
HAL Id: tel-00737988
https://theses.hal.science/tel-00737988

Submitted on 3 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Point process and graph cut applied to 2D and 3D
object extraction

Ahmed Gamal Eldin

To cite this version:
Ahmed Gamal Eldin. Point process and graph cut applied to 2D and 3D object extraction. Image
Processing [eess.IV]. Université Nice Sophia Antipolis, 2011. English. �NNT : �. �tel-00737988�

https://theses.hal.science/tel-00737988
https://hal.archives-ouvertes.fr

UNIVERSITY OF NICE - SOPHIA ANTIPOLIS - FRANCE

GRADUATE SCHOOL STIC
INFORMATION AND COMMUNICATION TECHNOLOGIES AND SCIENCES

THESIS

to fulfill the requirements for the degree of

D  P  C S

from the University of Nice - Sophia Antipolis

Specialized in : C, S  I P

presented by

Ahmed GAMAL ELDIN

P       2D  3D  

Supervised by Xavier D, and Josiane Z and prepared at INRIA

Sophia-Antipolis Méditerranée in the A research team

Defended the 24th of October, 2011

Jury:

M. Marc B Emeritus Professor, INRIA President

M. Fionn M Professor, University of London Reviewer

Mrs. Florence T Professor, Telecom ParisTech Reviewer

M. Jean-Denis D Associate Professor, University of Toulouse Reviewer

Mrs. Josiane Z Director of Research, INRIA Director

M. Xavier D Director of Research, INRIA Supervisor

M. Michel G-C Director of Research, Tour du Vala Examiner

M. Guillaume P Research engineer, Thales Alenia Space Examiner

Dedication

I dedicate this to my very exceptional parents,

to my mother who taught me every thing good in my life, I would not be what I am without

her, to my father who created for me a beautiful environment where I can live and work, I

owe them everything in my life and I will never be able to thank them for all what they did

for me.

God bless both of you...

Acknowledgements

I owe a very special acknowledgement to my supervisors, Josiane ZERUBIA and Xavier

DESCOMBES.

Josiane, thank you for having accepting me as part of your team, for your great support

and encouragement. Thank you for always being there during and even after my thesis.

Xavier, thank you believing in me even when I did not, thank you for being so understand-

ing. I really learned a lot from you. Thank you for giving me all the freedom during my

thesis, working with you was a real pleasure for me. After my two supervisors, I want to

thank my friend Guillaume CHARPIAT. Thank you Guillaume for all your help, your gen-

erous discussions, availability, it was a lot of fun to work with you. This work could not

have been accomplished without you all.

I would like to thank Professors MARC BERTHOD, Fionn MURTAGH, Florence TUPIN,

Jean-Denis DUROU, Michel GAUTHIER-CLERC and Guillaume PERRIN. Thank you for

accepting to be members of my thesis jury. Thank you for your effort, your interest and

your kind attention during the defence.

I owe a special acknowledgement to our ecologist collaborators. I would like to thank

Yvon le MAHO, Michel Gauthier-Clerc and Arnaud Béchet for this collaboration, for all the

interesting discussions and the efforts they made. I would like to thank every researcher on

site who participated in this work: Onésime PRUD’HOMME, Celine Le BOHEC, Benjamin

FRIESS, Yan ROPERT-COUDERT, Maryline Le VAILLANT, Claire SARAUX, Marion

RIPOCHE, Rémi GENER.

I would like to start listing by friends who I want to thank with Alexandre FOURNIER

who gave me the most significant advices during the early days of my PhD. Thanks to all

my friends with whom I shared these three years, work and fun. Thank you Maria, Aymen,

Giovanni, Csaba, Praveen, Aurélie, Vladmir, Sayma, Ioan, Guillaume Perrin, Mikael and

Alexis. A special thank you as well to our very nice project assistants Corinne, Laurie and

Christine.

I would like to thank Giovanni GHERDOVICH with whom I worked a lot during my

first PhD year. I would like to thank Professor Elena Zhizhina and the many other great

visitors of our team with whom I had very enriching discussions.

I would like to thank every person who helped during these three years.

Summary

The topic of this thesis is to develop a novel approach for 3D object detection from a 2D

image. This approach takes into consideration the occlusions and the perspective effects.

This work has been embedded in a marked point process framework, proved to be efficient

for solving many challenging problems dealing with high resolution images. The accom-

plished work during the thesis can be presented in two parts:

First part:

We propose a novel probabilistic approach to handle occlusions and perspective effects.

The proposed method is based on 3D scene simulation on the GPU using OpenGL. It is

an object based method embedded in a marked point process framework. We apply it for

the size estimation of a penguin colony, where we model a penguin colony as an unknown

number of 3D objects. The main idea of the proposed approach is to sample some can-

didate configurations consisting of 3D objects lying on the real plane. A Gibbs energy is

define on the configuration space, which takes into account both prior and data information.

The proposed configurations are projected onto the image plane, and the configurations are

modified until convergence. To evaluate a proposed configuration, we measure the simi-

larity between the projected image of the proposed configuration and the real image, by

defining a data term and a prior term which penalize objects overlapping. We introduced

modifications to the optimization algorithm to take into account new dependencies that ex-

ists in our 3D model.

Second part:

We propose a new optimization method which we call ”Multiple Births and Cut” (MBC). It

combines the recently developed optimization algorithm Multiple Births and Deaths (MBD)

and the Graph-Cut. MBD and MBC optimization methods are applied for the optimization

of a marked point process. We compared the MBC to the MBD algorithms showing that

the main advantage of our newly proposed algorithm is the reduction of the number of pa-

rameters, the speed of convergence and the quality of the obtained results. We validated our

algorithm on the counting problem of flamingos in a colony.

Résumé en Français

L’objectif de cette thèse est de développer une nouvelle approche de détection d’objets

3D partir d’une image 2D, prenant en compte les occultations et les phénomènes de per-

spective. Cette approche est fondée sur la théorie des processus ponctuels marqués, qui a

fait ses preuves dans la solution de plusieurs problèmes en imagerie haute résolution. Le

travail de la thèse est structuré en deux parties:

Première partie:

Nous proposons une nouvelle méthode probabiliste pour gérer les occultations et les ef-

fets de perspective. Le modèle proposé est fondé sur la simulation d’une scène 3D utilisant

OpenGL sur une carte graphique (GPU). C’est une méthode orientée objet, intégrée dans

le cadre d’un processus ponctuel marqué. Nous l’appliquons pour l’estimation de la taille

d’une colonie de manchots, là où nous modélisons une colonie de manchots comme un nom-

bre inconnu d’objets 3D. L’idée principale de l’approche proposée consiste échantillonner

certaines configurations candidat composé d’objets 3D s’appuyant sur le plan réel. Une

densité de Gibbs est définie sur l’espace des configurations, qui prend en compte des infor-

mations a priori et sur les données. Pour une configuration proposée, la scène est projetée

sur le plan image, et les configurations sont modifiées jusqu’à convergence. Pour évaluer

une configuration proposée, nous mesurons la similarité entre l’image projetée de la con-

figuration proposée et l’image réelle, définissant ainsi le terme d’attache aux données et l’a

priori pénalisant les recouvrements entre objets. Nous avons introduit des modifications

dans l’algorithme d’optimisation pour prendre en compte les nouvelles dépendances qui

existent dans notre modèle 3D.

Deuxième partie:

Nous proposons une nouvelle méthode d’optimisation appelée ”Naissances et Coupe

multiples” (”Multiple Births and Cut” (MBC) en Anglais). Cette méthode combine la

fois la nouvelle méthode d’optimisation Naissance et Mort multiples (MBD) et les ”Graph-

Cut”. Les méthodes MBC et MBD sont utilisées pour loptimisation d’un processus ponctuel

marqué. Nous avons comparé les algorithmes MBC et MBD montrant que les princi-

paux avantages de notre algorithme nouvellement proposé sont la réduction du nombre de

paramètres, la vitesse de convergence et de la qualité des résultats obtenus. Nous avons

validé notre algorithme sur le problème de dénombrement des flamants roses dans une

colonie.

Contents

General introduction 3

I Markov Marked Point Process 3

1 Introduction 5

1.1 Remote sensing . 5

1.1.1 Markov Random Field . 5

1.1.2 From MRF to Point Process . 7

1.2 Ecological application . 9

1.2.1 Flamingo counting . 9

1.2.2 Penguin counting . 10

1.3 Thesis organization . 12

2 Point Process 15

2.1 Spatial Point Process . 15

2.1.1 Basics of 1D and 2D Point Process 16

2.1.2 Marked Point Processes . 17

2.1.3 Point Processes Models . 18

2.2 Markov Point Processes . 21

2.2.1 Conditional Intensity . 21

2.2.2 Cliques and Interactions Order . 24

2.2.3 Markov Marked Point Processes 26

2.2.4 Markov Marked Point Processes 27

2.3 Conclusion . 28

II Optimization Methods 29

3 Optimization 31

3.1 Optimization . 32

3.1.1 Simulated annealing . 32

3.2 Sampler . 33

vii

viii CONTENTS

3.2.1 Birth and Death . 33

3.2.2 Metropolis Based Samplers . 34

3.2.3 Reverse Jump MCMC . 39

3.3 Multiple Birth and Death . 39

3.3.1 Continuous Birth and Death Dynamics 40

3.3.2 Discrete Approximation . 41

3.3.3 Methods to speed up MBD . 43

3.3.4 Convergence Test . 46

3.4 Conclusion . 46

4 Multiple Birth and Cut Algorithm 49

4.1 Graph Cut . 50

4.1.1 Review of graph cut . 50

4.1.2 Graph Cut in Computer Vision . 54

4.1.3 Convergence . 55

4.2 Multiple Birth and Cut . 56

4.2.1 Can we use graph cut to optimize a MPP models? 57

4.2.2 From Supermodular to submodular 58

4.2.3 MBC algorithm version 1 . 59

4.2.4 Which algorithm to use? . 61

4.2.5 Analysis of the MBC algorithm 62

4.2.6 Convergence of the MBC algorithm 62

4.2.7 Global or local minimum? . 63

4.3 MBC algorithm version 2: Belief propagation 64

4.3.1 Generation Phase: . 64

4.3.2 Selection Phase . 65

4.3.3 Belief Propagation . 65

4.4 Energy comparison . 66

4.5 MBC algorithm version 3 . 67

4.5.1 New selection method . 68

4.5.2 Local Perturbations Kernels . 69

4.6 Algorithm analysis . 70

4.6.1 Theoretical analysis . 70

4.6.2 Algorithm Parallelization . 73

4.6.3 Algorithm summary . 74

4.7 Conclusion . 75

5 3D Point Process 81

5.1 Detection by simulation . 81

5.2 3D Point Process . 85

5.2.1 Configuration Space . 86

5.2.2 Dependencies . 86

CONTENTS ix

5.2.3 Dependencies in the prior term . 86

5.2.4 Dependencies in the data term . 87

5.2.5 Directional dependency . 88

5.2.6 Moralization . 88

5.2.7 Markovianity in the dependency 90

5.3 Optimization . 91

5.3.1 Projections . 91

5.3.2 Graph Algorithm For Death Step 92

5.3.3 Camera Parameters . 93

5.4 Conclusion . 94

III Applications 99

6 Optimization methods comparison on a 2D MPP model 101

6.1 Marked Point Process . 101

6.1.1 Prior . 102

6.1.2 Data term . 103

6.2 Results on synthetic data . 105

6.2.1 Sample of 300 objects . 105

6.2.2 Sample of 1000 objects . 107

6.2.3 Sample of 10000 objects . 110

6.3 Results on real data . 111

6.4 Conclusions . 111

7 Penguin counting 115

7.1 Object recognition . 115

7.1.1 Imaging and sensors . 115

7.1.2 Depth Map . 116

7.1.3 Descriptors and matching for 3D objects 117

7.1.4 Features given 2D data . 118

7.1.5 Global features . 118

7.1.6 Local features . 120

7.2 Penguin counting problem . 121

7.2.1 Adelie penguins . 121

7.2.2 Proposed solution . 122

7.2.3 Emperor penguins . 123

7.2.4 Proposed solution . 123

7.2.5 Energy . 125

7.2.6 Results . 131

7.2.7 King penguins . 132

7.2.8 Proposed solution . 133

x CONTENTS

8 Conclusion and Recommendations 139

8.1 Optimization . 139

8.1.1 Future work and perspective . 141

8.2 3D Point Process . 142

8.2.1 3D MPP model . 142

8.2.2 Future work on the 3D model . 143

8.2.3 Future work of the Penguin counting problem 143

Appendix, and Bibliography 147

A Publications 147

B Imaging Protocol 149

B.1 Introduction . 149

B.2 Image for the territory elevation . 149

B.2.1 The labor and materials . 149

B.2.2 The number of required configurations 152

B.2.3 The method defined to take image for each configuration 152

B.3 Imaging for penguins . 154

B.3.1 Technical details about the camera 156

Bibliography 158

General introduction

1

Part I

Markov Marked Point Process

3

Chapter 1

Introduction

Recent technological advances in the development of airborne sensors have significantly

increased the number of available satellites, and their spatial and spectral resolutions. These

advances, combined with the need for an effective environmental control, have favoured the

emergence of new remote sensing applications. These applications include:

• Territorial Surveillance: characterization of urban development, such as new roads

and buildings.

• Management of natural resources: deforestation characterization, species preserva-

tion (animals,. . .).

• Mapping the damage in natural disasters: volcanic eruptions, earthquakes, . . .

1.1 Remote sensing

A typical example in remote sensing is given an input image, being able to classify it into

different zones. Figure 1.1 shows a SPOT 5 image (of 5 m resolution), containing two zones,

urban and fields. These two zones can easily be characterized by their textural content, more

precisely the conditional variance of the luminance inside each zone. Assuming a Gaussian

Markov model, the variance of the pixel given the mean of its neighbors provides a textural

feature characterization for the urban area [31] [66]. The availability of large amounts of

rich data has induced many new applications and new demands. This large amount of data

requires rigorous mathematical models to create automated or semi-automated algorithms.

1.1.1 Markov Random Field

Among the numerous developed techniques, statistical methods, which rely on probabilis-

tic models, have been among the most successful. The most popular stochastic model is

known as Markov random field (MRF) model. MRF modeling is based on an inverse prob-

lem approach, where each zone can be modeled by a hidden class with a set of parameters.

5

6 Chapter 1. Introduction

Figure 1.1: Urban zone taken by Spot 5 c©CNES

e.g. we assume that the urban and the field classes present in figure 1.1, each was gener-

ated by a Gaussian distribution of certain mean and variance. Actually, just modeling each

class with a Gaussian, and classifying pixels assuming their independence is a simple Max-

imum Likelihood (ML) approach. The MRF in addition to this ML approach, adds the class

dependence between neighbor pixels to solve complex situations, when the independent

pixel based approach is not sufficient. MRF modeling has emerged in the image processing

and computer vision field since the 80s [42]. Thanks to the equivalence established by the

Hammersly-Clifford theorem [11], the full conditional probability of an image (all pixels)

can be written in the Gibbs field form, which is summarized by the sum of potentials over

cliques. The segmentation result using MRF modeling of the scene presented in figure 1.1

into two classes is given in figure 1.2.

This type of modeling is useful in many remote sensing applications, based on a data

term which measures how likely this pixel comes from that class, and a prior term to insert

prior information and neighboring dependence for regularization. During the last decade,

sensors have largely improved, and obtained images have a much higher resolutions than

before. These higher image resolutions, which offer richer information, opened the door

(appetite) for new applications, which consequently requires new modeling paradigms.

Given an aerial image of some field area such as the one shown in figure 1.3.(a), or an ur-

ban area, as shown in figure 1.3.(b), the aim is not any more to segment to regions like urban

or plantation. Now, we are interested in extracting the roads from figure 1.3.(a), as shown

in figure 1.4.(a) and extract the buildings from figure 1.3.(b) as shown in figure 1.4.(b).

1.1. Remote sensing 7

Figure 1.2: Segmentation of the urban zone using a Markov random field c©Ariana/INRIA.

1.1.2 From MRF to Point Process

While the idea of data term and prior term existing in the MRF modeling approach remains

interesting, we need a more flexible model. MRF modeling is a pixel based approach, and

extracted objects shown in figure 1.4 are better described by their geometrical features. The

roads from figure 1.3.(a) can be represented by a set of segments and the buildings from

figure 1.3.(b) can be represented by a set of rectangles. This type of geometrical modeling

allows working on the object level, and not at the pixel level which is how it is usually done

in MRF.

Insertion of geometrical information in MRF modeling is of very limited usage since it

requires a lot of prior information such as the location and the number of objects which is

not realistic in most applications since the aim is a detection algorithm.

In the literature, there exists many data terms, developed for roads and buildings detec-

tion and extraction. Only few of them use prior information as the geometrical information

which is actually very important for a proper detection. Using geometrical forms regularize

the detection, e.g. taking a road extraction problem, a tree shadow in the middle of the road

is acting as noise, using the prior information stating that a road is a group of connected

segments will bypass this noise easily.

We propose the usage of the Markov Point Process (MPP) framework. MPP framework

is adapted to define some probabilistic models on configuration spaces consisting of an

unknown number of parametric objects. An MPP model also contains two terms, a data

term and a prior term. The data term is very flexible, we can easily insert any of the state-

of-the-arts method for any application such as: buildings or trees detection. The prior term

8 Chapter 1. Introduction

(a) (b)

Figure 1.3: (a) Aerial image of a field with a resolution of 25 cm c©IGN. (b) An aerial image

of an urban zone in Budapest c©András Goro.

(a) (b)

Figure 1.4: (a) Extraction result of roads using a segment process c©Ariana/INRIA. (b)

Extraction result of building using a rectangle process c©Ariana/INRIA.

1.2. Ecological application 9

is also very flexible, we can integrate the geometrical features of the object of interest,

relation between objects, and any other prior information about the problem that can help

obtaining better results.

In the building detection problem, we can insert information stating that buildings have

a tendency to be aligned. In the road detection problem, we can set a minimal angle between

detected roads like prohibiting the detection of two road with less than 50 between them.

So based on the application and the prior information we have about the problem, we can

insert such information into the MPP model to regularize the result.

1.2 Ecological application

In the history of the Earth, mass extinctions are far from rare events. However, the current

speed of planetary extinctions of plant and animal species could be hundred to a thousand

times faster than the most brutal of previous mass extinctions. The unprecedented biotic

crisis due to human activities follows from the destruction and fragmentation of natural

habitats, overfishing, introduction of exotic species, pollution and climate change.

In this thesis we concentrate on two ecological applications which are based on the

counting of birds in flamingo and penguin colonies.

1.2.1 Flamingo counting

Taking into account the population dynamics can be used to anticipate events and thus pro-

vides valuable recommendations for the species preservation. Modern statistical methods

make the usage of demographic models possible to assess the factors likely to influence the

population dynamics and then make recommendations for the management and preservation

of endangered species. These demographic patterns are usually calibrated by expert counts,

allowing to validate predictions. The accuracy of their counting is essential. During the

breeding season or during migration, flamingos (Phoenicopterus roseus) are grouped. The

observers take this opportunity to do the counting. These techniques are based on counting

from aerial photographs. A statement completed by local interpolation is often imprecise

because of the non-stationary density of populations [2]. A count of a complete colony is

very long and tedious [8], and even an expert counting is not 100% correct. An automated

tool for performing this count is therefore very interesting for ecologists.

Here, we propose a new method for estimating the size of the populations of a flamingo

population, based on object based process from aerial images. In figure 1.5, we present an

aerial image of a full flamingo colony with estimated size of 16,000 bird. In figure 1.6,

we present two samples from two different colonies. From those images, we can start to

imagine how the data term will be designed, and what type of prior information can be used

to enhance the results [25].

10 Chapter 1. Introduction

Figure 1.5: An aerial image presenting a flamingo colony in Camargue, in Fangassie island

c©Tour du Valat.

1.2.2 Penguin counting

Predicting the impact of future climate changes on populations and biodiversity is a central

issue in the context of global climate warming. Seabirds are sensitive indicators of changes

in marine ecosystems and might integrate and/or amplify the effects of climate forcing on

lower levels in food chains. It is crucial to understand how and to what extent organisms

are able to cope with climatic variations, especially in polar environments where the effect

of climate change is the strongest. Warm events negatively affect both breeding success and

adult survival of King and Emperor penguins [39]. For King penguins, breeding reveals an

immediate response to forcing during warm phases of El Nino Southern Oscillation affect-

ing food availability close to the colony. Conversely, adult survival decreases with a remote

sea-surface temperature forcing. All previous studies of the breeding cycle of king penguins

depended on time methods that are time consuming for researcher and sometimes harmful

for the birds [27].

Human monitoring and discerning for penguins is very hard. Previous, researchers used

to resort on the usage of flipper band for identification of each bird. This method was often

used until it was found that it harm the birds. In the late 1990s, on a research was accom-

plished by Yvon Le Maho 1 and his team to settle the debate over banding. The result of

this research showed that banded birds have a lower survival rate over unbanded birds [40].

1A physiologist at the French National Center for Scientific Research’s Centre d’Ecologie et Physiologie

Energtiques in Strasbourg, France.

1.2. Ecological application 11

(a) (b)

Figure 1.6: (a) A sample of a flamingo colony in Tuz lac, in Turkey, 2004 c©Tour du Valat.

(b) A sample from the same flamingo colony at 2006 c©Tour du Valat.

Based on this research, Le Maho and his team began using RFID tags, microchips that

are injected under the skin of the penguin instead of tapes. These chips emit radio waves

that researchers can use to track the movements of penguins. The only major advantage

of bands over the microchips is there visibility, since microchips tags requires antennas ev-

erywhere the animal moves. We consequently need long term monitoring system allowing

to estimate each year the number of breeding penguins in the colonies and their breeding

success, that means the number of chicks.

The development of automatic counting system by photographic analysis of penguin

colonies (number of adults and number of chicks) could be a powerful and cheap tool

to monitor demography of penguins in remote areas and to study the impact of climate

changes.

We consequently need a long term monitoring system allowing to estimate each year

the number of breeding penguins in the colonies and their breeding success, that means

the number of chicks. The development of an automatic counting system by photographic

analysis of penguin colonies (number of adults and number of chicks) could be a powerful

and cheap tool to monitor demography of penguins in remote areas and to study the impact

of climate changes [82].

Our ecologist collaborators are interested in studying three different types of penguin

colonies which are: Emperor, King and Adelie penguins. These penguin colonies live in

the following three locations, also indicated in the map in figure 1.7.

1. Petrels island, Adelie land; it’s a part of the Antarctica.

12 Chapter 1. Introduction

Coordonnates: −66.662778◦ 140.001389◦

2. Possession island, in Crozet archipel, in the Indian Ocean.

Coordonnates: −46.4◦ 51.766667◦

3. Kerguelen island.

Figure 1.7: A map representing the three mentioned types of penguins live.

The penguin counting problem in a colony is very different from the flamingo count-

ing problem (and others) since no top view imaging is possible. In figure 1.8, we present

a sample of an emperor penguin colony. In the flamingo counting problem we had a top

view of the scene and imaging was aerial. In the penguin counting case, this is not possible

(feasible). Current civil satellite resolution is not enough (50 cm/pixel by US regulations),

and it is forbidden to fly over these colonies.

1.3 Thesis organization

This thesis is organized as follows, it is composed of three parts: point process models,

optimization methods, and applications.

1.3. Thesis organization 13

Figure 1.8: Photo presenting a part of a King penguin, 2010 c©DEPE / CNRS.

• The first part holds two chapters, the general introduction covered in this chapter and

an introduction to point process models. We start from simple models to the Markov

model that we use in this thesis. In the second chapter, we only consider point process

models of interest, or models that serve as a basis for the selected model in this thesis.

• The second part of this thesis is dedicated to the presentation of our contributions in

two fields, optimization and 3D modeling. We start by covering the existing optimiza-

tion algorithms dedicated to point process model. Then we introduce our proposed

model. The proposed optimization algorithm is inspired from the Multiple birth-

and-death (MBD) algorithm, where we take advantage of the successful graph-cut

algorithm to overcome most of the limitations of the MBD algorithm. This algorithm

is presented in three versions. The first version introduce the idea of the algorithm

and present how is can replace existing algorithms for solving this type of problems,

while have a speed drawback. In a second version we present a possible solution to

the speed limitation where we take advantage of the efficient belief propagation algo-

rithm to boost the performance of the proposed algorithm. Last, we present a third

version which is superior to the previous versions and to the other existing algorithms.

We next introduce a 3D point process model, explaining the basics behind the 3D

model. We also covers how the optimization methods are adapted to handle this type

14 Chapter 1. Introduction

of models.

• The last part of the thesis is dedicated to the applications and conclusions. The pro-

posed algorithms are first tested on synthetic data to study the minimal energy that

can be reached on controlled situation and how the algorithm scales with the problem

size. Next, we validate the proposed optimization algorithms on the flamingo count-

ing problem where our results are validated by ecologists studying the evolution of

the species.

The second application is treated in chapter seven. In this problem, we employ the

proposed 3D point process model introduced for addressing the counting of penguin

colonies.

Finally, we end this thesis by a general conclusion on the contributions. We conclude

on the promising new optimization method methods, and mentioning potential future

work on the other classes of point process models. We also comment on the pro-

posed 3D model, and comment about potential future work for the penguin counting

problem.

Chapter 2

Point Process

By looking to bacteria (or cells) under a microscope, such as those shown in figure 2.1,

we may start asking: Are they randomly distributed? Do they hold a pattern? If there

is a pattern, can we characterize it? Actually, we can describe this distribution: it forms

some clusters (groups), groups are somehow distant, there is a sort of repulsion on the short

range, and they do not overlap. Therefore, new questions arise: Is there a formal way to

characterize this? Can we quantify it? Fortunately the answer is “yes”, we can do this using

Point Process theory [87].

Figure 2.1: A microscopic photo of Francisella tularensis bacteria stained with methylene

blue

2.1 Spatial Point Process

A spatial point process is a random pattern of points in Rd (d-dimensional Euclidean space).

For most applications, d ∈ {1, 2, 3}. Spatial point processes are useful as statistical models

in the analysis of observed patterns of points, where points represent the locations of some

objects of study, like trees, cells, flamingos, and others.

15

16 Chapter 2. Point Process

2.1.1 Basics of 1D and 2D Point Process

The one dimensional model is useful to model sequence of events, e.g. time based events.

For example, the call arrival time in a telephone switch can be modeled as a 1D point

process, as shown in figure 2.2.

Figure 2.2: Time arrival of events, e.g. call to telephone switch.

One dimensional point process has an extra intrinsic property compared to higher di-

mensional version which is the natural ordering (causality). Usually, they are studied by

considering the inter-arrival times, S i = Ti+1 − Ti, for T1 ≤ T2 ≤ . . . , as presented in fig-

ure 2.3. An alternative way to handle this process mathematically is in term of cumulative

counting process. Let Nt =
∑∞

i=1 1{Ti ≤ t}, for defining the number of arriving points up

to time t where 1{. . . } denotes the indicator function. We can also use the interval count-

ing, N(a, b] = Nb − Na, for 0 ≤ a ≤ b which counts the arriving number of points in this

interval [4].

Figure 2.3: Inter-arrival time of events.

In higher dimensions, there is no natural ordering as in one dimension, so inter-arrival

counting concept has to be generalized. The alternative for “interval counting” is “region

counting”. Lets define n(B) as a counting function giving the number of points living in a

region B (cardinality), or more precisely in a bounded closed set B ⊂ Rd, as illustrated in

figure 2.4.

Point processes can also be characterized by what is called the void or vacancy indica-

tor V(.), where V(B) = 1{n(B) = 0}, means that there are no points falling in the set B, as

presented in figure 2.5.

2.1. Spatial Point Process 17

Figure 2.4: Counting variable n(B) for a spatial point process.

Figure 2.5: Void function ν(B) for a spatial point process.

The values of the counting variables n(B) for all subsets B gives sufficient information

to reconstruct completely the position of all the points in the process, the same concept ap-

plies to vacancy indicator.

Let X be a spatial point process on a space S , where S ⊆ Rd. We only consider locally

finite (lf) realisations, which means the number of points n(xB) < ∞ where xB = x ∩ B for

all Borel sets B; and also simple point processes where each realization cannot include the

same point twice. Thus X takes values in the space defined by:

Nl f = {x ⊆ S : n(xB) ≤ ∞ for all bounded B ⊆ S }.

2.1.2 Marked Point Processes

In many stochastic process models, as point process, point locations may not arise as the

primary object of study, but as a component of a more complex model. Often, the point

18 Chapter 2. Point Process

process is the component that carries the information about the locations in time or space

of objects that may themselves have a stochastic structure and stochastic dependency rela-

tions. Going back to the cells example of figure 2.1, we may want to encode some extra

information in the point process, other than the cell location, such as cell size, or cell type

if there are different types of cells and any other information.

Let Y be a point process on T ⊆ Rd, given a mark spaceM, if a random mark m ∈ M is

attached to each point x ∈ Y , then

X = {(x,mx) : x ∈ Y}

is a realization of a marked point process with points in T and mark spaceM. In figure 2.6,

we present a realization of a marked point process, objects are disks specified by a random

radius as marks using Spatstat package 1. If M = {1, . . . , k}, are the marks specifying

different types of points, then the point process becomes a multi-type point process.

●
●

●
●

●● ●
●

●
●

● ●
●

● ●
●

● ●●

● ●

●

●
●

● ●

● ●
● ●

● ● ●
● ●

●
●

●
● ● ●●

●● ●

●

●
●

● ●
● ●●

●
● ●
● ●

● ●
●
●

● ●● ●
● ●● ●

● ●

●

●
●

●
●

● ●
● ● ●

●
● ●

●
●

●● ●● ●●
● ●

●
●

●

● ●
●

●

● ●●
●●

●
● ●

●● ● ●●
● ● ●

●

●
● ●

● ●●
● ● ●

● ●
● ●

● ●

●
●

●
●

●
● ●

Figure 2.6: A realization of marked point process of disks of varying radius. Image simu-

lated using SpatStat package.

2.1.3 Point Processes Models

In this section, we will introduce some of the existing point process models, starting by the

simplest model being the Binomial process.

1Spatial Statistics is an open source software for Spatial Statistics (Spatstat) developed by Adrian Baddeley.

Source: www.spatstat.org

2.1. Spatial Point Process 19

Binomial Point Processes

Let W be a window (a compact set), within which n points are independently and uniformly

distributed (i.i.d.).

Properties of Binomial Point Processes [84]:

• The n points x1, . . . , xn are stochastically independent, i.e. the probability that x1 lies

in the Borel set B1 ⊂ W, ..., that xn lies in the Borel set Bn ⊂ W satisfy the formula

P(x1 ∈ B1, ..., xn ∈ Bn) = P(x1 ∈ B1) × P(x2 ∈ B2) · · · P(xn ∈ Bn),

which means they are disjoint.

• Each of the x1, . . . , xn points is uniformly distributed in W, i.e. for i = 1, . . . , n and

any Borel set B ⊂ W

P(xi ∈ B1) =
A(B)

A(W)
,

where A(.) denotes the area.

The mean number of points per unit area is

λ =
n

A(W)
,

where n is the total number of objects. The mean number of point in the Borel set B is

E[N(B)] = λA(B).

The one dimensional number distributions are:

P(N(B) = k) =

(

n

k

)

pk
B(1 − pB)n−k ,where (k = 0, . . . , n),

where pB =
A(B)
A(W)

. While the m-dimensional number distributions are:

P(N(B1) = k1, . . . ,N(Bm) = km) =
n!

k1! . . . km!

A(B1)k1 . . . A(Bm)km

A(W)n
,

where k1 + · · · + km = n.

20 Chapter 2. Point Process

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

(a)

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

(b)

Figure 2.7: (a) Uniform Poisson intensity 100, n= 114, (b) Non uniform ρ(x, y) ∝ exp(8∗y),

(x, y) ∈ S n=356, where S = [0, 1] × [0, 1] for both.

Poisson Point Processes

Poisson point process is the simplest process, from which other models can be extended.

The points distribution satisfy very strong independence conditions, in particular, the num-

ber of points in disjoint sets are stochastically independent. They often serve as a reference

model for complete spatial randomness. The difference between a Binomial and a Poisson

point process is that the number of point in a Poisson process is not fixed contrary to the

Binomial. This number follows a Poisson distribution based on the intensity of the process.

Different realizations of Binomial point process gives the same number of points, while a

Poisson point process gives different number of points.

Although the two simulations presented in figure 2.7 are obtained with a Poisson point

process, we can obviously notice that there is a main difference between them. To charac-

terize this difference, let us consider a Poisson point process defined on S and specified by

the intensity function ρ : S → [0,∞). The intensity measure µ of the Poisson process is

given by:

µ(B) =

∫

B

ρ(ξ)d(x), B ⊆ S .

The intensity measure µ determines the expected number of points in B and we can say

that ρ(x)d(x) is the probability for the occurrence of a point in an infinitesimally small ball

with center x and volume dx.

2.2. Markov Point Processes 21

Obviously, based on the intensity ρ, we have two types of point process (Poisson or

others), if ρ is constant, the process is homogeneous, otherwise it is inhomogeneous on S .

The simulation in figure 2.7.(a) is homogeneous, with intensity ρ = 100, while the one in

figure 2.7.(b) is inhomogeneous where the intensity ρ(x, y) ∝ exp(8 ∗ y), (x, y) ∈ S .

A point process X on S is Poisson with intensity function ρ, if the following properties

are satisfied [4]:

• for every compact set B ⊆ S , the count N(B) has a Poisson distribution with mean

µ(B).

• if B1, . . . , Bm are disjoint compact sets, then N(B1), . . . ,N(Bm) are independent.

Poisson point process is usually used to construct other models. Starting with a Pois-

son point process, while there exist simple ways for extensions such as mapping, thinning,

superimposing, we can not construct all types of model with those basic techniques. Some

models have to be defined by their probability density function.

We shall expand the Poisson process with density f , with respect to a Poisson(S , ρ), where

S ⊆ Rd, F ⊆ S and µ(S) < ∞ by [71]:

P(X ∈ F) =

∞
∑

n=0

exp(−µ(B))

n!

∫

B

. . .

∫

B

1[{x1, . . . , xn]} ∈ F] f ({x1, . . . , xn]})
n

∏

i=1

ρ(xi)dx1 . . . dxn

(2.1)

where the integral for n = 0 is read as 1[∅ ∈ F], f is said to be the probability density of the

point process with distribution P.

2.2 Markov Point Processes

Markov point processes are point processes with interacting points. They are constructed

by considering a density with respect to a Poisson process and imposing certain conditions

ensuring the Markovian properties.

2.2.1 Conditional Intensity

By reformulating the density function f from equation 2.1, we get [4]:

f ({x1, . . . , xn}) = f (∅) f ({x1})
f (∅)

f ({x1, x2})
f ({x1})

. . .
f ({x1, . . . , xn})

f ({x1, . . . , xn−1})
= f (∅)β∗(x1; ∅)β∗(x2; x1) . . . β∗(xn; {x1, . . . , xn−1}).

22 Chapter 2. Point Process

In this equation, we have introduced a new characterization of the process called exte-

rior conditional distribution, also known as Papangelou conditional intensity, it is defined

by [6]:

β∗(u; x) =
f (x ∪ u)

f (x)
, (2.2)

where x is a configuration x = {x1, . . . , xn}. It can be more convenient to formulate a point

process model in term of its conditional intensity β∗(u; x) rather than its probability density

f (x) since it has a natural interpretation which is easier to understand. In terms of statistical

physics, log f (x ∪ u) − log f (x) is the energy required to add a new point u to an existing

configuration x. In terms of probabilities, β∗(u; x) is the (conditional) probability of having

a point in an infinitesimal region around u given that the rest of X is x.

Using Papangelou conditional intensity we can characterize X (or f):

It is attractive if:

β∗(u; x) ≤ β∗(u; y) whenever x ⊂ y

and repulsive if:

β∗(u; x) ≥ β∗(u; y) whenever x ⊂ y.

As a simple example, for an inhomogeneous Poisson process with density ρ(.), its Pa-

pangelou conditional intensity will be ρ(u) since the points are independent.

Markov Properties

The practical appeal of Markov models lies in the form of the joint probability distribution

for many variables: it is expressible as the product of many conditional probabilities, each

depending on a small number of variables, defined only on adjacent points. This then raises

the possibility of specifying the model purely in terms of local conditional probabilities.

The Papangelou conditional intensity plays this role in point process modeling.

Let ∼ be a reflexive and symmetric relation on S , for all u, v ∈ S , u ∼ u and u ∼ v

implies u ∼ v. We say that u and v are neighbors if u ∼ v, and define the neighborhood of u

by Nu = {v ∈ S : v ∼ u}.

Let us introduce another important property called the hereditary, which states that:

f (x) > 0⇒ f (y) > 0 for y ⊂ x,

2.2. Markov Point Processes 23

which means that if the probability of the set x is greater than zero, this implies that any

subset of x also has a probability greater than zero.

Definition [24]: A simple finite point process with density function f is a Markov

point process if for every x with f (x) > 0 (hereditary) its Papangelou conditional intensity

β∗(u; x) =
f (x∪u)

f (x)
satisfies

β∗(u; x) = g(u, x ∩ Nu). (2.3)

In other words, for f to be the density function of a Markov point process, we require

that, for all x ∈ S , y ∈ S \x, the (n+1) dimensional joint density function fn+1(x∪y) must be

expressible as a product of the n dimensional joint density function fn(x) and some function

g(., .) that depends only on y and those elements of x that lie in the neighborhood of the

extra point y.

For readers who are familiar with Markov random fields, the following properties in

Markov point process have equivalents in MRF theory: the Papangelou conditional in-

tensity is similar to that of the local characteristic of a MRF, the concept of adjacency is

analogous to the neighborhood in Markov random fields (MRF), while the hereditary con-

dition corresponds to the positivity condition in the Hammersley-Clifford theorem for MRF.

Given an interaction function φ : N f → [0,∞), and φ(xi) = 1 whenever there exist

xi, x j ∈ x with xi / x j. A Markov point process x on S , with density f with respect to a

homogeneous Poisson point process with intensity 1, is a Markov point process if and only

if

f (x) =
∏

y⊆x

φ(y)

Knowing that the Papangelou conditional intensity β∗(u; x) =
f (x∪u)

f (x)
, u ∈ S \u depends only

points of x which are neighbors of u.

Gibbs Models

Gibbs and Markov represent the same models. Gibbs models arise in statistical physics for

the description of large interacting particle systems.

In term of statistical physics, X is a finite Gibbs process with energy:

U(x) = −
∑

y⊆x:y,∅
log φ(y) − log Z (2.4)

where Z is the partition function. For a finite point process X with probability density f , the

24 Chapter 2. Point Process

Gibbs density is defined by:

f (x) =
1

Z
exp

(

V0 +
∑

xi∈x
V1(x) +

∑

{xi,x j}⊂x

V2(xi, x j) + . . .

)

, (2.5)

where Vk(.) is the potential of order k. It is often assumed that the effective interaction is

dominated only by interactions between pairs of points and the higher order interactions are

neglected.

2.2.2 Cliques and Interactions Order

A finite subset x on S is called a clique if all points of x are neighbors. By convention, the

empty set and singletons are cliques. The set of cliques is denoted C.

Pairwise Interaction. The density of a pairwise interaction point process is given by:

f (x) ∝
∏

xi∈x
φ({xi})

∏

{xi,x j}⊂x

φ({xi, x j}), (2.6)

where φ(.) is an interaction function. In a Poisson process, φ(xi) is the intensity and

φ({xi, x j}) = 1. The range of interaction is defined by:

R = inf{r > 0 : for all {xi, x j} ⊂ S , φ(xi, x j) = 1 if ||xi − x j|| > r}

The notation ||.|| denotes the usual Euclidean distance.

Examples of pairwise interaction point processes

We consider the homogeneous case. Let φk() be the restriction of φ() to subsets consisting

of k points. e.g. for a pairwise interaction process, the interaction function φk() ≡ 1 for

k > 2.

Example: Strauss process

One of the most well-known homogeneous Markov point processes is the Strauss process.

The pairwise interaction of the process is given by [53]:

φk(x) =































α if k = 0

β if k = 1

γ if k = 2, x ∈ C

1 otherwise

where β ∈]0, 1[is the interaction parameter, α and γ are parameters. Let n(x) be the

number of points in x, the density is usually written as:

f (x) = αβn(x)γs(x) (2.7)

2.2. Markov Point Processes 25

and s(x) is the number of neighbor pairs in x:

s(x) =
∑

{xi,x j}⊆x

1[||xi − x j|| ≤ R] (2.8)

R > 0 is the interaction range. The neighborhood relation is given by:

xi ∼ x j ⇐⇒ ||xi − x j|| < R,

then the process is called a Strauss process with interaction of radius R. This process is re-

pulsive. A special case when γ = ∞ is called the hard core process with hard core R, where

points are prohibited from being closer than distance R apart. The interaction parameter can

be written differently, φ2(r) = γ1[r≤R], where γ ∈ [0, 1], R > 0 and when γ = 0 it becomes a

hard core process.

Ex: Another example with finite range of interaction

By replacing the step interaction function of Strauss by a linear decreasing one, we can get:

φ2(r) = 1[r≤R]
r

R
.

This interaction function is not differentiable at r = R, but it gives an idea of linear

interaction functions.

Ex: An example with infinite range of interaction

A very soft core process can be obtained by:

φ2(r) = 1 − exp(−(r/θ)2),

where θ > 0.

n-order interaction point processes

Pairwise interaction processes provides the simplest examples of Markov point processes.

An example of a process with higher order of interactions is called Geyer’s triplet process,

it is a modification of the Strauss process with density [71]:

f (x) ∝ βn(x)γs(x)δt(x)

where s(x) is the same as in Strauss process (equation 2.8), and:

t(x) =
∑

{xi,x j,xk}⊆x

1[||xi − x j|| ≤ R, ||xi − xk|| ≤ R, ||x j − xk|| ≤ R]

β > 0, and either:

26 Chapter 2. Point Process

1. 0 ≤ γ ≤ and 0 ≤ δ ≤, or

2. γ > 1 and 0 < δ < 1

This process is clearly Markov with respect to R-close relation, with interaction function:

φ(xi) = β, φ({xi, x j}) = γ1[||xi−x j ||≤R]

φ({xi, x j, xk}) = δ1[||xi−x j ||≤R,||xi−xk ||≤R,||x j−xk ||≤R]

and φ(y) = 1 for n(y) ≥ 4. The process is repulsive in case (1) and neither repulsive nor

attractive in case (2).

Inhomogeneous Markov point processes

Inhomogeneous Markov point processes, one way to be is, when the intensity function is

not constant and the interaction between neighboring points is translation invariant. With a

density given by equation 2.6, the first order interaction φ(xi) will become non-constant.

2.2.3 Markov Marked Point Processes

In this section [71], we develop the concept of adding marks which was introduced in sec-

tion 2.1.2 to Markov point processes. Let Poisson(T ×M, ρ) be a marked Poisson process

defined on S = T × M, where T ⊂ Rd, |T | < ∞, M ⊆ Rp, and ρ(ξ,m) = p(m), where p

is a discrete or continuous density onM. In the Poisson(T ×M, ρ) point process, the point

and the marks are independent, the points follow a Poisson process on T , and the marks are

i.i.d. with mark density p. Let X = {(ξ,mξ) : ξ ∈ Y} be a marked point process with respect

to Poisson(T × M, ρ). The density f of X is defined on the N f set of finite marked point

configurations in S = T ×M

N f = {{(ξ1,m1), . . . , (ξ,mn)} ⊂ T ×M : n < ∞}}

For F ⊆ N f , for the continuous case of p,

P(X ∈ F) =

∞
∑

n=0

exp(−µ(B))

n!

∫

B

∫

M

. . .

∫

B

∫

M

1[{(ξ1,m1) . . . , (ξn,mn)]} ∈ F]

f ({(ξ1,m1), . . . , (ξn,mn)]})p(m1) . . . p(mn)dξ1dm1 . . . dξndmn

where the integral for n = 0 is read as exp(−µ(B))1[∅ ∈ F] f (∅). This is a special case of

(2.1), where X can be viewed as a finite point process with a density proportional to

f ({(ξ1,m1) . . . , (ξn,mn)]})p(m1) . . . p(mn)

The Papangelou conditional intensity is defined by

β∗(u; (ξ,m)) =
f ((ξ,m) ∪ u)

f ((ξ,m))
, u ∈ N f , (ξ,m) ∈ (T ×M) \ u

2.2. Markov Point Processes 27

The neighborhood relation ∼ is defined on T×M. The density of the pairwise interaction

becomes

f (x) ∝
∏

ξ∈y
φ((ξ,mξ))

∏

{ξ,η}⊂y

φ({(ξ,mξ), (η,mη)}), (2.9)

for x = {(ξ,mξ) : ξ ∈ y} ∈ N f . e.g., a Strauss disc process withM ⊆ (0,∞) is given by

φ((ξ,mξ)) = β, φ({(ξ,mξ), (η,mη)}) = γ1[||ξ−η||≤mξ+mη]

where β > 0 and 0 ≤ γ ≤ 1. This is Markov with respect to the overlapping disc relation

defined by (ξ,mξ) ∼ (η,mη) if and only if ||ξ − η|| ≤ mξ + mη.

2.2.4 Markov Marked Point Processes

In this section, we develop the concept of adding marks which was introduced in sec-

tion 2.1.2 to Markov point processes.

Let Poisson(T × M, ρ) be a marked Poisson process defined on S = T × M, where

T ⊂ Rd, |T | < ∞,M ⊆ Rp, and ρ(x,mx) = p(m), where p is a discrete or continuous density

on M. In the Poisson(T × M, ρ) point process, the point and the marks are independent,

the points follow a Poisson process on T , and the marks are i.i.d. with mark density p. Let

X = {(x,mx) : x ∈ Y} be a marked point process with respect to Poisson(T ×M, ρ). The

density f of X is defined on the N f set of finite marked point configurations in S = T ×M
as follows:

N f = {{(x1,mx1
), . . . , (xn,mxn

)} ⊂ T ×M : n < ∞}}
For F ⊆ N f , for the continuous case of p,

P(X ∈ F) =

∞
∑

n=0

exp(−µ(B))

n!

∫

B

∫

M

. . .

∫

B

∫

M

1[{(x1,mx1
) . . . , (xn,mxn

)]} ∈ F]

f ({(x1,mx1
), . . . , (xn,mxn

)]})p(m1) . . . p(mn)dx1dm1 . . . dxndmxn

where the integral for n = 0 is read as exp(−µ(B))1[∅ ∈ F] f (∅). This is a special case of

(2.1), where X can be viewed as a finite point process with a density proportional to

f ({(x1,mx1
) . . . , (xn,mxn

)]})p(m1) . . . p(mn)

The Papangelou conditional intensity is defined by

β∗(u; (x,mx)) =
f ((x,mx) ∪ u)

f ((x,mx))
, u ∈ N f , (x,mx) ∈ (T ×M) \ u

The neighborhood relation ∼ is defined on T×M. The density of the pairwise interaction

becomes

f (x) ∝
∏

x∈y
φ((x,mx))

∏

{x,η}⊂y

φ({(x,mx), (η,mη)}) (2.10)

28 Chapter 2. Point Process

A Strauss disc process withM ⊆ (0,∞) is given by

φ((x,mx)) = β, φ({(x,mx), (η,mη)}) = γ1[||x−η||≤mx+mη]

where β > 0 and 0 ≤ γ ≤ 1. This is Markov with respect to the overlapping disc relation

defined by (x,mx) ∼ (η,mη) if and only if ||x − η|| ≤ mx + mη.

2.3 Conclusion

In this chapter we briefly presented an interesting mathematical framework for studying ob-

jects with particular spatial structures.

We started by the very basic 1D point process model to link ideas that most people are

familiar with and developed them one step further to treat 2D problems. For the selected

applications, modeling only objects positions will not be enough. Therefore we introduced

the idea of marks, and showed how on top of any point process model a mark can be asso-

ciated to each point to hold properties of objects of interest.

We presented some of the basic types of point process models, such as the Binomial

process and the Poisson process. Poisson process is essential for the construction of more

sophisticated models such as the Markov process which we introduced later. We discussed

important topics such as the conditional intensity, adjacency and the hereditary condition.

We presented different models with different interaction orders and ranges.

In order to use point process models for objects detection from images, a sampling

mechanism will be required. By sampling from a selected density, we will obtain candi-

date configurations. These configurations are modified inside an optimization algorithm

until finding the optimal configuration that matches the selected model to the input image.

Optimization methods for point process models will be introduced in the next chapter.

Part II

Optimization Methods

29

Chapter 3

Optimization

The optimization process can be a bottleneck for many sophisticated models. The richer the

model is, the more complex its optimization becomes. This phenomenon makes most of the

research focus on very simple models that can easily be optimized, even if these models can

be over-simplistic for some applications.

In the previous chapter, we introduced Point process models ranging from complete

randomness as Poisson model to Gibbs models where interaction exists on cliques. Marks

defining the parameters of a geometric object, coupled with a Gibbs density provide a pow-

erful tool for modeling a scene of objects and interaction between them.

The density of a Gibbs process is defined by an energy written as the sum of potential

over interacting objects (cliques):

f (ω) =
1

Z
exp[−U(ω)] (3.1)

where

U(ω) =



















V0 +
∑

ωi∈ω
V1(ωi) +

∑

{ωi,ω j}∈ω
V2(ωi, ω j) + . . .



















(3.2)

Z is the partition function (normalizing constant), and Vk are the potential on a clique of or-

der k. Minimizing the energy U(ω) corresponds to the detection of the target configuration.

This energy takes into account the interactions between geometric objects Up (prior energy)

and a data energy Ud to fit the configuration to the image:

U(ω) = Ud(ω) + γpUp(ω)

where γp is the weight assigned to the prior term.

31

32 Chapter 3. Optimization

3.1 Optimization

Now that we defined the density, prior and data term (that matches our application) by an

energy function U(.), we want to compute the Maximum Likelihood (ML) estimate with

respect to the density f . The ML estimate corresponds to the configuration that matches

best our model and the input image. The estimate of the global mode of a density is given

by:

ω̂ = argmax f (ω) = argmin U(ω)

Finding the minimum (or maximum), there exist a lot of optimization methods based

on f (ω) properties. For a function such as f (ω) defined in 3.2, unfortunately this is a highly

non-convex function with many local minima. So this requires the usage of a global opti-

mization method.

3.1.1 Simulated annealing

One of the very popular global minimization algorithms is the Simulated Annealing algo-

rithm. When f (ω) is highly non-convex (especially if it is very peaky), simulated annealing

proposed to deal with a slightly different function f 1/T (ω). T is a free parameter, usually

referred to as the temperature, it originates from statistical physics. The idea of the simu-

lated annealing is, starting with a large value for T will make f 1/T (ω) a smoother version

of f (ω), which will make it easier to find the global minimum of this smoother version.

The global minimum of the smoother f (ω) and the smoothed version f 1/T (ω) should be

close. The simulated annealing algorithm keeps decreasing the temperature T parameter

until zero, where f∞(ω) will be concentrated on the set of the global maximum of f (ω).

Stopping the temperature at T = 1 gives the same function, and this is used for sampling,

not optimization.

Simulated annealing may be the most popular algorithm for global minimization for a

large class of problems. To obtain an efficient annealing algorithm, the temperature value

during the algorithm is of crucial importance. The initial temperature is a function of the

problem. The temperature has to be decreased to zero respecting a specific scheduling to

converge to the global minimum. Logarithm scheduling guarantees this global minimum

convergence, but is very slow in practice. It is usually replaced by a geometric one. The

rule of thumb will be, if there is no other existing technique that can solve your problem,

and you seek the global minimum, then you should use simulated annealing.

To find the global minimum of the density f (ω) given by equation 3.2, we need to draw

samples from this density. Due to the complexity of this density, and due to the unknown

dimensionality in advance (we do not know the number of objects we want to detect), we

have to use special sampling algorithms.

3.2. Sampler 33

3.2 Sampler

The basic idea of sampling methods is to obtain a set of samples drawn independently from

the target distribution. Samplers can be divided into two categories, perfect samplers and

non-perfect samplers. For several reasons, some samplers can not be exact in the precise

sense, reasons are mainly due to the fact that random number generator are not perfect or the

algorithm converges to the desired distribution at infinity (limit theorems). Perfect samplers

also do not suffer from the burn-in required by non-perfect samplers [71] [77].

3.2.1 Birth and Death

Samplers such as those based on Markov chain often require a burn-in time, one often dis-

cards an initial set of samples. On the contrary, a perfect sampler does not require this

burn-in time. Birth and death is such a sampler for point process models [71].

Perfect samplers such as birth and death are considered as advances in sampling theory,

and they can guarantee independent samples under certain conditions. Unfortunately, this

algorithm is very slow for image processing applications. The main reasons for birth and

death to be slow are:

• The algorithm is based on very basic kernels, only birth and death, which will hardly

(in very long time) explore the configuration space. A well designed sampler should

incorporate global proposal to explore vast regions of the space and local proposals

to discover finer details of the target distribution [2].

• The algorithm is based on simple perturbations to the current configuration, only one

object is added or removed.

• These simple perturbations, the birth and death kernels, are computationally expen-

sive.

Let u be a newly added object (by birth) on K with respect to
ν(.)
ν(K)

, where ν is a measure

on K. Let B be a bounded closed set B ⊂ Rd, and A ∈ B. Consider that the death choses

uniformly an object from the current configuration to remove. The birth and death kernel

can be written as:

QBD(ω, .) = pb(ω)Qb(ω, .) + pd(ω)Qd(ω, .), (3.3)

where the two kernels are given by:

Qb(ω, A) =

∫

u∈K

1A(ω ∪ u)
ν(du)

ν(K)
(3.4)

34 Chapter 3. Optimization

and

Qd(ω, A) =
∑

u∈ω
1A(ω \ u)

1

n(ω)
, (3.5)

where n(ω) is the number of objects in configuration ω.

Let us define a point process by its density h() with respect to the Poisson measure on K.

Let x be a point configuration on K. We define a birth measure on K by b(x, u),∀u ∈ K, and

a death measure d(ω,ωi),∀ωi ∈ ω. Let B(ω) =
∫

K
b(ω, u)du and D(ω) =

∑

ωi∈ω d(ω,ωi).

The Birth-and-Death algorithm can be summarized by algorithm 3.1.

Algorithm 3.1 Birth-and-Death algorithm

1: while Not converged do

2: Calculate B(ω) and D(ω)

3: p ∼ U(0,1)

4: if p <
B(ω)

B(ω)+D(ω)
then

5: get a random point u ∈ K by sampling
b(ω,.)
B(ω)

6: ω[n+1] ← ω[n] ∪ u

7: else

8: get a random point ωi ∈ ω by sampling
d(ω,.)
D(ω)

9: ω[n+1] ← ω[n] \ ωi

10: end if

11: end while

To guarantee convergence to the target density, the following condition known as de-

tailed balance condition should be met:

b(ω, u)h(ω) = d(ω ∪ u)h(ω, u),∀ω ∈ Ω,∀u ∈ K.

3.2.2 Metropolis Based Samplers

The Monte Carlo Principle

Monte Carlo simulation method is a computational method that makes use of random num-

bers simulation [77] [45]. Monte Carlo method is generally defined to solve the following

problems:

• generate a set of i.i.d set of samples from a target distribution p(x) defined on a high

dimensional space.

• estimate the expectation of a function under this distribution.

3.2. Sampler 35

We are interested here only in the first usage. The set of samples can be used to approximate

a target distribution with the following empirical point-mass function:

pN(x) =
1

N

N
∑

i=1

δxi
(x),

where δxi
(x) is the delta Dirac mass located at xi.

Rejection Sampling

The development of this idea coupled with early days of computer opened the door for a

new sampling category. It was rapidly followed by the development of the Rejection sam-

pling and Importance sampling. Rejection sampling can be summarized as follows. Sam-

pling the target distribution p(ω), is accomplished by sampling of another easy to sample

distribution q(ω) with an accept/reject procedure. A condition on q(ω) to be satisfied is,

p(ω) ≤ Mq(ω), M < ∞. This condition means that the support of the density q(ω) should

contains the support of p(ω). In other words, moves inside q(x) include p(ω) modes, no

part of p(ω) is uncovered or can not be reached by q(ω) moves. The rejection sampling is

presented in algorithm 3.2

Algorithm 3.2 Rejection sampling algorithm

1: i← 1

2: repeat

3: Sample ωi ∼ q(ω) and u ∼ U(0,1)

4: if u <
p(ωi)

Mq(ωi)
then

5: accept ωi

6: i← i + 1

7: else

8: reject sample ωi

9: end if

10: until i = N

There are two ideas to retain from this algorithm:

1. acceptance/rejection idea.

2. the concept of a proposal distribution whose support includes the support of the target

distribution.

The rejection sampling algorithm is of little usage, it suffers from many problems which we

are not going to cover.

36 Chapter 3. Optimization

Monte Carlo Markov Chain

Rejection sampling, importance sampling, and their variants are memory-less samplers,

they do not keep track of previously accepted/rejected samples, and this is one of their ma-

jor drawbacks.

A good and feasible approach to maintain a record of generated samples, is using a

Markov chain. The proposal distribution q(ω|ω[τ]) depends on the current state ω[τ]. The

sequences of generated samples ω[1], ω[2], . . . form a Markov chain, which mimics drawing

from the target distribution p(ω). The aim is to construct a chain that explores the state

space Ω, while spending more time in the most important regions.

A stochastic process ω[i] is called a Markov chain of first order when the following

conditional independence property holds for:

p(ω[i]|ω[i−1], . . . , ω[1]) = p(ω[i]|ω[i−1]) = T (ω[i]|ω[i−1]),

where T (., .) is the transition matrix.

A Markov chain for sampling is designed with, a target density, the required density

p(ω). A first order Markov chain can simply be represented by an initial state probability

p(ω)[0] and a transition matrix T . A homogeneous Markov chain, has an invariant transition

matrix. Starting from any initial distribution, and given a homogeneous chain, the chain

will stabilize at the target density. This stability result plays a fundamental role in Monte

Carlo Markov Chain (MCMC) simulation.

A distribution is invariant for a Markov chain, and also called stationary, if each step

in the chain leaves that distribution invariant. For a homogeneous Markov chain, with a

transition probability T (ω′, ω), the distribution p∗(ω) is invariant if:

p∗(ω) =
∑

ω′
T (ω′, ω)p∗(ω′)

A sufficient, but not necessary condition, to ensure that the required distribution p(ω) is

invariant is to choose a transition probability that satisfies the detailed balance condition:

p∗(ω)T (ω,ω′) = p∗(ω′)T (ω′, ω). (3.6)

A Markov chain that satisfies the detailed balance condition is said to be reversible. An

alternative condition to ensure an invariant distribution p(ω), is that the transition matrix T

should respect the following properties:

• Irreducibility: For any state of the Markov state, there is a positive probability of

visiting all other states.

3.2. Sampler 37

• Aperiodicity: The chain should not get trapped in a cycle.

To sample from a given distribution, it requires not only that the desired distribution

is invariant, but also ergodic. Ergodicidy means that p(ω)τ→∞ converges to the required

invariant distribution p∗(ω), irrespective of the initial distribution choice of p(ω)[0]. With

ergodicity, the invariant distribution is then called the equilibrium distribution [12].

All these properties guarantee the convergence of the chain to the desired invariant

distribution. More attention should be given for accelerating the speed of convergence by a

proper selection of the proposition kernels, which defines the transition matrix.

Metropolis Hastings algorithm

The Metropolis Hastings (MH) is the most popular MCMC algorithm. Previously, the

transition matrix T (ω,ω′) should respect the symmetric condition. Metropolis Hastings

algorithm generalizes this case, and symmetry condition is not required any more. In a

Metropolis Hastings algorithm, with an invariant distribution p(ω), and proposal distribu-

tion q(ω′|ω), the sampling gives a candidate valueω′ given the current valueω. The Markov

chain then moves toward ω′ with acceptance probability:

A(ω,ω′) = min

{

1,
p(ω′)q(ω|ω′)
p(ω)q(ω′|ω)

}

,

otherwise, the chain remains at ω. The MH method is summarized in algorithm 3.3

Algorithm 3.3 Metropolis Hastings algorithm

1: Initialize ω[0]

2: for For i = 0 to N − 1 do

3: Sample u ∼ U[0,1]

4: Sample ω′ ∼ q(ω′|ω[i])

5: if u < A(ω[i], ω′) = min

{

1,
p(ω′)q(ω[i] |ω′)
p(ω[i])q(ω′ |ω[i])

}

then

6: ω[i+1] = ω′

7: else

8: ω[i+1] = ω[i]

9: end if

10: end for

Metropolis Hastings algorithm replaced the need for symmetric kernels by the accep-

tance/rejection phase, which was previously proposed in older sampling algorithms such as

Rejection sampling. In Metropolis Hastings also kernels support should enclose the targeted

invariant density.

38 Chapter 3. Optimization

The Metropolis algorithm assumes a symmetric random walk proposal q(ω′|ω[i]) =

q(ω[i]|ω′), which reduces the acceptance ratio to:

A(ω[i], ω′) = min

{

1,
p(ω′)

p(ω[i])

}

This algorithm does not required the normalization constant of the target distribution.

In section 3.1.1, we mentioned the interest of using simulated annealing. MCMC algo-

rithm can also be used in a simulated annealing scheme to converge to the global minimum

of a target distribution. The MCMC method will have a minor modification by inserting

a simulated annealing scheme, it is summarized in algorithm 3.4. MCMC in a simulated

annealing scheme, not only requires suitable proposal distributions but also an appropriate

cooling schedule.

Algorithm 3.4 Metropolis Hastings algorithm with Simulated Annealing

1: Initialize ω[0], set T0 = T

2: for For i = 0 to N − 1 do

3: Sample u ∼ U[0,1]

4: Sample ω′ ∼ q(ω′|ω[i])

5: if u < A(ω[i], ω′) = min{1, p(ω′)
1
T q(ω[i] |ω′)

p
1
T (ω[i])q(ω′ |ω[i])

} then

6: ω[i+1] = ω′

7: else

8: ω[i+1] = ω[i]

9: Set Ti+1 according to a chosen cooling schedule

10: end if

11: end for

Multiple MCMC Kernels

MCMC has a major advantage, which is the possibility of using multiple kernels. In sec-

tion 3.2.1, we mentioned that a good sampler should incorporate two proposal properties:

global proposal to explore vast regions of the space and local proposals to discover finer

details of the target distribution. This property which was missed in the birth and death

algorithm, can be integrated in the MCMC using the multiple kernels idea.

If the transition kernel K1 and K2 have as invariant distribution p(ω) each, then the hy-

brid kernel K1K2 and the mixture kernel νK1 + (1 − ν)K2 for 0 ≤ ν ≤ 1, are also transition

kernels with invariant distribution p(ω).

3.3. Multiple Birth and Death 39

3.2.3 Reverse Jump MCMC

The standard MCMC algorithm can not sample densities of varying dimensionality. A typ-

ical example would be model selection, where usually models are of different dimensions

(different number of parameters). Point process models in image processing (multiple ob-

ject detection) is another example, where we do not know the number of objects in advance.

It was only after the work presented in [43] and [46] that it was possible to make a space

dimension jump and with interesting kernels.

Informally, the basic idea is, by adding the birth and death kernel from [43] as an extra

kernel to the MCMC, in [46] the author was able to make an MCMC algorithm which is

capable of making a jump in the dimension space. For the mathematical details, please refer

to this paper [46]].

3.3 Multiple Birth and Death

Let us consider a finite system of disks {(x1,m1), . . . (xk,mk)} with elements xi lying in

a compact K ⊂ R2 and marks mi lying in space M. Therefore, an object is defined as

ωi = (xi,mi) ∈ K ×M and ω = {ωi, i = 1, . . . , n} is a configuration. We consider a hard core

distance ǫ between any two elements, such that ∀i, j, d(xi, x j) > ǫ. The configuration space

is then defined as:

Ω =

N
⋃

n=0

Ωn, Ωn = {{ω1, . . . , ωn}, ωi ⊂ K ×M} , (3.7)

where Ωn is the subset of configurations containing exactly n objects (Ω0 = ∅), and N is the

maximum number of discs of a certain fixed radius. We define a reference measure as the

product of the Poisson measure ν(x) on K and the Lebesgue measures µ on the mark space

M:

dπr(ω) = dν(x)

n
∏

i=1

(dµ(mi)) .

This Lebesgue-Poisson measure dπr does not model any interaction. To model inter-

actions, we define a Gibbs measure νV
β

with respect to the Lebesgue-Poisson measure. We

define an energy function H(ω) on the configuration space Ω. The Gibbs distribution hβ(ω)

on Ω is defined by the density pV (ω) =
dνV
β

dπr
(ω) with respect to the Lebesgue-Poisson:

pV (ω) =
z|ω|

Zβ,K
exp{−βH(ω)}, (3.8)

where β and z are positive parameters, and the normalization constant Zβ,K is given by:

Zβ,K =

∫

Ω

z|ω| exp{−βH(ω)}dπr(ω) = 1 +

N
∑

n=1

zn

n!

∫

K

exp−βH(ω)d(ω)

40 Chapter 3. Optimization

The Gibbs density is defined in term of a certain energy function H(.). The energy func-

tion H(.) should formulate prior knowledge of the problem. For a typical counting problem,

H(.) can be given by a term which will attract the discs to objects, and a repulsive term

which will penalize overlapping. Restricting to pairwise interaction, this energy function

H(ω) is given by:

H(ω) =
∑

ωi∈ω
H1(ωi) +

∑

(ωi,ω j)⊂ω
H2(ωi, ω j).

H1 is usually referred to as the data term, it measures the fitness of a proposed object from

the data point of view. To guarantee a sufficient distance between object (non-overlapping),

H2(ωi, ω j) can be defined by:

H2(ωi, ω j) =

{

∞ if d(xi, x j) ≤ C

0 if d(xi, x j) > C
(3.9)

3.3.1 Continuous Birth and Death Dynamics

In order to simulate the proposed model for finding the optimal configuration (for an ob-

ject detection problem), we consider a multiple birth-and-death (MBD) dynamics. Which

defines how our configuration will evolve through iterations until finding the optimal one.

This evolution is accomplished through a generator Lβ on continuous bounded functions f

in Ω. This generator is given by [30]:

(Lβ f)(ω) =
∑

ωi∈ω
eβ(H(ω)−H(ω\ωi))(f (ω \ωi)− f (ω))+ z

∫

V(ω)

(f (ω∪ y)− f (ω))d(ω j) , (3.10)

where V(ω) = K \ D(ω), D(ω) = (∪ωi∈ωBx(ǫ)) ∩ K and Bx(ǫ) is the disc centered at xi

with radius ǫ. In other words, V(ω) is the free space on K. This operator, has two compo-

nents, one that “adds objects” to the space and one that “deletes objects” from the current

configuration. The first term of the operator (equation 3.10 is the deletion component,

which is function of the energy difference ∆H(ωi) based on object removal (ωi), where

∆H(ωi) = H(ω) −H(ω \ωi) = E(ωi, ω \ωi). The second term of equation 3.10, is the birth

component which is uniform on K. The birth intensity on the space K ×M can be defined

as:

b(ω,ωi)dωi = zd(ωi)

and the death intensity on the configuration space is defined by:

d(ω \ ωi, ωi) = eβE(ωi,ω\ωi).

Under this choice, the detailed balance condition holds:

b(ω,ωi)

d(ω \ ωi, ωi)
=

pV (ω)

pV (ω \ ωi)
= zeβE(ωi,ω\ωi).

3.3. Multiple Birth and Death 41

3.3.2 Discrete Approximation

Simulation of this continuous process is not feasible in practice, that is why we consider

the discrete case of the birth-and-death process. The process is approximated by a Markov

chain Tβ,δ(n) where n = 0, 1, 2, . . . on the same space K ×M. This Markov chain should

allow in an infinitesimal time δ the following transitions:

ω→



















ω \ ωa

ω ∪ ωb

ω

where ωa and ωb are configurations such that ωa ⊂ ω and ωb ⊂ ω. Here we only consider

the discrete case of the MBD algorithm, summarized in algorithm 3.5. Let δ be the intensity

of the process (which will be detailed later); first we initialize the algorithm (step 1 and

2), by setting the starting values for δ and β (inverse temperature) used for the simulated

annealing scheme, αδ and αβ are coefficients to decrease the intensity of the process and

the temperature respectively. Then the iterations start in step 4 till step 6, the algorithm

keeps iterating until convergence. At iteration n, a configuration ω is transformed into

ω′′ = ω1 ∪ ω2, where ω1 ⊆ ω and ω2 is a configuration such that ω1 ∩ ω2 = ∅. The

transition associated with the birth of an object in a small volume ∆v ⊂ K is given by [29]:

qδ(v) =

{

∆vδ if ω← ω ∪ ωi

1 − ∆vδ if ω← ω (no birth in ∆v)

This transition is simulated by generating ω′, a realization of a Poisson process of intensity

δ. The death transition probability of an object ωi from the configuration ω[n] ∪ ω′ is given

by:

pδ(ωi) =















δ aβ(ωi)

1+δa(ωi)
if ω← ω \ ωi

1
1+δ aβ(ωi)

if ω← ω (ωi survives)

where

aβ(ωi) = exp
(− β[U(ω \ {ωi}) − U(ω)]

)

This death probability is calculated for every ωi ∈ ω, and the object ωi is killed (re-

moved) with probability pδ(ωi).

The transition operator of the process in the discrete case has the following form:

(Pβ,δ f)(ω) =
∑

ω1⊆ω

∏

ω∈ω1

1

1 + axδ

∏

x∈ω\ω1

axδ

1 + axδ
Ξ−1(ω1)

∞
∑

k=0

∫

Vk(ω1)

(zδ)k

k!
f (ω1∪y1∪. . . yk)dy1 . . . dyk,

where Ξ(ω′) is a normalization factor for the conditional measure under a given configura-

tion ω1.

42 Chapter 3. Optimization

Algorithm 3.5 Multiple Birth and Death

1: n← 0 , ω[0] ← ∅
2: δ = δ[0] , β = β[0]

3: repeat

4: Birth: generate ω′, a realization of a Poisson process of intensity δ

5: ω← ω[n] ∪ ω′

6: Death: For each ωi ∈ ω, calculate the death probability d(ωi) =
δaβ(ωi)

1+δaβ(ωi)
, where

aβ(ωi) = e−β(U(ω\ωi)−U(ω))

7: until Convergence, if not converged, set ω[n+1] = ω, δ[n+1] = δ[n]×αδ, β[n+1] = β[n]×αβ,
n← n + 1 and go to ”Birth”

Dynamic Process Parameters

The multiple birth-and-death dynamic has a small set of parameters to be initialized. These

parameters are the temperature T (or the inverse temperature β), its scheduling parameter

αβ, the process intensity δ and its scheduling parameter αδ. For the simulated annealing,

the multiple birth-and-death dynamic is not different from other stochastic models. The

process we actualy simulate is given by the density ht(x) ∝ h
1
Tt (x). The temperature interact

in the death probability where d(ωi) =
δaβ(ωi)

1+δaβ(ωi)
, and aβ(ωi) = e−β(U(ω\ωi)−U(ω)). Compared

to the energy change this difference (U(ω \ ωi) −U(ω)) at iteration 0, an appropriate initial

temperature value T0 should be selected. The final value of the temperature T∞ should

tends to zero. For temperature scheduling, there exist many possibilities. The logarithmic

scheduling is defined as follows:

Tt =
D

log(t + 1)
.

Using this scheduling, when D is larger that the maximum depth of a local minimum in

the energy, it converges to the global minimum. Unfortunately, this scheduling is very slow

for practical applications. Usually we recall to faster scheduling such as the geometric

scheduling, which is defined by:

Tt = T0 × αt
T .

The second parameter will be the process intensity δ. This parameter δ represents the

time-step for the discretization of the continuous process, and at the same time, this in-

finitesimal small time-step is proportional to the the number of added objects per iteration

in average. Scheduling of δ is still an open problem. We apply the same geometric schedul-

ing to the process intensity

δt = δ0 × αt
δ .

There exists one condition that relates T to δ that has to be respected [30]:

δ exp
(b

T

)

< const ,

3.3. Multiple Birth and Death 43

where b = supω∈Ωsupωi∈ω(U(ω) − U(ω \ ωi)).

Setting those parameters (T, δ, αβ, αδ) is somehow a complex task. Improper selection

will prevent the algorithm from convergence to the global minimum. The initial temper-

ature T0 should just be high enough to accept any move (addition or deletion of objects),

but the algorithm should not stay for a long time in this phase, avoiding time loss. The

temperature then should be decreased with the selected cooling schedule. And if the energy

is very peaky, the cooling should be very slow.

Here we present a more complicated example with a peaky energy. Given a satellite

image of a port presented by figure 3.1(a), the aim is to detect and extract the boats. This

energy is peaky because of objects’ orientation: there exists a special structure (alignment)

in the data. We use ellipses to approximate boats’ shapes. In figure 3.1(b), we present the

detection result, assuming uniform prior on the orientation of the ellipses θ ∼ U[0,π[. The

detection result is not that good, because of the complexity of finding this global minimum.

One possible solution, is to run the algorithm for much longer time. Another solution will

be to reduce the complexity of this problem by using a non-uniform prior on the orientation

parameter. Another alternative would be to add an extra term to the prior term for alignment

between objects. Using a non-uniform prior on the orientation parameter, we get the result

shown in figure 3.1(c). Figure 3.1(d) shows the detection result by adding an alignment

term to the prior energy [9].

Setting the intensity parameter of the process is less crucial than setting the temperature.

If the initial value of the intensity is too small, the algorithm will not find all objects, on the

other side, if it is too high, it will slow down the convergence (extra useless computations)

but will not deteriorate the final detection result. Also, if αδ is too small, αδ ∈]0, 1[, then δ

will decrease too fast, this will result to low detection.

3.3.3 Methods to speed up MBD

Different strategies can be used to accelerate the convergence speed of the MBD algorithm,

we propose here two strategies [28].

Data Driven Birth

The configuration space K ×M is very large, and the density of objects varies a lot through

the whole space. Taking a flamingo counting problem, by examining figure 3.2, we can see

that for the space K, the density of object varies a lot. Some regions contain no flamin-

gos at all, some regions contain only very few and other regions are very dense. Using a

pre-processing hard segmentation method can harm the final result if the segmentation is

erroneous or inaccurate. The alternative we propose is to roughly estimate the intensity

44 Chapter 3. Optimization

(a) (b)

(c) (d)

Figure 3.1: (a) photograph of vessels in France c©CNES. (b) Detection result when using a

uniform prior on boats orientations. (c) Detection result when using a non-uniform prior on

the orientations. (d) Result when adding an alignment term to the prior energy.

ρ(x, y) (section 2.1.3).

For the flamingo case, we usually use a circle of fixed radius to scan the whole image.

Calculating the fitness of this circle at this position, and this gives a very rough and fast

estimate of the density. We call this estimated intensity, the birth map. It simply tells

the algorithm “where” (in K) to spend more calculation time. We note this birth map by

B(s), s ∈ K defined on every pixel of the image. We use the birth map in the birth step,

where birth of object becomes data driven. At a pixel s, the higher the value of B(s), the

higher the chance to propose an object centered in this pixel s. The values inside the birth

map are normalized between 1 and 10, which means that: there is no place were we forbid

birth, and the higher the B(s) value the higher the birth probability. The MBD algorithm is

then slightly modified when using a birth map, it is summarized in algorithm 3.6.

In this way we use a non-uniform prior on the image space K for data driven birth. The

same idea applies to the parameters M. Considering a building detection problem, the au-

thors in [10] propose using a birth map that also encodes other parameters such as rectangle

sizes and orientation at each image pixel. Rectangles are used for building detection, with

parameters given by length, width and orientation. The birth map can encode information

3.3. Multiple Birth and Death 45

Figure 3.2: An aerial image presenting a flamingo colony in Camargue, in Fangassie island.

Algorithm 3.6 Multiple Birth and Death

1: n← 0 , ω[0] ← ∅
2: δ = δ[0] , β = β[0]

3: repeat

4: Calculate the birth map: ∀s ∈ K, b(s) =
B(s)

∑

s∈K b(s)

5: Birth: generate ω′, a realization of a non-uniform Poisson process of intensity δ and

approximated intensity by B(s)

6: ω← ω[n] ∪ ω′

7: Death: For each ωi ∈ ω, calculate the death probability d(ωi) =
δaβ(ωi)

1+δaβ(ωi)
, where

aβ(ωi) = e−β(U(ω\ωi)−U(ω))

8: until Convergence, if not converged, set ω[n+1] = ω, δ[n+1] = δ[n]×αδ, β[n+1] = β[n]×αβ,
n← n + 1

about these parameters, so in the birth map at pixel s, the generated parameters will be sam-

pled from the estimated non-uniform prior over the length, width and orientation.

Sorting Objects

The second modification we propose alters during the death step. In this step, the death

probability of each object ωi ∈ ω is calculated, and some of the objects will be killed

ω′′ = ω \ ω1. Given that ω is an unordered set, imposing an order for the death test will

not change the final result after convergence, but will affect ω
′′[n]. We propose sorting

the objects before the death step, starting by the objects with bad data term. Given a set of

overlapping objects, starting by the ones with worth data terms, will increase the probability

46 Chapter 3. Optimization

that these objects will be removed and those with good data term will be kept specially after

the penalization reduction coming from the prior term. While this sorting does not affect

the final result quality, it was found to have a great impact on the speed of convergence of

the MBD algorithm.

3.3.4 Convergence Test

The convergence test for this type of models with a highly non-convex function is harder

to verify than for convex models which uses methods such as gradient descent algorithms.

Usually, we consider that the algorithm has converged if the energy has not decreased for

twenty successive iterations. The number of objects also can be used in a similar way: if it

stays constant for n successive iterations, then the algorithm has converged.

3.4 Conclusion

The optimization issue plays a crucial role due to the high dimension of the configuration

space. Until very recently, the only existing methods to optimize MPP models were fully

stochastic.

Kernels Evolution in Point Process models:

• In a multiple object detection problem, the dimensionality of a set is unknown in ad-

vance, as it is the number of objects to be detected. This means that only samplers

that can make dimensional jump can be used. This was only possible after the devel-

opment of a birth-death kernel by Geyer et al. [43]. This kernel makes simple and

global perturbations.

• MCMC is a flexible sampler, it can incorporate different kernels that are problem

specific, but it can not make a dimensional jump. By integrating the birth-death

kernel into MCMC, Green obtained a new sampler that can also make dimensional

jump. This sampler is known as RJMCMC. With this sampler we can make global

and local perturbations but only simple.

• Using the previous samplers, we can only make simple perturbations. The problem is

that in practice those samplers are very slow. Due to the work of Descombes et al [3],

it became possible to make multiple perturbations. They developed a multiple-birth-

death kernel, and this is global multiple perturbations kernel.

Although those algorithms may be able to optimize very complex models with huge

configuration space, they are very slow in practice. They are all full stochastic embedded in

a simulated annealing scheme. It is only very recently that a semi-deterministic optimizer

was introduced by Gamal et al [38]. This optimizer is known as Multiple Birth and Cut

3.4. Conclusion 47

(MBC).

In the next chapter, we describe the new MBC optimization method. It combines ideas

from the (MBD) algorithm and from the Graph-Cut algorithm. This method holds two parts,

the stochastic part to explore a very large configuration space, and the deterministic part

which makes the optimal selection between an existing configuration and a newly proposed

one.

Chapter 4

Multiple Birth and Cut Algorithm

Initially, samplers of similar models, such as Markov random fields (MRF), either stochastic

or deterministic, were based only on standard moves within the framework of Metropolis

Hasting dynamics, where only one pixel changes at a time. During the last decade, multiple

moves methods emerged and most of them are based on graph cut techniques [16].

Point process samplers have also evolved from simple perturbations (standard moves)

as in birth and death algorithm, where at each iteration, one object is either added to or

removed from the current configuration [71, 87]. Such algorithms are extremely slow in

image processing. Therefore, the Reverse Jump Markov Chain Monte Carlo algorithm [46]

has been widely used for MPP in image processing [83, 74, 41] due to its flexibility, espe-

cially when using updating schemes such as Metropolis Hasting [46]. On the birth step, we

now add moves such as split, translate, rotate, etc. This algorithm is much faster in practice

than the Birth and Death algorithm. The main limitation is, it still treats one or two objects

at a time and has a rejection rate. Later, the Multiple Birth and Death algorithm (MBD) was

proposed allowing multiple perturbations [30].

In this chapter we present our contribution in the development of a new multiple per-

turbation optimization technique, named Multiple Birth and Cut (MBC) [38]. It combines

ideas from MBD and the popular graph cut algorithm. The MBC algorithm’s major ad-

vantage is the very reduced number of parameters as this algorithm does not involve the

simulated annealing scheme and therefore the critical step of defining the cool schedule.

We propose an iterative algorithm to explore the configuration space. We choose between

current objects and newly proposed ones using binary graph cuts. In the second part of this

work, we propose some modifications to this first algorithm in order to increase its speed

of convergence. The algorithm starts by proposing a dense configuration of objects from

which the best candidates are selected using the belief propagation algorithm. Next, this

candidate configuration is combined with the current configuration using the binary graph

cut.

49

50 Chapter 4. Multiple Birth and Cut Algorithm

We also discuss the main characteristics (that we consider to be essential) for the design

of an efficient optimizer in the context of highly non-convex functions. Given that the prob-

ability density is multimodal, and given the size of the configuration space, an exploration

phase is essential at the beginning of the algorithm. Next, the fine details of the density

function should be discovered. Inside a third version of the MBC algorithem, we propose a

new kernel to efficiently explore the different modes of the density, and new kernels to dis-

cover the details of each mode. We study the algorithm theoretically to express convergence

speeds and to select its best parameters. We also present a simple and generic method to

parallelize the optimization of a specific class of MPP models.

4.1 Graph Cut

In the last few years, a new approach of energy minimization based on graph cuts has

emerged in computer vision. Graph cuts efficiently solved the optimization problem of

certain energy families by finding either a global or a local minimum with a very high

speed of convergence. This technique is based on a special graph construction from the

energy function to be minimized. Finding the minimum cut of this graph is equivalent

to minimizing the energy. The minimum cut is efficiently calculated using the max flow

algorithm. We start by reviewing the max-flow min-cut theory [22].

4.1.1 Review of graph cut

Graph theory has emerged in many applications, and computer vision is not an exception.

Many problem can be modeled by a graph, either directed or undirected, and graph algo-

rithms can be applied to find solution of these problems.

A flow network can be represented by a directed graph. Finding the maximum rate at

which we can ship material from the source s to the destination t respecting the network

capacity, is known as the maximum-flow problem. Connection can be direct of indirect

between cities, and they have capacities. Capacities can be e.g. the number of cars that can

be leased from city A to city B. Once we know that information, one interesting question

would be: How many units can we send from s to t through the existing network? With this

modeling, the flow in a network can be anything, water, electric current, or information in

a communication network. There exist efficient algorithms for solving this problem, where

the most classic is the Ford and Fulkerson method. Another efficient algorithm is known as

push-relabel, and has proven to be very fast in practice [22].

Flow networks

Let G = (V, E) be a flow network which consists of a finite set V of vertices, a set E ⊂ V2

of edges, with a capacity function c. Let each edge (u, v) ∈ E have a nonnegative capacity

4.1. Graph Cut 51

c(u, v) ≥ 0. If E contains an edge (u, v), then (v, u) < E, and we disallow self-loop. There

are two special nodes in a flow network, the source s and the sink t. We assume that any

vertex v ∈ V lies on some path s{ v{ t. A flow in G is a function f : V × V → R which

satisfies the following [22]:

• Capacity constraints: For all u, v ∈ V , we require 0 ≤ f (u, v) ≤ c(u, v)

• Flow conservation: For all u ∈ V − {s, t}, we require
∑

v∈V f (v, u) =
∑

v∈V f (u, v)

where f (u, v) is a nonnegative quantity that represents the flow from vertex u to vertex v.

Let the value | f | of the flow f be defined by:

| f | =
∑

v∈V
f (s, v) −

∑

v∈V
f (v, s)

In a max-flow problem, given a flow network G, we wish to find the maximum flow

value.

Ford-Fulkerson method

First, we call it method not algorithm because it encompasses several implementations with

different running times. Ford-Fulkerson method depends on three notions: residual net-

work, augmenting path, and cuts. We will explain these notions in the sequel. A coarse

representation of the Ford-Fulkerson method can be summarized by algorithm 4.1 [22].

Algorithm 4.1 Ford-Fulkerson method

1: Initialize flow f ← 0

2: while There exists an augmenting path p in the residual network G f do

3: augment flow f along p

4: end while

5: return f

Residual networks:

Given a flow network G and a flow f , the residual network G f consists of edges with

capacities that represents how we can change the flow on edges of G. Let c f be the residual

capacity, defined by c f (u, v) = c(u, v) − f (u, v). If c f (u, v) is positive, the (u, v) edge from

flow network G appears in the residual network G f . During the algorithm iteration, it may

be required to decrease a flow f (u, v). To accomplish this decreasing, by sending back the

flow, an new edge (v, u) will be added to G f that did not exist in G. This edge can admit a

flow in the opposite direction to (u, v), at most canceling the flow on (u, v). More formally,

the residual capacity is defined by [22]:

c f (u, v) =



















c(u, v) − f (u, v) if (u, v) ∈ E

f (v, u) if (v, u) ∈ E

0 otherwise .

52 Chapter 4. Multiple Birth and Cut Algorithm

The residual network G f is similar to the flow network G, with capacities c f and the

exception that it can contain an edge and its reversal.

Augmenting path:

A flow in a residual network provides a roadmap for increasing the flow in the original

flow network. Let f be the flow in G, and let f ′ be the flow in the corresponding residual

network G f . We define f ↑ f ′, the augmentation of flow f by f ′ as:

f ↑ f ′ =

{

f (u, v) + f ′(u, v) − f (v, u) if (u, v) ∈ E

0 otherwise .

Given a flow network G, and a flow f , an augmentation path p is a path from s to t in

the residual network G f . We can increase the flow in edge (u, v) up to capacity c f (u, v). The

maximum value of this possible flow incrementation in an augmented path p is called the

residual capacity of p, and is given by:

c f (p) = min{c f (u, v) : (u, v) is on p}.

Cuts:

The Ford-Fulkerson method keeps incrementing the flow along augmentation paths until

finding the maximum flow. How does the algorithm stops? The max-flow min-cut theorem,

tells us that a flow is maximum if and only if its residual network contains no augmenting

path.

A cut c(S ,T) is a partition of the vertices (S ∪ T = V and S ∩ T = ∅), such that s ∈ S

and t ∈ T . If f is a flow in G, the net flow f (S ,T) is defined by [22]:

f (S ,T) =
∑

u∈S ,v∈T
f (u, v) −

∑

u∈S ,v∈T
f (v, u).

The capacity of the cut C(S ,T) is given by:

c(S ,T) =
∑

u∈S ,v∈T
c(u, v).

A minimum cut of a network is a cut whose capacity is minimum over all cuts of the

network. The capacity counts only for edges going from S to T , while the flow counts for

the flow from S to T minus the inverse flow from T to S .

4.1. Graph Cut 53

The value of any flow f is bounded from above by the capacity of any cut of G, here is

the proof:

| f | = f (S ,T)

=
∑

u∈S ,v∈T
f (u, v) −

∑

u∈S ,v∈T
f (v, u)

≤
∑

u∈S ,v∈T
f (u, v)

≤
∑

u∈S ,v∈T
c(u, v)

= c(S ,T)

The max-flow min-cut theorem states that: If f is a flow in a network G(V, E), with

source s and sink t, then the following conditions are equivalent:

1. f is a maximum flow in G

2. The residual network G f contains no augmentation paths

3. | f | = c(S ,T) for some cut (S ,T) of G

In other words, the max-flow is equal to the capacity of a minimum cut. The basic

Ford-Fulkerson algorithm is summarized in algorithm 4.2 [22].

Algorithm 4.2 Ford-Fulkerson (G, s, t)

1: for each edge (u, v) ∈ G.E do

2: (u, v). f = 0

3: end for

4: while There exists an augmenting path p in the residual network G f do

5: c f (p) = min{c f (u, v) : (u, v) is on p}
6: for each edge (u, v) ∈ p do

7:

8: if (u, v) ∈ E then

9: (u, v). f = (u, v). f + c f (p)

10: else

11: (v, u). f = (v, u). f − c f (p)

12: end if

13: end for

14: end while

15: return f

In steps (1-3) of the algorithm, the flow is initialized to zero. The steps (4-14), the while

loop, it continuously finds an augmenting path p in G f , and augment the flow f along p by

the residual capacity c f (p). Special care is needed for the selection of the used method to

find the augmentation path, otherwise the algorithm might be very slow.

54 Chapter 4. Multiple Birth and Cut Algorithm

4.1.2 Graph Cut in Computer Vision

The use of graph cuts in computer vision was first introduced in [47]. The authors demon-

strated how a Maximum a Posteriori (MAP) estimate of a binary MRF can be exactly cal-

culated using the maximum flow algorithm. They used the Ford-Fulkerson method for

max-flow calculation. This work was a break through for the usage of models such as MRF.

Previously, MAP estimate of Markov model was only possible either with global optimiza-

tion methods as simulated annealing, or with local optimization methods as Iterative Condi-

tional Mode (ICM). ICM being a local optimizer, is not of great usage because it requires a

“good” initialization. Besides, nothing guarantees the quality of found local minimum. For

the simulated annealing method, which is very powerful, and can deal with very complex

models, unfortunately it is very slow in practice, which makes its usage constrained and

limited in real computer vision applications. It was only after the introduction of the usage

of maxflow (min-cut) [47] that the MRF usage has boomed in computer vision application.

After that, graph cut has been extensively used to compute the MAP solution for a

large number of applications for discrete pixel labeling. It has been applied for solving

many problems: image segmentation using geometric cues [15] or regional cues based on

Gaussian mixture models [13], video segmentation [59] taking advantage of the redundancy

between video frames (dynamic graph cuts), image restoration [51], stereo vision [79, 58],

and many others.

Binary Image Segmentation

Here we describe a simple example of graph cut algorithm for solving an image process-

ing problem. Many computer vision problems can be formulated as energy minimization

problems. Energy minimization to solve the pixel labeling problem (segmentation) can be

represented as follows: given an input set of pixels P = {p1, . . . , pn} and a set of labels

L = {l1, . . . , lm}, the goal is to find a labeling f : P → L which minimizes some energy

function. We are interested in binary labeling, where L = {0, 1}. A standard form of the

energy function is [60]:

E(f) =
∑

p∈P
Dp(fp) +

∑

p∼q

Vp,q(fp, fq) (4.1)

where p and q are neighbor pixels. Dp(fp) is a function based on the observed data, it gives

the cost of assigning the label fp to pixel p. Vp,q(fp, fq) is the cost of assigning labels (fp, fq)

to pixels (p, q), where (p, q) are neighbors. Dp(fp) is always referred to as the data term

and Vp,q(fp, fq) as the smoothness or prior term.

Let us consider the graph shown in figure 4.1. Let G = (V, E, c) be a directed graph

which consists of:

4.1. Graph Cut 55

Figure 4.1: A simple 2D segmentation example for a 3 × 3 image, and the minimal cut

indicated by the dotted line [72].

• a finite set V of vertices (or nodes), where each vertex represents a pixel from an

image and two special nodes s and t (terminals)

• a set E of edges (links) of two types: n-links connecting pixel nodes, and t-links

connecting pixels to s and t

• a cost assigned to each edge

The n-links edges are assigned the prior energy between neighbor pixels Vp,q(fp, fq), the

cost of assigning different labels to neighbor pixels. The t-links are assigned the data term

energy Dp(fp) ∈ [0, 1] to the s terminal, and 1−Dp(fp) to the t terminal, which represent the

cost of assigning label 0 or 1 to pixel p. By applying the max-flow algorithm on this graph

G, and finding the minimal cut based on the assigned edge costs, the result corresponds to

the MAP estimate of a binary segmentation of this MRF.

4.1.3 Convergence

In [47], the authors demonstrated how the MAP estimate of a binary MRF can be exactly

calculated using the maximum flow algorithm. For this case (binary case), the algorithm

converge to the global minimum of the energy. Later, it has been extended to multiple

labels MRF [17, 50]. The multilabel extensions are known as α- expansion and α− β swap.

α-expansion converge to a better energy minimum than α−β swap. Both converges to local

minima, but α-expansion guaranteed that the found local minimum is within a known factor

56 Chapter 4. Multiple Birth and Cut Algorithm

of the global minimum, and this factor is given by:

c = max
p∼q

maxα,β V(α, β)

minα,β V(α, β)

Being able to use α-expansion or α − β swap depends on the properties of the prior

(smoothness) term V(., .). The properties are:

1. V(α, β) ⇐⇒ α = β

2. V(α, β) = V(β, α) ≥ 0

3. V(α, β) ≤ V(α, γ) + V(γ, α)

If all conditions are met, then V(., .) is a metric, and α-expansion can be used, but if

only the first two conditions are met, then only α − β swap can be used. As long as V(., .) is

a metric, α-expansion should be used.

4.2 Multiple Birth and Cut

Graph cut algorithm usage in computer vision has raised during the last decade for two main

reasons:

• Convergence speed of the algorithm to the energy minimum (either local or global).

• Does not require a stochastic relaxation algorithm (simulated annealing).

Although with the help of simulated annealing, we can solve very complex problems

that no other method can solve, its usage has many drawbacks. Simulated annealing disad-

vantages are:

• Whatever the used scheduling (logarithm, geometric, . . .), the algorithm is (very)

slow.

• Setting the temperature parameter and the critical cooling schedule is a complex task

and improper selection will prevent proper convergence.

• Since in practice we cannot use a logarithm scheduling, it is hard to judge the quality

of the final result. One can never be sure that the found result corresponds to the

global minimum, maybe the temperature decrement was too fast, or maybe the initial

temperature was not high enough, etc.

4.2. Multiple Birth and Cut 57

4.2.1 Can we use graph cut to optimize a MPP models?

In [65], the authors presented an interesting graph model for a mosaic problem. The main

goal of their work was to simulate classic mosaics from digital images. For good visual ap-

pearance, mosaics should satisfy constraints such as being non-overlapping. They generate

a set of candidate layers containing tiles respecting the constraints and they “stitch” them in

an iterative way. In the “stitching process”, the selection between tiles of the current layer

and a new candidate layer is solved by graph cut algorithm. This work was the inspiration

source for our algorithm.

In order to use graph cut to optimize Markov point process models, we have to address

the following questions:

• In usual MRF graph representation, each node represents a pixel. What does each

node represent in a MPP model?

→ The graph representation is very flexible, while in most of the existing applica-

tions, nodes represent pixels, in our application, each node represents an object.

• Graph cut is generally presented to solve a labeling problem: What do these labels

represent?

• How many labels do we need?

• What could be the labels in the optimization of an MPP model?

→ Having a set of candidate objects, binary label was the basic intuition. We propose

using two labels: one refers to keeping an object and the other refers to removing an

object.

• Do we satisfy the regularity (submodularity) condition?

→ In [60], the authors showed which class of energy function can be minimized by

graph cuts. One important result from this paper is the submodularity condition (regularity)

which must be satisfied, it is a necessary and sufficient condition. This condition represents

the labeling homogeneity. For a two-neighbor pixel configuration (i, j) for which we assign

labels {0, 1}, the condition is [60]:

Ei, j(0, 0) + Ei, j(1, 1) ≤ Ei, j(0, 1) + Ei, j(1, 0) (4.2)

which states that the energy (cost) required for assigning the same label to neighbor pixels

should be less than or equal to the energy for assigning them different labels. This term

applies to two overlapping objects. This inequality should be satisfied as soon as interaction

between object exists. As stated in [47], it is possible to compute the global minimum of

submodular binary energies.

58 Chapter 4. Multiple Birth and Cut Algorithm

Figure 4.2: The actual object is shown in green, and two candidate objects i and j with

different degrees of fitness to the real object.

Taking the example shown in figure 4.2, in the background we see the real object in

green, and we have two candidate objects in blue i and j. It is clear that object i should be

kept and object j should be removed. To verify that we meet the regularity condition, we

plug the proposed labels keep,remove in equation 4.2, which becomes:

Ei, j(keep, keep) + Ei, j(remove, remove) ≤ Ei, j(keep, remove) + Ei, j(remove, keep). (4.3)

The interpretation of the regularity condition in this form, it says that the energy re-

quired to keep both overlapping objects (i, j) or remove both, is less than or equal to the

energy required to keep one and remove the other. Actually, we would prefer the following

inequality:

Ei, j(keep, remove) + Ei, j(remove, keep) ≤ Ei, j(keep, keep) + Ei, j(remove, remove). (4.4)

This means that the energy required to ”keep one” and ”remove the other”, is less than

or equal to ”keep both” or ”remove both”. We would like this term to select which candidate

object of i and j is the best and keep it, and remove the other one. How to get rid of this

problem?

4.2.2 From Supermodular to submodular

Let us consider two configurations ω and ω′. The solution we propose is the following, let

us consider objects coming from two different configurations, let i ∈ ω and j ∈ ω′. Let

objects belonging to ω and ω′ interpret the labels in a different (opposite) way. We consider

a binary case, with two labels {0, 1}, interpreted as follows:

• if object i ∈ ω is assigned a label ’0’, this means this object is ’kept’

4.2. Multiple Birth and Cut 59

• if object i ∈ ω is assigned a label ’1’, this means this object is ’removed’ (killed)

and the opposite for object j ∈ ω′

• if object j ∈ ω′ is assigned a label ’1’, this means this object ’kept’

• if object j ∈ ω′ is assigned a label ’0’, this means this object is ’removed’ (killed)

Using this reversed interpretation, we converted the supermodular terms into submodu-

lar terms to meet the submodularity condition. In addition to meeting the regularity condi-

tion, the solution corresponds to our goal.

4.2.3 MBC algorithm version 1

We propose an algorithm named Multiple Birth and Cut (MBC) [38, 37] that is described in

the sequel, using figure 4.3 and summarized in algorithm 4.3.

Initialization: In step (1) of the algorithm we initialize our unique variable R, which

represents the number of objects to be proposed at each iteration. This parameter R can eas-

ily be set, we set it to one fifth of the expected population size. Different initializations only

affect the speed of convergence but not the final detection results. In step (2), we generate

a candidate configuration of non-overlapping objects ω′ which we set as initial configura-

tion ω[0]. The set of non-overlapping ellipses ω′ is generated as follows: each randomly

proposed object ωi (with position and mark) is rejected if it intersects at least one of the

existing ellipses in the current ω′, otherwise it is kept [84]. As an example, let the current

configuration be ω[0] = {a, b, c} presented in figure 4.3(a) in green. Now the algorithm starts

iterating between the Birth and the Cut steps until convergence.

Birth: In the birth step we propose a new configuration ω′, e.g., ω′ = {d, e, f , g} of

“non-overlapping” ellipses, which are shown in figure 4.3(a) in blue. Note that objects

{d, e} have an overlapping of less than our defined threshold (10%), so we consider them as

non-overlapping, as stated in section (6.6).

Cut:

• Graph construction: In the cut step, a graph is constructed for ω = ω[n] ∪ ω′ as

shown in figure 4.3(b), each node represents an object (ωi), contrary to most graph

cut problems where each node represents one pixel1. Edge weights are assigned as

shown in tables 4.1 and 4.2. For each object ωi ∈ ω[n], the weight assigned to the

edge (t-link) to the source terminal is the data term ud(ωi) and 1 − ud(ωi) to the sink,

1In a standard graph cut binary image restoration problem, for an image of size N2, the required graph is of

size N2 (number of nodes). For a MPP problem, for an image of size N2, the size of the graph is M (number of

objects), where M ≪ N.

60 Chapter 4. Multiple Birth and Cut Algorithm

while it is the inverse for ωi ∈ ω′, it is 1 − ud(ωi) to the source and ud(ωi) to the

sink. For the edges between objects (n-links), we assign the prior term: ∞ if they are

overlapping neighbors, otherwise it is zero.

• Optimizing: We apply the graph cut algorithm on this graph, to assign labels {0, 1}.
The key element to satisfy the submodularity condition (equation 4.2), is that the la-

beling (generated by the graph cut optimization) is differently interpreted for the cur-

rent configuration ω[n] and the newly proposed one ω′. Our energy contains indeed

supermodular terms, which are made submodular by inverting label interpretations.

Label ’1’ forωi ∈ ω[n] stands for ’keep’ this object, label ’0’ stands for ’kill’ (remove)

this object whereas for ωi ∈ ω′ label ’1’ for stands for ’kill’ this object and label ’0’

stands for to ’keep’ this object.

Based on this labeling interpretation, and on the defined interaction cost from ta-

ble 4.2, the regularity condition (4.2) is satisfied since the left hand side will always

be less than the right hand side which is equal to infinity.

Convergence test:

Optimization algorithm convergence for this type of model with a highly non-convex func-

tion is harder to verify than for convex models with gradient descent algorithms. Usually,

we consider that the algorithm has converged if the energy has not decreased for twenty

successive iterations. The number of objects also can be used in a similar way: if it stays

constant for n successive iterations, then the algorithm has converged. For convergence to

the global minimum of the energy, the energy stabilization is what should be considered.

The reason for that is, this algorithm has a very high detection rate, most of the objects or

all are detected very fast, so the number of objects stabilize quite fast, while the algorithm

still requires more time for locally refining each object.

Algorithm 4.3 Multiple Birth and Cut

1: n← 0 , R← const

2: generate ω′ , ω[0] ← ω′
3: repeat

4: Birth: generate ω′

5: ω← ω[n] ∪ ω′
6: Cut: ω[n+1] ← Cut(ω[n] ∪ ω′) (optimize with graph cuts)

7: until converged

Going back to equation 4.2, and the reversed labeling trick, we can see a strong condi-

tion that has to be respected. The condition is, with this representation, we can solve (get rid

of) overlapping objects, only if we can separate a given configuration into two sets, where

each set, internally, should not contain any overlap. Any newly proposed configuration ω′,

4.2. Multiple Birth and Cut 61

(a) (b)

Figure 4.3: (a) Image containing a current configuration ω[n] in green and a candidate con-

figuration ω′ in blue. (b) The special graph constructed for ω[n] ∪ ω′.

Table 4.1: Data Term

Config \ fs 0 1

ωi ∈ ω[n] ud(ωi) 1 − ud(ωi)

ωi ∈ ω′ 1 − ud(ωi) ud(ωi)

should respect this non-overlapping condition. And of course any resultant configuration

ω[n+1] from the Cut-step, where ω[n+1] ← Cut(ω∪ω[n]), will respect this condition, and this

is necessary, since ω[n+1] will be used in the next Cut-step.

This condition limits the convergence speed of the MBC algorithm in this form.

4.2.4 Which algorithm to use?

If breadth-first search is used to find the augmentation path in the graph, the total running

time of the Ford-Fulkerson algorithm will be O(E| f |). An improvement of this basic algo-

rithm is known as Edmonds-Karps algorithm, and it has a total running time of O(VE2).

There exist another very fast algorithm known as push-relabel with a running time O(V2E).

Table 4.2: Prior Term

(fs, fr) Vsr(fs, fr)

(0,0) 0

(0,1) ∞
(1,0) 0

(1,1) 0

62 Chapter 4. Multiple Birth and Cut Algorithm

We will use the Ford-Fulkerson method since the number of existing edges E during the

MBC algorithm iterations are much smaller than the number of vertices V .

4.2.5 Analysis of the MBC algorithm

By analyzing this version of the MBC algorithm, and comparing it to the MBD algorithm,

we found the following cons and pros:

Advantages:

1. It is an efficient algorithm to minimize a highly non-convex function

2. No simulated annealing and other associated parameters

3. The quality of the detection result is perfect (will be shown in the next chapter)

The disadvantages was that the speed of convergence was slower than the speed of the

MBD algorithm, and the reasons are the following:

1. Proposed configurations ω′ in MBD can be very dense but not in MBC, it has to

respect the non-overlapping condition

2. The birth map is not yet integrated in the MBC algorithm, so we can not really make

data driven proposal

3. Although the size of the graph is small, we construct a new full graph at each iteration

For clarification, the major speed limitation comes from the non-overlapping condition.

Let us consider the following example, figure 4.4(a) represents an image with a circular

object in the middle that we aim to detect. In figure 4.4(b), we present a set of candidate

objects proposed by the MBD algorithm (5 objects) –in a single iteration– for the detection

of this object. Unfortunately, for the MBC algorithm, respecting the non-overlapping con-

dition, to propose the same set of candidate objects, it requires 5 iterations, as demonstrated

in figure 4.5, which increases the number of required iterations.

4.2.6 Convergence of the MBC algorithm

The algorithm keeps iterating until convergence. Convergence can be evaluated by moni-

toring the number of objects or the energy of the configuration: when it becomes stable, we

consider that the algorithm has converged.

4.2. Multiple Birth and Cut 63

(a) (b)

Figure 4.4: (a) The real object shown in green. (b) Five candidate objects proposed by the

MBD algorithm in on birth-step.

Figure 4.5: Five iterations required by the MBC algorithm for proposing the same set of

object that the MBD proposed in one iteration.

4.2.7 Global or local minimum?

Using graph cut, we obtain the global minimum for a configuration ω = ω[n] ∪ ω′ at each

iteration. Let the energy of the configuration ω at the nth iteration be U[n](ω), U[n](ω) ≤
U[n−1](ω), it is monotonically decreasing. The non-overlapping prior and the finite size of

the image induce that the energy is lower-bounded. Therefore, we have a sufficient condi-

tion for our algorithm to converge at least to a local minimum.

In chapter 6, we will discuss more about the reached minimal energy on synthetic im-

ages as an empirical proof.

64 Chapter 4. Multiple Birth and Cut Algorithm

4.3 MBC algorithm version 2: Belief propagation

In this section, we will propose solutions to overcome the speed limitation that originates

from the non-overlapping condition [37, 36].

Considering again the example demonstrated by figure 4.4, it is true that we can not

give all these candidates objects to graph cut, but we can give graph cut the best candidate

of those objects. Then graph cut combines this selected candidate with the existing ones

and give an optimal solution.

We propose enhancing the generation phase by inserting a selection phase in the birth

step, which allows adding more relevant objects in the birth step, thus reducing the number

of iterations (convergence time). In the sequel we explain the modified MBC algorithm,

which is summarized in algorithm 4.4.

4.3.1 Generation Phase:

In the birth step, the new algorithm generates a dense configuration Γ. This configuration

has a special organization, where Γ = {X1, X2, . . . , Xn} and Xi = {ω1
i
, ω2

i
, . . . , ωl

i
}. Each Xi

encodes l candidates from which only one will be kept, see figure 4.7(b). The aim of this

organization is, instead of proposing a single object ωi to detect a given object o j, we pro-

pose many objects at a similar location represented by Xi at each iteration and then select

the most relevant object in Xi during the selection phase. The generation of Γ elements takes

advantage of the birth map to speed up the process.

In figure 4.6(a), we present an example of a birth map. In the generation phase, we

localize location in the birth map of high probability, and we define a circle for propositions,

as shown in figure 4.6(b). Next, for each selected location (circle), we generate candidate

objects thus creating Xi at each location, and by repeating this for the n selected location,

we have generated Γ.

Algorithm 4.4 Multiple Birth and Cut

1: n← 0 , R← const

2: generate ω′ , ω[0] ← ω′
3: repeat

4: Birth: generate Γ

5: ω′ ← Select from(Γ)

6: Cut: ω[n+1] ← Cut(ω[n] ∪ ω′)
7: n← n + 1

8: until converged

4.3. MBC algorithm version 2: Belief propagation 65

4.3.2 Selection Phase

Now the question is raises of how to select the best candidate inside each Xi. If all the Xi

were independent, then the selection of every ω
j

i
∈ Xi could simply be calculated based on

the data term ud(ω
j

i
). However, if we consider a dense configuration of objects during the

birth step, the independence hypothesis does not hold. It is still possible to only consider

the data term for selection, and by the end remove objects that overlap.

Imposing the independence between every Xi, will limit the possible density of the final

selected ω′. Although ω′ should not contain overlapping objects, some objects of Xi and X j

can overlap before the selection. If the configuration Γ is dense, with cycles in the depen-

dencies, loopy belief propagation algorithm can be used for the selection. Unfortunately,

there is no guarantee on the quality of the obtained minimum, it is not a global optimization

method.

We propose the optimal selection of ω′ from an almost very dense configuration Γ. The

idea is to generate Γ such that the interaction graph between sets Xi remains controlled. If

with the interactions, we get a chain(s), we can make an optimal selection. The problem

is that the chain form is a very strong constraint. If the interaction graph between sets Xi

remains a tree (with no loops), the global optimum ω′ can then be inferred rapidly on this

tree using belief propagation [73].

4.3.3 Belief Propagation

Belief propagation is a particular case of dynamic programming, more precisely, it is a vari-

ation of Dynamic Time Warping suitable to trees instead of chains, often formulated with

message passing. The core of the algorithm relies on the tree structure of the interactions

between variables, i.e. if ω1 is a leaf, it interacts with only one variable, ω2 and therefore:

inf
ω1,ω2,...,ωn

[

∑

i

ud(ωi) +
∑

i∼ j

up(ωi, ω j)

]

= inf
ω2,ω3,...,ωn

[

∑

i>1

vd(ωi) +
∑

i∼ j>1

up(ωi, ω j)

]

(4.5)

where vd = ud except for vd(ω2) = ud(ω2) + infω1
{ud(ω1) + up(ω1, ω2)}. This optimization

over ω1 given ω2 is easy to perform and rewrites the problem into a similar one but with

one fewer variable. Repeating this trick n times solves the problem, with linear complexity

in the number of variables.

Once a configuration Γ is generated, we apply belief propagation to select the best candidate

inside each Xi, which gives the global optimum ω′ of this configuration Γ. While generating

Γ, the algorithm keeps track of the created neighborhood to verify that it always remains a

tree.

The belief propagation algorithm consists of simple local message passing from leaves

up to root (an arbitrary node), and given these messages, we calculate the Maximum a

66 Chapter 4. Multiple Birth and Cut Algorithm

Posteriori (MAP) for this Γ. The messages are given by:

mmax
j→i(ω

i) = max
ω j

(

ud(ω j)up(ωi, ω j)
∏

k∈c(j)

mmax
k j (ωi)

)

,

where m j→i represents the message sent from node j to node i in the tree, c(j) the children

(neighbors) of node j, ud(.) the data term, and up(., .) the prior term, so the cost of overlap-

ping between objects should be relative to the overlapping area between objects. Using this

message, we compute the max value using any node i.

The generation and selection phase schedules are presented on figure 4.7. On fig-

ure 4.7(a), we present the current configuration ω[n] = {a, b, c}. In figure 4.7(b), the al-

gorithm generates a dense configuration Γ = {X1, X2, X3, X4}. We apply the belief propa-

gation on Γ to select only one (the best) from each Xi candidates ({ω0
i
, ω1

i
, . . . , ωl

i
}) as on

figure 4.7(c) by ω′ = {d, e, f , g}. On figure 4.7(d), we present the combination of the current

configuration ω[n] and the newly proposed and selected ω′ by ω = ω[n] ∪ ω′ on which the

graph is constructed for the Cut step. In figure 4.7(e) we present the tree structure (forest)

for a much larger configuration, showing each Xi as a node, and the existing connections

between them representing the neighborhood of each object (no loops), where belief prop-

agation is computed on such a tree

4.4 Energy comparison

In this section, we demonstrate that after this modification of the data term (4.6), we still

minimize the same energy using graph cut at each iteration.

For the graph cut algorithm, edge weights have to be non-negative, so we normalize the

data term to become Qd(dB) ∈ [0, 1]. For each ωi, the data term becomes:

uGC
d (ωi) =

1 + ud(ωi)

2
. (4.6)

Let UCG be the energy given by the graph cut, withω = {ω[n]∪ω′}whereω[n] = {ω1, . . . , ωp}
and ω′ = {ωp+1, . . . , ωq}. The energy of the whole graph is the sum of the data term edges

and prior term edges:

UGC(ω) = UGC
d (ω) + UGC

p (ω)

where the data term is given by:

UGC
d (ω) =

p
∑

i=1

[

(

1 + ud(ωi)

2

)

δ f (ωi)=0 +

(

1 − ud(ωi)

2

)

δ f (ωi)=1

]

+

q
∑

i=p+1

[

(

1 − ud(ωi)

2

)

δ f (ωi)=0 +

(

1 + ud(ωi)

2

)

δ f (ωi)=1

]

4.5. MBC algorithm version 3 67

and the prior term is given by:

UGC
p (ω) =

p
∑

i=1

q
∑

j=p+1

up(ωi, ω j)δ f (ωi)=0δ f (ω j)=1 .

up(ωi, ω j) is defined as in table 4.2, then UGC
p (ω) = Up(ω). The graph cut energy for the

data term is given by:

UGC
d (ω) =

∑

M

(

1 + ud(ωi)

2

)

+
∑

D

(

1 − ud(ωi)

2

)

=
∑

M

ud(ωi) +
∑

M∪D

(

1 − ud(ωi)

2

)

= Ud(ω) +
∑

M∪D

(

1 − ud(ωi)

2

)

= Ud(ω) +K(ω)

where after optimization M is the set of objects that we keep and D is the set of objects that

we kill. Thus minimizing UGC
d

(ω) is equivalent to minimizing Ud(ω) plus a constant K(ω),

function of the configuration ω but not of M. It becomes:

argmin
ω

UGC(ω) = argmin
H

U(ω)

where H = {u ∈ Ω|u ⊂ ω}.

4.5 MBC algorithm version 3

This work has been submitted to ECCV 2012.

What makes a good optimizer?

In this section we will discuss what we consider to be the main characteristics of opti-

mizers [2, 3] for non-convex functions in the context of MPP models. We will discuss those

characteristics to identify the limitations of the existing optimizers, and present a third ver-

sion of the proposed MBC algorithm that overcome those limitations.

1. Global versus local proposals: Local proposal2 means exploring the fine details of the

modes, while global proposal means exploring the different modes. For a multimodal

2Proposal, also named move or perturbation, means making a modification to the current configuration ω[n]

(at iteration n)

68 Chapter 4. Multiple Birth and Cut Algorithm

distribution, and with only local proposals, based on the initialization (starting point),

only one mode will be discovered, while using only global proposals will not capture

the details the modes. For either simulation or optimization, given that the considered

density is multimodal, both these properties are required.

2. Simple versus multiple perturbations: The perturbations are simple or multiple based

on how the configuration changes between two iterations. If only one object is mod-

ified (changed, removed or added), then it is a simple perturbation. If many objects

are modified per iteration, then it is considered as a multiple perturbation.

Holding those characteristics is essential to make a fast optimizer. It requires global

and local perturbation kernels, and also to be able to make multiple perturbations (simple

perturbation is implicite).

In this version of the MBC algorithm, we will propose an more efficient multiple-birth-

death kernel that the one proposed in [36]. The proposed kernel makes more efficient global

perturbations, and explore more efficiently the configuration space, while being very simple.

We next show how local perturbation kernels can be integrated in the MBC algorithm to

make it more efficient.

4.5.1 New selection method

We start by analyzing the behavior of the selection method based on belief propagation. We

consider a 1D problem as illustrated in figure 4.8(a). Let ω[n] be the current configuration,

presented in blue in figure 4.8. Assume that the two empty spots should contain objects.

Over each of the two empty spots a packet of objects is proposed. The packets are pre-

sented in red in the figure. The aim is to select the best candidate object inside each packet

Xi. There exist some interactions (presented by the gray dotted lines) between some objects

of different packets. Each object has a data term (cost) and a prior term (interaction cost).

Let the set of proposed packets be defined by Γ = {X0, X1, . . . , Xn}. The belief propagation

algorithm makes the best selection from Γ (global optimal), based on the data terms and the

prior terms. The algorithm ends by selecting the two candidate objects {ω1
1
, ω1

2
}, shown in

green in figure 4.8(b).

While the MAP estimate using belief propagation gave the optimal selection from Γ,

those selected objects were not necessarily optimal from the point of view of the current

configuration ω[n]. As figure 4.8(c) illustrates, what was optimal for the current configura-

tion ω[n] was {ω2
1
, ω3

2
} and not {ω1

1
, ω1

2
}. The difference is, {ω2

1
, ω3

2
} is locally optimal, while

{ω1
1
, ω1

2
} is optimal over Γ.

The aim is to minimize the total energy, if we consider only the data terms, ud(ω1
1
) +

ud(ω1
2
) < ud(ω2

1
) + ud(ω3

2
), so ω1

1
and ω1

2
are prefect candidates, while ω2

1
and ω3

2
are good

candidates. If we consider the total energy, prior term and data term, ud(ω1
1
) + ud(ω1

2
) +

4.5. MBC algorithm version 3 69

up(ω1
1
, ω1

2
) > ud(ω2

1
) + ud(ω3

2
).

We propose to make the selection only locally and re-proposing new objects instead of

the rejected ones that did not respect the non-overlapping condition. It costs much more to

get a perfect candidate than to get a good one. So keeping one of the two perfect candidates

and re-proposing instead of the other is more efficient. In real applications, the percentage

of rejected objects ranges between 5% and 10%. We keep iterating the algorithm until re-

proposing this small percentage. The main reasons that makes this birth kernel gives a faster

algorithm are:

1. It takes more time to propose an excellent candidate than a good one.

2. Let the size of Γ be m × n, where m is the number of packets and n is the number of

objects per packet. The complexity of belief propagation is O(mn2), while for local

selection it is O(mn).

3. Proposed configurations can be very dense, and they can form loops.

4. The belief propagation algorithm require extra computational cost to ensure that the

proposed packets do not form any loop.

4.5.2 Local Perturbations Kernels

The existing multiple perturbation optimizers hold a single kernel, a birth kernel that pro-

poses new objects. What is missed here is making local proposals.

Consider object ωi to be the best candidate we obtained from the birth kernel to detect

object oi. Object oi has a position xi and a set of markes mi. If we consider the ellipse

model in R2, the set of parameters of ωi is Θ = {xi, yi, ai, bi, ρi}. Given that object ωi is a

good candidate for the detection of object oi, this means that Θoi
is close to Θωi

. It is much

easier to go from Θoi
to Θωi

(or closer) than to propose a new object that becomes a better

candidate for object oi.

Let us consider four perturbation kernels, a schematic representation is shown if fig-

ure 4.9. One for perturbing the object position, a second to perturb the major axis, a third

for the minor axis and a fourth one for the angle.

From the current configuration ω[n] we randomly select a subset ω′′ of objects. On each

object ωi ∈ ω′′ we apply a perturbation kernel, ω′′
perturbations
−−−−−−−−−−→ ω′. More than one kernel

can be applied to each object. Kernels are selected randomly. Giving different weights to the

kernels may be beneficial. This type of perturbation is usually referred to as local random

walk. Those kernels where originally proposed in the context of RJMCMC sampler [75].

The new MBC algorithm is summarized in algorithm 4.5.

70 Chapter 4. Multiple Birth and Cut Algorithm

Algorithm 4.5 New Multiple Birth and Cut

1: n← 0 , R← const

2: generate ω′ , ω[0] ← ω′
3: repeat

4: Birth:

5: Sample u ∼ U(0,1)

6: Based on u, select a kernel randomly

7: ω′ ← Apply selected kernel

8: ω← ω[n] ∪ ω′
9: Cut: ω[n+1] ← Cut(ω[n] ∪ ω′) (optimize with graph cuts)

10: until converged

Global proposals are mostly needed at the starting of the algorithm. We force for the

first few iterations to only use of the birth kernel. Thereafter we alternate between all the

kernels.

4.6 Algorithm analysis

4.6.1 Theoretical analysis

Notations.

Algorithm 4.5 alternates randomly two kinds of steps: global exploration, with probability

pG, and local exploration, with probability pL = 1 − pG. A global exploration consists

in picking randomly αGN locations in the image (using the birth map, where N is a rough

estimate of the number of objects to be found, and αG ∈ [0, 1] a proportion) and in testing nG

random marks at each of these locations. A local exploration consists in picking randomly

αLN already detected objects, and in testing nL random small variations of their marks

(i.e. exploring direct neighbors in the discrete space of marks M of angle, axes’ lengths and

precise location).

Preliminary step.

Before applying Algorithm 4.5, a series of successive global explorations is performed, in

order to ensure that most of the image domain K has been covered and that the number of

objects detected (even if with wrong marks) is close to N. The average proportion of the

image still uncovered after k such steps, i.e. the average proportion of regions with area
|K|
N

not visited yet, is (1 − αG)k. For αG = 60% e.g., k = 14 steps are sufficient to ensure that

99.9% of the image has been explored.

4.6. Algorithm analysis 71

Global vs. local explorations.

Now, at step s of Algorithm 4.5, the average number of random tests already performed

in the neighborhood (of area
|K|
N

) of any image point x is vG s with vG := αG pGnG, and

the average number of local explorations around any detected object is similarly vLs with

vL = αL pLnL. Thus the ratio of local tests over global tests at any location is vL

vG
=

1−pG

pG

αLnL

αGnG
.

However, the probability that a global test is successful decreases with time: by construction

it is at most the probability that a random try in M performs better than the previous vG s− 1

ones, which is 1
vG s

. Consequently, the expected number of local explorations between two

big moves in M increases with time and is vL

vG
2 s

, which means that local minima are more

thoroughly explored with time.

Time complexity and Percolation.

We will now study the time spent at each step, in order to optimize the algorithm w.r.t. pa-

rameters v and α. The cost of any exploration step, global or local, is of the form αnN, plus

the cost of applying graph cut to a graph of approx. 2αN nodes. The expected complexity

of graph cut is much lower than its worst-case complexity, and is usually regarded as be-

tween linear and quadratic in the size of the graph, depending on problems. The graph here

however is generally not connected and thus the complexity depends on the size of its con-

nected components (the smaller, the lower). Since the graph is made of randomly selected

objects with density α, we are precisely interested into percolation properties, to obtain the

typical number and size of connected components [56]. The critical site-percolation den-

sity αc, above which arbitrarily big components arise, depends on the neighborhood size

and on the type of lattice the graph is extracted from. In our application case, the num-

ber of neighbors is at most 6, and one can lay an hexagonal lattice on the image, with

step size the typical object size. We could also consider the Voronoı̈ diagram associated

to the objects already detected, which is relatively similar. In this hexagonal setting, αc

is known to be approx. 0.697... . Since α has to satisfy α < αc, a very cautious choice is

to set α 6 60%. For such an α, the phase is subcritical and the probability of connected

regions is known to decrease exponentially with their area A, as e−A/R, where R depends

on α (smoothly for α far from αc). The typical region size is then R, and, by comput-

ing
(∫

A
A2e−A/RdA

)

/
(∫

A
e−A/RdA

)

, we obtain that the average graph cut cost (supposing

quadratic complexity) is proportional to R2. One can bound R by RM = R(0.6) if we restrict

α 6 60%. Then the average total graph cut cost at step s, which involves 2αN objects in

about αN
R

connected components, is bounded by αNRM. Consequently, the complexity of

step s is bounded by CS = αN(n + RM). Note that this bound does not depend on s. The

expected clock time at the end of step s is thus

t = (pGCS (G) + pLCS (L)) s = (vG + vL + RM[pGαG + (1 − pG)αL]) Ns

which has to be compared to vG s and vLs, the average number of explorations in the neigh-

borhood of any image point.

72 Chapter 4. Multiple Birth and Cut Algorithm

Estimated time and precision when in an attraction basin.

Let us consider the case of a locally simple problem, in the sense that objects are located

away enough from each other, in order to prevent any mutual interaction. Under this hy-

pothesis, any suitable data energy will satisfy that each individual potential admits a unique

minimum, i.e. that the attraction basin of any ground-truth object includes all possible marks

located in the neighborhood of this object. We can then estimate the time needed to find the

global minimum in the mark space M with the method above. After x random global explo-

rations in an image region of area
|K|
N

, the minimum is at distance
|M|
x

on average and thus

then reachable in
|M|
x

local explorations. Minimizing x +
|M|
x

leads to x =
√
|M|. Thus we

aim at minimizing t such that vG s >
√
|M| and vLs >

√
|M|, w.r.t. all parameters. This leads

to minimizing t =
[

(1 + RM

nG
)(vG s) + (1 + RM

nL
)(vLs)

]

N, which is solved by vG = vL, and by

high values of nG = nL >> RM to reduce the relative cost of graph cuts (we choose n = 10

in practice since RM observed is already low). The corresponding average time to find the

optimal mark for an object is 2
√
|M|N. More precisely, the probability that the optimal

mark is not found for this object after time t is pN =
|M|!

(M−t/N)! Mt/N ≈ e
− 1
|M| (

t
N)

2

using Stirling

formula. Hence, the probability to have already found it at time
√
|M|N is about 0.63, and at

time 2
√
|M|N about e−4 ≈ 0.98. Furthermore, the probability p to have found all N objects

at time t = γ
√
|M|N is (1−e−γ

2

)N ≈ e−Nexp(−γ2); conversely the time needed to reach a given

probability p is t = γ(p)N
√
|M| with γ(p) =

√

− ln
− ln p

N
. Furthermore, the expectancy of

the proportion of the objects not found yet after time t = γ
√
|M|N is e−γ

2

(in the case of a

spatially uniform birth map). Thus a reasonable total time to spend in the locally convex

case to expect all but one objects and their optimal marks is then
√
|M|N

√
ln N.

Fixing local minima.

The results above remain valid for any problem provided objects are correctly localized

from the first steps. However, it may happen, in the case of an object category with very-

varied sizes, that two contiguous small objects are proposed instead of a big one. In such

a case, one needs a global exploration at the correct location with reasonably good marks.

The required quality of the birth depends on the relative energy cost of the wrong couple

of small objects w.r.t. the one of the correct detection. Given a lower bound B > 0 on this

difference (based on misplaced edges e.g.), it is sufficient that a global exploration finds a

mark with energy less than B + the optimal one. Let pGM be the proportion of such marks

within the local mark space M. The average time to find one of them is 1
2pGM

N. With

similar techniques as before, the time required to fix, with probability p, simultaneously k

such local minima occurring in the image, is ln(1 − p1/k) 1
2pGM

N. Note that another, faster

possibility would be to add a merge-and-split kernel dedicated to this kind of minima.

4.6. Algorithm analysis 73

Semi-local minima.

Depending on the energy minimized to detect objects, and in the case of overlapping neigh-

borhoods of objects, bad initial explorations may result in wrong detections half-way be-

tween two real objects. Such wrong detections are fixed quickly by Algorithm 4.5, when

a global exploration is performed at one of these locations, which happens as frequently as
2pG

α
. What is more problematic is when such wrong detections form chains of misplaced

objects, each one preventing its neighbors from evolving to its right place. If the chain is a

tree of diameter d, then the expected time to remove it is only d
pG

α
. However if the chain

comprises a cycle of length c, the only way to break it (if this local minimum is strong) is

to wait for a simultaneous global exploration of all c sites, which happens as rarely as
pG

αc .

Nevertheless, the appearance of such a cycle is possible only during the very few first steps,

and the probability of such an event is as low as pcαc where p is the probability of one

misplacement. Moreover, whenever a chain is broken, it cannot form again.

4.6.2 Algorithm Parallelization

Since in this paper we consider only the first class of MPP models, happily it can easily

be parallelized. Given that the objects we are modeling, for e.g. buildings, are independent,

the resultant configuration from the optimization algorithm also should contain independent

(non-overlapping) objects. Overlapping only exists during the iterations of the algorithm.

Given an input image, it should be split into n partitions, where n can be the number

of cores in a processor, or number of machines used to solve the problem. Two issues to

consider for splitting this image:

1. Each time we divide the image, there should be an overlap equal to the size of the

largest existing object.

2. In many real cases, dividing the image into two equal halves at each split may not be

the optimal choice for load balance. We propose to first calculate the birthmap, then

make the split based on this map.

After splitting, each part is processed independently. The last step of the algorithm will

be to join the result on the different parts. We propose to make the optimal join using graph

cut, as it is done in every iteration in the Cuts step of the MBC algorithm.

To illustrate, consider the small sample of a flamingo colony shown in figure 4.10(a).

This image is split vertically into two partitions, and each is optimized independently using

the MBC algorithm. In figure 4.10(b), we overlap the detection result of the two partitions,

one in pink and the other one in green. The common margin contains two detection result.

In this example, nine flamingos are detected by both runs. We propose to construct a graph,

and to apply the same idea used in any of the MBC algorithms to select between two sets of

configurations. This way of parallelization has the following advantages:

74 Chapter 4. Multiple Birth and Cut Algorithm

1. The cost of the fusion step is the of cost optimizing one small graph.

2. This algorithm should scale linearly.

3. Since no communication is required while optimizing each partition, it can be done

on different cores or different machines. The communication occur only twice: once

to assign the task, and once to get the result for fusion.

4. If an optimization algorithm other than MBC is needed, it can be used without any

change, the fusion part will be the same.

4.6.3 Algorithm summary

In table we make a sort of summarized comparison between optimization method presented

in this chapter for Markov marked point process models, precisely for simple interaction

class. Simple interactions class is more concerned with the counting problems of indepen-

dent objects, as opposed to, high interactions class that is concerned with problem such as

roads detection where a lot of interaction and dependencies between segments exist. The

first two algorithm can handle both classes of problems, while MBD, MBC to date only

handle the first class of problem.

The optimization algorithms are ordered in the table by increasing speed of conver-

gence. The first four elements of comparison concern speed of convergence. The fifth

and sixth concerns the theoretical proof of global minimum of the energy for an algorithm.

Next, we just want to point that the first three algorithms are fully stochastic, while the

newly proposed ones are a combination of stochastic and deterministic algorithms. The

birth step remains stochastic as for the MBD algorithm, while the cut (death) step became

deterministic. Finally we state that the first three algorithms require simulated annealing

framework, while the newly proposed ones does not require this.

Sampler \ Criteria BD RJMCMC MBD MBC 1 MBC 2 MBC 3

Local perturbation
√ √

Global perturbation
√ √ √ √ √ √

Single perturbation
√ √ √ √ √

Parallel perturbation
√ √ √ √

Convergence to global min
√ √ √

Convergence to local min
√ √ √

Stochastic sampler
√ √ √ √ √ √

Deterministic sampler
√ √ √

Requires simulated annealing
√ √ √ √

4.7. Conclusion 75

4.7 Conclusion

In this chapter we have presented an efficient optimization algorithm to minimize a highly

non-convex energy function which was previously solved within a simulated annealing

scheme. We avoid the difficult task of setting the temperature and cooling parameters of

the simulated annealing, and other parameters.

In a first version, we presented how the optimization problem of models such as point

process models can be solved differently. The MBC algorithm is inspired from the MBD

algorithm and takes advantage of the successful graph cut algorithm. In the first version

we overcome many of the limitations of full stochastic algorithms for point process models,

while having one major drawback which is the speed.

In a second version of the algorithm, we presented an optimized version using belief

propagation. The aim is to optimize the newly proposed configuration at each iteration in

order to obtain a relevant proposed configuration. On large scale problems, the second ver-

sion is faster than the basic MBC algorithm.

While developing a third version, we made a rigorous analysis of the optimization

problem and of our proposed algorithms. We discussed the essential characteristics that

should be considered to design efficient optimizers. We presented the limitations of existing

birth-and-death kernels, and, to overcome them, we introduced new kernels, both local and

global.

In a theoretical analysis, we demonstrated the importance of both global and local per-

turbations. This analysis also showed how to select optimally the optimizer’s parameters;

in particular it quantified the optimal times spent in local and global explorations, in order

to obtain the fastest convergence rates.

We also present a simple and generic method to parallelize the optimization of a specific

class of MPP models.

76 Chapter 4. Multiple Birth and Cut Algorithm

(a) (b)

(c)

Figure 4.6: (a) This figure shows an example of birth-map; using spatstat. (b) On this birth-

map, two positions of high values are localized, and region of proposals is defined. (c) A

set of candidate objects is proposed in the defined proposal region.

4.7. Conclusion 77

(a) (b)

(c) (d)

(e)

Figure 4.7: (a) Current configuration ω[n] in green. (b) Proposed dense configuration Γ. (c)

Selected ω[n] from the candidates of Γ. (d) The configuration ω = ω[n] ∪ ω′ on which the

graph is constructed for the Cut step. (e) A forest of trees of a large configuration from

which we select one object per node using belief propagation.

78 Chapter 4. Multiple Birth and Cut Algorithm

(a) (b)

(c)

Figure 4.8: (a) A synthetic 1D problem. Current configuration ω[n] shown in blue. Candi-

date objects shown in red. Interaction terms are presented with dotted gray lines. (b) Best

candidates globally are shown in green. (c) Best candidates locally are shown in green.

Birth Rotation Translation Zoom

Figure 4.9: (a)

4.7. Conclusion 79

(a) (b)

Figure 4.10: (a) Shows the energy evolution vs. time on the 300 objects configuration. (b)

Shows the energy evolution vs. time in log scale.

Chapter 5

3D Point Process

In all previously proposed MPP models, for applications such as building detection, road

detection, etc, simple geometrical representation was enough given that the input data (im-

ages) is a top view perspective of the scene, while in other scenarios a more sophisticated

geometrical representation is required.

5.1 Detection by simulation

Marked point process models used for image processing applications, such as the flamingo

counting problem [25], is a direct problem, as opposed to an inverse problem. Considering

the case of an airport, an example is shown in figure 5.1, where the aim of the application is

detecting and counting the number of airplanes. It will not be an easy task to find a simple

geometrical form to approximate an airplane shape. One possible solution is to use complex

geometrical representation such as active contour models with some prior information [61]

about the form to detect these airplanes, or parametric forms using e.g. B-splines. We pro-

pose the construction of a 3D CAD 1 model. One of the reasons of this method is that any

geometrical form can accurately be represented with a CAD model, no need for complex

mathematical representation to represent such forms. For the airplane detection example

inside an airport, we could simply use a 2D geometrical representation for airplanes, since

we have a top view. The second reason for proposing using a 3D CAD model is, other than

in the top-view case, a 3D model becomes of great interest to be able to recognize objects

from any perspective. By looking at figure 5.3, we see the variability of geometrical form

based on the imaging position with respect to the airplane. It is clear that it will be too hard

to find a 2D geometrical form or even a set of 2D geometrical forms to cover every possible

form.

1CAD: Computer Aided Design

81

82 Chapter 5. 3D Point Process

Figure 5.1: A top view of Abu Dhabi International airport, internet site:

https://picasaweb.google.com/116589321075544181949/SaudiArabia#5213554461210564226.

Figure 5.2: A 3D CAD model of the airbus A320 airplane.

The method we propose for object detecting is based on 3D scene simulation on the

GPU using OpenGL [23]. To detect the airplanes such as those in figure 5.1, we propose

using a model such as the one in figure 5.2, and by simulating a configuration and projecting

the scene onto the image plane, and measuring the similarity as schematically represented

by figure 5.4, we can detect the airplanes. We propose using the MBD algorithm for the

detection purpose, the algorithm will keep proposing random configurations, with different

number of objects and with different parameters. The proposed configurations are projected

onto the image plane, and the configurations are modified until convergence. To evaluate

a proposed configuration, we measure the similarity between the projected image of the

proposed configuration and the real image, by defining a data term and a prior term which

penalize objects overlapping.

5.1. Detection by simulation 83

Figure 5.3: Airbus airplane from different perspectives.

Figure 5.4: Measuring the matching of a proposed object for the data term.

Another example of the multiple object detection problem is crowd counting [91]. Fig-

ure 5.6 presents two photos containing a crowd of people, with plenty of occlusions, and

also with perspective effects (further people appear smaller). Here our proposed approach

becomes even more interesting. We also propose using a 3D CAD model of human for the

detection and counting purpose. By simulating the scene, we can propose people with the

same number of objects, the same positions, orientation and with the same occlusions be-

tween them, taking the perspective effect into account for detecting people in further planes

in the image.

84 Chapter 5. 3D Point Process

(a) (b) (c) (d)

Figure 5.5: Projected 3D scene of some candidate airplane configurations

(a) (b)

Figure 5.6: (a) A photo showing a crowd of people, with occlusions and perspective effects.

(b) Another example of a crowd of people.

Figure 5.7(a) is a zoom on a sample from the crowd shown in figure 5.6(a). The sample

is highlighted in red, yellow and green in figure 5.7(b). Most of the body of the first person

(highlighted in red) is visible: the face, abdomen, shoulders, and two arms. We can see

second person (highlighted in green) from his back, still we can recognize the back of the

head, abdomen, shoulders, one of the two arms. Most of the third person is hidden, we can

only see a part of the back of his head. The detection of the first two persons is an easy task,

we can easily detect the head (face for the first), the arms, the shoulders, while for the third

person it is much more challenging, how to detect it?

The detection of the third person (highlighted in yellow), counts on two aspects: first

is the geometry of the visible part, second is the coloring. By using the scene simulation

idea, if we correctly propose the first two, and then the third one, the visible parts from the

projected 3D model by scene simulation will correspond to the visible parts of the person

in the input image. Airplanes or people are just examples of detection applications where

the usage of a 3D models and scene simulation can be of interest.

5.2. 3D Point Process 85

(a) (b)

Figure 5.7: (a) Zoom on a sample of a crowd of people. (b) Three highlighted person in red,

green and yellow. First person, has a full frontal image, all the whole parts of the body are

visible, second person is visible from his back, but still most of the body is visible, while

for the third person, only the back of the head is visible.

5.2 3D Point Process

Let us consider a synthetic example. Let x = {A, . . . , J} be a set of objects that we observe in

an input image, as shown in figure 5.8(a). The actual scene is a 3D scene, those objects live

in a 3D world, as presented in figure 5.8(b). We assume these objects live on the XY-plane

at z = 0.

The optimization algorithm while iterating proposes configurations x′ that are simulated

using OpenGL, is then projected onto the image plane. The proposed configuration lives in

a 3D world as in figure 5.8(b), and are then projected to obtain an image as in figure 5.8(a).

(a) (b)

Figure 5.8: (a) An image of a configuration after projection onto the image plane. (b) The

corresponding 3D scene of this configuration.

86 Chapter 5. 3D Point Process

5.2.1 Configuration Space

Let us consider a space K × R+, where K is a closed, connected subset of R2, referred to

as the real plane and R+ refers to the z-axis (objects height). We consider a perspective

transformation, supposed as known, P, such that I = P(K × R+). The data consists of

I = (is)s∈S , where S is a discretization of the image plane I and is ∈ Λ is the color of

pixel s. We consider configurations of an unknown number of objects in the real plane.

We consider two positions for an object p ∈ {0, 1} corresponding to standing up and lying

(on the ground). Finally, an object is also characterized by its orientation φ with respect to

the z-axis (in cylindrical coordinates). Therefore, an object is defined as (xi,mi) ∈ K × M,

where xi represents the object location and mi its mark, M = {0, 1} × [0, 2π[. We consider a

marked point process with points lying in K and marks in M.

5.2.2 Dependencies

The usual point process models used for image processing, such as buildings, roads, and

others, uses 2D point process. These models have one type of dependency, it exists in the

prior term between neighbor objects. What about 3D point process as for the configuration x

shown in figure 5.8(b)? Does it have other dependencies? How is the neighborhood defined?

Figure 5.9: A top view perspective of a configuration.

5.2.3 Dependencies in the prior term

We need to think of the configuration of objects as x in terms of 3D representation, as shown

in figure 5.8(b), and also from a top view perspective, as presented in figure 5.9. While in the

flamingo counting problem presented in chapter 6, we penalized the overlapping objects in

the input image, we can not penalize the overlapping with the presentation of figure 5.8(a).

This overlapping is based on the camera position with respect to the scene, and there is no

5.2. 3D Point Process 87

reason to penalize objects in this view. The correct penalization should be considered in the

3D world, as in figure 5.8(b), or from a top view of the scene as in figure 5.9. The prior

term neighborhood should be defined inside this representation. For the example shown in

figure 5.9, the neighbor objects are: C ∼ D, H ∼ F and I ∼ J (where ∼ means neighbor

objects). In applications where objects are independent, for counting problems such as:

flamingos, trees, people, airplanes, the prior term exists only to penalize any overlapping

between object. The same applies to the 3D model for counting, if we used 3D model for

people or airplanes or any other object, penalizing the overlapping is enough.

For a given configuration x = {A, B, . . . , J}, we want to know the energy required (cost)

to add object J. The total energy U(x) = Ud(x) + γpUp(x) represents the prior energy and

the data energy. We only consider here the prior term, which is decomposed as follows:

f (x) = exp

















∑

xi∈x
V1(x) +

∑

{xi,x}∈x
V2(xi, x j) + . . .

















(5.1)

In our work, we only consider the second order term V2(., .). The total prior energy of

the configuration x is equal to: f (x) = V(C,D)+V(F,H). By adding object J, the total prior

energy becomes f (x) = V(C,D)+V(F,H)+V(I, J). Neighborhood relation in the prior term

is symmetric. We represent this prior term dependency of the configuration x by a graph, as

shown in figure 5.10. Undirected edges are used to represent the undirected dependencies.

Figure 5.10: Dependency graph showing prior term dependencies.

5.2.4 Dependencies in the data term

Contrary to previous 2D point process models used for image processing, now there exist

occlusions between objects. So the first question that comes to mind is Are the data terms

independent?

88 Chapter 5. 3D Point Process

5.2.5 Directional dependency

From the configuration presented in figure 5.8 and figure 5.9, we only consider {A, E}.
If we remove A, will the data term ud(E) change? If we remove E, will the data term

ud(A) change?

For the first case, if we remove object A, considering the pixels belonging to A, some

of them will become background and some of them will be added to object E. Will ud(E)

change by gaining some extra pixels in this case or not? And the answer will be YES. For

the second case, if object E is removed, will the ud(E) change? And the answer will be NO,

non of E pixels can be affected to A, so ud(A) will not change. Let us formulate the energy

change for the first case. Let ∆EA be the energy change by the removal of object A, it is

defined as follows:

∆E = Eafter(ω) − Ebefore(ω)

∆EA = E(x \ A) − E(x)

∆EA = E
′

E −
(

EA|∂(A) + EE

)

,

where E
′

E
is the new energy of E after the removal of A, since object E gains some pixels

so its data energy changes, and ∂ indicate the neighbors of an object. We refer to object A

as a parent of object E, and E is a child of A.

Definition of a parent: An object I is a parent of an object J if and only if, when object

I is removed from the configuration, object J gains some of its pixels.

This formulation means that if we want to remove A, not only should we check the data

term of A, but also we have to check if the removal of object A enhances or deteriorates

the quality of the data term of E (children of object A). The dependency in this case is

directional, where ud(A) depends on A and E, while ud(E) does not depend on A. We

represent directed dependency in the data term by directed edges in the graph presented in

figure 5.11.

5.2.6 Moralization

Let us concentrate on only the three objects {A, B, E}. From section 5.2.5 we know that there

is a directed dependency between the data term of A and E. The same applies to object B,

∆EB also depends on object E. Since energy of A depends on E and energy of B depends

on E, we conclude that: objects A and B are dependent, their data terms are dependent.

A is a parent of object E, B is also a parent of E. Since A and B share a common child,

then they are not independent any more, A and B became dependent. We refer to this new

dependency by a moralization appearing on the dependency graph. The dependency graph

5.2. 3D Point Process 89

Figure 5.11: Dependency graph showing data term dependencies.

representing the full configuration x is presented in figure 5.12(a), where the moralization is

represented by a dotted line. In figure 5.12(b), we present the full mixed graph representing

all the prior and data term dependency. The delta energy associated with the removal of

object A is given by:

∆EA = E(x \ A) − E(x)

= E
′

B|∂(B) + E
′

E −
(

EA|∂(A) + EB|∂(B) + EE

)

,

(a) (b)

Figure 5.12: (a) Full dependency graph showing both prior and data term interaction. (b)

Full dependency graph after moralization.

90 Chapter 5. 3D Point Process

5.2.7 Markovianity in the dependency

The prior term dependency is markovian as previously presented in the 2D models. What

about the data term dependencies, are they markovian or not?

From configuration x, let us only consider three objects {b, f , h}. In figure 5.13(a) (e)

and (i), we show the three possible cases for many dependencies in a chain.

• First case:

The first arrangement of objects {b, f , h} is presented if figure 5.13(a). In this case b

is parent of f , and f is parent of h. The parent-child dependency between {b, f , h}
is present by the directed graph in figure 5.13(b). If object f is removed from this

configuration as shown in figure 5.13(g), object b and h are independent, as shown in

figure 5.13(h).

• Second case:

In figure 5.13(e), b is a parent to f , f is a parent to h, as presented by a directed graph

in figure 5.13(f). If f did not exist as show in figure 5.13(c), in this case, b becomes

a parent of h, as presented in figure 5.13(d).

• Third case:

In figure 5.13(i), b is a parent to f , b is a parent to h and f is a parent to h, as presented

by a directed graph in figure 5.13(j). If object f is removed from this configuration as

shown in figure 5.13(k), object b and h are still dependent, as shown in figure 5.13(l).

Conclusion:

A neighbor for the data term, is defined by the parent-child relation. If object i is parent

of object j, then exist a directional neighborhood relation between i and j, that we note as

i j. For the three cases presented in figure 5.15, the dependence in the data term exists

only if i is parent of object j, only if i is neighbor of object j. If i is parent (neighbor) of j,

and j is parent of k, this does not mean that i is parent of k.

We consider an object based data energy, which means that the global data term is a sum

of local terms applied on each object in the configuration. Unlike existing approaches using

marked point processes for object detection, we cannot consider the data term associated

with an object independently of the remaining objects in the configuration. Indeed, the data

differ from the real plane where the objects are considered. It is the data of 3D objects

living in this plane and we only have a perspective view of the scene, which introduces

occlusions and therefore dependencies between the projected objects. Computing the data

term requires projecting the scene on the image plane. This can be obtained rapidly using

the GPU and OpenGL environment.

We consider a data term associated with the configuration ω given by:

5.3. Optimization 91

Ud(x) =
∑

xi∈x
U(xi|c(xi)) , (5.2)

where c(xi) denotes children of xi, which depend on the camera position with respect to the

scene. A child is an object which inherits his parent pixels if the parent was removed from

the configuration.

New graphical representation

Here we present a new graphical representation to the point process for the 3D model and

its dependencies. We use similar representation to the one used for hidden Markov chain

and hidden MRF. In figure 5.14, we present the same configuration x in a different way.

Each object is represented by two nodes, one for the prior term and the second is for the

data term, somehow similar to the hidden node and observation node in hidden Markov

chain and hidden MRF. In figure 5.14, red hollow nodes represent the object position and

mark, the red node filled with violet color represents the data term node for this object. If

two objects are neighbors, their two empty red nodes are connected with a green edge. If

there exists a parent child dependency between two objects, the parent is connected to his

child with a directed edge in green; this edge is between their data term nodes since the

dependence is in the data term. If two objects share a common child, then by moralization,

they become dependent, and they are connected by a green dotted line (connection between

data term nodes).

5.3 Optimization

To optimize the density function to find the minimum that corresponds to the proper object

detection, we apply the multiple birth and death algorithm.

5.3.1 Projections

Given that we have dependent data term as shown in equation 5.2, and given that the cal-

culation of the data term is based on a projection of a simulated scene, each death step will

require more than one projection (in general). We consider again the example 5.15. For this

configuration {b, f , h}, the calculation of the change of energy with the removal of an object

e.g. b is given by:

∆EB = E(x \ B) − E(x)

= E
′

B|∂(B) + E
′

E −
(

EA|∂(A) + EB|∂(B) + EE

)

,

From this equation we conclude that for the calculation of change of energy, in addition

to projection of {b, f , h}, we need a second projection { f , h} (without b). The same for object

92 Chapter 5. 3D Point Process

f , first we can not handle it at the same time as object b due to the data term dependency,

secondly, since b has a child (h), we have to project the configuration without object b to be

able to calculate the energy change associated with the removal of b. This leads us to the

conclusion that is require a special way to handle all these dependencies during the death

step of the MBD algorithm.

Algorithm 5.1 Multiple Birth and Death

1: n← 0 , x[0] ← ∅
2: δ = δ[0] , β = β[0]

3: repeat

4: Birth: generate x′, a realization of a Poisson process of intensity λ

5: x← x(n) ∪ x′

6: Death: For each ωi ∈ ω, calculate the death probability d(xi) =
δaβ(xi)

1+δaβ(xi)

7: until Convergence, if not converged, set x[n+1] = x, n→ n+1, δ[n+1] = δ[n]×αδ, β[n+1] = β[n]×αβ,
and go to ”Birth”

5.3.2 Graph Algorithm For Death Step

Here we present our algorithm based on the undirected graph to accomplish the death step

taking into consideration all dependencies. The directed graph is transformed to an undi-

rected graph to represent all the dependencies, the directed version of the graph is used

only for the parent-child information. Our algorithm is described in algorithm 5.2, with a

sketched example in figure 5.16 for the configuration x of figure 5.8.

The algorithm starts by constructing an undirected graph G representing all the depen-

dencies in ω. Next, the algorithm generates a queue Q with a topologically sorted version of

G, based on a method. The selected method defines how the graph will be traversed, this af-

fects the speed of convergence. From the many possible ways to sort this graph, we propose

to start first by the objects which are closer to the camera. While this method does not give

the minimum number of graph partitions, the reason for this is, given a proposed configura-

tion ω, objects that are closer to the camera, partially or fully occlude (hide) objects behind

them (children), this can mislead the evaluation (death) of their children if the algorithm

tests the children first. In step 3 and 4, we create two auxiliary queues, Q′, to hold tested

objects, and their nodes color become black, and Q′′ to hold blocked nodes and their color

become gray. Step 5 to 24, we loop until testing every object (1, . . . ,N) in Q (in the graph G).

In step 6, we start looping on element of Q, if they are not blocked, then we add them to Q′,
and block the adjacent nodes. As shown in figure 5.16.(b), Q = {B,C, E, F, A,D,G,H, I, J},
B is first added to Q′, its color becomes black, and their adjacent nodes {A, E, F} are blocked,

then, we also add {C,G, I} to Q′, their color also become black, and we also block their adja-

cent nodes, all blocked nodes color become gray. Now all elements of Q are either blocked

or in the testing queue Q′. The delta energy associated with the proposed removal of node

∈ Q′ is calculated, then the death probability is calculated (as in algorithm 5.1 step 6), and if

5.3. Optimization 93

an element is killed, it is removed from Q′. Now the graph has to be updated after the death

(removal) of some nodes, the same for Q, and Q′′ has to be reset to release blocked nodes.

And the algorithm continues as in figure5.16.(d), the algorithm test {E, F, J}, then E and J

are killed. Now A and B are independent, they were only dependent by moralization when

they had a common child E. Finally A and G are tested, and both of them are killed. Now a

full death step of algorithm 5.1 is accomplished.

Algorithm 5.2 Death using Graph

1: G ← ConstructGraph(ω)

2: Q← TopoligicalS ort(G,method)

3: Q′ ← ∅ (queue for tested nodes)

4: Q′′ ← ∅ (queue for blocked nodes)

5: while S izeo f (Q′) , N do

6: while Q , ∅ do

7: u← Dequeue(Q)

8: if u ∈ Q′′ then

9: continue

10: end if

11: Q′ ← u (black color)

12: Breadth Block(G, u,Q′′) (gray color)

13: end while

14: CalcDeltaEnergy(G \ Q′,G)

15: for all each u ∈ Q′

16: calc death prob (algorithm. 5.1) do

17: if u killed then

18: Q′ ← Q′ \ u

19: end if

20: end for

21: Set all nodes ∈ Q′ to blue

22: G ← U pdateGraph(Q ∪ Q′)
23: Q← TopologicalS ort(G,method) , Q′′ ← ∅
24: end while

5.3.3 Camera Parameters

The projected image I = (is)s∈S is given by projecting every point from the 3D space world

M3D
p to the image space, that is obtained by:

is = A ×
(

R T

0 1

)

× M3D
p . (5.3)

Matrix A is the intrinsic camera parameters and (R ,T) are the extrinsic parameters

(rotation and translation). Camera parameters are required for projecting the configuration

during the iterations of the optimization algorithm. Based on the image collection we started

94 Chapter 5. 3D Point Process

from, we found the we have to define with our collaborators (ecologists) an imaging proto-

col in order to get appropriate type of images for our model.

In the next image collection (that we expected), is based on a defined protocol between

us and the ecologist. We have inserted reference points (with known GPS coordinates,

distances and angles) inside the real scene to be able to recover the camera parameters,

specially the extrinsic parameters. For the semi-synthetic images, we already know all the

parameters. For images taken before or without the protocol recommendations, we have to

estimate those parameters. For the current time, we manually set those parameters. We plan

to integrate an automated method for camera pose recovery [44]. It will be included as one

phase of detection and one phase of re-estimating the camera pose and iterating between

them until convergence.

5.4 Conclusion

In this chapter we introduced a novel method for multiple object detection in two sophis-

ticated scenarios, the first is for situations with occlusions and perspective effects, and the

second is for complex geometrical forms. We presented a method based on 3D scene simu-

lation for detection. Instead of approximating shapes with bounding boxes, we use accurate

3D geometrical models. The aim of this model is to present an new way of thinking for

handling two very challenging problems: occlusions and perspective effects.

The idea that lies behind this proposed method is the following: We can only detect

partially occluded objects, in other words non-representative parts, only if we propose those

parts at the same positions, and we can do this by scene simulation.

We presented our modifications to the 2D model to handle the 3D case. New types of

dependencies appeared between the data term energy of different objects, between parents

and children. We also showed the added dependency by moralization that appears between

parents who share a child. We showed how all those presented in the model can be pre-

sented with a nice mixed graph.

This model will be validated on the penguin counting problem in chapter 7.

5.4. Conclusion 95

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.13: The first column (a,e,i) presents objects B,F and H with different arrangements.

The second column (b,f,j) presents the corresponding data term dependency graph of object

in column one. The third column (c,g,k) present the same configurations of first column

after the removal of object F. The fourth column (d,h,l) presents the corresponding data

term dependency graph of object in column three.

96 Chapter 5. 3D Point Process

Figure 5.14: This is a graphical representation of the dependencies of the configuration x

introduced in figure 5.8. Each object in the configuration is represented by two nodes. The

filled node (in violet) represents the data term, and the hollow node represents the prior

term. (1) Data term nodes: Data term dependency is indicated by a blue directed edge

from parent to child. Data term dependencies by moralization (become dependent) are

connected by a green doted undirected edge (between the corresponding filled nodes). (2)

Prior term nodes: Prior term dependencies is indicated by an undirected edge (between the

corresponding hollow nodes).

(a) (b)

Figure 5.15: (a) A configuration of objects B, F and H. (b) The corresponding data term

dependency graph.

5.4. Conclusion 97

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.16: (a)-(h) An example showing the evolution of a configuration and the represent-

ing graph.

Part III

Applications

99

Chapter 6

Optimization methods comparison

on a 2D MPP model

In chapter 3.1 we presented existing optimization methods as Birth and Death, Reverse

Jump Monte Carlo Markov Chain, and Multiple Birth and Death. In chapter 4, we pre-

sented our proposed optimization algorithms, the MBC and the MBC-Opt algorithm. In

this chapter we will compare the proposed algorithms to the fastest existing algorithm for

the considered model, the MBD algorithm. The comparison will performed on a 2D Markov

point process model using ellipses as geometrical form. The comparison first will be applied

on synthetic data for which the solution is known. Then, these algorithms will be validated

on a real problem, the flamingo counting problem. For graph-cut, we used the graph-cut

code developed by Olga Veksler [60, 18, 16].

6.1 Marked Point Process

In this section we summaries the 2D MPP model presented earlier for seek of completeness.

This model will be used for the comparison of the different optimization methods presented

earlier in this these.

Let X denote a point process living on K = [0, Imax] × [0, Jmax]. X is a measurable

mapping from a probability space (Υ,A,P) to the set of unordered configurations of points

in K. K is a closed, connected subset of R2. This mapping defines a point process.

In this chapter for instance, each object is modeled by an ellipse. Let M be the mark

space,M = [amin, amax]× [bmin, bmax]× [0, π[, where a and b are the length of the major and

the minor axes respectively, for which we define a minimum and a maximum value, and θ ∈
[0, π[is the orientation of the ellipse. The geometry of the shape is represented by the mark

mi associated with each point xi. Therefore, an object is defined as ωi = (xi,mi) ∈ K ×M.

We consider a marked point process with points in K and marks in M, the configuration

101

102 Chapter 6. Optimization methods comparison on a 2D MPP model

space is then defined as:

Ω =

∞
⋃

n=0

Ωn, Ωn = {{ω1, . . . , ωn}, ωi ⊂ K ×M} , (6.1)

where Ωn is the subset of configurations containing exactly n objects, and ω = {ωi, i =

1, . . . , n}. We define a reference measure as the product of the Poisson measure ν(x) on Υ

and the Lebesgue measures µ on the mark space:

dπr(ω) = dν(x)

n
∏

i=1

(dµ(mi)) .

The MPP is then defined by a density with respect to this measure:

dπ(ω) = f (ω)dπr(ω). (6.2)

Markov Point Process. Among MPP, Markov (or Gibbs) point process are of particular

interest for applications in object detection. The density of the process is then written as the

sum of potentials over interacting objects (cliques):

f (ω) =
1

Z
exp[−U(ω)] (6.3)

where [5]:

U(ω) =



















V0 +
∑

ωi∈ω
V1(ωi) +

∑

{ωi,ω j}∈ω
V2(ωi, ω j) + . . .



















(6.4)

Z is the partition function (normalizing constant), and Vk the potentials of order k. Minimiz-

ing the energy U(ω) corresponds to the target configuration. This energy takes into account

the interactions between geometric objects Up (prior energy) and a data energy Ud to fit the

configuration onto the image:

U(ω) = Ud(ω) + γpUp(ω)

where γp is the weight assigned to the prior term which can be estimated as in [20].

6.1.1 Prior

The possibility to introduce prior information is a major advantage of the MPP framework.

This regularizes the configuration to match the real objects taking into consideration the

image defects, due to, e.g., image resolution or noise. In this chapter, we only concider

simple interactions, existing mostly in counting problems such as tree counting, flamingo

counting. In those applications, the interaction is simply reduced to a non-overlapping term.

6.1. Marked Point Process 103

Figure 6.1: The overlapping coefficient between two objects

Since our objects (flamingos) should not overlap in reality, we penalize overlapping.

Let A(ωi, ω j) ∈ [0, 1] represent the overlapping coefficient between two objects, defined as

the normalized area of intersection, as shown in figure 6.1 and proposed by [25]:

A(ωi, ω j) =
A(ωi ∩ ω j)

min
(

A(ωi), A(ω j)
) (6.5)

where A(ωi) is the area of object ωi. Let us consider a clique {ωi, ω j}, then the prior energy

of this local configuration is given by:

up(ω) =

{

0 if A(ωi, ω j) < 0.1

∞ if A(ωi, ω j) ≥ 0.1
(6.6)

which means that we do not allow a configuration with an overlapping coefficient greater

than 10%. The total prior energy of the configuration is then given by:

Up(ω) =
∑

ωi∼ω j

up(ωi, ω j),

where ∼ is a symmetric reflexive relation used to determine the neighborhood of an object,

and defined by the intersection of ellipses.

6.1.2 Data term

Assuming the independence of the data term of each object, the data term energy of a

configuration ω is given by:

Ud(ω) =
∑

ωi∈ω
ud(ωi) (6.7)

104 Chapter 6. Optimization methods comparison on a 2D MPP model

Figure 6.2: Ellipse modeling a flamingo and the background around it to measure the rele-

vance of the proposed object

The term ud(ωi) is the output of a local filter, evaluating from the data point of view the

relevance of object ωi. The object contains information on both its location and its shape.

The data term can, thus, be interpreted as an adaptive local filter selecting or favoring a

specific shape and object depending locally on the data. For the selected flamingo example,

as presented in figure 6.2, each flamingo can be modeled as a bright ellipse surrounded by

a darker background. For an object ωi = (xi,mi), with marks mi = (a, b, θ), we define the

boundary F(ωi) as the subset of K, between the ellipse ωi border and a concentric one ω′
i
,

with marks m′
i
= (a + ρ, b + ρ, θ). This boundary represents the background and we eval-

uate the contrast between the ellipse interior and the background. To evaluate the distance

dB(ωi,F(ωi)), we assume that the interior of the ellipse and its background have Gaussian

distributions with parameters (µ1, σ1) and (µ2, σ2) respectively, which are estimated from

the image. We compute a modified Bhattacharya distance between them as follows [25]:

dB(ωi,F(ωi)) =
(µ1 − µ2)2

4

√

σ2
1
+ σ2

2

− 1

2
log

2σ1σ2

σ2
1
+ σ2

2

.

The data energy ud(ωi) associated with object ωi is then given by:

ud(ωi) = Qd(dB(ωi),F(ωi)) (6.8)

where Qd(dB) ∈ [−1, 1] is a quality function which gives positive values to small distances

(weakly contrasted object) and negative values (well contrasted) otherwise [25]:

Qd(dB) =















(1 − dB

d0
) if dB < d0

exp(−dB−d0

D
) − 1 if dB ≥ d0,

6.2. Results on synthetic data 105

(a) (b)

Figure 6.3: (a) A synthetic image with 300 non-overlapping ellipses with dimensions [0, π[=

[5, 10] × [5, 7]. (b) The same image after a Gaussian noise addition.

where D is a scale parameter calibrated to 100 and d0 is a threshold that is estimated either

for the whole image or for each region, as detailed in [25].

6.2 Results on synthetic data

In this section we present a comparison of four optimization algorithms: MBD, MBC1 (the

basic one), MBC2 (with Belief Propagation), MBC3 (using the new birth kernel and local

perturbations kernels). The aim of this comparison is twofold, first to show how the algo-

rithms scale with the problem size, second to present which type of energy minimum each

algorithm can reachs.

We are testing the three algorithms on three samples containing respectively 300, 1000

and 10000 objects. These samples are generated by the same model introduced in sec-

tion 6.1. The comparison will present total energy evolution of configurations versus time

for each algorithm, and will present the object detection rate. The mark space for the ellipse

parameters isM = [amin, amax] × [bmin, bmax] × [0, π[= [5, 10] × [5, 7] × [0, π[

6.2.1 Sample of 300 objects

Figure 6.3 presents a sample of 300 objects. On the left of the figure, ellipses are filled

with white color, and background is black colored. On the right part of the figure, the same

sample is presented after Gaussian noise addition. The ellipses noise is generated from a

Gaussian distribution of mean zero and standard deviation is equal to 2, N(0, 2), and the

background is generated from a Gaussian distribution N(20, 2).

We use the following set of parameters: for the MBD algorithm, temperature T = 1
β
=

1/50, ∆δ = 0.9997, ∆T = 0.999 and for 20000 iterations. For the MBC1 algorithm: the

106 Chapter 6. Optimization methods comparison on a 2D MPP model

(a) (b)

(c) (d)

Figure 6.4: (a) Detection result using MBD algorithm on the synthetic sample of 300 ob-

jects. (b) Detection result using MBC1 algorithm. (c) Detection result using MBD2 algo-

rithm. (d) Detection result using MBD3 algorithm.

number of objects proposed per iteration R = 120, for 400,000 iterations. For the MBC2

algorithm: R = 120, while for the first few iterations, we set R = 3 × R (for faster conver-

gence), number of candidate per location (we call this parameter packet size) equals 8, and

number of iterations is 40,000. For MBC3, we use the same parameters as for MBC2, and

for this sample size we only use the new birth kernel, we do not use the local perturbations

kernels.

Figure 6.4 shows the visual detection result on the 300 objects sample. Pink ellipse with

the detected position and parameter of each object is overlayed on each detected object. On

a sample of this size, we can hardly see any visual difference between the detection results

of the three algorithms, all of them gives a very good result.

For this sample, figure 6.5(a,b) shows the energy of configuration evolution during it-

erations with time for the four algorithms. The minimum value of the energy is E(ω) =

−249.981, we know this true value since we consider a simulated image with known set of

parameters. From the energy curves shown in figure 6.5(a,b), we can conclude that after

130 seconds:

6.2. Results on synthetic data 107

• For this small sample, all the algorithms have no problem converging to the energy

minimum.

• MBD, as every algorithm in a simulated annealing framework, will give high energy

value since the algorithm accepts both good and bad objects from their energy point

of view.

• MBC1 algorithm reaches a lower energy than the MBD algorithm, but in longer time.

• MBC2 is better than MBC1, it reaches the minimum faster.

• MBC3 algorithm has the lowest energy.

Above the 0.7 second, the MBC3 algorithm beats all the other optimized algorithms.

From figure 6.5(c), we conclude that:

• The three algorithms find the correct number of objects in around 100 seconds.

• The MBD algorithm starts with a much higher value for the same reason previously

mentioned, with simulated annealing, the algorithm at the beginning accepts both

good and bad objects.

• The detection rate variance during all the iterations of MBC3 is lower than MBC2

which is lower than MBC2 which is lower variance than MBD.

• The MBC3 has the higher accuracy for the detection rate, its estimated number of

objects is the closest to the correct value during all the iterations. The highest value

of detected object is 312 objects in 11 seconds. In 2 seconds it detects 314, an error

of 4% (positive false) and in 30 seconds it detects 301 objects which is an error of

0.3%

6.2.2 Sample of 1000 objects

We use the following set of parameters: for the MBD algorithm, temperature T = 1
β
= 1/50,

∆δ = 0.9997, ∆T = 0.999 and for 20000 iterations. For the MBC1 algorithm: the number

of objects proposed per iteration R = 200, for 250,000 iterations. For the MBC2 algorithm:

R = 200, while for the first few iterations, we set R = 3× R, number of candidates per loca-

tion (packet size) equals 8, and number of iterations is 70000. For MBC3, we use the same

parameters as for MBC2, and also for this sample size we only use the new birth kernel, we

do not use the local perturbations kernels.

For this sample, figure 6.6(a,b) shows how the energy of configurations during iterations

evolve with time for the four algorithms. The true value of the energy is E(ω) = −801.672.

From the energy curves shown in figure 6.6(a,b), we can conclude that:

108 Chapter 6. Optimization methods comparison on a 2D MPP model

(a) (b)

(c)

Figure 6.5: (a) Shows the energy evolution versus time on the 300 objects configuration.

(b) Shows the energy evolution versus time in log scale. (c) Shows the object detection rate

for the same samples.

• From 4 to 40 seconds, both MBC1 and MBC2 algorithm have almost the same energy.

• Above 40 seconds, MBC1 has the lowest energy value.

• Setting the correct MBD parameters becomes hard, we can see that the minimal en-

ergy it reachs is far from the true minimum.

• MBC1 algorithm finds the global (correct) minimum faster than MBD and MBC2.

• MBC3 algorithm beats all the other optimized algorithms from the very beginning.

From the detection rate curves shown in figure 6.6(c), we conclude that:

• The MBD, MBC1 and MBC2 find the correct number of objects in around 250 sec-

onds, while MBC3 only requires 200 seconds.

6.2. Results on synthetic data 109

(a) (b)

(c)

Figure 6.6: (a) Shows the energy evolution versus time on the 1,000 objects configuration.

(b) Shows the energy evolution versus time in log scale. (c) Shows the object detection rate

for the same samples.

• The MBD algorithm starts with much higher value for the reason previously men-

tioned.

• From around 10 seconds, MBC1 and MBC2 algorithms have very close detection

rate.

• For the detection rate, the MBC3 algorithm has the lowest variance.

• MBC1 has a higher detection rate in the first phase.

• For the MBC2 detection rate, the highest estimated number of objects is 1057 (error

of 5.7%) in 9 seconds. The error becomes 1% in 251 seconds.

• For the MBC3 detection rate, the highest estimated number of objects is 1045 (error

of 4.3%) in 6 seconds. The error becomes less than 1% in 90 seconds.

110 Chapter 6. Optimization methods comparison on a 2D MPP model

(a) (b)

(c)

Figure 6.7: (a) Shows the energy evolution versus time on the 10,000 objects configuration.

(b) Shows the energy evolution versus time in log scale. (c) Shows the object detection rate

for the same samples.

6.2.3 Sample of 10000 objects

We use the following set of parameters: for the MBD algorithm, temperature T = 1
β
= 1/50,

∆δ = 0.9997, ∆T = 0.999 and for 25000 iterations. For the MBC algorithm: the number

of objects we propose per iteration R = 2000, for 18000 iterations. For the optimized MBC

algorithm: R = 2000, while for the first few iterations, we used R = 3×R (for faster conver-

gence), number of candidate per location (packet size) equals 8, and number of iterations is

10000. For MBC3, we use the same parameters as for MBC2, and also for this sample size

we use the new birth kernel and the local perturbations kernels.

For this sample, figure 6.7(a,b) shows how the energy of configurations evolves dur-

ing iterations with time for the four algorithms. The true value of the energy is E(ω) =

−7740.95. From the energy curves shown in figure 6.7(a,b), we can conclude that

6.3. Results on real data 111

• Above 2000 seconds, MBC2 has the lower energy curve than MBD and MBC1.

• MBC3 has the lowest energy curve only after 3 seconds from the start.

• Again, setting the correct MBD parameters becomes hard, we can see that the mini-

mal energy it reaches is far from the true minimum

From the detection rate curve shown in figure 6.7(c), we conclude that:

• The four algorithm find the correct number of objects in around 10000 second.

• The MBD algorithm starts with much higher value for the reason mentioned before.

• MBC3 detection rate has the lowest variance than the other algorithms.

• The MBC2 highest detected value is 10400 objects in 110 seconds, with a positive

error of 4%, and then starts decreasing again to the correct value.

6.3 Results on real data

In this section we present results of flamingo detection from aerial images comparing

MBC1, MBC2 and MBD algorithms. First we present results on four different colonies.

In table 6.1, the testing data is composed of two to three samples from each of the four

colonies. We show the percentage of correct detection of flamingos, negative false and pos-

itive false. These results are compared to ecologists’1 counting. Results in table 6.1 show

that the newly proposed algorithms outperform the MBD algorithm for the detection. For

the detection rate, MBC1 outperforms MBD, and MBC2 outperforms both of them. Both

MBC algorithms have lower negative and positive rates for the majority of the samples.

6.4 Conclusions

We have presented an efficient optimization algorithm to minimize a highly non-convex en-

ergy function which was previously solved within a simulated annealing scheme. We avoid

the difficult task of setting the temperature and cooling parameters of the simulated anneal-

ing. We showed the quality of the detection on many test samples of different data-sets. The

MBC1 algorithm reaches a lower energy level than the MBD but is slower. We can reach

the same level using MBD, but it requires many trials to set the perfect parameter values.

The second version of this algorithm uses belief propagation to optimize the proposed

configuration inside each iteration to obtain a relevant proposed configuration. The results

show that the MBC2 algorithm is substantially faster than the basic MBC1 algorithm.

1Ecologists from La Tour du Valat.

112 Chapter 6. Optimization methods comparison on a 2D MPP model

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6.8: (a-k) Samples from 4 different colonies c©Tour du Valat.

We also present the results on the synthetic data using the version of the algorithm

(MBC3). We validated the new multiple-birth-death kernel and the integration of the local

perturbations kernels. The results demonstrated the efficiency of the MBC3 algorithm on

all problem scales, either on the speed of convergence or in the detection rate.

We validated the optimization algorithm in a real application, the flamingo counting

problem. Flamingo colonies consist in general of more than one thousand objects, which

makes our algorithm much more interesting for a real application. We have demonstrated

how our algorithm in the MPP framework can be used to efficiently solve the flamingo

counting as one of many possible applications.

6.4. Conclusions 113

Table 6.1: Comparison between MBC1, MBC2 and MBD

Image Qualifiers MBC MBC 2 MBD

Fang02 sample 1

Good detection 93 90 87

Neg. false 0.07 0.08 0.13

Pos. false 0.16 0.12 0.09

Fang02 sample 2

Good detection 98 98 96

Neg. false 0.02 0.02 0.04

Pos. false 0 0.11 2

Fang05 sample 1

Good detection 86 85 82

Neg. false 0.14 0.15 0.18

Pos. false 0.1 0.2 0.07

Fang05 sample 2

Good detection 97 97 90

Neg. false 0.03 0.03 0.1

Pos. false 0.08 0.07 0.14

Fang05 sample 3

Good detection 94 95 90

Neg. false 0.1 0.40 0.1

Pos. false 0.06 0.13 0.14

Tuz04 sample 1

Good detection 100 100 99

Neg. false 0.0 0.0 0.01

Pos. false 0.04 0.01 0.01

Tuz04 sample 2

Good detection 98 98 98

Neg. false 0 0 0

Pos. false 0.04 0.04 0.04

Tuz04 sample 3

Good detection 100 100 100

Neg. false 0 0 0

Pos. false 0.02 0 0

Tuz06 sample 1

Good detection 100 100 100

Neg. false 0 0 0

Pos. false 0.01 0 0

Tuz06 sample 2

Good detection 98 100 95

Neg. false 0 0 0.04

Pos. false 0.09 0 0.06

Tuz06 sample 3

Good detection 99 99 95

Neg. false 0.01 0.01 0.04

Pos. false 0.12 0.12 0.08

Chapter 7

Penguin counting

7.1 Object recognition

Visual recognition of object categories and instances are very challenging problems, finding

applications in computer vision, machine learning, and robotics. In the past decade, a huge

variety of features and algorithms have been proposed and applied to this problem, resulting

in significant progress on object recognition capabilities from monocular images. There is

a steady improvement on standard benchmarks such as Caltech-10, Caltech-256 and other.

There exist other challenges such as PASCAL Object challenge raised by the computer vi-

sion community to keep track of advances in this field.

Multiple object detection from a still image is also a very challenging problem, finding

applications in different domains such as counting crowd [70], evaluating a population of

trees [33], animals [25], building [55], cars [81] or cells [32]. Our work focus is on large

and dense scenes, with main application being the evaluation of a population of penguins

(seabirds). Penguins are very sensitive to climate changes, which makes an automated way

of monitoring their number a real need for the ecologists.

7.1.1 Imaging and sensors

Solving a multiple object detection problem is a function of the available and feasible data.

For some problems, the available data is from a top view perspective of the scene. A typical

example is the building detection problem, where data sources could be either satellite or

aerial acquisitions. The mostly used imaging sensors for this application (most image pro-

cessing applications) will be optical, lidar and radar.

From those sources, we can obtain 2D, 2D+ or 3D data that will be used for the de-

tection purpose. In other problems, e.g. people counting in a crowd [91], most of the data

are from photos taken by hand held cameras. Imaging can be accomplished using standard

115

116 Chapter 7. Penguin counting

monocular camera that holds only color information. We may also have a computed depth

map either from stereo camera or using laser device. Infra red cameras can also be used in

some situations. The availability or the cost of the image acquisition method, may be the

reason for choosing one solution or another for a certain problem.

Descriptors can be in general categorized into two classes, global descriptors and local

descriptors. These features had to satisfy certain properties:

• Robustness with respect to affine transformation: scaling, rotation, ...

• Complexity (extraction and comparison): features with high complexity will be of

limited usage

More properties for local features:

• Repeatability: The same feature can be found in several images despite geometric

and photometric transformations

• Distinctiveness: Each feature has a distinctive description

• Compactness and efficiency: Fewer features than image pixels

• Locality: A feature occupies a relatively small area of the image; robust to clutter and

occlusion

7.1.2 Depth Map

Object category detection, from images or depth map has encountered a lot of develop-

ments. One of the fields that was boosted due to this advance is the field of image indexing.

Depth map can be calculated either using stereo camera (or more cameras), or laser scanners

which are becoming more accessible (specially low resolution), or projecting an invisible

infra-red structured light pattern and performing stereo triangulation. Once depth informa-

tion is obtained, we can get accurate geometrical properties of objects, thus we can greatly

improve the detection accuracy. Geometrical properties can be used on their own for object

detection, but combining this information with color information, will result in a higher de-

tection rate.

To speed-up Viola face detector [89], the depth information was simply used to reduce

the image region and possible scales for candidate faces [19]. Basically, depth information

will simplify and accelerate the task of detection and recognition by giving shape or geo-

metrical clues about objects. In [14], the authors proposed an interesting method for the

extraction of (parametric) primitives (sphere, cylinder, plan,...) from the depth map using

the normal vectors as features to extract those primitive shapes, FPFH [80] and using con-

ditional random field (CRF).

7.1. Object recognition 117

Depth map quality: High quality laser scanners give more accurate depth map than

what we get from stereo reconstruction. There is also a trade-off when selecting the laser

scanners, mostly, high quality scanners are very expensive and slow, and reciprocally, low

quality scanners are fast and cheep.

7.1.3 Descriptors and matching for 3D objects

For a recognition task, first we calculate the descriptors of the newly proposed object and

then compare it to existing learned object. After the acquisition of the 3D object, what ever

the representation 1, we have to assign a representative descriptors. Here we refer to some

of the existing approaches for 3D representation and matching (this is not an exhaustive

list):

• Shape statistics

• Structural

• Transformation based

• View based

Statistical approach is based on the distribution of some measurements. Histogram is

the most used representation for those distributions, it find uses in many computer vision

applications. Histograms hold either local or global information. Distributions can model

features such as surface curvatures, point features (PFH) [17], or any other. Each object is

described by a distribution of such features. The comparison of two 3D objects becomes

straightforward, is it a simple comparison of histograms. Some techniques use the cor-

relogram instead of the histogram, since it embeds spatial information, which is lacking

in histograms. Statistical approaches can be invariant to translation, rotation and scaling.

Global information is more robust to noise, but less discriminative, while local information,

is more discriminative, but more sensitive to noise.

The structural approach aims to represent a structural model of 3D objects. This ap-

proach describes a higher level of information, e.g. a structural representation of a human

body to represent (head, abdomen, arms and legs). This representation can be used for pose

and activity estimate for humans, since it hold detailed information about the body parts and

the relation between them.

Transformation based approach is based on the transformation of the 3D object from

the Euclidean space to another space. The most popular transformation based techniques

is known as spin images [54]. The aim of spin images is to capture both local and global

13D objects can be represented in different forms: Cloud of points, Triangular mesh, Set of parametric

surface and Set of voxels.

118 Chapter 7. Penguin counting

features, and being view-independent (somehow close to the view based approach). Spin

images encode the density of the mesh vertices projected onto an image (of the visible and

cluttered parts), for each point of view for each instance.

View based approach is basically projecting 3D data into an image (2D), and do the

recognition task based on feature extracted from this 2D image. People usually uses this

technique because working with 2D data is simpler than 3D, and because people have more

experience and existing methods can easily be adapted to this problem. The number of

views can be fixed or dynamic.

7.1.4 Features given 2D data

Features can be categorized into two categories, global and local features.

7.1.5 Global features

Features development from 2D data started earlier in the computer vision community that

from 3D. One of the fields that was boosted due to the advances in feature development,

especially global features is image indexing. Method for particular instances have been

proposed, such as: the Statistical Models of Appearance, developed by Tim Cootes. A

detailed report of this work can be found in [21]. We tested some methods of statistical

appearance models [21] on photos of individual penguins, but without promising results,

and the reasons are:

• In most of the photos, with the different camera position with respect to a penguin,

and different illumination conditions, it was not possible to extract a set of reliable

edges, but only for some positions, and only for penguins close to the camera, where

the image holds its high frequency content.

• When we move to process a photo with many penguins, with the occlusion, most of

the edges becomes hidden by other penguins.

There also exists a very popular method for face detection [89], but this method requires

a specific way of imaging (facing the camera, . . .), and it also requires tons of photos for

training the model, which makes it not practical for our application.

Here we list some of the simple and well known global descriptors:

• 2D Correlation

• Histogram

• Correlogram

7.1. Object recognition 119

The simplest idea for object detection is using template (patch) with an image, it is

known as template matching. It consists of sliding the “patch” against the input image, and

measure the similarity between the patch and the image at every position. For similarity

measure, two of the most popular matching methods are:

1. Square difference method: This method matches the squared difference, so a perfect

match M will be 0 and bad matches will be large. Let I be the input image, T the

template, the matching at location (displacement) (x, y) is given by:

Msqd(x, y) =
∑

x′,y′
[T (x′, y′) − I(x + x′, y + y′)]2

2. Correlation matching methods: This method multiplicatively matches the template

against the image, so a perfect match will result in a large value and bad matches will

have a small value. The matching M at location (x, y) is given by:

Mcorr(x, y) =
∑

x′,y′
[T (x′, y′)İ(x + x′, y + y′)]2

Both methods have a normalized version which is more useful since in reducing the

effect of intensity difference between the input image and the template [78]. The normal-

ization coefficient is given by:

Z(x, y) =

√

∑

x′,y′
T (x′, y′)2.

∑

x′,y′
I(x + x′, y + y′)2

Most of global descriptors are based on color information. Two of the most popular in

image indexing and object detection features are: histogram [85], [35] and correlogram [49]

which model the spatial color distribution and can be considered and as extension of the gray

level co-occurrence matrix in color space.

Let Λi ∈ [0, 255]3, the histogram value for each color c ∈ Λ for object (or image) oi as

follows:

hc(oi) = #pixelc

Quantization steps Q is an important parameter to be considered. Once the histograms

are calculated, the similarity between two images (image and object) can be measured using

the distance between their corresponding histograms. Let Ii and I j be two images, h(I) be

the histogram of image I and let d(., .) be a distance between two histograms:

dhist(oi, o
′

i) =
∑

m∈Q

(|hm(oi) − hm(o
′

i)|)
n ,

120 Chapter 7. Penguin counting

where n determines the norm, as norm L1 and L2. The computation of the correlogram to

measure the similarity between to images is given by:

α
(k)
ci,c j
, |Pr(C(p1) = ci,C(p2) = c j|dist(p1, p2) = k)| ,

where α
(k)
ci,c j

is the joint probability Pr(C(p1) = ci,C(p2) = c j) of having the color of pixel

1 (C(p1)) equal to ci and the color of pixel 2 (C(p2)) equal c j at a distance k (distance

in norm L∞). There also exist what is known as the auto-correlogram, which is a reduced

version of the correlogram, it makes only the calculations of the joint probability for ci = c j.

Also to measure the similarity between Ii and I j, we calculate the correlogram or auto-

correlogram vector. To measure the similarity between the two images, the distance between

their corresponding correlogram or auto-correlogram vectors is calculated as follows:

dk
corr(oi, o

′

i) =
∑

m∈M

(|αk
m(oi) − αk

m(o
′

i)|)
n

Histogram complexity is O(n), correlogram complexity is O(n2k) for the dynamic pro-

gramming version and O(n2k2) for naive version. We tested both histogram and correlogram

methods, and results will be presented later in this chapter.

7.1.6 Local features

The state-of-the-art object detection algorithms usually consist of two parts: detector and

descriptor. First, points of interest are detected in the images with a region around each

point of interest, then, an invariant descriptor (feature) is associated with each region. Sim-

ilarity measure may thus be established by matching the descriptors.

In recent years local image detectors have boomed. Let us list some of the famous local

features in invariance order. While all the following are translation invariant, Harris point

detector (it combines corner and edge detector) is rotation invariant, it was first introduced

in [48]. Features that are rotation and scale invariant are: Harris-Laplace [68], Hessian-

Laplace [69], and difference-of-Gaussian (DoG) region detectors [62]. Features that are

invariant to affine transforms are: MSER (“maximally stable extremal region”) [52] and

LLD (“level line descriptor”) [34]. For more invariance, comes the popular Scale-invariant

feature transform (SIFT) [67]. It is one of the most popular features used in computer vision

for object detection, image stitching, video tracking and robotic vision.

SIFT features are invariant to scaling, rotation, translation. It is also partially invariant

to illumination change and affine or 3D projection. Gaussian kernels were used in order to

achieve scale invariance the scale space [64]. To achieve rotation invariance, key locations

where localized at maxima and minima of a DoG in the scale space. An image pyramid

with re-sample where used for efficiently calculating these key locations. At each level of

the constructed pyramid, an image gradient is calculated, and also orientation. The gradient

7.2. Penguin counting problem 121

is thresholded to achieve robustness to illumination change. The key locations gives canon-

ical orientations to be rotation invariant. For more robustness to illumination and contrast

change, the orientation will be the peak in the histogram of local image gradient orienta-

tions. Speeded-Up Robust Features (SURF) [7] is considered as a speed up version of the

SIFT feature. The usage of integral image was the key element for drastically computation

time reduction. The selection of which feature to use is problem dependent, not every ap-

plication requires invariance to every type of deformation.

The complexity of the recognition task comes from the enormous change in visual ap-

pearance of objects due to different view point, illumination, occlusions, class variability

and others.

7.2 Penguin counting problem

A popular approach in computer vision is to calculate a 3D reconstruction from video

data [76] or from many images. An interesting work used two million images uploaded

by tourists to Flikr for Rome reconstruction [1]. Also occlusion problems become easier to

solve in video data due to object’s relative motion [88], the same for multiple cameras [57].

Unfortunately, these approaches are also not feasible in practice for the penguin counting

problem.

Photographing penguin colonies is a complex task, where there exists many challenges

to deal with. As we can see from figure 7.11, the penguin colony is spread over a very

large space. Another complexity comes from objects motion, penguins can move during

the photographing. Another reason is, due to the extreme weather conditions in the south

pole, taking thousands and thousands of images or a video of the whole colony is not a

feasible task. Even if it is possible once, it can not be repeated, and the aim is to develop an

easy automated way to monitor the evolution of the number of animal in the colony. This

implies that the photographing and counting process should be as simple as possible since

it will be done many time per year.

Photographing penguin colonies is only possible using a hand held camera from hills

surrounding the colony. Aerial images are not possible (air planes are not allowed), small

airplane can not be used most of the year because of the wind speed, and current satellite

image resolution nowadays is not enough. In this situation, counting penguins from images

requires to handle occlusions and perspective effects.

7.2.1 Adelie penguins

By end of 2008, we received the first image collection taken by ecologists. This image

collection contains images of two types of penguins, Adelie and Emperor penguins. We

122 Chapter 7. Penguin counting

propose different solutions for the penguin counting problem based on the selected penguins

colony. For Adelie penguins, this case is actually the simplest case. Figure 7.1 shows a

panoramic photo of an Adelie penguin colony. This problem is quite actually quite close to

a top view scenario, which makes it simple to solve. The simplicity of this specific example

comes from:

• The terrain that the penguins are going through is inclined, which makes the camera

position close to a top view scenario with respect to the scene. As a result, there are

no occlusion. The only difference from a top view case is a small perspective effect,

on the right of the image (which is actually the top of this rotated image) objects are

getting smaller.

• During the climbing, most of the penguin’s back are facing the camera, which is black

(not too many light reflections in this image), which simplifies the design of the data

term function.

Figure 7.1: A panoramic photo of an Adelie penguin colony, taken in 2008 c©DEPE /CNRS.

7.2.2 Proposed solution

We propose using the 2D MPP model introduced in chapter 6, section 6.1, which was devel-

oped for the flamingo counting problem [25, 26]. A minor modification should be applied

to the input image to be able to use the flamingo model. The contrast of the image should

be inverted, so the black color of penguins back becomes bright to match the existing data

term. Figure 7.2(a) presents a sample from the large panoramic photo. The detection result

of counting on this sample using the Opt-MBC [36] algorithm (with belief propagation) is

shown in figure 7.2(b), where detected penguins are highlighted by pink ellipses. We can

conclude that the 2D MPP model [25] is quite adapted for this specific scene configuration;

only a small adaptation of the data term is required.

7.2. Penguin counting problem 123

(a) (b)

Figure 7.2: A sample of an Adelie penguin colony. The detection result on this sample

c©DEPE / CNRS.

7.2.3 Emperor penguins

In figure 7.3(a), we present a panoramic photo of a group of Emperor penguins and in fig-

ure 7.3(b) we zoom on a small part of this group. In figure 7.3(c), we present a photo of a

single Emperor penguin.

After analyzing the first image collection we received by end of 2008, we found the

image quality to be visually good. These images induce many problems:

1. The camera parameters are unknown for these set of images

2. Images are stored using a lossy compression technique

3. The panoramic image is fine for visualising the whole group, but contains errors, as

the shadows have a varying orientation by traversing the image from side to side. And

usually, shadows are potentially part of data term functions.

7.2.4 Proposed solution

We proposed solving the problem using the 3D point process introduced in chapter 5.

Configuration Space

Let us consider a space K × R+, where K is a closed connected subset of R2, referred to

as the real plane and R+ refers to the z-axis (objects height). We consider a perspective

transformation, supposed as known, P, such that I = P(K × R+). The data consists of

I = (is)s∈S , where S is a discretization of the image plane I and is ∈ Λ is the color of pixel

124 Chapter 7. Penguin counting

(a)

(b) (c)

Figure 7.3: (a) A panoramic photo is a part of an Emperor penguins colony c©DEPE /

CNRS. (b) A zoom on a sample of this colony photo c©DEPE / CNRS. (c) A photo of an

individual Emperor adult penguin c©DEPE / CNRS.

s. We consider configurations of an unknown number of objects in the real plane. For our

application, consisting of counting a population of penguins, we consider two classes of

objects l ∈ {0, 1} corresponding respectively to adults and chicks (babies). 3D color models

of each class are designed using standard software 2, and are shown in figure 7.43. The

3D model coloring was applied using texture mapping. We consider two positions for the

penguins p ∈ {0, 1} corresponding to standing up and lying (on the ground) animals. Finally,

a penguin is also characterized by its orientation φ with respect to the z-axis (in cylindrical

coordinates). Therefore, an object is defined as ωi = (xi,mi) ∈ K ×M, where xi represents

the object location and mi its mark,M = {0, 1} × {0, 1} × [0, 2π[.

We consider a marked point process with points lying in K and marks in M. The con-

figuration space is then defined as:

Ω =

∞
⋃

n=0

Ωn, Ωn = {{ω1, ..., ωn} ⊂ K ×M} , (7.1)

2Software such as Blender and 3D Max
3Rendering using DAZ Studio software, used only to render this photo in maximum quality, but inside our

program we only use OpenGL.

7.2. Penguin counting problem 125

where Ωn is the subset of configurations containing exactly n objects. This configuration

space is the space of all sizes, positions and parameters, same idea of the space in [90]. The

process is defined on Ω as follows:

dπ(ω) = h(ω)dν(x)
∏

n

(dµ(mi)) , (7.2)

where ω = {(xi,mi), i = 1, ..., n}, x = {xi, i = 1, ..., n}, m = {mi, i = 1, ..., n}, ν(.) is the

measure of the Poisson process of intensity λ(u), u ∈ K, µ(.) is a measure on M (product

measure of the Lebesgue measure on [0, 2π[and counting measure on {0, 1} × {0, 1}) and

h(.) is a density. We consider a Gibbs density, written as follows:

h(ω) =
1

Z
exp{−U(ω)} , (7.3)

where Z is the partition function (normalizing constant), and U(.) an energy.

7.2.5 Energy

This energy takes into account the interactions between geometric objects (prior energy)

and a data energy to fit the configuration to the image (data energy):

U(x) = Ud(x) + γpUp(x) (7.4)

where γp is the weight we assign to the prior term. Minimization of this energy corre-

sponds to the correct configuration detection.

Prior Energy

For each 3D object ωi, we consider its occupancy area in K by an ellipse. For each object ωi

we define an ellipse C(ωi) which approximates its occupancy area in K. Both standing and

lying objects are well approximated by an ellipse. The overlapping between two objects

is approximated by the intersection of the two corresponding ellipses C(ωi) and C(ω j),

which reduces the prior term to the same model as presented [25]. We define the following

symmetric relation:

∀ωi, ω j ∈ K ×M, ωi ∼ ω j ⇔ C(ωi) ∩C(ω j) , ∅ , (7.5)

and the overlapping coefficient:

∀ωi, ω j ∈ K ×M, ωi ∼ ω j,O(ωi, ω j) =
A(C(ωi) ∩C(ω j))

min
(

A(C(ωi)), A(C(ω j))
) , (7.6)

where A(.) represents the area. To define the prior, we penalize overlapping in the configu-

ration by considering the worst case for each object, that is:

Up(ω) =
∑

ωi,ω j∈ω
max
ω j∼ωi

O(ω j, ωi) (7.7)

126 Chapter 7. Penguin counting

The reasons for using only the occupancy area, and approximating it with an ellipse are

the following:

• Calculating the intersection between the 3D models is a high computational task, and

is unnecessary for our model.

• For the prior term, the aim is to penalize objects overlapping, it does not require a

very high precision in the calculation of volume or area of intersection, just enough

to correctly penalize the overlapping. In the 2D MPP model used for flamingo count-

ing [25], the ellipses’ intersection calculation is based on discrete approximation.

• For the prior term, the usage of an ellipse is even more correct than using an ellipsoid

or a cylinder, and the reason is, the height of the object should not affect how the over-

lapping of two objects is penalized, e.g. the cost of overlapping between two adults,

with n% occupancy area overlapping, should be the same when the overlapping is

between an adult and a baby penguin with the same n% occupancy area overlapping.

Camera Parameters

The proposed method is based on 3D scene simulation on the GPU using OpenGL. The pro-

posed configurations are projected onto the image plane, and the configurations are modified

until convergence. Camera parameters are required for projecting the configuration during

the iterations of the optimization algorithm. The projected image I = (is)s∈S is given by

projecting every point from the 3D space world M3D
p to the image space, that is obtained

by:

is = A ×
(

R T

0 1

)

× M3D
p . (7.8)

Matrix A is the intrinsic camera parameters and (R ,T) are the extrinsic parameters

(rotation and translation). For the semi-synthetic images (section 7.2.6), we already know

all the parameters. For images taken before the protocol definition, we have to estimate

those parameters. For the current time, we manually set those parameters. We plan to

integrate an automated method for camera pose recovery [44]. This method was developed

explicitly to recover camera parameters from a random set of points. It will be included

as one phase of detection and one phase of re-estimating the camera pose and iterating

between them until convergence.

Data Energy

Computing the data term requires to project the scene on the image plane. We consider a

data term associated with the configuration ω given by:

Ud(ω) =
∑

ωi∈ω
U(ωi|c(ωi)) , (7.9)

7.2. Penguin counting problem 127

(a) (b)

Figure 7.4: This figure represents a very fine rendering of our 3D models for adult and chick

penguins. The version used has a reduced number of triangles for fast projection

where c(ωi) denote children of ωi, which depend on the camera position with respect to

the scene.

Measuring Similarity

Similarity measure for this application is the first major challenge of the counting task. For

a given object ωi, let oi be the set of projected pixels and let yi be there corresponding set

of pixels in the input image. Measuring the similarity is accomplished by measuring the

distance d(., .) between the two objects corresponding to feature vectors v(oi) and v(oi). We

consider at first a global color based approach. We have tested both histogram and correlo-

gram [49] on synthetic images.

Figure 7.5(a) shows a very simple case, a synthetic image representing a top view of

a set of penguins, and with simple background (white). In figure 7.5(b), we present the

detection result using the proposed 3D MPP model and using correlogram as a feature for

similarity measure. The detection results are quite good, where the correlogram gave better

results than te histogram. This method gave interesting results for sparse objects and white

background, but the detection quality dropped when the background changed from white to

icy background as shown in figure 7.7. Even if this method has passed the complexity of

using icy background, it was not selective enough for a dense scene under occlusions.

The reason behind the detection quality drop when using a more complex (realistic)

background comes from the confusion between the color features of a candidate object and

128 Chapter 7. Penguin counting

(a)

(b)

Figure 7.5: (a) A top view of a simulated penguin configuration composed of adults and

babies as input c©Ariana/INRIA. (b) Detection result on this input image c©Ariana/INRIA.

the color feature (in the color space) of any part of the background. This confusion is

even higher for baby penguins since their color is very close to the icy background. Let us

consider the colony sample from figure 7.3(b), and the single penguin from figure 7.3(c).

The RGB color histogram of the colony sample is shown in figure 7.6(a-b), and the color

histogram of the single penguin is shown in figure 7.6(c-d). We can comment on the color

feature vectors that:

• Colors of a single penguin or the colony sample occupy a very small portion of the

space. The variance is very low. Both images occupy almost the same part of the

color space.

• Colors of a penguins are not black and white as it first may look like, it is more or less

distributed on the gray axis between {0, 0, 0} and {255, 255, 255}.

• The yellow-orange part on the neck of a Emperor penguin is minor in the color space,

it is only prominent on penguins close to the camera, and in many cases it is occluded.

7.2. Penguin counting problem 129

With all these problems, color space can not be easily used for similarity measure func-

tion. We also tested some color space reduction as a special quantization for the color space,

but it was not of great use.

(a) (b)

(c) (d)

Figure 7.6: (a,b) RGB histogram of a sample of the penguin colony. (c,d) RGB histogram

of an individual Emperor penguin.

In a second stage, we aimed at testing the local features method, such as SIFT, and oth-

ers. We selected SURF for two reasons, it is very close to SIFT method, which is considered

as one of the state-of-the-art methods of local feature, and also it has a lower complexity

than SIFT.

We created a training database from penguin faces, arms, for adults and babies, and

some background parts, where a sample of this training set is shown in figure 7.8. The goal

was to extract SURF feature from those images, and train a classifier to be used for the data

term function. We extracted the features, and trained a binary decision tree. Unfortunately,

this method did not really progress. The main limitation came from the fact that we were

able to extract SURF features from objects lying in the first plane of the image, but fur-

ther objects (far from the camera) due to the perspective effect did not contain enough high

frequency components for the features extraction phase. In many samples the number of

extracted features where zero or close to zero. The second problem is that usually methods

130 Chapter 7. Penguin counting

Figure 7.7: A top view of a simulated penguin configuration composed of adults and babies

using a real background (ice) c©Ariana/INRIA.

based on SIFT use a second phase for matching features with some geometric relation be-

tween those features, and those geometric information is less obvious for non-rigid objects

(penguins).

Proposed solution

We propose interactive k-means segmentation. It allows us to be independent from illu-

mination conditions. We propose an adaptive color space reduction by clustering the data

using a k-means algorithm into eight to twelve clusters. The user then labels each clus-

ter among the three classes corresponding to adults, chicks and background to produce an

image with only three labels. The advantages of this method are:

• local object detector on the image becomes of very low complexity O(n) which is

important due to the number of configurations tested during the stochastic dynamics,

• it reduces the parameter space enormously and object detection becomes independent

of the orientation φ, so that we can ignore this parameter,

• the user interaction is very limited.

Given that each object type has one label, the data term can simply be calculated as

follows:

Ud(ωi) =
∑

s∈oi

(−λ#good + #wrong

λ#good + #wrong

)n

(7.10)

where #good is the number of pixels whose class (label) matches, #wrong is the number of

pixels which do not match, λ is a parameter to control the number of correct pixels requires

to be a good object (negative energy) which can also be different for adults and chicks. We

7.2. Penguin counting problem 131

Figure 7.8: A sample of the training set containing heads and arms of adults and babies as

well as samples from the background ice c©DEPE / CNRS.

model the effect of partial occlusion (reduction of number of pixels) of oi, by giving a lower

weight to occluded objects based on the ratio of its number of visible pixels to its total

number of pixels as follows:

Ud(ωi) =
#(visible pixels)

#pixels o f f ull ob ject
× Ud(ωi) . (7.11)

While this data term is far from being the most adapted, it allows us to validate some

parts of the proposed 3D Markov point process model.

7.2.6 Results

In this section, we present results on two synthetic images and primary results on a real

image. Configuration shown in figure 7.10.(a) consists of 33 adults penguins and 44 chicks,

and in figure 7.10.(b) we present the results, with 35 detected adults and 50 chicks. Con-

figuration shown in figure 7.10.(c) consists of 32 adult penguins and 35 chicks, and in fig-

ure 7.10.(b) we present the results, with 31 detected adult and 57 chick. By looking at these

132 Chapter 7. Penguin counting

(a) (b)

(c) (d)

Figure 7.9: (a,c) Shows inputs for synthetic images, (b,d) are the detection results

c©Ariana/INRIA.

results, we can see that we can detect most of the partially occluded objects. This detection

is correct when the occlusion is between an adult and a chick, and an over-detection inside

the same type. This limitation comes from the currently naive data term used, with just

one label for a dense homogeneous group, with no edge (borders) information, it becomes

very hard to make exact detection. In the real image, we have a small part of a colony

image. For this image we approximate the camera parameters manually. Our model was

able to detect partially the configuration, still suffering from the imperfection of the manual

approximation of the camera parameters. We also get a full 3D reconstruction of the scene

as a byproduct of the proposed algorithm.

7.2.7 King penguins

From the photo collection we received by end of 2008, we realized the need to define ex-

actly the imaging process. The first image collection was used mostly for testing different

potential data terms. It also served as a reference for the design of the 3D penguin model

(baby and adult), both color and geometry. In addition to the proposed model for Emperor

penguins, special consideration for the terrain is required.

7.2. Penguin counting problem 133

(a) (b)

Figure 7.10: (a) Shows input for real image c©DEPE / CNRS. (B) Is the detection results

c©Ariana/INRIA.

Figure 7.11: Photos of the terrain and the penguin colony taken from the top of a hill

surrounding the colony c©DEPE / CNRS.

7.2.8 Proposed solution

For the first image collection, there was only some simple recommendation about imaging

process, but due to the scene complexity, such as large space, complex terrain topography,

complexity to recover camera parameters, . . . , we collaborated with the on site ecologist to

define an Imaging Protocol.

Since for the recognition task we simulate the 3D scene with a perspective effect, the

topology of the territory is very important. The penguins are living in a region that is not

fully flat, and in our model the elevation information is important. North and South poles

are not usually covered by space missions for obtaining elevation maps. The Digital Ele-

vation Model (DEM) is not available for the Possession island. The only available data for

this island at the Institut Géographique National (IGN) is a map. For Adelie land, which is

at the South pole, we where able to get a DEM thanks to a program called SPIRIT. In 2007,

CNES actively participated in the 4th International Polar Year (IPY), making available for

free their data for the public. For details about this project, please refer to their web site:

http://www.spotimage.com/web/en/3163-spirit-dem.php

134 Chapter 7. Penguin counting

The protocol goal was to specify the following:

1. Define explicitly a process to be able to recover the camera parameters (inserted ref-

erence points with known GPS coordinates, distances and angles)

2. Define an imaging procedure for the terrain for reconstruction

3. Define an imaging procedure for photographing the penguins

4. Define all required hardware for the protocol, starting for proposing camera and laser

measurer type, and then defining the number of reference points in the terrain that we

mark by sticks (please refere to the protocol), to even the camera settings

We defined in an iterative way with the ecologist an Imaging Protocol. This protocol

is attached in Appendix A. This protocol concerns imaging two elements, the king penguin

colony and the territory occupied by the colony of interest. We detailed the description of

the required images for both elements.

Given the huge space occupied by the king penguin colony, as shown in figure 7.11,

the first concern was splitting this large area into smaller areas which can be easily pho-

tographed. Figure 7.12 show a proposed division for the terrain by the ecologists. Each

proposed region defines a flat region on which penguins live, where each region can some-

how be treated independently.

Figure 7.12: A proposed division for the terrain by the ecologists c©DEPE / CNRS.

In figure 7.13, we present two ”reference configuration”4. The purpose of imaging the

reference configurations is for the reconstruction of the terrain. In figure 7.16 and 7.17, we

present some of the images taken for the penguins based on the defined protocol.

In figure 7.14 and figure 7.15 we present two extractions (print screen) from real data,

GPS coordinates and laser measurements that is used for the reconstruction of terrain based

on the defined protocol.

4Please refer to appendix A for a description of a ”reference configuration”

7.2. Penguin counting problem 135

(a) (b)

Figure 7.13: A proposed splitting for the terrain provided by the ecologists. It shows the

regions of the same terrain slop c©DEPE / CNRS.

Conclusion on the proposed solution for King penguin counting

Although the existance of a protocol, and the huge effort accomplished by the ecologist to

working with us to define the imaging protocol, and working on site under tough weather

conditions for applying the protocol for the terrain reconstruction and imaging penguins,

this task is very complex.

• Defining a reliable data term for similarity measure it not yet solved, it involves many

of the object recognition challenges such as: occlusion which is one of the most

complex problem in computer vision, and is very high in our data, with no obvious

way to prevent it; form variability of the penguins (twisted head); illumination; . . .

• Based on the ecologist feedback, applying the protocol is an exhaustive process, and

the inserted sticks (refer to appendix A) disturb the penguins and should not remain

fixed

• A big complexity comes from the topography of the place, to take an image with a

high incidence angle, the ecologist has to go on hilltops. Unfortunately, the ramps of

the hills are very small, which makes it almost impossible to be close to the colony

and at high a incidence angle at the same time.

136 Chapter 7. Penguin counting

Figure 7.14: A sample of the locations of sticks in each configuration. This data is collected

on site by the ecologists using GPS c©DEPE / CNRS.

Figure 7.15: A sample of the distances between sticks in each configuration. This data is

collected on site by the ecologists using a laser measuring instrument c©DEPE / CNRS.

7.2. Penguin counting problem 137

(a)

(b)

(c)

Figure 7.16: (a,b,c) Image samples of the Royal penguin colony based on the defined imag-

ing protocol c©DEPE / CNRS.

138 Chapter 7. Penguin counting

(a)

(b)

Figure 7.17: (a,b,c) Another image sample of the Royal penguin colony based on the defined

imaging protocol c©DEPE / CNRS.

Chapter 8

Conclusion and Recommendations

Markov point process is an interesting and flexible probabilistic framework. It is an object

based method, and here lies its strength. It is more powerful and more natural to solve many

image processing and computer vision problems on the object level rather than on the pixel

level specially when considering high resolution images.

Markov point process is a superclass of the famous Markov random fields, while being

much more flexible. In the prior term, we can insert any type of prior knowledge we have

about the problem. The prior varies from favoring alignments between objects to defining

minimal distances, based on the considered problem. This prior information is added to the

prior term to regularize the solution. Data terms for object detection can range from simple

correlation to using an SVM classifier trained on SIFT features for specific object category.

8.1 Optimization

During more than a decade, researchers have been developing point process models for im-

age processing applications focusing on two tracks.

The first track concerned the models development, which is application based. Line

point process model have been developed for road network extraction, such as the Candy

model, Quality Candy model and IDQ model [63]. A rectangle point process model was de-

veloped for building detection. An ellipse point process model has been developed for trees

and flamingos counting. We consider that the point process models in image processing

can be classified into two categories based on the sophistication of the interactions. Trees

and flamingos do not form special spatial structure, the prior term simply guarantees that

objects are non-overlapping; and this is what we considered as the first class of Marked

point process. Road network, and building are considered as being in second class, and

they embed more sophisticated interactions, such as alignments, or angle between objets.

139

140 Chapter 8. Conclusion and Recommendations

On the other side, samplers have also evolved. The development of these models was

carried on with the development of optimizers, and this is the second track. With the in-

crease of amount of collected data, and the increase in problem size, new optimization

methods are required to cope with this demand. Point process samplers had started by the

Birth-and-Death algorithm. This sampler was the first allowing a dimensional jump between

spaces of different sizes, but from an image processing (application) point of view, it is a

naive algorithm. Later came the RJMCMC sampler on top of this space dimensional jump

idea. Even using only two kernels (birth, death), and even with the required burn in time,

RJMCMC is faster than Birth-and-Death, since it has a lower order of complexity than the

Birth and Death algorithm.

Both Birth-and-Death and RJMCMC are global-simple perturbation samplers. With

the Metropolis Hasting scheme, RJMCMC became able to make also local perturbations,

which made it faster and so more attractive to image processing applications. Although

their speed gain, RJMCMC remains a slow optimization algorithm, it is a simple pertur-

bation algorithm. This was the driver to develop the first multiple perturbation algorithm,

which is the Multiple Birth-and-Death. This a global-multiple perturbation algorithm which

has proved to be very efficient for the first class of Marked point process (e.g. the flamingo

counting problem).

All previously mentioned samplers require a simulated annealing scheme, which is a

major drawback. Setting the temperature and cooling parameter can also be a complex task.

Indeed, certain conditions for those parameters have to be respected for convergence, which

makes those algorithms slow.

In this thesis we focused on the first class of problems, objects with simple interactions.

We proposed a new optimization method that bypasses many of the problems of previous

samplers. The Multiple Birth and Cut algorithm has the following properties:

1. The very reduced number of parameters (no: δ, ∆δ and γ (prior term weight))

2. No simulated annealing (β and ∆β)

3. The speed of convergence (MBC3) much better than the MBD algorithm, whatever

was the problem size.

4. Very rapidly the algorithm gives a very close estimation of the number of objects, far

before full convergence. We only get a result from the MBD algorithm when it has

almost converged.

5. Can be very easily parallelized, and can be used to parallelize other optimization

algorithms.

8.1. Optimization 141

6. Simpler for researchers unfamiliar with point process theory.

7. Simpler for user such as the ecologists for the flamingo counting problem.

The MBC algorithm is semi-deterministic, it has both a stochastic and a deterministic

nature. In the Birth phase, it is fully stochastic to guarantee the exploration of the configu-

ration space, while in the Cut phase, it is deterministic.

We next investigated, where does the speed limitation of this first proposed version of

the algorithm comes from. Based on this investigation, we proposed a modification to the

birth step. Since the limitation comes from that, during the Cut step, we can not solve the

overlappings using graph cut unless both current and proposed configuration respect the

non-overlapping condition. Based on that, we proposed to provide the Cut step with an

optimized (selected) configuration. We found that when making pertinent proposals, the

algorithm became very fast, much faster than the MBD algorithm and the first version of

the MBC algorithm.

In a third version of the MBC algorithm, we proposed an more efficient multiple-birth-

death kernel that the one proposed in [36]. The proposed kernel maked more efficient global

perturbations, and explore more efficiently the configuration space, while being very simple.

We next showed how local perturbation kernels can be integrated in the MBC algorithm to

make it more efficient.

The MBC optimizer has proven to be simple and modular, while being very efficient.

The proposed kernels are very simple and can easily be implemented. Moreover, adding

new kernels to adapt the algorithm to specific applications, or even to tune the current

algorithm, is possible without a lot of burden. Future work will consider extending this

algorithm to solve more complex models, such as Point Process Models with sophisticated

interactions.

8.1.1 Future work and perspective

In this work we only considered the first class of Markov marked point process models.

The aim was to develop a new algorithm which overcomes the fully stochastic Multiple

Birth-and-Death algorithm drawbacks. The reason for considering the flamingo counting

problem is twofold, one is to compare the proposed algorithm with the fastest existing one,

the second is to analyze how the algorithm scale with the problem size since the number

of flamingos in a colony can go over 15,000 birds. We were able to take advantage of a

very fast and efficient algorithm which is graph cut. Next we were able to combine in the

birth-step another fast algorithm, which is belief propagation, to propose pertinent objects,

and thus enhanced the speed of convergence of the proposed algorithm. We concluded with

a very efficient multiple-birth-death kernel, and we integrated in a very simple way local

142 Chapter 8. Conclusion and Recommendations

perturbations kernels to boosts the speed of the convergence even more.

Future work should consider the first class of Marked point process models where com-

plex interactions exist. We believe that new optimization algorithms can solve this class of

problems, where our algorithm modeling can be a source of inspiration. This is of great

importance since this class can only be solved efficiently by RJMCMC algorithm, which is

slow in real applications.

8.2 3D Point Process

The second part of this thesis was dedicated to the penguin counting problem using a 3D

point process. We can deduce two main conclusions.

8.2.1 3D MPP model

In chapter 5, we presented a novel approach for multiple object detection under occlusions

and perspective effects.

We proposed an alternative method for representing objects geometry. Even that for the

selected application in chapter 7, using an ellipsoid would have been enough, but the aim

was to propose a generic framework that can be easily extended to other cases, such as the

airplanes detection example, where using a 3D CAD model can be of great interest. We

recommend having a small set of parameters to cover real object variability. In our case,

we could easily model the scaling factor in the three axes, but it would be better to have a

control on the height and width independently. We could also have added another model

representing the adult penguin case with a twisted head. This approach of using a 3D model

is much more interesting than the englobing box or ellipse which can hardly define object

borders.

The interest of the proposed 3D simulation based approach is that: is 3D objects di-

mensions is used to regularize the result. More specifically, in the bounding box (or ellipse)

method, only width and height of objects where taken into consideration, but not the depth,

it was hard to evaluate the correctness of two proposed objects with occlusion, is the depth

difference possible or not. This is the main advantage of the 3D model, the third dimension

is an intrinsic part, given the camera position with respect to the scene, it becomes easy to

define the minimal depth difference, no pair of objects can intersect in the real world, it is a

physical limitation. This non-overlapping is not valid when considering the projection onto

the image plan. Using the three dimensions of the object for regularization is more natural

and may improve detection results.

We also modeled dependencies between objects in 3D, which is usually neglected by

8.2. 3D Point Process 143

many multiple object detection under occlusions effects in problems such as crowd count-

ing. Usually methods assume the independence between objects, which we consider as a

wrong hypothesis. We discussed the dependencies between objects either concerning the

data term or the prior term.

8.2.2 Future work on the 3D model

We proposed a modeling for the dependencies, and showed how to manage these depen-

dencies by a mixed graph. This modeling is generic, not specific the MPP models, it can be

applied to other frameworks. More investigations should be done to define on appropriate

data term, and to recover camera parameters.

The proposed framework for solving the penguin counting problem is interesting but

is facing many complexities. Despite the defined protocol, the nature and topology of the

occupied region does not facilitate the imaging task, based on the ecologist on site feedback.

An alternative method should be proposed.

8.2.3 Future work of the Penguin counting problem

The main origin of complexity for the penguin counting problem comes from the imaging

conditions. We propose testing a different imaging approach. We propose taking aerial

images using a new kind of unmanned aerial vehicle (UAV) such as quadcopter. Usually

areal coverage by airplanes is forbidden, but it may be accepted from such small UAV.

Quadcopter or hexa or octa, are from the family of Vertical Take-off and Landing (VTOL).

This type of UAV has only gained popularity during the last few years, after developing

efficient algorithms to control the n-rotors speed, to achieve a harmony and maneuver capa-

bilities [86]. This UAV usage is used in many application, from fireman help, to shooting

movies. The interesting property about this family of UAV is the simplicity of usage and

navigation, specially being one of the VTOL family. The price of such an UAV for profes-

sional usage varies from 1,500 to 30,000 euros.

We propose using the basic non expensive one, and adding a camera on board. Planing

the UAV trip, exact positions (x,y and z) for imaging, can be very easily done using existing

open source software, such as ArduPilot Mega 1. An example of a user interface of such a

software used for planning the trip is presented in figure 8.1. We propose using such a UAV

and software, to take top views photos of the penguin colony. Wind speed is an issue in the

south pole, but we believe that, given the usage simplicity (trip planning is a simple script),

collecting images for the colony will be possible. Even if the colony occupies a large terrain

with a complex topography. From the obtained aerial images, we can use existing stitching

1http://code.google.com/p/arducopter/wiki/ArduCopter

144 Chapter 8. Conclusion and Recommendations

methods to generate an image that covers the whole colony, and next using a 2D MPP model

will be a much simpler task to accomplish the counting process.

Figure 8.1: ArduPilot Mega (APM), a sophisticated open source autopilot.

Under the hope for acceptable wind conditions (up to 20km/h is acceptable for certain

small UAV), this proposal, would eliminate the following problems:

• Complexity of the images acquisition

• Occlusion in the collected images

• Perspective effects in the collected images

Appendix, and Bibliography

145

Appendix A

Publications

Journals:

• 2011

– A. Gamal-Eldin, X. Descombes, G. Charpiat, J. Zerubia. Multiple Birth and Cut

Algorithm for Multiple Object Detection. International Journal of Multimedia

Processing and Technologies. Accepted in april 2011.

Conferences:

• 2013: Accepted

– A. Gamal-Eldin, G. Charpiat, X. Descombes, J. Zerubia. An efficient optimizer

for simple point process models. IS&T/SPIE Electronic Imaging, California,

United States, 3-7 February, 2013.

• 2011

– A. Gamal-Eldin, X. Descombes, J. Zerubia. A Novel Algorithm for Occlusions

and Perspective Effects using 3D Object Process. ICASSP, Prague, Czech Re-

public, 22-27 May, 2011.

– A. Gamal-Eldin, X. Descombes, G. Charpiat, J. Zerubia. A Fast Multiple and

Cut Algorithm using Belief Propagation. Accepted at ICIP, Brussels, Belgium,

11-14 September, 2011.

– X. Descombes , A. Gamal-Eldin, F. Plouraboué, C. Fonta, R. Serduc, G. Leduc,

T. Weitkamp, Extraction et caracterisation de regions saines et pathologiques

a partir de micro-tomographie du systeme vasculaire cerebral, GRESTI, Bor-

deaux, 5-8 September, 2011.

147

148 Chapter A. Publications

• 2010

– A. Gamal-Eldin, X. Descombes, J. Zerubia. AMultiple Birth and Cut Algo-

rithm for Point Process Optimization. SITIS, Kuala Lumpur, Malaysia, 15-18

Decembre, 2010. (Best paper award).

– A. Gamal-Eldin, F. Salzenstien, C. Collet. Hidden Fuzzy Markov Chain Model

with K-Discrete Classes. ISSPA, Kuala Lumpur, Malaysia, 10-13 May, 2010.

Appendix B

Imaging Protocol

B.1 Introduction

The aim of this imaging protocol documentation is to define a standard between both the

researches at Ariana / INRIA / Sophia-Antipolis and the researches of Tour du Valat.

This protocol concerns imaging two elements, the king penguins and the territory occu-

pied by the colony of interest. We are going to detail the description or the required images

for both elements, and we will be waiting for a reply from your side (ecologists on site)

about the applicability of our request so we can reach an appropriate description of this

protocol.

In this documentation we will start by mentioning the required material, we will define

how and where to take images for the territory imaging, we will define the different cases

for penguin images and we will state technical details about camera usage.

The required labor and material: Our penguins are living in a region that is not com-

pletely horizontal, and in our model the elevation information is important. Since this “Dig-

ital Elevation Model“ information is not available for Possession Island, we will reconstruct

it using the images that you are going to provides us with. The only available data at the

IGN 1 is a map.

B.2 Image for the territory elevation

B.2.1 The labor and materials

1. Two people to take the measurements

2. One (ore more) photo camera(s) (whose specifications will be detailed later) with a

tripod

1Institut National de l’information Géographique et forestière

149

150 Chapter B. Imaging Protocol

3. One flat panel, say 0.5 meter x 0.5 meter, made of wood or metal this will be the

reflective surface for the laser distance measurer

4. A laser distance measurer

5. A GPS locator

6. Thirty wooden or metallic sticks, length about 1m (meter) to put on the soil in vertical

position

7. Three small flags of different colors, these will form, with the sticks, the reference

objects

In what follows, I will use the following conventions:

A reference configuration is a set of 10 visible objects that you will put somewhere (to

be defined later) in the landscape, as show in figure B.1. A reference configuration is com-

posed by 9 reference objects (in capital letter from A-I) and a pivot (P). The 9 reference

objects will be on a 3-by-3 grid, while the pivot will be put close to a corner of the resulting

square, aligned with one of the sides that intersects in that corner.

Figure B.1: A graph showing a possible configuration

In this figure we recognize the pivot that will be next to the first point (A) on the grid

and aligned with the two points A and D . As clear in this figure, the shape does not have to

be a perfect square, the side lengths could vary and the angles does not have to 90. The grid

nine points are:

B.2. Image for the territory elevation 151

• the places where we want to install a stick in each point

• get the GPS position of each point on the ground2 not on the top of the stick

Measuring the distance between two points:

The blue lines represent the distances between the points (sticks) that need to be mea-

sured. The distance between the points should be from 5 to 10 meters (10m is better) . This

distance is the one we need to measure using the laser measure and the reflective surface as

show in figure B.1 and B.2.

Figure B.2: Measuring distance using the laser measurer

For the laser measurer, you can see as example this web catalog: http://www.professionalequipment.com/laser-

measuring/

We need the distance between two points (example stick A and B) at the same height.

This mean that at for example 70cm height from the ground. This could be simply done

if each time you insert a stick, you add a marker to the position on this stick that is 70cm

height from the ground.

For each configuration, we suggest the following form to store the information:

We need the GPS measurements, the distances and the photos. For example:

The Green configuration: (green is the color of the pivot flag in a certain zone, detailed

in the next point)

A = [GPS coordinate] B = [GPS coordinate] C = [GPS coordinate] ... AB = [distance

in centimeter,meters] AE = [distance] AD = [distance] BE = [distance]

2All GPS measurements should be at the ground level.

152 Chapter B. Imaging Protocol

Figure B.3: The height need to be measured at the same level from the ground

B.2.2 The number of required configurations

As we mentioned previously, the elevation information is important for our work. We take

as an example of an image that you provided us show in figure B.4.

For the image show in figure (4), we made a rough segmentation of the image into

closed red zones. We did not consider all the image because the part that represents very far

object in less obvious for us. From what we can see from this image, we think that those

zones are almost flat inside each region. We need a configuration inside each zone around

its center.

This is an example that we suggest based on this image, but since you are in the field,

we leave this task for you.

If we assume using the example presented in figure B.4., then we need:

• six configurations

• the GPS of the four corners of the outer fence (the wall surrounding the station)

• three photos for each configuration, as will be detailed next.

We also want a photo of the complete scene like the one presented in figure B.4.

B.2.3 The method defined to take image for each configuration

We assume you centered (as much as possible) you configuration inside each zone. We need

the following for the three photos of each configuration:

B.2. Image for the territory elevation 153

Figure B.4: Example of possible division to determine the number of configurations

1. Position each camera on the highest possible place, like a hill, as show in figure B.5.

2. Keep the same height (altitude) for the 3 cameras (by using the altitude provided by

GPS)

3. Point the camera toward the central object of the configuration, which is point E in

figure B.1

4. The angle between the cameras should me almost 90, but if not possible it has to be

at least more than 30, as show in figure B.5.

5. The time interval between the image you capture with camera 1,2 and 3 should be as

minimum as possible, simultaneous capturing will be perfect.

For all the configurations, since the target of those images is to reconstruct the elevation

of the region of interest, the ideal is to take the images where the penguins are not present.

Since this is not possible, we want to repeat the imaging of all of the configurations two or

three times when the penguins moves a lot, we mean to take image for example at day 1

and day 5 when most of the penguins almost changed or left there places. But this request

depends on the possibilities.

154 Chapter B. Imaging Protocol

Figure B.5: (a) Imaging from hill and pointing to the central element. (b) Imaging with an

angle of 30.

B.3 Imaging for penguins

For the mean time, we need images for simple regions and with a lot of variability as fol-

lows:

1. Images for penguins on regions as flat and horizontal as possible

2. Images when the penguins are close together, others when they are far from each

other

3. Different illumination conditions, we need images some with shadow and others with-

out (at 12:00)

4. Images dense/sparse with penguins

We need if possible a special imaging for four or five penguins taken apart from multi-

ple view (5 or 6 images with different angle all around it) , or even a video of the penguin

B.3. Imaging for penguins 155

by rotating about it (360).

For imaging the whole colony, there is three possible ways:

1. Take an image from a long distance to cover the whole colony.

2. Take multiple images using the panoramic view provided by the camera.

3. Take multiple images, and we will combine them.

All types are of interest for us.

For case 3 multiple images, and we will combine them, we have some comments:

a) If we can take the whole colony in just two images, we prefer that the two images to be

taken simultaneously.

b) For two or more divisions (to covert the whole colony), the images should superimpose

(overlap) for a portion of the image.

c) For more than two images, the more the imaging positions are aligned, the better for us.

d) When imaging the whole colony with any technique, (1 image, panorama or multiple),

if we assume the colony takes a rectangular shape, take photos fronting the large side

Description of (a) (d) on the following sketch:

For (a,b), as shown in then next figure, if we use 2 or 3 cameras, there is a overlap be-

tween the region covered by camera 1 and camera 2, and also between camera 2 and camera

3.

For (c), The alignment of the multiple camera positions is described by LIGNE A in

the next figure, (knowing that they will not be simultaneous because you have only two

cameras). We need to be as much as possible parallel (at the same distance) to the colony,

and if possible also to keep almost the same height (We know that this depends so much on

the place).

For (d), as shown by the arrows in the above figure B.6, we want the imaging to be

perpendicular to the direction of spreading of the colony. In the next two images, we assume

that this is all the colony, the first image show a perfect arrangement, where there is no or

minimum occlusion between the penguins.

The following image (figure ??), show the problem of shooting in a direction which is

not perpendicular to the direction of spreading of the colony.

We see that in the middle, a lot of penguins overlap. So we want to minimize this effect

as much as possible, and we believe that being perpendicular to the direction of spreading,

will gives the better results.

156 Chapter B. Imaging Protocol

Figure B.6

Figure B.7

B.3.1 Technical details about the camera

We have some issues about images you previously provided us, we found that camera is

a little bit old and this has a severe effect of the image quality presented in the number of

mega-pixels, and other issues.

Here we defined our requirements for the camera and the capturing parameters:

1. Use a new camera with around 10MP (mega pixels)

2. When capturing the image, select the maximum resolution

3. Modify the imaging parameters to save the images in RAW format (format brut), the

default format is for example jpeg, it compress images using a lossy technique, and

B.3. Imaging for penguins 157

Figure B.8

we need images rich of information.

4. If you have the option to save Exif data, we need it, it contains the capturing parame-

ters

5. While capturing, you can use optical zoom, please disable digital zoom.

We tried to be clear in this documentation, but if you found any point or technical detail

not so clear even if it is like camera parameter configuration, we will be more than happy to

answer.

Bibliography

[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski. Building rome in a day.

2009 IEEE 12th International Conference on Computer Vision, pages 72–79, 2009.

[2] C. Andrieu, Nando de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC

for machine learning, september 2001.

[3] C. Andrieu and A. Doucet. Joint Bayesian model selection and estimation of noisy si-

nusoids via Reversible Jump MCMC. IEEE Trans. on Signal Processing, 47(10):2667

–2676, oct 1999.

[4] A. Baddeley, I. Barany, and R. Schneider. Spatial point processes and their applica-

tions. In Stochastic Geometry, volume 1892 of Lecture Notes in Mathematics, pages

1–75. Springer Berlin, 2007.

[5] A. Baddeley and R. Turner. Modelling spatial point patterns in R. In Case Studies in

Spatial Point Pattern Modelling. Lecture Notes in Statistics 185, 2374. Springer, 2006.

[6] A. J. Baddeley and M. N. M. Van Lieshout. Stochastic geometry models in high-level

vision. Journal of Applied Statistics, 20(5-6):231–256, 1993.

[7] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust

features (surf). Comput. Vis. Image Underst., 110:346–359, June 2008.

[8] A. Bechet, A. Reed, N. Plante, J. F. Giroux, and G. Gauthier. Estimating the size of

the greater snow goose population. Journal of Wildlife Management, 68(3):639–649,

2004.

[9] S. Ben Hadj, F. Chatelain, X. Descombes, and J. Zerubia. Parameter estimation for a

marked point process within a framework of multidimensional shape extraction from

remote sensing images. In Proc. ISPRS Technical Commission III Symposium on Pho-

togrammetry Computer Vision and Image Analysis (PCV), Paris, France, September

2010.

[10] C. Benedek, X. Descombes, and J. Zerubia. Building detection in a single remotely

sensed image with a point process of rectangles. In Proc. International Conference on

Pattern Recognition (ICPR), Istanbul, Turkey, August 2010.

159

160 BIBLIOGRAPHY

[11] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal

of the Royal Statistical Society. Series B (Methodological), 36(2):192–236, 1974.

[12] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[13] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmentation

using an adaptive gmmrf model. In Proc. European Conference on Computer Vision

(ECCV), Prague, May 2004.

[14] R. Bogdan, A. Holzbach, N. Blodow, and M. Beetz. Fast Geometric Point Labeling

using Conditional Random Fields. In Proceedings of the 22nd IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, October

11-15 2009.

[15] Y. Boykov. Computing geodesics and minimal surfaces via graph cuts. In Proc.

International Conference on Computer Vision (ICCV), pages 26–33, 2003.

[16] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 26(9):1124–1137, September 2004.

[17] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approx-

imations. In Proc. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 648–655, 1998.

[18] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

23(11):1222–1239, November 2002.

[19] W. Burgin, C. Pantofaru, and William D. Smart. Using depth information to improve

face detection. In Proceedings of the 6th international conference on Human-robot

interaction, HRI ’11, pages 119–120, New York, NY, USA, 2011. ACM.

[20] F. Chatelain, X. Descombes, and J. Zerubia. Parameter estimation for marked point

processes. application to object extraction from remote sensing images. (poster). In

Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition

(EMMCVPR), Bonn, Germany, August 2009.

[21] T.F. Cootes and C.J.Taylo. Statistical models of appearance for computer vision. Tech-

nical report, Imaging Science and Biomedical Engineering, University of Manchester,

U.K., march 2004.

[22] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 3rd edition, 2009.

[23] J. Neider D. Shreiner, M. Woo and T. Davis. OpenGL(R) Programming Guide.

Addison-Wesley Professional, 6 edition, 2007.

BIBLIOGRAPHY 161

[24] Daryl J. Daley and David Vere Jones. An introduction to the theory of point processes,

volume 2. Springer, 2008.

[25] S. Descamps, X. Descombes, A. Béchet, and J. Zerubia. Automatic flamingo detec-

tion using a multiple and death process. In Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, March 2008.

[26] S. Descamps, X. Descombes, A. Béchet, and J. Zerubia. Détection de flamants roses

par processus ponctuels marqués pour l’estimation de la taille des populations. Traite-

ment du Signal, 26(2):95–108, July 2009.

[27] S. Descamps, M. Gauthier-Clerc, J. Gendner, and Yvon L. Maho. The annual breed-

ing cycle of unbanded king penguins Aptenodytes patagonicus on Possession Island

(Crozet). Avian Science, 2:1–12, 2002.

[28] X. Descombes. Stochastic Geometry for Image Analysis. Wiley-ISTE, 2011.

[29] X. Descombes, R. Minlos, and E. Zhizhina. Object extraction using a stochastic birth-

and-death dynamics in continuum. Research Report 6135, INRIA, 2007.

[30] X. Descombes, R. Minlos, and E. Zhizhina. Object extraction using a stochastic

birth-and-death dynamics in continuum. Journal of Mathematical Imaging and Vi-

sion, 33(3):347–359, 2009.

[31] X. Descombes, M. Sigelle, and F. Preteux. GMRF parameter estimation in a non-

stationary framework by a renormalization technique: Application to remote sensing

imaging. IEEE Trans. Image Processing, 8(4):490–503, 1999.

[32] G. Dong and S.T. Acton. Detection of rolling leukocytes by marked point processes.

Journal of Electronic Imaging, 16(3), 2007.

[33] M. Erikson. Two preprocessing techniques based on grey level and geometric thick-

ness to improve segmentation results. Pattern Recognition Letters, 27(3):160 – 166,

2006.

[34] P. Muse F. Cao, Y. Gousseau, P. Muse, and F. Sur. Unsupervised thresholds for shape

matching. In In Proceedings of the IEEE International Conference on Image Process-

ing, pages 647–650, 2003.

[35] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Qian Huang, B. Dom, M. Gorkani,

J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video

content: the qbic system. Computer, 28(9):23 –32, sep 1995.

[36] A. Gamal Eldin, X. Descombes, Charpiat G., and J. Zerubia. A fast multiple birth and

cut algorithm using belief propagation. In Proc. IEEE International Conference on

Image Processing (ICIP), Brussels, Belgium, septembre 2011.

162 BIBLIOGRAPHY

[37] A. Gamal Eldin, X. Descombes, Charpiat G., and J. Zerubia. Multiple birth and cut

algorithm for multiple object detection. Journal of Multimedia Processing and Tech-

nologies, 2011.

[38] A. Gamal Eldin, X. Descombes, and J. Zerubia. Multiple birth and cut algorithm for

point process optimization. In Proc. IEEE SITIS, Kuala Lumpur, Malaysia, December

2010.

[39] M. G. Gauthier. Poles en peril. Buchet Chastel, 2007.

[40] M. Gauthier-Clerc, J P Gendner, C A Ribic, W R Fraser, E J Woehler, S Descamps,

C Gilly, C Le Bohec, and Y Le Maho. Long-term effects of flipper bands

on penguins. Proceedings of the Royal Society B: Biological Sciences, 271

Suppl(September):S423–6, 2004.

[41] W. Ge and R.T. Collins. Marked point processes for crowd counting. In Proc. Com-

puter Vision and Pattern Recognition, Miami, USA, july 2009.

[42] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 6(6):721–741, November 1984.

[43] C. J. Geyer and Jesper M. Simulation Procedures and Likelihood Inference for Spatial

Point Processes. Scandinavian Journal of Statistics, 21(4):359–373, 1994.

[44] G. Gherdovich and X. Descombes. Two dof camera pose estimation with a planar

stochastic reference grid. VISAPP, 0:762, 2010.

[45] W.R. Gilk, S. Richardson, and David Spiegelhalter. Markov Chain Monte Carlo in

Practice. Chapman and Hall/CRC, 1995.

[46] P. J. Green. Reversible jump Markov Chain Monte Carlo computation and bayesian

model determination. Biometrika, 82:711–732, 1995.

[47] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori esti-

mation for binary images. Journal of the Royal Statistical Society, 51(2):271–279,

1989.

[48] C. Harris and M. Stephens. A combined corner and edge detector, volume 15. Manch-

ester, UK, 1988.

[49] J. Huang, S. Ravi Kumar, M. Mitra, W. Zhu, and R. Zabih. Image indexing using color

correlograms. Computer Vision and Pattern Recognition, IEEE Computer Society

Conference on, 0:762, 1997.

BIBLIOGRAPHY 163

[50] H. Ishikawa. Exact optimization for Markov random fields with convex priors. Proc.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 25:1333–

1336, 2003.

[51] H. Ishikawa and D. Geiger. Mapping image restoration to a graph problem. In Proc.

of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Antalya,

Turkey, June 1999.

[52] M. Urban J. Matas, O. Chum and T. Pajdla. Robust wide-baseline stereo from maxi-

mally stable extremal regions. Image Vision Computing, pages 761–767, 2004.

[53] Eva B. Vedel Jensen and L. Stougaard Nielsen. A review on inhomogeneous markov

point processes. Lecture Notes-Monograph Series, 37:pp. 297–318, 2001.

[54] A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in

cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence,

pages 433–449, 1999.

[55] Karantzalos K. and Paragios N. Recognition-driven 2d competing priors towards auto-

matic and accurate building detection. IEEE Transactions on Geoscience and Remote

Sensing, 47(1):133–144, 2009.

[56] H. Kesten. Percolation Theory for Mathematicians. Number 2 in Progr. Prob. Statist.

Birkhäuser, Mass., 1982.

[57] V. Kettnaker and R. Zabih. Counting people from multiple cameras. Multimedia

Computing and Systems, International Conference on, 2:267, 1999.

[58] J. Kim, V. Kolmogorov, and R. Zabih. Visual correspondence using energy minimiza-

tion and mutual information. In Proc. International Conference on Computer Vision

(ICCV), 2, pages 1033–1040, October 2003.

[59] P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient inference in Markov ran-

dom fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

29(12):2079–208, 2007.

[60] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(2):147–

159, February 2004.

[61] M. S. Kulikova, I. H. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia. Extraction

of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and

active contours. In Proc. IS&T/SPIE Electronic Imaging, San Jose, USA, January

2010.

[62] David G. L. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60:91–110, 2004.

164 BIBLIOGRAPHY

[63] C. Lacoste, X. Descombes, and J. Zerubia. A comparative study of point processes for

line network extraction in remote sensing. Research Report 4516, Inria, France, July

2002.

[64] T. Lindeberg. Scale-space theory: A basic tool for analysing structures at different

scale. Journal of Applied Statistics, 21:224–270, 1994.

[65] Y. Liu, O. Veksler, and O. Juan. Simulating classic mosaics with graph cuts. In Proc.

Energy Minimization Methods in Computer Vision and Pattern Recognition (EMM-

CVPR), pages 55–70, 2007.

[66] A. Lorette, X. Descombes, and J. Zerubia. Texture analysis through a markovian

modelling and fuzzy classification: Application to urban area extraction from satellite

images. International Journal of Computer Vision, 36(3):221–236, 2000.

[67] David G. Lowe. Object recognition from local scale-invariant features. In Interna-

tional Conference on Computer Vision (ICCV), pages 1150–1157, Greece, 1999.

[68] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. In

Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Confer-

ence on, volume 1, pages 525 –531 vol.1, 2001.

[69] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. Int.

J. Comput. Vision, 60:63–86, October 2004.

[70] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a proba-

bilistic assembly of robust part detectors. pages 434–444, 2009.

[71] J. Moller and R. P. Waagepetersen. Statistical Inference and Simulation for Spatial

Point Processes. Chapman and Hall, 2004.

[72] N. Paragios, Y. Chen, and O. Faugeras. Handbook of Mathematical Models in Com-

puter Vision. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[73] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann Publishers, 1988.

[74] G. Perrin, X. Descombes, and J. Zerubia. 2D and 3D vegetation resource parame-

ters assessment using marked point processes. In Proc. International Conference on

Pattern Recognition (ICPR), Hong-Kong, August 2006.

[75] G. Perrin, X. Descombes, J. Zerubia, and J.G. Boureau. Forest resource assessment

using stochastic geometry. In Proc. Int. Precision Forestry Symposium, March 2006.

[76] R. Pflugfelder and H. Bischof. Localization and trajectory reconstruction in surveil-

lance cameras with nonoverlapping views. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32:709–721, 2009.

BIBLIOGRAPHY 165

[77] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer

Verlag, 1999.

[78] J. Lee Rodgers and W. Alan Nicewander. Thirteen ways to look at the correlation

coefficient. The American Statistician, 42(1):59–66, 1988.

[79] S. Roy and I. J. Cox. A maximum-flow formulation of the n-camera stereo correspon-

dence problem. IEEE International Conference on Computer Vision (ICCV), 0:492,

1998.

[80] R. Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms

FPFH for 3D registration. In Robotics and Automation, 2009. ICRA ’09. IEEE Inter-

national Conference on, pages 3212 –3217, may 2009.

[81] N. Thongsak S. Tongphu and M. N. Dailey. Rapid detection of many object instances.

2004.

[82] Claire Saraux, Céline Le Bohec, Joel M Durant, Vincent A Viblanc, Michel Gauthier-

Clerc, David Beaune, Young-Hyang Park, Nigel G Yoccoz, Nils C Stenseth, and Yvon

Le Maho. Reliability of flipper-banded penguins as indicators of climate change. Na-

ture, 471(7329):203–206, 2011.

[83] R. Stoica, X. Descombes, and J. Zerubia. A Gibbs point process for road extraction in

remotely sensed images. International Journal of Computer Vision (IJCV), 57(2):121–

136, 2004.

[84] D. Stoyan and H. Stoyan. Fractals, random shapes, and point fields. Wiley, 1994.

[85] M. Stricker, A. Dimai, and E. Dimai. Color indexing with weak spatial constraints. In

Proc. SPIE Storage and Retrieval for Image and Video Databases, pages 29–40, 1996.

[86] A. Tayebi and S. McGilvray. Attitude stabilization of vtol quadrotor aircraft. IEEE

Transactions on Control Systems Technology, 14(3):562–571, may 2006.

[87] M. N. M. van Lieshout. Markov Point Processes and Their Applications. Imperial

College Press, 2000.

[88] P. Viola, Michael J. Jones, and D. Snow. Detecting pedestrians using patterns of

motion and appearance. Computer Vision, IEEE International Conference on, 2, 2003.

[89] Paul A. Viola and Michael J. Jones. Robust real-time face detection. International

Journal of Computer Vision, 57(2):137–154, 2004.

[90] B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single

image by bayesian combination of edgelet part detectors. In Proceedings of the Tenth

IEEE International Conference on Computer Vision (ICCV), volume 1, pages 90–97,

Washington, DC, USA, 2005. IEEE Computer Society.

166 BIBLIOGRAPHY

[91] B. Zhan, D. Monekosso, P. Remagnino, S. Velastin, and L. Xu. Crowd analysis: a

survey. Machine Vision and Applications, 19:345–357, 2008. 10.1007/s00138-008-

0132-4.

Abstract: This thesis work can be presented as two parts:

First part:

————

We proposed a novel probabilistic approach to handle occlusions and perspective effects

(challenging problems in computer vision) for 3D object detection from a 2D image. The

proposed method is based on 3D scene simulation on the GPU using OpenGL. Candidates

configurations are proposed, simulated on the GPU and projected onto the image plane.

Configurations are modified until convergence using an appropriate optimization algorithm.

Second part:

—————

We proposed a new optimization method for Point Process models, which is a interesting

framework for solving many challenging problems dealing with high resolution images.

Our optimization method which we call ”Multiple Births and Cut” (MBC), is the only semi-

deterministic optimiser for the point process models. Our proposed algorithm overcomes

all previously existing optimisers in terms of: speed, simplicity, reduced and simplified set

of parameters, and modularity.

167

