Quelques contributions à l'analyse mathématique et numérique d'équations cinétiques collisionnelles

Soutenance de thèse de doctorat de Thomas Rey Sous la direction de Francis Filbet et Clément Mouhot

Institut Camille Jordan Université Claude Bernard Lyon 1

21 Septembre 2012

Different Scales of Modeling

• Microscopic: Newton equations for N-particles system,

 $(x_i(t), v_i(t))_{1,...,N}$

A (1) > A (2) > A (2)

Different Scales of Modeling

- Microscopic: Newton equations for N-particles system,
- Mesoscopic: Boltzmann-like equations,

Different Scales of Modeling

- Microscopic: Newton equations for N-particles system,
- Mesoscopic: Boltzmann-like equations,
- Macroscopic: Euler/Navier-Stokes-like fluid equations.

A (10) A (10) A (10)

1 The Granular Gases Equation

- Modeling
- Mathematical Results

2 The Rescaling Velocity Method

- Choice of the Scaling
- Applications

3 Numerical Simulations

Boltzmann-like Kinetic Equations

General Scaled Equation

Study of a particle distribution function $f^{\varepsilon}(t, x, v)$, depending on time t > 0, space $x \in \Omega \subset \mathbb{R}^d$ and velocity $v \in \mathbb{R}^d$, solution to

$$\begin{cases} \frac{\partial f^{\varepsilon}}{\partial t} + v \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} \mathcal{Q}(f^{\varepsilon}), \\ f^{\varepsilon}(0, x, v) = f_0(x, v), \end{cases}$$
(1)

where Q is the **collision operator**, describing the microscopic collision dynamic and ε is a scaling parameter.

- $\to \varepsilon$ is usually the Knudsen number, ratio of the mean free path between collision by the typical length scale of the problem;
- $ightarrow \mathcal{Q}$ only acts on the v variable;
- → Boundary conditions in space are also needed to describe completely the problem.

Modeling Assumptions

Microscopic dynamics

- Localized interactions: particles interact only by contact (collision), at a given time t and a given position x;
- Diluted gases: collisions occur between two particles at the same time (we neglect the collisions of three particles or more);
- Boltzmann chaos assumption: the velocity of two colliding particles are uncorrelated before collision.

The microscopic collision process is said to be

- \rightarrow elastic when the kinetic energy is conserved during a collision (this is for example the case for a perfect molecular gas);
- \rightarrow inelastic when a fraction of the kinetic is dissipated during a collision.

- 4 回 ト 4 ヨ ト 4 ヨ ト

The Granular Gases Equation

The granular gases equation describes the behavior of a dilute gas of particles when the only interactions taken into account are binary inelastic collisions.

Applications

Pollen dissemination, avalanches, planetary rings^a, ...

^aKawai, Shida, J. Phys. Soc. Japan (1990)

The collision operator

$$\mathcal{Q}_e(f)(v) = \int_{\mathbb{R}^d \times \mathbb{S}^{d-1}} \left[\frac{f(\prime v) f(\prime v_*)}{e^2} - f(v) f(v_*) \right] B \, d\sigma \, dv_*,$$

where B is the collision kernel, $e \in [0, 1]$ the constant **restitution coefficient**, and $('v, 'v_*)$ the pre-collisional velocities of two particles of post-collisional velocities (v, v_*) .

イロト イポト イヨト イヨト

Features of the Model

- If e < 1 (true inelasticity),
 - Conservation of impulsion and dissipation of kinetic energy:

$$v' + v'_* = v + v_*,$$

$$\frac{|v'|^2}{2} + \frac{|v'_*|^2}{2} - \frac{|v|^2}{2} - \frac{|v_*|^2}{2} = -\frac{1 - e^2}{4} |(v - v_*) \cdot \omega|^2 \le 0.$$

• Collisional transform¹: for $\sigma \in \mathbb{S}^{d-1}$

$$\begin{cases} 'v = \frac{v + v_*}{2} - \frac{1 - e}{4e}(v - v_*) + \frac{1 + e}{4e}|v - v_*|\sigma, \\ 'v_* = \frac{v + v_*}{2} + \frac{1 - e}{4e}(v - v_*) - \frac{1 + e}{4e}|v - v_*|\sigma. \end{cases}$$

• Meaningful even in dimension 1: the collision process is given by

$$\{v', v'_*\} = \{v, v_*\}$$
 or $\left\{\frac{v+v_*}{2} \pm \frac{e}{2}(v-v_*)\right\}$.

¹with Jacobian different from 1, contrary to the elastic case. $(\square) \land (\square) (\square) (\square) \land (\square) (\square)$

Thomas Rey (ICJ)

Lyon I 7 / 30

The Inelastic Collision Operator

For two velocities $v, v_* \in \mathbb{R}^d$, we set $u := v - v_*$, $\hat{u} := \frac{u}{|u|}$; if ψ is a smooth test function, $\psi' := \psi(v')$, $\psi_* := \psi(v_*)$, $\psi'_* := \psi(v'_*)$.

• Weak form of the collision operator:

$$\int_{\mathbb{R}^d} \mathcal{Q}_e(f,f)(v) \,\psi(v) \,dv = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{S}^{d-1}} f_* f \,\left(\psi' + \psi'_* - \psi - \psi_*\right)$$
$$B(|u|, \hat{u} \cdot \sigma, E(f)) \,d\sigma \,dv \,dv_*,$$

where $E(f) := 1/2 \int_{\mathbb{R}^d} f(v) |v|^2 dv$ is the kinetic energy and $B \ge 0$ the collision kernel.

• Strong form: if e is non-zero,

$$\mathcal{Q}_e(f,f)(v) = \int_{\mathbb{R}^d \times \mathbb{S}^{d-1}} \left(\frac{1}{e^2} f'_* - f_*\right) B(|u|, \hat{u} \cdot \sigma, E(f)) \, d\sigma \, dv_*.$$

Macroscopic Properties

Conservation of mass and momentum, dissipation of kinetic energy:

$$\int_{\mathbb{R}^d} \mathcal{Q}_e(f, f)\left(1, v, \frac{|v|^2}{2}\right) dv = (0, 0, -D(f)),$$

where D(f) is the energy dissipation functional:

$$D(f) = \int_{\mathbb{R}^d \times \mathbb{R}^d} f f_* \Delta \left(|v - v_*|, E(f) \right) dv \, dv_* \ge 0,$$

and $\Delta(|u|, E)$ is the dissipation rate (for $\cos \theta := \hat{u} \cdot \sigma$):

$$\Delta\left(|u|,E\right) := \frac{1-e^2}{4} \int_{\mathbb{S}^{d-1}} |u \cdot \omega|^2 B(|u|, \cos \theta, E) \, d\omega \ge 0.$$

イロト イポト イヨト イヨト

Macroscopic Properties

Conservation of mass and momentum, dissipation of kinetic energy:

$$\int_{\mathbb{R}^d} \mathcal{Q}_e(f, f)\left(1, v, \frac{|v|^2}{2}\right) dv = (0, 0, -D(f)),$$

where D(f) is the energy dissipation functional:

$$D(f) = \int_{\mathbb{R}^d \times \mathbb{R}^d} f f_* \Delta \left(|v - v_*|, E(f) \right) dv \, dv_* \ge 0,$$

and $\Delta(|u|, E)$ is the dissipation rate (for $\cos \theta := \hat{u} \cdot \sigma$):

$$\Delta\left(|u|,E\right) := \frac{1-e^2}{4} \int_{\mathbb{S}^{d-1}} |u \cdot \omega|^2 B(|u|, \cos \theta, E) \, d\omega \ge 0.$$

We call **cooling process** (or Haff's Law^a) the asymptotic behavior of E(f)(t). We say that there is blow up if $E(f)(t) \to 0$ when $t \to T_c$, $T_c < +\infty$ being the lifetime of the solution.

^aP.K. Haff, J. Fluid Mech. (1983)

A State of the Art

- Space homogeneous setting $\partial_t f = \mathcal{Q}_e(f, f)$
 - Cauchy problem with pseudo-Maxwellian molecules: Bobylev-Carrillo-Gamba (2000), Bobylev-Cercignani-Toscani (2003);
 - Cauchy problem with general kernels (including hard spheres): Toscani (2000), Mischler-Mouhot-Ricard (2006);
 - Qualitative behavior (with and without thermal bath): Bobylev-Gamba-Panferov (2004), Gamba-Panferov-Villani (2004);
 - Cooling process and asymptotic/self-similar behavior: Li-Toscani (2004), Mischler-Mouhot (2006), Alonso-Lods (2010);
 - Stability and convergence towards the (unique) self-similar solution: Mischler-Mouhot (2009).
- Full space-dependent equation $\partial_t f + v \cdot \nabla_x f = \mathcal{Q}_e(f, f)$
 - Cauchy problem near vacuum: Alonso (2009);
 - Investigation of the hydrodynamic limit: Toscani (2004), Carlen-Chow-Grigo (2010).

イロト 不得 トイラト イラト 一日

Anomalous Gases

$$\frac{\partial f}{\partial t} = E(f)^{-a} Q_e(f, f) \tag{2}$$

Theorem (TR, SIAM J. Math. Anal, 2012)

Let f be solution to (2), with initial condition $0 \le f_{in} \in L_3^1 \cap L^p$ for p > 1. Then, we have

• subcritical case: if $0 \le a < 1/2$, $\alpha = 1/(2a - 1) < 0$ and

$$(C_1t+1)^{2\alpha} \le E(f)(t) \le (C_2t+1)^{2\alpha}, \, \forall t > 0;$$

- critical case: if a = 1/2, $e^{-C_3 t} \le E(f)(t) \le e^{-C_4 t}$, $\forall t > 0$;
- supercritical case: if a > 1/2, $\alpha = 1/(2a 1) > 0$ and

$$(-C_5t+1)^{2\alpha} \le E(f)(t) \le (-C_6t+1)^{2\alpha}, \forall t < T_c.$$

Moreover, there exists $V \in C^1(0, T_c)$ and $0 \le G \in L^1_3$ such that $F(t, v) := V(t)^d G(V(t)v)$ is solution to (2).

Thomas Rey (ICJ)

Element of Proof

$$\frac{\partial f}{\partial t} = E(f)^{-a} Q_e(f, f)$$

• Introduction of the scaling

$$\begin{cases} f(t,v) = V(t)^d g(T(t), V(t)v), \\ V(0) = 1, \ T(0) = 0, \ \lim_{t \to T_c} T(t) = \lim_{t \to T_c} V(t) = +\infty. \end{cases}$$

 \bullet Choose V and T as

$$\begin{cases} V'(t) = E(f)(t)^{-a}, \\ T'(t)V(t) = V'(t). \end{cases}$$

• Then g is solution to

$$\frac{\partial g}{\partial s} + \nabla_w \cdot (wg) = Q_e(g, g). \tag{3}$$

< □ > < 同 >

• Study of the moment of (3).

Lyon I 12 / 30

Spectral Study of the Linearized Granular Gases Operator

 \rightarrow Final goal: Establish the non-linear stability of the solutions to the full equation

$$\frac{\partial f^{\varepsilon}}{\partial t} + v \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} \mathcal{Q}_e(f^{\varepsilon}, f^{\varepsilon}) + \frac{1 - e}{\varepsilon} \Delta_v f$$

under the (physical) hypothesis $1 - e \sim \varepsilon > 0$.

 \to Our contribution: Study of the spectrum in $L^1\left(\exp(a\,v^s)\,dv\right)$ for 0 < s < 1 of the linearized operator

$$\mathcal{L}_{(e,\gamma)} h := 2\mathcal{Q}_e(h, F_e) + (1-e)\Delta_v h - i(\gamma \cdot v) h,$$

where F_e is the unique (*non-explicit*) solution to

$$Q_e(F_e, F_e) + (1-e)\Delta_v F_e = 0, \quad \int_{\mathbb{R}^d} F_e(v)(1, v) \, dv = (1, 0).$$

 \rightarrow Method used: A generalization to the non-hilbertian L^1 setting of the classical work of Ellis and Pinsky about the fluid-dynamic limit of the linearized elastic Boltzmann equation.

Thomas Rey (ICJ)

Dissertation Defense

Localization of the Spectrum

Theorem (TR)

There exists $e_* \in (0,1)$ such that for $e \in (e_*,1]$, there exists a constant $\bar{\mu}_e > 0$ such that the essential spectrum verifies

 $\Sigma_{ess}\left(\mathcal{L}_{(e,\gamma)}\right) \subset \{\zeta \in \mathbb{C} : \Re e \, \zeta \leq -\bar{\mu}_e\}.$

The remaining part of the spectrum is composed of discrete eigenvalues, verifying for $\delta > 0$: there exist some constants $0 < \overline{\lambda} < \mu_* < \mu_e$ and a nonnegative number γ_0 such that for all $|\gamma| \le \gamma_0$, if $\lambda \in \Sigma_d(\mathcal{L}_{(e,\gamma)})$, then

•
$$\Re e \lambda \ge -\mu_* \Rightarrow |\Im m \lambda| \le \delta;$$

•
$$\Re e \lambda \ge -\bar{\lambda}/2 \Rightarrow |\lambda| \le \delta.$$

Behavior of the Eigenvalues for Small Space Frequencies

Goal: finding a triple $(\lambda, \gamma, h) \in \mathbb{R}^d \times \mathbb{C} \times L^1 (\exp(a v^s) dv)$ such that

$$(-i(\gamma \cdot v) + \mathcal{L}_e) h = \lambda h.$$
(4)

Theorem (TR)

There exist some open sets $U_1 \times U_2 \subset \mathbb{R} \times \mathbb{C}$, neighborhood of (0,0), and

$$\begin{cases} \lambda^{(j)} : U_1 \times (e_*, 1] \to U_2 & \forall j \in \{-1, \dots, d\}, \\ h^{(j)} : U_1 \times \mathbb{S}^{d-1} \times (e_*, 1] \to L^1(m^{-1}) & \forall j \in \{-1, \dots, d\}, \end{cases}$$

 \mathcal{C}^∞ functions verifying

• the triple $(\rho \omega, \lambda^{(j)}(\rho, e), h^{(j)}(\rho, \omega, e))$ is solution to the eigenvalue problem (4), for all $e \in (e_*, 1]$, $\rho \in U_1$, $\omega \in \mathbb{S}^{d-1}$, $j \in \{-1, \ldots, d\}$;

イロト イポト イヨト イヨト 二日

Behavior of the Eigenvalues for Small Space Frequencies Theorem (TR)

There exist some open sets $U_1 \times U_2 \subset \mathbb{R} \times \mathbb{C}$, neighborhood of (0,0), and

$$\begin{cases} \lambda^{(j)} : U_1 \times (e_*, 1] \to U_2 & \forall j \in \{-1, \dots, d\}, \\ h^{(j)} : U_1 \times \mathbb{S}^{d-1} \times (e_*, 1] \to L^1(m^{-1}) & \forall j \in \{-1, \dots, d\}, \end{cases}$$

\mathcal{C}^∞ functions verifying

• the eigenvalue $\lambda^{(j)} \in \mathcal{C}^{\infty} \left(U_1 \times (e_*, 1] \right)$ verifies

$$\begin{cases} \lambda^{(j)}(0,1) = 0, & \forall j \in \{-1,\dots,d\}, \\ \frac{\partial \lambda^{(j)}}{\partial \rho}(0,1) = j \, i \, \sqrt{1 + \frac{2}{d}}, & \forall j \in \{-1,0,1\}, \\ \frac{\partial \lambda^{(j)}}{\partial \rho}(0,1) = 0, & \forall j \in \{2,\dots,d\}, \\ \frac{\partial \lambda^{(0)}}{\partial e}(0,1) = -C < 0; \end{cases}$$

Thomas Rey (ICJ)

Behavior of the Eigenvalues for Small Space Frequencies

Goal: finding a triple $(\lambda, \gamma, h) \in \mathbb{R}^d \times \mathbb{C} \times L^1 (\exp(a v^s) dv)$ such that

$$(-i(\gamma \cdot v) + \mathcal{L}_e) h = \lambda h.$$
(4)

Theorem (TR)

There exist some open sets $U_1 \times U_2 \subset \mathbb{R} \times \mathbb{C}$, neighborhood of (0,0), and

$$\begin{cases} \lambda^{(j)} : U_1 \times (e_*, 1] \to U_2 & \forall j \in \{-1, \dots, d\}, \\ h^{(j)} : U_1 \times \mathbb{S}^{d-1} \times (e_*, 1] \to L^1(m^{-1}) & \forall j \in \{-1, \dots, d\}, \end{cases}$$

\mathcal{C}^∞ functions verifying

if a triple (λ, ρω, h) is solution to the problem (4) for (ρ, λ) ∈ U₁ × U₂, then necessarily λ = λ^(j) for some j ∈ {−1,..., d}.

イロト イポト イヨト イヨト 二日

Elements of Proof

Localization result \rightarrow A L^1 perturbative approach:

- Decomposition of the linearized operator as a sum of compact and Schrödinger-like operators;
- Application of a Banach variant of Weyl's Theorem about the stability of the essential spectrum;
- Use of space homogeneous coercivity and spectral gap estimates to obtain the behavior of the eigenvalues.

Taylor expansion \rightarrow Generalization of Ellis & Pinsky's arguments:

- Reformulation of the eigenvalue problem, using bounded operators;
- Projection of the new problem onto the space of elastic collisional invariants;
- Finite dimensional resolution, taking advantage of both elastic and space homogeneous results.

イロト イボト イヨト イヨト

The Granular Gases Equation

- Modeling
- Mathematical Results

2 The Rescaling Velocity Method

- Choice of the Scaling
- Applications

3 Numerical Simulations

The Rescaling

This is a joint work with F. Filbet

 \rightarrow Goal: to simulate numerically on a fixed velocity grid

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \frac{1}{\varepsilon} \mathcal{Q}(f), \quad \forall (t, x, v) \in [0; \infty) \times \Omega \times \mathbb{R}^d,$$

where \mathcal{Q} preserves mass and momentum.

- \rightarrow **Problem**: The action of Q on f may induce concentration (granular gases operators) or spreading (diffusive operators) phenomena, difficult to deal with numerically.
- \rightarrow **Possible solution**: Introduce a new distribution *g* as

$$f(t, x, v) = \frac{1}{\omega(t, x)^d} g\left(t, x, \frac{v}{\omega(t, x)}\right),$$

with ω an accurate measure of the "support" or scale of the distribution f(t, x, v) in velocity variables.

Thomas Rey (ICJ)

Lyon I 18 / 30

In the Space Homogeneous Setting Let f := f(t, v) solution to

$$\frac{\partial f}{\partial t} = \frac{1}{\varepsilon} \mathcal{Q}(f)$$

For a given $\omega>0,$ introduce $g:=g(t,\xi)$ as

$$f(t, v) = \frac{1}{\omega(t)^d} g\left(t, \frac{v}{\omega(t)}\right)$$

Then, for $\widetilde{\mathcal{Q}}(g) := \mathcal{Q}(f)$, g is solution to

$$\frac{\partial g}{\partial t} - \operatorname{div}_{\xi} \left(\frac{1}{\omega} \frac{\partial \omega}{\partial t} \, \xi g \right) = \frac{\omega^d}{\varepsilon} \, \widetilde{\mathcal{Q}}(g)$$

Some possible choices for ω :

- ightarrow Diffusion operator² $\mathcal{Q}(f) = \Delta_v(f) \Rightarrow \omega(t) = (1+t)^{1/2}$;
- $\rightarrow \mbox{ Granular gases operator}^3 \ \mathcal{Q}(f) = \mathcal{Q}_e(f) \Rightarrow \omega(t) = (1+t)^{-1}.$

²Carrillo, Toscani (1998)
 ³Haff (1983), Mischler-Mouhot (2006)

Thomas Rey (ICJ)

The Macroscopic Scaling We set

$$f(t, x, v) = \frac{1}{\omega(t, x)^d} g\left(t, x, \frac{v}{\omega(t, x)}\right), \quad \omega = \sqrt{\frac{2E}{d\rho}}$$

where \boldsymbol{g} is solution to

$$\frac{\partial g}{\partial t} + \operatorname{div}_x\left(\omega\,\xi\,g\right) - \operatorname{div}_{\xi}\left[\left(\frac{1}{\omega}\frac{\partial\omega}{\partial t}\,\xi + \xi\otimes\xi\,\nabla_x\omega\right)g\right] = \frac{\omega^d}{\varepsilon}\,\widetilde{\mathcal{Q}}(g),\quad\text{(5)}$$

and (ρ,\mathbf{u},E) given by the independent system

$$\begin{cases} \partial_t \rho + \operatorname{div}_x(\rho \,\mathbf{u}) = 0, \\\\ \partial_t(\rho \,\mathbf{u}) + \operatorname{div}_x(\rho \,\mathbf{u} \otimes \mathbf{u} + p \,\mathbf{I}) = 0, \\\\ \partial_t E + \operatorname{div}_x(\mathbf{u} (E + p)) = G(\rho, \mathbf{u}, E), \end{cases}$$

where G will be defined depending on the model.

Application to the Boltzmann Equation

For the Boltzmann operator Q_B in the variable hard spheres case $B(|z|, \cos \theta) = |z|^{\lambda} b(\cos \theta)$:

 $\to \, {\cal Q}_{\cal B}(f) \,=\, \omega^{\lambda-d} \, {\cal Q}_{\cal B}(g)$, which yields the kinetic equation for g

$$\frac{\partial g}{\partial t} + \operatorname{div}_x(\omega \,\xi \,g) - \operatorname{div}_{\xi} \left[\left(\frac{1}{\omega} \frac{\partial \omega}{\partial t} \,\xi + \xi \otimes \xi \,\nabla_x \omega \right) g \right] = \frac{\omega^{\lambda}}{\varepsilon} \,\mathcal{Q}_{\mathcal{B}}(g).$$

 $\rightarrow\,$ The scaling function ω is given by the solution to the following calibration fluid equation

$$\begin{cases} \partial_t \rho + \operatorname{div}_x(\rho \,\mathbf{u}) = 0, \\\\ \partial_t(\rho \,\mathbf{u}) + \operatorname{div}_x(\rho \,\mathbf{u} \otimes \mathbf{u} + \rho T \,\mathbf{I}) = 0, \\\\ \partial_t E + \operatorname{div}_x(\mathbf{u} (E + \rho T)) = 0. \end{cases}$$

イロト 不得 トイラト イラト 一日

Applications

Application to the Granular Gases Equation

For the granular gases operator Q_e with hard spheres kernel, we have: $\rightarrow \mathcal{Q}_e(f) = \omega^{1-d} \mathcal{Q}_e(q)$, which yields the kinetic equation for q

$$\frac{\partial g}{\partial t} + \operatorname{div}_x(\omega \,\xi \,g) - \operatorname{div}_{\xi} \left[\left(\frac{1}{\omega} \frac{\partial \omega}{\partial t} \,\xi + \xi \otimes \xi \,\nabla_x \omega \right) g \right] = \frac{\omega}{\varepsilon} \, \mathcal{Q}_e(g).$$

 \rightarrow The scaling function ω is given by the solution⁴ to the following calibration fluid equation

$$\begin{cases} \partial_t \rho + \operatorname{div}_x(\rho \,\mathbf{u}) = 0, \\\\ \partial_t(\rho \,\mathbf{u}) + \operatorname{div}_x(\rho \,(\mathbf{u} \otimes \mathbf{u}) + \rho T \,\mathbf{I}) = 0, \\\\ \partial_t E + \operatorname{div}_x(\mathbf{u} \,(E + \rho T)) = -K_d \,\rho^2 \,T^{3/2} \end{cases}$$

⁴This system can be computed *e.g.* using a weak inelasticity assumption $1 - e = \varepsilon$ (I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < Thomas Rev (ICJ)

22 / 30

The Granular Gases Equation

- Modeling
- Mathematical Results

The Rescaling Velocity MethodChoice of the Scaling

Applications

3 Numerical Simulations

< □ > < 同 > < 回 > < 回

Numerical schemes

Kinetic part:

$$\frac{\partial g}{\partial t} + \operatorname{div}_x\left(\omega\,\xi\,g\right) - \operatorname{div}_{\xi}\left[\left(\frac{1}{\omega}\frac{\partial\omega}{\partial t}\,\xi + \xi\otimes\xi\,\nabla_x\omega\right)g\right] = \frac{\omega^d}{\varepsilon}\,\widetilde{\mathcal{Q}}(g)$$

ightarrow Collision term \mathcal{Q} : spectral scheme⁵ for $\mathcal{Q}_{\mathcal{B}}$ and \mathcal{Q}_{e} ;

- \to Free transport term ${\rm div}_x\,(\omega\,\xi\,g)$: finite volume Lax-Friedrichs method with Van Leer's flux limiter⁶;
- \rightarrow Drift term ${\rm div}_\xi(\cdots)$: related to the treatment of the macroscopic system;

Macroscopic part:

$$\frac{\partial U}{\partial t} + \nabla_x \cdot F(U) = G(U), \ U \in \mathbb{R}^{d+2} \left(\Rightarrow \omega = \sqrt{2 U_{d+1}/d U_0} \right)$$

 $\rightarrow\,$ Reconstruction of the fluxes with a WENO-5 procedure^7.

```
      5
      Pareschi-Perthame (1998), Pareschi-Russo (2000), Filbet-Pareschi-Toscani (2005)

      6
      Van Leer (1977)

      7
      Shu (1999)

      Thomas Rev. (ICJ)
      Dissertation Defense

      Lyon I
      24 / 30
```

Convergence toward a Dirac Mass

Solution to the space homogeneous granular gases equation:

Classical (dots, $N_v = 128$) vs. rescaled variables (solid line, $N_v = 32$)

< □ > < 同 > < 回 > < 回

Large Time Behavior of the Granular Gases Equation

Cooling process: Evolution of the global kinetic energy $(d_x = d_v = 1)$ in classical and rescaled variables

Trend to Equilibrium (Granular Gases Equation) Evolution of $\|\rho_f(t) - 1\|_{L^1}$ (Periodic boundary conditions) $f_0(x, v) = \mathcal{M}_{\rho_0(x), 0, 1}(v), \quad \forall (x, v) \in [0, L] \times \mathbb{R},$ with $\rho_0(x) = 1 + 0.1 \cos(\pi x), L = 1$ and $\varepsilon = 1 - e = 0.01$

Thomas Rey (ICJ)

Lyon I 27 / 30

Trend to Equilibrium (Granular Gases Equation) Evolution of $\|\rho_f(t) - 1\|_{L^1}$ (Specular boundary conditions) $f_0(x, v) = \mathcal{M}_{\rho_0(x), 0, 1}(v), \quad \forall (x, v) \in [0, L] \times \mathbb{R},$ with $\rho_0(x) = 1 + 0.1 \cos(\pi x), L = 1$ and $\varepsilon = 1 - e = 0.15$

Trend to Equilibrium (Granular Gases Equation)

Let us consider the scaling

$$\begin{cases} f(t, x, v) = V(t)^d h(s(t), x, V(t)v), \\ V(t) = 1 + (1 - e) t, \quad s(t) = \log(1 + (1 - e) t)/(1 - e). \end{cases}$$

The scaled distribution h is then solution to

$$\frac{\partial h}{\partial s} + \nu \cdot \nabla_x h + (1 - e) \nabla_\nu(\nu h) = \frac{\mathcal{Q}_e(h, h)}{\varepsilon}$$

イロト イポト イヨト イヨ

Trend to Equilibrium (Granular Gases Equation)

Let us consider the scaling

$$\begin{cases} f(t, x, v) = V(t)^d h(s(t), x, V(t)v), \\ V(t) = 1 + (1 - e) t, \quad s(t) = \log(1 + (1 - e) t)/(1 - e). \end{cases}$$

The scaled distribution h is then solution to

$$\frac{\partial h}{\partial s} + \nu \cdot \nabla_x h + (1 - e) \nabla_\nu(\nu h) = \frac{\mathcal{Q}_e(h, h)}{\varepsilon}$$

When $t \to \infty,$ the behavior of h is formally the one of $e^{\lambda_j t}$ with

$$\lambda_j = i \eta \, \lambda_j^{(1)} + \eta^2 \, \lambda_j^{(2)} - (1-e) \, C + \mathcal{O}(\eta^3) + \mathcal{O}((1-e)^2).$$

For $\eta=2\pi/L$ \Rightarrow $\beta(1-e),$ where β is the damping rate, will thus be constant:

Restitution coefficient e	Damping rate eta	$-(1-e)\beta$	
0.8	-1.05	0.21	
0.85	-1.4	0.21	
0.9	-2.05	0.205	
0.95	-4.1	0.205	
・ ロト ・ 母 ト ・ 声 ト ・ 声 ト			

Thomas Rey (ICJ)

Clustering in a Force Free Granular Gas

$$N_x = N_y = 75$$
, $N_{v_x} = N_{v_y} = 32$, $e = 0.8$

Contour plot of the local Mach number $M(x) := |\mathbf{u}(\mathbf{x})| / \mathbf{C}_{\mathbf{s}}(\mathbf{x})$ where C_s is the local speed of sound.

Thomas Rey (ICJ)

イロト イポト イヨト イヨト

Work in progress

- \rightarrow Expansion up to the second order in γ of the spectrum of the linearized granular gases operator \mathcal{Q}_e and application to the true non-linear problem;
- $\rightarrow\,$ Development of spectral methods for the non cut-off Boltzmann equation (with L. Pareschi);
- \rightarrow Development of hybrid hydrodynamic/kinetic solvers (with F. Filbet);
- $\rightarrow\,$ Application of the rescaling method to more complex problems (formation of planetary rings).