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1 Introduction

Nature is full of flows and many of them are turbulent and transport objects. In nature
one encounters such particle-laden flows for example as rain droplets in a thundercloud,
transport of pollen and seeds with the wind or of sediments in a river. They play an
important role in industrial applications, too: Be it the atomizing of gasoline in a motor,
sewage treatment, chemical mixers or weather balloons.

The turbulent motion of flows itself is a yet unsolved problem characterized by its high
irregularity and its fluctuations in both time and space. Moreover, turbulence covers a
large range of scales: Energy is injected at large scales where it drives the creation of large
eddies, which continuously break up into new eddies. The whirls interact and disperse
until they reach a size where viscosity plays a role and their kinetic energy is dissipated
into heat. Particles immersed in such a flow are consequently subject to a complicated
interaction with eddies of all sizes.

Since the time of Euler, Navier and Stokes huge progress has been made in understanding
the motion of spherical particles of size D much smaller than the smallest length scale of
the flow, the Kolmogorov scale 1 [65, 40, 21]. Because of the small size of the particle,
the flow around it is locally laminar — see Fig. 1.1 — therefore the equation governing
the particle velocity, v, can be determined by solving the fluid equations once the fluid
velocity, u, is known. In the simplest case, the particles are subject to the Stokes drag and
the added mass term [39, 13]; thus, the velocity v can be determined by solving a simple
differential equation. For D — 0, the velocity of a neutrally buoyant particle reduces to
the fluid velocity, w, so the particle behaves as a fluid tracer. This property is crucial for
several experimental techniques [67].

With the advent of Lagrangian measurement techniques material particles are gaining
attention. These particles have a size larger than 7 but are still small compared to the
largest scales in the flow. As suggested by Fig. 1.1, their case is conceptually much more
difficult.

By studying the acceleration statistics of a particle one can infer on the dynamics of the
forces acting on it. Experiments have shown that upon increasing the ratio D /7 from 1 to
40, the variance of the particle acceleration (i.e. of the forces) decreases as (D /n)~2/3 [74,
54]. Nevertheless, the fluctuations of force remain non—gaussian up to D/n < 40 [53,
9, 72]. Since material particles decrease their acceleration variance with increasing size,
they share common properties with heavy (inertial) particles for which the behavior is
well determined by their size ratio D /7. Still, large neutrally-buoyant particles cluster
differently than inertial particles [14, 15]. At present a full derivation of the equation of
motion of a large particle is still not available.

Despite its importance in many technical flows the motion of particles with a size com-
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parable to the large scales is surprisingly little studied. This is (partially) due to the fact the
description of a solid object freely advected in a fluid requires, in addition to its transla-
tional degrees of freedom characterizing its position, three rotational degrees of freedom,
specifying its orientation with respect to a reference frame. The evolution of its position
and of its orientation depends, according to Newton’s laws, on the forces and torque act-
ing on the particle at each instant, which result from the interaction between the object
and the turbulent flow.

In the preceding work of Yoann Gasteuil [19] it was observed that a neutrally buoyant
sphere of a size D ~ 0.6 Ly, (i.e. comparable to the large scales of the flow) is highly
intermittent in both translation and rotation. Simulations at low turbulence levels show
that particles of D/L;,, ~ 1 alter the surrounding flow up to a distance of twice their
diameter [47]. Recently, this has been supported by Simon Klein, Mathieu Gibert and
others [31] who simultaneously followed tracer particles and rigid gel spheres in a highly
turbulent environment.

U
f (Y
<z 7
Figure I.1: Sketch of a small and a large particle superimposed on local stream lines.

Whereas the flow around the small particle is smooth, it exhibits significant spatial varia-
tions around the large particle.

The present experimental study investigates the motion of neutrally buoyant spheres whose
diameter D is of the order of the integral scale L;,.. In addition, we aim at resolving the
six degrees of freedom of the particle dynamics. Therefore we developed a novel mea-
surement technique, which enables us to obtain a simultaneous tracking in time of the
particle’s position and its absolute orientation with respect to a reference frame.

Previous studies focused on directly measuring the angular velocity without resolving
the absolute orientation as a function of time. Ye and Roco [79] tracked dots painted
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on a particle with high speed cameras and computed the angular velocity from their dis-
placement between two consecutive frames. Recently, Klein ez 2/. [31] adapted a particle
tracking system to this approach: Fluorescent tracer particles sticked to the surface of
transparent gel spheres and tracer particles suspended in the carrier flow are tracked in
space, the sphere’s rotation is then given by the relative displacement of the sticked parti-
cles. However, identifying which are attached to a moving sphere’s surface and which are
moving freely with respect to the others is a non-trivial task. A completely different ansatz
was taken by Frish and Webb [17] who created an Eulerian technique measuring one
component of the angular velocity using specially engineered, transparent particles which
contain an embedded mirror. The reported particle diameter is less than 50 gm, which
is of the order of the Kolmogorov length scale, . Our approach is completely different:
it consists in painting the particle with a suitable layout, and in retrieving its orientation.
For algorithmic efficiency (and robustness) this is not done step by step but for the entire
trajectory using a global path extraction. The experimental setup and the technique are
presented in chapter 3.

Having access to particle’s translation and rotation enables us to study the forces and
torques acting on a large inertial particle, thus permitting to ask yet fundamental ques-
tions about their dynamics. More specifically three questions are addressed. First general
features of the translation are presented in chapter 4. Next, we turn to the rotation of a
solid large particle (chapter 5) and show that despite the highly turbulent flow rotation
and translation couple according to the lift force Fiix = Cjig U X w. Historically, a
coupling between the rotation and translation was first reported by G. Magnus in 1852
in his article Uber die Abweichung der Geschosse, und: Uber eine auffallende Erscheinung bei
rotierenden Korpern' [38] and a lift has been measured in laboratory experiments, when
the flow is steady and laminar [79, 70, 55]. It has further been observed for stationary
objects in a rotating flows but to our knowledge we report here the first observation of a lift
force for a freely moving sphere in a turbulent flow. In the third part (chapter 6) we test
how the particle exchanges momentum with the fluid. For that purpose we analyze the
fluctuations of the particle’s kinetic energy by means of the fluctuation theorem [18, 10].

Furthermore, in collaboration with SmartINST, a young startup on the ENS campus and
building upon the work of Yoann Gasteuil ez al. [19] we present a novel measurement
apparatus for characterizing flows in chapter 7: An instrumented particle, which contin-
uously transmits its three-dimensional Lagrangian acceleration. The particle embarks a
small battery, a 3D accelerometer operating at 316 Hz and a wireless transmission system,
its signal is then received and processed on a control computer. After a general presen-
tation of the apparatus the developed methods for the interpretation of the acceleration
signal are explained. We further test its precision by tracking the position and orientation
of the particle while simultaneously recording its acceleration signal.

Some parts explored during the 3%2 years of this thesis do not fully fit within the storyline
of the manuscript. These sidetracks are therefore presented separately in appendix A.

'On the deviation of projectiles, and: On a striking phenomenon of rotating bodies
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2 A very infermittent infroduction to
turbulence

This chapter recalls some features and concepts of turbulence and the tools used. In a way
it’s as intermittent as our particle’s motion. A slower and less intermittent introduction
can be found in the following books:

Pope Turbulent Flows [51], Laudau and Lifschitz Hydrodynamics [34], Bachelor an intro-
duction to fluid dynamics 5], Frisch Turbulence: The Legacy of A. N. Kolmogorov [16], and
in Tennekes and Lumley A First Course in Turbulence [63]. A comprehensive source
of information on the various experimental techniques, which were developed in fluid
dynamics research, is found in the Springer Handbook of Experimental Fluid Dynamics [67].

2.1 Fluid dynamics & Scales

At some point during one’s study of physics (or engineering) one learns that the motion
of a fluid is govern by the Navier-Stokes equation. In most cases this is restricted to
incompressible fluid of constant viscosity v and constant (fluid) density p;:

0 \Y 1

{—%—u-V]u:——p—f—VVQu—l——f (2.1)

ot Ps Ps
where u is the velocity field, p the pressure and f external forces (per body volume). In
addition the fluid is subject to the continuum equation V-4 = 0 and the boundary
conditions. The term (u - V) w is quadratic and only for some special cases one can find
analytical solutions. Most of those fall into the regime when viscous forces dominate —
ie. vV*u > (u-V)u - and one therefore introduces the so-called Reynolds number
as a dimensionless parameter relating the inertial and viscous term:

_ Magnitude [(u-V)u] UL

= 2.2
he Magnitude [ V?u| v 2.2)

where L and U represent the characteristic length and velocity scale of the flow; one can
interpret the Reynolds number as an indicator of the level of turbulence. For Re < 1 the
viscous term dominates and small perturbations arising from the boundaries or body forces
acting on the fluid are damped out. The flow is then organized in stationary streamlines.
One can picture its structure as fluid lamina which glide along each other but do not cross.
Hence, this type of flow is called laminar.

For an increasing Reynolds number perturbations arising from the boundaries or body
forces acting on the fluid are not damped out anymore and the lamina break up into
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Re=0.16

Re=2 000

=
Re=10 000 =SS

Figure 2.1: Flow behind a cylinder at different Reynolds numbers [Extract from the album
of fluid motion [69]]. At very low Reynolds number (Re = 0.16) the flow is organized
in streamlines passing smoothly around the cylinder (a so-called creeping or Stokes flow);
but with increasing Reynolds number more and more eddies of different sizes appear in
the flow.

many eddies, which are advected with the mean-flow. The system evolves into a spatio-
temporal chaotic system which is called turbulence. In this regime mixing is enhanced,
but also the drag force acting on a body moving through the flow is higher in a turbulent
flow than in the laminar case. To illustrate this transition Fig. 2.1 shows extracts from
the album of fluid motion[69] for the flow around a cylinder at four different Reynolds
numbers. At Re = 0.16 the flow is organized in streamlines passing smoothly around
the object, this configuration is also called a creeping or Stokes flow. But with increasing
Reynolds number more structures of different sizes appear in flow. Their interaction yields
the complex multi-scale nature in both time and space of fully turbulent flows. One,
therefore, turns towards a statistical description of turbulent flows.

Richardson cascade Richardson formulated the multi-scale nature of turbulence in
his famous poem:

Big whorls have little whorls that feed on their velocity,
and little whorls have smaller whorls and so on to viscosity.

In 1941 Kolmogorov published groundbreaking articles translating this idea into math-
ematical language: Energy is injected at a length scale L;,, characterizing the biggest ed-
dies. These eddies break up into smaller eddies which again break up into even smaller
whirls. The cascade stops when viscosity becomes non-negligible and injected energy is
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Figure 2.2: Sketch of the Richardson cascade. The system (of size L,p,) injects energy at
the size L;,, characterizing the biggest whirls. These whirls break up into smaller whirls,
which break up into even smaller eddies, and so forth. This process is stopping in the
dissipative range when viscosity becomes non-negligible and the injected energy is finally
converted to heat. This model does not describe the dynamics of the eddies.

converted into heat. Energy conservation dictates that the energy injected at large scales
must be the energy dissipated at the small scales. One therefore defines the energy trans-
fer rate! , as the injected power per mass unit. Dimensional arguments relate the energy
transfer rate to the velocity v; of an eddy of length I:

u3

Kolmogorov then assumes that far away from the energy injection scales the eddies lost
their memory of their creation. If dissipation is still negligible then the statistics are fully
determined by ¢; this is the so-called inertial range. The end of the cascade is referred to
as dissipative range which is fully characterized by viscosity, v and energy injection rate,
e. Then the smallest characteristic length scale 77 and time scale 7,, of the flow are:

n= (/)" (242
7y = (v/e)'/? (2.4b)
One generally speaks of 17 and 7,) as Kolmogorov scales. One can further derive/identify an

intermediate scale situated between the largest and the smallest eddies: The Taylor micro
scale, A, and it is common to specify the turbulence level at this scale by the Reynolds

" The terms energy injection rate, energy transfer rate and energy dissipation rate are equal.
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number based on the Taylor micro scale Ry, ~ v/15 Re. One can further relate the
Kolmogorov scales to the biggest (or integral) scales of the flow:

N/ Line X Re™3/4 (2.5a)
7/ T o Re™/? (2.5b)

where T, is the time scale of the large eddies of the flow. A consequence of the equations
(2.5) is that the Kolmogorov scales and the biggest scales of the flow become more sepa-
rated with increasing Re. This conclusion is sometimes referred to as Kolmogorovs idea of
scale separation. An illustration of the cascade is provided in Fig. 2.2. All measurements
presented within this manuscript consider particles whose diameter is a fraction of the
integral length scale and much larger than the Kolmogorov scale.

One should keep in mind that the Richardson cascade does not describe the dynamics
within the cascade. Similarly Kolmogorov’s derivations assume that the turbulent fluctu-
ations are locally homogeneous and isotropic. Establishing such conditions in the lab is a
demanding task and outside a research facility they are almost never encountered. More-
over, Blum ez al. showed for a variety of turbulence creating apparatuses and Reynolds
numbers that a signature of the large scales can still be found in the small scales [7].

18



2.2 Euler, Lagrange & the motion of particles

There are some things in life which are
more fun doing than watching

(Jean-Frangois Pinton)

As for many things there are (at least) two perspectives, one can either observe at fixed
position without participating in the fluid’s motion or one can be advected by the flow and
describe the local interaction along one’s trajectory through the flow. The descriptions are
the so-called Eulerian and Lagrangian frame. Mathematically, the Eulerian frame works
with spatio-temporal fields of either vector quantities like the fluid velocity w(x,t) or
scalars ¢(x, t) (e.g. the temperature). In contrast thereto the Lagrangian frame measures
a vector or scalar quantity along a trajectory Y (¢).

The two perspectives yield a different view on the dynamics but in the limit of infinite
resolution or an infinite amount of trajectories through the flow field both expressions can
be converted into the other. The Lagrangian frame is the natural choice when describing
the motion of objects advected in the flow.

Normally one choses the description which is suitable for the problem asked. Complex
problems necessitate information from both sides, e.g. to predict the spread of volcano ash
it is important to ask “how do dust particles usually behave?” as well as “how is the wind
today?”.

Figure 2.3: Smoke visualization of the flow around a baseball spinning at 630 rpm in a
wind-tunnel at 23.5 m/s [Extract from the album of fluid motion [69]]. Note the turbu-
lent wake which extends over several particle diameters. The stream-lines are bent down-
wards due to the rotation of the sphere.
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Particles  Objects in flows come in many shapes. We focus here on homogeneous rigid
spheres, which are characterized by their diameter D, and their density p,. The influ-
ence of their surface roughness is neglected. In order to compare different experiments
one usually takes the ratio of the diameter to the biggest (Dpar/ Line) or smallest (D /1)
length scale, and of the particle’s density to that of the fluid,

3p5

TR L
2pp + py

(2.6)

All data presented in this manuscript is gained with neutrally buoyant particles — i.e.

pp=py (B=1).

After defining these parameters one can ask what happens if a particle is inserted into a
flow. Fig. 2.3 shows a visualization of the flow around a spinning baseball, one sees how
the stream lines are bent by the particle. The wake is clearly turbulent and extends over
several particle diameters. Moreover, one observes the influence of the rotation on the
streamlines. A derivation of the equation of motion for such a real-world example is an
extremely complex problem.

In the case of small particles one can assume that the flow is modified only locally.
Nevertheless, one has to take care of the no-slip condition: the fluid velocity matches
the particle velocity at the surface. A priori the particle can (and does) rotate; hence,
the no-slip condition induces the forces and torques acting on the particle. In order to
characterize the flow on the scale of the particle, one defines a Reynolds number based on
the particle
Dpare | Vg

slip

Re, = (2.7)

v
where the slip velocity vy, is the velocity difference between particle and surrounding
flow.
The equation of motion for a small particle with a small particle Reynolds number has

been derived by Maxey and Riley [40] (and independently by Gatignol [21]):

d 9] prd a_,
1, Ypar \% - S 1. slip ™ —V ‘
Prgy Ve = {82& T } Y(t)+w 2 dt (U'P 10" v
N ~ ’ buoyancy force N

~
pressure gradient added mass

Wpy @ o
T ("’ GVl ) - Crprva x

v
~~ lift force
viscous drag

[

w\»—t

d a®
= (’USUP(T) — EV2u|Y(t))dT

~\
history force

(2.8)
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It is w the flow field in absence of the particle, a = Dy /2 the particle radius, Y'(t) the
particle position and vy, its velocity. Vi, = Vpare(t) —w [Y (t), t] is the velocity difference
between particle and unaltered flow, w (at the particle position Y (t)). VQ’U,’Y (1) Stems
from the Faxén corrections which take into account the non-uniformity (at the scale of
the particle) of the flow. They vanish in a locally uniform flow field.

The different terms tell of the various forces acting on the sphere, buoyancy and pressure
are the direct fluid-mechanical counter-part of Newton mechanics. As the particle moves
through the flow is has to accelerate its surrounding fluid and thus loses momentum. This
effect appears as an added mass. Since the flow is homogeneous at the scale of the particle
the classical Stokes force is an adequate description of the viscous drag. The wake of the
particle acts back on the particle and has some memory of its motion. This is accounted
for with the history force term. Since its calculation is extremely demanding this term
is very often omitted. In the case of a creeping (or Stokes) flow (Re, < 1) around the
particle rotation and translation decouple and there is no back-reaction from the torque
on the particle velocity. In this case it is furthermore possible to reduce equation (2.8) to
the Stokes drag and the added mass term [39, 13]. The inertia/density of the particle is
then represented by the time scale 7, in which it reacts to changes in the flow and the so-
called Stokes number becomes the sole non-dimensional parameter relating the particle’s
inertia to the smallest time scale of the flow:

Dl l 1 (D’
St=12 - pa_:_< pa) (2.9)
m, 12vp7, 128
It should be stressed that this simplification is limited to small particles (Dpore S 1) [14,
15].
For higher Re,, a rotating particle experiences a lift or Magnus force. This non-linear

and invsicid contribution couples rotation and translation of the particle. The term is not
part of the original Maxey-Riley equation (2.8): It was added later by Auton [3, 4]. We
discuss it and the rotation of larger particle in more detail at the beginning of chapter 5.
Renée Gatignol further derived the torques acting on a particle [21]:

8 0
(Jw,) =T = —8rpsva® (w, — Wf/22+ 1—57ra5pf [at +u- V} Wy

E ~~
drag torque fluid vommty
_87T;0fl/a3 /td(wp_wf/2) exp M erf MdT
! 0 i 02 a?

~
history torque 1

87rpfa \/7/ wdwa/2)

hlstory torque 2

(2.10)

It is w), and wy the angular velocity of the particle and the fluid (i.e. the vorticity), J is
the inertia (tensor) of the spherical particle. The particle’s angular momentum is resisted
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by drag torque and the two history terms and it is driven by the angular acceleration of
the underlying flow. The torque does not have an equivalent of the added mass term in
Eq. (2.8). In most conditions all terms except the first are neglected and one obtains:

T = —8mpsva® (w, — ws/2) (2.11)

For a solid homogeneous sphere one can then compute the response time to a torque

S _ @ (2.12)
- 8mpsvad 1bv '

rot __
p

Again, this is only meaningful for small particles.

Particles much larger than the Kolmogorov scale are not governed by these equations.
Unfortunately no equation exists (yet) for the motion of large particles. Moreover, direct
numerical simulations of the Navier-Stokes equation which take into account the bound-
ary conditions of a moving object are computation-wise extremely expensive. In 2010
Aurore Naso [47] published work on a fixed particle in a turbulent flow at Ry = 20, for
comparison the turbulence in a cup of coffee has R, ~ 100.
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2.3 Von Karman swirling flows

Counter-rotation Co-rotation

Figure 2.4: Flow structure in a von Kdrmdn flow with co- and counter-rotating impellers
[image adapted from [56]]. Note that the impellers are housed in a square vessel through-
out this thesis.

The von Kdrmdan swirling flow is a tank with two opposing propellers that create an
axisymmetric flow field. The propellers? can be either co- or counter-rotating, leading
to different flow configurations. Blades on the impellers work similar to a centrifugal
pump and add a poloidal circulation at each propeller. In the counter-rotating case the
flow is highly turbulent and within a small region in the center the mean flow is little
and the local characteristics approximate homogeneous turbulence. However, at a large
scale it is known to have a large scale anisotropy [49, 42]. An extensive characterization
can be found in the thesis of Florent Ravelet [56]. He showed [57] that with increas-
ing propeller speed the flow undergoes a transition through several chaotic states until it
reaches a fully developed turbulent state which is characterized by the fact that the fluc-
tuations in velocity grow linearly with the propeller speed. In other words the flow is
fully turbulent if RMS (v( fpmp)) / forop = const.. According to [57] and as illustrated
in Fig. 2.5, the transition to fully developed turbulence occurs at a Reynolds number
of Rey = 2wR? fy0p/v & 35005 in this dissertation all experiments were performed at
Re > 4000. Hence, the flow was always fully turbulent.

The high turbulence level and confined flow in an apparatus that fits on a lab bench
makes this apparatus highly appealing for Lagrangian measurements; the von Kdrman flow

2The terms pro- and impeller are equally employed.
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Figure 2.5: Transition to fully developed turbulence in a cylindrical von Kirmdn flow
[figure adapted from [57]]. Note that the Reynolds number, Re, is here simply based
on the propeller radius R and the propeller speed fop. [2€; marks the transition to fully
developed turbulence. All measurements presented in this thesis have Re > 4000. Hence,
the flow is fully turbulent.

became a standard tool for turbulence research [65]. Some people even refer to it as the
“work-horse” of turbulence and also the “French washing machine™.

On the other hand co-rotating impellers create a flow similar to a hurricane: Close to
the axis of rotation the flow is weak, followed by a strong toroidal component and an
additional poloidal circulation induced by blades on the impellers. At the same propeller
speed a co-rotating driving creates less turbulence than counter-rotating impellers, but the
flow is still highly turbulent. Catherine Simand [59] has examined the properties of co-
rotating von Kdrmdn flow in detail during her thesis. Within this manuscript co-rotating
driving is used as a cross-check, but the focus lies on counter-rotating impellers.

A visualization of the flow structures is provided in Fig. 2.4.

Although most experiments reported in the literature are carried out in a cylinder, the
von Kédrmdn flow of this thesis has a container built with transparent flat side walls. Thus,
the cross section of the vessel is square. This rectangular design enables us to perform
direct optical measurements over almost the whole flow domain. It also reduces a solid
body rotation; a comparable effect can be achieved by adding baffles to a cylinder. The
impellers are fitted with straight blades such that we observe the characteristic poloidal
circulation due to the pumping. More details on the apparatus are found in section 3.1.

3This is an urban legend, the French have the same washing machines as everybody else.
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2.3.1 On estimating flow parameters

When estimating the motion based on general parameters of the flow, one has the choice
between Kolmogorov and large scale (apparatus) type arguments. As explained earlier the
former evaluates flow parameters (e.g. the Kolmogorov scales &) in the dissipative and
inertial range based on energy injection rate, € and viscosity, v. The derivation assumes
that the flow behaves locally homogeneous and isotropic in a statistical sense.

When investigating large particles with a size D, comparable to the integral length
scale, Ly, moving through the whole mixer, these assumptions are most likely no longer
valid. Similar to the thesis and articles by Ravelet [56, 57], one can then focus on di-
mensional arguments which stem from the apparatus. These are in our case the propeller
speed forop, the particle diameter D, and the radius of the propeller R. Although these
two choices are different in their physical background, they yield similar dimensional pre-
dictions. That is due to scaling relations of fully developed turbulence like £ oc f3 and
RMS (v) o< fprop- For a clear distinction we differentiate between the terms Kolmogorov-
type and dimensional arguments.
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3 Setup, Technique & Measurements

Since Newton it is known that the motion of an object is determined by the forces and
torques acting on it. Its interaction with the various whirls in a flow results in a complex
translation and rotation of the latter. For simplicity we limit our investigation to material
spherical particles, yet we do not restrict their mass distribution.

Over the last 60 years a set of measurement techniques has become available to extract a

particle’s velocity and acceleration and yielded important information on the interactions
with the flow [65]. For a detailed survey on these techniques the reader is referred to the
Handbook of Experimental Fluid Dynamics [67].
Laser or Acoustic Doppler Velocimetry have direct access to the velocity. Unfortunately
they cannot be extended to measure the rotation and are therefore not further discussed
here. Particle Tracking Velocimetry (PTV) on the other hand follows the particle’s po-
sition by means of multiple high speed cameras. Velocity and acceleration are then the
derivatives of the position time-series. Furthermore this technique is able to track several
particles simultaneously which enables the study of multi-particle statistics like how fast
they spread.

The rotational component of the particle’s motion can be obtained by tracking the dis-
placement of dots on the sphere’s surface. This was first introduced by Ye and Roco [79],
unfortunately a PhD student had to identify all dots by hand. It was recently picked up
by Mathieu Gibert, Simon Klein ez /. [31] who use a PTV system to track fluorescent
particles which are attached to large transparent gel spheres. Adding tracer particles to the
flow allows him to directly access the flow of the fluid around the spheres. In addition, no

Figure 3.1: Illustration of a trajectory containing both position and orientation
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student is forced anymore to identify the dots by hand. However, identifying which trac-
ers are attached to a moving sphere’s surface and which are moving freely is a non-trivial
task.

Frish and Webb [17] demonstrated a completely different technique with the vorticity
optical probe: They engineered transparent particles that embedded a mirror. An inci-
dent laser beam is then reflected with an angle depending on the particles orientation.
The focal point of a spherical lens depends on the angle between optical axis and incident
beam. Thus, an image sensor placed at the focal point can detect the angle of the incident
beam. The reported particle diameter is less than 50 um, which is of the order of the
Kolmogorov length scale, 77. Their technique can therefore measure two components of
the fluid vorticity.

All these techniques can trace the angular velocity, however, they do not have access to the
orientation of the particle. But the absolute orientation is important for problems where
there is a preferential direction—such as when there is a global rotation, a temperature
gradient, an imposed magnetic field or a 3D accelerometer in a rotating instrumented
particles. The latter case is presented in chapter 7.

As illustrated in Fig. 3.1 we therefore developed a novel measurement technique which

can follow the full six degrees of freedom — i.e. position and absolute orientation — of a
sphere advected by the flow. The angular and linear velocity (and acceleration) are then
the derivatives thereof.
The position is carried out with standard particle tracking techniques and two high-speed
video cameras. Tracking the absolute orientation of the particle is much more challenging,
both because of the specifics of angular variables, and because of the specific algorithmic
requirements. In contrast to the previous techniques we simply paint the particle with a
suitable layout, and then retrieve its orientation by a pattern recognition algorithm. For
algorithmic efficiency (and robustness) this is not done step by step but for the entire
trajectory using a global optimization scheme.

This chapter is organized as follows:
> We present the experimental setup (section 3.1).
> Next, the tracking of several particles is explained (section 3.2).

> The orientation tracking is presented in three steps: after establishing important
features of the orientation algebra in 3D (section 3.3.1), the actual algorithm is
explained (section 3.3.2) and tested (section 3.3.3)

> A summary of the data runs is given at the end of this chapter.

Some parts follow tightly our article published in Review of Scientific Instruments [84].
However, some parts contain more technical details now and information on the tracking
of several particles is added. For readability some calculations are moved to the annexes.
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Figure 3.2: Sketch of the experimental setup: a) sketch of the camera arrangement; b) first

version of the von Kdrmdn mixer; ¢) upgraded stainless steel version, the cooling circuit
is now integrated into the metal walls. d) a textured particle at different orientations

3.1 Experimental Setup

3.1.1 Von Karman flow

A turbulent flow is generated in the gap between two either co- or counter-rotating im-
pellers of radius R = 9.5 cm = 10 cm fitted with straight blades 1 cm in height. The flow
domain in between the impeller has characteristic length H = 2R = 20 cm. In order to
be able to perform direct optical measurements, the container is build with flat Plexiglas
(Poly[methyl methacrylate]) side walls, so that the cross section of the vessel is square.
The total volume is 11.4 1. A small opening at the top enables us to conveniently add or
remove particles from the container. More details on von Kdrmdn swirling flow can be
found in section 2.3 and a sketch of the setup is provided in Fig. 3.2. Since parts of the
apparatus served already in the thesis of Nicolas Mordant [43] and his successor Yoann
Gasteuil [19], it is still called KLAC (short for von Kdrmdn Lagrangian Acoustics).

The working fluid — either de-ionized water or a finely tuned water-glycerol mixture —
is chosen such that its density matches the density of the particle. A cryo-thermostat con-
tinuously pumps water of well-controlled temperature through a cooling circuit, thereby
controlling the fluid’s temperature. A fast degassing can be achieved by heating the fluid
to 65 °C while the motors and the filter system are running. Our filter system consists
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simply of a centrifugal pump which pumps fluid from a bubble trap through a filter back
into the apparatus; two high points of the vessel are connected back to the bubble trap.
The plumbing consist mainly of standard garden hose from the DIY store and Gardena
(quick connectors, valves, etc; all made of plastic).

It should be noted that the apparatus was upgraded: the first version [19] was built
mainly with brass parts and the propellers were driven by DC-motors mounted toa 1 : 2.5
reductor. However, this setup is limited to non-corrosive fluids. Therefore, all parts are
now made of stainless steel. The propellers are now directly driven by brushless DC-
motors (Leroy-Somer) each controlled by a variator. We house both in a control cabinet.
The improved apparatus is easier to use and able to work with corrosive working fluids
e.g. a potassium salt - water mixture, which is less viscous than the water-glycerol mixture.

A second apparatus is briefly used in this thesis: the Lagrangian Exploration Module (LEM).
There, twelve independently driven impellers produce turbulence in a closed icosahedral
water tank of 1401 and it was shown that this apparatus creates homogeneous isotropic
turbulence with little mean flow. Further details are found in section A.1 and in [80, 86].

We estimate the energy injection rate € by measuring the active power of the delivered
motors in water and in air; the active power is a direct output of the variators. Fig. 3.3
shows the energy injection rate for co- and counter-rotating impellers. For comparison
we further provide € in the LEM. Here, 1 g\ was obtained from PIV measurements [14]
in the center of the apparatus and independently from the active power injected by the
twelve motors. The two energy injection rates differ by a factor of 20. Similar discrepancy
between the two methods of determining ¢ has been noted in the apparatus in Gottin-
gen [80], too.
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Figure 3.3: Energy injection rate, €; for the KLAC ¢ is based on the energy consumption
of the motors. In the Lagrangian Exploration Module (LEM) gy was obtained from
PIV measurements in the center of the apparatus and independently from the total energy
injected by the 12 motors. Similar discrepancy between the two methods of determining
¢ has been noted in the apparatus in Gottingen [80], too.

3.1.2 Particles

Two types of particles have been used:

PolyAmid spheres Solid, white PolyAmid (PA) spheres with the following diameters
D = 6 mm, 10 mm, 15 mm, 18 mm, and 24 mm (accuracy 0.01 mm, Marteau &
Lemarié, France) were used. Their density is p, = 1.14 g. cm ™2 and can be
matched by addition of glycerol to water.

Instrumented particles The instrumented particle, which is explained in detail in chap-
ter 7, consists of a PEEK! -capsule embarking a circuit which continuously transmits
the signal of a 3D accelerometer to an exterior receiver. The capsule’s color is light
gray; its total density is close to that of water and can be adjusted by adding weight
inside.

In both cases the density mismatch, measured from sedimentation speeds, is found to be
of the order of Ap /p = 107, In order to track the orientation, the particle is textured
black and white by hand using black-ink permanent marker. Texture as well as suitable

! Polyether-ether-ketone
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pens and nail polish? have been identified by trial and error methods. Best results were
obtained with Edding #8300 industry permanent marker, but in general inks, which are
not water-soluble, perform well. Fig. 3.2d) shows a textured PA sphere at four different
views. The particles are left unpainted white if we just aimed on measuring the translation.

3.1.3 Image acquisition & processing

The motion is tracked by two high-speed video cameras (Phantom V12, Vision Research)
which record synchronously two views at approximately 90 degree. The flow is illumi-
nated by high power LEDs and sequences of 8-bit gray scale images are recorded at a
sufficiently high frame rate (see table 3.4, page 52). It should be stressed that a short
exposure time is crucial for observing a sharp round shape in the movies. Both, cameras
and illumination are mounted to a custom-made structure made of aluminum profiles
(Bosch-Rexroth and Newport).

Both cameras observe the measurement region with a resolution of approximately 650 x
650 pixels, covering a volume of 15 x 15 x 15 [cm’] corresponding to 4.2 pixel/mm.
Hence, the particle diameter ranges 25 to 110 pixels.

In our configuration, the camera can store on the order of 15000 frames in on-board
memory, thus limiting the duration of continuous tracks. The movies are downloaded
to a PC, waiting to be processed. The processing is done on a gaming PC with a state
of the art graphics card. The code is written in Matlab using the image and signal pro-
cessing toolboxes as well as the Psychtoolbox extension [8, 50] which provide OpenGL
wrappers for Matlab. Our image processing is mostly based on the documentation of the
Matlab’s image processing toolbox, the book Morphological image analysis: principles and
applications [60]. Inspiration was further found on Peter Kovesi’s web site[32] and Matlab
Central [64].

2Nail polish was abandoned because it alters the surface roughness of the particle.

32



3.2 Position Tracking

Although the identification of a large sphere from the camera images causes no particular
conceptual difficulty, the fact that the sphere is zextured raises some practical issues. A
simple thresholding returns only either the white or the black part of the particle. Re-
flections from the impellers continuously change the background, and small impurities in
the flow and possible bubbles add sharp gradient noise to the images. Furthermore, the
illumination of the flow is not perfectly uniform, and thus, shadows as well as reflections
occur. As the experiment evolved over the time of this thesis light conditions, working
fluid and unfortunately also the scratches on the box changed. Hence, the arrangement
of light, camera and background as well as the image processing were carefully adjusted
for each experiment. In either case, we compute the background view as the average of an
equally distributed subset of its images for each movie of each camera.

Three different configurations were explored within the scope of this thesis®:

> several unpainted white particles with different diameters in front of a dark back-
ground

> one painted particle in front of a light background

> several painted particles in front of a light background, all particles having a clearly
different diameter associated to a specific, unique texture.

Unpainted Particles  Both cameras are equipped with a 90 mm macro objective (Tam-
ron) and placed at 1.5 m distance from the center of the vessel. Hence, the diameter of a
particle’s projection varies by less than 10 % inside the apparatus. We therefore estimate
the area, Apam covered by particles beforehand. For each frame we then subtract the back-
ground and threshold such that at least A, pixels are white. For round, unconnected
blobs we directly save their location, (z,¥), on the image in pixels plus their diameter,
27; the deviation from the spherical shape serves as an error estimator. Connected blobs
are split using the maxima of the distance transform [60] of the blob. A sketch of the
blob-splitting is provided in Fig. 3.4.

One textured particle For one painted particle we first subtract the background and
perform a Difference of Gaussians blob detection. The threshold is adjusted by hand for
each camera and light arrangement. We then identify blobs with a round shape and a
diameter close to that of the particle. Shadows, bubbles, and reflections might be found
during blob detection because of their sharp separation from the background, but they
are of uniform texture and hence characterized by a small value of the variance of light
intensity across the blob. The blob with highest variance and closest resemblance to a
sphere is considered to be the particle. The precise position of the particle is refined using
a Canny edge detection or standard deviation filter in a tight region around the blob. Again,

3The temporal order is slightly different: we first worked on one painted, then several unpainted and
finally on multiple painted particles.
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Figure 3.4: Sketch of the Blob-splitting technique. Overlapping particles form a blob.
The distance transform then returns for each white pixel the euclidian distance to the
closest black pixel. Cleaning can be achieved by rejecting all pixels with a distance smaller
than the smallest expected particle radius. The local maxima of the distance transform are
possible particle positions with their associated radii; often more maxima than particles
are detected and one has to remove artifacts: Starting from the largest radius one itera-
tively excludes wrong detections which are within a bigger particle (solid red circles). One
obtains position, (z, ), and radius, r, of the remaining, real particles (dotted and dashed
circle).

for each time step we record the position, (z,y), of the particle on the image (in pixels)
plus its diameter, 2 r; the deviation from the spherical shape serves as an error estimator.
[t is further necessary to store a precise crop of the particle image in order to extract its
orientation.

Several textured particles The technique for several painted particles combines ideas
from the former two cases. Given that the texture strongly deviates from the background
a sliding standard deviation filter returns regions of high contrast corresponding to the
edges of the particle and its texture. A hysteresis thresholding based on an estimate of
the area covered with particles yields the outlines of the spheres. Matlab then detects and
fills closed outlines. If necessary the resulting blob is split. Position, diameter, images
and error estimates are stored. From Fig. 3.5 it becomes clear that if particles overlap, the
uncertainty in the orientation measurement increases significantly. We, therefore, skip
these cases and use only the image of the second camera, which is typically exploitable.
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Figure 3.5: Overlapping particles: the position is extractable but the uncertainty in orien-
tation increases significantly. If particles overlap we restrict the orientation measurement
to the view of the other camera.

Stereo-matching To obtain the particle position in 3D a standard stereo-matching
technique as sketched in Fig. 3.6 is employed: We model the cameras as pin-hole cameras
with an additional radial distortion as proposed by Tsai [68]. The projection of a particle
on the sensor of the cameras is projected back into 3D, where it forms a line-of-sight. The
particle’s position in 3D is the point, which has minimal distance to both lines-of-sight.
For setups with two cameras this point can be computed analytically [12]. The calibration
of the camera contains the position of the camera plus its rotation with respect to the lab
coordinate system, which is needed later for the orientation processing.

Top Camera
)
)
)
)
)
é—__

Front Camera

Figure 3.6: Stereo-matching. The particle position is the point which has minimal dis-
tance to both lines-of-sight.

Track assembly  The track assembly is straight forward if exactly one particle is placed
into the flow. The algorithm may temporarily loose the particle for short times (because
of bad light reflection, blurs, ...); this is compensated by the large oversampling and gaps
of less than 5 frames are interpolated to obtain longer tracks. Outliers are identified using
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a least-square spline and replaced by an interpolation. A careful setup and cameras with
short exposure time reduce significantly the probability of losing particles.

If multiple particles are in the flow we still know the possible physical dimensions ex-
actly. The cameras are placed such that the particles’ projected diameters cover well dis-
tinct ranges. This enables us to convert their observed diameter, 27 (in pixels) to their real
particle diameter, D, (in meter). Particles of the same diameter are then stereo-matched.

The tracking building is then done in two steps: First, particles of the identical size are
connected using a Nearest-Neighbor track connection which allows short interpolations.
The tracks break easily when trajectories cross in any of the two cameras, due to the large
size of the particles. For that reason the reconnection algorithm suggested by Haitao
Xu [77] is applied. It considers both, position and velocity at beginning and end of the
tracks, thereby ensuring a little number misconnections. In our case the acceleration of the
particle is neglected (that corresponds to w, = 0in [/7]). We further modified the search
area from a cylinder to a cone: the maximum distance between two tracks separated by At
is dpex (AL) = do + ﬁ (dmax(At) = const. was the choice in [77]). This modification
was added by Haitao Xu (cf. page 37 in [80]) to take into account that the uncertainty
of the extrapolation increases with time. In a last step we identify and eliminate outliers
with a least-square spline.

As a result we obtain less but significantly longer tracks. In most cases a particle track now
ends when the particle leaves the observation volume.
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3.3 Orientation Tracking
3.3.1 Math

The parametrization of an angular position in 3D space causes a number of difficulties
which are briefly addressed in this section (see e.g. [35, 22, 62, 75] for a more complete
presentation). One of them is caused by the degeneracy of the axes of rotation for certain
orientations (the gimbal lock problem). Another is the choice of a suitable measure of
distance between two orientations. An further issue is that mathematically two angular
velocities exist: Whereas w” describes the rotation of the particle with respect to the fixed
lab coordinate system, w' fixes the particle and rotates the lab system. This is somewhat
similar to quantum mechanics where one has the choice between the Heisenberg and the
Schrédinger picture to incorporate a dependency on time. We found no particular use for
w' in our analysis, and name it here just for completeness. In the later chapters, which
analyze and present the results, we focus only on the angular velocity which rotates the
particle, w. Therefore, unless otherwise stated the superscript P'is omitted and we always
rotate the particle.

It should be noted that throughout this manuscript the units of angle degree [°|, radiant
[rad] and revolution are equally employed. It is left to the reader to convert the units if
needed. We (try to) specify the propeller frequency in revolution/s = Hz and measured
angles in degree.

3.3.1.1 Describing Orientations

As stated by the Euler rotation theorem, 3 parameters are needed to describe any rotation
in 3D. We use here Euler angles with the Tait-Bryan convention as shown in Fig. 3.7.
In the transformation from Lab to Particle coordinate system, we first apply a rotation
around the z—axis of angle 6., followed by a rotation around the intermediate y—axis of
angle 6, and last a rotation of angle 6, around the new x—axis. The rotations work on
the object using a right handed coordinate system and right handed direction of rotation.
We will denote an orientation triplet by an underscore, e.g. 0, in order to distinguish them
from vectors (which are typeset in bold font, e.g. w).

The orientation of the object is fully described by an orthogonal 3 x 3 matrix R, ob-
tained from the composition of the 3 elementary rotations*: N

5(933,93,,@) = iw(ex)iy(9y>£z(9z) =

cl, cl, —ct, s0, 50, (3.1)
50y 50, cl, + cl, s0, —sb,s0,s0, 4+ cl,cl, —sb0,cl, '
—cby 50, cl, + 50,50, cl,50,50, +s0,c0,  cl,clh,

with¢- = cos(+)and s+ =sin (). Consequently, from any rotation matrix the 3 Euler

“In classical mechanics it is common to turn the coordinate system instead of the object, which changes

the sign of each angle, 7.e. R = R(—0,, —0,,—0.).
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Figure 3.7: Tait-Bryan rotation sequence describing the sphere’s orientation. The object
is first rotated around the z—axis with angle 6, followed by a rotation around the interme-
diate y—axis of angle 0, and last a rotation of angle 0, around the new z—axis. We work
with a right handed coordinate system and right handed rotations turning the object.

angles can be extracted using

atan2(—Ri2, R11)
={0,,0,,0.} = asin(ilg) , (3.2)
atan2(—Ras3, R33)

enforcing 0, 6, € [0,2n[and 0, € [—7/2,7/2]. It should be pointed out that multiples
of 27 can be added to each angle without changing the resulting matrix. In other words, 6,
samples only half of the real numbers IR. But according to Eq. (3.1) it is 6, € R without
any restrictions. Therefore, the choice of Eq. (3.2) cannot be unique and there is indeed a
second triplet with R (0, + m,sign(0,) - m — 6,,0, +7) = R(0,,0,,0.). An important
practical consequen?e is that even for small changes in orientation the difference between
two Euler angle triplets, §; and 0, has formally four possible results. The unwrapping of
a time series of Euler angles is explained in appendix B.1.

The curvilinear coordinate @ is related to the angular velocity, w", (in the particle frame)

by

1 0 s0, d 0,
WP (Ot) = [0 b, —sb,ch, T g,
0 sO, ct,ch, t 0.
(3.3)
d (b
= H(0.,0,) — | by
= dt \ 4

For cos (f,) ~ 0, the determinant of the matrix H, det(H), vanishes and its inverse
is not defined. In other words, finite body rotations need infinite change in the Euler
angles. This singularity is called a gimbal lock and is a well-known problem in robotics
and aerospace engineering. Geometrically, the second rotation turns the first axis parallel
to the third axis of rotation, and the rotation loses two degrees of freedom (an illustration
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and some more details can be found in appendix B.1). Unfortunately gimbal locks cannot
be avoided by a wise choice of representation.

In order to meaningful compare orientations one needs to define a distance between two
arbitrary orientations, which is immune to this type of singularity. A natural distance
between two arbitrary orientation matrixes, A and B, is

Tt((A-B)(A-B)) =6-21r(AB")
= 4(1 — cos ((;5))

(3.4)

using AAT = B BT = 1 and that AB” is a rotation matrix with the eigenvalues
1, €, e, The distance is thus a growing function of ¢. We measure here the distance
between two rotation matrices by:

A, B) = acos (% Tt (AB) — 1}) 5.5

Because it works directly on the orientation matrices, it is neither sensitive to gimbal locks
nor to the choice of the representation and thus an important tool in our algorithm. It
should be noted that d (A, B) is the angle of the rotation which turned the orientation

fromé to 2

In the search of the particle’s orientation, one last inconvenience of Euler angles is that
they are not locally orthogonal, in the sense that

d({0s,0,,0-} , {0, + A0, 0, + A6, 0. + A0.})?

3.6
~ A2 4 A2+ A6? +2 A0, - AD. - sin (6,) (-6

for a small variation A = {Ad,, Af,, Af,}. As a consequence, a uniform spacing of the
Euler angles in 6, 6,, 8, does not sample the space of possible orientations in an optimal
way. In particular near gimbal locks, the sampling rate would be higher at no higher
accuracy. The so-called Lattman angles [36]

{0+.60,0_}y={0,+6.,0,,0,—06.} (3.7)
fulfill local orthogonality since they verify

d({6,0,6_},{6, + 26,0+ 70,6_ +A6_})*
: g (3.8)
1+Sm9—|—A92—|—A031 sin @

~ Aé’i 5 5

As they are locally orthogonal, it is sufficient for sampling purposes to keep a constant

stepping;:
AG = AD, 1+2sm9:A0 /1—23m6’
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After a constant sampling of N values of 6 with A, = A = 7/(N — 1), the step-
ping in 6, and 6_ can be computed with A, (6) = A, /sin (4 + Z) and AG_(§) =
Arye/sin (2 — £). It should be stressed that 6_ € [0, 27| whereas 6, € [0,4n[. The
Lattman angles allow us to sample the set of orientations in an optimal way, in terms of
achieving the best resolution from the point of view of the metric given by Eq. (3.5), and
also from an algorithmic point of view.

Finally, in several instances it is convenient to describe a rotation by the direction of an
axis 12 about which the system is rotated by an amount ¢. The corresponding rotation
matrix can be computed using the Rodrigues Formula [22, 75]

co+niA —n.8¢ + nynyA  nysé 4+ ngn, A
R(n,¢) = | n.5¢ + nyn,A cp+n2A —n$¢ + nyn, A (3.9)
—nySP + ngn, A ngsg +nyn, A co+niA

with A = (1 — cos¢). Eq. (3.9) also allows us to extract the axis, 72 , and the angle, ¢,
from any arbitrary rotation matrix. As a result, changing the coordinate system or chang-
ing the representation of rotation can be done by expressing the orientation in its matrix
form, applying the transformation which changes the coordinate system and extracting
the desired representation.

3.3.1.2 Angular Velocity & Acceleration

Angular velocity and acceleration are often obtained by direct differentiation of a time-
series of Euler angles, e.g. using Eq. (3.3). However, it is possible to obtain the angular
velocity in the particle frame directly from the matrices. This technique is not sensitive to
gimbal locks because of the uniqueness of the orientation matrices.

Let e}F  be the particle coordinate system at time step k, whereas the fixed lab coor-
dinate system is e“x“’y’z. For two time-steps, k and k£ 4+ m, we know the corresponding

orientation matrices which rotate the particle:

. L RB(0) P,k
£<Qk) : ex’yyz em,y,z
. L B(Ok+m) P,k+m
Q(Qk?-‘rm) . ex,y,z ea:,y,z
Pk R(Oktm) B(OK)T P.k+m
b > b
L ex7y7z e"'E’y,Z

in which the matrix T is the change in orientation, in other words the matrix represen-

tation of the discrete angular velocity (for a given time difference). The change is with
P,k
m7y7'2:'

convention (see Eq. (3.9)) returns a direction vector, 1, of length unity and an angle, A¢
(meaning that between times k and k + m the particles has rotated an angle A¢ around
the vector ). The time difference, At, between the steps is a function of m. Therefore
an estimator of angular velocity is

Ag

W' (t(k)) = At(m) (n,-er* +mn,- e]g’k +n.-er") (3.10)

respect to the particle coordinate system at time k: e T expressed in the axis-angle
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At
frame without a prior unwrapping nor problems near gimbal locks. The angular velocity

Averaging N5 over several separations, m, returns the angular velocity in the particle

which fixes the particle and rotates the lab coordinate system is defined as
wh (t(k)) = R (8))" w* (t(k)) (3.11)

The angular acceleration in either particle or lab frame is defined as

a]L/lP _ iwlL/]P (312)
dt
In practice, it is obtained from a convolution of the angular velocity time series with the
derivative of a gaussian kernel. This technique has proved to be efficient in removing
noise [45]. We remind the reader here that we found no particular use for w™ and a';
in the analysis the superscript T is omitted and we work only with the angular variable
rotating the object.

[t should be pointed out that this algorithm can be applied to a set of particles attached
to a rigid body which are tracked using standard particle tracking algorithms. If one
records the positions in space of 3 or more points, P; ... Py at time ¢ and ¢ + At, their
motion can be split up into a translation of their center of mass plus a rotation. Once the
translation part is subtracted, one needs to determine the rotation matrix, Ry,psch, which
turns the points P, . .. Py around their center of mass. Measurement uncertainties in the
position of the particles render the system of equations degenerate 7.c. no exact solution
can be found. Furthermore, for more than 3 points this defines an overdetermined system
of equations.

However, Kabsch’s [30, 29] algorithm can efficiently compute an optimal solution®:
Ricbseh is then the matrix representation of the change in orientation, and the angular
V~elocity, wP, (in the particle reference frame) at time ¢ can be extracted as done here. It
should be pointed out that, one does not gain access to neither the angular velocity in the

lab reference frame, w™, nor to the absolute orientation, 6.

5A brief sketch of his algorithm is given in annex B.5. Kabsch’s algorithm is needed in our technique
which determines the texture of a painted particle from a set of images.
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3.3.2 Tracking

The algorithm used to process the camera images and obtain a time series of orientations
(and angular velocities) can be split into three parts:

> By comparison of the sphere’s picture with synthetic images, the algorithm identifies
a set of possible orientations.

> From the set of possible candidates at successive instants, a Flow algorithm identifies
a likely time series.

> A post-treatment adjusts remaining ambiguities.

These steps are described in details in this section.

Texturing a sphere In the choice of the particle texture, several features have to be
considered:

single view should correspond to a unique orientation.
> Asingl hould dt q tat

> [llumination inhomogeneities may cause regions to look similar in the camera im-
ages. Optically resembling views should correspond to clearly distinct orientations.

> The cameras are grayscale so the texture has to be of high lightness variation such
that the gray scale image of the particle contains exactly two distinct colors: black
and white. Painting with black ink on a whitish particle is the convenient choice.

> For image-processing reasons the number of black and white pixel should be ap-
proximately the same in every possible view.

> The ink/paint has to be resistant to the working fluid at temperatures up to 60 °C
as well as to continuous impacts with the wall and the propellers. The surface
roughness should be left unaltered.

3.3.2.1 Candidate Finding

Synthetic images. A first step is to obtain a 2D projection, S(6), of a sphere with
known texture and size at an arbitrary orientation, §. This rende.ring is achieved using
OpenGL, via the Psychtoolbox extensions for Matlab — for a disk image of about 60 pix-
els, the algorithm can render several thousand orientations per second (see Fig. 3.10 for
an illustration).
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Figure 3.8: Computing the texture from a set of images: Two images are first projected
onto a half sphere. The colored dots depict features; each feature has a unique name/color.
Then the rotation matrix which turn the common features from the upper view to the
lower view is computed and applied to the lower half-sphere. One can thus partially see
behind the upper view.

Obtaining the texture for a set of images One can paint the particle according
to a pattern already known to Matlab; however, the uncertainty in the texture is then
dominated by the artistic skills of the painter. For this reason we developed a procedure
to compute the texture of a sphere from a set of images.

We first paint the sphere and then add small dots with a different pen. These dots are
so-called features and are removed before the actual experiment. We then take pictures of
the particle at arbitrary orientations with a SLR camera and a high quality macro objective.
The images are edited/cleaned in PhotoShop setting the background, the two colors of the
texture and the dots/features to known, distinct colors.

Since every image is the 2D projection of textured half-sphere we can revert the pro-
jection. One thus obtains a set of colored 3D vectors. If each feature has a unique name
we can identify the rotation which turns the view in image A to a second view B and
thus look partially behind the sphere®. Typically 10 images have to be used to obtain a
well resolved texture. A sketch of the procedure is provided in Fig. 3.8. The technique to
assign unique feature names with user interaction is explained in the appendix.

The texture of each particle has to be known before inserting it into the apparatus,
because its texture continuously degrades during the experiment (mainly due to impacts
with the propellers). It lasts for several days and it is much faster to paint a new, fresh
texture than wasting ones time on repairing a worn-out texture.

Texture extraction. Once the particle position and diameter are known, one extracts
a disk subset of the image, centered on the particle, G. In a first step the contrast is

©This is like a superposition of rotated hedgehogs with colored spikes.
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adjusted such that the global histogram of intensity contains at least b percent of black
and w percent of white pixels (the algorithm only takes into account the disk / particle
region in G). The adjustable parameters b, w are fixed to b = w ~ 30% which is the
minimum amount of black/white pixel in an arbitrary orientation. In a second step, the
image is thresholded by using Otsu’s method [48] for the global histogram. To refine this
first rough thresholding we developed and tested successfully:

> Thresholding in smaller moving regions,
> hysteresis thresholding, and

> identifying the edges between black and white regions with either a Canny or stan-
dard deviation filter. Within each enclosed region the color is a priori uniform and
therefore set to its medium value.

Either way, the thresholded image, I, is adjusted such that pixels outside the particle / disk
are set to 0 whereas black is —1 and white +1. These steps are shown in Fig. 3.9. Again,
well-setup illumination, short exposure time and high quality ink for texture reduce the
complexity of the image processing steps significantly.

Synthehc Binary
Raw Image, G Contrast adjusted Thresholded, 1 {64/6y]6.} Ressemblance

>

Figure 3.9: Texture extraction and comparison with a synthetic image. The resemblance
between the image I and the synthetic projection S atangle 0 is estimated using Eq. (3.13).

Comparison, possible orientations. The image / (with diameter 27) obtained as
above is ready for comparison with synthetic images. The resemblance to a rendered image
S(0) with orientation § is estimated by

27r7"2 Z Z Lij- 514 (3.13)

which is ratio of the number of correct pixels to the total number of pixels.

7(1,6)

7_

At this point we note that the computational cost of directly comparing an image
1 to synthetlc ones S(0) covering the set of possible orientation {f} scales roughly as
(1 / ALm) where Ay, is the grid spacing in the orientation space. There is also the ad-
ditional difficulty that the particle apparent diameter changes slightly as the sphere moves
in the flows. For efficiency and physical correctness, we use the following strategy: instead
of finding at any time step the best images, we identify a set of possible candidates for all
time steps and then extract globally the time series of orientations.
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Figure 3.10: Synthetic 2D projections of the particle for a range of orientations, using
OpenGL. A camera image of the moving particle is shown in the upper left corner (contrast
enhanced; note the driving disks on either side).

First, we render images, S({fcoarse })> covering all possible orientations with a coarse grid
— in practice A, ~ 12°. Lattman angles are locally orthogonal and thus more efficient
in creating such grids. The size of the rendered images is fixed to approximately one half
of the particle’s real diameter. Since their size does not change, these images are kept in
the computer memory and do not need to be recomputed for every new image.

The thresholded particle image, /, is then resized to the size of the renderings, /e,
and compared to all synthetic image;, S ({fcoarse }) as shown in Fig. 3.10 using Eq. (3.13).
All angles § satistying T'(/coarse, 0) > max (T(Lcoarse, {Qcome})) — Ocoarse are considered to
be possible orientations. Here 0course is an arbitrary thresholding value, with inspection
showing that a value equal to 0.1 gives good results.

Experience shows that the identified possible orientations usually cover several broad
classes. They are thus separated into groups of images whose orientations differ by less
than a rough threshold, approximately 30 — 45°. For each group, synthetic images are
further added using a fine grid spacing, Ag,. = 3° (at this point ‘bad’ images may cause
the code to runaway; they are dropped and the code advances to the next time step). The
possible orientations are then rendered in real size and compared (using Eq. (3.13)) to the
image I. For each group, the code returns the final best guess, i.e. the orientation with the
maximum resemblance, thus drawing a list of candidates, see Fig. 3.11 for an example of
a particle with its corresponding candidates.
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Figure 3.1 I: Particle camera image (left) and corresponding candidates, after analysis of
the possible orientations.

3.3.2.2 Track Assembly

After identifying the candidates for each time step, the most likely orientation for each
time step has to be determined. However, the candidate with the highest count of correct
pixels is not necessarily the best choice. Although counterintuitive, the direct use of two
cameras seeing the particle at different angles does not simplify the problem, because in
the case of a bad image, one camera falsifies the choice of the candidates found by the
other camera. Moreover, gimbal locks prevent the use of a predictor-corrector scheme for
the prediction of the orientation. However, the norm of angular velocity is assumed to
be smooth and we search the time series which globally minimizes the sum ), £(¢) along
the time series of the so called direct neighbor distance function:

d(0(1), 0t + A1)
At

A direct neighbor is the next valid time step at £ + At. The distance between two orienta-
tions does not depend on the representation, ensuring the robustness of the algorithm even

(3.14)

(1) = |w(8(t), 0(t + At))| =

at gimbal locks. Minimizing ) ", £(t) is only meaningful for small changes in orientation
between two time steps, another requirement for high (over)sampling rates.

Flow algorithms are highly efhicient in finding a global optimum for a discrete set of
candidates. The following is done for each camera without considering the extra informa-
tion from the second camera. In a first step all candidates with a resemblance 7" < Squaliy
are removed — in practice Squliy = 0.5. Then a directed graph is built which connects all
candidates at time step ¢ with all their direct neighbors at the non-empty time step ¢ + At.
The cost function is chosen such that it takes into account both the change in orientation
and the quality of the matching;

2-Ty—1T5

3.15
At ’ ( )

C({04,Ta}, {05, Ts}) = d(04,05)

with {04,741} a candidate at time ¢ and {05, 15} a directly neighboring candidate at
t + At.
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Figure 3.12: Sketch of a graph connecting the possible candidates using the cost function
C (cf. Eq. (3.15)). For each time step ¢, we have b(t) candidates with an orientation ¢} and
a resemblance Tlf . In the time seriest = 1... N, the candidates are labeled k € 1... K.
The directed graph C' connects all candidates at ¢ to all their next valid time step ¢ + At;
gaps are skipped as indicated for time step 2.

A Dijkstra path finding algorithm returns the sequence of candidates having a global
minimum of the total cost, i.e. the global minimum of change of orientation (weighted
by the image quality) (cf. Fig. 3.11). In most cases this algorithm returns directly the
time series of absolute orientation. Nevertheless, bad images introduce false candidates
forcing the path finding algorithm to take a different, non-physical path. These points
manifest as spikes in the direct neighbor distance function, £(t). After a spike, there is no
guarantee that the path is still physical. Therefore, we segment the time-series based on
the spikes. The second view (from the second camera) treated with the same algorithm
contains the information to correct such wrong segments. The rotation matrix, which
transforms the orientations seen by one camera into the coordinate system of the other
one, is known from the camera calibration. Therefore, both views are expressed in an
intermediate, common coordinate system where the segments with d(Qcaml , Qcam2) = 30°
can be corrected.

The algorithm presented so far assumes an orthographic view. This condition holds only
true if the particle center is on the optical axis of the camera or in the case one uses tele-
centric lenses. In the present experiments we do not, and the perspective effect alters the
measured orientation (note that the parallax displacement corresponds to a change in the
2D projection, and hence to a rotation). The distortion induced by the perspective is
characterized by the position of the particle center in the camera image, X, and the focal
length, f. Common camera objectives allow only small angles, Ypersp = atan (|| X || /f) <
15°. As a consequence we assume that the shape of the particle does not change and
we introduce an orientation matrix Ry (taking advantage of the Rodrigues formula
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Figure 3.13: Example of particle tracks and orientations (the green and blue arrows mark
North-South and East-West directions, respectively).

Eq. (3.9)):
Ry (X = (z,y), f) = R| ——=—==,atan [ —— (3.16)
Boon (X = 2:0). 1) =B\ a7

such that the measured orientation is related to the absolute orientation 0, by

R= Ry R (Qabs) . The perspective distortion can then be removed from the orientation

time series.

Finally, after correcting for perspective distortion, a combined time-series of orientation
can be built using the information from both views, if they are expressed in the same
coordinate system. Euler angles are not locally orthogonal, hence, we use the weighted
mean of the orientation expressed in the axis-angle representation. The variance within a
moving window of the direct neighbor distance function, £(t), proves to be a good error
estimator of the noise, since for short times the particle is assumed to rotate smoothly. A
sample orientation track is shown in the upper panel of Fig. 3.14 and in 3D in Fig. 3.13.

3.3.3 Robustness

The accuracy and robustness of our technique depends mainly on the quality of the particle
image and the texture. Although the resolution of the texture in the computer depends
mostly on the carefulness of the researcher, the textures of the particle degrades due to
the constant contact with the working fluid and impacts with the propellers or walls.
A well chosen” ink and adaptive thresholding enable us to perform several experiments

"\We tested (almost) all permanent markers available at RadioSpares and various office suppliers.
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Figure 3.14: A sample orientation track; it is 6, = o, 0, = +, 8, = [, the bottom plot
shows the distance (in degrees) between the independent orientation measurements from
the 2 cameras.

with the same particle. It is further advantageous to perform the experiments as fast as
possible, which avoids/reduces the dissolving of the ink by the fluid. Computer, cameras
and gigabit ethernet network are tweaked to support jumbo frames thereby decreasing the
download time by a factor of 2. Additionally, the computer hosts 6 Terabytes of storage
to continuously record over a few days.

Problems with the images are mainly caused by reflections, shadows, and objects (such
as bubbles or dirt particles) between the particle and the camera. The setup, light con-
ditions and particle texture must be first tuned in order to optimize these parameters —
by trial and error methods. It is further possible to run the filter system of the apparatus
while the cameras are downloading,.

For the orientation algorithm per se, we have used a series of synthetic images of known
orientation. We found that the measurement error is 2°, which is smaller than the size
of the fine grid (Ag,e = 3°) used in the image processing (cf. paragraph 3.3.2.1). A
finer grid would improve the resolution for ideal images, but not for real images which,
as stated above, always contain some amount of distortions or impurities. In addition,
the fast dynamics of the particle and high frame rate ensure that wrong detection do not
persist for longer than a few frames. As a result, most defects are detected and skipped
or interpolated or handled as part of post-processing (wrong orientations correspond to
jumps in the direct neighbor distance function).

We illustrate the accuracy of the detection on two examples. The first one concerns
the agreement between the orientation as estimated from each camera measurement. In
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Figure 3.15: Probability density function (PDF) of the distance, d, between the orienta-
tions measured from cameras 1 and 2, with (e) and without (x) correction for perspective
distortion.

the upper panel of Fig. 3.14, the combined three angles with respect to the lab coordinate
system are plotted. The lower panel shows the distance (in degrees of angle) between
the two estimations, d (Qcumi, @cam2). The probability density function (PDF) of these
distances, computed with and without processing for perspective corrections are shown in
Fig. 3.15. Correcting the systematic error induced by the perspective distortion reduces
the mean value and width of the distribution. The remaining error is of random nature.
Combining the two independent views as described early leads to a weighted error of
approximately 3°.

3.3.4 Efficiency & further development

On an off-the-shelf gaming PC processing a movie set containing two movies of 14 000
frames each, takes 2—3 hours to extract the position and 2—5 hours to find the orientation
candidates. The first step is speed up by either the Parallel computing toolbox or by
launching multiple instances of Matlab. The later step is harder to optimize: only one
process can access the renderer due to limitations in the OpenGL wrappers for Matlab,
and moreover, this process blocks one screen of the PC®. Thus the other computers in the
office are used at night for helping. Time-wise the bottleneck in this step is the transfer of
rendered images from the graphics card back to Matlab. This step could be avoided if one
instead transfers the thresholded particle image, I, into the graphics card and then uses the
heavy parallel computing capabilities of modern graphic cards to perform the comparison

defined by Eq. (3.13). The CUDA or OpenCL framework seems suitable for such a task.

8 Actually it looks like a psychedelic screen saver. By the way, it doesn’t block the screen on a Mac.
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3.4 Dataruns

The results are analyzed in detail in chapter 4 and 5. Table 3.4 lists the performed tracking
experiments.

run | propeller speed Particle sizes frame rate | density date
[Hz [mm] [fps] | [g/cm’]
A, 2 500
% 3 25 200 1.0 Aug 2011
o0
5 3 18 600 1.14 Jun 2010
£ 1.5 500
gc} 2.5 6,10, 15,18, 24 850 1.14 | Feb 2012
~ 3.5 10,15, 18,24 1000
0.5 120
1 500
= 2 22; 166 800
E 3 15 ’ 1000 1.14 Jan 2012
E 4 1 87 1500 ’
4.5 5 4’ 1800
2 700
3 900

Table 3.1: Data runs, the particles were always neutrally buoyant. SP denotes the instru-
mented particle, 7.e. we filmed and simultaneously recorded its accelerometer signal. The
PAmult runs contain only the translation. If the density is 1g/cm’ water was used as
working fluid whereas 1.14 g/cm® needed to be density matched with a water-glycerol
mixture. The kinematic viscosity v is approximately 8 times higher than pure water in
that case.
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4 How they move

Even when restricting to round dead objects, particles in turbulent flows come in a va-
riety of densities and size: They can be either lighter (e.g. bubbles) or neutrally buoyant
or heavier (e.g. sediments & droplets) than the carrier fluid. Likewise, their size ranges
from much smaller than the Kolmogorov scale, 7, up to the integral scale, L. Particles
smaller than the Kolmogorov scale, 77, have drawn much attention due to their ability to
follow the flow as tracers if they are neutrally buoyant and the available theoretical de-
scription [21, 40]. In 2002, Voth ez al. [74] reported the first Lagrangian measurements
which compared the dynamics of finite-sized particles to that of tracers. And in the last
decade more and more experiments were done investigating particles of sizes up to the
intermediate Taylor length scale, A [67, 65]. For particle diameters Dy, /1 < 40 it has
been established that upon increasing the ratio Dy,./7 the variance of the particle accel-
eration decreases as ( D/ 77)‘2/ 3 but the fluctuations remain non—gaussian within this
range [53, 65]. A comprehensive study on the one-particle statistics can be found in the
dissertation of Nauman Qureshi [52].

However, the behavior of particles whose size is comparable to the largest scales of the
flow, Liy,, has still received little attention.

Particles & Flow-types In this chapter we present results on the translation of neutrally
buoyant spheres in a von Kérmdn flow. The tested diameters are Dpare = 6 mm, 10 mm,
15 mm, 18 mm, and 24 mm. The uncertainty in diameter is less the 0.02 mm and the
sphericity 0.01 mm. The particles are made of white Poly-Amid (PA), which has a density
of 1.14 g/cm®. A density-adjusted water-glycerol mixture serves as working fluid, the side
walls of the apparatus are temperature-controlled at 20 °C. The observation volume is
approximately 15 x 15 x 15 [cm?] large.

Two different ways of driving are tested: the impellers are either co- or counter-rotating,
but in all cases both impellers run at the same propeller speed, fyop. We list the key
parameters of the counter-rotating driving in table 4.1. The co-rotation is mostly used
as a cross-check and we do not attempt to estimate the Kolmogorov scales or Reynolds
number here. A picture of the experiment is provided in Fig. 4.1.
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Soop[Hz]  Re Ry e[m®/s’] nlum] 7[ms] Tuls]  Dpare/7
0.5 4200 75 0.01 425 243 200 14...56
1.0 8400 105 010 253 86 1.00 24...95
2.0 16900 150 056 165 3.7 050 36...145
3.0 25300 185 185 122 2.0 0.33 49...196
40 33700 215 4.39 99 1.3 025 61...243
45 37900 225 6.15 91 1.1 022 66...265

counter-rot

Table 4.1: Key-parameters of the counter-rotating flow configurations. The integral time
scale is defined as T}, = 1/ Jorop and the integral length scale is estimated to be Ly, =
3cm ~ R/3, consequently D pare /Line = 0.2...0.8. We use the following definition

for the Reynolds numbers: Re = 27 R? Jorop/V and Ry = ,/1—115 2w L? forop- Note

nt
that we follow particles in a 15 x 15 x 15 [cm?| region, where the flow is known to be
inhomogeneous and anisotropic. Thus, R and the Kolmogorov scales are only rough
estimates.

Figure 4.1: Large unpainted spheres in our von Kdrmdn mixer; the red light stems from
high-power LED illumination, the blue tape reduces reflections. The fluid is density-
matched to 1.14 g/cm®.
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4.1 Motion

Dimensional arguments tell that particle velocity, v, and acceleration, @, are proportional
t0 forop and f2, respectively. Fig. 4.2 shows the standard deviation (RMS) of the com-
ponents of v and a for the co- and counter-rotation and different propeller frequencies.
To take into account the dimensional arguments we normalize by the speed, 27 - R - fprop,
and the centrifugal force, A7 R~ fPQmP, at the tip of the propeller, R. We find that both
acceleration and velocity are following well the propeller motion with an effective radius

Reg ~ 0.15 R. In other words RMS (v) /(27 fprop) ~ RMS (a) /(472 szp). This con-
firms that all measurements were performed in the fully turbulent flow regime [57].

Similar to conventions for cylindrical coordinates we denote y and 2z (which lie in the
plane of the rotation) the polar and z the longitudinal component. We find that the polar
components, ¥ and z, collapse, whereas x, which is parallel to the rotation axis, is slightly
weaker. As anticipated the co-rotation separates the velocity components stronger than a
counter-rotation at the same propeller speed. However, the effect is less pronounced for
the acceleration. This signature of the anisotropy of the von Kdrman flow has been known
for a long time, and as one may expect, the anisotropy is less pronounced for small scale
quantities like the acceleration e.g. in [74, 506, 49, 72].

The motion diminishes with increasing particle diameter, 7.e. smaller particle move
faster and “shakier”. For the velocity the change seems linear, but we observe a non-
trivial spacing for the acceleration. We, therefore, plot the RMS as a function of the
particle diameter in Fig. 4.3: The different frequencies collapse for each particle size and
component. The velocity RMS diminishes linearly with D, the dependence is stronger
for the longitudinal component, x. For the acceleration the dependence is most likely
a power-law. Based on Kolmogorov scaling arguments, Voth ez al. [74] extended the
Heisenberg-Yaglom scaling to finite size particles

D\ 23
(62) = age¥/2 172 (L) — 4g et/ D2 (4.1)
"

1/4
. 3 « »

with = (%) the Kolmogorov length scale and ag a “constant”’ of order 1. The
energy injection rate, €, is proportional to the propeller speed, € o f7,, . Furthermore,
we worked with the RMS of a, i.e. the square root of the acceleration variance, {a®). Thus

M x D-1/3 (4.2)

2 part
prop

In contrast to the prediction, we note that RMS(a)/fZ,,
D70-53+0.06 han with D[;}t/ 3 (illustrated by the thick black line in Fig. 4.3). This has

part

partially been seen by Romain Volk ez al. [72]. Also, one should keep in mind that
Eq. (4.1) and Eq. (4.2) are based on the assumption of locally homogeneous and isotropic

is better compensated with

turbulence as well as smaller particles. That is clearly not the case in our experiment where

n practice, ag varies weakly with flow, turbulence level and other things [74].
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Figure 4.2: RMS of velocity, v;, and acceleration, a;, for different diameters normalized
by the rotation of the propeller. Filled symbols indicate co-rotating driving. The motion
of the particles is dominated by the propellers. In a fully turbulent von Kdrman flow the
velocity variance is a fraction of the propeller tip speed [57]. Since RMS (v) /(27 forop) ~
RMS (a) / (4 pzrop) we conclude that the flow is fully turbulent. In contrast to a cylin-
drical von Kdrman flow, one observes that co- and counter-rotating impellers create com-
parable turbulence. In all cases the components in the plane of the rotation, y and z,
collapse, whereas = which is parallel to the rotation axis, is slightly weaker. The influence

of the particle diameter is shown in Fig. 4.3.

larger particles are tracked over the whole flow domain. Furthermore, experiments show
that ag varies weakly with the Reynolds number (see for example [74]).

[t is interesting that the co-rotation produces acceleration fluctuations which are weaker
but comparable to counter-rotating forcing. As reported by Catherine Simand [59], one
expects a much bigger difference to counter-rotating driving in a smooth cylinder with co-
rotating smooth disks. However, our apparatus has square cross-section which acts similar
to baffles in a cylinder. In addition, the blades on the propellers induce centrifugal pump-
ing and help producing a much more turbulent flow. One notices that in this apparatus
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Figure 4.3: RMS of velocity, v;, and acceleration, a;, for different diameters normalized
by the rotation of the propeller. Filled symbols correspond to co-rotating impellers. Note
that in the right plot we shifted the co-rotation (filled symbols) by —0.1. The data is the
same as in Fig. 4.2, only the arrangement changed. The solid line is a fit to the data:

RMS(a)/(47* R 3rop) = (0.5£0.1) ,D;a?t.s):sio.oq In contrast thereto, Heisenberg-

Yaglom scaling predicts RMS(a)/ f7,, o D=3,

the acceleration magnitude alone is not sufficient to distinguish co- from counter-rotating
driving.

4.1.1 PDFs

Fig. 4.4 depicts the (normalized) probability density function (PDF) of the components
of the velocity, v for the counter-rotating runs. The three components are approximately
normal distributed. Moreover, the PDFs are independent of propeller speed and diameter.
When comparing in detail, one notices a slight difference between polar and longitudinal
components. In addition, the curves become sub-gaussian for values larger three standard
deviations.

As shown in Fig. 4.5 the PDFs of the components of the acceleration, @, for the counter-
rotating runs superimpose independent of particle diameter and propeller frequency. The
PDF themselves displays weakly stretched-exponential tails and clearly 7o Gaussian dis-
tribution. For a quantitative comparison to previous measurements (e.g. [54, 53, 9, 72])
we use the stretched exponential fitting function:

e35%/2 nlz 52
IL(z) = (1—erf<l | /ﬂ“ )) 4.3)
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Figure 4.4: PDF (shifted) of the velocity components, all counter-rotating runs (with all
diameters) are plotted. The PDFs are shifted and the order is z, y, z starting from the
bottom. For comparison, the dashed lines indicate a normal distribution.

which has been used extensively in the analysis of the intermittency of the translational
motion of Lagrangian tracers [44] — it stems from the approximation that the norm of the
acceleration has a log-normal distribution. The parameter s is related to the flatness F by

_9 2 _ 1 5
Fo) = Sep (1) & s=, 1n(9F) (4.4)

When determining s for each diameter, propeller speed and component we find that
s increases with propeller speed. It slowly approaches s ~ 0.62 a value reported by
Qureshi ezal. [53]. A difference between polar and longitudinal components remains. As
expected, bigger particles develop narrower tails in the PDF than smaller particles. The
covered range of s corresponds to flatness values from 4.2 to 8.8 with F ({(s)) = 6.1.

For the co-rotating driving we notice that the longitudinal component is almost unal-
tered. The polar components, however, show clear signs of the different flow: the velocity
PDF has a hat shape and the acceleration PDF shows two peaks? which are symmetric
to 0. This is linked to the fact that we have centrifugal pumping: The poloidal component
of the flow field is comparable for the two ways of driving the flow.

2A M-shaped PDF
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Figure 4.5: Probability density function (PDF) of the acceleration components, all
counter-rotating runs (with all diameters) are plotted. The dotted line shows a Gaus-
sian whereas the dashed line is a stretched-exponential

n(x 82
II(z) = ezig (1—erf(%>) with s = 0.62 as reported by

Qureshi ez al. [53].
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Figure 4.6: Influence of the subtraction of a local or global mean on the autocorrelation for
|v| and |a|. [18 mm, 2 Hz counter-rotating], the effect is less pronounced for quantities
which can have both signs.

4.1.2 Auto-correlations

When computing autocorrelations one has two choices: First, on each individual track
one can either subtract the mean of all trajectories or the average computed for exactly
this trajectory. We denote these two approaches, global and local mean, respectively.
Their difference is illustrated for |v| and |a| in Fig. 4.6. Subtracting a local mean causes
the positive quantities, |v| and |a
correlation time scales are found to be approximately twice as large when using the global

, to drop faster and moreover to cross zero. In general,

mean.

Secondly, one can choose between the biased and the unbiased definition of the auto-
correlation, where the former is obtained from the inverse Fourier transform of the Power
Spectrum and the latter from the (s(¢)s(t + 7)). Due to the way we handle tracks we
always use the unbiased definition. More details can be found in appendix B.3.

We show here only the time-scale derived from the autocorrelation of velocity and ac-
celeration; here, we discuss the unbiased correlation function with prior subtraction of the
global mean. 7, is defined as the time when the autocorrelation passes below a threshold
of 1/e for the first time. A threshold of 0 is not stable because the correlation might fall fast
to 0 but not become negative. The timescales of the counter-rotating runs are provided in
Fig. 4.7. For both, velocity and acceleration components, only little dependence of 7o,
on the propeller speed is found. Again, longitudinal and polar components are separated.
For the velocity only the polar components seem to weakly depend on the diameter; they
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Figure 4.7: Correlation times for velocity and acceleration, [counter rotating forcing].
The unbiased correlation function with prior subtraction of the global mean was used.
For both, velocity and acceleration, we find 7o, P_mlp. The time scales vary only little
with particle diameter for the velocity data, whereas the acceleration correlation time is

approximately linear dependent on D,

increase from Teo (v, 6 mm) & 0.16 Ty t0 Teor (v, 24 mm) == 0.20 T}y,

The dependence on diameter is much clearer for the acceleration based time scales.
Here, oo (@) doubles from D pore = 6 mm to 24 mm. Moreover, the ratio between veloc-
ity and acceleration timescale, Teor (V) /Teore(@), decreases from ~ 3 at Dy,e = 6 mm to
~ 1.5 at 24 mm.

4.1.3 Viscosity & density

The question arises to which extent the fluid viscosity and density determine the motion
of large particles. In contrast to the measurements presented in this chapter the charac-
terization of the instrumented particle was done in water, 7.e. at a viscosity approximately
8 times lower than the here used water-glycerol mixture and a density of 1g/cm? in-
stead of 1.14 g/cm’. Fortunately its diameter of 25 mm is close to the largest PA sphere
(Dpare = 24 mm). We, therefore, compare the runs with the solid 24 mm PA sphere to
the instrumented particle. The forcing is counter-rotating propellers at f,, = 2 Hz and
Jorop = 3 Hz. Instrumented particle and solid sphere are indicated by SP and PA in the
following equations. It should be noted that the instrumented particle deviates slightly
from a rigid sphere: Mainly it has inhomogeneous inertia, a small imbalance and the gap
between the two hemispheres might act as a trip wire. The technical details are found in

chapter 7.
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For both, velocity and acceleration, we find no difference in the normalized probability
density functions (PDF) of the single components between the two particle. But as stated
in table 4.2, the instrumented particle has an acceleration RMS, which is ~ 1.25 times
larger than that of the solid sphere. Similarly we find the longitudinal and polar velocity
components to be 1.17 and 1.07 larger. We found in the previous section that the flow
structure is independent of the propeller speed. Here the propeller frequency is identical
for both particles and can thus not account for the change. The motion of tracers and small
material particle is determined by viscosity and energy transfer rate. But it is remarkable
that density and viscosity of the fluid are still playing a role for a particle this large.

One first notices that the density ratio p (glyc.—H,O) /p (H,O) = 1.14 is close to

the increase in velocity RMS. Moreover, (p (glyc.—H,O) /p (H,0) )2 =129 ~ 1.25
(i.e. the square of the density change) is close to the difference in the acceleration RMS,
too. However, the equation of motion (cf. section 2.2 page 19) contains only the density
ratio, which is unity in both cases. Thus, the correlation between density and motion is
most likely a coincidence. Stokes drag on the other hand is ruled out as it yields particle
response times with 75" /7 ~ 8. One can further experiment with an equation which
stems from the motion of tracer: The Heisenberg-Yaglom equation (4.1) tells that the
acceleration RMS of tracers is RMS (a;) ~ %4071/, Accordingly the change in viscosity
would increase the RMS by:

RMS (aS" - VA
(@) _ (vlelyeH0N o £1.25
RMS (™) v (H,0)

As expected the increased acceleration RMS cannot be explained by a formula derived for
much smaller particles.

A possible explanation for the difference might lie in their preferential sampling of the
flow (cf. the next section): Despite their close size the instrumented particles samples the
flow in a more homogeneous way than the solid PA sphere. It might thus explore the
more active regions of the flow leading to a higher acceleration variance.

To conclude more measurements at different viscosities are necessary.

Table 4.2: Ratios of the velocity and acceleration RMS of the instrumented particle to
a solid 24 mm PA sphere. Both, viscosity and density, are smaller for the instrumented
particle; its diameter is 25 mm.

RMS (instr. part.) /RMS (solid sphere) | v, v, v.| az ay a

Jorop =2Hz | 1.17 1.10 1.09 | 1.28 1.37 1.23
Jorop =3Hz | 1.19 1.07 1.07 | 1.22 124 124
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4.1.4 Sampling

Summing up, we see two reoccurring features:
> The motion scales well with the propeller frequency, and
> the motion depends in a nontrivial way on the particle size

One can thus ask if the motion changes because the particles “see” a reduced part of the
turbulent spectrum or because they explore different regions of the flow. This preferential
sampling of the flow has been observed for particles which are not neutrally buoyant: bub-
bles concentrate in regions of high vorticity whereas heavy particles tend to low-vorticity
regions. Density effects can be neglected here, as the fluid is density-matched such that the
settling velocity of each particle was less than 1 cm/s (the corresponding density mismatch
is of the order 1072 or better). We focus here on the influence of the complex large scale
flow structure on the dynamics of the particles. Previous studies have mainly focused on
the modification of small scale clustering in the presence of a homogeneous mean shear.

In order to evaluate the sampling of the flow, we bin the particle position (in cylindrical
coordinates) into rings of diameter 7 and longitudinal position x with a width of Ar and
Az. Adequate normalization yields then the 2D PDF of the particle’s longitudinal x and
radial position 7.

In agreement with our previous observations we notice no dependence of the sampling
on the propeller frequency. However, by gradually increasing the diameter the PDFs
change significantly from almost homogenous sampling at D,,, = 6 mm to being lo-
cated in two toruses near the propellers. Each torus core is situated at approximately £ R
away from propeller and rotation axis. As an illustration we provide the PDF(x, ) at
forop = 3Hz for Dypre = 6 mm, 15 mm, 24 mm in Fig. 4.8. It is noteworthy the pref-
erential sampling of the 24 mm sphere is more pronounced than for the instrumented
particle (cf. Fig. 7.22 on page 136). The two measurements differ mainly in their work-
ing fluid (the viscosity and density are 8 times and 0.87 times smaller for the latter), but
the propeller speed was the same in both experiments. We plan on redoing the experi-
ment with a different fluid viscosity (while keeping to particle neutrally buoyant) in order
to understand this difference.

One can further compute the mean flow field, (v) (7, z) . Using the same binning, we
then build the average velocity® (v,) (7, z),(v,) (r, 2),(vg) (r,2) for each ring,

The mean flow is almost identical to the flow structures described in section 2.3 (see also
the sketch in Fig. 4.10) and to results for a cylindrical von Kdrmdn flow [56]. (vg) (7, z)
shows two counter-rotating eddies with their vortex core at R ~ 8 cm and approximately
Hecm = %R away from the impeller. Moreover, the flow is in average circulating around
these eddies. By eye, the stagnation point is in the center of the apparatusat x = r = 0
and the flow is symmetric to © = 0, i.e.

(va) (r, [2]) = = (vz) (r, = |a]) and  (vg) (r, [2]) = — (vg) (r, — |[)

3expressed in cylindrical coordinates
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Figure 4.8: Preferential sampling of the different diameters. The sampling depends only
little on the propeller speed, here we show counter-rotating propellers at f,p, = 3 Hz.
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Comparing to the PDF of position, one notes that bigger particles stay preferably close
to the eddy core. Surprisingly, the shape of the mean flow is not altered by the parti-
cle diameter. To compare the flow fields of different particle diameters we compare the
toroidal (vp) to the poloidal (y/v2 4 v2) component along two lines the flow field. As
shown in Fig. 4.9 we find that the dependence on the particle diameter is weak. Only
close to the two big eddies (blue vectors in the sketch in Fig. 4.10) bigger particles exhibit
a stronger toroidal motion. This analysis also reveals that the stagnation point of the flow
isat z &~ —1.5cm, i.e. it does not exactly coincide with geometric center of the vessel.
Co-rotating impeller form only one eddy in (vg) (r, ) but the circulation in x and r
towards the propellers persists. Its stagnation point is slightly off-center at # = —1cm ~
—0.1 R and for 7 < 4cm ~ 0.4 R the components (v,) and (v,) vanish. In total, the
general structure of the co-rotating flow is in good agreement with the results reported in

Catherine Simand’s PhD thesis [59].

Counter-rotation, f,, = 3Hz

1 1 1 ‘ 1 \\ ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1

-0.06 -0.04 -0.02 0 002 0.04 0.6
X [m]

Figure 4.9: Dependence of the mean field on the particle size; we compare the toroidal

(vg) to the poloidal 1/ (v,)* 4 (v,)? component along a line trough the mean flow field
atr = 0.4R and r = 0.7R. Note that instead of simple ratio the arctan is used; atan is
less sensitive if one component is close to 0. For both lines the maximum of the poloidal
component is ~ 0.3 m/s, it varies only weakly with the particle diameter.
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Figure 4.10: Mean flow field for co- and counter-rotation, here fy.p

+0.5

(@)
Vy [m/s]

3 Hz;

((vX)2 + <vr>2)1/2 has typical values of 0.25m/s and 0.13m/s for counter- and co-
rotation. The top pictures sketches the large scale flow structure [image based on [50],
co-rotation similar to [59]] and we observe the identical behavior for counter-rotation:
(vg) (r, x) shows two eddies with opposite rotation sense (sketch: blue vectors) and we
see a circulation around these eddies similar to the red arrows in the sketch. For the co-
rotation only one eddy in (vp) (7, ) is formed, and circulation in = and 7 towards the

propellers persists. The stagnation pointisatz ~ —1cm ~ —0.1 R.
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5 How they spin

In this chapter we focus on the rotational dynamics and their influence on the translation
of the particle. Although we recently took data of multiple painted particles at different
propeller speeds, we did not yet finish! the processing. We therefore limit the evaluation
to the data presented in a Physical Review Letter [83] and the two runs with the painted
instrumented particle.

The motion of a sphere in a flow is defined by the Navier-Stokes equation of the flow,
possibly buoyancy and the no-slip condition: At the surface the fluid velocity matches
the particles velocity. If the Reynolds number based on the particle, Re,, is small, one
can derive its equation of motion [21, 40] (cf. chapter 2). For flows that creep around
the particle (Re, < 1), the translation and rotation decouple and the particle’s rota-
tion becomes a measure of the fluid’s vorticity [17]. With increasing Re,, the separation
between linear and angular motion disappears and one can observe a coupling between
translation and rotation. That was first reported by Magnus [38] when he studied the
motion of rotating artillery projectiles (and thereafter rotating cylinders in a windtunnel)
in his article Uber die Abweichung der Geschosse, und.: Uber eine auffallende Erscheinung bei
rotierenden Korpern. In order to quantify the “Erscheinung” one therefore decomposes the
hydrodynamics forces into contributions parallel and perpendicular to the relative veloc-
ity, vap, = v (1) — u (x,t), of the particle with respect to the flow. A generalization
of the lift or Magnus force [38] acting on a body of volume V), as derived in an inviscid,
laminar flow of density p; is then

Fit. = psV - (Ciig - vgip X w") (5.1)

and it appears as a natural possibility of a force acting perpc:ndicular2 to vy [4, 37]. It
is worthwhile noting that the lift force is independent of the viscosity of the flow. The
parameter Cp;; can be negative and positive; in general it depends on the (relative) linear
and angular velocity but also on the surface roughness. This leads to astonishing trajec-
tories in ball games; mastering the lift force can easily increase the income of a football
player by a factor of 10 (or more).

Alift force has been observed where the flow is steady and laminar [79, 70, 55]. Turning
to turbulent flows with high particle Reynolds numbers one encounters several problems
as sketched in Fig. 5.1. In fact the very definition of the fluid velocity around the particle
is very ambiguous. For this reason, we reduce the expression for the lift force to oc v X W,

where v is the particle velocity. It is, furthermore, not clear if and how the fluid drives

"due to a broken foot
2The formula given by Auton [4] uses u — v = —vy;,
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Figure 5.1: Sketch of particles of increasing sizes superimposed on local velocity gradi-
ents. Whereas the flow around the small particle is smooth, it exhibits significant spatial
variations around the large particle.

the rotation of the sphere: An simple estimate of the particle’s response time 7, from
Eq. (2.12) tells® that the cases investigated here have a response time of several integral
timescales 7},,. The existence of a significant rotation and a lift force in such conditions
is thus not evident.

Mathematically two angular velocities exist: Whereas w” describes the rotation of the
particle with respect to the fixed lab coordinate system, w™ fixes the particle and rotates
the lab system. This is somewhat similar to quantum mechanics where one has the choice
between the Heisenberg and the Schrédinger picture to incorporate a dependency on
time. We found no particular use for w' in our analysis and will thus work only with
the angular velocity which rotates the particle, w®. The superscript ' is omitted in the
following.

In this chapter we present data from two experiments which differ both in particle and

working fluid:

> The first successful measurement of the 6D-tracking was done with a single ho-
mogenous Poly-Amid sphere in a density-adjusted water-glycerol mixture of vis-
cosity v = 8.5-107¢m?/s. The sphere is 18 mm in diameter. Thus the particle
response time is 7,*(PA18) = 0.8s = 2.5 Tj,,. We indicate the run by PA18.

> We also exploit the 6D tracking of the instrumented particle. Note that these runs

3TZ§°‘ =J/8npsva® = a®/15v
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were originally performed to better understand the instrumented particle; conse-
quently the amount of data points is less. Moreover, the fluid is water with a
viscosity of ¥ = 1.004-107° m?/s and the particle is 25 mm in diameter with a
non-homogeneous inertia. Although we adjusted the position of its center of mass
such that is close to the geometrical center, there is as remaining small displacement
between the two. Hence, the particle has a preferred direction of its pole. Addi-
tionally, it consists of two hemispheres which are screwed together, that adds a little
deviation (< 0.5 mm) from a spherical shape. The remaining gap between the two
capsules might furthermore act similar to a tripwire. We denote the two data sets
SP 2Hz and SP 3Hz, respectively. The particle response time is 7,°(SP) = 10.4's
which is 20 and 30 times larger than the integral time scale, Ti,,.

In all cases the impellers are counter-rotating and the particles are neutrally-buoyant.

The analysis is grouped into the following parts:

> We first present statistics on the angular velocity and acceleration. Further, the
rotational and translational energy are compared.

> Next we investigate the coupling between rotation and translation (section 5.2).
This is done in the spirit of the Magnus force, Fig = pfV - (C[if[ “Vgip X w). The
so-called Frenet frame proved to be helpful in this investigation of the coupling
between rotation and translation and is presented here at the beginning of section
5.2.

Parts of this chapter are close to the article published in Physical Review Letters [83] and
the conference proceeding for the 13t European Turbulence Conference [85].
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Figure 5.2: The employed mixer and particles in this chapter.



9.1 Rotational dynamics
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Figure 5.3: 2D-PDF of the absolute orientation (6, 6,) for the instrument particle (SP)
at foop = 2 Hz & 3 Hz and the solid PA sphere (f,p = 3 Hz). One can clearly see the
preferred orientation of the instrumented particle.

Before focusing on the actual motion of the particle one can ask if the space of ori-
entation is homogeneously sampled by the particle or if preferred alignments exist. We
therefore plot the two-dimensional PDF of the absolute orientation (6., 6.) in Fig. 5.3.
Whereas the solid particle samples the (6., 0,) plane in a homogenous way we spot regions
of preferred orientations for the instrumented particle. The spots are more distinct at the
lower propeller speed, fyrop Which is in agreement with the signal from the accelerometer
inside. The preferred direction is most likely caused by a small mismatch between its cen-
ter of mass and its geometric center, as we adjust the mass of the particle by adding extra
weight inside. The technical origin is explained in section 7.1.1.2.

We note that the PDF(6,) is in all three cases distributed close to cos(6,) which is the
shape for a homogeneous sampling (Eq. (3.8) in section 3.3.1.1).

5.1.1 Angular velocity & acceleration

We now turn to the angular velocity®, w. For both, solid particle and instrumented
particle, the three components fluctuate around a zero mean value. Furthermore, their
distributions are symmetric, and slightly non-Gaussian with a flatness F ~ 4. The PDFs
reveal no preferred orientation, and their RMS amplitude is approximately % of the pro-
peller frequency, fprop. Italso corresponds to the rotation that would result from imposing

4Note, that we omit the indicator ¥ in the following
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Figure 5.4: PDFs of the translational and rotational velocity and acceleration [run PA18,
forop = 3 Hz]. The PDFs are shifted for readability and the dashed lines show a gaussian

2 n(x 82
and a stretched exponential, II(z) = el <1 —erf <w> ), with s = 0.65

4/3 sV2
(that corresponds to a flatness F(s) = 9.8).

a velocity difference of the order of s across the particle diameter D. The PDF of angu-
lar velocity components of the solid sphere are shown in Fig. 5.4. The RMS amplitude of
the angular acceleration, ¢, is about 700 rad/ s, again of the order of (Uy,/ me)Q. The
PDF of e is strongly non-Gaussian, the flatness is F' = 7 & 1. Hence, the PDFs of the
angular velocity increments become broader when the time-lag 7 decreases from 7 ~ T},
to T ~ T,: the angular dynamics is intermittent.

In agreement with the observation for the single components we further find that the
magnitude of angular velocity is mostly depending on the propeller speed. Fig. 5.5 shows
the PDF of |w|/ (27 fywp) for the solid and the instrumented particle at 2 propeller
speeds. The average rotation rate for fi, = 3Hz is [w| ~ 0.60 27 fi0, and the
80% percentile is found at 0.83 - 27 fyrop. At fiorop = 2 Hz the values are ~ 8% lower
(Jw| ~ 0.56 27 forop and 0.76 - 27 forop)-

The little difference between the three data sets is striking, since the instrumented par-
ticle is 40% larger than the solid particle, in fluid which a 8 times less viscous and has
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an in-homogenous mass distribution. Accordingly, they have particle Reynolds numbers
of Re;M¥ (3Hz) ~ 1200, Re)” (2Hz) ~ 8400, and Re)’ (3Hz) ~ 12500. Despite
the fact that viscosity and Reynolds number are varied by an order of magnitude we do
not observe any significant difference in their angular motion. Additionally, we find that
the response time of a particle to a torque, 7", is 2.5 to 30 times larger than the integral
time scale, T,.. This is in contrast to the observed rotation rates. It becomes evident that
formulas derived for the motion of small spheres do no longer apply to the case of large

particles.
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Figure 5.5: PDF of the magnitude of angular velocity |w| normalized by the propeller
speed, forop. It should pointed out that instrumented particle (SP) and solid particle
(PA18) differ by 40% in diameter, a factor 8 in viscosity and their mass distribution. It is
|w| ~ 0.6 27 f,op and the 80% percentile is at 0.8 * 27 forop-
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5.1.2 Energy

We now investigate the kinetic energy of the particle. Since the particle’s translation

and rotation is in average well approximated by the propeller speed, one can estimate
FEoans = %m v?and E,,, = %J w? beforehand. In the case of a solid particle of diameter

D, ... their ratio is:
part

Etrans %m 'U2 10 (Ctrans - 2m fprop R ) 2
= ~ 10 : 5.2
Erot % (1_10m Dgwt) w2 Crot <27 fprOP Dpart ( )

Crans and Ci, are factors which relate |v| and |w] to the propeller speed, R is the propeller
radius. Based on chapter 4 and Fig. 5.5 it is Clrans/Cror ~ 1/2. Therefore

E R \?
trans ~ 2 . . 5 . 3
B 2P (me) G.3)

The largest particle has a diameter of Dy,e = 1/4R, hence, Eyans > Ero. The inho-
mogeneous inertia of the instrumented particle complicates Fyo to Eyop = %wT Jw. In
addition the inertia tensor is changing its orientation. But the inertia tensor has only two
unique eigenvalues (cf section 7.2.3), one 50% smaller and one 50% larger than the in-
ertia of a solid sphere of the same diameter D, = 25 mm. Consequently, the statement
Eans > Ero holds also for the instrumented particle.

The left plot of Fig. 5.6 shows the PDF of the translation as well as the rotation en-
ergy. In agreement to the estimate above, we find that the ratio of E./ (Erot + Elans)
is in average 2.7% with the 80% percentile at 3.5% — the rotational energy is negligible
compared to the translation. We also investigated the auto correlation of both parts of the
kinetic energy (right plot in Fig. 5.0).

In all three experiments we find that the normalized autocorrelation of Ei,,, follows
approximately an exponential decay which passes 1/e at 7o,y ~ 0.16 T},,. We further
find the rotational energy to stay about twice as long correlated. For the solid particle we
notice that the auto-correlation of F,,, shows two different time scales. We need here to
process the remaining data runs to be sure that this is not an artifact. However, Alain
Pumir and Michael Wilkinson modeled the tumbling of a spherical particle and also find
two timescales in the auto-correlation [/6].
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Figure 5.6: Rotational (F,,, = %uﬂ) and translational (Fyn = %’UQ) energy of the solid
particle [PA18].

Left: PDF of E,, and Fi,,. Note that 50 X F, is compared to F\,,. The ratio of
E'ot/ (Erot + Eirans) is in average 2.7% and the 80% percentile is at 3.5% — the rotational
energy is negligible compared to the translation.

Right: Auto correlation of E,y and Eiyng
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9.2 Coupling between rotation & franslation

5.2.1 Frenet frame

The Frenet formulas define a local coordinate system which is attached to and moving
with the trajectory, ().

_ox()
T(t) = () o | (5.4a)
T X T xr
N(H) = B) X T() = 155 50 X 1o (5.4b)
B(t) = ; i ; (5.40)

(T, N, B) are the so-called tangent, normal, and bi-normal (unit) vectors. Expressing
the trajectory in the Frenet frame, (T', N, B), yields

v(t) = [v(t)] -T() (5.5)
and for the acceleration
a(t) = %( o(t)] -T(1) = & |§t<t)|T<t) +rlo®) N() (5.6)

1/k is the radius of the circle in the (T'— IN' ) —plane which approximates the trajectory at
x(t) best. Consequently, ay = & |v(t)[* is the well-known centrifugal acceleration. In
addition, the acceleration vector lies in the (T" — IN')—plane and the velocity is pointing
with T'. An illustration of the equations is given in Fig. 5.7 and further details can be
found in appendix B.4 and in [33, 75].

9.2.2 Preferential alignment

By construction (5.6) all forces expressed in the Frenet frame lie in the (T" — IN')—plane.
Alift force of the form Fjig = Ci vy, X w is perpendicular to vy, and as a consequence,
it can only contribute to ay ie. in direction of IN. Unfortunately, our measurement
technique can not measure the flow around the particle and we cannot access the relative
velocity, vy, but only its absolute velocity, v. To check for an alignment of the angular
velocity to the trajectory one can express the direction of w in the (T, N, B) frame by
spherical coordinates (¢, #) as sketched in Fig. 5.7.

The two-dimensional probability density function (PDF) of the direction of w within
the Frenet frame is depicted for the solid particle in Fig. 5.8 and a three-dimensional
visualization thereof is provided in Fig. 5.7.

In the following we define wp = w - B: We find that (wg) > 0, with the peak of the
PDF being at # ~ 30°. By construction itis v = |v| T and B x T' = N, therefore
(wp) > 0 implies that the parameter Cly; of the lift force is positive.
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Figure 5.7: Left: Sketch of the co-moving Frenet coordinate system as defined by the par-
ticle trajectory. By definition all forces are in the T'— IN plane. The curvature £ measures
the bending of the trajectory in that plane.

Right: Direction of angular velocity w of the particle with respect to the Frenet frame.
The texture of the sphere presents the PDF of alignment for run PA18.

Moreover, w is aligned perpendicular to IN. Consequently, w x v lies in the (T", IN)-
plane and is parallel with IN. This observation is consistent with a Magnus force ajs - IN;
however, the fairly sharp distribution of the direction of w on the sphere is remarkable.

The von Kdrmdn flow is known for its large scale inhomogeneities (cf e.g. [56, 49]).
Therefore, we verified our observations by using only data points within a box of edge
length d in the center (cf. the middle and right plot in Fig. 5.8). Despite a significant
reduction in the amount of data we find that preferential alignment is robust and not an
artifact of the large scale flow of the apparatus. In Fig. 5.6 we showed that the kinetic en-
ergy de-correlates within ~ 1T},.. Within this time the particle moved approximately one
propeller radius R along its (non-straight) trajectory. Thus, for the smaller observation
volumes the particle lost all possible trace of the impellers.

We further test if the alignment persists in the case of the instrumented particle. Despite
its inhomogeneous inertia, the lesser viscosity and the preferential orientation of the parti-
cle as such we still find an alignment of w with the trajectory. But as shown in Fig. 5.9 itis
much weaker than for the solid particle. In agreement with the findings in section 7.2.2,
the sampling becomes more uniform with increasing propeller frequency.
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Figure 5.8: Alignment of the angular velocity w with the Frenet frame, here we show the
solid particle. To ensure that the alignment is not due to contacts with walls and impellers,
the PDF is calculated for the whole volume as well as in two smaller boxes in the center.
A 3D rendering is provided in Fig. 5.7.
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Figure 5.9: Alignment of the angular velocity w with the Frenet frame, in the case of the
instrumented particle at 2 propeller frequencies. One still observes a preferential align-
ment although the particle is known to be inhomogeneous and in a less viscid fluid than
the solid particle.

79



5.2.3 Influence on the centrifugal force
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Figure 5.10: Influence of the rotation on the centrifugal force

Left: Normal acceleration, ay, conditioned on the component of angular velocity parallel
to the bi-normal Frenet vector, wp = w - B.

Right: Average bending of the trajectory, 1/k, conditioned on wg. Note that the varia-
tions in radius are much larger than average.

In both cases we test the robustness by restricting the data to smaller boxes of edge length
d in the center.

The lift force Fji o< w X v expressed in the Frenet coordinate system, suggests a contri-
bution of |v| X wp to the acceleration(i.e. force), ay. Fig. 5.10 shows the amplitude of the
acceleration, ay, conditioned on the amplitude of wg. The averaged normal acceleration
conditioned on wp increases by 50% from 6 to 9 m/s* when the particle rotation varies
in the range £2 Hz (= 12 rad/s). The effect is stronger if wp is positive, however, this
observation might be biased due to the fact that much less data is available for wp < 0
(cf. Fig. 5.8). By restricting the data to smaller regions in the center of the apparatus, we
verified that the dependence of ax on wp does not depend on the large scale mean flow
of the apparatus (Fig. 5.10). It should be noted that the ratio of normal to lift force

2
ay  kv]© K|

Alife w X v wp

probes the dependence of curvature £ on wp. We therefore investigate the dependence of
the bending radius® of the trajectory, 1 /K, onwpg. Over therangewp = —3Hz...+5Hz

5 Averaging & corresponds to building the inverse of the harmonic mean of the bending radius.
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a clear decrease of the bending radius with increasing wp is observed. In other words the
particle moves in a tighter spiral trajectory if the rotation is in the sense of the Magnus
force.

In agreement with their weak preferential alignhment, no clear influence of the rotation
on the centrifugal force is found for the instrumented particle.
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6 How they fluctuate

A material particle which is advected in flow is @ priori interacting with the flow. The
basic interaction of a material particle can be illustrated by a person’s movement in a
crowd of people (as they are for example found at German christmas markets or French
train stations). In such environments moments alternate where one is being pushed by
other people and where one pushes back.

Turning back to the particle, if it is moving faster than the surrounding fluid it has to
push it away and decelerates. Likewise, if the particle is slower than flow, it is accelerated.
By changing its speed it is exchanging energy with the flow.

In the limit of particle small compared to the smallest scales, the (neutrally-buoyant)
particle behaves as a tracer of the fluid motion: Its dynamics are close to that of the flow.
For particles (e.g. those presented in this thesis), which are much larger than the smallest
eddies, the situation becomes complicated. We demonstrate in chapter 5 that the rotation
and translation couple in agreement with the lift force Fjjz ¢ v X w. Additionally,
a large particle is no longer a tracer of the fluid motions: It has a relative velocity (and
acceleration) with respect to its surroundings. As a result, it is sometimes pushes the
surrounding fluid and conversely sometimes it looses momentum to the fluid: Energy
flows in both directions and we will show that this exchange is characterized by large
deviations from its mean.We approach the particle’s complex motions from a statistical
physics point of view: the fluctuation theorem can be used to describe the particle in a
turbulent flow as a system in interaction with a heat source and a heat sink.

Our investigation is strongly motivated by an article by Sergio Ciliberto ez al. [10],
where it was shown that the forces acting on an obstacle inside a von Kdrmdn swirling
flow obey the fluctuation theorem. In the following we first discuss the kinetic energy of
the particle. Then, we test if the dynamics of the particle’s kinetic energy are governed by
the theorem. We therefore follow tightly the mentioned article.

The fluctuation theorem stems from the mathematical theory of large deviations which
has strong links to thermodynamics and the description of chaotic systems [66]. A de-
scriptive analogon of entropy and phase space contraction rate in turbulent flows has yet
to be found.

6.1 Kinetic Energy

The total kinetic energy of the particle as such has two contributions: One associated with
the translation

Etrans =mv (61)
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and one for the rotation

1
Erot = §wTJw (62)

For a solid, homogeneous sphere of mass m and diameter D, the latter simplifies to

E., = 2—10 m ng w? and we showed in section 5.1.2 that their ratio is:

Erans ym o’ ( R )2
= ~25 | — 6.3
Erot % (%m Dgan) w? Dpart ( )

Even for the largest particle it is Dy, = }LR. Hence, we neglect the contribution of the
rotation to the total kinetic energy.

A change in kinetic energy translates to energy being exchanged with the flow. One
can thus define an instantaneous energy exchange rate €, ,:

_1d 64

Evalt) = EEE‘”“S(t) =v(t) a(t) (6.4)
Several questions arise from this equation. The apparatus can be modeled as a thermo-
dynamic system in contact to two thermal reservoirs — the propellers (a heat source) and
dissipation (a heat sink). At equilibrium the energy injected equals the energy transferred
equals the dissipated energy. One, therefore, expects that the integral over the whole ap-
paratus % fv v2dx = 0 if the flow is homogeneous. In contrast thereto, we focus here on
the Lagrangian motion of large particles in a finite measuring volume, where the energy is
injected by the propellers outside this region. The particle gains energy in active regions
of the flow and along their ensuing trajectory the kinetic energy is dissipated back to the
flow until the particle gets pushed by the flow again. In other words, the particle is mostly
loosing energy during its motion but we will see strong fluctuations around a small mean
value.

[t should be pointed out that ¢,, is 7o substitute for the common methods based on
structure functions as discussed in detail e.g. in [51, 23]. We aim here only at investigating
the energy exchange of one moving particle with its surrounding fluid by means of the
fluctuation theorem and do not propose a new method for obtaining the energy transfer
rate. Reginald Hill [23] proposed a method, which computes the mean energy transfer
rate from Lagrangian trajectories of tracer particles. However, we are interested in the
fluctuations and consequently, his method cannot be used in our context.

6.1.1 Distribution of ¢, ,

We first notice that for all runs (¢,,) < 0, i.e. the particle is in average loosing energy.
The mean is small compared to the fluctuations: Its RMS is approximately ten-times the
average value RMS (g,,) ~ 10 (¢,,). When looking on the probability distribution of
€y, we remark that it differs strongly from a Gaussian distribution: it has wide tails and the
skewness is order —1. Hence, the particle experiences large fluctuations in kinetic energy
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Figure 6.1: Distribution of the energy exchange rate, £,, = v - a, for different particle
diameters. The propellers are counter-rotating at fyo, = 4 Hz. The dashed curve displays
a gaussian distribution, €,, is has a non-gaussian distribution with wide tails. Note that
we plot here the centered PDFs which are normalized in an uncommon way: As suggested
by the fluctuation theorem, ¢, is rescaled by its mean instead of its RMS value. Thus,
the tails appear ~ 10 times wider than the common normalization.

To demonstrate the skewness ((¢, ) is negative) its absolute value is taken: ¢,,/ |{¢,.)|—1.
In the lower plot we show |2+ PDF¢| in order to demonstrate that the PDF of ¢, is
skewed.

along it’s trajectory, and it is more likely to push the fluid and thereby loose kinetic energy.
Although trivial, this also implies that the particle stops moving shortly after one switches
off the motors. In other words, the interaction with the flow drives the particle out of
equilibrium. A typical distribution of €, is shown in Fig. 0.1.

One can further compare the energy exchange rate, €, ,, to the energy injection rate based
on the power injected by the motors €. The latter has been measured at frequen-
cies from fyop = 1...10Hz (cf. Fig. 3.3 in chapter 3). It should be noted that we set
Emotor > 0. As shown in Fig. 6.2 we find that (€,.) /€motors ~ —0.1. We further find that
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RMS (€y.2) /Emotor is of order 1 with a dependency on the particle diameter and a weak
dependency on the propeller frequency fy.p. That is consistent with the previous find-
ings for the translation of large spheres, which showed that smaller spheres have a higher
acceleration RMS.
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Figure 6.2: Energy exchange rate, €,, = v -a for different propeller speeds, frop, and
particle diameters.
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Figure 6.3: A typical time-series of ¢, ,(¢) (normalized by its mean value). The used par-
ticle diameter is Dy,rc = 10 mm and the propellers are counter-rotating at f, = 4 Hz.
One can see that the energy is flowing in both directions, with a short correlation time
and strong events.

6.1.2 Time scales

We now turn to the correlation time of the energy exchange rate, ¢, ,. A typical time-series
of £,,(t) is provided in Fig. 6.3. We observe that energy is flowing in both directions,
with a short correlation time and isolated strong events. Also, no significant asymmetry
between receiving and giving energy is perceived.

In chapter 4, we saw that the time, 77, for which the auto-correlation of acceleration
passes 1/e, increases linear from 77 (6 mm) = 0.06 Tiy to 77/ (24 mm) = 0.13 T,
However, even for the largest diameter Tla/ . is smaller than the correlation time of velocity
(1} e ™ 0.18). Now, ¢, is the product of velocity and acceleration: One thus expects
that it decorrelates faster than both acceleration and velocity. This is the case: We find
that the time when the auto-correlation of &, , crosses 0 is (almost) the time Tf/ . when the
correlation function of acceleration passes 1/e. Similar to the auto-correlation it depends
on the particle size, too. As a representative example we plot in Fig. 6.4 the autocorre-
lation of €,, for counter-rotating propellers running at f,.,, = 4 Hz. Summing up, the
characteristic time scale of the variations of the energy exchange rate is 79(£,,) ~ 0.1 T},
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Figure 6.4: Autocorrelation of €, for the five particle diameters; here, we show counter-
rotating propellers with f,.,, = 4 Hz. The time when the auto-correlation of ¢,, crosses
0 is (almost) the time 7; Je when the correlation function of acceleration, a, passes 1/e.

88



6.2 A step-by-step test of the fluctuation theorem

One knows that one has to constantly stir to keep a fluid in motion, and that the flow
(in e.g. a bowl of soup or a cup of coffee) stops fast after the forcing was stopped. In
other words, a flow is only at equilibrium when it does 7ot move. On the other hand,
turbulence is a far-from equilibrium state, where permanent forcing establishes a stationary
flow of energy from the large scales to the small scales. Although the energy injection as
such is steady, one observes the well known large variations in velocity and acceleration.
However, it is legit to ask if energy can also flow for short times in the reverse direction,
i.e. going from the small scales to the large scales. This problem is for example addressed
(in a readable manner) in [2].

From a more abstract point of view, the second law of thermodynamics tells that no
process is possible whose sole result is the transfer of heat from a body of lower temper-
ature to a body of higher temperature'. Statistical physics extended this statement such
that for short times the second law can be violated and one can observe energy flowing
from the cold to the warm. The Gallavotti and Cohen fluctuation theorem considers the
dynamics of the energy flux fluctuations in a driven dissipative far-from-equilibrium sys-
tem [18]. Dissipation causes the phase space of such a system to contract and the rate
of contraction is related to the rate at which energy, heat or momentum flows out of the
system. As the reversed (cold-to-warm) energy flux is forbidden in the long time average,
it investigates the possibility of such a reversed flux by looking at averages computed for
larger and larger time scales. It should be noted that the theorem is related to stochastic
differential equations. As we saw earlier the energy exchange of large material spheres in a
turbulent flow is dissipative with large deviations. We will investigate now if its dynamics
are governed by this theorem.

Simple version of the theorem  Let j denote a variable related to this energy flux; in
our case j = &y,. One then defines the sliding average of the flux normalized by its mean,

1 t+1 - t/

Y. = —/ ‘L,)dt’ (6.5)
T Jt <] >

Note that we non-dimensionalize the filter width, 7, by the integral length scale, T,. The

probability density function of the filtered flux Y; is then defined as:

ie. :

7, (Y) = PDE(Y,) (6.6)

Note that the second law of thermodynamics dictates 7, (Y) = 6 (Y — 1), with § the
Delta function. The theorem now states that if 7 is larger than a characteristic time scale
of the system the shape of the PDF comports as

In (%) =70Y (6.7)

'Rudolf Clausius: “Fs gibt keine Zustandsinderung, deren einziges Ergebnis die Ubertragung von Wirme
von einem Korper niederer auf einen Kérper hoherer Temperatur ist.”
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where o is related to the phase space contraction rate and its inverse is sometimes called
a temperature. The proportionality In (7-(+Y)/7,(=Y)) o Y is thus imposing the
general shape of the PDF of the energy flux for a given filter width 7. Eq. (6.7) further tells
that the PDF becomes linearly narrower and more skewed with increasing filter width, 7.
Rearranging Eq. (6.7) yields

= ()

If the theorem is satisfied, o is independent of Y and 7, i.e. o(Y, 7) = 0.

6.21 7,

We first investigate how the PDF of the energy exchange rate, ¢, ,, evolves with filtering.
In order to avoid showing 40 plots, we illustrate the procedure on the 10 mm particle in
a counter-rotating flow at fy.,, = 4 Hz. It was verified that the other runs behave in a
similar manner.

Inserting €, , into Eq. (6.5) and Eq. (6.0) yields the PDF of the filtered ¢, ,:

1 t+7 , ,
7.(Y) = PDF ( o /t Evalt )dt) (6.9)

In our setup we have many trajectories of different length, and a priori one should apply
the sliding average to each track that is longer than the filter width and reject all data biased

by the track ends. Unfortunately, this leads to a strong reduction in data and we test also
a “quick&dirty” method, where all trajectories are concatenated to one large track. To
check if this concatenating does not introduce artifacts, we further apply the procedure
after shuffling the concatenated track. The implications are discussed soon.

Fig. 6.5 depicts the PDF 7,.(Y) with 7 = 0.2 and 17T}, for the three different ways
of filtering/handling the data. Since (¢,,) < 0, the PDF is mirrored and has now posi-
tive skewness. In agreement with Eq. (6.7) and intuition, 7, (Y") becomes narrower with
increasing filter width. Furthermore, we observe a clear reduction in data for the trajec-
tory wise filtering and statistical convergence is not given for trajectory-wise filtering with
T > Ty but one integral time scale is still accessible. The theorem mentions a char-
acteristic time scale which is close to the correlation time of the energy exchange rate:
70(€ya) ~ 0.1 T}, Thus, one integral time scale corresponds to about ten characteristic
time scales.
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Figure 6.5: The PDF 7,(Y") of the filtered energy exchange rate for a filter width of
7 = 02T}, and 1T}, [counter-rotating propellers, Dpyre = 10mm, fo,, = 4 Hz].
Three ways of handling to the data are tested:

— The sliding average is applied to each track that is sufficiently long leading to a strong
reduction in data.

— The trajectories are concatenated to one large track.

— The data of the concatenated track is shuffled.

Adequate binning was chosen to achieve converged statistics. In all three cases, we observe
that the PDF become narrower and more skewed with increasing filter width, 7. However,
trajectory-wise and concatenating method deviate stronger with increasing filter width.
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6.2.2 FIR filter and their implications on Lagrangian data

The sliding average of window length 7 belongs to the family of finite impulse response
filters. That means nothing which happens before the beginning of the filter window, does
influence its output. A lower cutoff frequency (i.e. more smoothing) can only be achieved
by increasing the filter width. This is different to Infinite Impulse Response (IIR) low-pass
filters (e.g. Butterworth filters), where one adjusts the cutoff frequency without changing
the filter width.
[t is trivial that a filter necessitates a number of data points larger than its window length.
In other words, for a filter width of 1 7}, only tracks, which are longer than 17},,, can be
used. Although this does not pose a problem for many Eulerian measurement techniques,
where one traces a quantity (e.g. pressure, velocity or temperature) locally over extremely
long times, it is suboptimal for Lagrangian tracking techniques. There, the acquisition
time is mainly limited by the time a particle stays in the observation volume. Thus, one
can have an ensemble of tracks with different (temporal) length. But without periodic
boundary conditions it is (almost) impossible to follow one particle over very long time.
Filtering with a window length of 7 = T}, removes one integral time from each track
and all tracks which are shorter than 1 7}, are excluded from the data set. We find that in
general the probability of a track length decays exponentially and that tracks longer than
3 T}y are extremely rare. To illustrate that we provide the histogram of counter-rotating
forcing with fy.o, = 4Hz in Fig. 6.6. In our experiment the maximum filter width is
limited to < 17},,.
In order to overcome this limitation, one can also concatenate all the trajectories, construct
one giant trajectory and then compute the moving average on this track. Obviously, much
more data is available in this method. This “quick & dirty” method works suspiciously
well. Thus, one has to verify if concatenating is legit and does not introduce artifacts. An
extreme way of concatenating is to shuffle the data points. It is clear that this operation
leaves PDF(e,,) unaltered but removes all correlation (and thus the underlying informa-
tion of the flow) within €, ,, i.e. the dataset becomes delta-correlated. Consequently, the
PDF of the filtered dataset will differ from the other two methods, which are both not
delta-correlated.

The terms trajectory-wise, concatenating and shuffled are employed for the three different
ways of filtering/handling the data.
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Figure 6.6: Histogram of the track length, [counter-rotating propellers, fuop, = 4 Hz].
The probability of a track length decays exponentially. The moving average filter, which
is needed for the fluctuation theorem, can use less and less data with increasing window

width.

6.2.3 Shape of 7,

We now test the fluctuation theorem on the 10 mm particle in a counter-rotating flow at
forop = 4Hz. The PDF for two different filter widths were depicted earlier in Fig. 6.5.
Rearranging Eq. (6.7), the fluctuation theorem states for 7 larger a characteristic time that:

— - Ent 7TT(+Y) _ =
=Y, 1) = . In <7TT(—Y)) =0 Y =Z2(Y) (6.10)
Consequently:
AT, (m(+Y)
o= v - In (WT(—Y)> (6.11)

In other words, the fluctuation theorem requires that Z(Y, 7) is a straight line passing

through 0 and o (Y, 7) = E(Y, 7)/Y is independent of Y and 7.

Fig. 6.7 provides =Z(Y, 7) for the trajectory-wise and concatenating method. It further
contains an estimate of ¢ for the latter method.

For both methods =(Y") forms an (approximately) straight line which passes through
0. However, the slope depends strongly on the way the data is handled: For 7 > ST}, we
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Figure 6.7: Evolution of the shape of 7, with the filter width [counter-rotating propellers,
Dpyre = 10 mm, fprop = 4 Hz]. The dashed line corresponds to o = 0.4 in all 3 subfigures.

find slopes of 0.2, 0.4 and 10 for trajectory-wise, concatenating and shuffled, respectively.
Hence, concatenating is not a legit work-around to access longer filter widths.

We applied the procedure to all (co- and counter-rotating) runs: Unfortunately the
statistics did not converge in some runs and in general only rough estimates of the slope
can be obtained. Nevertheless, we observe that:

> The fluctuation theorem is 7oz satisfied for co-rotating impellers.

> But for counter-rotating driving we find evidence that the dynamics of ¢, , are gov-
erned by the fluctuation theorem.

> When normalizing o with the propeller speed (i.e. the integral time scale), it is
0 Tine = 0.1 — 0.4. In other words, 0 o frop-
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> The fluctuation theorem is clearer and more pronounced for smaller particles di-
ameters and unfortunately the results for the 24 mm particle did not allow any
conclusion. Partially, this size effect can be attributed to the higher amount of data
points for smaller particles (cf. Fig. 0.6). Surprisingly, no significant dependency
of o on the particle diameter is found.

6.3 Summary

In this chapter, we investigated the dynamics of the kinetic energy of the particle. We
find that the energy exchange rate is non-gaussian distributed: The PDF shows wide
tails, negative skewness, small negative mean and a standard deviation 10 times larger
than the mean. Additionally, the energy exchange rate decorrelates within ~ %0 of the
integral time scale. Thus, the energy exchange of the sphere with the fluid falls within the
mathematical theory of large deviations [66]. We, therefore, tested if the dynamics of the
energy exchange are governed by the fluctuation theorem [18, 2, 10, 27]. Our procedure
was similar to [10], where it was demonstrated that the force acting on a fixed obstacle
in a von Kdrmdn flow fluctuates as stated in the theorem. Here, we investigated a freely
moving sphere in a turbulent flow, which conceptually different from the force acting on a
fixed object as the sphere explores the whole volume. Two ways — co and counterrotating
— of driving the flow were tested. We find that the fluctuation theorem is not satisfied for
co-rotating impellers, but we have first positive evidence for the counter-rotating driving —
i.e. the energy exchange of the sphere with the fluid is governed by the fluctuation theorem
if the propellers are counter-rotating. We estimate the phase space contraction rate, o, as
about 0.2T}," —i.e. ¢ X fyrop. Moreover, no significant influence of the particle diameter
is observed but it became evident that more data and more importantly longer trajectories
are needed. Also, we did not perform a stringent analysis if the energy exchange is coupled
to the other particles which were in the box at the same time. Though, a first inspection
revealed nothing remarkable.

[t is remarkable that albeit both flow configurations are clearly turbulent, the theorem
is only observed for the counter- but not for the co-rotating propellers. At the same time,
we know that the mean flow differs strongly between the forcings. We thus suspect that
the fluctuation theorem is related to the large scale structure.

The fluctuation theorem states that o is related to the phase space contraction rate. To
illustrate that rather abstract quantity one can ask what happens if the forcing suddenly
stops: If the motors are running, the injected energy equals the dissipation and the phase
space does not contract. However, it contracts the moment the forcing disappears. As-
suming a simple exponential decay V(t) ~ Vyexp (—o -t) = Vyexp (—0.2/ T}, - t) tells
that the flow stops within 20 to 30 integral time scales. This is close to our observations.
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7 An instrumented particle measuring
Lagrangian acceleration

Fundamental fluid dynamics research in the lab consists of an interplay of suitable flow
generation devices, working fluids, measurement techniques and analysis. However, in
the world outside the lab one is often limited: The apparatus comes as it is, providing no
or little access for probing the flow. Even if the fluid is transparent, the injection of tracer
particles might be still not allowed or unsuitable due to bio-medical- or food regulations,
or the chemical properties of the fluid.

At the same time a good understanding of the flow and the mixing within the apparatus
is crucial for optimizing both its output and energy consumption. Although Eulerian
measurements are well-known and largely available, Lagrangian measurement techniques
have proven to give insights on the flow from a different, promising perspective [65].

Historically, similar problems where encountered in oceanography and meteorology:

A simple local measurement on ground level or the surface of the sea does tell little about
the ocean or the atmosphere. Therefore, in these fields ocean floaters and weather bal-
loons were developed. These instrumented vessels float in air or water , respectively and
they contain a series of instruments (e.g. for temperature and pressure) plus a transmission
system and a battery to work autonomously. As one can imagine, they hardly fit on a lab
bench; nevertheless, they are small compared to the large scales of the targeted flow.
In 2007 Jean-Francois Pinton, Yoann Gasteuil, Woodrow Shew and others [58, 20]
presented an instrumented particle measuring temperature that is suitable for convection
experiments in the lab. Its working principle is close to an ocean floater: A small plastic
capsule with embarked electronics has thermistors on its surface whose resistance is mod-
ulated on a carrier radio frequency. The signal is then received with an antenna outside
the experiment, demodulated and converted into the measured physical temperature. The
ensemble of capsule, thermistors, battery, and transmission circuitry is ~ 16 mm large,
neutrally buoyant in water, operates autonomously for several hours and transmits the
temperature in real time as it is advected with the flow. Hence, it falls into the family of
Lagrangian measurement techniques.

Here, we present a new instrumented particle that continuously transmits its Lagrangian
three-dimensional acceleration — 7.e. it measures the forces acting on it. In contrast to the
swimming thermometer, which was designed for convection experiments, this particle is
intended for turbulent flows and more specifically for the characterization of devices where
optical measurement techniques are not applicable. Nevertheless, the basic construction
is similar: a round, leak-tight plastic capsule contains battery, digitizing and radio trans-
mission system and a 3D accelerometer. The density of the ensemble can be adjusted
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in a range of 0.8 — 1.4 g/cm’ and the sphere is 25 mm in diameter. Thanks to its ra-
dio transmission it is suitable for opaque fluids or apparatuses without access for optical
measurement techniques. Its continuous operation is advantageous over Particle Track-
ing Techniques which have to operate in chunks as the memory of the tracking cameras
is necessarily limited. Moreover, the particle might be allowed in pharmaceutical mixers
if it passes the regulations of the CE mark for medical devices'.

However, as the particle is advected in a flow it rotates and consequently continuously

changes its orientation with respect to the laboratory frame. Thereby the signals of the
accelerometer are altered in a non-trivial way. One is therefore in need of a detailed char-
acterization and methods which extract meaningful information about the flow from its
acceleration signals. This is addressed twofold: We demonstrate how some quantities such
as correlation times and the moments of the acceleration can be derived directly from the
signals. As a cross-check these quantities are compared against the motion of large, solid
spheres.
In order to get a better understanding of its motion and to verify that its transmitted ac-
celeration is well related to its motion, we apply our six-dimensional tracking method to
track the particle’s position and absolute orientation while simultaneously acquiring its
Lagrangian acceleration signal. The absolute orientation is a crucial step here, as it en-
ables us to re-express the Lagrangian acceleration in the coordinate system of the tracking
system. Hence, we can compare these independent measurements.

This chapter is organized as follows:

> First, we present the instrumented particle and additional techniques needed for its
characterization (section 7.1).

> We then present an analysis of the results obtained in two different mixers. Here,
the necessary methods are developed and tested (section 7.2).

> Finally, we show results of the tracking of position and orientation of the instru-
mented particle while simultaneously recording its acceleration signal (section 7.4).

Two mixers —a von Kdrmdn mixer (KLAC) and the Lagrangian Exploration Module (LEM)
— are used in this chapter. They are described briefly in Fig. 7.1 and in more detail in
chapter 3.1 and annex A.1.

In contrast to the experiments with Poly-Amid spheres, we adjust the weight of the
particle instead of the density of the fluid. Thus, the working fluid in this chapter is
de-ionized water at 20 °C.

"Parts of the requirements are that the particle is always extractable in one piece from the mixer and that
it survives sterilization. The approval procedure concerns only smartINST and is not further discussed
in this document.
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KLAC LEM

Figure 7.1: The mixers used for the characterization of the instrumented particle. Most
experiments (including the combined measurement with the 6D-tracking) were per-
formed in a square von Kdrmdn flow, the so-called KLAC; the sphere in the image is
a smartPart. The flow was driven with counter-rotating and co-rotating impellers. An
instrumented particle was injected into the Lagrangian Exploration Module (LEM), too.
The green light in the picture stems from a laser which was switched on only for its beauty.
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7.1 An instrumented particle

The apparatus described in the following is designed and built by smartINST S.A.S., a
young startup situated on the ENS de Lyon campus. It builds mainly on the work of
Yoann Gasteuil during his thesis [19], the particle, which measures temperature [20, 58],
as well as developments carried out in the ENS Lyon. The device consists of:

> an instrumented particle (the so-called smartPART): a spherical particle which em-
barks an autonomous circuit with 3D-acceleration sensor, a coin cell and a wireless
transmission system, and

> an antenna, which is connected to

> a data acquisition center (the so-called smartCENTER), which acquires, decodes,
processes and stores the signal of the smartPART.

The system smartPART and smartCENTER enables us to measure the three dimen-
sional acceleration vector acting on the particle in the flow. The received signals can be
displayed, analyzed and stored for further processing.

7.1.1 Design & Technical Details
7.1.1.1 Sensor

The central component of the particle is the ADXL 330 (Analog Device) — a three axis
accelerometer. It belongs to the category of micro-electro-mechanical systems (MEMS).
Each of the three axes returns a voltage proportional to the force acting on a small, movably
mounted mass-load suspended by micro-fabricated springs (see Fig. 7.3). The three axes
of the ADXL 330 are decoupled and form an orthogonal coordinate system attached to the
chip package. From this construction arises a permanent measurement of the gravitational
force/acceleration g = 9.8 m/s*- €, = g - €,. Fach axis has a guaranteed minimum full-
scale range of +-3¢; however, we observe a typical range of +3.6g = 35 m/s* per axis. By
design the z— and y—axis have an internal cutoff frequency of 1.6 kHz whereas the z—axis
filters at 0.5 kHz. The sensor has to be calibrated to compute the physical accelerations
from the voltages of the accelerometer.

7.1.1.2 smartPART

The signals from the ADXL 330 are first-order low-pass filtered at f, = 160 Hz and then
digitized at 12 bits and 316 Hz sampling rate. A multiplexer prior the signal digitization
induces a small time shift between the components of 0.64 ms. The output is then re-
shaped into small packets and sent via radio frequency. A free ISM? band at 433.9 MHz
is used as the carrier frequency. The ensemble is powered by a coin cell. A voltage regu-
lator ensures a stable supply voltage and thus a constant quality of the measurement. A

2That are radio frequency bands which are reserved for industrial, scientific and medical equipment. De-
vices operating in this range must tolerate the radio signals from other devices.
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Figure 7.2: a) & b): the instrumented particle (so-called smartPART) and its data control
acquisition unit (so-called smartCENTER). The coin cell is 20 mm in diameter. Cables
and antenna are not shown here. The diagram in c) sketches how the acceleration mea-
surement is transmitted to and processed at the smartCenter.

Hall switch allows one to power-down most components and thereby drastically increase
the life time of the battery. A sketch explaining how the different components are related
is provided in Fig. 7.2.

The ADXL 330 is soldered to the printed circuit board such that it is situated close
to the geometrical center of the particle. The particle itself is spherical with a diameter
of 25 mm. The walls are made of Polyether-ether-ketone (PEEK) which is known for
its excellent mechanical and chemical robustness. It is leak-proof and its density can be
matched by adding extra weight to the interior to fluids to a range of 0.8 — 1.4 g/cm’.
A relative density match of better than 10™* is achievable. The particle is thus suited for
most experiments in water and water-based solutions. Depending on the power needed
to transmit the acceleration signals, the life time ranges from 12 to 36 hours.

Summing up, the smartPART transmits in real-time the accelerations acting on the
particle as it is advected in the flow. The accelerations are observed in a moving and
rotating coordinate system and consist of four contributions: gravity, translation, noise
and possibly a weak contribution of the rotation around the center of the particle itself.

[t should be noted that the mass distribution inside the particle is neither homogeneous
nor isotropic. Additionally, the density matching is achieved by adding Tungsten paste to
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Figure 7.3: Interior of the ADXL 330 accelerometer [image based on [61, 11]], a mass
load is supported by springs (parts b & ¢). The z and y digitated sense capacitors measure
lateral movement (part a), whereas the z—axis is formed between the proof mass and the
underlying plate. That is also the reason for the lower resolution in z.

the inside of the two capsules. It is therefore possible that the particle is out-of-balance,
i.e. the center of mass does not coincide with the geometrical center. The imbalance can
be adjusted to some extent as sketched in Fig. 7.4. A particle, which is out-of-balance,
has a strong preferred orientation and wobbles similar to a kicked physical pendulum.
We therefore assume (and prove later) that its movement deviates from the classical case
of solid homogenous particles. For that reason most experiments are performed with a
well balanced particle which rotates easily in the flow. In section 7 we show that the free
rotation is actually desirable. The particle’s inertia is best described by a heavy disk of
20 mm diameter ( the battery ), a spherical shell and patches of tungsten paste. One of
the eigen-axes of inertia coincides (approximately) with the z—axis of the accelerometer.
The other two are within the 2 — y plane due to the rotational symmetry.

b) c) d)

a)

Figure 7.4: Possible mass distributions of the particle. Its inertia consists mainly of a disk
and a spherical shell; however, the density adjustment also sets the imbalance of the particle
(parts ¢ & d). Most of the experiments with the smartPART are done in configuration c.

7.1.1.3 smartCENTER

The signals from the smartPART are received by an antenna connected to a radio recep-
tion, processing and display unit: the so-called smartCENTER. Once the raw signal is
acquired the smartCENTER decodes in real-time the packets to obtain the raw voltages
of the ADXL 330. The physical acceleration, asp, sensed by the smartPart can then be
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computed according to Eq. (7.1):

a1 (Al - 01)/31
asp=| a | = (A2 —0)/5 (7.1)
as (AS - 03)/53

where A;, O; and S; are the measured raw signal, the offset and the sensitivity of each
axis, respectively. Offset and sensitivity have to be calibrated beforehand; the procedure
is described in section 7.1.2. The resulting time-series are saved for further processing.

7.1.1.4 Contributions to the Acceleration

The acceleration sensor measures the forces acting on it as it moves in the flow. The
following contributions can be identified:

Gravity By construction, gravity g is always contributing to a. Since the particle is a pri-
ori oriented arbitrarily in space, g is projected to all 3 axes. Rotations of the sensor
around the axis of gravity do not change the measured signal.

2

Translation The Lagrangian acceleration @y = (f?m(t) will be projected onto the sen-

sor. However the projection changes if the sensor is rotating,.

Rotation If the sensor is placed by 7 outside the geometrical center of the sphere one
observes two centrifugal forces: a.y = w X (w X 7) and @, = (%w) X 7.
According to the technical drawing itis 7 ~ 3mm - é,.

Coriolis The construction of the ADXL 330 and the fact that the circuit is fixed within
the sphere ensure that the Coriolis force is zero.

Noise & spikes In ideal situations the smartPart has a noise of less than 0.01¢ for each
axis, which can be handled by a low pass filter. Wrong detections appear as strong
deviations from the signal and are hard to distinguish from high acceleration events
due to the turbulent flow or contacts with e.g. the propellers.

Orientation of the sensor The orientation of the particle is a priori changing as it is
advected in the flow. The orientation of the sensor can be described by an absolute
orientation with respect to a reference coordinate system, R(6(t)), plus a constant
rotation matrix, Rys, which handles the orientation of the sensor with respect to
an outer texture as well as the arbitrary choice of the reference frame. If needed
one can incorporate Rrs into the time-series of absolute orientation R(6(t)). For
simplicity Rs =1 in most cases. N

Combining the different terms yields:
2
aSP:Q%R(Q)T g+%w(t)+w x (W ><r)+(ii—('; X P
and (7.2)

2

dw
Q(Q)ﬁTsasngnL@m(t)jwa(wxr)+gx,,a
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Extracting meaningful information on the flow from the smartPart is explained later in
section 7.2.

7.1.2 Calibration & Resolution
The offset and sensitivity of the ADXL 330 have to be calibrated in order to convert the

measured voltages into a physical acceleration. The axes of the accelerometer form an
orthogonal coordinate system according to Eq. (7.1). At rest one always observes grav-
ity projected on the sensor at an arbitrary orientation. The observed raw values define
consequently a translated ellipsoid :

(A:r — Ox>2 (Ay — Oy)Q (Az — OZ>2 2
asp-asp = + + =|g|" =1 (7.3)
S2 S2 S2

For simplicity |g| = 1. Eq. (7.3) can be arranged to
1= AL+ QA+ A — 204 Ay — 26 Ay — 206 A, (7.4)

with (; ... (s six parameters containing offset and sensitivity. A sufficient number of
measurements with different orientation defines a set of equations which is solved using
a linear least squares technique. 20 to 30 data points are necessary to certainly obtain
stable results. Offset and sensitivity are then computed from the resulting ¢; ... (. The
calculations can be found in appendix B.6.

We found that a particle at rest has an average noise of 0, = 0, ~ 2.3[¢] and o, =~ 3.5[¢].
1 g is the quantization of the digitizer. In physical units that corresponds to o, = 0, =
0.006g and o, = 0.008¢ and || = />, 07 = 0.012g. An analysis using the residuals
showed an slightly higher resolution of

o, =0, =0.005g, 0, =0.003¢g and |o|=0.008g . (7.5)

These values are, thus, the absolute errors of our measurement. A second, different cali-
bration method based on geometrical construction results in a comparable resolution.

7.1.2.1 Reproducibility & Robustness

The temperature in an experiment is not necessarily fixed. When for example monitoring
an industrial mixer, the temperate can vary within short time by several Kelvin. Moreover,
the slowly discharging of the battery might induce a slow drift.

The ADXL 300 has amongst other things been chosen for its weak temperature depen-
dence: its offset varies by typically 1 mg/°C ~ 0.4 ¢/°C and its sensitivity by 0.015 % /°C.
To check that the smartPART — i.e. the ensemble of accelerometer, digitizing and radio
emission circuitry — works comparably, we calibrated after it swam for several minutes
in a water bath of known temperature. Fig. 7.5 shows that the temperature dependence
is non-zero but comparable to the specifications of the ADXL 330. However, for high
precision measurements it is advised to calibrate at experiment temperature shortly before
doing the experiment.
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Figure 7.5: Temperature dependence of a sample smartPART; the z, i, 2 component are
red, green, and blue, respectively.

Fig. 7.6 shows the long time behavior of the particle at rest. Here, the radio emission
power was set to medium, which corresponds to capturing its signal at up to 10m in air
and 0.5m in de-ionized water. The x— and y— axes do stay constant and show only little
increase in noise as the coin cell slowly discharges. The z—axis has a slow drift of the order
of 2{. The usable life time is 32 hours followed by a few hours with significantly higher
noise until the particle fully stops working. The particle is that sensitive that ground
vibrations (caused by people walking in the office/lab) are detected.

A stronger radio emission power can be required if:

> The apparatus builds a Faraday cage, i.e. an electrically-connected metal structure
surrounds the flow.

> Electro-Magnetic noise is present e.g. caused by badly isolated motors or electro-
magnetic shakers.

> The signal has to pass a longer distance in more water in a bigger apparatus.

> Solutions with a high conductivity (e.g. salt water) are likely to damp the radio
signal.

The receiver/demodulation unit of the smartCenter works best within a range of radio
power, ie. particles which are emitting either too strong or too weak are undesirable.
Whereas medium power was optimal in the KLAC, strong radio emission has to be used
in the LEM in order to continuously receive the particle’s signal. Nevertheless, particles
with stronger radio emission still last 6 to 12 hours, which is sufficient in most cases.
Considering the mechanical robustness, the smartPART “survived” several hours in the

KLAC and the LEM. Both have impellers which are equipped with sharp edged blades in
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Figure 7.6: Long time behavior of a sample smartPART.

order to achieve an inertial forcing. But the shell cracked once when the edge of a blade
damaged the underlying thread. It then filled with water and sank to the bottom; the
circuit was fully functional after drying.

7.1.3 Orientation of the sensor within the capsule

The sensor is fixed within the capsule such that it doesn’t move. However, the circuit is
inserted by hand between the two half spheres. Thus, its orientation with respect to an
outer texture is not known and has to be determined if one wishes to perform simultaneous
acquisitions of its signal and its six-dimensional trajectory.

The following is an extension of the procedure to find the texture: as stated in para-
graph 3.3.2.1 pictures of the particle at arbitrary orientations are taken. To determine
the position of the sensor, it is additionally necessary to simultaneously acquire its signal
and to know the exact orientation of g (its magnitude is well-known). The latter can be
achieved by placing the camera such that its optical axis coincides with the axis of gravity
and the particle center. For simplicity we set g = g e, which tells us how to re-project
g on the half sphere for each image®.

Thus, we have N tuples, each consisting of an image, its measured acceleration, a(k),
and its orientation, §(k) with respect to a base view. The accelerometer can be seen as

3For an image k with an arbitrary but known orientation, 0(k), its position with respect to an unrotated
sphere (and therefore on the texture) can be computed by g(k) = R(6(k))" e..
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three independent sensors, each measuring the projection of g on axis ¢;. ¢; is fixed with
respect to the texture. For simplicity, we focus on only one sensor at a time: a;(k) is then
the projection of g onto ¢; at the k—th image:

a;(k) =g(k)- ¢ (7.6)

All points £ with
g(k)-& = a;(k) (7.7)

are possible candidates for ¢;, because of rotations around the axis of gravity do not alter
the measured acceleration (Eq. (7.6)). These points form a circle on the surface of a
sphere?.

For more than one measurement, the circles cross at ¢; because it is the only point
which fulfills Eq. (7.7) for multiple measurements. A sketch is provided in Fig. 7.7.

Thus, we can determine where the three axes of the accelerometer point on the texture.
Measurement errors might cause that the three axes are not perfectly orthogonal, and
thereby resulting in a “bad” rotation matrix. Kabsch’s algorithm (cf. appendix B.5) is then
used to compute a valid rotation matrix Rys verifying RrsRTs = 1 and det(Rys) = 1.

Figure 7.7: Sketch explaining how to find the position of the sensor. The circles are
g(1)-& = a;(1) = g(1)-¢; and g(2)- & = a;(2) = g(2) - ¢; respectively. The cir-

cles cross at ¢;

4Visualizing them in the ¢, 8 coordinates of the texture is less intuitive.
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7.1.4 Runs

Measurements were performed in a von Kérmédn flow (the KLAC) and the Lagrangian
Exploration Module (LEM); in all the runs presented we kept the propeller frequency,
fprop> constant during the measurement and the density of the particle was adjusted to
that of water. A list of the runs where we only recorded its signal is provided in table 7.1.
We also performed two experiments where we acquired the particle’s acceleration signal
and simultaneously tracked its position and absolute orientation. They were done in the

KLAC counter-rotating impellers running at a speed of 2 Hz and 3 Hz.

runs ‘ particle ‘ infos

‘ frequencies [Hz]

O cl04 | cl04 | counter-rotating im- | 0.25, 0.33, 0.66, 1, 1.25, 1.5,
. pellers 1.66, 2, 2.33, 2.5 , 2.75, 3,
~ 3.25,3.5,4

corot | ¢104 | co- rotating impellers 1,1.5,2

cl02 | cl102 | counter-rotating im- | 0.5,1,1.5

pellers, strong imbalance

E LEM | cl101 | all motors 1,2,3,4,5
—

Table 7.1: data runs with only the smart particle, the working fluid was always water. All

runs were done in August 2011 and all particles except cro2 are well balanced.
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7.2 Directly accessible quantities

As explained in section 7.1.1.4 we have to deal with the orientation of the sensor in ad-
dition to the gravitational, translational and rotational forces acting on the particle when
describing/understanding the particle’s signal. According to Eq. (7.2) one measures

d? d

aSPZQ%Q(Q)T g+@m(t)—|—w X (w ><r)+d—¢; X r (7.8)
with 7 = 3 mm - €, the displacement with respect to the geometrical center of the particle.
Experiments on the rotation of solid spheres in a von Kdrman flow showed that the angular
velocity, w, of the particle is of the order of the propeller frequency, Jprop- The rotational
forces are of order r w? ~ r - (47> mep) < % Qpans and Eq. (7.2) reduces to

T
asp ~ 5(@) [g + a’trans] -~ :_R(Q) Qgp ~ g + Qrans (79)

This simplification will be verified experimentally later in section 7.4.2.

As the particle is advected by the flow, it also rotates freely and more important in an a pri-
ori unknown way. Consequently one has to investigate how common quantities, mainly
mean and variance of the acceleration time series as well as auto correlation functions, are
altered by the continuously changing orientation of the sensor, R (Q) In the following
the abbreviation R = R(6(t)) is applied for readability.

7.2.1 “Shakiness”
Taking the average of Eq. (7.9) yields:

(asp) = (R"g) + (R" @uans) (7.10)

Although the particle is carefully prepared, its moment of inertia is not that of a solid
sphere and the particle’s center of mass does not perfectly coincide with its geometrical
center. Consequently, the particle becomes slightly out-of-balance, with a preferred ori-
entation at in calm flows. Hence, Eq. (7.10) becomes (asp) = RT (g + (@uans)) at a low
turbulence level. Considering the low turbulence level and the fact that most flows are
confined, this can further be simplified to (asp) ~ RTg and |(asp)| ~ g. With increas-
ing impeller frequency (and consequently higher turbulence level), the particle starts to
explore all orientations, meaning g and @,,s are randomly projected in all directions and
the mean (agsp) diminishes. Eq. (7.10) is thus merely a detector for the rotation of the
particle.

Fig. 7.8 shows (agp) as a function of the propeller speed, fyop and the forcing. As
expected the mean accelerations are becoming smaller with increasing propeller frequency.
Although it is trivial it should be pointed out that

|a'trans’ 2 |a5P‘ —g (711)
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Figure 7.8: Evolution of (asp) with the propeller speed Jorops filled symbols (o) indicate
co-rotating propellers. In all cases the particle explored the flow for a sufficient amount
of time for the statistics to converge. In good agreement with Eq. (7.10), |{asp)| contin-
uously decreases from 1 g to 0 g as the propeller frequency increases.

In other words,
seen by the particle.

asp| is not a justifiable quantity to estimate the mean acceleration (i.e. force)

Similar arguments show that the variance of agp (and therefore the standard deviation
(RMY)) is altered by the rotation, too. Moreover, the variance of a component, agp ;, of
asp depends strongly on its mean value, (a@sp;). As shown before, gravity renders (asp;)
non-negligible. Additionally, we observed at weak turbulence levels (fyrp < 1 Hz) that
particles are able to stay in an orientation for several seconds. Hence, a global mean of
the complete time-series is not a meaningful quantity. Although subtracting a moving
average with a window length of several 10 s performs well in estimating the variance, it is
not efficient in a computational sense. Instead we apply a low-order band-pass filter with
fiow = % Hz and fhign &~ 100 Hz to the time series. fio is chosen such that it is much
smaller that the expected slow timescales of the flow or a possible rotation of the particle.
High frequency noise associated to the electronics is handled by fpen. This technique also
works if a global mean is applicable.

Fig. 7.9 shows the dependence of the RMS of the components, agp ;, of agp on the
propeller speed, fip. We found no preferred direction in any of the axes. Dimensional
arguments and the results from chapter 4 tell that, @ ns prrop. In contrast thereto, we
observe a linear or (in the case of the LEM) sub-linear scaling with the propeller frequency.
We further investigated |asp| and noticed that RMS of the norm is always smaller than the
RMS of the components confirming experimentally the simple inequality of Eq. (7.11).
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Figure 7.9: Evolution of the RMS of the components of asp with the propeller speed,
forop> @ band-pass filter is used to subtract the mean. The error bars indicate the spread
within the three components. For comparison, we also show RMS a; for solid spheres
(cf. Fig. 4.2). Although not shown here, RMS(|asp|) is always smaller than the RMS of
the single components of agp;.

In opposition to dimensional arguments and results for solid spheres in similar flow con-

ditions, the RMS is o proportional to f2 .

One can further look at the PDF of the components of agp: Fig. 7.10 provides as an
example the PDF of the balanced particle (c104) at low and high turbulence. Whereas at
low propeller speeds the PDF are skewed and shifted, they become centered and symmet-
ric with increasing propeller speed. The ADXL 330 saturates if the accelerations exceed
£3.69, we exclude these points from the analysis. This removal diminishes the observed
acceleration and the bias increases with the forcing. In the case of Fig. 7.10, almost 3%
of all data points were removed at f,o, = 4 Hz. That is two orders of magnitude more
than for f,,, = 1 Hz. As we will see in the following the saturation of the accelerometer
leads to an underestimation of the moments of the PDF of @aps.

Excluding data points with a; > 3.6¢ alters the observable variance and flatness.

Résumé: Recapitulating, both mean and variance of the raw signals do contain only
little information on the flow. That means that naive/direct approaches on raw signals
risk to evaluate the shakiness of the signals instead of the underlying physics. Hence, well-
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Figure 7.10: PDF of the components of asp at low (1 Hz) and high (4 Hz) turbulence.
The latter has been shifted for readability. Points where axes of the accelerometer saturated
are deactivated and not used in the analysis. The saturation of the accelerometer leads to
an underestimation of the moments of the PDF of @,p;.

adapted methods are needed to extract informations on the flow from the instrumented
particles. In the next section we will develop these methods.
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7.2.2 Moments of arans

In most flows one expects (@Qans) =~ 0. One is therefore interested in the PDF of @qp.
Although, we don’t have direct access to @,y and its PDE we can compute the even
(central) moments of its PDE

Variance  The variance of agp is°:

<a’§P> = <£Tg iTg> + <£Ta’trans 'iTa'trans> +2 <RTg ’ iTa'trans>

= 92 + <a’t2rans> + 29 <CZZ> (712)
= 92 + <a’t2rans>

@y = €, * Qans has zero mean if the particle is neutrally buoyant and the flow is confined.
That is the case for most lows and we obtain an estimator for the standard deviation of

a’trans .

Arms = <CL2 > = <G§P> - g2 (713)

trans

Although a,, is independent of gravity, a bad calibration (e.g. caused by longterm drift
or temperature change) can introduce a systematic offset to @ys. It is thus advised to
always recalibrate before doing the actual experiment. The left plot in Fig. 7.11 depicts
the evolution of @, with the driving. One first notices, that @,y depends on the mixer:
the acceleration is much smaller in the LEM than in the KLAC. In agreement with di-
mensional analysis, @;ps ( fpmp) describes a parabola, however, one could also argue that
s ( fpmp) is linear for f,o, larger than some threshold. It should be kept in mind, that
each axis of the smartPart’s accelerometer is limited to £3.6 g. Even if the flow induces
events of higher acceleration these are not detectable (cf. Fig. 7.10) and therefore not
included in the observed variance. If one likes to investigate the behavior at large f,.op
the ADXL 330 has to be replaced by a different model supporting higher accelerations.
One also has to ensure, that both apparatus and particle mechanically support the forces
occurring at higher propeller speeds.

Flatness In the spirit of Eq. (7.12) one can estimate the higher moments of @y, which
we demonstrate here for the forth central moment, the flazmess®. Tt is

<’a’SP|4> = <[92 + a’tzrans + 2g ' a’trans:| [92 + a?rans + 2g : atrans]>
= (@) + ¢ +20° (|@uansl”) + 497 (Ja=[*) + 4 6° (a2) + 49 (| Quans|” a)

~ <|atran5|4> + 94 + %g2a?ms

(7.14)

5The dot product of two vectors, in other words the angle between them, is invariant to choice of the
coordinate system. Therefore (ila) . (igb) = (§2T§1a) ‘b=a- (i?:&b) for R1, Ry arbitrary
rotation matrixes.

6 Also known as kurtosis.
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2

trans*

Assuming no preferred direction in @y, it is 4g° <|az|2> ~ 4/3g%°a Again, the

2
terms 4 ¢® (a,) and 4¢ < |@rans|” @ z> are expected to have zero mean. The flatness, F'(@ans),
is then

4 4\ 4 10,2 2
F(a[ram) _ <|atrans‘ > _ <’a’SP| > g 39 Qs (715)

<Cl,2 >2 afms

trans

Asshown in Fig. 7.11 we observe a flatness of the order of 10 in the KLAC, which is close to
our finding for solid particles; in the LEM we find F' ~ 40. Although these values seem
plausible, one has to be careful in their interpretation. The uncertainty in the flatness
can partially be attributed to an uncertainty in ¢ and stems from the resolution, noise
and measurement range of the smartPart but also from the particle’s weak temperature
dependence and drift. It is furthermore biased by contacts with the impellers and walls.
More surprisingly, the flatness decreases in both apparatuses with the forcing. This decline
is due to the measurement range of the ADXL 330: At high accelerations the sensor
saturates and thereby sets PDF (amns la;| > 3.69) = 0. Since the flatness is the forth
moment of the PDF and as such highly sensitive to high accelerations, we find a decrease

although solid large spheres in the same flow have an increasing flatness (cf. chapter 4).

Possibly the uncertainty in the flatness estimate can be reduced by filtering or improved
electronics. However, it is evident that calculating moments of even higher order is out
of reach.
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7.2.3 Influence of inerfia & imbalance

As explained in section 7.1.1.2 the imbalance of the particle is adjustable to some extent.
The runs cro2 correspond to a particle which is strongly out of balance whereas the other
particles cror and cro4 show little imbalance. The inertia can be approximated as the
sum of a spherical shell (the capsule), a cylinder ( the battery and circuit) and two point
masses (the added weight). The ensemble has one axis of symmetry which by construction
coincides with the z—axis of the accelerometer. Hence, the smartPart’s inertia has exactly
two unique moments — J, for rotations around the z—axis and J,, for the perpendicular
case. Simple estimates based on the technical drawings yield J, ~ 2-10~"kg- m* and
Joy = 3.5 J,. The resonance frequency of a physical pendulum with displacement 7,

T:27T1/; (7.16)
g T disp.

An imbalanced particle behaves similar to such a physical pendulum, which is in addition
driven/kicked by the flow. Assuming a difference between center of mass and geometrical
center of rgi, = 2 mm one finds 7'(J,) =~ 0.2s and T'(J,,) ~ 0.4s. The resonance
frequencies are thus f(.J,,) ~ 2.5 Hzand f(.J,) ~ 5 Hz; they are in a first approximation
independent on the forcing.

Fig. 7.12 shows the power spectral density of the imbalanced particle croz at propeller
speeds of 0.5 Hz, 1 Hz, and 1.5 Hz. The x and y axes coincide and differ clearly from
the z—axis. One peak for x and y and two clear peaks for the z—axis can be identified;
in either case their position is independent of the forcing. Moreover, the peak position
correspond to the 2 resonant frequencies, f(.J,,) and f(.J,), which were estimated from
the technical drawings. A well-balanced smartPart at the same propeller speed shows
neither the distinct peaks nor do the axes differ. It is clear that the peaks alter the auto-

and mass m is approximately’

correlation functions in an unwanted way.

7 small angle approximation
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Figure 7.12: Power spectral density of imbalanced particle (czo2) at propeller speeds of
0.5 Hz, 1 Hz, & 1.5 Hz. z coincides with y () and is not plotted for readability. One
peak for x and y and two clear peaks for z ([J) can be identified; in either case their
position is independent of the forcing. Moreover, the peak position can be estimated
from the technical drawings. No peaks and no difference in the three components is
found for a well-balanced particle (A, cro4).
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7.2.4 Auto-correlations

[t is remarkable, that based only on @, one cannot clearly distinguish between a counter-
rotating and a co-rotating flow although it is known that these two forcings induce two
clearly different flow types. Ideally, one would want to compute the auto-correlation of
the translational force, €.g. (Gians (1) * Grrans (t + 7)), to estimate correlation time scales
of the flow. Again, the constantly changing orientation of the smartPart blocks any direct
access to Qs (t) and quantities derived thereof. We hence need to find quantities which
are either not altered by the orientation of the smartPart or extract information on its
rotation.

7.2.4.1 An Auto-correlation invariant to the rotation of the sensor

In the spirit of Eq. (7.12) and Eq. (7.14) one can construct the auto correlation function
of the magnitude of |asp|*:

{Jasp(t)| |asp(t + 7)[*)
= ([0% + 02 (t) + 20" Qi (1)] [5° + Oyt +7) + 29 Aus(t +7)])

= {|@uans (1) * [@urans(t + 7)[*) + 0* + 9% ({|Gerans ()?) + (| Gogans (£ + 7)[7))
+26° (9" Guans (t +7)) + (g Geans(t)) + 2 (|@aans ()] G * Burans (t + 7))
+2 <|a'tran5(t)|2 g atranS(t + T)> +4 <(g ) a'tram(t + T)) (g ) a'tram(t>>>

= {|@uans (1) * [@urans(t + 7)[*) + ¢* + 2% {|@an|”) + 497 (@ (t) a.(t + 7))
+46%(a.) + 29 (|@uans(t + 7)[? a2 (1)) + 29 {|@ans(t) [P a2 (t + 7))

2 (| Getans (1) | @urans (E + 7)) + g* + 2 %2, + 467 (a.(t) a.(t + 7))
(7.17)

Again, the terms containing a, = €, * Gy,ns are expected to have zero mean. However,
49 (a,(t) a,(t + 7)) = 4g* <]az\2> for 7 &~ 0. Assuming no preferred direction in
@ans this can be approximated as 4/3 g? a2 . In contrast to Eq. (7.17), we preferably
compute the autocorrelation of the fluctuations® around the mean’ (a%p). Hence, the
autocorrelation of the norm can be negative. We further normalize the auto-correlation
such that it is 1 at 7 = 0. For more details please see appendix B.3.

Fig. 7.13 displays <|agp(t)|2 lasp(t + 7) \2> for three different configurations at a pro-
peller speed of 1.5 Hz. A balanced and an imbalance particle in the same flow configu-
ration show only little difference in the auto-correlation function. That is in contrast to
paragraph 7.2.3, which demonstrated that imbalance causes distinct peaks in the power

rms*

spectrum of the single components of asp. Despite their different rotational dynamics,

8“Every American should have above average income, and my Administration is going to see they get
it.”, Bill Clinton on the campaign trail

?((lase®)* = 1) (lasp(t + 1) = 1) ) wich p = (aZp)
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particles extract almost identical time scales of the flow. Their auto-correlation should be
well approximated by a sum of exponential decays or the transient function of a critical
damped oscillator.

In contrast to the counter-rotating flow, we observe that co-rotating impellers corre-
spond to an auto-correlation function which resembles a weakly-damped oscillator. This
means that this forcing creates more coherence in the large scale motion of the co-rotating
flow. Moreover, this difference in the flow structure is observable with an instrumented
particle. This is in agreement with Eulerian measurements [71], where pressure probes
were mounted in a von Kdrman flow: Whereas the counter-rotating flow produces typical
pressure spectra, the same probe in the co-rotating case yields a spectrum which peaks at
multiples of the propeller frequency. Similar behavior has been reported for the magnetic

field in a von Kdrmdn flow [73] filled with liquid Gallium.

2 2\ . . . . , .
(t)]" |asp(t + 7)|°) is insensitive to the particular rotational dynamics
of the particle. It gives necessary information to determine the type of flow.

Summing up, <

7.2.4.2 An Auto-correlation related to the tumbling of the particle

One can further focus on the rotation of the particle by considering the dor product of
asp(t) - asp(t +7):

<G;5p<t> . asp<t + T>>

([ROW)" 9+ awn®)] - [RO+7)" (9 + awuslt+7)])
R(O(t +7)

= ([R(OE+7)RE®)" (g+ ()] - [(g+ Guanst +7)])
= (g [T(t:7)g]) + ([Tt 7)uans(t)] - Guas(t + 7))

([T 7)) - @t + 7)) + ([T T) (8] - 9)
~ g (. [T(t.7)e)) + (Tt ) uans(t)] - Qgans(+ 7))

(7.18)

Theterm T (¢, 7) = R(0(t+7))R(6(¢)) " is a rotation matrix related to the instantaneous
angular velocity, w, of the particle as explained in section 3.3.1.2. Again, the two terms
containing products of g and a vanish if the particle is neutrally buoyant. The term
g (é.- [T(t,7)é.]) is related to the tumbling of a spherical particle [76].

In contrast to the other auto-correlation Eq. (7.17), one cannot subtract a mean value
prior computing (asp(t) - asp(t + 7)). To estimate the ratio between ¢* (€, - [T (¢, 7)é.])
and ([T (t,7) Qecans(t)] * Qurans(t + 7)) itis helpful to normalize by g*. If (asp (t) - asp(t + 7))
becomes uncorrelated is does not necessarily vanish. If uncorrelated:

g (.- [T(t,)e:]) = g* (R(O()" e R (0t +7)" é.)

) (7.19)
- (R"e.)’ >0
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Figure 7.1 3: Rotation-invariant and rotation-sensitive auto-correlation functions,
<|a5p(t)|2 lasp(t + 7‘)|2> (rescaled) and (asp(t)-asp(t + 7)) /g?. In all cases the
propeller speed is 1.5 Hz. A logarithmic scale was chosen for the abscissae as it displays
both short and long time contributions to the correlations.

For the rotation invariant <\agp(t)|2 lasp(t + 7) |2> we find that the imbalanced particle
cro2 shows only little difference to the balanced one (cro4), which is in contrast to
paragraph 7.2.3. Additionally, the autocorrelation significantly differs between counter-
and co-rotating impellers.

(asp(t) - asp(t + 7)) /g* shows a clear impact of the balance.

That means (asp(t) - asp(t + 7)) approaches a plateau whose height is determined by the
average orientation of the particle.

The lower plot in Fig. 7.13 depicts {(asp(t) - asp(t + 7)) /g* for three different configura-
tions at a propeller speed of 1.5 Hz. For comparison to (|asp(t) * |asp(t + 7) \2> only the
autocorrelation function changed; the configuration and f,,o, are unaltered. In contrast
to the rotation-invariant function, all three curves are different and reach a plateau for
T 2 1s.

To investigate the role of the plateau we plot the auto-correlation of the well-balanced
particle for increasing foop in Fig. 7.14. For fuop < 1Hz one finds little change with
the plateau at almost 1. For f,, ~ 2 Hz the plateau drops but is still non-zero. Further
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Figure 7.14: Dependence of (asp(t) - asp(t + 7)) /g* on the propeller speed (balanced
particle crog4, counter-rotating propellers). The bottom plot shows the same data after

subtracting the plateau and rescaling (asp(t) - asp(t + 7)).

increase in fyop the plateau vanishes. At the same frequency range we observe that the

PDF of the components of asp becomes centered and symmetric.

In order to gain access to the fluctuations around a mean value, t, one can subtract the

plateau and then rescale. This is done for in the top plot of Fig. 7.14.

[t becomes clear that a more detailed investigation of the particle’s trajectory is needed.
In section 7.4 we present results from the acquisition of the signal and the simultaneous

6-dimensional tracking of the instrumented particle.
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7.2.5 Time scales

The auto-correlation functions contain one (or more) time-scale which are related to the
movement of the particle in the flow. The functions resemble transient functions of a
harmonic oscillator: Fig. 7.13 demonstrates the two scenarios of (weakly) damped and
over-damped oscillation. We therefore tried the following techniques to extract meaning-
ful time-scales of a sample auto-correlation function, A(7):

value-crossing This straightforward ansatz determines when A(7) is smaller some thresh-
old Ay for the first time. The resulting time-scale, T, strongly depends on the
choice of the threshold. Moreover, in some runs A(7) falls close to 0 but stays pos-
itive, one should thus not set Ay &~ 0. This method underestimates the correlation
time of the oscillating case.

fit Since A(7T) reminds one of the (driven) harmonic oscillator, we fit the weakly damped:
fo(T) = ao exp (=7 /Teonr) - sin (27 fose + o) (7.20)

and the critically damped transient function:
fa(T) = exp (=7 /Teonr) = (a0 + a1 7) (7.21)

t0 A(T); Teorrs fose and ag, a1, ¢g are fit-parameters. We return 7o, from the test
function which performs better in approximating A (7). f,s enables us to estimate
the tumbling frequency of the particle. We also tested the over-damped case (which
is a sum of exponential decays), but it showed to be not numerically robust.

slope One can further determine the slope of A(7) near 7 = 0 i.e. the derivative at
7 = 0. For the strongly-damped case this corresponds to fitting an exponential
decay f.(7) = exp(—7/Tewn) to A(T). However, in the case of an oscillating
A (T) one obtains a value proportional to the frequency of the oscillation but not
to de-correlation.

Mittag-Leffler We stumbled upon the Mittag-Leffler function, which performs surpris-
ingly well in approximating A(7). It is related to fractional differential equations.
However, we do not (yet) understand its full meaning and how to extract timescales.

integral The integral of the auto-correlation function gave no valid results.

The fit method performs best and is thus selected.

Fig. 7.15 shows 7. as a function of the propeller speed and driving. For the rotation
invariant function (|asp(t) ? lasp(t + 7) |2> we find that 7, of the balanced particle in

a counter-rotating flow or the LEM follows roughly a —15 power-law. This power-law

prop
would be suggested by the scaling of the Kolmogorov time scale, 7,, & e /2 and & o [iOP’

too. However, this is probably a coincidence since the obtained correlation times are 10 to
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100 times larger than 7,. Nevertheless, it is as expected 7o (counter-rotation) < 7o (co-
rotation). It should be pointed out, that co-rotating impellers induce only small variations
in Teorr, but an oscillation frequency following the propeller speed with foc ~ 2 forop (noE
shown in figure). Surprisingly, the imbalance particle behaves completely different than
its balanced counterpart.

After removing the plateau and re-normalizing one can apply the same method to the

rotation sensitive function, (asp(t) - asp(t + 7)): whereas this method performs poorly

for the LEM data, we note the runs in the KLAC are almost alike and follow the same
;;01;;5 power-law.

Furthermore, one gains access to the tumbling frequency, fo (cf. right plot in Fig. 7.15).

fosc varies only little with propeller speed. In the case of the imbalanced smartPart we find

fose = 2.4 Hz which is close to the resonance frequency found earlier. Further, it is

fosc(imbalanced)~ 2.5 f.. (balanced). With T' = 2w/ J/ (gmrdisp,) (Eq. (7.16)) one

thus estimates, that the displacement between center of mass and geometric center of
balanced particles is 6 times smaller than for the imbalanced particle.

(Jasp(®)|” lasp(t + 7)[*) (asp(t) - asp(t+ 7))

10

10 = R

correlation time T [s]
oscillation frequency f,g. [HZ]
(6]
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Figure 7.15: Time scales of flow and particle tumbling. 7., is determined from the ro-
tation invariant auto-correlation and the tumbling of the particle, f,, from the rotation-
sensitive function. The dashed line (left plot) indicates a fp_ml[;s power-law, which stems

from the scaling of the Kolmogorov time scale (7, < £~/ and & fg’mp).
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7.3 Estimating flow parameters

If key parameters of the flow can be estimated with an instrumented particle, this novel
apparatus becomes a promising tool for engineers. In order to compare between simula-
tions and mixers one would like to know the energy transfer rate €, eddy diffusivity veqqy,
correlation time scales, 7., and the turbulence level. In the section before we gained
access to the moments of the translation and times scales of the flow.

In the following we develop suitable approximations based thereon.

7.3.1 Energy transfer rate

Based on the particle diameter Dgp, its acceleration @, and a time, 7, one can con-
struct'© an estimate of the energy transfer rate . The following four combinations of

these three quantities yield the unit [m?/s’] of the energy injection rate:

Dsp “rms "Toor Although this estimate is not based on Kolmogorov-type arguments, it
considers both motion of the particle and the flow structure. However, we found

1

that Dgp * Gy * Toopr delivers an acceptable approximation for tracer particles in the

Gottingen LEM (cf. section A. 1), too.

D;ﬁg 'afﬁ is motivated by an extension of the Heisenberg-Yaglom scaling to finite size
particles [74]:
Do\ -3
(a®) = ag g3/2 =172 (ﬂ> (7.22)
n

Inserting ) = 34 e=1/4 and ag ~ 1 yields ¢ = D? (a)**

“Teorr The Heisenberg-Yaglom scaling further tells that (a®) - 7;, ~ ¢ in the case of
tracers. For large spheres (D, = 1) this is unlikely to hold.

2
a/rms

DZ 7.3 is just named for completeness, as it is only based on the flow structure but not
the particle motion.
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ABUSING DIMENSIONAL ANALYSIS

PRIVS COMBINED
PLANCK ENERGY  EFAGASMILEAGE TI’

PRESSURE AT THE MINIMUM WIDTH OF
EARTH'S CORE THE ENGUSH CHANNEL.

ITS CORRELT TO WITHIN EXPERIMENTAL ERROR, ANDTHE
UNMS CHECK QUT. T MUST BEAFUNDAMENTAL. LAW.

BUT WHAT IF THEY
BUILD ABETTER PRIVS?

3 \%
THEW ENGLAND WiLL ﬁ‘ﬁ
PRFTOCT 70 SEA. http://xkcd.com/687/

125


http://xkcd.com/687/

Based on previous observations we can rule out some of the combinations:

— Qyms is almost the same for co- and counter-rotating forcing. One therefore concludes
that combinations, which do not contain 7., cannot distinguish between the two forc-
ings and are mostly likely wrong.

— Furthermore, 7, is larger in the co-rotating than in the counter-rotating case. Con-

2

s Teorr is larger for the co-rotating

sequently and in contrast to measurements of €, a
driving, too.

In the LEM and the KLAC we have knowledge of € by either measuring the mechan-
ical power injected by the motors or from PIV data in the center of the LEM. We can
thus test the four combinations. In the case of counter-rotating impellers, all estimates
are comparable for f,.,, > 2 Hz. However, for lower propeller speeds and for co-rotating
driving the estimates cover three orders of magnitude. Only Dsp * s * 7o gives an ap-
proximation close to the measured € for both drivings; it is provided in Fig. 7.16. The
estimator performs similar in the LEM when comparing to € based on the power injected
by the motors. It should be pointed out, that £(motor) is 20 times the value measured in
the center by PIV. The discrepancy between the two ways of estimating € has been noted
for the Géttingen LEM, too.

1
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Figure 7.16: Estimating the energy injection rate, &, from Dsp * Gyps * Toop

corr*

£(KLAC) and e(LEM) denotes measurements based on the power injection of the motors.
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7.4 Simultaneous Tracking & Acquisition

In order to better understand the instrumented particle and to verify that its observed
Lagrangian acceleration is related to the flow, we applied our six-dimensional tracking
technique''. That means that we synchronize the smartCenter with high-speed cameras
to acquire the particle’s signal while simultaneously filming it.

The experiment is performed as follows:

> One first adjust the density, mounts a fresh coin cell and closes the capsule. It is
wise to check that the particle is leak-tight and in stand-by mode. Here we use the
particle with circuit czo4.

> The painting of the texture follows. To determine the texture and the orientation
of the acceleration sensor with respect to the texture one then takes images-signal
pairs at several arbitrary orientations as described in 7.1.3. Because the procedure
to compute texture and calibration takes too long, it is left for after the experiment.
The smartPart is now ready for the measurement and can be injected in the mixer.

> For the actual measurement the control PC triggers both cameras and the smart-
Center to start the acquisition of a movie-signal pair. Once the memory of the
camera is full it starts the transfer to a hard drive. When the downloading is fin-
ished, it also stops the acquisition of the smartCenter. This procedure is repeated
until the particle’s battery is empty.

> After calibration, the movies and raw acceleration signal are processed and one ob-
tains the trajectories. Each track contains the particle’s 3D position as well as its
absolute orientation and additionally the acceleration signal of the instrument par-
ticle. The small time shift (cf. section 7.1.1.2) between the three axes is taken into
account.

7.4.1 Agreement between 6D tracking & acceleration signal

The two measurement techniques observe the motion of the instrumented particle in two
completely different reference frames:

lab frame The 6D tracking uses a fixed, non-rotating coordinate system.

particle frame As the particle is advected and turned in the flow, it and the embarked
accelerometer constantly rotate their coordinate system with respect to the lab frame.
The acceleration signal is thus measured in a frame, which is rotating and not fixed.

. T w
With help of asp = R%, R(6) [g + L at) twx (wxr)+ % x r]
(Eq. (7.2)) it is possible to compute the forces acting on a point inside the particle and
then project these into the rotating particle frame. We can also express the signal of the

'T At the beginning the orientation tracking was mostly motivated by instrumented particles.
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Figure 7.17: A sample trajectory of the instrumented particle seen by the camera (—) or
smartPART (o), it is f,, = 3Hz. The absolute orientation enables us to re-express
the camera measurement of the particle (lab frame) in the moving frame of the particle
and vice-versa. In the former gravity is subtracted and in the particle frame gravity g is
represented by the red line.

smartPart in the lab frame by rotating it such that it corresponds to a non-rotating particle.
To distinguish the different coordinate systems and techniques, we use a¢p for the optical
technique and agp for the accelerometer data.  and T denote lab and particle frame,
respectively.

Fig. 7.17 shows a sample trajectory in both coordinate systems. The agreement between
the two techniques is remarkable. Unfortunately, after comparing several different trajec-
tories, it becomes clear that no easy transformation is available to get rid of the rotation
of the particle.

Deviations between the two techniques stem from
position measurement: Bubbles, reflections and other impurities alter the measured po-
sition of the particle. The acceleration is the second derivate and thus highly sensi-

tive to such events.

orientation measurement: The absolute orientation is needed to change between the ref-
erence frames. The uncertainty in the absolute orientation is typically 3 ° (cf. para-
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graph 3.3.3); that results in a wrong projection of gravity of 0.5 m/s?. It further
biases the rotational forces, as they are derivatives of the orientation time-series.

matrix relating sensor and texture: This matrix is constant and thus a systematic con-
tribution. The uncertainty is less than 2° — i.e. the error in projecting gravity is

< 0.3m/s’.

The observed agreement, Aa = ag“P — ag“D, between the two techniques is as follows:
All three components of Aa have the same PDE Surprisingly, the (absolute) uncertainty
almost doubled by increasing f,op from 2 Hz to 3 Hz. Nevertheless, for 80% of the data
the agreement is better than 0.8 m/s* and 1.6 m/s?, respectively. That corresponds to a
relative error, |Aa| / |agp|, of less than 38% and 35%. However, this estimate is strongly
biased by small values of |agp|.

The signal of the particle is thus corresponding to the flow, however, its interpretation is
not simple.

7.4.2 Conftribution of the different forces

o forop=2Hz o prop= 3 Hz
§< % 10-loxoxrl % 10-loxwxrl
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Figure 7.18: Contribution of the different forces to the motion of the smartPart. Note
that the rotational forces are multiplied by 10.

At the beginning of this chapter we reasoned that the rotational forces, w X w x r
and a x 7, are small compared to the translational forces'2. The argument was based
on the distance between the sensor and the particle’s center of || = 3 mm as well as the

12

a= %’ denotes the angular acceleration.
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Figure 7.19: Ratio of the rotational forces to the total force acting on the particle. The
80% percentile is found at a ratio of 0.14 and 0.16, respectively.

experience that [w] ~ 0.6 - 27 f,op. The 6D-tracking enables us to compute the different
forces acting on a point at # = 3mm - €, inside the sphere. As shown in Fig. 7.18,
one has to multiply the PDFs of |w X w X 7| and | X 7| by a factor of 10 in order to
compare them to the translation.

To fully conclude we plot the ratio of the rotational acceleration, @, = w X (W X T) +
%w X 7 to the total acceleration, @1, (without gravity) in Fig. 7.19. Dimensional
arguments and the results from the previous chapter tell that @, ¢ pQrop and @, X pzrop.
Consistently, the PDF of the ratio |@.o| / |@:or| differs only little for the two propeller
frequencies. Moreover, it is peaked at 5% and the 80% percentile is at a ratio of 13.9%
and 15.5%, respectively. Our ansatz to neglect the rotational forces if no 6D tracking is

available is therefore legitimate.
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7.4.3 Auto-correlations

7.4.3.1 Rotation-invariant auto-correlations

forop=2Hz forop=3Hz

—x—AC(Iat;): 6D(Lab)
—+— AC(lagpl): SP(Part.) [l
—o— AC(lagpl): SP(Lab) |]
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Figure 7.20: Upper plots show auto-correlations of | ak, | , | al,
As expected they resemble and are independent of the frame.
The lower plots show correlations for al:,,, at,,, and agp., we observed no different
behavior for the y and z axis. Changing from particle frame (alp,) to lab frame (al,,
and al;,,) modifies strongly the observed shape.

>

As explained earlier in paragraph 7.2.4.1, (a?,(t) a?,(t + 7)) is insensitive to the ro-
tation of the particle and related to the correlation of the pure translation by

(a3p(t) adp(t+ 7)) = (@fn (1) @l (t+ 7)) +49% (a=(t) a.(t + 7)) + const

Linear algebra tells that the norm of @, and asp is also insensitive to the rotation. The
two top plots in Fig. 7.20 shows for the two propeller speeds the auto-correlations'® of
the norm ([ag, (t)] - |agy (t + 7)|), (lasp(t)] - @G (t + 7)[), and

13%e plot the unbiased auto-correlation with a prior subtract of the local mean.
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<\ag}(t)\ . \ag}(t + T)D as well as the quantities derived earlier, <]a]SLP (1) ]2 . \aISLP(t +7) \2>
and (|a (6 Jako (¢ + 7))
They all cross 0 at the same time of 7 ~ 0.15 7T}, and their shape resembles (with a slight
improvement for f,,, = 3 Hz). That means that they are independent of the coordinate
system.

In other words, they only depend on the translation, @.,s, and not on the rotation of
the particle.

7.4.3.2 Rotation-sensitive auto-correlations

On the other hand, the single components of the smartPart are altered by the rotation.
The lower plots of Fig. 7.20 illustrate that the auto-correlation of a single component
strongly depends on its reference frame i.e. changing from particle frame (al,,) to lab
frame (ak;,, and a%;,,) modifies strongly the observed shape of the function. In the par-
ticle frame we observed longer correlations; however, the effect seems to decrease with
propeller frequency. In contrast to experiments with tracer particle, the components, al,
in the lab frame de-correlate comparable to the norm of the acceleration |a|. One further
notices that the autocorrelation in the lab frame cross 0 at the same fraction of the integral

time scale, Tj,,.

Tumbling  To get a better understanding of the auto-correlation of the tumbling
(cf. Eq. (7.18)), we now investigate the two contributions to

(ase(t) - asp(t + 7)) = g° (6~ [T(t, 7)é=]) + ([T(t, 7) Burans(£)] - Qs + 7))

As shown in Fig. 7.21, the term, ([T (£, 7)@uans(t)] - Guans(t + 7)), falls fast to 0 and is

strongly depending on the forcing.
The left term (é, - [T (¢,7)é.]) dominates (asp(t) - asp(t + 7)) and does not signifi-

cantly change with propeller speed. It stays correlated several times longer than
([T (t, T)Qeans ()] * Qegans(t + 7)).  Unfortunately we do not have a sufficient number

of long tracks to determine the long term behavior of (é,- [T (¢,7)é,]). Alain Pumir
and Michael Wilkinson [76] used a spherical Ornstein-Uhlenbeck process to estimate
(€, [T (t,7)é.]). Their derivation is characterized by one dimensionless number, which
they call the persistence angle. It describes the typical angle of rotation of the object during
the correlation time of the angular velocity. The motion of our particle strongly resembles

plots in their article describing the case of a large persistence angle.
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Figure 7.21: Contributions to the auto-correlation of the tumbling (see also Fig. 7.14).
In agreement with Eq. (7. 18) it is

(asp(t)-asp(t + 7)) = g° (& [T(t,7)é:]) + ([L(t 7)uans(t)] - Qurans (¢ + 7)) The
right term, ([T (¢, T)amms( )] * @ueans(t + 7)), falls fast to 0, but the tracks were not suffi-

ciently long to determine if (¢, - [T (¢, 7)é.|) vanishes for 7 > Ti,..

133






7.4.4 Quantities accessible only to the tracking

Some properties of the movement of the particle are only accessible to the tracking. In the
following we briefly show common parameters in order to related them to the movement
of solid spheres. The rotational dynamics of the smartPART are discussed in detail in
chapter 5 and its translation is compared to that of solid 24 mm spheres in a more viscous
fluid in section 4.1.3.

We first note that at both propeller speeds the motion of the particle compares well
to the motion of large solid spheres: In both cases the PDF of single components of
the velocity v is approximately gaussian whereas the acceleration components are non-
gaussian distributed. The particle Reynolds number, R, = %, is 8400 £ 3500 and
12500 = 5100, respectively.

The PDF of the magnitude of angular velocity, |w]| /(27), is peaked at 1 f,.p, but
rotation rates up to 2.5 fyrp are observed. We further notice that PDF (|w| /(27 forop))
is almost identical for the two propeller frequencies.

A summary of the particle motion is given in table 7.2.

fprop [HZ] €T Yy z Norm
o [m/s 9 004018 004023 —00+023 03=+0.1
S 3 004026 004034 —004+034 05402
o [m/s] 2 —01+18 —00+21 00+20 29+1.8
3 01+41 —01+46 —00+47 66+4.1
w [rad)s 2 01+47 02+44 —00+45 7.0+35
ad/s 3 —054+78 —02+70 —02+72 113459

Table 7.2: Characteristic values (mean+RMS) of the instrumented particle’s motion.

7.4.4.1 Preferential sampling

Despite the fact that the instrumented particle is neutrally buoyant, we observe that it stays
close to the impellers, in general. This effect manifests even more in the LEM: We tried
particle tracking in a 20 cm region in the center of the apparatus with simple webcams but
the particle did never pass through this region in preliminary tests. Fig. 7.22 shows the
PDF of position for smartPart. Independent of the propeller speed it is mostly situated in
a torus shape around the propeller. This agrees with the findings in section 4.1.4, where
we observed preferential sampling for large, solid neutrally buoyant spheres. It should be
noted that the viscosity is ~ 8 times higher for these solid spheres.

The particle, thus, samples the flow in a non-uniform way.
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Figure 7.22: Preferred position of the instrumented particle: independent of the propeller
speed it is mostly situated in a torus shape around the propeller. The same behavior is
found in section 4.1.4 for large neutrally buoyant spheres.
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7.5 Summary & Ideas

In this chapter we first presented the working principle of the instrumented particle, char-
acterized its electronic performance and established a simple, fast calibration technique.
We can show that an imbalance of the particle is 7oz desirable, too. A weak drift and
temperature dependence is noticed and we strongly advice to calibrate shortly before each
experiment. We also noticed that the sampling rate can be pushed from 316 Hz to almost
400 Hz by adjusting the transmission sequence of the data packets. This requires a simple
change in the program of the micro-controller.

Furthermore, we developed methods which are either invariant or adapted to the rotation
of the sensor in the flow. These methods perform well within the wide range of tested
turbulence levels and moreover in two different mixers. With a smartPART one gets
access to correlation time scales of the flow, the variance and flatness of the (translational)
acceleration and one can estimate the energy injection rate.

We limited our analysis to the extraction of global flow features. However, work on
adaptive filtering techniques is ongoing. A promising candidate for such a filtering is the
Empirical Mode Decomposition, which might be able to separate the different contributions
of the signal. While investigating the auto-correlation functions we stumbled upon the
Mittag-LefHler function. This function is related to fractional differential equations and
the question, how a particle with inhomogeneous inertia tumbles in a turbulent flow.

On top of that we applied the 6D tracking to the particle. We find that the particle in
general behaves almost identical to solid spheres of the same size in the same mixer. Simi-
lar to solid large spheres the instrumented particle samples the flow preferentially near the
driving propellers.

We were further able to show that the Lagrangian acceleration of the smartPART corre-
sponds well to its actual motion and the assumptions used to develop the earlier mentioned
methods were verified. The data is further useful to test if by adding a second, well-placed
accelerometer one can estimate two components of the particle’s angular velocity w at
sufficient rotation rates.

This instrumented particles can shed some light into mixers which were not or hardly
accessible up to now. Due to its continuous transmission one flow configuration can be
characterized within ~ 30 min. Apart from its appeal for chemical and pharmaceutical
industry, it might be an interesting tool to quantify flows in (e.g. biology) labs, too.
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8 Conclusion

The cornerstone of this thesis is the novel tracking technique enabling us to follow the
three dimensional position and the absolute orientation of painted, solid spheres in time.
Having access to the six degrees of freedom of a particle in a turbulent flow allowed us
to address important questions on the dynamics of the forces and torques acting on it.
We applied this to gain insights into the motion and rotation of solid particles in a tur-
bulent flow. Furthermore a new instrumented particle continuously transmitting its 3D
Lagrangian acceleration is presented and characterized.

Solid Particles We first made use of the technique to study the linear and rotational
motion of solid, neutrally-buoyant spheres; their size is a fraction of the integral length
scale but large compared to the smallest scales of the flow. Expressing all physical quan-
tities in their non-dimensional form using propeller frequency and propeller size, we find
that the RMS of velocity and acceleration are determined by the propeller speed, with a
non-trivial dependency on the particle size. Likewise, the spheres rotate with a rotation
rate comparable and proportional to the propeller frequency. Despite the particles’ large
size of almost one integral length scale their acceleration statistics do not tend towards
a gaussian distribution, their behavior stays intermittent. Likewise, the angular velocity
and acceleration are both non-gaussian, too. We then investigated wether translation and
rotation couple. Such behavior has been observed in laminar or simple shear flow config-
uration, but it was unclear if a coupling would persist in a fully turbulent environment.
We discovered that despite the turbulent environment, translation and rotation couple in
the agreement with the Magnus (or lift) force.

We remark that in contrast to small ones large spheres stay preferably in a torus-like
structure near the impellers: They sample the flow preferentially. While such behavior is
well-known for small particles whose density deviates from that of the fluid it has so far
not been observed for neutrally-buoyant objects. However, the particles investigated in
this dissertation are significantly larger than those reported in previous experiments. We
are currently investigating wether this effect can be attributed to the observed lift force.

As the particle moves through the fluid it exchanges momentum with the surrounding
carrier flow, the variations in kinetic energy are shown to be large compared to its small
negative mean. We demonstrate that the dynamics of the energy exchange falls within the
mathematical theory of large deviations and we have first evidence that the fluctuations in
energy exchange satisfy a stationary state fluctuation theorem. However, more data and
longer trajectories are needed to understand how the dynamics depend on the driving and
on the particle diameter.

Starting from these results and our novel measurement technique new questions and topics
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open up. All experiments in this dissertation were done with neutrally-buoyant particles
at one viscosity. However, we recently started taking data with spheres of the same size but
which are either heavier or lighter than the fluid. We plan on changing the viscosity while
keeping the particle neutrally buoyant, too. This should give new insights into the role
of viscous and inertial forces. One can further explore how more complex objects behave.
With the instrumented particle we demonstrated that our technique can be applied to
spheres of inhomogeneous inertia; an extension to ellipsoidal particles is feasible. The
surface roughness (which was neglected so far) falls probably also in this question.

Also, in some of the experiments we tracked several particles simultaneously but we did
not (yet) investigate their interaction. A very interesting question is if and how particles
collide. One can further investigate the two-way coupling of large spheres by significantly
increasing the number of spheres in the apparatus. This can be investigated by either using
one instrumented particle and many solid particles or by adding transparent gel spheres
around one painted sphere.

Instrumented Particle In the second part we presented, characterized and developed
methods a new instrumented particle which transmits its Lagrangian acceleration as it
is advected through the flow. Having access to the absolute orientation enabled us to
perform a rigorous examination of the forces acting on the particle. Comparing its re-
sults to motion of solid spheres helped further in benchmarking this novel measurement
technique.

We demonstrate that this instrumented particle is simple to use and efficient for a fast
characterization of flows and apparatuses; within approximately 30 min enough data is
taken for one flow configuration. In addition, owing to its wireless transmission system
it does not require transparent fluids nor optical access. Therefore, it can shed some light
on flows, which are not (or hardly) accessible to other measurement techniques. Recent
experiments by Sylvain Joubaud [28] show its applicability to granular flows, too. Apart
from its appeal for chemical and pharmaceutical industry, it might be an interesting tool
to quantify flows as they are found for example in biology labs, too.

The analysis was limited to the extraction of global/average flow features, but we are
working on adaptive techniques. Also, statistical sampling techniques such as bootstrap-

ping should be easily adaptable to our developed methods.
Sidetracks Two sidetracks were followed during this thesis: A second Lagrangian Ex-

ploration Module has been built and we carried out a promising feasibility study for a pH
probe adapted for the study of chemical mixing in flows.
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A Sidefracks

A.1 The second Lagrangian Exploration module

Figure A.l: Picture of the Lyon LEM illuminated by a green laser beam.

The Lagrangian Exploration Module (LEM) has been built and designed in a collabora-
tion between the ENS Lyon and the Max-Planck-Institut fiir Dynamik und Selbstorgan-
isation in Gottingen. Two apparatuses were manufactured', one at each side, the flow is
described in detail in my Diplomarbeit[80] and in [80].

"and assembled by the same guy
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The LEM produces turbulence in a closed water flow driven by twelve impellers. A
picture is provided in Fig. A.1 and CAD drawings in Fig. A.2. In both versions the edge
length of the icosahedron is 40 cm, giving a volume of 1401 water. The Lyon LEM is
rotated with respect to the Gottingen LEM as shown in Fig. A.2 and the two version
differ in the choice of motors, impellers and the placement of the impellers. In Lyon
the 12 impeller units are mounted to 12 of the 20 faces of the icosahedron whereas in
Gottingen these units are mounted to the 12 vertices. Also, the Lyon LEM uses stronger
brushless motors (Unidrive, Emerson Industrial): each delivers up to 600W of mechanical
energy at a maximum torque of 1.5 Nm. However, the electronics are not integrated in
the motor, they have to be supplied with three-phase current. We, therefore, house them
in a electrical panel and connect their analog in- and outputs to a USB acquisition card
(National Instruments) linked to a control computer. Both LEMs are thus rather big USB
devices. A Labview program then controls the motor independently; additionally it tracks
torques and instantaneous propeller frequencies.

This apparatus has served for the characterization of the instrumented particle (chap-
ter /); Lionel Fiabane [14] characterized the flow by means of PIV measurements. He
further uses the LEM for research on the clustering of particles [15].

Front view

;T‘ Bubble trap TOp view ’,;““

Propeller
Units

Plexiglass
Window

Figure A.2: CAD drawings, for comparison a CAD drawing of the Géttingen version is
shown, too.
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A.2 Mixing in chemical reaction: first results of a fast,
local, and confinuously-operating pH-probe

b)
5 mm
gate
platinum
shielding
drain source
temperature diode
e)

Figure A.3: a) electron microscope image of an ISFET b) typical ISFET die ¢) typical
reference electrodes d) & e) pictures of our test ISFETSs.

In the study of mixing most experiments are done in flows without any additional
chemical reaction. However, in chemical or pharmaceutical industry but also in biologi-
cal systems one often finds chemicals which flow into each other. When these react they
form new products, release or consume energy and change the composition of the flow.
Hence, the reactions add new timescales to already known time and length scales of the
flow. In order to observe a chemical reaction and the mixing one would like to measure
one (or more) characteristic property of the reaction as fast as possible. Moreover, the
measurement should be local and not influence the reaction. Conductivity, chemical po-
tential and ion-concentration (i.e. the acidity of a solution) are possible candidates and
we show here a feasibility study of an Eulerian pH-probe for use in agitated flows. Un-
fortunately the classical glass electrode? has a reaction time of approximately one minute.
Furthermore, it is rather fragile and large. We identified lon-Sensitive Field Effect Tran-
sistors (ISFET) as a promising alternative. ISFETs measure locally with an active surface

235 discussed for example in Atkins’ book Physical Chemistry [1]
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smaller than 1 mm? and show response times of the order of 1/10 s. In cooperation with
smartlnst we verified that the sensor can be integrated into an instrumented particle, too.

In the following we sketch their working principle, circuitry and a first promising mea-
surement. Since this sidetrack does not fit into the storyline of the manuscript, we just
outline the basic idea. For further reading the reader is referred to J. Janata’s book Principles
of chemical sensors [20] and a review article by P. Bergveld 7hirty years of ISFETOLOGY:
What happened in the past 30 years and what may happen in the next 30 years [0] and the
references therein.

Working principle  Field effect transistors [24] change the conductance between its
drain and source contact in function of the electric field at the gate contact. In contrast to
bipolar transistors no current flows through the gate. In 1970 P. Bergveld discovered that a
field effect transistor can measure small variations in the ion concentration (of a solution)
if one replaces the gate contact with an ion-sensitive membrane which is in contact with
a solution; the lon-Sensitive Field Effect Transistor (ISFET) was born.

An ISFET in contact to a solution is sketched in Fig. A.4. In the simplest case it can be
described as a sandwich of six different layers (see Fig. A.4) and one can write the chemical
potentials at each interface:

Ions can move from the solution into the membrane and back. Thus, the electro-chemical
potentials, 14, at the interface membrane/solution equal and the potential difference is
given by the Nernst equation:

ion __, jion

H H RT ion
S =mt (A1)

R and F are universal gas and Faraday constant, 7 a constant potential, and 7" is the tem-

perature. The ion has a (chemical) activity a§™ in the solution and is z;,,-times charged.
That means that potential at the membrane is determined by the temperature and the
activity of the ion in the solution. The pH-value (i.e. the acidity) of a solution is defined

as
pH = —log,, (a [H+]) (A.2)

Hence, a membrane, which is sensitive to hydrogen H™, has a potential difference which
depended on the pH-value of the solution. Membrane sensitive to different ions (e.g. K)
work in a similar fashion.

The conductivity of the drain-source channel of a field effect transistor (and thus the
ISFET) depends on the potential difference between gate and source. Analyzing the re-
maining interfaces yields:

$(3) — ¢(5) = Ugs + o+ T In az" (A.3)

Zion]:

Ugs is the applied potential difference between reference electrode and solution, and ¢,
contains constant terms-. Unfortunately, Eq. (A.3) is depending on the temperature, too.

3 contact potentials, reference electrode and the constant activities
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Figure A.4: Schematic of an ISFETSs [adapted from [206], chapter 6.2]:

A reference electrode (1) without liquid junction is in contact with a solution (2) which
contains a small amount of ions that can partition into the potassium-selective membrane
(3). Therefore, the interface between the solution and the membrane is non-polarized.
The insulator (4) is assumed to be ideal; that is, no charge can cross it and it is thicker than
electron tunneling distance. Layer (5) is the semiconducting substrate of the transistor.
For simplicity, the metal (6) is identical to metal (1) of the reference electrode.

The layers Membrane, Insulator, Semiconductor (3,4,5) form a capacitor. However,
if the reference electrode is removed from the solution (by opening the circuit (SW))
a second capacitor between the two metals (1) and (6) is formed; the system becomes
unpredictable.

Analysis of the chemical potentials yields that the voltage at the capacitor (3,4,5) is:
¢(3) — ¢(5) = ¢po + T+ —%Inay". R and F are gas and Faraday constant, T"is the

temperature and the ion of 1nterest has an activity a™ in the solution and zi,, charges. The
potential difference ¢(3) — ¢(5) modulates the gate voltage and thereby the Drain-Source

current.

The term T’ —F is called the sensitivity of the ISFET. In our case we wish to measure pH:

Eq. (A.3) tells that the sensitivity is 59.1mV/pH at room temperature (25 °C). It should
be noted that ISFETSs always need a reference electrode in the same solution to meaningful
measure the ion concentration.

Summing up, the electro-chemical interaction of ions in the solution with the mem-
brane modulates the gate voltage, Ug s and thereby the conductivity/current between the
source and the drain contact. An ISFET (including its circuit) has to be calibrated before
being operation.
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Reality ~As shown in Fig. A.3 ISFETSs have a small form factor of < 1 mm? active sur-
face. They further share the basic properties of MOSFETs including their well-known
manufacturing processes. The reference electrodes on the other hand are several times
larger than an ISFET and typically made of glass which renders them fragile. Nowadays,
miniaturized reference electrodes are available and were used in our tests. Fig. A.3 shows
different pictures of the ISFET's we used.

In the literature and after first tests the following questions arise:

Temperature The sensitivity of the ISFET changes linear with temperature, but chemical
activities, reaction equilibrium and the transistor depend on temperature, too. Most
commercial ISFET pH-meters measure additionally the temperature.

Light sensitivity Photons can create charges within the membrane, the ISFET is sensitive
to light.

lon-selectivity Real membranes are sensitive to a variety of ions in the solution. One
therefore needs good knowledge of the chemicals beforehand. Especially salts are
known to alter the sensitivity.

Drift & Hysteresis The ISFET show multiple timescales when reacting to a sudden change
in pH. Whereas the fastest timescale of the response are better than 1 ms, a longterm
drift with a time scale of several minutes is also observed. At present no physical
description of the drift is available.

Electrostatic sensitive device ISFET have to be handled with care, a simple electrostatic
discharge can destroy the membrane. Some companies therefore add a Platinum
wire close to the membrane to provide shielding (cf. Fig. A.3).

Most of the properties depend on the membrane; for pH-sensitive ISFETs more than
three different types (AlyO3, SizNy, TasO5) are commercially available.

Electronics  Several types of circuits for ISFETs are known in the literature [46, 26], the
so-called constant-voltage constant-current (CVCC) circuit imposes a constant current Ipg
and constant voltage Upgs between source and drain while keeping the source potential
Ugs floating. The basic principle is illustrated in Fig. A.5. For technical/historical reasons
we measure Usg = —Ugs.

Because of the limitations of commercially available current source one cannot integrate
the circuit shown in Fig. A.5 into an instrumented particle. Two additional circuits,
which are able to operate with one 3V coin cell, were developed; they are not shown here
for intellectual property reasons. In all cases the circuits were soldered by hand and we
acquired the signal with a 16-bit USB data acquisition card (USB-6251 BNC, National

Instruments) and Labview.
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Figure A.5: constant-voltage constant-current (CVCC) circuit for ISFET measurements.
The current source, Iy, imposes a constant potential difference Upg = Iy - Rpg = 0.5V
between source and drain. In addition, a constant current s = 100HA is established by
a current sink while the source potential Ug is floating. The difference between gate po-
tential U and Ug is then directly proportional to the pH of the solution. The sensitivity
of ISFETs is less than 59mV /pH. In consequence the signal has to be amplified.

A.2.1 First Measurements

We found (and bought from) three companies, which sell small quantities. Surprisingly
only one company was responding to technical questions and highly interested in a coop-
eration. Thus, we abandoned the solutions of the other two companies and discuss here
result obtained with the ISFETs made by MicroSens SA (Lausanne, Switzerland). From a
technical point of view their product is sound: the membrane is Tantalum-oxide (Ta;O3)
with platinum wire shielding and the ISFET is conveniently encapsulated on a “finger” as
shown in Fig. A.3. However, we noticed that the connector was not water-proof: They
corroded and thereby randomly short-circuited the ISFET. We protect the contacts with
nail polish.

Calibration & Observations ISFETs have to be calibrated shortly before the actual
measurement, which is done with standard buffer solutions at pH values of 2,4, 7,10
(Fisher Scientific). The spread between ISFET dies is large: for five dies Ugs(pH=7)
covers almost 2 V. The variation in sensitivity is weaker, the dies show a slope of 54 +
2 mV/pH, which is less than the theoretic value of 59mV/pH. In order to perform mea-
surements in solutions which change temperature one would have to calibrate at different
temperatures and different pH.

In general, we observe that ambient light changes the output of the ISFET by < 5 mV
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Figure A.6: Calibration of two ISFETSs in the same buffer solution. The measured sensi-
tivity is less than the theoretic value of —59mV/pH.

(= 0.1 pH). However, we found a complicated drift behavior after injecting reference
electrode and ISFET into a buffer solution. The first response is instantaneous and within
~ £2pH of the buffer solution, then the signal approaches a plateau within 2 minutes.
The plateau is not stable and drifts with < 2mV/h (= 0.03 pH/h). This behavior is
mentioned in the literature and often modeled by a sum of exponential decays. Y. Ito [25]
attributes the effect to light and impurities in the Tantalum-oxide layer.

[t should be pointed out that a drift can induce a hysteresis of the ISFET. That would
significantly alter the response to steps in pH. On the other hand common glass electrode
pH-meters have a response time of 1 minute and are not specified for steps in pH at all.
Preliminary tested identified Flourescein as a possible optical indicator of pH, unfortu-
nately, photobleaching alters its response with time. A stringent test of its response time
is therefore rather complicated and perhaps something for the next PhD student.

Mixing In order to observe a chemical reaction and the mixing one would like to mea-
sure a characteristics property of the reaction as fast as possible. Conductivity and pH are
possible candidates and we sketch here the possible application of pH-sensitive ISFET for
following the mixing in a chemical reaction. The reaction is rather simple: Hydrochloric
acid (HCI) is added into a beaker filled with a phosphate buffer. The solution is agi-
tated by a magnetic stirrer and placed in temperature controlled heat bath at 25 °C. Two
ISFETs attached to a miniature reference electrode are placed opposite to a nozzle (con-
nected to a syringe pump) that injects small quantities of HCI. The ensemble is depicted
in Fig. A.7. ISFET signal acquisition and injections are controlled in Labview. 0.5 ml
of HCI (concentration 1 M) is added every 255, a drop of HCI needs thus some time
(~ 3's) to be advected to the ISFETs. Moreover, the ISFETs measure at slightly different
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positions. Both ISFETS follow the same curve but differ by 0.05 pH. This offset is caused
by the uncertainty in the calibration. They further capture the dynamics of a passing HCIl
drop, the shortest reaction times are of the order of 1/10ss.

Even tough many questions are still open, we identified pH sensitive ISFETs as a promis-
ing tool for monitoring mixing in simple chemical reactions. Although not discussed here,
we further successfully tested circuits which consume 0.5 mA at 2V. Hence, they can be
integrated into an instrumented particle.
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Figure A.7: Two ISFET sensors in a beaker with phosphate buffer, every 25 seconds a
small quantities of HCl is injected. The picture shows the position of nozzle and ISFETs,
the (miniature) reference electrode is behind the ISFETs and fixed with scotch tape. The
nozzle is placed at the other side of the beaker, which is agitated by a magnetic stirrer. A
drop of HCl needs thus some time (~ 3s) to arrive at the ISFETs. Moreover, the ISFET's
measure at slightly different positions. The evolution of pH measured independently by
the two ISFETs is depicted in the upper plot and a zoom is provided in the lower plot.
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B Appendix

B.1 Unwrapping & Differences

™ T

Each Euler angle along a trajectory is bounded 6,60, € [0, 27?[ and 0, € }—5, 5[ as
defined in Eq. (3.2). However, this choice is not unique because there is a second triplet

with

0 =0,+m (B.1a)
9; = (7 —|60,|) - sign(0,) = sign(6,) -7 — 6, (B.1b)
0. =6,+m (B.1¢)

As a consequence the difference, A = a — [3, between two Euler angle triplets, a and
8, has four valid results. Unwrapping a time trace is, thus, counterintuitive as illustrated
in Fig. B.2. This problem is called a gimbal lock; a sketch is shown in Fig. B.1. In the
following the second representation is marked by superscript .

Figure B.|: [llustration of the gimbal lock problem: at 8, = £90° the first rotation is
turned into the axis of the third rotation, and one is left with only one degree of freedom.
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bounded 6(t) [deg]

unwrapped 6(t) [deg]

time [arb]

Figure B.2: Illustration of the difference between a bounded time-series of §(t) and its
unwrapped time trace. Jumps of &~ 180° in 6, 6, correspond to passing a gimbal lock.

Difference between two orientations To compute derivates based on the Euler
angles one needs continuous time series of the orientation. Therefore, the raw, bounded
time series has to be unwrapped. Whereas this process is straightforward for one angular
variable', we don’t know the representation of o and /3 in the case of Euler angles. A is
needed to compute derivates and to unwrap the signal.

Assuming that the change in angle is small, 7.e. less than 90°, we obtain accurate results
for A, and A,2. Thus, the following four cases are possible :

a =3 +4A = Ap=a, 6 (B.2a)
=540, = Ay=(apt1)—(Bitnm) =a,—f  (B2b)
a®=p +A4s = Ap=(ap+7m)— () =—fc+7 (B.2¢)
a =f%+A = Ay=(a)—(fetm) =ap—fotr  (B2d)

Naturally, the formulas are the same for A, a,, 3,. That means passing a gimbal lock
corresponds to A, = A, & 7.

One just adds multiples of 270 whenever the absolute difference is greater 7.

2We should keep in mind that we can add or subtract 27 whenever it is necessary. Consequently, it is
E—m=E+m.
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In order to determine A, one has to know :

— the representation of one of the triplets, as well as
— if a gimbal lock was passed;

and then choose accordingly:

Eq. B.2a) : Ay =a,— B, (B.3a)
Eq. (B.2b) A, = (sign(ay) ™ — o) — (sign(By) ™ — By) = —(ay — B,) (B.3b)
Eq. B.2¢) : A, = (sign(ay)m —ay) — By = —(ay +By) + 7 (B.3¢)
Eq. (B.2d) A, = ay — (sign(By) T — By) = (o, + By) + 7 (B.3d)
Unwrapping a time series Let oy, ..., , be a time series of raw, bounded Euler

angles. For each time step we can compute
ar = ap_1 + Ay (B.4)

The unwrapped signal, 31, ..., By, is then
Bk = Pr-1+ A with 8y = ajand A = oy, — Si1. (B.5)

Following (B.2) one has to chose the equation for A, among equations (B.3).

The unwrapped orientation at step & is thus fully determined by the representation of
a1, Br—1, Az (k) and A, (k). Once the signals are unwrapped, they can be smoothed and
their derivatives can be computed e.g. using the derivatives of a gaussian kernel approach.
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B.2 Angular Velocity & Acceleration

The angular velocity and acceleration were derived as described in [22]. Here, we note just
the final equations because our choice of the Tait-Bryan representation might be unknown
to the reader.

)
Wk ({gz’gy,gz}, {Qzﬁy,@}> = [ 8(92).
0

0, + s(0,)0.
WP ({ex,ey,ez}, {e'w,e'y,e;}) = [c(ex)éy — 5(6,) c(6,) 9] (B.7)

For the angular acceleration one finds

L __ d L
= gw
r'y s(0-) + 0, c(0.) c(8,) + 0,0, c(0.) — 6,0. 5(6.) c(6,) — 6,8, c(6.) s(9y>]

(81

gy c(0-) — 0, s(6.) c(6y) . gyé; s(0:) — gxez c(0) c(0,) + exey s(0-) s(6y)
0, +6,s(0,) + 6.0, c6,)

(B.8)
and
ol = %wm =
. ) 0 + 0. 5(0,) + 6,0. c (6,)
0, c(0,) — 6. 5(6,) c(8,) — 6,0, 5(6,) — 0.6 c(8,) c(6,) + 6,0, s(6,) s(6,,)
0, 5(0.) + 0. c(0,) c(8,) + 0.0, c(0,) — 6,0. 5(0,) c(8,) — 6,0 c(6.) 5(6,)
(B.9)
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B.3 Autocorrelations & Structure-functions

In experiments with a very small observation volume (e.g. acoustic or Laser Doppler ve-
locimetry) the track length is reciprocal proportional to the particle velocity: Slower par-
ticles stay longer in the observation volume. But the experiments presented within the
scope of this thesis surveil almost the whole box, and no simple weighting based on the
length of a tracks can be constructed.

Measurement uncertainties and other problems might introduce errors. Therefore, we set
points which are unlikely/missing/wrong to NaN, which introduces gaps into the tracks.
The correlations and structure functions® are computed as follows:

autocorrelation  The unbiased autocorrelation of a quantity s is:

L—T1
Ry(1) = (s(k+7) = ] (B.10)
)=
with 7 = [1,..., L—1], u being the mean along the track and the variance 02 = Ry(7 =

0). The Fourier transformation is not used, however, its result, the biased version, can
be computed R.,(T) = R,(7)  22=T with Ny the number of data points used. In our
experiments the probability distribution of the tracks has the shape of an exponential
decay, i.e. there is exponentially less data for larger 7. Therefore, the biased autocorrelation
looks like a damped unbiased auto-correlation. The auto-correlation with and without a
prior subtraction of the mean p are related by

(s(8) + ) (s(t+7) + ) = {(s() (s(t + 7)) + 20 (s) + 4 (BAD)

One has further the choice between subtracting either the global mean of all tracks or at
each track its local mean.

second-order structure function The multi trajectory mean similar to (B.10) yields
the second-order structure function:

TZ Z (t+7)—s(t)] (B.12)
L>T

: 2\ . .
The second-order structure function D5 (7) = ((s(t 4+ 7) — s(t))”) is less sensitive to
mean flows or a remaining mean. If the signal is stationary, it is:

Dy(1) =20 (1-R(1)) & R(r)=1- Da(7) (B.13)

202

We verify that auto-correlation functions converged with Eq. (B.13).

3The corresponding code is VHT _AcSfFunc(STRUCT field, [settings]).
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B.4 Frenet formulas

The Frenet formulas define a local coordinate system which is attached to and moving
with the trajectory [33, 75]:

o(t)
T(t) = — (B.14a)
|2(1)]
T X @I x
N(t) = B(t T(t) = — B.14b
(0= B xT(0) = T2 x 2 (B.14b)
B(t)= 2% (B.140)
| x &
Consequently it is:
a-B=0 a- NN >0
In other words, the acceleration vector is bound to the T' — IN plane.
One further defines curvature k = [ X 3w| and torsion T = m
|| |z x |
The evolution of the Frenet frame is given by the Frenet-Serret formula®:
14 T 0 x 0 T
—— =|-x 0 7 N (B.15)
zldt \ g o —r 0/ \B

Eq. (B.15) defines the so-called Darboux (rotation) vector wp = |v| (7T + xB) which
interprets curvature £ as a rotation around B and the torsion 7 as measure of the twisting
of the curve. It should be pointed out that the higher order derivatives necessitate careful
filtering. We, therefore, employ the gaussian kernel technique. The corresponding code
is VHT Frenet.

4 Many books express the trajectory as a function of the arc length, s, instead of time, ¢. They are related

da(t) dt d 1
dt

z\dc\and%— =

ds __ at a
by G = = dsdt — @l dt’
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B.5 Texture

a)

b)

¢

Figure B.3: a) raw image of the freshly textured particle b) image cleaned using Photo-
Shop’s “magic selection tool”: blue dots mark the features and can be easily found with
Matlab ¢) computed texture of the same particle after applying the algorithm

Art  First we add features as small dots to the sphere, they are removed after computing
the texture. A fine marker or a pencil work well. Camera and particle are in fixed places,
thus all images can be pre-cropped; the final adjustment is done with Photoshop 9. Black
regions are painted to black, the background is painted white and features are marked
with blue. A Matlab code® then selects the biggest sphere, fetches the black/unpainted
(i.e. white texture) points and the centroid of each feature.

Math  The location of a pixel or a feature in the image can be projected to 3D:

r=X,/r—1 (B.16a)
y=Y,/r—1 (B.16b)

z2=1/1—22—y>? (B.16¢)

with 7 =size (image,1)/2 and { X, Y}, } the position in pixels.
If two images share a minimum number of features, there is a rotation matrix which
turns image A into the orientation of image B. Two sets of feature vectors” P and @ have

51n that case one marks the background in a known color and tells Matlab to extract the biggest sphere.
bgetpoints.m
Tt is clear that ﬂ and Q are of the same size.
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the covariance matrix K = P” Q. If there is 70 measurement error, the matrix K rotates
the points P to Q. Kabsch proposed [30, 29] a fast technique to compute an optimal
solution of this problem when working with real data. The main idea is that the singular
value decomposition of K is svd (K) = V. S W The nearest orthonormal matrix to K
is then VT W. In other words, the optimal rotation matrix M from P to Q is given by
Vi w.

First, for all images which share at least N, features the transformation matrixes,
M 4, g, are computed. Then, we build the connection matrix, which notes if two views
share more than N, features. These views are thus directly connected by a rotation ma-
trix M. Views, which are not directly connected can (in most cases) be reached by passing
thro‘ujgh an intermediate view: If we know the rotation matrix from view B to view C'
and from A to B then C' can be reached from A by M ,c = Mp_.c M.

All images are converted to sets of 3D vectors with an additional color and a view is
selected as base view with orientation 0°. The vector sets for which a transformation to the
base view exists, are then rotated and superposed.®. A sketch of the procedure is provided
in figure 3.8.

OpenGL defines textures as equally spaced in in azimutal and polar angle. Each vector
is therefore expressed in spherical coordinates, (¢, ) and we build the average color of
the vectors lying within grid cells on equally spaced grid in ¢, §. This is done for several
grid resolutions which are then combined to one high resolution texture. Small parts of
texture can be altered by hand if necessary (e.g. for a very small sphere). A typical texture
is rendered on a 512 x 512 grid, the resolution in ¢ and @ is better than 1°. An example
is shown in figure B.3c).

Semi-automatic feature naming & other improvements 1In the first version of
the code the user needed to identify where and in which image a feature was located”.
This process was extremely tedious, lengthy and frustrating. For the sanity of the PhD
student we therefore developed a procedure which semi-automatically associates names to
the features. It is still necessary to mark (with Photoshop) the exact position of features.
Matlab then extracts these mark and their 2D and 3D position; for each image we have a
set of of feature point each with a yet empty name.

Once we know that a sufficient number, N,incommon Of features is shared between 2
images, the rotation matrix can be computed using a brute force ansatz.

Therefore, we first ask the user to click/identify features in image B which are also
shown in a reference view A. Once a few features (> 4) are shared we try all reasonable
rotations which turn the (feature) point cloud from B into a larger cloud A '°. We thus
have a set of features b; 5, which after a rotation coincides with a subset of the features in
view A, a;. . Clearly, itis M < N. We further know that angles and distances between
features/vectors are rotation-invariant. Consequently, the rotation from B to A can be
split into two parts.

8Basically, we are superposing rotated hedgehogs with colored spikes
? At the beginning even the position was entered by hand!
19findFeatureRotation.m
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Figure B.4: User interface to determine which features are found in both images. The
symbols indicate the unique name of each feature, — and # indicate unidentified features,
the yellow letters on the right side are points which are already known from a previous
image pair. The user clicks the features in the right image which are also found in the left
image. It is not necessary to find all, 5 to 7 features are usually sufficient. Nevertheless,

adding features which are not shared yields unpredictable results.

In a first step, all identified vectors by _js are rotated such that b} coincides with a
feature vector ay, in image A:

' w=R(by xay, Z(ar, b)) by (B.17)

But, the remaining features b, ,, do not yet coincide with the a;_y.

Therefore, a second rotation then matches the remaining ones: all points are now turned
around b} = ay, such that the direction vector b} x b, which describes the direction of
the point cloud (approximately) coincides with b} X a;. In other words:

i = R(B), Z(by x a;, by x b)) by

= B.18
— R LB, x ;. B xBY) R(by x an Z(anb) by

Now the quality of matching has to be determined. This is done with a greedy distance'’

between the point clouds: for each rotated feature b we find
dy = min (£ (by, {a})) (B.19)

with {a} the still unmatched vectors of a; . Matched points are marked and not used
twice. The function keeps also track of the pairs, such that we can later transfer/copy
feature names.

MeloudDist.m
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We determine the best rotation by testing the agreement for all combinations of b;
to the @1 y. As we might have missed features'? we rotate all remaining, unclicked and
unnamed, features and check for those with a positive z—component if there is a close
feature from image A.

This process of identifying common features, finding the rotation matrix and copying
names is accelerated if some features are already known to be shared. Consequently, only
a few are actually done by the user. Once the features with their positions and names are
known, one proceeds with the technique described earlier.

12 Actually one doesn’t have to find all, about 6 features are fully sufficient
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B.6 Fitting an ellipsoid

As stated by Eq. (7.3) the equation of the 3D accelerometer at rest defines an ellipsoid
which is shifted but not rotated:

(Aw — Oac)2 (Ay — Oy)2 + (Az — OZ)2 2

= 5 =9 (B.20)
For simplicity, we set |g| = 1. Expanding Eq. (7.3) yields:
O, O 0, 02 0; 0?
2 2 2
—§A +52A +52A —2§A S;’A —252/1 +§+§+§
- 1 1, 1., 1 0., _,0, 0.
_1_2_%_2_;_%%. S_%AZ—I—S—gAy-I—S—zA 25214 SQA —23214
=G A+ LA+ G AT - 26 A0 - 264, — 26 A
(B.21)
Hence, the offset is
0, = 52“ (B.22)
Combining Eq. (B.22) and Eq. (B.21):
1_,. 0 0 o _ | & & &
- 2 2 2
o o-1+8.5.%
ST ST

Consequently, the sensitivity is

/(J
S; = (B.24)
&

To find a best fit for & . . . &;, one searches an optimal solution for an overdetermined set
of equations:

Ai’l A;yl Ail —2A,, —24,1 —2A.; & 1
Cf— Ai,Q Az,z Ai,z —2A,2 —2A,2 24, ) R
Ai,N AZ,N Ag,N _2Aw,N _2Ay7N _2Az,N 56 1
(B.25)
We find its solution with the help of the pseudo-inverse:
1 1
E=O" || =" ¢ (B.26)
1 1

where (" is the pseudo-inverse of ¢, which can be calculated from a singular value de-

composition of C
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Abstract:  The aim of this dissertation is to gain a better understanding of the La-
grangian dynamics of solid large spheres in a complex turbulent environment. Therefore,
a novel measurement technique to optically track the 6-dimensional dynamics — position
and absolute orientation — of large spheres advected by a complex flow is developed. Al-
though the sphere’s diameter is comparable to the integral length of the underlying flow,
we find intermittency for both the translation and the rotation. Moreover, rotation and
translation couple in agreement with a lift force. Apart from the fact that the acceleration
statistics are not gaussian, and the exchange of energy between the particle and the carrier
flow falls into the mathematical theory of large deviations. Additionally, we find that the
particle diameter has a surprisingly strong influence on how a particle samples the flow.

The 6D—tracking technique is then applied to an instrumented particle, which embarks
a 3D—accelerometer and a radio-transmission system to constantly emit the felt Lagrangian
acceleration as it is advected in the flow. Measuring the particle’s absolute orientation is
a crucial step here to project the acceleration measured by the particle into the laboratory
reference frame and enables us to compare the forces obtained by the two independent
measurements. Based thereon methods for interpreting the acceleration signals of the
instrumented particle are developed and tested.

Keywords: turbulence, instrumented particle, Lagrangian dynamics, finite-size effects,
fluctuation theorem, image and signal processing

Résumé : Le but de ce travail de thése est I'étude de la dynamique de sphéres de grande
taille dans un écoulement fortement turbulent. Pour ce faire, nous avons développé une
nouvelle technique optique permettant de suivre la dynamique 4 6 dimensions — position
et orientation absolues — de plusieurs particules dans un écoulement complexe. Bien que la
taille des particules soit comparable a I'échelle intégrale de 'écoulement, nous trouvons que
sa dynamique de rotation et de translation est intermittente. De plus, nous observons que
la translation et la rotation sont reliées par la force de Magnus. La répartition statistique
de I'accélération n’est pas gaussienne et I'échange d’énergie avec le fluide est gouverné par
la théorie mathématique des grandes déviations. Nous trouvons que le diametre influence
fortement la maniere dont la particule explore I'écoulement.

Nous avons ensuite appliqué le suivi de position et d’orientation a une particule instru-
mentée. Ce systéme mesure en permanence I'accélération lagrangienne qu’il subit via un
accélérometre embarqué et émet I'information 2 travers une électronique radio fréquence.
Lorientation absolue est nécessaire pour exprimer les signaux de I'accélérometre et ceux du
suivi optique dans un repére commun; cela nous permet de comparer rigoureusement les
mesures issues de ces deux techniques indépendantes. A partir de ces résultats nous avons
développé des méthodes pour inférer des propriétés de I'écoulement a partir des signaux
d’accélération de la particule instrumentée.

Mots-clefs :  turbulence, dynamique lagrangienne, effets de taille, particule instrumen-
tée, théoreme de fluctuations, traitement d’image et du signal
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