on olmogorovtype arguments it

considers both motion of the particle and the ìow structure owever we found
that D  arms  τ−1

corr delivers an acceptable approximation for tracer particles in the
öttingen  cf section  too

D
2/3
SP · a3/2rms is motivated by an extension of the eisenbergaglom scaling to ënite size

particles 

⟨
a2
⟩
= a0 ε

3/2 ν−1/2

(
Dpart

η

)−2/3



nserting η = ν3/4 ε−1/4 and a0 ≈ 1 yields ε = D
1/2
 ⟨a2⟩3/4

a2rms · τcorr he eisenbergaglom scaling further tells that ⟨a2⟩  τη ∼ ε in the case of
tracers or large spheres Dpart ≫ η this is unlikely to hold

D2
SP · τ−3

corr is just named for completeness as it is only based on the ìow structure but not
the particle motion

10 http://xkcd.com/687/
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ased on previous observations we can rule out some of the combinations
– arms is almost the same for co and counterrotating forcing ne therefore concludes
that combinations which do not contain τcorr cannot distinguish between the two forc
ings and are mostly likely wrong
– urthermore τcorr is larger in the corotating than in the counterrotating case on
sequently and in contrast to measurements of ε a2rms  τcorr is larger for the corotating
driving too
n the  and the  we have knowledge of ε by either measuring the mechan

ical power injected by the motors or from  data in the center of the  e can
thus test the four combinations n the case of counterrotating impellers all estimates
are comparable for fprop > 2z owever for lower propeller speeds and for corotating
driving the estimates cover three orders of magnitude nly D  arms  τ−1

corr gives an ap
proximation close to the measured ε for both drivings it is provided in ig  he
estimator performs similar in the  when comparing to ε based on the power injected
by the motors t should be pointed out that εmotor is 20 times the value measured in
the center by  he discrepancy between the two ways of estimating ε has been noted
for the öttingen  too

100

10−1

100

101

propeller speed fprop  [Hz]

en
er

gy
 in

je
ct

io
n 

ra
te

  [
m

2 /s
3 ]

c104, counter−rot
c104, co−rot
LEM
ε(KLAC,counter−rot)
ε(KLAC,co−rot)
ε(LEM,motors)

Figure 7.16: stimating the energy injection rate ε from D  arms  τ−1
corr

ε and ε denotes measurements based on the power injection of the motors
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7.4 Simultaneous Tracking & Acquisition

n order to better understand the instrumented particle and to verify that its observed
agrangian acceleration is related to the ìow we applied our sixdimensional tracking
technique11 hat means that we synchronize the smartenter with highspeed cameras
to acquire the particles signal while simultaneously ëlming it
he experiment is performed as follows

> ne ërst adjust the density mounts a fresh coin cell and closes the capsule t is
wise to check that the particle is leaktight and in standby mode ere we use the
particle with circuit cďčĘ

> he painting of the texture follows o determine the texture and the orientation
of the acceleration sensor with respect to the texture one then takes imagessignal
pairs at several arbitrary orientations as described in  ecause the procedure
to compute texture and calibration takes too long it is left for after the experiment
he smartart is now ready for the measurement and can be injected in the mixer

> or the actual measurement the control  triggers both cameras and the smart
enter to start the acquisition of a moviesignal pair nce the memory of the
camera is full it starts the transfer to a hard drive hen the downloading is ën
ished it also stops the acquisition of the smartenter his procedure is repeated
until the particles battery is empty

> fter calibration the movies and raw acceleration signal are processed and one ob
tains the trajectories ach track contains the particles  position as well as its
absolute orientation and additionally the acceleration signal of the instrument par
ticle he small time shift cf section  between the three axes is taken into
account

7.4.1 Agreement between 6D tracking & acceleration signal

he two measurement techniques observe the motion of the instrumented particle in two
completely different reference frames

lab frame he  tracking uses a ëxed nonrotating coordinate system

particle frame s the particle is advected and turned in the ìow it and the embarked
accelerometer constantly rotate their coordinate systemwith respect to the lab frame
he acceleration signal is thus measured in a frame which is rotating and not ëxed

ith help of aSP = RT
R

(
θ
)T [

g + d2
dt2 x(t) + ω × (ω × r) + dω

dt × r
]

q  it is possible to compute the forces acting on a point inside the particle and
then project these into the rotating particle frame e can also express the signal of the

11t the beginning the orientation tracking was mostly motivated by instrumented particles
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Figure 7.17:  sample trajectory of the instrumented particle seen by the camera — or
smart • it is fprop = 3z he absolute orientation enables us to reexpress
the camera measurement of the particle lab frame in the moving frame of the particle
and viceversa n the former gravity is subtracted and in the particle frame gravity g is
represented by the red line

smartart in the lab frame by rotating it such that it corresponds to a nonrotating particle
o distinguish the different coordinate systems and techniques we use a for the optical
technique and a for the accelerometer data L and P denote lab and particle frame
respectively
ig  shows a sample trajectory in both coordinate systems he agreement between

the two techniques is remarkable nfortunately after comparing several different trajec
tories it becomes clear that no easy transformation is available to get rid of the rotation
of the particle
eviations between the two techniques stem from

position measurement: ubbles reìections and other impurities alter the measured po
sition of the particle he acceleration is the second derivate and thus highly sensi
tive to such events

orientation measurement: he absolute orientation is needed to change between the ref
erence frames he uncertainty in the absolute orientation is typically 3 ◦ cf para
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graph  that results in a wrong projection of gravity of ±0.5m/s t further
biases the rotational forces as they are derivatives of the orientation timeseries

matrix relating sensor and texture: his matrix is constant and thus a systematic con
tribution he uncertainty is less than 2 ◦ – i.e. the error in projecting gravity is
< 0.3m/s

he observed agreement ∆a = aL
 − aL

 between the two techniques is as follows
ll three components of∆a have the same  urprisingly the absolute uncertainty
almost doubled by increasing fprop from 2z to 3z evertheless for 80 of the data
the agreement is better than 0.8m/s and 1.6m/s respectively hat corresponds to a
relative error |∆a| / |a| of less than 38 and 35 owever this estimate is strongly
biased by small values of |a|

he signal of the particle is thus corresponding to the ìow however its interpretation is
not simple

7.4.2 Contribution of the different forces
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Figure 7.18: ontribution of the different forces to the motion of the smartart ote
that the rotational forces are multiplied by 10

t the beginning of this chapter we reasoned that the rotational forces ω × ω × r
and α × r are small compared to the translational forces12 he argument was based
on the distance between the sensor and the particles center of |r| = 3mm as well as the

12α ≡ dω
dt denotes the angular acceleration
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Figure 7.19: atio of the rotational forces to the total force acting on the particle he
80 percentile is found at a ratio of 0.14 and 0.16 respectively

experience that |ω| ∼ 0.6  2π fprop he tracking enables us to compute the different
forces acting on a point at r = 3mm  êz inside the sphere s shown in ig 
one has to multiply the s of |ω × ω × r| and |α × r| by a factor of 10 in order to
compare them to the translation
o fully conclude we plot the ratio of the rotational acceleration arot = ω × (ω × r) +
d
dtω × r to the total acceleration atotal without gravity in ig  imensional
arguments and the results from the previous chapter tell that atotal ∝ f 2

prop and arot ∝ f 2
prop

onsistently the  of the ratio |arot| / |atotal| differs only little for the two propeller
frequencies oreover it is peaked at 5 and the 80 percentile is at a ratio of 13.9
and 15.5 respectively ur ansatz to neglect the rotational forces if no  tracking is
available is therefore legitimate
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7.4.3 Auto-correlations

7.4.3.1 Rotation-invariant auto-correlations
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Figure 7.20: pper plots show autocorrelations of
∣∣aL



∣∣∣∣aL


∣∣ ∣∣aP


∣∣ ∣∣aP


∣∣2 and |a|2
s expected they resemble and are independent of the frame
he lower plots show correlations for aL

x aP
x and ax we observed no different

behavior for the y and z axis hanging from particle frame aP
x to lab frame aL

x

and aL
x modiëes strongly the observed shape

s explained earlier in paragraph  ⟨a2
(t) a2

(t+ τ)⟩ is insensitive to the ro
tation of the particle and related to the correlation of the pure translation by⟨

a2
(t) a2

(t+ τ)
⟩
=
⟨
a2
trans(t) a2

trans(t+ τ)
⟩
+ 4g2 ⟨az(t) az(t+ τ)⟩+ const

inear algebra tells that the norm of atrans and a is also insensitive to the rotation he
two top plots in ig  shows for the two propeller speeds the autocorrelations13 of
the norm

⟨
|aL

(t)|  |aL
(t+ τ)|

⟩

⟨
|aL

(t)|  |aL
(t+ τ)|

⟩
 and

13e plot the unbiased autocorrelation with a prior subtract of the local mean
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⟨
|aP

(t)|  |aP
(t+ τ)|

⟩
as well as the quantities derived earlier

⟨
|aL

(t)|2  |aL
(t+ τ)|2

⟩
and

⟨
|aL

(t)|2  |aL
(t+ τ)|2

⟩


hey all cross 0 at the same time of τ ∼ 0.15Tint and their shape resembles with a slight
improvement for fprop = 3z hat means that they are independent of the coordinate
system
n other words they only depend on the translation atrans and not on the rotation of

the particle

7.4.3.2 Rotation-sensitive auto-correlations

n the other hand the single components of the smartart are altered by the rotation
he lower plots of ig  illustrate that the autocorrelation of a single component
strongly depends on its reference frame i.e. changing from particle frame aP

x to lab
frame aL

x and aL
x modiëes strongly the observed shape of the function n the par

ticle frame we observed longer correlations however the effect seems to decrease with
propeller frequency n contrast to experiments with tracer particle the components aL

i 
in the lab frame decorrelate comparable to the norm of the acceleration |a| ne further
notices that the autocorrelation in the lab frame cross 0 at the same fraction of the integral
time scale Tint

Tumbling o get a better understanding of the autocorrelation of the tumbling
cf q  we now investigate the two contributions to

⟨a(t) a(t+ τ)⟩ = g2 ⟨êz  [T (t, τ)êz]⟩+ ⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩

s shown in ig  the term ⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩ falls fast to 0 and is
strongly depending on the forcing
he left term ⟨êz  [T (t, τ)êz]⟩ dominates ⟨a(t) a(t+ τ)⟩ and does not signië

cantly change with propeller speed t stays correlated several times longer than
⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩ nfortunately we do not have a sufficient number
of long tracks to determine the long term behavior of ⟨êz  [T (t, τ)êz]⟩ lain umir
and ichael ilkinson  used a spherical rnsteinhlenbeck process to estimate
⟨êz  [T (t, τ)êz]⟩ heir derivation is characterized by one dimensionless number which
they call the persistence angle t describes the typical angle of rotation of the object during
the correlation time of the angular velocity he motion of our particle strongly resembles
plots in their article describing the case of a large persistence angle
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Figure 7.21: ontributions to the autocorrelation of the tumbling see also ig 
n agreement with q  it is
⟨a(t) a(t+ τ)⟩ = g2 ⟨êz  [T (t, τ)êz]⟩ + ⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩ he
right term ⟨[T (t, τ)atrans(t)] atrans(t+ τ)⟩ falls fast to 0 but the tracks were not suffi
ciently long to determine if ⟨êz  [T (t, τ)êz]⟩ vanishes for τ > Tint
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7.4.4 Quantities accessible only to the tracking

ome properties of the movement of the particle are only accessible to the tracking n the
following we brieìy show common parameters in order to related them to the movement
of solid spheres he rotational dynamics of the smart are discussed in detail in
chapter  and its translation is compared to that of solid 24mm spheres in a more viscous
ìuid in section 
e ërst note that at both propeller speeds the motion of the particle compares well

to the motion of large solid spheres n both cases the  of single components of
the velocity v is approximately gaussian whereas the acceleration components are non
gaussian distributed he particle eynolds number Rp = D|u|

ν
 is 8400 ± 3500 and

12500± 5100 respectively
he  of the magnitude of angular velocity |ω| /(2π) is peaked at 1

2
fprop but

rotation rates up to 2.5  fprop are observed e further notice that 
(
|ω| /(2π fprop)

)
is almost identical for the two propeller frequencies
 summary of the particle motion is given in table 

fprop [z] x y z orm

v [m/s] 2 −0.0± 0.18 0.0± 0.23 −0.0± 0.23 0.3± 0.1
3 −0.0± 0.26 0.0± 0.34 −0.0± 0.34 0.5± 0.2

a [m/s] 2 −0.1± 1.8 −0.0± 2.1 0.0± 2.0 2.9± 1.8
3 0.1± 4.1 −0.1± 4.6 −0.0± 4.7 6.6± 4.1

ω [rad/s] 2 0.1± 4.7 0.2± 4.4 −0.0± 4.5 7.0± 3.5
3 −0.5± 7.8 −0.2± 7.0 −0.2± 7.2 11.3± 5.9

Table 7.2: haracteristic values mean± of the instrumented particles motion

7.4.4.1 Preferential sampling

espite the fact that the instrumented particle is neutrally buoyant we observe that it stays
close to the impellers in general his effect manifests even more in the  e tried
particle tracking in a 20 cm region in the center of the apparatus with simple webcams but
the particle did never pass through this region in preliminary tests ig  shows the
 of position for smartart ndependent of the propeller speed it is mostly situated in
a torus shape around the propeller his agrees with the ëndings in section  where
we observed preferential sampling for large solid neutrally buoyant spheres t should be
noted that the viscosity is ∼ 8 times higher for these solid spheres

he particle thus samples the ìow in a nonuniform way
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Figure 7.22: referred position of the instrumented particle independent of the propeller
speed it is mostly situated in a torus shape around the propeller he same behavior is
found in section  for large neutrally buoyant spheres
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7.5 Summary & Ideas
n this chapter we ërst presented the working principle of the instrumented particle char
acterized its electronic performance and established a simple fast calibration technique
e can show that an imbalance of the particle is not desirable too  weak drift and
temperature dependence is noticed and we strongly advice to calibrate shortly before each
experiment e also noticed that the sampling rate can be pushed from 316z to almost
400z by adjusting the transmission sequence of the data packets his requires a simple
change in the program of the microcontroller
urthermore we developed methods which are either invariant or adapted to the rotation
of the sensor in the ìow hese methods perform well within the wide range of tested
turbulence levels and moreover in two different mixers ith a smart one gets
access to correlation time scales of the ìow the variance and ìatness of the translational
acceleration and one can estimate the energy injection rate
e limited our analysis to the extraction of global ìow features owever work on

adaptive ëltering techniques is ongoing  promising candidate for such a ëltering is the
Empirical Mode Decomposition which might be able to separate the different contributions
of the signal hile investigating the autocorrelation functions we stumbled upon the
ittageffler function his function is related to fractional differential equations and
the question how a particle with inhomogeneous inertia tumbles in a turbulent ìow
n top of that we applied the  tracking to the particle e ënd that the particle in
general behaves almost identical to solid spheres of the same size in the same mixer imi
lar to solid large spheres the instrumented particle samples the ìow preferentially near the
driving propellers
e were further able to show that the agrangian acceleration of the smart corre
sponds well to its actual motion and the assumptions used to develop the earlier mentioned
methods were veriëed he data is further useful to test if by adding a second wellplaced
accelerometer one can estimate two components of the particles angular velocity ω at
sufficient rotation rates

his instrumented particles can shed some light into mixers which were not or hardly
accessible up to now ue to its continuous transmission one ìow conëguration can be
characterized within ∼ 30min part from its appeal for chemical and pharmaceutical
industry it might be an interesting tool to quantify ìows in e.g. biology labs too
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8 Conclusion

he cornerstone of this thesis is the novel tracking technique enabling us to follow the
three dimensional position and the absolute orientation of painted solid spheres in time
aving access to the six degrees of freedom of a particle in a turbulent ìow allowed us
to address important questions on the dynamics of the forces and torques acting on it
e applied this to gain insights into the motion and rotation of solid particles in a tur
bulent ìow urthermore a new instrumented particle continuously transmitting its 
agrangian acceleration is presented and characterized

Solid Particles e ërst made use of the technique to study the linear and rotational
motion of solid neutrallybuoyant spheres their size is a fraction of the integral length
scale but large compared to the smallest scales of the ìow xpressing all physical quan
tities in their nondimensional form using propeller frequency and propeller size we ënd
that the  of velocity and acceleration are determined by the propeller speed with a
nontrivial dependency on the particle size ikewise the spheres rotate with a rotation
rate comparable and proportional to the propeller frequency espite the particles large
size of almost one integral length scale their acceleration statistics do not tend towards
a gaussian distribution their behavior stays intermittent ikewise the angular velocity
and acceleration are both nongaussian too e then investigated wether translation and
rotation couple uch behavior has been observed in laminar or simple shear ìow conëg
uration but it was unclear if a coupling would persist in a fully turbulent environment
e discovered that despite the turbulent environment translation and rotation couple in
the agreement with the agnus or lift force
e remark that in contrast to small ones large spheres stay preferably in a toruslike

structure near the impellers hey sample the ìow preferentially hile such behavior is
wellknown for small particles whose density deviates from that of the ìuid it has so far
not been observed for neutrallybuoyant objects owever the particles investigated in
this dissertation are signiëcantly larger than those reported in previous experiments e
are currently investigating wether this effect can be attributed to the observed lift force
s the particle moves through the ìuid it exchanges momentum with the surrounding

carrier ìow the variations in kinetic energy are shown to be large compared to its small
negative mean e demonstrate that the dynamics of the energy exchange falls within the
mathematical theory of large deviations and we have ërst evidence that the ìuctuations in
energy exchange satisfy a stationary state ìuctuation theorem owever more data and
longer trajectories are needed to understand how the dynamics depend on the driving and
on the particle diameter

tarting from these results and our novel measurement technique new questions and topics
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open up ll experiments in this dissertation were done with neutrallybuoyant particles
at one viscosity owever we recently started taking data with spheres of the same size but
which are either heavier or lighter than the ìuid e plan on changing the viscosity while
keeping the particle neutrally buoyant too his should give new insights into the role
of viscous and inertial forces ne can further explore how more complex objects behave
ith the instrumented particle we demonstrated that our technique can be applied to
spheres of inhomogeneous inertia an extension to ellipsoidal particles is feasible he
surface roughness which was neglected so far falls probably also in this question
lso in some of the experiments we tracked several particles simultaneously but we did

not yet investigate their interaction  very interesting question is if and how particles
collide ne can further investigate the twoway coupling of large spheres by signiëcantly
increasing the number of spheres in the apparatus his can be investigated by either using
one instrumented particle and many solid particles or by adding transparent gel spheres
around one painted sphere

Instrumented Particle n the second part we presented characterized and developed
methods a new instrumented particle which transmits its agrangian acceleration as it
is advected through the ìow aving access to the absolute orientation enabled us to
perform a rigorous examination of the forces acting on the particle omparing its re
sults to motion of solid spheres helped further in benchmarking this novel measurement
technique
e demonstrate that this instrumented particle is simple to use and efficient for a fast

characterization of ìows and apparatuses within approximately 30min enough data is
taken for one ìow conëguration n addition owing to its wireless transmission system
it does not require transparent ìuids nor optical access herefore it can shed some light
on ìows which are not or hardly accessible to other measurement techniques ecent
experiments by ylvain oubaud  show its applicability to granular ìows too part
from its appeal for chemical and pharmaceutical industry it might be an interesting tool
to quantify ìows as they are found for example in biology labs too
he analysis was limited to the extraction of globalaverage ìow features but we are

working on adaptive techniques lso statistical sampling techniques such as bootstrap
ping should be easily adaptable to our developed methods

Sidetracks wo sidetracks were followed during this thesis  second agrangian x
ploration odule has been built and we carried out a promising feasibility study for a p
probe adapted for the study of chemical mixing in ìows
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A Sidetracks

A.1 The second Lagrangian Exploration module

Figure A.1: icture of the yon  illuminated by a green laser beam

he Lagrangian Exploration Module  has been built and designed in a collabora
tion between the  yon and the axlancknstitut für ynamik und elbstorgan
isation in öttingen wo apparatuses were manufactured1 one at each side the ìow is
described in detail in my iplomarbeit and in 

1and assembled by the same guy
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he  produces turbulence in a closed water ìow driven by twelve impellers 
picture is provided in ig  and  drawings in ig  n both versions the edge
length of the icosahedron is 40 cm giving a volume of 140 l water he yon  is
rotated with respect to the öttingen  as shown in ig  and the two version
differ in the choice of motors impellers and the placement of the impellers n yon
the  impeller units are mounted to  of the  faces of the icosahedron whereas in
öttingen these units are mounted to the  vertices lso the yon  uses stronger
brushless motors nidrive merson ndustrial each delivers up to 600ofmechanical
energy at a maximum torque of 1.5m owever the electronics are not integrated in
the motor they have to be supplied with threephase current e therefore house them
in a electrical panel and connect their analog in and outputs to a  acquisition card
ational nstruments linked to a control computer oth s are thus rather big 
devices  abview program then controls the motor independently additionally it tracks
torques and instantaneous propeller frequencies
his apparatus has served for the characterization of the instrumented particle chap

ter  ionel iabane  characterized the ìow by means of  measurements e
further uses the  for research on the clustering of particles 

Top viewFront view

Göttingen LEM

Propeller
Units

Bubble trap

Plexiglass
Window

Figure A.2:  drawings for comparison a  drawing of the öttingen version is
shown too
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A.2 Mixing in chemical reaction: first results of a fast,
local, and continuously-operating pH-probe

a) b) c)

d) e)

5 mm

Figure A.3: a) electron microscope image of an  b) typical  die c) typical
reference electrodes d)  e) pictures of our test s

n the study of mixing most experiments are done in ìows without any additional
chemical reaction owever in chemical or pharmaceutical industry but also in biologi
cal systems one often ënds chemicals which ìow into each other hen these react they
form new products release or consume energy and change the composition of the ìow
ence the reactions add new timescales to already known time and length scales of the
ìow n order to observe a chemical reaction and the mixing one would like to measure
one or more characteristic property of the reaction as fast as possible oreover the
measurement should be local and not inìuence the reaction onductivity chemical po
tential and ionconcentration i.e. the acidity of a solution are possible candidates and
we show here a feasibility study of an Eulerian pH-probe for use in agitated ìows n
fortunately the classical glass electrode2 has a reaction time of approximately one minute
urthermore it is rather fragile and large e identiëed Ion-Sensitive Field Effect Tran-
sistors  as a promising alternative s measure locally with an active surface

2as discussed for example in tkins book Physical Chemistry 
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smaller than 1mm2 and show response times of the order of 1/10 s n cooperation with
smartnst we veriëed that the sensor can be integrated into an instrumented particle too
n the following we sketch their working principle circuitry and a ërst promising mea

surement ince this sidetrack does not ët into the storyline of the manuscript we just
outline the basic idea or further reading the reader is referred to  anatas book Principles
of chemical sensors  and a review article by  ergveld irty years of ISFETOLOGY:
What happened in the past ėč years and what may happen in the next ėč years  and the
references therein

Working principle ield effect transistors  change the conductance between its
drain and source contact in function of the electric ëeld at the gate contact n contrast to
bipolar transistors no current ìows through the gate n   ergveld discovered that a
ëeld effect transistor can measure small variations in the ion concentration of a solution
if one replaces the gate contact with an ionsensitive membrane which is in contact with
a solution the Ion-Sensitive Field Effect Transistor  was born
n  in contact to a solution is sketched in ig  n the simplest case it can be

described as a sandwich of six different layers see ig  and one can write the chemical
potentials at each interface
ons can move from the solution into the membrane and back hus the electrochemical
potentials µion at the interface membranesolution equal and the potential difference is
given by the ernst equation

µion
2 − µion

3

zionF
= π0 +

RT

zionF
ln aion2 

R andF are universal gas and araday constant π0 a constant potential and T is the tem
perature he ion has a chemical activity aion2 in the solution and is ziontimes charged
hat means that potential at the membrane is determined by the temperature and the
activity of the ion in the solution he pH value i.e. the acidity of a solution is deëned
as

p = − log10
(
a
[
H+
])



ence a membrane which is sensitive to hydrogenH+ has a potential difference which
depended on the pvalue of the solution embrane sensitive to different ions e.g.K+
work in a similar fashion
he conductivity of the drainsource channel of a ëeld effect transistor and thus the

 depends on the potential difference between gate and source nalyzing the re
maining interfaces yields

ϕ(3)− ϕ(5) = UGS + ϕ0 + T
R

zionF
ln aion2 

UGS is the applied potential difference between reference electrode and solution and ϕ0

contains constant terms3 nfortunately q  is depending on the temperature too
3contact potentials reference electrode and the constant activities
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Figure A.4: chematic of an s adapted from  chapter 
 reference electrode 1 without liquid junction is in contact with a solution 2 which
contains a small amount of ions that can partition into the potassiumselective membrane
3 herefore the interface between the solution and the membrane is nonpolarized
he insulator 4 is assumed to be ideal that is no charge can cross it and it is thicker than
electron tunneling distance ayer 5 is the semiconducting substrate of the transistor
or simplicity the metal 6 is identical to metal 1 of the reference electrode
he layers embrane nsulator emiconductor 3,4,5 form a capacitor owever
if the reference electrode is removed from the solution by opening the circuit SW
a second capacitor between the two metals 1 and 6 is formed the system becomes
unpredictable
nalysis of the chemical potentials yields that the voltage at the capacitor 3,4,5 is
ϕ(3) − ϕ(5) = ϕ0 + T  R

zion F ln aion2  R and F are gas and araday constant T is the
temperature and the ion of interest has an activity aion2 in the solution and zion charges he
potential difference ϕ(3)−ϕ(5)modulates the gate voltage and thereby the rainource
current

he term T R
zionF is called the sensitivity of the  n our case we wish to measure p

q  tells that the sensitivity is 59.1m/p at room temperature 25 ◦ t should
be noted that s always need a reference electrode in the same solution to meaningful
measure the ion concentration

umming up the electrochemical interaction of ions in the solution with the mem
brane modulates the gate voltage UGS and thereby the conductivitycurrent between the
source and the drain contact n  including its circuit has to be calibrated before
being operation
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Reality s shown in ig  s have a small form factor of < 1mm active sur
face hey further share the basic properties of s including their wellknown
manufacturing processes he reference electrodes on the other hand are several times
larger than an  and typically made of glass which renders them fragile owadays
miniaturized reference electrodes are available and were used in our tests ig  shows
different pictures of the s we used
n the literature and after ërst tests the following questions arise

Temperature he sensitivity of the  changes linear with temperature but chemical
activities reaction equilibrium and the transistor depend on temperature too ost
commercial  pmeters measure additionally the temperature

Light sensitivity hotons can create charges within the membrane the  is sensitive
to light

Ion-selectivity eal membranes are sensitive to a variety of ions in the solution ne
therefore needs good knowledge of the chemicals beforehand specially salts are
known to alter the sensitivity

Drift & Hysteresis he  showmultiple timescales when reacting to a sudden change
in phereas the fastest timescale of the response are better than 1ms a longterm
drift with a time scale of several minutes is also observed t present no physical
description of the drift is available

Electrostatic sensitive device  have to be handled with care a simple electrostatic
discharge can destroy the membrane ome companies therefore add a latinum
wire close to the membrane to provide shielding cf ig 

ost of the properties depend on the membrane for psensitive s more than
three different types l23 i34 a25 are commercially available

Electronics everal types of circuits for s are known in the literature   the
socalled constant-voltage constant-current  circuit imposes a constant current IDS

and constant voltage UDS between source and drain while keeping the source potential
US ìoating he basic principle is illustrated in ig  or technicalhistorical reasons
we measure USG = −UGS 
ecause of the limitations of commercially available current source one cannot integrate

the circuit shown in ig  into an instrumented particle wo additional circuits
which are able to operate with one 3 coin cell were developed they are not shown here
for intellectual property reasons n all cases the circuits were soldered by hand and we
acquired the signal with a bit  data acquisition card   ational
nstruments and abview
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Figure A.5: constant-voltage constant-current  circuit for  measurements
he current source IV  imposes a constant potential difference UDS = IV RDS = 0.5
between source and drain n addition a constant current IDS = 100µ is established by
a current sink while the source potential US is ìoating he difference between gate po
tential UG and US is then directly proportional to the pH of the solution he sensitivity
of s is less than 59m/p n consequence the signal has to be ampliëed

A.2.1 First Measurements

e found and bought from three companies which sell small quantities urprisingly
only one company was responding to technical questions and highly interested in a coop
eration hus we abandoned the solutions of the other two companies and discuss here
result obtained with the s made by icroens  ausanne witzerland rom a
technical point of view their product is sound the membrane is antalumoxide a25
with platinum wire shielding and the  is conveniently encapsulated on a ënger as
shown in ig  owever we noticed that the connector was not waterproof hey
corroded and thereby randomly shortcircuited the  e protect the contacts with
nail polish

Calibration & Observations s have to be calibrated shortly before the actual
measurement which is done with standard buffer solutions at p values of 2, 4, 7, 10
isher cientiëc he spread between  dies is large for ëve dies UGSp=
covers almost 2 he variation in sensitivity is weaker the dies show a slope of 54 ±
2m/p which is less than the theoretic value of 59m/p n order to perform mea
surements in solutions which change temperature one would have to calibrate at different
temperatures and different p
n general we observe that ambient light changes the output of the  by ≲ 5m
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Figure A.6: alibration of two s in the same buffer solution he measured sensi
tivity is less than the theoretic value of −59m/p

= 0.1 p owever we found a complicated drift behavior after injecting reference
electrode and  into a buffer solution he ërst response is instantaneous and within
∼ ±2pH of the buffer solution then the signal approaches a plateau within  minutes
he plateau is not stable and drifts with ≲ 2m/h = 0.03 p/h his behavior is
mentioned in the literature and often modeled by a sum of exponential decays  to 
attributes the effect to light and impurities in the antalumoxide layer
t should be pointed out that a drift can induce a hysteresis of the  hat would

signiëcantly alter the response to steps in p n the other hand common glass electrode
pmeters have a response time of  minute and are not speciëed for steps in p at all
reliminary tested identiëed lourescein as a possible optical indicator of p unfortu
nately photobleaching alters its response with time  stringent test of its response time
is therefore rather complicated and perhaps something for the next h student

Mixing n order to observe a chemical reaction and the mixing one would like to mea
sure a characteristics property of the reaction as fast as possible onductivity and p are
possible candidates and we sketch here the possible application of psensitive s for
following the mixing in a chemical reaction he reaction is rather simple ydrochloric
acid l is added into a beaker ëlled with a phosphate buffer he solution is agi
tated by a magnetic stirrer and placed in temperature controlled heat bath at 25 ◦ wo
s attached to a miniature reference electrode are placed opposite to a nozzle con
nected to a syringe pump that injects small quantities of l he ensemble is depicted
in ig   signal acquisition and injections are controlled in abview 0.5ml
of l concentration 1  is added every 25 s a drop of l needs thus some time
∼ 3 s to be advected to the s oreover the s measure at slightly different
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positions oth s follow the same curve but differ by 0.05 p his offset is caused
by the uncertainty in the calibration hey further capture the dynamics of a passing l
drop the shortest reaction times are of the order of 1/10 s

ven tough many questions are still open we identiëed p sensitive s as a promis
ing tool for monitoring mixing in simple chemical reactions lthough not discussed here
we further successfully tested circuits which consume 0.5m at 2 ence they can be
integrated into an instrumented particle
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Figure A.7: wo  sensors in a beaker with phosphate buffer every  seconds a
small quantities of l is injected he picture shows the position of nozzle and s
the miniature reference electrode is behind the s and ëxed with scotch tape he
nozzle is placed at the other side of the beaker which is agitated by a magnetic stirrer 
drop of l needs thus some time ∼ 3s to arrive at the s oreover the s
measure at slightly different positions he evolution of p measured independently by
the two s is depicted in the upper plot and a zoom is provided in the lower plot
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B Appendix

B.1 Unwrapping & Differences

ach uler angle along a trajectory is bounded θx, θz ∈
[
0, 2π

[
and θy ∈

]
–π
2
, π
2

[
as

deëned in q  owever this choice is not unique because there is a second triplet
with

θ′x = θx + π a
θ′y = (π − |θy|)  sign(θy) = sign(θy) π − θy b
θ′z = θz + π c

s a consequence the difference ∆ = α − β between two uler angle triplets α and
β has four valid results nwrapping a time trace is thus counterintuitive as illustrated
in ig  his problem is called a gimbal lock a sketch is shown in ig  n the
following the second representation is marked by superscript G

Figure B.1: llustration of the gimbal lock problem at θy = ±90◦ the ërst rotation is
turned into the axis of the third rotation and one is left with only one degree of freedom
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Figure B.2: llustration of the difference between a bounded timeseries of θ(t) and its
unwrapped time trace umps of ≈ 180◦ in θx, θz correspond to passing a gimbal lock

Difference between two orientations o compute derivates based on the uler
angles one needs continuous time series of the orientationherefore the raw bounded
time series has to be unwrapped hereas this process is straightforward for one angular
variable1 we dont know the representation of α and β in the case of uler angles ∆ is
needed to compute derivates and to unwrap the signal
ssuming that the change in angle is small i.e. less than 90◦ we obtain accurate results

for ∆x and ∆z
2 hus the following four cases are possible 

α = β +∆1 ⇒ ∆x = αx − βx a
αG = βG +∆2 ⇒ ∆x = (αx + π)− (βx + π) = αx − βx b
αG = β +∆3 ⇒ ∆x = (αx + π)− (βx) = αx − βx + π c
α = βG +∆4 ⇒ ∆x = (αx)− (βx + π) = αx − βx + π d

aturally the formulas are the same for ∆z, αz, βz hat means passing a gimbal lock
corresponds to ∆x ≈ ∆z ≈ π

1ne just adds multiples of 2π whenever the absolute difference is greater π
2e should keep in mind that we can add or subtract 2π whenever it is necessary onsequently it is
ξ − π = ξ + π
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n order to determine ∆y one has to know 
– the representation of one of the triplets as well as
– if a gimbal lock was passed
and then choose accordingly

q a : ∆y = αy − βy a
q b : ∆y = (sign(αy)π − αy)− (sign(βy)π − βy) = −(αy − βy) b
q c : ∆y = (sign(αy)π − αy)− βy = −(αy + βy) + π c
q d : ∆y = αy − (sign(βy)π − βy) = (αy + βy) + π d

Unwrapping a time series et α1, . . . , αn be a time series of raw bounded uler
angles or each time step we can compute

αk = αk−1 +∆k 

he unwrapped signal β1, . . . , βn is then

βk = βk−1 +∆k with β1 = α1 and ∆ = αk − βk−1 

ollowing  one has to chose the equation for ∆y among equations 
he unwrapped orientation at step k is thus fully determined by the representation of

α1 βk−1∆x(k) and∆z(k) nce the signals are unwrapped they can be smoothed and
their derivatives can be computed e.g. using the derivatives of a gaussian kernel approach
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B.2 Angular Velocity & Acceleration
he angular velocity and acceleration were derived as described in  ere we note just
the ënal equations because our choice of the aitryan representationmight be unknown
to the reader

ωL
(
{θx, θy, θz}, {θ̇x, θ̇y, θ̇z}

)
=

+ c(θz) c(θy)θ̇x + s(θz)θ̇y
− s(θz) c(θy)θ̇x + c(θz)θ̇y

θ̇z + s(θy)θ̇x

 

ωP
(
{θx, θy, θz}, {θ̇x, θ̇y, θ̇z}

)
=

 θ̇x + s (θy) θ̇z
c (θx) θ̇y − s (θx) c (θy) θ̇z
s (θx) θ̇y + c (θx) c (θy) θ̇z

 

or the angular acceleration one ënds

αL =
d
dt

ωL =θ̈y s(θz) + θ̈x c(θz) c(θy) + θ̇yθ̇z c(θz)− θ̇xθ̇z s(θz) c(θy)− θ̇xθ̇y c(θz) s(θy)

θ̈y c(θz)− θ̈x s(θz) c(θy)− θ̇yθ̇z s(θz)− θ̇xθ̇z c(θz) c(θy) + θ̇xθ̇y s(θz) s(θy)

θ̈z + θ̈x s(θy) + θ̇xθ̇y c(θy)




and

αP =
d
dt

ωP = θ̈x + θ̈z s(θy) + θ̇yθ̇z c (θy)

θ̈y c(θx)− θ̈z s(θx) c(θy)− θ̇xθ̇y s(θx)− θ̇xθ̇z c(θx) c(θy) + θ̇yθ̇z s(θx) s(θy)

θ̈y s(θx) + θ̈z c(θx) c(θy) + θ̇xθ̇y c(θx)− θ̇xθ̇z s(θx) c(θy)− θ̇yθ̇z c(θx) s(θy)



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B.3 Autocorrelations & Structure-functions
n experiments with a very small observation volume e.g. acoustic or aser oppler ve
locimetry the track length is reciprocal proportional to the particle velocity lower par
ticles stay longer in the observation volume ut the experiments presented within the
scope of this thesis surveil almost the whole box and no simple weighting based on the
length of a tracks can be constructed
easurement uncertainties and other problems might introduce errors herefore we set
points which are unlikelymissingwrong to NaN which introduces gaps into the tracks
he correlations and structure functions3 are computed as follows

autocorrelation he unbiased autocorrelation of a quantity s is

Rs(τ) =
1

σ2 (L− τ)

L−τ∑
k=1

[(s(k)− µ) (s(k + τ)− µ)] 

with τ = [1, . . . , L−1] µ being the mean along the track and the variance σ2 = Rs(τ =
0) he ourier transformation is not used however its result the biased version can
be computed R′

s(τ) = Rs(τ)  N0−τ
N0

with N0 the number of data points used n our
experiments the probability distribution of the tracks has the shape of an exponential
decay i.e. there is exponentially less data for larger τ  herefore the biased autocorrelation
looks like a damped unbiased autocorrelation he autocorrelation with and without a
prior subtraction of the mean µ are related by

⟨(s(t) + µ) (s(t+ τ) + µ)⟩ = ⟨(s(t)) (s(t+ τ))⟩+ 2µ ⟨s⟩+ µ2 

ne has further the choice between subtracting either the global mean of all tracks or at
each track its local mean

second-order structure function he multi trajectory mean similar to  yields
the secondorder structure function

D2(τ) =
1

Nτ

Ntrks∑
j=1
Lj>τ

Lj−τ∑
t=1

[
s(t+ τ)− s(t)

]


he secondorder structure functionD2 (τ) =
⟨
(s(t+ τ)− s(t))2

⟩
is less sensitive to

mean ìows or a remaining mean f the signal is stationary it is

D2(τ) = 2σ2 (1−R(τ)) ⇔ R(τ) = 1− D2(τ)

2σ2


e verify that autocorrelation functions converged with q 

3he corresponding code is VHT_AcSfFunc(STRUCT,field,[settings])

155



B.4 Frenet formulas
he renet formulas deëne a local coordinate system which is attached to and moving
with the trajectory  

T (t) =
ẋ(t)

|ẋ(t)|
a

N (t) = B(t)× T (t) =
ẋ × ẍ

|ẋ × ẍ|
× ẋ

|ẋ|
b

B(t) =
ẋ × ẍ

|ẋ × ẍ|
c

onsequently it is

v N = 0 v B = 0

a B = 0 a N ≥ 0

n other words the acceleration vector is bound to the T − N plane

ne further deënes curvature κ =
|ẋ × ẍ|
|ẋ|3

and torsion τ =
(ẋ × ẍ) 


x

|ẋ × ẍ|2


he evolution of the renet frame is given by the reneterret formula4

1

|ẋ|
d
dt

T
N
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B

 

q  deënes the socalled arboux rotation vector ωD = |v| (τT + κB) which
interprets curvature κ as a rotation around B and the torsion τ as measure of the twisting
of the curve t should be pointed out that the higher order derivatives necessitate careful
ëltering e therefore employ the gaussian kernel technique he corresponding code
is VHT_Frenet

4 any books express the trajectory as a function of the arc length s instead of time t hey are related
by ds

dt =
∣∣∣dx(t)

dt

∣∣∣ = |ẋ| and d
ds = dt

ds
d
dt =

1
|ẋ|

d
dt 
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B.5 Texture
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Figure B.3: a) raw image of the freshly textured particle b) image cleaned using hoto
hops magic selection tool blue dots mark the features and can be easily found with
atlab c) computed texture of the same particle after applying the algorithm

Art irst we add features as small dots to the sphere they are removed after computing
the texture  ëne marker or a pencil work well amera and particle are in ëxed places
thus all images can be precropped the ënal adjustment is done with hotoshop 5 lack
regions are painted to black the background is painted white and features are marked
with blue  atlab code6 then selects the biggest sphere fetches the blackunpainted
i.e. white texture points and the centroid of each feature

Math he location of a pixel or a feature in the image can be projected to 

x = Xp/r − 1 a
y = Yp/r − 1 b

z =
√
1− x2 − y2 c

with r = size (image,1)/2 and {Xp, Yp} the position in pixels
f two images share a minimum number of features there is a rotation matrix which

turns imageA into the orientation of imageB wo sets of feature vectors7 P andQ have

5n that case one marks the background in a known color and tells atlab to extract the biggest sphere
6getpoints.m
7t is clear that P and Q are of the same size
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the covariance matrixK = P T Q f there is no measurement error the matrixK rotates
the points P to Q absch proposed   a fast technique to compute an optimal
solution of this problem when working with real data he main idea is that the singular
value decomposition of K is svd (K) = V S W T  he nearest orthonormal matrix to K
is then V T W  n other words the optimal rotation matrixM from P to Q is given by
V T W 
irst for all images which share at least Nfeat features the transformation matrixes
MA→B are computed hen we build the connection matrix which notes if two views
share more than Nfeat features hese views are thus directly connected by a rotation ma
trixM iews which are not directly connected can in most cases be reached by passing
through an intermediate view f we know the rotation matrix from view B to view C
and from A to B then C can be reached from A byMA→C =MB→C MA→B
ll images are converted to sets of  vectors with an additional color and a view is

selected as base view with orientation 0◦ he vector sets for which a transformation to the
base view exists are then rotated and superposed8  sketch of the procedure is provided
in ëgure 
pen deënes textures as equally spaced in in azimutal and polar angle ach vector

is therefore expressed in spherical coordinates (ϕ, θ) and we build the average color of
the vectors lying within grid cells on equally spaced grid in ϕ, θ his is done for several
grid resolutions which are then combined to one high resolution texture mall parts of
texture can be altered by hand if necessary e.g. for a very small sphere  typical texture
is rendered on a 512× 512 grid the resolution in ϕ and θ is better than 1 ◦ n example
is shown in ëgure c)

Semi-automatic feature naming & other improvements n the ërst version of
the code the user needed to identify where and in which image a feature was located9
his process was extremely tedious lengthy and frustrating or the sanity of the h
student we therefore developed a procedure which semiautomatically associates names to
the features t is still necessary to mark with hotoshop the exact position of features
atlab then extracts these mark and their  and  position for each image we have a
set of of feature point each with a yet empty name
nce we know that a sufficient number Nminommon of features is shared between 

images the rotation matrix can be computed using a brute force ansatz
herefore we ërst ask the user to clickidentify features in image B which are also

shown in a reference view A nce a few features ≥ 4 are shared we try all reasonable
rotations which turn the feature point cloud from B into a larger cloud A 10 e thus
have a set of features b1...M which after a rotation coincides with a subset of the features in
viewA a1...N  learly it isM ≤ N  e further know that angles and distances between
featuresvectors are rotationinvariant onsequently the rotation from B to A can be
split into two parts

8asically we are superposing rotated hedgehogs with colored spikes
9t the beginning even the position was entered by hand

10findFeatureRotation.m
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Figure B.4: ser interface to determine which features are found in both images he
symbols indicate the unique name of each feature – and ɱ indicate unidentiëed features
the yellow letters on the right side are points which are already known from a previous
image pair he user clicks the features in the right image which are also found in the left
image t is not necessary to ënd all  to  features are usually sufficient evertheless
adding features which are not shared yields unpredictable results

n a ërst step all identiëed vectors b1...M are rotated such that b′
1 coincides with a

feature vector ak in image 

b′
1...M = R (b1 × ak,∠ (ak, b1)) b1...M 

ut the remaining features b′
2..M do not yet coincide with the a1..N 

herefore a second rotation then matches the remaining ones all points are now turned
around b′

1 = ak such that the direction vector b′
1 × b′

2 which describes the direction of
the point cloud approximately coincides with b′

1 × aj  n other words

b′′
1...M = R (b′

1,∠ (b′
1 × aj , b′

1 × b′
2)) b′

1...M

= R (b′
1,∠ (b′

1 × aj , b′
1 × b′

2)) R (b1 × ak,∠ (ak, b1)) b1...M



ow the quality of matching has to be determined his is done with a greedy distance11

between the point clouds for each rotated feature b′′
k we ënd

dk = min (∠ (b′′
k, {a})) 

with {a} the still unmatched vectors of a1..N  atched points are marked and not used
twice he function keeps also track of the pairs such that we can later transfercopy
feature names
11cloudDist.m
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e determine the best rotation by testing the agreement for all combinations of b1

to the a1..N  s we might have missed features12 we rotate all remaining unclicked and
unnamed features and check for those with a positive z−component if there is a close
feature from image A
his process of identifying common features ënding the rotation matrix and copying

names is accelerated if some features are already known to be shared onsequently only
a few are actually done by the user nce the features with their positions and names are
known one proceeds with the technique described earlier

12ctually one doesnt have to ënd all about  features are fully sufficient
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B.6 Fitting an ellipsoid
s stated by q  the equation of the  accelerometer at rest deënes an ellipsoid
which is shifted but not rotated

(Ax −Ox)
2

S2
x

+
(Ay −Oy)

2

S2
y

+
(Az −Oz)

2

S2
z

= g2 

or simplicity we set |g| ≡ 1 xpanding q  yields

1 =
1

S2
x

A2
x +

1

S2
y

A2
y +

1

S2
z

A2
z − 2

Ox

S2
x

Ax − 2
Oy

S2
y

Ay − 2
Oz

S2
z

Az +
O2

x

S2
x

+
O2

y

S2
y

+
O2

z

S2
z

=
1

1− O2
x

S2
x
− O2

y

S2
y
− O2

z

S2
z


[
1

S2
x

A2
x +

1

S2
y

A2
y +

1

S2
z

A2
z − 2

Ox

S2
x

Ax − 2
Oy

S2
y

Ay − 2
Oz

S2
z

Az

]
= ξ1 A

2
x + ξ2A

2
y + ξ3A

2
z − 2ξ4 Ax − 2ξ5 Ay − 2ξ6 Az


ence the offset is

Oi =
ξ3+i

ξi


ombining q  and q 

1

C
≡ 1− O2

x

S2
x

−
O2

y

S2
y

− O2
z

S2
z

= 1− ξ24
ξ1 C

− ξ25
ξ2C

− ξ26
ξ3 C

⇔ C = 1 +
ξ24
ξ1

+
ξ25
ξ2

+
ξ26
ξ3



onsequently the sensitivity is

Si =

√
C

ξi


o ënd a best ët for ξ1 . . . ξ6 one searches an optimal solution for an overdetermined set
of equations

ζ  ξ =


A2

x,1 A2
y,1 A2

z,1 −2Ax,1 −2Ay,1 −2Az,1

A2
x,2 A2

y,2 A2
z,2 −2Ax,2 −2Ay,2 −2Az,2










A2
x,N A2

y,N A2
z,N −2Ax,N −2Ay,N −2Az,N



ξ1
ξ2

ξ6

 =


1
1

1




e ënd its solution with the help of the pseudoinverse

ξ = (ζ)+

1

1

 =
(
ζT ζ
)+
ζT

1

1

 

where ζ+ is the pseudoinverse of ζ which can be calculated from a singular value de
composition of ζ
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Abstract: he aim of this dissertation is to gain a better understanding of the a
grangian dynamics of solid large spheres in a complex turbulent environment herefore
a novel measurement technique to optically track the –dimensional dynamics – position
and absolute orientation – of large spheres advected by a complex ìow is developed l
though the spheres diameter is comparable to the integral length of the underlying ìow
we ënd intermittency for both the translation and the rotation oreover rotation and
translation couple in agreement with a lift force part from the fact that the acceleration
statistics are not gaussian and the exchange of energy between the particle and the carrier
ìow falls into the mathematical theory of large deviations dditionally we ënd that the
particle diameter has a surprisingly strong inìuence on how a particle samples the ìow
he –tracking technique is then applied to an instrumented particle which embarks

a –accelerometer and a radiotransmission system to constantly emit the felt agrangian
acceleration as it is advected in the ìow easuring the particles absolute orientation is
a crucial step here to project the acceleration measured by the particle into the laboratory
reference frame and enables us to compare the forces obtained by the two independent
measurements ased thereon methods for interpreting the acceleration signals of the
instrumented particle are developed and tested

Keywords: turbulence instrumented particle agrangian dynamics ënitesize effects
ìuctuation theorem image and signal processing

Résumé : e but de ce travail de thèse est létude de la dynamique de sphères de grande
taille dans un écoulement fortement turbulent our ce faire nous avons développé une
nouvelle technique optique permettant de suivre la dynamique à  dimensions – position
et orientation absolues – de plusieurs particules dans un écoulement complexe ien que la
taille des particules soit comparable à léchelle intégrale de lécoulement nous trouvons que
sa dynamique de rotation et de translation est intermittente e plus nous observons que
la translation et la rotation sont reliées par la force de agnus a répartition statistique
de laccélération nest pas gaussienne et léchange dénergie avec le ìuide est gouverné par
la théorie mathématique des grandes déviations ous trouvons que le diamètre inìuence
fortement la manière dont la particule explore lécoulement
ous avons ensuite appliqué le suivi de position et dorientation à une particule instru

mentée e système mesure en permanence laccélération lagrangienne quil subit via un
accéléromètre embarqué et émet linformation à travers une électronique radio fréquence
orientation absolue est nécessaire pour exprimer les signaux de laccéléromètre et ceux du
suivi optique dans un repère commun cela nous permet de comparer rigoureusement les
mesures issues de ces deux techniques indépendantes  partir de ces résultats nous avons
développé des méthodes pour inférer des propriétés de lécoulement à partir des signaux
daccélération de la particule instrumentée

Mots-clefs : turbulence dynamique lagrangienne effets de taille particule instrumen
tée théorème de ìuctuations traitement dimage et du signal
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