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présenté et soutenu publiquement le 25 septembre 2012.

Rapporteurs :

Tim Davis, Professeur des universités, University of Florida, Gainesville, Etats-Unis
Jocelyne Erhel, Directeur de recherche, Inria Rennes Bretagne Atlantique
John Gilbert, Professeur des universités, University of California, Santa Barbara, Etats-Unis

Jury :

Tim Davis, Professeur des universités, University of Florida, Gainesville, Etats-Unis
Iain Duff, Professeur des universités, Rutherford Appleton Laboratory, Angleterre
John Gilbert, Professeur des universités, University of California, Santa Barbara, Etats-Unis

Yves Robert, Professeur des universités, École Normale Supérieure de Lyon
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Résumé :

La résolution de systèmes linéaires creux est critique dans de nombreux domaines de la simulation
numérique. Beaucoup d’applications, notamment industrielles, utilisent des méthodes directes en raison
de leur précision et de leur robustesse. La qualité du résultat, les fonctionnalités numériques, ainsi que
le temps de calcul sont critiques pour les applications. Par ailleurs, les ressources matérielles (nombre de
processeurs, mémoire) doivent être utilisées de manière optimale. Dans cette habilitation, nous décrivons
des travaux poursuivant ces objectifs dans le cadre de la plateforme logicielle MUMPS, développée à
Toulouse, Lyon-Grenoble et Bordeaux depuis une quinzaine d’années. Le cœur de l’approche repose sur
une parallélisation originale de la méthode multifrontale : une gestion asynchrone du parallélisme, associée
à des ordonnanceurs distribués, permet de traiter des structures de données dynamiques et autorise ainsi
le pivotage numérique. Nous nous intéressons à l’ordonnancement des tâches, à l’optimisation de la
mémoire et à différentes fonctionnalités numériques. Les travaux en cours et les objectifs futurs visent à
résoudre efficacement des problèmes de plus en plus gros, sans perte sur les aspects numériques, et tout
en adaptant nos approches aux évolutions rapides des calculateurs. Dans ce contexte, les aspects génie
logiciel et transfert deviennent critiques afin de maintenir sur le long terme une plateforme logicielle
comme MUMPS. Cette plateforme est à la fois nécessaire à nos travaux de recherche et utilisée en
production ; elle maximise ainsi les retours applicatifs qui valident nos travaux et permettent d’orienter
nos recherches futures.

Mots-clés :

Matrices creuses, méthodes multifrontales, systèmes linéaires, solveurs directs, ordonnancement.

Abstract:

Direct methods for the solution of sparse systems of linear equations are used in a wide range of nu-
merical simulation applications. Such methods are based on the decomposition of the matrix into the
product of triangular factors, followed by triangular solves. In comparison to iterative methods, they
are known for their numerical accuracy and robustness. However, they are also characterized by a high
memory consumption (especially for 3D problems) and a large amount of computations. The quality of
the computed solution, the numerical functionalities and the computation time are essential parameters,
while the use of material resources (number of processors and memory usage) must be carefully opti-
mized. In this habilitation thesis, we describe some work to pursue these objectives in the context of the
sparse direct solver MUMPS, developed in Toulouse, Lyon-Grenoble and Bordeaux. The approach relies
on an original parallelization of the multifrontal method for distributed-memory machines, in which an
asynchronous management of parallelism associated with distributed scheduling algorithms allows for
dynamic datastructures and numerical pivoting. We consider task scheduling, optimization of the mem-
ory usage, and various numerical functionalities. On-going and future work aim at efficiently solving
problems that are always bigger, while maintaining numerical stability and adapting our approaches to
the quick evolutions of computer platforms: increase of the number of computing nodes, increase of the
number of cores per node, but decrease of memory per core. In this context, software engineering and
technology transfer aspects become critical in order to maintain in the long term a software package
like MUMPS. This software is both necessary to our research and widely used in industry, maximizing
feedback that validates our work and provides future work directions.

Keywords:

Sparse matrices, multifrontal methods, linear systems, direct solvers.
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Introduction

We consider the solution of

Ax = b, (1)

where A is a large sparse square matrix (typically several millions of equations), and x and b are vectors
or matrices. A and b are given and x is the unknown. Such systems of linear equations arise in a
wide range of scientific computing applications from various fields, in relation with numerical simulation:
finite element methods, finite difference methods, or numerical optimization. There are two main classes
of methods to solve such problems: direct methods, based on a factorization of A in, for example, the
form LU , LDLT , or QR; and iterative methods, in which sparse matrix-vector products are used to
build a series of iterates, hopefully converging to the solution. Direct methods are more robust and
are often preferred in industrial applications. Among direct methods, multifrontal methods build the
factorization of a sparse matrix by performing partial factorizations of smaller dense matrices. But
multifrontal methods, and direct methods in general, require a larger amount of memory than iterative
methods, because the factors of a sparse matrix have a higher density of nonzero elements than the
original matrix. Furthermore, they result in an additional computational complexity especially in three-
dimensional (3D) problems. This can be illustrated by a simple 7-point finite difference stencil for a 3D
Laplacian equation. If N is the number of discretization points in each direction, the matrix A has N3

rows and N3 columns, with about 7N3 nonzero elements. When nested dissections are used to reorder
the variables of the problem and limit the size of the factors, the number of entries in the factor matrix is
O(N4) and the number of floating-point operations for the factorization is O(N6) (see [42], for example).
As a comparison, the matrix-vector product performed at each iteration of an iterative method is O(N3).

However, thanks to the increasing capacity (storage, performance) of modern supercomputers and
thanks to significant progresses in direct methods, with robust software packages available ([3], [59],
[116], [124], . . . ), direct methods are often preferred by applications, even for 3D problems of several
millions of equations. For such systems, the size of the graph representing the dependencies between
the computations can be huge. In this context, it is critical but difficult to maintain a good numerical
stability while making use of parallelism and targetting high performance. We focus in this thesis on
robust and efficient parallel algorithms, taking into account the following objectives and constraints:

1. Large-scale high performance machines generally have their memory physically distributed. There-
fore, the message-passing paradigm should be used. In the case of SMP1 nodes or multicores, the
shared-memory paradigm can also be used at the node level or at the multicore level.

2. Matrix factorizations are much more stable when numerical pivoting is allowed. Therefore, nu-
merical pivoting should be used even in a parallel distributed environment. One difficulty with
sparse matrices is that numerical pivoting results in a modification of the task dependency graph,
which can then not be fully known beforehand. Furthermore, the stability of a pivot must be
checked against other entries in the matrix, which is not trivial because it often requires costly
interprocessor communications.

3. Architecture evolutions make it very hard or even impossible to perfectly predict the behaviour of
current computing platforms, with several levels of caches, high performance redundant networks
with a complex topology, some degree of heterogeneity between processors or at the network level,
varying load in possibly multi-user environments, etc. Furthermore, the characteristics of our graph
of tasks are not fully predictable when numerical pivoting is allowed (see previous point). Therefore,

1Symmetric Multi Processors: a uniform memory shared by the different processors in the node.
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it is worth considering adaptive approaches, with so-called dynamic scheduling. In practice, we will
show that static information could/should be used to reduce the space to be explored by the
dynamic schedulers.

4. There are often time constraints in numerical simulation. Therefore, it is critical that the algorithms
reduce the time for solution (or makespan) as much as possible on a given number of processors.

5. If the problem is large, a special attention must be paid to memory which is, if not correctly
used, a very strong limiting factor for parallel direct methods. The order in which the tasks are
scheduled has a strong impact not only on the makespan, but also on memory and unfortunately,
more parallelism often leads to more global memory used. Therefore, it is crucial to take these two
conflicting criteria into account when designing scheduling strategies for the computational tasks.

6. When memory is not large enough on the target machine, out-of-core approaches are necessary, in
which the disk is used as the next level of memory hierarchy. In that case, the algorithms must
decide what to write and when to write it. This generates I/O traffic and a special attention should
be paid to limit it.

7. Parallelism from the graph of tasks obtained (a tree in our context) is generally not sufficient, and
the largest tasks should themselves be parallelized (this has been sometimes been called mixed
parallelism [50, 66]).

1: Initialization:
2: pool ← my share of the initial ready tasks
3: while (Global termination not detected) do
4: if a message of type state information is ready to be received then
5: Receive the message (load information, memory information. . . );
6: Update the load and memory estimates of the relevant processor(s);
7: else if an application-related message is ready to be received then
8: Receive and process the message (task, data, . . . ), typically:

- reserve some workspace
- perform some computations
- decrease a counter keeping track of unmet task depenpencies
- insert a new ready task in the local pool of ready tasks
- send another application-related message
- etc.

9: else if (pool not empty) then
10: Extract a task T from the pool of ready tasks
11: if T is big then
12: Assign parts of T to other processors (sending application-related messages);
13: Process T in cooperation with the chosen processors (sending asynchronous

application-related messages);
14: end if
15: end if

{Note that state information might have been sent, depending on local load or local memory
variations}

16: end while
Algorithm 0.1: Asynchronous approach retained (simplified).

With these objectives in mind, we have designed a fully asynchronous approach [24, 26] to process the
graph of tasks during the factorization. The approach is based on message passing and the general scheme
is the one of Algorithm 0.1. A pool of ready tasks is maintained on each processor: an initial (static)
mapping defines the local pool of tasks for each processor (tasks that can start without dependency),
and a new task is inserted in one of the local pools when all its dependencies have been met. When
a task is large, some other processors are assigned to help with that task, dynamically, depending on
an estimate of the state of the other processors. Overall, there are two types of dynamic (distributed)
scheduling decisions: (i) the selection of a new ready task from the local pool, line 10; (ii) the subdivision

2



of the task and its mapping on some other processors, line 12. The processor responsible of a task will be
called master for that task, while the processors chosen dynamically to help are called slave processors.
In order for this scheme to work efficiently, two main questions must be answered, and will be discussed
later in this document:

1. How to map and schedule the tasks and which decisions should be static and dynamic?

2. How to maintain distributed estimates of the state information (memory, workload) of the proces-
sors?

Even in serial environments, scheduling is crucial and impacts the amount and locality of the tem-
porary data produced: each task produces temporary data that is consumed only when the task that
depends on it is activated. This motivates theoretical studies on the order in which a graph of tasks
should be processed to either:

• minimize the memory usage due to these temporary data, or

• minimize the I/O traffic, in the case those temporary data do not fit in the physical memory.

The work presented in this document is motivated by the needs from applications. An external use
of our algorithms on large-scale academic and industrial applications is essential to validate our research,
and to get feedback, which in turn motivates new research directions. In this context, an important
aspect of this activity consists in making available the results of research under the form of a software
package, MUMPS2, enabling users to solve new problems efficiently and accurately in various fields related
to numerical simulation. This involves activities such as software engineering, development, validation,
support and maintenance. Furthermore, each new functionality or research work has to be thought in a
global software context, and not just for one particular combination of other functionalities. For example,
the detection of null pivot rows/columns that we have recently implemented (for automatic detection of
rigid modes or for FETI-like methods [86]) should work on the internal 1D, possibly out-of-core, parallel
asynchronous pipelined factorizations, in symmetric and unsymmetric cases, including for cases where
part of the column is not available on the processor in charge of the pivot selection. Therefore, when a
new algorithm is designed and validated, a significant amount of work is needed to make it compatible
with a large range of functionalities and thus available to a large range of applications.

Historically, this work on parallel multifrontal methods in distributed environments and the associated
software developments that led to the successive versions of the research platform MUMPS were initiated
in the scope of a European project called PARASOL (Long Term Research, Esprit IV framework, 1996-
1999) and was inspired by an experimental prototype of an unsymmetric multifrontal code for distributed-
memory machines using PVM [89] developed by Amestoy and Espirat [85]. That experimental prototype
was itself inspired by the code MA41, developed by Amestoy during his PhD thesis [17] at CERFACS
under the supervision of Duff. The PARASOL project led to a first public version of the software package
MUMPS in 1999. Since then, after my arrival at INRIA in 2001, the research and developments have been
mainly supported by CERFACS, CNRS, ENS Lyon, INPT(ENSEEIHT)-IRIT, INRIA and University of
Bordeaux.

This document describes some aspects of the work of an overall project, which is the result of a team
work with many contributors over the years, and was the object of many collaborations, PhD thesis and
projects among which we can cite:

• a central collaboration with Patrick Amestoy from INPT(ENSEEIHT)-IRIT since 1996,

• the PhD thesis of Abdou Guermouche (ENS Lyon, 2001-2004), Stéphane Pralet (INPT-CERFACS,
2002-2004), Emmanuel Agullo (ENS Lyon, 2005-2008), Mila Slavova (INPT-CERFACS, 2005-
2009), François-Henry Rouet (INPT-IRIT, 2009-2012), Clément Weisbecker (INPT-IRIT, 2010-),
Mohamed Sid-Lakhdar (ENS Lyon, 2011-)

• an NSF-INRIA project (2001-2004) aiming at mixing direct and iterative methods,

• the Grid TLSE project (2002-), initially funded by the ACI-Grid programme from the French
ministry of research, then by ANR3 projects,

2See http://graal.ens-lyon.fr/MUMPS or http://mumps.enseeiht.fr.
3Agence Nationale de la Recherche.
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• an Egide-Aurora cooperation with Norway (2004),

• the Solstice project (2007-2010) funded by ANR3 programs,

• the Seiscope consortium (2006-) around Geoscience-Azur,

• contracts with industry: Samtech S.A. (2005-2006 and 2008-2010) and CERFACS/CNES (2005),

• two France-Berkeley projects (1999-2000 and 2008-2009),

• a French-Israeli “Multicomputing”project (2008-2010),

• an Action of Technological Development funded by INRIA (2009-2012),

• lots of discussions within the “MUMPS team” and informal collaborations with the academic and
industrial users of MUMPS.

The document is organized as follows. Chapter 1 presents some general background on multifrontal
methods, and provides the main principles of the approach we rely on. Chapter 2 shows how some
algorithms, features and functionalities which appear simple in a sequential environment must be adapted
in a parallel asynchronous scheme targeting distributed-memory environments. Chapter 3 discusses the
problem of task scheduling when working with a limited memory in a serial environment. Two aspects are
considered: (i) how to reduce the memory requirements of multifrontal methods? (ii) how to use the disk
as a secondary storage and minimize I/O? Chapter 4 summarizes the major evolutions of the algorithms
responsible of task mapping and scheduling in parallel distributed-memory environments. In Chapter 5,
the use of disk-storage for problems where memory is not sufficient is discussed, while Chapter 6 shows
that several other algorithmic and software bottlenecks also had to be tackled in order to process real-life
large-scale problems efficiently. Finally to conclude we give some medium-term perspectives, together
with their expected impact on applications.
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Chapter 1

General Background

In this chapter, we introduce some general concepts related to sparse direct solvers, and in particular
multifrontal methods, that will be used or referred to in this document. We first adopt a practical
point of view driven by a running example (Section 1.1) before introducing some theoretical formalism
in Section 1.2. We discuss other practical related issues in Section 1.3.

1.1 A practical example

1.1.1 Dense factorizations

Suppose that we want to solve a system of linear equations of the form Ax = b, where A is a square non-
singular matrix of order n, b is the right-hand side, and x is the unknown. We take an example where the
structure of the matrix is symmetric, and the numerical values are not, as illustrated by Equation (1.1).

2 0 0 2 1
0 1 −1 0 0
0 −1 0 −2 0
4 0 2 14 0
−6 0 0 0 −2




x1
x2
x3
x4
x5

 =


5
1
−2

6
−12

 (1.1)

In dense linear algebra, this can be done by applying a variant of Gaussian elimination. The method
first factorizes the matrix of the system (referred to as A) under the form A = LU , where L is lower
triangular with ones on the diagonal and U is upper triangular, as shown in Equation 1.2. This can
be done using Algorithm 1.1. At each step, a pivot is eliminated, the column of L is computed, and a
rank-one update is performed. Such an algorithm is said to be right-looking because after the elimination
of each pivot, we only modify the right-bottom part of the matrix, without accessing again the already
computed factors.


2 0 0 2 1
0 1 −1 0 0
0 −1 0 −2 0
4 0 2 14 0
−6 0 0 0 −2

 =


1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
2 0 −2 1 0
−3 0 0 1 1




2 0 0 2 1
0 1 −1 0 0
0 0 −1 −2 0
0 0 0 6 −2
0 0 0 0 3

 (1.2)

Once the LU factorization of A is obtained, one can solve the system Ax = b in two steps:

• The forward elimination, consisting in solving Ly = b for y. In our case we obtain y = (5, 1, −1, −6, 9)T .

• The backward substitution, consisting in solving Ux = y for x, finally leading to the solution of our
system of equations x = (1, 2, 1, 0, 3)T .

In dense matrix computations, L and U generally overwrite the matrix A, avoiding the use of additional
storage for L and U . This results in Algorithm 1.2, where in the end A has been overwritten by (L−I)+U
(the ones on the diagonal of L are not stored). If the matrix is symmetric, an LDLT factorization is
computed instead. More variants can be found in the literature, see for example [96].
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1: for i = 1 to n do
2: L(i : i) = 1

3: L(i+ 1 : n, i) = A(i+1:n,i)
A(i,i)

4: U(i, i : n) = A(i, i : n)
5: A(i+ 1 : n, i+ 1 : n) = A(i+ 1 : n, i+ 1 : n)− L(i+ 1 : n, i)×A(i, i+ 1 : n)
6: end for

Algorithm 1.1: Factorization of a dense matrix A of order n under the form LU .

1: for i = 1 to n do
2: A(i+ 1 : n, i) = A(i+1:n,i)

A(i,i)

3: A(i+ 1 : n, i+ 1 : n) = A(i+ 1 : n, i+ 1 : n)−A(i+ 1 : n, i)×A(i, i+ 1 : n)
4: end for

Algorithm 1.2: Dense LU factorization overwriting matrix A.

1.1.2 Sparse factorization and fill-in

In order to exploit the sparsity of our initial matrix A, we want to avoid the storage of and computations
on zeros. If we want to exploit the zeros of our matrix in the application of Algorithm 1.1, line 3 should
only consider the nonzero entries from the lower part of column i, that is A(i+ 1 : n, i); furthermore, the
rank-one update at line 5 should only use the nonzero entries in vectors L(i+ 1 : n, i) and A(i, i+ 1 : n).
One way to organize the operations only on nonzeros and manage the associated data structures is the
so-called multifrontal method, which will be central to this thesis and introduced in Section 1.1.3.

Obviously, except in case of numerical cancellation, if an entry aij is nonzero in the original matrix,
lij (if i > j) or uij (if j ≥ i) will also be nonzero. However, even if an entry is zero in the original
matrix A, the corresponding entry can be nonzero in the factors, and this phenomenon is known as
fill-in. This is illustrated in the example of Equation (1.2): both a45 and a54 are 0 in A but both l54 and
u45 are nonzeros in L and U , respectively1. Those nonzeros first appeared when performing the rank-one
update associated to pivot 1. In order to limit the amount of fill-in, the order in which the variables are
eliminated is critical, as explained in Section 1.1.7.

1.1.3 The multifrontal method

In the multifrontal method, instead of modifying directly the entries in A, we use dense matrices to
perform and store the rank-one updates. Let us illustrate this process for the rank-one update of the
first pivot. Starting from A we build a temporary matrix whose structure results from the nonzeros in
the first row/column (indices 1, 4 and 5 of the original matrix) as follows:

A
(145)
1 =

 2 2 1
4 0 0
−6 0 0

 (1.3)

The numbers in parentheses refer to the indices of the variables in the numbering of the original matrix.
We now perform the factorization of column 1 and the subtraction of the rank-one update inside that
dense matrix, avoiding some indirections that would arise by directly working on the sparse matrix A.

In fact, this can be viewed as the application of the first step of Algorithm 1.2 to A
(145)
1 , a dense 3 × 3

matrix. After this operation, A
(145)
1 is modified and overwritten by:

F
(145)
1 =

 2 2 1
2 −4 −2
−3 6 3

 (1.4)

The matrix in which A
(145)
1 , and then F

(145)
1 is stored is called the frontal matrix, or front, associated with

the first pivot (we also call it pivot 1): A
(145)
1 is the assembled front and F

(145)
1 is the partially factorized

1This also occurs for the diagonal element in position (3,3). However, we consider that we will not try to exploit zeros
on the diagonal.
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front. The Schur complement produced at the bottom-right part of F1, CB
(45)
1 =

(
−4 −2

6 3

)
, is

called the contribution block of F
(145)
1 associated with variables 4 and 5. It will be used later during the

factorization process, in order to update some rows and columns in the matrix before variables 4 and

5 may be eliminated. The first row and the first column of F
(145)
1 correspond to the factors associated

with variable 1: row 1 of U consists of 2, 2, and 1; column 1 of L consists of 1 (implicit), 2 and −3.
Similarly, we have for pivot 2

A
(23)
2 =

(
1 −1
−1 0

)
and F

(23)
2 =

(
1 −1
−1 −1

)
(1.5)

involving variables 2 and 3 in the numbering of the original matrix. CB
(3)
2 = (−1) is the contribution

block of F2 associated with variable 3.
Let us now define the arrowhead associated with a pivot p as the set of nonzero entries of the original

matrix A that are part of A(p : n, p) ∪ A(p, p+ 1 : n) (part of the row and column of the pivot that are
not factorized yet).

We consider the elimination of pivot 3 and extract the arrowhead of 3 to obtain the submatrix(
0 −2
2 0

)
associated with variables 3 and 4. Because the elimination of pivot 2 has an impact on

the value of pivot 3, we add into this matrix the update CB
(3)
2 due to the elimination of pivot 2 and

computed at step 2 and obtain the assembled front:

A
(34)
3 =

(
−1 −2

2 0

)
. (1.6)

The first row and first column of A
(34)
3 are said to be fully-summed because all possible updates from

previous pivot eliminations have been incorporated into them. Therefore, pivot 3 can be factorized,
leading to the factorized frontal matrix

F
(34)
3 =

(
−1 −2
−2 −4

)
and CB

(4)
3 = (−4). (1.7)

Then, notice that the elimination of pivot 4 involves variable 5 because of the fill-in coming from the

elimination of pivot 1 and available in the contribution CB
(45)
1 :

A
(45)
4 =

(
14 0
0 0

)
+ CB

(45)
1 + CB

(4)
3 =

(
6 −2
6 3

)
(1.8)

In the summation above, CB
(4)
3 is a 1 × 1 matrix only concerned by variable 4. Since variable 4

corresponds to the first variable of the resulting matrix, the unique element of CB
(4)
3 is summed at

position (1,1) of that resulting matrix.

It follows after factorization of pivot 4 in A
(45)
4 :

F
(45)
4 =

(
6 −2
1 5

)
and CB

(5)
4 = (5) (1.9)

Finally, A
(5)
5 = −2 + 5 = 3 = F

(5)
5 and the factorization is complete. A closer look at the dependencies

during this factorization shows the order of computations follows the tree of Figure 1.1. This tree is
called elimination tree [128]; we will come back to this notion later. For the moment, note that at each
node of the tree, we have computed one column of L (the diagonal element is equal to 1 and is not stored
explicitly) and one row of U . In comparison to Equation (1.1) and Algorithm 1.1, zeros are not stored
and operations on zeros have not been performed. This is at the cost of indirections during the assembly
of each frontal matrix, where for each pivot p, we had to:

• build the symbolic structure of the frontal matrix associated with p,

• assemble nonzero entries from row A(p, p : n) and column A(p + 1 : n, p) of the initial matrix,
forming the arrowhead of variable p, into Fp,
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F
(145)
1

F
(23)
2

F
(45)
4

F
(34)
3

F
(5)
5

CB
(4)
3

CB
(3)
2

CB
(5)
4

CB
(45)
1

Figure 1.1: Dependencies between pivot eliminations when applying the multifrontal method to the 5×5
matrix of Equation (1.1). Fi represents the ith frontal matrix and the ith node.

• assemble the contribution blocks CBj into Fp, for all children j of p; this operation is also called
an extend-add operation, and it requires indirections2,

• eliminate pivot p, building the pth row and pth column of the factors and (except for the last pivot
– or root) a contribution CBp used at the parent node.

1.1.4 Multifrontal solve algorithm

The solve algorithm consists in a forward elimination, where the triangular system Ly = b is solved to
obtain an intermediate right-hand side, followed by a backward substitution, where the triangular system
Ux = y is then solved to obtain the solution x. In the multifrontal method, the columns of L and the
rows of U are scattered in the elimination tree and are parts of the matrices Fi (see Figure 1.1). During
the forward elimination, the tree is processed from bottom to top. At each step, part of the solution y
is computed and the right-hand side b is then modified using the partial computed solution, as shown in
Algorithm 1.3.

for i = 1 to n do
{Work on front i}
Solve liiyi = bi for yi
for all nonzeros lki in column i of L, k > i do
{Update right-hand side of trailing subsystem: }
bk ← bk − lkiyi

end for
end for

Algorithm 1.3: Algorithm for the forward elimination. Remark that, in our case, lii is equal to one
for all i.

Applying this algorithm to our example can be decomposed as below, following the nodes of the tree:

• Node 1: y1 = b1 = 5, b4 ← b4 − l41y1 = −4, b5 ← b5 − l51y1 = 3

• Node 2: y2 = b2 = 1, b3 ← b3 − l32y2 = −1

2For example, in Equation (1.8), the + operator must be considered as an extend-add operation rather than a simple
summation.
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1

4

3

5

2 1

4

3

5

2

Figure 1.2: Graph of the example matrix A (left) and graph of the filled matrix L + U (right). Fill-in
has appeared between variables 4 and 5, corresponding to the elimination of pivot 1, then no other fill
occurs during the elimination of pivots 2, 3, 4 and 5.

• Node 3: y3 = b3 = −1, b4 ← b4 − l43y3 = −6

• Node 4: y4 = b4 = −6, b5 ← b5 − l54y4 = 9

• Node 5: y5 = b5 = 9.

Concerning the backward substitution Ux = y, the solution is first computed at the root node:
x5 = u−155 y5 = 3, then equation u44x4 + u45x5 = y4 results in x4 = 0 at node 4. x1 and x3 can then
be computed independently using the equations u11x1 + u14x4 + u15x5 = y4 and u33x3 + u34x4 = y3,
respectively associated with nodes 1 and 3 of the tree. Finally, x2 is obtained from x3 using the equation
u22x2 + u23x3 = y3 (node 2), leading to x = (1 2 1 0 3)T . The process is summarized in Algorithm 1.4.

for i = n downto 1 do
{Compute known part of equation i}
α← 0
for all nonzeros uik in row i of U , k > i do
α← α+ uikxk

end for
Solve uiixi = yi − α for xi

end for
Algorithm 1.4: Algorithm for the backward substitution.

It is important to notice that, at each step of the algorithm, only the factors at each node are used,
preserving the data organization from the factorization. The algorithm naturally extends to multiple
right-hand sides.

1.1.5 Sparse matrices and graphs

A graph G = (V,E) is associated with a matrix A with symmetric pattern in such a way that

• V = 1, . . . , n represents the list of variables of the graph, where n is the number of variables of the
matrix;

• an edge (i, j), i 6= j from i to j belongs to E if aij is nonzero. Note that edges (i, i) are not
considered.

In general, such a graph is directed. However, for matrices with a symmetric structure, one may consider
undirected edges {i,j}, together with an undirected graph. In Figure 1.2, we represent the undirected
graph associated with the matrix of Equation (1.1), together with the graph associated with the matrix
of factors (L+ U).

Following the concept of elimination graphs introduced in [138] and starting from the graph associated
with A, the rank-one update associated with each pivot results in the addition of a clique between the
nodes that were adjacent to the eliminated pivot: every two vertices among the neighbours of the pivot
become connected by an edge. In our example, the clique introduced by the elimination of pivot 1 is a
simple edge between nodes 4 and 5, corresponding to the fill between variables 4 and 5 in the factors.
This is followed by the elimination of the current pivot and its adjacent edges. Starting from the graph
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Initialization: G0 = (E0, V0) is the graph associated with A
for i = 1 to n do
Ei ← Ei−1
Add edges to Ei to make all neighbours of i in Gi−1 pairwise adjacent
Remove edges adjacent to i from Ei

Vi ← Vi−1 \ {i} = {i+ 1 . . . n}
Gi

def
= (Ei, Vi) is the elimination graph after step i

end for
Algorithm 1.5: Elimination graphs associated with the factorization of a matrix A.

of the original matrix G0 = (E0, V0), the process is described by Algorithm 1.5, where at each step, a
graph Gi is built in which variable i has been eliminated. (Remark that Gn is empty). The filled graph
is the graph G+ = (V0,

⋃n
i=0Ei)) resulting from all the fill-in that appeared during the factorization. It

is also the graph associated with the matrix of factors L+ U (see Figure 1.2, right).

The notion of elimination tree can be deduced from the graph of the filled matrix (Figure 1.2, right)
by:

• replacing undirected edges by directed edges following the order of elimination of the variables
(1 2 3 4 5), and

• suppressing unnecessary dependencies; in the example, edge 1 → 5 is suppressed because of the
existence of the edges 1→ 4 and 4→ 5. We keep the edges 1→ 4, 2→ 3, 3→ 4, 1→ 4 and 4→ 5.

In terms of graphs, remark that this corresponds to computing a so called transitive reduction of the
directed graph associated to U (or LT ). In our example, the elimination tree defined this way exactly
corresponds to the tree of Figure 1.1. In the multifrontal approach, the fact that edge 1→ 5 is suppressed

corresponds to the fact that the contributions of variable 1 on variable 5, available in CB
(45)
1 are passed

from node 1 to node 5 not directly but via node 4. In practice, computing the full filled graph and its
transitive reduction would be too costly so that other techniques must be applied (see for example [128]).

Finally, the notion of quotient graph model, first introduced for sparse symmetric matrix factorizations
by [91] is very useful to both save storage and limit the computational complexity associated with the
construction of elimination graphs. The sequence of elimination graphs is replaced by a sequence of
quotient graphs. With quotient graphs, the clique information is implicitly represented by the pivot,
which, instead of being eliminated and suppressed from the graph, becomes a special node sometimes
called element (see [19]). Each new element absorbs the already formed elements adjacent to it: the
collapsed elements together with each not yet eliminated variable form a partition of the original graph,
to which a quotient graph can thus be associated (duplicate edges are suppressed). In our example, and
starting from the graph of Figure 1.2 (left), the sequence of quotient graphs corresponding to the pivot
eliminations is obtained as follows:

1. After elimination of pivot 1, {1} becomes an element.

2. After elimination of pivot 2, {2} becomes an element.

3. After elimination of pivot 3, {3} becomes an element and absorbs {2} because there was an edge
between element {2} and variable 3; one obtains the quotient graph of Figure 1.3 (left).

4. After elimination of pivot 4, {4} becomes an element which absorbs element {3, 2} and element
{1}, that were adjacent to 4 (see Figure 1.3, right).

5. After elimination of pivot 5, {5} absorbs element {4, 1, 3, 2}.

The quotient graph model allows an efficient computation of the tree structure: each time an element
i is absorbed by an element j, j becomes the parent of i. For example, after the elimination of pivot 4,
because {4} absorbs elements {3, 2} and {1}, 4 is the parent of 1 and 3 (where 3 became the parent of
2 at the moment of building element {3, 2}).
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45 5

1

3,2
3,4

1,2,

Figure 1.3: Quotient graphs after elimination of pivots 1, 2, and 3 (left) and after elimination of pivots
1, 2, 3, and 4 (right). On the left, the fill (clique) between 4 and 5 is implicitly represented by element 1.

1.1.6 Supernodes

Still considering symmetric matrices, a supernode [41] is a contiguous range of columns in the matrix of
factors having the same lower diagonal nonzero structure. More precisely, in the graph associated with
the matrix of factors (directed graph associated with LT , or U), a supernode is such that the nodes
associated with the matrix variables form a clique and have the same outgoing edges outside the clique.
In our example, variables 4 and 5 can be amalgamated into a single supernode, leading to a 2× 2 frontal

matrix F
(45)
45 instead of the last two frontal matrices of the tree in Figure 1.1. The multifrontal method

applies as before except that:

• both the arrowheads associated with variables 4 and 5 must be copied into the frontal matrix F45;

• both variables 4 and 5 are eliminated in the frontal matrix associated with the supernode (4, 5),
instead of one variable for the frontal matrix of 4 and one variable for the frontal matrix of 5.

The notion of elimination tree is replaced by a so called assembly tree, as shown in Figure 1.4. Remark
that we could also have defined a larger supernode by amalgamating variables 1, 4, and 5, suppressing
another frontal matrix. This also illustrates that there is not a unique way to perform amalgamation
and that this process might be different to enhance vectorization and/or parallelism. At each supernode,
instead of eliminating just one variable, all the variables defined by the supernode are eliminated. In our
example, the amalgamated node was the root node, but more generally, a frontal matrix has the shape
of Figure 1.5. At each frontal matrix, fully-summed block is factorized and the non fully-summed block
(contribution block or Schur complement) is updated. The algorithms for the solve phase also naturally
extend to supernodes, working on blocks of columns of L (resp. blocks of rows of U) during the forward
(respectively backward) substitution.

F
(145)
1

F
(23)
2

F
(45)
4

F
(34)
3

CB
(4)
3

CB
(3)
2

CB
(45)
1

Figure 1.4: Dependencies between pivot eliminations when applying the multifrontal method to the
5× 5 matrix of Equation (1.1). Variables 4 and 5 have been amalgamated into a single supernode.

Working on supernodes instead of individual variables is essential in order to speed-up the compu-
tations and use high-level BLAS [72] (Basic Linear Algebra Subprograms): supernodes lead to a higher
flops to memory access ratio, and this allows a better usage of memory hierarchy and better performance
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summed

block

block

Fully summed

Contribution

block, or Schur

complement

Non fully

U

L

Figure 1.5: Frontal matrix at a node of the tree before (left) and after (right) the partial factorization
of the fully-summed block. Unsymmetric case (LU factorization).

thanks to the blocking techniques used in BLAS routines. Typically, BLAS 3 routines (TRSM, GEMM)
will be used during the factorization. During the solve stage, BLAS 2 instead of BLAS 1 (respectively
BLAS 3 instead of BLAS 2) routines will be used for a single (respectively multiple) right-hand-side
vector(s). In practice, it is also worth relaxing the notion of supernodes by amalgamating nodes that
introduce some extra computations on zeros: amalgamation reduces the amount of indirections and
increases the sizes of the matrices used in BLAS.

1.1.7 Orderings and permutations

Different strategies exist to minimize the amount of fill-in, and thus decrease the amount of computation.
Consider a permutation matrix P . The initial system Ax = b and the modified system (PAPT )(Px) =
(Pb) have the same solution x. Consider the permutation matrix P such that PAPT leads to pivots in
the order (2, 3, 4, 5, 1) (second pivot of the original matrix first, third pivot second, etc.). We thus have:

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1

 , and (1.10)

PAPT =


1 −1 0 0 0
−1 0 −2 0 0

0 2 14 4 0
0 0 2 2 1
0 0 0 −6 −2

 =


1 0 0 0 0
−1 1 0 0 0

0 −2 1 0 0
0 0 0.2 1 0
0 0 0 −5 1

×


1 −1 0 0 0
0 −1 −2 0 0
0 0 10 4 0
0 0 0 1.2 1
0 0 0 0 3


(1.11)

Notice that in that case, no fill-in occurs: the structures of L and U are included in the structure of
A (not taking into account the diagonal, for which the sparsity will never be exploited). The objective of
reordering techniques (or orderings) is precisely to find a permutation P that limits the amount of fill-in
(and number of operations). In general, minimizing the fill-in is NP-complete [166] so heuristics have to
be defined. The problem is easier seen in terms of graph, where we associate a graph to a matrix A as
explained in Section 1.1.5.

An example of local heuristic to find such a permutation, or ordering, is the minimum degree, where
at each step of Algorithm 1.5, we eliminate the pivot with smallest degree (or smallest adjacency size)
and update the current elimination graph accordingly. The use of quotient graphs allows to run in-place,
in the sense that quotient graphs do not require more storage than the initial matrix. The approximate
minimum degree (AMD [19]) and the multiple minimum degree (MMD [125]) are variants of the minimum
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degree that use such an approach to be computationally efficient. The minimum fill algorithm [134, 147]
is another local approach which attempts at eliminating at each step the pivot leading to the smallest
fill, taking into account already existing edges in the elimination graph at the current step.

For large matrices, nested dissections [92] give better orderings, because they have a more global
view of the graph. The way they work is the following: given a node separator S of the graph, and two
disconnected domains D1 and D2, the order of the variables in the permuted matrix is chosen to be D1,
D2, S. No fill can appear between D1 and D2 and the zero blocks remain during the factorization. D1

and D2 are partitioned recursively leading to a recursive block-bordered structure. Typically, once the
subgraphs are small enough, a switch to a local heuristic becomes interesting again. After the switch to
a local heuristic, the adjacency with halo variables may be taken into account [140].

There exist other heuristics. For example, the Cuthill-McKee algorithm consists in a breadth-first
search traversal of the matrix graph that limits the envelope and bandwidth of the matrix, restricting
the fill to this structure. In the breadth-first search, layers are built in such a way that there are no
connections between layer i and layer i + 2. This way, the band structure can be seen as a tridiagonal
block structure where entries in block (i, i+ 1) represent the connections between layer i and layer i+ 1.
No fill-in can occur outside this tridiagonal block structure.

METIS SCOTCH PORD AMF AMD
gupta2 8.55 12.97 9.77 7.96 8.08
ship 003 73.34 79.80 73.57 68.52 91.42
twotone 25.04 25.64 28.38 22.65 22.12
wang3 7.65 9.74 7.99 8.90 11.48
xenon2 94.93 100.87 107.20 144.32 159.74

Table 1.1: Size of factors (millions of entries) as a function of the ordering heuristic applied. Bold and
italic correspond to best and worse orderings, respectively, for each matrix.

METIS SCOTCH PORD AMF AMD
gupta2 2757.8 4510.7 4993.3 2790.3 2663.9
ship 003 83828.2 92614.0 112519.6 96445.2 155725.5
twotone 29120.3 27764.7 37167.4 29847.5 29552.9
wang3 4313.1 5801.7 5009.9 6318.0 10492.2
xenon2 99273.1 112213.4 126349.7 237451.3 298363.5

Table 1.2: Number of floating-point operations (millions) as a function of the ordering heuristic applied.
Bold and italic correspond to best and worse orderings, respectively, for each matrix.

As indicated by their name, fill-reducing heuristics target the reduction of fill-in and thus the size of
the factors. We indicate in Table 1.1 the size of the factors obtained with the following heuristics, that
will be used as representatives of the different classes (local, global, or hybrid) of orderings all along this
document:

• AMD: the Approximate Minimum Degree [19];

• AMF: the Approximate Minimum Fill, as implemented in MUMPS by P. Amestoy;

• PORD: a tight coupling of bottom-up and top-down sparse reordering methods [156];

• METIS: we use here the routine METIS NODEND or METIS NODEWND from the METIS package [120],
which is an hybrid approach based on multilevel nested dissection and multiple minimum degree;

• SCOTCH: we use a version of SCOTCH [139] provided by the author that couples nested dissection
and (halo) Approximate Minimum Fill (HAMF), in a way very similar to [141].

Another goal of fill-reducing orderings is to reduce the number of operations and the effect of the above
heuristics on the number of floating-point operations is reported in Table 1.2. Let us take the example
of an LDLT factorization with D diagonal and L lower triangular. Noting ni the number of nonzero
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elements in column i of L, the size of the factors is
∑
ni and the number of floating-point operations

is
∑

(ni + ni×(ni+1)
2 ), so that the objectives of floating-point operations and factor size reductions are

somewhat related, as can be seen in Tables 1.1 and 1.2 for matrices WANG3 and TWOTONE for
example, where METIS minimizes both the number of operations and the size of the factors. This is not
always the case, for example AMD minimizes the size of the factors for matrix TWOTONE but not the
number of operations (minimized with SCOTCH).

Note that although these heuristics mainly target the reduction of fill-in (and thus size of the factors)
and the number of operations – see Tables 1.2 and 1.1, they also have a significant impact on the shape of
the assembly tree and the parallelism (see, for example, [24]). Figure 1.6 summarizes the characteristics
of the trees resulting from different orderings.

Reordering
technique

Shape of the tree observations

AMD • Deep well-balanced tree

• Large frontal matrices on top of the
tree

AMF • Very deep unbalanced tree

• Small frontal matrices

• Very large number of nodes

PORD • deep unbalanced tree

• Small frontal matrices

• Large number of nodes

SCOTCH • Very wide well-balanced tree

• Large frontal matrices

• Small number of nodes

METIS • Wide well-balanced tree

• Large number of nodes

• Smaller frontal matrices (than
SCOTCH)

Figure 1.6: Shape of the trees resulting from various reordering techniques.

14



Matrix Structural |LU | Flops Backwd
symmetry (106) (109) Error

twotone OFF 28 235 1221 10 −6

ON 43 22 29 10−12

fidapm11 OFF 100 16 10 10−10

ON 46 28 29 10−11

Table 1.3: Effect of weighted matching algorithms on the factorization of two unsymmetric matrices with
MUMPS.

1.1.8 Preprocessing with maximum weighted matching and scalings algo-
rithms

Let us assume that A is a nonsingular matrix with an unsymmetric nonzero pattern. Let us now consider
a representation of A by a bipartite graph, where one set of nodes represents the rows and the other set
represents the columns. An edge between a row node and a column node exists only if the corresponding
entry in A is nonzero.

In that case, finding a maximum cardinality matching in the bipartite graph and permuting the
row (or column) nodes accordingly corresponds to permuting the matrix to a zero-free diagonal. Using
weighted matching algorithms allows one to obtain large values on the diagonal (by minimizing the sum
or the product of diagonal entries). This has several advantages:

• better numerical properties and improved numerical behaviour: the linear system is easier to solve
and the amount of numerical pivoting and of row/column interchanges is limited;

• more predictable data structures; in the extreme case of codes using static data structures, where
runtime pivoting is very limited or even not done, many problems cannot be solved without pre-
processing based on such column permutations;

• improved reliability of memory estimates;

• reduced amount of computations and fill-in in the factors, especially for approaches working on a
symmetrized structure, that is where an explicit zero is introduced at position i, j in cases where
aij is zero and aji is nonzero.

Duff and Koster [76, 77] provide effective algorithms together with more details on the application
and effects of such techniques to sparse Gaussian elimination. Scaling arrays can also be provided on
output of the weighted matching algorithm so that the diagonal entries of the permuted scaled matrix
are all one, and off-diagonal entries are smaller, also improving the numerical properties. The linear
system of Equation (1) becomes:

(DrAQDc)(D
−1
c QTx) = Drb,

where Dr and Dc are diagonal scaling matrices, and Q is a permutation matrix. Fill-reducing heuristics
of Section 1.1.7 can then be applied, leading to:

(PDrAQDcP
T )(PD−1c QTx) = PDrb.

We illustrate in Table 1.3 the importance of weighted matching algorithms with such scaling on the
behaviour of the MUMPS solver on two matrices. In this table, the symmetry is defined as the percentage
of nonzero elements (i, j) in the (possibly permuted) matrix for which the element (j, i) is also nonzero.
Clearly, the effect is negative when the matrix has a symmetric structure. In [78], Duff and Pralet show
how maximum weighted matching algorithms can be useful to symmetric indefinite matrices: on top of
the scaling arrays (see Table 1.4), matched entries are candidates for numerically good 2× 2 pivots – see
Section 1.3.2.2, which the fill-reducing heuristics may then take into account structurally. One way to do
that is to force those 2× 2 pivots to become supervariables. Significant improvements can be obtained,

as shown in Table 1.5 for augmented matrices of the form K =

(
H A
AT 0

)
.
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Total time Nb of entries in factors (millions)

(seconds) (estimated) (effective)
Scaling : OFF ON OFF ON OFF ON
cont-300 45 5 12.2 12.2 32.0 12.4
cvxqp3 1816 28 3.9 3.9 62.4 9.3
stokes128 3 2 3.0 3.0 5.5 3.3

Table 1.4: Influence of scaling from [78] on augmented matrices. The scaled matrix is DAD, where
D =

√
DrDc.

Total time Nb of entries in factors in Millions

(seconds) (estimated) (effective)
Compression : OFF ON OFF ON OFF ON
cont-300 5 4 12.3 11.2 32.0 12.4
cvxqp3 28 11 3.9 7.1 9.3 8.5
stokes128 1 2 3.0 5.7 3.4 5.7

Table 1.5: Influence of preselecting 2× 2 pivots (with scaling).

1.2 Theoretical formalism

This section introduces some theoretical formalism and is complementary to the previous section. Reading
it is not strictly necessary for the understanding of the rest of this document.

1.2.1 LU decomposition

Given a sparse system of linear equations Ax = b, where A = (aij)1≤i,j≤n is a sparse matrix of order n,
and x and b are column vectors, we admit that a decomposition A = LU exists if the matrix is invertible
(non-singular) even if in general it means swapping some columns. In this decomposition L is a lower
triangular matrix whose diagonal values are equal to 1 and U is an upper triangular matrix.

Matrices L and U verify: aij = (LU)ij , 1 ≤ i, j ≤ n. Considering the respective triangular structures

of L and U , we can write: aij =
∑min(i,j)

k=1 likukj . Because lii ≡ 1, we have:

{
aij =

∑i−1
k=1 likukj + uij if i ≤ j

aij =
∑j−1

k=1 likukj + lijujj if i > j
(1.12)

We deduce the following expression of the factors (remark that the notations i and k have been
swapped):

Ij

{
ukj = akj −

∑k−1
i=1 lkiuij for k = 1, . . . , j

lkj = 1
ujj

(akj −
∑j−1

i=1 lkiuij) for k = j + 1, . . . , n
(1.13)

which allows their computation by iteratively applying Ij for j = 1 to n. We present in Figure 1.7
the data involved during an iteration. Computations are performed column by column. Each column j
(terms ukj or lkj in Formula (1.13)) depends on the columns i, i = 1, . . . , j−1 (term lki in Formula (1.13)).

Depending on the properties of the matrix, the decomposition can be simplified: an LDLT decompo-
sition can be performed with a symmetric matrix and a LLT decomposition (or Cholesky decomposition)
with a symmetric positive-definite matrix. In this thesis, we will focus on the factorization step. Although
we will present results related to LU , LDLT and LLT factorizations, we will use the LU formulation
(except when stated otherwise) to present the concepts that are common to the three methods.
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Figure 1.7: Iteration I4: the elements of column 4 are updated using the elements of columns 1, 2 and 3.

1.2.2 Fill-in and structure of the factor matrices

Usually the L and U factors have more nonzero values than the original matrix A: expression (1.13)
shows that a nonzero entry lij (or uij) in the factors can appear even if aij is equal to 0, when there
exists k in {1, . . . ,min{i, j}} such that lik and ukj are nonzeros. This phenomenon is known as fill-in
and is illustrated by Figure 1.8.

a
b

c
d

e
f

g
h

i
j

fill-in

F =A =

a
b

c
d

e
f

g

h

i
j

initial matrix

Figure 1.8: Fill-in. After factorization, matrix F represents the nonzero values lij (for i > j) and uij
values (for i ≤ j). Formally, and since lii = 1, F = L+ U − I.

1.2.3 Elimination graph structures

Algorithms on the structure of sparse matrices can be viewed as operations on graphs since the structure
of a general sparse matrix is equivalent to a graph. Let G(A) be the directed graph of a sparse matrix
A (with nonzero diagonal entries) as follows. The vertex set of G(A), the graph associated with A, is
V = {1, 2, . . . , n} and there is an edge (i, j) from i to j (for i 6= j) if and only if the entry aij is nonzero.

In Gaussian elimination, the sparse structure of the factors depends on the order of elimination of
the variables. However the elimination of a column does not impact all the following columns but only
part of them, depending on their respective sparse structures. Said differently, the computation of some
columns may be independent of the computation of some other columns. The study of these dependencies
between columns is essential in sparse direct factorization as they are used to manage several phases of
the factorization [128, 93]. Formula (1.13) provides these dependencies that we express as a binary
relation → on the set of columns {1, . . . , n} in Definition 1.1:

Definition 1.1. Column j explicitly depends on column i (noted i→j) if and only if there exists some
k in {i+ 1, . . . , n} such that lkiuij 6= 0.

The transitive closure
+−→ of → expresses whether a column i must be computed before a column j:

i
+−→j if and only if column i must be computed before column j. This information can be synthesized

with a transitive reduction
−−→ of → (or of

+−→): column i must be computed before column j if and only
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if there is a path in the directed graph associated with
−−→ from i to j. This statement would be true for

any of the relations →,
+−→ or

−−→, but
−−→ presents the advantage to be the most compact way to code

this information [14].

The graph associated with
−−→ reflects some available freedom to reorder the variables without chang-

ing the sparsity structure of the factors. Because the dependencies respect the initial ordering (i→j
implies that i < j), there is no directed cycle in the graph of dependencies. A directed graph without
directed cycle is called a directed acyclic graph, or, dag for short [15]. We can thus introduce the notion

of descendant and ancestor between columns as follows: i descendant of j ⇔ j ancestor of i ⇔ i
+−→j.

Although an arbitrary directed graph may have many different transitive reductions, a dag only has one.
Thus the transitive reduction of the graph of dependencies is unique [14].

Symmetric elimination tree

In the symmetric (LLT or LDLT ) case, the transitive reduction of the graph of explicit dependencies is
a tree and is called symmetric elimination tree [155, 128]. As we will heavily rely on this property in
this thesis, we briefly provide a proof.

Lemma 1.1. For i > j, i→j if and only if lji 6= 0.

Proof. According to Definition 1.1, in the symmetric case, i→j if and only if there exists some k in
{i + 1, . . . , n} such that lkiuij 6= 0. Thus, because of symmetry, lji 6= 0 so that i→j implies lji 6= 0.
Conversely, if lji 6= 0, then ljilji 6= 0 and so lkilji 6= 0 with k = j.

Lemma 1.2. Let be i < j < k. The statements i→j and i→k imply j→k.

Proof. From Lemma 1.1, we have lji 6= 0 and lki 6= 0, which imply that lkilji 6= 0. Thus formula (1.13)
states that lkj 6= 0 (we omit the possible cases of numerical cancellation).

This lemma is illustrated in terms of matrix structure by Figure 1.9. Because of symmetry, there is
a nonzero at position i, j.

 

Fill−in

⇐ symmetry

⇒
j→

k

i→k ⇒

i

j

k

i→j ⇒

Figure 1.9: Illustration of Lemma 1.2. i→j corresponds to a nonzero element at position (j, i) (see
Lemma 1.1), or (i, j) thanks to symmetry. i→k corresponds to a nonzero at position (k, i). Then at the
moment of eliminating pivot i, the fact that both elements at position (k, i) and (i, j) are nonzero lead
to fill-in at position (k, j). Hence j→k.

Property 1.1. The transitive reduction of the graph of dependencies is a tree (if the matrix is irreducible,
a forest in general).

Proof. We have to show that there is no cycle (neither directed nor undirected) in the transitive reduction
of the considered graph. As we have already seen that there is no directed cycle (it is a dag) we suppose
to the contrary that there is an undirected cycle whose column of smallest index is i. Then there exist
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two other columns j and k (i < j < k) in this cycle such that i→j and i→k. Lemma 1.2 implies j→k.
Subsequently i→k is reduced by the pair (i→j,j→k) and cannot be part of the reduced graph. This is
a contradiction.

Figure 1.10 illustrates the different stages of the construction of the symmetric elimination tree.
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Figure 1.10: Construction of the symmetric elimination tree of the matrix presented in Figure 1.8. The
numbers define the pivot order.

Liu shows in [128] that the graph associated with→ is exactly the graph associated with the triangular
factor (G(LT )) and that the symmetric elimination tree is thus the transitive reduction of G(LT ). He
furthermore explains how to compute the structure of L (i.e., G(LT )) from the symmetric elimination
tree (i.e., the transitive reduction of G(LT )) and from the structure of the original matrix (A). The
motivation is that the structure of the elimination tree is more compact and thus most efficient to
traverse than the structure of the factor itself. Therefore, the computation of G(LT ) is enhanced by the
use of its transitive reduction which is maintained during the computation of G(LT ). In this sense, the
symmetric elimination tree characterizes the structure of the triangular factor.

Some unsymmetric methods use a symmetric pattern to handle unsymmetric matrices. The structure
of the initial matrix is symmetrized according to the structure of |A|+ |A|T : each initial structural zero
in the pattern of A that is nonzero in |A|+ |A|T is filled with a numerical zero value. These methods can
thus rely on the symmetric elimination tree too. For instance MUMPS [24, 27] is based on this approach.

Unsymmetric elimination dags

In the unsymmetric case, the transitive reduction of the graph of explicit dependencies does not corre-
spond to the graph of a special matrix involved in the decomposition. However, Gilbert and Liu have
generalized the elimination structures to the unsymmetric case in [93]. For unsymmetric matrices, in-
stead of a tree, the nonzero structure of the lower and upper triangular factors can be characterized
by two elimination dags (so called edags), that are respectively the transitive reductions of G(LT ) and
G(U). [93] also explain how to efficiently deduce the structure of the factors from these elimination dags
and from the original matrix (similarly to the structure of L that could be deduced from the symmetric
elimination tree for a symmetric matrix). Intuitively, the motivation for the use of these elimination
structures is the need to handle two factored matrices (L and U) which are structurally different yet
closely related to each other in the filled pattern. These elimination structures are used for instance in
unsymmetric methods such as the distributed memory version of SuperLU [124]. Later, Eisenstat and
Liu introduced generalizations of the elimination tree for unsymmetric matrices [83], where the notion
of edge is replaced by the notion of path to define a parent node, leading to a general framework.

Column elimination tree

Some methods aim at anticipating possible structural change due to numerical pivoting. They are based
on a so-called column elimination tree which is the appropriate analogue of the symmetric elimination tree
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that takes into account all possible partial pivoting [94]. The column elimination tree is the symmetric
elimination tree of ATA (provided that there is no cancellation in computing ATA). Note that ATA
does not need to be explicitly formed and that the column elimination tree can be computed in time
almost linear in the number of nonzero values of the original matrix A [65, 94]. For instance, the serial
version of SuperLU [65] is based on this approach.

In this thesis, we will not discuss further methods based on elimination dags or column elimination trees
but only methods based on an elimination tree defined as follows:

Definition 1.2. The elimination tree - or etree for short - will implicitly refer to:

• the symmetric elimination tree for symmetric direct methods;

• the symmetric elimination tree of the symmetrized matrix for unsymmetric direct methods with
symmetric structure.

1.2.4 Left-looking, right-looking and multifrontal methods

There are two main types of operations occurring during the factorization algorithm. Using the notations
of [69], we will call the first one Facto. It divides the part of the column below the diagonal by a scalar.
In the second one, a column updates another column. We will call this operation Update. Considering
that A is overwritten by the factors so that eventually, A = L + U − I, we more formally have the
following definitions (that stand thanks to Formula (1.13)):

• Facto(Aj): Aj(j + 1 : n)← Aj(j + 1 : n)/ajj ;

• Update(Ai,Aj): Aj(i+ 1 : n)← Aj(i+ 1 : n)− aij .Ai(i+ 1 : n);

where Aj denotes column j of A.
There are n operations of type Facto during the whole factorization, where n is the order of the

matrix. These operations have to be performed according to the dependencies of the elimination tree: the
parent node has to be processed after all its children. Said differently, Facto(Aj) has to be performed

after Facto(Ai) if j is the parent of i (i.e., if i
−−→j). And there is an effective Update(Ai,Aj) operation

between any pair of columns (i, j) such that column j explicitly depends on column i (i.e., such that
i→j). Any Update(Ai,Aj) operation has to be performed after Facto(Ai) and before Facto(Aj). We
will note Update(∗,Aj) an update of column j and Update(Ai,∗) an update from column i.

In spite of these constraints of dependency, the structure of the elimination tree still provides some
flexibility and freedom to schedule the computations, and we will see the interest of exploiting this
freedom in Chapter 3. Moreover, once the scheduling of the Facto operations is fixed, there is still some
flexibility to schedule the Update operations. Among all their possible schedules, there are two main
types of algorithms: left-looking and right-looking methods. Left-looking algorithms delay the Update
operations as late as possible: all the Update(∗,Aj) are performed just before Facto(Aj), looking to
the left to nonzero entries in row j. On the opposite, right-looking algorithms perform the Update
operations as soon as possible: all the Update(Ai,∗) operations are performed right after Facto(Ai),
looking right to all columns that need be updated. Algorithms 1.6 and 1.7 respectively illustrate
left-looking and right-looking factorizations. Note that Algorithm 1.6 exactly corresponds to applying
iteration Ij from Formula (1.13) for j = 1 to n.

for j = 1 to n do
foreach i such that i→j (j explicitly depends on i) do

Update(Ai,Aj) ;

Facto(Aj) ;

Algorithm 1.6: General left-looking factorization algorithm.

The multifrontal method [80, 81, 155, 129] is a variant of the right-looking method. The columns
are still processed one after another but the Update operations are not directly performed between the
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for i = 1 to n do
Facto(Ai) ;
foreach j such that i→j (j explicitly depends on i) do

Update(Ai,Aj) ;

Algorithm 1.7: General right-looking factorization algorithm.

columns of the matrix. Instead, the contribution of a column i to a column j (j having to be updated
by i) is carried through the path from i to j in the elimination tree. To do so, an Update operation is
performed in several steps and temporary columns are used to carry the contributions. This mechanism
makes the multifrontal method slightly more complex than the previous ones. This is why we restrict
the presentation of the method to the symmetric case. When processing a node i, some temporary
columns are used on top of Ai. These temporary columns store the contributions from the descendants
of column i and from column i itself to the ancestors. In general, not all the ancestors of column i will
have to receive a contribution but only the ones that explicitly depend on column i (columns j such
that i→j). With each such ancestor j is associated a temporary column T i

j that is used when processing

column i. These columns are set to zero (Init(T i
j )) at the beginning of the process of i. Then the

contribution stored in the temporary columns associated with any child k of i is carried into Ai and the
different temporary columns associated with i. This operation is called Assemble. If the destination
column is i, then Assemble is of the form Assemble(T k

i ,Ai) and consists in adding the temporary
column T k

i associated with child k of i from Ai. Otherwise, the destination column is a temporary
column T i

k associated with i; the Assemble operation is of the form Assemble(T k
j ,T i

j ) and consists in

adding T k
j to T i

j . Algorithm 1.8 describes the whole algorithm.

for i = 1 to n do
foreach j such that i→j (j explicitly depends on i) do

Init(T i
j ) ;

foreach k such that k
−−→i (k child of i) do

Assemble(T i
k,Ai) ;

foreach j such that j > i and k→j (j explicitly depends on k) do
Assemble(T k

j ,T i
j ) ;

Facto(Ai) ;
foreach j such that i→j (j explicitly depends on i) do

Update(Ai,T
i
j ) ;

Algorithm 1.8: General multifrontal factorization algorithm for symmetric matrices.

The symmetric multifrontal method can be described in terms of operations on dense matrices. With
each node (column) i of the elimination tree is associated a dense matrix, called frontal matrix or front,
that is usually square and that contains the union of the column Ai and the temporary columns T i

j

updated by Ai. Column Ai is the factor block of frontal matrix i; the temporary columns constitute a
contribution block that will be passed to the parent. The following tasks are performed at each node i
of the tree:

(MF-1) allocation of the frontal matrix in memory; gather entries of column i of matrix A into the first
column of the front;

(MF-2) assembly of contribution blocks coming from the child nodes into that frontal matrix;

(MF-3) partial factorization of the factor block of the frontal matrix, and update of the remaining part.

This algorithm generalizes to the unsymmetric factorization of symmetrized matrices as we now
explain. The factor associated with node i is then the arrowhead constituted by the union of column
i and row i of the frontal matrix; the contribution block is the remaining square part. Figure 1.11(a)
illustrates the association of the frontal matrices with the nodes of the elimination tree on a symmetrized
matrix. For unsymmetric multifrontal factorizations, we refer the reader to [61, 37, 84].
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Figure 1.11: Frontal matrices associated with the elimination tree (left) or to the assembly tree (right)
of the matrix presented in Figure 1.8. The black part of the frontal matrices corresponds to their factor
block and the white part to their contribution block (that has to be assembled into the parent).

Let us reconsider the three algorithms presented above (left-looking, right-looking and multifrontal
methods) according to their data access pattern. We illustrate their behaviour with the elimination tree
presented in Figure 1.12. In all three methods, the nodes are processed one after the other, following
a so called topological ordering3 In the case of the left-looking method, when the current node (circled
in the figure) is processed, all its descendants (the nodes of the subtree rooted at the current node) are
possibly accessed. More accurately, the descendants that have an explicit dependency on the current
node update it. In the right-looking method, on the contrary, all its ancestors (the nodes along the
path from the current node to the root of the tree) are possibly accessed. Again, only the nodes which
explicitly depend on the current node are actually updated. In the multifrontal method, only the children
nodes are accessed (to assemble the contributions blocks).

left-looking right-looking multifrontal

Figure 1.12: Data access pattern for the left-looking, right-looking and multifrontal methods.

The three methods (left-looking, right-looking, multifrontal) naturally generalize to supernodes. How-
ever, the term supernodal method is commonly used to refer to left-looking and right-looking methods,
rather than multifrontal methods.

Parallelism in the multifrontal method will be discussed in Chapter 4. In parallel, the left-looking
and right-looking methods generalize to the so called fan-in and fan-out approaches [112], respectively.
Early implemetations of parallel multifrontal methods are discussed by Duff [74, 75].

3A topological ordering – in the case of a tree – is an order in which parents are ordered after their children.
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1.3 Practical issues

1.3.1 Three-phase approach to solve Ax = b

Multifrontal methods, similar to direct solvers in general, generally use a three-phase approach to solve
Ax = b:

1. Analysis: the graph of the matrix is analysed, so that a fill-reducing permutation (see Section 1.1.7)
is obtained. Before that, a non symmetric permutation of the columns may also be computed, in
order to put large values onto the diagonal (see Section 1.1.8). The analysis also forecasts the
datastructures for the factorization. This requires performing a symbolic factorization, determin-
ing (relaxed) supernodes, computing an assembly tree, and partially mapping the tasks onto the
processors.

2. Factorization: the permuted matrix is factorized, under the form LU , LDLt, or LLT , depending
on the properties of the matrix; in case of numerical pivoting, the datastructures forecasted during
the analysis may be modified at runtime. The factorization is usually the most computationally-
intensive phase.

3. Solve: Triangular systems are solved to obtain a solution. Post-processing may also be applied,
such as iterative refinement and error analysis.

1.3.2 Numerical accuracy and pivoting

Because we use floating-point arithmetic, the representation of numbers is not exact and rounding errors
occur. In order to test the stability of an algorithm, the backward error analysis shows that in finite-
precision arithmetic, the relative forward error is bounded by the condition number of the linear system,
multiplied by the backward-error. It allows ([165]) to distinguish between

• an ill-posed problem, in which case the backward error can be small even if the solution is far from
the exact solution; in that case, the condition number of the system is large;

• an unstable algorithm, leading to a large backward error compared to the machine precision, even
when the condition number of the linear system is small.

When solving a linear system Ax = b, let x̃ be the calculated solution; the backward error corresponds to
the smallest perturbations ∆A and ∆b on A and b such that x̃ is the exact solution of a such a perturbed
system [146]:

err = min {ε > 0 such that ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖,
(A+ ∆A)x̃ = b+ ∆b}

=
‖Ax̃− b‖

‖A‖‖x̃‖+ ‖b‖
.

Because we are dealing with sparse matrices, we know that the zeros in A are exact zeros. In other
words, the structure of ∆A (resp. ∆b if b is sparse) is known to be the same as that of A (resp. b).
Therefore, it is possible to use the component-wise backward error defined by

ω = max
i

(
|Ax̃− b|i

(|A||x̃|+ |b|)i

)
(see, for example, [40, 114]) together with the condition number

‖ |A−1| |A| |x̃|+ |A−1| |b| ‖∞
‖x̃‖∞

,

allowing for a better approach and possibly better bounds on the forward error.
In order to avoid large backward errors in the multifrontal factorization algorithm, too small pivots

should be avoided; this is because the division by a small pivot will lead to large elements, leading
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to significant rounding errors when added to smaller numbers. The growth factor can be defined as

ρ =
maxi,j,k |a(k)

ij |
maxi,j |aij | where a

(k)
ij = a

(k−1)
ij − a

(k−1)
ik a

(k−1)
kj

a
(k−1)
kk

, i, j > k, is the value of A(i, j) at step k of Gaussian

elimination: ρ is the largest |A(i, j)| obtained during the application of Algorithm 1.2 divided by the
largest |A(i, j)| term in the original matrix. It gives an idea of the numerical problems one can expect.

In order to limit errors due to round-off, a first approach that can be applied is scaling (for example
[32, 78, 151]) because it improves the numerical properties of the matrix. If Dr and Dc are diagonal
matrices providing a row and a column scaling (respectively), the initial system Ax = b is replaced by
(DrADc)(D

−1
c x) = Drb and matrix DrADc is factorized instead of A. However, dynamic numerical

pivoting during the factorization is also crucial to limit the growth factor and obtain a stable algorithm.

1.3.2.1 Unsymmetric case

The goal of pivoting is to ensure a good numerical accuracy during Gaussian elimination. A widely
used technique is known as partial pivoting: at step i of the factorization (see Algorithm 1.2), we first
determine k such that |A(k, i)| = maxl=i:n |A(l, i)|. Rows i and k are swapped in A (and the permutation
information is stored in order to apply it to the right-hand side b) before dividing the column by the
pivot and performing the rank-one update. The advantage of this approach is that it bounds the growth
factor and improves the numerical stability.

Unfortunately, in the case of sparse matrices, numerical pivoting prevents a full static prediction of
the structure of the factors: it dynamically modifies the structure of the factors, thus forcing the use of
dynamic data structures. Numerical pivoting can thus have a significant impact on the fill-in and on the
amount of floating-point operations. To limit the amount of numerical pivoting, and stick better to the
sparsity predictions done during the symbolic factorization, partial pivoting can be relaxed, leading to
the partial threshold pivoting strategy:

Strategy 1.1. In the Partial threshold pivoting strategy, a pivot ai,i is accepted if it satisfies:

|ai,i| ≥ u× max
k=i:n

|ak,i|, (1.14)

for a given value of u, 0 ≤ u ≤ 1. This ensures a growth factor limited to 1 + 1/u for the corresponding
step of Gaussian elimination. In practice, one often chooses u = 0.1 or u = 0.01 as a default threshold
and this generally leads to a stable factorization.

It is possible to perform the pivot search on the row rather than on the column with similar stability.
This can be useful when, for example, frontal matrices are stored in row-major order (i.e., two consecutive
elements in a row are contiguous in memory). In that case, the stability check of a pivot ai,i is obtained
by replacing Equation (1.14) by:

|ai,i| ≥ u× max
k=i:n

|ai,k|. (1.15)

Furthermore, in the multifrontal method, once a frontal matrix is formed, we cannot choose a pivot
outside the square top-left part of the fully-summed block, because the corresponding rows are not
fully-summed. Figure 1.13 illustrates the candidate pivots at a given step of the factorization. If the
current pivot candidate is not large enough, other pivots should be tried in the block of candidate pivots;
sometimes, priority is given to the diagonal elements. Once all possible pivots in the block of candidate
pivots have been eliminated, if no other pivot satisfies the partial pivoting threshold, some rows and
columns remain unfactored in the front. Those are then delayed to the frontal matrix of the parent,
as part of the Schur complement. This is shown in Figure 1.14. Thus, because of numerical pivoting,
the frontal matrix of the parent becomes bigger than predicted. Furthermore, fill-in occurs because the
frontal matrix of the parent involves variables that were not in the structure of the child. A column can
be delayed several times, but the more we go up in the tree, the more it has chances to become stable
because some non fully-summed parts of that column in the child become fully-summed in the parent.

1.3.2.2 Symmetric case

The same type of approach is applied to the symmetric case. One important issue is that we want to
maintain the symmetry of the frontal matrices and of the factorization. Similarly to what is done in dense
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Figure 1.14: Frontal matrix of a child (left) and of a parent (right) when two pivots — here a and b —
are delayed from the child to the parent. Fill-in occurs in the parent. Because some non fully-summed
variables in the child — here variable c — may become fully-summed in the parent, the possibilities to
find a good pivot in the parent are increased. For example, the entry at the intersection of row c and
column a may be large enough to swap the corresponding row with row a, or the elimination of c before
a and b may result in a and b being stable pivots with respect to the pivoting criterion.
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linear algebra, two-by-two pivots are used [45, 46], so that the matrix D in the symmetric factorization
LDLT is composed of symmetric and 1× 1 and 2× 2 blocks. For example, in the factorization 0 1 1

1 0 1
1 1 0

 = A = LDLT =

 1 0 0
0 1 0
1 1 1

 0 1 0
1 0 0
0 0 −2

 1 0 1
0 1 1
0 0 1

 ,

D is composed of a 2× 2 pivot

(
0 1
1 0

)
, and a 1× 1 pivot , −2.

For symmetric matrices, partial threshold pivoting may be defined as follows:

• A 1× 1 diagonal pivot can be selected if it satisfies (1.14).

• After the adequate permutations of rows and columns, a 2× 2 pivot P =

(
ai,i ai,i+1

ai+1,i ai+1,i+1

)
is

accepted at step i if it satisfies

|P−1|
(

maxk≥i+2 |ai,k|
maxk≥i+2 |ai+1,k|

)
≤
(

1/u
1/u

)
. (1.16)

This approach is the one from the Duff-Reid pivot selection algorithm [80, 82]. It ensures a growth
factor limited to 1 + 1/u at each step of the factorization, and is as good as rook pivoting [133]. 2 × 2
pivots are often explicitly inverted during the factorization, in order to simplify the update of the columns
of the L factor.

1.3.2.3 LINPACK vs. LAPACK styles of pivoting

There are two ways to perform the row/column exchanges during the factorization, known as the LIN-
PACK style of pivoting and the LAPACK style of pivoting. Consider the example of a right-looking
LU factorization with (threshold) partial pivoting, where pivots are chosen in the column. In the LIN-
PACK [70] style of pivoting, when a pivot in the column has been chosen, the part of the rows in the
already computed L factors are not exchanged, only the rows in the current submatrix are permuted.
One obtains a series of Gauss transformations interleaved with matrix permutations that must be ap-
plied similarly during the solution stage. In the LAPACK [38] style of pivoting, all rows including the
already computed factors are permuted, so that the series of transformations can be expressed in the
form PA = LU . A clear description of those two styles of pivoting is available in [144], in section 2.1.

1.3.2.4 Static pivoting and iterative refinement

In order to avoid the complications due to numerical pivoting, perturbation techniques can be applied.
This is typically the case in approaches that require static data structures during the factorization, i.e.,
where the data structures are entirely predicted. In particular, SuperLUdist uses such an approach; at
each step, a pivot smaller than ε‖A‖ in absolute value is replaced by ε‖A‖, where ε is the machine
precision, see [123]. In practice, iterative refinement (see Algorithm 1.9) can help obtaining a solution to
the original system from the solution of the perturbed system.

r = b−Ax
repeat

Solve A∆x = r using the approximate factorization relying on static pivoting
x← x+ ∆x
r = b−Ax
ω = maxi

|ri|
(|A||x|+|b|)i

until ω ≤ ε or convergence is not obtained or is too slow
Algorithm 1.9: Iterative refinement. At each step, the component-wise backward error ω is computed
and checked.

A comparison of approaches based on static pivoting with approaches based on numerical pivoting
in the context of high-performance distributed solvers can be found in [28]. Remark that static pivoting
and numerical pivoting at runtime can be combined, as proposed in [78], also discussed in Section 2.2.4.
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1.3.3 Memory management in the multifrontal method

1 2

3

4

(a) tree A – deep

1
2

3
6

4 5

7

(b) tree B – wide

Figure 1.15: Examples of assembly trees.

Because of the dependencies of the method, the assembly tree must be processed from leaves to
roots during the factorization process, enforcing a topological order. Traditionally, the multifrontal
method uses three areas of storage, one for the factors, one to store the contribution blocks waiting to
be assembled, and one for the current frontal matrix. During the factorization process, the memory
space required for the factors always grows but the memory for the contribution blocks (we name it
CB memory) varies depending on the operations performed. When the partial factorization of a frontal
matrix is finished, a contribution block is stored and this increases the size of the CB memory; on the other
hand, when the frontal matrix of a parent is formed and assembled, the contribution blocks of the children
are used and discarded, freeing some memory. It is important to note that in a sequential environment,
the CB memory forms a stack when a postorder traversal of the assembly tree is used to visit the nodes;
a postorder is a particular topological order where the nodes in any subtree are numbered consecutively:
each time the last sibling of a family is processed, the parent node is activated, consuming the contribution
blocks on the top of the stack. To illustrate this remark, we give in Figure 1.15 two examples of assembly
trees. As is classical in many multifrontal codes, rather than relying on dynamic allocation for each small
dense matrix generated during the traversal of the tree (frontal matrix, contribution block, generated
factors), we assume here that a preallocated workspace is used, allowing for an explicit management of
memory. For more discussions on the use of such a preallocated workspace and possible optimizations,
we refer the reader to Chapter 3, Section 3.5. For the trees of Figure 1.15, the memory evolution for
the factors, the stack of contribution blocks and the current frontal matrix is given in Figure 1.16.
First, storage for the current frontal matrix is reserved (see “Allocation of 3” in Figure 1.16(a)); then,
the frontal matrix is assembled using values from the original matrix and contribution blocks from the
children nodes, and those can be freed (“Assembly step for 3” in 1.16(a)); the frontal matrix is factorized
(“Factorization step for 3” in 1.16(a)). Factors are stored in the factor area on the left in our figure
and the contribution block is stacked (“Stack step for 3”). The process continues until the complete
factorization of the root node(s). We can observe the different memory behaviours between the wide
tree (Figure 1.16(b)) and the deep tree (1.16(a)): the peak of active memory (see Figure 1.16(b)) is
significantly larger for the wide tree.

This shows that the shapes of the trees resulting from different orderings, (see Figure 1.6) will have
a strong impact on the behaviour of the stack memory and on its maximum size. Further details can
be found in [107]. Furthermore, the postorder is not unique since given a parent node, there is some
freedom to order its child subtrees. This is illustrated by the simple tree from Figure 1.17. In [126],
Liu suggested a postorder which minimizes (among the possible postorders) the working storage of the
multifrontal method; we will propose variations and extensions of his work for various objectives and
models of multifrontal methods in Chapter 3.

In parallel environments, the memory for contribution blocks no longer exactly behaves as a stack
(see [21]), because of the difficulty of ensuring a postorder while taking advantage of tree parallelism.
Attempts to better take memory into account in dynamic schedulers are proposed in Chapter 4. In
Section 4.3, the impact of the static mapping on the memory scalability is also discussed.

27



Memory

unused memory space stack memory space

factor memory space non-free memory space

1

1
1

1
1

22

1 2
3

1 2
3

1 2
3

3

1 2
3

3 4

1 2
3 4

.

.

.

1
2

.

.

.

Allocation of 3

Assembly step for 3 

Factorization step for 3

                 +

Stack step for 3

(a) Memory usage for tree A

Memory

.

.

.

.

.

.

unused memory space stack memory space

factor memory space non-free memory space

1

1

6
5

5

5

5

5

5

1
1

1
1

1

1

1

1

1

1

2

2

2

2

2

2

2

23

3

3

3

3

3

3

3

4

4

4

4

4

6

6

6

6

6

6

4

7

7

7

Active memory

(b) Memory usage for tree B
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Figure 1.17: Importance of the tree traversal: assuming that the postorder traverses the nodes left-to-
right (a parent is activated as soon as possible), the tree on the left (resp. right) leads to a maximum
number contribution blocks stored in the stack of two (resp. five).

In the rest of this thesis, we call active storage or working storage the storage corresponding to both
the stack and the current active frontal matrix.

1.3.4 Out-of-core approaches

Some applications require huge amounts of memory that sometimes exceed the physical memory available.
This may happen when large problems are factorized via direct methods (among which multifrontal
methods) on a server, on a parallel cluster or a high performance computer. Even when the initial
matrix holds in physical memory, the factors or the active storage are often orders of magnitude larger
than the initial matrix and may not fit in physical memory. If nothing is done, the application runs out-
of-memory. However, this limit can be overcome by using other units of storage like disks to extend the
main memory. Out-of-core approaches are then used, motivated by the fact that disks are much cheaper
than core memory. In a way, disks are just part of a hierarchical set of units of storage (registers, L1
cache, L2 cache, L3 cache, physical memory, disks, tapes). In fact, memory can be seen as a cache for
the disks and one may therefore wonder why the out-of-core question should be any different from the
locality questions related to the use of memory hierarchies and caches. However the differences are:

• Contrary to the data traffic between main memory and cache (except when considering special cases
such as GPGPU or special accelerators), it is possible to control the data movements between disks
and main memory.

• The amount of cache memory (usually several gigabytes) is much larger than the amount of cache
memory (in the order of megabytes). The ratio between disk storage and physical memory is often
much smaller than the ratio between physical memory and cache size.

• Letting the system use swapping mechanisms and disks usually kills performance, whereas it per-
forms a good job at managing caches.

As said in the previous section, the multifrontal approach uses several areas of storage, one of which
is constituted by the factors computed at each node of the tree. Because the factors produced are only
accessed at the solve stage, it makes sense to write them to disk first. This is the first approach that we
will study in Chapter 5 (Section 5.1), before assessing the volume of I/O necessary for the active storage
in a parallel environment (Section 5.2), as a function of the available core memory. Furthermore, in the
case of serial environments, tree traversals and postorders have a strong impact on the memory usage
(see Section 1.3.3); however they also have an impact on the I/O traffic and we will see in Chapter 3
that minimizing memory is intrinsically different from minimizing I/O.
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Chapter 2

A Parallel Multifrontal Method for
Distributed-Memory Environments

In this chapter, we present an original implementation of the multifrontal method and show the impact
of parallelism on numerical functionalities. In particular, we show how some algorithms that appear
relatively simple in a sequential context need be extended to address parallel, dynamic and asynchronous
environments. We focus on parallel multifrontal methods, and refer the reader to [112] for a more general
presentation of parallelism in other sparse direct methods. We first show in Section 2.1 how we adapted
the multifrontal method to a parallel environment. In Sections 2.2 to 2.6 we then explain how some
features or functionalities can be adapted or developed in this parallel context; we discuss the pivot
selection, the solution phase, the Schur complement and the computation of the determinant. Note that
out-of-core issues will be the object of a specific chapter (Chapter 5).

2.1 Adapting the multifrontal factorization to a parallel dis-
tributed environment

As explained in the previous chapter, the multifrontal method factorizes a matrix by performing a
succession of partial factorizations of small dense matrices called frontal matrices, associated with the
nodes of an assembly tree. A crucial aspect of the assembly tree is that it defines only a partial order
for the factorization since the only requirement is that a child must complete its elimination operations
before the parent can be fully processed. This gives a first source of parallelism, where independent
branches are allowed to be processed in parallel. Then each partial factorization is a task that can itself
be parallelized; a Schur complement (possibly distributed over the processors) is produced, that must
be assembled (assembly tasks) into the processors participating to the parent node. In our approach,
all these tasks are managed asynchronously, according to the central Algorithm 0.1, presented in the
main introduction of this thesis page 2. Furthermore, the mapping of most of the computations onto
the processors is dynamic, with distributed scheduling decisions. This allows to deal with the dynamic
nature of our tasks graphs (due to numerical pivoting), as well as with the possible load variations of
the platform.

2.1.1 Sources of parallelism

We consider the condensed assembly tree of Figure 2.1, where the leaves are subtrees of the assembly
tree. We will in general define more leaf subtrees than processors and map them onto the processors in
order to obtain a good overall load balance of the computation at the bottom of the tree. However, if we
only exploit the tree parallelism, the speed-up is usually low: the actual speed-up from this parallelism
depends on the problem but is typically only 2 to 4 irrespective of the number of processors. This poor
efficiency is caused by the fact that the tree parallelism decreases while going towards the root of the tree.
Moreover, it has been observed (see for example [21]) that often more than 75% of the computations are
performed in the top three levels of the assembly tree. It is thus necessary to obtain further parallelism
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Figure 2.1: Distribution of the computations of a multifrontal assembly tree on four processors P0, P1,
P2, and P3.

within the large nodes near the root of the tree. The additional parallelism will be based on parallel
versions of the blocked algorithms used in the factorization of the frontal matrices.

Nodes of the tree processed by only one processor will be referred to as nodes of type 1 and the
parallelism of the assembly tree will be referred to as type 1 parallelism. Further parallelism is obtained
by doing a 1D block partitioning of the rows of the frontal matrix for nodes with a large contribution
block. Such nodes will be referred to as nodes of type 2 and the corresponding parallelism as type 2
parallelism. Finally, if the root node is large enough, then 2D block cyclic partitioning of the frontal
matrix is performed. The parallel root node will be referred to as a node of type 3 and the corresponding
parallelism as type 3 parallelism.

2.1.1.1 Description of type 2 parallelism

If a node is of type 2, one processor (called the master of the node) holds all the fully-summed rows
and performs the pivoting and the factorization on this block while other processors (so called slaves)
perform the updates on the contribution rows (see Figure 2.2).

Slave 1

Slave 2

Master

Contribution 
rows

(Fully-summed rows)

Figure 2.2: Type 2 nodes: partitioning of frontal matrix.

Macro-pipelining based on a blocked factorization of the fully-summed rows is used to overlap com-
munication with computation. The efficiency of the algorithm thus depends both on the block size used
to factor the fully-summed rows and on the number of rows allocated to a slave process. During the
analysis phase, based on the structure of the assembly tree, a node is determined to be of type 2 if its
frontal matrix is sufficiently large. We assume that the master processor holding the fully-summed rows
has been mapped during the analysis phase and that any other processors might be selected as slave
processors. As a consequence, part of the initial matrix is duplicated onto all the processors to enable
efficient dynamic scheduling of the corresponding computational tasks. At execution time, the master
then first receives symbolic information describing the structure of the contribution blocks sent by its
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children. Based on this information, the master determines the exact structure of its frontal matrix and
decides which slave processors will participate in the factorization of the node. Figure 2.3 illustrates the
dynamic subdivision and mapping of type 2 nodes in the tree, where the subgraph corresponding to the
pipelined factorization is only defined at runtime. The overall graph of tasks we manage is therefore a
dynamic, distributed tasks graph.
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Figure 2.3: Illustration of dynamic definition and mapping of tasks in type 2 nodes. The tasks graph in
the middle node is a dag defined and mapped dynamically.

Further details on the implementation of type 2 nodes depend on whether the initial matrix is
symmetric or not and will be given in Section 2.1.5.

2.1.1.2 Description of type 3 parallelism

In order to have good scalability, we perform a 2D block cyclic distribution of the root node, on which a
standard dense factorization is required. We use ScaLAPACK [44] or the vendor equivalent implemen-
tation (PDGETRF for unsymmetric matrices and PDPOTRF for symmetric positive matrices1).

Currently, a maximum of one root node, chosen during the analysis, is processed in parallel. This
node is of type 3. The node chosen will be the largest root provided its size is larger than a computer
dependent parameter. One processor, the so-called master of the root, holds all indices describing the
frontal matrix.

We define the root node as determined by the analysis phase, the estimated root node. Before
factorization, the estimated root node frontal matrix is statically mapped onto a 2D grid of processors.
We use a static distribution and mapping for those variables known by the analysis to be in the root
node so that, for an entry in the estimated root node, we know where to send it and assemble it using
functions involving integer divisions, moduli, . . .

In the factorization phase, the original matrix entries and the part of the contribution blocks from the
children corresponding to the estimated root can be assembled as soon as they are available. The master
of the root node then collects the index information for all the uneliminated (or delayed, see Figure 1.14)
variables of its children and builds the structure of the frontal matrix. This symbolic information is
broadcast to all participating processors. The contributions corresponding to uneliminated variables
can then be sent by the children to the appropriate processors in the 2D grid for assembly, or directly
assembled locally if the destination is the same processor. Note that, because of the requirements of
ScaLAPACK, local copying of the root node is performed and the leading dimension of the local array
changes.

1For symmetric indefinite matrices, because no LDLT kernel is available in ScaLAPACK, we use the LU decomposition
computed by PDGETRF.
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2.1.2 Asynchronous communication issues

To enable automatic overlapping between computation and communication, we have chosen to use fully
asynchronous communications, and we rely on the Message Passing Interface (MPI [71]). For flexibility
and efficiency, explicit buffering in the user space has been implemented. The size of the buffer is equal to
a relaxed estimation of the maximum message size, computed by each processor prior to factorization2.
This estimation is based on the partial static mapping of the assembly tree and takes into account the
three types of parallelism used during the factorization. A software layer (Fortran 90 module) takes care
of sending asynchronous messages, based on immediate sends (MPI ISEND [159]). Note that messages
are never sent when the destination is identical to the source; in that case the associated action is
performed locally directly, in place of the send, slightly modifying synchronization issues: instead of
sending the message and continuing the current action, we need to perform the action that would be
done on reception straight away, which is much earlier.

When trying to send contribution blocks, factorized blocks, . . . we first check whether there is room
in the send buffer. If there is room in the send buffer, the message is packed into the buffer and an
asynchronous communication is posted. Otherwise, the procedure requesting the send is informed that
the send cannot be done. In such cases, to avoid deadlock, the corresponding processor will try to receive
messages (and will perform the associated action) until space becomes available in its local send buffer.
Let us take a simple illustrative example. Processor A has filled-up its buffer doing an asynchronous send
of a large message to processor B. Processor B has done the same to processor A. The next messages
sent by both processors A and B will then be blocked until the other processor has received the first
message. More complicated situations involving more processors can occur, but in all cases the key issue
for avoiding deadlock is that each processor tries not to be the blocking processor. The way to allow
message reception at the moment of performing a send is implemented through calls to the function
that receives and processes messages. Notice that when a message is received, the associated action can
induce another send. If the buffer is still full, we may enter deeper and deeper levels of recursive calls
until the situation stabilizes. Recursivity is a source of complication that makes the code complex. In
particular, if we detect at a deep level of recursivity that all messages from a given processor have been
received, we may need to delay some action if one of these messages is only going to be processed at the
top level of recursivity.

Another issue is that MPI only ensures that messages are non-overtaking, that is if a processor
sends two messages to the same destination, then the receiver will receive them in the same order.
For synchronous algorithms the non-overtaking property is often enough to ensure that messages are
received in the correct order. With a fully asynchronous algorithm, based on dynamic scheduling of
the computational tasks, it can happen that messages arrive “too early”. In this case, it is crucial to
ensure that the “missing” messages have already been sent so that blocking receives can be performed
to process all messages that should have already been processed at this stage of the computation. As a
consequence, the order used for sending messages is critical. To summarize, the properties that we must
ensure to avoid deadlocks in our asynchronous approach are the following:

Property 2.1. When trying to send a message, if the asynchronous send buffer is full, one must try to
receive and process any message before a new attempt to send. (If processing a message involves a send,
this implies recursivity.)

Property 2.2. If a processor P has to process messages M1 and M2, in that order, one must ensure
that M1 was sent before M2, even if M1 and M2 are sent by two distinct processors. In general, this
means that the processor sending M1 to P should do so before performing any action that may result in
M2 to be sent.

Their impact on the algorithm design will be illustrated in Sections 2.1.3 and 2.1.5 during the detailed
description of type 2 parallelism for LDLT factorization.

Remark that in Algorithm 0.1, priority is given to message reception and a new local task is extracted
from the pool of ready tasks only when no message is available on reception. The main reasons for this
choice are first that the message received might be a source of additional work and parallelism and second
that the sending processor might be blocked because its send buffer is full, in which case it is even more
critical to receive the available messages as soon as possible.

2We will see in Section 6.5 how the buffer sizes can be reduced.
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Figure 2.4: Messages involved in the assembly of a type 2 node. Although the shape of the tree is static,
the sizes of the frontal matrices depends on numerical issues (delayed rows).

2.1.3 Assembly process

An estimation of the frontal matrix structure (size, number of fully-summed variables) is computed
during the analysis phase. Because of numerical pivoting, the final structure and the list of indices in the
front is however unpredictable and it is only computed during the assembly process of the factorization
phase. This requires a message from each child node to the master of a parent node. The list of indices
of a front is then the result of a merge of the index lists of the contribution blocks of the children with
the list of indices in the arrowheads (corresponding to entries of the original matrix, see the definition of
that term in Section 1.1.3) associated with all the fully-summed variables of the front. Once the index
list of the front is computed, the assembly of numerical values can be performed efficiently.

We describe the assembly process in Figure 2.4. Let Parent be a node of type 2 with two children.
Assume that the master master P has received all symbolic information from its children: those messages
are tagged MASTER2MASTER because they are sent from a master of a child to the master of the parent.
Remark that such messages also include delayed or non-eliminated rows. Since master P has received all
its MASTER2MASTER messages for node Parent, the assembly task for Parent was inserted in the local
pool of tasks of master P. When that task is extracted (see Algorithm 0.1, the structure of the parent
is built by master P and the non-eliminated rows from the children, if any, are ordered and assembled.
Processor master P then defines the partition of non-fully summed rows of the frontal matrix into blocks,
and chooses a set of slave processors that will participate in the parallel assembly and factorization of
Parent. This choice is based on an estimate of the workload and memory load of the other processors.
In order to inform other processors that they have been chosen, Master P sends a message (identified by
the tag DESC STRIP) describing the work to be done on each slave processor. It then sends messages
(with tag MAPROW) to all processors involved in a type 1 child (none in the example of the figure) and
to all slave processors involved in type 2 children, providing them symbolic information on where to send
the rows of their contribution blocks for the assembly process. Thanks to that information, messages
containing contributions rows (tagged CONTRIB) are sent from children processors P11, P12, P21, P22,
to processors involved in the parent: P1, P2, master P. The numerical assembly (extend-add operations)
can then be performed, row by row.

As already mentioned in Section 2.1.2, the order in which messages are sent is important (see Prop-
erty 2.2). For example, a slave of master P may receive a contribution block (message CONTRIB)
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before receiving the message with tag DESC STRIP from its master. To allow this slave processor to
safely perform a blocking receive on the missing DESC STRIP message, we must ensure that the mas-
ter of the node has sent DESC STRIP before sending MAPROW. Otherwise we cannot guarantee that
DESC STRIP has actually been sent (for example, the send buffer might be full).

After the message MAPROW has been sent, the factorization of the master of the parent cannot
start before all processes involved in the children of the parent have sent their contributions. Therefore,
once the messages DESC STRIP and MAPROW have been sent, the master of inode returns in the main
loop of Algorithm 0.1 and checks for receptions or extracts new nodes from the pool of tasks. When it
detects after a reception that all CONTRIB messages it depends on have been received, the factorization
task for Parent is inserted into the pool. The pool is managed using a LIFO (or stack) mechanism, in
order to keep locality of computations and avoid too many simultaneous active tasks that would cause
memory difficulties.

The main difference between the symmetric and the unsymmetric cases is due to the fact that a
global ordering of the indices in the frontal matrices is necessary for efficiency in the symmetric case to
guarantee that all lower triangular entries in a contribution row of a child belong to the corresponding
row in the parent. We use the global ordering obtained during analysis for that, with one exception:
the delayed variables coming from the children because of numerical difficulties are assembled last in the
fully summed part of the parent in order to avoid them being used as first pivot candidates in the front of
the parent. Because of that, special care has to be taken when assembling rows/columns corresponding
to delayed variables.

Moreover, it is quite easy to perform a merge of sorted lists efficiently. If we assume that the list of
indices of the contribution block of each child is sorted then the sorted merge algorithm will be efficient
if the indices associated with the arrowheads are also sorted. Unfortunately, sorting all the arrowheads
can be costly. Furthermore, the number of fully-summed variables (or number of arrowheads) in a front
might be quite large and the efficiency of the merging algorithm might be affected by the large number
of sorted lists to merge. Based on experimental results, we have observed that it is enough to sort only
the arrowhead associated with the first fully-summed variable of each frontal matrix. The assembly
process for the list of indices of the node is described in Algorithm 2.1, whose key issue for efficiency is
the fact that only a small number of variables are found at step 4. For example, on matrix Wang3 with
default amalgamation parameter, the average number of indices found at step 4 was 0.3. During this
algorithm, a flag array is necessary; it gives for each global variable its position in the front and allows
to detect whether a variable has already been encountered at earlier steps and is zero for variables not
yet encountered. The position in the parent contained in this array is also used to inform the children of
the positions where to assemble their rows, in the “MAPROW” messages discussed earlier. In practice,
children lists of row indices are overwritten with their position in the parent. The flag array can be reset
to zero when it has been used (only the known nonzero entries are reset to zero in order to limit the
associated cost).

At the end of the algorithm, the index list of the parent front contains, in that order:

1. the fully-summed variables known statically;

2. the delayed variables coming from the children;

3. the variables in the contribution block.

Since the delayed variables may correspond to numerical difficulties, it makes sense to order them last in
the fully-summed part to avoid starting with the numerical difficulties. Referring to Figure 1.14 where no
particular order was defined, this means that we prefer to put variables a and b last in the fully-summed
block of the parent, after variable c, although this means that the global ordering is not respected on
the parent (all delayed variables should otherwise be ordered first in the front).

2.1.4 Factorization of type 1 nodes

Blocked algorithms are used during the factorization of type 1 nodes and, for both the LU and the LDLT

factorization algorithms, we want to keep the possibility of postponing the elimination of fully-summed
variables. Note that classical blocked algorithms for the LU and LLT factorizations of full matrices [38]
are quite efficient, but it is not the case for the LDLT factorization.
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Step 1: Get the list of fully summed variables of the parent supernode known statically (and sorted
according to a global ordering).
Step 2: Sort the indices of the first arrowhead, i.e., the one associated with the first fully summed
variable of the front.
Step 3: Merge the sorted lists of indices from the children and from the first arrowhead, excluding
variables from step 1.
Step 4: Build and sort variables belonging only to the other arrowheads (and not found in steps 1
or 3).
Step 5: Merge the sorted lists built at steps 3 and 4, append the resulting list to the list of fully
summed variables from step 1.

Algorithm 2.1: Construction of the indices of the frontal matrix of a parent node, symmetric case.

We will briefly compare kernels involved in the blocked algorithms. We then show how we have
exploited the frontal matrix structure to design an efficient blocked algorithm for the LDLT factorization.

Let us suppose that the frontal matrix has the structure of Figure 2.5, where A is the block of
fully-summed variables available for elimination. Note that, in the code, the frontal matrix is stored by
rows.

C

B

A

E

Figure 2.5: Structure of a type 1 node.

During LU factorization, an efficient right-looking blocked algorithm [20, 62, 73] is used to compute
the LU factor associated with the block of fully-summed rows (matrices A and C). The Level 3 BLAS
kernel DTRSM is used to compute the off-diagonal block of L (overwriting matrix B). Updating the
matrix E is then a simple call to the Level 3 BLAS kernel, DGEMM.

During LDLT factorization, a right-looking blocked algorithm (see Chapter 5 of [73]) is first used to
factor the block column of the fully-summed variables. Let Loff be the off diagonal block of L stored
in place of the matrix B and DA be the diagonal matrix associated with the LDLT factorization of the
matrix A. The updating operation of the matrix E is then of the form E ← E−LoffDAL

T
off where only

the lower triangular part of E needs to be computed. No Level 3 BLAS kernel is available to perform
this type of operation which corresponds to a generalized DSYRK kernel.

Note that, when we know that no pivoting will occur (symmetric positive definite matrices), Loff is
computed in one step using the Level 3 BLAS kernel DTRSM. Otherwise, the trailing part of Loff has
to be updated after each step of the blocked factorization, to allow for a stability test for choosing the
pivot.

To update the matrix E, we have applied the ideas used by [63] to design efficient and portable Level
3 BLAS kernels. Blocking of the updating is done in the following way. At each step, a block of columns
of E (Ek in Figure 2.6) is updated. In our first implementation of the algorithm, we stored the scaled
matrix DAL

T
off in matrix C, used here as workspace. Because of cache locality issues, the Megaflops/s

rate was still much lower than that of the LU or Cholesky factorizations. In the current version of the
algorithm, we compute the block of columns of DAL

T
off (Ck in Figure 2.6) only when it will be used

to update Ek. Furthermore, to increase cache locality, the same working area is used to store all Ck

matrices. This was possible because Ck matrices are never reused in the algorithm. Finally, the Level 3
BLAS kernel DGEMM is used to update the rectangular matrix Ek. This implies more operations but
is more efficient on many platforms than the updates of the shaded trapezoidal submatrix of Ek using a
combination of DGEMV and DGEMM kernels. Our blocked algorithm is summarized in Algorithm 2.2.
In practice, a second level of blocking for the diagonal block of Ek is applied, avoiding most unnecessary
operations in the upper-triangular diagonal block of Ek.
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Figure 2.6: Blocks used for updates of the contribution part of a type 1 node.

do k = 1, nb blocks
Compute Ck (block of columns of DAL

T
off )

Ek ← Ek − LkCk

end do
Algorithm 2.2: LDLT factorization of type 1 nodes, Blocked factorization of the fully-summed
columns.

2.1.5 Parallel factorization of type 2 nodes

Figure 2.7 illustrates the structure of a frontal matrix for the unsymmetric and symmetric cases. In both
algorithms, the master processor is in charge of all the fully-summed rows and the blocked algorithms
used to factor the block of fully-summed rows are the ones described in the previous subsection. In the
unsymmetric case, remember that partial pivoting is here done with column interchanges. This is why
it makes sense to use a partitioning by rows. In the symmetric case, a partitioning by columns could
have been envisaged in order to simplify pivoting issues; however, the load of the master processor would
then have been very large in comparison to the one of the slaves so that such a scheme would probably
be less scalable.

Slave 1

Master

Contribution 
rows

Symmetric

(2)

(1)

(3)
Slave 2

Slave 3

Master

Slave 1

Slave 3

Slave 2

Unsymmetric

Figure 2.7: Structure of a type 2 node.

In the unsymmetric case, at each block step, the master processor sends the factorized block of rows to
its slave processors and then updates its trailing submatrix. The behaviour of the algorithm is illustrated
in Figure 2.8, where program activity is represented in black, inactivity in grey, and messages by lines
between processes. The figure is a trace record generated by the VAMPIR [132] package. We see that,
on this example, the master processor is relatively more loaded than the slaves.

In the symmetric case, a different parallel algorithm has been implemented. The master of the node
performs a blocked factorization of only the diagonal block of fully-summed rows. At each block step, its
part of the factored block of columns is broadcast to all slaves ((1) in Figure 2.7). Each slave can then use
this information to compute its part of the block column of L and to update part of the trailing matrix.
Each slave, apart from the last one, then broadcasts its just computed part of the block of column of L
to the following slaves (illustrated by messages (2) and (3) in Figure 2.7). Note that, in order to process
messages (2) or (3) at step k of the blocked factorization, the corresponding message (1) at step k must
have been received and processed.

Since we have chosen a fully asynchronous approach, messages (1) and (2) might arrive in any order.
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Figure 2.8: VAMPIR trace of an isolated type 2 unsymmetric factorization (Master is Process 1).

The only property that MPI guarantees is that messages of type (1) will be received in the correct order
because they come from the same source processor. When a message (2) at step k arrives too early, we
have then to force the reception of all the pending messages of type (1) for steps smaller than or equal
to k. Property 2.2 induces a necessary constraint in the broadcast process of messages (1): if at step
k, message (1) is sent to slave 1, we must be sure that it will also be sent to the subsequent slaves. In
our implementation of the broadcast, we first check availability of memory in the send buffer (with no
duplication of data to be sent) before starting the actual send operations. Thus, if the asynchronous
broadcast starts, it will complete. Another possibility, more specific to the described algorithm, would
be to implement the broadcast in reverse order, starting with the last slaves (Property 2.2 would then
be strictly respected).

Similarly to the unsymmetric case, our first implementation of the algorithm is based on constant
row block size. We can clearly observe from the corresponding execution trace in Figure 2.9 that the
later slaves have much more work to perform than the others. To balance work between slaves, later
slaves should hold less rows. This has been implemented using a heuristic that aims at balancing the
total number of floating-point operations involved in the type 2 node factorization on each slave. As a
consequence, the number of rows treated varies from slave to slave. The corresponding execution trace
is shown in Figure 2.10. We can observe that work on the slaves is much better balanced and both the
difference between the termination times of the slaves and the elapsed time for factorization are reduced.

However, the comparison of Figures 2.8 and 2.10 shows that firstly the number of messages involved
in the symmetric algorithm is much larger than in the unsymmetric case; secondly, that the master
processor performs relatively less work than in the parallel algorithm for unsymmetric matrices.

To finish this section, let us remark that the elimination of the fully-summed rows can represent a
potential bottleneck for scalability, especially for frontal matrices with a large fully-summed block near
the root of the tree. To overcome this problem, we subdivide such nodes with large fully-summed blocks,
as illustrated in Figure 2.11. In practice, a node is split recursively as much as needed, although this
increases the number of assembly operations and volume of communication. Nevertheless, we benefit from
splitting by increasing the amount of parallelism (the amount of work performed by the master decreases).
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Figure 2.9: VAMPIR trace of an isolated type 2 symmetric factorization; constant row block sizes.
(Master is Process 1).

Figure 2.10: VAMPIR trace of an isolated type 2 symmetric factorization; variable row block sizes.
(Master is Process 1).
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Figure 2.11: Assembly tree before and after the subdivision of a frontal matrix with a large pivot block.

Forcing the mapping of the rows in a way that limits the volume of communications during the processing
of the chain is then useful, although it slightly limits the amount of dynamic scheduling decisions.
Furthermore, the assembly operations can be optimized to avoid indirections and could even be avoided
when the mapping of the rows is constrained. Another approach would consist in defining a new type of
node (type 2b, say), and design a factorization algorithm that exploits several processors assigned to the
fully summed rows of the frontal matrix. However, such a factorization algorithm may be complicated
to implement in an asynchronous environment, or would require a strong synchronization among the
processors participating to the factorizaiton of the fully summed rows. Currently, this synchronization
is done by using the parent-child dependency of the elimination tree.

2.1.6 Discussion

We aimed in this section at providing the basis of the asynchronous approach we proposed to implement
parallel multifrontal methods. We refer the reader to [27, 24] for performance analysis, more detailed
descriptions, and presentation of other features related to the software that implements this approach.
For example, it is possible to use asynchronous (or immediate) communications not only on the sender
side but also on the receiver side, significantly improving the performance [29], at the cost of slightly
complexifying the asynchronous algorithms.

Various approaches defining the way the tree is mapped onto the processors together with the dynamic
scheduling heuristics that can be used are discussed further in Chapter 4. Even with a relatively basic
partial static mapping of the master processors for each node, dynamic decisions based solely on estimates
of the workload of other processors allowed to reach a very competitive performance, as was shown in [110]
and [28]. The latter reference ([28]) includes comparisons with SuperLUdist [124], and involves its main
author.

2.2 Pivot selection

In the sequential algorithm, we use the pivot selection algorithm described in Sections 1.3.2.1 and 1.3.2.2.
In parallel distributed environments, the main difficulty comes from the fact that, because data are
distributed over the processors, it is not always possible to check the relative magnitude of a candidate
pivot against the largest value on the row or the column, which may be on distant processors, or not
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even computed yet. In order to avoid this problem, and in order to avoid the dynamic data structures
possibly resulting from pivoting, many approaches rely on static pivoting (see Section 1.3.2.4).

In the following subsections, we present the approach we have retained to handle pivoting in a parallel
or out-of-core environment, and also how singular matrices can be handled.

2.2.1 Pivoting and stability issues in a parallel asynchronous context

We explained earlier how our parallel approach is capable of delaying pivots and managing dynamic data
structures. Still, the decision of delaying a pivot is more difficult to take in parallel because part of the
pivot column may reside on a different processor. In the unsymmetric version, because we use a 1D
decomposition, we can access the complete row and check the stability of a pivot against the row. In
the symmetric case (where only the lower triangular part of the matrix is defined), some columns must
be distributed in order to have enough parallelism. This is done by what we call type 2 parallelism, and
we have to perform the partial factorization of a matrix that has the shape of Figure 2.7 (right).

Thus, neither the complete row nor the complete column are available to check for pivot stability.
In the case of a synchronous approach, a reduction operation could inform the processor responsible
for the pivot selection of the largest entry in the column. In an asynchronous approach, waiting for
the information would require a synchronization which is not affordable: in our approach, a processor
may start the partial factorization of a frontal matrix even before the other processors have finished to
assemble their share of the matrix. When the data we are interested in are assembled, it is too late to
send the information to the processor in charge of the pivot selection. An alternative approach would
consist in forcing the entire fully summed columns to be on a single processor (instead of the shape of
type 2 nodes from Figure 2.7), but this would seriously limit parallelism by forcing a too large granularity
of the task associated with the master process.

We have introduced an approach to address this issue. For each column, the idea consists in checking
the pivot against the maximal magnitudes of the contributions assembled into the column, instead of
the magnitude of the column after it is assembled and fully updated. A first study was done in [78]
and showed that this should result in a reasonable numerical behaviour on the problems tested. In
our distributed-memory approach, each child (more precisely each processor involved in a child) of the
considered node sends information about the largest magnitude of each of its columns to the processor in
charge of the pivot selection at the parent level. Note that a message had to be sent anyway, containing
the contributions. Therefore, the contribution information and magnitude information are sent in the
same message. Furthermore, only the information corresponding to columns that will be fully-summed
in the parent are sent. We use an array PARPIV to store those estimates at the parent. The size of
PARPIV is NFS, the number of fully summed variables in the front. At the construction of the front,
PARPIV(i) (1 ≤ i ≤ NFS) is initialized to the maximum arrowhead value to be assembled in column i
of the front, excluding those assembled in the master part; then each time information on a given column
i is received from a child process, PARPIV(i) is updated. When the master of the parent node factors
its frontal matrix, each pivot is checked against those maximal magnitudes before being accepted (see
the details in the algorithm of Section 2.2.4).

Table 2.1 reports on the effect of this strategy on three example problems. Serial executions are stable
numerically thanks to the availability of the full column on the processor, but we observe that parallel
executions with type 2 nodes require the mechanism that builds estimates of the magnitudes from the
contributions of the children to obtain a reasonable backward error.

Recently, this approach showed some limitations on two matrices from a French industrial group with
whom we collaborate. We have modified it in order to take into account modifications of the estimates
of the magnitude of the columns during the factorization. Those modifications can for example be based
on the growth factor observed in the pivot block of the master part. Another approach which seems
promising consists in updating PARPIV as if it was an extra row in the front: at each factorization of a
pivot F (k, k) in the frontal matrix F , the estimates can be updated as follows:

PARPIV(k+ 1 : NFS)← PARPIV(k+ 1 : NFS) + PARPIV(k)/|F (k, k)| × |F (k, k+ 1 : NFS)|. (2.1)

In the case of 2× 2 pivots, a (slightly more complicated) formula can also be obtained.
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Matrix Number Backward error and estimate
Name of MPI Number of of max in distant part of column
(origin) processes type 2 nodes without with
CONESHL 1 0 6.5× 10−13

(Samtech) 4 5 2.1× 10−11 5.5× 10−13

CONT-201 1 0 3.2× 10−9

(UFl collec.) 8 6 1.0 3.1× 10−9

CONESHL2 1 0 9.4× 10−11

(Samtech) 2 1 1.3× 10−6 1.4× 10−10

8 14 4.1× 10−2 1.3× 10−10

Table 2.1: Effect on the backward error (value of RINFOG(7) in MUMPS) of taking into account estimates
of the magnitude of elements of columns mapped on other processors. The mechanism computing such
estimates is necessary (and sufficient) to stabilize the numerical behaviour of the parallel code. No
iterative refinement. Except on problem CONESHL2 where the right-hand side was available, we used
a right-hand side vector whose entries are all equal to one.

2.2.2 Detection of null pivots and rank-revealing

When the input matrix is close to singularity, it is often useful from an application’s point of view to
detect null or tiny pivots during the factorization process. The global variable associated with the null
pivot is often of interest to the user because it may correspond to special physical properties or regions
of the mesh where there is a difficulty (e.g., too many constraints). In FETI-like methods, domains
are not always fixed so that the corresponding matrices passed to the direct solver are usually singular
(with typical deficiency 6). In some applications, the deficiency may be much bigger. The definition of a
quasi-null pivot is subjective. In practice we will say that a pivot is quasi-null if it is smaller than a given
tiny threshold, α, and if its whole row (or column) is also smaller than α. In that case, we want to isolate,
or exclude that pivot from the matrix. This can be done by setting the pivot to a huge value: after
dividing the column by this value, rank 1 updates will have no influence on the rest of the computations;
or by setting the pivot to 1 and forcing the column entries to 0. Furthermore, some pivot rows/columns
may be small enough that we can suspect a rank deficiency but large enough to have doubts. In that
case, it is usually better to avoid factoring the pivot and delaying it to the parent node (or higher in the
tree) where it will be checked again. We note β this second criterion. In the multifrontal method, pivots
smaller than β may be postponed until the root, where a more reliable rank-revealing QR factorization
can be performed. Once null pivots have been detected, one may also build a null space basis thanks
to backward solve algorithms. The right-hand side vectors are either null vectors of the root node (for
deficiencies detected with QR), or vectors composed of zeros except for a 1 at the position corresponding
to a null pivot. Exploiting sparsity during the solve phase may in that case is then of interest to reduce
the amount of computation [158].

2.2.3 Pivoting and out-of-core

We will discuss out-of-core in a Chapter 5, but assume here that we want to perform the factorization of
a frontal matrix F , writing blocks of L or U to disk in a pipelined manner, as soon as those blocks are
computed. In the LAPACK-style of pivoting (see remark of Section 1.3.2.3), one needs to permute rows
and/or columns that are already on disk. Since this is not convenient, we store this symbolic pivoting
information (of small size compared to the factors of the frontal matrix) during the factorization and
will use it later at the solution phase, after reading factors from disk. We consider that performing the
permutation explicitly is cheap compared to the cost of I/O, and this avoids complexifying too much the
solve algorithm.

2.2.4 Algorithm for pivot selection (symmetric indefinite case)

A simplified version of the pivot selection algorithm is given by Algorithm 2.3. We illustrate the pivot
selection by considering here the case of type 2 nodes involved in symmetric indefinite matrices. In type
2 nodes, only the fully summed part of the symmetric front is available on the local master processor,
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and we assume that for each column i, PARPIV(i) contains an estimate of the maximum magnitude in
F (1 : NFS, i) using the mechanism described in Section 2.2.1. The unblocked version of the algorithm is
here provided3. The selection of the 2×2 pivots at lines 20–24 corresponds to the Duff-Reid algorithm [80].
Remark the search for the maximum element at line 20: part of the search is on the column F(i + 1 :
NFS, i) below the candidate pivot i, and part is on the row F(i, k+1 : i−1) on the left of F(i, i) because
that part of the row would become part of the column after a potential swap. The candidate pivot in
this Duff-Reid algorithm is then (i, j).

If one wants to avoid dynamic data structures, it is possible to switch to static pivoting (see Sec-
tion 1.3.2.4). In our context, static pivoting can for example be useful when we want to precisely respect
the memory estimates forecasted during analysis. However, even then, it makes sense to apply standard
partial threshold pivoting with 1 × 1 and 2 × 2 pivots as much as possible, so that we only switch to
static pivoting (replacing small pivots by larger ones or accepting pivots which do not satisfy the pivoting
threshold) when no more stable pivots are available in the current front.

In case of real arithmetic, the count of the number of negative pivots (which is also equal to the
number of negative eigenvalues) can be computed by checking the sign of the chosen pivots. If a 1 × 1
pivot is negative or if the determinant of a 2 × 2 pivot is negative, then the number of negative pivots
is increased by one. If the determinant of a 2 × 2 pivot is positive, then the inertia is increased by 2 if
the sign of the diagonal elements (both necessarily have the same sign) is negative, and the inertia is not
modified otherwise.

2.3 Schur complement

In several types of applications (domain decomposition, coupled problems, reduction of the problem
on an interface), it is useful to factorize only part of the matrix and return a Schur complement matrix
corresponding to the non-factorized part. Consider the following 2×2 block factorization, where variables
defining the Schur complement are ordered last.

A =

(
A1,1 A1,2

A2,1 A2,2

)
=

(
L1,1 0
L2,1 I

)(
U1,1 U1,2

0 S

)
(2.2)

The Schur complement is S = A2,2 −A2,1A
−1
1,1A1,2. Computing a Schur complement in a multifrontal

approach can be done in the following way:

1. The ordering should force the variables of the Schur complement to be ordered last (constrained
ordering).

2. The structure of the assembly tree should be such that the variables of the Schur complement form
the last node.

3. Delayed pivots are forbidden in the children of the root, in order to preserve the structure of the
Schur.

4. The root node is assembled normally, but not factorized.

5. The root node should be returned to the user.

In certain cases, the Schur complement can be big, and may not hold in the memory of a single
processor. Even if it holds in the memory of a single processor, it makes sense to have it distributed on
the processors so that it can be efficiently used in parallel computations. For that, the Schur complement
must be assembled on the processors directly in a distributed manner. This work was first done in the
context of a collaboration, for an application involving a linear system coupling finite elements and
integral equations, and in which part of the linear system is sparse, whereas another part is dense. The
Schur complement of the sparse linear system is then used as a submatrix of the dense linear system

3In the blocked version of the algorithm, the pivot selection is limited to the variables in the current block: authorized
pivots must be in the square diagonal block of the current panel instead of the range k : NFS of the loop at line 1 and
instead of the range i + 1 : NFS of the max at line 19. Furthermore, when numerical difficulties are encountered, the
block size dynamically increases in order to avoid the situation where only unstable pivots would be available in the current
block. Thanks to this mechanism, all stable pivots in the front are eventually factorized.
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1: for i = k to NFS do
2: Fmax = max(F (i, k : i− 1), F (i+ 1 : NFS, i), PARPIV (i))
3: if Fmax < α then
4: A quasi-null pivot was found
5: PIVNUL LIST = PIVNUL LIST

⋃
global variable associated with i

6: Symmetric swap of variables i and k
7: if δ > 0 then
8: F(k,k)=sign(F(k,k)) ×δ‖A‖
9: else

10: F(k,k)=1
11: Force F(k:NFS,k)= 0
12: end if
13: Exit loop: a quasi-null pivot has been found.
14: else if Fmax > β and F(i,i) < u× Fmax then
15: Symmetric swap of variables i and k in F
16: Swap PARPIV(i) and PARPIV(k)
17: Exit loop: a new pivot can now be eliminated
18: else
19: {Pivot i cannot be eliminated alone; try to find a 2× 2 pivot}
20: Let j be such that F (j, i) = maxj=i+1:NFS F (j, i) (or F (i, j) = maxj=k+1:i−1 F (i, j) if larger)
21: if (i, j) forms a stable 2× 2 pivot (see condition (1.16)) then
22: Symmetric swap moving variables i, j at positions k, k + 1 in F
23: Swap PARPIV(i) and PARPIV(k), PARPIV(j) and PARPIV(k + 1)
24: Exit loop: a new 2× 2 pivot can be eliminated
25: else
26: No pivot was found including i; try next iterate
27: end if
28: end if
29: end for
30: if a quasi-null pivot was found or a 1× 1 pivot can be eliminated then
31: Eliminate 1× 1 pivot i (now at position k)
32: Update PARPIV(k + 1 : NFS) (see Equation (2.1))
33: k ← k + 1
34: else if a 2× 2 pivot can be eliminated then
35: Eliminate 2× 2 pivot i, j (now at position k, k + 1)
36: Update PARPIV(k + 2 : NFS)
37: k ← k + 2
38: else
39: No stable pivot was found in entire loop. Delay variables k : NFS to parent node or enable static

pivoting to pursue the factorization.
40: end if

Algorithm 2.3: Selection of a new pivot k in a symmetric front F of size N × N with NFS fully-
summed variables, unblocked algorithm. The front is assumed to be distributed in such a way that
the NFS × NFS first block is on the local processor, and the N − NFS last rows are on other
processors. PARPIV (1 : NFS) contains an estimate of the maximum magnitudes of the columns of
F (NFS + 1 : N, 1 : NFS) the columns of the front, as explained in Section 2.2.1. We assume that
k − 1 pivots have been eliminated already and that we are looking for the kth one. Static pivoting is
assumed to be off. u is the threshold for relaxed partial pivoting, α and β are the criteria defined in
Section 2.2.2 for small pivot detection and for delaying pivots, respectively.
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that can be solved using, for example, ScaLAPACK [53]. The main difficulties concern the interface,
the constraints on the various orderings, the need to write directly into user-allocated workspaces, not
counting the 2D block cyclic assembly of children contributions that are communicated from processes
using 1D data distributions. Remark that (see point 3 above), because the Schur complement memory
is provided by the application, the possibility to delay pivots is switched off in the children of the root
because there would be no place to store them. However, this is mainly an interface problem because
such mechanisms are available for type 3 nodes when the root node must be factorized by the solver,
instead of being returned in the interface. Concerning the solve phase, only the solution on the internal
problem is available (see Section 2.5 for more advanced functionalities), that is, the root node is excluded
from the forward elimination algorithm, and a 0 vector is used on entry to the backward substitution
algorithm as the solution on the root node.

2.4 Solution phase

Given a linear system Ax = b and an LU decomposition of the matrix A, the solution phase consists of a
forward elimination followed by a backward substitution, involving matrices L and U , respectively: The
forward elimination consists in a triangular solve on L, processing the nodes of the tree from bottom
to top, and the backward substitution consists in a triangular solve on U , starting from the solution
on the root node, and passing it to all children nodes until the bottom of the tree to compute the
solution corresponding to the fully summed variables at each node. The multifrontal triangular solution
algorithms were presented in Section 1.1.4. In this section, we generalize those algorithms to supernodes
and to a parallel distributed environment using an asynchronous approach to parallelism. The new
algorithms take advantage of both tree and node parallelism by inheriting the mapping and the Type 1,
Type 2 and Type 3 nodes from the factorization phase.

Let us first consider the forward elimination. A lower triangular factor at a generic node of the
tree has the following shape:

HH
HHHL11

L21

A solve on L11 is first performed, and the result is multiplied on the left by L21 and used as a
contribution for the parent node. This can be simply interpreted as a generalization of Algorithm 1.3 for
supernodes. In Algorithm 1.3, L11 was just the scalar l11, and L21 was just one column. In our parallel
distributed-memory environment, the algorithm for the forward elimination becomes Algorithm 2.4.
This algorithm was first described in [26], and was initially inspired by [85]; we also recommend [158]
which contains more explanations and illustrations. For the sake of clarity, Algorithm 2.4 is simplified
compared to actual implementations. For example, when Myid and Pparent are the same processor, no
message is actually sent so that the actions that would be performed on reception are performed locally,
directly. Also, in the case of delayed pivots, the master of a node owns some rows of L21 corresponding
to the pivots that are delayed to the parent, implying some computations and communications related
to Wtmp2. We have omitted those, and also do not discuss the fact that the root node may be processed
using ScaLAPACK. Finally, the algorithm is presented in the case of a single right-hand side vector.

The main loop of the forward elimination algorithm (lines 6 to 13 is asynchronous, similar to the
factorization algorithm (Algorithm 0.1). All sends are asynchronous (use of the MPI ISEND routine) and
a cyclic communication buffer is also used. When a communication buffer is full, no sends are possible,
and the associated processor can receive any message before trying to send again, avoiding deadlocks
(see also Property 2.1).

The main workarray in the algorithm is Wb, of size n, the order of the matrix. At line 5 of the
algorithm, the right-hand side b is distributed into the Wb local vectors of size n (the order of the
matrix), which are such that:{

(1) Wb(i) = b(i), if variable i is part of the pivot block of a front mapped on Myid;

(2) Wb(i) = 0, otherwise.
(2.3)
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1: Main Algorithm (forward elimination):
2: {Input: the right-hand side b, on processor 0}
3: {Output: Wb, on all processors}
4: Initialize a pool with the leaf nodes mapped on Myid
5: Communicate and store into Wb the entries of the right-hand side b corresponding to variables in

the pivot block of nodes mapped on Myid (scatter)
6: while Termination not detected do
7: if message is available then
8: Process the message
9: else if pool is not empty then

10: Extract a node N from the pool
11: Fwd Process node( N )
12: end if
13: end while
14:

15: Fwd Process node(N )
16: {L11 and L21 are the L factors of N }
17: {Pparent is the process owning the master of the parent of N }
18: Wtmp1← Entries of Wb corresponding to fully summed variables of N
19: Wtmp1← L−111 ×Wtmp1 (or UT

11 ×Wtmp1).
20: Store entries of Wtmp1 back into Wb (scatter).
21: Gather in Wtmp2 entries of Wb corresponding to row indices of L21

22: Reset the corresponding entries of Wb to zero.
23: if N is of Type 1 then
24: Wtmp2 = Wtmp2− L21 ×Wtmp1
25: Send the resulting contribution (Wtmp2) to Pparent
26: else if N is of Type 2 then
27: for all slave Islave of N do
28: Send Wtmp1 together with the rows of Wtmp2 corresponding to rows of L21 owned by Islave

to the process in charge of Islave
29: end for
30: end if
31:

32: On reception of Wtmp1 + rows of Wtmp2 by a slave
33: Multiply rows of L21 owned by the slave by Wtmp1 and subtract the result from the received rows

of Wtmp2
34: Send the resulting contribution to Pparent
35:

36: On reception of a contribution corresponding to N by Pparent
37: Assemble the contribution into Wb (Scatter)
38: if all contributions for node N have been received by Pparent then
39: Insert parent of N into the pool
40: end if

Algorithm 2.4: Forward elimination algorithms.
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Wb is then used to store temporary data (accumulated contributions of the form −lijyj) during the
forward elimination, avoiding the use of a stack as was done in the factorization algorithm. At line 20
of the algorithm, Wb is also used to store the solution vector Wtmp1 associated with the fully summed
variables of the current node, so that after the forward elimination is complete, the (distributed) Wb(i)
entries corresponding to condition (1) above hold the solution y of Ly = b.

In case of type 2 nodes, the L21 factor is distributed over the slave processors, so that the master
first sends (line 28) the solution Wtmp1 together with partial contributions for the slaves to perform
the matrix-vector product (line 33). The slaves do not answer to the master but send the contribution
directly to the parent node (line 34), avoiding an extra message and the need for the master to wait for
an answer from its slave.

Coming back to Wb, it is important to note that when the contributions stored in Wb are consumed
and sent to a parent node (via array Wtmp2), the corresponding entries must necessarily be reset to zero
(line 22 of the algorithm). Otherwise, some contributions might be sent a second time, at a different
node, leading to a wrong algorithm.

Let us now consider the backward substitution. At each node, factors have the shape:

H
HHHH

U11 U12 ,

where U12 might be distributed over several processes in the case of a type 2 node4. During the
backward substitution algorithm, the tree is processed from top to bottom and each node requires the
entries of the solution vector corresponding to column indices of U12. Since those are included in the
structure of the parent node, a sufficient condition to know the required entries is to inherit from the
entries of the solution vector corresponding to the entire set of column indices of the parent node.

At each step of Algorithm 2.5, the local solution x2 corresponding to columns of U12 is thus available
and the solution x1 corresponding to column variables of U11 are computed; y1 is the part of the right-
hand side corresponding to variables of U11 and comes from the Wb array computed during the forward
elimination phase (line 18 of the algorithm). With these notations, the system that must be solved at
each node is U11x1 = y1 − U12x2 (at the root, U12 and x2 are empty), where both x1 and x2 are then
sent to the children nodes, although each child only requires parts of them.

Throughout the algorithm, Wsol is used to save parts of the solution, with the property that the
solution for variable i will at least be available in Wsol(i) on the processor in charge of the pivot
block containing i. For type 2 nodes, we see in the algorithm that the slave does a matrix-vector
product (matrix-matrix in case of multiple right-hand sides) and sends the result back to the sender,
implying more communications than in the forward elimination algorithm where slaves do not have to
send anything back to their master.

Algorithms 2.4 and 2.5 can be adapted to different contexts:

• When there are multiple right-hand sides, they can be processed by blocks (block size typically
between 16 and 128), so that Wb and Wsol are allocated once and with a number of columns
equal to the block size. This allows for a good efficiency of the level 3 BLAS routines TRSM and
GEMM, while avoiding a huge, possibly unaffordable, workspace for Wb and Wsol if only one block
were used. The sketch of the approach is given by Algorithm 2.6, where the loop on the blocks is
external to both the forward and backward elimination algorithms.

• In an out-of-core context, factors must be read from disk with prefetching mechanisms and an
adapted scheduling [23].

• In the case of sparse right-hand sides, entries must be distributed into Wb while respecting the
condition 2.3 above; furthermore, tree pruning can be used to avoid computations on zeros during
the forward elimination. For example, if all variables of the right-hand side corresponding to fully
summed variables in a given subtree are zero, that subtree can be excluded from the computations
in Algorithm 2.4. Furthermore, if the matrix is reducible, and if the right-hand side is 0 for all
entries corresponding to fully summed variables in one of the blocks, the forest can be pruned in
both the forward and the backward elimination.

4Actually, during an unsymmetric factorization, U21 is always on the master and is not distributed. However, if AT x
is to be solved, or in case of an LDLT factorization, LT

21 can be distributed over several slave processors. To simplify the
presentation, we only mention U12 and consider that U12 may be distributed on the slaves in the backward substitution.
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1: Main Algorithm (backward substitution):
2: {On input: Wb is the vector obtained on output from Algorithm 2.4}
3: {Output: Wsol}
4: Initialize the pool with the roots mapped on Myid
5: while Termination not detected do
6: if message is available then
7: Process the message
8: else if pool is not empty then
9: Extract a node N from the pool

10: Bwd Process node(N )
11: end if
12: end while
13: Gather solution from Wsol arrays to the host (or keep it distributed) in order to return it to the

user
14:

15: Bwd Process node(N )
16: x2 ← known entries of solution corresponding to columns of U12 (gather from Wsol)
17: if N is of type 1 then
18: y1 ← entries of Wb corresponding to variables in the pivot block U11 (gather, row indices)
19: Solve U11x1 = y1 − U12x2 for x1
20: Save x1 in Wsol (scatter)
21: Send partial solution x1, x2 to masters of children nodes (only one send per destination process)
22: else if N is of type 2 then
23: Send (distribute) entries of x2 to the slaves, according to their structure
24: end if
25:

26: On reception of x1, x2, sent by the master of node N
27: Update my view of the solution (scatter into Wsol)
28: Insert children of N mapped on Myid into the local pool
29:

30: On reception of parts of x2 by a slave of N
31: Multiply the part of U12 mapped on Myid by the piece of x2 just received
32: Send the negative of the result back to the master process of N
33:

34: On reception of a portion of −U12x2 from a slave by a master for node N
35: Scatter and add it into Wb
36: if this is the last update (all slaves sent their part) then
37: y1 ← entries of Wb corresponding to variables in the pivot block U11 (gather, row indices)
38: Solve U11x1 = y1 for x1
39: Save x1 in Wsol (scatter, using column indices of U11)
40: Send partial solution x1, x2 to masters of children nodes
41: end if

Algorithm 2.5: Backward substitution algorithms.

Allocate Wb and Wsol of size b× n
for i=1 to nbrhs by steps of b do
ibeg ← i
iend← min(ibeg + b− 1, nbrhs)
On each processor, initialize Wb with entries of the right-hand sides in columns ibeg : iend
(one-to-all communications to ensure property 2.3
Wb← result of forward elimination (Algorithm 2.4)
Wsol← result of backward elimination (Algorithm 2.5)
Store Wsol back into user workspace in columns ibeg : iend

end for
Algorithm 2.6: Forward and backward eliminations by blocks. b is the block size, n is the order of
the matrix, nbrhs is the total number of right-hand sides.
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• Similar to the sparse right-hand side case, if only selected entries of the solution are requested, the
complexity of Algorithm 2.5 can be reduced by excluding computations on subtrees where none of
the variables of the solution are of interest to the user.

• For applications requiring the computation of a set of entries of the inverse, the tree can also
be pruned, both during forward and backward elimination: (A−1)ij is obtained by computing
x = L−1ej , exploiting the sparsity of the jth canonical vector ej , then obtaining the ith component
of U−1x, exploiting the sparsity of requested entries of the solution. Pruning the tree is even more
important in an out-of-core context, where the access to the factors is far more critical than in an
in-core context. When several entries of the inverse are requested, it is interesting to group them
in blocks that will follow similar paths in the tree. A detailed study is available in [30].

• In case null pivots have been isolated during the factorization, a null space basis can also be
computed with the backward substitution algorithm 2.5. Wb is initialized directly on entry to the
backward step with one nonzero element per column, which can be the value δ of Algorithm 2.3,
or simply 1 if in Algorithm 2.3, it was decided to replace the pivot by 1 and set the column to
0. Algorithm 2.5 is applied with those vectors on input. Remark that this strategy works for
symmetric matrices, but not for unsymmetric matrices, where null pivots would need to be at the
end for this approach to provide a correct null space basis.

• In case of Schur complement, it can be useful to return an intermediate solution corresponding to
the variables of the Schur complement between the forward and the backward substitutions. This
will be discussed in Section 2.5.

• When solving large problems with multiple right-hand side vectors, the workspace for Wb and
Wsol may become problematic in terms of memory. A modified algorithm that builds over the one
of Section 2.5 together with several optimizations is discussed in Section 6.4.

2.5 Reduced/condensed right-hand side in solve phase

In this section, we explain the work done to provide a new reduced-right-hand side functionality and
present some modifications to the solve algorithm which, although motivated by this new functionality,
are useful in a more general context.

Related to the Schur complement functionality, a strong need appeared from the applications which
consisted in separating the forward and backward solution phases, in order to return an intermediate
right-hand side vector of smaller size (reduced right-hand side, or condensed right-hand side) in-between.
The solution on the interface is computed externally and may be injected back in the backward solution
step of the solver to obtain the solution on the complete problem:

• Reduction/condensation phase: An intermediate vector y =

(
y1
y2

)
is computed, such that

(
L1,1 0
L2,1 I

)(
y1
y2

)
=

(
b1
b2

)
. (2.4)

y2, the so called Reduced right-hand side, or Condensed right-hand side, is returned to the user
application.

• The linear system involving the Schur complement must then be solved. In the simplest case, this
is just Sx2 = y2 but in general, x2 and y2 are just part of much larger problem. For example, in
domain decomposition methods, x2 and y2 correspond to a subset of variables of a much larger
interface problem because each domain leads to a local Schur complement; the interface problem
indeed looks like

∑
SkX =

∑
yk2 , y2 is one of the yk2 , S is the corresponding Sk and x2 is the part

of X concerned by the interface variables of domain k.

• Expansion phase:

Given x2, compute x1 = U−111 (y1 − U12x2): the solution x2 is expanded to obtain the solution on
the internal variables.
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The condensation and expansion phases are performed using Algorithms 2.4 and 2.5, respectively. As
for the factorization with a Schur complement, the root node which corresponds to the Schur complement
receives a special treatment. During the forward elimination, Fwd Process node in Algorithm 2.4 is
avoided for the root node corresponding to the Schur complement and at the end, Wb contains the
vectors y1 and y2. On entry to the backward substitution, x2 which is built externally must be provided,
and most of the treatment from the routine Bwd Process node in Algorithm 2.5 must be avoided: x2
will be sent to the children of the root. At the end of the backward substitution, Wsol contains both x1
and x2.

However, other modifications are required to manage workspace efficiently in a parallel distributed
environment. First, remark that in the previous algorithms, Wb and Wsol are temporary workspaces
needed5 on all processes. They are of size n (multiplied by the blocking factor for multiple right-hand
sides, in case of multiple right-hand sides), where n is the size of the initial matrix A. On exit from the
solve phase, both Wb and Wsol are freed but in case of a separate forward and backward step, all the
Wb workarrays from the forward eliminations (see Algorithm 2.6) would have to be kept between the
forward and backward stages.

In case of multiple right-hand sides, keeping Wb in memory for all the columns and all the blocks
becomes problematic from the memory point of view, as illustrated by the following example: let us
consider a problem with 1 million equations and 10000 right-hand sides processed by blocks of 16 columns
, using 100 processors. Normally, Wb and Wsol are the same workspace for all the blocks so that in double
precision arithmetic, the workspace for Wb represents 100 × 16 × 1 million × 8 bytes per entry = 12.8
GigaBytes, or 128 MB per processor, which remains reasonably small. In order to keep Wb for all 10000
columns between the reduction and the expansion phases, that is, in order for Algorithm 2.5 to apply
with 10000 intermediate right-hand side vectors y on input, the required workspace for Wb would be
100×10000×1 million ×8 = 8 TeraBytes, which is clearly less affordable! This means that the workspace
for y1 must remain much smaller. One solution would consist in centralizing the useful information of Wb
on just one processor after each block of right-hand sides, but this would require lots of communications
and could still be a memory bottleneck for that processor. A more natural solution consists in keeping
the intermediate right-hand sides distributed.

For that, Algorithm 2.4 has been modified as follows:

• We introduce a new workspace WRHS which scales with the number of processes and contains,for
each process, only the entries corresponding to the pivot blocks of the fronts mapped on this
process. In case of type 2 node, only the master is concerned with those variables and is in charge
of it: slave processors never update WRHS. In case of multiple right-hand sides, the number of
columns of WRHS is either equal to the block size (if the blocking is outside both the forward and
the backward stages), or equal to the total number of columns, if all intermediate right-hand sides
must be kept between the forward and backward stages, as required by this reduced-right-hand
side functionality.

• On each process, an indirection array POSinWRHS is precomputed to obtain, for each node of the
tree, its position in WRHS. By its position, we mean the location of the variables of the pivot block
associated with the node. The size of POSinWRHS is the number of nodes in the tree: we do not need
an indirection for each single variable. Instead, for a node N , POSinWRHS(N) gives the position
of the first variable in the pivot block of node N , and we know that the other ones are stored
contiguously. Notice that in case of multiple right-hand-sides, processed by blocks, POSinWRHS

needs to be computed only once for all blocks.

• The workarray Wb is still there to hold the intermediate contributions. The same workarray Wb
can be reused for each block, in case of multiple right-hand sides.

• At line 19, instead of storing the result in Wtmp1, the result of L−111 ×Wtmp1 is stored in the
appropriate contiguous locations of WRHS, starting at position POSinWRHS(N).

• On exit from the forward stage, Wb is freed.

5In the symmetric case, Wb and Wsol could be the same workspace, however, in the unsymmetric case, because of
off-diagonal pivoting issues possibly leading to unsymmetric lists of indices inside each front, it is not immediate to have a
single workspace for both Wb and Wsol.
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Concerning the backward substitution, Wb is not used anymore. Instead, the intermediate solution
y is obtained directly from WRHS at each node. This involves the following modifications:

• At lines 18 and 37, y1 is obtained using the entries (or rows) of the right-hand side available in
WRHS (instead of Wb), starting at position POSinWRHS(N ). Remember that the entries (or rows, in
case of multiple right-hand side) corresponding to the pivot block variables are contiguous in WRHS.

• Line 35 becomes “Add it into WRHS, starting at position POSinWRHS(N)”.

Remark that the above modifications (introduced in MUMPS 4.7) are useful not only for reduced right-
hand functionality, but also for the general solve algorithm: the backward solve no more requires Wb
and only one workspace of size n× 32 is needed in each phase (Wb for the forward elimination, Wsol for
the backward substitution), while the average size of the new workspace WRHS scales perfectly with the
number of processors. Furthermore, a good locality is ensured in WRHS because fully-summed variables
are contiguous. We will see in Section 6.4 other optimizations of the solve phase to allow processing
larger problems, suppressing completely the use of the workarrays Wb and Wsol, which do not scale
with the number of processors and limit locality aspects.

2.6 Determinant

Some applications require computing the determinant of a sparse matrix. In electrostatics for instance,
the determinant is related to electric potentials or electric charges. Such a feature has been requested by
several users of the MUMPS package and an implementation was done in collaboration with one of them,
A. Salzmann, who actually suggested a partial patch to version 4.8.3 of our package. Given an LU (or
LDLT ) factorization, the determinant is simply the product of the diagonal elements of D (or U). In
theory, given a code that is able to factorize a sparse matrix, its computation should therefore be trivial.
In this section, we show that a careful implementation is however needed, especially when considering
parallel distributed environments.

2.6.1 Numerical aspects: avoiding underflows and overflows

When multiplying a large amount of diagonal floating-point numbers (matrices with several million
rows/columns), underflows and overflows may easily occur. Depending on the setting of floating-point
exception flags, overflows may become equal to Infinity and underflows, after some loss of accuracy due
to subnormal numbers, may become 0. To avoid such situations, either the logarithms of diagonal values
should be accumulated, or a mantissa and exponent should be maintained explicitly. Because computing
and accumulating logarithms is prone to numerical errors, we prefer the approach consisting in comput-
ing a normalized mantissa and keeping track of the exponent. Although a library like LINPACK[70] uses
radix (or base) 10 in the computation of determinants, it seems better to use the natural radix (which
is 2 for most processors). In Fortran (similar functions exist in C), the exponent of a floating-point
can be directly extracted from its floating-point representation thanks to the intrinsic function EXPO-
NENT and the mantissa can be obtained with the intrinsic function FRACTION. Those functions are
such that x = SIGN(x) × FRACTION(x) × 2EXPONENT(x). For example, FRACTION(2.0) = 0.5 and
EXPONENT(2.0) = 1. Constructing the determinant using a normalized product can then be done as
shown in Algorithm 2.7.

1: m ← 1; e ←0
2: for all diagonal pivots with floating-point value f do
3: m← m× FRACTION(f)
4: e← e+ EXPONENT(f) + EXPONENT(m)
5: m← FRACTION(m)
6: end for

Algorithm 2.7: Computing a normalized determinant as a normalized floating-point mantissa m and
an integer exponent e by multiplying diagonal pivots f .
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2.6.2 Computing the sign of the determinant

For symmetric matrices, because the factorization aims at maintaining the symmetry, only symmetric
permutations are applied (both for reducing the fill or for numerical pivoting issues). Given a permutation
matrix P , the determinant of PAP t = LDLT is the same as that of A, so that the sign of the determinant
is maintained. For unsymmetric matrices, two issues must be considered:

• Numerical pivoting. If a pivot is chosen on the diagonal the sign of the determinant is not modified.
Otherwise, the sign depends on the total number of row and column exchanges. If this number
is odd, the sign is modified. In particular, assuming a right-looking factorization of the frontal
matrices, choosing a non-diagonal pivot in the current column or in the current row modifies the
sign, choosing it somewhere else (including on the diagonal) keeps the sign unchanged.

• Unsymmetric preprocessings. Given an initial matrix and an unsymmetric permutation Q of the
columns (see Section 1.1.8), we work on AQ instead of A. To obtain the determinant of A, the
parity, or signature, or sign, of Q has to be computed. This is something relatively classical that
can be done by Algorithm 2.8, which follows the cycles in the permutation to determine the number
of corresponding exchanges. In practice initialization of flag arrays (flag arrays are often used in
sparse matrix codes) is avoided, see line 1. In fact, each time an algorithm requires a flag array, it
is generally easy to reset it to its initial value as done at line 1 of Algorithm 2.8. Furthermore, any
integer array of size n whose contents has a special property could be used.

1: Assumption: visited(1 : n) = false
2: k ← 0
3: for i = 1 to n do
4: if visited(i) then
5: visited(i)← false {(reset in case of further use)}
6: else
7: j ← σ(i) {Start following a new cycle}
8: while j 6= i do
9: visited(j)← true

10: Accumulate number of swaps in cycle:
11: k ← k + 1 {Follow cycle}
12: j ← σ(j)
13: end while
14: After first cycle, k contains number of swaps in first cycle
15: end if
16: end for{k now contains number of swaps in whole permutation}
17: if k is odd then
18: Change the sign of determinant
19: end if

Algorithm 2.8: Computation of the parity of a permutation σ(1 : n).

2.6.3 Special cases

In LDLT factorizations of symmetric indefinite matrices, two-by-two pivots may be necessary (see Sec-

tion 1.3.2.2). If D contains a two-by-two pivot

(
a b
c d

)
the determinant f = ad− bc is computed and

simply used as one of the diagonal values in Algorithm 2.7.
Another special case is the one of singular matrices. Factorization algorithms can often detect quasi-

null pivots (which may for example correspond to the so-called rigid body modes in structural mechanics)
and isolate them (see Algorithm 2.3). It makes sense to exclude those quasi-null pivots in the computation
of the determinant, which would otherwise be equal to 0. The determinant computed is then the one
of the rest of the matrix6. Finally, if static pivoting is used (see Section 1.3.2.4), static pivots are also
excluded.

6Remark that, in case of scaling, the corresponding entries of the scaling arrays must also be excluded from the
computation of the determinant.
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As said in Section 2.1.1.2, the factorization of the last separator of a sparse matrix, corresponding
to the root of its assembly tree may use dense factorization kernels on a matrix built with a 2D block
cyclic distributed format. ScaLAPACK is used for that purpose. In that case, each MPI process finds
its diagonal pivots in the factorized dense root node in 2D block cyclic format and multiplies them with
the current value of the determinant as in Algorithm 2.7.

Finally, scaling vectors should be taken care of. Given a scaled matrix DrADc, the product of the
diagonal entries of Dr and Dc is obtained, then we take the inverse of the result by negating the exponent
and taking the inverse of the mantissa (rather than multiplying together all the inverses of the scaling
values).

2.6.4 Reduction in parallel environments

In parallel, each processor i computes the product of the pivots it owns. We notemi the resulting mantissa
on processor i and ei the corresponding exponent, using the default radix of the machine (usually 2).
A reduction operation must then be performed to obtain the final determinant. Assuming we use MPI,
reduction operators MPI PROD and MPI SUM can be used to perform the reduction (with MPI REDUCE and
obtain the determinant (m, e) = (

∏
imi,

∑
i ei) which can then be normalized thanks to the FRACTION

and EXPONENT intrinsic functions. Let us now estimate the risk of overflow/underflow when computing∏
imi.

Except for subnormal numbers, the mantissa in radix 2, as returned by the intrinsic function FRAC-
TION, is in the range [0.100 . . . 00, 0.11 . . . 11], where the first 1 after the dot is implicit in the floating-
point representation. This corresponds to the range [0.5, 0.99 . . . 99] in radix 10. Assuming a uniform
distribution of the mantissas mi, the average mantissa is 0.75 (in an extreme case, all mantissas might
be equal to 0.5). Noting fmin the smallest non-subnormal number of the floating-point arithmetic used,

and p the number of processors, an underflow occurs if 0.75p < fmin, or p > log(fmin)
log(0.75) . In single precision

arithmetic, this gives an underflow when p exceeds 303 processors (126 if all mantissas mi were equal to
0.5). In double precision arithmetic, an underflow occurs for p = 2463 processors (1022 processors if all
mi = 0.5).

Given the number of processors/cores of modern high performance computers, there is thus a real
risk of underflow, which should be taken care of. This can be done using an MPI operator to normalize
the product and keep the exponent separately. This operator is defined by Algorithm 2.9, where the
MPI implementation is allowed to call this operator on an arbitrary number nel of elements. Note that
the implementation also requires MPI derived datatypes in order to define a new type consisting of a
mantissa and an exponent.

1: for all i = 1 to nel do
2: Compute normalized product m′i, e

′
i ← (m′i, e

′
i)× (mi, ei)

3: m′i ← m′i ×mi

4: e′i ← e′i + ei + EXPONENT(m′i)
5: m′i ← FRACTION(m′i)
6: end for

Algorithm 2.9: MPI operator used for the reduction. Input: (mi, ei)i=1:nel, Input and output:
(m′i, e

′
i)i=1:nel.

2.6.5 Testing

Validation was done by inserting some new tests in non-regression tests executed nightly on different
machines. For each tested matrix, a reference determinant is computed, then the determinant is computed
with various options of the solver (scaling on or off, different orderings, preprocessings, weighted matching
algorithms) and compared to the reference determinant.

In single precision arithmetic, some relative differences higher than expected (10−3) were observed
on harder problems. However, by comparing with double precision calculations, it appeared that the
numerical error was due to the accuracy of pivots rather than to the accuracy of computing the product
of the diagonal values. If the accuracy of computing the product of pivots becomes an issue, one could
use the compensated product techniques, see for example the discussions on this in [99]; a compensated
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product of n floating-point numbers can be done in 19n − 18 operations, or 3n − 2 if a fused-multiply-
and-add (FMA) operator is available. Techniques by Kahan also exist to compute the determinants of
2× 2 pivots more accurately in case there are risks of cancellation (see analysis by [119]), but we expect
this not to be the priority knowing that such pivots are, by choice, far from singularity.

2.6.6 Complex arithmetic

In complex arithmetic, rather than maintaining an exponent for the real part and another one for the
imaginary part of the determinant, we use a single exponent. This allows to keep performing operations
on complex numbers without reimplementing them. When multiplying the current determinant by a new
complex number we simply replace the normalization of Algorithm 2.7 by the one of Algorithm 2.10.
Although this approach is debatable and may have some limits if the real and imaginary parts have
very different magnitudes, the strategy here is typical in our work where there is always so much more
to do than doable: wait for applications or users to show such limits before going for something more
sophisticate. The issues of the previous section (reduction, two-by-two pivots, . . . ) are similar with
complex arithmetic; because scaling arrays are real even in complex arithmetic, the multiplication of
scaling entries are done in real arithmetic, still using Algorithm 2.7.

1: r ← 1; c← 0; e← 0
2: for all diagonal pivots with complex value f do
3: (r,c) ← (r,c) × f
4: e loc← EXPONENT(|r|+ |c|)
5: r ← r × 2−eloc

6: c← c× 2−eloc

7: e← e+ e loc
8: end for

Algorithm 2.10: Computation of a normalized complex determinant (r, c, e) as a floating-point real
part r, a floating-point imaginary part c and an integer exponent e by multiplying diagonal complex
pivots f . The operations at lines 5 and 6 do not use floating-point operations; instead, the exponent
is just overwritten by a new one (in Fortran, using the SCALE intrinsic function).

2.6.7 Memory aspects

In several physics and electrostatics applications, only the determinant of a matrix A is needed, because it
has an intrinsic physical meaning, and solving systems of equations of the form Ax = b is not required. In
that case, it can be interesting to discard the computed factors right after computing them, significantly
reducing the storage requirements and data movements. In the multifrontal method, only the active
storage (see end of Section 1.3.3) remains and at each node of the tree, the determinant is updated
and factors are discarded. In that case, it may be interesting to use orderings and postorders (see
Section 1.1.7) that minimize the active storage rather than the size of the factors or even the number
of floating-point operations. While we illustrated the impact of the ordering on the size of the factors
in Table 1.1, the impact on the active storage is given in Table 2.2. We observe that AMD, PORD
and AMF are much more competitive at reducing the number of operations than they were at reducing
the factor size of floating-point count. Remark that the memory behaviour when computing only the
determinant is indeed identical to the out-of-core situation when the factors are written to disk: in that
case, active storage should be minimized. In the next chapter (Chapter 3), we will see how an adequate
choice of the tree traversal can minimize different metrics, in particular the active storage.

2.7 Concluding remarks

In this chapter, we have seen that functionalities and algorithms that appear to be relatively simple in a
serial environment may become much more complex in a parallel distributed environment. This is the case
of pivoting issues, general management of parallelism with dynamic data structures and asynchronous
communications, as well as mapping and dynamic scheduling issues. As another example, we showed
in Section 2.6 that even a functionality apparently simple like the computation of the determinant of
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METIS SCOTCH PORD AMF AMD
gupta2 58.33 289.67 78.13 33.61 52.09
ship 003 25.09 23.06 20.86 20.77 32.02
twotone 13.24 13.54 11.80 11.63 17.59
wang3 3.28 3.84 2.75 3.62 6.14
xenon2 14.89 15.21 13.14 23.82 37.82

Table 2.2: Peak of active memory for the multifrontal approach (×106 entries), as a function of the
ordering heuristic applied.

a sparse matrix (product of the diagonal elements of the factorized matrix), is not so immediate to
implement and requires some care.

In the next chapter (Chapter 3), we come back to sequential aspects of multifrontal methods and
show how different schedules for the tasks of the assembly tree can reduce metrics like the memory
usage or the I/O traffic. We will come back to scheduling aspects of multifrontal methods in parallel
environments in Chapter 4. Performance on shared-memory or multicore environments will be discussed
in Section 6.6.
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Chapter 3

Task Scheduling for the Serial
Multifrontal Method

The objective of this chapter is to discuss the impact of tree traversals and multifrontal models on memory
usage and I/O volumes. More precisely, the chapter aims at presenting in a single document and with
coherent notations all the multifrontal variants discussed in [8, 9, 11, 13, 106, 105], corresponding to some
work accomplished in the context of the PhD thesis [5] and [102]. This chapter can be skipped by the
reader mainly interested in getting a general view of the type of work done, to whom we advise to read
references [106, 13, 11] (in that order) instead. Because of the high number of variants and combinations,
there is a deep level of sections/subsections in this chapter, which we summarize below:

Contents
3.1 Introduction – Tree traversals and postorders . . . . . . . . . . . . . . . . . 58

3.2 Models of assembly in the multifrontal method . . . . . . . . . . . . . . . . 60

3.3 Postorders to reduce the storage requirements . . . . . . . . . . . . . . . . . 61

3.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Terminal allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2.1 Working storage requirement . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2.2 Total storage requirement (including factors) . . . . . . . . . . . . . . 63

3.3.2.3 Liu’s theorem and its application to reduce storage requirements . . . 63

3.3.3 Early parent allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4 Flexible allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4.1 Classical (non in-place) assembly scheme . . . . . . . . . . . . . . . . 65

3.3.4.1.1 Working storage minimization . . . . . . . . . . . . . . . . . 65

3.3.4.1.2 Total storage minimization . . . . . . . . . . . . . . . . . . . 66

3.3.4.2 In-place assembly scheme . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4.2.1 Working storage minimization . . . . . . . . . . . . . . . . . 68

3.3.4.2.2 Total storage minimization . . . . . . . . . . . . . . . . . . . 68

3.3.4.3 Max-in-place assembly scheme . . . . . . . . . . . . . . . . . . . . . . 69

3.3.5 Impact and summary of experimental results . . . . . . . . . . . . . . . . . . . 69

3.4 Postorders to reduce the volume of I/O . . . . . . . . . . . . . . . . . . . . . 71

3.4.1 Stacks and I/O volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Terminal allocation of the parent, classical assembly . . . . . . . . . . . . . . . 73

3.4.3.1 Illustrative example and formal expression of the I/O volume . . . . . 73

3.4.3.2 Minimizing the I/O volume . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.4 In-place assembly of the last contribution block . . . . . . . . . . . . . . . . . . 76

3.4.5 In-place assembly of the largest contribution block . . . . . . . . . . . . . . . . 76

3.4.6 Theoretical comparison of MinMEM and MinIO . . . . . . . . . . . . . . . . . . . 77

3.4.7 Flexible parent allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

57



3.4.8 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.8.1 Terminal allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.8.2 Flexible allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Memory management algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.1 In-core stack memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.1.1 Recalling the classical and last-in-place assembly schemes . . . . . . . 84

3.5.1.2 In-place assembly of the largest contribution block . . . . . . . . . . . 84

3.5.1.3 Flexible allocation of the frontal matrices . . . . . . . . . . . . . . . . 85

3.5.2 Out-of-core stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.2.1 Dynamic cyclic memory management . . . . . . . . . . . . . . . . . . 87

3.5.2.2 Using information from the analysis: static top-down formulation . . 88

3.5.2.3 Application to the flexible allocation scheme . . . . . . . . . . . . . . 89

3.5.3 Limits of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1 Introduction – Tree traversals and postorders

As explained in Section 1.3.3 (please refer to that section for further details) of Chapter 1, the multifrontal
tree should be processed using a topological ordering, that is, an ordering such that children nodes are
processed before their parents. We also recall that a postorder is a particular topological order where the
nodes in any subtree are numbered consecutively: each time the last sibling of a family is processed, the
parent node is activated, consuming the contribution blocks available. In multifrontal methods, the use of
postorders allows the storage of the contribution blocks produced at each step of the multifrontal method
to be accessed using a stack mechanism, significantly simplifying the memory management. However,
one should note that it is possible to build cases where the topological order that best minimizes memory
usage is not a postorder. For that, let us start this chapter with a simple example. We assume that
factors can be stored to disk as soon as they have been computed, and we focus on the working storage
of the multifrontal method, that is, the storage for the contribution blocks and for the current frontal
matrix. We consider the example of Figure 3.1, where the frontal matrices associated with nodes a
and b require a storage ma = mb = 1000 (MB, say), produce contribution blocks requiring a storage
cba = cbb = 10 MB consumed by their respective parents c and d, which in turn have a frontal matrix
of size mc = md = 100, producing contribution blocks of size cbc = cbd = 90 for the root node e, whose
frontal matrix is of size me = 100.
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Figure 3.1: Example tree with 5 nodes a, b, c, d, e, and possible associated matrix. mi represents
the storage associated with the frontal matrix of node i and cbi the storage for the contribution block
produced by node i, which will be consumed by the parent of node i. A,B,C,D,E are square matrices
corresponding to the range of variables that must be eliminated at nodes a, b, c, d, e, respectively.

The possible topological orders are a− b− c−d−e, a− b−d− c−e, a− c− b−d−e, b−a− c−d−e,
b−a−d−c−e, b−d−c−a−e, two of which are postorders: a−c− b−d−e and b−d−a−c−e. Given
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the symmetry of the tree, the two postorders result in the same amount of core memory requirement.
Consider the postorder a− c− b− d− e and the successive steps of the multifrontal method. Remember
that factors are stored on disk right after they are computed. For each step, we give in parenthesis the
core storage requirement and the contents of the memory.

1. a is allocated (ma = 1000) and factored,

2. factors of a are moved to secondary storage – disk (cba = 10),

3. c is allocated (cba +mc = 110),

4. c consumes the contribution block of a (mc = 100) and is factored,

5. factors of c are discarded (cbc = 100),

6. b is allocated (mb + cba + cbc = 1100) and factored,

7. . . .

We see that at this stage, the best postorder (the other postorder b − d − a − c − e is equivalent to
the one above) has a peak of working storage at least equal to 1100. Let us now consider the topological
order defined by the sequence a − b − c − d − e, which is not a postorder. The working storage takes
the successive values: ma = 1000, cba = 10, cba + mb = 1010, cba + cbb = 20, cba + cbb + mc = 120,
cbb+mc = 110, cbb+cbc = 100, cbb+cbc+md = 200, cbc+md = 190, cbc+cbd = 180, cbc+cbd+me = 280,
me = 100, cbe = 0. The storage requirement associated with a− b− c− d− e is only equal to 1010.

Thus, forcing the use of a postorder instead of a general topological order may lead to a larger memory
usage. This was already observed by Liu [127], who proposed an algorithm to find a memory-minimizing
topological ordering. In [118], the authors show that it is possible to build trees for which postorders
are arbitrarily bad in terms of working storage compared to the best postorder. In codes that rely on
dynamic allocation and do not use in-place assemblies, using general topological order would make sense
and an algorithm to find an optimal topological order faster than the one from [127] has recently been
proposed by Jacquelin et al. [118]. In the rest of this chapter, we still restrict our study to the case of
postorders, for the following reasons:

(i) postorders allow for a more friendly memory management (stack mechanism with a good locality
of reference);

(ii) gains from using more general topological orderings do not seem that big on many practical prob-
lems [127];

(iii) postorders allow for in-place assemblies (see below), which lead to significant gains (≈ 30%) in
terms of working storage; it is not clear whether/how general topological orders would allow this
type of assembly.

Even in the case of postorders, minimizing the working storage has been studied by Liu [126]. In this
chapter, we generalize this work and also study the case of minimizing the I/O volume, in case not only
the factors but also the working storage must go to disk. The chapter is organized as follows. First, we
introduce some variants of the multifrontal method depending on (i) the way, and (ii) the moment when,
contribution blocks are assembled into the frontal matrix of the parent node (Section 3.2). Although
this still represents a limited set of variants, ideas of this chapter are more general and could be applied
or adapted to different variants of memory management. We focus on the minimization of the working
storage requirement in Section 3.3 (either when factors are kept in memory, or when they are stored on
disk) before considering the minimization of the I/O traffic in an out-of-core context where contribution
blocks are also written to disk (Section 3.4). In doing so, we consider a significant combination of
situations and models. Finally we provide some algorithms that demonstrate that an efficient memory
management can be obtained for those different models in Section 3.5, and give some concluding remarks
in Section 3.6.
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3.2 Models of assembly in the multifrontal method

We introduce several variants of the multifrontal method, which correspond to different existing and/or
possible implementations of the consumption of contribution blocks in the method. A first set of variants
comes from the possible overlap between the memory for the frontal matrix of the parent with the memory
for the contribution block that is first assembled into it. Here are the possible corresponding schemes:

• The classical assembly scheme: the memory for the frontal matrix cannot overlap with the one of
the stack of contribution blocks at a given instant. This is illustrated in Figure 3.2(b): the frontal
matrix f is allocated in a memory space different from its children. All elements of f are first
initialized to 0, then the contributions e, d, c, b, a, possibly also some entries of the original matrix,
are assembled one by one in the memory reserved for f . This scheme is implemented for instance
in the MA41 solver [37, 116].

• The in-place or last-in-place assembly scheme: the memory for the frontal matrix at the parent
node is allowed to overlap with the contribution block at the top of the stack, as illustrated in
Figure 3.2(c). Thanks to the postorder property, this contribution is the last one that was computed
and is the first one assembled into the parent. It is assembled “in-place”, in the sense that it is
expanded in-place to form the frontal matrix. This can be done if the order of the variables in the
child and in the parent are compatible:

– First, the entries in f that are not in e must be set to 0.

– Second, the entries in e are moved to their final position in f , one-by-one. Each time an entry
in e is moved to its position in f , if the original entry was in both e and f , it is reset to 0.
This must be done starting with the top-left corner of e, row-by-row (assuming a row-major
storage) and it is for this step that the order of the variables in the contribution block of e
and in f have to be compatible, which requires some care when part of the variables from f
are computed dynamically (delayed pivots).

– Third, entries from the contribution blocks of other children are assembled using classical
extend-add operations. Entries from the initial matrix corresponding to fully summed rows
or columns in the front of the parent are also assembled.

To summarize, we save space by not consuming both the memory of the contribution block of that
child and the memory of the frontal matrix of the parent. Instead, only the maximum between
those two quantities is required. This scheme is available in a code like MA27 [79] and in MUMPS, in
the case of serial executions and in parts of the tree that are processed by a single processor.

In practice, if an overlap is detected between the memory of the parent and the memory of the
child assembled in-place, the assembly will be done in-place. In that case, Algorithm 2.1 must be
slightly modified because a global compatible ordering between parent and child variables has to be
strictly respected. Because of that, delayed variables from a child assembled in-place must appear
at the beginning of the index list of the parent (they were expected to be eliminated first in the
global ordering).

• The max-in-place assembly scheme is a natural extension of the last-in-place assembly scheme.
It was suggested by [13]. In this approach, we overlap the memory for the frontal matrix of the
parent with the memory of the child producing the largest contribution block, even if that child
is not processed last. This new variant of in-place assembly requires a slightly different memory
management which ensures that some space for the parent is available contiguous to the memory
of the largest child. We will discuss a possible memory management algorithm corresponding to
this scheme in Section 3.5.

Another possible variation (that combines to the previous one) is related to the moment when the
frontal matrix of the parent is allocated. We will discuss three such cases in this thesis:

• The terminal allocation scheme: the memory for the frontal matrix is allocated after all the children
have been processed.

• The early allocation scheme: the memory for the frontal matrix of the parent is allocated right
after the first child subtree has been processed.
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Figure 3.2: An assembly tree and the corresponding memory state at the moment of the allocation of
the frontal matrix of its root node depending on the assembly scheme.

• The flexible allocation scheme: the memory of the frontal matrix can be allocated earlier in order
to assemble (and thus consume) the contribution blocks of some children on the fly. By adequately
choosing the tree traversal and the position at which the frontal matrix of the parent is allocated,
one can significantly reduce the memory requirements, as was proposed by [106].

3.3 Postorders to reduce the storage requirements

3.3.1 Notations

We now introduce some notations that will be used in the rest of this chapter. We consider a generic
parent node and its n ordered children numbered j = 1, . . . , n and we note:

• cb / cbj , the storage for the contribution block of the parent node / of child j (remark that cb = 0
for the root of the tree);

• m / mj , the storage of the frontal matrix associated with the parent node / with its jth child
(remark that m ≥ cbj , mj ≥ cbj , and that mj − cbj typically represents the size of the factors
produced by child j);

• S / Sj , the working storage (or active storage) required to process the subtree rooted at the parent
/ at child j, when factors are written to disk as soon as they are computed;

• T / Tj , the total storage (including in-core factors) to process the subtree rooted at the parent /
at child j.

• F / Fj , the storage for all the factor matrices inside the subtree rooted at the parent / at child j.

Any convenient unit can be used for the above quantities, such as bytes, GB (gigabytes), or number of
scalar entries. Furthermore, we note that every tree whose corresponding nodes respect the constraints
above can be associated with a matrix: one can build the structure of a frontal matrix associated with
each node, and from the structure of each frontal matrix, it is easy to find a corresponding original sparse
matrix.

In the case of flexible allocation (see last bullet of Section 3.2), we note p the position of the child
after which the frontal matrix of the parent is allocated and the contribution blocks of the already
processed children are assembled. With respect to all the variants of Section 3.2, we will use the following
superscripts for the above quantities:

term: terminal allocation of the parent, no in-place assembly.

term-ip: terminal allocation of the parent, in-place assembly of the last child, available on the top of
the stack.

term-maxip: terminal allocation of the parent, in-place assembly of the child with the largest con-
tribution block, assuming that some contiguous memory is available for the parent next to that
contribution block.

flex : flexible parent allocation, no in-place assembly.
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flex-ip: flexible parent allocation, in-place assembly of child p.

flex-maxip: flexible parent allocation, in-place assembly of the child with largest contribution block.

early : early parent allocation, first child assembled without an in-place scheme.

early-ip: early parent allocation, in-place assembly of first child.

(early-maxip is not applicable: since there is only one child before the parent allocation, this scheme is
just a particular case of – and can be no better than – early-ip.)

3.3.2 Terminal allocation

In this section, we focus on the multifrontal method with a terminal allocation of each frontal matrix:
the memory for a frontal matrix is only reserved after all child subtrees have been processed. This is
the situation that we have assumed in the previous chapters (for example, in the discussion on memory
usage from Section 1.3.3); furthermore, we have considered a classical assembly scheme (as opposed to
an in-place assembly scheme).

3.3.2.1 Working storage requirement

The working storage covers the storage for the factors and for the stack of contribution blocks, excluding
the storage for already computed factors. When processing a child j, the contribution blocks of all
previously processed children have to be stored. Their memory size sums up with the storage requirements
Sj of the considered child, leading to a global storage equal to Sj +

∑j−1
k=1 cbk. After all the children

have been processed, the frontal matrix (of size m) of the parent is allocated, requiring a storage equal
to m+

∑n
k=1 cbk. Therefore, the storage required to process the complete subtree rooted at the parent

node is given by the maximum of all theses values, that is:

Sterm = max

(
max
j=1,n

(Sterm
j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk

)
(3.1)

Knowing that the storage requirement S for a leaf node is equal to the size of its frontal matrix m,
applying this formula recursively (as done in [126]), allows to determine the storage requirement for the
complete tree, in a bottom-up process.

In case of last-in-place assembly, the contribution block of child n overlaps with that of the frontal
matrix of the parent, so that the cbn term can be suppressed from the right part of Formula (3.1). We
obtain:

Sterm-ip = max

(
max
j=1,n

(Sterm-ip
j +

j−1∑
k=1

cbk),m+

n−1∑
k=1

cbk

)
, (3.2)

which corresponds to the situation considered in [126].

Finally, in case we are able to build the frontal matrix of the parent at a memory location which
overlaps with the memory of the largest contribution block (corresponding to a child we note kmax), we
now obtain the working storage in the max-in-place assembly scheme:

Sterm-maxip = max

max
j=1,n

(Sterm-maxip
j +

j−1∑
k=1

cbk),m+

n∑
k=1,k 6=kmax

cbk

 (3.3)

Compared to Equation (3.1) corresponding to the classical scheme, cbkmax
must simply be subtracted

from the term m+
∑

j cbj .
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3.3.2.2 Total storage requirement (including factors)

Here we consider that the factors are kept in memory. As introduced in Section 3.3.1, F/Fi represents
the sum of the memory requirements for all factor matrices in the subtree rooted at a parent node / in
the subtree rooted at child i. This corresponds to the sum of the factors produced at each frontal matrix
in the considered subtree. Starting from Formula (3.1) and taking into account the fact that factors
must be kept in memory, we obtain the total storage requirement at a parent subtree:

T term = max

(
max
j=1,n

(T term
j +

j−1∑
k=1

(cbk + Fk)),m+

n∑
k=1

(cbk + Fk)

)
. (3.4)

The modified formulas for the last-in-place and max-in-place schemes are, respectively:

T term-ip = max

(
max
j=1,n

(T term-ip
j +

j−1∑
k=1

(cbk + Fk)),m+

n−1∑
k=1

cbk +

n∑
k=1

Fk

)
, (3.5)

and

T term-maxip = max

max
j=1,n

(T term-maxip
j +

j−1∑
k=1

(cbk + Fk)),m+

n∑
k=1,k 6=kmax

cbk +

n∑
k=1

Fk

 . (3.6)

All these formulas (including F/Fk) can be evaluated using a natural bottom-up traversal of the tree.

3.3.2.3 Liu’s theorem and its application to reduce storage requirements

Depending on the assembly scheme and objective, we wish to find, at each level of the tree, a permutation
of the children which minimizes one of the above formulas. The total storage requirement T should be
minimized when everything is in-core, whereas the working storage S should be minimized when the
factors are stored to disk after they are computed.

We now state a fundamental theorem that will use many times in this chapter.

Theorem 3.1. (Liu [126, Theorem 3.2]) Given a set of values (xi, yi)i=1,...,n, the minimal value of

maxi=1,...,n(xi +
∑i−1

j=1 yj) is obtained by sorting the sequence (xi, yi) in decreasing order of xi − yi, that
is, x1 − y1 ≥ x2 − y2 ≥ . . . ≥ xn − yn.

Thanks to Theorem 3.1, one can minimize either the total storage requirement T or the working
storage requirement S. Suppressing the constant terms, xi and yi correspond to different quantities
depending on the formulas, as indicated in Table 3.1.

Quantity to Assembly Reference
minimize scheme formula xi yi
Working storage classical 3.1 Si cbi
(without factors) last-in-place 3.2 max(Si,m) cbi

max-in-place 3.3 Si cbi
Total storage classical 3.4 Ti cbi + Fi

(with factors) last-in-place 3.5 max(Ti,m+ Fi) cbi + Fi

Table 3.1: Optimal order of children for the terminal parent allocation, for the working storage (factors
written on disk) and for the total storage (when both the factors and active storage remain in core
memory). For each family of the tree, following a bottom-up process, child subtrees must be ordered in
decreasing order of xi − yi.

In order to better see xi and yi, Formula (3.2) is rewritten as:

Sterm-ip = max
j=1,n

(
max(Sterm-ip

j ,m) +

j−1∑
k=1

cbk

)
,
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and Formula (3.5) as:

T term-ip = max
j=1,n

(
max(T term-ip

j ,m+ Fj) +

j−1∑
k=1

(cbk + Fk)

)
.

The total memory with a max-in-place assembly scheme does not make so much sense from an imple-
mentation point of view because it is difficult to imagine a memory management scheme that applies to
that case, as will be seen in Section 3.5. It was therefore excluded from the table.

3.3.3 Early parent allocation

Because on wide trees, the quantity of contribution blocks to store can be large, and can be larger than
the frontal matrix of the parent, Liu experimented in [126] a strategy consisting in preallocating the
frontal matrix of the parent node before children are processed and before associated contributions are
formed. Each contribution block from each new child is then assembled directly into the structure of
the parent, thus avoiding a possibly large collection of contribution blocks in stack memory. The storage
requirement with this approach is simply:

S = m+ max
j=1,n

(Si).

Liu noticed that rather than pre-allocating the parent, the above scheme can be slightly improved
by allocating the parent right after the first child has been processed. This allows one to process a large
first subtree which would not fit in memory together with the frontal matrix of the parent. Using the
notations above, we obtain a peak of active storage equal to:

Searly = max(Searly
1 ,m+ cb1,m+ max

j=2,n
(Searly

j )) (3.7)

if the assembly of the first child into the parent is not in-place (aka classical assembly), and

Searly-ip = max(Searly-ip
1 ,m+ max

j=2,n
(Searly-ip

j )) (3.8)

if the assembly of the contribution of the first child into the parent is done in-place. Both Equations (3.7)
and (3.8) are minimized by processing the child with largest Si first (at each level of the tree in a bottom-
up process). Unfortunately, a chain of parent nodes must be kept in memory, possibly also leading to a
large memory requirement. Therefore, Liu found this approach somewhat disappointing, even if applied
only partially, to levels of the tree where it is beneficial.

Concerning the total memory (including in-core factors), we similarly obtain:

T early = max(T early
1 ,F1 + cb1 +m,m+ max

j=2,n
(T early

j +

j−1∑
k=1

Fk)) (3.9)

for the classical assembly, and

T early-ip = max(T early-ip
1 ,F1 +m,m+ max

j=2,n
(T early-ip

j +

j−1∑
k=1

Fk)) (3.10)

if the assembly of the contribution from the first child into the parent can be done in-place1. In that
case, it could for example make sense to try to order the children in decreasing order of their Tj −Fj as

this will at least minimize the term maxj(Tj +
∑j−1

k=1 Fk). It could also make sense to process the child
with the largest contribution first in the in-place case. However, because this early parent allocation
is a special case of the more general flexible allocation described in the next subsection, we delay the
obtainment of an optimal to the next section.

1Remark that the max-in-place allocation would be the same as the normal in-place case because only one child has
been processed at the moment of allocating the parent.
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3.3.4 Flexible allocation

As explained in the previous section, neither the systematic pre-allocation of the parent node, nor
its allocation right after the last child (terminal allocation), provide an optimal storage requirement.
However, it is possible to allocate the parent node at an arbitrary position, somewhere in-between those
two extremes. Suppose that the frontal matrix of the parent node is allocated in memory right after
the pth child has been treated. We define S1 = {1, . . . , p} as the set of children processed before the

2 p1 . . . p+1 . . . n

S1 S2

Figure 3.3: Example of a parent node and its children.

allocation of the parent and S2 = {p+ 1, . . . , n} as the set of children processed after the allocation (see
Figure 3.3).

In the presentation of this flexible allocation, we first consider that a “classical” assembly scheme
is used in Section 3.3.4.1 (in other words cbp and m do not overlap) and we then consider the “last-
in-place” assembly scheme in Section 3.3.4.2 (where cbp and m overlap). In both cases we study both
the working and total storage requirements. We finally consider the “max-in-place” assembly scheme in
Section 3.3.4.3.

3.3.4.1 Classical (non in-place) assembly scheme

3.3.4.1.1 Working storage minimization The working storage (excluding factors) needed to pro-

cess a subtree rooted at a child j is denoted by Sflex
j . Considering only the children nodes in S1, the

peak of storage is obtained similarly to the case of the terminal allocation, (see Formula (3.1) in Sec-

tion 3.3.2.1), and is equal to max
(

maxj=1,p(Sflex
j +

∑j−1
k=1 cbk),m+

∑p
k=1 cbk

)
. Then, the amount of

memory needed to process each child j in S2 (after the parent is allocated) is m+Sflex
j . Thus, the storage

requirement, Sflex, to process the subtree rooted at the parent is:

Sflex = max

(
max
j=1,p

(Sflex
j +

j−1∑
k=1

cbk),m+

p∑
k=1

cbk,m+ max
j=p+1,n

Sflex
j

)
. (3.11)

We now look for an optimal schedule (that is, an order of the children and a position p to allocate
the parent) that minimizes (3.11).

Lemma 3.1. Let j be a child node belonging to S1. If Sflex
j is smaller than maxi∈S2(Sflex

i ), then j can
be moved to S2 without increasing the peak.

Proof. Removing a node from S1 does not increase the peak in this set. Furthermore since Sflex
j is smaller

than maxi∈S2(Sflex
i ), the peak for S2, m+ maxi∈S2(Sflex

i ), will not increase. (Note that the order of the
children in S2 has no impact on the memory peak.)

Theorem 3.2. Considering a parent node and its n children, an optimal peak of working storage and
its corresponding schedule are obtained by applying the following algorithm:
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Set S1 = {1, . . . , n}, S2 = ∅ and p = n;
Find the schedule providing an optimal Sflex value for partition (S1, S2);
repeat

Find j such that Sflex
j = mink∈S1 S

flex
k ;

Set S1 = S1 \ {j}, S2 = S2 ∪ {j}, and p = p− 1;
Find the schedule providing an optimal S′flex value for partition (S1, S2);
if S′flex ≤ Sflex then

Keep the value of p, and the schedule of children in S1 and S2 corresponding to S′flex;
Set Sflex = S′flex;

end if
until p == 1 or S′flex > Sflex

Proof. Let σ be an optimal schedule of the children (defining the partition (S1, S2) as well as the order

of the nodes in S1 and S2). If ∃k ∈ S1 such that Sflex
k ≤ maxj∈S2(Sflex

j ), the schedule σ′ obtained
by moving k to S2 is still optimal (Lemma 3.1). Thus, there exists an optimal schedule σ′′ such that

mink∈S1(Sflex
k ) > maxk∈S2(Sflex

k ) obtained by repeating the previous operation.
As a consequence, an optimal schedule can be computed by starting with all nodes in S1 and by trying

to move the child node j having the smallest Sflex
j from S1 to S2. The latter operation is repeated until

the minimal value of Sflex is obtained. For a given schedule, removing a node in S1 will not increase the
peak of memory in S1 (Lemma 3.1). Then, finding the optimal schedule on the new set cannot increase
the peak. Thus, the peak corresponding to S1 (resp. S2) can only decrease (resp. increase) or be stable
from one step to the next, and we can stop iterating when S′flex > Sflex (the peak is then due to S2 and
will not decrease again).

At each step of the algorithm above, the schedule providing the optimal Sflex value for a partition
(S1, S2) is obtained by sorting the nodes in S1 in decreasing order of Sflex

k − cbk (see Section 3.3.2.3
and remark that only the first term of Formula (3.11) is impacted by the order of the nodes), while the
order in S2 has no effect. There is no need to sort the nodes in S1 again at each step of the algorithm
(when a child is moved from S1 to S2), because the sequence of nodes resulting from the previous step
of the algorithm is still sorted correctly: only the new Sflex value has to be computed at each step, using
Formula (3.11).

The determination of the best position for the allocation of the parent is thus done in a maximum
of n steps. As explained earlier, the schedule on the complete tree is then obtained by applying the
algorithm at each level of the tree, recursively.

3.3.4.1.2 Total storage minimization We use the same definition as before for the sets S1, S2
and for the position to allocate the parent, p. The peak of storage for S1, including the allocation of the
parent node, is obtained by applying the reasoning that led to Formula (3.4), on one hand, and (3.11),
on the other hand:

P1 = max

(
max
j=1,p

(Tflex
j +

j−1∑
k=1

(cbk + Fk)),m+

p∑
k=1

(cbk + Fk)

)
. (3.12)

Furthermore, the amount of memory needed to process the children nodes of S2 is:

P2 = m+

p∑
k=1

Fk + max
j=p+1,n

(Tflex
j +

j−1∑
k=p+1

Fk). (3.13)

Indeed, when treating a node, the memory will contain the factors corresponding to all already
processed sibling subtrees. In the formulas above, note also that Tflex

j includes Fj so that the factors for
the last child are effectively taken into account. Finally, the amount of memory needed to process the
subtree rooted at the parent is:

Tflex = max(P1,P2) (3.14)
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Lemma 3.2. Suppose that the position p to allocate the parent, the set of children nodes in S1 and
the set of children nodes in S2 are given. Then, sorting the children nodes in S1 in decreasing order of
Tflex
j − (cbj + Fj) and the children nodes in S2 in decreasing order of Tflex

j −Fj provides an optimal peak
of memory on S1 and an optimal peak of memory on S2.

Proof. For S1, the order is the one of the classical assembly scheme, terminal allocation (see Table 3.1,
minimization of Formula (3.4)). For S2, this results from Theorem 3.1 (see Section 3.3.2.3) applied to

the right-hand side of Formula (3.13), with xk = Tflex
k and yk = Fk.

Lemma 3.3. Suppose that the max in S2 is obtained for child j0, p+ 1 ≤ j0 ≤ n and that the children
in S1 and S2 are ordered according to Lemma 3.2. In other words, suppose that P2 = P2(j0), where we
define

P2(j0) = m+

p∑
k=1

Fk + (Tflex
j0

+

j0−1∑
k=p+1

Fk)

= m+

j0−1∑
k=1

Fk + Tflex
j0

(3.15)

Then, any partition (S ′1,S ′2) such that S1 ⊂ S ′1 and j0 ∈ S ′2 leads to a storage requirement larger or equal
to the value P2(j0) above. In other words, it is not possible to decrease the storage by moving elements
from S2 to S2 and keeping j0 in S2.

Proof. (i) Changing the order of the children cannot improve the peak (Lemma 3.2). (ii) If we move
nodes j1 from S2 to S1 that are before j0 (that is, j1 < j0), the second line in (3.15) will not change.
(iii) If we move nodes j1 from S2 to S1 that are after j0 (that is, j1 > j0), P2(j0) will increase (since Fj1

adds up to the sum), and thus the peak on S2.

Lemma 3.4. Given a set S1 ordered according to Lemma 3.2, inserting a new element j0 into S1 cannot
decrease the peak on S1: if we define P ′1 to be the peak of total memory including the allocation of the
parent using S ′1 = S1 ∪ {j0}, we have P ′1 ≥ P1.

Proof. See Formula (3.12).

Theorem 3.3. Given a parent node and its n children, an optimal peak of total memory Tflex
i is obtained

by applying the following algorithm:

Set S1 = ∅, S2 = {1, . . . , n} and p = 0;
Sort S2 according to Lemma 3.2;
Compute Tflex = P2 according to Formula (3.13);
repeat

Find j0 ∈ S2 such that P2 = m+
∑j0

k=1 Fk + Tflex
j0

(Formula (3.15));
Set S1 = S1 ∪ {j0}, S2 = S2 \ {j0}, and p = p+ 1;
(Remark: j0 is inserted at the appropriate position in S1 so that the order of Lemma 3.2 is respected.)

Compute P1, P2, and T ′flex = max(P1,P2);
if T ′flex ≤ Tflex then

Keep the values of p, S1 and S2 and set Tflex = T ′flex;
end if

until p = n or P1 ≥ P2

Proof. Starting from a configuration where P2 > P1, it results from Lemma 3.3 that the only way to
possibly decrease the peak is by moving j0 from S2 to S1. Thus, at each iteration either we have obtained
the optimal peak Tflex, or the solution with the optimal peak is such that j0 (which was responsible for
the peak in S2) belongs to S1. Since we start with S1 = ∅, we are sure to reach the optimal configuration
after a maximum of n iterations. (At each iteration, the order from Lemma 3.2 is respected by inserting
j0 at the appropriate position in S1.)

For the termination criterion, we know that the optimal peak has been obtained when P1 becomes
larger or equal than P2, since in that case the memory peak Tflex = P1 will only increase if the algorithm
is pursued further (Lemma 3.4).
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Remark that we use the stopping criterion P1 ≥ P2. The condition T ′flex > Tflex is not sufficient
to ensure that the optimal peak has been reached: it may happen that the global peak will increase by
moving an element j0 from S2 to S1, and decrease again at a further iteration to reach the optimal. An
example producing such a situation is the one below:

m = 100 n = 3

Tflex
1 = 160, F1 = 100,

Tflex
2 = 140, F2 = 120,

Tflex
3 = 10, F3 = 5,

cb1 = cb2 = cb3 = 5

Initially all three children are in S2, sorted according to Lemma 3.2 and Tflex = 340 is reached for child
2, that the algorithm tries to move to S1: S1 = {2} and S2 = {1, 3}, leading to T ′flex = 380 > 340.
Then, moving child 3 from S2 to S1 leads to a peak of total memory equal to Tflex = 330, which is the
optimal since P1 = P2.

3.3.4.2 In-place assembly scheme

In this section we describe how the flexible allocation adapts to an in-place (more precisely last-in-place)
assembly scheme. We assume that the assembly of the contribution block corresponding to the last child
treated before the allocation of the parent, the pth child using the notations introduced before, is done
in-place into the frontal matrix of the parent: the memory of the contribution block of the last child
overlaps with the memory of the parent.

3.3.4.2.1 Working storage minimization In the flexible scheme, if the memory for the pth child
overlaps with the memory for the parent node, the storage required at the parent becomes:

Sflex-ip = max
(

max
j=1,p

(Sflex-ip
j +

j−1∑
k=1

cbk),m+

p−1∑
k=1

cbk,m+ max
j=p+1,n

(Sflex-ip
j )

)
(3.16)

Note the difference with Formula (3.11): the memory for cbp does not appear here since it is now
included in the memory for the parent, m. Finding a schedule that minimizes the working storage is
equivalent to the problem presented in Section 3.3.4.1.1. The only difference comes from the computa-
tion/processing of the optimal order inside the set S1. Indeed, inside this set, we have to use the schedule
proposed by Liu [126] that ensures an optimal memory occupation with the assumption that the last
child is assembled in-place into the parent: this is done by sorting the children nodes in descending order
of max(Sflex-ip

j ,m)− cbj . Thus one can simply use a variant of Theorem 3.2 where children nodes inside
S1 are sorted in that order.

3.3.4.2.2 Total storage minimization In the flexible allocation scheme, if the memory of the
contribution block of the pth child overlaps with the memory of the parent (in-place assembly), the total
memory is Tflex-ip = max(P1,P2) (as in Formula (3.14)), where P2 is defined by Formula (3.13). The
difference with the non in-place case comes from the peak in S1, where the contribution block for child
p is not taken into account when assembling the parent, leading to:

P1 = max
(

max
j=1,p

(Tflex-ip
j +

j−1∑
k=1

(cbk + Fk)),m+ max
j=1,p

(

j−1∑
k=1

cbk +

j∑
k=1

Fk)
)

= max
j=1,p

(j−1∑
k=1

(cbk + Fk) + max(Tflex-ip
j ,m+ Fj)

) (3.17)

By applying Theorem 3.1 again, the smallest peak in S1 is obtained when the children nodes are sorted
in decreasing order of max(Tflex-ip

j ,m+Fj)−(cbj +Fj). An optimal schedule for the total memory in the
in-place case is then obtained by applying Theorem 3.3 with children nodes in S1 in that order instead
of the order from Lemma 3.2.
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3.3.4.3 Max-in-place assembly scheme

We can also use a max max-in-place assembly scheme together with a flexible parent allocation (and will
discuss a possible memory management in Section 3.5). In that case, noting kmax the index of the child
with the largest contribution block in S1, and assuming that there is a contiguous space next to that
contribution at the moment of allocating the parent, the working storage can be expressed as:

Sflex-maxip = max
(

max
j=1,p

(Sflex-maxip
j +

j−1∑
k=1

cbk),m+

p∑
k=1,k 6=kmax

cbk,m+ max
j=p+1,n

(Sflex-ip
j )

)
(3.18)

Similar to the terminal allocation scheme, we do not discuss the association of max-in-place with
total memory minimization.

To conclude this section on flexible allocation, we summarize in Table 3.2 the order in S1 and provide
the references to the formulas in the text.

Quantity to Assembly Reference Order in S1 Theorem to obtain
minimize scheme formula xi yi assembly position p
Working storage classical 3.11 Si cbi 3.2
(without factors) last-in-place 3.16 max(Si,m) cbi 3.2

max-in-place 3.18 Si cbi 3.2
Total storage classical 3.12, 3.13, 3.14 Ti cbi + Fi 3.3
(with factors) last-in-place 3.17 max(Ti,m+ Fi) cbi + Fi 3.3

Table 3.2: Summary of the results for the flexible parent allocation, for the working storage (factors
written on disk) and for the total storage (when both the factors and working storage remain in core
memory). In S1, child subtrees are sorted in decreasing order of xi − yi.

3.3.5 Impact and summary of experimental results

Rather than presenting experimental results for all variants, we summarize the results by the following
general observations and will only detail results for one of the cases. We suggest [102] and the references
cited below for additional results.

• Sorting the children is not costly and should always be done [126].

• The impact on memory of using good tree traversal varies depending on the ordering [107].

• The relative gains of a good strategy on the total memory (including factors) is smaller than the
relative gains on the working memory, depending on the size of the stack.

• The last-in-place assembly scheme allows gains on the working storage requirements between 20%
and 30%. The total storage requirements (including factors) are also reduced significantly, depend-
ing on the volume of stack memory compared to factors.

• The new max-in-place assembly scheme, although slightly more complex to implement can be very
efficient in terms of working storage; this is illustrated in Figure 3.4, where the x-axis corresponds
to the matrices and orderings used in [13].

• The flexible allocation scheme can be very effective in many cases [104].

Related to this last point, let us focus on gains one can get using the flexible allocation scheme with
an in-place allocation scheme. We use a set of 44 matrices, listed in [106] and we present in Figure 3.5
the working storage requirement obtained with the flexible in-place schedule (“Flexible parent allocation,
in-place”) compared to:

• the terminal allocation scheme, with in-place assembly of the last child;

• the early parent allocation scheme, with in-place assembly of the first child into the parent; as in
Section 3.3.3, the child with largest peak Searly-ip

j is ordered first to minimize the memory usage.
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Figure 3.4: Working storage requirements of the max-in-place assembly scheme, compared to the classical
and last-in-place assembly schemes. A terminal allocation of the frontal matrix of the parent is used.

• the situation of Section 3.3.4.1.1 (“Flexible allocation”, “Classical assembly”), where we measure
Sflex (Formula (3.11)) rather than Sflex-ip, and order the children correspondingly.
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Figure 3.5: Comparison of the working storage with in-place and non in-place schemes, using METIS.
Memory is normalized with respect to the in-place version of the flexible allocation scheme (with its
associated schedule). Gains relative to the terminal allocation scheme, in-place assembly are equal to
60.03, 36.44, 19.37 and 3.03 for matrices 8, 9, 10 and 25, respectively.

In this figure, METIS is used to illustrate the behaviour of the in-place algorithms, but results with
other orderings would lead to the same type of remarks. (Results with other orderings are available
in [104]). We observe that significant gains can be obtained compared to the non in-place case. Indeed,
with the new algorithm, the gains obtained at each level of the tree modify the global traversal and
often allow a better allocation position for the parent node. The difference between the flexible in-place
and non in-place schemes comes also from the fact that the order in S1 is different for the two schemes.
This explains that we gain more than just the memory of the largest contribution block of the complete
assembly tree. Comparing in-place approaches, we also remark that memory ratios of up to 2 may be
obtained over the case where the parent is allocated after the first child, and that huge gains can still be
obtained over the terminal parent allocation scheme for very wide trees (GUPTA matrices).

We have also experimented the strategy consisting in minimizing the total memory with a flexible, in-
place assembly scheme on the same range of test problems (see [104] for a full set of results). We observed
significant gains compared to a terminal allocation scheme, in-place and an early allocation scheme, in-
place, with their corresponding schedules (see [104] for more details). Furthermore, the memory ratio
between the optimal in-place mechanism and the optimal non in-place mechanism can still reach 10% or
20% in some of the cases, so that it may be worth performing the assembly in-place if the implementation
allows it: the percentage of total memory used by the factors has significantly increased compared to the
case of the non in-place assembly (see Table 3.3), and most of the memory is now used by the factors;
clearly, this was often not the case with the classical multifrontal scheme.
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Percentage of total Number of test cases
memory for factors Flexible scheme Flexible scheme+in-place
< 50 % 2 0
50%-60% 2 3
60%-70% 9 6
70%-80% 22 22
80%-100% 141 145
Total 176 176

Table 3.3: Number of combinations of test cases (matrix/ordering) for different ranges of the percentage
of total memory used by the final factors.

3.4 Postorders to reduce the volume of I/O

In this section, we assume that the factors are written to disk as soon as they are computed; thus,
the corresponding I/O traffic is known and independent from the tree traversal. Assuming that the
physical memory is insufficient for the working storage (contribution blocks and current frontal matrix),
we therefore focus on the volume of I/O related to the stack of contribution blocks. We also assume that
the current frontal matrix alone holds in core memory.

3.4.1 Stacks and I/O volumes

Because the contribution blocks are produced once and accessed once, they will be written to / read from
disk at most once. This property gives an upper bound on the I/O volume equal to the sum of sizes of
all the contribution blocks. However, we wish to limit this amount (that may be huge) by using as much
of the available core memory as possible and performing I/O only when necessary. Said differently, we
want to reach Objective 3.1:

Objective 3.1. Given a postorder of the elimination tree and an amount of available core memory M0,
our purpose is to find the I/O sequence that minimizes the I/O volume on the contribution blocks (the
I/O volume on the factors being constant).

The amount of core memory and the I/O volume thus appear to be related one to the other. To go
further in the understanding of the notion of I/O volume, it is thus appealing to relate the evolution of
the I/O volume to the evolution of the core memory. Said differently:

Objective 3.2. Can we characterize the (optimum) volume of I/O as a function of the available core
memory M0 ?

Actually, Objective 3.1 is easy to reach. Indeed, as we have mentioned, the contribution blocks are
managed with a stack mechanism. In this context, a minimum I/O volume on the contribution blocks
is obtained by writing the bottom of the stack first since the application will need it last. Property 3.1
states this result in other words:

Property 3.1. For a given postorder of the elimination tree and a given amount of available core memory
M0, the bottom of the stack should be written first when some I/O is necessary and this results in an
optimum volume of I/O.

Therefore, we can assume in the rest of the thesis (in the context of the multifrontal method) that
the I/O’s on the stack of contribution blocks are performed with respect to Property 3.1.

In particular, we can deduce the following result that aims at answering to Objective 3.2:

Property 3.2. For a given postorder of the elimination tree, the (optimum) volume of I/O on the
contribution blocks as a function of the available memory M0 (V I/O = f(M0)) is a piece-wise affine
function; the steepness of each piece is an integer multiple of −1 whose absolute value decreases when
the value of M0 increases.
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Figure 3.6: Evolution of the storage requirement of a stack (top) and I/O volume as a function of the
available memory (bottom) on four examples (a, b, c and d).

The proof of this property is technical and can be found in the appendix of [5]. We illustrate it on
simple examples.

In Figure 3.6(a), the storage requirement for the application increases from S = 0 to S = 4 (GB,
say), which corresponds to a total amount of push operations of 4, followed by a total amount of pop
operations of 4. We use the notation (push, 4), (pop, 4) to describe this sequence of memory accesses. If
M0 > 4 (for example, M0 = 4.5) no I/O is necessary. If M0 = 2, the storage increases from S = 0 to
S = 2 without I/O, then the bottom of the stack is written to disk (2 units of I/O) in order to free space
in memory for the 2 GB produced when S increases from 2 to 4. The storage then decreases to 2 when
the top of the stack is accessed, and the 2 units of data that were written to disk have to be read again
when the storage decreases from 2 to 0. Counting only write operations, the volume of I/O obtained for
M0 = 2 is 2. When M0 further decreases, the volume of I/O will increase from 2 to a maximum value of
4. We see that on such a sequence, the volume of I/O will be equal to max(4−M0, 0), which corresponds
to an affine function of steepness −1.

If we now consider the sequence of Figure 3.6(b), which can be represented as (push,4); (pop,4);
(push,4); (pop,4), there are two peaks of stack storage, with no common data between the two peaks.
Therefore, for M0 = 2 (say), we will perform 2 units of I/O for the first peak, and 2 units of I/O for
the second peak. Overall, the volume of I/O obtained is 2×max(4−M0, 0) (piecewise affine function of
steepness −2).

Let us now take a slightly more complex example: sequence (push,4); (pop,2); (push,1); (pop,3) from
Figure 3.6(c). We start performing I/O when the physical memory available M0 becomes smaller than the
storage requirement, equal to 4. If M0 = 2, then the first peak of storage S = 4 will force us to write 2 GB
from the bottom of the stack. Then the storage requirement decreases until S = 2. When S increases
again and reaches the second peak S = 3, the bottom of the stack is still on disk and no supplementary
I/O is necessary. Finally S decreases to 0 and the bottom of the stack (2 GB) that was written will be
read from disk and consumed by the application. For this value of M0 (2), the volume of I/O (written) is
only equal to 2. In fact if M0 > 1 the second peak has no impact on the volume of I/O. Said differently,
even if there are two peaks of storage equal to 4 GB and 3 GB, 2 GB are shared by these two peaks
and this common amount of data can be processed out-of-core only once. By trying other values of M0,
one can observe that the volume of I/O, V I/O(M0), is equal to max(4 −M0, 0) + max(1 −M0, 0): we
first count the volume of I/O resulting from the largest peak (max(4−M0, 0)) and then only count new
additional I/O resulting from the second peak (max(1 −M0, 0)). Note that the value 1 in the latter
formula is obtained by subtracting 2 (volume of storage common to both peaks) to 3 (value of the peak).
Again we have a piecewise affine function; its steepness is −1 when M0 > 1 and −2 when M0 ≤ 1. We
finally consider Figure 3.6(d). In that case, we obtain exactly the same result as in the previous case,
with a volume of I/O equal to max(4−M0, 0) when M0 ≥ 1 to which we must add max(1−M0, 0) when
M0 < 1 for the I/O corresponding to data only involved in the first peak.

We summarize this behaviour. When the available memory M0 becomes slightly smaller than the
in-core threshold, if the available memory decreases by 1 GB (say), the volume of I/O will increase by
1 GB (steepness −1). This corresponds to a line of equation in this contexty(M0) = peak storage−M0,
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which represents a lower bound for the actual volume of I/O. For smaller values of the available memory,
reducing the available memory of 1 GB may increase the volume of I/O by 2 GB, 3 GB or more.

In the next subsection, we introduce some notations that we use next to give a formal way of forecast-
ing the volume of I/O in the multifrontal method. Experiments on real matrices will then be discussed
in Section 3.4.8.

3.4.2 Notations

We need some additional notations, on top of the ones introduced in Section 3.3.1. We still consider a
generic family with a parent and n children numbered j = 1, . . . , n and define:

• M0, the amount of available core memory;

• A / Aj , the core memory effectively used to process the subtree rooted at the parent / at child j
(note that Aj = min(Sj ,M0)).

• V I/O / V
I/O
j the volume of I/O required to process the subtree rooted at the parent / at child

j given an available memory of size M0. When needed, we use V I/O,term and V I/O,flex to design
the volumes of I/O with the flexible and terminal allocation schemes, respectively. We also use
V I/O,term,ip and V I/O,flex,ip in case of in-place assembly.

Clearly when the storage requirement S exceeds M0 at the root of a given subtree, V I/O will be
positive for that subtree.

3.4.3 Terminal allocation of the parent, classical assembly

In this Section, we consider that the allocation of the parent is done after all child subtrees are processed
(terminal allocation) and cannot be done in-place. Focusing on memory-handling issues, the multifrontal
method with terminal allocation may be presented as in Algorithm 3.1, where an assembly step (line
asN ) always requires the frontal matrix of the parent to be in memory. In an out-of-core assembly, we
assume that a contribution block can be partially on disk during assembly operations.

foreach node N in the tree (postorder traversal) do
alN : Allocate memory for the frontal matrix associated with N ;
if N is not a leaf then

asN : Assemble contribution blocks from children ;

fN : Perform a partial factorization of the frontal matrix of N, writing factors to disk on the fly;
keep the contribution block (in memory or on disk, possibly partially) for later use;

Algorithm 3.1: Multifrontal method with factors on disk.

3.4.3.1 Illustrative example and formal expression of the I/O volume

Before providing a formal expression of the I/O volume, we illustrate the memory and I/O behaviours
on the small example given in Figure 3.7 (left): we consider a root node (e) with two children (c) and
(d). The frontal matrix of (e) requires a storage me = 5 (let us assume, for example, that this means
5 GB). The contribution blocks of (c) and (d) require a storage cbc = 4 and cbd = 2, while the storage
requirements for their frontal matrices are mc = 6 and md = 8, respectively. (c) has itself two children
(a) and (b) with characteristics cba = cbb = 3 and ma = mb = 4. We assume that the core memory
available is M0 = 8.

To respect a postorder traversal, there are two possible ways to process this tree: (a-b-c-d-e) and
(d-a-b-c-e). (Note that (a) and (b) are identical and can be swapped.) We now describe the memory
behaviour and I/O operations in each case. We first consider the postorder (a-b-c-d-e). (a) is first
allocated (ma = 4) and factored (we write its factors of size ma − cba = 1 to disk), and cba = 3 remains
in memory. After (b) is processed, the memory contains cba +cbb = 6. A peak of storage Sc = 12 is then
reached when the frontal matrix of (c) is allocated (because mc = 6). Since only 8 (GB) can be kept in
core memory, this forces us to write to disk a volume of data equal to 4 GB. Thanks to the postorder
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c d

cba = 3 cbb = 3

cbc = 4 cbd = 2

ma = 4 mb = 4

mc = 6 md = 8

Sequence a-b-c-d-e

Storage: S = 12

I/O: V I/O = 8

⇒ Memory minimized

Sequence d-a-b-c-e

Storage: S = 14

I/O: V I/O = 7

⇒ I/O minimized

Figure 3.7: Influence of the postorder on the storage requirement and on the volume of I/O (with
M0 = 8).

and the use of a stack, these 4 GB are the ones that will be reaccessed last; they correspond to the
bottom of the stack. During the assembly process we first assemble contributions that are in memory,
and then read 4 GB from disk to assemble them in turn in the frontal matrix of (c). Note that (here
but also more generally), in order to fit the memory requirements, the assembly of data residing on disk
may have to be performed by panels (interleaving the read and assembly operations). After the factors
of (c) of size mc − cbc = 2 are written to disk, its contribution block cbc = 4 remains in memory. When
the leaf node (d) is processed, the peak of storage reaches cbc + md = 12. This leads to a new volume
of I/O equal to 4 (and corresponding to cbc). After (d) is factored, the storage requirement is equal to
cbc + cbd = 6 among which only cbd = 2 is in core (cbc is already on disk). Finally, the frontal matrix of
the parent (of size me = 5) is allocated, leading to a storage cbc + cbd +me = 11: after cbd is assembled
in core (into the frontal matrix of the parent), cbc is read back from disk and assembled in turn. Overall

the volume of data written to (and read from) disk2 is V
I/O
e (a-b-c-d-e)= 8 and the peak of storage was

Se(a-b-c-d-e)= 12.

When the tree is processed in order (d-a-b-c-e), the storage requirement successively takes the values
md = 8, cbd = 2, cbd+ma = 6, cbd+cba = 5, cbd+cba+mb = 9, cbd+cba+cbb = 8, cbd+cba+cbb+mc =
14, cbd+cbc = 6, cbd+cbc+me = 11, with a peak Se(d-a-b-c-e)= 14. Nodes (d) and (a) can be processed
without inducing I/O, then 1 unit of I/O is done when allocating (b), 5 units when allocating (c), and

finally 1 unit when the frontal matrix of the root node is allocated. We obtain V
I/O
e (d-a-b-c-e)= 7.

We observe that the postorder (a-b-c-d-e) minimizes the peak of storage and that (d-a-b-c-e) mini-
mizes the volume of I/O. This shows that minimizing the peak of storage is different from minimizing
the volume of I/O.

All the process described above is illustrated in Figure 3.8, which represents the evolution of the stor-
age in time for the two postorders (a-b-c-d-e) and (d-a-b-c-e) (subfigures 3.8(a) and 3.8(b), respectively).
The storage increases when memory is allocated for a new frontal matrix of size x (alN (x)); it decreases
when contribution blocks of size y are assembled into the frontal matrix of their parent (asN (y)) and
when factors of size z are written to disk (fN (z)). When the storage is larger than the available memory
M0, this means that part of the stack is on disk. The core window is shaded in the figure, so that the
white area below the core window corresponds to the volume of data on disk. Finally write and read
operations on the stack are noted wx and ry, where x and y are written and read sizes, respectively.
We can see that each time the storage is about to exceed the upper bound of the core window, a write
operation is necessary. The volume of data of each read operation depends on the size of the contribution
blocks residing on disk that need to be assembled.

Since contribution blocks are stored using a stack mechanism, some contribution blocks (or parts of
contribution blocks) may be kept in memory and consumed without being written to disk. Assuming
that the contribution blocks are written only when needed (possibly only partially), that factors are
written to disk as soon as they are computed, and that a frontal matrix always fits in core memory, we
focus on the computation of the volume of I/O on this stack of contribution blocks.

We remind that the working storage requirement for the classical assembly, as obtained in Section 3.3.2

2We do not count I/O for factors, that are independent from the postorder chosen: factors are systematically written
to disk in all variants considered.

74



(a) Sequence a-b-c-d-e (b) Sequence d-a-b-c-e

Figure 3.8: Evolution of the storage requirement S when processing the sample tree of Figure 3.7 with
the two possible postorders, and subsequent I/O operations. Notations alN (x), asN (y) and fN (z) were
introduced in Algorithm 3.1.

is (same equation as 3.1):

Sterm = max

(
max
j=1,n

(Sterm
j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk

)
(3.19)

In our out-of-core context, we now assume that we are given a core memory of size M0. If S > M0,
some I/O will be necessary. The data that must be written to disk are given by Property 3.1 (write
bottom of the stack in priority), which was already used in an informal way in the example at the
beginning of this section.

To simplify the discussion we first consider a set of subtrees and their parent, and suppose that
Sj ≤M0 for all children j. The volume of contribution blocks that will be written to disk corresponds to
the difference between the memory requirement at the moment when the peak S is obtained and the size
M0 of the memory allowed (or available). Indeed, each time an I/O is done, an amount of temporary
data located at the bottom of the stack is written to disk. Furthermore, data will only be reused (read
from disk) when assembling the parent node. More formally, the expression of the volume of I/O for the
terminal allocation scheme with classical assembly, using Formula (3.1) for the storage requirement, is:

V I/O,term = max

(
0,max(max

j=1,n
(Sterm

j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk)−M0

)
(3.20)

As each contribution written is read once, V I/O,term will arbitrarily refer to the volume of data written.
We now suppose that there exists a child j such that Sj > M0. We know that the subtree rooted

at child j will have an intrinsic volume of I/O V
I/O,term
j (recursive definition based on a bottom-up

traversal of the tree). Furthermore, we know that the memory for the subtree rooted at child j cannot
exceed the physical memory M0. Thus, we will consider that it uses a memory exactly equal to M0

(Aterm
j

def
= min(Sterm

j ,M0)), and that it induces an intrinsic volume of I/O equal to V
I/O,term
j . With this

definition of Aj as the active memory, i.e. the amount of core memory effectively used to process the
subtree rooted at child j, we can now generalize Formula (3.20). We obtain:

V I/O,term = max

(
0,max(max

j=1,n
(Aterm

j +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk)−M0

)
+

n∑
j=1

V
I/O,term
j (3.21)

To compute the volume of I/O on the complete tree, we recursively apply Formula (3.21) at each level
(knowing that V I/O,term = 0 and A = S = m for leaf nodes). The volume of I/O for the factorization is
then given by the value of V I/O,term at the root.

3.4.3.2 Minimizing the I/O volume

It results from Formula (3.21) that minimizing the volume of I/O is equivalent to minimizing the ex-

pression maxj=1,n(Aj +
∑j−1

k=1 cbk), since it is the only term sensitive to the order of the children.
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Thanks to Theorem 3.1 (proved in [126]), we deduce that we should process the children nodes in
decreasing order of Aj − cbj = min(Sj ,M0) − cbj . (This implies that if all subtrees require a storage
Sj > M0 then MinIO will simply order them in increasing order of cbj .) An optimal postorder traversal
of the tree is then obtained by applying this sorting at each level of the tree, constructing Formulas (3.1)
and (3.21) from bottom to top. We will name MinIO this algorithm.

Note that, in order to minimize the peak of storage (defined in Formula (3.1)), children had to be
sorted (at each level of the tree) in decreasing order of Sj − cbj rather than Aj − cbj . Therefore, on
the example discussed before, the subtree rooted at (c) (Sc − cbc = 12 − 4 = 8) had to be processed
before the subtree rooted at (d) (Sd − cbd = 8 − 2 = 6). The corresponding algorithm (that we name
MinMEM and that leads to the postorder (a-b-c-d-e)) is different from MinIO (that leads to (d-a-b-c-e)):
minimizing the storage requirement is different from minimizing the I/O volume; it may induce a volume
of I/O larger than needed. Conversely, when the stack fits in core memory, M0 is larger than Sj and
Aj = Sj for all j. In that case, MinMEM and MinIO lead to the same tree traversal and to the same peak
of core memory.

3.4.4 In-place assembly of the last contribution block

As explained before, this variant assumes that the memory of the frontal matrix of the parent may
overlap with (or include) that of the contribution block from the last child. The contribution block from
the last child is then expanded (or assembled in-place) in the memory of the parent. Since the memory
of a contribution block can be large, this scheme can have a strong impact on both storage and I/O
requirements. In this context, the storage requirements needed to process a given subtree is given by
Formula (3.2).

In an out-of-core context, the use of this in-place scheme induces a modification of the amount of
data that has to be written to/read from disk. As previously for the memory requirement, the volume
of I/O to process a given node with n children (Formula (3.21)) becomes:

V I/O,term,ip = max

0,max(max
j=1,n

(Aterm-ip
j +

j−1∑
k=1

cbk),m+

n-1∑
k=1

cbk)−M0

+

n∑
j=1

V
I/O,term,ip
j ,

where this time, Aterm-ip
j

def
= min(Sterm-ip

j ,M0) (see Formula (3.2)). Once again, the difference comes

from the in-place assembly of the contribution block coming from the last child. Because m+
∑n−1

k=1 cbk =

maxj=1,n(m+
∑j−1

k=1 cbk), this formula can be rewritten as:

V I/O,term,ip = max

(
0, max

j=1,n
(max(Aterm-ip

j ,m) +

j−1∑
k=1

cbk)−M0

)
+

n∑
j=1

V
I/O,term,ip
j (3.22)

Thanks to Theorem 3.1, minimizing the above quantity can be done by sorting the children nodes in
decreasing order of max(Aterm-ip

j ,m)− cbj , at each level of the tree.

3.4.5 In-place assembly of the largest contribution block

In an out-of-core context, it is not immediate nor easy to generalize MinIO to the in-place assembly
of the largest contribution block (see Section 3.2). The problem comes from the fact that the largest
contribution block, if it does not correspond to the last child, may have to be written to disk to leave
space for the subtrees that come after it in the postorder. Let us illustrate the difficulties one may
encounter on the example provided in Figure 3.9. We first remark that the optimal order for the MinIO

+ last-in-place variant gives a sequence of children nodes (a-b-c), to which corresponds a volume of I/O
equal to 5 (see Section 3.4.5). Let us now consider the max-in-place case. Assuming for the moment
that the order is still (a-b-c), we process child (a) and child (b) without performing I/O. In order to
allocate the memory for mc = 10, at least 5 units of data have to be written to disk among cba and cbb,
for example one may write all of cbb and 3 units of data from cba. We process (c) and have in memory
cbc = 4 together with two units of data of cba. Assembling the largest contribution cba in-place then
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M0 = 12

a b c

d m = 9

ma = 12 mb = 4 mc = 10
cba = 5 cbb = 2 cbc = 4

Figure 3.9: Example of a tree where MinIO + last-in-place is better than the max-in-place variant.

requires reading back the 3 units of data from cba from disk, and writing 1 unit of data from cbc to
disk to make space for the frontal matrix of node (d), of size m = 9. This is far less natural and it
requires overall more I/O than an in-place assembly of the contribution block of the last child (which is
in memory). By trying all other possible orders (a-c-b), (b-a-c), (b-c-a), (c-a-b), (c-b-a), we can observe
with this example that it is not possible to obtain a volume of I/O with a max-in-place assembly smaller
than the one we obtained with a last-in-place assembly (equal to 5). Thus, the max-in-place strategy
in an out-of-core context appears complicated, and non optimal at least in some cases. Therefore, we
propose to only apply the max-in-place strategy on parts of the tree that can be processed in-core. This
is done in the following way: we first apply MinMEM + max-in-place in a bottom-up process to the tree.
As long as this leads to a storage smaller than M0, we keep this approach to reduce the intrinsic in-core
memory requirements. Otherwise, we switch to MinIO + last-in-place to process the current family and
any parent family. In the following we name MinIO + max-in-place the resulting heuristic.

3.4.6 Theoretical comparison of MinMEM and MinIO

Theorem 3.4. The volume of I/O induced by MinMEM (or any memory-minimization algorithm) may be
arbitrarily larger than the volume induced by MinIO.

Proof. In the following, we provide a formal proof for the classical and last-in-place assembly schemes,
but it also applies to the strategies defined in Section 3.4.5 for the max-in-place scheme (which is identical
to last-in-place on families where I/O are needed). Let M0 be the core memory available and α(> 2) an
arbitrarily large real number. We aim at building an assembly tree (to which we may associate a matrix,
see remark in Section 3.3.1), for which:

• S(MinIO) > S(MinMEM) and

• the I/O volume induced by MinMEM (or any memory minimization algorithm), V I/O (MinMEM), is at
least α times larger than the one induced by MinIO, V I/O (MinIO) – i.e., V I/O(MinMEM)/V I/O(MinIO) ≥
α.

a b

r
S0(MinMEM) = 2M0

mr =M0/2

cbr =M0/3

m{a|b|c} =M0

cb{a|b|c} =M0/2
c

(a) T0

cbl = ε.M0

ml =M0

l

r

mr =M0/2

cbr =M0/3

Tk

r
Sk+1(MinMEM) = 2M0

mr =M0/2

cbr =M0/3Sk(MinMEM) = 2M0

(b) Tk 7→ Tk+1

Figure 3.10: Recursive construction of an assembly tree illustrating Theorem 3.4.

We first consider the sample tree T0 of Figure 3.10(a). It is composed of a root node (r) and three
leaves (a), (b) and (c). The frontal matrices of (a), (b), (c) and (r) respectively require a storage

77



ma = mb = mc = M0 and mr = M0/2. Their respective contribution blocks are of size cba = cbb =
cbc = M0/2 and cbr = M0/3. Both for the classical and last-in-place assembly schemes, it follows that

the storage required to process T0 is S0(MinMEM)
def
= Sr(MinMEM) = 2M0, leading to a volume of I/O

V
I/O
0

def
= V

I/O
r = M0. We now define a set of properties Pk, k ≥ 0, as follows.

Property Pk: Given a subtree T , T has the property Pk if and only if: (i) T is of height k + 1;
(ii) the peak of storage for T is S(MinMEM) = 2M0; and (iii) the frontal matrix at the root (r) of T is of
size mr = M0/2 with a contribution block of size cbr = M0/3.

By definition, T0 has property P0. Given a subtree Tk which verifies Pk, we now build recursively
another subtree Tk+1 which verifies Pk+1. To proceed we root Tk and a leaf node (l) to a new parent node
(r), as illustrated in Figure 3.10(b). The frontal matrix of the root node has characteristics mr = M0/2
and cbr = M0/3, and the leaf node (l) is such that ml = Sl = M0 and cbl = εM0. The value of ε is not
fixed yet but we suppose ε < 1/10. The active memory usage for Tk and (l) are Ak = min(Sk,M0) = M0

and Al = min(Sl,M0) = M0. Because all trees Tk (including T0) verify the constraints defined at the
beginning of Section 3.3.1, it is possible to associate a matrix to each of these trees. MinMEM processes
such a family in the order (Tk-l-r) because Sk − cbk > Sl − cbl. This leads to a peak of storage equal to
Sk+1(MinMEM) = 2M0 (obtained when processing Tk). Thus Tk+1 verifies Pk+1. We note that MinMEM

leads to a volume of I/O equal to V
I/O
k+1 (MinMEM) = M0/3 + V

I/O
k (MinMEM) (Formulas (3.21) and (3.22)

for the classical and last-in-place, respectively).

Since Sk(MinIO) is greater than or equal to Sk(MinMEM), we can deduce that MinIO would process the
family in the order (l-Tk-r) because Al − cbl > Ak − cbk (or max(Al,mr)− cbl > max(Ak,mr)− cbk in
the last-in-place case). In that case, we obtain a peak of storage Sk+1(MinIO) = εM0 + Sk(MinIO) and

a volume of I/O V
I/O
k+1 (MinIO) = εM0 + V

I/O
k (MinIO).

Recursively, we may build a tree Tn by applying n times this recursive procedure. As S0(MinIO) =
2M0, we deduce that Sn(MinIO) = (2 + nε)M0 which is strictly greater than Sn(MinMEM) = 2M0.

Furthermore, because V
I/O
0 (MinMEM) = V

I/O
0 (MinIO) = M0, we conclude that V

I/O
n (MinMEM) = nM0/3+

M0 while V
I/O
n (MinIO) = nεM0 +M0. We thus have: V

I/O
n (MinMEM)/V

I/O
n (MinIO) = (1 +n/3)/(1 +nε).

Fixing n = d6αe and ε = 1/d6αe we finallyget: V
I/O
n (MinMEM)/V

I/O
n (MinIO) ≥ α.

We have shown that the I/O volume induced by MinMEM, V I/O (MinMEM), is at least α times larger
than the one induced by MinIO. To conclude we have to show that it would have been the case for any
memory-minimization algorithm (and not only MinMEM). This is actually obvious since the postorder
which minimizes the memory is unique: (l) has to be processed after Tk at any level of the tree.

3.4.7 Flexible parent allocation

We recall that the flexible allocation scheme consists in allowing the parent allocation to be done right
after an arbitrary child subtree (instead of after all child subtrees) The parent allocation can still be
done in-place or not, similar to what has been studied for the terminal allocation (Equation (3.21) for
the terminal non-in-place allocation, and Equation (3.22) for the terminal in-place allocation).

In the case of the flexible allocation, the main difference with Formula (3.21) is that a child j processed
after the parent allocation may also generate I/O. If such a child cannot be processed in-core together
with the frontal matrix of the parent, then part of that frontal matrix (or all of it) has to be written
to disk to make room for the child subtree. This possible extra-I/O corresponds to underbrace (a) of
Formula (3.23). After that, the factor block of the frontal matrix of child j is written to disk and its
contribution block is ready to be assembled into the frontal matrix of the parent. However, we assume
that we cannot easily determine which rows of the contribution block, if any, can be assembled into the
part of the frontal matrix available in memory3. Therefore this latter frontal matrix is fully re-loaded into
memory (reading back from disk the part previously written). This operation may again generate I/O:
if the contribution block of child j and the frontal matrix of its parent cannot fit together in memory, a
part of cbj has to be written to disk, then read back (panel by panel) and finally assembled. This second
possible extra-I/O is counted in underbrace (b) of Formula (3.23). All in all, and using the storage
definition from Formula (3.11), the volume of I/O required to process the subtree rooted at the parent

3See [5], Section 4.6.2 for ideas of what could be done.
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node is given by:

V I/O,flex = max

0,max

 max
j=1, p

(
Aflex

i +

j−1∑
k=1

cbi

)
,m+

p∑
k=1

cbi

−M0


+

n∑
j=p+1

(
max(0,m+Aflex

j −M0)
)

︸ ︷︷ ︸
(a)

+

n∑
j=p+1

(max(0,m+ cbj −M0))︸ ︷︷ ︸
(b)

+

n∑
j=1

V
I/O,flex
i

(3.23)

Again, Aflex
j

def
= min(Sflex

j ,M0) and a recursion gives the I/O volume for the whole tree.
As done in other situations, the formula can be adapted to a last-in-place assembly scheme, meaning

that child p is assembled in-place in the frontal matrix of the parent, leading to:

V I/O,flex,ip = max

0,max

max
j=1,p

(
Aflex-ip

j +

j−1∑
k=1

cbk

)
,m+

p-1∑
k=1

cbk

−M0


+

n∑
j=p+1

(
max(0,m+Aflex-ip

j −M0)
)

+
n∑

j=p+1

(max(0,m+ cbj −M0))

+

p∑
j=1

V
I/O,flex,ip
j ,

(3.24)

where Aflex-ip
j

def
= min(Sflex-ip

j ,M0).
With the terminal allocation scheme, it was possible to minimize the volume of I/O by sorting the

children in an appropriate order. In the flexible allocation scheme, one should moreover determine the
appropriate split point, i.e., the best value for p. The flexible I/O volume is minimized when both:

i the children processed before the parent allocation are correctly separated from the ones processed
after ;

ii each one of this set is processed in an appropriate order.

Exploring these n.n! combinations is not always conceivable since some families may have a very large
number n of children (more than one hundred for instance for matrix GUPTA3). However, we have shown

earlier that the order in the first set is known: decreasing order of Aflex−cbj (resp. max(Aflex-ip
j ,m)−cbj in

the in-place case). Moreover, the I/O volume on the children processed after the allocation is independent
of their relative processing order. Said differently, these two remarks mean that condition (ii) is actually
immediate when (i) is determined. Therefore we mainly have to determine to which set (before or after
the parent allocation) each child belongs to. However, this still makes an exponential (2n) number of
possibilities to explore and motivates to further reduce the complexity.

Actually, the decision problem associated with this minimization problem is NP-complete. In other
words, given an arbitrary volume of I/O V , there is no deterministic polynomial algorithm that can
consistently decide whether there exists a partition of the children inducing a volume of I/O lower than
or equal to V (except if P = NP ). The proof of NP-completeness (reduction from 2-PARTITION) is
available in [5].

To further reduce the complexity, remark that if a child is such that m + Sflex
j ≤ M0, ordering

this child after the parent allocation does not introduce any additional I/O ((a) and (b) are both
0 in Equation (3.23)), whereas this may not be the case if it is processed before the parent allocation.

Therefore, we conclude that we can place all children verifying m+Sflex
j ≤M0 after the parent allocation.

Furthermore, consider the case where Sflex
j ≥M0−m+cbj and m+cbj ≤M0. Processing this child after

the parent allocation (see Formula (3.23)) leads to a volume of I/O either equal to m (if Sflex
j >= M0) –

which is greater than cbj , or to Sflex
j −M0 +m (if Sflex

j ≤M0) – which is also greater than cbj . On the
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(a) GUPTA3 matrix - METIS ordering M0=684686 (b) TWOTONE matrix - PORD ordering M0=7572632

Figure 3.11: Distribution of the families in function of their total and unfixed number of children. After
a straightforward analysis, most families have few (or no) unfixed children.

other hand, treating that child first (this may not be optimal) will lead to a maximum additional volume
of I/O equal to cbj . Therefore, we can conclude that we should process it before the parent allocation.

For the same type of reasons, children verifying Sflex
j ≥ 2(M0 −m) and m + cbj > M0 should also be

processed before the parent allocation.
We will say that a child is fixed if it verifies one of the above properties: a straightforward analysis

- independent of the metrics of its siblings - determines if it should be processed before or after the
allocation of the parent node. Even though the number of fixed children can be large in practice, some
matrices may have a few families with a large number of unfixed children, as shown in Figure 3.11 for
two sparse problems, in the in-place allocation case. For instance, among the 28 families inducing I/O
for the GUPTA3 matrix ordered with METIS when a memory of M0 = 684686 scalars is available, 21 families
have no unfixed children (thus for them the optimum process is directly known), but one family keeps
having 54 unfixed children. In such cases, heuristics are necessary. The one we designed consists in
moving repeatedly after the parent allocation the child which is responsible for the peak of storage, until
one move does not decrease the volume of I/O anymore. The whole process is called Flex-MinIO.

3.4.8 Experimental results

Mimizing the volume of I/O can be critical when processing large problems. The first thing that one
should observe is that as soon as I/O’s are required, it is critical to give as much memory as possible to
the factorization algorithm: decreasing M0 by x GB (say) implies an increase of I/O volume equal to
k.x, where k is an integer greater or equal to 1 (see also Section 3.4.1).

We provide here a few illustrative results and remarks with the terminal allocation, then with the
flexible allocation.

3.4.8.1 Terminal allocation

First, we observed that using an in-place assembly scheme is in general very useful: on most test matrices
that were used, it reduces the I/O volume by a factor of two. Second, significant gains are obtained when
comparing the volumes of I/O obtained with MinMEM and MinIO. We report in Figure 3.12 the largest
gains observed for each matrix on the range of values of M0 larger than the size of the largest frontal
matrix. The largest gain is obtained for the case SPARSINE-PORD, where MinIO is better than MinMEM by
a factor of 5.58. Generally, the largest profits from MinIO are obtained when matrices are preprocessed
with orderings which tend to build irregular assembly trees: AMF, PORD and - to a lesser extent - AMD

(see [107] for more illustrations on the impact of ordering on tree topologies). Intuitively, this is because
on such trees, there is a higher probability to be sensitive to the order of children.
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Finally, Figure 3.13 shows by how much the MinIO algorithm with a max-in-place assembly scheme
improves the MinIO last-in-place one, on four selected matrices. When the available core memory de-
creases, the ratio is equal to 1 because in this case, the heuristic for the max-in-place assembly variant
switches to the last-in-place scheme (as explained in Section 3.4.5) and the switch occurs very early.
More experimental results and discussions are available in [13].

3.4.8.2 Flexible allocation

Considering now the case of flexible allocation, we illustrate the potential of this approach on four
problems, for the in-place assembly scheme: Figure 3.14 shows the evolution of the volume of I/O
depending on the available memory on the target machine. When a large amount of memory is available
(right part of the graphs), the flexible allocation schemes (both Flex-MinMEM and Flex-MinIO) induce
a small amount of I/O compared to the terminal allocation scheme (Term-MinIO). Indeed, with such an
amount of memory, many children can be processed after the allocation of their parent without inducing
any I/O (or inducing a small amount of I/O): the possible extra-I/Os corresponding to underbraces (a)
and (b) of Formula (3.23) are actually equal (or almost equal) to zero for those children.

When the amount of available memory is small (left part of the graphs), the memory-minimizing
algorithm (Flex-MinMEM) induces a very large amount of I/O compared to the I/O-minimization algo-
rithms (both Flex-MinIO and Term-MinIO). Indeed, processing a child after the parent allocation may
then induce a very large amount of I/O (M0 is small in underbraces (a) and (b) of Formula (3.23)) but
memory-minimization algorithms do not take into account the amount of available memory to choose
the split point.

Finally, when the amount of available memory is intermediate, the heuristic we have proposed
(Flex-MinIO) induces less I/O than both other approaches. Indeed, according to the memory, not
only does the heuristic use a flexible allocation scheme on the families for which it is profitable, but it
can also adapt the number of children to be processed after the parent allocation.

To conclude on flexible allocation schemes and I/O volumes, we refer the reader to [5], Chapter 4,
for various discussions and extensions of this section.

3.5 Memory management algorithms

The different MinMEM and MinIO algorithms presented in the previous sections provide a particular pos-
torder of the assembly tree. With flexible allocation schemes, they also compute the positions of the
parent allocations. These algorithms can be applied during the analysis phase of a sparse direct solver.
Then the numerical factorization phase relies on this information and should respect the predicted opti-
mal metrics (memory usage, I/O volume). In this Section, we focus on the case where factors are written
to disk as soon as they are computed, and consider the remaining working storage. We show that in
this case, efficient memory management algorithms can be designed for the various assembly schemes
considered. Because we consider that the factors are written to disk on the fly, we only have to store
temporary frontal matrices and contribution blocks. We assume that those must be stored in a preal-
located contiguous workarray W of maximum size M0, the available core memory. In this workarray,
we manage one or two stacks depending on our needs, as illustrated in Figure 3.15. Another approach
would consist in relying on dynamic allocation routines (such as malloc and free). Although those may
still be efficient from a performance point of view, the use of such a preallocated workarray has several
advantages over dynamic allocation, allowing for a tighter memory management as long as complicated
garbage collection mechanisms can be avoided. In particular, several memory operations are possible
with a workarray managed by the application that would be difficult or even impossible with standard
dynamic allocation tools:

• In-place assemblies: with dynamic allocation, expanding the memory of the contribution block of
a child node into the memory of the frontal matrix of the parent node would require to rely on a
routine that extends the memory for the contribution block (such as realloc). This may imply an
extra copy which cancels the advantages of in-place assemblies; with a preallocated workspace, we
simply shift some integer pointers.

• Assuming that the frontal matrix uses a dense row-major or column-major storage and that the
factors have been copied to disk, we can copy the contribution block of such a frontal matrix into
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Figure 3.14: I/O volume on the stack of contribution blocks as a function of the core memory available
for the three heuristics with four different matrices.
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a contiguous memory area that overlaps with the original location. With dynamic allocation, we
would need to allocate the memory for the contribution block, perform the copies and then free the
memory for the original frontal matrix. Even assuming that the contribution block is compacted
in-place (inside the memory allocated for the frontal matrix), then it is not clear how to free the
rest of the frontal matrix with dynamic allocation tools, whereas this can be done by shifting an
integer pointer in our case.

Finally, the preallocated workarray allows for a very good locality, for example, when assembling the
contributions from children into the frontal matrix of the parent, the entries of all the contribution blocks
are contiguous in memory.

Left Stack Right StackFree block

Bottom Top Top Bottom

Right Stack

Top Bottom

Free block

Figure 3.15: Subdivision of the main workarray, W , into one stack (left) or two stacks (right) of contri-
bution blocks. The free block can be used to store the temporary frontal matrices.

3.5.1 In-core stack memory

In this section, we assume that the contribution blocks are processed in core. We first recall memory
management algorithms that are used in existing multifrontal codes in Section 3.5.1.1. In Section 3.5.1.2,
we then more specifically explain how to handle our new max-in-place assembly scheme (see the previ-
ous chapter). We generalize those algorithms to the multifrontal method with a flexible allocation in
Section 3.5.1.3.

3.5.1.1 Recalling the classical and last-in-place assembly schemes

The classical and last-in-place approaches with a terminal allocation are already used in existing multi-
frontal codes. We recall them in this section in order to introduce notions that we will use in the other
subsections. We have seen earlier (first part of Property 3.1) that since we have a postorder traversal,
the access to the contribution blocks has the behaviour of a stack (in general, one uses the stack on the
right of W ). In other words, thanks to the postorder:

Property 3.3. If the contribution blocks are stacked when they are produced, each time a frontal matrix
is allocated, the contribution blocks from its children are available at the top of the stack.

For example, at the moment of allocating the frontal matrix of node (6) in the tree of Figure 3.16,
the stack contains, from bottom to top, cb1, cb2, cb3, cb4, cb5. The frontal matrix of (6) is allocated in
the free block, then cb5 and cb4 (in that order) are assembled into it and removed from the stack. Once
the assembly at the parent is finished, the frontal matrix is factorized, the factors are written to disk,
and the contribution block (cb6) is moved to the top of the stack.

The only difference between the classical and the last-in-place assembly schemes is that in the last-
in-place case, the memory for the frontal matrix of the parent is allowed to overlap with the memory of
the child available at the top of the stack. In the example, this means that if the free block on the left is
not large enough for the frontal matrix of (6), that frontal matrix is allowed to overlap with the memory
of the contribution block of (5), of size cb5, leading to significant memory gains. The contribution block
of the child is expanded into the memory of the frontal matrix of the parent, and the contribution blocks
from the other children are then assembled normally.

3.5.1.2 In-place assembly of the largest contribution block

The new max-in-place assembly scheme that we have introduced consists in overlapping the memory of
the parent with the memory of the largest child contribution block. For this to be possible, the largest
contribution block must be available in a memory area next to the free block where the frontal matrix
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31 2

7

6

4 5

Figure 3.16: Example of a tree with 7 nodes. Nodes in bold correspond to the nodes with the largest
contribution block among the siblings. (This property will be used in Section 3.5.1.2.)

of the parent will be allocated. By using a special stack for the largest contribution blocks (the one on
the left of W , see Figure 3.15), Property 3.3 also applies to the largest contribution blocks. Thus, when
processing a parent node,

• the largest child contribution is available at the top of the left stack and can overlap with the
frontal matrix of the parent; and

• the other contributions are available at the top of the right stack, just like in the classical case.

This is illustrated by the tree of Figure 3.16. When traversing that tree, we first stack cb1 on the right
of W , then stack cb2 (identified as the largest among its siblings) on the left of W , then cb3 on the right,
cb4 on the left, and cb5 on the right. When node (6) is processed, the workarray W contains:

cb2 cb4 Free block cb5 cb3 cb1

The memory for the frontal matrix of (6) can overlap with cb4 so that cb4 is assembled in-place; cb5
is then assembled normally. Note that the same type of situation will occur for the root node (7): cb2
(now available at the top of the left stack) will first be assembled in-place, the cb6, cb3 and cb1 (in that
order) will be assembled from the right stack.

3.5.1.3 Flexible allocation of the frontal matrices

We now consider the flexible multifrontal method, as discussed in Section 3.4.7. Since the frontal matrix
of a parent is allowed to be allocated before all children subtrees have been processed, several frontal
matrices may be in core memory at the same time. Let us first consider the classical and last-in-place
assembly scheme. On the example of Figure 3.17, we assume that the frontal matrix f7 of node (7) is
allocated after the treatment of node (3) and that the frontal matrix f6 of node (6) is allocated after
the treatment of node (4).

1

7

63

4 5

22

4

Figure 3.17: Reconsidering the example of Figure 3.16 with a flexible allocation. The arrows indicate
the position at which the frontal matrices of the parents are allocated. Nodes in bold correspond to the
nodes with the largest contribution block among the siblings processed before a parent allocation.
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When processing node (5), both f7 and f6 have been allocated in memory, although they cannot be
factored yet. Similarly to the contribution blocks, we have the property that frontal matrices are accessed
with a Lifo (Last In First Out) scheme: on our example, frontal matrices f7 and f6 are allocated in
this order but f6 is factored and released before f7. It is thus natural to store the frontal matrices in a
stack too. Again, it is possible to manage both stacks in a single array and this approach allows for an
overlapping in time of the stacks: i)one of the stack may be large when the other is small and vice-versa;
ii)the frontal matrix may overlap with the last contribution block in the last-in-place case). We suppose
that the right stack is used for the contribution blocks, and, this time, the left stack is used for the
frontal matrices.

On our example, after node (7) has been allocated, the contributions of nodes (1), (2) and (3) are
assembled and released. Then, node (4) is factored and produces a contribution block so that at this
time, the workarray contains: f7 Free block cb4 Frontal matrix of (6) is then allocated
in the left stack. Remark that it is allowed to overlap with cb4 in the last-in-place scheme. Assuming
no overlap between f6 and cb4, the workarray W contains: f7 f6 Free block cb4 cb4 is
assembled in f6 and released. Next: node (5) is processed; its contribution is assembled into f6 and
released; (6) is factored; its contribution is assembled into f7 and released; finally, (7) is factored.

Let us now consider the max-in-place assembly scheme. We need to store

• frontal matrices,

• normal contribution blocks,

• largest contribution blocks,

which would indicate the need for three stacks. However, the key idea here consists in observing that the
stack for frontal matrices and for largest contribution blocks can use a single stack. For that, we must
simply verify that (i) a largest contribution block produced before a front allocation is released after the
front; (ii) a large contribution produced before a front allocation is released before. When a subtree has
been processed, all the frontal matrices and contribution blocks related to other nodes than its root node
have been released. Therefore, we only have to check that (i) and (ii) stand for the nodes that compose
a family (we do not need to investigate the data related to the nodes inside the subtrees of the children).
Let us consider a family. A number of p children are processed before the parent allocation. One of them,
say j0 (j0 ≤ p), provides the largest contribution block. This block is pushed on top of the left stack of
the workarray W . When child p has been processed, this contribution block is still on the top of the left
stack and can be extended in-place to constitute the frontal matrix. Contribution blocks from children
j, j ≤ p, j 6= j0 are assembled from the right stack. Then, the children j, j > p (and their subtrees) are
processed in the available space and their contribution block are assembled into the frontal matrix on
the fly. Next, the frontal matrix is factored, produces a contribution block that is either pushed on the
left (if it is in turn the largest of its siblings) or on the right (otherwise). For instance, with the tree of
Figure 3.17, the workarray W is as follows before the allocation of f7:

cb2 Free block cb3 cb1

Then f7 overlaps with cb2 which is on top of the left stack as required. After node (4) is processed, the
left stack contains f7 and cb4; f6 is allocated, overlapping with cb4; f5 is allocated and factored; cb5 is
stored in the right stack and assembled into f6, and so on. Overall, the left stack was used for the frontal
matrices and cb2 and cb4 and the right stack was used for the other contribution blocks.

3.5.2 Out-of-core stacks

We now assume that contribution blocks may be written to disk when needed. When there is no more
memory, Property 3.1 suggests that the bottom of the stack(s) should be written to disk first. Therefore,
the question of how to reuse the corresponding workspace arises. We give a first natural answer to
this question in Section 3.5.2.1, but it has some drawbacks and does not apply to all cases. Based on
information that can be computed during the analysis phase, we then propose in Section 3.5.2.2 a new
approach that greatly simplifies the memory management for all the considered assembly schemes.
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3.5.2.1 Dynamic cyclic memory management

In the classical and last-in-place cases, only one stack is required. In order for new contribution blocks
(stored at the top of the stack) to be able to reuse the space available at the bottom of the stack after
write operations, a natural approach consists in using a cyclic array. From a conceptual point of view,
the cyclic memory management is obtained by joining the end of the memory zone to its beginning, as
illustrated in Figure 3.18. In this approach, the decision to free a part of the bottom of the stack is
taken dynamically, when the memory is almost full. We illustrate this on the sample tree of Figure 3.7
processed in the postorder (d-a-b-c-e) with a classical assembly scheme. After processing nodes (d) and
(a), one discovers that I/O has to be performed on the first contribution block produced (cbd) only at
the moment of allocating the frontal matrix of (b), of size mb = 4 (see Figure 3.19(a)).

TopR

Free StackR

(a) Workarray

TopR

StackR

Free

(b) Cyclic workarray

Figure 3.18: Folding a linear workarray (left) into a cyclic workarray (right).

Note that a significant drawback of this approach is that a specific management has to be applied to
the border, especially when a contribution block or a frontal matrix is split on both sides of the memory
area (as occurs for frontal matrix mb in Figure 3.19(a)).

cba = 3

cbd = 2

(mb = 4)

(a) Dynamic cyclic approach

cbd = 2

(b) Top-down approach

Figure 3.19: Memory state while processing the tree of Figure 3.7 in the postorder (d-a-b-c-e). The size
of the workarray is M0 = 8. With a dynamic approach (left), one discovers that I/O will be performed
on cbd only before dealing with node (b). With the approach of Section 3.5.2.2 (right), we know a priori
that cbd must be fully written to disk thanks to the analysis phase.

Moreover, in the max-in-place case, such an extension is not as natural because of the existence of
two stacks. That is why we propose in the next subsection another approach, which avoids a specific
management of the borders for the classical and last-in-place cases, and allows to efficiently handle the
max-in-place case.

87



3.5.2.2 Using information from the analysis: static top-down formulation

In order to minimize the I/O volume in the previous approach, a contribution is only written to disk
when the memory happens to be full: the decision of writing a contribution block (or a part of it) is taken
dynamically. However, a better approach can be adopted. We explain it by listing some properties, each
new property being the consequence of the previous one. For the moment, let us consider a terminal
allocation.

Property 3.4. While estimating the volume of I/O, the analysis phase can forecast whether a given
contribution block will have to be written to disk or not.

This property results from an instrumentation of the analysis phase that we describe in the following.

When considering a parent node with n child subtrees, the volume of I/O V
I/O
family performed on the

children of that parent node is given by the first member (the recursive amount of I/O on the subtrees is
not counted) of Formulas (3.21) and (3.22) respectively for the classical and in-place cases. For example,

V
I/O
family = max

(
0,max(max

j=1,n
(Aj +

j−1∑
k=1

cbk),m+

n∑
k=1

cbk)−M0

)
(3.25)

for the classical assembly scheme. Given V
I/O
family and knowing that we are going to write the contribution

blocks produced first in priority, one can easily determine if the contribution block cbj of the jth child
must be written to disk:

• if
∑j

i=1 cbi ≤ V I/O
family, the volume of I/O for that family is not reached even when cbj is included;

therefore, cbj must be entirely written to disk;

• if
∑j−1

i=1 cbi < V
I/O
family <

∑j
i=1 cbi, then cbj should be partially written to disk and the volume

written is V
I/O
family −

∑j−1
i=1 cbi;

• otherwise, cbj remains in-core.

In the tree of Figure 3.7 processed in the order (d-a-b-c-e), the volume of I/O for the family defined
by the parent (e) and the children (d) and (c) is equal to 3. According to what is written above, this
implies that cbd = 2 must be entirely written to disk, and that 1 unit of I/O must be performed on cbc.

Property 3.5. Because the analysis phase can forecast whether a contribution block (or part of it) will
be written to disk, one can also decide to write it (or part of it) as soon as possible, that is, as soon as
the contribution is produced. This will induce the same overall I/O volume.

Thanks to Property 3.5, we will assume in the following that:

Strategy 1. We decide to write all the contribution blocks which have to be written as soon as possible.

This is illustrated in Figure 3.19(b): as soon as the contribution block of node (d) (cbd) is produced,
we know that it has to be written to disk and we can decide to write it as soon as possible, i.e., before
processing node (a). Therefore, we can free the memory for the contribution block of (d) before allocating
the frontal matrix of (a) (by using synchronous I/Os or, more efficiently, with pipelined asynchronous
I/Os).

Property 3.6. Each time a contribution block has to be written, it is alone in memory: all the previous
contribution blocks are already on disk.

In other words, it is no longer required to write the bottom of a stack, as it was suggested in
Property 3.1. A slightly stronger property is the following:

Property 3.7. If a subtree requires some I/O, then at the moment of processing the first leaf of that
subtree, the workarray W is empty.

This is again because we should write the oldest contribution blocks first and those have been written
as soon as possible. A corollary from the two previous properties is the following:
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Property 3.8. When we stack a contribution block on a non-empty stack, we will never write it. Oth-
erwise, we would have written the rest of the stack first. In particular, if a given subtree can be processed
in-core with a memory S ≤M0, then at the moment of starting this subtree, the contiguous free block of
our workarray W is necessarily at least as large as S.

It follows that by relying on Strategy 1 a cyclic memory management is not needed anymore: a simple
stack is enough for the classical and last-in-place assembly schemes, and a double stack is enough for the
max-in-place assembly scheme. In the latter case, a double stack is required only for processing in-core
subtrees since our max-in-place + MinIO heuristic switches to last-in-place for subtrees involving I/O
(as explained in Section 3.4.5).

We illustrate this strategy on the max-in-place + MinIO variant of Section 3.4.5 (although it applies
to all MinIO approaches). We assume that the analysis phase has identified in-core subtrees (processed
with MinMEM + max-in-place) and out-of-core subtrees (processed with MinIO + last-in-place). We also
assume that the contribution blocks that must be written to disk have been identified. The numerical
factorization is then illustrated by Algorithm 3.2. It is a top-down recursive formulation, more natural
in our context, which starts with the application of AlgoOOC rec() on the root of the tree. A workarray
W of size M0 is used.

% W: workarray of size M0

% n: number of child subtrees of tree T
for j = 1 to n do

if the subtree Tj rooted at child j can be processed in-core in W then
% We know that the free contiguous block in W is large enough thanks to

Property 3.8

Apply the max-in-place approach (see Section 3.5.1.2);

else
% Some I/O are necessary on this subtree, therefore W is empty

(Property 3.7)

% We do a recursive call to AlgoOOC rec(), using all the available workspace

AlgoOOC rec(subtree Tj) ;

Write cbj to disk or stack it (decision based on Property 3.4 and Strategy 1);

Allocate frontal matrix of the parent node; it can overlap with cbn;
for j = n downto 1 do

Assemble cbj in the frontal matrix of the root of T (reading from disk vj units of data,
possibly by panels);

Factorize the frontal matrix; except for the root node, this produces a contribution block;
Algorithm 3.2: AlgoOOC rec(tree T ).

3.5.2.3 Application to the flexible allocation scheme

Assuming this time that we have a last-in-place (for example) allocation scheme before the parent

allocation, V
I/O
family (see also Property 3.4 for the terminal allocation) can be expressed as:

V
I/O
family = max

0,max( max
j=1, p

(Aflex
j +

j−1∑
k=1

cbk),+

p-1∑
k=1

cbk)−M0

 (3.26)

Again, oldest contributions blocks are written first and if
∑j

i=1 cbi < V
I/O
family, this means that cbj

should be written to disk at least partially. We decide to do so as soon as possible. Therefore, Property 3.8
(and the previous ones) still hold. We now state two new properties, the second one being a direct
consequence of the first one.

Property 3.9. We consider a family involving some I/O, using either a a classical or last-in-place
assembly scheme. Before processing the first subtree of this family, we know that the memory is empty
(Property 3.7). When the parent of the family is allocated, the contribution blocks of the children already

89



processed are either on disk or available in the right stack ( classical or last-in-place assembly schemes).
In particular cbp is available on the top of that stack.

Property 3.10. Considering a family involving I/O, once the the contribution blocks from the children
j ≤ p have been assembled into the frontal matrix of the parent, that frontal matrix is alone in memory.

We now consider a child j processed after the parent allocation. Thanks to Section 3.4.7, we know
that such a subtree can be processed in-core alone (Sflex

j < M0). If Sj + m > M0, part of the frontal
matrix (Sj +m−M0) has to be written to disk in order to make room for the subtree Tj rooted at child
j, which is then processed in-core. With our previous assumptions, if m+ cbj > M0, we might then have
to write part of the contribution block to disk, read back the frontal matrix m and assemble cbj into it
panel by panel.

This leads to the top-down recursive formulation provided in Algorithm 3.3. The analysis phase
has identified in-core subtrees (where MinMEM + flexible + max-in-place can be applied, as explained
in Section 3.5.1.3). On out-of-core subtrees, we decide to use the combination (MinIO + flexible +
last-in-place), see Section 3.4.5.

% W: workarray of size M0

% n: number of child subtrees of tree T
% p: position of the parent allocation

% This algorithm is only called on subtrees that do not fit in memory

for j = 1 to p do
if the subtree Tj rooted at child j can be processed in-core in W then

% We know that the free contiguous block in W is large enough thanks to

Property 3.8

Apply the max-in-place flexible in-core approach (see Section 3.5.1.3)

else
% Some I/O are necessary on this subtree, therefore W is empty

(Property 3.7)

% We do a recursive call to AlgoOOC flex rec(), using all the available

workspace

AlgoOOC flex rec(subtree Tj) ;

Write cbj to disk or stack it (decision based on Property 3.4 and Assumption 1, but using
Formula (3.26)) at the right of W ;

% Thanks to Property 3.9:

Allocate the frontal matrix of the root of T , of size m (say), at the left of the workspace (in
W (1 : m)); it can overlap with cbp because we decided to use a last-in-place scheme on out-of-core
families;
for j = p downto 1 do

Assemble cbj in the frontal matrix of the root of T (reading from disk the part of cbj
previously written, if any, possibly by panels);

% The frontal matrix of the parent is now alone in memory (Property 3.10)

for j = p+ 1 to n do
% We know that Sj ≤M0 thanks to Section 3.4.7

if the subtree Tj rooted at child j cannot be processed in-core with its parent in W then
Write an amount m+ Sj −M0 units of the parent frontal matrix;

% A free contiguous block of size Sj is now available in memory

Apply the max-in-place flexible in-core approach to Tj (Section 3.5.1.3);
% On output cbj is available in memory

Assemble cbj into the frontal matrix of the root of T (temporary writing part of cbj to disk,
and reading the part of the parent frontal matrix previously written, if any);

Factorize the frontal matrix; this step produces a contribution block (except for the root) that we
stack on the right of W ;

Algorithm 3.3: AlgoOOC flex rec(tree T ), using a max-in-place (resp. last-in-place) before the
parent allocation for the in-core (resp. out-of-core) parts.
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Note that only one stack, on the right of W , is manipulated in Algorithm 3.3, although more stacks
are used temporarily on subtrees that can be processed in-core.

Table 3.4 sums up how to organize the data in the in-core case depending on the variant of the
multifrontal method considered.

Data
Allocation scheme Assembly scheme Left stack Right stack

terminal
classical ∅ all CB’s
last-in-place ∅ all CB’s
max-in-place largest CB’s other CB’s

flexible
classical fronts all CB’s
last-in-place fronts all CB’s
max-in-place fronts + largest CB’s other CB’s

Table 3.4: Summary of the in-core management of data (other than the current frontal matrix). Front
is used for frontal matrix and CB is used for contribution block.

3.5.3 Limits of the models

In the out-of-core approaches relying on information from the analysis, we have considered multifrontal
solvers without delayed pivots between children and parent nodes. In that case, the forecasted metrics
from the analysis are exactly respected during the numerical factorization and the tree traversals obtained
are optimal. In particular, Algorithms 3.2 and 3.3 can be applied and implemented as presented.

Let us now allow dynamic pivoting that results in delayed pivot eliminations between some children
nodes to their parents or ancestors [80]. The size of the associated contribution blocks increases to include
the delayed pivot rows/columns, leading to an increase of the quantities cb andm. Because such numerical
difficulties can hardly be predicted but often remain limited in practice with proper preprocessing, it
seems reasonable to us to keep the tree traversal obtained with the original metrics from the analysis. In
the case of an in-core stack, the memory management algorithms from Section 3.5.1 can still be applied
– including the memory management for our new max-in-place scheme presented in Section 3.5.1.2 – as
long as the memory size is large enough.

In the context of an out-of-core stack, the approaches from Section 3.5.2.2 do not apply directly
because the storage for a subtree may be larger than forecasted when numerical difficulties occur. Imagine
for example that a subtree which was scheduled to be processed in-core no longer fits in memory because
of delayed eliminations within the subtree. Alternative strategies to deal with those numerical difficulties
are required, which are outside the scope of this paper. Recovering from a situation where the strategy
has been too optimistic may require a significant amount of extra, unpredicted I/O and/or memory
copies. A safer approach could consist in relaxing the forecasted metrics with a predefined percentage
and artificially limit the amount of delayed eliminations to remain within that percentage. Finally,
storing delayed rows/columns into separate data structures with a separate out-of-core management
when necessary might be another option.

3.6 Concluding remarks

This work and the associated memory-management algorithms can be useful for large problems in limited-
memory environments. They can be applied to shared-memory multifrontal solvers relying on threaded
BLAS libraries. In a parallel distributed context, they can help limiting the memory requirements and
decreasing the I/O volume in the serial parts of the computations. In parallel environments, memory
usage also depends a lot on scheduling strategies, as will be seen in Chapter 4. In particular, we hope
that the memory-aware algorithms of Section 4.3 will allow generalizations of some of the sequential
mechanisms describe in this chapter.
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Chapter 4

Task Scheduling in Parallel
Distributed-Memory Environments

The way we adapted the multifrontal method to parallel distributed-memory environments using message
passing and distributed dynamic schedulers was described in Section 2.1. Mapping and scheduling
algorithms have a strong impact on the behaviour of our method and this has been the object of a lot of
research and development work [24, 31, 33, 103, 101, 34]. We remind that in our framework, the nodes of
the assembly tree are mapped statically, but the processor in charge of a node determines dynamically,
at runtime, the set of processors that will participate in the associated factorization task. In practice, at
least 80% of the work is mapped at runtime, and the mapping decisions are based on estimates of the
load of the other processors (the load estimations will be further detailed in Section 4.1). To limit the
dynamic choices of the schedulers and improve locality of communications, [33] suggested to limit the
choice of slave processors for a given task to a set of candidates determined statically. Before that, any
processor participating in the execution could be chosen to work on the subtasks.

This chapter is organized in two parts. In the first one (Section 4.1), we present different approaches
to get accurate load and memory information on entry to the distributed scheduling algorithms, that
have all been implemented and experimented. In the second part (Section 4.2), we then summarize the
work done in the past concerning scheduling and mapping algorithms, both on the static and dynamic
aspects. Those works have aimed at improving performance, reduce memory usage, or do both at the
same time. Particular architectures (clusters of SMP’s) have also been considered.

4.1 Obtaining accurate load estimates

In this section, we describe, study and compare different load exchange mechanisms and justify the choice
for the one we decided to use by default.

Our parallel multifrontal algorithm can be considered as a set of dependent tasks executing on a
distributed system of N processors that only communicate by message passing. From time to time,
any processor P (called master) needs to send work to other processors. In order for such scheduling
decisions to use accurate information, each processor facing a scheduling decision relies on a view of the
workload and memory usage of the other processors. The workload and memory of a processor P vary:
(i) when P processes some work (less work waiting to be done, temporary memory freed at the end of a
task) or (ii) when a new task appears on processor P (that can come either from a new dependency met
or from another processor). Whereas errors on workload estimates typically result in a longer execution
time (or makespan), an error in the memory estimation can be more dramatic and lead to a failure
if the processor chosen does not have enough memory to receive and process the assigned task. The
algorithms presented in this section aim at providing state information from the processors that will be
used during distributed dynamic scheduling decisions. To fix the ideas, the simplified model algorithm
is Algorithm 0.1. Looking at Algorithm 0.1, note that all messages discussed in this section are of type
state information, and they are processed in priority compared to the other messages. In practice, a
specific channel (or MPI communicator) is used for those messages.

We consider two classes of algorithms.
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• The first class (discussed in Section 4.1.1) consists in maintaining the view of the load information
during the computation: when quantities vary significantly, processes exchange information and
maintain an approximate view of the load of the others.

• The second class of approaches (Section 4.1.2) is more similar to the distributed snapshot problem
of [51] and is demand-driven: a process requiring information (to proceed to a scheduling decision)
asks for that information to the others. Although less messages are involved, there is a stronger
need for synchronization. In this section, we discuss possible algorithms for those two classes of
approaches, and compare their impact on the behaviour of a distributed application using dynamic
scheduling strategies.

4.1.1 Maintaining a distributed view of the load

In this approach, each process broadcasts information when its state changes. Thus, when a process has
to take a dynamic decision (we called this type of dynamic decisions a slave selection), it already has
a view of the state of the others. A condition to avoid a too incoherent view is to make sure that all
pending messages related to load information are received before taking a decision implying to assign
work to other processors. This is the case in the context of Algorithm 0.1.

4.1.1.1 Naive mechanism

Early versions of MUMPS used the mechanism described by Algorithm 4.1; each process Pi is responsible
of knowing its own load; for each significant variation of the load, the absolute value of the load is sent to
the other processes, and this allows them to maintain a global view of the load of the system. A threshold
mechanism ensures that the amount of messages to exchange load information remains reasonable.

1: Initialization

2: last load sent = 0
3: Initialize(my load)
4: When my load has just been modified:

5: if |my load− last load sent| > threshold then
6: send (in a message of type Update, asynchronously) my load to the other processes
7: last load sent = my load
8: end if
9: At the reception of load lj from Pj (message of type Update):

10: load(Pj) = lj
Algorithm 4.1: Naive mechanism to exchange load information.

t0 : Common initial time on P0, P1 and P2

t1 : Begining of  a task on P2

t2 : Slave selection on P0

t3 : Slave selection on P1

t4 : End of the task started at t1 on P2 

t0 < t1 < t2 < t3 < t4

P0 P1P2

t0t0 t0

t2

t3

t1

t4

Time Time Time

Figure 4.1: Example exhibiting the incorrectness of the naive mechanism.

The local load li should be updated on the local process regularly, at least when work is received from
another process, when a new local task becomes ready (case of dependent tasks), and when a significant
amount of work has just been processed.
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Limitations

Some problems can arise with the mechanism described above for the dynamic scheduling parts of our
system. Indeed, with this mechanism, if several successive slave selections occur, there is nothing to
ensure that a slave selection has taken into account the previous ones. Thus, a slave selection can be
done based on invalid information and this can lead to critical situations (in practice, large imbalance of
the workload or critical increase of the memory).

Figure 4.1 gives an illustration of the problem. Suppose that P2 has started a relatively costly task
at time t1 and is chosen as slave by P0 at time t2. P2 will not be able to receive the subtask from P0

before the end of its own task. As a result, P2 that does not know yet that it has been chosen by P0,
cannot inform the others. P1, which is the second process that has to select slaves, will then select P2

without taking into account the amount of work already sent by P0. This simple example exhibits the
limitations of this approach.

4.1.1.2 Mechanism based on load increments

In this section we present another mechanism based on load increments to improve the correctness of the
load information during the execution, and avoid situations like in Figure 4.1. Each time a process selects
slaves, it sends (to all processes) a message of type Master To All containing the identity of the slaves
and the amount of workload/memory assigned to each of them (it is a kind of reservation mechanism).
At the reception of a message of this type, each process updates its local information on the processes
concerned with the information contained in the message.

1: Initialization:

2: my load = 0
3: ∆load = 0
4:

5: When my load varies of δload:

6: if δload concerns a task where I am slave then
7: if δload > 0 return
8: end if
9: my load = my load+ δload

10: ∆load = ∆load+ δload
11: if ∆load > threshold then
12: send ∆load (in a message of type Update, asynchronously) to the other processes
13: ∆load = 0
14: end if
15:

16: At the reception of load increment ∆lj from processor Pj (message of type Update):

17: load(Pj) = load(Pj) + ∆lj
18:

19: At each slave selection on the master side:

20: for all Pj in the list of selected slaves do
21: Include in a message of type Master To All the load δlj assigned to Pj

22: end for
23: send (asynchronously) the message Master To All to the other processes
24:

25: At the reception of a message of type Master To All :

26: for all (Pj , δlj) in the message do
27: if Pj 6= myself then
28: load(Pj) = load(Pj) + δlj
29: else
30: my load = my load+ δlj
31: end if
32: end for

Algorithm 4.2: Mechanism based on load increments.
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A formal description of the mechanism is given in Algorithm 4.2. For each variation of the workload
on a process Pi, Pi broadcasts the increment representing the variation in a message of type update.
Again, a threshold mechanism is applied to avoid too many messages: ∆load accumulates smaller δload
increments and is sent when larger than the threshold.

Note that when a (slave) process starts a task that was sent by another, it need not broadcast a
message of type Update if the increment is positive: the master has already sent the information relative
to its selected slaves (see line 7 in Algorithm 4.2).

4.1.1.3 Reducing the number of messages

To control the number of messages, the threshold should be chosen adequately. For example it is
consistent to choose a threshold of the same order as the granularity of the tasks appearing in the
slave selections. The number of messages will increase with the number of processes, since a message is
broadcasted to all processes for each load variation in the system. However, some processes may never be
master and never send work to others; this information may be known statically. Those processes do not
need any knowledge of the workload/memory of the others. More generally, if at some point a process
Pi knows that it will not proceed to any further slave selection in the future, it can inform the others.
After Pi has performed its last slave selection, it can thus send a message of type No more master to the
other processes (including to processes which are known not be master in the future). On reception of a
message of type No more master from Pi by Pj , Pj stops sending load information to Pi. Note that the
experiments presented later in this paper use this mechanism. Typically, we observed that the number
of messages could be divided by 2 in the case of our test application, MUMPS.

4.1.2 Exact algorithm

The second solution to this problem is close to the distributed snapshot approach [51, 111], coupled with
a distributed leader election algorithm; the snapshot is demand-driven and initiated by the process that
requires information from the others. This approach avoids the cost of maintaining the view during the
computations, but loses some of the asynchronous properties of the application. Indeed, when a process
requires information from the others, it has to wait for all others to be ready to send that information.
Furthermore, since in our case the information is strongly linked to the dynamic scheduling decisions
taken, two simultaneous snapshots should be “serialized” in order for the second one to take into account
the slave selection resulting from the first one.

Each time a process has to take a dynamic decision (that uses and can modify the state of the others),
it initiates a snapshot. After completion of the snapshot, it can take its dynamic decision, inform the
others about its choice (message master to slave to the processes that have been selected as slaves) and
finally restart the others. A more formal description of this scheme is given in Algorithm 4.3. Note
that on reception of a message master to slave, a processor updates its state information (load) with the
information contained in that message, so that the result of a first slave selection is taken into account
if another snapshot is initiated from another process. Apart from that particular case, a processor is
responsible for updating its own load information regularly.

1: Initiate a snapshot (see below)
2: Proceed to a dynamic slave selection
3: for all islave slave chosen do
4: Send a message of type master to slave to islave containing information to update its state

(typically flops and memory corresponding to share of the work)
5: end for
6: Finalize the snapshot (see below)

Algorithm 4.3: Context in which the snapshot algorithm is applied.

The algorithm we use to build the snapshot of the system is similar to the one proposed by Chandy
and Lamport [51]. In addition, since we are in a distributed asynchronous environment, several snapshots
may be initiated simultaneously. They are in that case serialized to ensure that each process needing
a snapshot takes into account the variation of the state (i.e., workload, available memory, . . . ) of the
processes chosen during the previous dynamic decision. For that, a distributed leader election [88, 161],
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for example based on process ranks, is performed. The process elected is the one that will complete its
snapshot in priority. After termination of the snapshot of the leader, a new leader election is done within
the set of processes having already initiated a snapshot. The algorithm is still based on message passing
between the processes; a preliminary step consists in initializing the data structures that will be used
during the execution to manage the snapshot mechanism:

1: Initialization:

2: leader =undefined % current leader

3: nb snp = 0 % number of concurrent snapshots except myself

4: during snp = false % flag telling if I am trying to be the current leader

5: snapshot = false % flag telling if there is an active snapshot for which I am not leader

6: for i = 1 to nprocs do
7: request(Pi) = 0 % request identifier

8: snp(Pi) = false % array of flags telling if Pi has initiated a snapshot

9: delayed message(Pi) = false % array of flags telling if I delayed the emission of a

message to a processor

10: end for

The rest of the algorithm uses three types of messages: start snp, snp and end snp. When a process
initiates a snapshot, it broadcasts a message of type start snp. Then it waits for the information relative
to the state of all the others. Note that if there are several snapshots initiated simultaneously, a “master”
(i.e., process that initiates a snapshot) may have to broadcast a message of type start snp several times
with different request identifiers to be able to gather a correct view of the system, in the case where it
was not the leader among the “master” processes.

1: Initiate a snapshot:

2: leader = myself
3: snp(myself) = true
4: during snp = true
5: while snp(myself) == true do
6: request(myself) = request(myself) + 1
7: send asynchronously a message of type start snp containing request(myself) to all others
8: nb msgs = 0
9: while nb msgs 6= nprocs− 1 do

10: receive and treat a message
11: if during snp == false then
12: during snp = true
13: nb msgs = 0
14: break
15: end if
16: end while
17: if nb msgs == nprocs− 1 then
18: snp(myself) = false
19: end if
20: end while

After receiving the load information from all other processes, the process that initiated the snapshot
can proceed to a scheduling decision (dynamic slave selection at line 2 of Algorithm 4.3), and update
the load information resulting from that decision. After that (see the algorithm below), it informs the
other processes that its snapshot is finished (message of type end snp) and waits for other snapshots in
the system to terminate.

1: Finalize the snapshot:

2: send asynchronously a message of type end snp to all other processes
3: leader = undefined
4: if nb snp 6= 0 then
5: snapshot = true
6: for i=1 to nprocs do
7: if snp(Pi) == true then
8: leader = elect(Pi, leader)
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9: end if
10: end for
11: if delayed message(leader) == true then
12: send asynchronously my state and request(leader) to leader in a message of type snp
13: delayed message(leader) = false
14: end if
15: while nb snp 6= 0 do
16: receive and treat a message
17: end while
18: end if

When a process Pj receives a message of type start snp from a process Pi (see the algorithm below),
it can either ignore the message (if Pj is the current leader, see lines 8-11), either send a message of type
snp that contains its state (lines 15 or 21), or delay the message to be sent in order to avoid a possible
inconsistency in the snapshot. This last case can occur if Pj detects that Pi is not the leader (line 18)
or because of asynchronism.

To give an example illustrating how asynchronism can be managed, consider a distributed system
with three processes P1, P2, P3, where P1 receives a message start snp both from P3 and P2, in that
order. P1 first answers to P3 and then to P2 which is the leader (we assume that the leader is the process
with smallest rank). When P2 completes its snapshot, suppose that P3 receives end snp from P2 before
P1. In addition, suppose that P3 re-initiates a snapshot (sending a message of type start snp) and that
P1 receives the start snp message from P3 before end snp from P2 arrives. Then P1 will not answer to
P3 until it receives the message end snp from P2. This ensures that the information sent from P1 to
P3 will include the variation of the state information induced by the dynamic decision from P2. Such a
situation may occur in case of heterogeneous links between the processes.

Note that the algorithm is recursive. After the first reception of a message of type start snp, the
process does not exit from the algorithm until all snapshots have terminated (lines 26-28 in the algorithm
below). Note that the test at line 24 is there to avoid more than one level of recursion.

1: At the reception of a message start snp from Pi with request number req:

2: leader = elect(Pi, leader)
3: request(Pi) = req
4: if snp(Pi) == false then
5: nb snp = nb snp+ 1
6: snp(Pi) = true
7: end if
8: if leader == myself then
9: delayed message(Pi) = true

10: return
11: end if
12: if snapshot == false then
13: snapshot = true
14: leader = Pi

15: send asynchronously my state and request(Pi) to Pi in a message of type snp
16: else
17: if leader 6= Pi or delayed message(Pi) == true then
18: delayed message(Pi) = true
19: return
20: else
21: send asynchronously my state and request(Pi) to Pi in a message of type snp
22: end if
23: end if
24: if nb snp == 1 then {loop on receptions for the first start snp message (if nb snp is greater than 1,

I am already waiting for the completion of all the snapshots)}
25: during snp = false
26: while snapshot == true do
27: receive and treat a message
28: end while
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29: end if

On the other hand, when a process receives a message of type end snp, it checks if there is another
active snapshot in the system (different from the sender of the message). If not, the receiving process
exits and continues its execution. Otherwise, it sends its state information only to the process viewed as
the leader (leader) of the remaining set of processes that have initiated a snapshot. It stays in snapshot
mode (snapshot =true) until all ongoing snapshots have completed.

1: At the reception of a message of type end snp from Pi:

2: leader =undefined
3: nb snp = nb snp− 1
4: snp(Pi) = false
5: if nb snp == 0 then
6: snapshot = false
7: else
8: for i=1 to nprocs do
9: if snp(Pi) == true then

10: leader = elect(Pi, leader)
11: end if
12: end for
13: if leader == myself then
14: return
15: end if
16: if delayed message(leader) == true then
17: send asynchronously my state and request(leader) to leader in a message of type snp
18: delayed message(leader) = false
19: end if
20: end if

Finally, when a “master” process receives a message of type snp from another one, it first checks that
the request identifier contained in the message is equal to its own. In that case, it stores the state of the
sender. Otherwise, the message is ignored since there is in that case no guarantee about the validity of
the information received.

1: At the reception of a message of type snp from Pi with request id req:

2: if req == request(myself) then
3: nb msgs = nb msgs+ 1
4: Extract the state/load information from the message and store the information for Pi

5: end if

4.1.3 Experiments

The mechanisms described in Sections 4.1.1.1, 4.1.1.2 and 4.1.2 have been implemented inside the MUMPS

package. In fact, the mechanism from Section 4.1.1.1 used to be the one available in MUMPS, while the
mechanism of Section 4.1.1.2 is the default one since MUMPS version 4.3. In order to study the impact
of the proposed mechanisms, we experiment them on several problems (see Table 4.1) extracted from
various sources including Tim Davis’s collection at University of Florida 1 or the PARASOL collection2.
The tests have been performed on an IBM SP system of IDRIS3 composed of several nodes of either 4
processors at 1.7 GHz or 32 processors at 1.3 GHz.

We have tested the algorithms presented in the previous sections (naive, based on increments and
based on snapshot) on 32, 64 and 128 processors of the above platform. By default, we used the METIS
package [120] to reorder the variables of the matrices. The results presented in the following sections
have been obtained using two different strategies:

• a dynamic memory-based scheduling strategy, that will be later described in Section 4.2.5, and

• a dynamic workload-based scheduling strategy, similar to the one of Section 4.2.3, but with small
improvements (irregular partitions of slave tasks, proportional mapping enforced on L0 layer).

1http://www.cise.ufl.edu/~davis/sparse/
2http://www.parallab.uib.no/parasol
3Institut du Développement et des Ressources en Informatique Scientifique
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Small test problems
Matrix Order NZ Type Description

BMWCRA 1 (PARASOL) 148770 5396386 SYM Automotive crankshaft model
GUPTA3 (Tim Davis) 16783 4670105 SYM Linear programming matrix (A*A’)
MSDOOR (PARASOL) 415863 10328399 SYM Medium size door
SHIP 003 (PARASOL) 121728 4103881 SYM Ship structure

PRE2 (Tim Davis) 659033 5959282 UNS AT&T,harmonic balance method
TWOTONE (Tim Davis) 120750 1224224 UNS AT&T,harmonic balance method.

ULTRASOUND3 185193 11390625 UNS Propagation of 3D ultrasound waves generated by X. Cai (Simula
Research Laboratory, Norway) using Diffpack.

XENON2 (Tim Davis) 157464 3866688 UNS Complex zeolite,sodalite crystals.
Large test problems

Matrix Order NZ Type Description
AUDIKW 1 (PARASOL) 943695 39297771 SYM Automotive crankshaft model
CONV3D64 836550 12548250 UNS provided by CEA-CESTA; generated using AQUILON

(http://www.enscpb.fr/master/aquilon)
ULTRASOUND80 531441 330761161 UNS Propagation of 3D ultrasound waves, provided by M. Sosonkina,

larger than ULTRASOUND3

Table 4.1: Test problems.

Using a memory-based strategy is motivated by the fact that a memory-based scheduling strategy is very
sensitive to the correctness of the view. The workload-based dynamic scheduling strategy (also sensitive
to the correctness of the view) will be used to also illustrate the cost and impact of each mechanism in
terms of time.

For the memory-based strategy, we measure the memory peak observed on the most memory consum-
ing process. The tests using memory-based scheduling have been made on 32 and 64 processors which are
enough for our study. For the workload-based scheduling strategy, we measure the time to factorize the
matrix on the largest test problems on 64 and 128 processors. Each set of results (test problem/number
of processors) is performed on the same configuration of computational nodes. However, when going
from one test problem to another, the configuration can change: because of the characteristics of the
machine, 64 processors can either be 16 nodes of quadri-processors, either 2 nodes of 32 processors, or
some intermediate configuration, including cases where some processors are not used in some nodes.
Therefore, results presented in this section should not be used to get a precise idea of speed-ups between
64 and 128 processors. Finally, note that the number of dynamic decisions for the set of small test
problems (see Table 4.1) is comprised between 8 and 92 on 32 processors, and between 8 and 152 on 64
processors. For the set of larger test problems, the number of dynamic decisions is between 119 and 169
on 64 processors and between 199 and 274 on 128 processors.

4.1.3.1 Memory-based scheduling strategy

In Table 4.2, we give the peak of active memory (maximum value over the processors) required to achieve
the factorization. We compare the influence of the naive mechanism introduced in Section 4.1.1.1, of
the mechanism based on increments introduced in Section 4.1.1.2, and of the algorithm presented in
Section 4.1.2, on the dynamic memory-based scheduler (see Section 4.2.5).

On 32 processors (Table 4.2(a)), we observe that the peak of memory is generally larger for the naive
mechanism than for the others. This is principally due to the limitation discussed in Section 4.1.1.1 for
that mechanism: some dynamic scheduling decisions are taken by the schedulers with a view that does
not include the variations of the memory occupation caused by the previous decisions. In addition, we
observe that the algorithm based on distributed snapshots (Section 4.1.2) gives in most cases the best
memory occupation and that the mechanism based on increments is not too far behind. For the GUPTA3
matrix, the algorithm based on snapshots provides the worst memory peak. In that case, we observed
that there is a side effect of doing snapshots on the schedule of the application. The asynchronous
and non-deterministic nature of the application explain such possible exceptions to the more important
general tendency.

On 64 processors, we can observe a similar behaviour: the naive mechanism gives in most cases worse
results than the other mechanisms. For the largest problems in this set (e.g., matrix ULTRASOUND3),
the algorithm based on snapshots gives the best results, followed by the mechanism based on increments
and finally the naive mechanism.

The results of this section illustrate that when we are interested in a metric that has great variations
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Increments based Snapshot based naive
BMWCRA 1 3.71 3.71 3.71

GUPTA3 3.88 4.35 3.88
MSDOOR 1.51 1.51 1.51
SHIP 003 5.52 5.52 5.52

PRE2 7.88 7.83 8.04
TWOTONE 1.94 1.89 1.99

ULTRASOUND3 7.17 6.02 10.69
XENON2 2.83 2.86 2.93

(a) 32 processors.
Increments based Snapshot based naive

BMWCRA 1 2.30 2.30 3.55
GUPTA3 2.70 2.70 2.70
MSDOOR 1.01 0.84 0.84
SHIP 003 2.19 2.19 2.19

PRE2 7.66 7.87 7.72
TWOTONE 1.86 1.86 1.88

ULTRASOUND3 3.59 3.40 5.24
XENON2 2.45 2.41 3.61

(b) 64 processors.

Table 4.2: Peak of active memory (millions of real entries) on 32 and 64 processors as a function of the
exchange mechanism.

(such as the memory), the algorithm based on snapshots is well-adapted, although costly. (We will
discuss this in the next section.) We also see that in terms of quality of the information, the mechanism
based on increments is never far from the one based on snapshots.

4.1.3.2 Workload-based scheduling strategy

Increments based Snapshot based
AUDIKW 1 94.74 141.62
CONV3D64 381.27 688.39

ULTRASOUND80 48.69 85.68

(a) 64 processors.
Increments based Snapshot based

AUDIKW 1 53.51 87.70
CONV3D64 178.88 315.63

ULTRASOUND80 35.12 66.53

(b) 128 processors.

Table 4.3: Time for execution (seconds) on 64 and 128 processors as a function of the exchange mechanism
applied.

We compare in Table 4.3 the factorization time from MUMPS with a workload-based scheduling strat-
egy (see Section 4.2.3) when using the algorithm based on snapshots and the one based on increments.
We can observe that the mechanism based on snapshots is less efficient than the one based on incre-
ments. This is principally due to the fact that the snapshot operation requires a strong synchronization
that can be very costly in terms of time. In addition, when there are several dynamic decisions that
are initiated simultaneously, those are serialized to ensure the correctness of the view of the system
on each processor. Thus, this can increase the duration of the snapshots. Finally, the synchronization
of the processors may have unneeded effects on the behaviour of the whole system. For example, if
we consider the CONV3D64 matrix on 128 processors, the total time spent to perform all the snap-
shot operations is of 100 seconds. In addition, there were at most 5 snapshots initiated simultaneously.
This illustrates the cost of the algorithm based on snapshots especially when the processors cannot
compute and communicate simultaneously. (A long task involving no communication will delay all the
other processes.) Furthermore, we remark that if we measure the time spent outside the snapshots for
CONV3D64, we obtain 315.63− 100.00 = 215 seconds, which is larger than the 178.88 seconds obtained
with the increments-based mechanism (see Table 4.3(b)). The reason is that after a snapshot, all pro-
cessors restart their computation and data exchanges simultaneously. The data exchanges can saturate
the network. Another aspect could be the side-effect of the leader election on the global behaviour of
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the distributed system, where the sequence of dynamic decisions imposed by the criterion for the leader
election (smallest processor rank in our case) has no reason to be good strategy compared to the natural
one. Finding a better strategy is a scheduling issue and is out-of-scope in this study.

Increments based Snapshot based
AUDIKW 1 302715 11388
CONV3D64 386196 16471

ULTRASOUND80 208024 12400

(a) 64 processors.
Increments based Snapshot based

AUDIKW 1 1386165 39832
CONV3D64 1401373 57089

ULTRASOUND80 746731 50324

(b) 128 processors.

Table 4.4: Total number of messages related to the load exchange mechanisms on 64 and 128 processors.

Concerning the number of messages exchanged during the factorization, the results are given in
Table 4.4. Note that the size of each message is larger for the snapshot-based algorithm since we can send
all the metrics required (workload, available memory,. . . ) in a single message. On the other hand, for the
increments based mechanism, we send a message for each sufficient variation of a metric. We can observe
that the algorithm based on snapshots uses less messages than the mechanism based on increments that
tries to maintain a view of the system on each process. The communication cost of these messages had
no impact on our factorization time measurement since we used a very “high bandwidth/low latency”
network. For machines with high latency networks, the cost of the mechanism based on increments could
become large and have a bad impact on performance. In addition, the scalability of such an approach
may become a problem if we consider systems with a large number of computational nodes (more than
1000 processors for example).

To study the behaviour of the snapshot mechanism in a system where processors can compute and
communicate at the same time, we slightly modified our solver by adding an extra thread that periodically
checks for messages related to snapshots and/or load information. The algorithm executed by this second
thread is given below:

1: while not end of execution do
2: sleep(period)
3: while there are messages to be received do
4: receive a message
5: if the received message is of type start snp then
6: block the other thread (if not already done)
7: end if
8: treat the received message
9: if the received message is of type end snp and there is no other ongoing snapshot then

10: restart the other thread
11: end if
12: end while
13: end while

It is based on POSIX threads and only manages messages corresponding to state information, excluding
the ones related to the application, which use another channel. Also, we fixed the sleep period exper-
imentally to 50 microseconds. Furthermore, since our application is based on MPI [159], we have to
ensure that there is only one thread at a time calling MPI functions using locks4. Finally, the interaction
between the two threads can be either based on signals or locks. One way to block the other thread is
to send a special signal to block it. Another way, which is the one used here, is to simply get the lock
that protects the MPI calls and to release it only at the end of the snapshot.

We tested this threaded version of the application on 64 and 128 processors. The results are given
in Table 4.5. Note that we also measured the execution time for the threaded increments mechanism
with the intention to evaluate the cost of the thread management. We observe that using a thread has
a benefic effect on the performance in most cases for the mechanism using increments (compare the left

4Thread-safe implementations of MPI were not so common at the time this work was performed.
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Increments based Snapshot based
AUDIKW 1 79.54 114.96
CONV3D64 367.28 432.71

ULTRASOUND80 49.56 69.60

(a) 64 processors.
Increments based Snapshot based

AUDIKW 1 41.00 59.19
CONV3D64 189.47 237.69

ULTRASOUND80 35.91 52.00

(b) 128 processors.

Table 4.5: Impact of the threaded load exchange mechanisms on the factorization time (seconds) on 64
and 128 processors.

columns of Tables 4.3 and 4.5). We believe that this is because the additional thread treats the messages
more often and thus avoids to saturate the internal communication buffers of the communication library
(and from the application). Concerning the algorithm based on snapshots, the execution time is greatly
reduced compared to the single-threaded version, thus illustrating the fact that processors spend less
time performing the snapshot. For example if we consider the CONV3D64 problem on 128 processors,
the total time spent to perform all the snapshot operations has decreased from 100 seconds to 14 seconds.
However, we can observe that this threaded version of the snapshot algorithm is still less efficient than
the one based on increments. This is principally due to the stronger synchronization points induced by
the construction of a snapshot (even in the threaded version), as well as the possible contention when
all processors restart their other communications (not related to state/snapshot information).

4.1.4 Concluding remarks

We have studied different mechanisms aiming at obtaining a view as coherent and exact as possible of
the load/state information of a distributed asynchronous system under the message passing environment.
We distinguished between two approaches to achieve this goal: maintaining an approximate view during
the execution, and building a correct distributed snapshot.

We have shown that periodically broadcasting messages that update the view of the load/state of the
other processes, with some threshold constraints and some optimization in the number of messages, could
provide a good solution to the problem, but that this solution requires the exchange of a large number
of messages. On the other hand, the demand-driven approach based on distributed snapshot algorithms
provides more accurate information, but is also much more complex to implement in the context of
our type of asynchronous applications: we had to implement a distributed leader election followed by a
distributed snapshot; also, we had to use a dedicated thread (and mutexes to protect all MPI calls) in
order to increase reactivity. In addition, this solution appears to be costly in terms of execution time and
might not be well-adapted for high-performance distributed asynchronous applications. It can however
represent a good solution in the case of applications where the main concern is not execution time but
another metric to which the schedulers are very sensitive (e.g., the memory usage). We also observed
that this approach significantly reduces the number of messages exchanged between the processes in
comparison to the first one; it might be well adapted for distributed systems where the links between
the computational nodes have high latency/low bandwidth.

4.2 Hybrid static-dynamic mapping and scheduling strategies

As introduced at the beginning of this chapter, we now describe some of the work that has been carried
out to define, map and schedule the tasks arising in our asynchronous parallel multifrontal framework.
Several degrees of freedom allow for various possible strategies to take scheduling decisions. As discussed
earlier, some of the decisions are static, and other decisions are dynamic, taken at runtime. The dynamic
decisions use the workload and/or the memory information built thanks to the mechanisms described in
Section 4.1.

The main degrees of freedom concerning dynamic decisions taken at runtime are:

task selection: the choice of the next local task to process, in case several tasks are available in the
local pool of tasks.
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slave selection: if the task is parallel (case of a type 2 node), the choice of the processes to help (slave
processes). The order of the slave processes is also a degree of flexibility, together with the possibility
of defining subtasks of equal or varying sizes. In some approaches (see below and Section 4.2.3),
the slave processes must be chosen among a set of candidate processes chosen statically.

The dynamic decisions also depend on static mapping choices. The main objectives of the static
mapping phase are to control the communication costs, and to balance the memory consumption and
computation done by each processor. In our approach, those static choices concern the static tree
mapping, which can be decomposed into:

• a partial mapping of the tasks in the tree, together with the decision to use several MPI processes
or a single one for each node in the tree. More precisely (see Section 2.1.1), the mapping of a type 1
node is static whereas for type 2 nodes, only the mapping of the fully summed part (or master
part) is static.

• for each type 2 node, a possible list of candidate processes that are allowed to work on that node,
so that the dynamic slave selection algorithm is then restricted to selecting slaves among the
candidates for that type 2 node, instead of all processors.

In the next subsections, we summarize previous work and explain what has been done with respect
to the above degrees of freedom. When relevant, we also explain what type of load information is used.

4.2.1 History – PARASOL project (1996-1999)

The MUMPS project implements the parallel multifrontal approach discussed in this thesis. It started in
1996 with the PARASOL project which was an Esprit IV Long Term Research (LTR) European project.
MUMPS was inspired by an experimental prototype of an unsymmetric multifrontal code for distributed-
memory machines using PVM [85]. That experimental prototype was itself inspired by the code MUPS,
developed by Amestoy during his PhD thesis [17] at CERFACS under the supervision of Duff. The first
version of MUMPS that uses three levels of parallelism was MUMPS 2.0 in February 1998; it is the result
of two years of intensive developments to introduce type 2 and type 3 parallelism in the multifrontal
method, with the asynchronous approach to parallelism described in Chapter 2. At that time, no use of
load estimates was made and the mapping of slave processes was static: assuming that a master process
for a node in the tree had rank i in the MPI communicator, slave processes were i+ 1, i+ 2, . . . (modulo
the number of available processes). The number of slaves was chosen in such a way that the work per
slave process is always smaller or equal to the work of the master, with the limit that the number of
slaves should not exceed the number of available processes.

The use of load information appeared in version 2.1.3 of MUMPS (released to PARASOL partners
in July 1998); this is the version that was used for the results presented in the reference article [27]
and it is also the first version including a solver for symmetric problems. Once the number of slaves
for a given type 2 node is known – at that time this depended mainly on the structure of the frontal
matrix – the process in charge of the type 2 node (master) selects at runtime the processes with smallest
estimated load. Concerning load exchange mechanisms, each MPI process is responsible of updating
and communicating its load from time to time: this corresponds to the naive approach described in
Section 4.1.1.1.

Several successive versions internal to the PARASOL project followed, and various improvements and
new numerical functionalities were included. This led to the public version of MUMPS available at the end
of the PARASOL project (version 4.0.4, September 1999), corresponding to the article published as [24],
and also described in [27]. The main characteristics of the scheduling and mapping heuristics at the end
of the PARASOL project are the following:

Static tree mapping. A partial mapping of the assembly tree to the processors is performed statically
at the end of the analysis phase. A layer called L0 is obtained by using an algorithm inspired
from the one from Geist-Ng [90]; see Algorithm 4.4. In order to map the nodes of layer L0, an
LPT (longest processing time first) list-scheduling algorithm is used; the subtrees are mapped in
decreasing order of their workload, a subtree is packed in the bin (i.e., is mapped on the processor)
with the smallest workload. The workload of the processor is updated, and the process is repeated,
so that the next subtree is mapped on the processor with smallest workload, until the load balance
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is accepted. The LPT algorithm achieves a theoretical time that is smaller than 4
3 −

1
3p times the

optimal time, where p is the number of processors [98]. In early versions of MUMPS, this algorithm
was indeed cheaper (and more naive): a processor was considered as a bin (binpacking) and a bin
was filled with unsorted subtrees from L0 until reaching but not exceeding the average expected
cost per bin. Then the remaining subtrees were sorted and mapped to the processors using the
LPT algorithm. In the algorithm, the computational cost is approximated by the number of
floating-point operations.

L0 ← roots of the assembly tree
repeat

Find the node N in L0 with largest computational cost in subtree
L0 ← L0 ∪ {children of N} \ {N}
Map L0 subtrees onto the processors
Estimate load unbalance

until load unbalance < threshold
Algorithm 4.4: Principle of the Geist-Ng algorithm to define a layer L0.
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Figure 4.2: Decomposition of the assembly tree into levels.
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Figure 4.3: One step in the construction of the first level L0.

Once layer L0 is defined, we consider that the tree is roughly processed from bottom to top, layer
by layer (see Figure 4.2). Layer L0 is determined using Algorithm 4.4, illustrated in Figure 4.3.
Then for i > 0, a node belongs to Li if all its children belong to Lj , j ≤ i − 1. First, nodes of
layer L0 (and associated subtrees) are mapped. This first step is designed to balance the work in
the subtrees and to reduce communication since all nodes in a subtree are mapped onto the same
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processor. Normally, in order to get a good load balance, it is necessary to have many more nodes
in layer L0 than there are processors. Thus L0 depends on the number of processors and a higher
number of processors will lead to smaller subtrees.

The mapping of higher layers in the tree only takes into account memory balancing issues. At this
stage, only the volume of factors is taken into account when balancing the memory used by the
processors. For each processor, the memory load (total size of its factors) is first computed for
the nodes at layer L0. For each layer Li, i > 0, each unmapped node of Li is mapped onto the
processor with the smallest memory load and its memory load is revised.

The mapping is then used to explicitly distribute the permuted initial matrix onto the processors
and to estimate the amount of work and memory required on each processor.

Finally, above layer L0, nodes larger than a certain threshold are defined statically to be of type 2
(parallel nodes), except the root node, which may be of type 3 (that is, it relies on a 2D block
synchronous parallelization, see Section 2.1.1.2), if it is large enough. More precisely, a non-root
node above L0 is of type 2 if the size of its contribution block is larger than a given threshold. In
an intermediate version, the threshold was based on the amount of work to be done by the slaves
but nodes having a small fully-summed block and a huge contribution block were causing memory
problems if they were not parallelized; hence this simpler criterion.

Only the masters of type 2 nodes are mapped, the rest of the node is split into several tasks without
any pre-assigned mapping, so that at runtime, the master of a type 2 node will assign the slave
tasks to any MPI process without any static constraint.

Dynamic task selection. The pool of tasks is managed as a stack, giving priority to the postorder.
Although this limits the amount of parallelism and prevents the execution from following the layer-
by-layer approach, experiments with a FIFO (first-in first-out) strategy showed huge limitations
with respect to memory usage: FIFO would increase both parallelism and memory usage.

Dynamic slave selection. In this version, the number of slave processes is static and only depends
on the structure of the front; however the choice of the identifiers for the slave processes is done
depending on the estimate of the workload of the other processes: work is given to the less loaded
processes. All slave processes roughly receive the same amount of work.

The main characteristics of this version are summarized in the left part of Figure 4.4. We refer the
reader to the articles [27, 25, 24] for more information together with some performance results.

4.2.2 Improvements (1999-2001)

After the PARASOL project, MUMPS was ported to a CRAY T3E architecture in the context of a strong
collaboration with NERSC/Lawrence Berkeley National Laboratory (France-Berkeley Fund project fol-
lowed by sabbatical of Amestoy in Berkeley), in particular with X. S. Li, author of SuperLU Dist [124],
a fan-out (right-looking) [112] parallel sparse direct solver for unsymmetric matrices. Although the main
principles of scheduling in MUMPS are the same as in the previous section, a lot of parameter tuning (task
granularity, etc.) was performed in order to run on significantly larger numbers of processes (up to 512).
A nice characteristic of the Cray T3E was the high speed of its network, in comparison to the processor
speed. Still, it was observed that performance results depended a lot on MPI implementations and MPI
parameters in both MUMPS and SuperLU and this motivated a deeper study of the so called eager versus
long MPI protocols, which resulted in an implementation using asynchronous receives (MPI IRECV) on
top of the already existing asynchronous sends (MPI ISEND), see [29] for more information. Thanks
to immediate MPI communication primitives, performance became much more independent from the
underlying MPI implementation. Thus, the collaboration between the French and Berkeley teams was
the opportunity to confront the behaviour of both solvers, improve them and perform a fair compari-
son between the approaches [28]. The resulting version roughly corresponds to MUMPS 4.1.6 (so called
“TOMS” version), and it had a large success among users. It was also used for comparisons with a
commercial package in [108]. Among improvements done at that time regarding dynamic scheduling
decisions, the choice of the number of slave processors for a type 2 node is now dynamic and mixes
several objectives: (i) try to give work only to processors less loaded than the master; (ii) allow more
processes if this would result in tasks with a too large granularity, which would increase significantly
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memory usage or exceed the size of the preallocated communication buffers; (iii) allow for less processors
if this would result in too much communication and too small granularities; in particular, avoid creating
slave tasks involving significantly less work than the master task.

4.2.3 Static tree mapping: candidate processors

The text of this section is inspired by [33]. There are two problems with the previous approach:

1. First, memory is overestimated. In the previous implementation, the amount of memory needed
for each processor is estimated during the analysis phase and is reserved as workspace for the
factorization. Consequently, if every processor can possibly be taken as a slave of any type 2 node,
then enough workspace has to be reserved, on each processor, for the potential corresponding
computational task. This can lead to a dramatic overestimate of memory requirements because,
during the factorization, typically not all processors are actually used as slaves.

2. Second, the choice of slaves is completely local and does not take into account locality of com-
munication. The choice depends crucially on the instant when the master chooses the slaves and
does not take into account scheduling decisions that are close in time and can have conflicting local
objectives. More global information is needed to improve the quality of the scheduling decisions.

The concept of candidate processors originates in an algorithm presented in [142, 145] and has also
been used in the concept of static task scheduling for Cholesky factorization [113]. With this concept it
is possible to guide the dynamic task scheduling and to address the above issues. For each node that
requires slaves to be chosen dynamically during the factorization, a limited set of processors is introduced
from which the slaves can be selected. This allows to exclude all non candidates from the estimation of
workspace during the analysis phase and leads to a tighter and more realistic estimation of the workspace
needed. Furthermore, the list of candidates can be built using a more global view of the tasks graph.

4.2.3.1 Preamble: proportional mapping

In the proportional mapping [142], the assembly tree is processed from top to bottom, starting with the
root node. For each child of the root node, the work associated with the factorization of all nodes in
its subtree is first computed, and the available processors are distributed among the subtrees according
to their weights. Each subtree thus gets its set of preferential processors. The same mapping is now
repeated recursively: the processors that have been previously assigned to a node are again distributed
among the children according to their weights (as given by the computational costs of their subtree).
The recursive partitioning stops once a subtree has only one processor assigned to it. The proportional
mapping both achieves locality of communication (similar to the subtree-to-subcube mapping, see [130])
and guides the partitioning from a global point of view, taking into account the weight of the subtrees
even for irregular trees.

4.2.3.2 Main ideas of the mapping algorithm with candidates

In the retained approach, described in [33], a variant of the Geist-Ng algorithm is still applied, but an
extra condition to accept a layer L0 is that the memory must also be balanced.

Then, whereas only the masters of the nodes in the higher parts of the tree were mapped statically
in the previous approach, each node now also receives a list of candidate processors defined statically.
First, preferential processors are defined thanks to the proportional mapping algorithm. A relaxation is
done to add flexibility: if at a node N with two child subtrees, a strict proportional mapping gives 30%
processors of the nodes allocated to N on the left branch and 70% in the right branch, we use 30%×(1+ρ)
(resp. 70% × (1 + ρ)) preferential processors in the left (resp. right) branch, where ρ is a relaxation
parameter. Given the list of preferential processors, the tree is processed from bottom to top, layer by
layer. At each layer, the types of the nodes of the layer are determined (type 1 or type 2) and each node
receives its list of preferential processors as determined by the proportional mapping. If needed, node
splitting (see Figure 2.11) or node amalgamation (see the end of Section 1.1.6) can occur. In case there
are large nodes rooting small subtrees, there is an optional algorithm to redistribute candidates within
the layer so that each node of the layer is assigned a number of candidates proportional to the cost of
the node. In that case, a variant of a list scheduling algorithm is used, giving priority to preferential
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processors and only allowing non-preferential processors as candidates when all preferential processors
have been chosen. However, best results were obtained when respecting the preferential processors, and
only allowing extra processors when this would break granularity constraints. Finally, a top-down pass
on the whole tree is made to exchange master and candidate processors of type 2 nodes: an exchange
is done if this improves memory balance. At runtime, slaves are then chosen among the candidates, the
least loaded first. The candidate processors less loaded than the master are chosen in priority, and the
less loaded processors are ordered first in the list of chosen slaves. More information can be obtained
in [33]; in particular, it is shown that the new scheduling algorithm behaves significantly better than the
fully dynamic approach in terms of

• factorization time,

• accuracy of the memory estimates, and

• volume of communication.

4.2.4 Scheduling for clusters of SMP nodes

Starting from [33], Pralet et al. [31] consider the adaptation of the mapping and scheduling strategies
in order to take into account architectures composed of clusters of SMP nodes. On such architectures,
communication inside a node is faster than outside the nodes and this impacts the performance of our
solver. For example, on an SP3 from CINES5, using 16 Power3+ processors within a single node is about
25% more efficient than using 8 processors from 1 node and 8 processors from the second node.

In order to take into account the architecture, both the dynamic slave selection and the static choice
of candidate processors were modified.

Dynamic slave selection

As before, when a master processor of a type 2 node performs a slave selection, the candidate processors
are sorted in increasing order of their load and the least loaded processors are chosen in priority. In
order to take into account the SMP architecture, a penalty is now given to the load before the sort.
Typically, the load of a processor is multiplied by a factor λ if it is outside the SMP node of the master
processor (this simple algorithm was shown to behave better than a model of the network taking into
account latency and bandwidth). As a result, less processors outside the SMP node are chosen and this
leads to better performance. As a side effect, since the loads are larger, the average number of processors
participating to each type 2 node is reduced, limiting communication but also limiting the amount of
parallelism, which can be critical in some cases. In order to obtain further gains, the modified dynamic
scheduling algorithm is thus combined to improvements of the candidate-based algorithm using relaxed
proportional mapping, as explained below.

Static tree mapping

Although [31] describe the approach in a very general case, for simplicity, we assume here that each SMP
node contains the same number of processors. First, the preferential processors are chosen cyclically in
the list of processors not according to their MPI rank, but rather according to their position in the list
of processors, where processors belonging to the same SMP node are numbered consecutively. Then,
during the layer-by-layer bottom-up process, an architecture criterion is used: typically, if several SMP
nodes are in the list of candidates, the master –because it communicates the most with the slaves– must
be on the SMP node that appears most often in the list of candidates.

Large benefits from these approaches are obtained on IBM clusters of SMP’s with 16 Power3+ or Power4
processors. In [31], the authors also experiment mixing MPI parallelism with parallelism based on a
threaded BLAS library, and show that using 2 or 4 threads per MPI process is a good compromise.
We discuss again such hybrid MPI/thread parallel issues in Section 6.6, in the context of multicore
architectures.

5Centre Informatique National de l’enseignement supérieur, Montpellier, France.
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Task selection (pool man-
agement)

stack (LIFO) −→ stack in general, with exceptions in case
of memory problem

Number of slave proces-
sors

static −→ dynamic

Slave partitions same amount of work to
each slave

−→ irregular partitions

Static mapping of masters mainly memory-based → more complex
Static choice of candidates no constraint (all MPI

processes)
−→ determined statically

Load information flops of ready tasks −→ flops and memory information, vari-
ous other information (e.g., near-to-be-
ready tasks)

Load mechanism naive mechanism −→ increment-based (from Section 4.2.5 on-
wards)

Figure 4.4: Main evolutions of scheduling algorithm characteristics between Sections 4.2.1 (left) and Sec-
tion 4.2.6 (right).

4.2.5 Memory-based dynamic scheduling

For large problems, memory usage may be more critical than time of execution: if a problem is too
large, memory allocation may fail and it is then necessary to reduce the memory footprint in order to
get a chance of solving the problem. In [103], we discuss memory-based dynamic scheduling strategies
for the parallel multifrontal method as implemented in MUMPS. These strategies are a combination of a
memory-based slave selection strategy and a memory-aware task selection strategy.

Dynamic slave selection: The slave processors are selected with the goal to obtain the best memory
balance, and we use an irregular 1D-blocking by rows for both symmetric and unsymmetric matri-
ces. In fact, the slave selection strategy attempts at choosing the minimum number of slaves that
will balance the current memory usage without increasing the local memory peak.

Dynamic task selection: Concerning the task selection strategy, we have adapted the task selection
to take into account memory constraints. Whereas the pool of tasks is always managed as a stack
(last task inserted is the first extracted) in all previous approaches, we try to better take into
account memory. In particular, a task in a sequential subtree should in some cases be processed
even if a new task higher in the tree has appeared: this is because it may be better to finish the
subtree and its local peak of memory before starting new activities at a different place in the tree.
Furthermore, if the task at the top of the pool is large in comparison to the peak of memory already
observed, we attempt to extract other tasks. More precisely, the task selection algorithm is given
by Algorithm 4.5.

Both the task selection strategy and the slave selection strategy require memory information to cir-
culate between the processors, so that each processor now has a view of the memory load of other
processors, not just the workload (see Section 4.1). Whereas the workload allows approximations, inac-
curate memory information can be dramatic in the sense that this may lead to a failure of the execution.
In order to avoid such situations, the load information mechanism was modified to forecast the arrival
of large new ready tasks: before a new task is ready (last child in the process of factorizing its frontal
matrix), a message is sent so that the memory for the master part of the frontal matrix of the parent is
included in the memory estimate of the ready tasks of the master processor.

Overall, this scheduling strategy allows a significant reduction of the memory usage, but at the cost
of a performance penalty (see [103]).

4.2.6 Hybrid scheduling

[34] pushes the previous ideas further. By reconsidering both the static and dynamic aspects of schedul-
ing, its objectives are to

• preserve the memory behaviour obtained in Section 4.2.5,
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if the node at the top of the pool is part of a sequential subtree then
return the node at the top of the pool;

else
for N in the pool of ready tasks, starting from the top do

if memory cost(N )+current memory ≤ memory peak observed since the beginning of the
factorization then

return N ;
else

if N belongs to a sequential subtree then
return N ;

end if
end if

end for
return the node at the top of the pool;

end if
Algorithm 4.5: Memory-aware task selection algorithm.

• further decrease the difference between memory estimates and actual memory consumption,

• accelerate the factorization compared to previous approaches.

In order to reach these objectives, both the static and dynamic aspects of scheduling are revisited.

Static tree mapping Concerning the static mapping and choice of candidates, a layer L0 is defined as
before, under which tree parallelism is used exclusively. However, the mapping of the nodes from
L0 is forced to respect the proportional mapping; this is because we observed that the strategy
consisting in better balancing the load of the subtrees of the L0 layer has a worse locality of pro-
cessors and leads to a larger memory usage (more simultaneous contribution blocks corresponding
to subtree roots because we are further from a stack behaviour). We call the zone of the tree under
L0 zone 4, because three other zones are defined above the L0 layer, as show in Figure 4.5.

Zone 2

Zone 1

Zone 3 Sx

Sx
Sy

Sy

Sy

Sy Sy

Sx

L

Zone 4

0

Relaxed proportional mapping

Strict proportional mapping

Fully dynamic on clusters of processes

Figure 4.5: The four zones of the assembly tree. Sx and Sy are sets of preferential processors.

Zone 1 uses a relaxed proportional mapping in order to deal with the possible unbalances of zone
2, where a stricter proportional mapping is used. Moreover, we decided to implement a third zone
– zone 3, in which each child inherits all candidate processors from its parent, which are defined
by the proportional mapping. The upper limit of zone 3 depends on a parameter procmax which
corresponds to a number of processors. During the top-down approach of the proportional mapping,
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if the number of preferential processors of a node x is smaller or equal to procmax, then x and all
its descendants (above zone 4) belong to zone 3 and have the same set of candidate processors (see
sets Sx and Sy in Figure 4.5). The motivation for zone 3 is that the fully dynamic code behaves
well on small numbers of processors. Remark that, on architectures such as clusters of SMPs,
procmax should be set to the number of processors inside the SMP node in order to naturally take
into account memory locality.

Dynamic slave selection Given a set of candidate processors for a type 2 node, they are first sorted
by increasing estimated workload. The slave selection algorithm done by the master of the type
2 node aims at balancing the workload of the selected processors (among candidate processors),
subject to the memory constraints of each processor:

• estimated amount of available memory on the processor;

• maximum factor size: the maximum factor size is a relaxed value of an estimation of the
factors done during the analysis. It is updated dynamically such that, when at a node a
processor takes less than its share, it may take more for another node in the tree (and vice
versa).

• maximum buffer size: the contribution block of a slave of a type 2 node should not exceed the
size of the preallocated communication buffer6.

If one of those constraints is saturated, the given slave does not get more work and the extra work
is shared between others. The maximum number of selected processors nlim is first estimated to
the minimum between the number of candidate processors and a number of processors such that
the average work given to each slave is not too small compared to the work of the master processor.
If the mapping of all the rows of the front does not succeed, the number ntry of selected processors
is increased, until reaching nlim (Algorithm 3 in [34]). nlim is then increased if needed, until
reaching all candidate processors (Algorithm 2 in [34]).

Similar to the memory-based scheduling, it is critical to provide an accurate view of both load and
memory information. The mechanisms for memory information have been slightly modified so that the
frequency to send memory information increases when the available memory decreases.

Furthermore, the memory estimates have been modified. Thanks to all the above mechanisms to
efficiently take memory constraints into account at runtime, the memory estimates computed during
the analysis phase are now based on an optimistic scheduling scenario and not on a worst-case scenario
anymore. Such an improvement of the reliability of memory estimates is of extreme importance in
practical applications and was not possible in approaches not taking memory into account in dynamic
scheduling decisions.

4.3 Memory scalability issues and memory-aware scheduling

Memory scalability is critical when increasing the number of processors. Ideally, when multiplying the
number of processors by k, one would like the memory per processor to be divided by the same factor k.
Memory is already taken into account in most strategies from Section 4.2. However, we step back a little
in this section to show some intrinsic properties of the memory behaviour when processing in parallel a
tree of tasks bottom-up.

Let us denote by Sseq the sequential peak of memory when the tree is reordered according to the
techniques presented in Chapter 3. We denote by Savg(p) the average amount of storage per processor
required to process that matrix with p processors, and by Smax(p) the maximum amount (among all
processors) of storage required to process that matrix with p processors.

The memory efficiency on p processors is defined as: emax(p) = Sseq
p×Smax(p)

.

We can also define the average memory efficiency as eavg(p) = Sseq
p×Savg(p)

, which gives an idea of the

overall loss of memory when increasing the number of processors.
A perfect memory scalability on p processors corresponds to emax(p) = 1. However, in the approach

from Section 4.2.6, we typically observe that the memory efficiency is only between 0.1 and 0.3 on 128

6See Section 6.5 for a discussion on the memory associated to communication buffers.
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processors, when the factors are stored on disk (see Chapter 5). With factors on disk, the storage only
consists in temporary contribution blocks and current frontal matrices; memory efficiency is slightly
better with factors in core memory. Although the scheduling algorithms from Section 4.2.6 rely on a
relaxed proportional mapping, let us consider a strict proportional mapping [142] (see Section 4.2.3.1)
to illustrate its memory aspects, compared to the postorder. We consider a perfect binary tree of depth
k processed with p = 2k processors (see Figure 4.6(a)).

d=0

d=1

d=2

d=3

d=4

(a) Elimination tree (b) Postorder traversal (c) Traversal induced by proportional
mapping

Figure 4.6: A perfect binary elimination tree (a) and possible traversals (b,c). Data in memory when
the peak is reached during the tree traversal are black. There are p of them in (c) and only log(p) of
them in (b). The arrow points to the node for which the peak is reached with a postorder traversal (b).

Using the notations of Chapter 3, we assume that the nodes that are at a depth lower than or equal
to k have contribution blocks of identical sizes, cb, and frontal matrices of identical sizes, m = 2×cb. We
furthermore assume that the subtrees at depth d = k require a storage Sk ≥ 2 × cb. With a postorder
traversal, the storage required to process the whole tree is equal to Sseq = k×cb+Sk (see Figure 4.6(b)).

If all the processors are mapped on each single node and if they synchronously follow a postorder
traversal, the memory efficiency is equal to 1. (We assume for simplicity that contribution blocks and
frontal matrices can be distributed with a balanced memory on the processors, which is not always the
case in practice because of master tasks.) A possible memory-aware mapping algorithm is the following.
. On the other hand, if we assume that a proportional mapping has been applied, each subtree at
depth d = k is processed on a different processor (which means that p = 2k). The peak of memory
of each processor is thus equal to Sk (see Figure 4.6(c)) and the memory efficiency is then equal to

eavg(p) =
Sseq

p×Sk
= k×cb+Sk

p×Sk
≤ k/2+1

p = O(log(p)/p).
In practice, the largest frontal matrices and contribution blocks are often near the top of the elim-

ination tree. Therefore, the proportional mapping may induce a different memory efficiency. However,
we see that in parallel, an algorithm in-between proportional mapping and postorder should be sought.

Let M0 be the available memory per processor. Note that if M0 > Sseq/p, then the tree can be
processed with p processors (in the worst case, using a postorder traversal with all processors mapped
on each single node. The tree is processed from top to bottom, similar to proportional mapping. All
processors are assigned to the root node. At each step, each child inherits from a subset of pi processors
among the p processors that are mapped on their parent (

∑
i pi = p) in the following way:

1. A step of proportional mapping is first attempted to map children nodes

2. If the memory peaks Si for the children are such that Si/pi < M0, then the mapping is accepted.

3. If some memory peaks are too large (Si/pi > M0), subtrees are serialized [5], or arranged into groups
leading to reasonable memory per subtree [6]. In such cases, subtrees processed last should take
into account the contributions blocks produced by the groups processed earlier in the tree, which
have to be kept in memory: to process subtree j, contribution blocks of the previously processed
subtrees must be kept in memory, whose (average) size per processor is (

∑j−1
i=1 cbi)/p. Therefore,

the memory constraint M0 used for the lower levels of the tree becomes M0 − (
∑j−1

i=1 cbi)/p.

4. In the above tests, a relaxation is done in order to ensure that Smax(p) ≤M0, not just Savg(p) ≤M0.
For that, a relaxation parameter t can be used that estimates memory unbalance. All comparisons
with M0 are replaced by comparisons on M0 × t, where t > 1. If Smax/Savg < t, this means that
we will consume less memory than M0.

Remark that serializing subtrees introduces constraints in the scheduling algorithms of our asyn-
chronous multifrontal factorization. Preliminary results are encouraging and show that, starting from

112



the strategies of Section 4.2.6, it is possible to significantly reduce the memory usage without significant
loss of performance. More information and a complete description of the associated algorithms and ideas
will be available in [150]. Two issues should be tackled in the long term:

• The approach described is static. It would be nice to reintroduce dynamic decisions, with memory
constraints, but without falling in dangerous situations where memory constraints will be impossible
to respect in the future (this is similar to deadlock-avoidance algorithms, see [152], with memory as
the critical resource). Dynamic scheduling is necessary to cope with numerical pivoting and with
limits to performance models on more and more complex computer platforms.

• From an application point-of-view, providing the allowed memory M0 is sometimes possible. How-
ever, there is no point in using too much memory if this only increases performance by a very
small percentage, or if it decreases it (swapping). From experiments with different values of M0,
it seems that it would possible to find M0 values providing both a good performance (although
not optimal) and a reasonable memory efficiency. Defining various standard strategies would be
interesting, e.g., avoid decreasing the optimal performance by more than 20%.
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Chapter 5

A Parallel Out-of-Core Multifrontal
Method

The objective of this chapter (see also [7, 12]) is to show how out-of-core storage may help decreasing
the memory requirements of parallel sparse direct solvers and, consequently, allow the solution of larger
problems with a given physical memory. We also show how low-level I/O mechanisms affect performance.

Introduction

As mentioned in the introduction and in Section 1.3.4, the memory usage of sparse direct solvers is often
the bottleneck to solve large sparse systems of linear equations. In order to solve larger problems, out-
of-core storage must sometimes be used when memory is insufficient. In this chapter, we describe some
of the work we have done to design a robust out-of-core solver, in which computed factors are stored on
disk and report experiment on significantly large problems. We observe that the core memory usage can
be significantly reduced in serial and parallel executions, with a time performance of the factorization
phase comparable to that of a parallel in-core solver. A careful study shows how the I/O mechanisms
impact the performance. We describe a low-level I/O layer that avoids the perturbations introduced
by system buffers and allows consistently good performance results. To go significantly further in the
memory reduction, it is interesting to also store the intermediate working memory on disk. We describe
algorithmic models to address this issue, and study their potential in terms of both memory requirements
and I/O volume.

Several authors [1, 68, 95, 148, 149, 131, 164] have worked on sequential or shared-memory out-of-
core solvers (see also the survey paper [163], but out-of-core sparse direct solvers for distributed-memory
machines are less common. Furthermore, authors have sometimes neglected the effect of system buffering,
which often introduces a bias in the performance analysis. Although Dobrian [67] shows that multifrontal
methods are generally well-suited for the out-of-core factorization, contributions by [148] and [149] for
uniprocessor approaches pointed out that these methods may not fit well an out-of-core context because
large dense temporary matrices can represent a bottleneck for memory. Therefore, they prefer left-
looking approaches (or switching to left-looking approaches)1. However, in a parallel context, increasing
the number of processors can help keeping such large frontal matrices in-core. Furthermore, note that
pivoting issues in out-of-core left-looking approaches are not always natural [95]; on the contrary, we are
interested in approaches with the exact same pivoting strategies in the in-core and out-of-core contexts.

An out-of-core multifrontal approach based on virtual memory was experimented in the past by [58].
In this work, the authors use a low-level layer [57] enabling to influence the system paging mechanisms.
A limited number of calls to this layer was added at the application level in order to provide information
on the application. For example, it is possible to inform the layer that a zone of memory has a high
priority because it will be used very soon (it will then be prefetched if on disk, or kept if already in
core memory), or that in another zone the contents are obsolete because they have been used already
(and the corresponding pages can then be discarded without being written to disk). In particular the
current active frontal matrix and the top of the stack will be set a high priority; the data corresponding

1See Section 1.2.4 for a brief description of left-looking and right-looking approaches
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to a contribution block just consumed by the parent are obsolete and need not be written to disk. The
authors showed results significantly better than when relying on the default LRU (Least Recently Used)
policy, with very limited local modifications to the sparse direct solver. However, this type of approach
is not portable because it is too closely related to the operating system. In the rest of this chapter, we
only consider out-of-core approaches with explicit calls to I/O routines.

As explained in Section 1.3.3, the memory in multifrontal methods consists of two parts: one cor-
responds to terminal data, the factors; the other one to temporary data, the active memory (or active
storage). We also refer the reader to Chapter 3 for possible out-of-core models in the case of serial execu-
tions. Because the factors produced will only be accessed at the solve stage, it makes sense to write them
to disk first. We use this approach to design an extension of a parallel solver (MUMPS, for MUltifrontal
Massively Parallel Solver, see [24]) where factors are stored on disk during the factorization process.
This approach allows to treat much larger problems, and to reduce significantly the memory usage (by
a factor 5 to 10 on 1 to 4 processors, and a factor around 2 on 16 to 128 processors). An important
issue is performance, which has to be analyzed in details. In particular, it must be noted that default
I/O mechanisms based on the use of system buffers have several disadvantages and are not suitable for
all applications. For simple applications (with small I/O requirements), the cost of an I/O is similar to
the cost of a memory copy, and the effective I/O is performed asynchronously (or is not performed at
all !) by the system. For more I/O-intensive cases (factorization of a matrix with large factors), some
problems can occur: excessive memory usage of the system buffers, or bad performance. To avoid these
problems, we have decided to study direct I/O mechanisms (that bypass the system buffers), and to
couple them with an asynchronous approach at the application level. This allows to obtain consistent
performance results and, thanks to the knowledge we have of the application, to control I/O in a more
tight way.

In order to go further in the memory reduction (and treat larger problems on a given number of
processors), it is interesting to use disk storage not only for the factors, but also for part of the temporary
working memory (or active storage). To analyze this approach, we propose a theoretical study based on
an instrumentation of the solver with out-of-core factors and study the variations of the working memory
according to different models of out-of-core memory management. We assess the minimum core memory
requirements of the method, and study which type of tasks is responsible for the peak memory for the
different models.

This chapter is composed of two main sections. In the first one, we present and analyse in detail the
performance of the approach consisting in storing the computed factors to disk (Section 5.1). We then
study the memory limits of different strategies to process the active memory out-of-core (Section 5.2).
In Section 5.2.3, we analyze more accurately and qualitatively the type of tasks responsible for the peak
of core memory usage in each of these strategies, and discuss their relation with critical parameters in
the management of parallelism. Note that the solution step is also critical in this out-of-core context and
should not be neglected, as large amounts of data will be read from disk. This is the object of a specific
and separate study [23] that we will not detail with here.

5.1 A robust out-of-core code with factors on disks

We present in this section a robust out-of-core code based on MUMPS in which computed factors are
stored on disk during the factorization step. This parallel out-of-core code is already used by several
academic and industrial groups, and enables them to solve problems much larger than before. All the
functionalities available in MUMPS may be used in this new out-of-core code (LU or LDLT factorization,
pivoting strategies, out-of-core solution step [22], . . . ). The motivation to store the factors on disk is that,
in the multifrontal method, produced factors are not re-used before the solution step. In the approach
we present, the factors are written as soon as they are computed (possibly via a buffer) and only the
active memory remains in-core.

Because I/O buffering at the operating system level makes performance results difficult to reproduce
and to interpret [7, 22], we first discuss system buffering issues and ways to avoid such buffering prob-
lems in our performance study. We explain why the management of asynchronism for the I/Os should
be transferred from the system level to the application level and present the mechanisms we have imple-
mented to do so. A detailed performance analysis follows; it highlights several drawbacks from default
I/O mechanisms that have most often been neglected in the past.
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5.1.1 Direct and buffered (at the system level) I/O mechanisms

The efficiency of low-level I/O mechanisms directly affects the performance of the whole application.
Several I/O tools are available: AIO (POSIX asynchronous I/O layer), MPI-IO [162] (I/O extension of
the MPI standard) or FG [56] (high level asynchronous buffered I/O framework). However, C I/O library
provides best portability while offering a reasonable abstraction level for our needs.

By default, when a write operation is requested, modern systems copy data into a system buffer
(named pagecache) and effectively perform the disk access later, using an asynchronous mechanism.
Thanks to that mechanism (hidden to the user), the apparent cost of the write operation is in many
cases only equal to the cost of a memory copy. However, in the context of a high-performance out-of-core
application, such a mechanism suffers four major drawbacks:

1. As the allocation policy for the system buffer (pagecache) is not under user control (its size may
vary dynamically), the size of the remaining memory is neither controlled nor even known; this
is problematic since out-of-core algorithms precisely rely on the size of the available memory.
Subsequently, one may exploit only part of the available memory or, on the contrary, observe
swapping and even run out of memory.

2. The system is well adapted to general purpose applications and not necessarily optimized for I/O-
intensive applications: for example, it is better to avoid the intermediate copy to the pagecache
when a huge stream of data must be written to disk.

3. The management of the pagecache is system-dependent (it usually follows an LRU policy). As a
consequence, the performance of I/O operations vary (for instance, the I/O time can increase if
the system needs to partially flush the pagecache). This is particularly problematic in the parallel
context, where load balancing algorithms will not be able to take this irregular and unpredictable
behaviour into account.

4. The last drawback is related to performance studies: when analysing the performance of an out-
of-core code, one wants to be sure that I/Os are effectively performed (otherwise, and even if the
code asks for I/O, one may be measuring the performance of an in-core execution). We insist on
this point because this has sometimes not been done in other studies relating to sparse out-of-core
solvers. Authors we are aware of who have taken this type of issues into account are Rothberg and
Schreiber [148]: in order to get senseful and reproducible results, they dynamically add artificial
delays in their code when the time for a read or write operation is observed to be smaller than the
physical cost of a disk access.

The use of direct I/O mechanisms allows one to bypass the pagecache. The four previous drawbacks
are then avoided: we are sure that I/Os are performed; no hidden additional memory is allocated (the
pagecache is not used in this case); we explicitly decide when disk accesses are performed; and the
I/O costs become stable (they only depend on the latency and the bandwidth of the disks). Direct
I/Os are available on most modern computers and can be activated with a special flag when opening
the file (O DIRECT in our case). However data must be aligned in memory when using direct I/O
mechanisms: the address and the size of the written buffer both have to be a multiple of the page size
and/or of the cylinder size. In order to implement such a low-level mechanism, we had to rely on an
intermediate aligned buffer, that we write to disk when it becomes full. The size of that buffer has been
experimentally tuned to maximize bandwidth: we use a buffer of size 10 MB, leading to an approximate
bandwidth of respectively 90 MB/s and 50 MB/s on the IBM and Linux platforms (described later).
Furthermore, asynchronism must be managed at the application level to allow for overlapping between
I/Os and computations.

5.1.2 Synchronous and asynchronous approaches (at the application level)

One purpose of this chapter is to highlight the drawbacks of the use of system buffers (or pagecache) and
to show that efficiency may be achieved with direct I/O. To do so, the management of the asynchronous
I/Os (allowing overlapping) has to be transferred from the system level to the application level. In order
to analyze the behaviour of each layer of the code (computation layer, I/O layer at the application level,
I/O layer at the system level) we designed two I/O mechanisms at the application level:
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Synchronous I/O scheme. In this scheme, the factors are directly written to disk (or to the page-
cache) with a synchronous scheme. We use standard C I/O routines: either fread/fwrite (to read
from or write to a binary stream), read/write (to read from or write to a file descriptor), or
pread/pwrite when available (to read from or write to a file descriptor at a given offset).

Asynchronous I/O scheme. In this scheme, we associate with each MPI process of the application
an I/O thread in charge of all the I/O operations for that process. This allows to overlap I/O
operations with computations2. The I/O thread uses the standard POSIX thread library (pthreads).
The computation thread produces (computes) factors that the I/O thread consumes (writes to
disk) according to a producer-consumer paradigm. Each time a block of factors is produced, the
computation thread posts an I/O request: it inserts the request into a queue of pending requests
in a critical section. The I/O thread loops endlessly: at each iteration it waits for requests that
it handles using a FIFO strategy. Symmetrically, the I/O thread informs the computation thread
of its advancement with a second producer-consumer paradigm in which this time the I/O thread
produces the finished requests (inserts them into the queue of finished requests). The computation
thread consumes the finished requests by removing them from the queue when checking for their
completion. This second mechanism is independent from the first one. Note that we limited our
implementation to the case where only one I/O thread is attached to each computation thread. It
could be interesting to use multiple I/O threads to improve overlapping on machines with several
hard disks per processor, or with high performance parallel filesystems.

Together with the two I/O mechanisms described above, we designed a buffered I/O scheme. This
approach relies on the fact that we want to free the memory occupied by the factors (at the application
level) as soon as possible, i.e., without waiting for the completion of the corresponding I/O. Thus, we
introduced a buffer into which factors can be copied before they are written to disk. We implemented a
double buffer mechanism in order to overlap I/O operations with computations: the buffer is divided into
two parts in such a way that while an asynchronous I/O operation is occurring on one part, computed
factors can be stored in the other part. In our experiments, the size of the buffer (half a buffer in fact) is
set to the size of the largest estimated factor among the nodes of the tree. Note that the asynchronous
scheme always requires a buffer in order to free the factors from main memory. Furthermore, the buffer
is not necessary in the synchronous scheme and implies an extra copy. Therefore, we only present
results with the buffered asynchronous scheme (that we name asynchronous scheme and abbreviate as
Asynch.) and with the non-buffered synchronous one (that we name synchronous scheme and abbreviate
as Synch.). When the pagecache is used together with the synchronous scheme (at the application level),
asynchronism is managed at the system level; when direct I/O mechanisms are applied together with
the asynchronous scheme, asynchronism only occurs at the application level.

5.1.3 Testing environment

For our study, we use test problems (see Table 5.1) from standard collections (Parasol collection3,
University of Florida sparse matrix collection4), or from MUMPS users. Publicly available matrices from
our application partners are available on the gridtlse.org website (Tlse collection). We use two types
of target platforms, one with local disks, one with remote disks. The platform with local disks is a cluster
of Linux dual-processors at 2.6 GHz from PSMN/FLCHP5, with 4 GB of memory and one disk for each
node of 2 processors. In order to have more memory per process and avoid concurrent disk accesses, only
one processor is used on each node. The observed bandwidth is 50 MB / second per node, independently
of the number of nodes, and the filesystem is ext3. The other machine is the IBM SP system from
IDRIS6, which is composed of several nodes of either 4 processors at 1.7 GHz or 32 processors at 1.3
GHz. On this machine, we have used from 1 to 128 processors with the following memory constraints:
we can access 1.3 GB per processor when asking for 65 processors or more, 3.5 GB per processor for
17-64 processors, 4 GB for 2-16 processors, and 16 GB on 1 processor. The I/O system used is the

2 Modern systems use the direct memory access (DMA) feature which allows an efficient overlapping of computation
and I/Os even when only one processor is used.

3http://www.parallab.uib.no/parasol
4http://www.cise.ufl.edu/research/sparse/matrices/
5Pôle Scientifique de Modélisation Numérique/Fédération Lyonnaise de Calcul Haute Performance
6Institut du Développement et des Ressources en Informatique Scientifique
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IBM GPFS [154] filesystem. With this filesystem we observed a maximal I/O bandwidth of 108 MBytes
per second (using direct I/O to ensure that the I/Os are effectively performed, without intermediate
copy). However, it is not possible to write files to local disks with the configuration of this platform.
This results in performance degradations when several processors simultaneously write/read an amount
of data to/from the filesystem: the bandwidth decreases by a factor of 3 on 8 processors and by a factor
of 12 on 64 processors when when each processor writes one block of 500 MBytes. This filesystem is thus
not optimal for parallel performance issues. However we chose to also run on this platform because it has
a large number of processors, and allows to run large problems in-core on which we can compare out-of-
core and in-core performance. By default, we used the METIS package [120] to reorder the matrices and

Matrix Order nnz Type nnz(L|U) Flops Description
(×106) (×109)

AUDIKW 1 943695 39297771 SYM 1368.6 5682 Crankshaft model (Parasol collection).
BRGM 3699643 155640019 SYM 4483.4 26520 Ground mechanics model from Brgm (Tlse

collection).
CONESHL mod 1262212 43007782 SYM 790.8 1640 Cone with shell and solid element from

Samtech (Tlse collection).
CONESHL2 837967 22328697 SYM 239.1 211.2 Provided by Samtech (Tlse collection).
CONV3D64 836550 12548250 UNS 2693.9 23880 Provided by Cea-Cesta; generated using

Aquilon (http://www.enscpb.fr/master/
aquilon).

GUPTA3 16783 4670105 SYM 10.1 6.3 Linear programming matrix (AA’), Anshul
Gupta (Univ. Florida collection).

SHIP 003 121728 4103881 SYM 61.8 80.8 Ship structure (Parasol collection).
SPARSINE 50000 799494 SYM 207.2 1414 Structurual optimization, CUTEr (Univ.

Florida collection).
QIMONDA07 8613291 66900289 UNS 556.4 45.7 Circuit simulation problem provided by Rein-

hart Schultz, Qimonda AG (Tlse collection).
ULTRASOUND80 531441 330761161 UNS 981.4 3915 Propagation of 3D ultrasound waves, provided

by M. Sosonkina.
XENON2 157464 3866688 UNS 97.5 103.1 Complex zeolite, sodalite crystals, D. Ronis

(Univ. Florida collection).

Table 5.1: Test problems. Size of factors (nnz(L|U)) and number of floating-point operations (Flops)
computed with METIS.

limit the number of operations and fill-in arising during the numerical factorization. In the following,
parallel executions rely on the dynamic scheduling strategy proposed in [34]. When reporting memory
usage, we focus on real data (factors, temporary active memory), excluding storage for integers and
symbolic data structures (which is comparatively negligible).

5.1.4 Sequential performance

Because the behaviour of our algorithms on a platform with remote disks might be difficult to interpret,
we first validate our approaches on machines with local disks. For these experiments, we use the cluster
of dual-processors from PSMN/FLCHP presented in Section 5.1.3. Because this machine has a smaller
memory, the factorization of some of the largest test problems swapped or ran out of memory. We first
present results concerning relatively small problems (SHIP 003 and XENON2) because they allow us to
highlight the perturbations induced by the pagecache and because we have an in-core reference for those
problems. We then discuss results on larger problems. Table 5.2 reports the results.

For problems small enough so that the in-core factorization succeeds (top of Table 5.2), we have mea-
sured average bandwidths around 300 MB/s when relying on the pagecache, whereas the disk bandwidth
cannot exceed 60 MB/s (maximum physical bandwidth). This observation highlights the perturbations
caused by the system pagecache; such perturbations make the performance analysis unclear. Moreover,
the system can in these cases allocate enough memory for the pagecache so that it needs not perform
the actual I/Os. When an I/O is requested, only a memory copy from the application to the pagecache
is done. This is why the factorization is faster when using the pagecache: this apparent efficiency comes
from the fact that the execution is mostly performed in-core. In other words, a performance analysis of
an out-of-core code using the system pagecache (it is the case of most out-of-core solvers) makes sense
only when performed on matrices which require a memory significantly larger than the available physical
memory. This illustrates the fourth drawback from Section 5.1.1.
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Direct I/O Direct I/O P.C. P.C. IC
Matrix Synch. Asynch. Synch. Asynch.
SHIP 003 43.6 36.4 37.7 35.0 33.2
XENON2 45.4 33.8 42.1 33.0 31.9
AUDIKW 1 2129.1 [2631.0] 2008.5 [3227.5] (*)
CONESHL2 158.7 123.7 144.1 125.1 (*)
QIMONDA07 152.5 80.6 238.4 144.7 (*)

Table 5.2: Elapsed time (seconds) for the sequential factorization using direct I/O mechanisms or the
pagecache (P.C.) for both the synchronous (Synch.) and asynchronous (Asynch.) approaches, and
compared to the in-core case (IC) on a machine with local disks (PSMN/FLCHP).
(*) The factorization ran out of memory. [2631.0] Swapping occurred.

However, when direct I/O mechanisms are used with the asynchronous out-of-core scheme for these
relatively small problems, the factorization remains efficient (at most 10% slower than the in-core one).
The slight overhead compared to the asynchronous out-of-core version relying on the pagecache results
from the cost of the last I/O. After the last factor (at the root of the tree) is computed, the I/O buffer is
written to disk and the factorization step waits for this last I/O without any computation to overlap it.
When using direct I/O, this last I/O is performed synchronously and represents an explicit overhead for
the elapsed time of the factorization. On the contrary, when the pagecache is used, only a memory copy
is performed: the system may perform the effective I/O later, after the end of the factorization. For some
larger matrices (CONESHL2 or QIMONDA07), the results show a very good behaviour of the asynchronous
approach based on direct I/O, even when the last I/O is included. In the case of the AUDIKW 1 matrix,
the asynchronous approaches swapped because of the memory overhead due to the I/O buffer. Note that
even in this case, the approach using direct I/O has a better behaviour. More generally, when comparing

Direct I/O P.C.
Asynch. Asynch.

1674 [2115]

Table 5.3: Elapsed time (seconds) for the factorization of matrix AUDIKW 1 when the ordering strategy
PORD is used. Platform is PSMN/FLCHP. [2115] Swapping occurred.

the two asynchronous approaches to each other on reasonably large matrices, we notice a higher overhead
of the pagecache-based one, because it consumes extra memory hidden to the application. To further
illustrate this phenomenon, we use the PORD [156] ordering (see Table 5.3), which reduces the memory
requirements in comparison to METIS for matrix AUDIKW 1. In this case the memory required for the
asynchronous approach is of 3783 MB. We observe that the asynchronous scheme allows a factorization in
1674 seconds when based on direct I/O, without apparent swapping. However, when using the pagecache,
the factorization requires 2115 seconds: the allocation of the pagecache makes the application swap and
produces an overhead of 441 seconds. This illustrates the first drawback (introduced in Section 5.1.1). Let
us now discuss the case of the matrix of our collection that induces the most I/O-intensive factorization,
QIMONDA07. For this matrix, assuming a bandwidth of 50 MB/s, the time for writing factors (85 seconds)
is greater than the time for the in-core factorization (estimated to about 60 seconds). We observe that
the system (columns “P.C.” of Table 5.2) does not achieve a good performance (even with the buffered
asynchronous scheme at the application level that avoids too many system calls). Its general policy is not
designed for such an I/O-intensive purpose. On the other hand, the use of direct I/O mechanisms with
an asynchronous scheme is very efficient. I/Os are well overlapped by computation: the factorization
only takes 80.6 seconds during which 60 seconds (estimated) of computation and 78.8 seconds (measured)
of disk accesses are performed (with a measured average bandwidth of 53.8 MB/s). This illustrates the
second drawback of the use of the pagecache: we have no guarantee of its robustness in an I/O-intensive
context, where I/O should be performed as soon as possible rather than buffered for a while and then
flushed. (Note that the synchronous approach with direct I/O mechanisms is not competitive because
computation time and I/O time cumulate without possible overlap.) To confirm these results on another
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platform, Table 5.4 reports the performance obtained on the IBM machine, where remote disks are
used. Again we see that even with remote disks, the use of direct I/O coupled with an asynchronous

Direct I/O Direct I/O P.C. P.C. IC
Matrix Synch. Asynch. Synch. Asynch.
AUDIKW 1 2243.9 2127.0 2245.2 2111.1 2149.4
CONESHL MOD 983.7 951.4 960.2 948.6 922.9
CONV3D64 8538.4 8351.0 [[8557.2]] [[8478.0]] (*)
ULTRASOUND80 1398.5 1360.5 1367.3 1376.3 1340.1
BRGM 9444.0 9214.8 [[10732.6]] [[9305.1]] (*)
QIMONDA07 147.3 94.1 133.3 91.6 90.7

Table 5.4: Elapsed time (seconds) on the IBM machine for the factorization (sequential case) using
direct I/Os or the pagecache (P.C.) for both the synchronous (Synch.) and asynchronous (Asynch.)
approaches, and compared to the in-core case (IC), for several matrices.
(*) The factorization ran out of memory.
[[8857.2]] Side effects (swapping, . . . ) of the pagecache management policy.

approach is usually at least as efficient as any of the approaches coupled with the use of the pagecache
and that relying only on the pagecache (P.C., Synch.) leads to additional costs. Furthermore, note
that this table provides a representative set of results among several runs, each matrix corresponding to
one submission at the batch-scheduler level. Indeed, performance results vary a lot from execution to
execution. For instance, we were sometimes able to observe up to 500 seconds gain on the very large
matrix CONV3D64 thanks to the use of direct I/Os (with an asynchronous scheme) compared to the use
of the pagecache. Finally, note that for matrix AUDIKW 1 the performance is sometimes better with the
out-of-core approach than with the in-core approach (2149.4 seconds in-core versus 2111.1 seconds for
the system-based asynchronous approach and 2127.0 seconds for the direct I/O approach). This comes
from machine-dependent (in-core) cache effects resulting from freeing the factors from main memory
and always using the same memory area for active frontal matrices: a better locality is obtained in the
out-of-core factorization code.

5.1.5 Parallel performance

Table 5.5 gives the results obtained in the parallel case on our cluster of dual-processors. We can
draw conclusions similar to the sequential case. For large matrices (see results for CONESHL MOD and
ULTRASOUND80), the use of the asynchronous approach relying on direct I/O has a good behaviour:
we achieve high performance without using the pagecache and avoid its possible drawbacks. In the
I/O-dominant case (QIMONDA07 matrix), the pagecache again has serious difficulties to ensure efficiency
(second drawback).

We observe that the execution sometimes swaps (CONESHL MOD on 1 processor or ULTRASOUND80 on 4
processors) because of the additional space used for the I/O buffer at the application level. This leads
to a slowdown so that the benefits of asynchronism are lost. In this asynchronous case, when comparing
the system and the direct I/O approaches, it appears that the additional memory used by the operating
system (the pagecache) leads to a larger execution time, probably coming from a larger number of page
faults (extra memory for the pagecache and first drawback).

Provided that enough data are involved, the out-of-core approaches appear to have a good scalability,
as illustrated, for example, by the results on matrix CONESHL MOD. The use of local disks allows to keep
a good efficiency for parallel out-of-core executions.

We now present results on a larger number of processors, using the IBM machine at IDRIS. Note that
the I/O overhead is more critical in the parallel case as the delay from one processor has repercussions
on other processors waiting for it (third drawback). We show in Table 5.6 (for matrix ULTRASOUND80)
that we can achieve high performance using direct I/Os with an asynchronous scheme.

When the number of processors becomes large (64 or 128) the average volume of I/O per processor
is very small for this test problem (15.3 MB on 64 processors, 7.7 MB on 128) and the average time
spent in I/O mode is very low (less than 2.4 seconds) even in the synchronous scheme. Therefore, the
synchronous approach with direct I/O, which does not allow overlapping of computations and I/Os is
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Direct I/O Direct I/O P.C. P.C. IC
Matrix #P Synch. Asynch Synch Asynch
CONESHL MOD 1 4955.7 [5106.5] 4944.9 [5644.1] (*)

2 2706.6 2524.0 2675.5 2678.8 (*)
4 1310.7 1291.2 1367.1 1284.9 (*)
8 738.8 719.6 725.6 724.7 712.3

ULTRASOUND80 4 373.2 [399.6] 349.5 [529.1] (*)
8 310.7 260.1 275.6 256.7 (*)

QIMONDA07 1 152.5 80.6 238.4 144.7 (*)
2 79.3 43.4 88.5 57.1
4 43.5 23.1 42.2 31.1 [750.2]
8 35.0 21.1 34.0 24.0 14.6

Table 5.5: Elapsed time (seconds) for the factorization on 1, 2, 4, and 8 processors using direct I/O
mechanisms or the pagecache (P.C.), for both the synchronous (Synch.) and asynchronous (Asynch.)
approaches, and compared to the in-core case (IC) on a machine with local disks (PSMN/FLCHP).
(*) The factorization ran out of memory. [750.2] Swapping occurred.

I/O mode Scheme 1 2 4 8 16 32 64 128
Direct I/O Synch. 1398.5 1247.5 567.1 350.9 121.2 76.9 44.6 36.5
Direct I/O Asynch. 1360.5 (*) 557.4 341.2 118.1 74.8 45.0 33.0
P.C. Synch. 1367.3 1219.5 571.8 348.8 118.5 69.6 44.8 90.0
P.C. Asynch. 1376.3 (*) 550.3 339.2 109.4 73.8 45.2 30.0

IC 1340.1 (*) (*) 336.8 111.0 64.1 40.3 29.0

Table 5.6: Elapsed time (seconds) for the factorization of the ULTRASOUND80 matrix using direct I/O
mechanisms or the pagecache (P.C.), for both the synchronous (Synch.) and asynchronous (Asynch.)
approaches, and compared to the in-core case (IC) for various numbers of processors of the IBM machine.
(*) The factorization ran out of memory.
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not penalized much. Concerning the comparison of the asynchronous approach with direct I/O to the
system approach, performance are similar. However, when we have a critical situation, the use of the
system pagecache may penalize the factorization time, as observed on 128 processors in the synchronous
case. In Table 5.7, we report the results obtained on one large symmetric matrix. We observe here that
it is interesting to exploit asynchronism at the application level, both for the direct I/O approach and
for the system (pagecache) approach.

I/O mode Scheme 1 2 4 8 16 32 64 128
Direct I/O Synch. 983.7 595.3 361.3 158.2 69.8 41.6 26.9 21.5
Direct I/O Asynch. 951.4 549.5 340.5 156.9 65.7 41.5 24.7 16.3
P.C. Synch. 960.2 565.6 358.8 159.0 68.2 41.8 28.1 18.9
P.C. Asynch. 948.6 549.6 336.6 153.7 65.8 40.4 26.8 16.1

IC 922.9 (*) 341.4 162.7 64.3 39.8 20.7 14.7

Table 5.7: Elapsed time (seconds) for the factorization of the CONESHL MOD matrix using direct I/O
mechanisms or the pagecache (P.C.) for both the synchronous (Synch.) and asynchronous (Asynch.)
approaches, and compared to the in-core case (IC), for various numbers of processors of the IBM machine.
(*) The factorization ran out of memory.

5.1.6 Discussion

Overlapping of I/Os and computations allows to achieve high performance both when asynchronism
is ensured at the system level (pagecache) and when it is managed at the application level (and uses
the direct I/O approach). However, we have shown that in critical cases (either when a high ratio
I/O/computation is involved - as for matrix QIMONDA07 - or when a huge amount of I/O is required
- as for matrix CONV3D64) the asynchronous scheme using direct I/O is more robust than the schemes
using the pagecache. Similar difficulties of the system approach for read operations have also been
shown in [22]. Furthermore, notice that even when the system approach has a good behaviour, we have
observed that it often achieves better performance when used with a buffered asynchronous scheme at
the application level: calling I/O routines (system calls) too frequently decreases performance.

To conclude this section, let us mention the memory gains that can be obtained when storing the
factors to disk. For a small number of processors, the memory requirements of the application decrease
significantly (more than 90% on some problems in the sequential case, as shown in column “1 processor”
of Table 5.8).

When the number of processors increases (16 or more), an out-of-core execution usually allows to
save between 40% and 50% of memory, as reported in Table 5.8. Note that in some cases, the amount
of memory saved can be much larger, as illustrated by the QIMONDA07 matrix. It is also interesting to

Matrix 1 processor 16 processors 32 processors 64 processors 128 processors
OOC IC OOC IC OOC IC OOC IC OOC IC

AUDI KW 1 2299 12188 909 1402 589 742 272 353 179 212
CONESHL MOD 1512 7228 343 780 167 313 103 176 61 96
CONV3D64 6967 (17176) 1047 1849 540 930 265 471 148 251
QIMONDA07 29 4454 6 283 5 143 4 72 (*) (*)
ULTRASOUND80 1743 8888 339 662 178 323 92 176 52 92

Table 5.8: Average space effectively used for scalars (in MBytes) per processor, for sequential and parallel
executions on various numbers of processors, in the out-of-core (OOC) and in-core (IC) cases, for some
large matrices. The IBM machine was used.
(*) The analysis ran out of memory. (17176) Estimated value from the analysis phase (the numerical
factorization ran out of memory).

note that even if the memory scalability of our out-of-core solver is not good when going from 1 to 16
processors, it somehow stabilizes after 16 processors: the memory ratio OOC

IC is then almost constant
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and the memory usage scales reasonably. A possible explanation is that, after some point, increasing
the number of processors does not increase too much the overall memory usage because most of the
memory is consumed in the large fronts near the top of the tree, and those fronts are distributed over
the processors. In the rest of this chapter, the code described in this section will be referred to as
Factors-on-disk.

5.1.7 Panel version

One conclusion of the above results is that an asynchronous (Asynch.) approach is worth using. The
drawback of this approach is that the granularity of I/O is large, leading to possibly very large (sometimes
prohibitively large) buffers in order to overlap computation and I/O. Therefore, a so called “panel version”
was developed, which decreases the granularity of I/O and the associated size of I/O buffers. Thanks to
this mechanism, the out-of-core buffers are limited to the storage of a few panels: each panel contains
columns of the L factors or rows of the U factors. This led to a lot of specification and code development,
necessary to make this work effective in practical large-scale applications and usable by others. The main
points concern:

• new design of the I/O layer to manage panels: specification of the storage for panels, variable size
of the panels, special cases (for example, a panel should not finish in the middle of a 2× 2 pivot);

• extension of the solve algorithm to work with panels: computations on each loaded panel, instead
of each frontal matrix;

• management of numerical pivoting issues: inside a frontal matrix, we used to pivot in the LAPACK
style, that is, we pivot rows that are in the previous panels. If previous panels are on disk, this
is unfortunately not possible. Therfore, we store all necessary pivoting information and not just
swapped lists of indices for each front, as already mentionned in Section 2.2.3.

• experimentation, testing and validation of the interaction and synchronizations between the I/O
thread and the factorization kernels.

The advantages of working with panels instead of frontal matrices are as follows: (i) the buffer size
has been strongly reduced when asynchronous I/O are managed at the application level (see Table 5.9);
(ii) I/O’s can be overlapped with computations during the factorization of a frontal matrix whereas they
used to be overlapped only between the factorizations of different frontal matrices; and (iii) the L and U
factors can be written to independent files: this allows a better data access during the solution step and
strongly improves the efficiency of that step, which is even more sensitive to I/O’s than the factorization
phase.

Out-of-core elementary data
Matrix #procs Factor block Panel

AUDIKW 1 1 1067.1 12.8
AUDIKW 1 32 155.5 12.8

CONESHL MOD 1 1292.8 13.8
CONESHL MOD 32 125.1 10.6

CONV3D64 1 3341.5 40.2
CONV3D64 32 757.6 40.2

ULTRASOUND80 1 1486.6 20.4
ULTRASOUND80 32 208.3 20.4

Table 5.9: Size of the I/O buffers (MB) with an asynchronous factorization.

5.2 Description and analysis of models to further reduce the
memory requirements

Either to further reduce the memory requirements on large numbers of processors, or to process even
larger problems on machines with few processors, one also needs to store the intermediate active memory
to disk. In this section we propose a theoretical study to evaluate the interest of storing the contribution
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blocks out-of-core. Our motivation is that the problem of managing the active memory out-of-core in a
parallel asynchronous context is novel and needs to be studied before any real-life implementation. In
addition, the dynamic and asynchronous schemes used in the parallel multifrontal method (at least as
implemented in the MUMPS solver) make the behaviour difficult to forecast. It is thus natural to evaluate
the gains that can be expected from such a parallel out-of-core method. To reach this objective, we
present several models (first introduced in [7]), to perform the assembly of the contribution blocks in an
out-of-core context. We use these models to better understand the memory limits of the approach and
to identify the bottlenecks to treat arbitrarily large problems. Note that treating problems as large as
possible (topic of this section) is a different issue from achieving good performance (as discussed in the
previous section).

5.2.1 Models to manage the contribution blocks on disk
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b c
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e

Processed In progress Not processed

Memory
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b
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Contribution blocks

Frontal matrix

Stack 
memory

(a) Factors-on-disk scheme:
only factors are on disk.

Memory

b

c

d

Contribution blocks

Frontal matrix

Stack 
memory

(b) All-CB out-of-core scheme.
a is on disk.

Memory

c

d

Contribution blocks

Frontal matrix

Stack 
memory

(c) One-CB out-of-core scheme.
a and b are on disk.

Memory

d Frontal matrix

(d) Only-Parent

out-of-core scheme.
All contribution
blocks are on disk
except one block of
rows of c.

Figure 5.1: Out-of-core assembly schemes for the contribution blocks. Left: the frontal matrix of node d
is being assembled. Right: data that must be present in core memory when assembling the contribution
block of c into the frontal matrix of d.

We are interested in schemes where contribution blocks will be written at most once (after they are
produced) and read at most once (before they are assembled into the frontal matrix of their parent). We
will assume that frontal matrices can hold in-core (but they can be scattered over several processors);
note that by doing so, we maintain the write-once/read-once property. Figure 5.1 illustrates the different
schemes we have modeled for the assembly of a frontal matrix:

• All-CB scheme. In this scheme, all the contribution blocks of the children must be available in
core memory before the frontal matrix of the parent is assembled. The assembly step (consisting
of extend-add operations) is identical to the in-core case, the only difference is that contribution
blocks may have been stored to disk earlier.

• One-CB out-of-core scheme. In this scheme, during the assembly of an active frontal matrix, the
contribution blocks of the children may be loaded one by one in core memory (while the other ones
remain on disk).

• Only-Parent out-of-core scheme. In this scheme, we authorize all the contribution blocks from
children to stay on disk: they may be loaded in memory row by row (or block of rows by block of
rows) without being fully copied from disk to memory.
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Prefetching all the required data before the assembly step of a parent node (as in the All-CB scheme)
allows to perform computations (extend-add operations) at a high rate. On the other hand, for the
Only-Parent and One-CB schemes, the assembly operations will be interrupted by I/O and there will
usually not be enough operations to overlap the next I/O. This will result in some overhead on the
execution time. Remark that, because we consider parallel executions, frontal matrices can be scattered
over several processors. In that case, there are several contribution blocks for a given node, one for each
slave processor. Such contribution blocks may be written to disk and read back when they need to be
assembled or sent.

5.2.2 Analysis of the memory needs of the different schemes

In order to study the memory requirements corresponding to each out-of-core assembly scheme, we have
instrumented our parallel solver (the one from Section 5.1, Factors-on-disk) with a software layer that
simulates I/Os on the contribution blocks. The idea is to assume that a contribution block is written
to disk as soon as it is computed. Then we assume that it is read back when needed (for the assembly
of the parent node) depending on the assembly scheme used. Data are at most written once and read
once and a counter holds the size of the memory used for each scheme: (i) the counter is increased when
a new task is allocated or when a contribution block is “read” from disk; (ii) the counter is decreased
when a factor block or a contribution block is “written” to disk, or when a contribution block is freed
(because it has been assembled into the frontal matrix of the parent).

In parallel, when a contribution block is produced, the mapping of the parent node may not be known
(dynamic scheduling). Therefore, the contribution block stays on the sender side until the master of the
parent node has decided of the mapping of its slave tasks. In our model, we assume that this contribution
block is written to disk on the sender side (thus decreasing the counter), until the information on where
to send it is known. At the reception of such a contribution, if the task (master or slave part of a
frontal matrix) depending on the contribution has already been allocated on the receiver, the considered
processor consumes it on the fly.

This count is done during the parallel numerical factorization step of a real execution: indeed, the
memory requirements measured thanks to this mechanism exactly correspond to those we would obtain
if contribution blocks were effectively written to disk. Clearly our main goal is to study the potential
of a parallel out-of-core multifrontal method that stores temporary active memory to disk in terms
of reduction of the core memory requirements. To reach this objective, a full implementation of the
I/O mechanisms for each assembly scheme (together with the associated memory management for each
scheme) is not necessary.

We report in Figure 5.2 a comparison of the memory peaks obtained when using our different as-
sembly schemes for two large test problems (a symmetric one and an unsymmetric one). These two
problems are representative of the behaviour we observed on the other matrices from Table 5.1. The top
curve (Factors-on-disk), used as a reference, corresponds to the actual memory requirements of the
code from Section 5.1, where contributions blocks are in-core; the others were obtained with the instru-
mentation of that code described above. We observe that the strategies for managing the contribution
blocks out-of-core provide a reduction of the working memory requirement that scales similarly to the
Factors-on-disk version. We also notice that the peak of core memory for the All-CB assembly scheme
is often close to the one where only factors are stored on disk. On the other hand, we observe that the
One-CB scheme significantly decreases the memory requirements, and that the Only-Parent scheme fur-
ther reduces the memory needed for the factorization. The relative gain observed with the Only-Parent

scheme is large enough to conclude that it is worthwhile applying this scheme, in spite of the possible
overhead on efficiency (and complexity) due to the need to be able to interleave I/O operations with
assembly operations on small blocks of rows. It represents the minimal memory requirement that can
be reached with our model, in which active frontal matrices are kept in-core.

Finally, notice that the memory requirement measured for each scheme corresponds to specific tasks
(subtrees, master tasks, slave tasks) that have been allocated to the processor responsible of the peak of
memory. In the next section, we analyze the content of the memory when the peak is reached in order
to understand the critical features of the parallel multifrontal method that can affect it.
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Figure 5.2: Memory behaviour (memory requirement per processor) for the different assembly schemes on
various numbers of processors for the (symmetric) AUDIKW 1 and (unsymmetric) ULTRASOUND80 matrices.
A logarithmic scale is used for the y-axis.

5.2.3 Analysing how the memory peaks are reached

We now analyze in more detail which type of tasks is involved in the peak of core memory for each
strategy. Table 5.10 shows the state of the memory on the processor on which the peak memory is
reached, in the case of an execution on 64 processors for the AUDIKW 1 and CONV3D64 problems. Note
that, based on load balancing criteria, the dynamic schedulers may allocate several tasks simultaneously
on a given processor. With the AUDIKW 1 matrix, we notice that for the Only-Parent and One-CB schemes
as well as for the Factors-on-disk case, the peak memory is reached when a subtree is processed (more
precisely when the root of that subtree is assembled). In the Only-Parent case, the processor also
has a slave task activated. For the All-CB scheme, the peak is reached because the schedulers have
simultaneously allocated too many slave tasks (3, corresponding to 3 different nodes) to one processor,
reaching together 42.97% of the memory; at that moment, the memory also contains a master task but
its size is less important (5.93%).

Memory percentage of the active tasks Memory percentage of
Scheme master tasks slave tasks sequential subtrees the contribution blocks

A
U
D
I
K
W
1 Factors-on-disk 0% 0% ∗27.11% 72.89%

All-CB 5.93% ∗42.97% 0% 51.10%
One-CB 0% 0% ∗75.10% 24.90%

Only-Parent 0% 48.32% ∗51.63% 0.04%

C
O
N
V
3
D
6
4 Factors-on-disk 0% ∗40.19% 0% 59.81%

All-CB 0% ∗65.71% 0% 34.29%
One-CB 38.89% ∗46.27% 0% 14.84%

Only-Parent 47.82% ∗52.06% 0% 0.12%

Table 5.10: Memory state of the processor that reaches the global memory peak when the peak is reached,
for each out-of-core scheme and for the Factors-on-disk code, for the (symmetric) AUDIKW 1 matrix
and the (unsymmetric) CONV3D64 matrix on 64 processors. Symbol ∗ in a column refers to the last task
activated before obtaining the peak, which is thus responsible for it.

Similarly to matrices AUDIKW 1 and CONV3D64, we have performed this study for most problems in
Table 5.1, on various numbers of processors. Rather than presenting all the results, we report here the
main phenomena observed for two examples and we summarize in the following the typical behaviour
observed for symmetric and unsymmetric problems. (i) For symmetric problems, between 8 and 128
processors, the peak is reached when a sequential subtree is being processed (see Figure 2.1), most often
when the root of that subtree is assembled; this occurs for all out-of-core schemes. Sometimes a slave task
may still be held in memory when the peak arises (and it can then represent between 25 % and 75 % of the
memory of the active tasks on the processor). (ii) For unsymmetric problems, on many processors (from
16 to 128), the peak is generally obtained because of a large master task (which requires more memory in
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the unsymmetric case than in the symmetric case, see Figure 2.7). This is increasingly true when going
from the Factors-on-disk scheme to the Only-Parent scheme. These effects are sometimes hidden
when many tasks are simultaneously active. For example, on 64 processors with the All-CB scheme, for
the CONV3D64 problem, the peak is obtained when a processor has four slave tasks in memory. With
fewer processors (less than 8), the assembly of the root of a subtree is more often responsible for the
peak.

Thanks to parallelism, memory needs of a particular task can be parcelled out over many processors.
However, in order to be efficient, some tasks remain sequential and become the memory bottleneck when
the other ones are parallelized. On the range of processors used, the limiting factor observed is the
granularity of master tasks (which are processed in sequential on a given processor) for unsymmetric
problems and the one of the subtrees in the symmetric case. In both cases, there is still some potential
to decrease the memory requirements by doing static modifications to the tree of tasks, possibly at the
cost of a performance degradation [10].

5.2.4 Summary

This study allows to analyze the memory behaviour of several models for an out-of-core storage of the
active memory in a parallel asynchronous multifrontal method. The relative gains observed with the
Only-Parent strategy make it the most relevant one, in spite of the fact that the implementation of the
assembly process will be the most complex. We have also identified some key parameters - granularity
of subtrees and of master tasks - which impact the minimum memory requirements of the method. On
these aspects, specific tuning of the granularity of such tasks can be done to further reduce the memory
requirements.

Note that in a limited memory environment, contribution blocks need not systematically be written
to disk. For example, with the One-CB scheme, not all sets of parent and child contributions have to
follow the One-CB scheme: at least one child contribution must be in memory during the assembly process
but there may be more if memory allows it. Similarly, in the Only-Parent scheme, some frontal matrices
will still be assembled with a One-CB or even All-CB scheme. To summarize, the Only-Parent scheme
allows to go further in the memory reduction, but is not less efficient than the other schemes if memory
is large enough.

5.3 Conclusion

In this chapter, we have presented a parallel out-of-core direct solver that stores computed factors on
disk. It allows to handle problems significantly larger than an in-core solver. We have highlighted several
drawbacks of the I/O mechanisms generally used (which in general implicitly rely on system buffers):
memory overhead that can result in excessive swapping activity, extra cost due to useless intermediate
memory copies, dependency on the system policy and non reproducibility of the results. We have then
proposed a robust and efficient I/O layer, which uses direct I/Os together with an asynchronous approach
at the application level. This avoids the drawbacks of the system buffers and allows one to achieve good
(and reproducible) performance. On a limited number of processors, storing factors on disk clearly allows
to solve much larger problems. With more processors (16 to 128), because the active memory does not
scale as well as the factors, the core memory usage is only reduced by a factor of two, on average.

In order to go further in the memory reduction with out-of-core techniques, especially on large
numbers of processors, an out-of-core storage of the contribution blocks has also been studied. We have
proposed several models for the assembly process of the multifrontal method and analyzed their impact
in terms of minimum core memory for parallel executions. To do that, we have instrumented our solver
(that stores factors to disk), performed parallel executions and measured the memory requirements for
each model. This analysis showed that the most complex assembly scheme was worth implementing.
We have also identified some key parameters related to the management of parallelism (granularity of
subtrees and of master tasks) that can impact the core memory usage.

As stated in [148, 149] one difficulty of the sequential multifrontal approach in an out-of-core context
comes from large frontal matrices that can be a bottleneck for memory: allowing the out-of-core storage
of the contribution blocks sometimes only decreases the memory requirements by a factor of about
2. Fortunately, in this context, we have shown that parallelism can further decrease these memory
requirements significantly (even when only the factors are stored to disk) as large frontal matrices are
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split over the processors. When this is not enough, an out-of-core approach should also be used for
frontal matrices.

Finally, remark that the memory-aware mapping algorithms presented in Section 4.3 should allow
significant reduction of the active memory usage on large numbers of processors (experiments in this
section are based on the scheduling algorithms from Section 4.2.6): given the increasing parallelism in
current architectures, it makes sense to develop and analyze further those algorithms before going into
the complexity of managing an out-of-core stack memory.
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Chapter 6

Solving Increasingly Large Problems

In this chapter, we describe a series of techniques and advances to solve larger problems, decrease
memory requirements, and make better use of modern multicore machines. Simulation codes still require
the solution of very large problems; for example in earth science applications, one is still limited when
trying to solve very large cases [135, 160]. The previous chapters already do a step in that direction: out-
of-core storage of the factors allows solving much larger problems than before, and efficient scheduling in
parallel distributed environments is critical. As said before, using out-of-core temporary storage could
also be useful to solve larger problems but it made sense to first improve temporary storage scalability
(see Section 4.3). Given the evolution trends of computer architectures with increasing global memory
size (although memory per core decreases) and increasing numbers of cores, out-of-core storage for the
contribution blocks is still not the most critical priority compared to the efficient exploitation of such
resources.

This chapter is organized as follows. In Section 6.1, we describe a way to parallelize the symbolic
analysis phase, using parallel graph partitioning tools. We discuss the use of 64-bit integers in Section 6.2
and then consider the problem of performing the forward elimination during the factorization stage
(Section 6.3), accelerating the solve phase (especially in an out-of-core environment) and avoiding the
need to store L factors. Section 6.4 focuses on further improvements to the solve phase, both from a
memory and complexity point of view. In Section 6.5, we show how to reduce the memory associated
with communication buffers, at the cost of a small performance penalty. Section 6.6 and the included
subsections focus on current work to better exploit multicores thanks to multithreading techniques (this
is the object of an on-going PhD thesis). We conclude the chapter with some other work directions
aiming at solving larger problems efficiently.

6.1 Parallel analysis

Large matrices may be too large to be stored in the memory of a single processor or of a single node. In
our algebraic approaches where the analysis analysis phase of the sparse direct solver relies on the entire
graph of the matrix, it becomes critical to parallelize this analysis phase. The main reason is memory:
using large numbers of processors and out-of-core approaches (see chapter 5), the memory per processor
for the factorization is significantly reduced, and the memory for the analysis phase if the graph of the
matrix is centralized on a single node can become the bottleneck. Furthermore, since there is a significant
degree of parallelism during the factorization, the time for the analysis is far from being negligible on
large numbers of processors.

Therefore, it became critical to parallelize the analysis phase. The core of the analysis phase consists
of two main operations (sometimes tightly couples):

• Elimination tree computation: this step provides a pivotal order that minimizes the fill-in gener-
ated at factorization time and identifies independent computational tasks that can be executed in
parallel.

• Symbolic factorization: simulates the actual factorization in order to estimate the memory that
has to be allocated for the factorization Phase.

131



The parallelization of this operation can be achieved by providing an interfacing mechanism to third
party parallel ordering tools like PT-SCOTCH [52] or ParMETIS [121]. Parallel ordering tools like those
mentioned above return an index permutation that describes the pivotal order and a separators tree which
results from the application of an ordering algorithm based on nested dissection. Based on the result of
the ordering step, the parallel symbolic factorization is conducted as in Figure 6.1 [18]. First, a number of
subtrees, in the separators tree, is selected that is equal to the number of working processors; each of these
subtrees is assigned to a processor that performs the symbolic factorization of the unknowns contained in
it (Figure 6.1(left)). Once every processor has finished with its subtree, the symbolic elimination of the
unknowns associated with the top part of the tree is performed sequentially on a designated processor
(Figure 6.1(right)). The method used to perform the symbolic factorization locally on each processor is
based on the usage of quotient graphs in order to limit the memory consumption both for the subtrees
and the top of the tree.

Figure 6.1: Parallel symbolic factorization.

Num. Factors Max. Front Flops Time Memory
procs Size Size per proc.

2 1.06 1.16 1.05 2.99 0.52
4 1.08 1.14 1.12 1.75 0.28
8 1.10 1.29 1.21 1.09 0.15

16 1.09 1.10 1.16 0.67 0.09
32 1.12 1.20 1.30 0.46 0.07
64 1.12 1.24 1.29 0.32 0.06

128 1.11 1.16 1.25 0.25 0.06

Table 6.1: Experimental results with PT-SCOTCH on matrix BRGM. Each entry in the table is the
ratio of a metric when using PT-SCOTCH versus serial SCOTCH.

Table 6.1 reports experimental results measured using PT-SCOTCH to compute the pivotal order
on the BRGM matrix from the GRID-TLSE collection; the numbers in the table are normalized with
respect to the sequential case. The following conclusions can be drawn from these results:

1. quality of the ordering: as shown by the columns reporting the factors size, front size and number of
floating-point operations, the quality of the ordering does not degrade with the degree of parallelism
and it is comparable to what is obtained with a sequential ordering tool.

2. performance: the parallelization of the analysis phase provides significant reduction of the cost of
this phase, when more than 8 processors are used.

3. memory consumption: the memory requirement per processor in the analysis phase can be consid-
erably reduced thanks to parallelization. Because memory consumption is strictly dependent on
the number of nonzeros-per-row in the matrix, higher benefits can be expected for denser problems.

Figure 6.2 shows the performance of PT-SCOTCH with respect to ParMETIS: although PT-SCOTCH
is slower than ParMETIS, it provides a considerably better quality ordering. Moreover, because the
quality of the ordering provided by PT-SCOTCH does not vary much with the degree of parallelism (see
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Figure 6.2: Comparison between PT-SCOTCH and ParMETIS: (maximum front size, factor size, flops,
time) of ParMetis divided by PT-Scotch.

Table 6.1) it is easy to conclude that ParMETIS provides worse quality orderings when more processors
are added to the computation.

Remark that the symbolic analysis corresponding to the top of the tree is currently not parallelized.
Although this has not appeared as a bottleneck yet thanks to the use of quotient graphs, it may become
necessary to also parallelize the top of the tree (as was done in [100]) in the future when working directly
on the uncompressed graphs of huge matrices.

6.2 64-bit addressing

Because of the various efforts aiming at processing larger problems (parallel analysis, out-of-core storage,
better scheduling), and thanks to the increasing memory available on today’s computers, it became
critical to rely on 64-bit addressing to address that memory. Still, since our implementation is mainly
done in Fortran, standard integers of typical size 4 are used to address large arrays. In practice, a
large array is allocated on each processor to hold the factors, contribution blocks, and active frontal
matrix (see Section 1.3.3), as this allows for various optimizations and reductions of the memory usage
(typically, locality in the management of the stack of contribution blocks, in-place assemblies). With
signed 32-bit integers, even on 64-bit machines, the size of this array is limited to 2.147 billion (231 − 1)
entries. Each entry is either a float, a double, a complex or a double complex scalar. In the case of
doubles for example, the maximum memory per workarray is 16 GB, which is definitely too small for
many problems and justifies the use of 64-bit integers. Remark also that even with dynamic allocation,
64-bit integers are also necessary when the order of a dense frontal matrix is bigger than 46340, which
is something frequent on large problems.

However, 32-bit integers had to be kept at the interface level (backward compatibility), for MPI
and BLAS calls, and for all what concerns matrix indices. So the work consisted in separating the
integers into two classes, the ones that should stay standard and the ones that should become 64-bit
integers, including all types of integers that could possibly overflow on large problems. For example,
many statistics returned to the user must rely on 64-bit internal computations, some integers in the
minimum degree routines are 64-bit integers, and Fortran/C interfacing of 64-bit integers had to be done
in a portable way. Doing this work on more than 200 000 lines of code has been time consuming, but
was necessary for experimenting and validating other research features on real-life large-scale problems.
It is also useful to applications by being available since release 4.9 of MUMPS (July 2009).

Whereas this approach should be fine for sparse matrices of order up to 2 billion (32-bit integers are
still used to store matrix indices, between 1 and the order of the matrix), 32-bit vs. 64-bit integers also
become an issue in third-party codes. For example, since release R2006b of Matlab, integers for sparse
matrices are all 64-bit on 64-bit systems (indices and pointers). While this non-backward compatibility
can be arranged at the interface level between Matlab and our solver, ordering packages also start
requiring 64-bit integers internally, even though the matrix dimension does not exceed 2 billions. In
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such cases, all integers should simply be 64-bit integers and this can be arranged with compiler flags and
macros.

6.3 Forward elimination during factorization

The parallel forward and backward solutions were described in Algorithms 2.4 and 2.5, Section 2.4. The
forward elimination accesses the factors of the tree from bottom to top (from leaves to roots), similar
to the factorization. When factorizing the final root node, factors associated with the leaves are at
high levels of the memory hierarchy, possibly on disk, so that it can be particularly inefficient to access
them again right at the beginning of the forward elimination phase: all L and U factors during the
factorization, then all the L factors for forward elimination, then all U factors again for the backward
substitution.

When the right-hand side vector b only has a few columns that can be processed in a single block,
the idea of forward elimination during factorization consists in performing all the operations from the
forward elimination during the factorization, at the moment when the L factors are available in close
memory. In fact, it can be viewed as appending a column on the right of matrix A, to which all update
operations are applied. Looking back at Algorithm 1.2, line 3 then becomes:

A(i+ 1 : n, i+ 1 : n+ 1) = A(i+ 1 : n, i+ 1 : n+ 1)−A(i+ 1 : n, i)×A(i, i+ 1 : n+ 1),

so that only the backward substitution algorithm remains to be done on the intermediate solution
A(1 : n, n+ 1).

In the sparse case with a multifrontal approach, the data corresponding to right-hand sides appear
directly in the frontal matrices (rather than using a separate data structure). In the unsymmetric
case, those data appear as extra columns. In the symmetric case, where only the lower triangular
part of the fronts is significant, it is more natural to use extra rows. Since all our approaches and
memory management rely on square fronts, extra rows (resp. columns) are currently also allocated in
the unsymmetric (resp. symmetric) case, although their content is not significant and computations are
avoided for them. Both type 1 and type 2 factorization kernels generalize naturally, with some exceptions:
the pivot stability test does not take into account the right-hand sides when looking for the maximum
element.

On exit from the factorization, the intermediate solution y of the Ly = b forward substitution phase is
simply part of the frontal matrices and represents an extra column (considering the unsymmetric case).
It is thus naturally distributed over the processors. The forward elimination can then be skipped during
the solve phase. Let us consider the backward substitution; one can write:(

U y
0

)
×
(

x
−1

)
=

(
0
0

)
(6.1)

In other words, starting from the value of solution -1 for variables n+1 (and n+2, . . . , n+nbrhs in case of
multiple right-hand sides), the standard backward solve algorithm can then be applied. Those -1 values
are not stored in practice, inducing only minor modifications to the backward substitution algorithm.

Special case of a 2D block cyclic root in the assembly tree

In the case of a 2D block cyclic root node to be processed by ScaLAPACK, some difficulties arise. For
example in ScaLAPACK, in order to perform solves, the block of right-hand sides is not allowed to start
in the middle of a block of the 2D grid of processors. Thus, it is not possible to let the block of right-hand
sides be assembled naturally, as a simple extension (extra rows or columns) of the front of the root node.
It has therefore to be built in a separate 2D block cyclic data structure. Furthermore, the distribution of
the right-hand sides must be compatible with the one of the matrix in order to use ScaLAPACK routines
to build a solution. More precisely, the right-hand side should be a block of columns, 2D block cyclic,
with the same 2D block-cyclic distribution as the root matrix. Whereas in the unsymmetric case, the
existing communication schemes can be generalized to send extra columns from the children of the root
to the correct processors of the 2D cyclic grid of processors, this is not the case in the symmetric case,
where the necessity to transpose blocks of rows (in the children of the root) into blocks of columns (in
the root) implies different destination processors than the natural ones for rows of children and a new
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communication scheme. The associated developments were much heavier than expected (specifications,
development, validation) because it was more useful to have a longer term investment avoiding

• a pre-assembly of the block of right-hand sides that would be stored by rows in the grid of processors,
which would then have needed to be explicitly transposed before the solve, with an extra cost both
in terms of temporary memory and communication.

• an increase in the number of assembly messages that would have been at the cost of amplifying
the problems of latency that were sometimes observed when building the 2D block cyclic frontal
matrix of a root with many children; for that, we take advantage of the existing messages used
to assemble frontal matrix data from the children to the root, even though the data to send for
right-hand sides are intrinsically of another nature and distributed differently.

The drawback is a more complex code more difficult to maintain, but with an interest for performance.
Remark that this mechanism is also applied for symmetric indefinite matrices, where frontal matrices of
our parallel multifrontal approach are symmetric, but where we use ScaLAPACK LU after an expansion
of the root because of the absence of parallel LDLT kernel on dense matrices.

Finally, on the root node, in order to optimize the data access to the factors, it was decided to build
the complete solution on the root node (forward and backward); this is because all factors are available
in memory at the moment of the factorization of the 2D block cyclic root. Thus, factors of the root do
not need to be loaded back during the solution phase. Furthermore, it is then possible to completely free
the factors associated with the root (see also the paragraph “Options to discard factors” below).

Schur complement and partial condensation

As explained in Section 2.5, it is sometimes useful to compute a reduced or condensed right-hand side on
a set of variables, for instance corresponding to the interface of a domain. In case of forward elimination
during factorization, it is then natural to build this reduced right-hand side during the factorization. In
case of a 2D block cyclic Schur, the reduced right-hand side will be naturally distributed (see previous
paragraph) but can be centralized to be returned to the user application. In case of a type 1 front at
the root (i.e., processed by a single processor), both the Schur and the reduced right-hand side must be
copied or sent from the frontal matrix of the root to the user data, in order to keep a simple API to the
solver.

Option to discard factors

In the case of unsymmetric matrices where an LU factorization is computed, it is not necessary to keep
the L factors during the factorization. Indeed, since the intermediate right-hand side y has already been
computed during factorization, only U will be used for the backward substitution. This gains storage in
the in-core case, and I/O in the out-of-core case.

In case of a Schur complement, all factors can even be discarded if the application only requires the
solution of a problem on an interface, excluding the solution on the internal problem.

Finally, in case of a 2D block cyclic root, all factors corresponding to the root have been used during
factorization and have been freed.

Performance

Thanks to the forward elimination during factorization, we observed that the cost of the solution phase
can be divided by a factor 2 when the factors are in-core, without noticeable additional cost of the
factorization. When factors of large matrices are out-of-core, one observes a better stability of the solve
time thanks to this functionality. Table 6.2 illustrates the gains obtained on a few matrices on one
core of a laptop with an Intel Core 2 Duo P9700 at 2.8 GHz with 8GBytes of memory, for in-core and
out-of-core executions. In the out-of-core case, we observe that I/O time varies a lot from one run to
another, especially with system I/O where we have no control on the buffering mechanisms from the
operationg system. However, the gains are significant in the out-of-core case. We would expect the gains
to be larger in the out-of-core case (in both serial and parallel executions), on very large matrices or
with direct I/O, where system buffers will not be able to interfere with the out-of-core mechanisms. This
deserves more experimentation. Interesting performance gains, although not quantified precisely, have
also been reported by users who activated this feature.
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Condensation during
Matrix Measured phase factorization
de test (time in seconds) OFF ON

CONESHL2 in-core factorization 142.0 142.4
(factor size: 2.2 GB) in-core solve 1.4 0.7

CONESHL out-of-core factorization (run 1) 818.1 822.4
(factor size: 6.4 GB) out-of-core factorization (run 2) 821.6 826.0

out-of-core solve (run 1) 78.7 (CPU: 13.6) 52.9 (CPU: 6.2)
out-of-core solve (run 2) 142.2 (CPU: 12.7) 47.7 (CPU: 5.3)

GRID 11pt out-of-core solve (run 1) 877.9 (CPU: 82.4) 556.5 (CPU: 47.1)
(factor size: 23.3 GB) out-of-core solve (run 2) 711.4 (CPU: 82.5) 497.0 (CPU: 46.7)

Table 6.2: Effects of the condensation functionality on the factorization and solve step of symmetric
problems on one core of an Intel Core 2 Duo P9700 at 2.8 GHz with 8 GB of memory. System buffers
are used in the out-of-core runs.

6.4 Memory and performance improvements of the solve algo-
rithms (forward and backward substitutions)

Before reading this section, the reader should be familiar with the algorithms from Section 2.4, and with
the modifications described in Section 2.5, on which it depends. We first describe the work done aiming
at improving memory usage and locality, then describe the practical impact before a short discussion.

6.4.1 Reduction of workspace and locality issues

In Algorithms 2.4 and 2.5, Wb and Wsol are workspaces of size n used in the forward and backward
substitutions, respectively1, whereas the workspace WRHS introduced in Section 2.5 is a workspace of
average size n

nprocs which scales with the number of processors and contains on each processor data
corresponding to the fully summed part of the fronts owned by that processor. When dealing with
several right-hand sides, those are processed by blocks of arbitrary size b (see Algorithm 2.6), such that
all those sizes are multiplied by b columns.

In case the right-hand side is sparse, or in case only a subset of entries of the solution is required
(e.g., computation of entries of the inverse, see [30]), those workarrays are much larger than needed:
most of the rows are zero and are not even accessed. This is also the case in parallel executions, where
Wb and Wsol do not scale with the number of MPI processes and prevent increasing the blocksize b.
Unfortunately, having a large-enough value of the block size b is critical for obtaining good BLAS 3
performance in an in-core environment, and is even more critical in an out-of-core environment where
the cost of accessing the factors on disk often dominates the solve time.

In order to get rid of Wb and Wsol, one should only allocate the useful workspace. In other words,
variables that are not touched during the algorithm should not appear in Wb or Wsol, similar to what
was done for WRHS to access variables corresponding to the pivot block of each front. Since Wb and
Wsol are accessed for variables between 1 and n, such an approach requires indirections. The idea we
have retained is to fully suppress Wb and Wsol and to extend WRHS, in order to include all variables
possibly touched by a processor into that workarray. In the general unsymmetric case, because the row
and column index lists of the pivot block may be unsymmetric in the presence of numerical difficulties
(off-diagonal pivoting and delayed pivots), the indirections for the rows differ from the indirections for
the columns. We illustrate this on a simple example on the tree of Figure 6.3, mapped on two processors
P0 and P1. Remark that the discussion is for type 1 nodes but it would be the same for type 2 nodes
since only the master processes access Wb and Wsol in the solve algorithms.

Before discussing the modifications of the aforementioned algorithms, we explain how to build the in-
direction arrays, which we call POSinWRHS row and POSinWRHS col. Except when solving the transposed
system ATx = b, POSinWRHS row is used with row indices of the fronts during the forward elimination,
and corresponds to positions in the right-hand side vector, whereas POSinWRHS col is used with column
indices of the fronts during the backward substitution and corresponds to positions in the solution. The
procedure to build those indirections is given in Algorithm 6.1. In the first part of that algorithm, the

1See also the modifications of these algorithms described in Section 2.5.
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Figure 6.3: Example tree of factors mapped on 2 processors. The mapping of the masters is indicated
for each node (P0, P1). Because of delayed pivots, the structure of the pivot block has some unsymmetry
in it; the structure of the nodes of the original tree if no pivoting had occurred was 125; 3467; 567; 78; 89
(left-to-right, bottom to top, underlined variables correspond to fully-summed rows/columns and would
have been eliminated at each node in the absence of numerical difficulties). WRHS is of size 8 on P0 and of
size 7 on P1. The columns ”row” and ”col” correspond to the indirections to access WRHS: for instance on
P0, POSinWRHS row(7)=POSinWRHS col(2)=4 means that row variable 7 and column variable 2 appear
at position 4 of WRHS. An ’X’ indicates that the corresponding entry is not used.
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indirections corresponding to the fully summed block are computed. In the second part, the indirec-
tions corresponding to other variables are computed. At the end, m contains the size of the workarray
WRHS. Notice the separate treatment of rows and columns in the second part of the algorithm, working
on variables in the off-diagonal blocks of the factors: sometimes, m is incremented because of a row
variable, sometimes because of a column variable, and sometimes because of both. It is in fact possible
to have one loop for the rows and another one for the columns and keep the maximum of the two values
of m obtained at the end to dimension the workarray WRHS. This way, WRHS will be slightly smaller (7
instead of 8 on P0 in the example of Figure 6.3, by suppressing the two unused positions denoted by
’X’). Compared to Section 2.4, WRHS does not scale perfectly with the number of processors because of
the extra entries added. However, we will see that the memory scalability of WRHS is still very good in
practice and that a huge memory gain comes from the fact that Wb (during forward elimination) and
Wsol (during backward elimination) have disappeared. Remark that at line 3, the order in which the
nodes are visited can be arbitrary. However, visiting the nodes in the same order as they will be visited
during the solve algorithm (which is close to a postorder traversal) leads to a better memory locality
during the solve algorithm. This will be illustrated with experiments later in this section.

We now give in Algorithms 6.2 and 6.3 the modified algorithms for the forward and backward substi-
tutions. At line 3 of Algorithm 6.2, the right-hand side must be distributed to the processors. Assuming
that the right-hand side is initially on processor with rank 0, each processor loops on the row variables of
its pivot block, and asks for rows of the original right-hand side to processor 0, which responds with the
requested rows. On reception, POSinWRHS row is used to store the result in WRHS. In the serial case, this
step is mainly a permutation, which was not needed when Wb was used; in parallel, extra indirections are
needed. On the other hand, we have a much better locality afterwards, during the forward elimination
itself.

m ← 0; initially POSinWHRS row=POSinWRHS col=0
{Loop on variables in pivot block}
for all node N mapped on Myid do
{npivN is the number of eliminated pivots }
{nfrontN is the order of the front }
{row listN is the list of row indices }
{col listN is the list of column indices }
for k=1 to npiv do

i ← row listN (k); j ← col listN (k)
m ← m+1
POSinWRHS row(i)=m
POSinWRHS col(j)=m

end for
end for
{Loop on variables in off-diagonal blocks}
for all node N mapped on Myid do

for k=npivN+1 to nfrontN do
i ← row listN (k); j ← col listN (k)
if POSinWRHS row(i) = 0 or POSinWRHS col(j) = 0 then

m ← m+1
if POSinWRHS row(i) = 0 then

POSinWRHS row(i) ← m
end if
if POSinWRHS col(j) = 0 then

POSinWRHS col(j) ← m
end if

end if
end for

end for
Algorithm 6.1: Initialization of the indirections arrays for the modified solve algorithm.

In Algorithm 6.3 (backward substitution), accesses to Wsol have been replaced by accesses to WRHS.
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1: Main Algorithm (forward elimination):
2: Initialize a pool with the leaf nodes mapped on Myid
3: Store into WRHS rows of the right-hand side corresponding to variables in the pivot block of nodes

mapped on Myid. Set other rows of WRHS to 0.
4: while Termination not detected do
5: if message is available then
6: Process the message
7: else if pool is not empty then
8: Extract a node N from the pool
9: Fwd Process node(N )

10: end if
11: end while
12:

13: Fwd Process node(N )
14: {L11 and L21 are the L factors of N }
15: {Pparent be the process owning the master of the parent of N }
16: Wtmp1← Rows of WRHS corresponding to the pivot block of N , starting at position POSinWRHS(N )
17: Wtmp1← L−111 ×Wtmp1
18: Copy rows of Wtmp1 back into WRHS(POSinWRHS(N ))
19: Gather in Wtmp2 rows of WRHS corresponding to row indices of L21 (use POSinWRHS row)
20: Reset the corresponding rows of WRHS to zero
21: if N is of Type 1 then
22: Wtmp2 = Wtmp2− L21 ×Wtmp1
23: Send the resulting contribution (Wtmp2) to Pparent
24: else if N is of Type 2 then
25: for all slave Islave of N do
26: Send Wtmp1 together with the rows of Wtmp2 corresponding to rows of L21 owned by Islave

to the process in charge of Islave
27: end for
28: end if
29:

30: On reception of Wtmp1 + rows of Wtmp2 by a slave
31: Multiply rows of L21 owned by the slave by Wtmp1 and subtract the result from the received rows

of Wtmp2
32: Send the resulting contribution to Pparent
33:

34: On reception of a contribution corresponding to N by Pparent
35: Assemble the contribution into WRHS (Scatter using POSinWRHS row)
36: if all contributions for node N have been received by Pparent then
37: Insert parent of N into the pool of ready nodes
38: end if

Algorithm 6.2: Forward elimination algorithm with reduced memory.
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At line 13, rows of WRHS corresponding to variables in pivot blocks (upper part of the array WRHS)
represent the solution. In both the forward and backward substitution algorithms, we have kept the
indirection POSinWRHS(N) introduced in Section 2.5. However, we have the equality POSinWRHS(N)=
POSinRWHS row(i)= POSinWRHS col(j), where i (resp. j) is the first row index (resp. column index)
of node N . Therefore, POSinWRHS is suppressed in practice and should be interpreted as accesses to
POSinWRHS row/col.

Since rows of Wtmp1 (in the forward elimination) and x1, y1 (in the backward substitution) cor-
respond to variables which are contiguous in WRHS, Wtmp1, x1 and y1 could normally also disappear,
gaining some memory copies, and one could work directly in the array WRHS. An implementation problem
related to the diagonal solve in the LDLT case combined with nodes of type 2 makes this apparently
simple modification more complicated than it looks, but it is on the “TODO” list!

In case of reduced right-hand sides (see Section 2.5), WRHS has to be kept between the forward
elimination and the backward elimination for all columns of the right-hand side, whereas it is otherwise
allocated for only one block of right-hand side. In that case, the cost of suppressing the temporary arrays
Wb and Wsol (for each block of right-hand sides) is the non perfect scalability of WRHS (whose number
of columns is the total number of columns of the right-hand side in that case), inducing a memory
usage slightly larger than before on return from the forward elimination algorithm. For reasonable tree
mappings, this cost is negligible.

6.4.2 Performance

We now report on some experiments that were done while studying the performance of the solve phase
on large matrices with multiple dense right-hand sides. The number of right-hand sides and the block
size are the same and are equal to 128. Two matrices are used to illustrate the results:

• Matrix2D: the discretization of a 5-point finite-difference operator on a 1000x1000 grid

• Audi: a 3D model of a car, with 943695 equations, available from the TLSE and University of
Florida collections (Parasol set of test problems).

Figure 6.4 shows the gains obtained thanks to the algorithmic improvements presented in the previous
subsection in a sequential environment for matrix Matrix2D. The terms used in the figure are explained
below and will also be used in other results:

4.10.0 corresponds to the original algorithm, where data on each MPI process (1 in the sequential case)
are stored in a workspace of 1 million rows and 128 columns, using a column-major storage. Thus,
the workspace increases linearly with the number of processors and is critical2.

trunk is the approach described by Algorithms 6.2 and 6.3, with the indirections arrays POSinWRHS row

and POSinWRHS col. Despite the new indirection to access data in WRHS, we observe a gain of
almost 2 on the sequential performance of Matrix2D thanks to the fact that access to data in
WRHS is now done with a significantly better locality of reference.

trunk+postorder means that on top of this, we force data corresponding to variables in the pivot
block in WRHS to be organized following a postorder, which is the order in which nodes in the tree
will be accessed during the triangular substitutions. This is done by forcing a postorder at line 3
of Algorithm 6.1.

trunk+postorder+byrows means that the column-major storage for WRHS is replaced by a row-major
storage: this way, Wtmp1 and x1, y1 in the above algorithms correspond to a block of WRHS that is
fully contiguous in memory.

trunk+postorder+byrows+best amalg. finally corresponds to the best execution time when the
amount of amalgamation (see end of Section 1.1.6) has been tuned for the solve phase.

In Figure 6.5, where only the performance of the initial and final algorithms are shown, we observe that
there are also significant gains in the parallel case for a 3D problem (matrix Audi).

2It is even more critical with sparse right-hand sides
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1: Main Algorithm (backward substitution):
2: On input: WRHS is the workspace obtained on output from Algorithm 2.4

3: POSinWRHS col is used to access rows of WRHS
4: Initialize the pool with the roots mapped on Myid
5: while Termination not detected do
6: if message is available then
7: Process the message
8: else if pool is not empty then
9: Extract a node N from the pool

10: Bwd Process node(N )
11: end if
12: end while
13: Gather solution from distributed WRHS arrays to the host (or keep it distributed)
14: Return solution to the user
15:

16: Bwd Process node(N )
17: x2 ← known entries of solution corresponding to columns of U12 (gather from WRHS, using

POSinWRHS col)
18: if N is of type 1 then
19: y1 ← entries of WRHS corresponding to variables in the pivot block (copy from position

POSinWRHS(N))
20: Solve U11x1 = y1 − U12x2 for x1
21: Save x1 in WRHS (copy at position POSinWRHS(N))
22: Send partial solution x1, x2 to masters of children nodes
23: else if N is of type 2 then
24: Send (distribute) entries of x2 to the slaves, according to their structure
25: end if
26:

27: On reception of x1, x2, sent by the master of node N
28: Update my view of the solution (scatter into WRHS, using POSinWRHS col)
29: Insert children of N mapped on Myid into the local pool
30:

31: On reception of parts of x2 by a slave of N
32: Multiply the part of U12 mapped on Myid by the piece of x2 just received
33: Send the negative of the result back to the master process of N
34:

35: On reception of a portion of −U12x2 from a slave by a master for node N
36: Add it into WRHS, starting at position POSinWRHS(N)

37: if this is the last update (all slaves sent their part) then
38: y1 ← entries of Wb corresponding to variables in the pivot block of U11 (row list, gather)
39: Solve U11x1 = y1 for x1
40: Save x1 in WRHS (Copy at position POSinWRHS(N))
41: Send partial solution x1, x2 to masters of children nodes
42: end if

Algorithm 6.3: Backward substitution algorithm with reduced memory.
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Figure 6.4: Performance improvements with respect to initial algorithm (4.10.0) of the serial performance
on the test case Matrix2D.
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Figure 6.5: Performance improvements with respect to initial algorithm (4.10.0) of the serial and parallel
performance on the test case Audi.
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In Table 6.3, we show the memory usage of the solve phase with respect to the initial algorithm. In an
out-of-core context, the memory reduction is very significant as soon as more than one processor is used.
This is because the workarray WRHS, which accounts for a large part of the memory, now scales reasonably
well with the number of processors (its non perfect scalability is due to some non-fully summed variables:
bottom part of WRHS in the example of Figure 6.3).

# procs 4.10.0 New WRHS

1 1773.1 1751.9 966.3
10 1145.7 291.7 108.5
20 1124.6 226.1 63.5

Table 6.3: Comparison of initial (4.10.0) and new solve algorithm in terms of memory (MBytes) with 1,
10, and 20 processes, on test case Audi, when factors are out-of-core. In the in-core case, the memory
is dominated by the factors.

Finally, we give in Table 6.4 the contents of the memory for in-core executions. We observe that WRHS
scales as before, but remains small compared to the huge workspace required for the factorization for the
Audi matrix. This is not the case for Matrix2D, where the memory scaling of WRHS is very important
to limit the total memory usage.

Workarrays Workarray Other
Number of Total for facto for solve data
processors memory real integer WRHS (tree, . . . )

Audi
1 26999 25583.12 80.68 966.34 368.86
10 3508 3320.46 9.72 108.51 69.30
20 1801 1679.07 5.14 63.52 53.28

Matrix2D
1 2517 1316.24 72.01 1024.00 104.76
10 320 156.75 8.31 104.37 50.58
20 187 81.38 4.21 53.16 48.25

Table 6.4: Peak memory usage (MBytes) of the new solve algorithm when factors are kept in core
memory, for matrices Audi and Matrix2D.

6.4.3 Discussion

The cost of the solve phase is critical in some applications. During the concluding discussion of the last
MUMPS Users’days in April 2010, the performance and memory usage of the solve phase appeared to be
a bottleneck to several users, especially in applications which spend most of their time in the solve and
not in the factorization (thousands of right-hand sides, simultaneous or successive). The preliminary
work described above is a first step towards optimizing the behaviour of the solve step: starting from
a problem of memory scalability with respect to numbers of processors, the memory reduction gave a
better potential to exploit memory locality. This better memory locality resulted in significantly improved
performance. In parallel, we have seen that the scaling of the solve phase is reasonably good. Still, the
type of parallelization and task mapping inherited from the factorization might not be optimal for the
solve. More generally, parameters from the factorization may not be the best for the solve. For instance,
we observed significant gains in the solve by performing more amalgamation and so limiting the number
of nodes in the tree compared to what is done for the factorization. When dealing with machines with
hundreds of thousands of cores, the factorization phase becomes a huge challenge but the solve algorithms
of sparse direct solvers could be even more challenging: the solve phase seems more communication- and
memory-bound, with smaller attainable GFlops/s rates. Still, it deserves a lot of attention and could
benefit from specific mapping and scheduling algorithms, together with a multithreaded approach to
parallelism inside each MPI process in order to better exploit multicore systems.

Finally, the memory reduction described in this section was a critical first step in order to process
much bigger problems in the context of sparse right-hand sides and for the computation of entries of the
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inverse of a matrix, see [16] and [30] for more information on those aspects.

6.5 Communication buffers

Because we cannot fully rely on internal MPI buffers whose size is difficult to control, and because of
memory management issues, we have seen in Chapter 2 that we must manage our own communication
buffers. The send buffer is cyclic and each time a message must be sent, the corresponding data are built
in that cyclic buffer, and sent asynchronously with an associated MPI request. When the MPI request
is free, this means that the corresponding zone in the buffer can be freed.

It appeared that the size of communication buffers necessary during the factorization became critical
compared to the total memory usage. This is even more true in an out-of-core context, where the
working memory is significantly reduced thanks to the possibility of using disk storage for the factor
matrix. The reason for these large buffers arises from the fact that this parallel multifrontal method
requires large messages, compared, for example to a supernodal approach like SuperLUdist (while the
overall communication volume is comparable, see [28]). In order to be able to send several messages
asynchronously without waiting for the actual reception, the send buffer needs to be significantly larger
than the largest message estimated during the analysis phase. In practice we use to have a send buffer
around twice larger than the largest estimated message.

The messages whose size might be critical in our approach are the following:

• messages holding entire contribution blocks, sent from a process in charge of a type 1 child in the
tree to a process in charge of the corresponding type 2 parent.

• messages corresponding to pieces of contributions, when either the child or the parent frontal matrix
is of type 2, that is, is processed by more than one process. This type of messages covers two cases,
depending on the rows of the considered block:

– rows corresponding to numerical problems, whose elimination must be delayed (see Figure 1.14
and associated comments), sent from the master of a child to the master of a parent.

– other rows, sent by a slave of a child to either a slave or the master of the parent.

Furthermore, this type of messages covers both the case where the parent is of type 2 (1D pipelined
factorization) and the case of a 2D block cyclic distribution of the frontal matrix processed with
ScaLAPACK [53].

The work consisted in authorizing the largest messages to be split into smaller ones, as described
below. Although one would hope that rows corresponding to numerical problems are generally of lim-
ited size, we have seen cases where they also had to be splitted. The communication schemes for the
three types of messages above have thus been modified. However, messages related to 1D pipelined
factorizations have not been modified: they are already controlled by the blocking factor of the pipelined
factorization and their (much smaller size) is now used as a lower bound of the new buffer sizes.

The approach applied to send messages possibly in several pieces is described further in Algorithm 6.4.
The size of the send buffer has been estimated during the analysis based on the size of the messages that
are not split and on a reasonable size avoiding when splitting messages in too many pieces. Remark that
the size of the reception buffer is also reduced.

Array 6.5 gives the size of the communication buffers for the original and new buffers. Whereas col-
umn Original corresponding to normal unsplit messages requires significant memory for communication
buffers, a significant memory gain is obtained thanks to these modifications. The cost is a more complex
code and a possible higher cost due to stronger synchronizations, since the receiver must receive pieces of
a message before the next piece can be sent. However, no large degradation of performance was observed
with this functionality, so that smaller communication buffers are now used systematically, both in the
in-core and out-of-core approaches.

6.6 Facing the multicore evolutions

In the recent years, with the advent of multicore machines, interest has shifted towards multithreading
existing software in order to maximize utilization of all the available cores. Rather than writing a new
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1: Initial state: we assume that k rows among n are already sent; initially k = 0; r is the size of the
reception buffer; the size of the send buffer is larger than r but part of it may be occupied by
messages being sent and not freed yet.

2: Try to free requests in send buffer
3: Compute the largest contiguous size s available in send buffer
4: Estimate the number of rows that can be sent depending on:

• the size of the necessary symbolic information in the message and of the header,

• the number of rows already sent (for example a quadratic equation needs to be solved in the
symmetric case, as each block of rows has a trapezoid shape),

• what remains to be sent.

5: Estimate the size of the corresponding message (MPI PACK SIZE) and modify the above estimate,
if necessary

6: if message size is big enough or message contains the last rows to be sent then
7: Build the message in the buffer and send it
8: end if
9: Return a status which can be, depending on cases:

• ALLSENT: execution can continue, all rows were sent

• TRY-AGAIN: nothing was sent, a new attempt should be made; in this case, the process
should try to receive messages in order to avoid the deadlock situation where all processes try
to send messages without anybody doing receptions.

Algorithm 6.4: Sending contribution blocks in several pieces.

Communication schemes
Matrix Original Modified

AUDIKW 1 264 4.2
CONESHL MOD 66 3.7
CONV3D64 286 16.1
ULTRASOUND80 75 8.2

Table 6.5: Average size per processor of the communication buffers (in Mbytes) on 32 processors.
The overall core memory requirements for CONV3D64 are 1264 MBytes for the in-core approach, and
800 MBytes when factors are stored out-of-core. Memory for communication buffers was thus far from
negligible in the original version.
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code for multicore machines, we aim at adapting the parallel multifrontal solver MUMPS to take better
advantage of multicore architectures. Although MUMPS was inspired by a shared-memory code [17], the
parallelism is mainly based on message-passing (MPI). We believe that the MPI layer should be kept
in order to naturally address NUMA architectures, memory locality, and distributed-memory, but that
mixing message-passing with threads is necessary to reach a better scalability. Specialized solvers aiming
at addressing multicore machines have been the object of a lot of work, see [43, 47, 60, 117, 109, 115,
122, 153], for example.

Here, we describe some preliminary work to optimize the performance of the factorization phase of
our approach on multicore systems, with the objective to mix the shared-memory programming model
with the distributed-memory programming model in order to scale to huge numbers of cores. We rely
on the OpenMP [4] standard for multithreading, avoiding the direct use of threads.

6.6.1 Multithreaded BLAS libraries and OpenMP: preliminary experiments
based on the fork-join model

In this section, we report on the work done to determine costly parts of the factorization, and use
multithreading techniques in those parts. We will illustrate some behaviours using a few test matrices,
the characteristics of which are summarized in Table 6.6.

Matrix Order Nonzeros Symmetry Origin
AMAT30 134335 975205 unsymmetric French-Israeli Multicomputing project
BOXCAV 544932 3661960 symmetric ANR Solstice project
DIMES 55640 13929296 unsymmetric complex Multipole solver [97]
ULTRASOUND80 531441 33076161 unsymmetric M. Sosonkina
HALTERE 1288825 10476775 symmetric complex ANR Solstice project
THREAD 29736 4444880 symmetric PARASOL collection

Table 6.6: Test matrices used in Section 6.6.1. Although complex, matrix HALTERE is treated as if it was
real (imaginary part is ignored).

We used the TAU profiling tool3 [157], and observed that most of the time spent during the factoriza-
tion of MUMPS was due to the following portions of the code, that can be scaled thanks to multithreading,
either using OpenMP directives or an external multithreaded library:

BLAS operations. MUMPS uses Level 1, 2 and 3 BLAS operations and, especially for large 3D problems,
the factorization time is largely dominated by the time spent in BLAS calls. Using multithreaded
BLAS libraries such as GOTO4, ACML5 from AMD, ATLAS6 or MKL7 from Intel, helps im-
proving the performance in multithreaded environments. The GOTO library was configured using
the flag USE OPENMP=1, in order to allow for compatibility with OpenMP. Although we observed
that GOTO is the fastest among the BLAS libraries tested, it could not be used since even with
USE OPENMP=1 it still seemed to conflict with the other OpenMP regions. It seems that GOTO cre-
ates threads and keeps some threads active after the main thread returns to the calling application
– perhaps this is why the performance of OpenMP regions outside BLAS deteriorates a lot. ACML
perturbed the OpenMP regions only a little while MKL was found to be the most compatible with
all the OpenMP regions. Therefore we use MKL in the following experiments.

Assembly operations. Such operations correspond to the assembly of contribution blocks (or Schur
complements) from children into the frontal matrices of the parent nodes. In this phase the initial-
izations to zero of the frontal matrices were also costly and could be multithreaded. The assembly
of children contributions to parent nodes were also parallelized using OpenMP. Figure 6.6 shows
the scaling of the assembly operations for the unsymmetric testcase AMAT30. We observed that
multithreading is useful only for frontal matrices larger than 300 and should be avoided for smaller
matrices. In the symmetric case, because of the difficulty of parallelizing efficiently small triangular

3Available from www.cs.uoregon.edu/research/tau.
4www.cs.utexax.edu/users/flame/goto
5www.amd.com/acml
6math-atlas.sourceforge.net
7software.intel.com/en-us/intel-mkl/
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Figure 6.6: Assembly time as a function of the number of threads (testcase AMAT30 ), AMD Opteron
2218, 2.6 GHz. The figure shows separately initialization to 0 and assembly of contributions blocks (both
are part of the assembly routine facass). Time for copying contribution blocks (copyCB) is also given
for comparison.

loops, the parallelization is usually less efficient.

Stack operations. They consist in copying contribution blocks (copyCB operations) from the frontal
matrix of a node to a separate zone, making them contiguous in memory. The factors are also
compressed into contiguous space. Those copies are amenable to multithreading, as could already
be seen in Figure 6.6 (copyCB operations). Figure 6.7 shows that the scaling strongly depends
on the contribution block sizes. In this figure, each point gives the average time per call for a
range of front sizes. For example, the value on the y-axis corresponding to 1500 on the x-axis
represents the average time spent in the routine when the call is done with a contribution block in
the range [1400,1600]. Our experience is that the potential for scaling of the stacking and assembly
operations are similar: large blocks are needed to obtain reasonable speed-ups in these memory-
bound operations. Unfortunately, the number of calls to those operations with small blocks is often
much larger than the number of calls with large blocks, so that overall, on the range of matrices
tested, the bad scalability with small blocks can still be a bottleneck when increasing the number
of threads.

Pivot search operations. In some symmetric indefinite testcases, the pivot search operations were found
to be costly. In the unsymmetric cases the pivot search is on rows whose elements are contiguous
in memory, while in symmetric cases pivot search is mainly done within columns with a stride
equal to the front size (this is because we use a row-major storage). The non-contiguous memory
accesses in symmetric cases are the likely reason for this increased cost. Still, the pivot search
operations were multithreaded using OpenMP reduction statements the results of which are shown
in Table 6.7. In the testcase THREAD there was a reasonable gain in the two main pivot search
loops, we call them RMAX and TMAX, however for most testcases there is a speed-down in these
regions with the OpenMP directives. This is mostly caused within the regions of smaller loop sizes
(< 300) or granularities which speed down distinctively as the number of threads is increased. We
can stabilize this effect by using IF statements as a part of the OpenMP directive, which stops
multithreading according to the IF statement. An example is shown in Table 6.8 where there is
a disastrous slowdown without regulating the OpenMP region according to block sizes, and this
effect is stabilized with addition of the IF statements.

We refer the reader to the technical report [54] for more experiments, case studies (symmetric positive
definite, symmetric general, unsymmetric, Opteron-based and Nehalem-based processors), performance
of the multithreaded solution phase, discussions about thread affinity, minimum granularity for paral-
lelization with OpenMP.
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Figure 6.7: Behaviour of copyCB operations as a function of the number of threads. Each point on the
x-axis refers to an interval of width 200. Testcase DIMES, Opteron.

1 thread 2 threads 4 threads
Loop RMAX 3.35 2.33 2.07
Loop TMAX 1.65 1.11 0.84

Table 6.7: Performance (time in seconds) of the two main loops of the symmetric pivot search operations,
testcase THREAD, Opteron.

1 thread 2 threads
Loop RMAX(without IF statements) 0.789 7.965
Loop RMAX(with IF statements) 0.835 0.789
Loop TMAX(without IF statements) 0.033 0.035
Loop TMAX(with IF statements) 0.037 .032

Table 6.8: Stabilizing the facildlt OpenMP operations using IF statements, testcase BOXCAV, Opteron.
Times in seconds.
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Figure 6.8: Time for factorization of matrix ULTRASOUND80, as a function of the number of cores used.
In black, only MPI is used (for example 16 MPI processes for 16 cores). In the second and third
experiments, 4 threads are used per MPI process (for example, 4 MPI processes with 4 threads each in
the case of 16 cores) and a threaded BLAS library (MKL, 4 threads) is used. The difference between the
second (yellow) and third (red) rectangles is that in the third rectangle, OpenMP directives are used to
parallelize non-BLAS operations.

We finish this section by showing the interest of mixing MPI and thread parallelism on the unsym-
metric ULTRASOUND80 matrix, on a 96-core machine from INRIA Bordeaux Sud-Ouest, with up to 4
threads per MPI process. We observe that it is interesting, from a performance point of view, to use
4 threads per MPI process. Furthermore, the OpenMP directives help a little, although the work con-
sisting in inserting OpenMP directives has only been done in a few places (mainly type 1 nodes) and
should also be done for assembly and stacking operations in type 2 nodes. Finally, let us remark that,
for a given number of cores, it is better to use more threads and less MPI processes when memory usage
is targeted. For example, with the same matrix ULTRASOUND80, the memory consumption is 8.97 GB,
11.0 GB, 11.3 GB, 13.3 GB when using, respectively, 1, 2, 4 and 8 MPI processes. Therefore, it is better
in terms of memory usage to use 1 MPI process with 8 threads on 8 cores, than 8 MPI processes with 1
thread each. This behaviour is due to the non-perfect memory scalability with MPI (see Section 4.3).

6.6.2 OpenMP: optimization of a symmetric factorization kernel

In this section, we discuss the LDLT factorization of a sparse matrix, and focus on a dense factorization
kernel whose performance has been improved.

6.6.2.1 Performance bottleneck observed

While experimenting the fork-join model of parallelism discussed above, we observed that the symmetric
indefinite case showed significantly poorer performance than the unsymmetric case. This motivated a
deeper study of that behaviour. We remind that the symmetric factorization of a frontal matrix is using
a blocked right-looking LDLT algorithm (see Section 2.1.4) to update the fully summed part of the
front, using Level 2 BLAS inside the pivot block and Level 3 BLAS outside the pivot block. The Schur
complement is updated later.

We illustrate the poor performance of the symmetric indefinite case on the HALTERE matrix with
METIS [120] on the SGI Altix machine jade from CINES (Montpellier, France). On this testcase, we
observed that the central kernel performing the symmetric factorization of the current pivot block,
does not scale correctly when increasing the number of threads. Each time a new pivot is chosen (see
Section 1.3.2.2), it is used to update the column and update the pivot block. The unscaled column is
first copied in the row of the frontal matrix in order to use BLAS 3 operations in the updates outside the
pivot block (fully summed variables part and Schur complement). After each selected pivot, we therefore
apply Algorithm 6.5, illustrated by Figure 6.9, which aims at updating the remaining columns of the
current pivot block. Typically, the pivot block has 48 columns for large-enough fronts; the number of
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Pivot factorization and pivot block update for LDLT :
A(nfr, nfr) is the array containing the symmetric frontal matrix
k is the current pivot
eb is the end (i.e., the last column) of the current pivot block

1. Copy pivot column in pivot row (DCOPY)
A(k, k + 1 : nfr)← A(k + 1 : nfr, k)

2. Update lower triangular block (DSYR)

A(k + 1 : eb, k + 1 : eb)← A(k + 1 : eb, k + 1 : eb)− A(k+1:eb,k)×A(k,k+1:eb)
A(k,k)

3. Scale column (DSCAL)

A(k + 1 : nfr, k)← A(k+1:nfr,k)
A(k,k)

4. Update rectangular block (DGER)
A(eb+ 1 : nfr, k + 1 : eb)← A(eb+ 1 : nfr, k)×A(k, k + 1 : eb)

Algorithm 6.5: Factorization of a pivot and update of the corresponding pivot block (in LDLT

decomposition).
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Figure 6.9: Illustration of Algorithm 6.5, performing the factorization of a pivot and the update of the
pivot block in the symmetric indefinite factorization.
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columns updated using DSYR and DGER is between 47 (for the first pivot of the pivot block) and 0 (for
the last pivot of the pivot block).

Table 6.9 reports the accumulated times spent in the factorizations of the pivot blocks for the whole
factorization, i.e., for all frontal matrices, of matrix HALTERE, using double precision, real arithmetic.
Clearly, the global results are disappointing in parallel, with bad speed-ups and even speed-downs. This

Number of threads 1 2 4 8
Time in Algorithm 6.5 16.7 16.7 19.9 29.0
Total factorization time 115 75 64 66

Table 6.9: Total time spent in Algorithm 6.5 after all pivots have been factored, and total time for
factorization, as a function of the number of threads. Matrix Haltere, SGI Altix machine from CINES.
Times in seconds.

can be explained by the fact that Algorithm 6.5 exhibits a poor memory locality of references: each
element of the pivot column is accessed 3 times. Furthermore, noticing that we rely on a row-major
storage, steps 1 and 2 of the algorithm force to load one cache line for each element of the column, when
only one element is used inside that cache line. Whereas this was not too critical for serial executions,
the memory bandwidth is exhausted in a multithreaded environment, resulting in no gains and even
speed-downs when using multithreaded BLAS libraries.

6.6.2.2 Improvements of the factorization algorithm for the pivot block

In order to improve locality and avoid the limitations to parallelism due to memory accesses, we modified
Algorithm 6.5 so that once an element in the pivot column is accessed and loaded into the cache, it is
used as much as possible: for the copy in the upper triangular part of the front, the scaling, and the
update of the rest of the row. This allows the elements of the pivot column to be loaded in cache
once (temporal locality) and also improves the spatial locality between the element of the column and
the corresponding row thanks to the row-major storage. Algorithm 6.6 gives the modified algorithm.
First, the triangular block is updated (no parallelism is used because it is generally too small). Then,
all the rows corresponding to the rectangular block can be processed in parallel. Remark that the new
algorithm now only relies on OpenMP, without call to Level 1 or 2 BLAS. The results are given in
Table 6.10 (to be compared with the results of the original algorithm in Table 6.9). We observe on this
test case that it is very useful to avoid parallelization when the granularity is too small to benefit from
parallelism. For example, on 8 threads, the overall time spent in Algorithm 6.6 decreases from 39.6 to
34.9 seconds when avoiding the parallelization in cases with less than 300 rows in the second loop, that
is, when nfr − eb < 300. This clearly indicates that small blocks do not benefit from parallelism and
were leading to significant speed-downs. Overall, the pivot factorization and pivot block update now
scales reasonably and the time spent in the factorization has decreased from 66 seconds (Table 6.9) to
34.9 seconds (Table 6.10) using 8 threads. Although the absolute speed-up is not that great compared
to the sequential time (110 seconds), this shows that a careful look at just one of the factorization kernel
allows for very significant gains. In fact, the speed-ups are much better for large frontal matrices but
we remind that in the multifrontal tree, there are far more small frontal matrices than large ones. For
small matrices near the bottom of the tree, it would then make sense to exploit tree parallelism (see
Section 6.6.3).

6.6.2.3 Optimization of pivot search algorithm

We now describe a tiny optimization. Remark that, during the update of the pivot block with this new
algorithm, the elements of the column next to the pivot column have all been loaded in cache once. It
is therefore possible to check for the stability of the pivot candidate from the next column almost for
free. Except for the last column of the pivot block, this can be done by computing the maximum of the
elements in the column right to the pivot column, immediately after they have been computed and while
in cache. In case the next pivot is stable (see Section 1.3.2.2) compared to the max in that column, the
pivot search can be skipped. Some results on the same (HALTERE) matrix are given in Table 6.11. We
observe that the overall cost of the pivot search is significantly reduced, and that the cost of the pivot
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Improved pivot factorization and pivot block update for LDLT :
A(nfr, nfr) is the array containing the symmetric frontal matrix
k is the current pivot
eb is the end (i.e., the last column) of the current pivot block

% First, process symmetric part
for row = k + 1 to eb do

1. Copy unscaled element of row to upper part
A(k, row)← A(row, k)

2. Divide first element of row by pivot

A(row, k)← A(row,k)
A(k,k)

3. Update remaining part of row
A(row, k + 1 : row)← A(row, k + 1 : row)−A(row, k)×A(k, k + 1 : row)

end for
% Second, process rectangular part
for row = eb+ 1 to nfr (in parallel) do

1. Copy unscaled element of row to upper part
A(k, row)← A(row, k)

2. Divide first element of row by pivot

A(row, k)← A(row,k)
A(k,k)

3. Update remaining part of row
A(row, k + 1 : eb)← A(row, k + 1 : eb)−A(row, k)×A(k, k + 1 : eb)

end for
Algorithm 6.6: Improved factorization of a pivot and update of the corresponding pivot block (in
LDLT decomposition).

Number of threads 1 2 4 8
Without OMP IF

Time in Algorithm 6.6 15.8 10.1 8.5 7.6
Total factorization time 110.7 65.4 47.5 39.6

With OMP IF
Time in Algorithm 6.6 15.7 9.8 6.0 4.7
Total factorization time 110.4 64.9 44.1 34.9

Table 6.10: Total time spent in Algorithm 6.6 after all pivots have been factored, and total time for
factorization, as a function of the number of threads. Matrix Haltere, SGI Altix machine from CINES.
Times in seconds. The results “With OMP IF” corresponds to runs with an additional OpenMP “IF”
directive, avoiding the parallelization of the second loop of Algorithm 6.6 when the number of rows in
the loop is smaller than 300.
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# threads algorithm Pivot search Pivot block update
1 old 2.77 15.6

new 0.91 15.3
2 old 1.95 9.8

new 0.72 9.7
4 old 1.56 6.0

new 0.64 6.0
8 old 1.58 4.7

new 0.64 4.8

Table 6.11: Costs (in seconds) of the pivot block update and of the pivot search with and without
the optimization consisting in checking for the stability of the pivot in the next column during the
factorization of the pivot and panel update.

block factorization remains unchanged with the additional computation of the maximum element in the
next column (since only elements already in the cache are accessed anyway).

6.6.2.4 Discussion

Other factorization kernels should also be studied in order to push further the combination of BLAS
and OpenMP directives. For example, the BLAS 3 update of the Schur complement in the LDLT

factorization kernels currently works with many independent blocks processed one after each other and
would benefit from parallelism with a larger granularity8. On the same Haltere matrix, 7 seconds out
of 34 seconds on 8 threads and the same 7 seconds out of 110 seconds on 1 thread are also spent in
assembly operations. There is thus also clearly scope for improvement in the assembly operations with
symmetric matrices, even though the triangular loops involved are more difficult to parallelize.

6.6.3 OpenMP: exploiting the parallelism resulting from the assembly tree

The fork-join model to execute threaded regions wastes some time in activating sleeping threads in each
threaded region or BLAS call; this was particularly visible on small frontal matrices, which usually appear
near the bottom of the assembly tree. For example it was observed that for matrices smaller than a few
hundreds, multithreading stack or assembly operations was leading to a performance degradation rather
than improvement. The NUMA and cache penalties are indeed particularly critical on small frontal
matrices, that usually appear near the bottom of the assembly tree. In Section 6.6.2, we also saw that
mutithreading the second loop of Algorithm 6.6 leads to a performance degradation on small matrices.
To improve the parallelization of small frontal matrices, the multithreaded approach would thus benefit
from exploiting the tree parallelism (similar what is done in the distributed-memory case), as shown in
the preliminary results from Figure 6.10. In this figure, the unsymmetric version of our solver is used
and a layer called L0 OMP is defined that such that:

• Under L0 OMP, tree parallelism and serial BLAS are used.

• Above L0 OMP, threaded BLAS libraries are used.

The definition of L0 OMP is based on serial/threaded benchmarks of MUMPS routines: we still use Al-
gorithm 4.4 but the stopping criterion is new: we accept a layer L0 OMP if the estimated time below
L0 OMP plus the estimated time above L0 OMP is

1. smaller than for all previous layers encountered;

2. smaller than the next 100 layers if algorithm is pursued further 100 times.

The second condition is there to avoid local minima due to possible imbalances after application of a
greedy LPT (Largest Processing Time first) algorithm that aims at mapping subtrees onto the cores.

8Ideally, we would like to rely on a threaded BLAS kernel performing the operation C ← C − ADAT , where A and C
are symmetric and D is a diagonal matrix with 1× 1 and 2× 2 pivots. More generally, such a BLAS kernel would be very
useful for LDLT factorizations.
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We observe in the figure that the speed-ups obtained are generally very good with the L0 OMP
algorithm, compared to previous approaches. On large 3D problems (e.g., AUDI test case), the gains
are smaller than on problems leading to smaller fronts in the tree. An extreme case is the one of circuit-
simulation matrices. On such matrices (see the results for G3 CIRCUIT and QIMONDA07), there is a
very small amount of fill-in, leading to relatively small frontal matrices everywhere in the tree. In such
cases, relying solely on node parallelism is clearly insufficient, and tree parallelism is compulsory to get
performance.

Figure 6.10: Comparison of the speed-ups obtained for the factorization of various matrices on 8 threads
of a Nehalem-based computer when using (i) threaded BLAS, (ii) threaded BLAS and OpenMP directives
outside BLAS calls, (iii) tree parallelism under L0 OMP.

Remark that, contrary to common intuition, we seem to still obtain reasonably good speed-ups
by relying on tree parallelism first, perform a synchronization at the L0 OMP level, and work with all
threads afterwards. Of course, the limits of this approach when increasing the number of threads has to be
assessed. Short-term work-in-progress includes the adaptation of our approach to NUMA architectures,
the study of memory management policies such as interleaving versus local, the suppression of idle time
due to the L0 synchronization, or the use of a penalty (around 10% to 50% on AMD processors) under
L0 OMP due to the fact that all threads share a limited memory bandwidth. Multithreading the solve
phase is also critical and should not be neglected.

6.7 Sparse direct solvers and grid computing

Let us consider a different aspect not discussed earlier in this thesis and related to the transparent
access to distant computing resources. We describe in this section two aspects where grid computing
technologies and resources are interesting for sparse direct solvers.

• There exists a large range of algorithms and options in sparse direct solvers, and several sparse
direct solvers are available, each implementing different variants of algorithms that may suit better
a class of matrices or another. Although direct solvers are often considered as a black box when
compared to iterative solvers, this range of algorithms, parameters and preprocessing options makes
the adequate combination difficult to find for users. Finding the correct algorithms or parameters on
a sparse matrix is however critical to solve larger problems, or decrease the time to the solution, or
get a better accuracy. In many solvers, there exists the notion of “automatic” default choice for an
option, which means that a solver will choose automatically the option based on some characteristics
of the input matrix. However, those choices are limited and understanding which solver and which
algorithms are best suited for a given class of matrix is not an easy issue. The GRID TLSE
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project[64] answers this problem by providing an expertise site for sparse linear algebra: typically,
a user can upload and share matrices in private or public groups, and experiment and combine
different functionalities from a variety solvers on their class of matrices. The expertise is based
on scenarios, an example of which is the following: get all possible symmetric permutations from
solvers capable of providing them, use them on all solvers and return statistics and synthetic graphs
with the results. Metrics like time of execution, numerical accuracy or memory usage can be used
to compare the results and, for experts, get some insight on the results. In the GRID TLSE site,
each expertise request leads to a workflow, where each step of the workflow consists of a number
of independent elementary requests. The middleware DIET [49] is used to execute and schedule
those requests on a grid of computers.

• Usually, the solution of linear systems is the part of a simulation code that consumes most memory,
while also being the bottleneck from the execution time point of view. In case a user does not have
enough resources locally, it makes sense to use more powerful distant resources for the solution of
the linear system. We implemented a prototype with the MUMPS solver, using the DIET middleware
again. To solve Ax = b, the matrix A and the right-hand side b can be sent over the network, and
the solution x computed on the server is sent back to the client. Only this functionality was made
available in the prototype, for unsymmetric matrices using double precision arithmetic. Matrix A
remains small compared to the size of the factors and compared to the number of floating-point
operations, contrary to dense matrices, where the size of the factors is the same as the size of
the matrix. Therefore, the cost of transferring data could be reasonable in comparison to the
size of the factors and the amounts of computations, at least the ratio is better than for dense
matrices. Furthermore, when in practice many solves with the same matrix are requested, the
matrix A can remain on the server(s). Within DIET, this can be done by setting the persistence
mode to PERSISTENT, avoiding its transfer for each solve. Starting from the above prototype,
experimentations showing the interest of using data persistence are given in [39].

It would make sense from an application point of view to go from this proof of concept to an
implementation in production mode, using grid or cloud computing resources. Remark that this
client-server model to use distant resources has already been used a lot in the context of linear
algebra. For example, in the Star-P platform [55], the backslash operator from Matlab can be
overloaded to work on distributed sparse matrices stored on distant HPC resources. Similar work
was the object of the OURAGAN project [48] around Scilab or Scilab//.

In the case of simulation codes written in C or Fortran rather than Matlab or Scilab, operator
overloading or simple interfaces like [87] are not what the application requires. Instead, the ob-
jective would consist in making all functionalities of a sparse direct solver available through the
standard API of the solver. This requires redeveloping a library with the exact same API as the
solver, allowing the application code to be exactly the same whether the linear solver is executed
locally or on a more powerful distant server. Let us take the example of the MUMPS solver and the
DIET middleware. At link time, there would be two possibilities on the client side:

1. The application code is linked with the MUMPS library: everything is executed locally.

2. The application code is linked with two libraries:

– an intermediate library which transforms MUMPS calls into calls to the grid middleware,
and

– the grid middleware itself, that is the DIET library.

In this second case, everything should ideally be transparent from the application’s code point
of view: calls to the MUMPS solver are simply replaced by remote procedure calls. Data transfers
must be minimized and data persistence on the servers is essential in order to transfer data only
when necessary; such developments could naturally benefit from today’s cloud infrastructures.

6.8 Conclusion and other work directions

We have described in this chapter recent work aiming at solving large problems. To conclude, we list in
this section some other work directions and developments to solve increasingly large problems accurately
and efficiently. A more high-level view will be given in the general conclusion of Chapter 7.
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Multithreading within each MPI process. With the evolutions of computer architectures, the
exploitation of multithreading inside each MPI process is critical. Three main issues are currently
considered:

• The memory allocation policy has a very strong impact in many cases and we typically ob-
served huge gains on multithreaded dense factorization kernels by allocating the memory on
which threaded factorizations are applied with an interleave policy. Understanding how this
affects a sparse multifrontal approach in which assemblies, copy operations, etc. are also
parallelized is under investigation.

• Multithreaded dense factorization kernels that we currently use can be improved from the per-
formance point of view, as was experimented for example in Section 6.6.2. Block sizes must be
tuned, etc. As of today, the dense factorization kernels we use are specific (pivoting, partial
factorization only, specific numerical aspects like detection of null pivots, out-of-core manage-
ment, etc.) and cannot be immediately replaced by existing multithreaded decompositions
from the dense linear algebra community.

• When the number of MPI processes increases (due to an increase in the number of nodes
among which distributed-memory parallelism must be used), the amount of work in type 2
nodes increases, thus multithreading the corresponding kernels is critical.

MPI communications. When increasing the number of MPI processes, one must understand the
limits of the existing communications schemes. For example, avoiding synchronizations and barriers
is critical when working with thousands of nodes. We have recently been tackling two other
examples related to communications within type 2 nodes:

• In the general case, the number of messages sent from type 2 children to type 2 parents is
p2, if p is the number of workers (or slaves) in both the child and the parent. This number
can be reduced to O(p) by forcing the order of the variables in the child and in the parent
to be compatible, and by initializing and managing the counters of messages-to-be-received
in an appropriate manner. Although the volume communicated is similar, this decreases the
latency associated with those messages by reducing drastically the number of messages when
there are many processors involved in each node.

• The performance of the asynchronous broadcast algorithm in type 2 factorizations has been
observed to be limited by the send bandwidth of the master node, in cases where many
processors are assigned to a given frontal matrix. This typically occurs when serializing
branches of the assembly tree for memory constraints, see Section 4.3. In the pipelined
factorization implemented, the master processor must send a factored block to all its slaves.
Given Algorithm 0.1, it is not possible to use the recent MPI IBCAST primitives because each
processor receives data with a general purpose asynchronous receive routine MPI IRECV in
Algorithm 0.1 and might be involved in several type 2 nodes. We have recently implemented
a broadcast algorithm based on immediate sends and immediate receives, using a pipelined
broadcast tree, and are expecting to significantly increase the performance of the factorization
in type 2 nodes.

Related to MPI communications, the following points must also be considered:

• The splitting mechanism described in Figure 2.11 is evolving: by forcing a similar mapping
between a parent and its child in a split chain, one can significantly limit the communication
volume and improve performance on chains of splitted nodes.

• One must assess the limits of relying on ScaLAPACK kernels [53] for the root node and follow
closely the evolution of libraries developed by the dense linear algebra community. As said
before, our kernels are specific (numerical pivoting, various thresholds for delaying pivots, for
detection of null pivots or for static pivoting, . . . ). It must be noted that a kernel like LDLT

that is heavily used in sparse linear algebra is not widely available in distributed-memory
dense linear algebra libraries yet (for example it is not available in ScaLAPACK).

• Barriers and synchronizations involving all processors should be avoided. This looks fine
thanks to our asynchronous approach, but we observed that on very large matrices with
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limited amount of fill (typically large reducible problems), a significant amount of time could
be spent in reduction operations gathering statistics over all processors. The data structures
involved in such global communications should be grouped into arrays in order to limit the
associated costs.

Cost (memory, time) of phases other than the factorization. Although the cost of the factor-
ization phase is usually predominant, the cost of the analysis and solve phases is sometimes critical
too (see Section 6.1 for the parallelization of the analysis phase and Section 6.4 for some optimiza-
tions to the solve phase). Concerning the analysis phase, the two following directions could help
improving the analysis phase further in some applications:

• One could exploit a compressed graph on input instead of using the entire graph of the matrix.
Indeed, many physical problems have several degrees of freedom at each node of the physical
mesh (e.g., temperature, pressure, velocities). Assuming that each node of a finite-element
mesh has 6 variables, the number of edges in the graph associated with the matrix is 36 times
larger than the number of edges in the mesh. Hence, in such cases, a sparse direct solver
would gain a lot of memory by performing the analysis phase directly on the compressed
graph corresponding to the mesh, pushing the limits of parallel analysis much further.

• In relation with the parallelization of the analysis phase, because simulation applications using
direct solvers may already work on a distributed physical domain with balanced partitions,
one could directly exploit a distributed mesh/graph on input and use the associated partitions
in the analysis phase instead of calling parallel graph partitioning packages. Depending on the
properties of the distribution, it could be possible to perform a local analysis on the internal
variables of each domain and build local elimination trees, before a global analysis that will
build the top of the tree based on the resulting information on the interfaces between domains.

Concerning the solve phase, we give a few remarks on this important topic in the general conclusion.

Unsymmetric structure of frontal matrices. In our multifrontal approach we work on the struc-
ture of the symmetrized problem |A| + |A|T when the original matrix A has an unsymmetric
structure. This implies introducing explicit zeros in A, and working on square fronts (with unsym-
metric values). However, [37] showed that it is possible to use unsymmetric fronts and reduce the
computational cost of the multifrontal factorization by working on unsymmetric frontal matrices.
Allowing unsymmetric storage for frontal matrices in our distributed-memory approach would al-
low to handle in a much better way matrices with unsymmetric structures, where unsymmetric
orderings like [36, 35] –see also [143]– could then be exploited.

Elemental format. Elemental format avoids the assembly of the matrix in finite element applications
and can be used in a natural way in multifrontal methods. Instead of precomputing all elements
before calling the solver, a call-back to build the elemental matrices only when needed for assembly
in a frontal matrix would avoid the large storage required for the initial matrix in elemental format.
It would also allow to parallelize completely the construction and the assembly of the global problem
inside the solver.

Software engineering. One can imagine many other points towards building direct solvers with
a wide range of functionalities capable of solving very large problems on very large computing
platforms, but one thing to be kept in mind is that each of these points requires developments that
must combine nicely with all or most of the existing ones. For that, we anticipate that software
engineering aspects will be a key issue to be able to pursue the type of work and research we have
been doing in the last 15 years.
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Chapter 7

Conclusion

The research and the work described in this document has been the object of various research projects,
industrial contracts and collaborations. This work has led to an original tool, MUMPS (see [2]), which
aims at solving sparse systems of linear equations on parallel distributed platforms, with a wide range of
functionalities developed over the years. Clearly, not all the inside of MUMPS could be presented in this
document, but it was an opportunity to describe some of it. Today, MUMPS is both a research tool to test
new ideas, perform experiments or simulations and gather statistics in the field of sparse linear algebra,
and a competitive software package used worldwide, in academia and industry, which requires software
engineering, validation, support and maintenance. Although it is primarily a research prototype in which
new research is constantly injected, a number of industrial users have invested on the use of this tool in
their applications and have become dependent on it and on its evolutions. Distributing our work widely
under the form of a software library is also essential for us for validation, feedback, external debugging
and reports on performance and numerical behaviour: this way, our research is widely validated and we
can define and adapt research directions according to the feedback received by MUMPS users and according
to the evolution of applications requirements and the evolution of computer platforms.

Computer architectures often evolve too quickly for algorithm designers and for developers of large
scientific libraries. In this context, software choices are critical, together with the long term durability
of the chosen programming models and solutions. For example, although MUMPS started in 1996 from
a shared memory approach [17], it was at that time decided (PARASOL project [136, 137]) to replace
everything related to the shared memory paradigm with explicit message-passing targeting distributed-
memory computers. With the advent of multicore processors, the shared-memory paradigm becomes
very critical again, as shown in Section 6.6. We currently rely on MPI for message-passing and OpenMP
for multithreading, as this matches our existing software, and because it is not clear to us what the
next programming standard for exascale computers will be. With OpenMP, we observed that taking
into account NUMA architectures and memory placement is very critical. Nowadays, there are many
evolutions of computer platforms that one should take into account and try to anticipate:

• Memory per core will decrease. Therefore, we must continue to pay a strong attention to memory
usage and to memory scalability.

• Numbers of cores per computing node will increase. Therefore, it is critical to exploit them ef-
ficiently, thanks to multithreading. If the number of cores grows too much, we expect that an
hybrid approach mixing threads and message-passing with an asynchronous approach will become
necessary inside multicore processors: the message-passing layer will ensure data locality and avoid
costly synchronizations.

• The relative cost of accessing data (memory, communication) will increase compared to the cost
of performing floating-point operations. In this context, it is not clear how memory-consuming
strategies like pivot search and numerical pivoting will behave and if they will remain affordable.

• The absolute number of computing nodes will increase. Therefore, performance and memory
scalability on huge numbers of nodes, using a distributed-memory environment is essential. Asyn-
chronous approaches in a distributed-memory paradigm are also essential to scale to large numbers
of nodes and the communication patterns need to be carefully studied (and possibly revisited).
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• Accelerators might become more and more spread and be more or less integrated with the main
CPU. Although multifrontal approaches exhibit large blocks, allowing significant gains by using
GPUs, it is still difficult to perform numerical pivoting, for example, on such architectures.

All-in-all, parallelism is more and more difficult to handle, and heterogeneity (for example, at the
network level, or due to the use of accelerators) is another challenge. Much work is currently invested
on runtime systems, where only the tasks and the dependencies between them need be provided to
automatically schedule the work on heterogeneous platforms composed of multiple cores, multiple GPUs
and multiple nodes. Again, long-lasting solutions or a standardization of such runtimes systems would
be necessary before investing heavily on such approaches. It would be interesting to understand the
limits of such approaches compared to a “by-hand” approach (and vice-versa).

Thanks to new algorithms and computer evolutions, the maximum size of the problems that can
be solved with direct solvers are orders of magnitude larger than one or two decades ago and it keeps
growing1, although current software implementing sparse direct solvers is far from exploiting all resources
of existing petascale computers. There is thus much scope for improvements on many challenging issues
such as scheduling for memory, scheduling for performance, mapping irregular data-structures, memory
scalability, out-of-core storage, locality of reference, efficient management of communications, etc. It is
not clear when fault-tolerance will become an issue, but out-of-core storage of the factors as factorization
goes along is a natural approach to incremental checkpointing.

Furthermore, in order to treat huge problems and exploit efficiently the memory available on large
supercomputers, all data structures should scale with the number of processors; one can probably no
more afford symbolic data structures of the order of the matrix or of the order of the number of nodes
in the tree: those should scale with the number of processors. All preprocessing algorithms (scalings,
symbolic factorization, maximum weighted matching algorithms, pre-selection of some 2× 2 pivots, . . . )
should also scale in both memory usage and performance, working on fully distributed matrices or graphs.

Many solver developers have focused more on the performance of the factorization phase than on the
performance of the solve phase. However, the solve phase deserves a lot of attention too for applications
where most of the time is spent in that phase: sometimes, thousands of right-hand sides are solved for,
for only one matrix factorization. Specific approaches can be useful in the case of multiple right-hand
sides, or when right-hand sides are sparse, or when only a subset of the solution is needed. When the
performance of the solve is getting critical, as this appeared to be the case for several applications at the
last MUMPS users’group meeting2, it might be worth guiding the preprocessing phase and the mapping of
the factors by the performance of the solve phase.

Although much work remains to be done on the scalability and implementation of direct solvers on
high performance computers, their complexity may still be unaffordable even on high-end computers
when the problem size becomes too large: remember that a 3D grid of size N ×N ×N may have O(N3)
nonzeros in the original matrix, O(N4) entries in the factors, and require O(N6) floating-point operations.
Because of this large complexity, direct solvers are sometimes used as a building-box in other approaches,
typically in hybrid direct-iterative solvers: incomplete factorizations relying on direct solver technologies,
domain decompositions methods using direct solvers within each domain, or Block-Cimmino approaches.
Another approach we are currently studying is the notion of fast direct solvers. Several groups have
also started to work on this subject, including in the context of multifrontal solvers. The idea is to
rely on low-rank representations of certain blocks of the dense matrices arising because of fill-in during
the factorization (the off-diagonal blocks are often low-rank), in order to compress data and reduce the
amount of computations. Those low-rank representations can be of the same quality as the floating-
point representations (i.e., machine precision), or they can be approximations of lower quality. In the
latter case, this leads to preconditioners with a clear numerical criterion to control accuracy. The MUMPS

framework should allow for efficient implementations of a low-rank solver in both distributed-memory
and multithreading contexts.

With the above work directions, we aim at pursuing one of our main focus for the future: solving
increasingly large problems arising in simulation applications efficiently and accurately. By efficiently,
we mean that we must optimize resource usage (processor cores, memory accesses, locality) of computer
platforms while aiming at obtaining the solution as quickly as possible. By accurately, we mean that we

1For example, a problem with 87 million equations could be solved a few years ago with the Pastix [113] solver, whereas
not so many people could imagine solving problems with more than 100000 equations with a direct solver 15 years ago.

2http://graal.ens-lyon.fr/MUMPS/ud_2010.html
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do not want to reduce the numerical stability, one of the main strengths of direct solvers, for performance
or increased parallelism; in the context of increasing problem sizes and increasing numbers of operations,
round-off errors may also become an issue to look at. We also aim at continuing work on numerical
aspects and functionalities and transferring our research in a tool like MUMPS, which at the moment is
both necessary to our future research and useful to many academic and industrial groups.
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