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Résumé

Cette thèse propose un cadre mathématique pour la modélisation de la dynamique du prix et du flux
d’ordres dans un marché électronique où les participants achetent et vendent un produit financier
en soumettant des ordres limites et des ordres de marché à haute frequence à un carnet d’ordres
centralisé. Nous proposons un modèle stochastique de carnet d’ordres en tant que système de files
d’attente représentant la totalité des ordres d’achat et de vente au meilleur niveau de prix (bid/ask) et
nous montrons que les principales caractéristiques de la dynamique du prix dans un tel marché peuvent
être comprises dans ce cadre. Nous étudions en détail la relation entre les principales propriétés du
prix et la dynamique du processus ponctuel décrivant l’arrivée et l’exécution des ordres, d’abord dans
un cadre Markovien (Chapitre 2) puis, en utilisant des méthodes asymptotiques, dans le cadre plus
général d’un processus ponctuel stationnaire dans sa limite heavy traffic, pour lequel les ordres arrivent
fréquemment, comme c’est le cas pour la plupart des marchés liquides (Chapitres 3 et 4).

Le Chapitre 2 étudie un modèle Markovien de dynamique de carnet d’ordres, dans lequel l’arrivée
d’ordres de marché, d’ordres limites et d’annulations est décrite à l’aide d’un processus de Poisson
ponctuel. L’état du carnet d’ordres est décrit par une marche aléatoire changée de temps dans le
quadrant positif et régénérée à chaque fois qu’elle atteint le bord. Ce modèle permet d’obtenir des
expressions analytiques pour la distribution des durées entre changements de prix, la distribution et
les autocorrélations des changements de prix, ainsi que la probabilité que le prix augmente, condi-
tionnellement à l’état du carnet d’ordres. Nous étudions la limite de diffusion du prix et exprimons
la volatilité des changements de prix à l’aide de paramètres décrivant l’intensité des ordres d’achat,
de vente et d’annulations. Ces résultats analytiques permettent de mieux comprendre le lien entre
volatilité du prix et flux d’ordres.

Le Chapitre 3 étudie un modèle plus général de carnet d’ordres pour lequel les arrivées d’ordres et
les tailles d’ordres proviennent d’un processus ponctuel stationnaire très général. Nous obtenons un
théorème central limite fonctionnel pour la dynamique jointe des files d’attente des ordres de vente et
d’achat, et prouvons que, pour un marché liquide, dans lequel les ordres d’achat et de vente arrivent
à haute fréquence, la dynamique du carnet d’ordres peut être approximée par un processus à sauts
Markovien diffusant dans l’orthant et dont les caractéristiques peuvent être exprimées à l’aide de
propriétés statistiques du flux d’ordres sous-jacent. Ce résultat permet d’obtenir des approximations
analytiques pour plusieurs quantitiés d’interêt telles que la probabilité que le prix augmente ou la
distribution de la durée avant le prochain changement de prix, conditionnellement à l’état du carnet
d’ordres. Ces quantités sont exprimées en tant que solutions d’équations elliptiques, pour lesquelles
nous donnons des solutions explicites dans certains cas importants. Ces résultats s’appliquent à une
classe importante de modèles stochastiques, incluant les modèles basés sur les processus de Poisson,
les processus auto-excitants ou la famille de processus ACD-GARCH.

Le Chapitre 4 est une étude plus detaillée de la dynamique du prix dans un marché où les ordres
de marché, les ordres limites et les annulations arrivent à haute frequénce. Nous étudions d’abord la
dynamique discrète du prix à l’échelle de la seconde et nous obtenons des relations analytiques entre
les propriétés statistiques des changements de prix dans une journée -distribution des incréments du
prix, retour à la moyenne et autocorrélations- et des propriétés du processus décrivant le flux d’ordres
et la profondeur du carnet d’ordres. Ensuite nous étudions le comportement du prix à des fréquences
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plus faibles pour plusieurs régimes asymptotiques -limites fluides et diffusives- et nous obtenons pour
chaque cas la tendance du prix et sa volatilité en fonction des intensités d’arrivées d’ordres d’achat,
de vente et d’annulations ainsi que la variance des tailles d’ordres. Ces formules permettent de mieux
comprendre le lien entre volatilité du prix d’un côté et le flux d’ordres, décrivant la liquidité, d’un
autre côté. Nous montrons que ces résultats sont en accord avec la réalité des marchés liquides.



Summary

This thesis proposes a mathematical framework for the modeling the intraday dynamics of prices
and order flow in limit order markets: electronic markets where participants buy and sell a financial
contract by submitting market orders and limit orders at high frequency to a centralized limit order
book. We propose a stochastic model of a limit order book as a queueing system representing the
dynamics of the queues of buy/sell limit orders at the best available (bid/ask) price levels and argue
that the main features of price dynamics in limit order markets may be understood in this framework.
We study in detail the relation between the statistical properties of the price and the dynamics of the
point process describing the arrival and execution of orders, first in a Markovian setting (Chapter 2)
then, using asymptotic methods, in a more general setting of a stationary point process in the heavy
traffic limit, where orders arrive very frequently, as in most liquid stock markets (Chapters 3 and 4).

Chapter 2 studies a Markovian model for limit order book dynamics, in which arrivals of market
order, limit orders and order cancelations are described in terms of a Poisson point process. The
state of the order book is then described as a time-changed random walk in the positive quadrant
regenerated at each hitting time of the boundary. This model allows to obtain analytical expressions
for the distribution of the duration between price changes, the distribution and autocorrelation of
price changes, and the probability of an upward move in the price, conditional on the state of the
order book, by mapping them into quantities related to hitting times of a random walk in Z2

+ killed
at the boundary. We study the diffusion limit of the price process and express the volatility of price
changes in terms of parameters describing the arrival rates of buy and sell orders and cancelations.
These analytical results provide some insight into the relation between order flow and price dynamics
in order-driven markets.

Chapter 3 studies a more general queueing model in which order arrivals and order sizes are
described by a stationary point process, allowing for a wide range of distributional assumptions and
temporal dependence structures in the order flow. We derive a functional central limit theorem for the
joint dynamics of the bid and ask queues and show that, in a liquid market where buy and sell orders
are submitted at high frequency, the intraday dynamics of the limit order book may be approximated
by a Markovian jump-diffusion process in the positive orthant, whose characteristics are explicitly
described in terms of the statistical properties of the underlying order flow. This result allows to
obtain tractable analytical approximations for various quantities of interest, such as the probability
of a price increase or the distribution of the duration until the next price move, conditional on the
state of the order book. Both quantities are expressed in terms of the solution of elliptic equation in
the positive orthant, for which solutions are given in important special cases. These results apply to a
wide class of stochastic models proposed for order book dynamics, including models based on Poisson
point processes, self-exciting point processes and models of the ACD-GARCH family.

Chapter 4 is a more detailed study of price dynamics in a limit order market where market orders,
limit orders and order cancelations occur with high frequency according to a stationary marked point
process. We first study the discrete, high-frequency dynamics of the price and derive analytical
relations between the statistical properties of intraday price changes -distribution of increments, mean
reversion and autocorrélation- and properties of the process describing the order flow and depth of the
order book. We then study the behavior of the price process at lower frequencies under various heavy-
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traffic limits –fluid limits and diffusion limits– and derive in each case the price trend and intraday
volatility in terms of the arrival rates of buy and sell orders and cancelations and the variance of order
sizes. These analytical formulae provide insights into the link between price volatility on one hand
and high-frequency order flow and liquidity on the other hand and are shown to be in good agreement
with high-frequency data for US stocks.
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Cont qui a su me guider pendant ces trois années de doctorat. J’ai eu la chance de bénéficier de ses
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accueilli pendant deux années formidables à UC Berkeley.
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Chapter 1

Introduction

High-frequency trading has experienced a significative increase in activity during the last decade. With
recent change in trading rules and the improvement in computer’s speed, high-frequency trading (e.g.
trading initiated by fast computers) has become the main source of trading on financial markets.
Traditionally, investors would trade on an exchange such as the New York Stock Exchange (NYSE)
and keep their positions for a couple of days or months. These days, algorithms buy and hold shares
for only a couple of seconds or milliseconds, benefiting from micro arbitrages or using high frequency
trading strategies. Even long term investors use high frequency trading strategies to minimize their
trading impact and optimize their costs. Financial markets have moved from specialist-driven markets,
where a market maker or a designed specialist centralizes all buy and sell orders, to order-driven
markets, where every investor can provide liquidity by quoting buy and sell orders. Simultaneously,
many terabytes of financial time series have been recorded and could be used to understand the
microstructure of current financial markets. In this thesis we propose a stochastic model of order
driven markets and give a rigorous method for establishing relations between properties of the order
flow - which describes liquidity - to the properties of the price process, such as volatility and mean
reversion.

Limit order books
In an order-driven market, market participants can post two types of buy/sell orders: market

orders and limit orders. A limit order is an order to trade a certain amount of a security at a given
price. Limit orders are posted to an electronic trading system, and the state of outstanding limit
orders can be summarized by stating the quantities posted at each price level: this is known as the
limit order book. The lowest price for which there is an outstanding limit sell order is called the ask
price and the highest buy price is called the bid price. At any time, the limit order book gathers all
limit buy and sell orders available at different prices. Figure 1.1 shows such limit order book. The
column on the left (resp. the right) collects all limit buy (resp. sell) orders. Every line in the left
column (resp. the right column) displays the number of limit buy orders (resp. sell orders) available
at a given price. For this limit order book, the bid price is 83.40 (resp. ask price is 83.41) and the
total number of orders available at this price is 7 (resp. 3). The bid-ask spread equals 1cent.

A market order is an order to buy/sell a certain quantity of the asset at the best available price in
the limit order book. When a market order arrives it is matched with the best available price in the
limit order book, and a trade occurs. The quantities available in the limit order book are updated
accordingly. For instance, if an investor buys 10 shares of IBM in the limit order book from figure
1.1 with market orders, he will consume 3 shares at 83.41 and 2 shares at 83.42. The ask price will
immediately move from 81.41 to 81.43.

A limit order sits in the order book until it is either executed against a market order or canceled.
A limit order may be executed very quickly if it corresponds to a price near the bid and the ask, but
may take a long time if the market price moves away from the requested price or if the requested price

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: New York Stock Exchange open book for the stock IBM. Source:
www.ndxtrading.com/interactivedemo

is too far from the bid/ask. Alternatively, a limit order can be canceled at any time. Recently, new
orders, variants of limit and market orders, were created to make trader’s life easier. For instance
hidden orders are not displayed in the limit order books and pegged buy (resp. sell) orders remain at
the bid (resp. ask) price until they are executed.
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The literature related to limit order books modeling may be divided into two main categories:

• empirical studies, which focus on statistical features of quantities related to limit order books.
Thanks to the availability of large databases of financial data being recently recorded, the
statistical properties of high-frequency financial data have been widely studied. These stud-
ies (Bollerslev and Engle (1993) Pagan (1996) Cont (2001) Clark (1973) Silva and Yakovenko
(2006) Kyle et al. (2010) Madhavan et al. (1997) Lillo and Farmer (2004) Bouchaud et al. (2002)
Bouchaud et al. (2003) Gopikrishnan et al. (2000) Maslov and Mills (2001) Challet and Stinch-
combe (2001) Mike and Farmer (2008) Alfonsi et al. (2010)) model, among other quantities, the
average shape of limit order books, the volume of orders and the durations between orders.

• the theoretical models among which one can distinguish three main approaches:

The econometric approach models the price dynamics without looking at the order flow, by
incorporating stylized facts, such as the negative autocorrelation between price increments, cor-
relation between trading intensity and volatility or volatility clustering in the time series.

The literature in market microstructure (O’Hara (1997) Foucault et al. (2005), Garman (1976)
Kyle (1985) Hasbrouck (2007)) links the behavior of investors with properties of price microstruc-
ture (bid-ask spread, price volatility, trading intensity, etc...). Market microstructure models
were designed for specialist based markets, where a designed specialist would quote bid and ask
prices on the New York Stock Exchange and would globally set the market price. Understand-
ing the behavior of this specialist could give some insights on the price behavior. Historically,
the main class of microstructure models, agent based models have modeled the behavior of this
designed specialist and divided the trading population between informed investors, who would
know the firm value, and noise traders who would trade for various reasons but without addi-
tional information.

Eventually, stochastic models of limit order books deduce properties of the price process by
assuming that the order flow is a random process. Stochastic models reproduce the properties
of a limit order book without resorting to detailed behavioral assumptions about market partic-
ipants or introducing unobservable parameters describing agent preferences, as in more detailed
market microstructure models.

This thesis may be viewed as a first step towards bridging the gap between the theoretical ap-
proach, which links agents behavior with price dynamics, and the empirical approach, which proposes
statistical models for financial time series. Our approach consist in modeling the flow of orders -limit
orders, market orders and cancelations - as a stochastic point process for which we propose various
levels of description at various time resolutions, from ultra-high frequency to daily. We show that
in liquid markets where orders are frequent, limit theorems may be used to study the link between
the behavior of prices and order flow at these various time scale. In particular, we give a rigorous
method for establishing relations between properties of the order flow - which describes liquidity - to
properties of the price process, such as volatility and mean-reversion.

The introductory chapter is organized as follows: in section 1.1, we review the recent change in the
US financial market and describe the current financial landscape. We introduce algorithmic trading
and eventually show how the consolidated limit order book has become the key object at the core
of price formation. Section 1.2 reviews some empirical properties of limit order books. In section
1.3 we present theoretical models, mostly agent based models. Section 1.4 summarizes the original
contributions of this thesis.
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1.1 Old and new financial markets

At the end of the 1990s, several important changes in regulation shaped a new landscape of equity
trading in the United States. In 1996, the Security and Exchange Commission (SEC) authorized
trading on purely electronic exchange and in 2000, the SEC blew away the minimum price increments
to one penny. These two modifications led to an immediate increase in electronic trading. The
proportions of orders traded electronically increased form 18 percents in 2000, to more than 70 percents
in 2011. Simultaneously, high frequency trading has become one of the most controversial topics in
finance. Paul Krugman, wrote in the New York Times: ’High frequency trading probably degrades
the stock market’s function, because it is a kind of tax on investors who lack access to those superfast
computers’. Moreover, it is widely believed that high frequency traders have amplified the effects of
the Flash crash of May 2010. Meanwhile, many academics argue that high-frequency traders increase
trading volume, reduce bid-ask spread and eventually reduce transaction costs for investors. In this
introductive part we will briefly review the evolution of equity markets in the United States and
describe how financial markets currently work.

1.1.1 Rise of algorithmic trading

Trading rules remained unchanged between the creation of the New York Stock Exchange (NYSE)
in 1794 and the mid 1970s when the arrival of computers modified market microstructure. Until the
1970s the cost of trading was fixed to 0.25 percents and the minimum price increments was 1/8th
of a dollar. Every day, an auction would take place and the highest bid would win. In 1971, the
first electronic market, the NASDAQ, was created. Over the years, NASDAQ volume increased and
developed its automated trading systems. NASDAQ was also the first stock market in the United
States to start trading online. The increase of electronic trading led to a bigger competition between
market makers and the bid-ask spread could be reduced. In June 1997, the minimum price increment
on the NYSE dropped from 1/8th to 1/16th of a dollar. In 2000, the SEC decreased the high minimum
spread and in early 2001, Nasdaq, Amex and NYSE moved to one cent for stocks whose value is bigger
than one dollar.

The other change in regulation focused on transparency. In 1996, the SEC asked the market
makers to display their orders. This new rule improved the price for investors and a National Best
Bid Offer (NBBO) could be observed by investors at any time. In the 2000s, new venues were created
and tried to attract liquidity. In order to attract liquidity, they started to offer rebates for liquidity
providers and they decreased the fees of liquidity takers. With the spread decimalization and the
fragmentation of liquidity across many venues, fewer orders are displayed on a specific location at the
given time. From this time investors could no longer buy a large number of stocks at once. They now
need to slice and dice orders.

Finally, in 2005, a new set of rules finalized the revolution of equity financial markets. The main
changes are

• Order protection (rule 611): all trades have to occur at the NBBO (National Best Bid Offer).
If one exchange does not have orders available at the NBBO, it has to rout market orders to an
exchange with a better price.

• Sub-Penny rules (rule 610): Stocks, whose value is more than 1 dollar can not have a price
increment less than one dollar. In practice, there is an exception for orders on dark pools and
for hidden orders which allow mid-spread orders (half penny).
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1.1.2 Impact of technological changes on equity markets

The consequences of this progressive change of microstructure environment are multiple (see e.g.
Menkveld (2011a), Hendershott et al. (2012), Angel et al. (2010) for more details):

• Liquidity is now spread across many different financial exchanges. No individual venue accounts
for more than 20 percent of overall trading volume. The market share of the New York Stock
Exchange decreased from more than 90 percent in the beginning of the 1990s to less than 20
percent in 2011. Investors prefer to trade in new venues such as BATS or INET because these
are fastest and offer better fees, both for liquidity suppliers and liquidity takers.

• The daily traded volume has increased (see figure 1.2). In the meantime, due to the slice and
dice practice of investors, the average trade size has decreased (see figure 1.3).

Figure 1.2: Average daily volume. Source: Barclays Capital Equity Research. Right.

• Bid-Ask spread of securities traded on electronic venues have substantially decreased. On figure
1.4 one can observe that the average spread has been divided by 5 in ten years.
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Figure 1.3: Average trade size on the New York Stock Exchange. Source: NYSE-Euronext, nyx.com.

Figure 1.4: Average bid-ask spread for stocks listed on the NYSE. Source: Chordia et al. (2008).

• We have moved from context where professional human traders traded against each other to a
context where algorithms, which can be run by anybody, play against each other.
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• Speed and technology have become a key issue for a large number of investors. If, on one side,
bid-ask spread and execution fees have substantially decreased, on the other side, investors need
to use expensive computers and sophisticated techniques to minimize their trading impact and
be executed at the best price.
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1.1.3 High-frequency trading

High frequency traders account for more than 70 percent of the overall trading activity in the equity
market in the United States (Brogaard (2010), Iati (2009)). These high frequency traders regroup a
large pool of investors among which we can find:

Market makers
A market maker is an individual or a company which places both limit buy orders and limit sell

orders on stocks. Market makers earn their living by matching buyers and sellers. If John wants to
buy 200 shares of Microsoft at 30.25 dollars and Paul wants to sell 200 shares at 30.24, a market maker
will be the intermediary that will deal with both John and Paul and eventually will earn 2 dollar on
this transaction. The wider is the bid ask spread, the more profitable are market makers. The main
source of risk of market makers comes from their inventory. Market makers quote limit orders on
visible venues to earn the spread and generally use hidden pegged orders to liquidate their inventories.
The behavior of market makers in electronic markets has recently been studied by Menkveld (2011b).

Since market makers always take positions in the opposite side of the market (they are selling
when people buy and buying when people sell), they need to incorporate in their strategies all sort
of information that may be correlated with forward returns. These pieces of information, generally
called signals, are shared by all majors market makers. Hence one can view the whole population of
market makers as a unique market maker, sometimes called the omniscient market maker.

Electronic Market makers
Some firms, who receive a flow of orders, are allowed to internalize these orders. Instead of routing

the whole order flow to electronic venues, they can match buyers and sellers internally. These firms are
called electronic market makers. In the United States, four electronic market makers, ATD, Citadel,
UBS and Knight Capial, account for more than 60 percents of overall equity trading.

Institutional Investors
Institutional investors, who manage large portfolios, may sometimes have to buy or sell a signi-

ficative proportion of a firm. In the 1980s, an institutional investor would call a broker and wait for
a couple of minutes for the broker to decide the transaction price. During this time, the news of an
investor trying to buy an important number of stock would leak and the stock price would increase.
To avoid such a negative impact, investors decided in the 1990s to split their order in small parts and
trade progressively. Several methods are well known to minimize trading impact, among which we can
find TWAP, VWAP, POV (see e.g. Almgren and Chriss (1999) Almgren and Chriss (2001) Almgren
and Chriss (2003) Predoiu et al. (2011) Gatheral (2010) Schied and Schoeneborn (2008) Guéant et al.
(2011) Bouchard et al. (2011)) or more sophisticated strategies based on stochastic control. These
strategies, which aim at minimizing the market impact of large trades, are executed over several hours
or days of trading. At this time horizon, it is reasonable to model the price dynamics with a diffusion.

Execution traders
When an investor has decided to trade a certain amount of stocks during a short period of time,

it still has the choice of using limit and market orders. Market orders are more expensive but are
immediately executed, whereas limit orders carry the risk of not being executed. Investor can also
chose between using hidden orders (orders that are not visible by others investors) and visible orders,
trade on visible exchanges or dark pools, use limit or peg orders, and can go to about 30 different
venues in the United States. Execution traders decide where and how to rout orders.

Statistical arbitrage/ Pure arbitrage
Algorithmic traders use short term signals to trade securities and hold positions for very brief

periods of time. A signal is an information which is positively correlated with forward returns. For
instance the following signals are used by both high frequency traders, market makers and arbitragers:
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• Order book imbalance. As we will see in this thesis, the ratio between the number of orders at
the ask and the number of orders at the bid is highly correlated with the probability that the
next price move will be an increase.

• Order flow imbalance. In Cont et al. (2010a), the authors link the variation of price with what
they call the order flow imbalance OFI(∆T ). The Order flow imbalance is the difference between
all buy orders (including market orders and cancelations at the ask and limit orders at the bid)
and all sell orders occurring during the time interval ∆T . Cont et al. (2010a) show a correlation
close to one between variations of the order flow imbalance and price moves.

• Trade autocorrelations. It is widely known that the sequence of trade signs is highly correlated
in time. With the sequence of trades, called the tape, one can easily create several signals.

• Many other signals can be built using latencies between venues, lead-lag effects, correlation
across securities, etc..

Statistics arbitragers use these signals to buy or sell stocks for only a couple of seconds. For
instance, if they find a strategy profitable 53 percent of the time, they can still earn their living by
using this strategies many times, on non-correlated securities. Thanks to the law of large numbers,
they hope to end up with a positive gain almost surely.

1.1.4 The consolidated limit order book

Every investor willing to trade a stock will have to chose between going to an electronic market maker,
a visible venue or a dark pool. The global structure of equity markets is summarized on the graph 1.5

Visible book 1 Visible book 2 Visible book 3 Visible book 4 Dark pool

Electronic Market maker Electronic Market maker

Investor

Figure 1.5: Actual market organization of Equity markets.

In practice, if a market order is sent to a venue that does not have orders available at the NBBO,
this venue has to rout the orders to another venue with orders available at the NBBO. This rule
links all limit order books together. Even if liquidity is fragmented geographically, it is reasonable to
assume that all the liquidity is available in a virtual object called the consolidated limit order book.
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Definition 1.1. The consolidated limit order book is a virtual limit order book built with the aggrega-
tion of limit orders from all limit order books.

The ask price can only increase when all limit orders at the ask level are consumed over all visible
venues. It is equivalent to say that the ask price moves only when the ask queue is consumed on the
consolidated limit order book. From a modeling point of view, the consolidated limit order book is
the key object, at the core of price formation. In this thesis we will focus on the dynamics of this
consolidated limit order book and neglect effects due to the fragmentation of equity markets.

Figure 1.6 displays a consolidated limit order book. One can observe on each line the venue where
limit orders are displayed and the number of orders at the corresponding price.

Figure 1.6: A consolidated limit order book. Source: http://www.smartquant.com
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1.2 Empirical studies

The availability of high frequency data on transactions, quotes and order flow in electronic order-driven
markets has revolutionized data processing and statistical modeling techniques in finance and brought
up new models based on statistical properties of financial time series. These models use the tools
from time series analysis and econometrics to replicate several stylized facts observed on financial
time series. In this section we briefly review some of the most well known empirical observations
related to market microstructure.

1.2.1 Stylized facts of financial time series

This expression stylized facts refers to all empirical facts that arise in statistical studies of financial
time series and that are persistent across various time periods, places, markets, assets, etc. One can
find several of these facts in several reviews (e.g. Bollerslev and Engle (1993); Pagan (1996); Cont
(2001)). A few stylized facts related to high frequency trading are:

• Negative autocorrelation of price return at a tick-by-tick time scale. On most stocks traded on
electronic markets, consecutive increments of the price are negatively correlated. One generally
says that the price mean reverts. On figure 1.7 we plot the autocorrelation of consecutive price
increments for the stock Citigroup on the 26th of June, 08.

Figure 1.7: Autocorrelogram or the sequence of consecutive price increments for Citigroup, 26th June
08.

• Absence of autocorrelation of returns at a lower frequency. The autocorrelation of price incre-
ments at a lower frequency (e.g. a couple of minutes or more) disappears. As observed on figure
1.7, The autocorrelation function decays very rapidly to zero, even for a few lags of 1 minute.
It is well known (see e.g. Pagan (1996); Cont (2001)), that the correlation between successive
returns is close to zero.

• Correlation between the number of trades and volatility. It has been widely known for a long
time that trading intensity is highly correlated with price volatility. Clark (1973) noticed, by
observing cotton prices, a curvilinear relationship between trading volume and volatility. Silva
and Yakovenko (2006) among others, show that the variance of log-returns after N trades, i.e.
over a time period of N in trade time, is proportional to N.
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• Microstructure invariants. Kyle et al. (2010) develop a theoretical framework to build mi-
crostructure invariants related to market depth, bid-ask spread, and order sizes.

1.2.2 Order size and volume

Intraday Seasonality

Activity on financial markets is not constant throughout the day. Every country has its deterministic
pattern for trading intensity. In the United states, trading activity is intense after the opening at
9 : 30− 10 : 30am, then decreases during lunch time and eventually peaks again at the end of trading
day between 3 : 00pm and 4 : 00pm. At the opening, the number of messages sent to electronic
venues can be so high that the internal latency of the venues jumps from less than a millisecond to
several hundreds of milliseconds. In Europe, the scenario is different, one can observe the same U
shape of trading activity plus an increase of trading around 3 : 00pm (French time), corresponding to
the opening of Americans markets.

Autocorrelation of trade sides

Several empirical studies (Madhavan et al. (1997) Lillo and Farmer (2004) Bouchaud et al. (2002),
Bouchaud et al. (2003)) highlight the high autocorrelation in the side of trades (e.g. buy or sell). Let
(ǫi, i ≥ 1) the sequence of trade signs. ∀i ≥ 1, ǫi = 1 when the i-th trade is a buy order, and ǫi = −1
when it is a sell order. Lillo and Farmer (2004) Bouchaud et al. (2003) estimate the autocorrelogram
of the sequence of trade signs and highlight the strong autocorrelation of these signs. They propose
a model where:

E[ǫiǫi+l] =
c0
lγ

for γ < 1,

where c0 is a constant. This high autocorrelation of trade signs may be explained by two factors. On
one hand, most high frequency traders use the same signals to build their strategies and eventually
trade in the same time periods. As we will show in this thesis, the order book pressure (ratio between
bid and ask queue sizes) is a key indicator to the next price move. When the probability of a price
increase becomes significant, many traders decide to take the remaining orders available at this price.
A sudden flow of orders consumes the whole queue. On the other hand, we showed in section 1.1
that the overall liquidity available at a current time on a specific venue is small. Investors need to
split orders and scatter them across time. By splitting orders and sending them one after another,
investors increase correlation of trade signs. These two reasons explain why correlation in trade signs
is strong.

Number of shares per order

Several studies have focus on the empirical distribution of trade sizes. Gopikrishnan et al. (2000)
and Maslov and Mills (2001) observe a power law decay with an tail index between 2.3 and 2.7 for
market orders and close to 2 for limit orders. Challet and Stinchcombe (2001) looked at the correlation
between these trade sizes and noticed a clustering of orders. Figure 1.8 displays the sequence of signed
order sizes for the stock Citigroup. Market orders, limit orders and cancelations are represented in
these figures. Negative order sizes arise from market orders and cancelations whereas positive sizes
stem from limit orders.

To our knowledge, no empirical study has emphasized the correlation between order sizes coming
at the bid and at the ask. Another interesting fact observed on figure 1.9, is that the sequences of
successive order sizes (V a

i , i ≥ 1) are not correlated whereas the sequence of absolute value of order
sizes are highly correlated.
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Figure 1.8: Number of shares per event for events affecting the ask (left) and the bid (right). The
stock is Citigroup on the 26th of June 2008

Figure 1.9: Autocorrelogram of order sizes (left) and absolute order sizes (right). The stock is Citi-
group on the 26th of June 2008
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We propose, in Chapter 3, a realistic model for the sequence of trade sizes (V a
i , i ≥ 1) and

(V b
i , i ≥ 1) which captures empirical features of the sequence of order sizes:

V b
i = σb

i z
b
i , V a

i = σa
i z

a
i , (1.1)
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i )
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0 + αb

1(V
b
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0 + αa

1(V
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(1.2)

and (αb
0, α

b
1, α

a
0 , α

a
1) are real coefficients satisfying

αb
0 + αb

1 < 1, and αa
0 + αa

1 < 1. (1.3)

As shown by Bougerol and Picard (1992), the sequences of order sizes (V b
i , i ≥ 1) and (V a

i , i ≥ 1) are
then well defined, stationary sequences of random variables with finite second-order moments. The
model of order sizes given equation (1.1) is the equivalent of the ARCH model for returns. It captures
the following features:

• The sequence of consecutive order sizes (V a
i , i ≥ 1) (resp. (V b

i , i ≥ 1)) is not correlated.

• The sequence of squared order sizes ((V a
i )

2, i ≥ 1) (resp. ((V b
i )

2, i ≥ 1)) is positively correlated.

• Order sizes at the ask and at the bid are correlated.

1.2.3 Average shape of the limit order book

The average shape of the limit order book, displayed figure 1.10 for the Japanese stock Sky, is the
average number of orders posted at a fixed distance from the other side have been examined in various
markets.

The average shape of the order book is observed to be hump shaped on each side, with a maximum
close to the best quote (typically at one level from the best quote) and decreasing beyond the second
level (Bouchaud et al. (2002) Bouchaud et al. (2003)).

Alfonsi et al. (2010) uses this order book shape to minimize trading costs in a limit order book.
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Figure 1.10: Average number of orders posted at a fixed distance from the opposite side for the
Japanese stock Sky.
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1.2.4 Market impact modeling

A controversial topic in financial microstructure is the shape of the market impact function. The
market impact function is the price impact at time t+ T caused by an order of size V placed at time
T . Many authors have conducted empirical studies to estimate the relation between market impact
and order sizes. An exhaustive synthesis is proposed by Bouchaud et al. (2008), where different types
of impacts, as well as some theoretical models are discussed. Generally, theoretical models assume two
kinds of market impact, a temporary market impact which vanishes after a long time, and a permanent
market impact. Gatheral (2010) proves that, only certain form of market impact are possible to avoid
arbitrage strategies. More recently, Cont et al. (2010a) take a different approach on market impact.
Instead of only looking at the impact of market orders, the authors estimate the impact of all orders
affecting the order book (market orders, limit orders and cancelations) and show that the market
impact is a linear function of net order flow.
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1.3 Theoretical models

Market microstructure is a branch of economics and finance concerned with the details of how exchange
occurs in financial markets. At the end on the 19th century, Walras noticed that the process of price
formation could lead to unstable equilibrium. He was the first to offer a theoretical model for price
equilibrium, where the price appeared after a process of ’tatonnement’. In perfect markets, Walrasian
equilibrium prices reflect the competitive demand curves of all potential investors. Later, Garman
(1976) developed in 1976 one of the earliest models of dealership and auction markets and went so
far as to deduce the statistical properties of prices by simulating the order-arrival process. Modern
market microstructure confronts microeconomic theory to the actual workings of markets. Amihud
and Mendelson (1980), Kyle (1985), O’Hara (1997), Chakraborti et al. (2011) and Hasbrouck (2007)
provide extensive overviews of the market microstructure literature. One can distinguish between
three classes of theoretical models:

• the econometric literature, which models the price process without incorporating parameters of
the order flow or utility functions of investors,

• the agent-based models, which deduct property of the price process from the behavior of in-
vestors, and

• the stochastic models of limit order books, which reproduce dynamical properties of limit order
books and price process by modeling order flow as a stochastic process.

1.3.1 Econometric models of price dynamics

The high frequency dynamics of the mid-price (or bid/ask price) (Pt, t ≥ 0) is a piecewise constant
stochastic process. The mid price only moves when either the bid or the ask queue empties or when
a limit order is posted in the spread. Denote (X1, ..., Xn) the consecutive moves of the mid price.

∀t ≥ 0, Pt = SNt , where Sn = X1 + ...+Xn and (Nt, t ≥ 0)

counts the number of price moves during [0, t]. Econometric studies model the distribution of
the discrete price increments (X1, ..., Xn) and the durations between price changes. More generally,
several econometric studies model durations between events.

Modeling durations between events

The observation of non-Poissonian arrival times (cf figure 4.1) has generated interest in modeling of
durations between events. Engle and Russell (1998) and Engle and Lunde (2003) have introduced
autoregressive condition duration or intensity models that may help modeling these processes of orders
submission. See Hautsch (2004) for a textbook treatment.

Models based on Poisson point processes
The simplest way to model inter-events durations or price durations uses Poisson processes. In

Chapter 2, we model the arrival rate of limit orders, market orders and cancelations with independent
Poisson processes of parameters λ, µ and θ.

Self-exciting point processes
Several features, which are not captured in models based on Poisson processes, may be adequately

represented by a multidimensional self-exciting point process (Andersen et al. (2010), Hautsch (2004)),
in which the arrival rate λi(t) of an order of type i is represented as a stochastic process whose value
depends on the recent history of the order flow: each new order increases the rate of arrival for
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Figure 1.11: Quantiles of inter-event durations compared with quantiles of an exponential distribution
with the same mean (Citigroup, June 2008). The dotted line represents the benchmark case where
the observations are exponentially distributed, which is clearly not the case here.

subsequent orders of the same type (self-exciting property) and may also affect the rate of arrival of
other order types (mutually exciting property):

λi(t) = θi +
J∑

j=1

δij

∫ t

0

e−κi(t−s)dNj(s)

Here δij measures the impact of events of type j on the rate of arrival of subsequent events of type i: as
each event of type j occurs, λi increases by δij . In between events, λi(t) decays exponentially at rate
κi. Maximum likelihood estimation of this model on TAQ data Andersen et al. (2010) show evidence
of self-exciting and mutually exciting features in order flow: the coefficients δij are all significantly
different from zero and positive, with δii > δij for j 6= i.

Autoregressive conditional durations
Models based on Poisson processes fail to capture serial dependence in the sequence of durations,

which manifests itself in the form of clustering of order book events. One approach for incorporating
serial dependence in event durations is to represent the duration duration τi between transactions
i− 1 and i as

Ti = ψiǫi,

where (ǫi)i≥1 is a sequence of independent positive random variables with common distribution and
E[ǫi] = 1 and the conditional duration ψi = E[Ti|ψi−j , Ti−j , j ≥ 1] is modeled as a function of past
history of the process:

ψi = G(ψi−1, ψi−2, ..., ..;Ti−1, Ti−2, ..., ..).

Engle and Russell’s Autoregressive Conditional Duration model Engle and Russell (1998) proposes an
ARMA(p, q) representation for G:

ψi = a0 +

p
∑

i=1

akψi−k +

q
∑

i=1

bqTj−k

where (a0, ..., ap) and (b1, ..., bq) are positive constants. The ACD-GARCH model of Ghysels and
Jasiak Ghysels and Jasiak (1998) combines this model with a GARCH model for the returns. Engle
Engle (2000) proposes a GARCH-type model with random durations where the volatility of a price
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change may depend on the previous durations. Variants and extensions are discussed in Hautsch
(2004). Such models, like ARMA or GARCH models defined on fixed time intervals, have likelihood
functions which are numerically computable.

Modeling price increments

Several econometric studies (Engle (1982) Engle and Russell (1998) Bollerslev (1986) Bollerslev and
Engle (1993)) use time series analysis to model price dynamics. These models build time series
that reproduce several stylized facts of price returns such as volatility clustering or the absence of
autocorrelation of consecutive price increments to model price dynamics. This approach models price
dynamics without looking at the order flow.

The ARCH(q) process, introduced by Engle (1982), is described as follows. Let (ǫn, n ≥ 1) a
sequence of IID Gaussian N (0, 1) random variables and

α0 > 0 and αi ≥ 0 for i ≤ q with α0 + ...+ αq < 1.

The sequence of price returns (rn, n ≥ 1) defined as:

rn = σnǫn, σ2
n = α0 + α1r

2
n−1 + α2r

2
n−2 + ...+ αqr

2
n−q

is an ARCH(q) process. This is a sequence of uncorrelated random variables with clustering
volatility. Later, several econometric models such as GARCH, iGARCH generalize this ARCH time
series to capture other features of price dynamics such as the skewness of returns and the fat tail of
price returns.

1.3.2 Market microstructure models

Until the development of limit order markets at the end of the 1990s, the price discovery took place in
the New York Stock Exchange (NYSE). In a 1995 paper, Hasbrouck (1985) used econometric methods
to analyze the initial stages of the US stock market fragmenting into regional exchanges, and found
that the price discovery mainly takes place in the New York Stock Exchange. At that time, most
theoretical models aimed at modeling the behavior of the specialist of the NYSE, who was at the
origin of price formation. These models are called agent based models.

All agent based models share the same framework: the demand for a risky asset comes from several
agents with exogenously defined utility functions reflecting their preferences and risk aversions. Agent
based models aim at linking the behavior of agents to the property of price microstructure (bid-ask
spread, volatility, market impact, etc..). Some are capable of reproducing several stylized facts like the
emergence of herding behavior Lux (1985), volatility clustering Lux and Marchesi (2000), or fat-tailed
distributions of stock returns Cont and Bouchaud (2000), that are observed in financial data. The first
agent based models include two classes of agents, informed traders who know the value of the traded
security and noise traders. Noise traders buy and sell for various reasons such as hedging a position
for instance. A recent review of agent based models can be found in Lebaron (2006) and Hasbrouck
(2007). These theoretical models highlight that only a very small component of price volatility and
trading volume is due to informed traders, with the most part produced by the noise traders.

In order to better understand the mechanism of agent based models we will detail two well-known
models. The Kyle model focuses on price dynamics whereas Glosten’s model highlights the relation
between the bid-ask spread and the proportion of informed investors. These two models make very
strong assumptions on the trading population and require the knowledge of parameters that cannot
be estimated empirically. However, we will see that, despite their simplicity, these two models provide
interesting insight on the relation between trading population and price microstructure.
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Roll model (1984)

In 1984, Roll (1984) proposes a market microstructure model, for which the spread s = 2c is constant,
and trades arrive independently with constant order sizes. According to Roll’s model, the market
price (pt, t ≥ 0) oscillates around an efficient price ut:

∀t ≥ 0, pt = ut + c if the trade t-th arrives at the ask and pt = ut − c if it occurs at the bid.

One can easily show that:

∀t ≥ 0, E[∆pt = 0], Var[∆pt] = σ2
u + 2c2 and Cov(∆pt,∆pt−1) = −c2,

where σu is the volatility of the efficient price.
This model, although being very simple, captures empirical properties of the price such as the

negative autocorrelation of price increments (see table 4.4). We will see in this thesis that price mean-
reversion holds under much more general assumptions and can be linked to some statistical properties
of the order flow. The parametric model proposed in section 4.2.2 links this mean-reversion with the
skewness of the distribution of the bid and ask queues after a price move.

Kyle model (1985)

Another well known model was introduced by Kyle in 1985 Kyle (1985). In Kyle’s model, the traded
security has a value v which follows a Gaussian distributionN (p0, σ0). The trading population consists
of an informed trader, who knows the security value v and trades x shares, a liquidity trader (or noise
trader) who submits a net order flow l ∼ N (0, σl), independent of v, and a market maker or specialist
who sets the clearing price p after observing the total order flow.

The informed trader conjectures that the market maker uses a linear price adjustment rule p =
λ(x+ l)+µ, where λ is an inverse measure of liquidity. The expected profit of the informed traders is

E[π] = x(v − λx− µ).

The informed traders chooses x to maximize E[π] yielding x = (v − µ)/2λ. On the other side,
market efficiencies requires p = E[v|l + x]. A short computation shows that the equilibrium price is:

p = p0 +
1

2

√
σ0
σl

(l + x).

In a multi-period setting, the price evolution is given by the following equations

pn = pn−1 + λ[xn + ln] and ln = βn[v − pn−1], (1.4)

where λ is a measure of liquidity, xn is the quantity traded by the informed investor, ln the number
of orders traded by the noise traders.

In Kyle’s model, price volatility is a multiple of the inverse measure of liquidity λ and the variance
of trading intensity xn + ln. In Chapters 2 and 4, several results generalize this relation between a
measure of liquidity and price volatility. Moreover we will see how to express λ with statistics from
the order flow.

Glosten and Milgrom (1985)

One of the earliest model to focus on the bid-ask spread is given by Glosten and Milgrom (1985).
Let’s assume that there is one security with a payoff V which is either low V

¯
or high V̄ with:

P[V = V
¯
] = δ = 1− P[V = V̄ ] (1.5)
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The trading population comprises informed and uninformed traders. Informed traders know the
value outcome V . The proportion of informed traders in the population is µ. Given that the customer
buys, the probability that V = V

¯
is

P[V = V
¯
|Buy] = δ(1− µ)

1 + µ(1− 2δ)
and P[V = V

¯
|Sell] = δ(1 + µ)

1− µ(1− 2δ)
. (1.6)

The dealer’s ask price A and bid price B are:

A = E[V |Buy] = V
¯
(1− µ)δ + V̄ (1− δ)(1 + µ)

1 + µ(1− 2δ)
and B = E[V |Sell] = V

¯
(1 + µ)δ + V̄ (1− δ)(1− µ)

1 + µ(1 + 2δ)
.

(1.7)
The bid-ask spread is

A−B =
4(1− δ)δµ(V̄ −V

¯
)

1− (1− 2δ)2µ2
.

After n trades, the bid-ask spread becomes approximately:

An −Bn = 4δn(1− δn)µ(V̄ −V
¯
),

where δn is the updated value of δ after n trades. We have neglected the term in µ2, which should
be small for realistic markets. This model is by construction compatible with a random walk for the
midpoint. It also predicts that the bid-ask spread declines on average throughout the day, since the
update rule drives δn either to zero or to one.

Agent based models of limit order markets

With the change of financial landscape described in section 1.1, the role of the specialist has weakened.
Not only could investors chose the place were they would trade but they could also chose between using
limit orders and market orders. Recently several agent based models (e.g. Parlour (1998), Foucault
et al. (2005), Rosu (2009)) focused on this new type of financial markets. They have shown that the
evolution of the price in such markets is rather complex and depends on the state of the order book.
With the rise of algorithmic trading, Rosu (2009) has added a new population of traders called high
frequency traders. Rosu (2009) links price volatility with trading intensity by the following relation:

σ =
C√
λ

i+ 1

i
σu, (1.8)

where λ is the total trading intensity, i is the proportion of informed traders, σu is a fundamental
volatility and C > 0 is a constant. In this thesis, we show that this relation between order arrival
intensity and price volatility holds under much more general assumptions, and may be derived without
behavioral assumptions for market participants.

1.3.3 Stochastic models of limit order books

The search for tractable models of limit order markets has led to the development of stochastic models
which aim to retain the main statistical features of limit order books while remaining computationally
manageable. Stochastic models reproduce the dynamics properties of a limit order book without
resorting to detailed behavioral assumptions about market participants or introducing unobservable
parameters describing agent preferences, as in more detailed market microstructure models.
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Probabilistic agent based models

When more agents appeared in agent based models (chartists, trend followers, etc..) with various
utility functions, the complexity of the mathematics became untractable. Several people noticed that
the mathematical complexity of such agents based models could disappear after a suitable scaling of
the price process. In this approach, the intensity of trading would depend on the whole price trajectory
and the scaled price process could take very different dynamics depending on the agent populations.
Let (st, t ≥ 0) the price process. Generally, this process is so complex that it is impossible to get
some insights on its dynamics. However, depending on the structure of the trading population, one
can show that a suitable scaling (φ(n), n ≥ 1) leads to:

(
s[nt]

φ(n)
, t ≥ 0

)

⇒ (Pt, t ≥ 0), as n→ ∞ on (D, J1),

where the scaled, or marcoscopic price process (Pt, t ≥ 0) has a much simpler behavior. All the
short term dependence disappears during the scaling. For instance Föllmer and Schweizer (1993) and
Horst (2005) model asset prices as a sequence of temporary equilibrium prices in a random environment
of investor sentiment and show that in a noise trader framework, the scaled price process follows an
Ornstein-Uhlenbeck dynamics with random coefficients. In Follmer et al. (2005), the agents are allowed
to use technical trading rules. This generates a feedback from past prices into the environment. For
a more detailed discussion of probabilistic agent-based models, we refer to Bayraktar et al. (2006).

Analogies with particle systems

Several physicists have modeled the limit order book as a particle system, where each limit order is a
particle moving in the limit order book according to a specific dynamics. Bak et al. (1997) propose
a market similar the reaction-diffusion model A + B → 0 in physics. In such a model, two types
of particles are inserted at each side of a pipe and move randomly with steps of size 1. Each time
two particles collide, they disappear and two new particles are inserted. The price lies at the frontier
where the two particle collide. When more particles are inserted on the right, the collision frontier will
slowly move to the left. The selling pressure is equivalent to the number of particles leaving the right
side of the pipe. Maslov (2000) adds more parameters in this model. First, limit orders are submitted
and stored in the model, without moving. Second, limit orders are submitted around the best quotes.
Third, market orders are submitted to trigger transactions. Challet and Stinchcombe (2001) extend
the work of Bak et al. (1997) and Maslov (2000), and develop the analogy between dynamics of limit
order books and particle systems on an infinite dimensional grid. Bovier et al. (2004), Bovier and
Černý (2007) compute the hydrodynamic limit of the whole system.

A Markovian model

In Cont et al. (2010b), the authors model the limit order book as a continuous time Markov process
Xt = (X1(t), X2(t), ...Xn(t)), where −Xp(t) (resp. Xp(t)) is the number of sell (resp. buy) orders
available at price p, for p ∈ {1, ..., n}. Under this framework, it follows immediately that for all t > 0,
the bid and ask prices are:

bt = sup{p, Xp(t) < 0} and at = inf{p, Xp(t) > 0} (1.9)

The authors assume that the intensity of limit orders at level p is λ(p) and that these limit
orders are canceled at rate θ(p). Market orders arrive according to a Poisson process of intensity µ.
Under these assumptions, the whole process X(t) is Markovian and ergodic, and several quantities of
interest - transition probabilities for prices, distribution of durations - may be computed using Laplace
transform techniques.
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1.4 Summary of contributions

This thesis may be viewed as a step towards bridging the gap between the econometrics literature,
and the more traditional temporary equilibrium models, which allow for analytic solutions but do not
accurately capture the microstructure of automated trading systems.

The idea is to model the inflows of orders as a random process, whose statistical properties are
chosen to match the observed ones, and to derive the dynamics of prices from the resulting interac-
tion of this order flow with the limit order book. Contrary to equilibrium models, based on agents
preference, we do not need to model the behavior of agents, nor to estimate the proportion of a given
kind of participants to understand price dynamics.

Linking statistics of the order flow with the dynamics of the price is a complex task because the
properties of the order flow (time autocorrelation, dependence across different price levels, hetero-
geneity of order sizes...) generate a multidimensional non-Markovian stochastic process for the limit
order book dynamics. First, our approach consist in reducing the number of variables characterizing
the limit order book. Once we have reduced the state of variables, we show how to approximate the
dynamics of this reduced order book by a Markov process.

1.4.1 A reduced form model of the limit order book

As discussed in section Cont et al. (2010b), one can model a limit order book as a high dimensional
queueing system (or point process); this approach requires specifying the arrivals of orders at all price
levels and may lead to intensive computations even in simple settings. By contrast, in this thesis, we
propose a simple reduced-form approach.

Empirical studies of limit order markets suggest that the major component of the order flow occurs
at the (best) bid and ask price levels (see e.g. Biais et al. (1995)). All electronic trading venues also
allow to place limit orders pegged to the best available price (National Best Bid Offer, or NBBO);
market makers used these pegged orders to liquidate their inventories. Furthermore, studies on the
price impact of order book events show that the net effect of orders on the bid and ask queue sizes is
the main factor driving price variations (Cont et al. (2010a)). These observations, together with the
fact that queue sizes at the best bid and ask of the consolidated order book are more easily obtainable
(from records on trades and quotes) than information on deeper levels of the order book, motivate a
reduced-form modeling approach in which we represent the state of the limit order book by:

• the bid price sbt and the ask price sat ,

• the size of the bid queue qbt representing the outstanding limit buy orders at the bid, and

• the size of the ask queue qat representing the outstanding limit sell orders at the ask

Figure 1.12 summarizes this representation.
If the stock is traded in several venues, the quantities qb and qa represent the best bids and offers

in the consolidated order book, obtained by aggregating over all (visible) trading venues. At every
time t, qbt (resp. qat ) corresponds to all visible orders available at the bid price sbt (resp. sat ) across all
exchanges.

The state of the order book is modified by order book events: limit orders (at the bid or ask),
market orders and cancelations (see Cont et al. (2010b,a), Smith et al. (2003)). A limit buy (resp.
sell) order of size x increases the size of the bid (resp. ask) queue by x, while a market buy (resp. sell)
order decreases the corresponding queue size by x. Cancelation of x orders in a given queue reduces
the queue size by x. Given that we are interested in the queue sizes at the best bid/ask levels, market
orders and cancelations have the same effect on the queue sizes (qbt , q

a
t ).

The bid and ask prices are multiples of the tick size δ. When either the bid or ask queue is depleted
by market orders and cancelations, the price moves up or down to the next level of the order book.
The price processes sbt , s

a
t is thus a piecewise constant process whose transitions correspond to hitting

times of the axes {(0, y), y > 0} ∪ {(x, 0), x > 0} by the process qt = (qbt , q
a
t ).
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Figure 1.12: Simplified representation of a limit order book.

If the order book contains no ‘gaps’ (empty levels), these price increments are equal to one tick:

• when the bid queue is depleted, the (bid) price decreases by one tick.

• when the ask queue is depleted, the (ask) price increases by one tick.

If there are gaps in the order book, this results in ’jumps’ (i.e. variations of more than one tick) in
the price dynamics. We will ignore this feature in what follows but it is not hard to generalize our
results to include it.

The quantity sat − sbt is the bid-ask spread, which may be one or several ticks. As shown in Table
1.1, for liquid stocks the bid-ask spread is equal to one tick for more than 98% of observations.

Bid-ask spread 1 tick 2 tick ≥ 3 tick
Citigroup 98.82 1.18 0
General Electric 98.80 1.18 0.02
General Motors 98.71 1.15 0.14

Table 1.1: Percentage of observations with a given bid-ask spread (June 26th, 2008).

When either the bid or ask queue is depleted, the bid-ask spread widens immediately to more than
one tick. Once the spread has increased, a flow of limit sell (resp. buy) orders quickly fills the gap
and the spread reduces again to one tick. When a limit order is placed inside the spread, all the limit
orders pegged to the NBBO price move in less than a millisecond to the price level corresponding
to this new order. Once this happens, both the bid price and the ask price have increased (resp.
decreased) by one tick.

The histograms in Figure 1.13 show that this ’closing’ of the spread takes place very quickly: as
shown in Figure 1.13 (left) the lifetime of a spread larger than one tick is of the order of a couple of
milliseconds, which is negligible compared to the lifetime of a spread equal to one tick (Figure 1.13,
right). In our model we assume that the second step occurs infinitely fast: once the bid-ask spread
widens, it returns immediately to one tick. For the example of Dow Jones stocks (Figure 1.13), this is
a reasonable assumption since the widening of the spread lasts only a few milliseconds. This simply
means that we are not trying to describe/model how the orders flow inside the bid-ask spread at the
millisecond time scale and, when we describe the state of the order book after a price change we have
in mind the state of the order book after the bid-ask spread has returned to one tick.
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Figure 1.13: Left: average lifetime, in milliseconds of a spread larger than one tick for Dow Jones
stocks. Right: average lifetime, in milliseconds of a spread equal to one tick.

Under this assumption, each time one of the queues is depleted, both the bid queue and the ask
queues move to a new position and the bid-ask spread remains equal to one tick after the price change.
Thus, under our assumptions the bid-ask spread is equal to one tick, i.e. sat = sbt + δ, resulting in a
further reduction of dimension in the model.

The limit order book as a reservoir of liquidity
Once either the bid or the ask queue are depleted, the bid and ask queues assume new values.

Instead of keeping track of arrival, cancelation and execution of orders at all price levels (as in Cont
et al. (2010b), Smith et al. (2003)), we treat the queue sizes after a price change as a stationary sequence
of random variables whose distribution represents the depth of the order book in a statistical sense.
More specifically, we model the size of the bid and ask queues after a price increase by a stationary
sequence (Rk)k≥1 of random variables with values in N2. Similarly, the size of the bid and ask queues

after a price decrease is modeled by a stationary sequence (R̃k)k≥1 of random variables with values in

N2. The sequences (Rk)k≥1 and (R̃k)k≥1 summarize the interaction of the queues at the best bid/ask
levels with the rest of the order book, viewed here as a ’reservoir’ of limit orders.

The variables Rk (resp. R̃k) have a common distribution which represents the depth of the order
book after a price increase (resp. decrease): Figure 1.14 shows the (joint) empirical distribution of
bid and ask queue sizes after a price move for Citigroup stock on June 26th 2008.

The simplest specification could be to take (Rk)k≥1, (R̃k)k≥1 to be IID sequences; this approach,
used in chapter 2, turns out to be good enough for many purposes. But this IID assumption is not
necessary and will be released in chapter 3

In summary, the state of the limit order book is thus described by a continuous-time process
(sbt , q

b
t , q

a
t ) which takes values in the discrete state space δZ × N2, with piecewise constant sample

paths whose transitions correspond to the order book events. Denoting by (tai , i ≥ 1) (resp. tbi ) the
event times at the ask (resp. the bid), V a

i (resp. V b
i ) the corresponding change in ask (resp. bid)

queue size, and k(t) the number of price changes in [0, t], the above assumptions translate into the
following dynamics for (sbt , q

b
t , q

a
t ):

• If an order or cancelation of size V a
i arrives on the ask side at t = tai ,

– if qat− + V a
i ≥ 0, the order can be satisfied without changing the price;

– if qat− + V a
i < 0, the ask queue is depleted, the price increases by one ’tick’ of size δ, and

the queue sizes take new values Rk(t) = (Rb
k(t), R

a
k(t)),
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Figure 1.14: Joint density of bid and ask queue sizes after a price move (Citigroup, June 26th 2008).

(sbt , q
b
t , q

a
t ) = (sbt−, q

b
t−, q

a
t− + V a

i )1{qat−≥−V a
i } + (sbt− + δ,Rb

k(t), R
a
k(t))1{qat−<−V a

i }, (1.10)

• If an order or cancelation of size V b
i arrives on the bid side at t = tbi ,

– if qbt− + V b
i ≥ 0, the order can be satisfied without changing the price;

– if qbt− + V b
i < 0, the bid queue gets depleted, the price decreases by one ’tick’ of size δ and

the queue sizes take new values R̃k(t) = (R̃b
k(t), R̃

a
k(t)):

(sbt , q
b
t , q

a
t ) = (sbt−, q

b
t− + V b

i , q
a
t−)1{qbt−≥−V b

i } + (sbt− − δ, R̃b
k(t), R̃

a
k(t))1{qbt−<−V b

i }. (1.11)

Analogies with queueing systems
The dynamics of bid and ask queue sizes (qb, qa) may be viewed as a system of two queues evolving

with the impact of limit orders, market orders and cancelations. For a general order book, the
dependence between bid and ask order flows generates a correlation between bid and ask queues
dynamics. This queueing system, for which the dynamics of queue lengths is correlated, is similar
to tandem queues in dimension 2, for which every customer waits for a first server, then goes to a
second server and eventually leaves the system. The waiting time of a customer entering such systems
is the analogous of the duration until a limit buy order (resp. sell order) is executed. Similarly,
the time when one server becomes idle corresponds to the time when the price moves in our system.
Tandem queues have been widely studied. Harrisson (1978) computes the heavy-traffic approximation
of the queues, and gives its stationary distribution. In dimension 2, a general method (Cohen (1988),
Cohen and Boxma (1983)), based on the resolution of a Riemann-Hilbert boundary problem, gives
the stationary distribution of queueing systems. A similar process, diffusing in the positive orthant
with discontinuous reflection on the axis, have been studied by Baccelli and Fayolle (1987). The main
difference between the dynamics of bid and ask queue sizes and queueing systems lies on the boundary.
Most queueing systems have continuous reflection conditions at the boundaries, whereas our system
is reinstated inside the orthant once it hits an axis. Moreover the price process (st, t ≥ 0) has no
equivalent in queueing theory.
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Quantities of interest

We will show in this thesis that this simplified approach allows to compute several quantities of
interest such as:

• Price durations. The price moves when either the bid queue or the ask queue becomes empty.
Let τ the distribution of the price move. We will see how to compute the unconditional distri-
bution τ . We will also compute the distribution τ conditioned on observing at a given time x
shares at the bid and y shares at the ask.

• Probability of a price increase pup. The price increases if the ask queue empties before the bid
queue. We will give an explicit expression of pup(x, y), the probability that the next price move
is an increased, conditioned on observing x shares at the bid and y shares at the ask.

• Autocorrelation of price increments. Empirically, price mean reverts at a tick-by-tick time scale.
We will see how to link this price mean reversion with parameters from the order flow. We will
notice that this price mean reversion is closely linked to the skewness of the queue sizes (qb, qa)
after a price move.

• Price volatility. The main achievement of this thesis is to relate price volatility with statistics of
the order flow. We will give explicit expression for the volatility under very general assumptions
and link price volatility with order flow statistics.

• Drift of the price. If the order flow is not completely symmetric at the bid and at the ask,
the price drifts in one direction. We will express the price drift as a function of order flow
parameters.
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Comparison between our model and other microstructure models

Given the important number of market microstructure models reviewed in section 1.3, it is good
to sum up the assumptions shared by these models (cf. table 1.2).

Assumptions/ Constant spread Constant Existence of Specialist driven Agent-based
Models order sizes an efficient price market model
Roll × × ×
Glosten and Milgrom × × × ×
Kyle × × ×
Rosu × × × ×
Model proposed in this thesis ×

Table 1.2: Assumptions made for each microstructure model

The approach developed in this thesis does not assume the existence of an unobservable efficient
price, around which market prices would oscillate as it is for the Roll model. Neither do we split the
trading population in various categories (e.g. patient buyers, informed traders, noise sellers, etc..).
The properties of the price process (drift, volatility, distributions of marginals for instance) result
directly from statistical properties of the order flow. Market participants - investors, market makers
and arbitragers - generate a complex order flow that can lead to several regimes of the price process:

• When the order flow is symmetric at the bid and at the ask, we show that the daily behavior of
the price is a driftless Brownian motion.

• When the order flow is asymmetric at the ask and at the bid, we prove that the price behavior
is a Brownian motion with drift. We provide analytical expressions for both the drift and the
volatility.

• A market crash can occur when the order of magnitude of buy orders is not comparable to the
order of magnitude of sell orders. The distribution of price jumps may be linked to properties
of the order flow.

Despite the weak number of assumptions (cf table 1.3), the framework described in this document
allows to explain more stylized facts than most market microstructure models.

Stylized facts/ Negative autocorrelation Link between trading Distribution Explicit expression
Models of price increments intensity and volatility of price duration of pup

Roll ×
Glosten and Milgrom
Kyle × ×
Rosu (2009) ×
Model from this thesis × × × ×

Table 1.3: Stylized facts captured by each microstructure model

Where pup is the probability that the price increases conditioned on the state of the limit order
book. Analytical results given in this thesis are always expressed with observable quantity of the order
flow (such as the average duration between order sizes or the variance of order sizes). It is not always
the case for classical microstructure models which assume the existence of fixed proportions of agents
that can not be easily estimated with market data.



CHAPTER 1. INTRODUCTION 29

On the other hand, the results obtained in this thesis may be applied to agent based models when
the description of the agents is clear enough to fully characterize of the order flow. In Section 3.4 we
give the example of a market with three agents that use limit and market orders in different ways: one
market maker uses only limit orders and two agents use both market and limit orders. We provide a
complete description of the price process, from the tick-by-tick price evolution to the daily dynamics
of the price and we link the standard deviation of price increments with the proportion of each agent
interacting in this market.
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1.4.2 Heavy traffic approximations

For a general order flow, the dynamics of the limit order book (qbt , q
a
t )t≥0 is complex and non-

Markovian. The idea, to transform the process (qbt , q
a
t ) into a tractable Markov process, consists

in regrouping orders pack by pack and scale order sizes. When the size of these scaled batches of
orders goes to infinity, we will prove in chapter 3 that the limit order book converges in distribu-
tion to a Markov process (Qb, Qa) whose generator can be related to order flow statistics. The limit
process (Qb, Qa) is called the Heavy traffic approximation of (qb, qa). Heavy traffic approximations
of non-Markovian stochastic processes have been widely studied in queueing theory for more than
twenty years with applications in various domain of the industry such as call center optimization, bus
scheduling or hospital appointment bookings. The mathematical tool behind these approximations
is the functional central limit theorem. A functional central limit theorem is a central limit theo-
rem applied at a sequence of stochastic processes. In this thesis we assume that the convergence of
stochastic processes holds on the Skorokhod space D with the J1 or the M1 topology. A complete
review of the J1 and M1 topologies can be found in Whitt (2002). Heavy traffic approximation of
queuing networks have been widely studied (Iglehart and Whitt (1970), Harrisson (1973), Harrisson
(1978), Reiman (1977), Dai and Nguyen (1994), Bramson and Dai (2001)).

Let n be the average number of orders coming at the bid or ar the ask per period of 10 seconds.
We notice on table 1.4 that this number is very large. If one observes the limit order book every 10
seconds, the impact of one order is negligible. At this time scale, the order book has a much smoother
behavior. The limit order book diffuses.

Average no. of
orders in 10s

Citigroup 4469
General Electric 2356
General Motors 1275

Table 1.4: Average number of orders in 10 seconds (June 26th, 2008).

Denote (V b
i , i ≥ 1) (resp. (V a

i , i ≥ 1)) the signed number of shares of the i-th orders. For all
i ≥ 1, V b

i < 0 (resp. V a
i < 0) if the i-th order arriving at the bid side (resp. ask side) is either a

market order or a cancelation. On the other hand, V b
i > 0 (resp. V a

i > 0) if the i-th order arriving
at the bid side (resp. ask side) is a limit order. A suitable rescaling is a function φ = (φn, n ≥ 1)
with the property that the following sequence of cumulated order sizes converges in distribution to a
non-degenerate random variable (U, V ), when properly scaled by (φn, n ≥ 1):

(
V b
1 + V b

2 , ...., V
b
n

φn
,
V a
1 + V a

2 , ...., V
a
n

φn

)

⇒D (U, V ) (1.12)

Fluid limit of the limit order book
When market orders and cancelations dominate limit orders, bid and ask queue sizes have a

negative drift,

E[V a
i ] < 0, and E[V b

i ] < 0.

Therefore, when (V b
i , V

a
i )i≥1 is a stationary, ergodic sequence of random variables, the law of large

numbers holds:

(
V b
1 + ...+ V b

n

n
,
V a
1 + ...+ V a

n

n

)

⇒ (E[V b
i ],E[V

a
i ]).
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One can prove, under minor assumptions, that the following sequence of processes converges in
law to a Markov process Q̃ = (Q̃b, Q̃a) on the Skorokhod space (D, J1):

(
qb[nt]

n
,
qa[nt]

n

)

n≥1

⇒ (Q̃b
t , Q̃

a
t ) as n→ ∞ on (D, J1). (1.13)

When n >> 1, the Heavy traffic approximation consists in approximating the dynamics of the
limit order book process (qbt , q

a
t )t≥0 by the Markov process (Q̃b

t , Q̃
a
t )t≥0.

Diffusion limit of the limit order book
On the other hand, when the average flow of limit orders equals the average flow of market orders

and cancelations,

E[V a
i ] = 0, and E[V b

i ] = 0.

When (V a
i , V

b
i )i≥1 is a stationary, weakly dependent (α mixing for instance) sequence of random

variables with finite second moment, the central limit theorem yields:

(
V b
1 + ...+ V b

n√
n

,
V a
1 + ...+ V a

n√
n

)

⇒ N (0,Σ),

where N (0,Σ) is a centered Gaussian random variable whose covariance matrix can be expressed
with the moments of the sequence of order sizes (V a

i , V
b
i )i≥1.

The functional central limit version of this limit theorem states, under some minor assumptions
on the sequence of durations and the distribution of queue sizes after a price move, that the following
sequence of processes converges to a Markov process (Qb, Qa):

(
qb[nt]√
n
,
qa[nt]√
n
, t ≥ 0

)

n≥1

⇒ (Qb
t , Q

a
t )t≥0 as n→ ∞ on (D, J1). (1.14)

This process (Qb, Qa) is called the heavy traffic approximation of (qb, qa).

Fluid limit or diffusive limit ?
Properties of the order flow change with n. Trading intensity influences statistical properties of

the order flow. This is why one needs to consider a sequence of order books qn = (qn,b, qn,a) deriving

from a sequence of order flows given by (V n,b
i , V n,a

i , Tn,b
i , Tn,a

i )i≥1. If one assumes that the inter-event
durations are finite (or asymptotically finite), the impact, on the net order flow, of a batch of n events
at the ask is given by:

V n,a
1 + V n,a

2 + V n,a
3 + ...+ V n,a

n√
n

=
(V n,a

1 − V n,a) + (V n,a
2 − V n,a) + ...+ (V n,a

n − V n,a)√
n

+
√
nV n,a,

where V n,a = E[V n,a
1 ]. Under appropriate assumptions, this sum behaves approximately as a Gaussian

random variable for large n:

V n,a
1 + V n,a

2 + V n,a
3 + ...+ V n,a

n√
n

∼ N (
√
nV n,a,

√

Var(V n,a
1 )) as n→ ∞. (1.15)

Two regimes are possible, depending on the behavior of the ratio
√
n V n,a√

Var(V n,a
1 )

as n grows:

• If
√
n V n,a√

Var(V n,a
1 )

→ ∞ as n → ∞, the correct approximation is given by the fluid limit, which is

deterministic.
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• If limn→∞
√
nV n,a√

Var(V n,a
1 )

<∞, the rescaled queue sizes behave like a diffusion process.

The fluid limit corresponds to the regime of law of large numbers, where random fluctuations average
out and the limit is described by average queue size, whereas the diffusion limit corresponds to the
regime of the (functional) central limit theorem, where fluctuations in queue size are asymptotically
Gaussian.

Figure 1.15 displays the histogram of the ratio
√
nV n,a√

Var(V n,a
1 )

for stocks in the Dow Jones index, where

n is chosen to represent the average number of order book events in a 10 second interval (typically
n ∼ 100 − 1000). This ratio is shown to be rather small at such intraday time scales, showing that
the diffusion approximation, rather than the fluid limit, is the relevant approximation to use here.

Figure 1.15: Empirical distribution of the ratio
√
nV n,a√

Var(V n,a
1 )

of stocks in the Dow-Jones index during

June 08. Left: bid side. Right: ask side.

Indeed, the queue sizes (qbt , q
a
t ) exhibit a diffusion-type behavior at such intraday time scales:

Figure 1.16 shows the path of the cumulative order process

xt = (qb0, q
a
0 ) +





Nb
t∑

i=1

V b
i ,

Na
t∑

i=1

V a
i



 (1.16)

sampled every second for CitiGroup stock on a typical trading day, where N b
t (resp Na

t ) are processes
counting the number of events occurring at the bid (resp. ask). For this example the average time
between consecutive orders is λ−1 ≃ 13ms ≪ 1sec (therefore n >> 1). We observe that the process
x behaves like a diffusion in the orthant with negative drift.

We will now show that this is a general result: under mild assumptions on the order flow process
we will show that the (rescaled) for a sequence of order books qn = (qn,b, qn,a), whose statistical
properties depend on n, the queue sizes process

(Qn
t )t≥0 := (

qn,bnt√
n
,
qn,ant√
n
)t≥0 (1.17)

converges in distribution to a Markov process (Qt)t≥0 in the positive orthant, whose features will be
described in terms of the statistical properties of the order flow.
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Figure 1.16: Evolution of the net order flow xt = (xbt , x
a
t ) given in equation (1.16) for CitiGroup shares

over one trading day (June 26, 2008).
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1.4.3 Chapter 2: A markovian limit order book

Chapter 2 is dedicated to the study of a Markovian model where all the above quantities may be studied
analytically. When orders arrive according to independent Poisson processes, and order sizes are
constant, the limit order book becomes a Markov process in the orthant R2

+. Under these assumptions,
it is possible to compute explicitly several useful quantities. We prove in proposition 2.2 that the
probability of price increase conditioned on observing n shares at the ask and p shares at the bid is
given by pup1 (n, p) where:

∀(n, p) ∈ N2, pup1 (n, p) =
1

π

∫ π

0

(2− cos(t)−
√

(2− cos(t))2 − 1)p
sin(nt) cos( t2 )

sin( t2 )
dt. (1.18)

Despite the simplicity of the assumptions, we will see that this equation provides good fit on
empirical data. In section 2.3.1 we compute the distribution τ of price durations:

P[τ > t|qb0 = x, qa0 = y] =

√

(
µ+ θ

λ
)x+yψx,λ,θ+µ(t)ψy,λ,θ+µ(t) (1.19)

where ψn,λ,θ+µ(t) =

∫ ∞

t

n

u
In(2

√

λ(θ + µ)u)e−u(λ+θ+µ)du (1.20)

and In is the modified Bessel function of the first kind.
We establish, in section 2.3.1, that the tail index of price durations is equal to one if the intensity

of limit orders equals the intensity of market orders and cancelations. On the other hand, if market
orders and cancelation dominate, the tail index of price durations equals two.

Empirically, the price has a mean-reverting behavior at high frequency. Denote (X1, ..., Xn) the
sequence of price increments. In section 2.3.4 we define pcont the probability to have two consecutive
moves in the same direction:

pcont = P[X2 = δ|X1 = δ],

where δ is the tick size. We prove that the parameter pcont, can be expressed with the function f :

pcont =

∞∑

i=1

∞∑

j=1

f(i, j)pup1 (i, j),

where pup1 is the function given in equation (1.18). The price dynamics follows a random walk if and
only if pcont = 1/2 which is obtained when

∀(i, j) ∈ N2, f(i, j) = f(j, i).

Eventually, we give a functional central limit theorem for the price process (st, t ≥ 0). When the
intensity of limit orders λ equals the intensity of market orders and cancelations we show in theorem
2.1 the following functional central limit theorem:

(
s[tn logn]√

n
, t ≥ 0

)

n≥1

⇒ δ

√

πλ

D(f)
(Wt, t ≥ 0) as n→ ∞, (1.21)

where the convergence is on the Skorokhod space (D, J1). W is a standard Brownian motion and

√

D(f) =

√
√
√
√

∞∑

i=1

∞∑

j=1

ijf(i, j) (1.22)
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is a measure of the average depth of bid and ask queues.
Equation (1.22) provides a very intuitive expression of price volatility. The variance of intraday

price changes in a ’balanced’ limit order market is given by the following simple relation:

σ2
p =

πδ2λ

D(f)
(1.23)

where δ is the ’tick size’, λ is the intensity of order arrivals and D(f) is a measure of market depth.
These analytical results provide insights into the relation between order flow and price dynamics in
order-driven markets.

Otherwise, when market orders and cancelations dominate limit orders, we prove in section 2.4.3
the functional central limit theorem:

(
s[tn]√
n
, t ≥ 0

)

n≥1

n→∞⇒ 1
√

E[τ ]
(Wt, t ≥ 0), (1.24)

where E[τ ] is the average time between two consecutive price move.

1.4.4 Chapter 3: Heavy traffic limit of the limit order book

Chapter 3 is devoted to the heavy traffic approximation of the limit order book (qbt , q
a
t ). We prove a

functional central limit theorem for the joint dynamics of the bid and ask queues when the intensity
of orders becomes large, and use it to derive an analytically tractable jump-diffusion approximation
for the intraday dynamics of the limit order book. Using empirical examples, we show that the
assumptions behind our derivation are plausible for liquid US stocks and that the predictions of the
model are validated by intraday data in such markets.

Let qn = (qn,b, qn,a, n ≥ 1) a sequence of order books, whose statistical properties depend on n
and satisfy;

Assumption 1.1. There exist λa > 0 and λb > 0 such that

lim
n→∞

Tn,a
1 + Tn,a

2 + ...+ Tn,a
n

n
=

1

λa
<∞, lim

n→∞
Tn,b
1 + Tn,b

2 + ...+ Tn,b
n

n
=

1

λb
<∞.

Assumption 1.2. For all n ≥ 1, the sequence (V n,a
i , V n,b

i )i≥1 is a stationary, uniformly mixing
(Billingsley 1968, Ch. 4) sequence satisfying

√
nE[V a,n

1 ]
n→∞→ V a,

√
nE[V b,n

1 ]
n→∞→ V b, and

lim
n→∞

E[(V n,a
1 − E[V n,a

1 ])2] + 2

∞∑

i=2

Cov(V n,a
1 , V n,a

i ) = v2a <∞,

lim
n→∞

E[(V n,b
1 − E[V n,b

1 ])2] + 2

∞∑

i=2

Cov(V n,b
1 , V n,b

i ) = v2b <∞.

The following is a scaling assumption which basically states that, when grouping orders in batches
of n orders, only batches whose size is O(

√
n) will have a non-negligible impact on the queue dynamics

for large n:

Assumption 1.3. There exist probability distributions F and F̃ on R2
+ such that

∀(x, y) ∈ R2
+, nfn(x

√
n, y

√
n)

n→∞⇒ F (x, y) and nf̃n(x
√
n, y

√
n)

n→∞⇒ F̃ (x, y).

On also assumes that the distributions F and F̃ have no mass on the axis.
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Under assumptions 1.1, 1.2 and 1.3, we show in theorem 3.2 the following functional central
theorem:

(
qnnt√
n
, t ≥ 0

)

n→∞⇒ (Qt, t ≥ 0) on (D, J1),

where the heavy traffic approximation (Qb, Qa) of the order book (qb, qa) is the unique Markov
process on the state space R+ × R+ with infinitesimal generator G given by:

Gh(x, y) = λaV a
∂h

∂x
+ λbV b

∂h

∂y
+
λav2a
2

∂2h

∂x2
+
λbv2b
2

∂2h

∂y2
+ ρ

√
λaλbvavb

∂2h

∂x∂y
, (1.25)

whose domain is the set dom(G) of functions h ∈ C2(]0,∞[×]0,∞[,R) ∩ C0(R2
+,R) verifying the

“reflection conditions”

h(x, 0) =

∫

R2
+

h(g((x, 0), (u, v)))F (du, dv), h(0, y) =

∫

R2
+

h(g((0, y), (u, v)))F̃ (du, dv).

The function g appearing in the generator above characterizes the dependence between the state of
the order book before and after a price move.

We provide in section 3.5.2 an analytical expression of this distribution τ between consecutive
price moves:

P[τ > t|Qb
0 = x,Qq

0 = y] =
2r0√
2πt

e
−
r20
4t

∞∑

n=0

1

(2n+ 1)
sin

(2n+ 1)πθ0
α

(I(νn−1)/2(r
2
0/4t)+I(νn+1)/2(r

2
0/4t)).

The probability of price increase pup(x, y), conditioned on observing x shares at the ask and y
shares at the bid is computed in section 3.5.3:

pup(x, y) =
1

2
−

arctan(
√

1+ρ
1−ρ

y−x
y+x )

2 arctan(
√

1+ρ
1−ρ )

. (1.26)

We prove in section 3.5, the continuity of the price process as the trading intensity goes to infinity.
For all n ≥ 1, one defines (Sn

t , t ≥ 0) (resp. (St, t ≥ 0)) the piecewise constant stochastic process
which increases by one tick when the process Qn (resp. Q) is replaced according to Rn

k for some k

(resp. Rk) and decreases by one tick when Qn (resp. Q) replaced according to R̃n
k for some k (resp.

R̃k). We will see that
Sn ⇒ S on (D, J1).

1.4.5 Chapter 4: Linking volatility and order flow

This chapter is devoted to the understanding of the price process S = (St, t ≥ 0). Through the analyt-
ical tractability of the Markov process (Qb, Qa), our model allows to obtain analytical expressions for
various quantities of interest such as an explicit expression of the autocorrelation of consecutive price
increments, the low-frequency dynamics of the price and the expression of the drift and the volatility
of the price. In this chapter we extend the relation low frequency price volatility and microstructure
parameters to a general order flow.

We show in section 4.2.1 that the sequence of consecutive price increments (X1, X2, ..., Xn) of the
price process (St, t ≥ 0) follows a homogenous Markov chain with parameters p+ and p−:

p+ = P[X2 = δ|X1 = δ] and p− = P[X2 = −δ|X1 = −δ],
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which are linked, in theorem 4.1, to the autocorrelation between consecutive price increments:

Corr(X1, X2) = p+ + p− − 1. (1.27)

In the same theorem 4.1, it is also proven that for all n ≥ 2, the probability pupn (x, y) that the n-th
price move is an increase, conditioned on observing x-shares at the bid and y shares at the ask, may
be expressed with the parameters p+, p− and pup1 (x, y) by:

∀(x, y) ∈ R2
+, pupn (x, y) =

1− p−
2− p+ − p−

(1− (p+ + p− − 1)n−1) + (p+ + p− − 1)n−1pup1 (x, y).

We propose in section 4.2.2 a parametric model for the density f (resp f̃) of the distribution F
(resp. F̃ ), of order book size (Qb, Qa) after a price increase (resp. decrease):

f(r, θ) = c2e−crα(
2

π
)αθα−1 and f̃(r, θ) = c̃2e−c̃rα̃(

2

π
)α̃θα̃−1, (1.28)

where α (resp. α̃ are parameters characterizing the bid-ask imbalance after a price increase (resp.
decrease), and 1/c (resp 1/c̃) measures the average depth of the order book after a price increase
(resp. decrease). The parameter α (resp. α̃), characterizing the skewness of the angular part of the
distribution F (resp. F̃ ), are linked, in section 4.2.3, to the probabilities of ’continuation’ p+ and p−.

For a general order flow, it is proven in theorems 4.2, 4.3 and 4.4 that over time scales γ2 much
larger than the interval between order book events, prices have diffusive behaviors and are modeled
as such. At low frequencies, the price behaves like a Brownian motion with drift.

When the order flow is symmetric at the bid/ask, p+ = p− := pcont, we prove in theorem 4.2 the
following functional central limit theorem for the price process:

(
s[nt]√
n
, t ≥ 0

)

⇒ 1
√

r1(F )

√
pcont

1− pcont
(1.29)

where r1(F ) is the average time between two consecutive price move.
On the other hand, when the order flow is not symmetric at the bid/ask, p+ 6= p− we show in

theorem 4.3 that the price can have both a drift and a volatility. Let γ0 be the average durations
between two consecutive orders and γ2 >> γ0 a macroscopic time scale (e.g. daily time scale). At
the time scale γ2 we prove in theorem 4.3 and 4.4 that the price process (Pt, t ≥ 0) behaves like a
Brownian motion with drift:

Pt =
γ2
γ0
δtdp +

√
γ2
γ0
δσpBt,

where δ is the tick size, (Bt, t ≥ 0) is a standard Brownian motion, the drift of the price dp is:

dp =

1

1− p+
− 1

1− p−

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

. (1.30)

The price volatility σp is:

σ2
p =

p+(1 + p+)

(1− p+)2
+
p−(1 + p−)

(1− p−)2
− 2

p+

1− p−
p−

1− p−

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

. (1.31)
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On equations (4.8) and (4.9), r1(F ) (resp. r1(F̃ )) is the average durations until the price moves
after a price increase (resp. price decrease).

Eventually, in section 4.4, we link these parameters p+, p−, r1(F ) and r1(F̃ ) with the order flow
and derive expressions of price volatility as a function of order flow statistics for several examples

The parameters of the the heavy traffic approximation of the order book (qb, qa) depend on prop-
erties of the order flow such as the symmetry between the bid and at the ask, the correlation between
bid and ask queue sizes or the average order size. When the average order size is of order of magnitude
O(1/

√
n), the diffusive limit of the order book is the proper rescaling whereas when the average order

size is of order of magnitude O(1) -for instance when marker orders and cancelations dominate limit
orders- the heavy traffic limit of the order book is the fluid limit.

In section 4.4 we study several regimes of the order book and we link the price volatility with
parameters of the order flow for all these regimes. Table 1.5 points to the sections where these
regimes are studied.

Asymptotic regime of (qb, qa) Bid/Ask symmetry Bid/Ask correlation Section
Fluid limit symmetry no correlation Section 4.4.1
Diffusive limit symmetry no correlation section 4.4.2
Diffusive limit symmetry negative correlation section 4.4.2
Fluid limit asymmetry section 4.4.3

Table 1.5: Different regimes of order book and the sections where these order books are studied.

For instance, when the drift of the order book dominates over its volatility, under the assumption
that the order flows are symmetric at the bid and at the ask and when F (resp. F̃ ) are given by
equation (4.6), price volatility becomes:

σ2
p = δ2

(π/2)α

(2α − 1)
∫ π/4

0
sin(θ)θα−1dθ +

∫ π/2

π/4
cos(θ)θα−1dθ

︸ ︷︷ ︸

Bid−Ask asymetry

Order book depth
︷︸︸︷
c

2
(µ− λ)
︸ ︷︷ ︸

Trading intensity

,

where δ is the tick size and α, c, λ, µ are parameters of the order flow.
On the other hand, when the order book dynamics (Qb, Qa) is a symmetric driftless Brownian

motion, and when the density f of the distribution F follows a polar decomposition f(r, θ) = h(r)g(θ),
one can decompose price volatility as:

σ2
p = δ2

︸︷︷︸

tick

variance of order sizes/unit time
︷︸︸︷

λav2a
∫ ∞

0

h(r)r3dr

︸ ︷︷ ︸

Order book depth

∫ π/2

0
g(θ)Γ(θ)dθ

pcont
1− pcont
︸ ︷︷ ︸

mean reversion

, (1.32)

where δ is the tick size, λa the trading intensity, v2a the variance of order sizes, pcont the continuation
probability (pcont = p+ = p− for this specific symmetric order book), ρ is the correlation between bid
and ask queue dynamics, and Γ(ρ, θ) a function of bid-ask imbalance θ and the parameter ρ.

Equation (1.32) generalizes formula (1.23) and links low-frequency price volatility with parameters
of the order flow for a general order book. Several components affect price volatility:
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• The variance of order sizes v2aλ
a

• The skewness of the order book after a price move through the parameter pcont.

• The correlation between the order flow arriving at the ask and the order flow arriving at the
bid.

• The depth of the order book
∫∞
0
h(r)r3dr.

Formula (1.32) gives some insights on the factors that influence price volatility. For instance,
when the intensity of all orders coming in the limit order book is multiplied by the same factor x, the
intensity of orders becomes λax, the limit order book depth is multiplied by a factor x2, and all other

parameters are unchanged. So price volatility σp decreases by a factor
√

1
x .

Interestingly, Rosu (2009) shows the same dependence in 1/
√
x of price volatility using an equilib-

rium approach. We show through equation (1.32), that this relation between order arrival intensity
and price volatility holds under much more general assumptions, and may be derived without behav-
ioral assumptions for market participants.



Chapter 2

Price dynamics in a Markovian

limit order market

2.1 Introduction

An increasing number of stocks are traded in electronic, order-driven markets, in which orders to buy
and sell are centralized in a limit order book available to market participants and market orders are
executed against the best available offers in the limit order book. The dynamics of prices in such
markets are not only interesting from the viewpoint of market participants –for trading and order
execution (Alfonsi et al. (2010), Predoiu et al. (2011))– but also from a fundamental perspective,
since they provide a rare glimpse into the dynamics of supply and demand and their role in price
formation (Cont 2011).

Equilibrium models of price formation in limit order markets (Parlour (1998), Rosu (2009)) have
shown that the evolution of the price in such markets is rather complex and depends on the state of
the order book. On the other hand, empirical studies on limit order books (Bouchaud et al. (2008),
Farmer et al. (2004), Gourieroux et al. (1999), Hollifield et al. (2004), Smith et al. (2003)) provide an
extensive list of statistical features of order book dynamics that are challenging to incorporate in a
single model. While most of these studies have focused on unconditional/steady–state distributions of
various features of the order book, empirical studies ( Harris and Panchapagesan (2005), Cont et al.
(2010a)) show that the state of the order book contains information on short-term price movements
so it is of interest to provide forecasts of various quantities conditional on the state of the order
book. Providing analytically tractable models which enable to compute and/or reproduce conditional
quantities which are relevant for trading and intraday risk management has proven to be challenging,
given the complex relation between order book dynamics and price behavior.

The search for tractable models of limit order markets has led to the development of stochastic
models which aim to retain the main statistical features of limit order books while remaining compu-
tationally manageable. Stochastic models also serve to illustrate how far one can go in reproducing
the dynamic properties of a limit order book without resorting to detailed behavioral assumptions
about market participants or introducing unobservable parameters describing agent preferences, as in
more detailed market microstructure models.

Starting from a description of order arrivals and cancelations as point processes, the dynamics of
a limit order book is naturally described in the language of queueing theory (Cont 2011). Engle and
Lunde (2003) model trade and quote arrivals as a bivariate point process. Cont et al. (2010b) model
the dynamics of a limit order book as a tractable multiclass queueing system and compute various
transition probabilities of the price conditional on the state of the order book, using Laplace transform
methods.

40
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2.1.1 Summary

We propose a Markovian model of a limit order market, which captures some salient features of the
dynamics of market orders and limit orders and their influence on price dynamics, yet is even simpler
than the model of Cont et al. (2010b) and enables a wide range of properties of the price process to
be computed analytically.

Our approach is motivated by the observation that, if one is primarily interested in the dynamics of
the price, it is sufficient to focus on the dynamics of the (best) bid and ask queues. Indeed, empirical
evidence shows that most of the order flow is directed at the best bid and ask prices (Biais et al.
(1995)) and the imbalance between the order flow at the bid and at the ask appears to be the main
driver of price changes (Cont et al. (2010a)).

Motivated by this remark, we propose a parsimonious model in which the limit order book is
represented by the number of limit orders (qbt , q

a
t ) sitting at the bid and the ask, represented as a

system of two interacting queues. The remaining levels of the order book are treated as a ‘reservoir’ of
limit orders represented by the distribution of the size of the queues at the ’next-to-best’ price levels.

Through its analytical tractability, the Markovian version of our model allows to obtain analytical
expressions for various quantities of interest such as the distribution of the duration until the next price
change, the distribution and autocorrelation of price changes, and the probability of an upward move
in the price, conditional on the state of the order book. Compared with econometric models of high
frequency data Engle and Russell (1998), Engle and Lunde (2003) where the link between durations
and price changes is specified exogenously, our model links these quantities in an endogenous manner,
and provides a first step towards joint ’structural’ modeling of high frequency dynamics of prices and
order flow.

A second important observation is that order arrivals and cancelations are very frequent and occur
at millisecond time scale, whereas, in many applications such as order execution, the metric of success
is the volume-weighted average price (VWAP) so one is interested in the dynamics of order flow over
a large time scale, typically tens of seconds or minutes. As shown in Table 3.2, thousands of order
book events may occur over such time scales. This observation enables us to use asymptotic methods
to study the link between price volatility and order flow in this model by studying the diffusion limit
of the price process. In particular, we prove a functional central limit theorem for the price process
and express the volatility of price changes in terms of parameters describing the arrival rates of buy
and sell orders and cancelations. For example, we show (Theorem 2.1) that the variance of intraday
price changes in a ’balanced’ limit order market is given by the following simple relation:

σ2 =
πδ2λ

D(f)

where δ is the ’tick size’, λ is the intensity of order arrivals and D(f) is a measure of market depth.
These analytical results provide insights into the relation between order flow and price dynamics in
order-driven markets. Comparison of these results with empirical data validates the main insights of
the model.

Average no. of Price changes
orders in 10s in 1 day

Citigroup 4469 12499
General Electric 2356 7862
General Motors 1275 9016

Table 2.1: Average number of orders in 10 seconds and number of price changes (June 26th, 2008).
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2.1.2 Outline

The chapter is organized as follows. Section 2.2 introduces a reduced-form representation of a limit
order book and presents a Markovian model in which limit orders, market orders and cancelations
occur according to Poisson processes. Section 2.3 presents various analytical results for this model:
we compute the distribution of the duration until the next price change (section 2.3.1), the probability
of upward move in the price (section 2.3.2) and the dynamics of the price (section 2.3.4). In Section
2.4, we show that the price exhibits diffusive behavior at longer time scales and express the variance
of price changes in terms of the parameters describing the order flow, thus establishing a link between
volatility and order flow statistics.

2.2 A Markov model of limit order book dynamics

2.2.1 A stylized representation of a limit order book

Empirical studies of limit order markets suggest that the major component of the order flow occurs
at the (best) bid and ask price levels (see e.g. Biais et al. (1995)). All electronic trading venues also
allow to place limit orders pegged to the best available price (National Best Bid Offer, or NBBO);
market makers used these pegged orders to liquidate their inventories. Furthermore, studies on the
price impact of order book events show that the net effect of orders on the bid and ask queue sizes is
the main factor driving price variations (Cont et al. (2010a)). These observations, together with the
fact that queue sizes at the best bid and ask of the consolidated order book are more easily obtainable
(from records on trades and quotes) than information on deeper levels of the order book, motivate a
reduced-form modeling approach in which we represent the state of the limit order book by

• the bid price sbt and the ask price sat

• the size of the bid queue qbt representing the outstanding limit buy orders at the bid, and

• the size of the ask queue qat representing the outstanding limit sell orders at the ask

Figure 1 summarizes this representation.
If the stock is traded in several venues, the quantities qb and qa represent the best bids and offers

in the consolidated order book, obtained by aggregating over all (visible) trading venues. At every
time t, qbt (resp. qat ) corresponds to all visible orders available at the bid price sbt (resp. sat ) across all
exchanges.

The state of the order book is modified by order book events: limit orders (at the bid or ask),
market orders and cancelations (see Cont et al. (2010b,a), Smith et al. (2003)). A limit buy (resp.
sell) order of size x increases the size of the bid (resp. ask) queue by x, while a market buy (resp. sell)
order decreases the corresponding queue size by x. Cancelation of x orders in a given queue reduces
the queue size by x. Given that we are interested in the queue sizes at the best bid/ask levels, market
orders and cancelations have the same effect on the queue sizes (qbt , q

a
t ).

The bid and ask prices are multiples of the tick size δ. When either the bid or ask queue is depleted
by market orders and cancelations, the price moves up or down to the next level of the order book.
The price processes sbt , s

a
t is thus a piecewise constant process whose transitions correspond to hitting

times of the axes {(0, y), y ∈ N} ∪ {(x, 0), x ∈ N} by the process qt = (qbt , q
a
t ).

If the order book contains no ‘gaps’ (empty levels), these price increments are equal to one tick:

• when the bid queue is depleted, the (bid) price decreases by one tick.

• when the ask queue is depleted, the (ask) price increases by one tick.

If there are gaps in the order book, this results in ’jumps’ (i.e. variations of more than one tick) in
the price dynamics. We will ignore this feature in what follows but it is not hard to generalize our
results to include it.
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qa

qb

δ

Quantities

sb

Price

sa

Figure 2.1: Simplified representation of a limit order book.

The quantity sat − sbt is the bid-ask spread, which may be one or several ticks. As shown in Table
2.2.1, for liquid stocks the bid-ask spread is equal to one tick for more than 98% of observations.

Bid-ask spread 1 tick 2 tick ≥ 3 tick
Citigroup 98.82 1.18 0
General Electric 98.80 1.18 0.02
General Motors 98.71 1.15 0.14

Table 2.2: Percentage of observation with a given bid-ask spread (June 26th, 2008).

When either the bid or ask queue is depleted, the bid-ask spread widens immediately to more than
one tick. Once the spread has increased, a flow of limit sell (resp. buy) orders quickly fills the gap
and the spread reduces again to one tick. When a limit order is placed inside the spread, all the limit
orders pegged to the NBBO price move in less than a millisecond to the price level corresponding
to this new order. Once this happens, both the bid price and the ask price have increased (resp.
decreased) by one tick.

The histograms in Figure 2.2 show that this ’closing’ of the spread takes place very quickly: as
shown in Figure 2.2 (left) the lifetime of a spread larger than one tick is of the order of a couple of
milliseconds, which is negligible compared to the lifetime of a spread equal to one tick (Figure 2.2,
right). In our model we assume that the second step occurs infinitely fast: once the bid-ask spread
widens, it returns immediately to one tick. For the example of Dow Jones stocks (Figure 2.2), this is
a reasonable assumption since the widening of the spread lasts only a few milliseconds. This simply
means that we are not trying to describe/model how the orders flow inside the bid-ask spread at the
millisecond time scale and, when we describe the state of the order book after a price change we have
in mind the state of the order book after the bid-ask spread has returned to one tick.

Under this assumption, each time one of the queues is depleted, both the bid queue and the ask
queues move to a new position and the bid-ask spread remains equal to one tick after the price change.
Thus, under our assumptions the bid-ask spread is equal to one tick, i.e. sat = sbt + δ, resulting in a
further reduction of dimension in the model.

Once either the bid or the ask queue are depleted, the bid and ask queues assume new values.
Instead of keeping track of arrival, cancelation and execution of orders at all price levels (as in Cont
et al. (2010b), Smith et al. (2003)), we treat the queue sizes after a price change as stationary variables
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Figure 2.2: Left: Histogram of average lifetime, in milliseconds of a spread larger than one tick for
Dow Jones stocks in June 2008. Right: Histogram of average lifetime, in milliseconds of a spread
equal to one tick.

drawn from a certain distribution f on N2 which represents, in a statistical sense, the depth of the
order book after a price change: f(x, y) represents the probability of observing (qbt , q

a
t ) = (x, y) right

after a price increase. Similarly, we denote f̃(x, y) the probability of observing (qbt , q
a
t ) = (x, y) right

after a price decrease. More precisely, denoting by Ft the history of prices and order book events on
[0, t],

• if qat− = 0 then (qbt , q
a
t ) is a random variable with distribution f , independent from Ft−.

• if qbt− = 0 then (qbt , q
a
t ) is a random variable with distribution f̃ , independent from Ft−.

The distributions f and f̃ summarize the interaction of the queues at the best bid/ask levels with
the rest of the order book, viewed here as a ’reservoir’ of limit orders. Figure 2.3 shows the (joint)
empirical distribution of bid and ask queue sizes after a price move for Citigroup stock on June 26th
2008.

In summary, state of the limit order book is thus described by a continuous-time process Xt =
(sbt , q

b
t , q

a
t ) which takes values in the discrete state space δZ × N2, with piecewise constant sample

paths whose transitions correspond to the order book events. Denote by (T a
i , i ≥ 1) (resp. T b

i ) the
durations between two consecutive orders arriving at the ask (resp. the bid) and V a

i (resp. V b
i ) the

size of the associated change in queue size: V a
i > 0 for a limit order at the ask (resp. V b

i > 0 for a
limit order at the bid), while market orders and cancellations correspond to negative values (and a
decrease in queue size) of V a

i (resp. V b
i ). The above assumptions translate into the following dynamics

for Xt = (sbt , q
b
t , q

a
t ):

• If an order or cancelation arrives on the ask side at time T :

(sbT , q
b
T , q

a
T ) = (sbT−, q

b
T−, q

a
T− + V a

i )1{qaT−
+V a

i >0} + (sbT− + δ,Rb
i , R

a
i )1{qaT−

+V a
i ≤0},

• If an order or cancelation arrives on the bid side i.e. T ∈ {T b
i , i ≥ 1}:

(sbT , q
b
T , q

a
T ) = (sbT−, q

b
T− + V b

i , q
a
T−)1{qbT−

+V b
i >0} + (sbT− − δ, R̃b

i , R̃
a
i )1{qbT−

+V b
i ≤0},

and (Ri)i≥1 = (Rb
i , R

a
i )i≥1 is a sequence of IID variables with (joint) distribution f , and

(R̃i)i≥1 = (R̃b
i , R̃

a
i )i≥1 is a sequence of IID variables with (joint) distribution f̃ .
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2.2.2 A Markovian model for order book dynamics

To give a complete statistical description of the dynamics of the limit order book, we need to describe
the distributional properties of the sequences T a

i , T
b
i , V

a
i , V

b
i describing the timing and size of order

book events.
We assume that these events occur according to independent Poisson processes:

• Market buy (resp. sell) orders arrive at independent, exponential times with rate µ,

• Limit buy (resp. sell) orders at the (best) bid (resp. ask) arrive at independent, exponential
times with rate λ,

• Cancelations occur at independent, exponential times with rate θ.

• These events are mutually independent.

• Orders are equal in size (assumed to be 1 without loss of generality).

Denoting by (T a
i , i ≥ 1) (resp. T b

i ) the durations between two consecutive queue changes at the
ask (resp. the bid) and V a

i (resp. V b
i ) the size of the associated change in queue size, the above

assumptions translate into the following properties for the sequences T a
i , T

b
i , V

a
i , V

b
i :

(i) (T a
i )i≥0 is a sequence of independent random variables with exponential distribution with pa-

rameter λ+ θ + µ,

(ii) (T b
i )i≥0 is a sequence of independent random variables with exponential distribution with pa-

rameter λ+ θ + µ,

(iii) (V a
i )i≥0 is a sequence of independent random variables with

P[V a
i = 1] =

λ

λ+ µ+ θ
and P[V a

i = −1] =
µ+ θ

λ+ µ+ θ
, (2.1)

(iv) (V b
i )i≥0 is a sequence of independent random variables with

P[V b
i = 1] =

λ

λ+ µ+ θ
and P[V b

i = −1] =
µ+ θ

λ+ µ+ θ
(2.2)

• These sequences are independent.

These assumptions constitute a simplification of the actual statistical properties of the order flow,
which can include dependence in durations, non-exponential durations and heterogeneous order sizes
(Engle and Russell 1998, Engle and Lunde 2003, Bouchaud et al. 2008, Cont 2011). However, they
allow to account for features such as the rate of arrival of limit and market orders (and cancellations),
random fluctuations in order book depth and the endogenous nature of price dynamics in a simple
way which, as we shall illustrate, allows to obtain some analytical insights.

Under these assumptions qt = (qbt , q
a
t ) is a Markov process, taking values in the orthant N2, whose

transitions occur at the order book events {T a
i , i ≥ 1} ∪ {T b

i , i ≥ 1}:

• At the arrival of a new limit buy (resp. sell) order the bid (resp. ask) queue increases by one
unit. This occurs at rate λ.

• At each cancelation or market order, which occurs at rate θ + µ, either:

(a) the corresponding queue decreases by one unit if it is > 1, or

(b) if the ask queue is depleted then qt is a random variable with distribution f .

(c) if the bid queue is depleted then qt is a random variable with distribution f̃ .
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Figure 2.3: Joint density f of bid and ask queue sizes after a price increase (Citigroup, June 26th
2008).

The values of λ and µ+ θ are readily estimated from high-frequency records of trades and quotes
(see Cont et al. (2010b) for a description of the estimation procedure). Table 2.3 gives examples of
such parameter estimates for the stocks mentioned above. We note that in all cases λ < µ + θ but
that the difference is small: |(µ+ θ)− λ| ≪ λ.

λ̂ µ̂+ θ̂ µ̂+θ̂−λ̂

λ̂

Citigroup 2204 2331 0.0576
General Electric 317 325 0.0252
General Motors 102 104 0.0196

Table 2.3: Estimates for the intensity of limit orders and market orders+cancellations, in number of
batches per second (each batch representing 100 shares) on June 26th, 2008).

Remark 2.1 (Independence assumptions). The IID assumption for the sequences (Rn), (R̃n) is only
used in Section 2.4. The results of Section 2.3 do not depend on this assumption.

2.2.3 Quantities of interest

In applications, one is interested in computing various quantities that intervene in high frequency
trading such as:

• the conditional distribution of the duration between price moves, given the state of the order
book (Section 2.3.1),

• the probability of a price increase, given the state of the order book (Section 2.3.2),
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• the dynamics of the price autocorrelations and distribution and autocorrelations of price changes
(section 2.3.4), and

• the volatility of the price (section 2.4).

We will show that all these quantities may be characterized analytically in this model, in terms of
order flow statistics.

2.3 Analytical results

The high-frequency dynamics of the price may be described in terms of durations between successive
price changes and the magnitude of these price changes. It is of interest to examine what information
the current state of the (consolidated) order book gives about the dynamics of the price. We now
proceed to show how the model presented above may be used to compute the conditional distributions
of durations and price changes, given the current state of the order book, in terms of the arrival rates
of market orders, limit orders and cancelations. The results of this section do not depend on the
assumptions on the sequences (Rn), (R̃n).

2.3.1 Duration until the next price change

We consider first the distribution of the duration until the next price change, starting from a given
configuration (x, y) of the order book. We define

• τa the first time when the ask queue (qat , t ≥ 0) is depleted,

• τb the first time when the bid queue (qbt , t ≥ 0) is depleted

Since the queue sizes are constant between events, one can express these stopping times as:

τa = inf{T a
1 + ...+ T a

i , q
a
Ta
1 +...+Ta

i − + V a
i = 0} τb = inf{T b

1 + ...+ T b
i , q

b
T b
1+...+T b

i −
+ V b

i = 0}

The price (st, t ≥ 0) moves when the queue qt = (qbt , q
a
t ) hits one of the axes: the duration until the

next price move is thus
τ = τa ∧ τb.

The following theorem gives the distribution of the duration τ , conditional on the initial queue sizes:

Proposition 2.1 (Distribution of duration until next price move). The distribution of τ conditioned
on the initial state of the order book is given by:

P[τ > t|qb0 = x, qa0 = y] =

√
(
µ+ θ

λ

)x+y

ψx,λ,θ+µ(t) ψy,λ,θ+µ(t) (2.3)

where ψn,λ,θ+µ(t) =

∫ ∞

t

n

u
In(2

√

λ(θ + µ)u)e−u(λ+θ+µ)du (2.4)

and In is the modified Bessel function of the first kind. The conditional law of τ has a regularly
varying tail

• with tail exponent 2 if λ < µ+ θ

• with tail exponent 1 if λ = µ+ θ. In particular, if λ = µ+ θ, E[τ |qb0 = x, qa0 = y] = ∞ whenever
x > 0, y > 0.
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Proof. Since (qat , t ≥ 0) follows a birth and death process with birth rate λ and death rate µ + θ,
L(s, x) := E[e−sτa |qa0 = x] satisfies:

∀s > 0, L(s, x) = λL(s, x+ 1) + (µ+ θ)L(s, x− 1)

λ+ µ+ θ + s
.

The polynomial P (X) = λX2 − (λ + µ + θ + s)X + µ + θ has two real roots; since P (1) = −s < 0,
one root is > 1, the other is < 1; since L(s, 0) = 1 and limx→∞ L(s, x) = 0,

L(s, x) = (
(λ+ µ+ θ + s)−

√

((λ+ µ+ θ + s))2 − 4λ(µ+ θ)

2λ
)x.

The symmetry assumption implies that P[τb > t|qb0 = x] is given by a similar expression. Using
independence, P[τ > t|qb0 = x, qa0 = y] = P[τb > t|qb0 = x]P[τa > t|qa0 = y],

P[τ > t|qb0 = x, qa0 = y] =

∫ ∞

t

L̂(u, x)du
∫ ∞

t

L̂(u, y)du.

This Laplace transform may be inverted (Feller 1971, XIV.7) and yields

L̂(t, x) = x

t

√

(
µ+ θ

λ
)x Ix(2

√

λ(θ + µ)t)e−t(λ+θ+µ),

which gives us the expected result. This allows in particular to study the tail behavior of the condi-
tional distribution of τ :

• If λ < µ+ θ,

L(s, x) = α(s)x ∼
s→0

1− x(λ+ µ+ θ)

2λ(µ+ θ − λ)
s

so Karamata’s Tauberian theorem (Feller 1971, XIII.5) yields

P[τa > t|qa0 = x] ∼
t→∞

x(λ+ µ+ θ)

2λ(µ+ θ − λ)

1

t
.

The conditional law of the duration τ given q0 = (x, y) is thus regularly varying with tail index
2:

P[τ > t|qb0 = x, qa0 = y] ∼
t→∞

xy(λ+ µ+ θ)2

λ2(µ+ θ − λ)2
1

4t2
. (2.5)

• If the order flow is balanced i.e. λ = µ+ θ then

L(s, x) = α(s)x ∼
s→0

1− x√
λ

√
s,

the law of τa is regularly-varying with tail index 1/2 and

P[τa > t|qa0 = x] ∼
t→∞

x√
πλ

1√
t
.

The duration then follows a heavy-tailed distribution with infinite first moment:

P[τ > t|qb0 = x, qa0 = y] ∼
t→∞

xy

πλ

1

t
; (2.6)

The expression given in (2.3) is easily computed by discretizing the integral in (2.4). Plotting (2.3)
for a fine grid of values of t typically takes less than a second on a laptop. Figure 3 gives a numerical
example, with λ = 12 sec−1, µ + θ = 13 sec−1, qa0 = 4, qb0 = 5 (queue sizes are given in multiples of
average batch size).
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Figure 2.4: Above: P (τ > t|qb0 = 4, qa0 = 5) as a function of t for λ = 12, µ + θ = 13. Below: same
figure in log-log coordinates. Note the Pareto tail which decays as t−2.
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2.3.2 Probability of price increase: balanced order flow

Starting from a given configuration of the limit order book, the probability that the next price move is
an increase is given by the probability that the process (qbt , q

a
t ) hits the x-axis before the y-axis When

λ = µ+θ, i.e. when the flow of limit orders is balanced by the flow of market orders and cancelations,
this probability can be computed analytically in terms of hitting time distributions of a random walk
in the orthant:

Proposition 2.2. For (n, p) ∈ N2, the probability pup1 (n, p) that the next price move is an increase,
conditioned on having the n orders on the bid side and p orders on the ask side is:

pup1 (n, p) =
1

π

∫ π

0

(

2− cos(t)−
√

(2− cos(t))2 − 1
)p sin(nt) cos( t2 )

sin( t2 )
dt. (2.7)

Proof. Let us start by noting that qt1t≤τ =MN2λt
where (Mn, n ≥ 0) is a symmetric random walk in

the positive orthant Z2
+ killed at the boundary and (N2λt, t ≥ 0) is a Poisson process with parameter

2λ. Hence the probability of an upward move in the price starting from a configuration qbt = n, qat = p
for the order book is equal to the probability that the random walk M starting from (n, p) hits the
x-axis before the y-axis. The generator of the bivariate random walk (Mn, n ≥ 1) is the discrete
Laplacian so pup1 (n, p) = P[τa < τb|qb0− = n, qa0− = p] satisfies, for all n ≥ 1 and p ≥ 1,

4pup1 (n, p) = pup1 (n+ 1, p) + pup1 (n− 1, p) + pup1 (n, p+ 1) + pup1 (n, p− 1), (2.8)

with the boundary conditions: pup1 (0, p) = 0 for all p ≥ 1 and pup1 (n, 0) = 1 for all n ≥ 1. This problem
is known as the discrete Dirichlet problem; solutions of (2.8) are called discrete harmonic functions.
(Lawler and Limic 2010, Ch. 8) show that for all t ≥ 0, the functions

ft(x, y) = exr(t) sin(yt), and f̃t(x, y) = e−xr(t) sin(yt) with r(t) = cosh−1(2− cos t)

are solutions of (2.8). In (Lawler and Limic 2010, Corollary 8.1.8) it is shown that the probability
that a simple random walk (Mk, k ≥ 1) starting at (n, p) ∈ Z+ × Z+ reaches the axes at (x, 0) is

2

π

∫ π

0

e−r(t)p sin(nt) sin(tx)dt,

therefore

pup1 (n, p) =

∞∑

k=1

2

π

∫ π

0

e−r(t)p sin(tn) sin(tk)dt.

Since
m∑

k=1

sin(kt) =
sin(mt

2 ) sin( (m+1)t
2 )

sin(t/2)
=

cos( t2 )− cos((m+ 1
2 )t)

2 sin(t/2)
,

using integration by parts we see that the second term leads to the integral:

∫ π

0

e−r(t)p sin(nt)

sin(t/2)
︸ ︷︷ ︸

g(t)

cos((m+ 1/2)t)dt = − 1

m+ 1
2

∫ π

0

g′(t) sin((m+
1

2
)t)dt →

m→∞
0.

since g′ is bounded. So finally

pup1 (n, p) =
1

π

∫ π

0

e−r(t)p sin(tn)
cos( t2 )

sin( t2 )
dt.

Noting that e−r(t) = 2− cos(t)−
√

(2− cos(t))2 − 1 we obtain the result.
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Note that the conditional probabilities (2.7) are, in the case of a balanced order book, independent
of the parameters describing the order flow.

The expression (2.7) is easily computed numerically: Figure 2.5 displays the shape of the function
pup1 . Comparison with empirical data for CitiGroup stock (June 2008) shows good agreement between
the theoretical value (2.7) and the empirical transition frequencies of the price conditional on the state
of the consolidated order book.

2.3.3 Probability of price increase: asymmetric order flow

In this subsection we relax the symmetry assumptions above and allow the intensity of limit and
market orders at the bid and the ask to be different; more precisely we assume that:

• Limit orders at the ask arrive at independent, exponential time with parameter λa

• Market orders and cancelations at the ask arrive at independent, exponential time with param-
eter µa + θa

• Limit orders at the bid arrive at independent, exponential time with parameter λb

• Market orders and cancelations at the bid arrive at independent, exponential time with param-
eter µb + θb

and that these Poisson processes are independent. The dynamics of bid and ask queues may be then
represented as

qt =MNΛt
for Λ = λa + µa + θa + λb + µb + θb,

where NΛt is a Poisson process with intensity Λ and (Mn, n ≥ 0) is a random walk on N2 killed when
it hits the boundary, whose the transition probabilities are:

p0,1 =
λa

Λ
p1,0 =

λb

Λ
p0,−1 =

µa + θa

Λ
p−1,0 =

µb + θb

Λ
. (2.9)

The following result generalizes Proposition 2.2 for an asymmetric order flow.

Proposition 2.3. Given (qb, qa) = (n, p), the probability pup1 (n, p) that the next price move is an
increase is:

pup1 (n, p) = 1− 1

π

(
µa + θa

λa

)p
2[λa(µa + θa)]1/2

µa + θa + λa
×

∫ π

0

dt
2λbZ(t)− (Λ− 2[λa(µa + θa)]1/2 cos(t))

2[(µa+θa)λa]1/2

λb+µb+θb cos(t)− 1

Z(t)n sin(pt) sin(t)
√

(Λ− 2[(µa + θa)λa]1/2 cos(t))2 − 4(µb + θb)λb
,

where (Z(t), t ≥ 0) is defined by:

∀t ≥ 0, Z(t) =
Λ− 2[(µa + θa)λa]1/2 cos(t)−

√

(Λ− 2[(µa + θa)λa]1/2 cos(t))2 − 4λb(θb + µb)

2λa
.

Proof. Using results from Kurkova and Raschel (2011), it is shown in Raschel and van Leeuwaarden
(2011) that the probability that M starting from (n, p) hits the x-axis before the y-axis is given by

1− 1

π

(
p0,−1

p0,1

)p 2
√
p0,1p0,−1

p0,1 + p0,−1

∫ π

0

Z(t)n sin(pt) sin(t)×

2p1,0Z(t)− (1− 2
√
p0,1p0,−1 cos(t))

2
√
p0,1p0,−1

p0,1+p0,−1
cos(t)− 1

dt
√

(1− 2
√
p0,1p0,−1 cos(t))2 − 4p1,0p−1,0

,
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where (Z(t), t ≥ 0) is the function defined by:

∀t ≥ 0, Z(t) =
1− 2[p0,1p0,−1]

1/2 cos(t)−
√

(1− 2[p0,1p0,−1]1/2 cos(t))2 − 4p1,0p−1,0

2p1,0
.

Applying this formula to the random walk whose transition probabilities are given in Equation (2.9)
we obtain that the probability of a price increase at the next price move, starting from a configuration
qbt = n, qat = p of the queues is equal to the probability that the random walk M starting from (n, p)
hits the x-axis before the y-axis; thus, it is given by equation (2.3).

2.3.4 Dynamics of the price

The high-frequency dynamics of the price is described by a piecewise constant, right continuous process
(st, t ≥ 0) whose jumps times correspond to times when the order book process (qt, t ≥ 0) hits one of
the axes. Denote by (τ1, τ2, ...) the successive durations between price changes. The number of price
changes that occur during [0, t] is given by

Nt := max{ n ≥ 0, τ1 + ...+ τn ≤ t }

At t = τi, sτi = sτi− + 1 if qτa
i−

= 0 and sτi = sτi− − 1 if qτb
i−

= 0. (X1, X2, X3, ..., Xn, ...) are the

successive moves in the price which, in general, are not independent random variables. We have

st = Z(Nt) where Z(n) =

n∑

i=1

Xi

is the price after n price changes have occurred. Hence, for all t ≥ 0, st = Z(Nt). We are interested
in the n-step ahead distribution of the price change:

pupn (x, y) = P[Xn = +δ | (qb0, q
a
0 ) = (x, y)] (2.10)

For n = 1 this corresponds to the probability pup1 (x, y) = p1(x, y) of an upward price move, computed
in Theorem 2.2. To simplify the analysis we use, in this Section and the next one, the following
symmetry assumption:

Assumption 2.1 (Bid-ask symmetry). f̃(x, y) = f(y, x).

This assumption means that the distribution of bid queue after a price decrease is the same as the
distribution of the ask queue after a price increase; this is the case for example if the order flows at
the first two levels on each side of the book have similar statistical features.

A key quantity for studying the dynamics of the price is the probability of two successive price
changes in the same direction,

pcont = P[Xk+1 = δ|Xk = δ] = P[Xk+1 = −δ|Xk = −δ] (2.11)

which may be expressed in terms of the distribution of queue sizes f after a price change:

Proposition 2.4. Let pcont = P[X2 = δ|X1 = δ] = P[X2 = −δ|X1 = −δ] be the probability of two
successive price moves in the same direction.

• pcont =
∑∞

i=1

∑∞
j=1 f(i, j)p

up
1 (i, j).

• ∀k ≥ 1, E[Xk|qb0 = x, qa0 = y] = (2pup1 (x, y)− 1)(2pcont − 1)k−1.

• cov(X1, X2|qb0 = x, qa0 = y) = δ2(2pcont − 1)(1− (2pup1 (x, y)− 1)2).
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• Conditional on the current state of the limit order book, the n-step ahead distribution of the price
change is given by:

pupn (x, y) := P[Xn = δ|qb0 = x, qa0 = y] =
1 + (2pcont − 1)n−1(2pup1 (x, y)− 1)

2
. (2.12)

Proof. First, let us prove that P[X2 = δ|X1 = δ] = P[X2 = −δ|X1 = −δ]:

P[X2 = δ|X1 = δ] =

∞∑

i=1

∞∑

j=1

f(i, j)pup1 (i, j),

where pup1 is given in 2.7, by symmetry of the bid and the ask, for all (n, p) ∈ N2, pup1 (n, p) =
1− pup1 (p, n). By assumption 2.1, for all (i, j) ∈ N2, f(i, j) = f̃(j, i). Therefore,

P[X2 = δ|X1 = δ] =

∞∑

i=1

∞∑

j=1

f(i, j)(1− pup1 (j, i)),

P[X2 = δ|X1 = δ] =
∞∑

i=1

∞∑

j=1

f̃(j, i)(1− pup1 (j, i)),

P[X2 = δ|X1 = δ] = P[X2 = −δ|X1 = −δ].
pupn = pupn (x, y) defined by (2.12) is then characterized by the following relation:

(
pupn

1− pupn

)

=

(
pcont 1− pcont

1− pcont pcont

)(
pn−1

1− pn−1

)

,

hence
(

pupn
1− pupn

)

=

(
pcont 1− pcont

1− pcont pcont

)n−1(
p1

1− p1

)

.

The eigenvalues of this matrix are 1 and 2pcont − 1:

(
pcont 1− pcont

1− pcont pcont

)

=

(
1 1
1 −1

)(
1 0
0 2pcont − 1

)(
1/2 1/2
1/2 −1/2

)

.

Therefore

pupn (x, y) =
1 + (2pcont − 1)n−1(2p1(x, y)− 1)

2
.

Moreover for all n ≥ 2,

E[Xn|qb0 = x, qa0 = y] = (2pupn (x, y)− 1) = (2pcont − 1)n−1(2p1(x, y)− 1).

and the correlation between two consecutive price moves is given by:

cov(X1, X2|qb0 = x, qa0 = y) = E[X1X2|qb0 = x, qa0 = y]− E[X1|qb0 = x, qa0 = y]E[X2|qb0 = x, qa0 = y]

= δ2(2pcont − 1)− δ2(2p1(x, y)− 1)(2p2(x, y)− 1),

cov(X1, X2|qb0 = x, qa0 = y) = δ2(2pcont−1)−(2p1(x, y)−1)2(2pcont−1) = (2pcont−1)(1−(2p1(x, y)−1)2).
(2.13)
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Remark 2.2 (Negative autocorrelation of price changes at first lag). It is empirically observed that
high frequency price movements have a negative autocorrelation at the first lag; this observation is
often attributed to the ’bid-ask’ bounce of transaction prices, but in fact it also holds for the time
series of bid or ask prices (Cont 2001). Our model links the value of this autocorrelation at first
lag to the properties of the distribution f of order book depth. As observed from (2.13), the sign of
the cov(X1, X2|qb0, qa0 ) does not depend on the initial configuration (qb0, q

a
0 ) of the bid/ask queues, so

cov(Xk, Xk+1) = cov(X1, X2) < 0 if and only if

pcont =

∞∑

i=1

∞∑

j=1

f(i, j)pup1 (i, j) < 1/2

where f is the joint distribution of queue sizes after a price increase. This condition is satisfied for
most high-frequency data sets of Dow Jones stocks we have examined. For example, for CitiGroup
stock we find

pcont =

∞∑

i=1

∞∑

j=1

f(i, j)pup1 (i, j) ≃ 0.35

This asymmetry of f corresponds to the fact that, after an upward price move, the new bid queue
is generally smaller than the ask queue since the ask queue corresponds to the limit order previously
sitting at second best ask level, while the bid queue results from the accumulation of orders over the
very short period since the last price move. Under this condition, high frequency increments of the
price are negatively correlated: an increase in the price is more likely to be followed by a decrease in
the price.

Remark 2.3. The sequence of price increments (X1, X2, ...) is uncorrelated if and only if

pcont =
∑

i,j≥1

f(i, j)pup1 (i, j) = 1/2

2.3.5 “Efficient” price

Various authors (see e.g. Robert and Rosenbaum (2011)) have considered models in which the evo-
lution of transaction prices is based on a non-observed (semi)martingale ŝ, sometimes called the
“efficient” price: the observed price is then either a noisy version of ŝ or the value of ŝ rounded to the
nearest tick.

Given the probability pup1 (qbt , q
a
t ) that the next price move is an “uptick” (Equation (2.7)), we can

construct an auxiliary process ŝ whose value ŝt represents the expected value of the price after its
next move:

∀t ≥ 0, ŝt = (st + δ) pup1 (qbt , q
a
t ) + (st − δ)

(
1− pup1 (qbt , q

a
t )
)
,

ŝt = st + δ(2pup1 (qbt , q
a
t )− 1),

(ŝt, t ≥ 0) is a continuous-time stochastic process with values between st − δ and st + δ:

∀t ≥ 0, st − δ ≤ ŝt ≤ st + δ.

The process ŝ incorporates the information on the price st and the state of the order book (qb, qa)
insofar as it affects the next price move. The following result shows

Proposition 2.5. If pcont = 1/2 then (ŝt, t ≥ 0) is a martingale.

Remark 2.4. This condition is verified in particular if ∀(i, j) ∈ N2, f(i, j) = f(j, i) but more
generally if

∑

i,j≥1

pup1 (i, j)f(i, j) =
1

2
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Proof. Let (τ1, τ2, ..., τk) the sequence of times when the price s moves and (X1, ..., Xn) the sequence
of consecutive price moves. Since pcont = 1/2, (X1, ..., Xk, ...) is a sequence of I.I.D Bernoulli random
variables with parameter 1/2. Therefore we have the following property:

∀(i, j) ∈ N2, i < j, E[sτj |Fτi ] = sτi .

The function pup1 , from equation (2.7), satisfies the equation Lpup1 = 0, where L is the generator
of the process (qb, qa). Hence pup1 is an harmonic function for the process (qb, qa), and the process
(pup1 (qbt , q

a
t ), t ≥ 0) is a martingale. We proved that

∀ s ≤ t < τ1, E[ŝt|Fs] = ŝs.

By recurrence on k, one can easily notice that

∀ k ≥ 1, ∀τk ≤ t < τk+1, E[ŝt|Fτ1 ] = ŝτ1 .

Assuming s ≤ τ1 ≤ t,

E[ŝt|Fs] = E[ŝt|Fs, X1 = 1]P[X1 = 1|Fs] + E[ŝt|Fs, X1 = −1]P[X1 = −1|Fs],

= E[ŝt|Fs, X1 = 1]pup1 (qbt , q
a
t ) + E[ŝt|Fs, X1 = −1](1− pup1 (qbt , q

a
t )),

= (ss + δ)pup1 (qbs, q
a
s ) + ss(1− pup1 (qbs, q

a
s )),

= ss + δ(2pup1 (qbs, q
a
s )− 1) = ŝs,

which completes the proof.

Contrarily to the ’latent price’ models alluded to above, here ŝ is a function of the state variables
(st, q

b
t , q

a
t ) and thus is observable, provided one observes trades and quotes.

Remark 2.5. When pcont 6= 1/2, the process (ŝt, t ≥ 0) fails to possess the martingale property.
When pcont < 1/2, the jump of ŝ is negative after a price increase and positive after a price decrease.
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Figure 2.5: Above: conditional probability of a price increase, as a function of the bid and ask queue
size. Below: comparison with empirical transition frequencies for CitiGroup stock price tick-by-tick
data on June 26, 2008.
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2.4 Diffusion limit of the price process

As discussed in Section 2.3.4, the high frequency dynamics of the price is described by a piecewise
constant stochastic process st = Z(Nt) where

Z(n) = X1 + ...+Xn and Nt = sup{k; τ1 + ...+ τk ≤ t}

is the number of price changes during [0, t].
However, over time scales much larger than the interval between individual order book events,

prices are observed to have diffusive dynamics and modeled as such. To establish the link between
the high frequency dynamics and the diffusive behavior at longer time scales, we shall consider a time
scale tn over which the average number of order book events is of order n and exhibit conditions under
which the scaled price process

(snt :=
stn√
n
, t ≥ 0)n≥1

satisfies a functional central limit theorem i.e. converges in distribution to a non-degenerate process
(pt, t ≥ 0) as n→ ∞. The choice of the time scale tn is such that

τ1 + ...+ τn
tn

has a well-defined limit: it is imposed by the distributional properties of the durations which, as
observed in Section 2.3.1, are heavy tailed. In this section, we show that, under a symmetry condition,
this limit can be identified as a diffusion process whose diffusion coefficient may be computed from
the statistics of the order flow driving the limit order book.

Assume λ+ θ ≤ µ and that the joint distribution f of the queue sizes after a price move satisfies:

D(f) =
∞∑

i=1

∞∑

j=1

ijf(i, j) <∞ (2.14)

The quantity D(f) represents a measure of market depth:
√

D(f), quoted in number of shares,
represents an average of the size of the bid and ask queues after a price change.

In this section we assume that f is symmetric: ∀i, j ≥ 0, f(i, j) = f(j, i). Together with As-
sumption 2.1, this implies that price increments form a sequence (Xi, i ≥ 1) of independent random
variables with distribution:

P[X1 = δ] = P[X1 = −δ] = 1

2
.

We will show that the limit p is then a diffusion process which describes the dynamics of the price at
lower frequencies. In particular, we will compute the volatility of this diffusion limit and relate it to
the properties of the order flow.

In the following D denotes the space of right continuous paths ω : [0,∞) → R2 with left lim-
its, equipped with the Skorokhod topology J1, and ⇒ will designate weak convergence on (D, J1)
Billingsley (1968), Whitt (2002).

2.4.1 Balanced order flow

We first consider the case of a balanced order flow for which the intensity of market orders and
cancelations is equal to the intensity of limit orders. The study of high-frequency quote data indicates
that this is an empirically relevant case for many liquid stocks: as shown in Table 2.3, the imbalance
between arrival of limit orders on one hand and market orders/ cancelations on the other hand is
around 5% or less for these stocks.



CHAPTER 2. PRICE DYNAMICS IN A MARKOVIAN LIMIT ORDER MARKET 58

For a balanced order flow, we proved in Section 2.3.1 that the distribution of price duration τ
conditioned on observing i shares at the bid and j shares at the ask at t = 0 has a tail index 1:

P[τ > t|qb0 = i, qa0 = j] ∼ ij

πλt
. (2.15)

Similarly, the unconditional distribution of price durations has a tail index of one:

P[τ > t]
t→∞∼

∑∞
i=1

∑∞
j=1 ijf(i, j)

πλt
=
D(f)

πλt
.

The sequence of durations between consecutive move of the price consecutive (τ1, τ2, τ3, ...) is a se-
quence of IID random variables with tail index 1. The following lemma 2.1, which we include for
completeness, gives a law of large numbers for this sequence of durations (see Samorodnitsky and
Taqqu (1994)).

Lemma 2.1. The sequence of durations (τ1, τ2, τ3, ...) satisfies

τ1 + τ2 + ...+ τk
k log k

k→∞⇒ D(f)

πλ
.

Proof. (τk, k ≥ 1) is a sequence of i.i.d, regularly varying random variables, with tail index equal to
1. Let L(s) be the Laplace transform of the distribution of τ2:

L(s) = 1− s

∫ ∞

0

exp(−st)P[τ > t]dt.

We have

1

log(n)

∫ n

0

exp(− st

n log n
)P[τ > t]dt

n→∞→ D(f)

πλ
and

1

log(n)

∫ ∞

n

exp(− st

n log n
)P[τ > t]dt

n→∞→ 0.

Therefore
s

n log(n)

∫ ∞

0

exp(− st

n log n
)P[τ > t]dt =

D(f)

πλ

s

n
+ o(

1

n
)

which implies
(

L( s

n log n
)

)n

= (1 +
D(f)

πλ
+ o(

1

n
))n → exp (−D(f)

πλ
).

So one can conclude that
τ1 + τ2 + ...+ τn

n log n

D⇒ D(f)

πλ
.

Setting tn = tn log n, Ntn , the number of price change in the interval [0, nt log n], satisfies

tn
Ntn logNtn

n→∞∼ D(f)

πλ
a.s.

Hence if one defines ρ : (1,∞) → (1,∞) as the inverse function of t 7→ t log t,

∀t > 1, ρ(t) log ρ(t) = t, (2.16)

then ρ(t) ∼t→∞
t

log(t) and the number of price changes occurring during [0, tn] verifies the following

scaling relations

Ntn
n→∞∼ ρ

(
πλtn
D(f)

)

n→∞∼ πλtn log n

D(f) log(n log n)
∼ πλt

D(f)
n a.s. (2.17)

The asymptotic relation (2.17) shows that the number of price moves occurring during [0, tn log n]
is of order n for large n, and proportional to the ratio of the order intensity λ to the order book
depth D(f). Since each price change is ±δ, this factor πλ

D(f) also shows up in the expression of price

volatility:
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Theorem 2.1. If λ = µ+ θ,

(
stn logn√

n
, t ≥ 0

)

n→∞⇒
(

δ

√

πλ

D(f)
Wt, t ≥ 0

)

where δ is the tick size, D(f) is given by (2.14) and W is a standard Brownian motion.

Proof. Let tn = tn log n. One can decompose the process (
stn logn√

n
, t ≥ 0) as

stn logn√
n

=
Z([tnπλ/D(f)])δ√

n
+

(
Z(Ntn)δ√

n
− Z([tnπλ/D(f)])δ√

n

)

(2.18)

Since (X1, X2, ...) is a sequence of IID random variables with mean zero, one can apply the
Donsker’s invariance principle to the sequence of processes to obtain

(
Z([tπλn/D(f)])δ√

n
, t ≥ 0)n≥1

n→∞⇒
(

δ

√

πλ

D(f)
Wt, t ≥ 0

)

.

As shown in (2.17),

Ntn logn
n→∞∼ ntπλ

D(f)
,

therefore for t ≥ 0,
(
Z(Ntn)δ√

n
− Z([tnπλ/D(f)])δ√

n

)

n→∞⇒ 0. (2.19)

Hence the finite dimensional distributions of the sequence of processes
(
Z(Ntn)δ√

n
− Z(tπλ/D(f))δ√

n
, t ≥ 0

)

n≥1

converge to a point mass at zero. Since this sequence of processes is tight on (D, J1), this sequence of
processes converges weakly to zero on (D, J1) (see Whitt (2002)). So finally

(
stn logn√

n
, t ≥ 0

)

n→∞⇒ δ

√

πλ

D(f)
W.

2.4.2 Empirical test using high-frequency data

Theorem 2.1 relates the ’coarse-grained’ volatility of intraday returns at lower frequencies to the high-
frequency arrival rates of orders. Denote by τ0 = 1/λ the typical time scale separating order book
events. Typically τ0 is of the order of milliseconds. In plain terms, Theorem 2.1 states that, observed
over a time scale τ2 >> τ0 (say, 10 minutes), the price has a diffusive behavior with a diffusion
coefficient given by

σn = δ

√

nπλ

D(f)
(2.20)

where δ is the tick size, n is an integer verifying n lnn τ0 = τ2 which represents the average number
of orders during an interval τ2 and

√

D(f), which measures the average depth of the bid and ask
queues after a price change.

The relation (2.20) links the variance of price changes, to statistical properties of the order flow: it
yields an estimator for price volatility which may be computed from observations on quote durations.
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It shows that, in two ’balanced’ limit order markets with the same tick size and same arrival rate of
orders at the bid/ask, the market with higher depth of the next-to-best queues will lead to lower price
volatility.

More precisely, this formula shows that the microstructure of order flow affects price volatility
through the ratio λ/D(f) where λ is the rate of execution/cancelation of limit orders and D(f), given
by (2.14), is a measure of market depth: in fact, our model predicts a proportionality between the
variance of price increments and this ratio. This is an empirically testable prediction.

Figure 2.6 compares, for stocks in the Dow Jones index, the standard deviation of 10-minute price
increments with

√

λ/D(f). We observe that, indeed, stocks with a higher value of the ratio λ/D(f)
have a higher variance, and standard deviation of price increments increases roughly proportionally
to
√

λ/D(f). The linear relation (2.20) explains 68% of the cross sectional variation iof intraday
volatility across stocks.

Figure 2.6:
√

λ/D(f), estimated from tick-by-tick order flow (vertical axis) vs standard deviation of
10-minute price increments (horizontal axis) for stocks in the Dow Jones Index, estimated from high
frequency data on June 26, 2008. Each point represents one stock. Red line indicates the best linear
approximation.

Remark 2.6. When the intensity of all orders coming in the limit order book is multiplied by the
same factor x,

• The intensity of limit orders becomes λx

• The intensity of market orders and cancelations becomes (µ+ θ)x

• The depth of the limit order book increases by a factor x, so D(f) increases by a factor x2.

Substituting in the above formula, we then see that price volatility is decreased by a factor
√

1
x .

Interestingly, Rosu (2009) shows the same dependence in 1/
√
x of price volatility using an equilibrium

approach.
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2.4.3 Case when market orders and cancelations dominate

We now consider the case in which the flow of market orders and cancelations dominates that of limit
orders: λ < θ + µ. In this case, price changes are more frequent since the order queues are depleted
by market orders or cancelations at a faster rate than they are replenished by limit orders. We also
obtain a diffusion limit for the price process, but with a different scaling:

Theorem 2.2. Let λ < θ + µ and assume that the probability distribution f satisfies

m(λ, θ + µ, f) =

∞∑

i=1

∞∑

j=1

m(λ, θ + µ, i, j)f(i, j) <∞,

where for (x, y) ∈ (N∗)2,

m(λ, θ + µ, x, y) =

(
µ+ θ

λ

) x+y
2

∫ ∞

0

dt ψx,λ,µ+θ(t)ψy,λ,µ+θ(t)

and ψx,λ,µ+θ is given by (2.4). Then

(
snt√
n
, t ≥ 0

)

n→∞⇒
(

δ
√

m(λ, θ + µ, f)
Wt, t ≥ 0

)

where W is a standard Brownian motion.

Proof. (τ2, τ3, ...) is a sequence of i.i.d random variables with finite mean given by

E[τk] = m(λ, θ + µ, f) =
∑

(i,j)∈Z2
+

f(i, j)m(λ, θ + µ, i, j).

We can apply the (strong) law of large numbers to this sequence:

τ1 + τ2 + ...+ τn
n

n→∞→ m(λ, θ + µ, f)

where m(λ, θ + µ, f) is given as above. Therefore,

∀t ≥ 0, Ntn
n→∞∼ [

tn

m(λ, θ + µ, f)
].

The rest of the proof follows the lines of Theorem 2.1. We start by decomposing s[nt]√
n

into

s[nt]√
n

=
δZ([nt/m(λ, θ + µ, f)])√

n
+ (

δZ(Nnt)√
n

− δZ([nt/m(λ, θ + µ, f)])√
n

). (2.21)

By Donsker’s theorem,

(
δZ([nt/m(λ, θ + µ, f)])√

n
, t ≥ 0

)

n→∞⇒
(

1
√

m(λ, θ + µ, f)
δWt, t ≥ 0

)

. (2.22)

The second term of the decomposition converges to zero:

(
δZ(Nnt)√

n
− δZ([nt/m(λ, θ + µ, f)])√

n
, t ≥ 0)

n→∞⇒ 0, (2.23)

which concludes the proof.
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Variance of price change at intermediate frequency Theorem 2.2 leads to an expression of
the variance of the price at a time scale τ ≫ τ0, where τ0(∼ ms) is the average interval between order
book events:

σ2 =
τ

τ0

1

m(λ, θ + µ, f)
δ2 (2.24)

Here, m(λ, θ+µ, f) represents the expected hitting time of the axes by the Markovian queuing system
q with parameters (λ, θ + µ) and random initial condition with distribution f .

This equation relates the variance of price changes (over a time scale τ2) to the tick size and the
statistical properties of the order flow.

2.4.4 Conclusion

We have exhibited a simple model of a limit order market in which order book events are described in
terms of a Markovian queueing system. The analytical tractability of our model allow us to compute
various quantities of interest such as

• the distribution of the duration until the next price change,

• the distribution of price changes, and

• the diffusion limit of the price process and its volatility.

in terms of parameters describing the order flow. These results provide analytical insights into the
relation between price dynamics and order flow, in particular the relation between liquidity and
volatility, in a limit order market.

We view this stylized model as a first step in the analytical study of realistic stochastic models
of order book dynamics. Yet, comparison with empirical data shows that even our simple modeling
set-up is capable of yielding useful analytical insights into the relation between volatility and order
flow, worthy of being further pursued. Moreover, the connection with random walks in the orthant
and two-dimensional multiclass queueing systems allows to use the rich analytical theory developed
for these systems (Cohen and Boxma 1983, Fayolle et al. 1999, Kurkova and Raschel 2011) to further
extend our study. We hope to pursue further some of these ramifications in future work.

A relevant question is to examine which of the above results are robust to departures from the
model assumptions and whether the intuitions conveyed by our model remain valid in a more general
context where one or more of these assumptions are dropped. This issue is further studied in Cont and
de Larrard (2011) where we explore a more general queueing model relaxing some of the assumptions
above.



Chapter 3

Heavy traffic limits and diffusion

approximations

3.1 Introduction

An increasing proportion of financial transactions -in stocks, futures and other contracts- take place in
electronic markets where participants may submit limit orders (for buying or selling), market orders
and order cancelations which are then centralized in a limit order book and executed according to
precise time and price priority rules. The limit order book represents, at each point in time, the
outstanding orders which are awaiting execution: it consists in queues at different price levels where
these orders are arranged according to time of arrival. A new limit buy (resp. sell) order of size x
increases the size of the bid (resp. ask) queue by x. Market orders are executed against limit orders at
the best available price: a market order decreases of size x the corresponding queue size by x. Limit
orders placed at the best available price are executed against market orders.

The availability of high-frequency data on limit order books has generated a lot of interest in
statistical modeling of order book dynamics, motivated either by high-frequency trading applications
or simply a better understanding of intraday price dynamics (see Cont (2011) for a recent survey).
The challenge here is to develop statistical models which capture salient features of the data while
allowing for some analytical and computational tractability.

Given the discrete nature of order submissions and precise priority rules for their execution, is
quite natural to model a limit order book as a queueing system; early work in this direction dates
back to Mendelson (1982). More recently, Cont, Stoikov and Talreja Cont et al. (2010b) have studied a
Markovian queueing model of a limit order book, in which arrivals of market orders and limit orders at
each price level are modeled as independent Poisson processes. Cont and de Larrard (2010) used this
Markovian queueing approach to compute useful quantities (the distribution of the duration between
price changes, the distribution and autocorrelation of price changes, and the probability of an upward
move in the price, conditional on the state of the order book) and relate the volatility of the price
with statistical properties of the order flow.

However, the results obtained in such Markovian models rely on the fact that time intervals
between orders are independent and exponentially distributed, orders are of the same size and that
the order flow at the bid is independent from the order flow at the ask. Empirical studies on high-
frequency data show these assumptions to be incorrect (Hasbrouck (2007), Bouchaud et al. (2002,
2008), Andersen et al. (2010)). Figure 3.1 compares the quantiles of the duration between order book
events for CitiGroup stock on June 26, 2008 to those of an exponential distribution with the same
mean, showing that the empirical distribution of durations is far from being exponential. Figure
3.9 shows the autocorrelation function of the inverse durations: the persistent positive value of this
autocorrelation shows that durations may not be assumed to be independent. Finally, as shown in
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Figure 3.2 which displays the (positive or negative) changes in queue size induced by successive orders
for CitiGroup shares, there is considerable heterogeneity in sizes and clustering in the timing of orders.

Other, more complex, statistical models for order book dynamics have been developed to take these
properties into account (see Section 3.2.3). However, only models based on Poisson point processes
such as Cont et al. (2010b), Cont and de Larrard (2010) have offered so far the analytical tractability
necessary when it comes to studying quantities of interest such as durations or transition probabilities
of the price, conditional on the state of the order book. It is therefore of interest to know whether the
conclusions based on Markovian models are robust to a departure from these simplifying assumptions
and, if not, how they must be modified in the presence of other distributional features and dependence
in durations and order sizes.

The goal of this work is to show that it is indeed possible to restore analytical tractability without
imposing restrictive assumptions on the order arrival process, by exploiting the separation of time
scales involved in the problem. The existence of widely different time scales, from milliseconds to
minutes, makes it possible to obtain meaningful results from an asymptotic analysis of order book
dynamics using a diffusion approximation of the limit order book. We argue that this diffusion
approximation provides relevant and computationally tractable approximations of the quantities of
interest in liquid markets where order arrivals are frequent.

Figure 3.1: Quantiles of inter-event durations compared with quantiles of an exponential distribution
with the same mean (Citigroup, June 2008). The dotted line represents the benchmark case where
the observations are exponentially distributed, which is clearly not the case here.

Regime Time scale Issues
Ultra-high ∼ 10−3 − 0.1 s Microstructure,
frequency (UHF) Latency
High ∼ 1− 100 s Trade
Frequency (HF) execution
“Daily” ∼ 103 − 104 s Trading strategies,

Option hedging

Table 3.1: A hierarchy of time scales.

As shown in Table 3.1, most applications involve the behavior of prices over time scales an order
of magnitude larger than the typical inter-event duration: for example, in optimal trade execution
the benchmark is the Volume weighted average price (VWAP) computed over a period which may
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Figure 3.2: Number of shares per event for events affecting the ask. The stock is Citigroup on the
26th of June 2008

Average no. of Price changes
orders in 10s in 1 day

Citigroup 4469 12499
General Electric 2356 7862
General Motors 1275 9016

Table 3.2: Average number of orders in 10 seconds and number of price changes (June 26th, 2008).

range from 10 minutes to a day: over such time scales much of the microstructural details of the
market are averaged out. Second, as noted in Table 3.2, in liquid equity markets the number of events
affecting the state of the order book over such time scales is quite large, of the order of hundreds
or thousands. The typical duration τL (resp. τM ) between limit orders (resp. market orders and
cancelations) is typically 0.001− 0.01 ≪ 1 (in seconds). These observations show that it is relevant to
consider heavy-traffic limits in which the rate of arrival of orders is large for studying the dynamics
of order books in liquid markets.

In this limit, the complex dynamics of the discrete queueing system is approximated by a simpler
system with a continuous state space, which can be either described by a system of ordinary differential
equations (in the ’fluid limit’, where random fluctuations in queue size vanish) or a system of stochastic
differential equations (in the ’diffusion limit’ where random fluctuations dominate) (Iglehart and Whitt
(1970), Harrison and Nguyen (1993), Whitt (2002)). Intuitively, the fluid limit corresponds to the
regime of law of large numbers, where random fluctuations average out and the limit is described by
average queue size, whereas the diffusion limit corresponds to the regime of the central limit theorem,
where fluctuations in queue size are asymptotically Gaussian. When order sizes or durations fail
to have finite moments of first or second order, other scaling limits may intervene, involving Lévy
processes (see Whitt (2002)) or fractional Brownian motion Araman and Glynn (2011). As shown by
Dai and Nguyen (1994), there are also cases where such a ’heavy traffic limit’ may fail to exist. The
relevance of each of these asymptotic regimes is, of course, not a matter of ‘taste’ but an empirical
question which depends on the behavior of high-frequency order flow in these markets.

Using empirical data on US stocks, we argue that for most liquid stocks, while the rate of arrival of
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market orders and limit orders is large, the imbalance between limit orders, which increase queue size,
and market orders and cancels, which decrease queue size, is an order of magnitude smaller: over, say,
a 10 minute interval, one observes an imbalance ranging from 1 to 10 % of order flow. In other words,
over a time scale of several minutes, a large number N of events occur, but the bid/ask imbalance
accumulating over the same interval is of order

√
N ≪ N . In this regime, random fluctuations in

queue sizes cannot be ignored and it is relevant to consider the diffusion limit of the limit order book.
In this chapter we study the behavior of a limit order book in this diffusion limit: we prove a

functional central limit theorem for the joint dynamics of the bid and ask queues when the intensity
of orders becomes large, and use it to derive an analytically tractable jump-diffusion approximation.
More precisely, we show that under a wide range of assumptions, which are shown to be plausible
for empirical data on liquid US stocks, the intraday dynamics of the limit order book behaves like
as a planar Brownian motion in the interior of the positive orthant, and jumps to the interior of the
orthant at each hitting time of the boundary.

This jump-diffusion approximation allows various quantities of interest to be computed analyti-
cally: we obtain analytical expressions for various quantities such as the probability that the price
will increase at the next price change, and the distribution of the duration between price changes,
conditional on the state of the order book.

Our results extend previous analysis of heavy traffic limits for such auction processes (Kruk (2003),
Bayraktar et al. (2006), Cont and de Larrard (2010)) to a setting which is relevant and useful for
quantitative modeling of limit order books and provide a foundation for recently proposed diffusion
models for order book dynamics Avellaneda et al. (2011).

Outline. The chapter is organized as follows. Section 3.2 describes a general framework for the
dynamics of a limit order book; various examples of models studied in the literature are shown to
fall within this modeling framework (Section 3.2.3). Section 3.3 reviews some statistical properties
of high frequency order flow in limit order markets: these properties highlight the complex nature
of the order flow and motivate the statistical assumptions used to derive the diffusion limit. Section
3.4 contains our main result: Theorem 3.2 shows that, in a limit order market where orders arrive at
high frequency, the bid and ask queues behaves like a Markov process in the positive quadrant which
diffuses inside the quadrant and jumps to the interior each time it hits the boundary. We provide
a complete description of this process, and use it to derive, in Section 3.4.3, a simple jump-diffusion
approximation for the joint dynamics of bid and ask queues, which is easier to study and simulate
than the initial queueing system.

In particular, we show that in this asymptotic regime the price process is characterized as a
piecewise constant process whose transition times correspond to hitting times of the axes by a two
dimensional Brownian motion in the positive orthant (Proposition 3.1). This result allows to study
analytically various quantities of interest, such as the distribution of the duration between price moves
and the probability of an increase in the price: this is discussed in Section 3.5.

3.2 A model for the dynamics of a limit order book

3.2.1 Reduced-form representation of a limit order book

Empirical studies of limit order markets suggest that the major component of the order flow occurs
at the (best) bid and ask price levels (see e.g. Biais et al. (1995)). All electronic trading venues also
allow to place limit orders pegged to the best available price (National Best Bid Offer, or NBBO);
market makers used these pegged orders to liquidate their inventories. Furthermore, studies on the
price impact of order book events show that the net effect of orders on the bid and ask queue sizes is
the main factor driving price variations (Cont et al. (2010a)). These observations, together with the
fact that queue sizes at the best bid and ask of the consolidated order book are more easily obtainable
(from records on trades and quotes) than information on deeper levels of the order book, motivate a
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reduced-form modeling approach in which we represent the state of the limit order book by

• the bid price sbt and the ask price sat

• the size of the bid queue qbt representing the outstanding limit buy orders at the bid, and

• the size of the ask queue qat representing the outstanding limit sell orders at the ask

Figure 3.3 summarizes this representation.
If the stock is traded in several venues, the quantities qb and qa represent the best bids and offers

in the consolidated order book, obtained by aggregating over all (visible) trading venues. At every
time t, qbt (resp. qat ) corresponds to all visible orders available at the bid price sbt (resp. sat ) across all
exchanges.

qa

qb

δ

Quantities

sb

Price

sa

Figure 3.3: Simplified representation of a limit order book.

The state of the order book is modified by order book events: limit orders (at the bid or ask),
market orders and cancelations (see Cont et al. (2010b,a), Smith et al. (2003)). A limit buy (resp.
sell) order of size x increases the size of the bid (resp. ask) queue by x, while a market buy (resp. sell)
order decreases the corresponding queue size by x. Cancelation of x orders in a given queue reduces
the queue size by x. Given that we are interested in the queue sizes at the best bid/ask levels, market
orders and cancelations have the same effect on the queue sizes (qbt , q

a
t ).

The bid and ask prices are multiples of the tick size δ. When either the bid or ask queue is
depleted by market orders and cancelations, the price moves up or down to the next level of the order
book. The price processes sbt , s

a
t are thus piecewise constant processes whose transitions correspond

to hitting times of the axes {(0, y), y > 0} ∪ {(x, 0), x > 0} by the process qt = (qbt , q
a
t ).

If the order book contains no ‘gaps’ (empty levels), these price increments are equal to one tick:

• when the bid queue is depleted, the (bid) price decreases by one tick.

• when the ask queue is depleted, the (ask) price increases by one tick.

If there are gaps in the order book, this results in ’jumps’ (i.e. variations of more than one tick) in
the price dynamics. We will ignore this feature in what follows but it is not hard to generalize our
results to include it.

The quantity sat − sbt is the bid-ask spread, which may be one or several ticks. As shown in Table
3.3, for liquid stocks the bid-ask spread is equal to one tick for more than 98% of observations.

When either the bid or ask queue is depleted, the bid-ask spread widens immediately to more than
one tick. Once the spread has increased, a flow of limit sell (resp. buy) orders quickly fills the gap
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Bid-ask spread 1 tick 2 tick ≥ 3 tick
Citigroup 98.82 1.18 0
General Electric 98.80 1.18 0.02
General Motors 98.71 1.15 0.14

Table 3.3: Percentage of observations with a given bid-ask spread (June 26th, 2008).

and the spread reduces again to one tick. When a limit order is placed inside the spread, all the limit
orders pegged to the NBBO price move in less than a millisecond to the price level corresponding
to this new order. Once this happens, both the bid price and the ask price have increased (resp.
decreased) by one tick.

The histograms in Figure 3.4 show that this ’closing’ of the spread takes place very quickly: as
shown in Figure 3.4 (left) the lifetime of a spread larger than one tick is of the order of a couple of
milliseconds, which is negligible compared to the lifetime of a spread equal to one tick (Figure 3.4 ,
right). In our model we assume that the second step occurs infinitely fast: once the bid-ask spread
widens, it returns immediately to one tick. For the example of Dow Jones stocks (Figure 3.4 ), this is
a reasonable assumption since the widening of the spread lasts only a few milliseconds. This simply
means that we are not trying to describe/model how the orders flow inside the bid-ask spread at the
millisecond time scale and, when we describe the state of the order book after a price change we have
in mind the state of the order book after the bid-ask spread has returned to one tick.

Figure 3.4: Left: Average lifetime, in milliseconds of a spread larger than one tick for Dow Jones
stocks. Right: Average lifetime, in milliseconds of a spread equal to one tick.

Under this assumption, each time one of the queues is depleted, both the bid queue and the ask
queue move to a new position and the bid-ask spread remains equal to one tick after the price change.
Thus, under our assumptions the bid-ask spread is equal to one tick, i.e. sat = sbt + δ, resulting in a
further reduction of dimension in the model.

Once either the bid or the ask queue are depleted, the bid and ask queues assume new values.
Instead of keeping track of arrival, cancelation and execution of orders at all price levels (as in Cont
et al. (2010b), Smith et al. (2003)), we treat the queue sizes after a price change as a stationary sequence
of random variables whose distribution represents the depth of the order book in a statistical sense.
More specifically, we model the size of the bid and ask queues after a price increase by a stationary
sequence (Rk)k≥1 of random variables with values in N2. Similarly, the size of the bid and ask queues

after a price decrease is modeled by a stationary sequence (R̃k)k≥1 of random variables with values in
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N2. The sequences (Rk)k≥1 and (R̃k)k≥1 summarize the interaction of the queues at the best bid/ask
levels with the rest of the order book, viewed here as a ’reservoir’ of limit orders.

The variables Rk (resp. R̃k) have a common distribution which represents the depth of the order
book after a price increase (resp. decrease): Figure 3.5 shows the (joint) empirical distribution of bid
and ask queue sizes after a price move for Citigroup stock on June 26th 2008.

Figure 3.5: Joint density of bid and ask queue sizes after a price move (Citigroup, June 26th 2008).

The simplest specification could be to take (Rk)k≥1, (R̃k)k≥1 to be IID sequences; this approach,
used in Cont and de Larrard (2010), turns out to be good enough for many purposes. But this IID
assumption is not necessary; in the next section we will see more general specifications which allow
for serial dependence.

In summary, state of the limit order book is thus described by a continuous-time process (sbt , q
b
t , q

a
t )

which takes values in the discrete state space δZ × N2, with piecewise constant sample paths whose
transitions correspond to the order book events. Denoting by (tai , i ≥ 1) (resp. tbi ) the event times at
the ask (resp. the bid), V a

i (resp. V b
i ) the corresponding change in ask (resp. bid) queue size, and

k(t) the number of price changes in [0, t], the above assumptions translate into the following dynamics
for (sbt , q

b
t , q

a
t ):

• If an order or cancelation of size V a
i arrives on the ask side at t = tai ,

– if qat− + V a
i ≥ 0, the order can be satisfied without changing the price;

– if qat− + V a
i < 0, the ask queue is depleted, the price increases by one ’tick’ of size δ, and

the queue sizes take new values Rk(t) = (Rb
k(t), R

a
k(t)),

(sbt , q
b
t , q

a
t ) = (sbt−, q

b
t−, q

a
t− + V a

i )1{qat−≥−V a
i } + (sbt− + δ,Rb

k(t), R
a
k(t))1{qat−<−V a

i }, (3.1)

• If an order or cancelation of size V b
i arrives on the bid side at t = tbi ,

– if qbt− + V b
i ≥ 0, the order can be satisfied without changing the price;

– if qbt− + V b
i < 0, the bid queue gets depleted, the price decreases by one ’tick’ of size δ and

the queue sizes take new values R̃k(t) = (R̃b
k(t), R̃

a
k(t)):
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(sbt , q
b
t , q

a
t ) = (sbt−, q

b
t− + V b

i , q
a
t−)1{qbt−≥−V b

i } + (sbt− − δ, R̃b
k(t), R̃

a
k(t))1{qbt−<−V b

i }. (3.2)

3.2.2 The limit order book as a ’regulated’ process in the orthant

As in the case of reflected processes arising in queueing networks, the process qt = (qbt , q
a
t ) may be

constructed from the net order flow process

xt = (xbt , x
a
t ) =





Nb
t∑

i=1

V b
i ,

Na
t∑

i=1

V a
i





where N b
t (resp. Na

t ) is the number of events (i.e. orders or cancelations) occurring at the bid (resp.
the ask) during [0, t]. xt = (xbt , x

a
t ) is analogous to the ’net input’ process in queuing systems Whitt

(2002): xbt (resp. xat ) represents the cumulative sum of all orders and cancelations at the bid (resp.
the ask) between 0 and t.

q = (qbt , q
a
t )t≥0 which takes values in the positive orthant, may be constructed from x by reinitial-

izing its value to a a new position inside the positive orthant according to the rules (3.1)–(3.2) each
time one of the queues is depleted: every time (qt)t≥0 attempts to exit the positive orthant, it jumps

to a a new position inside the orthant, taken from the sequence (Rn, R̃n).
This construction may be done path by path, as follows:

Definition 3.1. Let ω ∈ D([0,∞),R2) be a right-continuous function with left limits (i.e. a cadlag
function), R = (Rn)n≥1 and R̃ = (R̃n)n≥1 two sequences with values in R2

+. There exists a unique

cadlag function Ψ(ω,R, R̃) ∈ D([0,∞),R2
+) such that

• For t < τ1, let Ψ(ω,R, R̃)(t) = ω(t) where

τ1 = inf{t ≥ 0, ω(t).(1, 0) < 0 or ω(t).(0, 1) < 0}.

is the first exit time of ω from the positive orthant.

• Ψ(ω,R, R̃)(τ1) = R1 if Ψ(ω,R, R̃)(τ1−).(0, 1) < 0, and Ψ(ω,R, R̃)(τ1) = R̃1 if Ψ(ω,R, R̃)(τ1−).(1, 0) <
0.

• For k ≥ 1,
Ψ(ω,R, R̃)(t+ τk) = Ψ(ω,R, R̃)(τk) + ω(t+ τk)− ω(τk) for 0 ≤ t < τk+1 − τk, where

τk+1 = inf{t ≥ τk−1, Ψ(ω,R, R̃)(τk) + ω(t+ τk)− ω(τk) /∈ R2
+}

is the first exit time of (Ψ(ω,R, R̃)(t), t ≥ τk) from the positive orthant.

• Ψ(ω,R, R̃)(τk) = Rk if Ψ(ω,R, R̃)(τk−).(0, 1) < Ψ(ω,R, R̃)(τk−1).(1, 0) and Ψ(ω,R, R̃)(τk) =
R̃k otherwise.

The path Ψ(ω,R, R̃) is obtained by ”regulating” the path ω with the sequences (R, R̃): in between
two exit times, the increments of Ψ(ω,R, R̃) follow those of ω and each time the process attempts to
exit the positive orthant by crossing the x-axis (resp. the y-axis), it jumps to a a new position inside
the orthant, taken from the sequence (Rn)n≥1 (resp. from the sequence (R̃n)n≥1).

Unlike the more familiar case of a continuous reflection at the boundary, which arises in heavy-
traffic limits of multiclass queueing systems (see Harrison (1978), Harrison and Nguyen (1993), Whitt
(2002), Ramanan and Reiman (2003) for examples), this construction introduces a discontinuity by
pushing the process into the interior of the positive orthant each time it attempts to exit from the
axes.
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To study the continuity properties of this map, we endow D([0,∞),R2) with Skorokhod’s J1 topol-

ogy Billingsley (1968), Lindvall (1973) and the set (R2
+)

N

with the topology induced by ’cylindrical’

semi-norms, defined as follows: for a sequence (Rn)n≥1 in (R2
+)

N

Rn n→∞→ R ∈ (R2
+)

N ⇐⇒
(

∀k ≥ 1, sup{|Rn
1 −R1|, ..., |Rn

k −Rk|) n→∞→ 0
)

.

D([0,∞),R2)× (R2
+)

N × (R2
+)

N

is then endowed with the corresponding product topology.

Theorem 3.1. Let R = (Rn)n≥1, R̃ = (R̃n)n≥1 be sequences in ]0,∞[×]0,∞[ which do not have any
accumulation point on the axes. If ω ∈ C0([0,∞),R2) is such that

(0, 0) /∈ Ψ(ω,R, R̃)([0,∞) ). (3.3)

Then the map

Ψ : D([0,∞),R2)× (R2
+)

N × (R2
+)

N → D([0,∞),R2
+) (3.4)

is continuous at (ω,R, R̃).

Proof: See Section 3.6.2 in the Appendix.
This construction may be applied to any cadlag stochastic process: given a cadlag process X with

values in R2 and (random) sequences R = (Rn)n≥1 and R̃ = (R̃n)n≥1 with values in R2
+, the process

Ψ(X,R, R̃) is a cadlag process with values in R2
+.

It is easy to see that the order book process qt = (qbt , q
a
t ) may be constructed by this procedure:

Lemma 3.1. The queue size process q = (qbt , q
a
t )tgeq0 is related to the net order flow by

q = (qb, qa) = Ψ(x,R, R̃)

where

• xt = (xbt , x
a
t ) =

(
∑Nb

t
i=1 V

b
i ,
∑Na

t
i=1 V

a
i

)

is the net order flow at the bid and the ask,

• R = (Rn)n≥1 is the sequence of queue sizes after a price increase, and

• R̃ = (R̃n)n≥1 is the sequence of queue sizes after a price decrease.

One can thus build a statistical model for the limit order book by specifying the joint law of x and
of the regulating sequences (R, R̃). This approach simplifies the study of the (asymptotic) properties
of qt = (qbt , q

a
t ).

Example 3.1 (IID reinitializations). The simplest case is the case where the queue length after each
price change is independent from the history of the order book, as in Cont and de Larrard (2010).
R = (Rn)n≥1 and R̃ = (R̃n)n≥1 are then IID sequences with values in ]0,∞[2. Figure 3.5 shows an
example of such a distribution for a liquidly traded stock (NYSE: CitiGroup).

The law of the process Q = Ψ(x,R, R̃) is then entirely determined by the law of the net order
flow x and the distributions of Rn, R̃n: it can be constructed from the concatenation of the laws of
(xt, τk ≤ t < τk+1) for k ≥ 0 (where we define τ0 := 0).

Example 3.2 (Pegged limit orders). Most electronic trading platforms allow to place limit orders
which are pegged to the best quote: if the best quote moves to a new price level, a pegged limit order
moves along with it to the new price level. The presence of pegged orders leads to positive autocor-
relation and dependence in the queue size before/after a price change. The queue size after a price
change may be modeled as

• qτn = Rn = (ǫbn + βqbτn−, ǫ
a
n) if the price has increased, and
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• qτn = R̃n = (ǫ̃bn, ǫ̃
a
n + β̃qaτn−) if the price has decreased

where ǫn = (ǫbn, ǫ
a
n), ǫ̃n = (ǫ̃bn, ǫ̃

a
n) are IID sequences. Empirically, one observes a correlation of

∼ 10% − 20% between the queue lengths before and after a price change, which suggests an order
magnitude for the fraction of pegged orders.

As in the previous example, the law of of the process q = Ψ(x,R, R̃) is determined by the law of
the net order flow x, the coefficients β, β̃ and the distributions of ǫ,ǫ̃: it can be constructed from the
concatenation of the laws of (xt, τk ≤ t < τk+1) for k ≥ 0.

More generally, one could consider other extensions where the queue size after a price move may
depend in a (nonlinear) way on the queue size before the price move and a random term ǫn representing
the inflow of new orders after the n-th price change:

qτn = g(qτn−, ǫn). (3.5)

The results given below hold for this general specification although the examples 3.1 and 3.2 above
are sufficiently general for most applications.

3.2.3 Examples

The framework described in Section 3.2.1 allows a wide class of specifications for the order flow
process, and contains as special cases various models proposed in the literature. Each model involves
a specification for the (random) sequences (tai , t

b
i , V

a
i , V

b
i )i≥1, R = (Rn)n≥1 and R̃ = (R̃n)n≥1 or,

equivalently, (T a
i , T

b
i , V

a
i , V

b
i )i≥1, R = (Rn)n≥1 and R̃ = (R̃n)n≥1 where T a

i = tai+1 − tai (resp. T b
i =

tbi+1 − tbi ) are the durations between order book events on the ask (resp. the bid) side.

Models based on Poisson point processes

Cont and de Larrard (2010) study a stylized model of a limit order market in which market orders,
limit orders and cancelations arrive at independent and exponential times with corresponding rates
µ, λ and θ, the process q = (qb, qa) becomes a Markov process. If we assume additionally that all
orders have the same size, the dynamics of the reduced limit order book is described by:

• The sequence (T a
i )i≥0 is a sequence of independent random variables with exponential distribu-

tion with parameter λ+ θ + µ,

• The sequence (T b
i )i≥0 is a sequence of independent random variables with exponential distribu-

tion with parameter λ+ θ + µ,

• The sequence (V a
i )i≥0 is a sequence of independent random variables with

P[V a
i = 1] =

λ

λ+ µ+ θ
and P[V a

i = −1] =
µ+ θ

λ+ µ+ θ
,

• The sequence (V b
i )i≥0 is a sequence of independent random variables with

P[V b
i = 1] =

λ

λ+ µ+ θ
and P[V b

i = −1] =
µ+ θ

λ+ µ+ θ
.

• All these sequences are independent.

It is readily verified that this model is a special case of the framework of Section 3.2.1: (qt)t≥0 may
be constructed as in Definition 3.1, where the unconstrained process xt is now a compound Poisson
process.



CHAPTER 3. HEAVY TRAFFIC LIMITS AND DIFFUSION APPROXIMATIONS 73

Self-exciting point processes

Empirical studies of order durations highlight the dependence in the sequence of order durations. This
feature, which is not captured in models based on Poisson processes, may be adequately represented
by a multidimensional self-exciting point process Andersen et al. (2010), Hautsch (2004), in which the
arrival rate λi(t) of an order of type i is represented as a stochastic process whose value depends on
the recent history of the order flow: each new order increases the rate of arrival for subsequent orders
of the same type (self-exciting property) and may also affect the rate of arrival of other order types
(mutually exciting property):

λi(t) = θi +

J∑

j=1

δij

∫ t

0

e−κi(t−s)dNj(s)

Here δij measures the impact of events of type j on the rate of arrival of subsequent events of type i: as
each event of type j occurs, λi increases by δij . In between events, λi(t) decays exponentially at rate
κi. Maximum likelihood estimation of this model on TAQ data Andersen et al. (2010) shows evidence
of self-exciting and mutually exciting features in order flow: the coefficients δij are all significantly
different from zero and positive, with δii > δij for j 6= i.

Autoregressive conditional durations

Models based on Poisson process fail to capture serial dependence in the sequence of durations, which
manifests itself in the form of clustering of order book events. One approach for incorporating serial
dependence in event durations is to represent the duration Ti between transactions i− 1 and i as

Ti = ψiǫi,

where (ǫi)i≥1 is a sequence of independent positive random variables with common distribution and
E[ǫi] = 1 and the conditional duration ψi = E[Ti|ψi−j , Ti−j , j ≥ 1] is modeled as a function of past
history of the process:

ψi = G(ψi−1, ψi−2, ..., ..;Ti−1, Ti−2, ..., ..).

Engle and Russell’s Autoregressive Conditional Duration model Engle and Russell (1998) propose an
ARMA(p, q) representation for G:

ψi = a0 +

p
∑

i=1

akψi−k +

q
∑

i=1

bqTj−k

where (a0, ..., ap) and (b1, ..., bq) are positive constants. The ACD-GARCH model Ghysels and Jasiak
(1998) combine this model with a GARCH model for the returns. Engle (2000) proposes a GARCH-
type model with random durations where the volatility of a price change may depend on the previous
durations. Variants and extensions are discussed in Hautsch (2004). Such models, like ARMA or
GARCH models defined on fixed time intervals, have likelihood functions which are numerically com-
putable. Although these references focus on transaction data, the framework can be adapted to model
the durations (T a

i , i ≥ 1) and (T b
i , i ≥ 1) between order book events with the ACD framework (Hautsch

2004).

A limit order market with patient and impatient agents

Another way of specifying a stochastic model for the order flow in a limit order market is to use an
’agent-based’ formulation where agent types are characterized in terms of the statistical properties of
the order flow they generate. Consider for example a market with three types of traders:

• impatient traders who only submit market orders:
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• patient traders who use only limit orders : this is the case for example of traders who place stop
loss orders or engage in strategies such as mean-reversion arbitrage or pairs trading which are
only profitable with limit orders.

• other traders who use both limit and market orders; we will assume these traders submit a
proportion γ of their orders as limit orders and (1− γ) as market orders, where 0 < γ < 1.

Denote by m (resp. l) the proportion of orders generated by impatient (resp. patient) traders:

∀i ≥ 1, P[i− th trader uses only market orders] = m,

P[i− th trader uses only limit orders] = l,

P[ith trader uses both limit and market orders] = 1− l −m.

Assume that the sequence (Ti, i ≥ 1) of duration between consecutive orders is a stationary ergodic
sequence of random variables with E[Ti] <∞, that each trader has an equal chance of being a buyer
or a seller and that the type of trader (buyer or seller) is independent from the past:

P[i− th trader is a buyer] = P[i− th trader is a seller] =
1

2

Trader i generates an order of size Vi, where (Vi, i ≥ 1) is an IID sequence with:

P[(V b
i , V

a
i ) = (Vi, 0)] = P[(V b

i , V
a
i ) = (0, Vi)] =

m

2
,

P[(V b
i , V

a
i ) = (−Vi, 0)] = P[(V b

i , V
a
i ) = (0,−Vi)] =

l

2
,

P[(V b
i , V

a
i ) = (γVi,−(1− γ)Vi)] = P[(V b

i , V
a
i ) = (−(1− γ)Vi, γVi)] =

1− l −m

2
.

3.3 Statistical properties of high-frequency order flow

As described in Section 3.2.1, the sequence of order book events –the order flow– is characterized by
the sequences (T a

i , i ≥ 1) and (T b
i , i ≥ 1) of durations between orders and the sequences of order sizes

(V b
i , i ≥ 1) and (V a

i , i ≥ 1). In this section we illustrate the statistical properties of these sequences
using high-frequency quotes and trades for liquid US stocks –CitiGroup, General Electric, General
Motors– on June 26th, 2008.

3.3.1 Order sizes

Empirical studies Bouchaud et al. (2002, 2008), Gopikrishnan et al. (2000), Maslov and Mills (2001)
have shown that order sizes are highly heterogeneous and exhibit heavy-tailed distributions, with
Pareto-type tails:

P(V a
i ≥ x) ∼ Cx−β

with tail exponent β > 0 between 2 and 3, which corresponds to a series with finite variance but
infinite moments of order ≥ 3. The tail exponent β > 0 is difficult to estimate precisely, but the Hill
estimator Resnick (2006) can be used to measure the heaviness of the tails. Table 3.4 gives the Hill
estimator of the tail coefficient of order sizes for our samples. This estimator is larger than 2 for both
the bid and the ask; this means that the sequence of order sizes have a finite moment of order two.

The sequences of order sizes (V a
i , i ≥ 1) and (V b

i , i ≥ 1) exhibit insignificant autocorrelation, as
observed on Figure 3.6. However, they are far from being independent: the series of squared order
sizes ((V b

i )
2, i ≥ 1) and ((V a

i )
2, i ≥ 1) are positively autocorrelated, as shown in Figure 3.7.
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Bid side Ask side
Citigroup [0.42, 0.46] [0.29, 0.32]

General Electric [0.42, 0.45] [0.41, 0.46]
General Motors [0.36, 0.42] [0.44, 0.51]

Table 3.4: 95-percent confidence interval of the Hill estimator of the sequence of order sizes. When
the Hill estimator is < 0.5, the estimated tail index is large than 2 and the distribution has finite
variance.

Figure 3.6: Autocorrelogram of the sequence of order sizes. Order coming at the ask on the left and
at the bid on the right.

Figure 3.7: Autocorrelogram of the sequence of absolute order sizes. Order coming at the ask on the
left and at the bid on the right.

Finally, the sequences (V a
i , i ≥ 1) and (V b

i , i ≥ 1) may be negatively correlated. This stems from the
fact that a buyer can simultaneously use market orders on the ask side (which correspond to negative
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values of V a
i ) and limit orders on the bid side (which correspond to positive values of V b

i ); the same
argument holds for sellers (see Section 3.2.3).

These properties of the sequence (V a
i , V

b
i )i≥1 may be modeled using a bivariate ARCH process:

V b
i = σb

i z
b
i V a

i = σa
i z

a
i

(σb
i )

2 = αb
0 + αb

1(V
b
t−1)

2, (σa
i )

2 = αa
0 + αa

1(V
a
t−1)

2, where (zbi , z
a
i )i≥1

IID∼ N

(

0,

(
1 ρ
ρ 1

))

and (αb
0, α

b
1, α

a
0 , α

a
1) are positive coefficients satisfying

0 < αb
0 + αb

1 < 1, and 0 < αa
0 + αa

1 < 1. (3.6)

As shown by Bougerol and Picard (1992), under the assumption (3.6), the sequence of order sizes
(V b

i , V
a
i )i≥1 is then a well defined, stationary sequence of random variables with finite second-order

moments, satisfying the properties enumerated above.

3.3.2 Durations

The timing of order book events is describe by the sequence of durations (T b
i , i ≥ 1) at the bid

and (T a
i , i ≥ 1) at the ask. These sequences have zero autocorrelation (see Figure 3.8) but are

not independence sequences: for example, as shown in Figure 3.9, the sequence of inverse durations
(1/T b

i , i ≥ 1) and (1/T b
i , i ≥ 1) has significant autocorrelations.

Figure 3.8: Autocorrelogram of the sequence of durations for events at the ask (left) and the bid
(right).

Figure 3.10 represents the empirical distribution functions P[T a > u] and P[T b > u] in logarithmic
scale. Both empirical distributions exhibit thin, exponential-type tails (which implies in particular
that T a and T b have finite expectation).
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Figure 3.9: Autocorrelogram of the sequence of inverse durations for events at the ask (left) and the
bid (right).

Figure 3.10: Logarithm of the empirical distribution function of durations for events at the ask (left)
and the bid (right).
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3.4 Heavy Traffic limit

At very high frequency, the limit order book is described by a two-dimensional piecewise constant
process qt = (qbt , q

a
t )t≥0, whose evolution is determined by the flow of orders. The complex nature

of this order flow –heterogeneity and serial dependence in order sizes, dependence between orders
coming at the ask and at the bid– described in section 3.3, makes it difficult to describe qt in an
analytically tractable manner which would allow the quantities of interest to be computed either in
closed form or numerically in real time applications. However, if one is interested in the evolution of
the order book over time scales much larger than the interval between individual order book events,
the (coarse-grained) dynamics of the queue sizes may be described in terms of a simpler process
Q, called the heavy traffic approximation of q. In this limit, the complex dynamics of the discrete
queueing system is approximated by a simpler system with a continuous state space, which can be
either described by a system of ordinary differential equations (in the ’fluid limit’, where random
fluctuations in queue sizes vanish) or a system of stochastic differential equations (in the ’diffusion
limit’ where random fluctuations dominate). This idea has been widely used in queueing theory to
obtain useful analytical insights into the dynamics of queueing systems Harrison and Nguyen (1993),
Iglehart and Whitt (1970), Whitt (2002).

We argue that the heavy traffic limit is highly relevant for the study of limit order books in liquid
markets, and that the correct scaling limit for the liquid stocks examined in our data sets is the
”diffusion” limit. This heavy traffic limit is then derived in Theorem 3.2 and described in Section
3.4.3.

3.4.1 Fluid limit or diffusion limit?

Let (V n,a
i , i ≥ 1) the sequence of order sizes, whose properties depend on the index n. One way of

viewing the heavy traffic limit is to view the limit order book at a lower time resolution, by grouping
together events in batches of size n. Since the inter-event durations are finite, this is equivalent to
rescaling time by n. The impact, on the net order flow, of a batch of n events at the ask is

V n,a
1 + V n,a

2 + V n,a
3 + ...+ V n,a

n√
n

=
(V n,a

1 − V n,a) + (V n,a
2 − V n,a) + ...+ (V n,a

n − V n,a)√
n

+
√
n V n,a,

where V n,a = E[V n,a
1 ]. Under appropriate assumptions (see next section), this sum behaves approxi-

mately as a Gaussian random variable for large n:

V n,a
1 + V n,a

2 + V n,a
3 + ...+ V n,a

n√
n

∼ N(
√
n V n,a,Var(V n,a

1 )) as n→ ∞. (3.7)

Two regimes are possible, depending on the behavior of the ratio
√
n V n,a√

Var(V n,a
1 )

as n grows:

• If
√
n V n,a√

Var(V n,a
i )

→ ∞ as n → ∞, the correct approximation is given by the fluid limit, which

describes the (deterministic) behavior of the average queue size.

• If limn→∞
√
n V n,a√

Var(V n,a
i )

<∞, the rescaled queue sizes behave like a diffusion process.

The fluid limit corresponds to the regime of law of large numbers, where random fluctuations average
out and the limit is described by average queue size, whereas the diffusion limit corresponds to the
regime of the (functional) central limit theorem, where fluctuations in queue size are asymptotically
Gaussian.

Figure 3.11 displays the histogram of the ratio
√
n V n,a√

Var(V n,a
i )

for stocks in the Dow Jones index,

where for each stock n is chosen to represent the average number of order book events in a 10 second
interval (typically n ∼ 100−1000). This ratio is shown to be rather small at such intraday time scales,
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showing that the diffusion approximation, rather than the fluid limit, is the relevant approximation
to use here.

Figure 3.11: Empirical distribution of the ratio

√
nV n,a

√

Var(V n,a
1 )

showing the relative importance of

average change vs fluctuations in queue size, for stocks in the Dow-Jones index during June 08 (see
Section 3.4.1). Low values of the ratio indicate that intraday changes in bid/ask queue size are
dominated by fluctuations, rather than the average motion of the queue. Left: bid side. Right: ask
side.

Bid and ask queue sizes (qbt , q
a
t ) exhibit a diffusion-type behavior at such intraday time scales. Figure

3.12 shows the path of the net order flow process

xt = (qb0, q
a
0 ) +





Nb
t∑

i=1

V b
i ,

Na
t∑

i=1

V a
i



 (3.8)

sampled every second for CitiGroup stocks on a typical trading day. In this example, for which the
average time between consecutive orders is λ−1 ≃ 13 ms ≪ 1 second, we observe that the process X
behaves like a diffusion in the orthant with negative drift: the randomness of queue sizes does not
average out at this time scale.

We will now show that this is a general result: under mild assumptions on the order flow process, we
will show that the (rescaled) queue size process

(
qn,bnt√
n
,
qn,ant√
n
)t≥0 (3.9)

converges in distribution to a Markov process (Qt)t≥0 in the positive orthant, whose features we will
now describe in terms of the statistical properties of the order flow.
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Figure 3.12: Evolution of the net order flow Xt = (Xb
t , X

a
t ) given by Eq. (3.8) for CitiGroup shares

over one trading day (June 26, 2008). The starting point is taken to be (0,0) at the marke open. Note
the irregular, diffusive feature of the path of X and its negative drift.

3.4.2 A functional central limit theorem for the limit order book

Consider now a sequence qn = (qnt )t≥0 of processes, where qn represents the dynamics of the bid
and ask queues in the limit order book at a time resolution corresponding to n events (see discussion

above). The dynamics of qn is characterized by the sequence of order sizes (V n,b
i , V n,a

i )i≥1, durations

(Tn,b
i , Tn,a

i )i≥1 between orders and the fact that, at each price change

• qnτk = Rn
k = g(qnτk−, ǫ

n
k ) if the price has increased, and

• qnτk = R̃n
k = g(qnτk−, ǫ̃

n
k ) if the price has decreased,

where (ǫnk , k ≥ 1) is an IID sequence with distribution fn, and (ǫ̃nk , k ≥ 1) is an IID sequence with

distribution f̃n. Note that this specification includes Examples 3.1 and 3.2 as special cases.
We make the following assumptions, which allow for an analytical study of the heavy traffic limit

and are sufficiently general to accommodate high frequency data sets of trades and quotes such as the
ones described in Section 3.3:

Assumption 3.1. (Tn,a
i , Tn,b

i )i≥1 is a stationary array of positive random variables whose common
distribution has a continuous density and satisfies

lim
n→∞

Tn,a
1 + Tn,a

2 + ...+ Tn,a
n

n
=

1

λa
<∞, lim

n→∞
Tn,b
1 + Tn,b

2 + ...+ Tn,b
n

n
=

1

λb
<∞.

λa (resp. λb) represents the arrival rate of orders at the ask (resp. the bid).

Assumption 3.2. (V n,a
i , V n,b

i )i≥1 is a stationary, uniformly mixing array of random variables satis-
fying √

nE[V n,a
1 ]

n→∞→ V a,
√
nE[V n,b

1 ]
n→∞→ V b, (3.10)

lim
n→∞

E[(V n,a
i − V a)2] + 2

∞∑

i=2

cov(V n,a
1 , V n,a

i ) = v2a <∞, and

lim
n→∞

E[(V n,b
i − V b)2] + 2

∞∑

i=2

cov(V n,b
1 , V n,b

i ) = v2b <∞.
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The assumption of uniform mixing (Billingsley 1968, Ch. 4) implies that the partial sums of order
sizes verify a central limit theorem, but allows for various types of serial dependence in order sizes.
The scaling assumptions on the first two moments corresponds to the properties of the empirical data
discussed in Section 3.4.1. Under Assumption 4.3, one can define

ρ := lim
n→∞

1

vavb

(

2max(λa, λb)cov(V n,a
1 , V n,b

1 ) + 2

∞∑

i=1

λacov(V n,a
1 , V n,b

i ) + λbcov(V n,b
1 , V n,a

i )

)

.

(3.11)
ρ ∈ (−1, 1) may be interpreted as a measure of ‘correlation’ between event sizes at the bid and event
sizes at the ask.

These assumptions hold for the examples of Section 3.2.3. In the case of the Hawkes model,
Assumption 4.2 was shown to hold in Bacry et al. (2010). Also, these assumptions are quite plausible
for high frequency quotes for liquid US stocks since, as argued in Section 3.3:

• The tail index of order sizes is larger than two, so the sequences (V b
i , i ≥ 1) and (V a

i , i ≥ 1) have
a finite second moment.

• The sequence of order sizes is uncorrelated i.e. has statistically insignificant autocorrelation.
Therefore the sum of autocorrelations of order sizes is finite (zero, in fact).

• The sequence of inter-event durations has a finite empirical mean and is not autocorrelated.

These empirical observations support the plausibility of Assumptions 4.2 and 4.3 for the data sets
examined.

Assumption 4.3 has an intuitive interpretation: if orders are grouped in batches of n orders, then
Assumption 4.3 amounts to stating that the variance of batch sizes should scale linear with n. This
assumption can be checked empirically, using a variance ratio test for example: Figure 3.13 shows
that this linear relation is indeed verifies for the data sets examined in Section 3.3.

Figure 3.13: Variance of batch sizes of n orders, for General Electric shares, on June 26th, 2008. Left:
ask side. Right: bid side.

The following scaling assumption states that, when grouping orders in batches of n orders, a good
proportion of batches should have a size O(

√
n) (otherwise their impact will vanish in the limit when

n becomes large):
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Assumption 3.3. There exist probability distributions F, F̃ on the interior (0,∞) × (0,∞) of the
positive orthant, such that

nfn(
√
n .)

n→∞⇒ F and nf̃n(
√
n .)

n→∞⇒ F̃ .

Assumption 3.4. g ∈ C2(R2
+ × R2

+, ]0,∞[2) and

∃α > 0, ∀(x, y) ∈ R2
+ × R2

+, ‖g(x, y)‖ ≥ αmin(y1, y2).

Finally, we add the following condition for the initial value of the queue sizes:
(

qn,b0√
n
,
qn,a0√
n

)

n→∞→ (x0, y0) ∈]0,∞[×]0,∞[ (3.12)

The following theorem, whose proof is given in the Appendix, describes the joint dynamics of the bid
and ask queues in this heavy traffic limit:

Theorem 3.2 (Heavy traffic limit). Under Assumptions 4.1, 4.2, 4.3 and 3.4, the rescaled process

(Qn
t , t ≥ 0) =

(
qnnt√
n
, t ≥ 0

)

converges weakly, on the Skorokhod space (D(]0,∞[,R2
+), J1),

Qn n→∞⇒ Q

to a Markov process (Qt)t≥0 with values in R2
+, initial value Q0 = (x0, y0) given in (3.12) and

infinitesimal generator G given, for x > 0, y > 0, by

Gh(x, y) = λaV a
∂h

∂y
+ λbV b

∂h

∂x
+
λav2a
2

∂2h

∂y2
+
λbv2b
2

∂2h

∂x2
+ ρ

√
λaλbvavb

∂2h

∂x∂y
,(3.13)

Gh(x, 0) =
∫

]0,∞[2
Gh(g((x, 0), (u, v)))F (du, dv), Gh(0, y) =

∫

]0,∞[2
Gh(g((0, y), (u, v)))F̃ (du, dv),

and whose domain is the set dom(G) of functions h ∈ C2(]0,∞[×]0,∞[,R) ∩ C0(R2
+,R) verifying the

Wentzell boundary conditions

∀x > 0, h(x, 0) =

∫

R2
+

h(g((x, 0), (u, v)))F (du, dv), (3.14)

∀y > 0, h(0, y) =

∫

R2
+

h(g((0, y), (u, v)))F̃ (du, dv).

Proof. We outline here the main steps of the proof. The technical details are given in the Appendix.
Define the counting processes

Na,n
t = sup{k ≥ 0, T a,n

1 + ...+ T a,n
k ≤ t} and N b,n

t = sup{k ≥ 0, T b,n
1 + ...+ T b,n

k ≤ t} (3.15)

which correspond to the number of events at the ask (resp. the bid), and the net order flow

Xn
t =





Nb,n
nt∑

i=1

V b,n
i√
n
,

Na,n
nt∑

i=1

V a,n
i√
n





Then, as shown in Proposition 3.3 (see Appendix), Xn converges in distribution on (D([0,∞[,R2), J1)
to a two-dimensional Brownian motion with drift

(Xn
t )t≥0

n→∞⇒
(

Zt + t(λbV b, λaV a)
)

t≥0
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where Z is a planar Brownian motion with covariance matrix

(

λbv2b ρ
√
λaλbvavb

ρ
√
λaλbvavb λav2a

)

.

Under assumption 4.1, using the Skorokhod representation theorem, there exist IID sequences ((ǫnk , n ≥
1), (ǫ̃nk , n ≥ 1), ǫk, ǫ̃k)k≥1 and a copy X of the process

(

(x0, y0) + Zt + t(λbV b, λaV a)
)

t≥0

on some probability space (Ω0,B,Q) such that ǫnk ∼ fn, ǫ̃
n
k ∼ f̃n, ǫk ∼ F, ǫ̃k ∼ F̃ and

Q

(

Xn n→∞→ X ; ∀k ≥ 1,
ǫnk√
n

n→∞→ ǫk,
ǫ̃nk√
n

n→∞→ ǫ̃k

)

= 1.

Using the notations of Appendix 3.6.2, denote by

• τn1 = τ(Xn) the first exit time of Xn from the positive orthant R2
+ and

• τnk the first exit time of Ψk−1(X
n, Qn

τn
1
, ..., Qn

τn
k−1

) from R2
+.

We can now construct the process Q by an induction procedure. Let τ1 = τ(X) be the first exit time
of X from the orthant. Let Qt = Xt for t < τ1 and, by continuity of the first-passage time map and
the last-evaluation map at a first passage time (Whitt 2002, Sec. 13.6.3),

(τn1 , Q
n
τn
1 −)

n→∞→ (τ1, Qτ1−) Q− a.s.

We now set
Qτ1 = g(Xτ1−, ǫ1)1Xτ1 .(0,1)<0 + g(Xτ1−, ǫ̃1)1Xτ1 .(1,0)<0.

Since X is a Brownian motion,

lim inf
r↓0

(Xτ1+r −Xτ1).(1, 0) < 0

therefore P

(

1Xτ1
.(1,0)<0 = 1Xτ1

.(1,0)≤0

)

= 1 so we can also write

Qτ1 = g(Qτ1−, ǫ1)1Xτ1 .(0,1)≤0 + g(Qτ1−, ǫ̃1)1Xτ1 .(1,0)≤0.

X is a continuous process and the probability thats its path crosses the origin is zero, so by Lemma
3.2, X lies with probability 1 in the continuity set of the map G : ω → 1ωτ(ω).(0,1)<0. So using the
continuity of g(., .), we can apply the continuous mapping theorem (Billingsley 1968, Theorem 5.1),
to conclude that

Qn
τn
1

n→∞→ Qτ1 Q− a.s.

Let us now assume that we have defined Q on [0, τk−1] and shown that

(τn1 , .., τ
n
k−1, Q

n
τn
1
, ..., Qn

τn
k−1

)
n→∞→ (τ1, .., τk−1, Qτ1 , ..., Qτk−1

) Q− a.s.

Since Q((0, 0) /∈ Ψk(X,Qτ1 , ..., Qτk−1
)([0,∞)) ) = 1, Lemma 3.4 implies that (X,Qτ1 , ..., Qτk−1

) lies
with probability 1 in the continuity set of Ψk, so by the continuous mapping theorem

Ψk(X
n, Qn

τn
1
, ..., Qn

τn
k−1

)
n→∞→ Ψk(X,Qτ1 , ..., Qτk−1

) Q− a.s.
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Define now τk as the first exit time of Ψk(X,Qτ1 , ..., Q
n
τk−1

) from the positive orthant [0,∞[×[0,∞[.
As before, by continuity of the first-passage time map and the last-value map at a first passage time
(Whitt 2002, Sec. 13.6.3),

(τnk , Q
n
τn
k −)

n→∞→ (τk, Qτk−) Q− a.s.

We can now extend the definition of Q to [0, τk] by setting

Qt = Ψk(X,Qτ1 , ..., Qτk)(t) for t < τk, and

Qτk = g(Qτk−, ǫk)1Ψk(X,Qτ1
,...,Qτk−1

).(0,1)<0 + g(Qτk−, ǫ̃k)1Ψk(X,Qτ1
,...,Qτk−1

).(1,0)<0

As above, using the continuity properties of Ψk from Lemma 3.4 we conclude that Qn
τn
k
→ Qτk a.s.

and using the Brownian property of X we can show that

Qτk = g(Qτk−, ǫk)1Ψk(X,Qτ1
,...,Qτk−1

).(0,1)≤0 + g(Qτk−, ǫ̃k)1Ψk(X,Qτ1
,...,Qτk−1

).(1,0)≤0 a.s.

So finally, we have shown that

∀k ≥ 1, (τn1 , .., τ
n
k , Q

n
τn
1
, ..., Qn

τn
k
)
n→∞→ (τ1, .., τk, Qτ1 , ..., Qτk) Q− a.s.

We can now construct the sequences R, R̃ by setting

• Rk = Qτk if Ψk(X,Qτ1 , ..., Qτk−1
)(τk−).(0, 1) < 0,

• R̃k = Qτk if Ψk(X,Qτ1 , ..., Qτk−1
)(τk−).(1, 0) < 0.

Then Q = Ψ(X,R, R̃) where Ψ is the map defined in Definition 3.1. Let us now show that (X,R, R̃)
lies with probability 1 in the J1−continuity set of Ψ, in order to apply the continuous mapping
theorem. X is a continuous process whose paths lie in C0([0,∞),R2−{(0, 0)}) almost surely. Since F
and F̃ have zero mass on the axes, with probability 1 the sequences (ǫk)k≥1, (ǫ̃k)k≥1 do not have any

accumulation point on the axes. Assumption 3.4 then implies that the sequences (Rk)k≥1, (R̃k)k≥1

do not have any accumulation point on the axes. From the definition of Ψ (Definition 3.1), Q jumps
at each hitting time of the axes and, in between two jumps, its increments follow those of the planar
Brownian motion X. Since F, F̃ have no mass at the origin and planar Brownian paths have a zero
probability of hitting isolated points, with probability 1 the graph of Q = Ψ(X,R, R̃) does not hit the
origin :

Q

(

(0, 0) /∈ Ψ(X,R, R̃)([0,∞) )
)

= 1. (3.16)

So the triplet (X,R, R̃) satisfies the conditions of Theorem 3.1 almost-surely i.e. Ψ is continuous at
(X,R, R̃) with probability 1. We can therefore apply the continuous mapping theorem (Billingsley
1968, Theorem 5.1) and conclude that

Qn = (Xn, Rn, R̃n)
n→∞⇒ Q = Ψ(X,R, R̃).

The process Q = Ψ(X,R, R̃) can be explicitly constructed from the planar Brownian motion X and
the sequences R, R̃: Q follows the increments of X and is reinitialized to Rn or R̃n at each hitting
time of the axes. Lemma 3.5 in Appendix 3.6.4 uses this description to show that Q is a Markov
process whose infinitesimal generator is given by (3.13)- (3.14).

Remark 3.1 (Lévy process limits). The diffusion approximation inside the orthant fails when order
sizes do not have a finite second moment. For example, if the sequence (V a

i , V
b
i ) is regularly varying

with tail exponent α ∈ (0, 2) (see Resnick (2006) for definitions), the heavy-traffic approximation Q is
a pure-jump process in the positive orthant, constructed by applying the map Ψ to a two-dimensional
α-stable Lévy process L:

Q = Ψ(L,R, R̃),

i.e. by re-initializing it according to (3.5) at each attempted exit from the positive orthant. We do not
further develop this case here, but it may be of interest for the study of illiquid limit order markets,
or those where order flow is dominated by large block trades.
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3.4.3 Jump-diffusion approximation for order book dynamics

Theorem 3.2 implies that, when examined over time scales much larger than the interval between
order book events, the queue sizes qb and qa are well described by a Markovian jump-diffusion process
(Qt)t≥0 in the positive orthant R2

+ which behaves like a a planar Brownian motion with drift vector

(λbV b, λaV a) (3.17)

and covariance matrix (

λbv2b ρ
√
λaλbvavb

ρ
√
λaλbvavb λav2a

)

. (3.18)

in the interior ]0,∞[2 of the orthant and, at each hitting time τk of the axes, jumps to a new position

• Qτk = Rk = g(Qτk−, ǫk) whenever Q
a
τk−

= 0,

• Qτk = R̃k = g(Qτk−, ǫ̃k) whenever Q
b
τk−

= 0,

where the ǫk are IID with distribution F and the ǫ̃k are IID with distribution F̃ . We note that similar
processes in the orthant were studied byBaccelli and Fayolle (1987) with queueing applications in
mind, but not in the context of heavy traffic limits.

This process is analytically and computationally tractable and allows various quantities related to
intraday price behavior to be computed (see next section).

If γ0 = (E[T a
1 ] + E[T b

1 ])/2 is the average time between order book events, (γ0 ≤ 100 milliseconds),
and γ1 ≫ γ0 (typically, γ1 ∼ 10-100 seconds) then Theorem 3.2 leads to an approximation for the
distributional properties of the queue dynamics in terms of Qt:

qt ≃d
√
N Qt/N where N =

γ1
γ0

So, under Assumptions 4.2, 4.3, 4.1 and 3.4 the queue sizes (qbt , q
a
t )t≥0 can be approximated at the

time scale γ1 by a Markov process which

• behaves like a two-dimensional Brownian motion with drift (µb, µa) and covariance matrix Λ on
{x > 0} ∩ {y > 0} with

µa =
√
NλaV a, µb =

√
NλbV b, Λ = N

(

λbv2b ρ
√
λaλbvavb

ρ
√
λaλbvavb λav2a

)

(3.19)

and,

• jumps to a new value g(qt−,
√
Nǫk) if q

a
t− = 0,

• jumps to a new value g(qt−,
√
Nǫ̃k) if q

b
t− = 0,

where ǫk ∼ F , ǫ̃k ∼ F̃ are IID.
This gives a rigorous justification for modeling the queue sizes by a diffusion process at such

intraday time scales, as proposed in Avellaneda et al. (2011). The parameters involved in this approx-
imation are straightforward to estimate from empirical data: they involve estimating first and second
moments of durations and order sizes.

Example 3.3. Set for instance γ1 = 30 seconds and γ0 = (E[T a] + E[T b])/2. The following table
shows the parameters (3.19) estimated from high frequency records or order book events for three liquid
US stocks.

In particular we observe that the order of magnitude of the standard deviation of queue lengths is
an order of magnitude larger than their expected change.



CHAPTER 3. HEAVY TRAFFIC LIMITS AND DIFFUSION APPROXIMATIONS 86

Std deviation of Std deviation of
Bid queue Ask queue µb µa ρ

Citigroup 6256 4457 -1033 -2467 0.07
General Electric 2156 2928 -334 -1291 0.03
General Motors 578 399 +78 -96 - 0.04

Table 3.5: Parameters for the heavy-traffic approximation of bid / ask queues over a 30-second time
scale. The unit is a number of orders per period of 30 seconds.

Example 3.4. Theorem 3.2 may also be used to derive jump-diffusion approximations for the limit
order book in theoretical models such as the ones presented in Section 3.2.3. Let us illustrate this in
the case of the heterogeneous trader model of Section 3.2.3.

Let (Ti, i ≥ 1) be the sequence of duration between consecutive orders. We assume that this sequence
is a sequence of stationary random variables with E[T1] < ∞. We also assume that every trader has
an equal chance of being a buyer or a seller and that the type of trader (buyer or seller) is independent
from the past:

P[i− th trader is a buyer] = P[i− th trader is a seller] =
1

2

Finally the sequence of number of orders (Vi, i ≥ 1) is a stationary sequence of orders traded by
the i-th trader with the property that E[V 2

1 ] <∞.
This order flow given by (Ti, i ≥ 1), (Vi, i ≥ 1), and the sequence of type (buyers or sellers, using

limit orders, market orders or both) generates a sequence of durations (T a
i , i ≥ 1), (T b

i ; i ≥ 1) and
order sizes (V a

i , i ≥ 1) and (V b
i , i ≥ 1) which satisfy assumptions 4.2 and 4.3.

The sequence of durations (T a
i , i ≥ 1) and (T b

i , i ≥ 1) are two stationary sequences of random
variables with finite mean:

∀i ≥ 0, Ti = T a
i = T b

i . therefore E[Ti] = E[T a
i ] = E[T b

i ] <∞.

The sequence of order sizes ((V b
i , V

a
i ), i ≥ 1) is a sequences of IID random variables with

P[(V b
i , V

a
i ) = (Vi, 0)] = P[(V b

i , V
a
i ) = (0, Vi)] =

m

2
, (3.20)

P[(V b
i , V

a
i ) = (−Vi, 0)] = P[(V b

i , V
a
i ) = (0,−Vi)] =

l

2
, (3.21)

P[(V b
i , V

a
i ) = (γVi,−(1− γ)Vi)] = P[(V b

i , V
a
i ) = (−(1− γ)Vi, γVi)] =

1− l −m

2
. (3.22)

Theorem 3.2 then shows that (Qb, Qa) is a Markov process which behaves like a two-dimensional
Brownian motion with drift (µb, µa) and covariance matrix Λ inside the positive orthant {x > 0}∩{y >
0} where:

µb = µa =
V

2E[T1]
(2m+ 2γ(1− l −m)− 1) , Λ = v2

(
1 ρ
ρ 1

)

, where (3.23)

v2 =
E[T1]E[V

2
1 ]

4

(

m+ l +
γ2 + (1− γ)2

2
(1− l −m)

)

and ρ = − (1− l −m)2γ(1− γ)

1 + (1− l −m)(γ2 − γ − 1/2)
< 0.

(3.24)
Figure 3.14 displays the value of the correlation ρ in different scenarios as a function of γ and the
proportion 1− (l +m) of traders submitting orders of both types.
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Figure 3.14: Correlation ρ between bid and ask queue sizes for different scenario. 1 - (l+m) represents
the proportion of traders using both market and limit orders, γ the proportion of limit orders and
(1− γ) the proportion of market orders.
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3.5 Price dynamics

3.5.1 Price dynamics in the heavy traffic limit

Denote by (snt , t ≥ 0) the (bid) price process corresponding to the limit order book process (qnt )t≥0.
As explained in Section 3.2, sn is a piecewise constant stochastic process which

• increases by one tick at each event (ta,ni , V a,n
i ) at the ask for which qa,n(ta,ni ) + V a,n

i < 0,

• decreases by one tick at each event (tb,ni , V b,n
i ) at the bid for which qb,n(tb,ni ) + V b,n

i < 0.

Due to the complex dependence structure in the sequence of order durations and sizes, properties of
the process sn are not easy to study, even in simple models such as those given in Section 3.2.3. The
following result shows that the price process converges to a simpler process in the heavy traffic limit,
which is entirely characterized by hitting times of the two dimensional Markov process Q:

Proposition 3.1. Under the assumptions of Theorem 3.2,

(snt , t ≥ 0)
n→∞⇒ S, on (D([0,∞[,R),M1), where

St = δ




∑

0≤s≤t

1Qa
s−=0 −

∑

0≤s≤t

1Qb
s−=0



 . (3.25)

S is a piecewise constant cadlag process which

• increases by one tick at t if Qa
t− = 0 and

• decreases by one tick at t if Qb
t− = 0.

Proof. We refer the reader to Whitt (2002) or Whitt (1980) for a description of the M1 topology. The
price process sn (rescaled in time) can be expressed as

snt =
∑

τn
k ≤t

1Ψk−1(Xn,Qn
τn
1
,...,Qn

τn
k−1

)(τn
k ).(0,1)<0 − 1Ψk−1(Xn,Qn

τn
1
,...,Qn

τn
k−1

)(τn
k ).(1,0)<0.

where τnk , Q
n
τn
k
are defined in the proof of Theorem 3.2, where it was shown that

∀k ≥ 1, (Xn, τn1 , .., τ
n
k , Q

n
τn
1
, ..., Qn

τn
k
)
n→∞⇒ (X, τ1, .., τk, Qτ1 , ..., Qτk).

As shown in the proof of Theorem 3.2, (X,Qτ1 , ..., Qτk,...) lies, with probability 1, in the set of
continuity points of Ψk for each k ≥ 1 so

Ψk(X
n, Qn

τn
1
, ..., Qn

τn
k
)
n→∞⇒ Ψk(X,Qτ1 , ..., Qτk).

Applying Lemma 3.2 and the continuous mapping theorem (Billingsley 1968, Theorem 5.1) then shows
that

1Ψk−1(Xn,Qn
τn
1
,...,Qn

τn
k−1

)(τn
k −).(0,1)<0

n→∞⇒ 1Ψk−1(X,Qτ1 ,...,Qτk−1
)(τk−).(0,1)<0

The sequences of processes
∑

τn
k ≤t 1Ψk−1(Xn,Qn

τn
1
,...,Qn

τn
k−1

)(τn
k ).(0,1)<0 and

∑

τn
k ≤t 1Ψk−1(Xn,Qn

τn
1
,...,Qn

τn
k−1

)(τn
k ).(1,0)<0

belong to D↑([0,∞[,R+), the set of increasing cadlag trajectories. The convergence for the M1 topol-
ogy of sequences in D↑ reduces to the convergence on a dense subset including zeros. Therefore

∑

τn
k ≤t

1Ψk−1(Xn,Qn
τn
1
,...,Qn

τn
k−1

)(τn
k ).(0,1)<0 ⇒

∑

τk≤t

1Ψk−1(X,Qτ1
,...,Qτk−1

)(τk).(0,1)<0, and
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∑

τn
k ≤t

1Ψk−1(Xn,Qn
τn
1
,...,Qn

τn
k−1

)(τn
k ).(1,0)≤0 ⇒

∑

τk≤t

1Ψk−1(X,Qτ1
,...,Qτk−1

)(τk).(1,0)≤0.

On the other hand, since the set of discontinuities of
∑

τk≤t 1Ψk(X,Qτ1
,...,Qτk−1

)(τk).(0,1)<0 and
∑

τk≤t 1Ψk(X,Qτ1
,...,Qτk−1

)(τk).(1,0)<0 have an intersection which is almost surely void, one can apply

(Whitt 1980, Theorem 4.1) and (Whitt 2002, Theorem 12.7.1) and

(snt , t ≥ 0)
n→∞⇒ S. on (D([0,∞[,R+),M1).

S is thus the difference between the occupation time of the y axis and the occupation time of
the x axis by the Markov process Q. In particular, this result shows that, in a market where order
arrivals are frequent, distributional properties of the price process sn may be approximated using the
distributional properties of the limit S. We will now use this result to obtain some analytical results
on the distribution of durations between price changes and the transition probabilities of the price.

3.5.2 Duration between price moves

Starting from an initial order book configuration Q0 = (x, y),

• the next price increase occurs at the first hitting time of the x-axis by (Qt−)t≥0:

τa = inf{t ≥ 0, Qa
t− = 0}

• the next price decrease occurs at the first hitting time of the y-axis by (Qt−)t≥0:

τb = inf{t ≥ 0, Qb
t− = 0}.

The duration τ until the next price changes is then given by

τ = τa ∧ τb,
which has the same law as the first exit time from the positive orthant of a two-dimensional Brownian
motion with drift. Using the results of Metzler (2010), Zhou (2001) we obtain the following result
which relates the distribution of this duration to the state of the order book and the statistical features
of the order flow process, for a balanced order flow where V a = V b = 0.

Proposition 3.2 (Conditional distribution of duration between price changes). In the case of balanced

order flow where V a = V b = 0 the distribution of the duration τ until the next price change, conditional
on the current state of the bid and ask queues, is given by

P[τ > t|Qb
0 = x,Qa

0 = y] =

√

2U

πt
e
−
U

4t
∞∑

n=0

1

(2n+ 1)
sin

(2n+ 1)πθ0
α

(I(νn−1)/2(
U

4t
) + I(νn+1)/2(

U

4t
)),

where νn = (2n+ 1)π/α, In is the nth Bessel function,

U =
( x
λav2

a
)2 + ( y

λbv2
b
)2 − 2ρ xy

λaλbv2
av

2
b

(1− ρ)
, and

α =







π + tan−1(−
√

1− ρ2

ρ
) ρ > 0

π

2
ρ = 0

tan−1(−
√

1− ρ2

ρ
) ρ < 0

and θ0 =







π + tan−1(−y
√

1− ρ2

x− ρy
) x < ρy

π

2
x = ρy

tan−1(−y
√

1− ρ2

x− ρy
) x > ρy

(3.26)
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In particular, τ is regularly varying with tail index
π

2α
.

Proof. When V a = V b = 0, the process Q behaves like a two-dimensional Brownian motion Z with
covariance matrix given by (4.3) up to the first hitting time of the axes, so the distribution of the
duration τ has the same law as the first exit time of Z from the orthant:

τ
d
= inf{t ≥ 0, Qa

t− < 0 or Qb
t− < 0}

Using the results of Iyengar (1985), corrected by Metzler (2010) for the distribution of the first exit
time of a two-dimensional Brownian motion from the orthant we obtain the result.

A result of Spitzer (1958) then shows that

E[τβ |Qb
0 = x,Qa

0 = y] =

∫ ∞

0

tβ−aP[τ > t|Qb
0 = x,Qa

0 = y]dt <∞

if and only if β < π/2α, where α is defined in (3.26). Therefore the tail index of τ is
π

2α
. This result

does not depend on the initial state (x, y).

• If ρ = 0, the two components of the Brownian Motion are independent and τ is a regularly-
varying random variable with tail index 1. This random variable does not have a moment of
order one.

• If ρ < 0,
π

2α
> 1 and τ has a finite moment of order one. In practice, ρ ≈ −0.7; this means that

if µa = 0 and µb = 0, the tail index of τ is around 2.

• When ρ > 0,
π

2α
< 1. The tail of τ is very heavy; τ does not have a finite moment of order one.

For all high frequency data sets examined, the estimates for µa, µb are negative (see Section 3.4.3);
the durations then have finite moments of all orders.

Remark 3.2. Using the results of Zhou (2001) on the first exit time of a two-dimensional Brownian

motion with drift, one can generalize the above results to the case where (V b, V a) 6= (0, 0): we obtain
in that case

P[τ > t|Qb
0 = x,Qa

0 = y] =
2ea1x+a2y+att−r20/2t

αt

∞∑

n=1

sin

(
nπθ0
α

)∫ α

0

sin
(nπ

α

)

gn(θ)dθ (3.27)

where θ0, α are defined as above, r0 =
√
U and

gn(θ) =

∫ ∞

0

re−r2/2ted1r sin(θ−α)−d2r cos(θ−α)Inπ/α(
rr0
t
)dr,

d1 =
(

a1
√
λava + ρa2vb

√
λb
)

, d2 =
(

ρa1
√
λava + a2vb

√
λb
)

(3.28)

a1 = −µa

√
λbvb + µbρva

√
λa

(1− ρ2)σ2
aλ

a
√
λbvb

, a2 = −ρµa

√
λbvb + µbva

√
λa

(1− ρ2)σ2
bλ

b
√
λava

, (3.29)

and at =

(

a1
λav2a
2

+ a2
λbv2b
2

+ 2ρa1
√
λaλbvaa2vb

)

− a1µa − a2µb. (3.30)
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3.5.3 Probability of a price increase

A useful quantity for short-term prediction of intraday price moves is the probability pup1 (x, y) that
the price will increase at the next move given x orders at the bid and y orders at the ask; in our
setting this is equal to the probability that the ask queue gets depleted before the bid queue.

In the heavy traffic limit, this quantity may be represented as the probability that the two-
dimensional process (Qt, t ≥ 0), starting from an initial position (x, y), hits the horizontal axis before
hitting the vertical axis:

pup1 (x, y) = P[τa < τb|(Qb
0, Q

a
0) = (x, y)].

Since this quantity only involves the process Q up to its first hitting time of the boundary of the
orthant, it may be equivalently computed by replacing Q by a two-dimensional Brownian motion with
drift and covariance given by (4.2)–(4.3).

However, when V a = V b = 0, one has a simple analytical solution which only depends on the size
x of the bid queue, the size y of the ask queue and the correlation ρ between their increments:

Theorem 3.3. Assume V a + V b ≤ 0. Then pup1 : R2
+ → [0, 1] is the unique bounded solution of the

Dirichlet problem

λav2a
2

∂2pup1
∂y2

+
λbv2b
2

∂2pup1
∂x2

+ ρ
√
λaλbσaσb ∂

2pup1
∂x∂y

+ λaV a
∂pup1
∂y

+ λbV b
∂pup1
∂x

= 0 for x > 0, y > 0

(3.31)
with the boundary conditions

∀x > 0, pup1 (x, 0) = 1 and ∀y > 0, pup1 (0, y) = 0. (3.32)

When V a = V b = 0, pup1 (x, y) is given by

pup1 (x, y) =
1

2
−

arctan(
√

1+ρ
1−ρ

y√
λava

− x√
λbvb

y√
λava

+ x√
λbvb

)

2 arctan(
√

1+ρ
1−ρ )

, (3.33)

where λa, λb, va and vb are defined in Assumptions 4.2 and 4.3.

Proof. Using the results of Yoshida and Miyamoto (1999), the Dirichlet problem (3.31)–(3.32) has a
unique positive bounded solution u ∈ C2(]0,∞[2,R+) ∩ C0

b (R
2
+,R+). Application of Ito’s formula to

Mt = u(Qb
t , Q

a
t ) then shows that the process Mτ stopped at τ is a martingale, and conditioning with

respect to (Qb
0, Q

a
0) = (x, y) gives u(x, y) = pup(x, y)

Assume now V a = V b = 0. Using a change of variable x 7→ x
√
λbvb and y 7→ y

√
λava, one only

needs to consider the case where
√
λbvb =

√
λava.

Up to the first hitting time of the axes, (Qt, t ≥ 0) is identical in law to Q = AB where

A =

(
cos(β) sin(β)
sin(β) cos(β)

)

,

with β satisfying ρ = sin(2β), β ≤ π/4 and B a standard planar Brownian Motion with identity
covariance. Using polar coordinates (x, y) = (r cos θ, r sin θ) we have

φ(r, θ) := pup1 (r A−1(cos(θ), sin(θ)) = pup1

(
r

cos2(β)− sin2(β)
(cos(β + θ), sin(θ − β))

)

is a solution of the Dirichlet problem

1

r

∂

∂r
(r
∂φ

∂r
) +

1

r2
∂2φ

∂θ2
= 0 (3.34)
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in the cone C = {(r, θ), r > 0, θ ∈]− β, π2 − β[}, with the boundary conditions

∀r > 0, φ(r,−β) = 1 φ(r,
π

2
− β) = 0 (3.35)

A positive bounded solution, which in this case does not depend on r, is given by

φ(r, θ) =
1

π/2 + arcsin ρ
(−θ + π/2 + arcsin(ρ)/2),

where ρ is the correlation coefficient between the bid and ask queues. By (Yoshida and Miyamoto
1999, Theorem 3.2), the Dirichlet problem (3.34)–(3.35) has a unique bounded solution, so finally

pup1 (x, y) =
1

π/2 + arcsin ρ

(

π/2 + arcsin(ρ)/2− arctan(
sin(arctan(y/x)− β)

cos(β + arctan(y/x))
)

)

.

Remark 3.3. When
√
λava =

√
λbvb, the probability pup1 (x, y) only depends on the ration y/x and

on the correlation ρ

pup1 (x, y) =
1

2
−

arctan(
√

1+ρ
1−ρ

y−x
y+x )

2 arctan(
√

1+ρ
1−ρ )

, (3.36)

and when ρ = 0 (which is the case for some empirical examples, see Section 3.4.3),

pup1 (x, y) =
2

π
arctan(

y

x
).

Figure 3.15 displays the dependence of the uptick probability pup1 on the bid-ask imbalance variable
θ = arctan(y/x) for different values of ρ.
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Figure 3.15: pup1 as a function of the bid-ask imbalance variable θ = arctan(y/x) for ρ = 0 (blue line),
ρ = −0.7 (green line) and ρ = −0.9 (red line).
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3.6 Appendix: Technical Proofs

3.6.1 A J1-continuity property

Lemma 3.2. Let τ : D([0,∞),R2) 7→ [0,∞[ be the first exit time from the positive orthant. The map

G : (D([0,∞),R2), J1) → R (3.37)

ω → 1ω(τ(ω)).(0,1)<0.

is continuous on the set {ω ∈ C([0,∞),R2\{(0, 0)}), τ(ω) <∞}.
When τ(ω) <∞, G(ω) = 1 indicates that ω first exits the orthant by crossing the x-axis. To prove

this property, first note that

C([0,∞),R2\{(0, 0)}) =
⋃

n≥1

C0([0,∞),R2\B(0, 1/n)).

Let ω0 ∈ C([0,∞),R2\{(0, 0)}). There exists n ∈ N such that ω0 /∈ B(0, 1/n). Let ǫ > 0 such that
ǫ+ ηω0

(ǫ) + ηω0◦λ(ǫ) < 1/n, where ηω is the modulus of continuity of ω. Let ω′ ∈ D([0,∞),R2) with
dJ1(ω0, ω

′) ≤ ǫ. There exists λ : [0, T ] → [0, T ] increasing such that

||ω0 ◦ λ− ω||∞ ≤ ǫ and ||λ− e||∞ ≤ ǫ.

Without loss of generality, one can also assume, by J1-continuity of τ at ω0, that

|τ(ω0)− τ(ω)| ≤ ǫ.

Now, we will show that |ω0(τ(ω0))− ω′(τ(ω′))| ≤ ǫ+ ηω0(ǫ) + ηω0◦λ(ǫ):

|ω0(τ(ω0))−ω′(τ(ω′))| = |ω0(τ(ω0))−ω0◦λ(τ(ω′))+ω0◦λ(τ(ω′))−ω0◦λ(τ(ω0))+ω0◦λ(τ(ω0))−ω′(τ(ω′))|,

therefore

|ω0(τ(ω0))− ω′(τ(ω′))| ≤ ||ω0 ◦ λ− ω′||∞ + |ω0 ◦ λ(τ(ω′))− ω0 ◦ λ(τ(ω0))|+ |ω0 ◦ λ(τ(ω0))− ω0(τ(ω0))|
≤ ǫ+ ηω0

(ǫ) + ηω0◦λ(ǫ).

Since ǫ + ηω0
(ǫ) + ηω0◦λ(ǫ) < 1/n and ω0 /∈ B(0, 1, n), 1τ(ω0).(0,1)<0 = 1τ(ω′).(0,1)<0, which completes

the proof of the continuity of the map G on the space C([0,∞),R2\{(0, 0)}).

3.6.2 Continuity of Ψ: proof of Theorem 3.1

To study the continuity of the map Ψ, we endow D([0,∞),R2) with Skorokhod’s J1 topology (see
Lindvall (1973), Whitt (1980)). Let ΛT the set of continuous, increasing functions λ : [0, T ] → [0, T ]
and e the identical function on [0, T ]. Recall that the following metric

dJ1
(ω1, ω2) = inf

λ∈Λ
(||ω2 ◦ λ− ω1||∞ + ||λ− e||∞) .

defined for ω1, ω2 ∈ D([0, T ],R2), induces the J1 topology onD([0, T ],R2), and ωn → ω in (D([0,∞),R2), J1)
if for every continuity point T of ω, ωn → ω in (D([0, T ],R2), J1).

The set (R2
+)

N

is endowed with the topology induced by ’cylindrical’ semi-norms, defined as follows:

for a sequence (Rn)n≥1 in (R2
+)

N

Rn n→∞→ R ⇐⇒ ∀k ≥ 1, sup{|Rn
1 −R1|, ..., |Rn

k −Rk|) n→∞→ 0.
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D([0,∞),R2) × (R2
+)

N × (R2
+)

N

is then endowed with the corresponding product topology. The goal
of this section is to characterize the continuity set of the map

Ψ : D([0,∞),R2)× (R2
+)

N × (R2
+)

N 7→ D([0,∞),R2
+)

introduced in Definition 3.1. Let us introduce C([0,∞),R2\{(0, 0)}) be the space of continuous planar
paths avoiding the origin:

C([0,∞),R2\{(0, 0)}) =
⋃

n≥1

C0([0, T ],R
2\B(0, 1/n)).

Lemma 3.3. Let ω ∈ C([0,∞),R2\{(0, 0)}). Then the map

Ψ1 : D([0,∞),R2)× R+ × R+ → D([0,∞),R2) (3.38)

(ω,R1, R̃1) 7→ ω + 1[τ(ω),∞)

(

1σb(ω)=τ(ω)(R1 − ωτ(ω)) + 1σa(ω)=τ(ω)(R̃1 − ωτ(ω))
)

,

where

σb(ω) = inf{t ≥ 0, ωt.(0, 1) < 0}, σa(ω) = inf{t ≥ 0, ωt.(1, 0) < 0} and τ(ω) = σb(ω) ∧ σa(ω).

is continuous at ω with respect to the following distance on (D([0,∞],R2)× R+ × R+):

d((ω,R1, R̃1), (ω
′, R′

1, R̃
′
1)) = dJ1

(ω, ω′) + |R1 −R′
1|+ |R̃1 − R̃1|

Proof. Let (ω0, R1, R̃1) ∈ C([0,∞),R2\{(0, 0)}) × R2
+, (ω′, R′

1, R̃
′
1) ∈ D(0,R2) × R2

+. Since ω0 ∈
C([0,∞),R2\{(0, 0)}), there exists n > 0 such that ω0 /∈ B(0, 1/n). Let 0 < ǫ < 1/n such that

d((ω0, R1, R̃1), (ω
′, R′

1, R̃
′
1)) < ǫ.

Since dJ1
(ω0, ω

′) < ǫ, there exists λ : [0, T ] → [0, T ], non-decreasing such that:

||λ− e||∞ < ǫ, and ||ω0 ◦ λ− ω||∞ < ǫ.

By continuity of τ for the J1 topology Whitt (2002)[Theorem 13.6.4] at ω0 (since ω0 is continuous,
the J1 and M1 topologies are identical at this point), one can also assume, without loss of generality,
that

|τ(ω0 ◦ λ)− τ(ω′)| ≤ ǫ.

Moreover, since the graph of ω0 does not intersect with B(0, 1/n) and ǫ < 1/n, 1τ(ω0)=σa(ω0) =
1τ(ω′)=σa(ω′). Now define λǫ by

λǫ : [0, T ] → [0, T ] (3.39)

t 7→ τ(ω′)

τ(ω0 ◦ λ)
λt.

Then

||λǫ − e||∞ = || τ(ω)

τ(ω0 ◦ λ)
λ− e||∞ ≤ || τ(ω)

τ(ω0 ◦ λ)
λ− τ(ω)

τ(ω0 ◦ λ)
e||∞ + || τ(ω)

τ(ω0 ◦ λ)
e− e||∞

≤ ǫ
τ(ω)

τ(ω0 ◦ λ)
+

ǫ

τ(ω0 ◦ λ)
.

On the other hand

||ω0 ◦ λǫ − ω||∞ = ||ω0 ◦ λǫ − ω0 ◦ λ+ ω0 ◦ λ− ω||∞ ≤ ||ω0 ◦ λǫ − ω0 ◦ λ||∞ + ǫ ≤ ηω0◦λ(ǫ) + ǫ,
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where ηω0◦λ is the modulus of continuity modulus of ω0 ◦ λ. Therefore, since 1τ(ω0◦λǫ) = 1τ(ω′) by
definition of λǫ and

Ψ1(ω0, R1, R̃1) ◦ λǫ −Ψ1(ω
′, R′

1, R̃
′
1)) = ω0 ◦ λǫ − ω′

+ 1τ(ω0◦λǫ)

(

1τ(ω′)=σa
(R′

1 −R1) + 1τ(ω′)=σb
(R̃′

1 − R̃1)
)

.

Thus λǫ satisfies ||λǫ − e|| ≤ ǫ( τ(ω
′)+1

τ(ω0◦λ) ) and

||Ψ1(ω0, R1, R̃1) ◦ λǫ −Ψ1(ω
′, R′

1, R̃
′
1))||∞ ≤ ηω0◦λ(ǫ) + ǫ+ 2ǫ

which proves that (ω0, R1, R̃1) is a continuity point for Ψ1.

For k ≥ 2, define recursively the maps

Ψk : D([0,∞),R2)× RN

+ × RN

+ → D([0,∞),R2) (3.40)

(ω, (Ri, R̃i)i≥1) 7→ Ψ1(Ψk−1(ω, (Ri, R̃i)i=1..k−1), Rk, R̃k).

To simplify notation we will denote the argument of Ψk as (ω,R, R̃)(= (ω, (Ri, R̃i)i≥1) although it is

easily observed from (3.40) that Ψk only depends on the first k elements (Ri, R̃i)i=1..k) of R, R̃.

Lemma 3.4. If (ω,R, R̃) ∈ C([0,∞),R2\{(0, 0)})× RN
+ × RN

+ such that

(0, 0) /∈ Ψk(ω,R, R̃)([0,∞) ) (3.41)

then Ψk is continuous at (ω,R, R̃).

Proof. Let (Ri, R̃i)i≥1, (R
′
i, R̃

′
i)i≥1, two sequences of random variables on R2

+ and define

Ωk(R, R̃) = ∩k
j=0Ψj(C([0,∞),R2\{(0, 0)}), R, R̃)

where we have set Ψ0 = Id. Consider ω0 ∈ Ωk(R, R̃), and ω ∈ D([0, T ],R2
+), such that:

dJ1
(ω0, ω) + sup

i=1..k
|Ri −R′

i|+ sup
i=1..k

|R̃i − R̃′
i| ≤ ǫ.

An application of the triangle inequality yields

dJ1
(Ψk(ω0, (Ri, R̃i)),Ψk(ω

′, (R′
i, R̃

′
i)))

≤ dJ1(Ψk(ω0, (Ri, R̃i)),Ψk(ω
′, (Ri, R̃i))) + dJ1(Ψk(ω

′, (Ri, R̃i)),Ψk(ω
′, (R′

i, R̃
′
i)))

where the last term converges to zero when ǫ goes to zero by continuity of Ψ1.

We can now prove Theorem 3.1.

Proof. Proof of Theorem 3.1. Since ω is continuous, the jumps of Ψ(ω,R, R̃) correspond to the
first exit times from the orthant of the paths Ψk(ω,R, R̃). Therefore, if (Rn)n≥1, (R̃n)n≥1 have no

accumulation points on the axes, the paths Ψ(ω,R, R̃) only has a finite number of discontinuities on
[0, T ] for any T > 0. So, for any T > 0, there exists k(T ) such that Ψ = Ψk(T ). Then thanks to
Lemma 3.4, Ψ is continuous on the set of continuous trajectories whose image has a finite number of
discontinuities and does not contain the origin.



CHAPTER 3. HEAVY TRAFFIC LIMITS AND DIFFUSION APPROXIMATIONS 97

3.6.3 Functional central limit theorem for the net order flow

Proposition 3.3. Let (T a,n
i , T b,n

i )i≥1 and (V a,n
i , V b,n

i )i≥1 be stationary arrays of random variables

which satisfy Assumptions 4.2 and 4.3. Let (Na,n
t , t ≥ 0) and (N b,n

t , t ≥ 0) be the counting processes
defined in (3.15). Then





Na,n
nt∑

i=1

V a,n
i√
n
,

Nb,n
nt∑

i=1

V b,n
i√
n





t≥0

J1⇒
n→∞

(

ΣBt + t(λaV a, λbV b)
)

t≥0
(3.42)

where B is a standard planar Brownian motion and

ΣtΣ =

(

λav2a ρ
√
λaλbvavb

ρ
√
λaλbvavb λbv2b

)

, (3.43)

Proof: First we will prove that the sequence of processes





[λat]
∑

i=1

V a,n
i√
n
,

[λbt]
∑

i=1

V b,n
i√
n





t≥0

J1⇒
n→∞

(

ΣBt + t(λaV a, λbV b)
)

t≥0

weakly converges in the J1 topology. Using the Cramer-Wold device, it is sufficient to prove that for
(α, β) ∈ R2,



α

[λat]
∑

i=1

V a,n
i√
n

+ β

[λbt]
∑

i=1

V b,n
i√
n





t≥0

⇒
n→∞

(αλaV a+βλbV b))t+

√

(α2λav2a + β2λbv2b + 2ραβvavb
√
λaλb)Bt

If λa ∈ Q and λb ∈ Q, it is possible to find λ such that λa/λ ∈ N and λb/λ ∈ N. Let for all (i, n) ∈ N2,

Wn
i = α

(

V a,n
(λa/λ)(i−1)+1 + V a,n

2 + ...+ V a,n
λai/λ

)

+ β
(

V b,n
(λb/λ)(i−1)+1

+ V b,n
2 + ...+ V b,n

λbi/λ

)

,

then for all t > 0,

α

[λat]
∑

i=1

V a,n
i√
n

+ β

[λbt]
∑

i=1

V b,n
i√
n

=

[λt]
∑

i=1

Wn
i√
n
.

For all n > 0, (Wn
i , i ≥ 1) is a sequence of stationary random variables. Therefore, thanks to (Jacod

and Shiryaev 2003, Chap.VIII, Thm 2.29, p.426), and the fact that

var(Wn
1 ) + 2

∞∑

i=2

cov(Wn
1 ,W

n
i )

n→∞→ σ2, (3.44)

the sequence of processes

(
∑[λnt]

i=1

Wn
i√
n
, t ≥ 0

)

n≥1

converges weakly to a Brownian motion with

volatility
√
λσ. If (λa, λb) /∈ Q2, there exists (λan, λ

b
n)n≥1 such that

λan, λ
b
n ∈ Q and |λan − λa| ≤ 1

n
, |λbn − λb| ≤ 1

n
.

As above, one can define an integer λn such that
λa
n

λn
∈ Q and

λb
n

λn
∈ Q. Let for all (i, n) ∈ N2,

Wn
i = α

(

V a,n
(λa

n/λn)(i−1)+1 + V a,n
2 + ...+ V a,n

λa
ni/λn

)

+ β
(

V b,n
(λb

n/λn)(i−1)+1
+ V b,n

2 + ...+ V b,n
λb
ni/λn

)

,
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One has for all t > 0,

α

[λat]
∑

i=1

V a,n
i√
n

+ β

[λbt]
∑

i=1

V b,n
i√
n

=

[λnt]∑

i=1

Wn
i√
n

+ α

[λat−λa
nt]∑

i=1

V a,n
i√
n

+ β

[λbt−λb
nt]∑

i=1

V b,n
i√
n
.

Moreover 

α

[λat−λa
nt]∑

i=1

V a,n
i√
n

+ β

[λbt−λb
nt]∑

i=1

V b,n
i√
n





t≥0

⇒J1 0,

therefore the convergence above holds even if λa or λb are not rationals. On one hand,

var(Wn
i ) = var

(

α(V a,n
(λa

n/λn)(i−1)+1 + ...+ V a,n
λa
ni/λn

) + β(V b,n
(λb

n/λn)(i−1)+1
+ V b,n

2 + ...+ V b,n
λb
ni/λn

)
)

= α2var
(

V a,n
(λa

n/λn)(i−1)+1...+ V a,n
λa
ni/λn

)
)

+ β2var
(

V b,n
(λb

n/λn)(i−1)+1
...+ V b,n

λb
ni/λn

)
)

+ 2αβcov
(

V a,n
(λa

n/λn)(i−1)+1...+ V a,n
λa
ni/λn

, V b,n
(λb

n/λn)(i−1)+1
...+ V b,n

λb
ni/λn

)
)

.

On the other hand, for all i ≥ 2,

cov(Wn
1 ,W

n
i ) = α2cov

(

V a,n
1 + ...+ V a,n

(λa
n/λn)

, V a,n
(λa

n/λn)(i−1)+1 + ...+ V a,n
λa
ni/λn

)

+ β2cov
(

V b,n
1 + ...+ V b,n

(λb
n/λn)

, V b,n
(λb

n/λn)(i−1)+1
+ ...+ V b,n

λb
ni/λn

)

+ αβcov
(

V a,n
1 + ...+ V a,n

(λa
n/λn)

, V b,n
(λb

n/λn)(i−1)+1
+ ...+ V b,n

λb
ni/λn

)

+ αβcov
(

V b,n
1 + ...+ V b,n

(λb
n/λn)

, V a,n
(λa

n/λn)(i−1)+1 + ...+ V a,n
λa
ni/λn

)

.

Therefore

var(Wn
1 ) + 2

∞∑

i=2

cov(Wn
1 ,W

n
i ) = var(V a,n

1 )
λan
λn

+ 2

∞∑

i=2

cov(V a,n
1 , V a,n

i )
λan
λn

+ var(V b,n
1 )

λbn
λn

+ 2

∞∑

i=2

cov(V b,n
1 , V b,n

i )
λbn
λn

+ 2αβcov
(

V a,n
1 ...+ V a,n

λa
n/λn

, V b,n
1 ...+ V b,n

λb
n/λn

)

+ 2αβ

∞∑

i=2

cov
(

V a,n
1 ...+ V a,n

λa
n/λn

, V b,n
(λb

n/λn)(i−1)+1
+ ...+ V b,n

λb
ni/λn

)

+ 2αβ
∞∑

i=2

cov
(

V b,n
1 ...+ V b,n

λb
n/λn

, V a,n
(λa

n/λn)(i−1)+1 + ...+ V a,n
λa
ni/λn

)
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A simple calculation shows that

2αβcov
(

V a,n
1 ...+ V a,n

λa
n/λn

, V b,n
1 ...+ V b,n

λb
n/λn

)

+ 2αβ

∞∑

i=2

cov
(

V a,n
1 ...+ V a,n

λa
n/λn

, V b,n
(λb

n/λn)(i−1)+1
+ ...+ V b,n

λb
ni/λn

)

+ 2αβ
∞∑

i=2

cov
(

V b,n
1 ...+ V b,n

λb
n/λn

, V a,n
(λa

n/λn)(i−1)+1 + ...+ V a,n
λa
ni/λn

)

= 2αβmax(
λan
λn
,
λbn
λn

)cov(V a,n
1 , V b,n

1 )+ 2αβ

∞∑

i=2

λan
λn

cov(V a,n
1 , V b,n

i ) +
λbn
λn

cov(V b,n
1 , V a,n

i ).

Therefore

lim
n 7→∞

var(Wn
1 ) + 2

∞∑

i=2

cov(Wn
1 ,W

n
i ) = α

λa

λ
v2a + β

λb

λ
v2b + 2ρ

√

αβ

√
λaλb

λ
vavb,

where ρ is given in (4.1) and

lim
n 7→∞

E[Wn
i ] = α

λa

λ
V a + β

λb

λ
V b,

which completes the proof of the convergence in (3.44). The law of large numbers for renewal processes
implies that the following sequence of processes converges to zero in the J1 topology Iglehart and Whitt
(1971):

(Na,n
nt )t≥0

n→∞⇒ ([λat])t≥0, and (N b,n
nt )t≥0

n→∞⇒ ([λbt])t≥0,




Na,n
nt∑

i=[λat]

V a,n
i√
i
,

Nb,n
nt∑

i=[λbt]

V b,n
i√
i





t≥0

⇒ 0 in the J1 topology.

3.6.4 Identification of the heavy traffic limit

Lemma 3.5. The process Q is a Markov process with values in R2
+ and infinitesimal generator

(G, dom(G)) given by (3.13) and

dom(G) = {h ∈ C2(]0,∞[×]0,∞[,R) ∩ C0(R2
+,R), ∀x > 0, ∀y > 0,

h(x, 0) =

∫

]0,∞[2
h(g((x, 0), (u, v)))F (du, dv), h(0, y) =

∫

]0,∞[2
h(g((0, y), (u, v)))F̃ (du, dv)}

Proof. To identify the infinitesimal generator of the process, we note that h ∈ C0(R2
+) is in the domain

of the infinitesimal generator if for all (x, y) ∈ R2
+

lim
t→0

E[h(Qt)− h(Q0)|Q0 = (x, y)]

t
<∞.

For x > 0, and y > 0, a classical computation shows that if h ∈ C2(]0,∞[×]0,∞[),

E[h(Qt)|Q0 = (x, y)] = h(x, y)+t

(

λaV a
∂h

∂x
+ λbV b

∂h

∂y
+
λav2a
2

∂2h

∂x2
+
λbv2b
2

∂2h

∂y2
+ ρ

√
λaλbvavb

∂2h

∂x∂y

)

+o(t),
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which leads to equation (3.13). To examine whether the operator G is closable on R2
+ we note that,

for h ∈ C2(]0,∞[×]0,∞[) ∩ C0([0,∞),R2) and (x, y) ∈ R2
+,

E[h(Qt)|Q0 = (x, 0)] =

∫

]0,∞[2
E[h(Qt)|Q0+ = g((x, 0), (u, v))]F (du, dv)

=

∫

]0,∞[2
(E[h(Qt)|Q0+ = g((x, 0), (u, v))]− h(g((x, 0), (u, v))) + h(g((x, 0), (u, v))))F (du, dv)

=

∫

R2
+

(tGh(g((x, 0), (u, v))) + h(g((x, 0), (u, v))))F (du, dv) + o(t).

E[h(Qt)|Q0 = (0, y)] =

∫

]0,∞[2
E[h(Qt)|Q0+ = g((0, y), (u, v))]F̃ (du, dv)

=

∫

]0,∞[2
(E[h(Qt)|Q0+ = g((0, y), (u, v))]− h(g((0, y), (u, v))) + h(g((0, y), (u, v)))) F̃ (du, dv)

=

∫

]0,∞[2
(tGh(g((0, y), (u, v))) + h(g((0, y), (u, v)))) F̃ (du, dv) + o(t).

so as t→ 0, we have

E[h(Qt)|Q0 = (x, 0)]− h(x, 0)

t
=

∫

]0,∞[2
Gh(g((x, 0), (u, v)))F (du, dv)

+
1

t

∫

]0,∞[2
(h(g((x, 0), (u, v)))− h(x, 0))F (du, dv) + o(1).

E[h(Qt)|Q0 = (0, y)]− h(0, y)

t
=

∫

]0,∞[2
Gh(g((0, y), (u, v)))F̃ (du, dv)

+
1

t

∫

]0,∞[2
(h(g((0, y), (u, v)))− h(0, y)) F̃ (du, dv) + o(1).

Thus the limit t→ 0 is well defined only if h verifies, for x > 0, y > 0,

h(x, 0) =

∫

]0,∞[2
h(g((x, 0), (u, v)))F (du, dv), h(0, y) =

∫

]0,∞[2
h(g((0, y), (u, v)))F̃ (du, dv),

(3.45)
This is a Wentzell boundary condition (Taira 1991) which corresponds to a jump to the interior
whenever the process reaches the boundary of the quadrant. G is thus closable on the set

dom(G) = {h ∈ C2(]0,∞[×]0,∞[) ∩ C0(R2
+), h verifies (3.14)}

and, for h ∈ dom(G) we have

Gh(x, 0) =
∫

]0,∞[2
Gh(g((x, 0), (u, v)))F (du, dv), Gh(0, y) =

∫

]0,∞[2
Gh(g((0, y), (u, v)))F̃ (du, dv).

The elliptic operator defined by the Laplacian on (0,∞)2 with Wentzell boundary conditions (3.45)
thus admits a closure (G, dom(G)) on R2

+ and verifies the assumptions of Galakhov and Skubachevskii
(2001)[Theorem 3.1]. Galakhov and Skubachevskii (2001)[Theorem 3.1] then implies the existence of
a R2

+–valued Feller process Q, unique in law, whose infinitesimal generator (G, dom(G)). The limit
process Q is thus a R2

+–valued Markov process associated with this semigroup.



Chapter 4

Linking volatility and order flow.

4.1 Introduction

An increasing number of financial instruments are traded in limit order markets where market orders
and limit orders are electronically submitted to a limit order book and executed according to well-
defined time and price priority rules. In such markets traders seeking to transact immediately can
buy or sell at the best available price using market orders, while other traders may seek to transact
at a better price by submitting limit orders. The complex interaction between the orders submitted
by different market participants then determines the dynamics of the order book and, consequently,
the dynamics of market prices.

Understanding the dynamics of limit order books and their link to price dynamics is useful for
analyzing and modeling high frequency data and provides a setting for application such as intraday
risk management, price impact modeling and optimal trade execution. Various recent studies have
considered such problems (see for example Alfonsi et al. (2010), Predoiu et al. (2011), Malo and
Pennanen (2010), Bayraktar and Ludkovski (2011)), but a common features of these studies has been
to model the dynamics of the price through an exogenous stochastic process. Yet, in reality, the
dynamics of the price is not independent from the order flow but rather generated as an outcome of
the interaction of limit and market orders and can be, in principle, derived from these elements in a
model for the dynamics of the limit order books. In fact, any dynamic model for the limit order book
implies some dynamics for bid and ask prices; however, for most such models the resulting price process
is too complex to be analytically tractable and understanding the relation between price dynamics
and order flow has proved challenging Bouchaud et al. (2008), even in stylized market microstructure
models Parlour (1998).

Some recent studies, in which the limit order book is modeled as a Markovian queueing system Cont
et al. (2010b), Cont and de Larrard (2010) in which arrivals of market orders and limit orders at each
price level are independent Poisson processes, allow for sufficient tractability obtain analytical results
on the dynamics of the price process. In Cont and de Larrard (2010), we used this Markovian queueing
approach to compute useful quantities (the distribution of the duration between price changes, the
distribution and autocorrelation of price changes, and the probability of an upward move in the
price, conditional on the state of the order book) and relate the volatility of the price with statistical
properties of the order flow. However, the results obtained in these Markovian models rely on the
fact that time intervals between orders are independent and exponentially distributed, orders are
of the same size and that the order flow at the bid is independent from the order flow at the ask.
Unfortunately, empirical studies on high-frequency data have consistently rejected such simplifying
assumptions Engle and Russell (1998), Engle (2000), Bouchaud et al. (2002, 2008), Andersen et al.
(2010), Cont (2011). Figure 4.1 compares the quantiles of the duration between order book events
for CitiGroup stock on June 26, 2008 to those of an exponential distribution with the same mean,
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showing that the empirical distribution of durations is far from being exponential. Finally, there is
considerable heterogeneity in the sizes of orders: Figure 4.2 shows the (positive or negative) changes
in queue size induced by successive orders for CitiGroup.

Figure 4.1: Quantiles of inter-event durations compared with quantiles of an exponential distribution
with the same mean (Citigroup, June 2008). The dotted line represents the benchmark case where
the observations are exponentially distributed, which is clearly not the case here.

Figure 4.2: Number of shares per event for events affecting the ask. The stock is Citigroup on the
26th of June 2008

In a recent work Cont and de Larrard (2011), we proved that when the frequency of order arrivals
is large, the intraday dynamics of the limit order book may be approximated by a Markovian jump-
diffusion process in the positive quadrant, whose characteristics are explicitly described in terms of the
statistical properties of the underlying order flow. In this paper, we pursue this asymptotic approach
to study intraday price dynamics in a limit order market.

We first study the discrete, high-frequency dynamics of the price and derive analytical relations
between the statistical properties of intraday price changes -distribution of increments, mean reversion
and autocorrelation- and properties of the process describing the order flow and depth of the order
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book. We then show that the behavior of the price process at lower frequencies is described by a
diffusion limit and express the trend and volatility of this diffusion process in terms of the arrival
rates of buy and sell orders and cancelations. These analytical results extend those obtained in
Cont and de Larrard (2011) in a Markovian setting and apply to a wide class of order book models,
including Poisson point process models, self-exciting point processes, and order flow models based on
ACD-GARCH processes. Our results provide analytical insights into the link between price volatility
on one hand and high-frequency order flow and liquidity on the other hand. Comparison with high
frequency data for liquids US stocks confirm the validity of these insights.

4.1.1 Diffusion models of order book dynamics in liquid markets

Empirical studies of limit order markets suggest that the major component of the order flow occurs
at the (best) bid and ask price levels (see e.g. Biais et al. (1995)). All electronic trading venues also
allow to place limit orders pegged to the best available price (National Best Bid Offer, or NBBO);
market makers used these pegged orders to liquidate their inventories. Furthermore, studies on the
price impact of order book events show that the net effect of orders on the bid and ask queue sizes is
the main factor driving price variations (Cont et al. (2010a)). These observations, together with the
fact that queue sizes at the best bid and ask of the consolidated order book are more easily obtainable
(from records on trades and quotes) than information on deeper levels of the order book, motivate a
reduced-form modeling approach in which we represent the state of the limit order book by

• the bid price sbt and the ask price sat

• the size of the bid queue qbt representing the outstanding limit buy orders at the bid, and

• the size of the ask queue qat representing the outstanding limit sell orders at the ask

Figure 4.3 summarizes this representation.
If the stock is traded in several venues, the quantities qb and qa represent the best bids and offers

in the consolidated order book, obtained by aggregating over all (visible) trading venues. At every
time t, qbt (resp. qat ) corresponds to all visible orders available at the bid price sbt (resp. sat ) across all
exchanges.

qa

qb

δ

Quantities

sb

Price

sa

Figure 4.3: Simplified representation of a limit order book.

The state of the order book is modified by order book events: limit orders (at the bid or ask),
market orders and cancelations (see Cont et al. (2010b,a), Smith et al. (2003)). A limit buy (resp.
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sell) order of size x increases the size of the bid (resp. ask) queue by x, while a market buy (resp. sell)
order decreases the corresponding queue size by x. Cancelation of x orders in a given queue reduces
the queue size by x. Given that we are interested in the queue sizes at the best bid/ask levels, market
orders and cancelations have the same effect on the queue sizes (qbt , q

a
t ).

The bid and ask prices are multiples of the tick size δ. When either the bid or ask queue is depleted
by market orders and cancelations, the price moves up or down to the next level of the order book.
The price processes sbt , s

a
t is thus a piecewise constant process whose transitions correspond to hitting

times of the axes {(0, y), y > 0} ∪ {(x, 0), x > 0} by the process qt = (qbt , q
a
t ).

If the order book contains no ‘gaps’ (empty levels), these price increments are equal to one tick:

• when the bid queue is depleted, the (bid) price decreases by one tick.

• when the ask queue is depleted, the (ask) price increases by one tick.

If there are gaps in the order book, this results in ’jumps’ (i.e. variations of more than one tick) in
the price dynamics. We will ignore this feature in what follows but it is not hard to generalize our
results to include it.

The quantity sat −sbt is the bid-ask spread, which may be one or several ticks. As argued in Section
1.4.1, for many liquid stocks it is reasonable to assume that at time scales more than 10 ms, the spread
is constant, equal to one ’tick’: ∀t ≥ 0, sat = sbt + δ. With this approximation, the limit order book
may be described using the three variables (sbt , q

b
t , q

a
t ).

Regime Time scale Issues
Ultra-high ∼ 10−3 − 0.1 s Microstructure,
frequency (UHF) Latency
High ∼ 1− 100 s Trade
Frequency (HF) execution
“Daily” ∼ 103 − 104 s Trading strategies,

Option hedging

Table 4.1: A hierarchy of time scales.

Average no. of Price changes
orders in 10s in 1 day

Citigroup 4469 12499
General Electric 2356 7862
General Motors 1275 9016

Table 4.2: Average number of orders in 10 seconds and number of price changes (June 26th, 2008).

As shown in Table 4.1, most applications involve the behavior of prices over time scales an order
of magnitude larger than the typical inter-event duration: for example, in optimal trade execution
the benchmark is the Volume weighted average price (VWAP) computed over a day or a an hour:
over such time scales much of the microstructural details of the market are averaged out. Second,
as noted in Table 4.2, in liquid equity markets the number of events affecting the state of the order
book over such time scales is quite large, of the order of hundreds or thousands. The typical duration
between limit orders (resp. market orders and cancelations) is typically 0.001−0.01 ≪ 1 (in seconds).
These observations show that it is relevant to consider heavy-traffic limits in which the rate of arrival
of orders is large Whitt (2002) for studying the dynamics of order books in liquid markets.

In Cont and de Larrard (2010), we proved, under assumptions 4.1, 4.2 and 4.3, a functional central
limit theorem for the process (sb, qb, qa) when the intensity of orders becomes large, and use it to derive
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an analytically tractable jump-diffusion approximation for the intraday dynamics of the limit order
book (S,Qb, Qa).

We consider a sequence qn = (qnt )t≥0 of processes, where qn represents the dynamics of bid and
ask queues in the limit order book at time resolution corresponding to n events. The dynamics of qn

is characterized by the sequence of order sizes (V n,b
i , V n,a

i )i≥1, durations (Tn,b
i , Tn,a

i ) between price
change and the fact that, at each price change,

• qnτn
k
= Rn

k if the price has increased, and

• qnτn
k
= R̃n

k if the price has decreased.

Assumption 4.1. Bid and ask queue sizes (Rn
k )k≥1 (resp. (R̃n

k )k≥1) after a price increase (resp.
decrease) are independent from the history of the order book before the price change, and follow a
bivariate distribution Fn (resp F̃n) verifying a scaling assumption: As n goes to infinity, nfn(

√
n.,

√
n.)

(resp. nF̃n(
√
n.,

√
n.)) converges weakly to a limit distribution F (resp. F̃ ):

nFn(
√
n.,

√
n.)

n→∞⇒ F and nF̃n(
√
n.,

√
n.) ⇒ F̃

where F and F̃ are two probability distributions on ]0,∞[2 verifying

D(F ) =

∫

]0,∞[2
xyF (dx dy) <∞ D(F̃ ) =

∫

]0,∞[2
xyF̃ (dx dy) <∞

Assumption 4.2. Denote by (Tn,b
i , i ≥ 0) (resp. (Tn,a

i , i ≥ 0)) the sequence of durations between two
orders arriving and the bid queue (resp. ask queue). We assume that there exist λa > 0 and λb > 0
such that

lim
n→∞

Tn,a
1 + Tn,a

2 + ...+ Tn,a
n

n
=

1

λa
<∞, lim

n→∞
Tn,b
1 + Tn,b

2 + ...+ Tn,b
n

n
=

1

λb
<∞.

Assumption 4.3. For all n ≥ 1, the sequence of order sizes arriving at the bid side (V n,b
i , i ≥ 0)

(resp. the ask side (V n,a
i , i ≥ 0)) is a stationary, uniformly mixing (Billingsley 1968, Ch. 4) sequence

satisfying √
nE[V n,a

1 ]
n→∞→ V a,

√
nE[V n,b

1 ]
n→∞→ V b, and

lim
n≥1

E[(V n,a
1 − E[V n,a

1 ])2] + 2

∞∑

i=2

Cov(V n,a
1 , V n,a

i ) = v2a <∞,

lim
n≥1

E[(V n,b
1 − E[V n,b

1 ])2] + 2

∞∑

i=2

Cov(V n,b
1 , V n,b

i ) = v2b <∞.

Under Assumption 4.3, there exists ρ ∈ (−1, 1) such that

lim
n→∞

1

vavb

(

2max(λa, λb)Cov(V n,a
1 , V n,b

1 ) + 2
∞∑

i=1

λaCov(V n,a
1 , V n,b

i ) + λbCov(V n,b
1 , V n,a

i )

)

= ρ.

(4.1)
ρ may be interpreted as a measure of ‘correlation’ between event sizes at the bid and event sizes at
the ask.

Under these assumptions Cont and de Larrard (2011) show that the intraday dynamics of the limit
order book may be approximated by a Markov process Q = (Qb

t , Q
a
t )t≥0 in the positive quadrant R2

+

which behaves like a a planar Brownian motion with drift vector

(λbV b, λaV a) (4.2)
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and covariance matrix (

λbv2b ρ
√
λaλbvavb

ρ
√
λaλbvavb λav2a

)

. (4.3)

in the interior ]0,∞[2 of the quadrant and jumps to a new position with distribution F (resp. F̃ ) at
each hitting time of the x-axis (resp. the y-axis).

Q is a Markov process with infinitesimal generator

Gh(x, y) =
(

λaV a
∂h

∂y
+ λbV b

∂h

∂x
+
λav2a
2

∂2h

∂y2
+
λbv2b
2

∂2h

∂x2
+ ρ

√
λaλbvavb

∂2h

∂x∂y

)

, (4.4)

defined on the domain dom(G) of functions h ∈ C2(]0,∞[×]0,∞[,R)∩C0(R2
+,R) verifying the “bound-

ary conditions”

∫

R2
+

(h(u, v)− h(0, y))F (du, dv) = 0,

∫

R2
+

(h(u, v)− h(x, 0))F̃ (du, dv) = 0.

A typical path for the dynamics of bid and ask queues in a liquid limit order market is shown in figure
4.4: the queue sizes follow a diffusion-type dynamics in between two price changes and jumps at each
price change.

Figure 4.4: Evolution in time of the bid and ask queues: the queue sizes follow a diffusion-type
dynamics in between two price changes and jumps at each price change.
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In this regime, the price process is a piecewise constant process S = (St)t≥0 which:

• increases by one tick when Q = (Qb, Qa) hits the x-axis, and

• decreases by one tick when Q = (Qb, Qa) hits the y-axis.

As observed on tables 4.1 and 4.2, one can define three time scales

γ0 << γ1 << γ2.

The role played by these three time scaled is summarized on Figure 4.5. At the microscopic time
scale γ0 (∼ 1 − 100 millisecond) both the price (st)t≥0 and the order book (qb, qa) are piecewise
constant stochastic processes. At the ’mesoscopic’ time scale γ1 (∼ 1 sec-1 min), the order book
behaves as a Markov process (Qb, Qa) in the quadrant and the price S is a piecewise constant process.

Over lower frequencies, at the macroscopic time scale γ2 ∼ 1 hour- 1 day, the price process S
diffuses to a continuous state stochastic process P = (Pt)t≥0.

Ultra-high Frequency (UHF) Price st γ0 ∼ 10ms

Price St γ1 ∼ 10sHigh Frequency (HF)

Price Pt γ2 ∼ day’Daily’

Limit order book qt = (qbt , q
a
t )

Limit order book Qt = (Qb
t , Q

a
t )

Heavy-traffic approximation

Diffusion limit

Figure 4.5: Three time scales

When the frequency of limit orders arrival is large (∼ 1000/min), as it is for Dow-Jones stocks
(cf table 4.2), it is reasonable to approximate the order book (st, q

b
t , q

a
t )t≥0 by its heavy-traffic limit

(St, Q
b
t , Q

a
t )t≥0. One advantage is that the process S = (St)t≥0 is much simpler to study than (st)t≥0.

In this paper we examine properties of this price process S = (St)t≥0 such as the correlation of price
increments, the distribution of price durations or the volatility of its heavy traffic limit.

4.1.2 Summary

This paper is devoted to the understanding of the price process S = (St)t≥0. Through the analytical
tractability of the Markov process (Qb, Qa), our model allows to obtain analytical expressions for
various quantities of interest such as an explicit expression of the autocorrelation of consecutive price



CHAPTER 4. LINKING VOLATILITY AND ORDER FLOW. 108

increments, the low-frequency dynamics of the price and the expression of the drift and the volatility
of the price.

We show in section 4.2.1 that the sequence of consecutive price increments (X1, X2, ..., Xn) follows
a homogenous Markov chain with parameters p+ and p−:

p+ = P[X2 = δ|X1 = δ] and p− = P[X2 = −δ|X1 = −δ],
where δ is the tick size. Theorem 4.1 links these parameters to the autocorrelation between consecutive
price increments

corr(X1, X2) = p+ + p− − 1. (4.5)

and shows that the probability pupn (x, y) that the n-th price move is an increase, conditioned on
observing x-shares at the bid and y shares at the ask, may be expressed in terms of the parameters
p+, p− and pup1 (x, y):

∀(x, y) ∈ R2
+, pupn (x, y) =

1− p−
2− p+ − p−

(1− (p+ + p− − 1)n−1) + (p+ + p− − 1)n−1pup1 (x, y).

We propose, in section 4.2.2, a parametric distribution for the probability distributions F (resp.
F̃ ), which represents the distribution of the order book (Qb, Qa) after a price increase (resp. decrease),
in terms of their densities:

f(r, θ) = c2e−crα(
2

π
)αθα−1 and f̃(r, θ) = c̃2e−c̃rα̃(

2

π
)α̃θα̃−1, (4.6)

where α (resp. α̃ are parameters characterizing the bid-ask imbalance after a price increase (resp.
decrease), and 1/c (resp 1/c̃) measures the average depth of the order book after a price increase
(resp. decrease). The parameter α (resp. α̃), characterizing the skewness of the angular part of the
distribution F (resp. F̃ ), are linked to the probabilities of ’continuation’ p+ and p−.

For a stationary order flow, it is proven in theorems 4.2, 4.3 and 4.4 that over time scales γ2 much
larger than the interval between order book events, price dynamics may be described as a diffusion
process driven by a Brownian motion; this results links the discrete high-frequency dynamics of prices
to their diffusive dynamics at lower frequencies.

When the order flow is symmetric at the bid/ask, p+ = p− := pcont, we prove in Theorem 4.2 the
following functional central limit theorem for the price process:

(
s[nt]√
n

)

t≥0

n→∞⇒
(

1
√

r1(F )

√
pcont

1− pcont
Bt

)

t≥0

(4.7)

where B is a Brownian motion and r1(F ) is the average time between two consecutive price move.
On the other hand, when the order flow is not symmetric at the bid/ask, p+ 6= p− we show in

theorem 4.3 that the price can have both a drift and a volatility. Let γ0 be the average durations
between two consecutive orders and γ2 >> γ0 a macroscopic time scale (e.g. daily time scale). At the
time scale γ2 we prove in theorem 4.3 and 4.4 that the price process (Pt)t≥0 behaves like a Brownian
motion with drift:

Pt =
γ2
γ0
δtdp +

√
γ2
γ0
δσpBt,

where δ is the tick size. (Bt)t≥0 is a standard Brownian motion. The drift of the price dp is:

dp =

1

1− p+
− 1

1− p−

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

, (4.8)
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and price volatility σp is given by

σ2
p =

p+(1 + p+)

(1− p+)2
+
p−(1 + p−)

(1− p−)2
− 2

p+

1− p−
p−

1− p−

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

. (4.9)

On equations (4.8) and (4.9), r1(F ) (resp. r1(F̃ )) is the average durations until the price moves
after a price increase (resp. price decrease).

Eventually, in section 4.4, we link these parameters p+, p−, r1(F ) and r1(F̃ ) with the order flow
and derive expressions of price volatility as a function of order flow statistics for several examples.

The parameters of the the heavy traffic approximation of the order book (qb, qa) depend on the
properties of the order flow such as the symmetry between the bid and at the ask, the correlation
between bid and ask queue sizes or the average order size. When the average order size is of order of
magnitude O(1/

√
n), the diffusive limit of the order book is the proper rescaling whereas when the

average order size is of order of magnitude O(1) -for instance when marker orders and cancelations
dominate limit orders- the heavy traffic limit of the order book is the fluid limit.

In section 4.4 we study several regimes of the order book and we link the price volatility with
parameters of the order flow for all these regimes. Table 4.3 points to the sections where these
regimes are studied.

Fluid limit or Diffusive limit of (qb, qa) Bid/Ask symmetry Bid/Ask correlation Section
Fluid limit symmetry no correlation Section 4.4.1
Diffusive limit symmetry no correlation section 4.4.2
Diffusive limit symmetry negative correlation section 4.4.2
Fluid limit asymmetry section 4.4.3

Table 4.3: Different regimes of order book and the sections where these order books are studied.

For instance, when the average evolution of the order book dominates over its volatility, under the
assumption that the order flows are symmetric at the bid and at the ask and when F (resp. F̃ ) are
given by equation (4.6), price volatility becomes:

σ2
p = δ2

(π/2)α

(2α − 1)
∫ π/4

0
sin(θ)θα−1dθ +

∫ π/2

π/4
cos(θ)θα−1dθ

︸ ︷︷ ︸

Bid−Ask asymetry

Order book depth
︷︸︸︷
c

2
(µ− λ)
︸ ︷︷ ︸

Trading intensity

,

where δ is the tick size and α, c, λ, µ are parameters of the order flow.
On the other hand, when the order book dynamics (Qb, Qa) is a symmetric driftless Brownian

motion, and when the distribution F has a density f with a polar decomposition f(r, θ) = g(r)h(θ),
we obtain the following representation for the variance per unit time of price changes

σ2
p = −4ρ

︸︷︷︸

Bid−Ask correlation

δ2
︸︷︷︸

tick size

variance of order sizes/unit time
︷︸︸︷

λav2a
∫ ∞

0

h(r)r3dr

︸ ︷︷ ︸

Order book depth

∫ π/2

0
g(θ) sin(2θ)dθ

pcont
1− pcont
︸ ︷︷ ︸

mean reversion

. (4.10)
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where δ is the tick size, λa the trading intensity, v2a the variance of order sizes, pcont the continuation
probability (pcont = p+ = p− in the symmetric case) and ρ is the correlation between order sizes at
bid and the ask. Equation (4.10) generalizes formula (1.23) and links low-frequency price volatility
with parameters of the order flow for a general order book. Several components affect price volatility:

• The variance of order sizes v2aλ
a

• The skewness of the order book after a price move through the parameter pcont.

• The correlation ρ between the order flow arriving at the ask and the order flow arriving at the
bid.

• The depth of the order book
∫∞
0
h(r)r3dr.

Formula (4.10) gives some insights on the factors that influence price volatility. For instance,
when the intensity of all orders coming in the limit order book is multiplied by the same factor x,
the intensity of orders becomes λax, the limit order book depth is multiplied by a factor x2, all other

parameters being unchanged. So price volatility σp decreases by a factor
√

1
x .

Interestingly, Rosu (2009) shows the same dependence in 1/
√
x of price volatility using an equilib-

rium approach. We show through equation (4.10), that this relation between order arrival intensity
and price volatility holds under much more general assumptions, and may be derived without behav-
ioral assumptions for market participants.

4.1.3 Outline

The paper is organized as follows. In Section 4.2, we show that the price mean reverts at a ultra high-
frequency time scale and we link this mean reversion property with the skewness of the distributions F
and F̃ , which represent the state of the limit order book after a price move. Section 4.3 is devoted to
the computation of the fluid and the diffusion limit of the price process (St)t≥0. It is showed that the
price process diffuses to Brownian motion with drift. The expression of both the drift and the volatility
of the price are consistent with empirical data. Finally, in Section 4.4 we explore two particular case,
first when the drift of (Qb, Qa) dominates over its volatility, second when the dynamics of bid and
ask queues behaves as a driftless symmetric Brownian motion. For these two cases, the expression of
the price volatility is explicitly derived as a function of order arrival statistics. This formula helps to
understand which factors contributes to price volatility. Finally, Section 4.5 is devoted to the proof
of technical theorems.

4.2 High-frequency price dynamics

In this section we highlight the mean reversion property of the price process (St)t≥0, which can be

linked to the skewness of the distributions F and F̃ , used to reinitialize the order book process Q
when it hits the boundary of the positive quadrant R2

+.

4.2.1 Mean reversion of prices at high frequency

Denote by (X1, X2, ..., Xn) the successive moves of the price process S = (St)t≥0. Empirically (cf table
4.4), this sequence of random variables is not a sequence of IID random variables. Price dynamics
exhibits mean reversion at a high frequency time scale. One defines two parameters p+ and p− by:

p+ = P[X2 = δ|X1 = δ] and p− = P[X2 = −δ|X1 = −δ],
where δ is the tick size. The following table 4.4 gives the empirical value of these parameters for stocks
belonging to the Dow Jones index.
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p+ p− 1− p+ − p−

American Airlines 0.4134 0.3974 0.19
General Electric 0.3740 0.3630 0.26
General Motors 0.4087 0.39 0.21
Hewlett Packard 0.4661 0.4531 0.08
American International Group 0.44472 0.4411 0.11

Table 4.4: Mean reversion parameters p+ and p− estimated on the trajectory of the price (June 26th,
2008).

For all stocks shown in Table 4.4, the parameters p+ and p− are smaller than 0.5. After a price
move, the price is more likely to return to its previous position. The price process (St)t≥0 is not a
time-changed random walk: price moves depend on previous ones. The following theorem links the
distribution of the nth price move Xn to the initial state (Qb

0, Q
a
0) of the bid and ask queues and the

conditional probabilities p+ and p−:

Theorem 4.1. Given x shares at the bid and y shares at the ask, the probability pupn (x, y) that the
n-th price move is an increase,

pupn (x, y) = P[Xn = δ|Qb
0 = x,Qa

0 = y].

is given by

∀(x, y) ∈ R2
+, pupn (x, y) =

1− p−

2− p+ − p−
(1− (p+ + p− − 1)n−1) + (p+ + p− − 1)n−1pup1 (x, y). (4.11)

In particular, when pup1 (x, y) = 1/2,

corr(X1, X2) = p+ + p− − 1, (4.12)

Proof Let (x, y) ∈ R2
+. Since the process Q is regenerated at each exit time from the interior of

the orthant, the sequence (pupn (x, y), n ≥ 1) satisfies the following recurrence relation:

pupn (x, y) = p+pupn−1(x, y) + (1− p−)(1− pupn−1(x, y)).

Hence
(

pupn (x, y)
1− pupn (x, y)

)

=

(
p+ 1− p−

1− p+ p−

)n−1(
pup1 (x, y)

1− pup1 (x, y)

)

.

The eigenvalues of this matrix are λ1 and λ2, given by

(
p+ 1− p−

1− p+ p−

)

=
1

(1− p−)(2− p+ − p−)

(
1− p− 1− p−

λ1 − p+ λ2 − p+

)(
λ1 0
0 λ2

)(
λ2 − p+ p− − 1
p+ − λ1 1− p−

)

,

where
λ1 = p+ + p− − 1 and λ2 = 1

Therefore

pupn (x, y) =
1− p−

2− p+ − p−
(1− (p+ + p− − 1)n−1) + (p+ + p− − 1)n−1pup1 (x, y).

We can now compute the covariance of price changes at first lag

cov(X1, X2|Qb
0 = x,Qa

0 = y) = E[X1X2|Qb
0 = x,Qa

0 = y]−E[X1|Qb
0 = x,Qa

0 = y]E[X2|Qb
0 = x,Qa

0 = y]
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= pup1 (x, y)p++(1−pup1 (x, y))p−−pup1 (x, y)(1−p+)−(1−pup1 (x, y))(1−p−)−(2pup1 (x, y)−1)(2p2(x, y)−1)

= 2pup1 (x, y)(p+ − p−) + 2p− − 1− (2pup1 (x, y)− 1)(1 + 2pup1 (x, y)(p+p− − 1)− 2p−).

Hence when pup1 (x, y) = 1/2, cov(X1, X2|Qb
0 = x,Qa

0 = y) does not depend on (x, y) and is equal to
the (unconditional) correlation:

corr(X1, X2) = p+ + p− − 1

which concludes the proof.

Remark 4.1. Formula (4.11) generalizes the result given in Cont and de Larrard (2011) for the
particular case when p+ = p− := pcont:

pupn (x, y) =
1 + (2pcont − 1)n−1(2pup1 (x, y)− 1)

2
.

Figure 4.6 shows an empirical test, which compares the correlation of consecutive increments to
its theoretical counterpart (4.12) : we observe very good agreement with the data.

Figure 4.6: Correlation of consecutive increments of the price as a function of p+ + p− − 1 for Dow
Jones stocks. Every point corresponds to a day of trading. The regression gives an R2 of 0.96.
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4.2.2 A parametric model for order book depth

We propose in this section a simple parameterizations for the joint distribution F (resp. F̃ ) of the
bid and ask queue sizes Q = (Qb, Qa) after a price increase (resp. decrease). First, we parameterize
these distributions in terms of

• a radial component
√

|Qb|2 + |Qa|2, which measures the depth of the order book, and

• an angular component arctan(Qa/Qb) ∈ [0, π/2] which measures the imbalance between out-
standing buy and sell orders.

If we now assume for simplification that these two variables (R,Θ) =
(√

|Qb|2 + |Qa|2, arctan(Qa/Qb)
)

are independent, then F and F̃ take a product form:

F (x, y) = H(
√

x2 + y2)G
(

arctan(
y

x
)
)

and F̃ (x, y) = H̃(
√

x2 + y2)G̃
(

arctan(
y

x
)
)

(4.13)

where H, H̃ are probability distributions on R+ and G, G̃ are probability distributions on [0, π/2]. As
we shall observe below, this separable form (4.13) allows more analytical tractability and a transparent
interpretation of the results.

The function H (resp. H̃) is the distribution of the depth
√

(Qb)2 + (Qa)2 of the limit order
book (Qb, Qa) after a price increase (resp. decrease). Figure 4.7 displays the sample estimators for
log(1−H(r)) and log(1− H̃(r)) as a function of r.

Figure 4.7: Logarithm of the empirical cumulative distribution function for H (left) and H̃ (right) for
the stock Citi on the 26th of June 08. The (green) line is the best exponential approximation.

Figure 4.7 suggests that the radial densities h and h̃ may be modeled by exponential functions

∀r > 0, h(r) = c2e−cr, and h̃(r) = c̃2e−c̃r,

where c and c̃ are positive constants.
The functions G (resp. G̃) represent the distribution of the bid-ask imbalance of the order book

after a price increase (resp. decrease), as measures by the angular variable
2

π
arctan(

Qa

Qb
) . Price

mean reversion, highlighted in Table 4.4 and Figure 4.8, suggests that after a price increase, the price
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is more likely to decrease. The state of the order book (Qb, Qa) has more chance to be on the part
Qa < Qb than on the part Qa ≥ Qb after a price increase. After a price increase, the ask queue
is more likely to be shorter than the bid queue. This translates into an asymmetry of the angular
distribution G and G̃. This indicates that the function G is not a uniform distribution over [0, π/2]
but skewed towards large angles, whereas G̃ is skewed towards zero. We propose to parameterize G
and G̃ through their probability densities g, g̃ as

∀θ ∈ [0, π/2], g(θ) = α(
2

π
)αθα−1 and g̃(θ) = α̃(

2

π
)α̃θα̃−1. (4.14)

The parameter α (resp. α̃) measures the skewness of the distribution G (resp G̃). When α = 1, G
is the uniform distribution over [0, π/2]. If α > 1, the distribution G is skewed towards large angles.
This corresponds to a mean reverting regime for the price, in which the price is more likely to come
back to its previous position after each price change.

Figure 4.8 compares the empirical cumulative distribution of the angular variable Θ = arctan(Qa/Qb)
to the parametric model (4.14): we observe that the parametric form (4.14) is flexible enough to fit the
empirical distributions. The estimated parameters are α = 2.15 for the distribution G and α̃ = 0.28
for G̃.

Figure 4.8: Left: empirical cumulative distribution function (in blue) of the bid-ask imbalance variable
Θ = arctan(Qa/Qb) after a price increase (left) and the best fit (green) using the parametric form
(4.14). Right: empirical cumulative distribution function (in blue) of the bid-ask imbalance variable
Θ = arctan(Qa/Qb) after a price decrease (left) and the best fit (green) using the parametric form
(4.14).

These assumptions lead to the following parametric representation in polar coordinates for the densities
f, f̃ of F, F̃ :

f(r, θ) = c2e−crα(
2

π
)αθα−1 and f̃(r, θ) = c̃2e−c̃rα̃(

2

π
)α̃θα̃−1, (4.15)

where α, α̃, c and c̃ are constants. Here 1
c ,

1
c̃ represent the average depth of the order book and α > 0

(resp α̃ > 0) characterize the bid/ask imbalance after a price increase (resp decrease).

Remark 4.2. Another way to model the angular part of the distributions would be to use a Beta(α, β)
distribution:

∀θ ∈ [0, π/2], g(θ) =
Γ(α+ β)

Γ(α)Γ(β)

(
2

π

)α+β

θα
(π

2
− θ
)β

,
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where α > 0, β > 0, and Γ is the Gamma function. The Beta distribution, which generalizes (4.14),
is more flexible and allows G to be concentrated in any set of angles [θ0, θ1] ∈ [0, π/2].



CHAPTER 4. LINKING VOLATILITY AND ORDER FLOW. 116

4.2.3 Relation between price mean reversion and bid-ask asymmetry

In section 4.2.1, we defined two parameters p+ and p−, which characterize the autocorrelation of price
increments. These parameters p+ and p− may be related to the distributions F and F̃ via

p+ =

∫

R2
+

pup(x, y)F (dx, dy) and p− =

∫

R2
+

(1− pup(x, y))F̃ (dx, dy), (4.16)

where pup(x, y) (= pup1 ) is the probability that the next price move is an increase. It is thus intuitive
that the skewness in the order book depth distributions F and F̃ leads to mean reversion in the price.
The following result makes this intuition precise, when F, F̃ is given by the parametric form (4.15),
in a balanced order flow for which the trend (4.2) of queue sizes is zero:

Proposition 4.1. If F and F̃ follows the polar decomposition (4.15), and when the drift µ of (Qb, Qa),
defined in (4.2), is zero the mean reversion of the price can be linked with the skewness α (resp. α̃)
of the limit order book after a price increase (resp. decrease):

p+ =
1

2
− α(

2

π
)α
∫ π/2

0

arctan(
√

1+ρ
1−ρ

tan(θ)−1
tan(θ)+1 )

2 arctan(
√

1+ρ
1−ρ )

θα−1dθ. (4.17)

p− =
1

2
+ α̃(

2

π
)α̃
∫ π/2

0

arctan(
√

1+ρ
1−ρ

tan(θ)−1
tan(θ)+1 )

2 arctan(
√

1+ρ
1−ρ )

θα̃−1dθ. (4.18)

In particular when ρ = 0

p+ =
1

1 + α
, p− =

α̃

1 + α̃
. (4.19)

Proof. In Cont and de Larrard (2011) µa = 0 and µb = 0, the function pup only depends on the
bid-ask imbalance variable θ and the correlation ρ between events sizes at the bid and the ask:

pup(θ) =
1

2
−

arctan(
√

1+ρ
1−ρ

tan(θ)−1
tan(θ)+1 )

2 arctan(
√

1+ρ
1−ρ )

.

Therefore

p− =

∫

R2
+

(1− pup(x, y))F̃ (x, y)dxdy

=

∫ ∞

0

∫ π/2

0




1

2
+

arctan(
√

1+ρ
1−ρ

tan(θ)−1
tan(θ)+1 )

2 arctan(
√

1+ρ
1−ρ )



 c̃2e−c̃rα̃(
2

π
)α̃θα̃−1

=
1

2
+ α̃(

2

π
)α̃
∫ π/2

0

arctan(
√

1+ρ
1−ρ

tan(θ)−1
tan(θ)+1 )

2 arctan(
√

1+ρ
1−ρ )

θα̃−1dθ.
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Similarly

p+ =

∫

R2
+

pup(x, y)F (x, y)dxdy

=

∫ ∞

0

∫ π/2

0




1

2
−

arctan(
√

1+ρ
1−ρ

tan(θ)−1
tan(θ)+1 )

2 arctan(
√

1+ρ
1−ρ )



 c2e−crα(
2

π
)αθα−1

=
1

2
− α(

2

π
)α
∫ π/2

0

arctan(
√

1+ρ
1−ρ

tan(θ)−1
tan(θ)+1 )

2 arctan(
√

1+ρ
1−ρ )

θα−1dθ.

These mean reversion parameters p+ (resp p−) depend only on the correlation between variations
in bid and ask queue sizes and the skewness of F (resp F̃ ). In particular, when ρ = 0, we retrieve
(4.19).

When α = α̃ = 1, mean reversion disappears and p+ = p− = 1/2: the sequence (X1, ..., Xn)
then becomes a sequence of IID Bernoulli random variables and the price S follows a time-changed
symmetric random walk. Otherwise, when α > 1, p+ < 1/2 and when α < 1, p+ > 1/2.

Remark 4.3. As observed on Figure 4.2.3, and Figure 4.2.3, the main contribution to p+ (resp p−)
is clearly α (resp α̃). Numerically, when ρ < 0, the approximation p+(α, ρ) ≈ p+(α, 0) = α

1+α leads
to a relative error less than 10%. This approximation shows that, to leading order, the correlation
between consecutive increments of the price depends only on the asymmetry parameters α and α̃:

corr(Xk, Xk+1) = p+ + p− − 1 ≈ α̃− α

(α+ 1)(α̃+ 1)
. (4.20)

The sequence of price increments (X1, ..., Xn) is uncorrelated if α = α̃ and is a sequence of IID
Bernoulli random variables only when α = α̃ = 1.

4.2.4 ”Martingale price”

Various authors have defined, in the context of high frequency price modeling, an auxiliary price
process as an average of the bid and ask price. Burghardt et al. (2006) define what they call a ’true
price’ as:

P̂t =
Qa

t

Qa
t +Qb

t

Sb
t +

Qb
t

Qa
t +Qb

t

Sa
t ,

where Sb is the bid price, and Sa the ask price. Robert and Rosenbaum (2011) consider a (non-
observed) ”efficient” price and argue that trades can only occur when the efficient price is close to the
grid δZ, where δ is the tick size. When the efficient price is too far from the grid, the uncertainty on
the next price value dissuades people from trading.

As in Cont and de Larrard (2010), we define an “efficient” price based on the price value and the
state of the limit order book (qb, qa): given the probability pup(Qb

t , Q
a
t ) that the next price move is

an “uptick”, we can construct an auxiliary process Ŝ whose value Ŝt represents the expected value of
the price after its next move:

∀t ≥ 0, Ŝt = (St + δ) pup(Qb
t , Q

a
t ) + (St − δ)

(
1− pup(Qb

t , Q
a
t )
)
,

Ŝt = St + δ(2pup(Qb
t , Q

a
t )− 1),
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Figure 4.9: p− as a function of ρ and α for −1 ≤ ρ ≤ 1 and 0 ≤ α ≤ 3.

(Ŝt)t≥0 is a continuous-time stochastic process with values between St − δ and St + δ:

∀t ≥ 0, St − δ ≤ Ŝt ≤ St + δ.

The process Ŝ incorporates the information on the price St and the state of the order book Q insofar
as it affects the next price move. The following result shows

Proposition 4.2. If p+ = p− = 1/2, then (Ŝt, t ≥ 0) is a martingale.

Proof. Let (τ1, τ2, ..., τk) the sequence of times when the price S moves and (X1, ..., Xn) the sequence
of consecutive price moves. Since p+ = p− = 1/2, (X1, ..., Xk, ...) is a sequence of I.I.D bernoulli
random variables with parameter 1/2. Therefore we have the following property:

∀(i, j) ∈ N2, i < j, E[Sτj |Fτi ] = Sτi .

The function pup satisfies the equation Lpup = 0, where L is the generator of the process Q =
(Qb, Qa). Hence pup is an harmonic function for the process (Qb, Qa), and the process (pup(Qb

t , Q
a
t ))t≥0

is a martingale. We proved that

∀ s ≤ t < τ1, E[Ŝt|Fs] = Ŝs.

By recurrence on k, one can easily notice that

∀ k ≥ 1, ∀τk ≤ t < τk+1, E[Ŝt|Fτ1 ] = Ŝτ1 .

Assuming s ≤ τ1 ≤ t,

E[Ŝt|Fs] = E[Ŝt|Fs, X1 = 1]P[X1 = +δ|Fs] + E[Ŝt|Fs, X1 = −δ]P[X1 = −δ|Fs],

= E[Ŝt|Fs, X1 = δ]φ(Qb
t , Q

a
t ) + E[Ŝt|Fs, X1 = −δ](1− pup(Qb

t , Q
a
t ),

= (Ss + δ)pup(Qb
t , Q

a
t ) + ss(1− pup(Qb

t , Q
a
t ),

= Ss + δ(2pup(Qb
t , Q

a
t )− 1) = Ŝs,
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Figure 4.10: p+ as a function of ρ and α for −1 ≤ ρ ≤ 1 and 0 ≤ α ≤ 3.

which completes the proof.

Contrarily to the ’latent price’ models alluded to above, here Ŝ is a function of the state variables
(St, Q

b
t , Q

a
t ) and thus is observable, provided one observes trades and quotes.

In the case where the correlation between the bid and the ask queues equals −1, Ŝ coincides with
the definition given in Burghardt et al. (2006) since

pup(Qb
t , Q

a
t ) =

Qa
t

Qa
t +Qb

t

.

Remark 4.4. When p+ 6= 1/2, or p− 6= 1/2, the martingale property of the process (Ŝt)t≥0 disappears.

The jump times S̃ = (S̃t)t≥0 are the hitting times of the axes by the process Q = (Qb, Qa). When
p+ < 1/2 (resp. p+ > 1/2), the jump is negative (resp. positive) after a price increase. Similarly,
when p− < 1/2 (resp. p− > 1/2), the jump is positive (resp. negative) after a price decrease.
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4.3 Price dynamics at lower frequencies: fluid limits and dif-

fusion limits

Let (τ1, ..., τk, ...) the sequence of times when the price S moves and (X1, ..., Xn, ...) the sequence
of consecutive price moves. The high frequency dynamics of the price is described by a piecewise
constant stochastic process St = RNt

where

Rn = X1 + ...+Xn, and Nt = sup{k; τ1 + ...+ τk ≤ t} (4.21)

is the number of price moves during [0, t].
Over time scales much larger than the interval between individual order book events, prices are

observed to have diffusive dynamics and modeled as such. To establish the link between the high
frequency dynamics and the diffusive behavior at longer time scales, we shall consider a time scale
tζ(n) where ζ(n) → ∞ and exhibit conditions under which the rescaled price process

Sn :=

(
Stζ(n)√

n

)

t≥0

satisfies a functional central limit theorem i.e. converges in distribution to a non-degenerate process
(Pt)t≥0 as n→ ∞:

(Sn
t , t ≥ 0)n≥1 ⇒ (Pt, t ≥ 0) on (D, J1) as n→ ∞.

In this section we show that the mean reversion parameters p+ and p−, defined equation (4.2.1)
play a critical role in the dynamics of the price at lower frequencies. More precisely we prove that:

• If p+ = p− = 1/2, the price process (St)t≥0 is simply a time changed random walk, whose
diffusive limit (Pt)t≥0 is a Brownian motion with no drift.

• Similarly, when p+ = p− := pcont (symmetric case), we show that the low-frequency price

dynamics is a Brownian motion whose volatility is a multiple of

√
pcont

1− pcont
.

• When p+ 6= p− (asymmetric case), the low-frequency price process P = (Pt)t≥0 is a Brownian
motion with drift. Both the drift and the volatility component of (Pt)t≥0 can be related to the
parameters p+ and p−.

4.3.1 Representation in terms of a Continuous Time Random Walk

Given a sequence of bivariate IID random variables (Yn, Zn)n≥1, a continuous time random walk
(CTRW) (Wt)t≥0 is a piecewise constant stochastic process, for which the n-th price increment is the
random variable Zn. The durations between the n − 1th and the n-th move is the random variable
Yn. A continuous time random walk is similar to a regular random walk, but has the property that
the distribution of the waiting time between two increments and the distribution of the increments
are not independent. CTRWs have been widely studied in physics, to model anomalous diffusions by
incorporating a random waiting time between jumps.

When p+ 6= 1/2 or p− 6= 1/2, the process (Rn)n≥1 defined by

∀n ≥ 1, Rn = X1 + ...+Xn

is not a Markov chain therefore one can not use the classical central limit theorems. However, as
observed on Figure 4.11, one can split the trajectory of (Rn, n ≥ 1) in a sequence of IID pieces of tra-
jectory (or ’excursions’) of lengths (Yn)n≥1 and heights (Zn)n≥1, with the property that the sequence
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(Yn, Zn)n≥1 is a sequence of IID random variables. This means that one can build a continuous time
random walk from the sequence of price increments (X1, ..., Xn).

Let us first define two sequences of random variables (γ1n, n ≥ 1) and (γ2n, n ≥ 1) recursively by

γ11 = sup{p ≥ 1, X1 = X2 = ... = Xp} and γ21 = sup{p ≥ γ11 , Xγ1
1+1 = ... = Xp},

and for k ≥ 2,

γ1k = sup{p ≥ γ2k−1, Xγ2
k−1+1 = ... = Xp, } and γ2k = sup{p ≥ γ1k, Xγk

1+1 = ... = Xp}.

We call the sequence (Xγ2
k−1+1, ..., Xγ1

k
, Xγk

1+1, ..., Xγ2
k
) a price excursion (more precisely, this is the

k-th price excursion).

Proposition 4.3. The sequence ((Yn, Zn), n ≥ 1), defined by

Yn = γ2n+1 − γ2n and Zn = Xγ2
n+1

−Xγ2
n
. (4.22)

is an IID sequence with the following distribution:

P(Y1 = k + q, Z1 = k − q) = (p+)k−1(1− p+)(p−)q−1(1− p−).

Proof. Assume X1 = δ. The probability that X2 = ... = Xk = δ, Xk+1 = .... = Xk+q = −δ and
Xk+q+1 = δ is clearly:

P[X2 = ... = Xk = δ, Xk+1 = .... = Xk+q = −δ, Xk+q+1 = δ] = (p+)k−1(1− p+)(p−)q−1(1− p−).

This is exactly the probability of observing k price increases followed by q price decreases. i.e. the
probability that the price excursion has a length of k + q and a height of k − q:

P[Y1 = k + q, Z1 = k − q] = (p+)k−1(1− p+)(p−)q−1(1− p−).

Assume that X1 = δ and let (k1, q1, k2, q2) ∈ N2,

P[Y1 = k1 + q1, Z1 = k1 − q1, Y1 = k2 + q2, Z2 = k2 − q2] =

P[X2 = ... = Xk1+1 = δ,Xk1+2 = ... = Xk1+q1+2 = −δ,
Xk1+q1+3 = ... = Xk1+q1+3+k2 = δ,Xk1+q1+k2+4 = Xk1+q1+k2+q2+5 − δ] =

(p+)k1−1(1− p+)(p−)q1−1(1− p−)(p+)k2−1(1− p+)(p−)q2−1(1− p−) =

P[Y1 = k1 + q1, Z1 = k1 − q1]P[Y2 = k2 + q2, Z2 = k2 − q2]

Therefore, (Y1, Z1) and (Y2, Z2) are independent random variables. Replacing δ by −δ one can show
similarly the independence of (Y1, Z1) from (Y2, Z2) given X1 = −δ. A reasoning by induction shows
that (Yk, Zk)k≥1 is an IID sequence of random variables, which completes the proof.

Now denote by τ+ (resp. τ−) the duration until the next price move after a price increase (resp. price
decrease). The duration of the i-th price excursion Ti is then given by

Ti
d
= τ

γ2
i−1+1

+ + ...+ τ
γ1
i

+
︸ ︷︷ ︸

γ1
i −γ2

i−1

+ τ
γ1
i +1

− + ...+ τ
γ2
i

+
︸ ︷︷ ︸

γ2
i −γ1

i

where (τ j+, j ≥ 1) (resp. (τ j−, j ≥ 1)) are IID copies of τ+ (resp. τ−). Now define the following
processes

∀t ≥ 0, Mt = sup{k; T1 + ...+ Tk ≤ t}, and Wt =

Mt∑

i=1

Zi. (4.23)
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Y1

Z1

Z2

Y2

Figure 4.11: Decomposition of (Xn, n ≥ 1) on excursions of lengths (Yn, n ≥ 1) and heights (Zn, n ≥ 1)

The process (Wt, t ≥ 0) is a also a Continuous time random walk, associated with the sequence of IID
random variables (Ti, Zi)i≥1. The price process (St)t≥0 can be decomposed as

∀t ≥ 0, St =Wt +

Nt∑

Y1+...+YMt+1

Xi,

where Mt is the process counting the number of price ’excursions’ and Nt the process counting the
number of price moves. This decomposition of the price process S = (St)t≥0 as a continuous time

random walk W = (Wt)t≥0 plus a residual
∑Nt

Y1+...+YMt+1Xi will be very useful to prove functional

central limit theorems for the price S = (St)t≥0.

4.3.2 Bid-ask symmetry: case when p+ = p−.

In all this section we assume that the distribution τ of the duration between two consecutive moves
of the price has a finite moment of order two:

Assumption 4.4 (Finite second moment of durations).

∀(x, y) ∈ R2
+, E[τ2|Qb

0 = x,Qa
0 = y] <∞

This assumption holds in particular in two important cases:

• E[V a
1 ] + E[V b

1 ] < 0, where (V a
i , i ≥ 1) (resp. (V b

i , i ≥ 1) ) is the sequence of order sizes coming
at the ask (resp. the bid). This assumption is satisfied if there are more market orders and
cancelations than limit orders.

• E[V a
1 ] = E[V b

1 ] = 0: in this case, τ is the exit time from the positive quadrant of a planar
Brownian motion without drift. τ is then heavy-tailed and fails to have a finite second moment
if ρ ≥ 0 where ρ is defined in equation (4.1). When this correlation is negative, (Cont and
de Larrard 2012, Proposition 2) shows that

E[τ2|Qb
0 = x,Qa

0 = y] <∞ ⇐⇒ ρ < − 1√
2
.

We also make the following assumption, which holds when the statistical properties of the order
flows at the bid and the ask are identical, but is in fact a weaker assumption since it only pertains to
the quantities p+ and p−:
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Assumption 4.5 (Up-down symmetry).

p+ = p− := pcont, (4.24)

where p+ and p− are defined in equation (4.2.1).

The following result, whose proof is given Appendix 4.5.2, describes the diffusion limit of the price
process under these symmetry assumptions:

Theorem 4.2. Let

r1(F ) =

∫

R2
+

F (dx, dy)E[τ |Qb
0 = x,Qa

0 = y], (4.25)

be the expected duration until the next price change after a price increase and

r1(F̃ ) =

∫

R2
+

F̃ (dx, dy)E[τ |Qb
0 = x,Qa

0 = y]. (4.26)

be the expected duration until the next price change after a price decrease. Under assumptions 4.4 and
4.5,

(
Snt√
n

)

t≥0

n→∞⇒
(

δ

√

2

r1(F ) + r1(F̃ )

pcont
1− pcont

Bt

)

t≥0

on the Skorokhod space (D, J1), where δ is the tick size and B = (Bt)t≥0 is a Brownian motion.

Remark 4.5. The proof given in Section 4.5.2 is based on the decomposition of S as a continuous
time random walk W plus a residual. Alternatively, one can use the fact that the sequence (Xn, n ≥ 1)
is a reversible random walk on the state {−δ, δ}, with transition matrix:

(
pcont 1− pcont

1− pcont pcont

)

. (4.27)

Using (Aldous and Fill 2002, Ch 4,Prop. 29), since (Xn, n ≥ 1) is a reversible Markov chain on
{−δ, δ} satisfying E(Xn) = 0,





[nt]
∑

i=1

Xi√
n





t≥0

n→∞⇒ (σBt, t ≥ 0)

on the Skorokhod space (D, J1), where

σ2 = 2(
g21
λ1

+
g22
λ2

) with gm =
∑

i∈{δ,−δ}
i
√
πiui,m

where π is the stationary distribution of the Markov chain X and ui,m is the i-th component of the m-
th eigenvector of the transition matrix (4.27). The expressions for the eigenvalues and the eigenvectors
of the transition matrix (4.27) computed in the proof of Theorem 4.1 then allow to conclude.

Remark 4.6. In most examples (see Table 4.4 and Figure 4.6), price changes exhibit negative auto-
correlation at first lag at high frequency which corresponds to the case pcont < 1/2. In this case, the
multiplicative term pcont

1−pcont
< 1 decreases price volatility. Otherwise, when pcont > 1, the price has a

’trend-following’ behavior and the term pcont

1−pcont
increases price volatility
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4.3.3 Asymmetric order book: case when p+ 6= p−

When the skewness of F and the skewness of F̃ are not equal, or when the order flow has different
statistical properties at the bid and at the ask, the mean reversion parameters can be different:

p+ 6= p−.

Empirically (cf table 4.4 above), these mean reversion parameters are slightly different. We will
see in this section that this difference generates a drift in the price that can be related to these mean
reversion parameters p+ and p−.

Let rk(F ) be, for k ∈ {1, 2}, the k-th moment of the duration between price moves after a price
increase

rk(F ) =

∫

R2
+

F (dx, dy)E[τk|Qb
0 = x,Qa

0 = y], (4.28)

and rk(f̃) the k-th moment of the duration between price moves after a price decrease:

rk(F̃ ) =

∫

R2
+

F̃ (dx, dy)E[τk|Qb
0 = x,Qa

0 = y]. (4.29)

Theorem 4.3. Under assumption 4.4,

(
Snt

n
, t ≥ 0

)

n≥1

⇒ (δtdp, t ≥ 0) on (D, J1), (4.30)

where δ is the tick size and

dp =

1

1− p+
− 1

1− p−

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

(4.31)

Proof. See section 4.5.3.

Theorem 4.4. Under assumption 4.4,

(
Snt − dpnt√

n
, t ≥ 0

)

n≥1

⇒D (δσpBt, t ≥ 0) on (D, J1), (4.32)

where δ is the tick size, (Bt)t≥0 is a Brownian motion and:

σ2
p =

A+B + C

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

with

A =
(1 + p+)

(1− p+)2
+

(1 + p−)

(1− p−)2
− 2

(1− p+)(1− p−)
,

B = −2dp

(

r1(F )

(1− p+)2
− r1(F̃ )

(1− p−)2
+

r1(F )− r1(F̃ )

(1− p+)(1− p−)

)

,

C = d2p

(

r2(F )(1 + p+)

(1− p+)2
+
r2(F̃ )(1 + p−)

(1− p−)2
+

2r1(F )r1(F̃ )

(1− p+)(1− p−)

)

.

Proof: See section 4.5.3.
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Remark 4.7. If dp << 1,

A+B + C =
(1 + p+)

(1− p+)2
+

(1 + p−)

(1− p−)2
− 2

1

(1− p+)(1− p−)

+ dp

(

r1(F )

(1− p+)2
− r1(F̃ )

(1− p−)2
+

r1(F )− r1(F̃ )

(1− p+)(1− p−)

)

+ o(dp).

In practice, the error made when using the simplified formula:

σ2
p ≃ (1 + p+)

(1− p+)2
+

(1 + p−)

(1− p−)2
− 2

1

(1− p+)(1− p−)

is less than 10−4.

Remark 4.8. Roginsky (1994) estimates the speed of convergence of this process to its Brownian
limit as a function of the moments of Zis. When E[Z3

1 ] <∞, it is proven that the oscillation between

(
Snt√
n
)t≥0 and its Brownian limit (Pt)t≥0 are bounded by O(

log(n)√
n

). This result can be applied here,

all moments of Zi being finite.

Remark 4.9. The heavy-traffic approximation of theorem 4.4 is valid only when E[τ2] < ∞. If,
for instance, the average duration between two consecutive price moves becomes infinite, the rescaling
given in theorem 4.4 is no longer valid. The decomposition of the price process (Sn, n ≥ 1) as a
sequence of independent excursions of heights Zn and durations Tn would remain true but Tn would
not a finite moment of order two. Becker-Kern et al. (2004) provides a way to compute the heavy
traffic limit of a general continuous time random walk. Interestingly, the set of possible limits is much
wider than the set of stable processes. In particular, the heavy-traffic approximation of a continuous
time random walk can be non-Markovian.

4.3.4 Empirical test using high-frequency data

Theorems 4.3 and 4.4 relate the ’coarse-grained’ drifts and volatility of intraday returns at lower
frequencies to the parameters p+, p− and the average price durations r1(F ) and r1(F̃ ). Denote by
γ0 the average time between two orders. Typically γ0 is of the order of milliseconds. In plain terms,
Theorems 4.3 and 4.4 state that, observed over a time scale γ2 >> γ0 (say, 10 minutes), the price
behaves like a Brownian motion with drift:

Pt ≈ nδtdp +
√
nδσpBt.

where δ is the tick size, n = γ2

γ0
represents the average number of orders during an interval γ2, and

σp, dp are given in equations (4.32), (4.31).
Figure 4.12, compares, for stocks in the Dow Jones index, the standard deviation of 10-minute

price increments with

δ

√
√
√
√
√
√
√

(1 + p+)

(1− p+)2
+

(1 + p−)

(1− p−)2
− 2

(1− p+)(1− p−)

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

.

We observe that the correlation between the theoretical expression of σp and the standard deviation
of 10-minute price increments is high. A regression gives slope of 0.9664 and a R2 of 0.77. Figure 4.13
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compares, for the same stocks, the closing price minus its opening price (the ”realized daily trend”)
with its model-based estimator

δ

1

1− p+
− 1

1− p−

(1 +
p+

1− p+
)r1(F ) + (1 +

p−

1− p−
)r1(F̃ )

,

here p+ and p− are the mean reversion parameters defined and r1(F ) (resp. r1(F̃ )) is the average
price duration after an increase (resp. decrease) of the price. Regression of the estimator dp on the
observed daily price trend yields a slope of 0.997 and a R2 of 0.97.

Figure 4.12: Annualized intraday price volatility estimated using formula (4.32) (vertical axis) vs
annualized 10-minutes realized volatility estimated using high-frequency price changes (x-axis) for
stocks in the Dow Jones Index. Each point corresponds to one stock on a given trading day.



CHAPTER 4. LINKING VOLATILITY AND ORDER FLOW. 127

Figure 4.13: Daily drift of the price estimated with formula (4.31) (vertical axis) vs empirical daily
drift of the price estimated using the closing mid-price minus the opening mid price (x-axis) for stocks
in the Dow Jones Index. Each point corresponds to one stock on a given trading day.
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4.4 Link between volatility and order flow

In the previous section, we linked the price volatility with the conditional probabilities parameters
p+, p− and the average price duration after a price increase (resp. decrease) r1(F ) (resp. r1(F̃ )). In
particular, when the order flow is symmetric at the bid and at the ask, the drift of the price is null
and the price volatility is:

σ2
p = δ2

1

r1(F )

pcont
1− pcont

. (4.33)

This equation (4.33) does not directly link the price volatility with the order flow. It is not clear
how the trading intensity, the variance of order sizes, or the probability distributions F and F̃ affect
price volatility. If one can express both parameters pcont and r1(F ) (resp. r1(F̃ )), with order flow
statistics, we could have an explicit relation between the order flow and σp.

The average price duration r1(F ) may be computed using:

r1(F ) =

∫ ∞

0

∫ ∞

0

E[τ |Qb
0 = x,Qa

0 = y]F (dx, dy);

As shown by Klein (1952), when (Qb, Qa) is a continuous Markov process with generator G,

h(x, y) := E[τ |Qb
0 = x,Qa

0 = y]

is a solution to the elliptic partial differential equation

∀x > 0, y > 0, Gh(x, y) = −1, and h(x, 0) = 0, h(0, y) = 0. (4.34)

The ’continuation probability’ pcont satisfies:

pcont =

∫ ∞

0

∫ ∞

0

pup(x, y)F (dx, dy),

where pup is the probability of a price increase conditioned on observing x shares at the bid and
y shares at the ask. In Cont and de Larrard (2011) we proved that, when (Qb, Qa) is a Markovian
process, with generator G, pup follows a partial differential equation:

∀x > 0, y > 0, Gpup(x, y) = 0, and pup(x, 0) = 1, pup(0, y) = 0. (4.35)

In summary, σp is linked to the order flow parameters via the solutions of the two elliptic equations
(4.34) and (4.35). In this section we will solve these partial differential equations for particular regimes
of the limit order book, when market orders and cancelations dominate the flow of limit orders and
when V a = V b.

For a general regime of limit order book, when the order book Q has both a Brownian component
and a non null drift, one can either solve numerically these partial differential or compute complex
analytical expressions of pup and h by solving Laplace equations and Helmholtz equations in the
quadrant (see Spence (2010) for a review of these methods).

4.4.1 Case when market orders and cancelations dominate

In Cont and de Larrard (2011), we derived diffusion approximations for a limit order book under the
condition that the imbalance between limit orders ion one hand and market orders and cancelations
on the other hand is small with respect to the arrival intensity of these orders:

−
√
nE[V a

1 ]

E[T a
1 ]
√

Var(V a
1 )

<< 1, (4.36)
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where n denotes the number of orders arriving in the order book per unit time. Under this conditions,
the bid/ask queue sizes (qb, qa) may be approximated by their diffusion limit (Qb, Qa) whose generator
is given equation (4.4). However, when the flow of market orders and limit orders dominates the flow
of limit orders,

Assumption 4.6.

−
√
nE[V a

1 ]

E[T a
1 ]
√

Var(V a
1 )

>> 1.

we recover another asymptotic regime, the fluid limit: under Assumption 4.6, the sequence of
processes

(
qbnt
n
,
qant
n
, t ≥ 0

)

n≥1

(4.37)

converges to a piecewise deterministic process Q̃ = (Q̃b, Q̃a) whose generator G̃ is given by

G̃h(x, y) = E[V a
1 ]

E[T a
1 ]

∂h

∂y
+

E[V b
1 ]

E[T b
1 ]

∂h

∂x
, (4.38)

whose domain is the set dom(G̃) of functions h ∈ C1(]0,∞[×]0,∞[,R) ∩ C0(R2
+,R) verifying the

“boundary conditions”

∫

R2
+

(h(u, v)− h(0, y))F (du, dv) = 0,

∫

R2
+

(h(u, v)− h(x, 0))F̃ (du, dv) = 0.

In this section we will assume that the order flow is symmetric at the bid and at the ask:

Assumption 4.7 (bid-ask symmetry). F and F̃ have densities f and f̃ with

∀x > 0, ∀y > 0, f(x, y) = f̃(y, x) and
E[V a

1 ]

E[T a
1 ]

=
E[V b

1 ]

E[T b
1 ]

:=
E[V1]

E[T1]
.

Under this assumption one can solve the partial differential equations (4.35)-(4.34) with the gen-
erator (4.54):

Proposition 4.4. Under assumption 4.7, pup(x, y) = 1x<y and

E[τ |(Q̃b
0, Q̃

a
0) = (x, y)] = x

E[V1]

E[T1]
if y > x (4.39)

= y
E[V1]

E[T1]
if x > y (4.40)

Proof. The process Q̃ is deterministic between two hitting times of the axes. Starting from (Q̃b
0, Q̃

a
0) =

(x, y), the process Q̃ evolves vertically (resp. horizontally) and will reaches the x-axis (resp. y-axis)

after a duration y
E[V1]

E[T1]
(resp. x

E[V1]

E[T1]
) when y < x (resp. y > x). Therefore pup(x, y) = 1x<y and,

since τ is deterministic conditional on x < y or x > y, we obtain the result.

We observe in particular that the fluid limit, advocated in some studies as a valid approximation
such as optimal order execution, leads to trivial ’predictions’ for price dynamics such as the one given
in proposition 4.4. Therefore results based on such fluid limits should be examined with care.



CHAPTER 4. LINKING VOLATILITY AND ORDER FLOW. 130

Proposition 4.5. Under the assumptions 4.6 and 4.7,
(
S[nt]√
n

)

t≥0

n→∞⇒ (σpBt)t≥0 ,

where B is a Brownian motion, pcont := p+ = p− , δ is the tick size and

σ2
p = δ2

1

r1(F )

pcont
1− pcont

and r1(F ) is the average time between two consecutive price moves.

Proof. Under assumption 4.7, it is clear that p+ = p− := pcont. Therefore one can apply Theorem
4.4.

Proposition 4.5 allows to retrieve the results of Cont and de Larrard (2010):

Example 4.1 (Markovian limit order book). In Cont and de Larrard (2010), we studied a simple
example of Markovian limit order book in which

• Market buy (resp. sell) orders and cancelations arrive at independent, exponential times with
rate µ,

• Limit buy (resp. sell) orders at the (best) bid (resp. ask) arrive at independent, exponential
times with rate λ,

• These events are mutually independent.

• All orders sizes are equal (assumed to be 1 without loss of generality).

• F has a density f which satisfy f(x, y) = f(y, x).

Under this last assumption, p+ = p− = 1/2 and Proposition 4.5 implies that when λ < µ, the diffusion
limit of the price process has a variance per unit time given by

σ2
p = δ2

1

r1(F )
,

which is consistent with the formula given in Cont and de Larrard (2010). Proposition 4.5 allows to
generalize this formula to the case where the angular part of F is skewed: then pcont is in general
different from 1/2 and the formula for price volatility takes the more general form

σ2
p = δ2

1

r1(F )

pcont
1− pcont

.

When F has a density f which is given by the parametric form (4.15):

f(r, θ) = c2e−cr(
2

π
)ααθα−1. (4.41)

one can further express the parameters pcont and r1(F ) appearing in proposition 4.5 as a function of
statistical properties of the order flow.

Proposition 4.6. Under the assumptions 4.6 and 4.7, when F follows the parametric representation
from equation (4.15), pcont = 2−α and the variance per unit time of price changes is given by

σ2
p = δ2

(π/2)α

(2α − 1)
∫ π/4

0
sin(θ)θα−1dθ +

∫ π/2

π/4
cos(θ)θα−1dθ

c

2
(µ− λ)

where δ is the tick size,
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• pcont
1− pcont

= 1
2α−1 is the factor due to high-frequency mean-reversion,

• c/2 is the average depth of the limit order book after a price change.

• µ− λ is the average growth rate of the queue sizes, i.e. the difference between the rate at which
orders leave the order book (either by cancelation or execution) and the rate at which they enter
the bid/ask queues.

Proof. As shown in Proposition 4.4, pup(r, θ) = 1θ∈[0,π/4]. Therefore,

pcont =

∫ ∞

0

∫ π/2

0

f(r, θ)pup(r, θ)rdrdθ = (2/π)αα

∫ π/4

0

θα−1dθ = (
1

2
)α.

An immediate computation then shows that

pcont
1− pcont

=
( 12 )

α

1− ( 12 )
α
=

1

2α − 1
.

To apply theorem 4.4, we just need to compute r1(F ), the average time between two consecutive price
moves:

r1(F ) =

∫ π/2

0

∫ ∞

0

c2e−crα(2/π)αθα−1E[τ |(Q̃b
0, Q̃

a
0) = (r cos(θ), r sin(θ))]rdrdθ.

The process Q̃ = (Q̃b, Q̃a), starting from (Q̃b
0, Q̃

a
0) = (r sin(θ), r cos(θ)) will hit the x-axis if θ < π/2

at the time r sin(θ)
µ−λ . If θ > π/4, the process Q̃ will hit the y-axis at the time r cos(θ)

µ−λ . Hence,

r1(F ) =
1

µ− λ

∫ ∞

0

c2r2e−crα(2/π)α

(
∫ π/4

0

sin(θ)θα−1dθ +

∫ π/2

π/4

cos(θ)θα−1dθ

)

,

r1(F ) =
1

µ− λ

2

c
α(2/π)α

(
∫ π/4

0

sin(θ)θα−1dθ +

∫ π/2

π/4

cos(θ)θα−1dθ

)

.

Remark 4.10. The function (π/2)α

(2α−1)
(

∫ π/4
0 sin(θ)θα−1dθ+

∫ π/2

π/4
cos(θ)θα−1dθ

) , displayed in Figure 4.14, de-

creases with α until α = 1.4. After α = 1.4, the skewness increases price volatility. Intuitively, there
is a tradeoff between the term pcont/(1 − pcont), which decreases the volatility when the skewness α
increases and the tern 1/r1(F ) which increases with the parameter α.
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Figure 4.14: Price volatility as function of bid/ask imbalance parameter α in model 4.6.
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4.4.2 A symmetric driftless limit order book

When the dynamics of the order book behaves as a symmetric driftless Brownian motion, one will see
in this section that it is possible to explicitly link the volatility of the price to the statistical properties
of the order flow.

Case when bid and ask queue sizes are independent

In Cont and de Larrard (2010), we studied a simple example of Markovian limit order book in which:

• Market buy (resp. sell) orders and cancelations arrive at independent, exponential times with
rate µ,

• Limit buy (resp. sell) orders at the (best) bid (resp. ask) arrive at independent, exponential
times with rate λ,

• These events are mutually independent.

• All orders sizes are equal (assumed to be 1 without loss of generality).

• The price does not mean revert: p+ = p− = 1/2.

We proved that, when λ = µ, the diffusion limit of the price process is a Brownian motion:

(sn logn t

n
, t ≥ 0

)

n≥1
⇒
(

δ

√

πλ

D(F )
Bt, t ≥ 0

)

on (D, J1), (4.42)

where D(F ), whose square root is the geometric mean of the bid and ask queue sizes after a price
change, characterizes the depth of the order book (qb, qa) after a price move:

D(F ) =

∫

R2
+

xyF (dx, dy) (4.43)

The Markovian order flow process described in Cont and de Larrard (2010), verifies assumptions 4.2
and 4.3 with the characteristics:

µa = µb = 0, λav2a = λav2a = 2λ, ρ = 0 and p+ = p− = 1/2.

We now show that the same diffusion limit can be derived for a more general order flow, without making
use of the Markov property. We consider the case where the parameter describing the diffusion limit
(Qb, Qa) of the order book satisfy:

Assumption 4.8.
λaσ2

a = λbσ2
b , µa = µb = 0 and ρ = 0

Theorem 4.5. Under assumption 4.8,

(
Sn logn t√

n
, t ≥ 0

)

n≥1

⇒
(

δ

√

pcont
1− pcont

πλaσ2
a

2D(F )
Bt, t ≥ 0

)

on (D, J1), (4.44)

where B is a Brownian motion and D(F ) is given by (4.43).
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Proof. When ρ = 0, the two components Qa and Qb of the diffusion limit are independent Brownian
motions. Since Qa is a Brownian motion with volatility

√
λaσa, for r > 0 the process Mr = (Mr

t )t≥0

defined as:

∀t ≥ 0, Mr
t = er

√√
λaσaQ

a
t −r2

√
λaσat

is a martingale. Therefore if one defines σa the first time Qa hits 0:

σa = inf{t ≥ 0, Qa
t = 0},

one has that for r ≥ 0,

E[e−rσa |Qa
0 = x] = e

−

√
2r

σa
√
λa

x

;

and by the Tauberian theorem of Karamata-Littlewood Feller (1971),

P[σa > t|Qa
0 = x] ∼t→∞

√
2x

√
π
√√

λaσa
√
t
.

Hence

P[τ > t|Qa
0 = x,Qb

0 = y] ∼t→∞
2xy

π
√
λaσat

.

Using (Cont and de Larrard 2010, Lemma 1) then implies

τ1 + τ2 + ...+ τn
n log n

→ 2D(F )

πλaσ2
a

as n→ ∞

The rest of the proof is very similar to the proof of (Cont and de Larrard 2010, Theorem 2).

The decomposition f(r, θ) = g(θ)h(r) of the density of F allows to express price volatility as

σ2
p = δ2

︸︷︷︸

tick

4

π

variance of order sizes/unit time
︷︸︸︷

λav2a
∫ ∞

0

h(r)r3dr

︸ ︷︷ ︸

Order book depth

∫ π/2

0
g(θ) sin(2θ)dθ

pcont
1− pcont
︸ ︷︷ ︸

mean reversion

. (4.45)

As argued in Section 4.2.2 a flexible and empirically plausible parameterization of F is

F (dr, dθ) = c2e−cr(
2

π
)ααθα−1drdθ (4.46)

where c > 0 represents the depth of the order book (Qb, Qa) after a price move and α > 0 parameterizes
the asymmetry of F . In the next proposition, we express the price volatility when F has this parametric
form:

Proposition 4.7. If the density of F follows the parametric form f(r, θ) = c2e−cr(
2

π
)ααθα−1, price

volatility becomes:

σ2
p = δ2

c2

6
λaσ2

a

α+ 1

2α 1H2(
α+1
2 ; 3

2 ,
α−1
2 ;−π2

4 )
,

where 1H2 is the generalized hypergeometric function.

Proof. One can easily compute all the components in equation (4.45):
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• The mean reverting component
p+

1− p+
=

1

α

• The average order book depth
∫∞
0
r3c2e−crdr = 6

c2

• The integral 1
2

∫ π/2

0
( 2π )

αθα−1 sin(2θ)dθ = α+1
α

1

2 1H2(
α+1
2 ; 32 ,

α−1
2 ;−π2

4 )

As observed in Figure 4.14, price volatility decreases with α until α = 1.45. After α = 1.45, price
volatility increases with the parameter α parameterizing the bid-ask asymmetry. Intuitively, there
is a tradeoff between the term pcont/(1 − pcont), which decreases the volatility when the skewness α
increases and the term 1/r1(F ) which increases with the parameter α.

Figure 4.15: Price volatility as function of bid/ask imbalance parameter α in model from proposition
4.7

Case when bid and ask queue sizes are negatively correlated

In this subsection we consider the (frequently observed) case where the correlation between bid and
ask queue sizes is negative.

Assumption 4.9. F and F̃ have densities f , f̃ with:

f(x, y) = f̃(y, x) and λaσ2
a = λbσ2

b , µa = µb = 0, ρ < 0.

The previous results show that the computation of r1(F ) and r1(F̃ ) are critical to estimate both
the drift and the volatility of the price using statistics of the order flow. In Cont and de Larrard (2011),
we gave an explicit expression of the distribution of the price durations τ . However, the numerical
computation of r1(F ) and r1(F̃ ) using this formula seems challenging. The following proposition gives
a simple expression for this quantity.
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Proposition 4.8. Under assumption 4.9,

E[τ |Qb
0 = x,Qa

0 = y] = − xy

2ρλaσ2
a

, (4.47)

Proof. As shown by Klein (1952), u : R2
+ 7→ R+ defined by

u(x, y) := E[τ |Qb
0 = x,Qa

0 = y].

is a positive solution to the boundary value problem

Lu = λaσ2
a

(
∂2u

∂x2
+
∂2u

∂y2
+ 2ρ

∂2u

∂x∂y

)

= −1, (4.48)

in the positive quadrant R2
+ with the boundary conditions

∀(x, y) ∈ R2
+, u(0, x) = u(0, y) = 0. (4.49)

The scaling properties of Brownian motion imply that u(λx, λy) = λ2u(x, y) or, in polar coordinates,
u(r, θ) = r2u(1, θ) (Spitzer (1958)). It is easily verified that v(x, y) = −xy/2ρλaσ2

a is a positive solution
of this boundary value problem, which grows polynomially at rate r2 = (x2 + y2) as (x, y) → ∞. The
function w = u− v is then a harmonic function in the orthant, solution of

∀(x, y) ∈ R2
+, Lw(x, y) = 0 w(0, x) = w(0, y) = 0.

with r−3w(r, θ) → 0 as r → ∞. (Yoshida and Miyamoto 1999, Theorem 3.2) then implies that w is
proportional to r2 sin(4θ). So finally, we have shown that, in polar coordinates

∃c ∈ R, u(r, θ) = v(r, θ) + cr2 sin(4θ).

Since the second term changes sign, the only positive solution is given by c = 0 i.e. u = v.

This following result follows immediately from Proposition 4.8:

Corollary 4.1. Under Assumption 4.9, price volatility becomes

σ2
p = δ2

λaσ2
a

D(F )

pcont
1− pcont

, where D(F ) =

∫

R2
+

xyF (dx, dy).

Proposition 4.9. Under assumption 4.9, if the density f of F has the polar decomposition:

∀(r, θ) ∈ R+ × [0, π/2], f(r, θ) = h(r)g(θ),

then the average time between two price moves r1(F ) is given by

r1(F ) = r1(F̃ ) =
−1

4λaσ2
aρ

∫ ∞

0

r3h(r)dr

∫ π/2

0

g(θ) sin(2θ)dθ, (4.50)

Proof. Assume that the density f of F follows a polar decomposition f(r, θ) = h(r)g(θ). The average
price duration r1(F ) (resp. r1(F̃ )) after a price increase (resp. decrease) is

r1(F ) = r1(F̃ ) =

∫

R2
+

E[τ |(x, y) = (r cos(θ), r sin(θ))]h(r)g(θ)rdrdθ

=
1

λaσ2
a

∫ ∞

0

∫ π/2

0

(−r2 cos(θ) sin(θ)
2ρ

)

h(r)g(θ)rdrdθ.

Therefore the average time between two consecutive price move can be expressed as:

r1(F ) = r1(F̃ ) =
−1

4λaσ2
aρ

∫ ∞

0

r3h(r)dr

∫ π/2

0

g(θ) sin(2θ)dθ, (4.51)
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With the decomposition F (r, θ) = h(r)g(θ) given in section 4.2.2, price volatility becomes

σ2
p = −4ρ

︸︷︷︸

Bid−Ask correlation

δ2
︸︷︷︸

tick

variance of order sizes/unit time
︷︸︸︷

λav2a
∫ ∞

0

h(r)r3dr

︸ ︷︷ ︸

Order book depth

∫ π/2

0
g(θ) sin(2θ)dθ

pcont
1− pcont
︸ ︷︷ ︸

mean reversion

. (4.52)

The terms appearing in formula (4.52) have an intuitive interpretation:

• λav2a is the variance of the order book (Qb, Qa). λa is the intensity of orders arriving at the ask
and v2a is the variance of order sizes.

• pcont
1− pcont

comes from the mean reversion of the price. When the price mean-reverts, pcont < 1/2

and
pcont

1− pcont
< 1. The price mean reversion decreases its volatility. On the other hand, when

the price has a trend following behavior, pcont > 1 and the volatility is increased by a factor
pcont

1− pcont
> 1. When price increments are not correlated, this parameter equals 1.

•
∫∞
0
h(r)r3dr measures the average depth of the order book (on both sides)

•
∫ π/2

0
g(θ) sin(2θ)dθ: given that g represents the distribution of bid-ask asymmetry Qa/Qb after

a price change, this term captures the influence of bid-ask imbalance on volatility.

Example 4.2. When F has the parametric form (4.15) one can easily compute all the terms in
Equation (4.52):

• the mean reversion component p+

1−p+ = 1
α .

• the average order book depth
∫∞
0
r3c2e−crdr = 6

c2 .

• the term
∫ π/2

0
g(θ) sin(2θ)dθ = (2/π)αα

∫ π/2

0
θα−1 sin(2θ)dθ.

so the standard deviation of price changes is given by

σ2
p = δ2 λav2a(−4ρ)

c2

6

(π/2)α

α2
∫ π/2

0
θα−1 sin(2θ)dθ

.

Remark 4.11. As it is shown on figure 4.16, price volatility is decreasing for α ≤ α∗, and increasing
in α ≥ α∗ where α∗ ≃ 1.85.
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Figure 4.16: Volatility of price increments as a function of bid-ask imbalance parameter α in the
parametric model of section 4.2.2.
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4.4.3 ”Flash crash”: when sell orders overwhelm buy orders

In sections 4.4.1 and 4.4.2, we derived asymptotic expressions for price volatility in situations where
the order flows at the bid and at the ask have comparable orders of magnitude.

However, when the selling pressure, represented by flow of market orders and cancelations at the
bid plus the limit orders at the ask, dominate the flow of buy orders, as may be the case in a market
crash, the magnitude of the order flow at the bid and the ask may be quite different. Such regimes
occur in situations where the equilibrium between buyers and sellers is temporarily disrupted. We can
represent such a situation using a two-scale model in which, the bid queue is depleted at rate which is
an order of magnitude (say, O(nβ) where n is the number of order book events per unit time) larger
than the rate of change of the ask queue.

Assumption 4.10. [Market crash]

(

E[V n,b
1 ], nβE[V n,a

1 ]
)

n→∞→
(
Πb, V a

)
with Πb < 0 and V a ≥ 0,

Tn,b
1 + ...+ Tn,b

n

n
→ 1

λb
,

Tn,a
1 + ...+ Tn,a

n

n
→ 1

λa
,

n2f̃n(n., n.) ⇒ F̃ .

Under assumption 4.10, one can prove the following functional central limit on the Skorokhod
space (D, J1):

qn[nt]

n
⇒ Q, (4.53)

where Q is a piecewise-deterministic Markov process with infinitesimal generator

Gh(x, y) = λbΠb ∂h

∂x
+ λaΠa ∂h

∂y
, (4.54)

for x > 0, y > 0, where

Πa = 0 if β > 0 and Πa = V
a ≥ 0 when β = 0,

and whose domain is the set dom(G) of functions h ∈ C1(]0,∞[×]0,∞[,R) ∩ C0(R2
+,R) verifying the

boundary conditions ∫

R2
+

(h(u, v)− h(0, y))F̃ (du, dv) = 0

In a disequilibrium situation such as the one described by Assumption 4.10, one can no longer
assume that the bid-ask spread is constant. The bid-ask spread may widen as the bid price falls
under the influence of selling pressure, while the ask queue may or may not remove because of a
temporary shortage in demand. Since sellers dominate buyers, the intensity of limit orders at the ask
dominate the intensity of market orders and cancelations at the ask and the ask queue never reaches
zero whereas the bid price decreases.

In between two price moves, Q is deterministic and moves horizontally to the left at speed λbΠb

until it reaches the y axis, then jumps to a random position inside the quadrant with distribution F̃
and price decreases at each hitting time. If one assumes that the price decreases by one tick at every
move, then we obtain the following description of the ’free fall’ of the price:

Proposition 4.10. Under Assumption 4.10, the fluid limit of the bid price process is a deterministic
process with negative drift

(
Sb
[nt]

n
, t ≥ 0

)

n→∞⇒ (dpt, t ≥ 0) , where dp =
λbΠb

∫

R2 yF̃ (dx, dy)
< 0. (4.55)
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Proof. The sequence (τ1, ...., τn, ...) of bid price durations is a sequence of IID random variables with
common distribution given by:

P[τ1 > t] =

∫ ∞

0

∫ ∞

tΠbλa

F̃ (dy, dt).

Hence E[τ ] = 1
λaV a

∫

R2 yF (dx, dy). On the other hand, the bid price Sb
t is the counting process

associated to the sequence of durations (τ1, ..., τk). Thanks to (Whitt 2002, Chapter 13), the counting
process (Sb

t )t≥0 satisfies the following functional limit theorem:

(
Sb
[nt]

n
, t ≥ 0

)

⇒
(

λbΠb

∫

R2 yF̃ (dx, dy)
t, t ≥ 0

)

.

Thus, when sell orders exceed buy orders by an order of magnitude, the price acquires a negative
trend and drops linearly and this the deterministic trend of the price dominates price volatility.

This proposition actually gives an upper bound on the free fall of the price: in a selling panic,
traders may also cancel limit orders which populate the lower levels of the order book, thus accelerating
the descent of the price, since this can lead to gaps in the order book which lead to negative price
changes which are larger than one tick. We do not model such effects here but it is clear than
incorporating such phenomena can lead to a free fall in the price at a faster than linear rate, as has
been observed in market crashes.

4.5 Proof of technical lemmas

4.5.1 Some useful lemmas

Lemma 4.1. The sequence of IID random variables (Ti, i ≥ 1), defined equation (4.3.1), satisfies:

E[T1] =
r1(F )

1− p+
+

r1(F̃ )

1− p−
.

Proof.

E[T2] =

∞∑

i=1

∞∑

j=1

E[T2|γ12 − γ21 = i, γ22 − γ12 = j]P[γ12 − γ21 = i, γ22 − γ12 = j]

=

∞∑

i=1

∞∑

j=1

E[T2|γ12 − γ21 = i, γ22 − γ12 = j](p+)i(1− p+)(p−)j(1− p−)

=

∞∑

i=1

∞∑

j=1

(

ir1(F ) + jr(F̃ )
)

(p+)i(1− p+)(p−)j(1− p−)

=
∞∑

i=1

ir1(F )(p
+)i(1− p+) +

∞∑

j=1

jr1(F̃ )(p
−)j(1− p−) =

r1(F )

1− p+
+

r(F̃ )

1− p−
.

Theorem 4.6. Let W be the process defined in equation (4.23). If

E[Z2
i ] <∞, E[τ21 ] <∞ and E[Y 2

i ] <∞, then
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• When E[Z1] = 0,

(
Wnt√
n
)t≥0 ⇒ (

√

V ar(Z1)

E[T1]
Bt)t≥0 on (D, J1).

• When E[Z1] 6= 0,

(
W[nt]

n
)t≥0 ⇒ (

E[Z1]

E[T1]
t)t≥0,

(
W[nt] − E[Z1]

E[T1]
nt

√
n

)t≥0 ⇒ (σBt)t≥0

where

σ =

√
√
√
√V ar(Z1 − E[Z1]

E[T1]
T1)

E[T1]
.

Proof. When E[Z1] = 0, the sequence (Z1, Z2, ...) is a stationary sequence of random variable with
finite moment of order two. Therefore, one can apply the Donsker theorem and the following functional
central limit theorem holds:

(
Z1 + ...+ Z[nt]√

n
, t ≥ 0

)

⇒
(√

V ar(Z1)Bt, t ≥ 1
)

on (D, J1),

where W = (Bt, t ≥ 1) is a standard Brownian Motion. On the other hand

M[nt]

n
⇒ 1

E[T1]
.

Therefore, by application of (Whitt 2002, Theorem 13.2.3),

(
W[nt]√
n
, t ≥ 0

)

⇒
(√

V ar(Z1)

E[T1]
Bt, t ≥ 0

)

on (D, J1).

Assume E[Z1] 6= 0. First, one can easily notice that

(
W[nt]

n
, t ≥ 0

)

⇒
(
E[Z1]

E[T1]
t, t ≥ 0

)

on (D, J1).

Define, for i ≥ 1, Z̃i := Zi −E[Zi]. The sequence (Z̃i, i ≥ 1) is a sequence of IID random variables
with finite moment of order two, therefore,

(

Z̃1 + ...+ ˜Z[nt]√
n

,
M[nt]

n
, t ≥ 0

)

⇒
(

V ar(Z̃1)Bt,
t

E[T1]
, t ≥ 0

)

on (D(R2), J1).

Hence, by (Whitt 2002, Theorem 13.2.3),

(
W[nt] − E[Z1]

E[T1]
nt

√
n

)t≥0 ⇒ (

√
√
√
√V ar(Z1 − E[Z1]

E[T1]
T1)

E[T1]
Bt)t≥0,

which concludes the proof.
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4.5.2 Proof of Theorem 4.2: case when p+ = p−

First, when the mean reversion parameters are equal (p+ = p− := pcont), thanks to theorem 4.6,

(
Wnt√
n
)t≥0 ⇒ (

√

V ar(Z1)

E[T1]
Bt)t≥0 on (D, J1).

Lemma 4.2. When p+ = p− := pcont, Var(Z1) = 2 pcont

(1−pcont)2
.

Proof. The variance of Z1 is

Var(Z1) = E[Z2
1 ]− (E[Z1])

2 =

∞∑

k=0

k2P[Z1 = k] =

∞∑

i=1

∞∑

j=1

(i− j)2P[Z1 = i− j]

=

∞∑

i=1

∞∑

j=1

(i− j)2pi−1
cont(1− pcont)p

j−1
cont(1− pcont)

= 2

∞∑

i=1

i2pi−1
cont(1− pcont)− 2

( ∞∑

i=1

ipi−1
cont(1− pcont)

)2

= 2
pcont

(1− pcont)2
.

To summarize,

E[Z1] = 0, E[T1] =
r1(F ) + r(F̃ )

1− pcont
, V ar(Z1) = 2

pcont
(1− pcont)2

,

and
V ar(Z1)

E[T1]
=

2

r1(F ) + r(F̃ )

pcont
1− pcont

.

Denote, for n ∈ N, by (ζnt , t ≥ 0) the stochastic process defined by

∀t ≥ 0, ζnt =

Nnt∑

i=Y1+...+YMnt+1

Xi√
n

ζn,t is a random variable with the property that

P[sup
s≤t

|ζns | > u] ≤ (p+)
√
nu + (p−)

√
nu.

Hence for t ≥ 0, ζnt → 0 a.s. Therefore





Nnt∑

i=Y1+...+YMnt+1

Xi√
n





t≥0

n→∞⇒ 0

on (D, J1). Moreover, for n ≥ 1, t ≥ 0

Snt√
n

=
Wnt√
n

+





Nnt∑

i=Y1+...+YMnt+1

Xi√
n





which proves Theorem 4.2.
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4.5.3 Proof of Theorems 4.3 and 4.4: case where p+ 6= p−

In this subsection, we prove theorems 4.3 and 4.4. First, thanks to theorem 4.6,

(
W[nt]

n
)t≥0 ⇒ (

E[Z1]

E[T1]
t)t≥0, on (D, J1) and

(
W[nt] − E[Z1]

E[T1]
nt

√
n

)t≥0 ⇒ (σBt)t≥0 on (D, J1)

where

σ =

√
√
√
√V ar(Z1 − E[Z1]

E[T1]
T1)

E[T1]
.

The parameters E[Z1]
E[T1]

and

√

V ar(Z1− E[Z1]

E[T1]
T1)

E[T1]
are computed in the next lemma. Moreover





Nnt∑

i=Y1+...+YMnt+1

Xi√
n
, t ≥ 0





n≥1

⇒ 0 on (D, J1),

which concludes the proof of theorems 4.4 and 4.3.

Lemma 4.3. When p+ 6= p−,

E[Z1] =
1

1− p+
− 1

1− p−
, and Var[Z1 −

Z1

T1
T1] = A+B + C,

where A, B and C are given in theorem 4.4.

Proof.

E[Z1] =

∞∑

k=1

kP[Z1 = k] =

∞∑

i=1

∞∑

j=1

(i− j)P[Z1 = i− j]

=

∞∑

i=1

∞∑

j=1

(i− j)(p+)i−1(1− p+)(p+)j−1(1− p+)

=

∞∑

i=1

i(p+)i−1(1− p+)−
∞∑

j=1

j(p−)j−1(1− p−) =
1

1− p+
− 1

1− p−
.

On the other hand,

E[Z2
1 ] =

∞∑

i=1

∞∑

j=1

(i− j)2(p+)i−1(1− p+)(p−)j−1(1− p−)

=
∞∑

i=1

i2(p+)i−1(1− p+) +
∞∑

j=1

j2(p+)j−1(1− p+)− 2

( ∞∑

i=1

i(p+)i−1(1− p+)

)



∞∑

j=1

j(p+)j−1(1− p+)





=
1 + p+

(1− p+)2
+

1 + p−

(1− p−)2
− 2

(1− p+)(1− p−)
.
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E[T 2
2 ] =

∞∑

i=1

∞∑

j=1

E[T 2
2 |γ12 − γ21 = i, γ22 − γ12 = j]

=

∞∑

i=1

∞∑

j=1

(

i2r2(F ) + j2r2(F̃ ) + 2ijr1(F )r1(F̃ )
)

(p+)i−1(1− p+)(p−)j−1(1− p−)

=
r2(F )(1 + p+)

(1− p+)2
+
r2(F̃ )(1 + p−)

(1− p−)2
+

2r1(F )r1(F̃ )

(1− p+)(1− p−)

E[T2Z2] =

∞∑

i=1

∞∑

j=1

E[T2Z2|γ12 − γ21 = i, γ22 − γ12 = j]

=

∞∑

i=1

i2(p+)i−1(1− p+)r1(F )−
∞∑

j=1

j2(p−)j−1(1− p−)r1(F̃ )

+

( ∞∑

i=1

i(p+)i−1(1− p+)

)



∞∑

j=1

j(p+)j−1(1− p+)





(

r1(F̃ )− r1(F )
)

=
r1(F )

(1− p+)2
− r1(F̃ )

(1− p−)2
+

r1(F )− r1(F̃ )

(1− p+)(1− p−)
, and

Var[Z1 −
E[Z1]

E[T1]
Z1] = E[

(

Z1 −
E[Z1]

E[T1]
T1

)2

]

= E[Z2
1 ] +

E[Z1]
2E[T 2

1 ]

E[T1]2
− 2

E[Z1]E[Z1T1]

E[T1]
= A+B + C,

where the terms A,B and C are given in Theorem 4.4.
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