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Résumé :
La résolution de systèmes linéaires creux est critique dans de nombreux domaines de la simulation numérique.
Beaucoup d’applications, notamment industrielles, utilisent des méthodes directes en raison de leur précision
et de leur robustesse. La qualité du résultat, les fonctionnalités numériques, ainsi que le temps de calcul
sont critiques pour les applications. Par ailleurs, les ressources matérielles (nombre de processeurs, mémoire)
doivent être utilisées de manière optimale. Dans cette habilitation, nous décrivons des travaux poursuivant
ces objectifs dans le cadre de la plateforme logicielle MUMPS, développée à Toulouse, Lyon-Grenoble et
Bordeaux depuis une quinzaine d’années. Le cœur de l’approche repose sur une parallélisation originale de
la méthode multifrontale : une gestion asynchrone du parallélisme, associée à des ordonnanceurs distribués,
permet de traiter des structures de données dynamiques et autorise ainsi le pivotage numérique. Nous nous
intéressons à l’ordonnancement des tâches, à l’optimisation de la mémoire et à différentes fonctionnalités
numériques. Les travaux en cours et les objectifs futurs visent à résoudre efficacement des problèmes de plus
en plus gros, sans perte sur les aspects numériques, et tout en adaptant nos approches aux évolutions rapides
des calculateurs. Dans ce contexte, les aspects génie logiciel et transfert deviennent critiques afin de maintenir
sur le long terme une plateforme logicielle comme MUMPS. Cette plateforme est à la fois nécessaire à nos
travaux de recherche et utilisée en production ; elle maximise ainsi les retours applicatifs qui valident nos
travaux et permettent d’orienter nos recherches futures.

Mots-clés :
Matrices creuses, méthodes multifrontales, systèmes linéaires, solveurs directs, ordon-
nancement.

Abstract:
Direct methods for the solution of sparse systems of linear equations are used in a wide range of numerical
simulation applications. Such methods are based on the decomposition of the matrix into the product of
triangular factors, followed by triangular solves. In comparison to iterative methods, they are known for their
numerical accuracy and robustness. However, they are also characterized by a high memory consumption
(especially for 3D problems) and a large amount of computations. The quality of the computed solution,
the numerical functionalities and the computation time are essential parameters, while the use of material
resources (number of processors and memory usage) must be carefully optimized. In this habilitation thesis,
we describe some work to pursue these objectives in the context of the sparse direct solver MUMPS, devel-
oped in Toulouse, Lyon-Grenoble and Bordeaux. The approach relies on an original parallelization of the
multifrontal method for distributed-memory machines, in which an asynchronous management of parallelism
associated with distributed scheduling algorithms allows for dynamic datastructures and numerical pivoting.
We consider task scheduling, optimization of the memory usage, and various numerical functionalities. On-
going and future work aim at efficiently solving problems that are always bigger, while maintaining numerical
stability and adapting our approaches to the quick evolutions of computer platforms: increase of the number
of computing nodes, increase of the number of cores per node, but decrease of memory per core. In this
context, software engineering and technology transfer aspects become critical in order to maintain in the
long term a software package like MUMPS. This software is both necessary to our research and widely used
in industry, maximizing feedback that validates our work and provides future work directions.

Keywords:

Sparse matrices, multifrontal methods, linear systems, direct solvers.
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Introduction

We consider the solution of
Ax = b, (1)

where A is a large sparse square matrix (typically several millions of equations), and x and b are vectors or
matrices. A and b are given and x is the unknown. Such systems of linear equations arise in a wide range
of scientific computing applications from various fields, in relation with numerical simulation: finite element
methods, finite difference methods, or numerical optimization. There are two main classes of methods to
solve such problems: direct methods, based on a factorization of A in, for example, the form LU , LDLT ,
or QR; and iterative methods, in which sparse matrix-vector products are used to build a series of iterates,
hopefully converging to the solution. Direct methods are more robust and are often preferred in industrial
applications. Among direct methods, multifrontal methods build the factorization of a sparse matrix by
performing partial factorizations of smaller dense matrices. But multifrontal methods, and direct methods
in general, require a larger amount of memory than iterative methods, because the factors of a sparse matrix
have a higher density of nonzero elements than the original matrix. Furthermore, they result in an additional
computational complexity especially in three-dimensional (3D) problems. This can be illustrated by a simple
7-point finite difference stencil for a 3D Laplacian equation. If N is the number of discretization points in
each direction, the matrix A has N3 rows and N3 columns, with about 7N3 nonzero elements. When nested
dissections are used to reorder the variables of the problem and limit the size of the factors, the number
of entries in the factor matrix is O(N4) and the number of floating-point operations for the factorization is
O(N6) (see [42], for example). As a comparison, the matrix-vector product performed at each iteration of
an iterative method is O(N3).

However, thanks to the increasing capacity (storage, performance) of modern supercomputers and thanks
to significant progresses in direct methods, with robust software packages available ([3],[59],[116],[124], . . . ),
direct methods are often preferred by applications, even for 3D problems of several millions of equations. For
such systems, the size of the graph representing the dependencies between the computations can be huge. In
this context, it is critical but difficult to maintain a good numerical stability while making use of parallelism
and targetting high performance. We focus in this thesis on robust and efficient parallel algorithms, taking
into account the following objectives and constraints:

1. Large-scale high performance machines generally have their memory physically distributed. Therefore,
the message-passing paradigm should be used. In the case of SMP1 nodes or multicores, the shared-
memory paradigm can also be used at the node level or at the multicore level.

2. Matrix factorizations are much more stable when numerical pivoting is allowed. Therefore, numerical
pivoting should be used even in a parallel distributed environment. One difficulty with sparse matrices
is that numerical pivoting results in a modification of the task dependency graph, which can then not
be fully known beforehand. Furthermore, the stability of a pivot must be checked against other entries
in the matrix, which is not trivial because it often requires costly interprocessor communications.

3. Architecture evolutions make it very hard or even impossible to perfectly predict the behaviour of
current computing platforms, with several levels of caches, high performance redundant networks with

1Symmetric MultiProcessors: a uniform memory shared by the different processors in the node.
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a complex topology, some degree of heterogeneity between processors or at the network level, varying
load in possibly multi-user environments, etc. Furthermore, the characteristics of our graph of tasks are
not fully predictable when numerical pivoting is allowed (see previous point). Therefore, it is worth
considering adaptive approaches, with so-called dynamic scheduling. In practice, we will show that
static information could/should be used to reduce the space to be explored by the dynamic schedulers.

4. There are often time constraints in numerical simulation. Therefore, it is critical that the algorithms
reduce the time for solution (or makespan) as much as possible on a given number of processors.

5. If the problem is large, a special attention must be paid to memory which is, if not correctly used, a
very strong limiting factor for parallel direct methods. The order in which the tasks are scheduled has
a strong impact not only on the makespan, but also on memory and unfortunately, more parallelism
often leads to more global memory used. Therefore, it is crucial to take these two conflicting criteria
into account when designing scheduling strategies for the computational tasks.

6. When memory is not large enough on the target machine, out-of-core approaches are necessary, in
which the disk is used as the next level of memory hierarchy. In that case, the algorithms must decide
what to write and when to write it. This generates I/O traffic and a special attention should be paid
to limit it.

7. Parallelism from the graph of tasks obtained (a tree in our context) is generally not sufficient, and
the largest tasks should themselves be parallelized (this has been sometimes been called mixed paral-
lelism [50, 66]).

1: Initialization:
2: pool ← my share of the initial ready tasks
3: while (Global termination not detected) do
4: if a message of type state information is ready to be received then
5: Receive the message (load information, memory information. . . );
6: Update the load and memory estimates of the relevant processor(s);
7: else if an application-related message is ready to be received then
8: Receive and process the message (task, data, . . . ), typically:

- reserve some workspace
- perform some computations
- decrease a counter keeping track of unmet task depenpencies
- insert a new ready task in the local pool of ready tasks
- send another application-related message
- etc.

9: else if (pool not empty) then
10: Extract a task T from the pool of ready tasks
11: if T is big then
12: Assign parts of T to other processors (sending application-related messages);
13: Process T in cooperation with the chosen processors (sending asynchronous application-related

messages);
14: end if
15: end if

{Note that state information might have been sent, depending on local load or local memory
variations}

16: end while
Algorithm 0.1: Asynchronous approach retained (simplified).

With these objectives in mind, we have designed a fully asynchronous approach [24, 26] to process the
graph of tasks during the factorization. The approach is based on message passing and the general scheme is
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the one of Algorithm 0.1. A pool of ready tasks is maintained on each processor: an initial (static) mapping
defines the local pool of tasks for each processor (tasks that can start without dependency), and a new task
is inserted in one of the local pools when all its dependencies have been met. When a task is large, some
other processors are assigned to help with that task, dynamically, depending on an estimate of the state
of the other processors. Overall, there are two types of dynamic (distributed) scheduling decisions: (i) the
selection of a new ready task from the local pool, line 10; (ii) the subdivision of the task and its mapping
on some other processors, line 12. The processor responsible of a task will be called master for that task,
while the processors chosen dynamically to help are called slave processors. In order for this scheme to work
efficiently, two main questions must be answered, and will be discussed later in this document:

1. How to map and schedule the tasks and which decisions should be static and dynamic?

2. How to maintain distributed estimates of the state information (memory, workload) of the processors?

Even in serial environments, scheduling is crucial and impacts the amount and locality of the temporary
data produced: each task produces temporary data that is consumed only when the task that depends on it
is activated. This motivates theoretical studies on the order in which a graph of tasks should be processed
to either:

• minimize the memory usage due to these temporary data, or

• minimize the I/O traffic, in the case those temporary data do not fit in the physical memory.

The work presented in this document is motivated by the needs from applications. An external use
of our algorithms on large-scale academic and industrial applications is essential to validate our research,
and to get feedback, which in turn motivates new research directions. In this context, an important aspect
of this activity consists in making available the results of research under the form of a software package,
MUMPS2, enabling users to solve new problems efficiently and accurately in various fields related to numerical
simulation. This involves activities such as software engineering, development, validation, support and
maintenance. Furthermore, each new functionality or research work has to be thought in a global software
context, and not just for one particular combination of other functionalities. For example, the detection
of null pivot rows/columns that we have recently implemented (for automatic detection of rigid modes or
for FETI-like methods [86]) should work on the internal 1D, possibly out-of-core, parallel asynchronous
pipelined factorizations, in symmetric and unsymmetric cases, including for cases where part of the column
is not available on the processor in charge of the pivot selection. Therefore, when a new algorithm is
designed and validated, a significant amount of work is needed to make it compatible with a large range of
functionalities and thus available to a large range of applications.

Historically, this work on parallel multifrontal methods in distributed environments and the associated
software developments that led to the successive versions of the research platform MUMPS were initiated in
the scope of a European project called PARASOL (Long Term Research, Esprit IV framework, 1996-1999)
and was inspired by an experimental prototype of an unsymmetric multifrontal code for distributed-memory
machines using PVM [89] developed by Amestoy and Espirat [85]. That experimental prototype was itself
inspired by the code MA41, developed by Amestoy during his PhD thesis [17] at CERFACS under the
supervision of Duff. The PARASOL project led to a first public version of the software package MUMPS

in 1999. Since then, after my arrival at INRIA in 2001, the research and developments have been mainly
supported by CERFACS, CNRS, ENS Lyon, INPT(ENSEEIHT)-IRIT, INRIA and University of Bordeaux.

This document describes some aspects of the work of an overall project, which is the result of a team
work with many contributors over the years, and was the object of many collaborations, PhD thesis and
projects among which we can cite:

• a central collaboration with Patrick Amestoy from INPT(ENSEEIHT)-IRIT since 1996,

2See http://graal.ens-lyon.fr/MUMPS or http://mumps.enseeiht.fr.
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• the PhD thesis of Abdou Guermouche (ENS Lyon, 2001-2004), Stéphane Pralet (INPT-CERFACS,
2002-2004), Emmanuel Agullo (ENS Lyon, 2005-2008), Mila Slavova (INPT-CERFACS, 2005-2009),
François-Henry Rouet (INPT-IRIT, 2009-2012), Clément Weisbecker (INPT-IRIT, 2010-), Mohamed
Sid-Lakhdar (ENS Lyon, 2011-)

• an NSF-INRIA project (2001-2004) aiming at mixing direct and iterative methods,

• the Grid TLSE project (2002-), initially funded by the ACI-Grid programme from the French ministry
of research, then by ANR3 projects,

• an Egide-Aurora cooperation with Norway (2004),

• the Solstice project (2007-2010) funded by ANR3 programs,

• the Seiscope consortium (2006-) around Geoscience-Azur,

• contracts with industry: Samtech S.A. (2005-2006 and 2008-2010) and CERFACS/CNES (2005),

• two France-Berkeley projects (1999-2000 and 2008-2009),

• a French-Israeli “Multicomputing”project (2008-2010),

• an Action of Technological Development funded by INRIA (2009-2012),

• lots of discussions within the “MUMPS team” and informal collaborations with the academic and
industrial users of MUMPS.

The document is organized as follows. Chapter 1 presents some general background on multifrontal
methods, and provides the main principles of the approach we rely on. Chapter 2 shows how some algorithms,
features and functionalities which appear simple in a sequential environment must be adapted in a parallel
asynchronous scheme targeting distributed-memory environments. Chapter 3 discusses the problem of task
scheduling when working with a limited memory in a serial environment. Two aspects are considered: (i)
how to reduce the memory requirements of multifrontal methods? (ii) how to use the disk as a secondary
storage and minimize I/O? Chapter 4 summarizes the major evolutions of the algorithms responsible of
task mapping and scheduling in parallel distributed-memory environments. In Chapter 5, the use of disk-
storage for problems where memory is not sufficient is discussed, while Chapter 6 shows that several other
algorithmic and software bottlenecks also had to be tackled in order to process real-life large-scale problems
efficiently. Finally to conclude we give some medium-term perspectives, together with their expected impact
on applications.

3Agence Nationale de la Recherche.
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Chapter 1

General Background

In this chapter, we introduce some general concepts related to sparse direct solvers, and in particular multi-
frontal methods, that will be used or referred to in this document. We first adopt a practical point of view
driven by a running example (Section 1.1) before introducing some theoretical formalism in Section 1.2. We
discuss other practical related issues in Section 1.3.

1.1 A practical example

1.1.1 Dense factorizations

Suppose that we want to solve a system of linear equations of the form Ax = b, where A is a square non-
singular matrix of order n, b is the right-hand side, and x is the unknown. We take an example where the
structure of the matrix is symmetric, and the numerical values are not, as illustrated by Equation (1.1).

2 0 0 2 1
0 1 −1 0 0
0 −1 0 −2 0
4 0 2 14 0
−6 0 0 0 −2




x1
x2
x3
x4
x5

 =


5
1
−2

6
−12

 (1.1)

In dense linear algebra, this can be done by applying a variant of Gaussian elimination. The method first
factorizes the matrix of the system (referred to as A) under the form A = LU , where L is lower triangular
with ones on the diagonal and U is upper triangular, as shown in Equation 1.2. This can be done using
Algorithm 1.1. At each step, a pivot is eliminated, the column of L is computed, and a rank-one update is
performed. Such an algorithm is said to be right-looking because after the elimination of each pivot, we only
modify the right-bottom part of the matrix, without accessing again the already computed factors.


2 0 0 2 1
0 1 −1 0 0
0 −1 0 −2 0
4 0 2 14 0
−6 0 0 0 −2

 =


1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
2 0 −2 1 0
−3 0 0 1 1




2 0 0 2 1
0 1 −1 0 0
0 0 −1 −2 0
0 0 0 6 −2
0 0 0 0 3

 (1.2)

Once the LU factorization of A is obtained, one can solve the system Ax = b in two steps:

• The forward elimination, consisting in solving Ly = b for y. In our case we obtain y = (5, 1, −1, −6, 9)T .

• The backward substitution, consisting in solving Ux = y for x, finally leading to the solution of our
system of equations x = (1, 2, 1, 0, 3)T .
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1: for i = 1 to n do
2: L(i : i) = 1

3: L(i+ 1 : n, i) = A(i+1:n,i)
A(i,i)

4: U(i, i : n) = A(i, i : n)
5: A(i+ 1 : n, i+ 1 : n) = A(i+ 1 : n, i+ 1 : n)− L(i+ 1 : n, i)×A(i, i+ 1 : n)
6: end for

Algorithm 1.1: Factorization of a dense matrix A of order n under the form LU .

In dense matrix computations, L and U generally overwrite the matrix A, avoiding the use of additional
storage for L and U . This results in Algorithm 1.2, where in the end A has been overwritten by (L− I) +U
(the ones on the diagonal of L are not stored). If the matrix is symmetric, an LDLT factorization is computed
instead. More variants can be found in the literature, see for example [96].

1: for i = 1 to n do
2: A(i+ 1 : n, i) = A(i+1:n,i)

A(i,i)

3: A(i+ 1 : n, i+ 1 : n) = A(i+ 1 : n, i+ 1 : n)−A(i+ 1 : n, i)×A(i, i+ 1 : n)
4: end for

Algorithm 1.2: Dense LU factorization overwriting matrix A.

1.1.2 Sparse factorization and fill-in

In order to exploit the sparsity of our initial matrix A, we want to avoid the storage of and computations
on zeros. If we want to exploit the zeros of our matrix in the application of Algorithm 1.1, line 3 should
only consider the nonzero entries from the lower part of column i, that is A(i + 1 : n, i); furthermore, the
rank-one update at line 5 should only use the nonzero entries in vectors L(i+1 : n, i) and A(i, i+1 : n). One
way to organize the operations only on nonzeros and manage the associated data structures is the so-called
multifrontal method, which will be central to this thesis and introduced in Section 1.1.3.

Obviously, except in case of numerical cancellation, if an entry aij is nonzero in the original matrix, lij
(if i > j) or uij (if j ≥ i) will also be nonzero. However, even if an entry is zero in the original matrix
A, the corresponding entry can be nonzero in the factors, and this phenomenon is known as fill-in. This is
illustrated in the example of Equation (1.2): both a45 and a54 are 0 in A but both l54 and u45 are nonzeros
in L and U , respectively1. Those nonzeros first appeared when performing the rank-one update associated
to pivot 1. In order to limit the amount of fill-in, the order in which the variables are eliminated is critical,
as explained in Section 1.1.7.

1.1.3 The multifrontal method

In the multifrontal method, instead of modifying directly the entries in A, we use dense matrices to per-
form and store the rank-one updates. Let us illustrate this process for the rank-one update of the first
pivot. Starting from A we build a temporary matrix whose structure results from the nonzeros in the first
row/column (indices 1, 4 and 5 of the original matrix) as follows:

A
(145)
1 =

 2 2 1
4 0 0
−6 0 0

 (1.3)

The numbers in parentheses refer to the indices of the variables in the numbering of the original matrix.
We now perform the factorization of column 1 and the subtraction of the rank-one update inside that dense

1This also occurs for the diagonal element in position (3,3). However, we consider that we will not try to exploit zeros on
the diagonal.
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matrix, avoiding some indirections that would arise by directly working on the sparse matrix A. In fact, this

can be viewed as the application of the first step of Algorithm 1.2 to A
(145)
1 , a dense 3× 3 matrix. After this

operation, A
(145)
1 is modified and overwritten by:

F
(145)
1 =

 2 2 1
2 −4 −2
−3 6 3

 (1.4)

The matrix in which A
(145)
1 , and then F

(145)
1 is stored is called the frontal matrix, or front, associated with

the first pivot (we also call it pivot 1): A
(145)
1 is the assembled front and F

(145)
1 is the partially factorized

front. The Schur complement produced at the bottom-right part of F1, CB
(45)
1 =

(
−4 −2

6 3

)
, is called the

contribution block of F
(145)
1 associated with variables 4 and 5. It will be used later during the factorization

process, in order to update some rows and columns in the matrix before variables 4 and 5 may be eliminated.

The first row and the first column of F
(145)
1 correspond to the factors associated with variable 1: row 1 of U

consists of 2, 2, and 1; column 1 of L consists of 1 (implicit), 2 and −3.
Similarly, we have for pivot 2

A
(23)
2 =

(
1 −1
−1 0

)
and F

(23)
2 =

(
1 −1
−1 −1

)
(1.5)

involving variables 2 and 3 in the numbering of the original matrix. CB
(3)
2 = (−1) is the contribution block

of F2 associated with variable 3.
Let us now define the arrowhead associated with a pivot p as the set of nonzero entries of the original

matrix A that are part of A(p : n, p) ∪A(p, p+ 1 : n) (part of the row and column of the pivot that are not
factorized yet).

We consider the elimination of pivot 3 and extract the arrowhead of 3 to obtain the submatrix

(
0 −2
2 0

)
associated with variables 3 and 4. Because the elimination of pivot 2 has an impact on the value of pivot

3, we add into this matrix the update CB
(3)
2 due to the elimination of pivot 2 and computed at step 2 and

obtain the assembled front:

A
(34)
3 =

(
−1 −2

2 0

)
. (1.6)

The first row and first column of A
(34)
3 are said to be fully-summed because all possible updates from previous

pivot eliminations have been incorporated into them. Therefore, pivot 3 can be factorized, leading to the
factorized frontal matrix

F
(34)
3 =

(
−1 −2
−2 −4

)
and CB

(4)
3 = (−4). (1.7)

Then, notice that the elimination of pivot 4 involves variable 5 because of the fill-in coming from the

elimination of pivot 1 and available in the contribution CB
(45)
1 :

A
(45)
4 =

(
14 0
0 0

)
+ CB

(45)
1 + CB

(4)
3 =

(
6 −2
6 3

)
(1.8)

In the summation above, CB
(4)
3 is a 1×1 matrix only concerned by variable 4. Since variable 4 corresponds

to the first variable of the resulting matrix, the unique element of CB
(4)
3 is summed at position (1,1) of that

resulting matrix.

It follows after factorization of pivot 4 in A
(45)
4 :

F
(45)
4 =

(
6 −2
1 5

)
and CB

(5)
4 = (5) (1.9)
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F
(145)
1

F
(23)
2

F
(45)
4

F
(34)
3

F
(5)
5

CB
(4)
3

CB
(3)
2

CB
(5)
4

CB
(45)
1

Figure 1.1: Dependencies between pivot eliminations when applying the multifrontal method to the 5 × 5
matrix of Equation (1.1). Fi represents the ith frontal matrix and the ith node.

Finally, A
(5)
5 = −2 + 5 = 3 = F

(5)
5 and the factorization is complete. A closer look at the dependencies

during this factorization shows the order of computations follows the tree of Figure 1.1. This tree is called
elimination tree [128]; we will come back to this notion later. For the moment, note that at each node of
the tree, we have computed one column of L (the diagonal element is equal to 1 and is not stored explicitly)
and one row of U . In comparison to Equation (1.1) and Algorithm 1.1, zeros are not stored and operations
on zeros have not been performed. This is at the cost of indirections during the assembly of each frontal
matrix, where for each pivot p, we had to:

• build the symbolic structure of the frontal matrix associated with p,

• assemble nonzero entries from row A(p, p : n) and column A(p+ 1 : n, p) of the initial matrix, forming
the arrowhead of variable p, into Fp,

• assemble the contribution blocks CBj into Fp, for all children j of p; this operation is also called an
extend-add operation, and it requires indirections2,

• eliminate pivot p, building the pth row and pth column of the factors and (except for the last pivot –
or root) a contribution CBp used at the parent node.

1.1.4 Multifrontal solve algorithm

The solve algorithm consists in a forward elimination, where the triangular system Ly = b is solved to obtain
an intermediate right-hand side, followed by a backward substitution, where the triangular system Ux = y
is then solved to obtain the solution x. In the multifrontal method, the columns of L and the rows of U
are scattered in the elimination tree and are parts of the matrices Fi (see Figure 1.1). During the forward
elimination, the tree is processed from bottom to top. At each step, part of the solution y is computed and
the right-hand side b is then modified using the partial computed solution, as shown in Algorithm 1.3.

Applying this algorithm to our example can be decomposed as below, following the nodes of the tree:

2For example, in Equation (1.8), the + operator must be considered as an extend-add operation rather than a simple
summation.
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for i = 1 to n do
{Work on front i}
Solve liiyi = bi for yi
for all nonzeros lki in column i of L, k > i do
{Update right-hand side of trailing subsystem: }
bk ← bk − lkiyi

end for
end for

Algorithm 1.3: Algorithm for the forward elimination. Remark that, in our case, lii is equal to one for
all i.

• Node 1: y1 = b1 = 5, b4 ← b4 − l41y1 = −4, b5 ← b5 − l51y1 = 3

• Node 2: y2 = b2 = 1, b3 ← b3 − l32y2 = −1

• Node 3: y3 = b3 = −1, b4 ← b4 − l43y3 = −6

• Node 4: y4 = b4 = −6, b5 ← b5 − l54y4 = 9

• Node 5: y5 = b5 = 9.

Concerning the backward substitution Ux = y, the solution is first computed at the root node: x5 =
u−155 y5 = 3, then equation u44x4 + u45x5 = y4 results in x4 = 0 at node 4. x1 and x3 can then be computed
independently using the equations u11x1+u14x4+u15x5 = y4 and u33x3+u34x4 = y3, respectively associated
with nodes 1 and 3 of the tree. Finally, x2 is obtained from x3 using the equation u22x2 + u23x3 = y3 (node
2), leading to x = (1 2 1 0 3)T . The process is summarized in Algorithm 1.4.

for i = n downto 1 do
{Compute known part of equation i}
α← 0
for all nonzeros uik in row i of U , k > i do
α← α+ uikxk

end for
Solve uiixi = yi − α for xi

end for
Algorithm 1.4: Algorithm for the backward substitution.

It is important to notice that, at each step of the algorithm, only the factors at each node are used,
preserving the data organization from the factorization. The algorithm naturally extends to multiple right-
hand sides.

1.1.5 Sparse matrices and graphs

A graph G = (V,E) is associated with a matrix A with symmetric pattern in such a way that

• V = 1, . . . , n represents the list of variables of the graph, where n is the number of variables of the
matrix;

• an edge (i, j), i 6= j from i to j belongs to E if aij is nonzero. Note that edges (i, i) are not considered.

In general, such a graph is directed. However, for matrices with a symmetric structure, one may consider
undirected edges {i,j}, together with an undirected graph. In Figure 1.2, we represent the undirected graph
associated with the matrix of Equation (1.1), together with the graph associated with the matrix of factors
(L+ U).
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1

4

3

5

2 1

4

3

5

2

Figure 1.2: Graph of the example matrix A (left) and graph of the filled matrix L+ U (right). Fill-in has
appeared between variables 4 and 5, corresponding to the elimination of pivot 1, then no other fill occurs
during the elimination of pivots 2, 3, 4 and 5.

Initialization: G0 = (E0, V0) is the graph associated with A
for i = 1 to n do
Ei ← Ei−1
Add edges to Ei to make all neighbours of i in Gi−1 pairwise adjacent
Remove edges adjacent to i from Ei

Vi ← Vi−1 \ {i} = {i+ 1 . . . n}
Gi

def
= (Ei, Vi) is the elimination graph after step i

end for
Algorithm 1.5: Elimination graphs associated with the factorization of a matrix A.

Following the concept of elimination graphs introduced in [138] and starting from the graph associated
with A, the rank-one update associated with each pivot results in the addition of a clique between the nodes
that were adjacent to the eliminated pivot: every two vertices among the neighbours of the pivot become
connected by an edge. In our example, the clique introduced by the elimination of pivot 1 is a simple edge
between nodes 4 and 5, corresponding to the fill between variables 4 and 5 in the factors. This is followed by
the elimination of the current pivot and its adjacent edges. Starting from the graph of the original matrix
G0 = (E0, V0), the process is described by Algorithm 1.5, where at each step, a graph Gi is built in which
variable i has been eliminated. (Remark that Gn is empty). The filled graph is the graph G+ = (V0,

⋃n
i=0Ei))

resulting from all the fill-in that appeared during the factorization. It is also the graph associated with the
matrix of factors L+ U (see Figure 1.2, right).

The notion of elimination tree can be deduced from the graph of the filled matrix (Figure 1.2, right) by:

• replacing undirected edges by directed edges following the order of elimination of the variables (1 2 3 4 5),
and

• suppressing unnecessary dependencies; in the example, edge 1 → 5 is suppressed because of the ex-
istence of the edges 1 → 4 and 4 → 5. We keep the edges 1 → 4, 2 → 3, 3 → 4, 1 → 4 and
4→ 5.

In terms of graphs, remark that this corresponds to computing a so called transitive reduction of the directed
graph associated to U (or LT ). In our example, the elimination tree defined this way exactly corresponds
to the tree of Figure 1.1. In the multifrontal approach, the fact that edge 1 → 5 is suppressed corresponds

to the fact that the contributions of variable 1 on variable 5, available in CB
(45)
1 are passed from node 1 to

node 5 not directly but via node 4. In practice, computing the full filled graph and its transitive reduction
would be too costly so that other techniques must be applied (see for example [128]).

Finally, the notion of quotient graph model, first introduced for sparse symmetric matrix factorizations
by [91] is very useful to both save storage and limit the computational complexity associated with the
construction of elimination graphs. The sequence of elimination graphs is replaced by a sequence of quotient
graphs. With quotient graphs, the clique information is implicitly represented by the pivot, which, instead of
being eliminated and suppressed from the graph, becomes a special node sometimes called element (see [19]).
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45 5

1

3,2
3,4

1,2,

Figure 1.3: Quotient graphs after elimination of pivots 1, 2, and 3 (left) and after elimination of pivots 1,
2, 3, and 4 (right). On the left, the fill (clique) between 4 and 5 is implicitly represented by element 1.

Each new element absorbs the already formed elements adjacent to it: the collapsed elements together with
each not yet eliminated variable form a partition of the original graph, to which a quotient graph can thus
be associated (duplicate edges are suppressed). In our example, and starting from the graph of Figure 1.2
(left), the sequence of quotient graphs corresponding to the pivot eliminations is obtained as follows:

1. After elimination of pivot 1, {1} becomes an element.

2. After elimination of pivot 2, {2} becomes an element.

3. After elimination of pivot 3, {3} becomes an element and absorbs {2} because there was an edge
between element {2} and variable 3; one obtains the quotient graph of Figure 1.3 (left).

4. After elimination of pivot 4, {4} becomes an element which absorbs element {3, 2} and element {1},
that were adjacent to 4 (see Figure 1.3, right).

5. After elimination of pivot 5, {5} absorbs element {4, 1, 3, 2}.

The quotient graph model allows an efficient computation of the tree structure: each time an element
i is absorbed by an element j, j becomes the parent of i. For example, after the elimination of pivot 4,
because {4} absorbs elements {3, 2} and {1}, 4 is the parent of 1 and 3 (where 3 became the parent of 2 at
the moment of building element {3, 2}).

1.1.6 Supernodes

Still considering symmetric matrices, a supernode [41] is a contiguous range of columns in the matrix of
factors having the same lower diagonal nonzero structure. More precisely, in the graph associated with the
matrix of factors (directed graph associated with LT , or U), a supernode is such that the nodes associated
with the matrix variables form a clique and have the same outgoing edges outside the clique. In our example,

variables 4 and 5 can be amalgamated into a single supernode, leading to a 2×2 frontal matrix F
(45)
45 instead

of the last two frontal matrices of the tree in Figure 1.1. The multifrontal method applies as before except
that:

• both the arrowheads associated with variables 4 and 5 must be copied into the frontal matrix F45;

• both variables 4 and 5 are eliminated in the frontal matrix associated with the supernode (4, 5), instead
of one variable for the frontal matrix of 4 and one variable for the frontal matrix of 5.

The notion of elimination tree is replaced by a so called assembly tree, as shown in Figure 1.4. Remark that
we could also have defined a larger supernode by amalgamating variables 1, 4, and 5, suppressing another
frontal matrix. This also illustrates that there is not a unique way to perform amalgamation and that
this process might be different to enhance vectorization and/or parallelism. At each supernode, instead of
eliminating just one variable, all the variables defined by the supernode are eliminated. In our example, the
amalgamated node was the root node, but more generally, a frontal matrix has the shape of Figure 1.5. At
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each frontal matrix, fully-summed block is factorized and the non fully-summed block (contribution block
or Schur complement) is updated. The algorithms for the solve phase also naturally extend to supernodes,
working on blocks of columns of L (resp. blocks of rows of U) during the forward (respectively backward)
substitution.

F
(145)
1

F
(23)
2

F
(45)
4

F
(34)
3

CB
(4)
3

CB
(3)
2

CB
(45)
1

Figure 1.4: Dependencies between pivot eliminations when applying the multifrontal method to the 5 × 5
matrix of Equation (1.1). Variables 4 and 5 have been amalgamated into a single supernode.

summed

block

block

Fully summed

Contribution

block, or Schur

complement

Non fully

U

L

Figure 1.5: Frontal matrix at a node of the tree before (left) and after (right) the partial factorization of the
fully-summed block. Unsymmetric case (LU factorization).

Working on supernodes instead of individual variables is essential in order to speed-up the computations
and use high-level BLAS [72] (Basic Linear Algebra Subprograms): supernodes lead to a higher flops to
memory access ratio, and this allows a better usage of memory hierarchy and better performance thanks to
the blocking techniques used in BLAS routines. Typically, BLAS 3 routines (TRSM, GEMM) will be used
during the factorization. During the solve stage, BLAS 2 instead of BLAS 1 (respectively BLAS 3 instead of
BLAS 2) routines will be used for a single (respectively multiple) right-hand-side vector(s). In practice, it is
also worth relaxing the notion of supernodes by amalgamating nodes that introduce some extra computations
on zeros: amalgamation reduces the amount of indirections and increases the sizes of the matrices used in
BLAS.
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1.1.7 Orderings and permutations

Different strategies exist to minimize the amount of fill-in, and thus decrease the amount of computation.
Consider a permutation matrix P . The initial system Ax = b and the modified system (PAPT )(Px) = (Pb)
have the same solution x. Consider the permutation matrix P such that PAPT leads to pivots in the order
(2, 3, 4, 5, 1) (second pivot of the original matrix first, third pivot second, etc.). We thus have:

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1

 , and (1.10)

PAPT =


1 −1 0 0 0
−1 0 −2 0 0

0 2 14 4 0
0 0 2 2 1
0 0 0 −6 −2

 =


1 0 0 0 0
−1 1 0 0 0

0 −2 1 0 0
0 0 0.2 1 0
0 0 0 −5 1

×


1 −1 0 0 0
0 −1 −2 0 0
0 0 10 4 0
0 0 0 1.2 1
0 0 0 0 3


(1.11)

Notice that in that case, no fill-in occurs: the structures of L and U are included in the structure of
A (not taking into account the diagonal, for which the sparsity will never be exploited). The objective of
reordering techniques (or orderings) is precisely to find a permutation P that limits the amount of fill-in
(and number of operations). In general, minimizing the fill-in is NP-complete [166] so heuristics have to be
defined. The problem is easier seen in terms of graph, where we associate a graph to a matrix A as explained
in Section 1.1.5.

An example of local heuristic to find such a permutation, or ordering, is the minimum degree, where
at each step of Algorithm 1.5, we eliminate the pivot with smallest degree (or smallest adjacency size) and
update the current elimination graph accordingly. The use of quotient graphs allows to run in-place, in the
sense that quotient graphs do not require more storage than the initial matrix. The approximate minimum
degree (AMD [19]) and the multiple minimum degree (MMD [125]) are variants of the minimum degree that
use such an approach to be computationally efficient. The minimum fill algorithm [133, 147] is another local
approach which attempts at eliminating at each step the pivot leading to the smallest fill, taking into account
already existing edges in the elimination graph at the current step.

For large matrices, nested dissections [92] give better orderings, because they have a more global view of
the graph. The way they work is the following: given a node separator S of the graph, and two disconnected
domains D1 and D2, the order of the variables in the permuted matrix is chosen to be D1, D2, S. No fill can
appear between D1 and D2 and the zero blocks remain during the factorization. D1 and D2 are partitioned
recursively leading to a recursive block-bordered structure. Typically, once the subgraphs are small enough,
a switch to a local heuristic becomes interesting again. After the switch to a local heuristic, the adjacency
with halo variables may be taken into account [140].

There exist other heuristics. For example, the Cuthill-McKee algorithm consists in a breadth-first search
traversal of the matrix graph that limits the envelope and bandwidth of the matrix, restricting the fill to this
structure. In the breadth-first search, layers are built in such a way that there are no connections between
layer i and layer i + 2. This way, the band structure can be seen as a tridiagonal block structure where
entries in block (i, i + 1) represent the connections between layer i and layer i + 1. No fill-in can occur
outside this tridiagonal block structure.

As indicated by their name, fill-reducing heuristics target the reduction of fill-in and thus the size of the
factors. We indicate in Table 1.1 the size of the factors obtained with the following heuristics, that will be
used as representatives of the different classes (local, global, or hybrid) of orderings all along this document:

• AMD: the Approximate Minimum Degree [19];

• AMF: the Approximate Minimum Fill, as implemented in MUMPS by P. Amestoy;

13



METIS SCOTCH PORD AMF AMD
gupta2 8.55 12.97 9.77 7.96 8.08
ship 003 73.34 79.80 73.57 68.52 91.42
twotone 25.04 25.64 28.38 22.65 22.12
wang3 7.65 9.74 7.99 8.90 11.48
xenon2 94.93 100.87 107.20 144.32 159.74

Table 1.1: Size of factors (millions of entries) as a function of the ordering heuristic applied. Bold and italic
correspond to best and worse orderings, respectively, for each matrix.

METIS SCOTCH PORD AMF AMD
gupta2 2757.8 4510.7 4993.3 2790.3 2663.9
ship 003 83828.2 92614.0 112519.6 96445.2 155725.5
twotone 29120.3 27764.7 37167.4 29847.5 29552.9
wang3 4313.1 5801.7 5009.9 6318.0 10492.2
xenon2 99273.1 112213.4 126349.7 237451.3 298363.5

Table 1.2: Number of floating-point operations (millions) as a function of the ordering heuristic applied.
Bold and italic correspond to best and worse orderings, respectively, for each matrix.

• PORD: a tight coupling of bottom-up and top-down sparse reordering methods [156];

• METIS: we use here the routine METIS NODEND or METIS NODEWND from the METIS package [120],
which is an hybrid approach based on multilevel nested dissection and multiple minimum degree;

• SCOTCH: we use a version of SCOTCH [139] provided by the author that couples nested dissection and
(halo) Approximate Minimum Fill (HAMF), in a way very similar to [141].

Another goal of fill-reducing orderings is to reduce the number of operations and the effect of the above
heuristics on the number of floating-point operations is reported in Table 1.2. Let us take the example of an
LDLT factorization with D diagonal and L lower triangular. Noting ni the number of nonzero elements in

column i of L, the size of the factors is
∑
ni and the number of floating-point operations is

∑
(ni+

ni×(ni+1)
2 ),

so that the objectives of floating-point operations and factor size reductions are somewhat related, as can be
seen in Tables 1.1 and 1.2 for matrices WANG3 and TWOTONE for example, where METIS minimizes
both the number of operations and the size of the factors. This is not always the case, for example AMD
minimizes the size of the factors for matrix TWOTONE but not the number of operations (minimized with
SCOTCH).

Note that although these heuristics mainly target the reduction of fill-in (and thus size of the factors)
and the number of operations – see Tables 1.2 and 1.1, they also have a significant impact on the shape of
the assembly tree and the parallelism (see, for example, [24]). Figure 1.6 summarizes the characteristics of
the trees resulting from different orderings.

1.1.8 Preprocessing with maximum weighted matching and scalings algorithms

Let us assume that A is a nonsingular matrix with an unsymmetric nonzero pattern. Let us now consider
a representation of A by a bipartite graph, where one set of nodes represents the rows and the other set
represents the columns. An edge between a row node and a column node exists only if the corresponding
entry in A is nonzero.

In that case, finding a maximum cardinality matching in the bipartite graph and permuting the row
(or column) nodes accordingly corresponds to permuting the matrix to a zero-free diagonal. Using weighted
matching algorithms allows one to obtain large values on the diagonal (by minimizing the sum or the product
of diagonal entries). This has several advantages:
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Reordering technique Shape of the tree observations

AMD • Deep well-balanced tree

• Large frontal matrices on top of the
tree

AMF • Very deep unbalanced tree

• Small frontal matrices

• Very large number of nodes

PORD • deep unbalanced tree

• Small frontal matrices

• Large number of nodes

SCOTCH • Very wide well-balanced tree

• Large frontal matrices

• Small number of nodes

METIS • Wide well-balanced tree

• Large number of nodes

• Smaller frontal matrices (than
SCOTCH)

Figure 1.6: Shape of the trees resulting from various reordering techniques.
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Matrix Structural |LU | Flops Backwd
symmetry (106) (109) Error

twotone OFF 28 235 1221 10 −6

ON 43 22 29 10−12

fidapm11 OFF 100 16 10 10−10

ON 46 28 29 10−11

Table 1.3: Effect of weighted matching algorithms on the factorization of two unsymmetric matrices with
MUMPS.

• better numerical properties and improved numerical behaviour: the linear system is easier to solve and
the amount of numerical pivoting and of row/column interchanges is limited;

• more predictable data structures; in the extreme case of codes using static data structures, where run-
time pivoting is very limited or even not done, many problems cannot be solved without preprocessing
based on such column permutations;

• improved reliability of memory estimates;

• reduced amount of computations and fill-in in the factors, especially for approaches working on a
symmetrized structure, that is where an explicit zero is introduced at position i, j in cases where aij
is zero and aji is nonzero.

Duff and Koster [76, 77] provide effective algorithms together with more details on the application and
effects of such techniques to sparse Gaussian elimination. Scaling arrays can also be provided on output of
the weighted matching algorithm so that the diagonal entries of the permuted scaled matrix are all one, and
off-diagonal entries are smaller, also improving the numerical properties. The linear system of Equation (1)
becomes:

(DrAQDc)(D
−1
c QTx) = Drb,

where Dr and Dc are diagonal scaling matrices, and Q is a permutation matrix. Fill-reducing heuristics of
Section 1.1.7 can then be applied, leading to:

(PDrAQDcP
T )(PD−1c QTx) = PDrb.

We illustrate in Table 1.3 the importance of weighted matching algorithms with such scaling on the behaviour
of the MUMPS solver on two matrices. In this table, the symmetry is defined as the percentage of nonzero
elements (i, j) in the (possibly permuted) matrix for which the element (j, i) is also nonzero. Clearly, the
effect is negative when the matrix has a symmetric structure. In [78], Duff and Pralet show how maximum
weighted matching algorithms can be useful to symmetric indefinite matrices: on top of the scaling arrays
(see Table 1.4), matched entries are candidates for numerically good 2× 2 pivots – see Section 1.3.2.2, which
the fill-reducing heuristics may then take into account structurally. One way to do that is to force those
2× 2 pivots to become supervariables. Significant improvements can be obtained, as shown in Table 1.5 for

augmented matrices of the form K =

(
H A
AT 0

)
.

1.2 Theoretical formalism

This section introduces some theoretical formalism and is complementary to the previous section. Reading it
is not strictly necessary for the understanding of the rest of this document.
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Total time Nb of entries in factors (millions)

(seconds) (estimated) (effective)
Scaling : OFF ON OFF ON OFF ON
cont-300 45 5 12.2 12.2 32.0 12.4
cvxqp3 1816 28 3.9 3.9 62.4 9.3
stokes128 3 2 3.0 3.0 5.5 3.3

Table 1.4: Influence of scaling from [78] on augmented matrices. The scaled matrix is DAD, where D =√
DrDc.

Total time Nb of entries in factors in Millions

(seconds) (estimated) (effective)
Compression : OFF ON OFF ON OFF ON
cont-300 5 4 12.3 11.2 32.0 12.4
cvxqp3 28 11 3.9 7.1 9.3 8.5
stokes128 1 2 3.0 5.7 3.4 5.7

Table 1.5: Influence of preselecting 2× 2 pivots (with scaling).

1.2.1 LU decomposition

Given a sparse system of linear equations Ax = b, where A = (aij)1≤i,j≤n is a sparse matrix of order n, and
x and b are column vectors, we admit that a decomposition A = LU exists if the matrix is invertible (non-
singular) even if in general it means swapping some columns. In this decomposition L is a lower triangular
matrix whose diagonal values are equal to 1 and U is an upper triangular matrix.

Matrices L and U verify: aij = (LU)ij , 1 ≤ i, j ≤ n. Considering the respective triangular structures of

L and U , we can write: aij =
∑min(i,j)

k=1 likukj . Because lii ≡ 1, we have:

{
aij =

∑i−1
k=1 likukj + uij if i ≤ j

aij =
∑j−1

k=1 likukj + lijujj if i > j
(1.12)

We deduce the following expression of the factors (remark that the notations i and k have been swapped):

Ij

{
ukj = akj −

∑k−1
i=1 lkiuij for k = 1, . . . , j

lkj = 1
ujj

(akj −
∑j−1

i=1 lkiuij) for k = j + 1, . . . , n
(1.13)

which allows their computation by iteratively applying Ij for j = 1 to n. We present in Figure 1.7 the data
involved during an iteration. Computations are performed column by column. Each column j (terms ukj or
lkj in Formula (1.13)) depends on the columns i, i = 1, . . . , j − 1 (term lki in Formula (1.13)).

Depending on the properties of the matrix, the decomposition can be simplified: an LDLT decomposition
can be performed with a symmetric matrix and a LLT decomposition (or Cholesky decomposition) with a
symmetric positive-definite matrix. In this thesis, we will focus on the factorization step. Although we will
present results related to LU , LDLT and LLT factorizations, we will use the LU formulation (except when
stated otherwise) to present the concepts that are common to the three methods.

1.2.2 Fill-in and structure of the factor matrices

Usually the L and U factors have more nonzero values than the original matrix A: expression (1.13) shows
that a nonzero entry lij (or uij) in the factors can appear even if aij is equal to 0, when there exists k in
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Figure 1.7: Iteration I4: the elements of column 4 are updated using the elements of columns 1, 2 and 3.

{1, . . . ,min{i, j}} such that lik and ukj are nonzeros. This phenomenon is known as fill-in and is illustrated
by Figure 1.8.

a
b

c
d

e
f

g
h

i
j

fill-in

F =A =

a
b

c
d

e
f

g

h

i
j

initial matrix

Figure 1.8: Fill-in. After factorization, matrix F represents the nonzero values lij (for i > j) and uij values
(for i ≤ j). Formally, and since lii = 1, F = L+ U − I.

1.2.3 Elimination graph structures

Algorithms on the structure of sparse matrices can be viewed as operations on graphs since the structure of
a general sparse matrix is equivalent to a graph. Let G(A) be the directed graph of a sparse matrix A (with
nonzero diagonal entries) as follows. The vertex set of G(A), the graph associated with A, is V = {1, 2, . . . , n}
and there is an edge (i, j) from i to j (for i 6= j) if and only if the entry aij is nonzero.

In Gaussian elimination, the sparse structure of the factors depends on the order of elimination of
the variables. However the elimination of a column does not impact all the following columns but only
part of them, depending on their respective sparse structures. Said differently, the computation of some
columns may be independent of the computation of some other columns. The study of these dependencies
between columns is essential in sparse direct factorization as they are used to manage several phases of the
factorization [128, 93]. Formula (1.13) provides these dependencies that we express as a binary relation →
on the set of columns {1, . . . , n} in Definition 1.1:

Definition 1.1. Column j explicitly depends on column i (noted i→j) if and only if there exists some k in
{i+ 1, . . . , n} such that lkiuij 6= 0.

The transitive closure
+−→ of → expresses whether a column i must be computed before a column j:

i
+−→j if and only if column i must be computed before column j. This information can be synthesized

with a transitive reduction
−−→ of → (or of

+−→): column i must be computed before column j if and only
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if there is a path in the directed graph associated with
−−→ from i to j. This statement would be true for

any of the relations →,
+−→ or

−−→, but
−−→ presents the advantage to be the most compact way to code this

information [14].

The graph associated with
−−→ reflects some available freedom to reorder the variables without changing

the sparsity structure of the factors. Because the dependencies respect the initial ordering (i→j implies that
i < j), there is no directed cycle in the graph of dependencies. A directed graph without directed cycle is
called a directed acyclic graph, or, dag for short [15]. We can thus introduce the notion of descendant and

ancestor between columns as follows: i descendant of j ⇔ j ancestor of i ⇔ i
+−→j. Although an arbitrary

directed graph may have many different transitive reductions, a dag only has one. Thus the transitive
reduction of the graph of dependencies is unique [14].

Symmetric elimination tree

In the symmetric (LLT or LDLT ) case, the transitive reduction of the graph of explicit dependencies is a
tree and is called symmetric elimination tree [155, 128]. As we will heavily rely on this property in this
thesis, we briefly provide a proof.

Lemma 1.1. For i > j, i→j if and only if lji 6= 0.

Proof. According to Definition 1.1, in the symmetric case, i→j if and only if there exists some k in {i +
1, . . . , n} such that lkiuij 6= 0. Thus, because of symmetry, lji 6= 0 so that i→j implies lji 6= 0. Conversely,
if lji 6= 0, then ljilji 6= 0 and so lkilji 6= 0 with k = j.

Lemma 1.2. Let be i < j < k. The statements i→j and i→k imply j→k.

Proof. From Lemma 1.1, we have lji 6= 0 and lki 6= 0, which imply that lkilji 6= 0. Thus formula (1.13) states
that lkj 6= 0 (we omit the possible cases of numerical cancellation).

This lemma is illustrated in terms of matrix structure by Figure 1.9. Because of symmetry, there is a
nonzero at position i, j.

 

Fill−in

⇐ symmetry

⇒
j→

k

i→k ⇒

i

j

k

i→j ⇒

Figure 1.9: Illustration of Lemma 1.2. i→j corresponds to a nonzero element at position (j, i) (see
Lemma 1.1), or (i, j) thanks to symmetry. i→k corresponds to a nonzero at position (k, i). Then at
the moment of eliminating pivot i, the fact that both elements at position (k, i) and (i, j) are nonzero lead
to fill-in at position (k, j). Hence j→k.

Property 1.1. The transitive reduction of the graph of dependencies is a tree (if the matrix is irreducible,
a forest in general).
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Proof. We have to show that there is no cycle (neither directed nor undirected) in the transitive reduction of
the considered graph. As we have already seen that there is no directed cycle (it is a dag) we suppose to the
contrary that there is an undirected cycle whose column of smallest index is i. Then there exist two other
columns j and k (i < j < k) in this cycle such that i→j and i→k. Lemma 1.2 implies j→k. Subsequently
i→k is reduced by the pair (i→j,j→k) and cannot be part of the reduced graph. This is a contradiction.

Figure 1.10 illustrates the different stages of the construction of the symmetric elimination tree.
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Figure 1.10: Construction of the symmetric elimination tree of the matrix presented in Figure 1.8. The
numbers define the pivot order.

Liu shows in [128] that the graph associated with → is exactly the graph associated with the triangular
factor (G(LT )) and that the symmetric elimination tree is thus the transitive reduction of G(LT ). He
furthermore explains how to compute the structure of L (i.e., G(LT )) from the symmetric elimination tree
(i.e., the transitive reduction of G(LT )) and from the structure of the original matrix (A). The motivation
is that the structure of the elimination tree is more compact and thus most efficient to traverse than the
structure of the factor itself. Therefore, the computation of G(LT ) is enhanced by the use of its transitive
reduction which is maintained during the computation of G(LT ). In this sense, the symmetric elimination
tree characterizes the structure of the triangular factor.

Some unsymmetric methods use a symmetric pattern to handle unsymmetric matrices. The structure of
the initial matrix is symmetrized according to the structure of |A|+ |A|T : each initial structural zero in the
pattern of A that is nonzero in |A|+ |A|T is filled with a numerical zero value. These methods can thus rely
on the symmetric elimination tree too. For instance MUMPS [24, 27] is based on this approach.

Unsymmetric elimination dags

In the unsymmetric case, the transitive reduction of the graph of explicit dependencies does not correspond
to the graph of a special matrix involved in the decomposition. However, Gilbert and Liu have generalized
the elimination structures to the unsymmetric case in [93]. For unsymmetric matrices, instead of a tree, the
nonzero structure of the lower and upper triangular factors can be characterized by two elimination dags
(so called edags), that are respectively the transitive reductions of G(LT ) and G(U). [93] also explain how
to efficiently deduce the structure of the factors from these elimination dags and from the original matrix
(similarly to the structure of L that could be deduced from the symmetric elimination tree for a symmetric
matrix). Intuitively, the motivation for the use of these elimination structures is the need to handle two
factored matrices (L and U) which are structurally different yet closely related to each other in the filled
pattern. These elimination structures are used for instance in unsymmetric methods such as the distributed
memory version of SuperLU [124]. Later, Eisenstat and Liu introduced generalizations of the elimination
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tree for unsymmetric matrices [83], where the notion of edge is replaced by the notion of path to define a
parent node, leading to a general framework.

Column elimination tree

Some methods aim at anticipating possible structural change due to numerical pivoting. They are based on
a so-called column elimination tree which is the appropriate analogue of the symmetric elimination tree that
takes into account all possible partial pivoting [94]. The column elimination tree is the symmetric elimination
tree of ATA (provided that there is no cancellation in computing ATA). Note that ATA does not need to be
explicitly formed and that the column elimination tree can be computed in time almost linear in the number
of nonzero values of the original matrix A [65, 94]. For instance, the serial version of SuperLU [65] is based
on this approach.

In this thesis, we will not discuss further methods based on elimination dags or column elimination trees but
only methods based on an elimination tree defined as follows:

Definition 1.2. The elimination tree - or etree for short - will implicitly refer to:

• the symmetric elimination tree for symmetric direct methods;

• the symmetric elimination tree of the symmetrized matrix for unsymmetric direct methods with sym-
metric structure.

1.2.4 Left-looking, right-looking and multifrontal methods

There are two main types of operations occurring during the factorization algorithm. Using the notations
of [69], we will call the first one Facto. It divides the part of the column below the diagonal by a scalar.
In the second one, a column updates another column. We will call this operation Update. Considering
that A is overwritten by the factors so that eventually, A = L+U − I, we more formally have the following
definitions (that stand thanks to Formula (1.13)):

• Facto(Aj): Aj(j + 1 : n)← Aj(j + 1 : n)/ajj ;

• Update(Ai,Aj): Aj(i+ 1 : n)← Aj(i+ 1 : n)− aij .Ai(i+ 1 : n);

where Aj denotes column j of A.
There are n operations of type Facto during the whole factorization, where n is the order of the matrix.

These operations have to be performed according to the dependencies of the elimination tree: the parent node
has to be processed after all its children. Said differently, Facto(Aj) has to be performed after Facto(Ai)

if j is the parent of i (i.e., if i
−−→j). And there is an effective Update(Ai,Aj) operation between any pair of

columns (i, j) such that column j explicitly depends on column i (i.e., such that i→j). Any Update(Ai,Aj)
operation has to be performed after Facto(Ai) and before Facto(Aj). We will note Update(∗,Aj) an
update of column j and Update(Ai,∗) an update from column i.

In spite of these constraints of dependency, the structure of the elimination tree still provides some
flexibility and freedom to schedule the computations, and we will see the interest of exploiting this freedom
in Chapter 3. Moreover, once the scheduling of the Facto operations is fixed, there is still some flexibility to
schedule the Update operations. Among all their possible schedules, there are two main types of algorithms:
left-looking and right-looking methods. Left-looking algorithms delay the Update operations as late as
possible: all the Update(∗,Aj) are performed just before Facto(Aj), looking to the left to nonzero entries
in row j. On the opposite, right-looking algorithms perform the Update operations as soon as possible: all
the Update(Ai,∗) operations are performed right after Facto(Ai), looking right to all columns that need
be updated. Algorithms 1.6 and 1.7 respectively illustrate left-looking and right-looking factorizations. Note
that Algorithm 1.6 exactly corresponds to applying iteration Ij from Formula (1.13) for j = 1 to n.
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for j = 1 to n do
foreach i such that i→j (j explicitly depends on i) do

Update(Ai,Aj) ;

Facto(Aj) ;

Algorithm 1.6: General left-looking factorization algorithm.

for i = 1 to n do
Facto(Ai) ;
foreach j such that i→j (j explicitly depends on i) do

Update(Ai,Aj) ;

Algorithm 1.7: General right-looking factorization algorithm.

The multifrontal method [80, 81, 155, 129] is a variant of the right-looking method. The columns are still
processed one after another but the Update operations are not directly performed between the columns of
the matrix. Instead, the contribution of a column i to a column j (j having to be updated by i) is carried
through the path from i to j in the elimination tree. To do so, an Update operation is performed in several
steps and temporary columns are used to carry the contributions. This mechanism makes the multifrontal
method slightly more complex than the previous ones. This is why we restrict the presentation of the method
to the symmetric case. When processing a node i, some temporary columns are used on top of Ai. These
temporary columns store the contributions from the descendants of column i and from column i itself to the
ancestors. In general, not all the ancestors of column i will have to receive a contribution but only the ones
that explicitly depend on column i (columns j such that i→j). With each such ancestor j is associated a
temporary column T i

j that is used when processing column i. These columns are set to zero (Init(T i
j )) at the

beginning of the process of i. Then the contribution stored in the temporary columns associated with any
child k of i is carried into Ai and the different temporary columns associated with i. This operation is called
Assemble. If the destination column is i, then Assemble is of the form Assemble(T k

i ,Ai) and consists in
adding the temporary column T k

i associated with child k of i from Ai. Otherwise, the destination column
is a temporary column T i

k associated with i; the Assemble operation is of the form Assemble(T k
j ,T i

j ) and

consists in adding T k
j to T i

j . Algorithm 1.8 describes the whole algorithm.

for i = 1 to n do
foreach j such that i→j (j explicitly depends on i) do

Init(T i
j ) ;

foreach k such that k
−−→i (k child of i) do

Assemble(T i
k,Ai) ;

foreach j such that j > i and k→j (j explicitly depends on k) do
Assemble(T k

j ,T i
j ) ;

Facto(Ai) ;
foreach j such that i→j (j explicitly depends on i) do

Update(Ai,T
i
j ) ;

Algorithm 1.8: General multifrontal factorization algorithm for symmetric matrices.

The symmetric multifrontal method can be described in terms of operations on dense matrices. With
each node (column) i of the elimination tree is associated a dense matrix, called frontal matrix or front, that
is usually square and that contains the union of the column Ai and the temporary columns T i

j updated by
Ai. Column Ai is the factor block of frontal matrix i; the temporary columns constitute a contribution block
that will be passed to the parent. The following tasks are performed at each node i of the tree:
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(MF-1) allocation of the frontal matrix in memory; gather entries of column i of matrix A into the first column
of the front;

(MF-2) assembly of contribution blocks coming from the child nodes into that frontal matrix;

(MF-3) partial factorization of the factor block of the frontal matrix, and update of the remaining part.

This algorithm generalizes to the unsymmetric factorization of symmetrized matrices as we now explain.
The factor associated with node i is then the arrowhead constituted by the union of column i and row i of the
frontal matrix; the contribution block is the remaining square part. Figure 1.11(a) illustrates the association
of the frontal matrices with the nodes of the elimination tree on a symmetrized matrix. For unsymmetric
multifrontal factorizations, we refer the reader to [61, 37, 84].
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Figure 1.11: Frontal matrices associated with the elimination tree (left) or to the assembly tree (right) of
the matrix presented in Figure 1.8. The black part of the frontal matrices corresponds to their factor block
and the white part to their contribution block (that has to be assembled into the parent).

Let us reconsider the three algorithms presented above (left-looking, right-looking and multifrontal meth-
ods) according to their data access pattern. We illustrate their behaviour with the elimination tree presented
in Figure 1.12. In all three methods, the nodes are processed one after the other, following a so called topo-
logical ordering3 In the case of the left-looking method, when the current node (circled in the figure) is
processed, all its descendants (the nodes of the subtree rooted at the current node) are possibly accessed.
More accurately, the descendants that have an explicit dependency on the current node update it. In the
right-looking method, on the contrary, all its ancestors (the nodes along the path from the current node to
the root of the tree) are possibly accessed. Again, only the nodes which explicitly depend on the current
node are actually updated. In the multifrontal method, only the children nodes are accessed (to assemble
the contributions blocks).

The three methods (left-looking, right-looking, multifrontal) naturally generalize to supernodes. However,
the term supernodal method is commonly used to refer to left-looking and right-looking methods, rather than
multifrontal methods.

Parallelism in the multifrontal method will be discussed in Chapter 4. In parallel, the left-looking and
right-looking methods generalize to the so called fan-in and fan-out approaches [112], respectively. Early
implemetations of parallel multifrontal methods are discussed by Duff [74, 75].

3A topological ordering – in the case of a tree – is an order in which parents are ordered after their children.
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left-looking right-looking multifrontal

Figure 1.12: Data access pattern for the left-looking, right-looking and multifrontal methods.

1.3 Practical issues

1.3.1 Three-phase approach to solve Ax = b

Multifrontal methods, similar to direct solvers in general, generally use a three-phase approach to solve
Ax = b:

1. Analysis: the graph of the matrix is analysed, so that a fill-reducing permutation (see Section 1.1.7) is
obtained. Before that, a non symmetric permutation of the columns may also be computed, in order to
put large values onto the diagonal (see Section 1.1.8). The analysis also forecasts the datastructures for
the factorization. This requires performing a symbolic factorization, determining (relaxed) supernodes,
computing an assembly tree, and partially mapping the tasks onto the processors.

2. Factorization: the permuted matrix is factorized, under the form LU , LDLt, or LLT , depending on
the properties of the matrix; in case of numerical pivoting, the datastructures forecasted during the
analysis may be modified at runtime. The factorization is usually the most computationally-intensive
phase.

3. Solve: Triangular systems are solved to obtain a solution. Post-processing may also be applied, such
as iterative refinement and error analysis.

1.3.2 Numerical accuracy and pivoting

Because we use floating-point arithmetic, the representation of numbers is not exact and rounding errors
occur. In order to test the stability of an algorithm, the backward error analysis shows that in finite-precision
arithmetic, the relative forward error is bounded by the condition number of the linear system, multiplied
by the backward-error. It allows ([165]) to distinguish between

• an ill-posed problem, in which case the backward error can be small even if the solution is far from the
exact solution; in that case, the condition number of the system is large;

• an unstable algorithm, leading to a large backward error compared to the machine precision, even
when the condition number of the linear system is small.

When solving a linear system Ax = b, let x̃ be the calculated solution; the backward error corresponds to
the smallest perturbations ∆A and ∆b on A and b such that x̃ is the exact solution of a such a perturbed
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system [146]:

err = min {ε > 0 such that ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖,
(A+ ∆A)x̃ = b+ ∆b}

=
‖Ax̃− b‖

‖A‖‖x̃‖+ ‖b‖
.

Because we are dealing with sparse matrices, we know that the zeros in A are exact zeros. In other words,
the structure of ∆A (resp. ∆b if b is sparse) is known to be the same as that of A (resp. b). Therefore, it is
possible to use the component-wise backward error defined by

ω = max
i

(
|Ax̃− b|i

(|A||x̃|+ |b|)i

)
(see, for example, [40, 114]) together with the condition number

‖ |A−1| |A| |x̃|+ |A−1| |b| ‖∞
‖x̃‖∞

,

allowing for a better approach and possibly better bounds on the forward error.
In order to avoid large backward errors in the multifrontal factorization algorithm, too small pivots should

be avoided; this is because the division by a small pivot will lead to large elements, leading to significant

rounding errors when added to smaller numbers. The growth factor can be defined as ρ =
maxi,j,k |a(k)

ij |
maxi,j |aij | where

a
(k)
ij = a

(k−1)
ij − a

(k−1)
ik a

(k−1)
kj

a
(k−1)
kk

, i, j > k, is the value of A(i, j) at step k of Gaussian elimination: ρ is the largest

|A(i, j)| obtained during the application of Algorithm 1.2 divided by the largest |A(i, j)| term in the original
matrix. It gives an idea of the numerical problems one can expect.

In order to limit errors due to round-off, a first approach that can be applied is scaling (for example
[32, 78, 151]) because it improves the numerical properties of the matrix. If Dr and Dc are diagonal
matrices providing a row and a column scaling (respectively), the initial system Ax = b is replaced by
(DrADc)(D

−1
c x) = Drb and matrix DrADc is factorized instead of A. However, dynamic numerical pivoting

during the factorization is also crucial to limit the growth factor and obtain a stable algorithm.

1.3.2.1 Unsymmetric case

The goal of pivoting is to ensure a good numerical accuracy during Gaussian elimination. A widely used
technique is known as partial pivoting: at step i of the factorization (see Algorithm 1.2), we first determine k
such that |A(k, i)| = maxl=i:n |A(l, i)|. Rows i and k are swapped in A (and the permutation information is
stored in order to apply it to the right-hand side b) before dividing the column by the pivot and performing
the rank-one update. The advantage of this approach is that it bounds the growth factor and improves the
numerical stability.

Unfortunately, in the case of sparse matrices, numerical pivoting prevents a full static prediction of the
structure of the factors: it dynamically modifies the structure of the factors, thus forcing the use of dynamic
data structures. Numerical pivoting can thus have a significant impact on the fill-in and on the amount
of floating-point operations. To limit the amount of numerical pivoting, and stick better to the sparsity
predictions done during the symbolic factorization, partial pivoting can be relaxed, leading to the partial
threshold pivoting strategy:

Strategy 1.1. In the Partial threshold pivoting strategy, a pivot ai,i is accepted if it satisfies:

|ai,i| ≥ u× max
k=i:n

|ak,i|, (1.14)

for a given value of u, 0 ≤ u ≤ 1. This ensures a growth factor limited to 1 + 1/u for the corresponding step
of Gaussian elimination. In practice, one often chooses u = 0.1 or u = 0.01 as a default threshold and this
generally leads to a stable factorization.
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Figure 1.13: Frontal matrix during its factorization. After a given number of steps in the factorization,
eligible pivots are restricted to the square block on the left of the fully-summed rows.

It is possible to perform the pivot search on the row rather than on the column with similar stability.
This can be useful when, for example, frontal matrices are stored in row-major order (i.e., two consecutive
elements in a row are contiguous in memory). In that case, the stability check of a pivot ai,i is obtained by
replacing Equation (1.14) by:

|ai,i| ≥ u× max
k=i:n

|ai,k|. (1.15)

Furthermore, in the multifrontal method, once a frontal matrix is formed, we cannot choose a pivot
outside the square top-left part of the fully-summed block, because the corresponding rows are not fully-
summed. Figure 1.13 illustrates the candidate pivots at a given step of the factorization. If the current
pivot candidate is not large enough, other pivots should be tried in the block of candidate pivots; sometimes,
priority is given to the diagonal elements. Once all possible pivots in the block of candidate pivots have
been eliminated, if no other pivot satisfies the partial pivoting threshold, some rows and columns remain
unfactored in the front. Those are then delayed to the frontal matrix of the parent, as part of the Schur
complement. This is shown in Figure 1.14. Thus, because of numerical pivoting, the frontal matrix of the
parent becomes bigger than predicted. Furthermore, fill-in occurs because the frontal matrix of the parent
involves variables that were not in the structure of the child. A column can be delayed several times, but
the more we go up in the tree, the more it has chances to become stable because some non fully-summed
parts of that column in the child become fully-summed in the parent.

1.3.2.2 Symmetric case

The same type of approach is applied to the symmetric case. One important issue is that we want to
maintain the symmetry of the frontal matrices and of the factorization. Similarly to what is done in dense
linear algebra, two-by-two pivots are used [45, 46], so that the matrix D in the symmetric factorization LDLT

is composed of symmetric and 1× 1 and 2× 2 blocks. For example, in the factorization 0 1 1
1 0 1
1 1 0

 = A = LDLT =

 1 0 0
0 1 0
1 1 1

 0 1 0
1 0 0
0 0 −2

 1 0 1
0 1 1
0 0 1

 ,

D is composed of a 2× 2 pivot

(
0 1
1 0

)
, and a 1× 1 pivot , −2.

For symmetric matrices, partial threshold pivoting may be defined as follows:

• A 1× 1 diagonal pivot can be selected if it satisfies (1.14).
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Figure 1.14: Frontal matrix of a child (left) and of a parent (right) when two pivots — here a and b — are
delayed from the child to the parent. Fill-in occurs in the parent. Because some non fully-summed variables
in the child — here variable c — may become fully-summed in the parent, the possibilities to find a good
pivot in the parent are increased. For example, the entry at the intersection of row c and column a may be
large enough to swap the corresponding row with row a, or the elimination of c before a and b may result in
a and b being stable pivots with respect to the pivoting criterion.
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• After the adequate permutations of rows and columns, a 2 × 2 pivot P =

(
ai,i ai,i+1

ai+1,i ai+1,i+1

)
is

accepted at step i if it satisfies

|P−1|
(

maxk≥i+2 |ai,k|
maxk≥i+2 |ai+1,k|

)
≤
(

1/u
1/u

)
. (1.16)

This approach is the one from the Duff-Reid pivot selection algorithm [80, 82]. It ensures a growth factor
limited to 1 + 1/u at each step of the factorization, and is as good as rook pivoting [132]. 2 × 2 pivots are
often explicitly inverted during the factorization, in order to simplify the update of the columns of the L
factor.

1.3.2.3 LINPACK vs. LAPACK styles of pivoting

There are two ways to perform the row/column exchanges during the factorization, known as the LINPACK
style of pivoting and the LAPACK style of pivoting. Consider the example of a right-looking LU factorization
with (threshold) partial pivoting, where pivots are chosen in the column. In the LINPACK [70] style of
pivoting, when a pivot in the column has been chosen, the part of the rows in the already computed L
factors are not exchanged, only the rows in the current submatrix are permuted. One obtains a series
of Gauss transformations interleaved with matrix permutations that must be applied similarly during the
solution stage. In the LAPACK [38] style of pivoting, all rows including the already computed factors are
permuted, so that the series of transformations can be expressed in the form PA = LU . A clear description
of those two styles of pivoting is available in [144], in section 2.1.

1.3.2.4 Static pivoting and iterative refinement

In order to avoid the complications due to numerical pivoting, perturbation techniques can be applied. This
is typically the case in approaches that require static data structures during the factorization, i.e., where
the data structures are entirely predicted. In particular, SuperLUdist uses such an approach; at each step, a
pivot smaller than ε‖A‖ in absolute value is replaced by ε‖A‖, where ε is the machine precision, see [123]. In
practice, iterative refinement (see Algorithm 1.9) can help obtaining a solution to the original system from
the solution of the perturbed system.

r = b−Ax
repeat

Solve A∆x = r using the approximate factorization relying on static pivoting
x← x+ ∆x
r = b−Ax
ω = maxi

|ri|
(|A||x|+|b|)i

until ω ≤ ε or convergence is not obtained or is too slow
Algorithm 1.9: Iterative refinement. At each step, the component-wise backward error ω is computed
and checked.

A comparison of approaches based on static pivoting with approaches based on numerical pivoting in
the context of high-performance distributed solvers can be found in [28]. Remark that static pivoting and
numerical pivoting at runtime can be combined, as proposed in [78], also discussed in Section 2.2.4.

1.3.3 Memory management in the multifrontal method

Because of the dependencies of the method, the assembly tree must be processed from leaves to roots during
the factorization process, enforcing a topological order. Traditionally, the multifrontal method uses three
areas of storage, one for the factors, one to store the contribution blocks waiting to be assembled, and one
for the current frontal matrix. During the factorization process, the memory space required for the factors
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Figure 1.15: Examples of assembly trees.

always grows but the memory for the contribution blocks (we name it CB memory) varies depending on the
operations performed. When the partial factorization of a frontal matrix is finished, a contribution block is
stored and this increases the size of the CB memory; on the other hand, when the frontal matrix of a parent is
formed and assembled, the contribution blocks of the children are used and discarded, freeing some memory.
It is important to note that in a sequential environment, the CB memory forms a stack when a postorder
traversal of the assembly tree is used to visit the nodes; a postorder is a particular topological order where
the nodes in any subtree are numbered consecutively: each time the last sibling of a family is processed, the
parent node is activated, consuming the contribution blocks on the top of the stack. To illustrate this remark,
we give in Figure 1.15 two examples of assembly trees. As is classical in many multifrontal codes, rather than
relying on dynamic allocation for each small dense matrix generated during the traversal of the tree (frontal
matrix, contribution block, generated factors), we assume here that a preallocated workspace is used, allowing
for an explicit management of memory. For more discussions on the use of such a preallocated workspace
and possible optimizations, we refer the reader to Chapter 3, Section 3.5. For the trees of Figure 1.15, the
memory evolution for the factors, the stack of contribution blocks and the current frontal matrix is given in
Figure 1.16. First, storage for the current frontal matrix is reserved (see “Allocation of 3” in Figure 1.16(a));
then, the frontal matrix is assembled using values from the original matrix and contribution blocks from the
children nodes, and those can be freed (“Assembly step for 3” in 1.16(a)); the frontal matrix is factorized
(“Factorization step for 3” in 1.16(a)). Factors are stored in the factor area on the left in our figure and the
contribution block is stacked (“Stack step for 3”). The process continues until the complete factorization of
the root node(s). We can observe the different memory behaviours between the wide tree (Figure 1.16(b))
and the deep tree (1.16(a)): the peak of active memory (see Figure 1.16(b)) is significantly larger for the
wide tree.

This shows that the shapes of the trees resulting from different orderings, (see Figure 1.6) will have a
strong impact on the behaviour of the stack memory and on its maximum size. Further details can be found
in [107]. Furthermore, the postorder is not unique since given a parent node, there is some freedom to order
its child subtrees. This is illustrated by the simple tree from Figure 1.17. In [126], Liu suggested a postorder
which minimizes (among the possible postorders) the working storage of the multifrontal method; we will
propose variations and extensions of his work for various objectives and models of multifrontal methods in
Chapter 3.

In parallel environments, the memory for contribution blocks no longer exactly behaves as a stack
(see [21]), because of the difficulty of ensuring a postorder while taking advantage of tree parallelism. At-
tempts to better take memory into account in dynamic schedulers are proposed in Chapter 4. In Section 4.3,
the impact of the static mapping on the memory scalability is also discussed.

In the rest of this thesis, we call active storage or working storage the storage corresponding to both the
stack and the current active frontal matrix.
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(a parent is activated as soon as possible), the tree on the left (resp. right) leads to a maximum number
contribution blocks stored in the stack of two (resp. five).

1.3.4 Out-of-core approaches

Some applications require huge amounts of memory that sometimes exceed the physical memory available.
This may happen when large problems are factorized via direct methods (among which multifrontal methods)
on a server, on a parallel cluster or a high performance computer. Even when the initial matrix holds in
physical memory, the factors or the active storage are often orders of magnitude larger than the initial matrix
and may not fit in physical memory. If nothing is done, the application runs out-of-memory. However, this
limit can be overcome by using other units of storage like disks to extend the main memory. Out-of-core
approaches are then used, motivated by the fact that disks are much cheaper than core memory. In a way,
disks are just part of a hierarchical set of units of storage (registers, L1 cache, L2 cache, L3 cache, physical
memory, disks, tapes). In fact, memory can be seen as a cache for the disks and one may therefore wonder
why the out-of-core question should be any different from the locality questions related to the use of memory
hierarchies and caches. However the differences are:

• Contrary to the data traffic between main memory and cache (except when considering special cases
such as GPGPU or special accelerators), it is possible to control the data movements between disks
and main memory.

• The amount of cache memory (usually several gigabytes) is much larger than the amount of cache
memory (in the order of megabytes). The ratio between disk storage and physical memory is often
much smaller than the ratio between physical memory and cache size.

• Letting the system use swapping mechanisms and disks usually kills performance, whereas it performs
a good job at managing caches.

As said in the previous section, the multifrontal approach uses several areas of storage, one of which is
constituted by the factors computed at each node of the tree. Because the factors produced are only accessed
at the solve stage, it makes sense to write them to disk first. This is the first approach that we will study
in Chapter 5 (Section 5.1), before assessing the volume of I/O necessary for the active storage in a parallel
environment (Section 5.2), as a function of the available core memory. Furthermore, in the case of serial
environments, tree traversals and postorders have a strong impact on the memory usage (see Section 1.3.3);
however they also have an impact on the I/O traffic and we will see in Chapter 3 that minimizing memory
is intrinsically different from minimizing I/O.
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Chapter 2

A Parallel Multifrontal Method for
Distributed-Memory Environments

In this chapter, we present an original implementation of the multifrontal method and show the impact of
parallelism on numerical functionalities. In particular, we show how some algorithms that appear relatively
simple in a sequential context need be extended to address parallel, dynamic and asynchronous environments.
We focus on parallel multifrontal methods, and refer the reader to [112] for a more general presentation of
parallelism in other sparse direct methods. We first show in Section 2.1 how we adapted the multifrontal
method to a parallel environment. In Sections 2.2 to 2.6 we then explain how some features or functionalities
can be adapted or developed in this parallel context; we discuss the pivot selection, the solution phase, the
Schur complement and the computation of the determinant. Note that out-of-core issues will be the object
of a specific chapter (Chapter 5).

2.1 Adapting the multifrontal factorization to a parallel distributed
environment

As explained in the previous chapter, the multifrontal method factorizes a matrix by performing a succes-
sion of partial factorizations of small dense matrices called frontal matrices, associated with the nodes of an
assembly tree. A crucial aspect of the assembly tree is that it defines only a partial order for the factoriza-
tion since the only requirement is that a child must complete its elimination operations before the parent
can be fully processed. This gives a first source of parallelism, where independent branches are allowed to
be processed in parallel. Then each partial factorization is a task that can itself be parallelized; a Schur
complement (possibly distributed over the processors) is produced, that must be assembled (assembly tasks)
into the processors participating to the parent node. In our approach, all these tasks are managed asyn-
chronously, according to the central Algorithm 0.1, presented in the main introduction of this thesis page 2.
Furthermore, the mapping of most of the computations onto the processors is dynamic, with distributed
scheduling decisions. This allows to deal with the dynamic nature of our tasks graphs (due to numerical
pivoting), as well as with the possible load variations of the platform.

2.1.1 Sources of parallelism

We consider the condensed assembly tree of Figure 2.1, where the leaves are subtrees of the assembly tree.
We will in general define more leaf subtrees than processors and map them onto the processors in order
to obtain a good overall load balance of the computation at the bottom of the tree. However, if we only
exploit the tree parallelism, the speed-up is usually low: the actual speed-up from this parallelism depends
on the problem but is typically only 2 to 4 irrespective of the number of processors. This poor efficiency is
caused by the fact that the tree parallelism decreases while going towards the root of the tree. Moreover,
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Figure 2.1: Distribution of the computations of a multifrontal assembly tree on four processors P0, P1, P2,
and P3.

it has been observed (see for example [21]) that often more than 75% of the computations are performed in
the top three levels of the assembly tree. It is thus necessary to obtain further parallelism within the large
nodes near the root of the tree. The additional parallelism will be based on parallel versions of the blocked
algorithms used in the factorization of the frontal matrices.

Nodes of the tree processed by only one processor will be referred to as nodes of type 1 and the parallelism
of the assembly tree will be referred to as type 1 parallelism. Further parallelism is obtained by doing a 1D
block partitioning of the rows of the frontal matrix for nodes with a large contribution block. Such nodes
will be referred to as nodes of type 2 and the corresponding parallelism as type 2 parallelism. Finally, if the
root node is large enough, then 2D block cyclic partitioning of the frontal matrix is performed. The parallel
root node will be referred to as a node of type 3 and the corresponding parallelism as type 3 parallelism.

2.1.1.1 Description of type 2 parallelism

If a node is of type 2, one processor (called the master of the node) holds all the fully-summed rows and
performs the pivoting and the factorization on this block while other processors (so called slaves) perform
the updates on the contribution rows (see Figure 2.2).

Slave 1

Slave 2

Master

Contribution 
rows

(Fully-summed rows)

Figure 2.2: Type 2 nodes: partitioning of frontal matrix.

Macro-pipelining based on a blocked factorization of the fully-summed rows is used to overlap communi-
cation with computation. The efficiency of the algorithm thus depends both on the block size used to factor
the fully-summed rows and on the number of rows allocated to a slave process. During the analysis phase,
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based on the structure of the assembly tree, a node is determined to be of type 2 if its frontal matrix is suffi-
ciently large. We assume that the master processor holding the fully-summed rows has been mapped during
the analysis phase and that any other processors might be selected as slave processors. As a consequence,
part of the initial matrix is duplicated onto all the processors to enable efficient dynamic scheduling of the
corresponding computational tasks. At execution time, the master then first receives symbolic information
describing the structure of the contribution blocks sent by its children. Based on this information, the master
determines the exact structure of its frontal matrix and decides which slave processors will participate in
the factorization of the node. Figure 2.3 illustrates the dynamic subdivision and mapping of type 2 nodes
in the tree, where the subgraph corresponding to the pipelined factorization is only defined at runtime. The
overall graph of tasks we manage is therefore a dynamic, distributed tasks graph.
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Figure 2.3: Illustration of dynamic definition and mapping of tasks in type 2 nodes. The tasks graph in the
middle node is a dag defined and mapped dynamically.

Further details on the implementation of type 2 nodes depend on whether the initial matrix is symmetric
or not and will be given in Section 2.1.5.

2.1.1.2 Description of type 3 parallelism

In order to have good scalability, we perform a 2D block cyclic distribution of the root node, on which a
standard dense factorization is required. We use ScaLAPACK [44] or the vendor equivalent implementation
(PDGETRF for unsymmetric matrices and PDPOTRF for symmetric positive matrices1).

Currently, a maximum of one root node, chosen during the analysis, is processed in parallel. This node
is of type 3. The node chosen will be the largest root provided its size is larger than a computer dependent
parameter. One processor, the so-called master of the root, holds all indices describing the frontal matrix.

We define the root node as determined by the analysis phase, the estimated root node. Before factor-
ization, the estimated root node frontal matrix is statically mapped onto a 2D grid of processors. We use
a static distribution and mapping for those variables known by the analysis to be in the root node so that,
for an entry in the estimated root node, we know where to send it and assemble it using functions involving
integer divisions, moduli, . . .

1For symmetric indefinite matrices, because no LDLT kernel is available in ScaLAPACK, we use the LU decomposition
computed by PDGETRF.
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In the factorization phase, the original matrix entries and the part of the contribution blocks from the
children corresponding to the estimated root can be assembled as soon as they are available. The master
of the root node then collects the index information for all the uneliminated (or delayed, see Figure 1.14)
variables of its children and builds the structure of the frontal matrix. This symbolic information is broadcast
to all participating processors. The contributions corresponding to uneliminated variables can then be sent
by the children to the appropriate processors in the 2D grid for assembly, or directly assembled locally if the
destination is the same processor. Note that, because of the requirements of ScaLAPACK, local copying of
the root node is performed and the leading dimension of the local array changes.

2.1.2 Asynchronous communication issues

To enable automatic overlapping between computation and communication, we have chosen to use fully
asynchronous communications, and we rely on the Message Passing Interface (MPI [71]). For flexibility and
efficiency, explicit buffering in the user space has been implemented. The size of the buffer is equal to a
relaxed estimation of the maximum message size, computed by each processor prior to factorization2. This
estimation is based on the partial static mapping of the assembly tree and takes into account the three types
of parallelism used during the factorization. A software layer (Fortran 90 module) takes care of sending
asynchronous messages, based on immediate sends (MPI ISEND [159]). Note that messages are never sent
when the destination is identical to the source; in that case the associated action is performed locally directly,
in place of the send, slightly modifying synchronization issues: instead of sending the message and continuing
the current action, we need to perform the action that would be done on reception straight away, which is
much earlier.

When trying to send contribution blocks, factorized blocks, . . . we first check whether there is room in
the send buffer. If there is room in the send buffer, the message is packed into the buffer and an asynchronous
communication is posted. Otherwise, the procedure requesting the send is informed that the send cannot
be done. In such cases, to avoid deadlock, the corresponding processor will try to receive messages (and will
perform the associated action) until space becomes available in its local send buffer. Let us take a simple
illustrative example. Processor A has filled-up its buffer doing an asynchronous send of a large message to
processor B. Processor B has done the same to processor A. The next messages sent by both processors
A and B will then be blocked until the other processor has received the first message. More complicated
situations involving more processors can occur, but in all cases the key issue for avoiding deadlock is that
each processor tries not to be the blocking processor. The way to allow message reception at the moment of
performing a send is implemented through calls to the function that receives and processes messages. Notice
that when a message is received, the associated action can induce another send. If the buffer is still full, we
may enter deeper and deeper levels of recursive calls until the situation stabilizes. Recursivity is a source
of complication that makes the code complex. In particular, if we detect at a deep level of recursivity that
all messages from a given processor have been received, we may need to delay some action if one of these
messages is only going to be processed at the top level of recursivity.

Another issue is that MPI only ensures that messages are non-overtaking, that is if a processor sends two
messages to the same destination, then the receiver will receive them in the same order. For synchronous
algorithms the non-overtaking property is often enough to ensure that messages are received in the correct
order. With a fully asynchronous algorithm, based on dynamic scheduling of the computational tasks, it can
happen that messages arrive “too early”. In this case, it is crucial to ensure that the “missing” messages have
already been sent so that blocking receives can be performed to process all messages that should have already
been processed at this stage of the computation. As a consequence, the order used for sending messages is
critical. To summarize, the properties that we must ensure to avoid deadlocks in our asynchronous approach
are the following:

Property 2.1. When trying to send a message, if the asynchronous send buffer is full, one must try to
receive and process any message before a new attempt to send. (If processing a message involves a send, this
implies recursivity.)

2We will see in Section 6.5 how the buffer sizes can be reduced.
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Figure 2.4: Messages involved in the assembly of a type 2 node. Although the shape of the tree is static,
the sizes of the frontal matrices depends on numerical issues (delayed rows).

Property 2.2. If a processor P has to process messages M1 and M2, in that order, one must ensure that
M1 was sent before M2, even if M1 and M2 are sent by two distinct processors. In general, this means that
the processor sending M1 to P should do so before performing any action that may result in M2 to be sent.

Their impact on the algorithm design will be illustrated in Sections 2.1.3 and 2.1.5 during the detailed
description of type 2 parallelism for LDLT factorization.

Remark that in Algorithm 0.1, priority is given to message reception and a new local task is extracted
from the pool of ready tasks only when no message is available on reception. The main reasons for this
choice are first that the message received might be a source of additional work and parallelism and second
that the sending processor might be blocked because its send buffer is full, in which case it is even more
critical to receive the available messages as soon as possible.

2.1.3 Assembly process

An estimation of the frontal matrix structure (size, number of fully-summed variables) is computed during
the analysis phase. Because of numerical pivoting, the final structure and the list of indices in the front is
however unpredictable and it is only computed during the assembly process of the factorization phase. This
requires a message from each child node to the master of a parent node. The list of indices of a front is then
the result of a merge of the index lists of the contribution blocks of the children with the list of indices in the
arrowheads (corresponding to entries of the original matrix, see the definition of that term in Section 1.1.3)
associated with all the fully-summed variables of the front. Once the index list of the front is computed, the
assembly of numerical values can be performed efficiently.

We describe the assembly process in Figure 2.4. Let Parent be a node of type 2 with two children.
Assume that the master master P has received all symbolic information from its children: those messages
are tagged MASTER2MASTER because they are sent from a master of a child to the master of the parent.
Remark that such messages also include delayed or non-eliminated rows. Since master P has received all its
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MASTER2MASTER messages for node Parent, the assembly task for Parent was inserted in the local pool
of tasks of master P. When that task is extracted (see Algorithm 0.1, the structure of the parent is built
by master P and the non-eliminated rows from the children, if any, are ordered and assembled. Processor
master P then defines the partition of non-fully summed rows of the frontal matrix into blocks, and chooses
a set of slave processors that will participate in the parallel assembly and factorization of Parent. This
choice is based on an estimate of the workload and memory load of the other processors. In order to inform
other processors that they have been chosen, Master P sends a message (identified by the tag DESC STRIP)
describing the work to be done on each slave processor. It then sends messages (with tag MAPROW) to all
processors involved in a type 1 child (none in the example of the figure) and to all slave processors involved
in type 2 children, providing them symbolic information on where to send the rows of their contribution
blocks for the assembly process. Thanks to that information, messages containing contributions rows (tagged
CONTRIB) are sent from children processors P11, P12, P21, P22, to processors involved in the parent: P1,
P2, master P. The numerical assembly (extend-add operations) can then be performed, row by row.

As already mentioned in Section 2.1.2, the order in which messages are sent is important (see Prop-
erty 2.2). For example, a slave of master P may receive a contribution block (message CONTRIB) before
receiving the message with tag DESC STRIP from its master. To allow this slave processor to safely per-
form a blocking receive on the missing DESC STRIP message, we must ensure that the master of the node
has sent DESC STRIP before sending MAPROW. Otherwise we cannot guarantee that DESC STRIP has
actually been sent (for example, the send buffer might be full).

After the message MAPROW has been sent, the factorization of the master of the parent cannot start
before all processes involved in the children of the parent have sent their contributions. Therefore, once the
messages DESC STRIP and MAPROW have been sent, the master of inode returns in the main loop of
Algorithm 0.1 and checks for receptions or extracts new nodes from the pool of tasks. When it detects after
a reception that all CONTRIB messages it depends on have been received, the factorization task for Parent
is inserted into the pool. The pool is managed using a LIFO (or stack) mechanism, in order to keep locality
of computations and avoid too many simultaneous active tasks that would cause memory difficulties.

The main difference between the symmetric and the unsymmetric cases is due to the fact that a global
ordering of the indices in the frontal matrices is necessary for efficiency in the symmetric case to guarantee
that all lower triangular entries in a contribution row of a child belong to the corresponding row in the parent.
We use the global ordering obtained during analysis for that, with one exception: the delayed variables coming
from the children because of numerical difficulties are assembled last in the fully summed part of the parent
in order to avoid them being used as first pivot candidates in the front of the parent. Because of that, special
care has to be taken when assembling rows/columns corresponding to delayed variables.

Moreover, it is quite easy to perform a merge of sorted lists efficiently. If we assume that the list of
indices of the contribution block of each child is sorted then the sorted merge algorithm will be efficient if
the indices associated with the arrowheads are also sorted. Unfortunately, sorting all the arrowheads can
be costly. Furthermore, the number of fully-summed variables (or number of arrowheads) in a front might
be quite large and the efficiency of the merging algorithm might be affected by the large number of sorted
lists to merge. Based on experimental results, we have observed that it is enough to sort only the arrowhead
associated with the first fully-summed variable of each frontal matrix. The assembly process for the list
of indices of the node is described in Algorithm 2.1, whose key issue for efficiency is the fact that only a
small number of variables are found at step 4. For example, on matrix Wang3 with default amalgamation
parameter, the average number of indices found at step 4 was 0.3. During this algorithm, a flag array is
necessary; it gives for each global variable its position in the front and allows to detect whether a variable
has already been encountered at earlier steps and is zero for variables not yet encountered. The position in
the parent contained in this array is also used to inform the children of the positions where to assemble their
rows, in the “MAPROW” messages discussed earlier. In practice, children lists of row indices are overwritten
with their position in the parent. The flag array can be reset to zero when it has been used (only the known
nonzero entries are reset to zero in order to limit the associated cost).

At the end of the algorithm, the index list of the parent front contains, in that order:

1. the fully-summed variables known statically;
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2. the delayed variables coming from the children;

3. the variables in the contribution block.

Since the delayed variables may correspond to numerical difficulties, it makes sense to order them last in
the fully-summed part to avoid starting with the numerical difficulties. Referring to Figure 1.14 where no
particular order was defined, this means that we prefer to put variables a and b last in the fully-summed
block of the parent, after variable c, although this means that the global ordering is not respected on the
parent (all delayed variables should otherwise be ordered first in the front).

Step 1: Get the list of fully summed variables of the parent supernode known statically (and sorted
according to a global ordering).
Step 2: Sort the indices of the first arrowhead, i.e., the one associated with the first fully summed
variable of the front.
Step 3: Merge the sorted lists of indices from the children and from the first arrowhead, excluding
variables from step 1.
Step 4: Build and sort variables belonging only to the other arrowheads (and not found in steps 1 or 3).
Step 5: Merge the sorted lists built at steps 3 and 4, append the resulting list to the list of fully
summed variables from step 1.

Algorithm 2.1: Construction of the indices of the frontal matrix of a parent node, symmetric case.

2.1.4 Factorization of type 1 nodes

Blocked algorithms are used during the factorization of type 1 nodes and, for both the LU and the LDLT

factorization algorithms, we want to keep the possibility of postponing the elimination of fully-summed
variables. Note that classical blocked algorithms for the LU and LLT factorizations of full matrices [38] are
quite efficient, but it is not the case for the LDLT factorization.

We will briefly compare kernels involved in the blocked algorithms. We then show how we have exploited
the frontal matrix structure to design an efficient blocked algorithm for the LDLT factorization.

Let us suppose that the frontal matrix has the structure of Figure 2.5, where A is the block of fully-
summed variables available for elimination. Note that, in the code, the frontal matrix is stored by rows.

C

B

A

E

Figure 2.5: Structure of a type 1 node.

During LU factorization, an efficient right-looking blocked algorithm [20, 62, 73] is used to compute the
LU factor associated with the block of fully-summed rows (matrices A and C). The Level 3 BLAS kernel
DTRSM is used to compute the off-diagonal block of L (overwriting matrix B). Updating the matrix E is
then a simple call to the Level 3 BLAS kernel, DGEMM.

During LDLT factorization, a right-looking blocked algorithm (see Chapter 5 of [73]) is first used to
factor the block column of the fully-summed variables. Let Loff be the off diagonal block of L stored in
place of the matrix B and DA be the diagonal matrix associated with the LDLT factorization of the matrix
A. The updating operation of the matrix E is then of the form E ← E −LoffDAL

T
off where only the lower

triangular part of E needs to be computed. No Level 3 BLAS kernel is available to perform this type of
operation which corresponds to a generalized DSYRK kernel.
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Note that, when we know that no pivoting will occur (symmetric positive definite matrices), Loff is
computed in one step using the Level 3 BLAS kernel DTRSM. Otherwise, the trailing part of Loff has to
be updated after each step of the blocked factorization, to allow for a stability test for choosing the pivot.

To update the matrix E, we have applied the ideas used by [63] to design efficient and portable Level 3
BLAS kernels. Blocking of the updating is done in the following way. At each step, a block of columns of
E (Ek in Figure 2.6) is updated. In our first implementation of the algorithm, we stored the scaled matrix

C

L

k

kk E

Figure 2.6: Blocks used for updates of the contribution part of a type 1 node.

DAL
T
off in matrix C, used here as workspace. Because of cache locality issues, the Megaflops/s rate was

still much lower than that of the LU or Cholesky factorizations. In the current version of the algorithm,
we compute the block of columns of DAL

T
off (Ck in Figure 2.6) only when it will be used to update Ek.

Furthermore, to increase cache locality, the same working area is used to store all Ck matrices. This was
possible because Ck matrices are never reused in the algorithm. Finally, the Level 3 BLAS kernel DGEMM
is used to update the rectangular matrix Ek. This implies more operations but is more efficient on many
platforms than the updates of the shaded trapezoidal submatrix of Ek using a combination of DGEMV
and DGEMM kernels. Our blocked algorithm is summarized in Algorithm 2.2. In practice, a second level of
blocking for the diagonal block of Ek is applied, avoiding most unnecessary operations in the upper-triangular
diagonal block of Ek.

do k = 1, nb blocks
Compute Ck (block of columns of DAL

T
off )

Ek ← Ek − LkCk

end do
Algorithm 2.2: LDLT factorization of type 1 nodes, Blocked factorization of the fully-summed columns.

2.1.5 Parallel factorization of type 2 nodes

Figure 2.7 illustrates the structure of a frontal matrix for the unsymmetric and symmetric cases. In both
algorithms, the master processor is in charge of all the fully-summed rows and the blocked algorithms used to
factor the block of fully-summed rows are the ones described in the previous subsection. In the unsymmetric
case, remember that partial pivoting is here done with column interchanges. This is why it makes sense to
use a partitioning by rows. In the symmetric case, a partitioning by columns could have been envisaged in
order to simplify pivoting issues; however, the load of the master processor would then have been very large
in comparison to the one of the slaves so that such a scheme would probably be less scalable.

In the unsymmetric case, at each block step, the master processor sends the factorized block of rows to
its slave processors and then updates its trailing submatrix. The behaviour of the algorithm is illustrated in
Figure 2.8, where program activity is represented in black, inactivity in grey, and messages by lines between
processes. The figure is a trace record generated by the VAMPIR [131] package. We see that, on this
example, the master processor is relatively more loaded than the slaves.

In the symmetric case, a different parallel algorithm has been implemented. The master of the node
performs a blocked factorization of only the diagonal block of fully-summed rows. At each block step, its
part of the factored block of columns is broadcast to all slaves ((1) in Figure 2.7). Each slave can then use
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Figure 2.7: Structure of a type 2 node.

Figure 2.8: VAMPIR trace of an isolated type 2 unsymmetric factorization (Master is Process 1).
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this information to compute its part of the block column of L and to update part of the trailing matrix.
Each slave, apart from the last one, then broadcasts its just computed part of the block of column of L to the
following slaves (illustrated by messages (2) and (3) in Figure 2.7). Note that, in order to process messages
(2) or (3) at step k of the blocked factorization, the corresponding message (1) at step k must have been
received and processed.

Since we have chosen a fully asynchronous approach, messages (1) and (2) might arrive in any order. The
only property that MPI guarantees is that messages of type (1) will be received in the correct order because
they come from the same source processor. When a message (2) at step k arrives too early, we have then to
force the reception of all the pending messages of type (1) for steps smaller than or equal to k. Property 2.2
induces a necessary constraint in the broadcast process of messages (1): if at step k, message (1) is sent
to slave 1, we must be sure that it will also be sent to the subsequent slaves. In our implementation of
the broadcast, we first check availability of memory in the send buffer (with no duplication of data to be
sent) before starting the actual send operations. Thus, if the asynchronous broadcast starts, it will complete.
Another possibility, more specific to the described algorithm, would be to implement the broadcast in reverse
order, starting with the last slaves (Property 2.2 would then be strictly respected).

Figure 2.9: VAMPIR trace of an isolated type 2 symmetric factorization; constant row block sizes. (Master
is Process 1).

Similarly to the unsymmetric case, our first implementation of the algorithm is based on constant row
block size. We can clearly observe from the corresponding execution trace in Figure 2.9 that the later slaves
have much more work to perform than the others. To balance work between slaves, later slaves should hold
less rows. This has been implemented using a heuristic that aims at balancing the total number of floating-
point operations involved in the type 2 node factorization on each slave. As a consequence, the number of
rows treated varies from slave to slave. The corresponding execution trace is shown in Figure 2.10. We can
observe that work on the slaves is much better balanced and both the difference between the termination
times of the slaves and the elapsed time for factorization are reduced.

However, the comparison of Figures 2.8 and 2.10 shows that firstly the number of messages involved in
the symmetric algorithm is much larger than in the unsymmetric case; secondly, that the master processor
performs relatively less work than in the parallel algorithm for unsymmetric matrices.

To finish this section, let us remark that the elimination of the fully-summed rows can represent a
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Figure 2.10: VAMPIR trace of an isolated type 2 symmetric factorization; variable row block sizes. (Master
is Process 1).

potential bottleneck for scalability, especially for frontal matrices with a large fully-summed block near the
root of the tree. To overcome this problem, we subdivide such nodes with large fully-summed blocks, as
illustrated in Figure 2.11. In practice, a node is split recursively as much as needed, although this increases
the number of assembly operations and volume of communication. Nevertheless, we benefit from splitting
by increasing the amount of parallelism (the amount of work performed by the master decreases). Forcing
the mapping of the rows in a way that limits the volume of communications during the processing of the
chain is then useful, although it slightly limits the amount of dynamic scheduling decisions. Furthermore,
the assembly operations can be optimized to avoid indirections and could even be avoided when the mapping
of the rows is constrained. Another approach would consist in defining a new type of node (type 2b, say),
and design a factorization algorithm that exploits several processors assigned to the fully summed rows
of the frontal matrix. However, such a factorization algorithm may be complicated to implement in an
asynchronous environment, or would require a strong synchronization among the processors participating to
the factorizaiton of the fully summed rows. Currently, this synchronization is done by using the parent-child
dependency of the elimination tree.

2.1.6 Discussion

We aimed in this section at providing the basis of the asynchronous approach we proposed to implement
parallel multifrontal methods. We refer the reader to [27, 24] for performance analysis, more detailed
descriptions, and presentation of other features related to the software that implements this approach. For
example, it is possible to use asynchronous (or immediate) communications not only on the sender side but
also on the receiver side, significantly improving the performance [29], at the cost of slightly complexifying
the asynchronous algorithms.

Various approaches defining the way the tree is mapped onto the processors together with the dynamic
scheduling heuristics that can be used are discussed further in Chapter 4. Even with a relatively basic partial
static mapping of the master processors for each node, dynamic decisions based solely on estimates of the
workload of other processors allowed to reach a very competitive performance, as was shown in [110] and [28].
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Figure 2.11: Assembly tree before and after the subdivision of a frontal matrix with a large pivot block.

The latter reference ([28]) includes comparisons with SuperLUdist [124], and involves its main author.

2.2 Pivot selection

In the sequential algorithm, we use the pivot selection algorithm described in Sections 1.3.2.1 and 1.3.2.2. In
parallel distributed environments, the main difficulty comes from the fact that, because data are distributed
over the processors, it is not always possible to check the relative magnitude of a candidate pivot against
the largest value on the row or the column, which may be on distant processors, or not even computed yet.
In order to avoid this problem, and in order to avoid the dynamic data structures possibly resulting from
pivoting, many approaches rely on static pivoting (see Section 1.3.2.4).

In the following subsections, we present the approach we have retained to handle pivoting in a parallel
or out-of-core environment, and also how singular matrices can be handled.

2.2.1 Pivoting and stability issues in a parallel asynchronous context

We explained earlier how our parallel approach is capable of delaying pivots and managing dynamic data
structures. Still, the decision of delaying a pivot is more difficult to take in parallel because part of the pivot
column may reside on a different processor. In the unsymmetric version, because we use a 1D decomposition,
we can access the complete row and check the stability of a pivot against the row. In the symmetric case
(where only the lower triangular part of the matrix is defined), some columns must be distributed in order
to have enough parallelism. This is done by what we call type 2 parallelism, and we have to perform the
partial factorization of a matrix that has the shape of Figure 2.7 (right).

Thus, neither the complete row nor the complete column are available to check for pivot stability. In
the case of a synchronous approach, a reduction operation could inform the processor responsible for the
pivot selection of the largest entry in the column. In an asynchronous approach, waiting for the information
would require a synchronization which is not affordable: in our approach, a processor may start the partial
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Matrix Number Backward error and estimate
Name of MPI Number of of max in distant part of column
(origin) processes type 2 nodes without with
CONESHL 1 0 6.5× 10−13

(Samtech) 4 5 2.1× 10−11 5.5× 10−13

CONT-201 1 0 3.2× 10−9

(UFl collec.) 8 6 1.0 3.1× 10−9

CONESHL2 1 0 9.4× 10−11

(Samtech) 2 1 1.3× 10−6 1.4× 10−10

8 14 4.1× 10−2 1.3× 10−10

Table 2.1: Effect on the backward error (value of RINFOG(7) in MUMPS) of taking into account estimates
of the magnitude of elements of columns mapped on other processors. The mechanism computing such
estimates is necessary (and sufficient) to stabilize the numerical behaviour of the parallel code. No iterative
refinement. Except on problem CONESHL2 where the right-hand side was available, we used a right-hand
side vector whose entries are all equal to one.

factorization of a frontal matrix even before the other processors have finished to assemble their share of
the matrix. When the data we are interested in are assembled, it is too late to send the information to the
processor in charge of the pivot selection. An alternative approach would consist in forcing the entire fully
summed columns to be on a single processor (instead of the shape of type 2 nodes from Figure 2.7), but this
would seriously limit parallelism by forcing a too large granularity of the task associated with the master
process.

We have introduced an approach to address this issue. For each column, the idea consists in checking
the pivot against the maximal magnitudes of the contributions assembled into the column, instead of the
magnitude of the column after it is assembled and fully updated. A first study was done in [78] and showed
that this should result in a reasonable numerical behaviour on the problems tested. In our distributed-
memory approach, each child (more precisely each processor involved in a child) of the considered node sends
information about the largest magnitude of each of its columns to the processor in charge of the pivot selection
at the parent level. Note that a message had to be sent anyway, containing the contributions. Therefore,
the contribution information and magnitude information are sent in the same message. Furthermore, only
the information corresponding to columns that will be fully-summed in the parent are sent. We use an
array PARPIV to store those estimates at the parent. The size of PARPIV is NFS, the number of fully
summed variables in the front. At the construction of the front, PARPIV(i) (1 ≤ i ≤ NFS) is initialized to
the maximum arrowhead value to be assembled in column i of the front, excluding those assembled in the
master part; then each time information on a given column i is received from a child process, PARPIV(i) is
updated. When the master of the parent node factors its frontal matrix, each pivot is checked against those
maximal magnitudes before being accepted (see the details in the algorithm of Section 2.2.4).

Table 2.1 reports on the effect of this strategy on three example problems. Serial executions are stable
numerically thanks to the availability of the full column on the processor, but we observe that parallel
executions with type 2 nodes require the mechanism that builds estimates of the magnitudes from the
contributions of the children to obtain a reasonable backward error.

Recently, this approach showed some limitations on two matrices from a French industrial group with
whom we collaborate. We have modified it in order to take into account modifications of the estimates of
the magnitude of the columns during the factorization. Those modifications can for example be based on
the growth factor observed in the pivot block of the master part. Another approach which seems promising
consists in updating PARPIV as if it was an extra row in the front: at each factorization of a pivot F (k, k)
in the frontal matrix F , the estimates can be updated as follows:

PARPIV(k + 1 : NFS)← PARPIV(k + 1 : NFS) + PARPIV(k)/|F (k, k)| × |F (k, k + 1 : NFS)|. (2.1)
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In the case of 2× 2 pivots, a (slightly more complicated) formula can also be obtained.

2.2.2 Detection of null pivots and rank-revealing

When the input matrix is close to singularity, it is often useful from an application’s point of view to detect
null or tiny pivots during the factorization process. The global variable associated with the null pivot is
often of interest to the user because it may correspond to special physical properties or regions of the mesh
where there is a difficulty (e.g., too many constraints). In FETI-like methods, domains are not always fixed
so that the corresponding matrices passed to the direct solver are usually singular (with typical deficiency 6).
In some applications, the deficiency may be much bigger. The definition of a quasi-null pivot is subjective.
In practice we will say that a pivot is quasi-null if it is smaller than a given tiny threshold, α, and if its
whole row (or column) is also smaller than α. In that case, we want to isolate, or exclude that pivot from
the matrix. This can be done by setting the pivot to a huge value: after dividing the column by this value,
rank 1 updates will have no influence on the rest of the computations; or by setting the pivot to 1 and forcing
the column entries to 0. Furthermore, some pivot rows/columns may be small enough that we can suspect a
rank deficiency but large enough to have doubts. In that case, it is usually better to avoid factoring the pivot
and delaying it to the parent node (or higher in the tree) where it will be checked again. We note β this
second criterion. In the multifrontal method, pivots smaller than β may be postponed until the root, where
a more reliable rank-revealing QR factorization can be performed. Once null pivots have been detected,
one may also build a null space basis thanks to backward solve algorithms. The right-hand side vectors are
either null vectors of the root node (for deficiencies detected with QR), or vectors composed of zeros except
for a 1 at the position corresponding to a null pivot. Exploiting sparsity during the solve phase may in that
case is then of interest to reduce the amount of computation [158].

2.2.3 Pivoting and out-of-core

We will discuss out-of-core in a Chapter 5, but assume here that we want to perform the factorization of
a frontal matrix F , writing blocks of L or U to disk in a pipelined manner, as soon as those blocks are
computed. In the LAPACK-style of pivoting (see remark of Section 1.3.2.3), one needs to permute rows
and/or columns that are already on disk. Since this is not convenient, we store this symbolic pivoting
information (of small size compared to the factors of the frontal matrix) during the factorization and will use
it later at the solution phase, after reading factors from disk. We consider that performing the permutation
explicitly is cheap compared to the cost of I/O, and this avoids complexifying too much the solve algorithm.

2.2.4 Algorithm for pivot selection (symmetric indefinite case)

A simplified version of the pivot selection algorithm is given by Algorithm 2.3. We illustrate the pivot
selection by considering here the case of type 2 nodes involved in symmetric indefinite matrices. In type 2
nodes, only the fully summed part of the symmetric front is available on the local master processor, and we
assume that for each column i, PARPIV(i) contains an estimate of the maximum magnitude in F (1 : NFS, i)
using the mechanism described in Section 2.2.1. The unblocked version of the algorithm is here provided3.
The selection of the 2 × 2 pivots at lines 20–24 corresponds to the Duff-Reid algorithm [80]. Remark the
search for the maximum element at line 20: part of the search is on the column F(i+ 1 : NFS, i) below the
candidate pivot i, and part is on the row F(i, k+ 1 : i− 1) on the left of F(i, i) because that part of the row
would become part of the column after a potential swap. The candidate pivot in this Duff-Reid algorithm is
then (i, j).

If one wants to avoid dynamic data structures, it is possible to switch to static pivoting (see Sec-
tion 1.3.2.4). In our context, static pivoting can for example be useful when we want to precisely respect the

3In the blocked version of the algorithm, the pivot selection is limited to the variables in the current block: authorized pivots
must be in the square diagonal block of the current panel instead of the range k : NFS of the loop at line 1 and instead of the
range i + 1 : NFS of the max at line 19. Furthermore, when numerical difficulties are encountered, the block size dynamically
increases in order to avoid the situation where only unstable pivots would be available in the current block. Thanks to this
mechanism, all stable pivots in the front are eventually factorized.
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memory estimates forecasted during analysis. However, even then, it makes sense to apply standard partial
threshold pivoting with 1× 1 and 2× 2 pivots as much as possible, so that we only switch to static pivoting
(replacing small pivots by larger ones or accepting pivots which do not satisfy the pivoting threshold) when
no more stable pivots are available in the current front.

In case of real arithmetic, the count of the number of negative pivots (which is also equal to the number of
negative eigenvalues) can be computed by checking the sign of the chosen pivots. If a 1× 1 pivot is negative
or if the determinant of a 2 × 2 pivot is negative, then the number of negative pivots is increased by one.
If the determinant of a 2 × 2 pivot is positive, then the inertia is increased by 2 if the sign of the diagonal
elements (both necessarily have the same sign) is negative, and the inertia is not modified otherwise.

2.3 Schur complement

In several types of applications (domain decomposition, coupled problems, reduction of the problem on an
interface), it is useful to factorize only part of the matrix and return a Schur complement matrix correspond-
ing to the non-factorized part. Consider the following 2× 2 block factorization, where variables defining the
Schur complement are ordered last.

A =

(
A1,1 A1,2

A2,1 A2,2

)
=

(
L1,1 0
L2,1 I

)(
U1,1 U1,2

0 S

)
(2.2)

The Schur complement is S = A2,2 − A2,1A
−1
1,1A1,2. Computing a Schur complement in a multifrontal

approach can be done in the following way:

1. The ordering should force the variables of the Schur complement to be ordered last (constrained
ordering).

2. The structure of the assembly tree should be such that the variables of the Schur complement form
the last node.

3. Delayed pivots are forbidden in the children of the root, in order to preserve the structure of the Schur.

4. The root node is assembled normally, but not factorized.

5. The root node should be returned to the user.

In certain cases, the Schur complement can be big, and may not hold in the memory of a single processor.
Even if it holds in the memory of a single processor, it makes sense to have it distributed on the processors so
that it can be efficiently used in parallel computations. For that, the Schur complement must be assembled
on the processors directly in a distributed manner. This work was first done in the context of a collaboration,
for an application involving a linear system coupling finite elements and integral equations, and in which
part of the linear system is sparse, whereas another part is dense. The Schur complement of the sparse
linear system is then used as a submatrix of the dense linear system that can be solved using, for example,
ScaLAPACK [53]. The main difficulties concern the interface, the constraints on the various orderings, the
need to write directly into user-allocated workspaces, not counting the 2D block cyclic assembly of children
contributions that are communicated from processes using 1D data distributions. Remark that (see point 3
above), because the Schur complement memory is provided by the application, the possibility to delay pivots
is switched off in the children of the root because there would be no place to store them. However, this is
mainly an interface problem because such mechanisms are available for type 3 nodes when the root node
must be factorized by the solver, instead of being returned in the interface. Concerning the solve phase, only
the solution on the internal problem is available (see Section 2.5 for more advanced functionalities), that is,
the root node is excluded from the forward elimination algorithm, and a 0 vector is used on entry to the
backward substitution algorithm as the solution on the root node.
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1: for i = k to NFS do
2: Fmax = max(F (i, k : i− 1), F (i+ 1 : NFS, i), PARPIV (i))
3: if Fmax < α then
4: A quasi-null pivot was found
5: PIVNUL LIST = PIVNUL LIST

⋃
global variable associated with i

6: Symmetric swap of variables i and k
7: if δ > 0 then
8: F(k,k)=sign(F(k,k)) ×δ‖A‖
9: else

10: F(k,k)=1
11: Force F(k:NFS,k)= 0
12: end if
13: Exit loop: a quasi-null pivot has been found.
14: else if Fmax > β and F(i,i) < u× Fmax then
15: Symmetric swap of variables i and k in F
16: Swap PARPIV(i) and PARPIV(k)
17: Exit loop: a new pivot can now be eliminated
18: else
19: {Pivot i cannot be eliminated alone; try to find a 2× 2 pivot}
20: Let j be such that F (j, i) = maxj=i+1:NFS F (j, i) (or F (i, j) = maxj=k+1:i−1 F (i, j) if larger)
21: if (i, j) forms a stable 2× 2 pivot (see condition (1.16)) then
22: Symmetric swap moving variables i, j at positions k, k + 1 in F
23: Swap PARPIV(i) and PARPIV(k), PARPIV(j) and PARPIV(k + 1)
24: Exit loop: a new 2× 2 pivot can be eliminated
25: else
26: No pivot was found including i; try next iterate
27: end if
28: end if
29: end for
30: if a quasi-null pivot was found or a 1× 1 pivot can be eliminated then
31: Eliminate 1× 1 pivot i (now at position k)
32: Update PARPIV(k + 1 : NFS) (see Equation (2.1))
33: k ← k + 1
34: else if a 2× 2 pivot can be eliminated then
35: Eliminate 2× 2 pivot i, j (now at position k, k + 1)
36: Update PARPIV(k + 2 : NFS)
37: k ← k + 2
38: else
39: No stable pivot was found in entire loop. Delay variables k : NFS to parent node or enable static

pivoting to pursue the factorization.
40: end if

Algorithm 2.3: Selection of a new pivot k in a symmetric front F of size N ×N with NFS fully-summed
variables, unblocked algorithm. The front is assumed to be distributed in such a way that the NFS×NFS
first block is on the local processor, and theN−NFS last rows are on other processors. PARPIV (1 : NFS)
contains an estimate of the maximum magnitudes of the columns of F (NFS+1 : N, 1 : NFS) the columns
of the front, as explained in Section 2.2.1. We assume that k − 1 pivots have been eliminated already and
that we are looking for the kth one. Static pivoting is assumed to be off. u is the threshold for relaxed
partial pivoting, α and β are the criteria defined in Section 2.2.2 for small pivot detection and for delaying
pivots, respectively.
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2.4 Solution phase

Given a linear system Ax = b and an LU decomposition of the matrix A, the solution phase consists of
a forward elimination followed by a backward substitution, involving matrices L and U , respectively: The
forward elimination consists in a triangular solve on L, processing the nodes of the tree from bottom to top,
and the backward substitution consists in a triangular solve on U , starting from the solution on the root
node, and passing it to all children nodes until the bottom of the tree to compute the solution corresponding
to the fully summed variables at each node. The multifrontal triangular solution algorithms were presented
in Section 1.1.4. In this section, we generalize those algorithms to supernodes and to a parallel distributed
environment using an asynchronous approach to parallelism. The new algorithms take advantage of both
tree and node parallelism by inheriting the mapping and the Type 1, Type 2 and Type 3 nodes from the
factorization phase.

Let us first consider the forward elimination. A lower triangular factor at a generic node of the tree
has the following shape:

H
HHHHL11

L21

A solve on L11 is first performed, and the result is multiplied on the left by L21 and used as a contribution
for the parent node. This can be simply interpreted as a generalization of Algorithm 1.3 for supernodes. In
Algorithm 1.3, L11 was just the scalar l11, and L21 was just one column. In our parallel distributed-memory
environment, the algorithm for the forward elimination becomes Algorithm 2.4. This algorithm was first
described in [26], and was initially inspired by [85]; we also recommend [158] which contains more explanations
and illustrations. For the sake of clarity, Algorithm 2.4 is simplified compared to actual implementations.
For example, when Myid and Pparent are the same processor, no message is actually sent so that the actions
that would be performed on reception are performed locally, directly. Also, in the case of delayed pivots, the
master of a node owns some rows of L21 corresponding to the pivots that are delayed to the parent, implying
some computations and communications related to Wtmp2. We have omitted those, and also do not discuss
the fact that the root node may be processed using ScaLAPACK. Finally, the algorithm is presented in the
case of a single right-hand side vector.

The main loop of the forward elimination algorithm (lines 6 to 13 is asynchronous, similar to the fac-
torization algorithm (Algorithm 0.1). All sends are asynchronous (use of the MPI ISEND routine) and a
cyclic communication buffer is also used. When a communication buffer is full, no sends are possible, and
the associated processor can receive any message before trying to send again, avoiding deadlocks (see also
Property 2.1).

The main workarray in the algorithm is Wb, of size n, the order of the matrix. At line 5 of the algorithm,
the right-hand side b is distributed into the Wb local vectors of size n (the order of the matrix), which are
such that:{

(1) Wb(i) = b(i), if variable i is part of the pivot block of a front mapped on Myid;

(2) Wb(i) = 0, otherwise.
(2.3)

Wb is then used to store temporary data (accumulated contributions of the form −lijyj) during the
forward elimination, avoiding the use of a stack as was done in the factorization algorithm. At line 20
of the algorithm, Wb is also used to store the solution vector Wtmp1 associated with the fully summed
variables of the current node, so that after the forward elimination is complete, the (distributed) Wb(i)
entries corresponding to condition (1) above hold the solution y of Ly = b.

In case of type 2 nodes, the L21 factor is distributed over the slave processors, so that the master first
sends (line 28) the solution Wtmp1 together with partial contributions for the slaves to perform the matrix-
vector product (line 33). The slaves do not answer to the master but send the contribution directly to the
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1: Main Algorithm (forward elimination):
2: {Input: the right-hand side b, on processor 0}
3: {Output: Wb, on all processors}
4: Initialize a pool with the leaf nodes mapped on Myid
5: Communicate and store into Wb the entries of the right-hand side b corresponding to variables in the

pivot block of nodes mapped on Myid (scatter)
6: while Termination not detected do
7: if message is available then
8: Process the message
9: else if pool is not empty then

10: Extract a node N from the pool
11: Fwd Process node( N )
12: end if
13: end while
14:

15: Fwd Process node(N )
16: {L11 and L21 are the L factors of N }
17: {Pparent is the process owning the master of the parent of N }
18: Wtmp1← Entries of Wb corresponding to fully summed variables of N
19: Wtmp1← L−111 ×Wtmp1 (or UT

11 ×Wtmp1).
20: Store entries of Wtmp1 back into Wb (scatter).
21: Gather in Wtmp2 entries of Wb corresponding to row indices of L21

22: Reset the corresponding entries of Wb to zero.
23: if N is of Type 1 then
24: Wtmp2 = Wtmp2− L21 ×Wtmp1
25: Send the resulting contribution (Wtmp2) to Pparent
26: else if N is of Type 2 then
27: for all slave Islave of N do
28: Send Wtmp1 together with the rows of Wtmp2 corresponding to rows of L21 owned by Islave to

the process in charge of Islave
29: end for
30: end if
31:

32: On reception of Wtmp1 + rows of Wtmp2 by a slave
33: Multiply rows of L21 owned by the slave by Wtmp1 and subtract the result from the received rows of

Wtmp2
34: Send the resulting contribution to Pparent
35:

36: On reception of a contribution corresponding to N by Pparent
37: Assemble the contribution into Wb (Scatter)
38: if all contributions for node N have been received by Pparent then
39: Insert parent of N into the pool
40: end if

Algorithm 2.4: Forward elimination algorithms.
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parent node (line 34), avoiding an extra message and the need for the master to wait for an answer from its
slave.

Coming back to Wb, it is important to note that when the contributions stored in Wb are consumed and
sent to a parent node (via array Wtmp2), the corresponding entries must necessarily be reset to zero (line 22
of the algorithm). Otherwise, some contributions might be sent a second time, at a different node, leading
to a wrong algorithm.

Let us now consider the backward substitution. At each node, factors have the shape:

HH
HHH

U11 U12 ,

where U12 might be distributed over several processes in the case of a type 2 node4. During the backward
substitution algorithm, the tree is processed from top to bottom and each node requires the entries of the
solution vector corresponding to column indices of U12. Since those are included in the structure of the
parent node, a sufficient condition to know the required entries is to inherit from the entries of the solution
vector corresponding to the entire set of column indices of the parent node.

At each step of Algorithm 2.5, the local solution x2 corresponding to columns of U12 is thus available and
the solution x1 corresponding to column variables of U11 are computed; y1 is the part of the right-hand side
corresponding to variables of U11 and comes from the Wb array computed during the forward elimination
phase (line 18 of the algorithm). With these notations, the system that must be solved at each node is
U11x1 = y1−U12x2 (at the root, U12 and x2 are empty), where both x1 and x2 are then sent to the children
nodes, although each child only requires parts of them.

Throughout the algorithm, Wsol is used to save parts of the solution, with the property that the solution
for variable i will at least be available in Wsol(i) on the processor in charge of the pivot block containing
i. For type 2 nodes, we see in the algorithm that the slave does a matrix-vector product (matrix-matrix in
case of multiple right-hand sides) and sends the result back to the sender, implying more communications
than in the forward elimination algorithm where slaves do not have to send anything back to their master.

Algorithms 2.4 and 2.5 can be adapted to different contexts:

• When there are multiple right-hand sides, they can be processed by blocks (block size typically between
16 and 128), so that Wb and Wsol are allocated once and with a number of columns equal to the block
size. This allows for a good efficiency of the level 3 BLAS routines TRSM and GEMM, while avoiding
a huge, possibly unaffordable, workspace for Wb and Wsol if only one block were used. The sketch of
the approach is given by Algorithm 2.6, where the loop on the blocks is external to both the forward
and backward elimination algorithms.

• In an out-of-core context, factors must be read from disk with prefetching mechanisms and an adapted
scheduling [23].

• In the case of sparse right-hand sides, entries must be distributed into Wb while respecting the con-
dition 2.3 above; furthermore, tree pruning can be used to avoid computations on zeros during the
forward elimination. For example, if all variables of the right-hand side corresponding to fully summed
variables in a given subtree are zero, that subtree can be excluded from the computations in Al-
gorithm 2.4. Furthermore, if the matrix is reducible, and if the right-hand side is 0 for all entries
corresponding to fully summed variables in one of the blocks, the forest can be pruned in both the
forward and the backward elimination.

• Similar to the sparse right-hand side case, if only selected entries of the solution are requested, the
complexity of Algorithm 2.5 can be reduced by excluding computations on subtrees where none of the
variables of the solution are of interest to the user.

4Actually, during an unsymmetric factorization, U21 is always on the master and is not distributed. However, if AT x is to be
solved, or in case of an LDLT factorization, LT

21 can be distributed over several slave processors. To simplify the presentation,
we only mention U12 and consider that U12 may be distributed on the slaves in the backward substitution.
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1: Main Algorithm (backward substitution):
2: {On input: Wb is the vector obtained on output from Algorithm 2.4}
3: {Output: Wsol}
4: Initialize the pool with the roots mapped on Myid
5: while Termination not detected do
6: if message is available then
7: Process the message
8: else if pool is not empty then
9: Extract a node N from the pool

10: Bwd Process node(N )
11: end if
12: end while
13: Gather solution from Wsol arrays to the host (or keep it distributed) in order to return it to the user
14:

15: Bwd Process node(N )
16: x2 ← known entries of solution corresponding to columns of U12 (gather from Wsol)
17: if N is of type 1 then
18: y1 ← entries of Wb corresponding to variables in the pivot block U11 (gather, row indices)
19: Solve U11x1 = y1 − U12x2 for x1
20: Save x1 in Wsol (scatter)
21: Send partial solution x1, x2 to masters of children nodes (only one send per destination process)
22: else if N is of type 2 then
23: Send (distribute) entries of x2 to the slaves, according to their structure
24: end if
25:

26: On reception of x1, x2, sent by the master of node N
27: Update my view of the solution (scatter into Wsol)
28: Insert children of N mapped on Myid into the local pool
29:

30: On reception of parts of x2 by a slave of N
31: Multiply the part of U12 mapped on Myid by the piece of x2 just received
32: Send the negative of the result back to the master process of N
33:

34: On reception of a portion of −U12x2 from a slave by a master for node N
35: Scatter and add it into Wb
36: if this is the last update (all slaves sent their part) then
37: y1 ← entries of Wb corresponding to variables in the pivot block U11 (gather, row indices)
38: Solve U11x1 = y1 for x1
39: Save x1 in Wsol (scatter, using column indices of U11)
40: Send partial solution x1, x2 to masters of children nodes
41: end if

Algorithm 2.5: Backward substitution algorithms.
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Allocate Wb and Wsol of size b× n
for i=1 to nbrhs by steps of b do
ibeg ← i
iend← min(ibeg + b− 1, nbrhs)
On each processor, initialize Wb with entries of the right-hand sides in columns ibeg : iend (one-to-all
communications to ensure property 2.3
Wb← result of forward elimination (Algorithm 2.4)
Wsol← result of backward elimination (Algorithm 2.5)
Store Wsol back into user workspace in columns ibeg : iend

end for
Algorithm 2.6: Forward and backward eliminations by blocks. b is the block size, n is the order of the
matrix, nbrhs is the total number of right-hand sides.

• For applications requiring the computation of a set of entries of the inverse, the tree can also be
pruned, both during forward and backward elimination: (A−1)ij is obtained by computing x = L−1ej ,
exploiting the sparsity of the jth canonical vector ej , then obtaining the ith component of U−1x,
exploiting the sparsity of requested entries of the solution. Pruning the tree is even more important in
an out-of-core context, where the access to the factors is far more critical than in an in-core context.
When several entries of the inverse are requested, it is interesting to group them in blocks that will
follow similar paths in the tree. A detailed study is available in [30].

• In case null pivots have been isolated during the factorization, a null space basis can also be computed
with the backward substitution algorithm 2.5. Wb is initialized directly on entry to the backward step
with one nonzero element per column, which can be the value δ of Algorithm 2.3, or simply 1 if in
Algorithm 2.3, it was decided to replace the pivot by 1 and set the column to 0. Algorithm 2.5 is
applied with those vectors on input. Remark that this strategy works for symmetric matrices, but not
for unsymmetric matrices, where null pivots would need to be at the end for this approach to provide
a correct null space basis.

• In case of Schur complement, it can be useful to return an intermediate solution corresponding to the
variables of the Schur complement between the forward and the backward substitutions. This will be
discussed in Section 2.5.

• When solving large problems with multiple right-hand side vectors, the workspace for Wb and Wsol
may become problematic in terms of memory. A modified algorithm that builds over the one of
Section 2.5 together with several optimizations is discussed in Section 6.4.

2.5 Reduced/condensed right-hand side in solve phase

In this section, we explain the work done to provide a new reduced-right-hand side functionality and present
some modifications to the solve algorithm which, although motivated by this new functionality, are useful in
a more general context.

Related to the Schur complement functionality, a strong need appeared from the applications which
consisted in separating the forward and backward solution phases, in order to return an intermediate right-
hand side vector of smaller size (reduced right-hand side, or condensed right-hand side) in-between. The
solution on the interface is computed externally and may be injected back in the backward solution step of
the solver to obtain the solution on the complete problem:

• Reduction/condensation phase: An intermediate vector y =

(
y1
y2

)
is computed, such that

(
L1,1 0
L2,1 I

)(
y1
y2

)
=

(
b1
b2

)
. (2.4)
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y2, the so called Reduced right-hand side, or Condensed right-hand side, is returned to the user appli-
cation.

• The linear system involving the Schur complement must then be solved. In the simplest case, this is
just Sx2 = y2 but in general, x2 and y2 are just part of much larger problem. For example, in domain
decomposition methods, x2 and y2 correspond to a subset of variables of a much larger interface
problem because each domain leads to a local Schur complement; the interface problem indeed looks
like

∑
SkX =

∑
yk2 , y2 is one of the yk2 , S is the corresponding Sk and x2 is the part of X concerned

by the interface variables of domain k.

• Expansion phase:

Given x2, compute x1 = U−111 (y1 − U12x2): the solution x2 is expanded to obtain the solution on the
internal variables.

The condensation and expansion phases are performed using Algorithms 2.4 and 2.5, respectively. As
for the factorization with a Schur complement, the root node which corresponds to the Schur complement
receives a special treatment. During the forward elimination, Fwd Process node in Algorithm 2.4 is
avoided for the root node corresponding to the Schur complement and at the end, Wb contains the vectors
y1 and y2. On entry to the backward substitution, x2 which is built externally must be provided, and most
of the treatment from the routine Bwd Process node in Algorithm 2.5 must be avoided: x2 will be sent
to the children of the root. At the end of the backward substitution, Wsol contains both x1 and x2.

However, other modifications are required to manage workspace efficiently in a parallel distributed envi-
ronment. First, remark that in the previous algorithms, Wb and Wsol are temporary workspaces needed5

on all processes. They are of size n (multiplied by the blocking factor for multiple right-hand sides, in case
of multiple right-hand sides), where n is the size of the initial matrix A. On exit from the solve phase, both
Wb and Wsol are freed but in case of a separate forward and backward step, all the Wb workarrays from the
forward eliminations (see Algorithm 2.6) would have to be kept between the forward and backward stages.

In case of multiple right-hand sides, keeping Wb in memory for all the columns and all the blocks becomes
problematic from the memory point of view, as illustrated by the following example: let us consider a problem
with 1 million equations and 10000 right-hand sides processed by blocks of 16 columns , using 100 processors.
Normally, Wb and Wsol are the same workspace for all the blocks so that in double precision arithmetic,
the workspace for Wb represents 100× 16× 1 million × 8 bytes per entry = 12.8 GigaBytes, or 128 MB per
processor, which remains reasonably small. In order to keep Wb for all 10000 columns between the reduction
and the expansion phases, that is, in order for Algorithm 2.5 to apply with 10000 intermediate right-hand
side vectors y on input, the required workspace for Wb would be 100×10000×1 million ×8 = 8 TeraBytes,
which is clearly less affordable! This means that the workspace for y1 must remain much smaller. One
solution would consist in centralizing the useful information of Wb on just one processor after each block of
right-hand sides, but this would require lots of communications and could still be a memory bottleneck for
that processor. A more natural solution consists in keeping the intermediate right-hand sides distributed.

For that, Algorithm 2.4 has been modified as follows:

• We introduce a new workspace WRHS which scales with the number of processes and contains,for each
process, only the entries corresponding to the pivot blocks of the fronts mapped on this process. In
case of type 2 node, only the master is concerned with those variables and is in charge of it: slave
processors never update WRHS. In case of multiple right-hand sides, the number of columns of WRHS is
either equal to the block size (if the blocking is outside both the forward and the backward stages), or
equal to the total number of columns, if all intermediate right-hand sides must be kept between the
forward and backward stages, as required by this reduced-right-hand side functionality.

• On each process, an indirection array POSinWRHS is precomputed to obtain, for each node of the tree,
its position in WRHS. By its position, we mean the location of the variables of the pivot block associated

5In the symmetric case, Wb and Wsol could be the same workspace, however, in the unsymmetric case, because of off-
diagonal pivoting issues possibly leading to unsymmetric lists of indices inside each front, it is not immediate to have a single
workspace for both Wb and Wsol.
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with the node. The size of POSinWRHS is the number of nodes in the tree: we do not need an indirection
for each single variable. Instead, for a node N , POSinWRHS(N) gives the position of the first variable
in the pivot block of node N , and we know that the other ones are stored contiguously. Notice that in
case of multiple right-hand-sides, processed by blocks, POSinWRHS needs to be computed only once for
all blocks.

• The workarray Wb is still there to hold the intermediate contributions. The same workarray Wb can
be reused for each block, in case of multiple right-hand sides.

• At line 19, instead of storing the result inWtmp1, the result of L−111 ×Wtmp1 is stored in the appropriate
contiguous locations of WRHS, starting at position POSinWRHS(N).

• On exit from the forward stage, Wb is freed.

Concerning the backward substitution, Wb is not used anymore. Instead, the intermediate solution y is
obtained directly from WRHS at each node. This involves the following modifications:

• At lines 18 and 37, y1 is obtained using the entries (or rows) of the right-hand side available in WRHS

(instead of Wb), starting at position POSinWRHS(N ). Remember that the entries (or rows, in case of
multiple right-hand side) corresponding to the pivot block variables are contiguous in WRHS.

• Line 35 becomes “Add it into WRHS, starting at position POSinWRHS(N)”.

Remark that the above modifications (introduced in MUMPS 4.7) are useful not only for reduced right-
hand functionality, but also for the general solve algorithm: the backward solve no more requires Wb and
only one workspace of size n × 32 is needed in each phase (Wb for the forward elimination, Wsol for
the backward substitution), while the average size of the new workspace WRHS scales perfectly with the
number of processors. Furthermore, a good locality is ensured in WRHS because fully-summed variables are
contiguous. We will see in Section 6.4 other optimizations of the solve phase to allow processing larger
problems, suppressing completely the use of the workarrays Wb and Wsol, which do not scale with the
number of processors and limit locality aspects.

2.6 Determinant

Some applications require computing the determinant of a sparse matrix. In electrostatics for instance,
the determinant is related to electric potentials or electric charges. Such a feature has been requested by
several users of the MUMPS package and an implementation was done in collaboration with one of them, A.
Salzmann, who actually suggested a partial patch to version 4.8.3 of our package. Given an LU (or LDLT )
factorization, the determinant is simply the product of the diagonal elements of D (or U). In theory, given
a code that is able to factorize a sparse matrix, its computation should therefore be trivial. In this section,
we show that a careful implementation is however needed, especially when considering parallel distributed
environments.

2.6.1 Numerical aspects: avoiding underflows and overflows

When multiplying a large amount of diagonal floating-point numbers (matrices with several million rows/columns),
underflows and overflows may easily occur. Depending on the setting of floating-point exception flags, over-
flows may become equal to Infinity and underflows, after some loss of accuracy due to subnormal numbers,
may become 0. To avoid such situations, either the logarithms of diagonal values should be accumulated, or a
mantissa and exponent should be maintained explicitly. Because computing and accumulating logarithms is
prone to numerical errors, we prefer the approach consisting in computing a normalized mantissa and keeping
track of the exponent. Although a library like LINPACK[70] uses radix (or base) 10 in the computation of
determinants, it seems better to use the natural radix (which is 2 for most processors). In Fortran (similar
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functions exist in C), the exponent of a floating-point can be directly extracted from its floating-point repre-
sentation thanks to the intrinsic function EXPONENT and the mantissa can be obtained with the intrinsic
function FRACTION. Those functions are such that x = SIGN(x)×FRACTION(x)×2EXPONENT(x). For ex-
ample, FRACTION(2.0) = 0.5 and EXPONENT(2.0) = 1. Constructing the determinant using a normalized
product can then be done as shown in Algorithm 2.7.

1: m ← 1; e ←0
2: for all diagonal pivots with floating-point value f do
3: m← m× FRACTION(f)
4: e← e+ EXPONENT(f) + EXPONENT(m)
5: m← FRACTION(m)
6: end for

Algorithm 2.7: Computing a normalized determinant as a normalized floating-point mantissa m and an
integer exponent e by multiplying diagonal pivots f .

2.6.2 Computing the sign of the determinant

For symmetric matrices, because the factorization aims at maintaining the symmetry, only symmetric per-
mutations are applied (both for reducing the fill or for numerical pivoting issues). Given a permutation
matrix P , the determinant of PAP t = LDLT is the same as that of A, so that the sign of the determinant
is maintained. For unsymmetric matrices, two issues must be considered:

• Numerical pivoting. If a pivot is chosen on the diagonal the sign of the determinant is not modified.
Otherwise, the sign depends on the total number of row and column exchanges. If this number is
odd, the sign is modified. In particular, assuming a right-looking factorization of the frontal matrices,
choosing a non-diagonal pivot in the current column or in the current row modifies the sign, choosing
it somewhere else (including on the diagonal) keeps the sign unchanged.

• Unsymmetric preprocessings. Given an initial matrix and an unsymmetric permutation Q of the
columns (see Section 1.1.8), we work on AQ instead of A. To obtain the determinant of A, the parity,
or signature, or sign, of Q has to be computed. This is something relatively classical that can be done by
Algorithm 2.8, which follows the cycles in the permutation to determine the number of corresponding
exchanges. In practice initialization of flag arrays (flag arrays are often used in sparse matrix codes) is
avoided, see line 1. In fact, each time an algorithm requires a flag array, it is generally easy to reset it
to its initial value as done at line 1 of Algorithm 2.8. Furthermore, any integer array of size n whose
contents has a special property could be used.

2.6.3 Special cases

In LDLT factorizations of symmetric indefinite matrices, two-by-two pivots may be necessary (see Sec-

tion 1.3.2.2). If D contains a two-by-two pivot

(
a b
c d

)
the determinant f = ad − bc is computed and

simply used as one of the diagonal values in Algorithm 2.7.
Another special case is the one of singular matrices. Factorization algorithms can often detect quasi-null

pivots (which may for example correspond to the so-called rigid body modes in structural mechanics) and
isolate them (see Algorithm 2.3). It makes sense to exclude those quasi-null pivots in the computation of
the determinant, which would otherwise be equal to 0. The determinant computed is then the one of the
rest of the matrix6. Finally, if static pivoting is used (see Section 1.3.2.4), static pivots are also excluded.

As said in Section 2.1.1.2, the factorization of the last separator of a sparse matrix, corresponding to
the root of its assembly tree may use dense factorization kernels on a matrix built with a 2D block cyclic

6Remark that, in case of scaling, the corresponding entries of the scaling arrays must also be excluded from the computation
of the determinant.
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1: Assumption: visited(1 : n) = false
2: k ← 0
3: for i = 1 to n do
4: if visited(i) then
5: visited(i)← false {(reset in case of further use)}
6: else
7: j ← σ(i) {Start following a new cycle}
8: while j 6= i do
9: visited(j)← true

10: Accumulate number of swaps in cycle:
11: k ← k + 1 {Follow cycle}
12: j ← σ(j)
13: end while
14: After first cycle, k contains number of swaps in first cycle
15: end if
16: end for{k now contains number of swaps in whole permutation}
17: if k is odd then
18: Change the sign of determinant
19: end if

Algorithm 2.8: Computation of the parity of a permutation σ(1 : n).

distributed format. ScaLAPACK is used for that purpose. In that case, each MPI process finds its diagonal
pivots in the factorized dense root node in 2D block cyclic format and multiplies them with the current value
of the determinant as in Algorithm 2.7.

Finally, scaling vectors should be taken care of. Given a scaled matrix DrADc, the product of the diagonal
entries of Dr and Dc is obtained, then we take the inverse of the result by negating the exponent and taking
the inverse of the mantissa (rather than multiplying together all the inverses of the scaling values).

2.6.4 Reduction in parallel environments

In parallel, each processor i computes the product of the pivots it owns. We note mi the resulting mantissa
on processor i and ei the corresponding exponent, using the default radix of the machine (usually 2).
A reduction operation must then be performed to obtain the final determinant. Assuming we use MPI,
reduction operators MPI PROD and MPI SUM can be used to perform the reduction (with MPI REDUCE and
obtain the determinant (m, e) = (

∏
imi,

∑
i ei) which can then be normalized thanks to the FRACTION

and EXPONENT intrinsic functions. Let us now estimate the risk of overflow/underflow when computing∏
imi.

Except for subnormal numbers, the mantissa in radix 2, as returned by the intrinsic function FRACTION,
is in the range [0.100 . . . 00, 0.11 . . . 11], where the first 1 after the dot is implicit in the floating-point
representation. This corresponds to the range [0.5, 0.99 . . . 99] in radix 10. Assuming a uniform distribution
of the mantissas mi, the average mantissa is 0.75 (in an extreme case, all mantissas might be equal to 0.5).
Noting fmin the smallest non-subnormal number of the floating-point arithmetic used, and p the number of

processors, an underflow occurs if 0.75p < fmin, or p > log(fmin)
log(0.75) . In single precision arithmetic, this gives

an underflow when p exceeds 303 processors (126 if all mantissas mi were equal to 0.5). In double precision
arithmetic, an underflow occurs for p = 2463 processors (1022 processors if all mi = 0.5).

Given the number of processors/cores of modern high performance computers, there is thus a real risk of
underflow, which should be taken care of. This can be done using an MPI operator to normalize the product
and keep the exponent separately. This operator is defined by Algorithm 2.9, where the MPI implementation
is allowed to call this operator on an arbitrary number nel of elements. Note that the implementation also
requires MPI derived datatypes in order to define a new type consisting of a mantissa and an exponent.
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1: for all i = 1 to nel do
2: Compute normalized product m′i, e

′
i ← (m′i, e

′
i)× (mi, ei)

3: m′i ← m′i ×mi

4: e′i ← e′i + ei + EXPONENT(m′i)
5: m′i ← FRACTION(m′i)
6: end for

Algorithm 2.9: MPI operator used for the reduction. Input: (mi, ei)i=1:nel, Input and output:
(m′i, e

′
i)i=1:nel.

2.6.5 Testing

Validation was done by inserting some new tests in non-regression tests executed nightly on different ma-
chines. For each tested matrix, a reference determinant is computed, then the determinant is computed
with various options of the solver (scaling on or off, different orderings, preprocessings, weighted matching
algorithms) and compared to the reference determinant.

In single precision arithmetic, some relative differences higher than expected (10−3) were observed on
harder problems. However, by comparing with double precision calculations, it appeared that the numerical
error was due to the accuracy of pivots rather than to the accuracy of computing the product of the diagonal
values. If the accuracy of computing the product of pivots becomes an issue, one could use the compensated
product techniques, see for example the discussions on this in [99]; a compensated product of n floating-
point numbers can be done in 19n− 18 operations, or 3n− 2 if a fused-multiply-and-add (FMA) operator is
available. Techniques by Kahan also exist to compute the determinants of 2 × 2 pivots more accurately in
case there are risks of cancellation (see analysis by [119]), but we expect this not to be the priority knowing
that such pivots are, by choice, far from singularity.

2.6.6 Complex arithmetic

In complex arithmetic, rather than maintaining an exponent for the real part and another one for the imag-
inary part of the determinant, we use a single exponent. This allows to keep performing operations on
complex numbers without reimplementing them. When multiplying the current determinant by a new com-
plex number we simply replace the normalization of Algorithm 2.7 by the one of Algorithm 2.10. Although
this approach is debatable and may have some limits if the real and imaginary parts have very different
magnitudes, the strategy here is typical in our work where there is always so much more to do than doable:
wait for applications or users to show such limits before going for something more sophisticate. The issues of
the previous section (reduction, two-by-two pivots, . . . ) are similar with complex arithmetic; because scaling
arrays are real even in complex arithmetic, the multiplication of scaling entries are done in real arithmetic,
still using Algorithm 2.7.

1: r ← 1; c← 0; e← 0
2: for all diagonal pivots with complex value f do
3: (r,c) ← (r,c) × f
4: e loc← EXPONENT(|r|+ |c|)
5: r ← r × 2−eloc

6: c← c× 2−eloc

7: e← e+ e loc
8: end for

Algorithm 2.10: Computation of a normalized complex determinant (r, c, e) as a floating-point real part
r, a floating-point imaginary part c and an integer exponent e by multiplying diagonal complex pivots
f . The operations at lines 5 and 6 do not use floating-point operations; instead, the exponent is just
overwritten by a new one (in Fortran, using the SCALE intrinsic function).
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2.6.7 Memory aspects

In several physics and electrostatics applications, only the determinant of a matrix A is needed, because it has
an intrinsic physical meaning, and solving systems of equations of the form Ax = b is not required. In that
case, it can be interesting to discard the computed factors right after computing them, significantly reducing
the storage requirements and data movements. In the multifrontal method, only the active storage (see end
of Section 1.3.3) remains and at each node of the tree, the determinant is updated and factors are discarded.
In that case, it may be interesting to use orderings and postorders (see Section 1.1.7) that minimize the
active storage rather than the size of the factors or even the number of floating-point operations. While we
illustrated the impact of the ordering on the size of the factors in Table 1.1, the impact on the active storage
is given in Table 2.2. We observe that AMD, PORD and AMF are much more competitive at reducing
the number of operations than they were at reducing the factor size of floating-point count. Remark that
the memory behaviour when computing only the determinant is indeed identical to the out-of-core situation
when the factors are written to disk: in that case, active storage should be minimized. In the next chapter
(Chapter 3), we will see how an adequate choice of the tree traversal can minimize different metrics, in
particular the active storage.

METIS SCOTCH PORD AMF AMD
gupta2 58.33 289.67 78.13 33.61 52.09
ship 003 25.09 23.06 20.86 20.77 32.02
twotone 13.24 13.54 11.80 11.63 17.59
wang3 3.28 3.84 2.75 3.62 6.14
xenon2 14.89 15.21 13.14 23.82 37.82

Table 2.2: Peak of active memory for the multifrontal approach (×106 entries), as a function of the ordering
heuristic applied.

2.7 Concluding remarks

In this chapter, we have seen that functionalities and algorithms that appear to be relatively simple in
a serial environment may become much more complex in a parallel distributed environment. This is the
case of pivoting issues, general management of parallelism with dynamic data structures and asynchronous
communications, as well as mapping and dynamic scheduling issues. As another example, we showed in
Section 2.6 that even a functionality apparently simple like the computation of the determinant of a sparse
matrix (product of the diagonal elements of the factorized matrix), is not so immediate to implement and
requires some care.

In the next chapter (Chapter 3), we come back to sequential aspects of multifrontal methods and show
how different schedules for the tasks of the assembly tree can reduce metrics like the memory usage or the
I/O traffic. We will come back to scheduling aspects of multifrontal methods in parallel environments in
Chapter 4. Performance on shared-memory or multicore environments will be discussed in Section 6.6.
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Chapter 3

Task Scheduling for the Serial
Multifrontal Method

The objective of this chapter is to discuss the impact of tree traversals and multifrontal models on memory
usage and I/O volumes. More precisely, the chapter aims at presenting in a single document and with
coherent notations all the multifrontal variants discussed in [8, 9, 11, 13, 106, 105], corresponding to some
work accomplished in the context of the PhD thesis [5] and [102]. This chapter can be skipped by the reader
mainly interested in getting a general view of the type of work done, to whom we advise to read references
[106, 13, 11] (in that order) instead. Because of the high number of variants and combinations, there is a
deep level of sections/subsections in this chapter, which we summarize below:
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2.6.7 Memory aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Introduction – Tree traversals and postorders

As explained in Section 1.3.3 (please refer to that section for further details) of Chapter 1, the multifrontal
tree should be processed using a topological ordering, that is, an ordering such that children nodes are
processed before their parents. We also recall that a postorder is a particular topological order where the
nodes in any subtree are numbered consecutively: each time the last sibling of a family is processed, the
parent node is activated, consuming the contribution blocks available. In multifrontal methods, the use of
postorders allows the storage of the contribution blocks produced at each step of the multifrontal method
to be accessed using a stack mechanism, significantly simplifying the memory management. However, one
should note that it is possible to build cases where the topological order that best minimizes memory usage
is not a postorder. For that, let us start this chapter with a simple example. We assume that factors
can be stored to disk as soon as they have been computed, and we focus on the working storage of the
multifrontal method, that is, the storage for the contribution blocks and for the current frontal matrix. We
consider the example of Figure 3.1, where the frontal matrices associated with nodes a and b require a storage
ma = mb = 1000 (MB, say), produce contribution blocks requiring a storage cba = cbb = 10 MB consumed
by their respective parents c and d, which in turn have a frontal matrix of size mc = md = 100, producing
contribution blocks of size cbc = cbd = 90 for the root node e, whose frontal matrix is of size me = 100.

X

X

X

X

X

X

X

X

a

b

c

d

e

e

a

c d

me = 100

mc = 100

cbc = 90

ma = 1000

b

cbb = 10

mb = 1000

cbe = 0

cba = 10

md = 100
cbd = 90

Figure 3.1: Example tree with 5 nodes a, b, c, d, e, and possible associated matrix. mi represents the storage
associated with the frontal matrix of node i and cbi the storage for the contribution block produced by node
i, which will be consumed by the parent of node i. A,B,C,D,E are square matrices corresponding to the
range of variables that must be eliminated at nodes a, b, c, d, e, respectively.

The possible topological orders are a− b− c− d− e, a− b− d− c− e, a− c− b− d− e, b− a− c− d− e,
b − a − d − c − e, b − d − c − a − e, two of which are postorders: a − c − b − d − e and b − d − a − c − e.
Given the symmetry of the tree, the two postorders result in the same amount of core memory requirement.
Consider the postorder a − c − b − d − e and the successive steps of the multifrontal method. Remember
that factors are stored on disk right after they are computed. For each step, we give in parenthesis the core
storage requirement and the contents of the memory.

1. a is allocated (ma = 1000) and factored,

2. factors of a are moved to secondary storage – disk (cba = 10),

3. c is allocated (cba +mc = 110),
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4. c consumes the contribution block of a (mc = 100) and is factored,

5. factors of c are discarded (cbc = 100),

6. b is allocated (mb + cba + cbc = 1100) and factored,

7. . . .

We see that at this stage, the best postorder (the other postorder b − d − a − c − e is equivalent to the
one above) has a peak of working storage at least equal to 1100. Let us now consider the topological order
defined by the sequence a− b− c− d− e, which is not a postorder. The working storage takes the successive
values: ma = 1000, cba = 10, cba + mb = 1010, cba + cbb = 20, cba + cbb + mc = 120, cbb + mc = 110,
cbb + cbc = 100, cbb + cbc + md = 200, cbc + md = 190, cbc + cbd = 180, cbc + cbd + me = 280, me = 100,
cbe = 0. The storage requirement associated with a− b− c− d− e is only equal to 1010.

Thus, forcing the use of a postorder instead of a general topological order may lead to a larger memory
usage. This was already observed by Liu [127], who proposed an algorithm to find a memory-minimizing
topological ordering. In [118], the authors show that it is possible to build trees for which postorders are
arbitrarily bad in terms of working storage compared to the best postorder. In codes that rely on dynamic
allocation and do not use in-place assemblies, using general topological order would make sense and an
algorithm to find an optimal topological order faster than the one from [127] has recently been proposed by
Jacquelin et al. [118]. In the rest of this chapter, we still restrict our study to the case of postorders, for the
following reasons:

(i) postorders allow for a more friendly memory management (stack mechanism with a good locality of
reference);

(ii) gains from using more general topological orderings do not seem that big on many practical problems
[127];

(iii) postorders allow for in-place assemblies (see below), which lead to significant gains (≈ 30%) in terms
of working storage; it is not clear whether/how general topological orders would allow this type of
assembly.

Even in the case of postorders, minimizing the working storage has been studied by Liu [126]. In this
chapter, we generalize this work and also study the case of minimizing the I/O volume, in case not only
the factors but also the working storage must go to disk. The chapter is organized as follows. First, we
introduce some variants of the multifrontal method depending on (i) the way, and (ii) the moment when,
contribution blocks are assembled into the frontal matrix of the parent node (Section 3.2). Although this still
represents a limited set of variants, ideas of this chapter are more general and could be applied or adapted to
different variants of memory management. We focus on the minimization of the working storage requirement
in Section 3.3 (either when factors are kept in memory, or when they are stored on disk) before considering
the minimization of the I/O traffic in an out-of-core context where contribution blocks are also written to
disk (Section 3.4). In doing so, we consider a significant combination of situations and models. Finally we
provide some algorithms that demonstrate that an efficient memory management can be obtained for those
different models in Section 3.5, and give some concluding remarks in Section 3.6.

3.2 Models of assembly in the multifrontal method

We introduce several variants of the multifrontal method, which correspond to different existing and/or
possible implementations of the consumption of contribution blocks in the method. A first set of variants
comes from the possible overlap between the memory for the frontal matrix of the parent with the memory
for the contribution block that is first assembled into it. Here are the possible corresponding schemes:
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• The classical assembly scheme: the memory for the frontal matrix cannot overlap with the one of the
stack of contribution blocks at a given instant. This is illustrated in Figure 3.2(b): the frontal matrix f
is allocated in a memory space different from its children. All elements of f are first initialized to 0, then
the contributions e, d, c, b, a, possibly also some entries of the original matrix, are assembled one by
one in the memory reserved for f . This scheme is implemented for instance in the MA41 solver [37, 116].

• The in-place or last-in-place assembly scheme: the memory for the frontal matrix at the parent node
is allowed to overlap with the contribution block at the top of the stack, as illustrated in Figure 3.2(c).
Thanks to the postorder property, this contribution is the last one that was computed and is the first
one assembled into the parent. It is assembled “in-place”, in the sense that it is expanded in-place to
form the frontal matrix. This can be done if the order of the variables in the child and in the parent
are compatible:

– First, the entries in f that are not in e must be set to 0.

– Second, the entries in e are moved to their final position in f , one-by-one. Each time an entry in
e is moved to its position in f , if the original entry was in both e and f , it is reset to 0. This must
be done starting with the top-left corner of e, row-by-row (assuming a row-major storage) and it
is for this step that the order of the variables in the contribution block of e and in f have to be
compatible, which requires some care when part of the variables from f are computed dynamically
(delayed pivots).

– Third, entries from the contribution blocks of other children are assembled using classical extend-
add operations. Entries from the initial matrix corresponding to fully summed rows or columns
in the front of the parent are also assembled.

To summarize, we save space by not consuming both the memory of the contribution block of that
child and the memory of the frontal matrix of the parent. Instead, only the maximum between those
two quantities is required. This scheme is available in a code like MA27 [79] and in MUMPS, in the case
of serial executions and in parts of the tree that are processed by a single processor.

In practice, if an overlap is detected between the memory of the parent and the memory of the child
assembled in-place, the assembly will be done in-place. In that case, Algorithm 2.1 must be slightly
modified because a global compatible ordering between parent and child variables has to be strictly
respected. Because of that, delayed variables from a child assembled in-place must appear at the
beginning of the index list of the parent (they were expected to be eliminated first in the global
ordering).

• The max-in-place assembly scheme is a natural extension of the last-in-place assembly scheme. It was
suggested by [13]. In this approach, we overlap the memory for the frontal matrix of the parent with
the memory of the child producing the largest contribution block, even if that child is not processed
last. This new variant of in-place assembly requires a slightly different memory management which
ensures that some space for the parent is available contiguous to the memory of the largest child. We
will discuss a possible memory management algorithm corresponding to this scheme in Section 3.5.

Another possible variation (that combines to the previous one) is related to the moment when the frontal
matrix of the parent is allocated. We will discuss three such cases in this thesis:

• The terminal allocation scheme: the memory for the frontal matrix is allocated after all the children
have been processed.

• The early allocation scheme: the memory for the frontal matrix of the parent is allocated right after
the first child subtree has been processed.

• The flexible allocation scheme: the memory of the frontal matrix can be allocated earlier in order
to assemble (and thus consume) the contribution blocks of some children on the fly. By adequately
choosing the tree traversal and the position at which the frontal matrix of the parent is allocated, one
can significantly reduce the memory requirements, as was proposed by [106].
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lowed to overlap with the memory of the
first contribution block assembled.

Figure 3.2: An assembly tree and the corresponding memory state at the moment of the allocation of the
frontal matrix of its root node depending on the assembly scheme.

3.3 Postorders to reduce the storage requirements

3.3.1 Notations

We now introduce some notations that will be used in the rest of this chapter. We consider a generic parent
node and its n ordered children numbered j = 1, . . . , n and we note:

• cb / cbj , the storage for the contribution block of the parent node / of child j (remark that cb = 0 for
the root of the tree);

• m / mj , the storage of the frontal matrix associated with the parent node / with its jth child (remark
that m ≥ cbj , mj ≥ cbj , and that mj − cbj typically represents the size of the factors produced by
child j);

• S / Sj , the working storage (or active storage) required to process the subtree rooted at the parent /
at child j, when factors are written to disk as soon as they are computed;

• T / Tj , the total storage (including in-core factors) to process the subtree rooted at the parent / at
child j.

• F / Fj , the storage for all the factor matrices inside the subtree rooted at the parent / at child j.

Any convenient unit can be used for the above quantities, such as bytes, GB (gigabytes), or number
of scalar entries. Furthermore, we note that every tree whose corresponding nodes respect the constraints
above can be associated with a matrix: one can build the structure of a frontal matrix associated with each
node, and from the structure of each frontal matrix, it is easy to find a corresponding original sparse matrix.

In the case of flexible allocation (see last bullet of Section 3.2), we note p the position of the child after
which the frontal matrix of the parent is allocated and the contribution blocks of the already processed
children are assembled. With respect to all the variants of Section 3.2, we will use the following superscripts
for the above quantities:

term: terminal allocation of the parent, no in-place assembly.

term-ip: terminal allocation of the parent, in-place assembly of the last child, available on the top of the
stack.

term-maxip: terminal allocation of the parent, in-place assembly of the child with the largest contribution
block, assuming that some contiguous memory is available for the parent next to that contribution
block.

flex : flexible parent allocation, no in-place assembly.

flex-ip: flexible parent allocation, in-place assembly of child p.
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flex-maxip: flexible parent allocation, in-place assembly of the child with largest contribution block.

early : early parent allocation, first child assembled without an in-place scheme.

early-ip: early parent allocation, in-place assembly of first child.

(early-maxip is not applicable: since there is only one child before the parent allocation, this scheme is just
a particular case of – and can be no better than – early-ip.)

3.3.2 Terminal allocation

In this section, we focus on the multifrontal method with a terminal allocation of each frontal matrix:
the memory for a frontal matrix is only reserved after all child subtrees have been processed. This is the
situation that we have assumed in the previous chapters (for example, in the discussion on memory usage
from Section 1.3.3); furthermore, we have considered a classical assembly scheme (as opposed to an in-place
assembly scheme).

3.3.2.1 Working storage requirement

The working storage covers the storage for the factors and for the stack of contribution blocks, excluding the
storage for already computed factors. When processing a child j, the contribution blocks of all previously
processed children have to be stored. Their memory size sums up with the storage requirements Sj of

the considered child, leading to a global storage equal to Sj +
∑j−1

k=1 cbk. After all the children have been
processed, the frontal matrix (of size m) of the parent is allocated, requiring a storage equal to m+

∑n
k=1 cbk.

Therefore, the storage required to process the complete subtree rooted at the parent node is given by the
maximum of all theses values, that is:

Sterm = max

(
max
j=1,n

(Sterm
j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk

)
(3.1)

Knowing that the storage requirement S for a leaf node is equal to the size of its frontal matrix m,
applying this formula recursively (as done in [126]), allows to determine the storage requirement for the
complete tree, in a bottom-up process.

In case of last-in-place assembly, the contribution block of child n overlaps with that of the frontal matrix
of the parent, so that the cbn term can be suppressed from the right part of Formula (3.1). We obtain:

Sterm-ip = max

(
max
j=1,n

(Sterm-ip
j +

j−1∑
k=1

cbk),m+

n−1∑
k=1

cbk

)
, (3.2)

which corresponds to the situation considered in [126].

Finally, in case we are able to build the frontal matrix of the parent at a memory location which overlaps
with the memory of the largest contribution block (corresponding to a child we note kmax), we now obtain
the working storage in the max-in-place assembly scheme:

Sterm-maxip = max

max
j=1,n

(Sterm-maxip
j +

j−1∑
k=1

cbk),m+

n∑
k=1,k 6=kmax

cbk

 (3.3)

Compared to Equation (3.1) corresponding to the classical scheme, cbkmax
must simply be subtracted

from the term m+
∑

j cbj .
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3.3.2.2 Total storage requirement (including factors)

Here we consider that the factors are kept in memory. As introduced in Section 3.3.1, F/Fi represents the
sum of the memory requirements for all factor matrices in the subtree rooted at a parent node / in the
subtree rooted at child i. This corresponds to the sum of the factors produced at each frontal matrix in the
considered subtree. Starting from Formula (3.1) and taking into account the fact that factors must be kept
in memory, we obtain the total storage requirement at a parent subtree:

T term = max

(
max
j=1,n

(T term
j +

j−1∑
k=1

(cbk + Fk)),m+

n∑
k=1

(cbk + Fk)

)
. (3.4)

The modified formulas for the last-in-place and max-in-place schemes are, respectively:

T term-ip = max

(
max
j=1,n

(T term-ip
j +

j−1∑
k=1

(cbk + Fk)),m+

n−1∑
k=1

cbk +

n∑
k=1

Fk

)
, (3.5)

and

T term-maxip = max

max
j=1,n

(T term-maxip
j +

j−1∑
k=1

(cbk + Fk)),m+

n∑
k=1,k 6=kmax

cbk +

n∑
k=1

Fk

 . (3.6)

All these formulas (including F/Fk) can be evaluated using a natural bottom-up traversal of the tree.

3.3.2.3 Liu’s theorem and its application to reduce storage requirements

Depending on the assembly scheme and objective, we wish to find, at each level of the tree, a permutation
of the children which minimizes one of the above formulas. The total storage requirement T should be
minimized when everything is in-core, whereas the working storage S should be minimized when the factors
are stored to disk after they are computed.

We now state a fundamental theorem that will use many times in this chapter.

Theorem 3.1. (Liu [126, Theorem 3.2]) Given a set of values (xi, yi)i=1,...,n, the minimal value of

maxi=1,...,n(xi +
∑i−1

j=1 yj) is obtained by sorting the sequence (xi, yi) in decreasing order of xi − yi, that is,
x1 − y1 ≥ x2 − y2 ≥ . . . ≥ xn − yn.

Thanks to Theorem 3.1, one can minimize either the total storage requirement T or the working storage
requirement S. Suppressing the constant terms, xi and yi correspond to different quantities depending on
the formulas, as indicated in Table 3.1.

Quantity to Assembly Reference
minimize scheme formula xi yi
Working storage classical 3.1 Si cbi
(without factors) last-in-place 3.2 max(Si,m) cbi

max-in-place 3.3 Si cbi
Total storage classical 3.4 Ti cbi + Fi

(with factors) last-in-place 3.5 max(Ti,m+ Fi) cbi + Fi

Table 3.1: Optimal order of children for the terminal parent allocation, for the working storage (factors
written on disk) and for the total storage (when both the factors and active storage remain in core memory).
For each family of the tree, following a bottom-up process, child subtrees must be ordered in decreasing
order of xi − yi.
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In order to better see xi and yi, Formula (3.2) is rewritten as:

Sterm-ip = max
j=1,n

(
max(Sterm-ip

j ,m) +

j−1∑
k=1

cbk

)
,

and Formula (3.5) as:

T term-ip = max
j=1,n

(
max(T term-ip

j ,m+ Fj) +

j−1∑
k=1

(cbk + Fk)

)
.

The total memory with a max-in-place assembly scheme does not make so much sense from an implementation
point of view because it is difficult to imagine a memory management scheme that applies to that case, as
will be seen in Section 3.5. It was therefore excluded from the table.

3.3.3 Early parent allocation

Because on wide trees, the quantity of contribution blocks to store can be large, and can be larger than
the frontal matrix of the parent, Liu experimented in [126] a strategy consisting in preallocating the frontal
matrix of the parent node before children are processed and before associated contributions are formed.
Each contribution block from each new child is then assembled directly into the structure of the parent, thus
avoiding a possibly large collection of contribution blocks in stack memory. The storage requirement with
this approach is simply:

S = m+ max
j=1,n

(Si).

Liu noticed that rather than pre-allocating the parent, the above scheme can be slightly improved by
allocating the parent right after the first child has been processed. This allows one to process a large first
subtree which would not fit in memory together with the frontal matrix of the parent. Using the notations
above, we obtain a peak of active storage equal to:

Searly = max(Searly
1 ,m+ cb1,m+ max

j=2,n
(Searly

j )) (3.7)

if the assembly of the first child into the parent is not in-place (aka classical assembly), and

Searly-ip = max(Searly-ip
1 ,m+ max

j=2,n
(Searly-ip

j )) (3.8)

if the assembly of the contribution of the first child into the parent is done in-place. Both Equations (3.7)
and (3.8) are minimized by processing the child with largest Si first (at each level of the tree in a bottom-up
process). Unfortunately, a chain of parent nodes must be kept in memory, possibly also leading to a large
memory requirement. Therefore, Liu found this approach somewhat disappointing, even if applied only
partially, to levels of the tree where it is beneficial.

Concerning the total memory (including in-core factors), we similarly obtain:

T early = max(T early
1 ,F1 + cb1 +m,m+ max

j=2,n
(T early

j +

j−1∑
k=1

Fk)) (3.9)

for the classical assembly, and

T early-ip = max(T early-ip
1 ,F1 +m,m+ max

j=2,n
(T early-ip

j +

j−1∑
k=1

Fk)) (3.10)

if the assembly of the contribution from the first child into the parent can be done in-place1. In that case, it
could for example make sense to try to order the children in decreasing order of their Tj − Fj as this will at

1Remark that the max-in-place allocation would be the same as the normal in-place case because only one child has been
processed at the moment of allocating the parent.
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least minimize the term maxj(Tj +
∑j−1

k=1 Fk). It could also make sense to process the child with the largest
contribution first in the in-place case. However, because this early parent allocation is a special case of the
more general flexible allocation described in the next subsection, we delay the obtainment of an optimal to
the next section.

3.3.4 Flexible allocation

As explained in the previous section, neither the systematic pre-allocation of the parent node, nor its allo-
cation right after the last child (terminal allocation), provide an optimal storage requirement. However, it
is possible to allocate the parent node at an arbitrary position, somewhere in-between those two extremes.
Suppose that the frontal matrix of the parent node is allocated in memory right after the pth child has been
treated. We define S1 = {1, . . . , p} as the set of children processed before the allocation of the parent and

2 p1 . . . p+1 . . . n

S1 S2

Figure 3.3: Example of a parent node and its children.

S2 = {p+ 1, . . . , n} as the set of children processed after the allocation (see Figure 3.3).
In the presentation of this flexible allocation, we first consider that a “classical” assembly scheme is

used in Section 3.3.4.1 (in other words cbp and m do not overlap) and we then consider the “last-in-place”
assembly scheme in Section 3.3.4.2 (where cbp and m overlap). In both cases we study both the working and
total storage requirements. We finally consider the “max-in-place” assembly scheme in Section 3.3.4.3.

3.3.4.1 Classical (non in-place) assembly scheme

3.3.4.1.1 Working storage minimization The working storage (excluding factors) needed to process

a subtree rooted at a child j is denoted by Sflex
j . Considering only the children nodes in S1, the peak of

storage is obtained similarly to the case of the terminal allocation, (see Formula (3.1) in Section 3.3.2.1),

and is equal to max
(

maxj=1,p(Sflex
j +

∑j−1
k=1 cbk),m+

∑p
k=1 cbk

)
. Then, the amount of memory needed to

process each child j in S2 (after the parent is allocated) is m + Sflex
j . Thus, the storage requirement, Sflex,

to process the subtree rooted at the parent is:

Sflex = max

(
max
j=1,p

(Sflex
j +

j−1∑
k=1

cbk),m+

p∑
k=1

cbk,m+ max
j=p+1,n

Sflex
j

)
. (3.11)

We now look for an optimal schedule (that is, an order of the children and a position p to allocate the
parent) that minimizes (3.11).

Lemma 3.1. Let j be a child node belonging to S1. If Sflex
j is smaller than maxi∈S2(Sflex

i ), then j can be
moved to S2 without increasing the peak.
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Proof. Removing a node from S1 does not increase the peak in this set. Furthermore since Sflex
j is smaller

than maxi∈S2(Sflex
i ), the peak for S2, m + maxi∈S2(Sflex

i ), will not increase. (Note that the order of the
children in S2 has no impact on the memory peak.)

Theorem 3.2. Considering a parent node and its n children, an optimal peak of working storage and its
corresponding schedule are obtained by applying the following algorithm:

Set S1 = {1, . . . , n}, S2 = ∅ and p = n;
Find the schedule providing an optimal Sflex value for partition (S1, S2);
repeat

Find j such that Sflex
j = mink∈S1 S

flex
k ;

Set S1 = S1 \ {j}, S2 = S2 ∪ {j}, and p = p− 1;
Find the schedule providing an optimal S′flex value for partition (S1, S2);
if S′flex ≤ Sflex then

Keep the value of p, and the schedule of children in S1 and S2 corresponding to S′flex;
Set Sflex = S′flex;

end if
until p == 1 or S′flex > Sflex

Proof. Let σ be an optimal schedule of the children (defining the partition (S1, S2) as well as the order of

the nodes in S1 and S2). If ∃k ∈ S1 such that Sflex
k ≤ maxj∈S2(Sflex

j ), the schedule σ′ obtained by moving

k to S2 is still optimal (Lemma 3.1). Thus, there exists an optimal schedule σ′′ such that mink∈S1(Sflex
k ) >

maxk∈S2(Sflex
k ) obtained by repeating the previous operation.

As a consequence, an optimal schedule can be computed by starting with all nodes in S1 and by trying
to move the child node j having the smallest Sflex

j from S1 to S2. The latter operation is repeated until the

minimal value of Sflex is obtained. For a given schedule, removing a node in S1 will not increase the peak of
memory in S1 (Lemma 3.1). Then, finding the optimal schedule on the new set cannot increase the peak.
Thus, the peak corresponding to S1 (resp. S2) can only decrease (resp. increase) or be stable from one step
to the next, and we can stop iterating when S′flex > Sflex (the peak is then due to S2 and will not decrease
again).

At each step of the algorithm above, the schedule providing the optimal Sflex value for a partition (S1,

S2) is obtained by sorting the nodes in S1 in decreasing order of Sflex
k − cbk (see Section 3.3.2.3 and remark

that only the first term of Formula (3.11) is impacted by the order of the nodes), while the order in S2 has
no effect. There is no need to sort the nodes in S1 again at each step of the algorithm (when a child is
moved from S1 to S2), because the sequence of nodes resulting from the previous step of the algorithm is
still sorted correctly: only the new Sflex value has to be computed at each step, using Formula (3.11).

The determination of the best position for the allocation of the parent is thus done in a maximum of n
steps. As explained earlier, the schedule on the complete tree is then obtained by applying the algorithm at
each level of the tree, recursively.

3.3.4.1.2 Total storage minimization We use the same definition as before for the sets S1, S2 and
for the position to allocate the parent, p. The peak of storage for S1, including the allocation of the parent
node, is obtained by applying the reasoning that led to Formula (3.4), on one hand, and (3.11), on the other
hand:

P1 = max

(
max
j=1,p

(Tflex
j +

j−1∑
k=1

(cbk + Fk)),m+

p∑
k=1

(cbk + Fk)

)
. (3.12)
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Furthermore, the amount of memory needed to process the children nodes of S2 is:

P2 = m+

p∑
k=1

Fk + max
j=p+1,n

(Tflex
j +

j−1∑
k=p+1

Fk). (3.13)

Indeed, when treating a node, the memory will contain the factors corresponding to all already processed
sibling subtrees. In the formulas above, note also that Tflex

j includes Fj so that the factors for the last child
are effectively taken into account. Finally, the amount of memory needed to process the subtree rooted at
the parent is:

Tflex = max(P1,P2) (3.14)

Lemma 3.2. Suppose that the position p to allocate the parent, the set of children nodes in S1 and the set of
children nodes in S2 are given. Then, sorting the children nodes in S1 in decreasing order of Tflex

j −(cbj +Fj)

and the children nodes in S2 in decreasing order of Tflex
j − Fj provides an optimal peak of memory on S1

and an optimal peak of memory on S2.

Proof. For S1, the order is the one of the classical assembly scheme, terminal allocation (see Table 3.1,
minimization of Formula (3.4)). For S2, this results from Theorem 3.1 (see Section 3.3.2.3) applied to the

right-hand side of Formula (3.13), with xk = Tflex
k and yk = Fk.

Lemma 3.3. Suppose that the max in S2 is obtained for child j0, p + 1 ≤ j0 ≤ n and that the children in
S1 and S2 are ordered according to Lemma 3.2. In other words, suppose that P2 = P2(j0), where we define

P2(j0) = m+

p∑
k=1

Fk + (Tflex
j0

+

j0−1∑
k=p+1

Fk)

= m+

j0−1∑
k=1

Fk + Tflex
j0

(3.15)

Then, any partition (S ′1,S ′2) such that S1 ⊂ S ′1 and j0 ∈ S ′2 leads to a storage requirement larger or equal to
the value P2(j0) above. In other words, it is not possible to decrease the storage by moving elements from S2
to S2 and keeping j0 in S2.

Proof. (i) Changing the order of the children cannot improve the peak (Lemma 3.2). (ii) If we move nodes
j1 from S2 to S1 that are before j0 (that is, j1 < j0), the second line in (3.15) will not change. (iii) If we
move nodes j1 from S2 to S1 that are after j0 (that is, j1 > j0), P2(j0) will increase (since Fj1 adds up to
the sum), and thus the peak on S2.

Lemma 3.4. Given a set S1 ordered according to Lemma 3.2, inserting a new element j0 into S1 cannot
decrease the peak on S1: if we define P ′1 to be the peak of total memory including the allocation of the parent
using S ′1 = S1 ∪ {j0}, we have P ′1 ≥ P1.

Proof. See Formula (3.12).

Theorem 3.3. Given a parent node and its n children, an optimal peak of total memory Tflex
i is obtained

by applying the following algorithm:

Set S1 = ∅, S2 = {1, . . . , n} and p = 0;
Sort S2 according to Lemma 3.2;
Compute Tflex = P2 according to Formula (3.13);
repeat

Find j0 ∈ S2 such that P2 = m+
∑j0

k=1 Fk + Tflex
j0

(Formula (3.15));
Set S1 = S1 ∪ {j0}, S2 = S2 \ {j0}, and p = p+ 1;
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(Remark: j0 is inserted at the appropriate position in S1 so that the order of Lemma 3.2 is respected.)
Compute P1, P2, and T ′flex = max(P1,P2);
if T ′flex ≤ Tflex then

Keep the values of p, S1 and S2 and set Tflex = T ′flex;
end if

until p = n or P1 ≥ P2

Proof. Starting from a configuration where P2 > P1, it results from Lemma 3.3 that the only way to possibly
decrease the peak is by moving j0 from S2 to S1. Thus, at each iteration either we have obtained the optimal
peak Tflex, or the solution with the optimal peak is such that j0 (which was responsible for the peak in S2)
belongs to S1. Since we start with S1 = ∅, we are sure to reach the optimal configuration after a maximum
of n iterations. (At each iteration, the order from Lemma 3.2 is respected by inserting j0 at the appropriate
position in S1.)

For the termination criterion, we know that the optimal peak has been obtained when P1 becomes larger
or equal than P2, since in that case the memory peak Tflex = P1 will only increase if the algorithm is pursued
further (Lemma 3.4).

Remark that we use the stopping criterion P1 ≥ P2. The condition T ′flex > Tflex is not sufficient to
ensure that the optimal peak has been reached: it may happen that the global peak will increase by moving
an element j0 from S2 to S1, and decrease again at a further iteration to reach the optimal. An example
producing such a situation is the one below:

m = 100 n = 3

Tflex
1 = 160, F1 = 100,

Tflex
2 = 140, F2 = 120,

Tflex
3 = 10, F3 = 5,

cb1 = cb2 = cb3 = 5

Initially all three children are in S2, sorted according to Lemma 3.2 and Tflex = 340 is reached for child 2,
that the algorithm tries to move to S1: S1 = {2} and S2 = {1, 3}, leading to T ′flex = 380 > 340. Then,
moving child 3 from S2 to S1 leads to a peak of total memory equal to Tflex = 330, which is the optimal
since P1 = P2.

3.3.4.2 In-place assembly scheme

In this section we describe how the flexible allocation adapts to an in-place (more precisely last-in-place)
assembly scheme. We assume that the assembly of the contribution block corresponding to the last child
treated before the allocation of the parent, the pth child using the notations introduced before, is done in-
place into the frontal matrix of the parent: the memory of the contribution block of the last child overlaps
with the memory of the parent.

3.3.4.2.1 Working storage minimization In the flexible scheme, if the memory for the pth child
overlaps with the memory for the parent node, the storage required at the parent becomes:

Sflex-ip = max
(

max
j=1,p

(Sflex-ip
j +

j−1∑
k=1

cbk),m+

p−1∑
k=1

cbk,m+ max
j=p+1,n

(Sflex-ip
j )

)
(3.16)

Note the difference with Formula (3.11): the memory for cbp does not appear here since it is now included
in the memory for the parent, m. Finding a schedule that minimizes the working storage is equivalent to the
problem presented in Section 3.3.4.1.1. The only difference comes from the computation/processing of the
optimal order inside the set S1. Indeed, inside this set, we have to use the schedule proposed by Liu [126]
that ensures an optimal memory occupation with the assumption that the last child is assembled in-place
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into the parent: this is done by sorting the children nodes in descending order of max(Sflex-ip
j ,m)−cbj . Thus

one can simply use a variant of Theorem 3.2 where children nodes inside S1 are sorted in that order.

3.3.4.2.2 Total storage minimization In the flexible allocation scheme, if the memory of the contri-
bution block of the pth child overlaps with the memory of the parent (in-place assembly), the total memory
is Tflex-ip = max(P1,P2) (as in Formula (3.14)), where P2 is defined by Formula (3.13). The difference with
the non in-place case comes from the peak in S1, where the contribution block for child p is not taken into
account when assembling the parent, leading to:

P1 = max
(

max
j=1,p

(Tflex-ip
j +

j−1∑
k=1

(cbk + Fk)),m+ max
j=1,p

(

j−1∑
k=1

cbk +

j∑
k=1

Fk)
)

= max
j=1,p

(j−1∑
k=1

(cbk + Fk) + max(Tflex-ip
j ,m+ Fj)

) (3.17)

By applying Theorem 3.1 again, the smallest peak in S1 is obtained when the children nodes are sorted
in decreasing order of max(Tflex-ip

j ,m + Fj) − (cbj + Fj). An optimal schedule for the total memory in the
in-place case is then obtained by applying Theorem 3.3 with children nodes in S1 in that order instead of
the order from Lemma 3.2.

3.3.4.3 Max-in-place assembly scheme

We can also use a max max-in-place assembly scheme together with a flexible parent allocation (and will
discuss a possible memory management in Section 3.5). In that case, noting kmax the index of the child with
the largest contribution block in S1, and assuming that there is a contiguous space next to that contribution
at the moment of allocating the parent, the working storage can be expressed as:

Sflex-maxip = max
(

max
j=1,p

(Sflex-maxip
j +

j−1∑
k=1

cbk),m+

p∑
k=1,k 6=kmax

cbk,m+ max
j=p+1,n

(Sflex-ip
j )

)
(3.18)

Similar to the terminal allocation scheme, we do not discuss the association of max-in-place with total
memory minimization.

To conclude this section on flexible allocation, we summarize in Table 3.2 the order in S1 and provide
the references to the formulas in the text.

Quantity to Assembly Reference Order in S1 Theorem to obtain
minimize scheme formula xi yi assembly position p
Working storage classical 3.11 Si cbi 3.2
(without factors) last-in-place 3.16 max(Si,m) cbi 3.2

max-in-place 3.18 Si cbi 3.2
Total storage classical 3.12, 3.13, 3.14 Ti cbi + Fi 3.3
(with factors) last-in-place 3.17 max(Ti,m+ Fi) cbi + Fi 3.3

Table 3.2: Summary of the results for the flexible parent allocation, for the working storage (factors written
on disk) and for the total storage (when both the factors and working storage remain in core memory). In
S1, child subtrees are sorted in decreasing order of xi − yi.

3.3.5 Impact and summary of experimental results

Rather than presenting experimental results for all variants, we summarize the results by the following
general observations and will only detail results for one of the cases. We suggest [102] and the references
cited below for additional results.
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• Sorting the children is not costly and should always be done [126].

• The impact on memory of using good tree traversal varies depending on the ordering [107].

• The relative gains of a good strategy on the total memory (including factors) is smaller than the relative
gains on the working memory, depending on the size of the stack.

• The last-in-place assembly scheme allows gains on the working storage requirements between 20% and
30%. The total storage requirements (including factors) are also reduced significantly, depending on
the volume of stack memory compared to factors.

• The new max-in-place assembly scheme, although slightly more complex to implement can be very
efficient in terms of working storage; this is illustrated in Figure 3.4, where the x-axis corresponds to
the matrices and orderings used in [13].

• The flexible allocation scheme can be very effective in many cases [104].
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Figure 3.4: Working storage requirements of the max-in-place assembly scheme, compared to the classical
and last-in-place assembly schemes. A terminal allocation of the frontal matrix of the parent is used.

Related to this last point, let us focus on gains one can get using the flexible allocation scheme with
an in-place allocation scheme. We use a set of 44 matrices, listed in [106] and we present in Figure 3.5
the working storage requirement obtained with the flexible in-place schedule (“Flexible parent allocation,
in-place”) compared to:

• the terminal allocation scheme, with in-place assembly of the last child;

• the early parent allocation scheme, with in-place assembly of the first child into the parent; as in
Section 3.3.3, the child with largest peak Searly-ip

j is ordered first to minimize the memory usage.

• the situation of Section 3.3.4.1.1 (“Flexible allocation”, “Classical assembly”), where we measure Sflex

(Formula (3.11)) rather than Sflex-ip, and order the children correspondingly.

In this figure, METIS is used to illustrate the behaviour of the in-place algorithms, but results with other
orderings would lead to the same type of remarks. (Results with other orderings are available in [104]). We
observe that significant gains can be obtained compared to the non in-place case. Indeed, with the new
algorithm, the gains obtained at each level of the tree modify the global traversal and often allow a better
allocation position for the parent node. The difference between the flexible in-place and non in-place schemes
comes also from the fact that the order in S1 is different for the two schemes. This explains that we gain
more than just the memory of the largest contribution block of the complete assembly tree. Comparing
in-place approaches, we also remark that memory ratios of up to 2 may be obtained over the case where the
parent is allocated after the first child, and that huge gains can still be obtained over the terminal parent
allocation scheme for very wide trees (GUPTA matrices).

74



 1

 1.2

 1.4

 1.6

 1.8

 2

 0  5  10  15  20  25  30  35  40  45

M
e
m

o
ry

 R
a
ti
o

Matrix

Flexible allocation scheme, in-place
 Terminal allocation scheme, in-place

Early allocation scheme, in-place
Flexible allocation scheme
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Percentage of total Number of test cases
memory for factors Flexible scheme Flexible scheme+in-place
< 50 % 2 0
50%-60% 2 3
60%-70% 9 6
70%-80% 22 22
80%-100% 141 145
Total 176 176

Table 3.3: Number of combinations of test cases (matrix/ordering) for different ranges of the percentage of
total memory used by the final factors.

We have also experimented the strategy consisting in minimizing the total memory with a flexible, in-
place assembly scheme on the same range of test problems (see [104] for a full set of results). We observed
significant gains compared to a terminal allocation scheme, in-place and an early allocation scheme, in-place,
with their corresponding schedules (see [104] for more details). Furthermore, the memory ratio between the
optimal in-place mechanism and the optimal non in-place mechanism can still reach 10% or 20% in some
of the cases, so that it may be worth performing the assembly in-place if the implementation allows it: the
percentage of total memory used by the factors has significantly increased compared to the case of the non
in-place assembly (see Table 3.3), and most of the memory is now used by the factors; clearly, this was often
not the case with the classical multifrontal scheme.

3.4 Postorders to reduce the volume of I/O

In this section, we assume that the factors are written to disk as soon as they are computed; thus, the
corresponding I/O traffic is known and independent from the tree traversal. Assuming that the physical
memory is insufficient for the working storage (contribution blocks and current frontal matrix), we therefore
focus on the volume of I/O related to the stack of contribution blocks. We also assume that the current
frontal matrix alone holds in core memory.
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3.4.1 Stacks and I/O volumes

Because the contribution blocks are produced once and accessed once, they will be written to / read from
disk at most once. This property gives an upper bound on the I/O volume equal to the sum of sizes of all
the contribution blocks. However, we wish to limit this amount (that may be huge) by using as much of
the available core memory as possible and performing I/O only when necessary. Said differently, we want to
reach Objective 3.1:

Objective 3.1. Given a postorder of the elimination tree and an amount of available core memory M0,
our purpose is to find the I/O sequence that minimizes the I/O volume on the contribution blocks (the I/O
volume on the factors being constant).

The amount of core memory and the I/O volume thus appear to be related one to the other. To go
further in the understanding of the notion of I/O volume, it is thus appealing to relate the evolution of the
I/O volume to the evolution of the core memory. Said differently:

Objective 3.2. Can we characterize the (optimum) volume of I/O as a function of the available core memory
M0 ?

Actually, Objective 3.1 is easy to reach. Indeed, as we have mentioned, the contribution blocks are
managed with a stack mechanism. In this context, a minimum I/O volume on the contribution blocks is
obtained by writing the bottom of the stack first since the application will need it last. Property 3.1 states
this result in other words:

Property 3.1. For a given postorder of the elimination tree and a given amount of available core memory
M0, the bottom of the stack should be written first when some I/O is necessary and this results in an optimum
volume of I/O.

Therefore, we can assume in the rest of the thesis (in the context of the multifrontal method) that the
I/O’s on the stack of contribution blocks are performed with respect to Property 3.1.

In particular, we can deduce the following result that aims at answering to Objective 3.2:

Property 3.2. For a given postorder of the elimination tree, the (optimum) volume of I/O on the contri-
bution blocks as a function of the available memory M0 (V I/O = f(M0)) is a piece-wise affine function; the
steepness of each piece is an integer multiple of −1 whose absolute value decreases when the value of M0

increases.

The proof of this property is technical and can be found in the appendix of [5]. We illustrate it on simple
examples.

In Figure 3.6(a), the storage requirement for the application increases from S = 0 to S = 4 (GB, say),
which corresponds to a total amount of push operations of 4, followed by a total amount of pop operations
of 4. We use the notation (push, 4), (pop, 4) to describe this sequence of memory accesses. If M0 > 4 (for
example, M0 = 4.5) no I/O is necessary. If M0 = 2, the storage increases from S = 0 to S = 2 without I/O,
then the bottom of the stack is written to disk (2 units of I/O) in order to free space in memory for the
2 GB produced when S increases from 2 to 4. The storage then decreases to 2 when the top of the stack is
accessed, and the 2 units of data that were written to disk have to be read again when the storage decreases
from 2 to 0. Counting only write operations, the volume of I/O obtained for M0 = 2 is 2. When M0 further
decreases, the volume of I/O will increase from 2 to a maximum value of 4. We see that on such a sequence,
the volume of I/O will be equal to max(4−M0, 0), which corresponds to an affine function of steepness −1.

If we now consider the sequence of Figure 3.6(b), which can be represented as (push,4); (pop,4); (push,4);
(pop,4), there are two peaks of stack storage, with no common data between the two peaks. Therefore, for
M0 = 2 (say), we will perform 2 units of I/O for the first peak, and 2 units of I/O for the second peak.
Overall, the volume of I/O obtained is 2×max(4−M0, 0) (piecewise affine function of steepness −2).

Let us now take a slightly more complex example: sequence (push,4); (pop,2); (push,1); (pop,3) from
Figure 3.6(c). We start performing I/O when the physical memory available M0 becomes smaller than the
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Figure 3.6: Evolution of the storage requirement of a stack (top) and I/O volume as a function of the
available memory (bottom) on four examples (a, b, c and d).

storage requirement, equal to 4. If M0 = 2, then the first peak of storage S = 4 will force us to write 2 GB
from the bottom of the stack. Then the storage requirement decreases until S = 2. When S increases again
and reaches the second peak S = 3, the bottom of the stack is still on disk and no supplementary I/O is
necessary. Finally S decreases to 0 and the bottom of the stack (2 GB) that was written will be read from
disk and consumed by the application. For this value of M0 (2), the volume of I/O (written) is only equal
to 2. In fact if M0 > 1 the second peak has no impact on the volume of I/O. Said differently, even if there
are two peaks of storage equal to 4 GB and 3 GB, 2 GB are shared by these two peaks and this common
amount of data can be processed out-of-core only once. By trying other values of M0, one can observe that
the volume of I/O, V I/O(M0), is equal to max(4 −M0, 0) + max(1 −M0, 0): we first count the volume of
I/O resulting from the largest peak (max(4−M0, 0)) and then only count new additional I/O resulting from
the second peak (max(1 −M0, 0)). Note that the value 1 in the latter formula is obtained by subtracting
2 (volume of storage common to both peaks) to 3 (value of the peak). Again we have a piecewise affine
function; its steepness is −1 when M0 > 1 and −2 when M0 ≤ 1. We finally consider Figure 3.6(d). In that
case, we obtain exactly the same result as in the previous case, with a volume of I/O equal to max(4−M0, 0)
when M0 ≥ 1 to which we must add max(1 −M0, 0) when M0 < 1 for the I/O corresponding to data only
involved in the first peak.

We summarize this behaviour. When the available memory M0 becomes slightly smaller than the in-
core threshold, if the available memory decreases by 1 GB (say), the volume of I/O will increase by 1 GB
(steepness −1). This corresponds to a line of equation in this contexty(M0) = peak storage −M0, which
represents a lower bound for the actual volume of I/O. For smaller values of the available memory, reducing
the available memory of 1 GB may increase the volume of I/O by 2 GB, 3 GB or more.

In the next subsection, we introduce some notations that we use next to give a formal way of forecasting
the volume of I/O in the multifrontal method. Experiments on real matrices will then be discussed in
Section 3.4.8.

3.4.2 Notations

We need some additional notations, on top of the ones introduced in Section 3.3.1. We still consider a generic
family with a parent and n children numbered j = 1, . . . , n and define:

• M0, the amount of available core memory;

• A / Aj , the core memory effectively used to process the subtree rooted at the parent / at child j (note
that Aj = min(Sj ,M0)).
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• V I/O / V
I/O
j the volume of I/O required to process the subtree rooted at the parent / at child j given

an available memory of size M0. When needed, we use V I/O,term and V I/O,flex to design the volumes
of I/O with the flexible and terminal allocation schemes, respectively. We also use V I/O,term,ip and
V I/O,flex,ip in case of in-place assembly.

Clearly when the storage requirement S exceeds M0 at the root of a given subtree, V I/O will be positive
for that subtree.

3.4.3 Terminal allocation of the parent, classical assembly

In this Section, we consider that the allocation of the parent is done after all child subtrees are processed
(terminal allocation) and cannot be done in-place. Focusing on memory-handling issues, the multifrontal
method with terminal allocation may be presented as in Algorithm 3.1, where an assembly step (line asN )
always requires the frontal matrix of the parent to be in memory. In an out-of-core assembly, we assume
that a contribution block can be partially on disk during assembly operations.

foreach node N in the tree (postorder traversal) do
alN : Allocate memory for the frontal matrix associated with N ;
if N is not a leaf then

asN : Assemble contribution blocks from children ;

fN : Perform a partial factorization of the frontal matrix of N, writing factors to disk on the fly;
keep the contribution block (in memory or on disk, possibly partially) for later use;

Algorithm 3.1: Multifrontal method with factors on disk.

3.4.3.1 Illustrative example and formal expression of the I/O volume

Before providing a formal expression of the I/O volume, we illustrate the memory and I/O behaviours on
the small example given in Figure 3.7 (left): we consider a root node (e) with two children (c) and (d).
The frontal matrix of (e) requires a storage me = 5 (let us assume, for example, that this means 5 GB). The
contribution blocks of (c) and (d) require a storage cbc = 4 and cbd = 2, while the storage requirements
for their frontal matrices are mc = 6 and md = 8, respectively. (c) has itself two children (a) and (b) with
characteristics cba = cbb = 3 and ma = mb = 4. We assume that the core memory available is M0 = 8.

e me = 5

a b

c d

cba = 3 cbb = 3

cbc = 4 cbd = 2

ma = 4 mb = 4

mc = 6 md = 8

Sequence a-b-c-d-e

Storage: S = 12

I/O: V I/O = 8

⇒ Memory minimized

Sequence d-a-b-c-e

Storage: S = 14

I/O: V I/O = 7

⇒ I/O minimized

Figure 3.7: Influence of the postorder on the storage requirement and on the volume of I/O (with M0 = 8).

To respect a postorder traversal, there are two possible ways to process this tree: (a-b-c-d-e) and (d-a-
b-c-e). (Note that (a) and (b) are identical and can be swapped.) We now describe the memory behaviour
and I/O operations in each case. We first consider the postorder (a-b-c-d-e). (a) is first allocated (ma = 4)
and factored (we write its factors of size ma − cba = 1 to disk), and cba = 3 remains in memory. After
(b) is processed, the memory contains cba + cbb = 6. A peak of storage Sc = 12 is then reached when the
frontal matrix of (c) is allocated (because mc = 6). Since only 8 (GB) can be kept in core memory, this

78



forces us to write to disk a volume of data equal to 4 GB. Thanks to the postorder and the use of a stack,
these 4 GB are the ones that will be reaccessed last; they correspond to the bottom of the stack. During
the assembly process we first assemble contributions that are in memory, and then read 4 GB from disk to
assemble them in turn in the frontal matrix of (c). Note that (here but also more generally), in order to
fit the memory requirements, the assembly of data residing on disk may have to be performed by panels
(interleaving the read and assembly operations). After the factors of (c) of size mc − cbc = 2 are written to
disk, its contribution block cbc = 4 remains in memory. When the leaf node (d) is processed, the peak of
storage reaches cbc + md = 12. This leads to a new volume of I/O equal to 4 (and corresponding to cbc).
After (d) is factored, the storage requirement is equal to cbc + cbd = 6 among which only cbd = 2 is in core
(cbc is already on disk). Finally, the frontal matrix of the parent (of size me = 5) is allocated, leading to
a storage cbc + cbd + me = 11: after cbd is assembled in core (into the frontal matrix of the parent), cbc is
read back from disk and assembled in turn. Overall the volume of data written to (and read from) disk2 is

V
I/O
e (a-b-c-d-e)= 8 and the peak of storage was Se(a-b-c-d-e)= 12.

When the tree is processed in order (d-a-b-c-e), the storage requirement successively takes the values
md = 8, cbd = 2, cbd+ma = 6, cbd+cba = 5, cbd+cba+mb = 9, cbd+cba+cbb = 8, cbd+cba+cbb+mc = 14,
cbd + cbc = 6, cbd + cbc + me = 11, with a peak Se(d-a-b-c-e)= 14. Nodes (d) and (a) can be processed
without inducing I/O, then 1 unit of I/O is done when allocating (b), 5 units when allocating (c), and

finally 1 unit when the frontal matrix of the root node is allocated. We obtain V
I/O
e (d-a-b-c-e)= 7.

We observe that the postorder (a-b-c-d-e) minimizes the peak of storage and that (d-a-b-c-e) minimizes
the volume of I/O. This shows that minimizing the peak of storage is different from minimizing the volume
of I/O.

All the process described above is illustrated in Figure 3.8, which represents the evolution of the storage
in time for the two postorders (a-b-c-d-e) and (d-a-b-c-e) (subfigures 3.8(a) and 3.8(b), respectively). The
storage increases when memory is allocated for a new frontal matrix of size x (alN (x)); it decreases when
contribution blocks of size y are assembled into the frontal matrix of their parent (asN (y)) and when factors
of size z are written to disk (fN (z)). When the storage is larger than the available memory M0, this means
that part of the stack is on disk. The core window is shaded in the figure, so that the white area below the
core window corresponds to the volume of data on disk. Finally write and read operations on the stack are
noted wx and ry, where x and y are written and read sizes, respectively. We can see that each time the
storage is about to exceed the upper bound of the core window, a write operation is necessary. The volume
of data of each read operation depends on the size of the contribution blocks residing on disk that need to
be assembled.

(a) Sequence a-b-c-d-e (b) Sequence d-a-b-c-e

Figure 3.8: Evolution of the storage requirement S when processing the sample tree of Figure 3.7 with the two
possible postorders, and subsequent I/O operations. Notations alN (x), asN (y) and fN (z) were introduced
in Algorithm 3.1.

Since contribution blocks are stored using a stack mechanism, some contribution blocks (or parts of

2We do not count I/O for factors, that are independent from the postorder chosen: factors are systematically written to disk
in all variants considered.
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contribution blocks) may be kept in memory and consumed without being written to disk. Assuming that
the contribution blocks are written only when needed (possibly only partially), that factors are written to
disk as soon as they are computed, and that a frontal matrix always fits in core memory, we focus on the
computation of the volume of I/O on this stack of contribution blocks.

We remind that the working storage requirement for the classical assembly, as obtained in Section 3.3.2
is (same equation as 3.1):

Sterm = max

(
max
j=1,n

(Sterm
j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk

)
(3.19)

In our out-of-core context, we now assume that we are given a core memory of size M0. If S > M0, some
I/O will be necessary. The data that must be written to disk are given by Property 3.1 (write bottom of
the stack in priority), which was already used in an informal way in the example at the beginning of this
section.

To simplify the discussion we first consider a set of subtrees and their parent, and suppose that Sj ≤M0

for all children j. The volume of contribution blocks that will be written to disk corresponds to the difference
between the memory requirement at the moment when the peak S is obtained and the size M0 of the memory
allowed (or available). Indeed, each time an I/O is done, an amount of temporary data located at the bottom
of the stack is written to disk. Furthermore, data will only be reused (read from disk) when assembling the
parent node. More formally, the expression of the volume of I/O for the terminal allocation scheme with
classical assembly, using Formula (3.1) for the storage requirement, is:

V I/O,term = max

(
0,max(max

j=1,n
(Sterm

j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk)−M0

)
(3.20)

As each contribution written is read once, V I/O,term will arbitrarily refer to the volume of data written.
We now suppose that there exists a child j such that Sj > M0. We know that the subtree rooted at child

j will have an intrinsic volume of I/O V
I/O,term
j (recursive definition based on a bottom-up traversal of the

tree). Furthermore, we know that the memory for the subtree rooted at child j cannot exceed the physical

memory M0. Thus, we will consider that it uses a memory exactly equal to M0 (Aterm
j

def
= min(Sterm

j ,M0)),

and that it induces an intrinsic volume of I/O equal to V
I/O,term
j . With this definition of Aj as the active

memory, i.e. the amount of core memory effectively used to process the subtree rooted at child j, we can
now generalize Formula (3.20). We obtain:

V I/O,term = max

(
0,max(max

j=1,n
(Aterm

j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk)−M0

)
+

n∑
j=1

V
I/O,term
j (3.21)

To compute the volume of I/O on the complete tree, we recursively apply Formula (3.21) at each level
(knowing that V I/O,term = 0 and A = S = m for leaf nodes). The volume of I/O for the factorization is
then given by the value of V I/O,term at the root.

3.4.3.2 Minimizing the I/O volume

It results from Formula (3.21) that minimizing the volume of I/O is equivalent to minimizing the expression

maxj=1,n(Aj +
∑j−1

k=1 cbk), since it is the only term sensitive to the order of the children.
Thanks to Theorem 3.1 (proved in [126]), we deduce that we should process the children nodes in

decreasing order of Aj − cbj = min(Sj ,M0) − cbj . (This implies that if all subtrees require a storage
Sj > M0 then MinIO will simply order them in increasing order of cbj .) An optimal postorder traversal
of the tree is then obtained by applying this sorting at each level of the tree, constructing Formulas (3.1)
and (3.21) from bottom to top. We will name MinIO this algorithm.
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Note that, in order to minimize the peak of storage (defined in Formula (3.1)), children had to be sorted
(at each level of the tree) in decreasing order of Sj − cbj rather than Aj − cbj . Therefore, on the example
discussed before, the subtree rooted at (c) (Sc − cbc = 12 − 4 = 8) had to be processed before the subtree
rooted at (d) (Sd − cbd = 8 − 2 = 6). The corresponding algorithm (that we name MinMEM and that leads
to the postorder (a-b-c-d-e)) is different from MinIO (that leads to (d-a-b-c-e)): minimizing the storage
requirement is different from minimizing the I/O volume; it may induce a volume of I/O larger than needed.
Conversely, when the stack fits in core memory, M0 is larger than Sj and Aj = Sj for all j. In that case,
MinMEM and MinIO lead to the same tree traversal and to the same peak of core memory.

3.4.4 In-place assembly of the last contribution block

As explained before, this variant assumes that the memory of the frontal matrix of the parent may overlap
with (or include) that of the contribution block from the last child. The contribution block from the last child
is then expanded (or assembled in-place) in the memory of the parent. Since the memory of a contribution
block can be large, this scheme can have a strong impact on both storage and I/O requirements. In this
context, the storage requirements needed to process a given subtree is given by Formula (3.2).

In an out-of-core context, the use of this in-place scheme induces a modification of the amount of data
that has to be written to/read from disk. As previously for the memory requirement, the volume of I/O to
process a given node with n children (Formula (3.21)) becomes:

V I/O,term,ip = max

0,max(max
j=1,n

(Aterm-ip
j +

j−1∑
k=1

cbk),m+

n-1∑
k=1

cbk)−M0

+

n∑
j=1

V
I/O,term,ip
j ,

where this time, Aterm-ip
j

def
= min(Sterm-ip

j ,M0) (see Formula (3.2)). Once again, the difference comes from

the in-place assembly of the contribution block coming from the last child. Because m +
∑n−1

k=1 cbk =

maxj=1,n(m+
∑j−1

k=1 cbk), this formula can be rewritten as:

V I/O,term,ip = max

(
0, max

j=1,n
(max(Aterm-ip

j ,m) +

j−1∑
k=1

cbk)−M0

)
+

n∑
j=1

V
I/O,term,ip
j (3.22)

Thanks to Theorem 3.1, minimizing the above quantity can be done by sorting the children nodes in
decreasing order of max(Aterm-ip

j ,m)− cbj , at each level of the tree.

3.4.5 In-place assembly of the largest contribution block

M0 = 12

a b c

d m = 9

ma = 12 mb = 4 mc = 10
cba = 5 cbb = 2 cbc = 4

Figure 3.9: Example of a tree where MinIO + last-in-place is better than the max-in-place variant.

In an out-of-core context, it is not immediate nor easy to generalize MinIO to the in-place assembly of the
largest contribution block (see Section 3.2). The problem comes from the fact that the largest contribution
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block, if it does not correspond to the last child, may have to be written to disk to leave space for the
subtrees that come after it in the postorder. Let us illustrate the difficulties one may encounter on the
example provided in Figure 3.9. We first remark that the optimal order for the MinIO + last-in-place
variant gives a sequence of children nodes (a-b-c), to which corresponds a volume of I/O equal to 5 (see
Section 3.4.5). Let us now consider the max-in-place case. Assuming for the moment that the order is still
(a-b-c), we process child (a) and child (b) without performing I/O. In order to allocate the memory for
mc = 10, at least 5 units of data have to be written to disk among cba and cbb, for example one may write all
of cbb and 3 units of data from cba. We process (c) and have in memory cbc = 4 together with two units of
data of cba. Assembling the largest contribution cba in-place then requires reading back the 3 units of data
from cba from disk, and writing 1 unit of data from cbc to disk to make space for the frontal matrix of node
(d), of size m = 9. This is far less natural and it requires overall more I/O than an in-place assembly of the
contribution block of the last child (which is in memory). By trying all other possible orders (a-c-b), (b-a-c),
(b-c-a), (c-a-b), (c-b-a), we can observe with this example that it is not possible to obtain a volume of I/O
with a max-in-place assembly smaller than the one we obtained with a last-in-place assembly (equal to 5).
Thus, the max-in-place strategy in an out-of-core context appears complicated, and non optimal at least in
some cases. Therefore, we propose to only apply the max-in-place strategy on parts of the tree that can be
processed in-core. This is done in the following way: we first apply MinMEM + max-in-place in a bottom-up
process to the tree. As long as this leads to a storage smaller than M0, we keep this approach to reduce the
intrinsic in-core memory requirements. Otherwise, we switch to MinIO + last-in-place to process the current
family and any parent family. In the following we name MinIO + max-in-place the resulting heuristic.

3.4.6 Theoretical comparison of MinMEM and MinIO

Theorem 3.4. The volume of I/O induced by MinMEM (or any memory-minimization algorithm) may be
arbitrarily larger than the volume induced by MinIO.

Proof. In the following, we provide a formal proof for the classical and last-in-place assembly schemes, but it
also applies to the strategies defined in Section 3.4.5 for the max-in-place scheme (which is identical to last-
in-place on families where I/O are needed). Let M0 be the core memory available and α(> 2) an arbitrarily
large real number. We aim at building an assembly tree (to which we may associate a matrix, see remark in
Section 3.3.1), for which:

• S(MinIO) > S(MinMEM) and

• the I/O volume induced by MinMEM (or any memory minimization algorithm), V I/O (MinMEM), is at least
α times larger than the one induced by MinIO, V I/O (MinIO) – i.e., V I/O(MinMEM)/V I/O(MinIO) ≥ α.

a b

r
S0(MinMEM) = 2M0

mr =M0/2

cbr =M0/3

m{a|b|c} =M0

cb{a|b|c} =M0/2
c

(a) T0

cbl = ε.M0

ml =M0

l

r

mr =M0/2

cbr =M0/3

Tk

r
Sk+1(MinMEM) = 2M0

mr =M0/2

cbr =M0/3Sk(MinMEM) = 2M0

(b) Tk 7→ Tk+1

Figure 3.10: Recursive construction of an assembly tree illustrating Theorem 3.4.

We first consider the sample tree T0 of Figure 3.10(a). It is composed of a root node (r) and three
leaves (a), (b) and (c). The frontal matrices of (a), (b), (c) and (r) respectively require a storage ma = mb =
mc = M0 and mr = M0/2. Their respective contribution blocks are of size cba = cbb = cbc = M0/2 and
cbr = M0/3. Both for the classical and last-in-place assembly schemes, it follows that the storage required
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to process T0 is S0(MinMEM)
def
= Sr(MinMEM) = 2M0, leading to a volume of I/O V

I/O
0

def
= V

I/O
r = M0. We

now define a set of properties Pk, k ≥ 0, as follows.

Property Pk: Given a subtree T , T has the property Pk if and only if: (i) T is of height k + 1;
(ii) the peak of storage for T is S(MinMEM) = 2M0; and (iii) the frontal matrix at the root (r) of T is of size
mr = M0/2 with a contribution block of size cbr = M0/3.

By definition, T0 has property P0. Given a subtree Tk which verifies Pk, we now build recursively
another subtree Tk+1 which verifies Pk+1. To proceed we root Tk and a leaf node (l) to a new parent node
(r), as illustrated in Figure 3.10(b). The frontal matrix of the root node has characteristics mr = M0/2
and cbr = M0/3, and the leaf node (l) is such that ml = Sl = M0 and cbl = εM0. The value of ε is not
fixed yet but we suppose ε < 1/10. The active memory usage for Tk and (l) are Ak = min(Sk,M0) = M0

and Al = min(Sl,M0) = M0. Because all trees Tk (including T0) verify the constraints defined at the
beginning of Section 3.3.1, it is possible to associate a matrix to each of these trees. MinMEM processes
such a family in the order (Tk-l-r) because Sk − cbk > Sl − cbl. This leads to a peak of storage equal to
Sk+1(MinMEM) = 2M0 (obtained when processing Tk). Thus Tk+1 verifies Pk+1. We note that MinMEM leads

to a volume of I/O equal to V
I/O
k+1 (MinMEM) = M0/3 + V

I/O
k (MinMEM) (Formulas (3.21) and (3.22) for the

classical and last-in-place, respectively).

Since Sk(MinIO) is greater than or equal to Sk(MinMEM), we can deduce that MinIO would process the
family in the order (l-Tk-r) because Al − cbl > Ak − cbk (or max(Al,mr)− cbl > max(Ak,mr)− cbk in the
last-in-place case). In that case, we obtain a peak of storage Sk+1(MinIO) = εM0 +Sk(MinIO) and a volume

of I/O V
I/O
k+1 (MinIO) = εM0 + V

I/O
k (MinIO).

Recursively, we may build a tree Tn by applying n times this recursive procedure. As S0(MinIO) = 2M0,
we deduce that Sn(MinIO) = (2 + nε)M0 which is strictly greater than Sn(MinMEM) = 2M0. Further-

more, because V
I/O
0 (MinMEM) = V

I/O
0 (MinIO) = M0, we conclude that V

I/O
n (MinMEM) = nM0/3 +M0 while

V
I/O
n (MinIO) = nεM0 + M0. We thus have: V

I/O
n (MinMEM)/V

I/O
n (MinIO) = (1 + n/3)/(1 + nε). Fixing

n = d6αe and ε = 1/d6αe we finallyget: V
I/O
n (MinMEM)/V

I/O
n (MinIO) ≥ α.

We have shown that the I/O volume induced by MinMEM, V I/O (MinMEM), is at least α times larger than
the one induced by MinIO. To conclude we have to show that it would have been the case for any memory-
minimization algorithm (and not only MinMEM). This is actually obvious since the postorder which minimizes
the memory is unique: (l) has to be processed after Tk at any level of the tree.

3.4.7 Flexible parent allocation

We recall that the flexible allocation scheme consists in allowing the parent allocation to be done right after
an arbitrary child subtree (instead of after all child subtrees) The parent allocation can still be done in-
place or not, similar to what has been studied for the terminal allocation (Equation (3.21) for the terminal
non-in-place allocation, and Equation (3.22) for the terminal in-place allocation).

In the case of the flexible allocation, the main difference with Formula (3.21) is that a child j processed
after the parent allocation may also generate I/O. If such a child cannot be processed in-core together with
the frontal matrix of the parent, then part of that frontal matrix (or all of it) has to be written to disk to
make room for the child subtree. This possible extra-I/O corresponds to underbrace (a) of Formula (3.23).
After that, the factor block of the frontal matrix of child j is written to disk and its contribution block is
ready to be assembled into the frontal matrix of the parent. However, we assume that we cannot easily
determine which rows of the contribution block, if any, can be assembled into the part of the frontal matrix
available in memory3. Therefore this latter frontal matrix is fully re-loaded into memory (reading back
from disk the part previously written). This operation may again generate I/O: if the contribution block of
child j and the frontal matrix of its parent cannot fit together in memory, a part of cbj has to be written
to disk, then read back (panel by panel) and finally assembled. This second possible extra-I/O is counted
in underbrace (b) of Formula (3.23). All in all, and using the storage definition from Formula (3.11), the

3See [5], Section 4.6.2 for ideas of what could be done.
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volume of I/O required to process the subtree rooted at the parent node is given by:

V I/O,flex = max

0,max

 max
j=1, p

(
Aflex

i +

j−1∑
k=1

cbi

)
,m+

p∑
k=1

cbi

−M0


+

n∑
j=p+1

(
max(0,m+Aflex

j −M0)
)

︸ ︷︷ ︸
(a)

+

n∑
j=p+1

(max(0,m+ cbj −M0))︸ ︷︷ ︸
(b)

+

n∑
j=1

V
I/O,flex
i

(3.23)

Again, Aflex
j

def
= min(Sflex

j ,M0) and a recursion gives the I/O volume for the whole tree.
As done in other situations, the formula can be adapted to a last-in-place assembly scheme, meaning

that child p is assembled in-place in the frontal matrix of the parent, leading to:

V I/O,flex,ip = max

0,max

max
j=1,p

(
Aflex-ip

j +

j−1∑
k=1

cbk

)
,m+

p-1∑
k=1

cbk

−M0


+

n∑
j=p+1

(
max(0,m+Aflex-ip

j −M0)
)

+

n∑
j=p+1

(max(0,m+ cbj −M0))

+

p∑
j=1

V
I/O,flex,ip
j ,

(3.24)

where Aflex-ip
j

def
= min(Sflex-ip

j ,M0).
With the terminal allocation scheme, it was possible to minimize the volume of I/O by sorting the children

in an appropriate order. In the flexible allocation scheme, one should moreover determine the appropriate
split point, i.e., the best value for p. The flexible I/O volume is minimized when both:

i the children processed before the parent allocation are correctly separated from the ones processed after ;

ii each one of this set is processed in an appropriate order.

Exploring these n.n! combinations is not always conceivable since some families may have a very large
number n of children (more than one hundred for instance for matrix GUPTA3). However, we have shown

earlier that the order in the first set is known: decreasing order of Aflex− cbj (resp. max(Aflex-ip
j ,m)− cbj in

the in-place case). Moreover, the I/O volume on the children processed after the allocation is independent
of their relative processing order. Said differently, these two remarks mean that condition (ii) is actually
immediate when (i) is determined. Therefore we mainly have to determine to which set (before or after the
parent allocation) each child belongs to. However, this still makes an exponential (2n) number of possibilities
to explore and motivates to further reduce the complexity.

Actually, the decision problem associated with this minimization problem is NP-complete. In other words,
given an arbitrary volume of I/O V , there is no deterministic polynomial algorithm that can consistently
decide whether there exists a partition of the children inducing a volume of I/O lower than or equal to V
(except if P = NP ). The proof of NP-completeness (reduction from 2-PARTITION) is available in [5].

To further reduce the complexity, remark that if a child is such that m+ Sflex
j ≤M0, ordering this child

after the parent allocation does not introduce any additional I/O ((a) and (b) are both 0 in Equation (3.23)),
whereas this may not be the case if it is processed before the parent allocation. Therefore, we conclude that
we can place all children verifying m + Sflex

j ≤ M0 after the parent allocation. Furthermore, consider the

case where Sflex
j ≥ M0 −m + cbj and m + cbj ≤ M0. Processing this child after the parent allocation (see
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(a) GUPTA3 matrix - METIS ordering M0=684686 (b) TWOTONE matrix - PORD ordering M0=7572632

Figure 3.11: Distribution of the families in function of their total and unfixed number of children. After a
straightforward analysis, most families have few (or no) unfixed children.

Formula (3.23)) leads to a volume of I/O either equal to m (if Sflex
j >= M0) – which is greater than cbj , or

to Sflex
j −M0 + m (if Sflex

j ≤ M0) – which is also greater than cbj . On the other hand, treating that child
first (this may not be optimal) will lead to a maximum additional volume of I/O equal to cbj . Therefore, we
can conclude that we should process it before the parent allocation. For the same type of reasons, children
verifying Sflex

j ≥ 2(M0 −m) and m+ cbj > M0 should also be processed before the parent allocation.
We will say that a child is fixed if it verifies one of the above properties: a straightforward analysis -

independent of the metrics of its siblings - determines if it should be processed before or after the allocation
of the parent node. Even though the number of fixed children can be large in practice, some matrices may
have a few families with a large number of unfixed children, as shown in Figure 3.11 for two sparse problems,
in the in-place allocation case. For instance, among the 28 families inducing I/O for the GUPTA3 matrix
ordered with METIS when a memory of M0 = 684686 scalars is available, 21 families have no unfixed children
(thus for them the optimum process is directly known), but one family keeps having 54 unfixed children.
In such cases, heuristics are necessary. The one we designed consists in moving repeatedly after the parent
allocation the child which is responsible for the peak of storage, until one move does not decrease the volume
of I/O anymore. The whole process is called Flex-MinIO.

3.4.8 Experimental results

Mimizing the volume of I/O can be critical when processing large problems. The first thing that one should
observe is that as soon as I/O’s are required, it is critical to give as much memory as possible to the
factorization algorithm: decreasing M0 by x GB (say) implies an increase of I/O volume equal to k.x, where
k is an integer greater or equal to 1 (see also Section 3.4.1).

We provide here a few illustrative results and remarks with the terminal allocation, then with the flexible
allocation.

3.4.8.1 Terminal allocation

First, we observed that using an in-place assembly scheme is in general very useful: on most test matrices
that were used, it reduces the I/O volume by a factor of two. Second, significant gains are obtained when
comparing the volumes of I/O obtained with MinMEM and MinIO. We report in Figure 3.12 the largest gains
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observed for each matrix on the range of values of M0 larger than the size of the largest frontal matrix. The
largest gain is obtained for the case SPARSINE-PORD, where MinIO is better than MinMEM by a factor of 5.58.
Generally, the largest profits from MinIO are obtained when matrices are preprocessed with orderings which
tend to build irregular assembly trees: AMF, PORD and - to a lesser extent - AMD (see [107] for more illustrations
on the impact of ordering on tree topologies). Intuitively, this is because on such trees, there is a higher
probability to be sensitive to the order of children.
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Figure 3.12: I/O volume obtained with MinMEM divided by the one obtained with MinIO. Thirty test matrices
are ordered with four reordering heuristics separated by vertical bars. For each matrix-ordering, we report
the largest gain obtained over all values of M0 that exceed the size of the largest frontal matrix. The ratios
for GEO3D-25-25-100-AMF and SPARSINE-PORD in the last-in-place scheme are equal to 5.12 and 5.58 and are not
represented in the graph.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20  40  60  80  100

V
IO

 (
L
a
s
t−

in
−

p
la

c
e
 /
 M

a
x
−

in
−

p
la

c
e
)

M0 (% of last−in−place in−core requirements)

GEO3D−120−80−30 − AMD
WANG3 − AMF

MSDOOR − METIS
TWOTONE − PORD

Figure 3.13: Impact of max-in-place assembly scheme on the volume of I/O (MinIO algorithms).

Finally, Figure 3.13 shows by how much the MinIO algorithm with a max-in-place assembly scheme
improves the MinIO last-in-place one, on four selected matrices. When the available core memory decreases,
the ratio is equal to 1 because in this case, the heuristic for the max-in-place assembly variant switches to
the last-in-place scheme (as explained in Section 3.4.5) and the switch occurs very early. More experimental
results and discussions are available in [13].

3.4.8.2 Flexible allocation

Considering now the case of flexible allocation, we illustrate the potential of this approach on four problems,
for the in-place assembly scheme: Figure 3.14 shows the evolution of the volume of I/O depending on the
available memory on the target machine. When a large amount of memory is available (right part of the
graphs), the flexible allocation schemes (both Flex-MinMEM and Flex-MinIO) induce a small amount of I/O
compared to the terminal allocation scheme (Term-MinIO). Indeed, with such an amount of memory, many
children can be processed after the allocation of their parent without inducing any I/O (or inducing a small
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(a) CONV3D 64 matrix ordered with PORD
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(b) GUPTA3 matrix ordered with METIS
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(c) MHD1 matrix ordered with PORD
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(d) TWOTONE matrix ordered with PORD

Figure 3.14: I/O volume on the stack of contribution blocks as a function of the core memory available for
the three heuristics with four different matrices.

amount of I/O): the possible extra-I/Os corresponding to underbraces (a) and (b) of Formula (3.23) are
actually equal (or almost equal) to zero for those children.

When the amount of available memory is small (left part of the graphs), the memory-minimizing algorithm
(Flex-MinMEM) induces a very large amount of I/O compared to the I/O-minimization algorithms (both
Flex-MinIO and Term-MinIO). Indeed, processing a child after the parent allocation may then induce a very
large amount of I/O (M0 is small in underbraces (a) and (b) of Formula (3.23)) but memory-minimization
algorithms do not take into account the amount of available memory to choose the split point.

Finally, when the amount of available memory is intermediate, the heuristic we have proposed (Flex-MinIO)
induces less I/O than both other approaches. Indeed, according to the memory, not only does the heuristic
use a flexible allocation scheme on the families for which it is profitable, but it can also adapt the number
of children to be processed after the parent allocation.

To conclude on flexible allocation schemes and I/O volumes, we refer the reader to [5], Chapter 4, for
various discussions and extensions of this section.
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3.5 Memory management algorithms

The different MinMEM and MinIO algorithms presented in the previous sections provide a particular postorder
of the assembly tree. With flexible allocation schemes, they also compute the positions of the parent al-
locations. These algorithms can be applied during the analysis phase of a sparse direct solver. Then the
numerical factorization phase relies on this information and should respect the predicted optimal metrics
(memory usage, I/O volume). In this Section, we focus on the case where factors are written to disk as
soon as they are computed, and consider the remaining working storage. We show that in this case, efficient
memory management algorithms can be designed for the various assembly schemes considered. Because we
consider that the factors are written to disk on the fly, we only have to store temporary frontal matrices
and contribution blocks. We assume that those must be stored in a preallocated contiguous workarray W of
maximum size M0, the available core memory. In this workarray, we manage one or two stacks depending
on our needs, as illustrated in Figure 3.15. Another approach would consist in relying on dynamic allocation
routines (such as malloc and free). Although those may still be efficient from a performance point of
view, the use of such a preallocated workarray has several advantages over dynamic allocation, allowing for
a tighter memory management as long as complicated garbage collection mechanisms can be avoided. In
particular, several memory operations are possible with a workarray managed by the application that would
be difficult or even impossible with standard dynamic allocation tools:

• In-place assemblies: with dynamic allocation, expanding the memory of the contribution block of a
child node into the memory of the frontal matrix of the parent node would require to rely on a routine
that extends the memory for the contribution block (such as realloc). This may imply an extra copy
which cancels the advantages of in-place assemblies; with a preallocated workspace, we simply shift
some integer pointers.

• Assuming that the frontal matrix uses a dense row-major or column-major storage and that the factors
have been copied to disk, we can copy the contribution block of such a frontal matrix into a contiguous
memory area that overlaps with the original location. With dynamic allocation, we would need to
allocate the memory for the contribution block, perform the copies and then free the memory for the
original frontal matrix. Even assuming that the contribution block is compacted in-place (inside the
memory allocated for the frontal matrix), then it is not clear how to free the rest of the frontal matrix
with dynamic allocation tools, whereas this can be done by shifting an integer pointer in our case.

Finally, the preallocated workarray allows for a very good locality, for example, when assembling the con-
tributions from children into the frontal matrix of the parent, the entries of all the contribution blocks are
contiguous in memory.

Left Stack Right StackFree block

Bottom Top Top Bottom

Right Stack

Top Bottom

Free block

Figure 3.15: Subdivision of the main workarray, W , into one stack (left) or two stacks (right) of contribution
blocks. The free block can be used to store the temporary frontal matrices.

3.5.1 In-core stack memory

In this section, we assume that the contribution blocks are processed in core. We first recall memory man-
agement algorithms that are used in existing multifrontal codes in Section 3.5.1.1. In Section 3.5.1.2, we then
more specifically explain how to handle our new max-in-place assembly scheme (see the previous chapter).
We generalize those algorithms to the multifrontal method with a flexible allocation in Section 3.5.1.3.
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3.5.1.1 Recalling the classical and last-in-place assembly schemes

The classical and last-in-place approaches with a terminal allocation are already used in existing multifrontal
codes. We recall them in this section in order to introduce notions that we will use in the other subsections.
We have seen earlier (first part of Property 3.1) that since we have a postorder traversal, the access to the
contribution blocks has the behaviour of a stack (in general, one uses the stack on the right of W ). In other
words, thanks to the postorder:

Property 3.3. If the contribution blocks are stacked when they are produced, each time a frontal matrix is
allocated, the contribution blocks from its children are available at the top of the stack.

For example, at the moment of allocating the frontal matrix of node (6) in the tree of Figure 3.16, the
stack contains, from bottom to top, cb1, cb2, cb3, cb4, cb5. The frontal matrix of (6) is allocated in the free
block, then cb5 and cb4 (in that order) are assembled into it and removed from the stack. Once the assembly
at the parent is finished, the frontal matrix is factorized, the factors are written to disk, and the contribution
block (cb6) is moved to the top of the stack.

The only difference between the classical and the last-in-place assembly schemes is that in the last-in-
place case, the memory for the frontal matrix of the parent is allowed to overlap with the memory of the
child available at the top of the stack. In the example, this means that if the free block on the left is not
large enough for the frontal matrix of (6), that frontal matrix is allowed to overlap with the memory of the
contribution block of (5), of size cb5, leading to significant memory gains. The contribution block of the
child is expanded into the memory of the frontal matrix of the parent, and the contribution blocks from the
other children are then assembled normally.

31 2

7

6

4 5

Figure 3.16: Example of a tree with 7 nodes. Nodes in bold correspond to the nodes with the largest
contribution block among the siblings. (This property will be used in Section 3.5.1.2.)

3.5.1.2 In-place assembly of the largest contribution block

The new max-in-place assembly scheme that we have introduced consists in overlapping the memory of
the parent with the memory of the largest child contribution block. For this to be possible, the largest
contribution block must be available in a memory area next to the free block where the frontal matrix of the
parent will be allocated. By using a special stack for the largest contribution blocks (the one on the left of
W , see Figure 3.15), Property 3.3 also applies to the largest contribution blocks. Thus, when processing a
parent node,

• the largest child contribution is available at the top of the left stack and can overlap with the frontal
matrix of the parent; and

• the other contributions are available at the top of the right stack, just like in the classical case.

This is illustrated by the tree of Figure 3.16. When traversing that tree, we first stack cb1 on the right of
W , then stack cb2 (identified as the largest among its siblings) on the left of W , then cb3 on the right, cb4
on the left, and cb5 on the right. When node (6) is processed, the workarray W contains:
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cb2 cb4 Free block cb5 cb3 cb1

The memory for the frontal matrix of (6) can overlap with cb4 so that cb4 is assembled in-place; cb5 is
then assembled normally. Note that the same type of situation will occur for the root node (7): cb2 (now
available at the top of the left stack) will first be assembled in-place, the cb6, cb3 and cb1 (in that order)
will be assembled from the right stack.

3.5.1.3 Flexible allocation of the frontal matrices

We now consider the flexible multifrontal method, as discussed in Section 3.4.7. Since the frontal matrix of
a parent is allowed to be allocated before all children subtrees have been processed, several frontal matrices
may be in core memory at the same time. Let us first consider the classical and last-in-place assembly
scheme. On the example of Figure 3.17, we assume that the frontal matrix f7 of node (7) is allocated after
the treatment of node (3) and that the frontal matrix f6 of node (6) is allocated after the treatment of
node (4).

1

7

63

4 5

22

4

Figure 3.17: Reconsidering the example of Figure 3.16 with a flexible allocation. The arrows indicate the
position at which the frontal matrices of the parents are allocated. Nodes in bold correspond to the nodes
with the largest contribution block among the siblings processed before a parent allocation.

When processing node (5), both f7 and f6 have been allocated in memory, although they cannot be
factored yet. Similarly to the contribution blocks, we have the property that frontal matrices are accessed
with a Lifo (Last In First Out) scheme: on our example, frontal matrices f7 and f6 are allocated in this
order but f6 is factored and released before f7. It is thus natural to store the frontal matrices in a stack too.
Again, it is possible to manage both stacks in a single array and this approach allows for an overlapping
in time of the stacks: i)one of the stack may be large when the other is small and vice-versa; ii)the frontal
matrix may overlap with the last contribution block in the last-in-place case). We suppose that the right
stack is used for the contribution blocks, and, this time, the left stack is used for the frontal matrices.

On our example, after node (7) has been allocated, the contributions of nodes (1), (2) and (3) are
assembled and released. Then, node (4) is factored and produces a contribution block so that at this time,
the workarray contains: f7 Free block cb4 Frontal matrix of (6) is then allocated in the left
stack. Remark that it is allowed to overlap with cb4 in the last-in-place scheme. Assuming no overlap
between f6 and cb4, the workarray W contains: f7 f6 Free block cb4 cb4 is assembled in f6
and released. Next: node (5) is processed; its contribution is assembled into f6 and released; (6) is factored;
its contribution is assembled into f7 and released; finally, (7) is factored.

Let us now consider the max-in-place assembly scheme. We need to store

• frontal matrices,

• normal contribution blocks,

• largest contribution blocks,
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which would indicate the need for three stacks. However, the key idea here consists in observing that the
stack for frontal matrices and for largest contribution blocks can use a single stack. For that, we must simply
verify that (i) a largest contribution block produced before a front allocation is released after the front; (ii) a
large contribution produced before a front allocation is released before. When a subtree has been processed,
all the frontal matrices and contribution blocks related to other nodes than its root node have been released.
Therefore, we only have to check that (i) and (ii) stand for the nodes that compose a family (we do not need
to investigate the data related to the nodes inside the subtrees of the children). Let us consider a family. A
number of p children are processed before the parent allocation. One of them, say j0 (j0 ≤ p), provides the
largest contribution block. This block is pushed on top of the left stack of the workarray W . When child p
has been processed, this contribution block is still on the top of the left stack and can be extended in-place
to constitute the frontal matrix. Contribution blocks from children j, j ≤ p, j 6= j0 are assembled from the
right stack. Then, the children j, j > p (and their subtrees) are processed in the available space and their
contribution block are assembled into the frontal matrix on the fly. Next, the frontal matrix is factored,
produces a contribution block that is either pushed on the left (if it is in turn the largest of its siblings) or
on the right (otherwise). For instance, with the tree of Figure 3.17, the workarray W is as follows before the
allocation of f7:

cb2 Free block cb3 cb1

Then f7 overlaps with cb2 which is on top of the left stack as required. After node (4) is processed, the left
stack contains f7 and cb4; f6 is allocated, overlapping with cb4; f5 is allocated and factored; cb5 is stored in
the right stack and assembled into f6, and so on. Overall, the left stack was used for the frontal matrices
and cb2 and cb4 and the right stack was used for the other contribution blocks.

3.5.2 Out-of-core stacks

We now assume that contribution blocks may be written to disk when needed. When there is no more
memory, Property 3.1 suggests that the bottom of the stack(s) should be written to disk first. Therefore, the
question of how to reuse the corresponding workspace arises. We give a first natural answer to this question
in Section 3.5.2.1, but it has some drawbacks and does not apply to all cases. Based on information that
can be computed during the analysis phase, we then propose in Section 3.5.2.2 a new approach that greatly
simplifies the memory management for all the considered assembly schemes.

3.5.2.1 Dynamic cyclic memory management

In the classical and last-in-place cases, only one stack is required. In order for new contribution blocks
(stored at the top of the stack) to be able to reuse the space available at the bottom of the stack after write
operations, a natural approach consists in using a cyclic array. From a conceptual point of view, the cyclic
memory management is obtained by joining the end of the memory zone to its beginning, as illustrated in
Figure 3.18. In this approach, the decision to free a part of the bottom of the stack is taken dynamically,
when the memory is almost full. We illustrate this on the sample tree of Figure 3.7 processed in the postorder
(d-a-b-c-e) with a classical assembly scheme. After processing nodes (d) and (a), one discovers that I/O has
to be performed on the first contribution block produced (cbd) only at the moment of allocating the frontal
matrix of (b), of size mb = 4 (see Figure 3.19(a)).

Note that a significant drawback of this approach is that a specific management has to be applied to the
border, especially when a contribution block or a frontal matrix is split on both sides of the memory area
(as occurs for frontal matrix mb in Figure 3.19(a)).

Moreover, in the max-in-place case, such an extension is not as natural because of the existence of two
stacks. That is why we propose in the next subsection another approach, which avoids a specific management
of the borders for the classical and last-in-place cases, and allows to efficiently handle the max-in-place case.
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TopR

Free StackR

(a) Workarray

TopR

StackR

Free

(b) Cyclic workarray

Figure 3.18: Folding a linear workarray (left) into a cyclic workarray (right).

cba = 3

cbd = 2

(mb = 4)

(a) Dynamic cyclic approach

cbd = 2

(b) Top-down approach

Figure 3.19: Memory state while processing the tree of Figure 3.7 in the postorder (d-a-b-c-e). The size of
the workarray is M0 = 8. With a dynamic approach (left), one discovers that I/O will be performed on cbd
only before dealing with node (b). With the approach of Section 3.5.2.2 (right), we know a priori that cbd
must be fully written to disk thanks to the analysis phase.

3.5.2.2 Using information from the analysis: static top-down formulation

In order to minimize the I/O volume in the previous approach, a contribution is only written to disk when the
memory happens to be full: the decision of writing a contribution block (or a part of it) is taken dynamically.
However, a better approach can be adopted. We explain it by listing some properties, each new property
being the consequence of the previous one. For the moment, let us consider a terminal allocation.

Property 3.4. While estimating the volume of I/O, the analysis phase can forecast whether a given contri-
bution block will have to be written to disk or not.

This property results from an instrumentation of the analysis phase that we describe in the following.

When considering a parent node with n child subtrees, the volume of I/O V
I/O
family performed on the children

of that parent node is given by the first member (the recursive amount of I/O on the subtrees is not counted)
of Formulas (3.21) and (3.22) respectively for the classical and in-place cases. For example,

V
I/O
family = max

(
0,max(max

j=1,n
(Aj +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk)−M0

)
(3.25)
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for the classical assembly scheme. Given V
I/O
family and knowing that we are going to write the contribution

blocks produced first in priority, one can easily determine if the contribution block cbj of the jth child must
be written to disk:

• if
∑j

i=1 cbi ≤ V
I/O
family, the volume of I/O for that family is not reached even when cbj is included;

therefore, cbj must be entirely written to disk;

• if
∑j−1

i=1 cbi < V
I/O
family <

∑j
i=1 cbi, then cbj should be partially written to disk and the volume written

is V
I/O
family −

∑j−1
i=1 cbi;

• otherwise, cbj remains in-core.

In the tree of Figure 3.7 processed in the order (d-a-b-c-e), the volume of I/O for the family defined by the
parent (e) and the children (d) and (c) is equal to 3. According to what is written above, this implies that
cbd = 2 must be entirely written to disk, and that 1 unit of I/O must be performed on cbc.

Property 3.5. Because the analysis phase can forecast whether a contribution block (or part of it) will be
written to disk, one can also decide to write it (or part of it) as soon as possible, that is, as soon as the
contribution is produced. This will induce the same overall I/O volume.

Thanks to Property 3.5, we will assume in the following that:

Strategy 1. We decide to write all the contribution blocks which have to be written as soon as possible.

This is illustrated in Figure 3.19(b): as soon as the contribution block of node (d) (cbd) is produced, we
know that it has to be written to disk and we can decide to write it as soon as possible, i.e., before processing
node (a). Therefore, we can free the memory for the contribution block of (d) before allocating the frontal
matrix of (a) (by using synchronous I/Os or, more efficiently, with pipelined asynchronous I/Os).

Property 3.6. Each time a contribution block has to be written, it is alone in memory: all the previous
contribution blocks are already on disk.

In other words, it is no longer required to write the bottom of a stack, as it was suggested in Property 3.1.
A slightly stronger property is the following:

Property 3.7. If a subtree requires some I/O, then at the moment of processing the first leaf of that subtree,
the workarray W is empty.

This is again because we should write the oldest contribution blocks first and those have been written as
soon as possible. A corollary from the two previous properties is the following:

Property 3.8. When we stack a contribution block on a non-empty stack, we will never write it. Otherwise,
we would have written the rest of the stack first. In particular, if a given subtree can be processed in-core with
a memory S ≤ M0, then at the moment of starting this subtree, the contiguous free block of our workarray
W is necessarily at least as large as S.

It follows that by relying on Strategy 1 a cyclic memory management is not needed anymore: a simple
stack is enough for the classical and last-in-place assembly schemes, and a double stack is enough for the
max-in-place assembly scheme. In the latter case, a double stack is required only for processing in-core
subtrees since our max-in-place + MinIO heuristic switches to last-in-place for subtrees involving I/O (as
explained in Section 3.4.5).

We illustrate this strategy on the max-in-place + MinIO variant of Section 3.4.5 (although it applies to
all MinIO approaches). We assume that the analysis phase has identified in-core subtrees (processed with
MinMEM + max-in-place) and out-of-core subtrees (processed with MinIO + last-in-place). We also assume
that the contribution blocks that must be written to disk have been identified. The numerical factorization
is then illustrated by Algorithm 3.2. It is a top-down recursive formulation, more natural in our context,
which starts with the application of AlgoOOC rec() on the root of the tree. A workarray W of size M0 is
used.
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% W: workarray of size M0

% n: number of child subtrees of tree T
for j = 1 to n do

if the subtree Tj rooted at child j can be processed in-core in W then
% We know that the free contiguous block in W is large enough thanks to

Property 3.8

Apply the max-in-place approach (see Section 3.5.1.2);

else
% Some I/O are necessary on this subtree, therefore W is empty (Property 3.7)

% We do a recursive call to AlgoOOC rec(), using all the available workspace

AlgoOOC rec(subtree Tj) ;

Write cbj to disk or stack it (decision based on Property 3.4 and Strategy 1);

Allocate frontal matrix of the parent node; it can overlap with cbn;
for j = n downto 1 do

Assemble cbj in the frontal matrix of the root of T (reading from disk vj units of data, possibly by
panels);

Factorize the frontal matrix; except for the root node, this produces a contribution block;
Algorithm 3.2: AlgoOOC rec(tree T ).

3.5.2.3 Application to the flexible allocation scheme

Assuming this time that we have a last-in-place (for example) allocation scheme before the parent allocation,

V
I/O
family (see also Property 3.4 for the terminal allocation) can be expressed as:

V
I/O
family = max

0,max( max
j=1, p

(Aflex
j +

j−1∑
k=1

cbk),+

p-1∑
k=1

cbk)−M0

 (3.26)

Again, oldest contributions blocks are written first and if
∑j

i=1 cbi < V
I/O
family, this means that cbj should

be written to disk at least partially. We decide to do so as soon as possible. Therefore, Property 3.8 (and
the previous ones) still hold. We now state two new properties, the second one being a direct consequence
of the first one.

Property 3.9. We consider a family involving some I/O, using either a a classical or last-in-place assembly
scheme. Before processing the first subtree of this family, we know that the memory is empty (Property 3.7).
When the parent of the family is allocated, the contribution blocks of the children already processed are either
on disk or available in the right stack ( classical or last-in-place assembly schemes). In particular cbp is
available on the top of that stack.

Property 3.10. Considering a family involving I/O, once the the contribution blocks from the children j ≤ p
have been assembled into the frontal matrix of the parent, that frontal matrix is alone in memory.

We now consider a child j processed after the parent allocation. Thanks to Section 3.4.7, we know that
such a subtree can be processed in-core alone (Sflex

j < M0). If Sj + m > M0, part of the frontal matrix
(Sj +m−M0) has to be written to disk in order to make room for the subtree Tj rooted at child j, which is
then processed in-core. With our previous assumptions, if m+ cbj > M0, we might then have to write part
of the contribution block to disk, read back the frontal matrix m and assemble cbj into it panel by panel.

This leads to the top-down recursive formulation provided in Algorithm 3.3. The analysis phase has
identified in-core subtrees (where MinMEM + flexible + max-in-place can be applied, as explained in Sec-
tion 3.5.1.3). On out-of-core subtrees, we decide to use the combination (MinIO + flexible + last-in-place),
see Section 3.4.5.
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% W: workarray of size M0

% n: number of child subtrees of tree T
% p: position of the parent allocation

% This algorithm is only called on subtrees that do not fit in memory

for j = 1 to p do
if the subtree Tj rooted at child j can be processed in-core in W then

% We know that the free contiguous block in W is large enough thanks to

Property 3.8

Apply the max-in-place flexible in-core approach (see Section 3.5.1.3)

else
% Some I/O are necessary on this subtree, therefore W is empty (Property 3.7)

% We do a recursive call to AlgoOOC flex rec(), using all the available

workspace

AlgoOOC flex rec(subtree Tj) ;

Write cbj to disk or stack it (decision based on Property 3.4 and Assumption 1, but using
Formula (3.26)) at the right of W ;

% Thanks to Property 3.9:

Allocate the frontal matrix of the root of T , of size m (say), at the left of the workspace (in W (1 : m));
it can overlap with cbp because we decided to use a last-in-place scheme on out-of-core families;
for j = p downto 1 do

Assemble cbj in the frontal matrix of the root of T (reading from disk the part of cbj previously
written, if any, possibly by panels);

% The frontal matrix of the parent is now alone in memory (Property 3.10)

for j = p+ 1 to n do
% We know that Sj ≤M0 thanks to Section 3.4.7

if the subtree Tj rooted at child j cannot be processed in-core with its parent in W then
Write an amount m+ Sj −M0 units of the parent frontal matrix;

% A free contiguous block of size Sj is now available in memory

Apply the max-in-place flexible in-core approach to Tj (Section 3.5.1.3);
% On output cbj is available in memory

Assemble cbj into the frontal matrix of the root of T (temporary writing part of cbj to disk, and
reading the part of the parent frontal matrix previously written, if any);

Factorize the frontal matrix; this step produces a contribution block (except for the root) that we
stack on the right of W ;

Algorithm 3.3: AlgoOOC flex rec(tree T ), using a max-in-place (resp. last-in-place) before the parent
allocation for the in-core (resp. out-of-core) parts.
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Note that only one stack, on the right of W , is manipulated in Algorithm 3.3, although more stacks are
used temporarily on subtrees that can be processed in-core.

Table 3.4 sums up how to organize the data in the in-core case depending on the variant of the multifrontal
method considered.

Data
Allocation scheme Assembly scheme Left stack Right stack

terminal
classical ∅ all CB’s
last-in-place ∅ all CB’s
max-in-place largest CB’s other CB’s

flexible
classical fronts all CB’s
last-in-place fronts all CB’s
max-in-place fronts + largest CB’s other CB’s

Table 3.4: Summary of the in-core management of data (other than the current frontal matrix). Front is
used for frontal matrix and CB is used for contribution block.

3.5.3 Limits of the models

In the out-of-core approaches relying on information from the analysis, we have considered multifrontal
solvers without delayed pivots between children and parent nodes. In that case, the forecasted metrics from
the analysis are exactly respected during the numerical factorization and the tree traversals obtained are
optimal. In particular, Algorithms 3.2 and 3.3 can be applied and implemented as presented.

Let us now allow dynamic pivoting that results in delayed pivot eliminations between some children
nodes to their parents or ancestors [80]. The size of the associated contribution blocks increases to include
the delayed pivot rows/columns, leading to an increase of the quantities cb and m. Because such numerical
difficulties can hardly be predicted but often remain limited in practice with proper preprocessing, it seems
reasonable to us to keep the tree traversal obtained with the original metrics from the analysis. In the case of
an in-core stack, the memory management algorithms from Section 3.5.1 can still be applied – including the
memory management for our new max-in-place scheme presented in Section 3.5.1.2 – as long as the memory
size is large enough.

In the context of an out-of-core stack, the approaches from Section 3.5.2.2 do not apply directly because
the storage for a subtree may be larger than forecasted when numerical difficulties occur. Imagine for
example that a subtree which was scheduled to be processed in-core no longer fits in memory because of
delayed eliminations within the subtree. Alternative strategies to deal with those numerical difficulties are
required, which are outside the scope of this paper. Recovering from a situation where the strategy has been
too optimistic may require a significant amount of extra, unpredicted I/O and/or memory copies. A safer
approach could consist in relaxing the forecasted metrics with a predefined percentage and artificially limit
the amount of delayed eliminations to remain within that percentage. Finally, storing delayed rows/columns
into separate data structures with a separate out-of-core management when necessary might be another
option.

3.6 Concluding remarks

This work and the associated memory-management algorithms can be useful for large problems in limited-
memory environments. They can be applied to shared-memory multifrontal solvers relying on threaded BLAS

libraries. In a parallel distributed context, they can help limiting the memory requirements and decreasing
the I/O volume in the serial parts of the computations. In parallel environments, memory usage also depends
a lot on scheduling strategies, as will be seen in Chapter 4. In particular, we hope that the memory-aware
algorithms of Section 4.3 will allow generalizations of some of the sequential mechanisms describe in this
chapter.
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Chapter 4

Task Scheduling in Parallel
Distributed-Memory Environments

The way we adapted the multifrontal method to parallel distributed-memory environments using message
passing and distributed dynamic schedulers was described in Section 2.1. Mapping and scheduling algorithms
have a strong impact on the behaviour of our method and this has been the object of a lot of research and
development work [24, 31, 33, 103, 101, 34]. We remind that in our framework, the nodes of the assembly
tree are mapped statically, but the processor in charge of a node determines dynamically, at runtime, the set
of processors that will participate in the associated factorization task. In practice, at least 80% of the work
is mapped at runtime, and the mapping decisions are based on estimates of the load of the other processors
(the load estimations will be further detailed in Section 4.1). To limit the dynamic choices of the schedulers
and improve locality of communications, [33] suggested to limit the choice of slave processors for a given
task to a set of candidates determined statically. Before that, any processor participating in the execution
could be chosen to work on the subtasks.

This chapter is organized in two parts. In the first one (Section 4.1), we present different approaches to
get accurate load and memory information on entry to the distributed scheduling algorithms, that have all
been implemented and experimented. In the second part (Section 4.2), we then summarize the work done
in the past concerning scheduling and mapping algorithms, both on the static and dynamic aspects. Those
works have aimed at improving performance, reduce memory usage, or do both at the same time. Particular
architectures (clusters of SMP’s) have also been considered.

4.1 Obtaining accurate load estimates

In this section, we describe, study and compare different load exchange mechanisms and justify the choice
for the one we decided to use by default.

Our parallel multifrontal algorithm can be considered as a set of dependent tasks executing on a dis-
tributed system of N processors that only communicate by message passing. From time to time, any
processor P (called master) needs to send work to other processors. In order for such scheduling decisions
to use accurate information, each processor facing a scheduling decision relies on a view of the workload
and memory usage of the other processors. The workload and memory of a processor P vary: (i) when
P processes some work (less work waiting to be done, temporary memory freed at the end of a task) or
(ii) when a new task appears on processor P (that can come either from a new dependency met or from
another processor). Whereas errors on workload estimates typically result in a longer execution time (or
makespan), an error in the memory estimation can be more dramatic and lead to a failure if the processor
chosen does not have enough memory to receive and process the assigned task. The algorithms presented
in this section aim at providing state information from the processors that will be used during distributed
dynamic scheduling decisions. To fix the ideas, the simplified model algorithm is Algorithm 0.1. Looking at
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Algorithm 0.1, note that all messages discussed in this section are of type state information, and they are
processed in priority compared to the other messages. In practice, a specific channel (or MPI communicator)
is used for those messages.

We consider two classes of algorithms.

• The first class (discussed in Section 4.1.1) consists in maintaining the view of the load information dur-
ing the computation: when quantities vary significantly, processes exchange information and maintain
an approximate view of the load of the others.

• The second class of approaches (Section 4.1.2) is more similar to the distributed snapshot problem of
[51] and is demand-driven: a process requiring information (to proceed to a scheduling decision) asks
for that information to the others. Although less messages are involved, there is a stronger need for
synchronization. In this section, we discuss possible algorithms for those two classes of approaches,
and compare their impact on the behaviour of a distributed application using dynamic scheduling
strategies.

4.1.1 Maintaining a distributed view of the load

In this approach, each process broadcasts information when its state changes. Thus, when a process has to
take a dynamic decision (we called this type of dynamic decisions a slave selection), it already has a view of
the state of the others. A condition to avoid a too incoherent view is to make sure that all pending messages
related to load information are received before taking a decision implying to assign work to other processors.
This is the case in the context of Algorithm 0.1.

4.1.1.1 Naive mechanism

Early versions of MUMPS used the mechanism described by Algorithm 4.1; each process Pi is responsible of
knowing its own load; for each significant variation of the load, the absolute value of the load is sent to
the other processes, and this allows them to maintain a global view of the load of the system. A threshold
mechanism ensures that the amount of messages to exchange load information remains reasonable.

1: Initialization

2: last load sent = 0
3: Initialize(my load)
4: When my load has just been modified:

5: if |my load− last load sent| > threshold then
6: send (in a message of type Update, asynchronously) my load to the other processes
7: last load sent = my load
8: end if
9: At the reception of load lj from Pj (message of type Update):

10: load(Pj) = lj
Algorithm 4.1: Naive mechanism to exchange load information.

The local load li should be updated on the local process regularly, at least when work is received from
another process, when a new local task becomes ready (case of dependent tasks), and when a significant
amount of work has just been processed.

Limitations

Some problems can arise with the mechanism described above for the dynamic scheduling parts of our system.
Indeed, with this mechanism, if several successive slave selections occur, there is nothing to ensure that a
slave selection has taken into account the previous ones. Thus, a slave selection can be done based on invalid
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t0 : Common initial time on P0, P1 and P2

t1 : Begining of  a task on P2

t2 : Slave selection on P0

t3 : Slave selection on P1

t4 : End of the task started at t1 on P2 

t0 < t1 < t2 < t3 < t4

P0 P1P2

t0t0 t0

t2

t3

t1

t4

Time Time Time

Figure 4.1: Example exhibiting the incorrectness of the naive mechanism.

information and this can lead to critical situations (in practice, large imbalance of the workload or critical
increase of the memory).

Figure 4.1 gives an illustration of the problem. Suppose that P2 has started a relatively costly task at
time t1 and is chosen as slave by P0 at time t2. P2 will not be able to receive the subtask from P0 before the
end of its own task. As a result, P2 that does not know yet that it has been chosen by P0, cannot inform
the others. P1, which is the second process that has to select slaves, will then select P2 without taking
into account the amount of work already sent by P0. This simple example exhibits the limitations of this
approach.

4.1.1.2 Mechanism based on load increments

In this section we present another mechanism based on load increments to improve the correctness of the
load information during the execution, and avoid situations like in Figure 4.1. Each time a process selects
slaves, it sends (to all processes) a message of type Master To All containing the identity of the slaves and
the amount of workload/memory assigned to each of them (it is a kind of reservation mechanism). At the
reception of a message of this type, each process updates its local information on the processes concerned
with the information contained in the message.

A formal description of the mechanism is given in Algorithm 4.2. For each variation of the workload on
a process Pi, Pi broadcasts the increment representing the variation in a message of type update. Again, a
threshold mechanism is applied to avoid too many messages: ∆load accumulates smaller δload increments
and is sent when larger than the threshold.

Note that when a (slave) process starts a task that was sent by another, it need not broadcast a message
of type Update if the increment is positive: the master has already sent the information relative to its selected
slaves (see line 7 in Algorithm 4.2).

4.1.1.3 Reducing the number of messages

To control the number of messages, the threshold should be chosen adequately. For example it is consistent
to choose a threshold of the same order as the granularity of the tasks appearing in the slave selections.
The number of messages will increase with the number of processes, since a message is broadcasted to all
processes for each load variation in the system. However, some processes may never be master and never
send work to others; this information may be known statically. Those processes do not need any knowledge
of the workload/memory of the others. More generally, if at some point a process Pi knows that it will not
proceed to any further slave selection in the future, it can inform the others. After Pi has performed its
last slave selection, it can thus send a message of type No more master to the other processes (including to
processes which are known not be master in the future). On reception of a message of type No more master
from Pi by Pj , Pj stops sending load information to Pi. Note that the experiments presented later in this
paper use this mechanism. Typically, we observed that the number of messages could be divided by 2 in the
case of our test application, MUMPS.
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1: Initialization:

2: my load = 0
3: ∆load = 0
4:

5: When my load varies of δload:

6: if δload concerns a task where I am slave then
7: if δload > 0 return
8: end if
9: my load = my load+ δload

10: ∆load = ∆load+ δload
11: if ∆load > threshold then
12: send ∆load (in a message of type Update, asynchronously) to the other processes
13: ∆load = 0
14: end if
15:

16: At the reception of load increment ∆lj from processor Pj (message of type Update):

17: load(Pj) = load(Pj) + ∆lj
18:

19: At each slave selection on the master side:

20: for all Pj in the list of selected slaves do
21: Include in a message of type Master To All the load δlj assigned to Pj

22: end for
23: send (asynchronously) the message Master To All to the other processes
24:

25: At the reception of a message of type Master To All :

26: for all (Pj , δlj) in the message do
27: if Pj 6= myself then
28: load(Pj) = load(Pj) + δlj
29: else
30: my load = my load+ δlj
31: end if
32: end for

Algorithm 4.2: Mechanism based on load increments.

100



4.1.2 Exact algorithm

The second solution to this problem is close to the distributed snapshot approach [51, 111], coupled with
a distributed leader election algorithm; the snapshot is demand-driven and initiated by the process that
requires information from the others. This approach avoids the cost of maintaining the view during the
computations, but loses some of the asynchronous properties of the application. Indeed, when a process
requires information from the others, it has to wait for all others to be ready to send that information.
Furthermore, since in our case the information is strongly linked to the dynamic scheduling decisions taken,
two simultaneous snapshots should be “serialized” in order for the second one to take into account the slave
selection resulting from the first one.

Each time a process has to take a dynamic decision (that uses and can modify the state of the others),
it initiates a snapshot. After completion of the snapshot, it can take its dynamic decision, inform the others
about its choice (message master to slave to the processes that have been selected as slaves) and finally restart
the others. A more formal description of this scheme is given in Algorithm 4.3. Note that on reception of a
message master to slave, a processor updates its state information (load) with the information contained in
that message, so that the result of a first slave selection is taken into account if another snapshot is initiated
from another process. Apart from that particular case, a processor is responsible for updating its own load
information regularly.

1: Initiate a snapshot (see below)
2: Proceed to a dynamic slave selection
3: for all islave slave chosen do
4: Send a message of type master to slave to islave containing information to update its state (typically

flops and memory corresponding to share of the work)
5: end for
6: Finalize the snapshot (see below)

Algorithm 4.3: Context in which the snapshot algorithm is applied.

The algorithm we use to build the snapshot of the system is similar to the one proposed by Chandy and
Lamport [51]. In addition, since we are in a distributed asynchronous environment, several snapshots may
be initiated simultaneously. They are in that case serialized to ensure that each process needing a snapshot
takes into account the variation of the state (i.e., workload, available memory, . . . ) of the processes chosen
during the previous dynamic decision. For that, a distributed leader election [88, 161], for example based
on process ranks, is performed. The process elected is the one that will complete its snapshot in priority.
After termination of the snapshot of the leader, a new leader election is done within the set of processes
having already initiated a snapshot. The algorithm is still based on message passing between the processes; a
preliminary step consists in initializing the data structures that will be used during the execution to manage
the snapshot mechanism:

1: Initialization:

2: leader =undefined % current leader

3: nb snp = 0 % number of concurrent snapshots except myself

4: during snp = false % flag telling if I am trying to be the current leader

5: snapshot = false % flag telling if there is an active snapshot for which I am not leader

6: for i = 1 to nprocs do
7: request(Pi) = 0 % request identifier

8: snp(Pi) = false % array of flags telling if Pi has initiated a snapshot

9: delayed message(Pi) = false % array of flags telling if I delayed the emission of a message

to a processor

10: end for

The rest of the algorithm uses three types of messages: start snp, snp and end snp. When a process
initiates a snapshot, it broadcasts a message of type start snp. Then it waits for the information relative
to the state of all the others. Note that if there are several snapshots initiated simultaneously, a “master”
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(i.e., process that initiates a snapshot) may have to broadcast a message of type start snp several times with
different request identifiers to be able to gather a correct view of the system, in the case where it was not
the leader among the “master” processes.

1: Initiate a snapshot:

2: leader = myself
3: snp(myself) = true
4: during snp = true
5: while snp(myself) == true do
6: request(myself) = request(myself) + 1
7: send asynchronously a message of type start snp containing request(myself) to all others
8: nb msgs = 0
9: while nb msgs 6= nprocs− 1 do

10: receive and treat a message
11: if during snp == false then
12: during snp = true
13: nb msgs = 0
14: break
15: end if
16: end while
17: if nb msgs == nprocs− 1 then
18: snp(myself) = false
19: end if
20: end while

After receiving the load information from all other processes, the process that initiated the snapshot
can proceed to a scheduling decision (dynamic slave selection at line 2 of Algorithm 4.3), and update the
load information resulting from that decision. After that (see the algorithm below), it informs the other
processes that its snapshot is finished (message of type end snp) and waits for other snapshots in the system
to terminate.

1: Finalize the snapshot:

2: send asynchronously a message of type end snp to all other processes
3: leader = undefined
4: if nb snp 6= 0 then
5: snapshot = true
6: for i=1 to nprocs do
7: if snp(Pi) == true then
8: leader = elect(Pi, leader)
9: end if

10: end for
11: if delayed message(leader) == true then
12: send asynchronously my state and request(leader) to leader in a message of type snp
13: delayed message(leader) = false
14: end if
15: while nb snp 6= 0 do
16: receive and treat a message
17: end while
18: end if

When a process Pj receives a message of type start snp from a process Pi (see the algorithm below),
it can either ignore the message (if Pj is the current leader, see lines 8-11), either send a message of type
snp that contains its state (lines 15 or 21), or delay the message to be sent in order to avoid a possible
inconsistency in the snapshot. This last case can occur if Pj detects that Pi is not the leader (line 18) or
because of asynchronism.
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To give an example illustrating how asynchronism can be managed, consider a distributed system with
three processes P1, P2, P3, where P1 receives a message start snp both from P3 and P2, in that order.
P1 first answers to P3 and then to P2 which is the leader (we assume that the leader is the process with
smallest rank). When P2 completes its snapshot, suppose that P3 receives end snp from P2 before P1. In
addition, suppose that P3 re-initiates a snapshot (sending a message of type start snp) and that P1 receives
the start snp message from P3 before end snp from P2 arrives. Then P1 will not answer to P3 until it receives
the message end snp from P2. This ensures that the information sent from P1 to P3 will include the variation
of the state information induced by the dynamic decision from P2. Such a situation may occur in case of
heterogeneous links between the processes.

Note that the algorithm is recursive. After the first reception of a message of type start snp, the process
does not exit from the algorithm until all snapshots have terminated (lines 26-28 in the algorithm below).
Note that the test at line 24 is there to avoid more than one level of recursion.

1: At the reception of a message start snp from Pi with request number req:

2: leader = elect(Pi, leader)
3: request(Pi) = req
4: if snp(Pi) == false then
5: nb snp = nb snp+ 1
6: snp(Pi) = true
7: end if
8: if leader == myself then
9: delayed message(Pi) = true

10: return
11: end if
12: if snapshot == false then
13: snapshot = true
14: leader = Pi

15: send asynchronously my state and request(Pi) to Pi in a message of type snp
16: else
17: if leader 6= Pi or delayed message(Pi) == true then
18: delayed message(Pi) = true
19: return
20: else
21: send asynchronously my state and request(Pi) to Pi in a message of type snp
22: end if
23: end if
24: if nb snp == 1 then {loop on receptions for the first start snp message (if nb snp is greater than 1, I

am already waiting for the completion of all the snapshots)}
25: during snp = false
26: while snapshot == true do
27: receive and treat a message
28: end while
29: end if

On the other hand, when a process receives a message of type end snp, it checks if there is another
active snapshot in the system (different from the sender of the message). If not, the receiving process exits
and continues its execution. Otherwise, it sends its state information only to the process viewed as the
leader (leader) of the remaining set of processes that have initiated a snapshot. It stays in snapshot mode
(snapshot =true) until all ongoing snapshots have completed.

1: At the reception of a message of type end snp from Pi:

2: leader =undefined
3: nb snp = nb snp− 1
4: snp(Pi) = false
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5: if nb snp == 0 then
6: snapshot = false
7: else
8: for i=1 to nprocs do
9: if snp(Pi) == true then

10: leader = elect(Pi, leader)
11: end if
12: end for
13: if leader == myself then
14: return
15: end if
16: if delayed message(leader) == true then
17: send asynchronously my state and request(leader) to leader in a message of type snp
18: delayed message(leader) = false
19: end if
20: end if

Finally, when a “master” process receives a message of type snp from another one, it first checks that
the request identifier contained in the message is equal to its own. In that case, it stores the state of the
sender. Otherwise, the message is ignored since there is in that case no guarantee about the validity of the
information received.

1: At the reception of a message of type snp from Pi with request id req:

2: if req == request(myself) then
3: nb msgs = nb msgs+ 1
4: Extract the state/load information from the message and store the information for Pi

5: end if

4.1.3 Experiments

The mechanisms described in Sections 4.1.1.1, 4.1.1.2 and 4.1.2 have been implemented inside the MUMPS

package. In fact, the mechanism from Section 4.1.1.1 used to be the one available in MUMPS, while the
mechanism of Section 4.1.1.2 is the default one since MUMPS version 4.3. In order to study the impact of
the proposed mechanisms, we experiment them on several problems (see Table 4.1) extracted from various
sources including Tim Davis’s collection at University of Florida 1 or the PARASOL collection2. The tests
have been performed on an IBM SP system of IDRIS3 composed of several nodes of either 4 processors at
1.7 GHz or 32 processors at 1.3 GHz.

We have tested the algorithms presented in the previous sections (naive, based on increments and based
on snapshot) on 32, 64 and 128 processors of the above platform. By default, we used the METIS package
[120] to reorder the variables of the matrices. The results presented in the following sections have been
obtained using two different strategies:

• a dynamic memory-based scheduling strategy, that will be later described in Section 4.2.5, and

• a dynamic workload-based scheduling strategy, similar to the one of Section 4.2.3, but with small
improvements (irregular partitions of slave tasks, proportional mapping enforced on L0 layer).

Using a memory-based strategy is motivated by the fact that a memory-based scheduling strategy is very
sensitive to the correctness of the view. The workload-based dynamic scheduling strategy (also sensitive to
the correctness of the view) will be used to also illustrate the cost and impact of each mechanism in terms
of time.

1http://www.cise.ufl.edu/~davis/sparse/
2http://www.parallab.uib.no/parasol
3Institut du Développement et des Ressources en Informatique Scientifique
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Small test problems
Matrix Order NZ Type Description

BMWCRA 1 (PARASOL) 148770 5396386 SYM Automotive crankshaft model
GUPTA3 (Tim Davis) 16783 4670105 SYM Linear programming matrix (A*A’)
MSDOOR (PARASOL) 415863 10328399 SYM Medium size door
SHIP 003 (PARASOL) 121728 4103881 SYM Ship structure

PRE2 (Tim Davis) 659033 5959282 UNS AT&T,harmonic balance method
TWOTONE (Tim Davis) 120750 1224224 UNS AT&T,harmonic balance method.

ULTRASOUND3 185193 11390625 UNS Propagation of 3D ultrasound waves generated by X. Cai (Simula
Research Laboratory, Norway) using Diffpack.

XENON2 (Tim Davis) 157464 3866688 UNS Complex zeolite,sodalite crystals.
Large test problems

Matrix Order NZ Type Description
AUDIKW 1 (PARASOL) 943695 39297771 SYM Automotive crankshaft model
CONV3D64 836550 12548250 UNS provided by CEA-CESTA; generated using AQUILON

(http://www.enscpb.fr/master/aquilon)
ULTRASOUND80 531441 330761161 UNS Propagation of 3D ultrasound waves, provided by M. Sosonkina,

larger than ULTRASOUND3

Table 4.1: Test problems.

For the memory-based strategy, we measure the memory peak observed on the most memory consuming
process. The tests using memory-based scheduling have been made on 32 and 64 processors which are enough
for our study. For the workload-based scheduling strategy, we measure the time to factorize the matrix on
the largest test problems on 64 and 128 processors. Each set of results (test problem/number of processors)
is performed on the same configuration of computational nodes. However, when going from one test problem
to another, the configuration can change: because of the characteristics of the machine, 64 processors can
either be 16 nodes of quadri-processors, either 2 nodes of 32 processors, or some intermediate configuration,
including cases where some processors are not used in some nodes. Therefore, results presented in this section
should not be used to get a precise idea of speed-ups between 64 and 128 processors. Finally, note that the
number of dynamic decisions for the set of small test problems (see Table 4.1) is comprised between 8 and 92
on 32 processors, and between 8 and 152 on 64 processors. For the set of larger test problems, the number
of dynamic decisions is between 119 and 169 on 64 processors and between 199 and 274 on 128 processors.

4.1.3.1 Memory-based scheduling strategy

In Table 4.2, we give the peak of active memory (maximum value over the processors) required to achieve
the factorization. We compare the influence of the naive mechanism introduced in Section 4.1.1.1, of the
mechanism based on increments introduced in Section 4.1.1.2, and of the algorithm presented in Section 4.1.2,
on the dynamic memory-based scheduler (see Section 4.2.5).

On 32 processors (Table 4.2(a)), we observe that the peak of memory is generally larger for the naive
mechanism than for the others. This is principally due to the limitation discussed in Section 4.1.1.1 for that
mechanism: some dynamic scheduling decisions are taken by the schedulers with a view that does not include
the variations of the memory occupation caused by the previous decisions. In addition, we observe that the
algorithm based on distributed snapshots (Section 4.1.2) gives in most cases the best memory occupation
and that the mechanism based on increments is not too far behind. For the GUPTA3 matrix, the algorithm
based on snapshots provides the worst memory peak. In that case, we observed that there is a side effect of
doing snapshots on the schedule of the application. The asynchronous and non-deterministic nature of the
application explain such possible exceptions to the more important general tendency.

On 64 processors, we can observe a similar behaviour: the naive mechanism gives in most cases worse
results than the other mechanisms. For the largest problems in this set (e.g., matrix ULTRASOUND3), the
algorithm based on snapshots gives the best results, followed by the mechanism based on increments and
finally the naive mechanism.

The results of this section illustrate that when we are interested in a metric that has great variations
(such as the memory), the algorithm based on snapshots is well-adapted, although costly. (We will discuss
this in the next section.) We also see that in terms of quality of the information, the mechanism based on
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Increments based Snapshot based naive
BMWCRA 1 3.71 3.71 3.71

GUPTA3 3.88 4.35 3.88
MSDOOR 1.51 1.51 1.51
SHIP 003 5.52 5.52 5.52

PRE2 7.88 7.83 8.04
TWOTONE 1.94 1.89 1.99

ULTRASOUND3 7.17 6.02 10.69
XENON2 2.83 2.86 2.93

(a) 32 processors.
Increments based Snapshot based naive

BMWCRA 1 2.30 2.30 3.55
GUPTA3 2.70 2.70 2.70
MSDOOR 1.01 0.84 0.84
SHIP 003 2.19 2.19 2.19

PRE2 7.66 7.87 7.72
TWOTONE 1.86 1.86 1.88

ULTRASOUND3 3.59 3.40 5.24
XENON2 2.45 2.41 3.61

(b) 64 processors.

Table 4.2: Peak of active memory (millions of real entries) on 32 and 64 processors as a function of the
exchange mechanism.

increments is never far from the one based on snapshots.

4.1.3.2 Workload-based scheduling strategy

Increments based Snapshot based
AUDIKW 1 94.74 141.62
CONV3D64 381.27 688.39

ULTRASOUND80 48.69 85.68

(a) 64 processors.
Increments based Snapshot based

AUDIKW 1 53.51 87.70
CONV3D64 178.88 315.63

ULTRASOUND80 35.12 66.53

(b) 128 processors.

Table 4.3: Time for execution (seconds) on 64 and 128 processors as a function of the exchange mechanism
applied.

We compare in Table 4.3 the factorization time from MUMPS with a workload-based scheduling strategy
(see Section 4.2.3) when using the algorithm based on snapshots and the one based on increments. We
can observe that the mechanism based on snapshots is less efficient than the one based on increments.
This is principally due to the fact that the snapshot operation requires a strong synchronization that can
be very costly in terms of time. In addition, when there are several dynamic decisions that are initiated
simultaneously, those are serialized to ensure the correctness of the view of the system on each processor.
Thus, this can increase the duration of the snapshots. Finally, the synchronization of the processors may have
unneeded effects on the behaviour of the whole system. For example, if we consider the CONV3D64 matrix
on 128 processors, the total time spent to perform all the snapshot operations is of 100 seconds. In addition,
there were at most 5 snapshots initiated simultaneously. This illustrates the cost of the algorithm based on
snapshots especially when the processors cannot compute and communicate simultaneously. (A long task
involving no communication will delay all the other processes.) Furthermore, we remark that if we measure
the time spent outside the snapshots for CONV3D64, we obtain 315.63 − 100.00 = 215 seconds, which
is larger than the 178.88 seconds obtained with the increments-based mechanism (see Table 4.3(b)). The
reason is that after a snapshot, all processors restart their computation and data exchanges simultaneously.
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The data exchanges can saturate the network. Another aspect could be the side-effect of the leader election
on the global behaviour of the distributed system, where the sequence of dynamic decisions imposed by
the criterion for the leader election (smallest processor rank in our case) has no reason to be good strategy
compared to the natural one. Finding a better strategy is a scheduling issue and is out-of-scope in this study.

Increments based Snapshot based
AUDIKW 1 302715 11388
CONV3D64 386196 16471

ULTRASOUND80 208024 12400

(a) 64 processors.
Increments based Snapshot based

AUDIKW 1 1386165 39832
CONV3D64 1401373 57089

ULTRASOUND80 746731 50324

(b) 128 processors.

Table 4.4: Total number of messages related to the load exchange mechanisms on 64 and 128 processors.

Concerning the number of messages exchanged during the factorization, the results are given in Table 4.4.
Note that the size of each message is larger for the snapshot-based algorithm since we can send all the metrics
required (workload, available memory,. . . ) in a single message. On the other hand, for the increments based
mechanism, we send a message for each sufficient variation of a metric. We can observe that the algorithm
based on snapshots uses less messages than the mechanism based on increments that tries to maintain a view
of the system on each process. The communication cost of these messages had no impact on our factorization
time measurement since we used a very “high bandwidth/low latency” network. For machines with high
latency networks, the cost of the mechanism based on increments could become large and have a bad impact
on performance. In addition, the scalability of such an approach may become a problem if we consider
systems with a large number of computational nodes (more than 1000 processors for example).

To study the behaviour of the snapshot mechanism in a system where processors can compute and
communicate at the same time, we slightly modified our solver by adding an extra thread that periodically
checks for messages related to snapshots and/or load information. The algorithm executed by this second
thread is given below:

1: while not end of execution do
2: sleep(period)
3: while there are messages to be received do
4: receive a message
5: if the received message is of type start snp then
6: block the other thread (if not already done)
7: end if
8: treat the received message
9: if the received message is of type end snp and there is no other ongoing snapshot then

10: restart the other thread
11: end if
12: end while
13: end while

It is based on POSIX threads and only manages messages corresponding to state information, excluding the
ones related to the application, which use another channel. Also, we fixed the sleep period experimentally
to 50 microseconds. Furthermore, since our application is based on MPI [159], we have to ensure that there
is only one thread at a time calling MPI functions using locks4. Finally, the interaction between the two
threads can be either based on signals or locks. One way to block the other thread is to send a special signal
to block it. Another way, which is the one used here, is to simply get the lock that protects the MPI calls

4Thread-safe implementations of MPI were not so common at the time this work was performed.
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and to release it only at the end of the snapshot.

Increments based Snapshot based
AUDIKW 1 79.54 114.96
CONV3D64 367.28 432.71

ULTRASOUND80 49.56 69.60

(a) 64 processors.
Increments based Snapshot based

AUDIKW 1 41.00 59.19
CONV3D64 189.47 237.69

ULTRASOUND80 35.91 52.00

(b) 128 processors.

Table 4.5: Impact of the threaded load exchange mechanisms on the factorization time (seconds) on 64 and
128 processors.

We tested this threaded version of the application on 64 and 128 processors. The results are given in
Table 4.5. Note that we also measured the execution time for the threaded increments mechanism with the
intention to evaluate the cost of the thread management. We observe that using a thread has a benefic
effect on the performance in most cases for the mechanism using increments (compare the left columns of
Tables 4.3 and 4.5). We believe that this is because the additional thread treats the messages more often
and thus avoids to saturate the internal communication buffers of the communication library (and from the
application). Concerning the algorithm based on snapshots, the execution time is greatly reduced compared
to the single-threaded version, thus illustrating the fact that processors spend less time performing the
snapshot. For example if we consider the CONV3D64 problem on 128 processors, the total time spent to
perform all the snapshot operations has decreased from 100 seconds to 14 seconds. However, we can observe
that this threaded version of the snapshot algorithm is still less efficient than the one based on increments.
This is principally due to the stronger synchronization points induced by the construction of a snapshot
(even in the threaded version), as well as the possible contention when all processors restart their other
communications (not related to state/snapshot information).

4.1.4 Concluding remarks

We have studied different mechanisms aiming at obtaining a view as coherent and exact as possible of the
load/state information of a distributed asynchronous system under the message passing environment. We
distinguished between two approaches to achieve this goal: maintaining an approximate view during the
execution, and building a correct distributed snapshot.

We have shown that periodically broadcasting messages that update the view of the load/state of the
other processes, with some threshold constraints and some optimization in the number of messages, could
provide a good solution to the problem, but that this solution requires the exchange of a large number
of messages. On the other hand, the demand-driven approach based on distributed snapshot algorithms
provides more accurate information, but is also much more complex to implement in the context of our type
of asynchronous applications: we had to implement a distributed leader election followed by a distributed
snapshot; also, we had to use a dedicated thread (and mutexes to protect all MPI calls) in order to increase
reactivity. In addition, this solution appears to be costly in terms of execution time and might not be
well-adapted for high-performance distributed asynchronous applications. It can however represent a good
solution in the case of applications where the main concern is not execution time but another metric to which
the schedulers are very sensitive (e.g., the memory usage). We also observed that this approach significantly
reduces the number of messages exchanged between the processes in comparison to the first one; it might be
well adapted for distributed systems where the links between the computational nodes have high latency/low
bandwidth.
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4.2 Hybrid static-dynamic mapping and scheduling strategies

As introduced at the beginning of this chapter, we now describe some of the work that has been carried out
to define, map and schedule the tasks arising in our asynchronous parallel multifrontal framework. Several
degrees of freedom allow for various possible strategies to take scheduling decisions. As discussed earlier,
some of the decisions are static, and other decisions are dynamic, taken at runtime. The dynamic decisions
use the workload and/or the memory information built thanks to the mechanisms described in Section 4.1.

The main degrees of freedom concerning dynamic decisions taken at runtime are:

task selection: the choice of the next local task to process, in case several tasks are available in the local
pool of tasks.

slave selection: if the task is parallel (case of a type 2 node), the choice of the processes to help (slave
processes). The order of the slave processes is also a degree of flexibility, together with the possibility
of defining subtasks of equal or varying sizes. In some approaches (see below and Section 4.2.3), the
slave processes must be chosen among a set of candidate processes chosen statically.

The dynamic decisions also depend on static mapping choices. The main objectives of the static mapping
phase are to control the communication costs, and to balance the memory consumption and computation
done by each processor. In our approach, those static choices concern the static tree mapping, which can
be decomposed into:

• a partial mapping of the tasks in the tree, together with the decision to use several MPI processes or a
single one for each node in the tree. More precisely (see Section 2.1.1), the mapping of a type 1 node is
static whereas for type 2 nodes, only the mapping of the fully summed part (or master part) is static.

• for each type 2 node, a possible list of candidate processes that are allowed to work on that node, so
that the dynamic slave selection algorithm is then restricted to selecting slaves among the candidates
for that type 2 node, instead of all processors.

In the next subsections, we summarize previous work and explain what has been done with respect to
the above degrees of freedom. When relevant, we also explain what type of load information is used.

4.2.1 History – PARASOL project (1996-1999)

The MUMPS project implements the parallel multifrontal approach discussed in this thesis. It started in 1996
with the PARASOL project which was an Esprit IV Long Term Research (LTR) European project. MUMPS

was inspired by an experimental prototype of an unsymmetric multifrontal code for distributed-memory
machines using PVM [85]. That experimental prototype was itself inspired by the code MUPS, developed by
Amestoy during his PhD thesis [17] at CERFACS under the supervision of Duff. The first version of MUMPS
that uses three levels of parallelism was MUMPS 2.0 in February 1998; it is the result of two years of intensive
developments to introduce type 2 and type 3 parallelism in the multifrontal method, with the asynchronous
approach to parallelism described in Chapter 2. At that time, no use of load estimates was made and the
mapping of slave processes was static: assuming that a master process for a node in the tree had rank i in
the MPI communicator, slave processes were i + 1, i + 2, . . . (modulo the number of available processes).
The number of slaves was chosen in such a way that the work per slave process is always smaller or equal to
the work of the master, with the limit that the number of slaves should not exceed the number of available
processes.

The use of load information appeared in version 2.1.3 of MUMPS (released to PARASOL partners in July
1998); this is the version that was used for the results presented in the reference article [27] and it is also the
first version including a solver for symmetric problems. Once the number of slaves for a given type 2 node
is known – at that time this depended mainly on the structure of the frontal matrix – the process in charge
of the type 2 node (master) selects at runtime the processes with smallest estimated load. Concerning load
exchange mechanisms, each MPI process is responsible of updating and communicating its load from time
to time: this corresponds to the naive approach described in Section 4.1.1.1.
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Several successive versions internal to the PARASOL project followed, and various improvements and
new numerical functionalities were included. This led to the public version of MUMPS available at the end of
the PARASOL project (version 4.0.4, September 1999), corresponding to the article published as [24], and
also described in [27]. The main characteristics of the scheduling and mapping heuristics at the end of the
PARASOL project are the following:

Static tree mapping. A partial mapping of the assembly tree to the processors is performed statically at
the end of the analysis phase. A layer called L0 is obtained by using an algorithm inspired from the
one from Geist-Ng [90]; see Algorithm 4.4. In order to map the nodes of layer L0, an LPT (longest
processing time first) list-scheduling algorithm is used; the subtrees are mapped in decreasing order
of their workload, a subtree is packed in the bin (i.e., is mapped on the processor) with the smallest
workload. The workload of the processor is updated, and the process is repeated, so that the next
subtree is mapped on the processor with smallest workload, until the load balance is accepted. The
LPT algorithm achieves a theoretical time that is smaller than 4

3−
1
3p times the optimal time, where p is

the number of processors [98]. In early versions of MUMPS, this algorithm was indeed cheaper (and more
naive): a processor was considered as a bin (binpacking) and a bin was filled with unsorted subtrees
from L0 until reaching but not exceeding the average expected cost per bin. Then the remaining
subtrees were sorted and mapped to the processors using the LPT algorithm. In the algorithm, the
computational cost is approximated by the number of floating-point operations.

L0 ← roots of the assembly tree
repeat

Find the node N in L0 with largest computational cost in subtree
L0 ← L0 ∪ {children of N} \ {N}
Map L0 subtrees onto the processors
Estimate load unbalance

until load unbalance < threshold
Algorithm 4.4: Principle of the Geist-Ng algorithm to define a layer L0.

Once layer L0 is defined, we consider that the tree is roughly processed from bottom to top, layer by
layer (see Figure 4.2). Layer L0 is determined using Algorithm 4.4, illustrated in Figure 4.3. Then for
i > 0, a node belongs to Li if all its children belong to Lj , j ≤ i − 1. First, nodes of layer L0 (and
associated subtrees) are mapped. This first step is designed to balance the work in the subtrees and
to reduce communication since all nodes in a subtree are mapped onto the same processor. Normally,
in order to get a good load balance, it is necessary to have many more nodes in layer L0 than there
are processors. Thus L0 depends on the number of processors and a higher number of processors will
lead to smaller subtrees.

The mapping of higher layers in the tree only takes into account memory balancing issues. At this stage,
only the volume of factors is taken into account when balancing the memory used by the processors.
For each processor, the memory load (total size of its factors) is first computed for the nodes at layer
L0. For each layer Li, i > 0, each unmapped node of Li is mapped onto the processor with the smallest
memory load and its memory load is revised.

The mapping is then used to explicitly distribute the permuted initial matrix onto the processors and
to estimate the amount of work and memory required on each processor.

Finally, above layer L0, nodes larger than a certain threshold are defined statically to be of type 2
(parallel nodes), except the root node, which may be of type 3 (that is, it relies on a 2D block
synchronous parallelization, see Section 2.1.1.2), if it is large enough. More precisely, a non-root node
above L0 is of type 2 if the size of its contribution block is larger than a given threshold. In an
intermediate version, the threshold was based on the amount of work to be done by the slaves but
nodes having a small fully-summed block and a huge contribution block were causing memory problems
if they were not parallelized; hence this simpler criterion.
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Figure 4.2: Decomposition of the assembly tree into levels.

cba

Figure 4.3: One step in the construction of the first level L0.
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Only the masters of type 2 nodes are mapped, the rest of the node is split into several tasks without
any pre-assigned mapping, so that at runtime, the master of a type 2 node will assign the slave tasks
to any MPI process without any static constraint.

Dynamic task selection. The pool of tasks is managed as a stack, giving priority to the postorder. Al-
though this limits the amount of parallelism and prevents the execution from following the layer-by-layer
approach, experiments with a FIFO (first-in first-out) strategy showed huge limitations with respect
to memory usage: FIFO would increase both parallelism and memory usage.

Dynamic slave selection. In this version, the number of slave processes is static and only depends on the
structure of the front; however the choice of the identifiers for the slave processes is done depending
on the estimate of the workload of the other processes: work is given to the less loaded processes. All
slave processes roughly receive the same amount of work.

The main characteristics of this version are summarized in the left part of Figure 4.4. We refer the reader
to the articles [27, 25, 24] for more information together with some performance results.

4.2.2 Improvements (1999-2001)

After the PARASOL project, MUMPS was ported to a CRAY T3E architecture in the context of a strong
collaboration with NERSC/Lawrence Berkeley National Laboratory (France-Berkeley Fund project followed
by sabbatical of Amestoy in Berkeley), in particular with X. S. Li, author of SuperLU Dist [124], a fan-out
(right-looking) [112] parallel sparse direct solver for unsymmetric matrices. Although the main principles of
scheduling in MUMPS are the same as in the previous section, a lot of parameter tuning (task granularity, etc.)
was performed in order to run on significantly larger numbers of processes (up to 512). A nice characteristic
of the Cray T3E was the high speed of its network, in comparison to the processor speed. Still, it was
observed that performance results depended a lot on MPI implementations and MPI parameters in both
MUMPS and SuperLU and this motivated a deeper study of the so called eager versus long MPI protocols,
which resulted in an implementation using asynchronous receives (MPI IRECV) on top of the already existing
asynchronous sends (MPI ISEND), see [29] for more information. Thanks to immediate MPI communication
primitives, performance became much more independent from the underlying MPI implementation. Thus,
the collaboration between the French and Berkeley teams was the opportunity to confront the behaviour
of both solvers, improve them and perform a fair comparison between the approaches [28]. The resulting
version roughly corresponds to MUMPS 4.1.6 (so called “TOMS” version), and it had a large success among
users. It was also used for comparisons with a commercial package in [108]. Among improvements done at
that time regarding dynamic scheduling decisions, the choice of the number of slave processors for a type 2
node is now dynamic and mixes several objectives: (i) try to give work only to processors less loaded than
the master; (ii) allow more processes if this would result in tasks with a too large granularity, which would
increase significantly memory usage or exceed the size of the preallocated communication buffers; (iii) allow
for less processors if this would result in too much communication and too small granularities; in particular,
avoid creating slave tasks involving significantly less work than the master task.

4.2.3 Static tree mapping: candidate processors

The text of this section is inspired by [33]. There are two problems with the previous approach:

1. First, memory is overestimated. In the previous implementation, the amount of memory needed for
each processor is estimated during the analysis phase and is reserved as workspace for the factorization.
Consequently, if every processor can possibly be taken as a slave of any type 2 node, then enough
workspace has to be reserved, on each processor, for the potential corresponding computational task.
This can lead to a dramatic overestimate of memory requirements because, during the factorization,
typically not all processors are actually used as slaves.
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2. Second, the choice of slaves is completely local and does not take into account locality of communication.
The choice depends crucially on the instant when the master chooses the slaves and does not take into
account scheduling decisions that are close in time and can have conflicting local objectives. More
global information is needed to improve the quality of the scheduling decisions.

The concept of candidate processors originates in an algorithm presented in [142, 145] and has also been
used in the concept of static task scheduling for Cholesky factorization [113]. With this concept it is possible
to guide the dynamic task scheduling and to address the above issues. For each node that requires slaves
to be chosen dynamically during the factorization, a limited set of processors is introduced from which the
slaves can be selected. This allows to exclude all non candidates from the estimation of workspace during the
analysis phase and leads to a tighter and more realistic estimation of the workspace needed. Furthermore,
the list of candidates can be built using a more global view of the tasks graph.

4.2.3.1 Preamble: proportional mapping

In the proportional mapping [142], the assembly tree is processed from top to bottom, starting with the root
node. For each child of the root node, the work associated with the factorization of all nodes in its subtree is
first computed, and the available processors are distributed among the subtrees according to their weights.
Each subtree thus gets its set of preferential processors. The same mapping is now repeated recursively: the
processors that have been previously assigned to a node are again distributed among the children according
to their weights (as given by the computational costs of their subtree). The recursive partitioning stops
once a subtree has only one processor assigned to it. The proportional mapping both achieves locality of
communication (similar to the subtree-to-subcube mapping, see [130]) and guides the partitioning from a
global point of view, taking into account the weight of the subtrees even for irregular trees.

4.2.3.2 Main ideas of the mapping algorithm with candidates

In the retained approach, described in [33], a variant of the Geist-Ng algorithm is still applied, but an extra
condition to accept a layer L0 is that the memory must also be balanced.

Then, whereas only the masters of the nodes in the higher parts of the tree were mapped statically in
the previous approach, each node now also receives a list of candidate processors defined statically. First,
preferential processors are defined thanks to the proportional mapping algorithm. A relaxation is done to
add flexibility: if at a node N with two child subtrees, a strict proportional mapping gives 30% processors
of the nodes allocated to N on the left branch and 70% in the right branch, we use 30% × (1 + ρ) (resp.
70% × (1 + ρ)) preferential processors in the left (resp. right) branch, where ρ is a relaxation parameter.
Given the list of preferential processors, the tree is processed from bottom to top, layer by layer. At each
layer, the types of the nodes of the layer are determined (type 1 or type 2) and each node receives its
list of preferential processors as determined by the proportional mapping. If needed, node splitting (see
Figure 2.11) or node amalgamation (see the end of Section 1.1.6) can occur. In case there are large nodes
rooting small subtrees, there is an optional algorithm to redistribute candidates within the layer so that
each node of the layer is assigned a number of candidates proportional to the cost of the node. In that case,
a variant of a list scheduling algorithm is used, giving priority to preferential processors and only allowing
non-preferential processors as candidates when all preferential processors have been chosen. However, best
results were obtained when respecting the preferential processors, and only allowing extra processors when
this would break granularity constraints. Finally, a top-down pass on the whole tree is made to exchange
master and candidate processors of type 2 nodes: an exchange is done if this improves memory balance. At
runtime, slaves are then chosen among the candidates, the least loaded first. The candidate processors less
loaded than the master are chosen in priority, and the less loaded processors are ordered first in the list of
chosen slaves. More information can be obtained in [33]; in particular, it is shown that the new scheduling
algorithm behaves significantly better than the fully dynamic approach in terms of

• factorization time,

• accuracy of the memory estimates, and
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• volume of communication.

4.2.4 Scheduling for clusters of SMP nodes

Starting from [33], Pralet et al. [31] consider the adaptation of the mapping and scheduling strategies in order
to take into account architectures composed of clusters of SMP nodes. On such architectures, communication
inside a node is faster than outside the nodes and this impacts the performance of our solver. For example,
on an SP3 from CINES5, using 16 Power3+ processors within a single node is about 25% more efficient than
using 8 processors from 1 node and 8 processors from the second node.

In order to take into account the architecture, both the dynamic slave selection and the static choice of
candidate processors were modified.

Dynamic slave selection

As before, when a master processor of a type 2 node performs a slave selection, the candidate processors
are sorted in increasing order of their load and the least loaded processors are chosen in priority. In order
to take into account the SMP architecture, a penalty is now given to the load before the sort. Typically,
the load of a processor is multiplied by a factor λ if it is outside the SMP node of the master processor
(this simple algorithm was shown to behave better than a model of the network taking into account latency
and bandwidth). As a result, less processors outside the SMP node are chosen and this leads to better
performance. As a side effect, since the loads are larger, the average number of processors participating to
each type 2 node is reduced, limiting communication but also limiting the amount of parallelism, which can
be critical in some cases. In order to obtain further gains, the modified dynamic scheduling algorithm is
thus combined to improvements of the candidate-based algorithm using relaxed proportional mapping, as
explained below.

Static tree mapping

Although [31] describe the approach in a very general case, for simplicity, we assume here that each SMP
node contains the same number of processors. First, the preferential processors are chosen cyclically in
the list of processors not according to their MPI rank, but rather according to their position in the list of
processors, where processors belonging to the same SMP node are numbered consecutively. Then, during
the layer-by-layer bottom-up process, an architecture criterion is used: typically, if several SMP nodes are
in the list of candidates, the master –because it communicates the most with the slaves– must be on the
SMP node that appears most often in the list of candidates.

Large benefits from these approaches are obtained on IBM clusters of SMP’s with 16 Power3+ or Power4
processors. In [31], the authors also experiment mixing MPI parallelism with parallelism based on a threaded
BLAS library, and show that using 2 or 4 threads per MPI process is a good compromise. We discuss again
such hybrid MPI/thread parallel issues in Section 6.6, in the context of multicore architectures.

4.2.5 Memory-based dynamic scheduling

For large problems, memory usage may be more critical than time of execution: if a problem is too large,
memory allocation may fail and it is then necessary to reduce the memory footprint in order to get a chance
of solving the problem. In [103], we discuss memory-based dynamic scheduling strategies for the parallel
multifrontal method as implemented in MUMPS. These strategies are a combination of a memory-based slave
selection strategy and a memory-aware task selection strategy.

5Centre Informatique National de l’enseignement supérieur, Montpellier, France.
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Task selection (pool man-
agement)

stack (LIFO) −→ stack in general, with exceptions in case
of memory problem

Number of slave proces-
sors

static −→ dynamic

Slave partitions same amount of work to
each slave

−→ irregular partitions

Static mapping of masters mainly memory-based → more complex
Static choice of candidates no constraint (all MPI

processes)
−→ determined statically

Load information flops of ready tasks −→ flops and memory information, vari-
ous other information (e.g., near-to-be-
ready tasks)

Load mechanism naive mechanism −→ increment-based (from Section 4.2.5 on-
wards)

Figure 4.4: Main evolutions of scheduling algorithm characteristics between Sections 4.2.1 (left) and Sec-
tion 4.2.6 (right).

Dynamic slave selection: The slave processors are selected with the goal to obtain the best memory
balance, and we use an irregular 1D-blocking by rows for both symmetric and unsymmetric matrices.
In fact, the slave selection strategy attempts at choosing the minimum number of slaves that will
balance the current memory usage without increasing the local memory peak.

Dynamic task selection: Concerning the task selection strategy, we have adapted the task selection to
take into account memory constraints. Whereas the pool of tasks is always managed as a stack (last
task inserted is the first extracted) in all previous approaches, we try to better take into account
memory. In particular, a task in a sequential subtree should in some cases be processed even if a new
task higher in the tree has appeared: this is because it may be better to finish the subtree and its local
peak of memory before starting new activities at a different place in the tree. Furthermore, if the task
at the top of the pool is large in comparison to the peak of memory already observed, we attempt to
extract other tasks. More precisely, the task selection algorithm is given by Algorithm 4.5.

if the node at the top of the pool is part of a sequential subtree then
return the node at the top of the pool;

else
for N in the pool of ready tasks, starting from the top do

if memory cost(N )+current memory ≤ memory peak observed since the beginning of the
factorization then

return N ;
else

if N belongs to a sequential subtree then
return N ;

end if
end if

end for
return the node at the top of the pool;

end if
Algorithm 4.5: Memory-aware task selection algorithm.

Both the task selection strategy and the slave selection strategy require memory information to circulate
between the processors, so that each processor now has a view of the memory load of other processors,
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not just the workload (see Section 4.1). Whereas the workload allows approximations, inaccurate memory
information can be dramatic in the sense that this may lead to a failure of the execution. In order to avoid
such situations, the load information mechanism was modified to forecast the arrival of large new ready
tasks: before a new task is ready (last child in the process of factorizing its frontal matrix), a message is
sent so that the memory for the master part of the frontal matrix of the parent is included in the memory
estimate of the ready tasks of the master processor.

Overall, this scheduling strategy allows a significant reduction of the memory usage, but at the cost of a
performance penalty (see [103]).

4.2.6 Hybrid scheduling

[34] pushes the previous ideas further. By reconsidering both the static and dynamic aspects of scheduling,
its objectives are to

• preserve the memory behaviour obtained in Section 4.2.5,

• further decrease the difference between memory estimates and actual memory consumption,

• accelerate the factorization compared to previous approaches.

In order to reach these objectives, both the static and dynamic aspects of scheduling are revisited.

Static tree mapping Concerning the static mapping and choice of candidates, a layer L0 is defined as
before, under which tree parallelism is used exclusively. However, the mapping of the nodes from L0 is
forced to respect the proportional mapping; this is because we observed that the strategy consisting in
better balancing the load of the subtrees of the L0 layer has a worse locality of processors and leads to
a larger memory usage (more simultaneous contribution blocks corresponding to subtree roots because
we are further from a stack behaviour). We call the zone of the tree under L0 zone 4, because three
other zones are defined above the L0 layer, as show in Figure 4.5.

Zone 2

Zone 1

Zone 3 Sx

Sx
Sy

Sy

Sy

Sy Sy

Sx

L

Zone 4

0

Relaxed proportional mapping

Strict proportional mapping

Fully dynamic on clusters of processes

Figure 4.5: The four zones of the assembly tree. Sx and Sy are sets of preferential processors.

Zone 1 uses a relaxed proportional mapping in order to deal with the possible unbalances of zone 2,
where a stricter proportional mapping is used. Moreover, we decided to implement a third zone –
zone 3, in which each child inherits all candidate processors from its parent, which are defined by the
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proportional mapping. The upper limit of zone 3 depends on a parameter procmax which corresponds
to a number of processors. During the top-down approach of the proportional mapping, if the number
of preferential processors of a node x is smaller or equal to procmax, then x and all its descendants
(above zone 4) belong to zone 3 and have the same set of candidate processors (see sets Sx and Sy in
Figure 4.5). The motivation for zone 3 is that the fully dynamic code behaves well on small numbers
of processors. Remark that, on architectures such as clusters of SMPs, procmax should be set to the
number of processors inside the SMP node in order to naturally take into account memory locality.

Dynamic slave selection Given a set of candidate processors for a type 2 node, they are first sorted by
increasing estimated workload. The slave selection algorithm done by the master of the type 2 node
aims at balancing the workload of the selected processors (among candidate processors), subject to the
memory constraints of each processor:

• estimated amount of available memory on the processor;

• maximum factor size: the maximum factor size is a relaxed value of an estimation of the factors
done during the analysis. It is updated dynamically such that, when at a node a processor takes
less than its share, it may take more for another node in the tree (and vice versa).

• maximum buffer size: the contribution block of a slave of a type 2 node should not exceed the
size of the preallocated communication buffer6.

If one of those constraints is saturated, the given slave does not get more work and the extra work
is shared between others. The maximum number of selected processors nlim is first estimated to
the minimum between the number of candidate processors and a number of processors such that the
average work given to each slave is not too small compared to the work of the master processor. If
the mapping of all the rows of the front does not succeed, the number ntry of selected processors is
increased, until reaching nlim (Algorithm 3 in [34]). nlim is then increased if needed, until reaching
all candidate processors (Algorithm 2 in [34]).

Similar to the memory-based scheduling, it is critical to provide an accurate view of both load and
memory information. The mechanisms for memory information have been slightly modified so that the
frequency to send memory information increases when the available memory decreases.

Furthermore, the memory estimates have been modified. Thanks to all the above mechanisms to efficiently
take memory constraints into account at runtime, the memory estimates computed during the analysis phase
are now based on an optimistic scheduling scenario and not on a worst-case scenario anymore. Such an
improvement of the reliability of memory estimates is of extreme importance in practical applications and
was not possible in approaches not taking memory into account in dynamic scheduling decisions.

4.3 Memory scalability issues and memory-aware scheduling

Memory scalability is critical when increasing the number of processors. Ideally, when multiplying the
number of processors by k, one would like the memory per processor to be divided by the same factor k.
Memory is already taken into account in most strategies from Section 4.2. However, we step back a little in
this section to show some intrinsic properties of the memory behaviour when processing in parallel a tree of
tasks bottom-up.

Let us denote by Sseq the sequential peak of memory when the tree is reordered according to the techniques
presented in Chapter 3. We denote by Savg(p) the average amount of storage per processor required to
process that matrix with p processors, and by Smax(p) the maximum amount (among all processors) of
storage required to process that matrix with p processors.

The memory efficiency on p processors is defined as: emax(p) = Sseq
p×Smax(p)

.

We can also define the average memory efficiency as eavg(p) = Sseq
p×Savg(p)

, which gives an idea of the overall

loss of memory when increasing the number of processors.

6See Section 6.5 for a discussion on the memory associated to communication buffers.
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A perfect memory scalability on p processors corresponds to emax(p) = 1. However, in the approach from
Section 4.2.6, we typically observe that the memory efficiency is only between 0.1 and 0.3 on 128 processors,
when the factors are stored on disk (see Chapter 5). With factors on disk, the storage only consists in
temporary contribution blocks and current frontal matrices; memory efficiency is slightly better with factors
in core memory. Although the scheduling algorithms from Section 4.2.6 rely on a relaxed proportional
mapping, let us consider a strict proportional mapping [142] (see Section 4.2.3.1) to illustrate its memory
aspects, compared to the postorder. We consider a perfect binary tree of depth k processed with p = 2k

processors (see Figure 4.6(a)).

d=0

d=1

d=2

d=3

d=4

(a) Elimination tree (b) Postorder traversal (c) Traversal induced by proportional
mapping

Figure 4.6: A perfect binary elimination tree (a) and possible traversals (b,c). Data in memory when the
peak is reached during the tree traversal are black. There are p of them in (c) and only log(p) of them in
(b). The arrow points to the node for which the peak is reached with a postorder traversal (b).

Using the notations of Chapter 3, we assume that the nodes that are at a depth lower than or equal
to k have contribution blocks of identical sizes, cb, and frontal matrices of identical sizes, m = 2 × cb. We
furthermore assume that the subtrees at depth d = k require a storage Sk ≥ 2 × cb. With a postorder
traversal, the storage required to process the whole tree is equal to Sseq = k × cb + Sk (see Figure 4.6(b)).

If all the processors are mapped on each single node and if they synchronously follow a postorder traversal,
the memory efficiency is equal to 1. (We assume for simplicity that contribution blocks and frontal matrices
can be distributed with a balanced memory on the processors, which is not always the case in practice because
of master tasks.) A possible memory-aware mapping algorithm is the following. . On the other hand, if
we assume that a proportional mapping has been applied, each subtree at depth d = k is processed on a
different processor (which means that p = 2k). The peak of memory of each processor is thus equal to Sk (see

Figure 4.6(c)) and the memory efficiency is then equal to eavg(p) =
Sseq

p×Sk
= k×cb+Sk

p×Sk
≤ k/2+1

p = O(log(p)/p).
In practice, the largest frontal matrices and contribution blocks are often near the top of the elimination

tree. Therefore, the proportional mapping may induce a different memory efficiency. However, we see that
in parallel, an algorithm in-between proportional mapping and postorder should be sought.

Let M0 be the available memory per processor. Note that if M0 > Sseq/p, then the tree can be processed
with p processors (in the worst case, using a postorder traversal with all processors mapped on each single
node. The tree is processed from top to bottom, similar to proportional mapping. All processors are assigned
to the root node. At each step, each child inherits from a subset of pi processors among the p processors
that are mapped on their parent (

∑
i pi = p) in the following way:

1. A step of proportional mapping is first attempted to map children nodes

2. If the memory peaks Si for the children are such that Si/pi < M0, then the mapping is accepted.

3. If some memory peaks are too large (Si/pi > M0), subtrees are serialized [5], or arranged into groups
leading to reasonable memory per subtree [6]. In such cases, subtrees processed last should take into
account the contributions blocks produced by the groups processed earlier in the tree, which have to be
kept in memory: to process subtree j, contribution blocks of the previously processed subtrees must be
kept in memory, whose (average) size per processor is (

∑j−1
i=1 cbi)/p. Therefore, the memory constraint

M0 used for the lower levels of the tree becomes M0 − (
∑j−1

i=1 cbi)/p.

4. In the above tests, a relaxation is done in order to ensure that Smax(p) ≤M0, not just Savg(p) ≤M0.
For that, a relaxation parameter t can be used that estimates memory unbalance. All comparisons
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with M0 are replaced by comparisons on M0 × t, where t > 1. If Smax/Savg < t, this means that we
will consume less memory than M0.

Remark that serializing subtrees introduces constraints in the scheduling algorithms of our asynchronous
multifrontal factorization. Preliminary results are encouraging and show that, starting from the strategies of
Section 4.2.6, it is possible to significantly reduce the memory usage without significant loss of performance.
More information and a complete description of the associated algorithms and ideas will be available in [150].
Two issues should be tackled in the long term:

• The approach described is static. It would be nice to reintroduce dynamic decisions, with memory
constraints, but without falling in dangerous situations where memory constraints will be impossible
to respect in the future (this is similar to deadlock-avoidance algorithms, see [152], with memory as the
critical resource). Dynamic scheduling is necessary to cope with numerical pivoting and with limits to
performance models on more and more complex computer platforms.

• From an application point-of-view, providing the allowed memory M0 is sometimes possible. However,
there is no point in using too much memory if this only increases performance by a very small per-
centage, or if it decreases it (swapping). From experiments with different values of M0, it seems that
it would possible to find M0 values providing both a good performance (although not optimal) and
a reasonable memory efficiency. Defining various standard strategies would be interesting, e.g., avoid
decreasing the optimal performance by more than 20%.
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Chapter 5

A Parallel Out-of-Core Multifrontal
Method

The objective of this chapter (see also [7, 12]) is to show how out-of-core storage may help decreasing the
memory requirements of parallel sparse direct solvers and, consequently, allow the solution of larger problems
with a given physical memory. We also show how low-level I/O mechanisms affect performance.

Introduction

As mentioned in the introduction and in Section 1.3.4, the memory usage of sparse direct solvers is often the
bottleneck to solve large sparse systems of linear equations. In order to solve larger problems, out-of-core
storage must sometimes be used when memory is insufficient. In this chapter, we describe some of the work
we have done to design a robust out-of-core solver, in which computed factors are stored on disk and report
experiment on significantly large problems. We observe that the core memory usage can be significantly
reduced in serial and parallel executions, with a time performance of the factorization phase comparable to
that of a parallel in-core solver. A careful study shows how the I/O mechanisms impact the performance.
We describe a low-level I/O layer that avoids the perturbations introduced by system buffers and allows
consistently good performance results. To go significantly further in the memory reduction, it is interesting
to also store the intermediate working memory on disk. We describe algorithmic models to address this
issue, and study their potential in terms of both memory requirements and I/O volume.

Several authors [1, 68, 95, 148, 149, 134, 164] have worked on sequential or shared-memory out-of-core
solvers (see also the survey paper [163], but out-of-core sparse direct solvers for distributed-memory machines
are less common. Furthermore, authors have sometimes neglected the effect of system buffering, which often
introduces a bias in the performance analysis. Although Dobrian [67] shows that multifrontal methods
are generally well-suited for the out-of-core factorization, contributions by [148] and [149] for uniprocessor
approaches pointed out that these methods may not fit well an out-of-core context because large dense
temporary matrices can represent a bottleneck for memory. Therefore, they prefer left-looking approaches
(or switching to left-looking approaches)1. However, in a parallel context, increasing the number of processors
can help keeping such large frontal matrices in-core. Furthermore, note that pivoting issues in out-of-core
left-looking approaches are not always natural [95]; on the contrary, we are interested in approaches with
the exact same pivoting strategies in the in-core and out-of-core contexts.

An out-of-core multifrontal approach based on virtual memory was experimented in the past by [58].
In this work, the authors use a low-level layer [57] enabling to influence the system paging mechanisms. A
limited number of calls to this layer was added at the application level in order to provide information on the
application. For example, it is possible to inform the layer that a zone of memory has a high priority because
it will be used very soon (it will then be prefetched if on disk, or kept if already in core memory), or that in

1See Section 1.2.4 for a brief description of left-looking and right-looking approaches
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another zone the contents are obsolete because they have been used already (and the corresponding pages
can then be discarded without being written to disk). In particular the current active frontal matrix and
the top of the stack will be set a high priority; the data corresponding to a contribution block just consumed
by the parent are obsolete and need not be written to disk. The authors showed results significantly better
than when relying on the default LRU (Least Recently Used) policy, with very limited local modifications to
the sparse direct solver. However, this type of approach is not portable because it is too closely related to
the operating system. In the rest of this chapter, we only consider out-of-core approaches with explicit calls
to I/O routines.

As explained in Section 1.3.3, the memory in multifrontal methods consists of two parts: one corresponds
to terminal data, the factors; the other one to temporary data, the active memory (or active storage). We
also refer the reader to Chapter 3 for possible out-of-core models in the case of serial executions. Because the
factors produced will only be accessed at the solve stage, it makes sense to write them to disk first. We use
this approach to design an extension of a parallel solver (MUMPS, for MUltifrontal Massively Parallel Solver,
see [24]) where factors are stored on disk during the factorization process. This approach allows to treat
much larger problems, and to reduce significantly the memory usage (by a factor 5 to 10 on 1 to 4 processors,
and a factor around 2 on 16 to 128 processors). An important issue is performance, which has to be analyzed
in details. In particular, it must be noted that default I/O mechanisms based on the use of system buffers
have several disadvantages and are not suitable for all applications. For simple applications (with small I/O
requirements), the cost of an I/O is similar to the cost of a memory copy, and the effective I/O is performed
asynchronously (or is not performed at all !) by the system. For more I/O-intensive cases (factorization of a
matrix with large factors), some problems can occur: excessive memory usage of the system buffers, or bad
performance. To avoid these problems, we have decided to study direct I/O mechanisms (that bypass the
system buffers), and to couple them with an asynchronous approach at the application level. This allows to
obtain consistent performance results and, thanks to the knowledge we have of the application, to control
I/O in a more tight way.

In order to go further in the memory reduction (and treat larger problems on a given number of proces-
sors), it is interesting to use disk storage not only for the factors, but also for part of the temporary working
memory (or active storage). To analyze this approach, we propose a theoretical study based on an instru-
mentation of the solver with out-of-core factors and study the variations of the working memory according
to different models of out-of-core memory management. We assess the minimum core memory requirements
of the method, and study which type of tasks is responsible for the peak memory for the different models.

This chapter is composed of two main sections. In the first one, we present and analyse in detail the
performance of the approach consisting in storing the computed factors to disk (Section 5.1). We then
study the memory limits of different strategies to process the active memory out-of-core (Section 5.2). In
Section 5.2.3, we analyze more accurately and qualitatively the type of tasks responsible for the peak of
core memory usage in each of these strategies, and discuss their relation with critical parameters in the
management of parallelism. Note that the solution step is also critical in this out-of-core context and should
not be neglected, as large amounts of data will be read from disk. This is the object of a specific and separate
study [23] that we will not detail with here.

5.1 A robust out-of-core code with factors on disks

We present in this section a robust out-of-core code based on MUMPS in which computed factors are stored
on disk during the factorization step. This parallel out-of-core code is already used by several academic
and industrial groups, and enables them to solve problems much larger than before. All the functionalities
available in MUMPS may be used in this new out-of-core code (LU or LDLT factorization, pivoting strategies,
out-of-core solution step [22], . . . ). The motivation to store the factors on disk is that, in the multifrontal
method, produced factors are not re-used before the solution step. In the approach we present, the factors
are written as soon as they are computed (possibly via a buffer) and only the active memory remains in-core.

Because I/O buffering at the operating system level makes performance results difficult to reproduce and
to interpret [7, 22], we first discuss system buffering issues and ways to avoid such buffering problems in our
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performance study. We explain why the management of asynchronism for the I/Os should be transferred
from the system level to the application level and present the mechanisms we have implemented to do so.
A detailed performance analysis follows; it highlights several drawbacks from default I/O mechanisms that
have most often been neglected in the past.

5.1.1 Direct and buffered (at the system level) I/O mechanisms

The efficiency of low-level I/O mechanisms directly affects the performance of the whole application. Several
I/O tools are available: AIO (POSIX asynchronous I/O layer), MPI-IO [162] (I/O extension of the MPI

standard) or FG [56] (high level asynchronous buffered I/O framework). However, C I/O library provides
best portability while offering a reasonable abstraction level for our needs.

By default, when a write operation is requested, modern systems copy data into a system buffer (named
pagecache) and effectively perform the disk access later, using an asynchronous mechanism. Thanks to that
mechanism (hidden to the user), the apparent cost of the write operation is in many cases only equal to
the cost of a memory copy. However, in the context of a high-performance out-of-core application, such a
mechanism suffers four major drawbacks:

1. As the allocation policy for the system buffer (pagecache) is not under user control (its size may vary
dynamically), the size of the remaining memory is neither controlled nor even known; this is problematic
since out-of-core algorithms precisely rely on the size of the available memory. Subsequently, one may
exploit only part of the available memory or, on the contrary, observe swapping and even run out of
memory.

2. The system is well adapted to general purpose applications and not necessarily optimized for I/O-
intensive applications: for example, it is better to avoid the intermediate copy to the pagecache when
a huge stream of data must be written to disk.

3. The management of the pagecache is system-dependent (it usually follows an LRU policy). As a conse-
quence, the performance of I/O operations vary (for instance, the I/O time can increase if the system
needs to partially flush the pagecache). This is particularly problematic in the parallel context, where
load balancing algorithms will not be able to take this irregular and unpredictable behaviour into
account.

4. The last drawback is related to performance studies: when analysing the performance of an out-of-core
code, one wants to be sure that I/Os are effectively performed (otherwise, and even if the code asks for
I/O, one may be measuring the performance of an in-core execution). We insist on this point because
this has sometimes not been done in other studies relating to sparse out-of-core solvers. Authors we
are aware of who have taken this type of issues into account are Rothberg and Schreiber [148]: in order
to get senseful and reproducible results, they dynamically add artificial delays in their code when the
time for a read or write operation is observed to be smaller than the physical cost of a disk access.

The use of direct I/O mechanisms allows one to bypass the pagecache. The four previous drawbacks are
then avoided: we are sure that I/Os are performed; no hidden additional memory is allocated (the pagecache
is not used in this case); we explicitly decide when disk accesses are performed; and the I/O costs become
stable (they only depend on the latency and the bandwidth of the disks). Direct I/Os are available on most
modern computers and can be activated with a special flag when opening the file (O DIRECT in our case).
However data must be aligned in memory when using direct I/O mechanisms: the address and the size of the
written buffer both have to be a multiple of the page size and/or of the cylinder size. In order to implement
such a low-level mechanism, we had to rely on an intermediate aligned buffer, that we write to disk when it
becomes full. The size of that buffer has been experimentally tuned to maximize bandwidth: we use a buffer
of size 10 MB, leading to an approximate bandwidth of respectively 90 MB/s and 50 MB/s on the IBM and
Linux platforms (described later). Furthermore, asynchronism must be managed at the application level to
allow for overlapping between I/Os and computations.
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5.1.2 Synchronous and asynchronous approaches (at the application level)

One purpose of this chapter is to highlight the drawbacks of the use of system buffers (or pagecache) and
to show that efficiency may be achieved with direct I/O. To do so, the management of the asynchronous
I/Os (allowing overlapping) has to be transferred from the system level to the application level. In order to
analyze the behaviour of each layer of the code (computation layer, I/O layer at the application level, I/O
layer at the system level) we designed two I/O mechanisms at the application level:

Synchronous I/O scheme. In this scheme, the factors are directly written to disk (or to the pagecache)
with a synchronous scheme. We use standard C I/O routines: either fread/fwrite (to read from or
write to a binary stream), read/write (to read from or write to a file descriptor), or pread/pwrite when
available (to read from or write to a file descriptor at a given offset).

Asynchronous I/O scheme. In this scheme, we associate with each MPI process of the application an I/O
thread in charge of all the I/O operations for that process. This allows to overlap I/O operations with
computations2. The I/O thread uses the standard POSIX thread library (pthreads). The computation
thread produces (computes) factors that the I/O thread consumes (writes to disk) according to a
producer-consumer paradigm. Each time a block of factors is produced, the computation thread posts
an I/O request: it inserts the request into a queue of pending requests in a critical section. The I/O
thread loops endlessly: at each iteration it waits for requests that it handles using a FIFO strategy.
Symmetrically, the I/O thread informs the computation thread of its advancement with a second
producer-consumer paradigm in which this time the I/O thread produces the finished requests (inserts
them into the queue of finished requests). The computation thread consumes the finished requests
by removing them from the queue when checking for their completion. This second mechanism is
independent from the first one. Note that we limited our implementation to the case where only one
I/O thread is attached to each computation thread. It could be interesting to use multiple I/O threads
to improve overlapping on machines with several hard disks per processor, or with high performance
parallel filesystems.

Together with the two I/O mechanisms described above, we designed a buffered I/O scheme. This
approach relies on the fact that we want to free the memory occupied by the factors (at the application
level) as soon as possible, i.e., without waiting for the completion of the corresponding I/O. Thus, we
introduced a buffer into which factors can be copied before they are written to disk. We implemented a
double buffer mechanism in order to overlap I/O operations with computations: the buffer is divided into
two parts in such a way that while an asynchronous I/O operation is occurring on one part, computed
factors can be stored in the other part. In our experiments, the size of the buffer (half a buffer in fact)
is set to the size of the largest estimated factor among the nodes of the tree. Note that the asynchronous
scheme always requires a buffer in order to free the factors from main memory. Furthermore, the buffer
is not necessary in the synchronous scheme and implies an extra copy. Therefore, we only present results
with the buffered asynchronous scheme (that we name asynchronous scheme and abbreviate as Asynch.)
and with the non-buffered synchronous one (that we name synchronous scheme and abbreviate as Synch.).
When the pagecache is used together with the synchronous scheme (at the application level), asynchronism
is managed at the system level; when direct I/O mechanisms are applied together with the asynchronous
scheme, asynchronism only occurs at the application level.

5.1.3 Testing environment

For our study, we use test problems (see Table 5.1) from standard collections (Parasol collection3, University
of Florida sparse matrix collection4), or from MUMPS users. Publicly available matrices from our application

2 Modern systems use the direct memory access (DMA) feature which allows an efficient overlapping of computation and
I/Os even when only one processor is used.

3http://www.parallab.uib.no/parasol
4http://www.cise.ufl.edu/research/sparse/matrices/
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partners are available on the gridtlse.org website (Tlse collection). We use two types of target platforms,
one with local disks, one with remote disks. The platform with local disks is a cluster of Linux dual-processors
at 2.6 GHz from PSMN/FLCHP5, with 4 GB of memory and one disk for each node of 2 processors. In
order to have more memory per process and avoid concurrent disk accesses, only one processor is used on
each node. The observed bandwidth is 50 MB / second per node, independently of the number of nodes, and
the filesystem is ext3. The other machine is the IBM SP system from IDRIS6, which is composed of several
nodes of either 4 processors at 1.7 GHz or 32 processors at 1.3 GHz. On this machine, we have used from 1 to
128 processors with the following memory constraints: we can access 1.3 GB per processor when asking for
65 processors or more, 3.5 GB per processor for 17-64 processors, 4 GB for 2-16 processors, and 16 GB on 1
processor. The I/O system used is the IBM GPFS [154] filesystem. With this filesystem we observed a maximal
I/O bandwidth of 108 MBytes per second (using direct I/O to ensure that the I/Os are effectively performed,
without intermediate copy). However, it is not possible to write files to local disks with the configuration of
this platform. This results in performance degradations when several processors simultaneously write/read
an amount of data to/from the filesystem: the bandwidth decreases by a factor of 3 on 8 processors and by
a factor of 12 on 64 processors when when each processor writes one block of 500 MBytes. This filesystem
is thus not optimal for parallel performance issues. However we chose to also run on this platform because
it has a large number of processors, and allows to run large problems in-core on which we can compare
out-of-core and in-core performance. By default, we used the METIS package [120] to reorder the matrices

Matrix Order nnz Type nnz(L|U) Flops Description
(×106) (×109)

AUDIKW 1 943695 39297771 SYM 1368.6 5682 Crankshaft model (Parasol collection).
BRGM 3699643 155640019 SYM 4483.4 26520 Ground mechanics model from Brgm (Tlse

collection).
CONESHL mod 1262212 43007782 SYM 790.8 1640 Cone with shell and solid element from

Samtech (Tlse collection).
CONESHL2 837967 22328697 SYM 239.1 211.2 Provided by Samtech (Tlse collection).
CONV3D64 836550 12548250 UNS 2693.9 23880 Provided by Cea-Cesta; generated using

Aquilon (http://www.enscpb.fr/master/
aquilon).

GUPTA3 16783 4670105 SYM 10.1 6.3 Linear programming matrix (AA’), Anshul
Gupta (Univ. Florida collection).

SHIP 003 121728 4103881 SYM 61.8 80.8 Ship structure (Parasol collection).
SPARSINE 50000 799494 SYM 207.2 1414 Structurual optimization, CUTEr (Univ.

Florida collection).
QIMONDA07 8613291 66900289 UNS 556.4 45.7 Circuit simulation problem provided by Rein-

hart Schultz, Qimonda AG (Tlse collection).
ULTRASOUND80 531441 330761161 UNS 981.4 3915 Propagation of 3D ultrasound waves, provided

by M. Sosonkina.
XENON2 157464 3866688 UNS 97.5 103.1 Complex zeolite, sodalite crystals, D. Ronis

(Univ. Florida collection).

Table 5.1: Test problems. Size of factors (nnz(L|U)) and number of floating-point operations (Flops)
computed with METIS.

and limit the number of operations and fill-in arising during the numerical factorization. In the following,
parallel executions rely on the dynamic scheduling strategy proposed in [34]. When reporting memory usage,
we focus on real data (factors, temporary active memory), excluding storage for integers and symbolic data
structures (which is comparatively negligible).

5.1.4 Sequential performance

Because the behaviour of our algorithms on a platform with remote disks might be difficult to interpret, we
first validate our approaches on machines with local disks. For these experiments, we use the cluster of dual-
processors from PSMN/FLCHP presented in Section 5.1.3. Because this machine has a smaller memory,

5Pôle Scientifique de Modélisation Numérique/Fédération Lyonnaise de Calcul Haute Performance
6Institut du Développement et des Ressources en Informatique Scientifique

125

gridtlse.org
http://www.enscpb.fr/master/aquilon
http://www.enscpb.fr/master/aquilon


the factorization of some of the largest test problems swapped or ran out of memory. We first present
results concerning relatively small problems (SHIP 003 and XENON2) because they allow us to highlight the
perturbations induced by the pagecache and because we have an in-core reference for those problems. We
then discuss results on larger problems. Table 5.2 reports the results.

Direct I/O Direct I/O P.C. P.C. IC
Matrix Synch. Asynch. Synch. Asynch.
SHIP 003 43.6 36.4 37.7 35.0 33.2
XENON2 45.4 33.8 42.1 33.0 31.9
AUDIKW 1 2129.1 [2631.0] 2008.5 [3227.5] (*)
CONESHL2 158.7 123.7 144.1 125.1 (*)
QIMONDA07 152.5 80.6 238.4 144.7 (*)

Table 5.2: Elapsed time (seconds) for the sequential factorization using direct I/O mechanisms or the
pagecache (P.C.) for both the synchronous (Synch.) and asynchronous (Asynch.) approaches, and compared
to the in-core case (IC) on a machine with local disks (PSMN/FLCHP).
(*) The factorization ran out of memory. [2631.0] Swapping occurred.

For problems small enough so that the in-core factorization succeeds (top of Table 5.2), we have measured
average bandwidths around 300 MB/s when relying on the pagecache, whereas the disk bandwidth cannot
exceed 60 MB/s (maximum physical bandwidth). This observation highlights the perturbations caused by
the system pagecache; such perturbations make the performance analysis unclear. Moreover, the system
can in these cases allocate enough memory for the pagecache so that it needs not perform the actual I/Os.
When an I/O is requested, only a memory copy from the application to the pagecache is done. This is
why the factorization is faster when using the pagecache: this apparent efficiency comes from the fact that
the execution is mostly performed in-core. In other words, a performance analysis of an out-of-core code
using the system pagecache (it is the case of most out-of-core solvers) makes sense only when performed on
matrices which require a memory significantly larger than the available physical memory. This illustrates
the fourth drawback from Section 5.1.1.

However, when direct I/O mechanisms are used with the asynchronous out-of-core scheme for these
relatively small problems, the factorization remains efficient (at most 10% slower than the in-core one). The
slight overhead compared to the asynchronous out-of-core version relying on the pagecache results from the
cost of the last I/O. After the last factor (at the root of the tree) is computed, the I/O buffer is written to
disk and the factorization step waits for this last I/O without any computation to overlap it. When using
direct I/O, this last I/O is performed synchronously and represents an explicit overhead for the elapsed time
of the factorization. On the contrary, when the pagecache is used, only a memory copy is performed: the
system may perform the effective I/O later, after the end of the factorization. For some larger matrices
(CONESHL2 or QIMONDA07), the results show a very good behaviour of the asynchronous approach based
on direct I/O, even when the last I/O is included. In the case of the AUDIKW 1 matrix, the asynchronous
approaches swapped because of the memory overhead due to the I/O buffer. Note that even in this case, the
approach using direct I/O has a better behaviour. More generally, when comparing the two asynchronous

Direct I/O P.C.
Asynch. Asynch.

1674 [2115]

Table 5.3: Elapsed time (seconds) for the factorization of matrix AUDIKW 1 when the ordering strategy PORD

is used. Platform is PSMN/FLCHP. [2115] Swapping occurred.

approaches to each other on reasonably large matrices, we notice a higher overhead of the pagecache-based
one, because it consumes extra memory hidden to the application. To further illustrate this phenomenon,
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we use the PORD [156] ordering (see Table 5.3), which reduces the memory requirements in comparison to
METIS for matrix AUDIKW 1. In this case the memory required for the asynchronous approach is of 3783 MB.
We observe that the asynchronous scheme allows a factorization in 1674 seconds when based on direct I/O,
without apparent swapping. However, when using the pagecache, the factorization requires 2115 seconds:
the allocation of the pagecache makes the application swap and produces an overhead of 441 seconds. This
illustrates the first drawback (introduced in Section 5.1.1). Let us now discuss the case of the matrix of
our collection that induces the most I/O-intensive factorization, QIMONDA07. For this matrix, assuming a
bandwidth of 50 MB/s, the time for writing factors (85 seconds) is greater than the time for the in-core
factorization (estimated to about 60 seconds). We observe that the system (columns “P.C.” of Table 5.2)
does not achieve a good performance (even with the buffered asynchronous scheme at the application level
that avoids too many system calls). Its general policy is not designed for such an I/O-intensive purpose.
On the other hand, the use of direct I/O mechanisms with an asynchronous scheme is very efficient. I/Os
are well overlapped by computation: the factorization only takes 80.6 seconds during which 60 seconds
(estimated) of computation and 78.8 seconds (measured) of disk accesses are performed (with a measured
average bandwidth of 53.8 MB/s). This illustrates the second drawback of the use of the pagecache: we
have no guarantee of its robustness in an I/O-intensive context, where I/O should be performed as soon
as possible rather than buffered for a while and then flushed. (Note that the synchronous approach with
direct I/O mechanisms is not competitive because computation time and I/O time cumulate without possible
overlap.) To confirm these results on another platform, Table 5.4 reports the performance obtained on the
IBM machine, where remote disks are used. Again we see that even with remote disks, the use of direct

Direct I/O Direct I/O P.C. P.C. IC
Matrix Synch. Asynch. Synch. Asynch.
AUDIKW 1 2243.9 2127.0 2245.2 2111.1 2149.4
CONESHL MOD 983.7 951.4 960.2 948.6 922.9
CONV3D64 8538.4 8351.0 [[8557.2]] [[8478.0]] (*)
ULTRASOUND80 1398.5 1360.5 1367.3 1376.3 1340.1
BRGM 9444.0 9214.8 [[10732.6]] [[9305.1]] (*)
QIMONDA07 147.3 94.1 133.3 91.6 90.7

Table 5.4: Elapsed time (seconds) on the IBM machine for the factorization (sequential case) using direct
I/Os or the pagecache (P.C.) for both the synchronous (Synch.) and asynchronous (Asynch.) approaches,
and compared to the in-core case (IC), for several matrices.
(*) The factorization ran out of memory.
[[8857.2]] Side effects (swapping, . . . ) of the pagecache management policy.

I/O coupled with an asynchronous approach is usually at least as efficient as any of the approaches coupled
with the use of the pagecache and that relying only on the pagecache (P.C., Synch.) leads to additional
costs. Furthermore, note that this table provides a representative set of results among several runs, each
matrix corresponding to one submission at the batch-scheduler level. Indeed, performance results vary a lot
from execution to execution. For instance, we were sometimes able to observe up to 500 seconds gain on
the very large matrix CONV3D64 thanks to the use of direct I/Os (with an asynchronous scheme) compared
to the use of the pagecache. Finally, note that for matrix AUDIKW 1 the performance is sometimes better
with the out-of-core approach than with the in-core approach (2149.4 seconds in-core versus 2111.1 seconds
for the system-based asynchronous approach and 2127.0 seconds for the direct I/O approach). This comes
from machine-dependent (in-core) cache effects resulting from freeing the factors from main memory and
always using the same memory area for active frontal matrices: a better locality is obtained in the out-of-core
factorization code.
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5.1.5 Parallel performance

Table 5.5 gives the results obtained in the parallel case on our cluster of dual-processors. We can draw con-
clusions similar to the sequential case. For large matrices (see results for CONESHL MOD and ULTRASOUND80),
the use of the asynchronous approach relying on direct I/O has a good behaviour: we achieve high perfor-
mance without using the pagecache and avoid its possible drawbacks. In the I/O-dominant case (QIMONDA07
matrix), the pagecache again has serious difficulties to ensure efficiency (second drawback).

We observe that the execution sometimes swaps (CONESHL MOD on 1 processor or ULTRASOUND80 on 4
processors) because of the additional space used for the I/O buffer at the application level. This leads to
a slowdown so that the benefits of asynchronism are lost. In this asynchronous case, when comparing the
system and the direct I/O approaches, it appears that the additional memory used by the operating system
(the pagecache) leads to a larger execution time, probably coming from a larger number of page faults (extra
memory for the pagecache and first drawback).

Provided that enough data are involved, the out-of-core approaches appear to have a good scalability, as
illustrated, for example, by the results on matrix CONESHL MOD. The use of local disks allows to keep a good
efficiency for parallel out-of-core executions.

Direct I/O Direct I/O P.C. P.C. IC
Matrix #P Synch. Asynch Synch Asynch
CONESHL MOD 1 4955.7 [5106.5] 4944.9 [5644.1] (*)

2 2706.6 2524.0 2675.5 2678.8 (*)
4 1310.7 1291.2 1367.1 1284.9 (*)
8 738.8 719.6 725.6 724.7 712.3

ULTRASOUND80 4 373.2 [399.6] 349.5 [529.1] (*)
8 310.7 260.1 275.6 256.7 (*)

QIMONDA07 1 152.5 80.6 238.4 144.7 (*)
2 79.3 43.4 88.5 57.1
4 43.5 23.1 42.2 31.1 [750.2]
8 35.0 21.1 34.0 24.0 14.6

Table 5.5: Elapsed time (seconds) for the factorization on 1, 2, 4, and 8 processors using direct I/O mecha-
nisms or the pagecache (P.C.), for both the synchronous (Synch.) and asynchronous (Asynch.) approaches,
and compared to the in-core case (IC) on a machine with local disks (PSMN/FLCHP).
(*) The factorization ran out of memory. [750.2] Swapping occurred.

We now present results on a larger number of processors, using the IBM machine at IDRIS. Note that
the I/O overhead is more critical in the parallel case as the delay from one processor has repercussions on
other processors waiting for it (third drawback). We show in Table 5.6 (for matrix ULTRASOUND80) that we
can achieve high performance using direct I/Os with an asynchronous scheme.

When the number of processors becomes large (64 or 128) the average volume of I/O per processor is
very small for this test problem (15.3 MB on 64 processors, 7.7 MB on 128) and the average time spent in
I/O mode is very low (less than 2.4 seconds) even in the synchronous scheme. Therefore, the synchronous
approach with direct I/O, which does not allow overlapping of computations and I/Os is not penalized
much. Concerning the comparison of the asynchronous approach with direct I/O to the system approach,
performance are similar. However, when we have a critical situation, the use of the system pagecache may
penalize the factorization time, as observed on 128 processors in the synchronous case. In Table 5.7, we
report the results obtained on one large symmetric matrix. We observe here that it is interesting to exploit
asynchronism at the application level, both for the direct I/O approach and for the system (pagecache)
approach.
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I/O mode Scheme 1 2 4 8 16 32 64 128
Direct I/O Synch. 1398.5 1247.5 567.1 350.9 121.2 76.9 44.6 36.5
Direct I/O Asynch. 1360.5 (*) 557.4 341.2 118.1 74.8 45.0 33.0
P.C. Synch. 1367.3 1219.5 571.8 348.8 118.5 69.6 44.8 90.0
P.C. Asynch. 1376.3 (*) 550.3 339.2 109.4 73.8 45.2 30.0

IC 1340.1 (*) (*) 336.8 111.0 64.1 40.3 29.0

Table 5.6: Elapsed time (seconds) for the factorization of the ULTRASOUND80 matrix using direct I/O mecha-
nisms or the pagecache (P.C.), for both the synchronous (Synch.) and asynchronous (Asynch.) approaches,
and compared to the in-core case (IC) for various numbers of processors of the IBM machine.
(*) The factorization ran out of memory.

I/O mode Scheme 1 2 4 8 16 32 64 128
Direct I/O Synch. 983.7 595.3 361.3 158.2 69.8 41.6 26.9 21.5
Direct I/O Asynch. 951.4 549.5 340.5 156.9 65.7 41.5 24.7 16.3
P.C. Synch. 960.2 565.6 358.8 159.0 68.2 41.8 28.1 18.9
P.C. Asynch. 948.6 549.6 336.6 153.7 65.8 40.4 26.8 16.1

IC 922.9 (*) 341.4 162.7 64.3 39.8 20.7 14.7

Table 5.7: Elapsed time (seconds) for the factorization of the CONESHL MOD matrix using direct I/O mecha-
nisms or the pagecache (P.C.) for both the synchronous (Synch.) and asynchronous (Asynch.) approaches,
and compared to the in-core case (IC), for various numbers of processors of the IBM machine.
(*) The factorization ran out of memory.

5.1.6 Discussion

Overlapping of I/Os and computations allows to achieve high performance both when asynchronism is
ensured at the system level (pagecache) and when it is managed at the application level (and uses the direct
I/O approach). However, we have shown that in critical cases (either when a high ratio I/O/computation
is involved - as for matrix QIMONDA07 - or when a huge amount of I/O is required - as for matrix CONV3D64)
the asynchronous scheme using direct I/O is more robust than the schemes using the pagecache. Similar
difficulties of the system approach for read operations have also been shown in [22]. Furthermore, notice
that even when the system approach has a good behaviour, we have observed that it often achieves better
performance when used with a buffered asynchronous scheme at the application level: calling I/O routines
(system calls) too frequently decreases performance.

To conclude this section, let us mention the memory gains that can be obtained when storing the factors
to disk. For a small number of processors, the memory requirements of the application decrease significantly
(more than 90% on some problems in the sequential case, as shown in column “1 processor” of Table 5.8).

When the number of processors increases (16 or more), an out-of-core execution usually allows to save
between 40% and 50% of memory, as reported in Table 5.8. Note that in some cases, the amount of memory
saved can be much larger, as illustrated by the QIMONDA07 matrix. It is also interesting to note that even if
the memory scalability of our out-of-core solver is not good when going from 1 to 16 processors, it somehow
stabilizes after 16 processors: the memory ratio OOC

IC is then almost constant and the memory usage scales
reasonably. A possible explanation is that, after some point, increasing the number of processors does not
increase too much the overall memory usage because most of the memory is consumed in the large fronts
near the top of the tree, and those fronts are distributed over the processors. In the rest of this chapter, the
code described in this section will be referred to as Factors-on-disk.
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Matrix 1 processor 16 processors 32 processors 64 processors 128 processors
OOC IC OOC IC OOC IC OOC IC OOC IC

AUDI KW 1 2299 12188 909 1402 589 742 272 353 179 212
CONESHL MOD 1512 7228 343 780 167 313 103 176 61 96
CONV3D64 6967 (17176) 1047 1849 540 930 265 471 148 251
QIMONDA07 29 4454 6 283 5 143 4 72 (*) (*)
ULTRASOUND80 1743 8888 339 662 178 323 92 176 52 92

Table 5.8: Average space effectively used for scalars (in MBytes) per processor, for sequential and parallel
executions on various numbers of processors, in the out-of-core (OOC) and in-core (IC) cases, for some large
matrices. The IBM machine was used.
(*) The analysis ran out of memory. (17176) Estimated value from the analysis phase (the numerical
factorization ran out of memory).

5.1.7 Panel version

One conclusion of the above results is that an asynchronous (Asynch.) approach is worth using. The
drawback of this approach is that the granularity of I/O is large, leading to possibly very large (sometimes
prohibitively large) buffers in order to overlap computation and I/O. Therefore, a so called “panel version”
was developed, which decreases the granularity of I/O and the associated size of I/O buffers. Thanks to this
mechanism, the out-of-core buffers are limited to the storage of a few panels: each panel contains columns of
the L factors or rows of the U factors. This led to a lot of specification and code development, necessary to
make this work effective in practical large-scale applications and usable by others. The main points concern:

• new design of the I/O layer to manage panels: specification of the storage for panels, variable size of
the panels, special cases (for example, a panel should not finish in the middle of a 2× 2 pivot);

• extension of the solve algorithm to work with panels: computations on each loaded panel, instead of
each frontal matrix;

• management of numerical pivoting issues: inside a frontal matrix, we used to pivot in the LAPACK
style, that is, we pivot rows that are in the previous panels. If previous panels are on disk, this is
unfortunately not possible. Therfore, we store all necessary pivoting information and not just swapped
lists of indices for each front, as already mentionned in Section 2.2.3.

• experimentation, testing and validation of the interaction and synchronizations between the I/O thread
and the factorization kernels.

The advantages of working with panels instead of frontal matrices are as follows: (i) the buffer size has
been strongly reduced when asynchronous I/O are managed at the application level (see Table 5.9); (ii) I/O’s
can be overlapped with computations during the factorization of a frontal matrix whereas they used to be
overlapped only between the factorizations of different frontal matrices; and (iii) the L and U factors can be
written to independent files: this allows a better data access during the solution step and strongly improves
the efficiency of that step, which is even more sensitive to I/O’s than the factorization phase.

5.2 Description and analysis of models to further reduce the mem-
ory requirements

Either to further reduce the memory requirements on large numbers of processors, or to process even larger
problems on machines with few processors, one also needs to store the intermediate active memory to disk.
In this section we propose a theoretical study to evaluate the interest of storing the contribution blocks
out-of-core. Our motivation is that the problem of managing the active memory out-of-core in a parallel
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Out-of-core elementary data
Matrix #procs Factor block Panel

AUDIKW 1 1 1067.1 12.8
AUDIKW 1 32 155.5 12.8

CONESHL MOD 1 1292.8 13.8
CONESHL MOD 32 125.1 10.6

CONV3D64 1 3341.5 40.2
CONV3D64 32 757.6 40.2

ULTRASOUND80 1 1486.6 20.4
ULTRASOUND80 32 208.3 20.4

Table 5.9: Size of the I/O buffers (MB) with an asynchronous factorization.

asynchronous context is novel and needs to be studied before any real-life implementation. In addition, the
dynamic and asynchronous schemes used in the parallel multifrontal method (at least as implemented in
the MUMPS solver) make the behaviour difficult to forecast. It is thus natural to evaluate the gains that can
be expected from such a parallel out-of-core method. To reach this objective, we present several models
(first introduced in [7]), to perform the assembly of the contribution blocks in an out-of-core context. We
use these models to better understand the memory limits of the approach and to identify the bottlenecks to
treat arbitrarily large problems. Note that treating problems as large as possible (topic of this section) is a
different issue from achieving good performance (as discussed in the previous section).

5.2.1 Models to manage the contribution blocks on disk
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Memory
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(a) Factors-on-disk scheme:
only factors are on disk.
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Contribution blocks
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(b) All-CB out-of-core scheme.
a is on disk.
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(c) One-CB out-of-core scheme.
a and b are on disk.

Memory

d Frontal matrix

(d) Only-Parent

out-of-core scheme.
All contribution
blocks are on disk
except one block of
rows of c.

Figure 5.1: Out-of-core assembly schemes for the contribution blocks. Left: the frontal matrix of node d is
being assembled. Right: data that must be present in core memory when assembling the contribution block
of c into the frontal matrix of d.

We are interested in schemes where contribution blocks will be written at most once (after they are
produced) and read at most once (before they are assembled into the frontal matrix of their parent). We will
assume that frontal matrices can hold in-core (but they can be scattered over several processors); note that
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by doing so, we maintain the write-once/read-once property. Figure 5.1 illustrates the different schemes we
have modeled for the assembly of a frontal matrix:

• All-CB scheme. In this scheme, all the contribution blocks of the children must be available in core
memory before the frontal matrix of the parent is assembled. The assembly step (consisting of extend-
add operations) is identical to the in-core case, the only difference is that contribution blocks may have
been stored to disk earlier.

• One-CB out-of-core scheme. In this scheme, during the assembly of an active frontal matrix, the
contribution blocks of the children may be loaded one by one in core memory (while the other ones
remain on disk).

• Only-Parent out-of-core scheme. In this scheme, we authorize all the contribution blocks from
children to stay on disk: they may be loaded in memory row by row (or block of rows by block of rows)
without being fully copied from disk to memory.

Prefetching all the required data before the assembly step of a parent node (as in the All-CB scheme)
allows to perform computations (extend-add operations) at a high rate. On the other hand, for the On-

ly-Parent and One-CB schemes, the assembly operations will be interrupted by I/O and there will usually
not be enough operations to overlap the next I/O. This will result in some overhead on the execution
time. Remark that, because we consider parallel executions, frontal matrices can be scattered over several
processors. In that case, there are several contribution blocks for a given node, one for each slave processor.
Such contribution blocks may be written to disk and read back when they need to be assembled or sent.

5.2.2 Analysis of the memory needs of the different schemes

In order to study the memory requirements corresponding to each out-of-core assembly scheme, we have
instrumented our parallel solver (the one from Section 5.1, Factors-on-disk) with a software layer that
simulates I/Os on the contribution blocks. The idea is to assume that a contribution block is written to
disk as soon as it is computed. Then we assume that it is read back when needed (for the assembly of the
parent node) depending on the assembly scheme used. Data are at most written once and read once and
a counter holds the size of the memory used for each scheme: (i) the counter is increased when a new task
is allocated or when a contribution block is “read” from disk; (ii) the counter is decreased when a factor
block or a contribution block is “written” to disk, or when a contribution block is freed (because it has been
assembled into the frontal matrix of the parent).

In parallel, when a contribution block is produced, the mapping of the parent node may not be known
(dynamic scheduling). Therefore, the contribution block stays on the sender side until the master of the
parent node has decided of the mapping of its slave tasks. In our model, we assume that this contribution
block is written to disk on the sender side (thus decreasing the counter), until the information on where
to send it is known. At the reception of such a contribution, if the task (master or slave part of a frontal
matrix) depending on the contribution has already been allocated on the receiver, the considered processor
consumes it on the fly.

This count is done during the parallel numerical factorization step of a real execution: indeed, the
memory requirements measured thanks to this mechanism exactly correspond to those we would obtain if
contribution blocks were effectively written to disk. Clearly our main goal is to study the potential of a
parallel out-of-core multifrontal method that stores temporary active memory to disk in terms of reduction
of the core memory requirements. To reach this objective, a full implementation of the I/O mechanisms for
each assembly scheme (together with the associated memory management for each scheme) is not necessary.

We report in Figure 5.2 a comparison of the memory peaks obtained when using our different assembly
schemes for two large test problems (a symmetric one and an unsymmetric one). These two problems
are representative of the behaviour we observed on the other matrices from Table 5.1. The top curve
(Factors-on-disk), used as a reference, corresponds to the actual memory requirements of the code from
Section 5.1, where contributions blocks are in-core; the others were obtained with the instrumentation of
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that code described above. We observe that the strategies for managing the contribution blocks out-of-
core provide a reduction of the working memory requirement that scales similarly to the Factors-on-disk

version. We also notice that the peak of core memory for the All-CB assembly scheme is often close to the one
where only factors are stored on disk. On the other hand, we observe that the One-CB scheme significantly
decreases the memory requirements, and that the Only-Parent scheme further reduces the memory needed
for the factorization. The relative gain observed with the Only-Parent scheme is large enough to conclude
that it is worthwhile applying this scheme, in spite of the possible overhead on efficiency (and complexity)
due to the need to be able to interleave I/O operations with assembly operations on small blocks of rows.
It represents the minimal memory requirement that can be reached with our model, in which active frontal
matrices are kept in-core.

Finally, notice that the memory requirement measured for each scheme corresponds to specific tasks
(subtrees, master tasks, slave tasks) that have been allocated to the processor responsible of the peak of
memory. In the next section, we analyze the content of the memory when the peak is reached in order to
understand the critical features of the parallel multifrontal method that can affect it.

 300

 100

 50

 10

 5
 128 64 32 16 1

M
e

m
o

ry
 u

s
a

g
e

 (
m

ill
io

n
s
 o

f 
re

a
ls

)

Number of processors

Factors−on−disk
All−CB scheme

One−CB scheme
Only−Parent scheme

(a) AUDIKW 1.

 300

 100

 50

 10

 5
 128 64 32 16 1

M
e

m
o

ry
 u

s
a

g
e

 (
m

ill
io

n
s
 o

f 
re

a
ls

)

Number of processors

Factors−on−disk
All−CB scheme

One−CB scheme
Only−Parent scheme

(b) ULTRASOUND80.

Figure 5.2: Memory behaviour (memory requirement per processor) for the different assembly schemes on
various numbers of processors for the (symmetric) AUDIKW 1 and (unsymmetric) ULTRASOUND80 matrices. A
logarithmic scale is used for the y-axis.

5.2.3 Analysing how the memory peaks are reached

We now analyze in more detail which type of tasks is involved in the peak of core memory for each strategy.
Table 5.10 shows the state of the memory on the processor on which the peak memory is reached, in the
case of an execution on 64 processors for the AUDIKW 1 and CONV3D64 problems. Note that, based on load
balancing criteria, the dynamic schedulers may allocate several tasks simultaneously on a given processor.
With the AUDIKW 1 matrix, we notice that for the Only-Parent and One-CB schemes as well as for the
Factors-on-disk case, the peak memory is reached when a subtree is processed (more precisely when the
root of that subtree is assembled). In the Only-Parent case, the processor also has a slave task activated.
For the All-CB scheme, the peak is reached because the schedulers have simultaneously allocated too many
slave tasks (3, corresponding to 3 different nodes) to one processor, reaching together 42.97% of the memory;
at that moment, the memory also contains a master task but its size is less important (5.93%).

Similarly to matrices AUDIKW 1 and CONV3D64, we have performed this study for most problems in Ta-
ble 5.1, on various numbers of processors. Rather than presenting all the results, we report here the main
phenomena observed for two examples and we summarize in the following the typical behaviour observed
for symmetric and unsymmetric problems. (i) For symmetric problems, between 8 and 128 processors, the
peak is reached when a sequential subtree is being processed (see Figure 2.1), most often when the root of
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Memory percentage of the active tasks Memory percentage of
Scheme master tasks slave tasks sequential subtrees the contribution blocks

A
U
D
I
K
W
1 Factors-on-disk 0% 0% ∗27.11% 72.89%

All-CB 5.93% ∗42.97% 0% 51.10%
One-CB 0% 0% ∗75.10% 24.90%

Only-Parent 0% 48.32% ∗51.63% 0.04%

C
O
N
V
3
D
6
4 Factors-on-disk 0% ∗40.19% 0% 59.81%

All-CB 0% ∗65.71% 0% 34.29%
One-CB 38.89% ∗46.27% 0% 14.84%

Only-Parent 47.82% ∗52.06% 0% 0.12%

Table 5.10: Memory state of the processor that reaches the global memory peak when the peak is reached,
for each out-of-core scheme and for the Factors-on-disk code, for the (symmetric) AUDIKW 1 matrix and
the (unsymmetric) CONV3D64 matrix on 64 processors. Symbol ∗ in a column refers to the last task activated
before obtaining the peak, which is thus responsible for it.

that subtree is assembled; this occurs for all out-of-core schemes. Sometimes a slave task may still be held in
memory when the peak arises (and it can then represent between 25 % and 75 % of the memory of the active
tasks on the processor). (ii) For unsymmetric problems, on many processors (from 16 to 128), the peak is
generally obtained because of a large master task (which requires more memory in the unsymmetric case
than in the symmetric case, see Figure 2.7). This is increasingly true when going from the Factors-on-disk
scheme to the Only-Parent scheme. These effects are sometimes hidden when many tasks are simultane-
ously active. For example, on 64 processors with the All-CB scheme, for the CONV3D64 problem, the peak is
obtained when a processor has four slave tasks in memory. With fewer processors (less than 8), the assembly
of the root of a subtree is more often responsible for the peak.

Thanks to parallelism, memory needs of a particular task can be parcelled out over many processors.
However, in order to be efficient, some tasks remain sequential and become the memory bottleneck when the
other ones are parallelized. On the range of processors used, the limiting factor observed is the granularity
of master tasks (which are processed in sequential on a given processor) for unsymmetric problems and
the one of the subtrees in the symmetric case. In both cases, there is still some potential to decrease the
memory requirements by doing static modifications to the tree of tasks, possibly at the cost of a performance
degradation [10].

5.2.4 Summary

This study allows to analyze the memory behaviour of several models for an out-of-core storage of the active
memory in a parallel asynchronous multifrontal method. The relative gains observed with the Only-Parent

strategy make it the most relevant one, in spite of the fact that the implementation of the assembly process
will be the most complex. We have also identified some key parameters - granularity of subtrees and of
master tasks - which impact the minimum memory requirements of the method. On these aspects, specific
tuning of the granularity of such tasks can be done to further reduce the memory requirements.

Note that in a limited memory environment, contribution blocks need not systematically be written to
disk. For example, with the One-CB scheme, not all sets of parent and child contributions have to follow the
One-CB scheme: at least one child contribution must be in memory during the assembly process but there
may be more if memory allows it. Similarly, in the Only-Parent scheme, some frontal matrices will still
be assembled with a One-CB or even All-CB scheme. To summarize, the Only-Parent scheme allows to go
further in the memory reduction, but is not less efficient than the other schemes if memory is large enough.

5.3 Conclusion

In this chapter, we have presented a parallel out-of-core direct solver that stores computed factors on disk. It
allows to handle problems significantly larger than an in-core solver. We have highlighted several drawbacks
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of the I/O mechanisms generally used (which in general implicitly rely on system buffers): memory over-
head that can result in excessive swapping activity, extra cost due to useless intermediate memory copies,
dependency on the system policy and non reproducibility of the results. We have then proposed a robust
and efficient I/O layer, which uses direct I/Os together with an asynchronous approach at the application
level. This avoids the drawbacks of the system buffers and allows one to achieve good (and reproducible)
performance. On a limited number of processors, storing factors on disk clearly allows to solve much larger
problems. With more processors (16 to 128), because the active memory does not scale as well as the factors,
the core memory usage is only reduced by a factor of two, on average.

In order to go further in the memory reduction with out-of-core techniques, especially on large numbers
of processors, an out-of-core storage of the contribution blocks has also been studied. We have proposed
several models for the assembly process of the multifrontal method and analyzed their impact in terms of
minimum core memory for parallel executions. To do that, we have instrumented our solver (that stores
factors to disk), performed parallel executions and measured the memory requirements for each model. This
analysis showed that the most complex assembly scheme was worth implementing. We have also identified
some key parameters related to the management of parallelism (granularity of subtrees and of master tasks)
that can impact the core memory usage.

As stated in [148, 149] one difficulty of the sequential multifrontal approach in an out-of-core context
comes from large frontal matrices that can be a bottleneck for memory: allowing the out-of-core storage of the
contribution blocks sometimes only decreases the memory requirements by a factor of about 2. Fortunately,
in this context, we have shown that parallelism can further decrease these memory requirements significantly
(even when only the factors are stored to disk) as large frontal matrices are split over the processors. When
this is not enough, an out-of-core approach should also be used for frontal matrices.

Finally, remark that the memory-aware mapping algorithms presented in Section 4.3 should allow signif-
icant reduction of the active memory usage on large numbers of processors (experiments in this section are
based on the scheduling algorithms from Section 4.2.6): given the increasing parallelism in current architec-
tures, it makes sense to develop and analyze further those algorithms before going into the complexity of
managing an out-of-core stack memory.
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Chapter 6

Solving Increasingly Large Problems

In this chapter, we describe a series of techniques and advances to solve larger problems, decrease memory
requirements, and make better use of modern multicore machines. Simulation codes still require the solution
of very large problems; for example in earth science applications, one is still limited when trying to solve
very large cases [135, 160]. The previous chapters already do a step in that direction: out-of-core storage of
the factors allows solving much larger problems than before, and efficient scheduling in parallel distributed
environments is critical. As said before, using out-of-core temporary storage could also be useful to solve
larger problems but it made sense to first improve temporary storage scalability (see Section 4.3). Given the
evolution trends of computer architectures with increasing global memory size (although memory per core
decreases) and increasing numbers of cores, out-of-core storage for the contribution blocks is still not the
most critical priority compared to the efficient exploitation of such resources.

This chapter is organized as follows. In Section 6.1, we describe a way to parallelize the symbolic analysis
phase, using parallel graph partitioning tools. We discuss the use of 64-bit integers in Section 6.2 and then
consider the problem of performing the forward elimination during the factorization stage (Section 6.3),
accelerating the solve phase (especially in an out-of-core environment) and avoiding the need to store L
factors. Section 6.4 focuses on further improvements to the solve phase, both from a memory and complexity
point of view. In Section 6.5, we show how to reduce the memory associated with communication buffers, at
the cost of a small performance penalty. Section 6.6 and the included subsections focus on current work to
better exploit multicores thanks to multithreading techniques (this is the object of an on-going PhD thesis).
We conclude the chapter with some other work directions aiming at solving larger problems efficiently.

6.1 Parallel analysis

Large matrices may be too large to be stored in the memory of a single processor or of a single node. In
our algebraic approaches where the analysis analysis phase of the sparse direct solver relies on the entire
graph of the matrix, it becomes critical to parallelize this analysis phase. The main reason is memory: using
large numbers of processors and out-of-core approaches (see chapter 5), the memory per processor for the
factorization is significantly reduced, and the memory for the analysis phase if the graph of the matrix is
centralized on a single node can become the bottleneck. Furthermore, since there is a significant degree of
parallelism during the factorization, the time for the analysis is far from being negligible on large numbers
of processors.

Therefore, it became critical to parallelize the analysis phase. The core of the analysis phase consists of
two main operations (sometimes tightly couples):

• Elimination tree computation: this step provides a pivotal order that minimizes the fill-in generated
at factorization time and identifies independent computational tasks that can be executed in parallel.

• Symbolic factorization: simulates the actual factorization in order to estimate the memory that has to
be allocated for the factorization Phase.
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The parallelization of this operation can be achieved by providing an interfacing mechanism to third
party parallel ordering tools like PT-SCOTCH [52] or ParMETIS [121]. Parallel ordering tools like those
mentioned above return an index permutation that describes the pivotal order and a separators tree which
results from the application of an ordering algorithm based on nested dissection. Based on the result of
the ordering step, the parallel symbolic factorization is conducted as in Figure 6.1 [18]. First, a number
of subtrees, in the separators tree, is selected that is equal to the number of working processors; each of
these subtrees is assigned to a processor that performs the symbolic factorization of the unknowns contained
in it (Figure 6.1(left)). Once every processor has finished with its subtree, the symbolic elimination of
the unknowns associated with the top part of the tree is performed sequentially on a designated processor
(Figure 6.1(right)). The method used to perform the symbolic factorization locally on each processor is
based on the usage of quotient graphs in order to limit the memory consumption both for the subtrees and
the top of the tree.

Figure 6.1: Parallel symbolic factorization.

Num. Factors Max. Front Flops Time Memory
procs Size Size per proc.

2 1.06 1.16 1.05 2.99 0.52
4 1.08 1.14 1.12 1.75 0.28
8 1.10 1.29 1.21 1.09 0.15

16 1.09 1.10 1.16 0.67 0.09
32 1.12 1.20 1.30 0.46 0.07
64 1.12 1.24 1.29 0.32 0.06

128 1.11 1.16 1.25 0.25 0.06

Table 6.1: Experimental results with PT-SCOTCH on matrix BRGM. Each entry in the table is the ratio
of a metric when using PT-SCOTCH versus serial SCOTCH.

Table 6.1 reports experimental results measured using PT-SCOTCH to compute the pivotal order on the
BRGM matrix from the GRID-TLSE collection; the numbers in the table are normalized with respect to the
sequential case. The following conclusions can be drawn from these results:

1. quality of the ordering: as shown by the columns reporting the factors size, front size and number of
floating-point operations, the quality of the ordering does not degrade with the degree of parallelism
and it is comparable to what is obtained with a sequential ordering tool.

2. performance: the parallelization of the analysis phase provides significant reduction of the cost of this
phase, when more than 8 processors are used.

3. memory consumption: the memory requirement per processor in the analysis phase can be considerably
reduced thanks to parallelization. Because memory consumption is strictly dependent on the number
of nonzeros-per-row in the matrix, higher benefits can be expected for denser problems.
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Figure 6.2: Comparison between PT-SCOTCH and ParMETIS: (maximum front size, factor size, flops, time)
of ParMetis divided by PT-Scotch.

Figure 6.2 shows the performance of PT-SCOTCH with respect to ParMETIS: although PT-SCOTCH
is slower than ParMETIS, it provides a considerably better quality ordering. Moreover, because the quality
of the ordering provided by PT-SCOTCH does not vary much with the degree of parallelism (see Table 6.1)
it is easy to conclude that ParMETIS provides worse quality orderings when more processors are added to
the computation.

Remark that the symbolic analysis corresponding to the top of the tree is currently not parallelized.
Although this has not appeared as a bottleneck yet thanks to the use of quotient graphs, it may become
necessary to also parallelize the top of the tree (as was done in [100]) in the future when working directly on
the uncompressed graphs of huge matrices.

6.2 64-bit addressing

Because of the various efforts aiming at processing larger problems (parallel analysis, out-of-core storage,
better scheduling), and thanks to the increasing memory available on today’s computers, it became critical to
rely on 64-bit addressing to address that memory. Still, since our implementation is mainly done in Fortran,
standard integers of typical size 4 are used to address large arrays. In practice, a large array is allocated on
each processor to hold the factors, contribution blocks, and active frontal matrix (see Section 1.3.3), as this
allows for various optimizations and reductions of the memory usage (typically, locality in the management of
the stack of contribution blocks, in-place assemblies). With signed 32-bit integers, even on 64-bit machines,
the size of this array is limited to 2.147 billion (231 − 1) entries. Each entry is either a float, a double, a
complex or a double complex scalar. In the case of doubles for example, the maximum memory per workarray
is 16 GB, which is definitely too small for many problems and justifies the use of 64-bit integers. Remark
also that even with dynamic allocation, 64-bit integers are also necessary when the order of a dense frontal
matrix is bigger than 46340, which is something frequent on large problems.

However, 32-bit integers had to be kept at the interface level (backward compatibility), for MPI and
BLAS calls, and for all what concerns matrix indices. So the work consisted in separating the integers into
two classes, the ones that should stay standard and the ones that should become 64-bit integers, including
all types of integers that could possibly overflow on large problems. For example, many statistics returned
to the user must rely on 64-bit internal computations, some integers in the minimum degree routines are
64-bit integers, and Fortran/C interfacing of 64-bit integers had to be done in a portable way. Doing this
work on more than 200 000 lines of code has been time consuming, but was necessary for experimenting and
validating other research features on real-life large-scale problems. It is also useful to applications by being
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available since release 4.9 of MUMPS (July 2009).
Whereas this approach should be fine for sparse matrices of order up to 2 billion (32-bit integers are still

used to store matrix indices, between 1 and the order of the matrix), 32-bit vs. 64-bit integers also become
an issue in third-party codes. For example, since release R2006b of Matlab, integers for sparse matrices are
all 64-bit on 64-bit systems (indices and pointers). While this non-backward compatibility can be arranged
at the interface level between Matlab and our solver, ordering packages also start requiring 64-bit integers
internally, even though the matrix dimension does not exceed 2 billions. In such cases, all integers should
simply be 64-bit integers and this can be arranged with compiler flags and macros.

6.3 Forward elimination during factorization

The parallel forward and backward solutions were described in Algorithms 2.4 and 2.5, Section 2.4. The
forward elimination accesses the factors of the tree from bottom to top (from leaves to roots), similar to the
factorization. When factorizing the final root node, factors associated with the leaves are at high levels of
the memory hierarchy, possibly on disk, so that it can be particularly inefficient to access them again right
at the beginning of the forward elimination phase: all L and U factors during the factorization, then all the
L factors for forward elimination, then all U factors again for the backward substitution.

When the right-hand side vector b only has a few columns that can be processed in a single block, the
idea of forward elimination during factorization consists in performing all the operations from the forward
elimination during the factorization, at the moment when the L factors are available in close memory. In
fact, it can be viewed as appending a column on the right of matrix A, to which all update operations are
applied. Looking back at Algorithm 1.2, line 3 then becomes:

A(i+ 1 : n, i+ 1 : n+ 1) = A(i+ 1 : n, i+ 1 : n+ 1)−A(i+ 1 : n, i)×A(i, i+ 1 : n+ 1),

so that only the backward substitution algorithm remains to be done on the intermediate solution A(1 :
n, n+ 1).

In the sparse case with a multifrontal approach, the data corresponding to right-hand sides appear
directly in the frontal matrices (rather than using a separate data structure). In the unsymmetric case,
those data appear as extra columns. In the symmetric case, where only the lower triangular part of the
fronts is significant, it is more natural to use extra rows. Since all our approaches and memory management
rely on square fronts, extra rows (resp. columns) are currently also allocated in the unsymmetric (resp.
symmetric) case, although their content is not significant and computations are avoided for them. Both type
1 and type 2 factorization kernels generalize naturally, with some exceptions: the pivot stability test does
not take into account the right-hand sides when looking for the maximum element.

On exit from the factorization, the intermediate solution y of the Ly = b forward substitution phase is
simply part of the frontal matrices and represents an extra column (considering the unsymmetric case). It
is thus naturally distributed over the processors. The forward elimination can then be skipped during the
solve phase. Let us consider the backward substitution; one can write:(

U y
0

)
×
(

x
−1

)
=

(
0
0

)
(6.1)

In other words, starting from the value of solution -1 for variables n+ 1 (and n+ 2, . . . , n+ nbrhs in case of
multiple right-hand sides), the standard backward solve algorithm can then be applied. Those -1 values are
not stored in practice, inducing only minor modifications to the backward substitution algorithm.

Special case of a 2D block cyclic root in the assembly tree

In the case of a 2D block cyclic root node to be processed by ScaLAPACK, some difficulties arise. For
example in ScaLAPACK, in order to perform solves, the block of right-hand sides is not allowed to start in
the middle of a block of the 2D grid of processors. Thus, it is not possible to let the block of right-hand
sides be assembled naturally, as a simple extension (extra rows or columns) of the front of the root node.
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It has therefore to be built in a separate 2D block cyclic data structure. Furthermore, the distribution of
the right-hand sides must be compatible with the one of the matrix in order to use ScaLAPACK routines
to build a solution. More precisely, the right-hand side should be a block of columns, 2D block cyclic, with
the same 2D block-cyclic distribution as the root matrix. Whereas in the unsymmetric case, the existing
communication schemes can be generalized to send extra columns from the children of the root to the correct
processors of the 2D cyclic grid of processors, this is not the case in the symmetric case, where the necessity
to transpose blocks of rows (in the children of the root) into blocks of columns (in the root) implies different
destination processors than the natural ones for rows of children and a new communication scheme. The
associated developments were much heavier than expected (specifications, development, validation) because
it was more useful to have a longer term investment avoiding

• a pre-assembly of the block of right-hand sides that would be stored by rows in the grid of processors,
which would then have needed to be explicitly transposed before the solve, with an extra cost both in
terms of temporary memory and communication.

• an increase in the number of assembly messages that would have been at the cost of amplifying the
problems of latency that were sometimes observed when building the 2D block cyclic frontal matrix
of a root with many children; for that, we take advantage of the existing messages used to assemble
frontal matrix data from the children to the root, even though the data to send for right-hand sides
are intrinsically of another nature and distributed differently.

The drawback is a more complex code more difficult to maintain, but with an interest for performance.
Remark that this mechanism is also applied for symmetric indefinite matrices, where frontal matrices of our
parallel multifrontal approach are symmetric, but where we use ScaLAPACK LU after an expansion of the
root because of the absence of parallel LDLT kernel on dense matrices.

Finally, on the root node, in order to optimize the data access to the factors, it was decided to build
the complete solution on the root node (forward and backward); this is because all factors are available in
memory at the moment of the factorization of the 2D block cyclic root. Thus, factors of the root do not
need to be loaded back during the solution phase. Furthermore, it is then possible to completely free the
factors associated with the root (see also the paragraph “Options to discard factors” below).

Schur complement and partial condensation

As explained in Section 2.5, it is sometimes useful to compute a reduced or condensed right-hand side on
a set of variables, for instance corresponding to the interface of a domain. In case of forward elimination
during factorization, it is then natural to build this reduced right-hand side during the factorization. In case
of a 2D block cyclic Schur, the reduced right-hand side will be naturally distributed (see previous paragraph)
but can be centralized to be returned to the user application. In case of a type 1 front at the root (i.e.,
processed by a single processor), both the Schur and the reduced right-hand side must be copied or sent
from the frontal matrix of the root to the user data, in order to keep a simple API to the solver.

Option to discard factors

In the case of unsymmetric matrices where an LU factorization is computed, it is not necessary to keep
the L factors during the factorization. Indeed, since the intermediate right-hand side y has already been
computed during factorization, only U will be used for the backward substitution. This gains storage in the
in-core case, and I/O in the out-of-core case.

In case of a Schur complement, all factors can even be discarded if the application only requires the
solution of a problem on an interface, excluding the solution on the internal problem.

Finally, in case of a 2D block cyclic root, all factors corresponding to the root have been used during
factorization and have been freed.
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Performance

Thanks to the forward elimination during factorization, we observed that the cost of the solution phase can
be divided by a factor 2 when the factors are in-core, without noticeable additional cost of the factorization.
When factors of large matrices are out-of-core, one observes a better stability of the solve time thanks to
this functionality. Table 6.2 illustrates the gains obtained on a few matrices on one core of a laptop with
an Intel Core 2 Duo P9700 at 2.8 GHz with 8GBytes of memory, for in-core and out-of-core executions. In
the out-of-core case, we observe that I/O time varies a lot from one run to another, especially with system
I/O where we have no control on the buffering mechanisms from the operationg system. However, the gains
are significant in the out-of-core case. We would expect the gains to be larger in the out-of-core case (in
both serial and parallel executions), on very large matrices or with direct I/O, where system buffers will
not be able to interfere with the out-of-core mechanisms. This deserves more experimentation. Interesting
performance gains, although not quantified precisely, have also been reported by users who activated this
feature.

Condensation during
Matrix Measured phase factorization
de test (time in seconds) OFF ON

CONESHL2 in-core factorization 142.0 142.4
(factor size: 2.2 GB) in-core solve 1.4 0.7

CONESHL out-of-core factorization (run 1) 818.1 822.4
(factor size: 6.4 GB) out-of-core factorization (run 2) 821.6 826.0

out-of-core solve (run 1) 78.7 (CPU: 13.6) 52.9 (CPU: 6.2)
out-of-core solve (run 2) 142.2 (CPU: 12.7) 47.7 (CPU: 5.3)

GRID 11pt out-of-core solve (run 1) 877.9 (CPU: 82.4) 556.5 (CPU: 47.1)
(factor size: 23.3 GB) out-of-core solve (run 2) 711.4 (CPU: 82.5) 497.0 (CPU: 46.7)

Table 6.2: Effects of the condensation functionality on the factorization and solve step of symmetric problems
on one core of an Intel Core 2 Duo P9700 at 2.8 GHz with 8 GB of memory. System buffers are used in the
out-of-core runs.

6.4 Memory and performance improvements of the solve algo-
rithms (forward and backward substitutions)

Before reading this section, the reader should be familiar with the algorithms from Section 2.4, and with
the modifications described in Section 2.5, on which it depends. We first describe the work done aiming at
improving memory usage and locality, then describe the practical impact before a short discussion.

6.4.1 Reduction of workspace and locality issues

In Algorithms 2.4 and 2.5, Wb and Wsol are workspaces of size n used in the forward and backward
substitutions, respectively1, whereas the workspace WRHS introduced in Section 2.5 is a workspace of average
size n

nprocs which scales with the number of processors and contains on each processor data corresponding to
the fully summed part of the fronts owned by that processor. When dealing with several right-hand sides,
those are processed by blocks of arbitrary size b (see Algorithm 2.6), such that all those sizes are multiplied
by b columns.

In case the right-hand side is sparse, or in case only a subset of entries of the solution is required (e.g.,
computation of entries of the inverse, see [30]), those workarrays are much larger than needed: most of the
rows are zero and are not even accessed. This is also the case in parallel executions, where Wb and Wsol do
not scale with the number of MPI processes and prevent increasing the blocksize b. Unfortunately, having

1See also the modifications of these algorithms described in Section 2.5.
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a large-enough value of the block size b is critical for obtaining good BLAS 3 performance in an in-core
environment, and is even more critical in an out-of-core environment where the cost of accessing the factors
on disk often dominates the solve time.

In order to get rid of Wb and Wsol, one should only allocate the useful workspace. In other words,
variables that are not touched during the algorithm should not appear in Wb or Wsol, similar to what was
done for WRHS to access variables corresponding to the pivot block of each front. Since Wb and Wsol are
accessed for variables between 1 and n, such an approach requires indirections. The idea we have retained
is to fully suppress Wb and Wsol and to extend WRHS, in order to include all variables possibly touched by
a processor into that workarray. In the general unsymmetric case, because the row and column index lists
of the pivot block may be unsymmetric in the presence of numerical difficulties (off-diagonal pivoting and
delayed pivots), the indirections for the rows differ from the indirections for the columns. We illustrate this
on a simple example on the tree of Figure 6.3, mapped on two processors P0 and P1. Remark that the
discussion is for type 1 nodes but it would be the same for type 2 nodes since only the master processes
access Wb and Wsol in the solve algorithms.
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Figure 6.3: Example tree of factors mapped on 2 processors. The mapping of the masters is indicated
for each node (P0, P1). Because of delayed pivots, the structure of the pivot block has some unsymmetry
in it; the structure of the nodes of the original tree if no pivoting had occurred was 125; 3467; 567; 78;
89 (left-to-right, bottom to top, underlined variables correspond to fully-summed rows/columns and would
have been eliminated at each node in the absence of numerical difficulties). WRHS is of size 8 on P0 and of
size 7 on P1. The columns ”row” and ”col” correspond to the indirections to access WRHS: for instance on
P0, POSinWRHS row(7)=POSinWRHS col(2)=4 means that row variable 7 and column variable 2 appear at
position 4 of WRHS. An ’X’ indicates that the corresponding entry is not used.

Before discussing the modifications of the aforementioned algorithms, we explain how to build the in-
direction arrays, which we call POSinWRHS row and POSinWRHS col. Except when solving the transposed
system ATx = b, POSinWRHS row is used with row indices of the fronts during the forward elimination, and
corresponds to positions in the right-hand side vector, whereas POSinWRHS col is used with column indices
of the fronts during the backward substitution and corresponds to positions in the solution. The procedure
to build those indirections is given in Algorithm 6.1. In the first part of that algorithm, the indirections
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corresponding to the fully summed block are computed. In the second part, the indirections corresponding
to other variables are computed. At the end, m contains the size of the workarray WRHS. Notice the separate
treatment of rows and columns in the second part of the algorithm, working on variables in the off-diagonal
blocks of the factors: sometimes, m is incremented because of a row variable, sometimes because of a column
variable, and sometimes because of both. It is in fact possible to have one loop for the rows and another
one for the columns and keep the maximum of the two values of m obtained at the end to dimension the
workarray WRHS. This way, WRHS will be slightly smaller (7 instead of 8 on P0 in the example of Figure 6.3,
by suppressing the two unused positions denoted by ’X’). Compared to Section 2.4, WRHS does not scale
perfectly with the number of processors because of the extra entries added. However, we will see that the
memory scalability of WRHS is still very good in practice and that a huge memory gain comes from the fact
that Wb (during forward elimination) and Wsol (during backward elimination) have disappeared. Remark
that at line 3, the order in which the nodes are visited can be arbitrary. However, visiting the nodes in the
same order as they will be visited during the solve algorithm (which is close to a postorder traversal) leads
to a better memory locality during the solve algorithm. This will be illustrated with experiments later in
this section.

We now give in Algorithms 6.2 and 6.3 the modified algorithms for the forward and backward substitu-
tions. At line 3 of Algorithm 6.2, the right-hand side must be distributed to the processors. Assuming that
the right-hand side is initially on processor with rank 0, each processor loops on the row variables of its pivot
block, and asks for rows of the original right-hand side to processor 0, which responds with the requested
rows. On reception, POSinWRHS row is used to store the result in WRHS. In the serial case, this step is mainly
a permutation, which was not needed when Wb was used; in parallel, extra indirections are needed. On the
other hand, we have a much better locality afterwards, during the forward elimination itself.

In Algorithm 6.3 (backward substitution), accesses toWsol have been replaced by accesses to WRHS. At line
13, rows of WRHS corresponding to variables in pivot blocks (upper part of the array WRHS) represent the solu-
tion. In both the forward and backward substitution algorithms, we have kept the indirection POSinWRHS(N)

introduced in Section 2.5. However, we have the equality POSinWRHS(N)=POSinRWHS row(i)=POSinWRHS col(j),
where i (resp. j) is the first row index (resp. column index) of node N . Therefore, POSinWRHS is suppressed
in practice and should be interpreted as accesses to POSinWRHS row/col.

Since rows of Wtmp1 (in the forward elimination) and x1, y1 (in the backward substitution) correspond
to variables which are contiguous in WRHS, Wtmp1, x1 and y1 could normally also disappear, gaining some
memory copies, and one could work directly in the array WRHS. An implementation problem related to the
diagonal solve in the LDLT case combined with nodes of type 2 makes this apparently simple modification
more complicated than it looks, but it is on the “TODO” list!

In case of reduced right-hand sides (see Section 2.5), WRHS has to be kept between the forward elimination
and the backward elimination for all columns of the right-hand side, whereas it is otherwise allocated for only
one block of right-hand side. In that case, the cost of suppressing the temporary arrays Wb and Wsol (for
each block of right-hand sides) is the non perfect scalability of WRHS (whose number of columns is the total
number of columns of the right-hand side in that case), inducing a memory usage slightly larger than before
on return from the forward elimination algorithm. For reasonable tree mappings, this cost is negligible.

6.4.2 Performance

We now report on some experiments that were done while studying the performance of the solve phase on
large matrices with multiple dense right-hand sides. The number of right-hand sides and the block size are
the same and are equal to 128. Two matrices are used to illustrate the results:

• Matrix2D: the discretization of a 5-point finite-difference operator on a 1000x1000 grid

• Audi: a 3D model of a car, with 943695 equations, available from the TLSE and University of Florida
collections (Parasol set of test problems).

Figure 6.4 shows the gains obtained thanks to the algorithmic improvements presented in the previous
subsection in a sequential environment for matrix Matrix2D. The terms used in the figure are explained
below and will also be used in other results:
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m ← 0; initially POSinWHRS row=POSinWRHS col=0
{Loop on variables in pivot block}
for all node N mapped on Myid do
{npivN is the number of eliminated pivots }
{nfrontN is the order of the front }
{row listN is the list of row indices }
{col listN is the list of column indices }
for k=1 to npiv do

i ← row listN (k); j ← col listN (k)
m ← m+1
POSinWRHS row(i)=m
POSinWRHS col(j)=m

end for
end for
{Loop on variables in off-diagonal blocks}
for all node N mapped on Myid do

for k=npivN+1 to nfrontN do
i ← row listN (k); j ← col listN (k)
if POSinWRHS row(i) = 0 or POSinWRHS col(j) = 0 then

m ← m+1
if POSinWRHS row(i) = 0 then

POSinWRHS row(i) ← m
end if
if POSinWRHS col(j) = 0 then

POSinWRHS col(j) ← m
end if

end if
end for

end for
Algorithm 6.1: Initialization of the indirections arrays for the modified solve algorithm.

145



1: Main Algorithm (forward elimination):
2: Initialize a pool with the leaf nodes mapped on Myid
3: Store into WRHS rows of the right-hand side corresponding to variables in the pivot block of nodes

mapped on Myid. Set other rows of WRHS to 0.
4: while Termination not detected do
5: if message is available then
6: Process the message
7: else if pool is not empty then
8: Extract a node N from the pool
9: Fwd Process node(N )

10: end if
11: end while
12:

13: Fwd Process node(N )
14: {L11 and L21 are the L factors of N }
15: {Pparent be the process owning the master of the parent of N }
16: Wtmp1← Rows of WRHS corresponding to the pivot block of N , starting at position POSinWRHS(N )
17: Wtmp1← L−111 ×Wtmp1
18: Copy rows of Wtmp1 back into WRHS(POSinWRHS(N ))
19: Gather in Wtmp2 rows of WRHS corresponding to row indices of L21 (use POSinWRHS row)
20: Reset the corresponding rows of WRHS to zero
21: if N is of Type 1 then
22: Wtmp2 = Wtmp2− L21 ×Wtmp1
23: Send the resulting contribution (Wtmp2) to Pparent
24: else if N is of Type 2 then
25: for all slave Islave of N do
26: Send Wtmp1 together with the rows of Wtmp2 corresponding to rows of L21 owned by Islave to

the process in charge of Islave
27: end for
28: end if
29:

30: On reception of Wtmp1 + rows of Wtmp2 by a slave
31: Multiply rows of L21 owned by the slave by Wtmp1 and subtract the result from the received rows of

Wtmp2
32: Send the resulting contribution to Pparent
33:

34: On reception of a contribution corresponding to N by Pparent
35: Assemble the contribution into WRHS (Scatter using POSinWRHS row)
36: if all contributions for node N have been received by Pparent then
37: Insert parent of N into the pool of ready nodes
38: end if

Algorithm 6.2: Forward elimination algorithm with reduced memory.
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1: Main Algorithm (backward substitution):
2: On input: WRHS is the workspace obtained on output from Algorithm 2.4

3: POSinWRHS col is used to access rows of WRHS
4: Initialize the pool with the roots mapped on Myid
5: while Termination not detected do
6: if message is available then
7: Process the message
8: else if pool is not empty then
9: Extract a node N from the pool

10: Bwd Process node(N )
11: end if
12: end while
13: Gather solution from distributed WRHS arrays to the host (or keep it distributed)
14: Return solution to the user
15:

16: Bwd Process node(N )
17: x2 ← known entries of solution corresponding to columns of U12 (gather from WRHS, using

POSinWRHS col)
18: if N is of type 1 then
19: y1 ← entries of WRHS corresponding to variables in the pivot block (copy from position

POSinWRHS(N))
20: Solve U11x1 = y1 − U12x2 for x1
21: Save x1 in WRHS (copy at position POSinWRHS(N))
22: Send partial solution x1, x2 to masters of children nodes
23: else if N is of type 2 then
24: Send (distribute) entries of x2 to the slaves, according to their structure
25: end if
26:

27: On reception of x1, x2, sent by the master of node N
28: Update my view of the solution (scatter into WRHS, using POSinWRHS col)
29: Insert children of N mapped on Myid into the local pool
30:

31: On reception of parts of x2 by a slave of N
32: Multiply the part of U12 mapped on Myid by the piece of x2 just received
33: Send the negative of the result back to the master process of N
34:

35: On reception of a portion of −U12x2 from a slave by a master for node N
36: Add it into WRHS, starting at position POSinWRHS(N)

37: if this is the last update (all slaves sent their part) then
38: y1 ← entries of Wb corresponding to variables in the pivot block of U11 (row list, gather)
39: Solve U11x1 = y1 for x1
40: Save x1 in WRHS (Copy at position POSinWRHS(N))
41: Send partial solution x1, x2 to masters of children nodes
42: end if

Algorithm 6.3: Backward substitution algorithm with reduced memory.
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4.10.0 corresponds to the original algorithm, where data on each MPI process (1 in the sequential case) are
stored in a workspace of 1 million rows and 128 columns, using a column-major storage. Thus, the
workspace increases linearly with the number of processors and is critical2.

trunk is the approach described by Algorithms 6.2 and 6.3, with the indirections arrays POSinWRHS row

and POSinWRHS col. Despite the new indirection to access data in WRHS, we observe a gain of almost
2 on the sequential performance of Matrix2D thanks to the fact that access to data in WRHS is now
done with a significantly better locality of reference.

trunk+postorder means that on top of this, we force data corresponding to variables in the pivot block in
WRHS to be organized following a postorder, which is the order in which nodes in the tree will be accessed
during the triangular substitutions. This is done by forcing a postorder at line 3 of Algorithm 6.1.

trunk+postorder+byrows means that the column-major storage for WRHS is replaced by a row-major
storage: this way, Wtmp1 and x1, y1 in the above algorithms correspond to a block of WRHS that is
fully contiguous in memory.

trunk+postorder+byrows+best amalg. finally corresponds to the best execution time when the amount
of amalgamation (see end of Section 1.1.6) has been tuned for the solve phase.

In Figure 6.5, where only the performance of the initial and final algorithms are shown, we observe that
there are also significant gains in the parallel case for a 3D problem (matrix Audi).

In Table 6.3, we show the memory usage of the solve phase with respect to the initial algorithm. In an
out-of-core context, the memory reduction is very significant as soon as more than one processor is used.
This is because the workarray WRHS, which accounts for a large part of the memory, now scales reasonably
well with the number of processors (its non perfect scalability is due to some non-fully summed variables:
bottom part of WRHS in the example of Figure 6.3).

# procs 4.10.0 New WRHS

1 1773.1 1751.9 966.3
10 1145.7 291.7 108.5
20 1124.6 226.1 63.5

Table 6.3: Comparison of initial (4.10.0) and new solve algorithm in terms of memory (MBytes) with 1,
10, and 20 processes, on test case Audi, when factors are out-of-core. In the in-core case, the memory is
dominated by the factors.

Finally, we give in Table 6.4 the contents of the memory for in-core executions. We observe that WRHS

scales as before, but remains small compared to the huge workspace required for the factorization for the
Audi matrix. This is not the case for Matrix2D, where the memory scaling of WRHS is very important to
limit the total memory usage.

6.4.3 Discussion

The cost of the solve phase is critical in some applications. During the concluding discussion of the last
MUMPS Users’days in April 2010, the performance and memory usage of the solve phase appeared to be a
bottleneck to several users, especially in applications which spend most of their time in the solve and not in
the factorization (thousands of right-hand sides, simultaneous or successive). The preliminary work described
above is a first step towards optimizing the behaviour of the solve step: starting from a problem of memory
scalability with respect to numbers of processors, the memory reduction gave a better potential to exploit
memory locality. This better memory locality resulted in significantly improved performance. In parallel,
we have seen that the scaling of the solve phase is reasonably good. Still, the type of parallelization and task
mapping inherited from the factorization might not be optimal for the solve. More generally, parameters

2It is even more critical with sparse right-hand sides
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Figure 6.4: Performance improvements with respect to initial algorithm (4.10.0) of the serial performance
on the test case Matrix2D.

Workarrays Workarray Other
Number of Total for facto for solve data
processors memory real integer WRHS (tree, . . . )

Audi
1 26999 25583.12 80.68 966.34 368.86
10 3508 3320.46 9.72 108.51 69.30
20 1801 1679.07 5.14 63.52 53.28

Matrix2D
1 2517 1316.24 72.01 1024.00 104.76
10 320 156.75 8.31 104.37 50.58
20 187 81.38 4.21 53.16 48.25

Table 6.4: Peak memory usage (MBytes) of the new solve algorithm when factors are kept in core memory,
for matrices Audi and Matrix2D.
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Figure 6.5: Performance improvements with respect to initial algorithm (4.10.0) of the serial and parallel
performance on the test case Audi.
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from the factorization may not be the best for the solve. For instance, we observed significant gains in
the solve by performing more amalgamation and so limiting the number of nodes in the tree compared to
what is done for the factorization. When dealing with machines with hundreds of thousands of cores, the
factorization phase becomes a huge challenge but the solve algorithms of sparse direct solvers could be even
more challenging: the solve phase seems more communication- and memory-bound, with smaller attainable
GFlops/s rates. Still, it deserves a lot of attention and could benefit from specific mapping and scheduling
algorithms, together with a multithreaded approach to parallelism inside each MPI process in order to better
exploit multicore systems.

Finally, the memory reduction described in this section was a critical first step in order to process much
bigger problems in the context of sparse right-hand sides and for the computation of entries of the inverse
of a matrix, see [16] and [30] for more information on those aspects.

6.5 Communication buffers

Because we cannot fully rely on internal MPI buffers whose size is difficult to control, and because of memory
management issues, we have seen in Chapter 2 that we must manage our own communication buffers. The
send buffer is cyclic and each time a message must be sent, the corresponding data are built in that cyclic
buffer, and sent asynchronously with an associated MPI request. When the MPI request is free, this means
that the corresponding zone in the buffer can be freed.

It appeared that the size of communication buffers necessary during the factorization became critical
compared to the total memory usage. This is even more true in an out-of-core context, where the working
memory is significantly reduced thanks to the possibility of using disk storage for the factor matrix. The rea-
son for these large buffers arises from the fact that this parallel multifrontal method requires large messages,
compared, for example to a supernodal approach like SuperLUdist (while the overall communication volume
is comparable, see [28]). In order to be able to send several messages asynchronously without waiting for the
actual reception, the send buffer needs to be significantly larger than the largest message estimated during
the analysis phase. In practice we use to have a send buffer around twice larger than the largest estimated
message.

The messages whose size might be critical in our approach are the following:

• messages holding entire contribution blocks, sent from a process in charge of a type 1 child in the tree
to a process in charge of the corresponding type 2 parent.

• messages corresponding to pieces of contributions, when either the child or the parent frontal matrix
is of type 2, that is, is processed by more than one process. This type of messages covers two cases,
depending on the rows of the considered block:

– rows corresponding to numerical problems, whose elimination must be delayed (see Figure 1.14
and associated comments), sent from the master of a child to the master of a parent.

– other rows, sent by a slave of a child to either a slave or the master of the parent.

Furthermore, this type of messages covers both the case where the parent is of type 2 (1D pipelined
factorization) and the case of a 2D block cyclic distribution of the frontal matrix processed with
ScaLAPACK [53].

The work consisted in authorizing the largest messages to be split into smaller ones, as described below.
Although one would hope that rows corresponding to numerical problems are generally of limited size, we
have seen cases where they also had to be splitted. The communication schemes for the three types of
messages above have thus been modified. However, messages related to 1D pipelined factorizations have not
been modified: they are already controlled by the blocking factor of the pipelined factorization and their
(much smaller size) is now used as a lower bound of the new buffer sizes.

The approach applied to send messages possibly in several pieces is described further in Algorithm 6.4.
The size of the send buffer has been estimated during the analysis based on the size of the messages that are
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not split and on a reasonable size avoiding when splitting messages in too many pieces. Remark that the
size of the reception buffer is also reduced.

1: Initial state: we assume that k rows among n are already sent; initially k = 0; r is the size of the
reception buffer; the size of the send buffer is larger than r but part of it may be occupied by messages
being sent and not freed yet.

2: Try to free requests in send buffer
3: Compute the largest contiguous size s available in send buffer
4: Estimate the number of rows that can be sent depending on:

• the size of the necessary symbolic information in the message and of the header,

• the number of rows already sent (for example a quadratic equation needs to be solved in the
symmetric case, as each block of rows has a trapezoid shape),

• what remains to be sent.

5: Estimate the size of the corresponding message (MPI PACK SIZE) and modify the above estimate, if
necessary

6: if message size is big enough or message contains the last rows to be sent then
7: Build the message in the buffer and send it
8: end if
9: Return a status which can be, depending on cases:

• ALLSENT: execution can continue, all rows were sent

• TRY-AGAIN: nothing was sent, a new attempt should be made; in this case, the process should
try to receive messages in order to avoid the deadlock situation where all processes try to send
messages without anybody doing receptions.

Algorithm 6.4: Sending contribution blocks in several pieces.

Array 6.5 gives the size of the communication buffers for the original and new buffers. Whereas column
Original corresponding to normal unsplit messages requires significant memory for communication buffers,
a significant memory gain is obtained thanks to these modifications. The cost is a more complex code and
a possible higher cost due to stronger synchronizations, since the receiver must receive pieces of a message
before the next piece can be sent. However, no large degradation of performance was observed with this
functionality, so that smaller communication buffers are now used systematically, both in the in-core and
out-of-core approaches.

Communication schemes
Matrix Original Modified

AUDIKW 1 264 4.2
CONESHL MOD 66 3.7
CONV3D64 286 16.1
ULTRASOUND80 75 8.2

Table 6.5: Average size per processor of the communication buffers (in Mbytes) on 32 processors. The overall
core memory requirements for CONV3D64 are 1264 MBytes for the in-core approach, and 800 MBytes when
factors are stored out-of-core. Memory for communication buffers was thus far from negligible in the original
version.
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6.6 Facing the multicore evolutions

In the recent years, with the advent of multicore machines, interest has shifted towards multithreading
existing software in order to maximize utilization of all the available cores. Rather than writing a new code
for multicore machines, we aim at adapting the parallel multifrontal solver MUMPS to take better advantage
of multicore architectures. Although MUMPS was inspired by a shared-memory code [17], the parallelism is
mainly based on message-passing (MPI). We believe that the MPI layer should be kept in order to naturally
address NUMA architectures, memory locality, and distributed-memory, but that mixing message-passing
with threads is necessary to reach a better scalability. Specialized solvers aiming at addressing multicore
machines have been the object of a lot of work, see [43, 47, 60, 117, 109, 115, 122, 153], for example.

Here, we describe some preliminary work to optimize the performance of the factorization phase of our
approach on multicore systems, with the objective to mix the shared-memory programming model with
the distributed-memory programming model in order to scale to huge numbers of cores. We rely on the
OpenMP [4] standard for multithreading, avoiding the direct use of threads.

6.6.1 Multithreaded BLAS libraries and OpenMP: preliminary experiments
based on the fork-join model

In this section, we report on the work done to determine costly parts of the factorization, and use mul-
tithreading techniques in those parts. We will illustrate some behaviours using a few test matrices, the
characteristics of which are summarized in Table 6.6.

Matrix Order Nonzeros Symmetry Origin
AMAT30 134335 975205 unsymmetric French-Israeli Multicomputing project
BOXCAV 544932 3661960 symmetric ANR Solstice project
DIMES 55640 13929296 unsymmetric complex Multipole solver [97]
ULTRASOUND80 531441 33076161 unsymmetric M. Sosonkina
HALTERE 1288825 10476775 symmetric complex ANR Solstice project
THREAD 29736 4444880 symmetric PARASOL collection

Table 6.6: Test matrices used in Section 6.6.1. Although complex, matrix HALTERE is treated as if it was
real (imaginary part is ignored).

We used the TAU profiling tool3 [157], and observed that most of the time spent during the factorization
of MUMPS was due to the following portions of the code, that can be scaled thanks to multithreading, either
using OpenMP directives or an external multithreaded library:

BLAS operations. MUMPS uses Level 1, 2 and 3 BLAS operations and, especially for large 3D problems,
the factorization time is largely dominated by the time spent in BLAS calls. Using multithreaded
BLAS libraries such as GOTO4, ACML5 from AMD, ATLAS6 or MKL7 from Intel, helps improving
the performance in multithreaded environments. The GOTO library was configured using the flag
USE OPENMP=1, in order to allow for compatibility with OpenMP. Although we observed that GOTO
is the fastest among the BLAS libraries tested, it could not be used since even with USE OPENMP=1

it still seemed to conflict with the other OpenMP regions. It seems that GOTO creates threads and
keeps some threads active after the main thread returns to the calling application – perhaps this is why
the performance of OpenMP regions outside BLAS deteriorates a lot. ACML perturbed the OpenMP
regions only a little while MKL was found to be the most compatible with all the OpenMP regions.
Therefore we use MKL in the following experiments.

3Available from www.cs.uoregon.edu/research/tau.
4www.cs.utexax.edu/users/flame/goto
5www.amd.com/acml
6math-atlas.sourceforge.net
7software.intel.com/en-us/intel-mkl/
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Figure 6.6: Assembly time as a function of the number of threads (testcase AMAT30 ), AMD Opteron 2218,
2.6 GHz. The figure shows separately initialization to 0 and assembly of contributions blocks (both are part
of the assembly routine facass). Time for copying contribution blocks (copyCB) is also given for comparison.

Assembly operations. Such operations correspond to the assembly of contribution blocks (or Schur com-
plements) from children into the frontal matrices of the parent nodes. In this phase the initializations
to zero of the frontal matrices were also costly and could be multithreaded. The assembly of children
contributions to parent nodes were also parallelized using OpenMP. Figure 6.6 shows the scaling of the
assembly operations for the unsymmetric testcase AMAT30. We observed that multithreading is useful
only for frontal matrices larger than 300 and should be avoided for smaller matrices. In the symmetric
case, because of the difficulty of parallelizing efficiently small triangular loops, the parallelization is
usually less efficient.

Stack operations. They consist in copying contribution blocks (copyCB operations) from the frontal matrix
of a node to a separate zone, making them contiguous in memory. The factors are also compressed into
contiguous space. Those copies are amenable to multithreading, as could already be seen in Figure 6.6
(copyCB operations). Figure 6.7 shows that the scaling strongly depends on the contribution block
sizes. In this figure, each point gives the average time per call for a range of front sizes. For example,
the value on the y-axis corresponding to 1500 on the x-axis represents the average time spent in the
routine when the call is done with a contribution block in the range [1400,1600]. Our experience is that
the potential for scaling of the stacking and assembly operations are similar: large blocks are needed
to obtain reasonable speed-ups in these memory-bound operations. Unfortunately, the number of calls
to those operations with small blocks is often much larger than the number of calls with large blocks,
so that overall, on the range of matrices tested, the bad scalability with small blocks can still be a
bottleneck when increasing the number of threads.

Pivot search operations. In some symmetric indefinite testcases, the pivot search operations were found to be
costly. In the unsymmetric cases the pivot search is on rows whose elements are contiguous in memory,
while in symmetric cases pivot search is mainly done within columns with a stride equal to the front size
(this is because we use a row-major storage). The non-contiguous memory accesses in symmetric cases
are the likely reason for this increased cost. Still, the pivot search operations were multithreaded using
OpenMP reduction statements the results of which are shown in Table 6.7. In the testcase THREAD
there was a reasonable gain in the two main pivot search loops, we call them RMAX and TMAX,
however for most testcases there is a speed-down in these regions with the OpenMP directives. This
is mostly caused within the regions of smaller loop sizes (< 300) or granularities which speed down
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Figure 6.7: Behaviour of copyCB operations as a function of the number of threads. Each point on the
x-axis refers to an interval of width 200. Testcase DIMES, Opteron.

distinctively as the number of threads is increased. We can stabilize this effect by using IF statements
as a part of the OpenMP directive, which stops multithreading according to the IF statement. An
example is shown in Table 6.8 where there is a disastrous slowdown without regulating the OpenMP
region according to block sizes, and this effect is stabilized with addition of the IF statements.

1 thread 2 threads 4 threads
Loop RMAX 3.35 2.33 2.07
Loop TMAX 1.65 1.11 0.84

Table 6.7: Performance (time in seconds) of the two main loops of the symmetric pivot search operations,
testcase THREAD, Opteron.

We refer the reader to the technical report [54] for more experiments, case studies (symmetric positive
definite, symmetric general, unsymmetric, Opteron-based and Nehalem-based processors), performance of
the multithreaded solution phase, discussions about thread affinity, minimum granularity for parallelization
with OpenMP.

We finish this section by showing the interest of mixing MPI and thread parallelism on the unsymmetric
ULTRASOUND80 matrix, on a 96-core machine from INRIA Bordeaux Sud-Ouest, with up to 4 threads per
MPI process. We observe that it is interesting, from a performance point of view, to use 4 threads per
MPI process. Furthermore, the OpenMP directives help a little, although the work consisting in inserting
OpenMP directives has only been done in a few places (mainly type 1 nodes) and should also be done for
assembly and stacking operations in type 2 nodes. Finally, let us remark that, for a given number of cores,
it is better to use more threads and less MPI processes when memory usage is targeted. For example, with
the same matrix ULTRASOUND80, the memory consumption is 8.97 GB, 11.0 GB, 11.3 GB, 13.3 GB when
using, respectively, 1, 2, 4 and 8 MPI processes. Therefore, it is better in terms of memory usage to use 1

155



1 thread 2 threads
Loop RMAX(without IF statements) 0.789 7.965
Loop RMAX(with IF statements) 0.835 0.789
Loop TMAX(without IF statements) 0.033 0.035
Loop TMAX(with IF statements) 0.037 .032

Table 6.8: Stabilizing the facildlt OpenMP operations using IF statements, testcase BOXCAV, Opteron.
Times in seconds.
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Figure 6.8: Time for factorization of matrix ULTRASOUND80, as a function of the number of cores used. In
black, only MPI is used (for example 16 MPI processes for 16 cores). In the second and third experiments, 4
threads are used per MPI process (for example, 4 MPI processes with 4 threads each in the case of 16 cores)
and a threaded BLAS library (MKL, 4 threads) is used. The difference between the second (yellow) and
third (red) rectangles is that in the third rectangle, OpenMP directives are used to parallelize non-BLAS
operations.
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MPI process with 8 threads on 8 cores, than 8 MPI processes with 1 thread each. This behaviour is due to
the non-perfect memory scalability with MPI (see Section 4.3).

6.6.2 OpenMP: optimization of a symmetric factorization kernel

In this section, we discuss the LDLT factorization of a sparse matrix, and focus on a dense factorization
kernel whose performance has been improved.

6.6.2.1 Performance bottleneck observed

While experimenting the fork-join model of parallelism discussed above, we observed that the symmetric
indefinite case showed significantly poorer performance than the unsymmetric case. This motivated a deeper
study of that behaviour. We remind that the symmetric factorization of a frontal matrix is using a blocked
right-looking LDLT algorithm (see Section 2.1.4) to update the fully summed part of the front, using Level
2 BLAS inside the pivot block and Level 3 BLAS outside the pivot block. The Schur complement is updated
later.

Pivot factorization and pivot block update for LDLT :
A(nfr, nfr) is the array containing the symmetric frontal matrix
k is the current pivot
eb is the end (i.e., the last column) of the current pivot block

1. Copy pivot column in pivot row (DCOPY)
A(k, k + 1 : nfr)← A(k + 1 : nfr, k)

2. Update lower triangular block (DSYR)

A(k + 1 : eb, k + 1 : eb)← A(k + 1 : eb, k + 1 : eb)− A(k+1:eb,k)×A(k,k+1:eb)
A(k,k)

3. Scale column (DSCAL)

A(k + 1 : nfr, k)← A(k+1:nfr,k)
A(k,k)

4. Update rectangular block (DGER)
A(eb+ 1 : nfr, k + 1 : eb)← A(eb+ 1 : nfr, k)×A(k, k + 1 : eb)

Algorithm 6.5: Factorization of a pivot and update of the corresponding pivot block (in LDLT decom-
position).

We illustrate the poor performance of the symmetric indefinite case on the HALTERE matrix with METIS [120]
on the SGI Altix machine jade from CINES (Montpellier, France). On this testcase, we observed that the
central kernel performing the symmetric factorization of the current pivot block, does not scale correctly
when increasing the number of threads. Each time a new pivot is chosen (see Section 1.3.2.2), it is used to
update the column and update the pivot block. The unscaled column is first copied in the row of the frontal
matrix in order to use BLAS 3 operations in the updates outside the pivot block (fully summed variables
part and Schur complement). After each selected pivot, we therefore apply Algorithm 6.5, illustrated by
Figure 6.9, which aims at updating the remaining columns of the current pivot block. Typically, the pivot
block has 48 columns for large-enough fronts; the number of columns updated using DSYR and DGER is
between 47 (for the first pivot of the pivot block) and 0 (for the last pivot of the pivot block).

Table 6.9 reports the accumulated times spent in the factorizations of the pivot blocks for the whole
factorization, i.e., for all frontal matrices, of matrix HALTERE, using double precision, real arithmetic. Clearly,
the global results are disappointing in parallel, with bad speed-ups and even speed-downs. This can be
explained by the fact that Algorithm 6.5 exhibits a poor memory locality of references: each element of the
pivot column is accessed 3 times. Furthermore, noticing that we rely on a row-major storage, steps 1 and 2 of
the algorithm force to load one cache line for each element of the column, when only one element is used inside
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Figure 6.9: Illustration of Algorithm 6.5, performing the factorization of a pivot and the update of the pivot
block in the symmetric indefinite factorization.

Number of threads 1 2 4 8
Time in Algorithm 6.5 16.7 16.7 19.9 29.0
Total factorization time 115 75 64 66

Table 6.9: Total time spent in Algorithm 6.5 after all pivots have been factored, and total time for factor-
ization, as a function of the number of threads. Matrix Haltere, SGI Altix machine from CINES. Times in
seconds.
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that cache line. Whereas this was not too critical for serial executions, the memory bandwidth is exhausted
in a multithreaded environment, resulting in no gains and even speed-downs when using multithreaded BLAS
libraries.

6.6.2.2 Improvements of the factorization algorithm for the pivot block

In order to improve locality and avoid the limitations to parallelism due to memory accesses, we modified
Algorithm 6.5 so that once an element in the pivot column is accessed and loaded into the cache, it is used
as much as possible: for the copy in the upper triangular part of the front, the scaling, and the update of the
rest of the row. This allows the elements of the pivot column to be loaded in cache once (temporal locality)
and also improves the spatial locality between the element of the column and the corresponding row thanks
to the row-major storage. Algorithm 6.6 gives the modified algorithm. First, the triangular block is updated
(no parallelism is used because it is generally too small). Then, all the rows corresponding to the rectangular
block can be processed in parallel. Remark that the new algorithm now only relies on OpenMP, without call
to Level 1 or 2 BLAS. The results are given in Table 6.10 (to be compared with the results of the original
algorithm in Table 6.9). We observe on this test case that it is very useful to avoid parallelization when
the granularity is too small to benefit from parallelism. For example, on 8 threads, the overall time spent
in Algorithm 6.6 decreases from 39.6 to 34.9 seconds when avoiding the parallelization in cases with less
than 300 rows in the second loop, that is, when nfr − eb < 300. This clearly indicates that small blocks do
not benefit from parallelism and were leading to significant speed-downs. Overall, the pivot factorization

Improved pivot factorization and pivot block update for LDLT :
A(nfr, nfr) is the array containing the symmetric frontal matrix
k is the current pivot
eb is the end (i.e., the last column) of the current pivot block

% First, process symmetric part
for row = k + 1 to eb do

1. Copy unscaled element of row to upper part
A(k, row)← A(row, k)

2. Divide first element of row by pivot

A(row, k)← A(row,k)
A(k,k)

3. Update remaining part of row
A(row, k + 1 : row)← A(row, k + 1 : row)−A(row, k)×A(k, k + 1 : row)

end for
% Second, process rectangular part
for row = eb+ 1 to nfr (in parallel) do

1. Copy unscaled element of row to upper part
A(k, row)← A(row, k)

2. Divide first element of row by pivot

A(row, k)← A(row,k)
A(k,k)

3. Update remaining part of row
A(row, k + 1 : eb)← A(row, k + 1 : eb)−A(row, k)×A(k, k + 1 : eb)

end for
Algorithm 6.6: Improved factorization of a pivot and update of the corresponding pivot block (in LDLT

decomposition).

and pivot block update now scales reasonably and the time spent in the factorization has decreased from
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Number of threads 1 2 4 8
Without OMP IF

Time in Algorithm 6.6 15.8 10.1 8.5 7.6
Total factorization time 110.7 65.4 47.5 39.6

With OMP IF
Time in Algorithm 6.6 15.7 9.8 6.0 4.7
Total factorization time 110.4 64.9 44.1 34.9

Table 6.10: Total time spent in Algorithm 6.6 after all pivots have been factored, and total time for factor-
ization, as a function of the number of threads. Matrix Haltere, SGI Altix machine from CINES. Times
in seconds. The results “With OMP IF” corresponds to runs with an additional OpenMP “IF” directive,
avoiding the parallelization of the second loop of Algorithm 6.6 when the number of rows in the loop is
smaller than 300.

# threads algorithm Pivot search Pivot block update
1 old 2.77 15.6

new 0.91 15.3
2 old 1.95 9.8

new 0.72 9.7
4 old 1.56 6.0

new 0.64 6.0
8 old 1.58 4.7

new 0.64 4.8

Table 6.11: Costs (in seconds) of the pivot block update and of the pivot search with and without the
optimization consisting in checking for the stability of the pivot in the next column during the factorization
of the pivot and panel update.

66 seconds (Table 6.9) to 34.9 seconds (Table 6.10) using 8 threads. Although the absolute speed-up is not
that great compared to the sequential time (110 seconds), this shows that a careful look at just one of the
factorization kernel allows for very significant gains. In fact, the speed-ups are much better for large frontal
matrices but we remind that in the multifrontal tree, there are far more small frontal matrices than large
ones. For small matrices near the bottom of the tree, it would then make sense to exploit tree parallelism
(see Section 6.6.3).

6.6.2.3 Optimization of pivot search algorithm

We now describe a tiny optimization. Remark that, during the update of the pivot block with this new
algorithm, the elements of the column next to the pivot column have all been loaded in cache once. It is
therefore possible to check for the stability of the pivot candidate from the next column almost for free.
Except for the last column of the pivot block, this can be done by computing the maximum of the elements
in the column right to the pivot column, immediately after they have been computed and while in cache.
In case the next pivot is stable (see Section 1.3.2.2) compared to the max in that column, the pivot search
can be skipped. Some results on the same (HALTERE) matrix are given in Table 6.11. We observe that the
overall cost of the pivot search is significantly reduced, and that the cost of the pivot block factorization
remains unchanged with the additional computation of the maximum element in the next column (since only
elements already in the cache are accessed anyway).

6.6.2.4 Discussion

Other factorization kernels should also be studied in order to push further the combination of BLAS and
OpenMP directives. For example, the BLAS 3 update of the Schur complement in the LDLT factorization
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kernels currently works with many independent blocks processed one after each other and would benefit
from parallelism with a larger granularity8. On the same Haltere matrix, 7 seconds out of 34 seconds on 8
threads and the same 7 seconds out of 110 seconds on 1 thread are also spent in assembly operations. There
is thus also clearly scope for improvement in the assembly operations with symmetric matrices, even though
the triangular loops involved are more difficult to parallelize.

6.6.3 OpenMP: exploiting the parallelism resulting from the assembly tree

The fork-join model to execute threaded regions wastes some time in activating sleeping threads in each
threaded region or BLAS call; this was particularly visible on small frontal matrices, which usually appear
near the bottom of the assembly tree. For example it was observed that for matrices smaller than a few
hundreds, multithreading stack or assembly operations was leading to a performance degradation rather than
improvement. The NUMA and cache penalties are indeed particularly critical on small frontal matrices,
that usually appear near the bottom of the assembly tree. In Section 6.6.2, we also saw that mutithreading
the second loop of Algorithm 6.6 leads to a performance degradation on small matrices. To improve the
parallelization of small frontal matrices, the multithreaded approach would thus benefit from exploiting the
tree parallelism (similar what is done in the distributed-memory case), as shown in the preliminary results
from Figure 6.10. In this figure, the unsymmetric version of our solver is used and a layer called L0 OMP is
defined that such that:

• Under L0 OMP, tree parallelism and serial BLAS are used.

• Above L0 OMP, threaded BLAS libraries are used.

The definition of L0 OMP is based on serial/threaded benchmarks of MUMPS routines: we still use Algo-
rithm 4.4 but the stopping criterion is new: we accept a layer L0 OMP if the estimated time below L0 OMP
plus the estimated time above L0 OMP is

1. smaller than for all previous layers encountered;

2. smaller than the next 100 layers if algorithm is pursued further 100 times.

The second condition is there to avoid local minima due to possible imbalances after application of a
greedy LPT (Largest Processing Time first) algorithm that aims at mapping subtrees onto the cores.

We observe in the figure that the speed-ups obtained are generally very good with the L0 OMP algorithm,
compared to previous approaches. On large 3D problems (e.g., AUDI test case), the gains are smaller than
on problems leading to smaller fronts in the tree. An extreme case is the one of circuit-simulation matrices.
On such matrices (see the results for G3 CIRCUIT and QIMONDA07), there is a very small amount of
fill-in, leading to relatively small frontal matrices everywhere in the tree. In such cases, relying solely on
node parallelism is clearly insufficient, and tree parallelism is compulsory to get performance.

Remark that, contrary to common intuition, we seem to still obtain reasonably good speed-ups by
relying on tree parallelism first, perform a synchronization at the L0 OMP level, and work with all threads
afterwards. Of course, the limits of this approach when increasing the number of threads has to be assessed.
Short-term work-in-progress includes the adaptation of our approach to NUMA architectures, the study of
memory management policies such as interleaving versus local, the suppression of idle time due to the L0
synchronization, or the use of a penalty (around 10% to 50% on AMD processors) under L0 OMP due to
the fact that all threads share a limited memory bandwidth. Multithreading the solve phase is also critical
and should not be neglected.

8Ideally, we would like to rely on a threaded BLAS kernel performing the operation C ← C − ADAT , where A and C are
symmetric and D is a diagonal matrix with 1 × 1 and 2 × 2 pivots. More generally, such a BLAS kernel would be very useful
for LDLT factorizations.
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Figure 6.10: Comparison of the speed-ups obtained for the factorization of various matrices on 8 threads
of a Nehalem-based computer when using (i) threaded BLAS, (ii) threaded BLAS and OpenMP directives
outside BLAS calls, (iii) tree parallelism under L0 OMP.

6.7 Sparse direct solvers and grid computing

Let us consider a different aspect not discussed earlier in this thesis and related to the transparent access
to distant computing resources. We describe in this section two aspects where grid computing technologies
and resources are interesting for sparse direct solvers.

• There exists a large range of algorithms and options in sparse direct solvers, and several sparse direct
solvers are available, each implementing different variants of algorithms that may suit better a class
of matrices or another. Although direct solvers are often considered as a black box when compared to
iterative solvers, this range of algorithms, parameters and preprocessing options makes the adequate
combination difficult to find for users. Finding the correct algorithms or parameters on a sparse
matrix is however critical to solve larger problems, or decrease the time to the solution, or get a better
accuracy. In many solvers, there exists the notion of “automatic” default choice for an option, which
means that a solver will choose automatically the option based on some characteristics of the input
matrix. However, those choices are limited and understanding which solver and which algorithms are
best suited for a given class of matrix is not an easy issue. The GRID TLSE project[64] answers
this problem by providing an expertise site for sparse linear algebra: typically, a user can upload and
share matrices in private or public groups, and experiment and combine different functionalities from
a variety solvers on their class of matrices. The expertise is based on scenarios, an example of which
is the following: get all possible symmetric permutations from solvers capable of providing them, use
them on all solvers and return statistics and synthetic graphs with the results. Metrics like time of
execution, numerical accuracy or memory usage can be used to compare the results and, for experts, get
some insight on the results. In the GRID TLSE site, each expertise request leads to a workflow, where
each step of the workflow consists of a number of independent elementary requests. The middleware
DIET [49] is used to execute and schedule those requests on a grid of computers.

• Usually, the solution of linear systems is the part of a simulation code that consumes most memory,
while also being the bottleneck from the execution time point of view. In case a user does not have
enough resources locally, it makes sense to use more powerful distant resources for the solution of the
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linear system. We implemented a prototype with the MUMPS solver, using the DIET middleware again.
To solve Ax = b, the matrix A and the right-hand side b can be sent over the network, and the solution
x computed on the server is sent back to the client. Only this functionality was made available in
the prototype, for unsymmetric matrices using double precision arithmetic. Matrix A remains small
compared to the size of the factors and compared to the number of floating-point operations, contrary
to dense matrices, where the size of the factors is the same as the size of the matrix. Therefore, the cost
of transferring data could be reasonable in comparison to the size of the factors and the amounts of
computations, at least the ratio is better than for dense matrices. Furthermore, when in practice many
solves with the same matrix are requested, the matrix A can remain on the server(s). Within DIET,
this can be done by setting the persistence mode to PERSISTENT, avoiding its transfer for each solve.
Starting from the above prototype, experimentations showing the interest of using data persistence are
given in [39].

It would make sense from an application point of view to go from this proof of concept to an implemen-
tation in production mode, using grid or cloud computing resources. Remark that this client-server
model to use distant resources has already been used a lot in the context of linear algebra. For ex-
ample, in the Star-P platform [55], the backslash operator from Matlab can be overloaded to work
on distributed sparse matrices stored on distant HPC resources. Similar work was the object of the
OURAGAN project [48] around Scilab or Scilab//.

In the case of simulation codes written in C or Fortran rather than Matlab or Scilab, operator over-
loading or simple interfaces like [87] are not what the application requires. Instead, the objective would
consist in making all functionalities of a sparse direct solver available through the standard API of
the solver. This requires redeveloping a library with the exact same API as the solver, allowing the
application code to be exactly the same whether the linear solver is executed locally or on a more
powerful distant server. Let us take the example of the MUMPS solver and the DIET middleware. At
link time, there would be two possibilities on the client side:

1. The application code is linked with the MUMPS library: everything is executed locally.

2. The application code is linked with two libraries:

– an intermediate library which transforms MUMPS calls into calls to the grid middleware, and

– the grid middleware itself, that is the DIET library.

In this second case, everything should ideally be transparent from the application’s code point
of view: calls to the MUMPS solver are simply replaced by remote procedure calls. Data transfers
must be minimized and data persistence on the servers is essential in order to transfer data only
when necessary; such developments could naturally benefit from today’s cloud infrastructures.

6.8 Conclusion and other work directions

We have described in this chapter recent work aiming at solving large problems. To conclude, we list in this
section some other work directions and developments to solve increasingly large problems accurately and
efficiently. A more high-level view will be given in the general conclusion of Chapter 7.

Multithreading within each MPI process. With the evolutions of computer architectures, the exploita-
tion of multithreading inside each MPI process is critical. Three main issues are currently considered:

• The memory allocation policy has a very strong impact in many cases and we typically ob-
served huge gains on multithreaded dense factorization kernels by allocating the memory on which
threaded factorizations are applied with an interleave policy. Understanding how this affects a
sparse multifrontal approach in which assemblies, copy operations, etc. are also parallelized is
under investigation.
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• Multithreaded dense factorization kernels that we currently use can be improved from the perfor-
mance point of view, as was experimented for example in Section 6.6.2. Block sizes must be tuned,
etc. As of today, the dense factorization kernels we use are specific (pivoting, partial factorization
only, specific numerical aspects like detection of null pivots, out-of-core management, etc.) and
cannot be immediately replaced by existing multithreaded decompositions from the dense linear
algebra community.

• When the number of MPI processes increases (due to an increase in the number of nodes among
which distributed-memory parallelism must be used), the amount of work in type 2 nodes in-
creases, thus multithreading the corresponding kernels is critical.

MPI communications. When increasing the number of MPI processes, one must understand the limits of
the existing communications schemes. For example, avoiding synchronizations and barriers is critical
when working with thousands of nodes. We have recently been tackling two other examples related to
communications within type 2 nodes:

• In the general case, the number of messages sent from type 2 children to type 2 parents is p2, if p
is the number of workers (or slaves) in both the child and the parent. This number can be reduced
to O(p) by forcing the order of the variables in the child and in the parent to be compatible, and
by initializing and managing the counters of messages-to-be-received in an appropriate manner.
Although the volume communicated is similar, this decreases the latency associated with those
messages by reducing drastically the number of messages when there are many processors involved
in each node.

• The performance of the asynchronous broadcast algorithm in type 2 factorizations has been ob-
served to be limited by the send bandwidth of the master node, in cases where many processors
are assigned to a given frontal matrix. This typically occurs when serializing branches of the as-
sembly tree for memory constraints, see Section 4.3. In the pipelined factorization implemented,
the master processor must send a factored block to all its slaves. Given Algorithm 0.1, it is not
possible to use the recent MPI IBCAST primitives because each processor receives data with a gen-
eral purpose asynchronous receive routine MPI IRECV in Algorithm 0.1 and might be involved in
several type 2 nodes. We have recently implemented a broadcast algorithm based on immediate
sends and immediate receives, using a pipelined broadcast tree, and are expecting to significantly
increase the performance of the factorization in type 2 nodes.

Related to MPI communications, the following points must also be considered:

• The splitting mechanism described in Figure 2.11 is evolving: by forcing a similar mapping between
a parent and its child in a split chain, one can significantly limit the communication volume and
improve performance on chains of splitted nodes.

• One must assess the limits of relying on ScaLAPACK kernels [53] for the root node and follow
closely the evolution of libraries developed by the dense linear algebra community. As said before,
our kernels are specific (numerical pivoting, various thresholds for delaying pivots, for detection
of null pivots or for static pivoting, . . . ). It must be noted that a kernel like LDLT that is heavily
used in sparse linear algebra is not widely available in distributed-memory dense linear algebra
libraries yet (for example it is not available in ScaLAPACK).

• Barriers and synchronizations involving all processors should be avoided. This looks fine thanks
to our asynchronous approach, but we observed that on very large matrices with limited amount
of fill (typically large reducible problems), a significant amount of time could be spent in reduction
operations gathering statistics over all processors. The data structures involved in such global
communications should be grouped into arrays in order to limit the associated costs.

Cost (memory, time) of phases other than the factorization. Although the cost of the factorization
phase is usually predominant, the cost of the analysis and solve phases is sometimes critical too (see
Section 6.1 for the parallelization of the analysis phase and Section 6.4 for some optimizations to the
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solve phase). Concerning the analysis phase, the two following directions could help improving the
analysis phase further in some applications:

• One could exploit a compressed graph on input instead of using the entire graph of the matrix.
Indeed, many physical problems have several degrees of freedom at each node of the physical mesh
(e.g., temperature, pressure, velocities). Assuming that each node of a finite-element mesh has
6 variables, the number of edges in the graph associated with the matrix is 36 times larger than
the number of edges in the mesh. Hence, in such cases, a sparse direct solver would gain a lot of
memory by performing the analysis phase directly on the compressed graph corresponding to the
mesh, pushing the limits of parallel analysis much further.

• In relation with the parallelization of the analysis phase, because simulation applications using
direct solvers may already work on a distributed physical domain with balanced partitions, one
could directly exploit a distributed mesh/graph on input and use the associated partitions in the
analysis phase instead of calling parallel graph partitioning packages. Depending on the properties
of the distribution, it could be possible to perform a local analysis on the internal variables of
each domain and build local elimination trees, before a global analysis that will build the top of
the tree based on the resulting information on the interfaces between domains.

Concerning the solve phase, we give a few remarks on this important topic in the general conclusion.

Unsymmetric structure of frontal matrices. In our multifrontal approach we work on the structure
of the symmetrized problem |A| + |A|T when the original matrix A has an unsymmetric structure.
This implies introducing explicit zeros in A, and working on square fronts (with unsymmetric values).
However, [37] showed that it is possible to use unsymmetric fronts and reduce the computational cost
of the multifrontal factorization by working on unsymmetric frontal matrices. Allowing unsymmetric
storage for frontal matrices in our distributed-memory approach would allow to handle in a much better
way matrices with unsymmetric structures, where unsymmetric orderings like [36, 35] –see also [143]–
could then be exploited.

Elemental format. Elemental format avoids the assembly of the matrix in finite element applications and
can be used in a natural way in multifrontal methods. Instead of precomputing all elements before
calling the solver, a call-back to build the elemental matrices only when needed for assembly in a
frontal matrix would avoid the large storage required for the initial matrix in elemental format. It
would also allow to parallelize completely the construction and the assembly of the global problem
inside the solver.

Software engineering. One can imagine many other points towards building direct solvers with a wide
range of functionalities capable of solving very large problems on very large computing platforms, but
one thing to be kept in mind is that each of these points requires developments that must combine
nicely with all or most of the existing ones. For that, we anticipate that software engineering aspects
will be a key issue to be able to pursue the type of work and research we have been doing in the last
15 years.
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Chapter 7

Conclusion

The research and the work described in this document has been the object of various research projects,
industrial contracts and collaborations. This work has led to an original tool, MUMPS (see [2]), which
aims at solving sparse systems of linear equations on parallel distributed platforms, with a wide range of
functionalities developed over the years. Clearly, not all the inside of MUMPS could be presented in this
document, but it was an opportunity to describe some of it. Today, MUMPS is both a research tool to test
new ideas, perform experiments or simulations and gather statistics in the field of sparse linear algebra,
and a competitive software package used worldwide, in academia and industry, which requires software
engineering, validation, support and maintenance. Although it is primarily a research prototype in which
new research is constantly injected, a number of industrial users have invested on the use of this tool in their
applications and have become dependent on it and on its evolutions. Distributing our work widely under
the form of a software library is also essential for us for validation, feedback, external debugging and reports
on performance and numerical behaviour: this way, our research is widely validated and we can define and
adapt research directions according to the feedback received by MUMPS users and according to the evolution
of applications requirements and the evolution of computer platforms.

Computer architectures often evolve too quickly for algorithm designers and for developers of large sci-
entific libraries. In this context, software choices are critical, together with the long term durability of the
chosen programming models and solutions. For example, although MUMPS started in 1996 from a shared
memory approach [17], it was at that time decided (PARASOL project [136, 137]) to replace everything
related to the shared memory paradigm with explicit message-passing targeting distributed-memory com-
puters. With the advent of multicore processors, the shared-memory paradigm becomes very critical again,
as shown in Section 6.6. We currently rely on MPI for message-passing and OpenMP for multithreading, as
this matches our existing software, and because it is not clear to us what the next programming standard
for exascale computers will be. With OpenMP, we observed that taking into account NUMA architectures
and memory placement is very critical. Nowadays, there are many evolutions of computer platforms that
one should take into account and try to anticipate:

• Memory per core will decrease. Therefore, we must continue to pay a strong attention to memory
usage and to memory scalability.

• Numbers of cores per computing node will increase. Therefore, it is critical to exploit them efficiently,
thanks to multithreading. If the number of cores grows too much, we expect that an hybrid approach
mixing threads and message-passing with an asynchronous approach will become necessary inside mul-
ticore processors: the message-passing layer will ensure data locality and avoid costly synchronizations.

• The relative cost of accessing data (memory, communication) will increase compared to the cost of
performing floating-point operations. In this context, it is not clear how memory-consuming strategies
like pivot search and numerical pivoting will behave and if they will remain affordable.
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• The absolute number of computing nodes will increase. Therefore, performance and memory scala-
bility on huge numbers of nodes, using a distributed-memory environment is essential. Asynchronous
approaches in a distributed-memory paradigm are also essential to scale to large numbers of nodes and
the communication patterns need to be carefully studied (and possibly revisited).

• Accelerators might become more and more spread and be more or less integrated with the main CPU.
Although multifrontal approaches exhibit large blocks, allowing significant gains by using GPUs, it is
still difficult to perform numerical pivoting, for example, on such architectures.

All-in-all, parallelism is more and more difficult to handle, and heterogeneity (for example, at the network
level, or due to the use of accelerators) is another challenge. Much work is currently invested on runtime
systems, where only the tasks and the dependencies between them need be provided to automatically schedule
the work on heterogeneous platforms composed of multiple cores, multiple GPUs and multiple nodes. Again,
long-lasting solutions or a standardization of such runtimes systems would be necessary before investing
heavily on such approaches. It would be interesting to understand the limits of such approaches compared
to a “by-hand” approach (and vice-versa).

Thanks to new algorithms and computer evolutions, the maximum size of the problems that can be solved
with direct solvers are orders of magnitude larger than one or two decades ago and it keeps growing1, although
current software implementing sparse direct solvers is far from exploiting all resources of existing petascale
computers. There is thus much scope for improvements on many challenging issues such as scheduling
for memory, scheduling for performance, mapping irregular data-structures, memory scalability, out-of-core
storage, locality of reference, efficient management of communications, etc. It is not clear when fault-
tolerance will become an issue, but out-of-core storage of the factors as factorization goes along is a natural
approach to incremental checkpointing.

Furthermore, in order to treat huge problems and exploit efficiently the memory available on large
supercomputers, all data structures should scale with the number of processors; one can probably no more
afford symbolic data structures of the order of the matrix or of the order of the number of nodes in the
tree: those should scale with the number of processors. All preprocessing algorithms (scalings, symbolic
factorization, maximum weighted matching algorithms, pre-selection of some 2× 2 pivots, . . . ) should also
scale in both memory usage and performance, working on fully distributed matrices or graphs.

Many solver developers have focused more on the performance of the factorization phase than on the
performance of the solve phase. However, the solve phase deserves a lot of attention too for applications
where most of the time is spent in that phase: sometimes, thousands of right-hand sides are solved for, for
only one matrix factorization. Specific approaches can be useful in the case of multiple right-hand sides, or
when right-hand sides are sparse, or when only a subset of the solution is needed. When the performance
of the solve is getting critical, as this appeared to be the case for several applications at the last MUMPS

users’group meeting2, it might be worth guiding the preprocessing phase and the mapping of the factors by
the performance of the solve phase.

Although much work remains to be done on the scalability and implementation of direct solvers on high
performance computers, their complexity may still be unaffordable even on high-end computers when the
problem size becomes too large: remember that a 3D grid of size N×N×N may have O(N3) nonzeros in the
original matrix, O(N4) entries in the factors, and require O(N6) floating-point operations. Because of this
large complexity, direct solvers are sometimes used as a building-box in other approaches, typically in hybrid
direct-iterative solvers: incomplete factorizations relying on direct solver technologies, domain decomposi-
tions methods using direct solvers within each domain, or Block-Cimmino approaches. Another approach we
are currently studying is the notion of fast direct solvers. Several groups have also started to work on this
subject, including in the context of multifrontal solvers. The idea is to rely on low-rank representations of
certain blocks of the dense matrices arising because of fill-in during the factorization (the off-diagonal blocks
are often low-rank), in order to compress data and reduce the amount of computations. Those low-rank
representations can be of the same quality as the floating-point representations (i.e., machine precision), or

1For example, a problem with 87 million equations could be solved a few years ago with the Pastix [113] solver, whereas not
so many people could imagine solving problems with more than 100000 equations with a direct solver 15 years ago.

2http://graal.ens-lyon.fr/MUMPS/ud_2010.html
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they can be approximations of lower quality. In the latter case, this leads to preconditioners with a clear
numerical criterion to control accuracy. The MUMPS framework should allow for efficient implementations of
a low-rank solver in both distributed-memory and multithreading contexts.

With the above work directions, we aim at pursuing one of our main focus for the future: solving increas-
ingly large problems arising in simulation applications efficiently and accurately. By efficiently, we mean
that we must optimize resource usage (processor cores, memory accesses, locality) of computer platforms
while aiming at obtaining the solution as quickly as possible. By accurately, we mean that we do not want
to reduce the numerical stability, one of the main strengths of direct solvers, for performance or increased
parallelism; in the context of increasing problem sizes and increasing numbers of operations, round-off errors
may also become an issue to look at. We also aim at continuing work on numerical aspects and functionali-
ties and transferring our research in a tool like MUMPS, which at the moment is both necessary to our future
research and useful to many academic and industrial groups.
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A-1, 2011. SIAM Workshop on Combinatorial Scientific Computing (CSC11), Darmstadt, Germany,
19/05/2011-21/05/2011.

[17] P. R. Amestoy. Factorization of large sparse matrices based on a multifrontal approach in a multi-
processor environment. PhD thesis, Institut National Polytechnique de Toulouse, 1991. Available as
CERFACS report TH/PA/91/2.

[18] P. R. Amestoy, A. Buttari, and J.-Y. L’Excellent. Towards a parallel analysis phase for a multifrontal
sparse solver, June 2008. Presentation at the 5th International workshop on Parallel Matrix Algorithms
and Applications (PMAA’08).

[19] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm.
SIAM Journal on Matrix Analysis and Applications, 17:886–905, 1996.

[20] P. R. Amestoy and I. S. Duff. Vectorization of a multiprocessor multifrontal code. International Journal
of Supercomputer Applications, 3:41–59, 1989.

[21] P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods on multi-
processors. Int. J. of Supercomputer Applics., 7:64–82, 1993.

[22] P. R. Amestoy, I. S. Duff, A. Guermouche, and Tz. Slavova. Analysis of the out-of-core solution phase
of a parallel multifrontal approach. Research report RT/APO/07/3, ENSEEIHT, Apr. 2007. Also
appeared as CERFACS and INRIA technical report.

[23] P. R. Amestoy, I. S. Duff, A. Guermouche, and Tz. Slavova. Analysis of the solution phase of a parallel
multifrontal approach. Parallel Computing, 36:3–15, 2010.

[24] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–
41, 2001.

[25] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal solvers within the PARASOL en-
vironment. In B. K̊agström, J. Dongarra, E. Elmroth, and J. Waśniewski, editors, Applied Paral-
lel Computing, PARA’98, Lecture Notes in Computer Science, No. 1541, pages 7–11, Berlin, 1998.
Springer-Verlag.

[26] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. MUMPS MUltifrontal Massively Parallel Solver Ver-
sion 2.0. Technical Report RT/APO/98/3, ENSEEIHT-IRIT, Toulouse, France, 1998. Also CERFACS
Report TR/PA/98/02.

[27] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501–520, 2000.

[28] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis and comparison of two general sparse
solvers for distributed memory computers. ACM Transactions on Mathematical Software, 27(4):388–
421, 2001.

[29] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Impact of the implementation of MPI
point-to-point communications on the performance of two general sparse solvers. Parallel Computing,
29(7):833–847, 2003.

[30] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, Y. Robert, F.-H. Rouet, and B. Uçar. On computing inverse
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hétérogène de stations de travail. Technical Report Rapport de stage 3ieme Année, ENSEEIHT-IRIT,
1996.

[86] C. Farhat, J. Mandel, and F.-X. Roux. Optimal convergence properties of the FETI domain decom-
position method. Comput. Methods Appl. Mech. Engrg., 115:365–385, 1994.
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