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Introduction

Different Scales of Modeling

Microscopic: Newton equations for N -particles system,

Mesoscopic: Boltzmann-like equations,

Macroscopic: Euler/Navier-Stokes-like fluid equations.
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2 The Rescaling Velocity Method
Choice of the Scaling
Applications

3 Numerical Simulations
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The Granular Gases Equation

Boltzmann-like Kinetic Equations

General Scaled Equation

Study of a particle distribution function f ε(t, x, v), depending on time
t > 0, space x ∈ Ω ⊂ R

d and velocity v ∈ R
d , solution to





∂f ε

∂t
+ v · ∇x f ε =

1

ε
Q(f ε),

f ε(0, x, v) = f0(x, v),

(1)

where Q is the collision operator, describing the microscopic collision
dynamic and ε is a scaling parameter.

→ ε is usually the Knudsen number, ratio of the mean free path between
collision by the typical length scale of the problem;

→ Q only acts on the v variable;

→ Boundary conditions in space are also needed to describe completely the
problem.

Thomas Rey (ICJ) Dissertation Defense Lyon I 4 / 30



The Granular Gases Equation Modeling

Modeling Assumptions

Microscopic dynamics

Localized interactions: particles interact only by contact (collision),
at a given time t and a given position x;

Diluted gases: collisions occur between two particles at the same
time (we neglect the collisions of three particles or more);

Boltzmann chaos assumption: the velocity of two colliding particles
are uncorrelated before collision.

The microscopic collision process is said to be

→ elastic when the kinetic energy is conserved during a collision (this is for
example the case for a perfect molecular gas);

→ inelastic when a fraction of the kinetic is dissipated during a collision.
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The Granular Gases Equation Modeling

The Granular Gases Equation

The granular gases equation describes the behavior of a dilute gas of particles
when the only interactions taken into account are binary inelastic collisions.

Applications

Pollen dissemination, avalanches, planetary ringsa, ...

aKawai, Shida, J. Phys. Soc. Japan (1990)

The collision operator

Qe(f )(v) =

∫

Rd×Sd−1

[
f ( ′v) f ( ′v∗)

e2
− f (v) f (v∗)

]
B dσ dv∗,

where B is the collision kernel, e ∈ [0, 1] the constant
restitution coefficient, and ( ′v, ′v∗) the pre-collisional
velocities of two particles of post-collisional velocities (v, v∗).
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The Granular Gases Equation Modeling

Features of the Model
If e < 1 (true inelasticity),

Conservation of impulsion and dissipation of kinetic energy:

v′ + v′
∗ = v + v∗,

|v′|2

2
+

|v′
∗|2

2
−

|v|2

2
−

|v∗|2

2
= −

1 − e2

4
|(v − v∗) · ω|2 ≤ 0.

Collisional transform1: for σ ∈ S
d−1





′v =
v + v∗

2
−

1 − e

4e
(v − v∗) +

1 + e

4e
|v − v∗|σ,

′v∗ =
v + v∗

2
+

1 − e

4e
(v − v∗) −

1 + e

4e
|v − v∗|σ.

Meaningful even in dimension 1: the collision process is given by

{v′, v′
∗} = {v, v∗} or

{
v + v∗

2
±

e

2
(v − v∗)

}
.

1with Jacobian different from 1, contrary to the elastic case.
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The Granular Gases Equation Modeling

The Inelastic Collision Operator

For two velocities v, v∗ ∈ Rd , we set u := v − v∗, û := u
|u| ; if ψ is a smooth test

function, ψ′ := ψ(v′), ψ∗ := ψ(v∗), ψ′
∗ := ψ(v′

∗).

Weak form of the collision operator:

∫

Rd
Qe(f , f )(v)ψ(v) dv =

1

2

∫

Rd×Rd×Sd−1

f∗ f
(
ψ′ + ψ′

∗ − ψ − ψ∗

)

B(|u|, û · σ,E(f )) dσ dv dv∗,

where E(f ) := 1/2
∫
Rd f (v)|v|2 dv is the kinetic energy and B ≥ 0

the collision kernel.

Strong form: if e is non-zero,

Qe(f , f )(v) =

∫

Rd×Sd−1

(
1

e2
′f ′f∗ − f f∗

)
B(|u|, û · σ,E(f )) dσ dv∗.
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The Granular Gases Equation Modeling

Macroscopic Properties
Conservation of mass and momentum, dissipation of kinetic energy:

∫

Rd
Qe(f , f )

(
1, v,

|v|2

2

)
dv = (0, 0,−D(f )),

where D(f ) is the energy dissipation functional:

D(f ) =

∫

Rd×Rd
f f∗ ∆ (|v − v∗|,E(f )) dv dv∗ ≥ 0,

and ∆ (|u|,E) is the dissipation rate (for cos θ := û · σ):

∆ (|u|,E) :=
1 − e2

4

∫

Sd−1

|u · ω|2 B(|u|, cos θ,E) dω ≥ 0.
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The Granular Gases Equation Modeling

Macroscopic Properties
Conservation of mass and momentum, dissipation of kinetic energy:

∫

Rd
Qe(f , f )

(
1, v,

|v|2

2

)
dv = (0, 0,−D(f )),

where D(f ) is the energy dissipation functional:

D(f ) =

∫

Rd×Rd
f f∗ ∆ (|v − v∗|,E(f )) dv dv∗ ≥ 0,

and ∆ (|u|,E) is the dissipation rate (for cos θ := û · σ):

∆ (|u|,E) :=
1 − e2

4

∫

Sd−1

|u · ω|2 B(|u|, cos θ,E) dω ≥ 0.

We call cooling process (or Haff’s Lawa) the asymptotic behavior of
E(f )(t). We say that there is blow up if E(f )(t) → 0 when t → Tc,
Tc < +∞ being the lifetime of the solution.

aP.K. Haff, J. Fluid Mech. (1983)
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The Granular Gases Equation Mathematical Results

A State of the Art

Space homogeneous setting ∂tf = Qe(f , f )

◮ Cauchy problem with pseudo-Maxwellian molecules:
Bobylev-Carrillo-Gamba (2000), Bobylev-Cercignani-Toscani (2003);

◮ Cauchy problem with general kernels (including hard spheres):
Toscani (2000), Mischler-Mouhot-Ricard (2006);

◮ Qualitative behavior (with and without thermal bath):
Bobylev-Gamba-Panferov (2004), Gamba-Panferov-Villani (2004);

◮ Cooling process and asymptotic/self-similar behavior: Li-Toscani
(2004), Mischler-Mouhot (2006), Alonso-Lods (2010);

◮ Stability and convergence towards the (unique) self-similar solution:
Mischler-Mouhot (2009).

Full space-dependent equation ∂tf + v · ∇xf = Qe(f , f )

◮ Cauchy problem near vacuum: Alonso (2009);
◮ Investigation of the hydrodynamic limit: Toscani (2004),

Carlen-Chow-Grigo (2010).
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The Granular Gases Equation Mathematical Results

Anomalous Gases

∂f

∂t
= E(f )−aQe(f , f ) (2)

Theorem (TR, SIAM J. Math. Anal, 2012)

Let f be solution to (2), with initial condition 0 ≤ fin ∈ L1
3 ∩ Lp for p > 1. Then,

we have

subcritical case: if 0 ≤ a < 1/2, α = 1/(2a − 1) < 0 and

(C1t + 1)2α ≤ E(f )(t) ≤ (C2t + 1)2α, ∀t > 0;

critical case: if a = 1/2, e−C3t ≤ E(f )(t) ≤ e−C4t, ∀t > 0;

supercritical case: if a > 1/2, α = 1/(2a − 1) > 0 and

(−C5t + 1)
2α

≤ E(f )(t) ≤ (−C6t + 1)
2α
, ∀t < Tc.

Moreover, there exists V ∈ C1(0,Tc) and 0 ≤ G ∈ L1
3 such that

F(t, v) := V (t)dG(V (t)v) is solution to (2).
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The Granular Gases Equation Mathematical Results

Element of Proof

∂f

∂t
= E(f )−aQe(f , f )

Introduction of the scaling

{
f (t, v) = V (t)dg(T(t),V (t)v),

V (0) = 1, T(0) = 0, lim
t→Tc

T(t) = lim
t→Tc

V (t) = +∞.

Choose V and T as {
V ′(t) = E (f ) (t)−a,

T ′(t)V (t) = V ′(t).

Then g is solution to

∂g

∂s
+ ∇w · (wg) = Qe(g, g). (3)

Study of the moment of (3).
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The Granular Gases Equation Mathematical Results

Spectral Study of the Linearized Granular Gases Operator

→ Final goal: Establish the non-linear stability of the solutions to the
full equation

∂f ε

∂t
+ v · ∇xf ε =

1

ε
Qe(f ε, f ε) +

1 − e

ε
∆vf

under the (physical) hypothesis 1 − e ∼ ε > 0.

→ Our contribution: Study of the spectrum in L1 (exp(a vs) dv) for
0 < s < 1 of the linearized operator

L(e,γ) h := 2Qe(h,Fe) + (1 − e)∆vh − i (γ · v) h,

where Fe is the unique (non-explicit) solution to

Qe(Fe,Fe) + (1 − e)∆vFe = 0,

∫

Rd
Fe(v) (1, v) dv = (1, 0).

→ Method used: A generalization to the non-hilbertian L1 setting of
the classical work of Ellis and Pinsky about the fluid-dynamic limit of
the linearized elastic Boltzmann equation.
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The Granular Gases Equation Mathematical Results

Localization of the Spectrum

Theorem (TR)

There exists e∗ ∈ (0, 1) such that for

e ∈ (e∗, 1], there exists a constant µ̄e > 0
such that the essential spectrum verifies

Σess

(
L(e, γ)

)
⊂ {ζ ∈ C : ℜe ζ ≤ −µ̄e}.

The remaining part of the spectrum is

composed of discrete eigenvalues, verifying

for δ > 0: there exist some constants

0 < λ̄ < µ∗ < µe and a nonnegative number

γ0 such that for all |γ| ≤ γ0, if

λ ∈ Σd(L(e, γ)), then

ℜe λ ≥ −µ∗ ⇒ |ℑm λ| ≤ δ;

ℜe λ ≥ −λ̄/2 ⇒ |λ| ≤ δ.

δ

−δ

Σess

(
L(e, γ)

)

b
−µ̄e

b

−µ∗

b
−λ̄

×

×

×

×

×

× ×
×
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The Granular Gases Equation Mathematical Results

Behavior of the Eigenvalues for Small Space Frequencies

Goal: finding a triple (λ, γ, h) ∈ Rd × C × L1 (exp(a vs) dv) such that

(−i(γ · v) + Le) h = λ h. (4)

Theorem (TR)

There exist some open sets U1 × U2 ⊂ R × C, neighborhood of (0, 0), and

{
λ(j) : U1 × (e∗, 1] → U2 ∀ j ∈ {−1, . . . , d},

h(j) : U1 × S
d−1 × (e∗, 1] → L1

(
m−1

)
∀ j ∈ {−1, . . . , d},

C∞ functions verifying

the triple
(
ρω, λ(j)(ρ, e), h(j)(ρ, ω, e)

)
is solution to the eigenvalue problem

(4), for all e ∈ (e∗, 1], ρ ∈ U1, ω ∈ Sd−1, j ∈ {−1, . . . , d};
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The Granular Gases Equation Mathematical Results

Behavior of the Eigenvalues for Small Space Frequencies

Theorem (TR)

There exist some open sets U1 × U2 ⊂ R × C, neighborhood of (0, 0), and

{
λ(j) : U1 × (e∗, 1] → U2 ∀ j ∈ {−1, . . . , d},

h(j) : U1 × S
d−1 × (e∗, 1] → L1

(
m−1

)
∀ j ∈ {−1, . . . , d},

C∞ functions verifying

the eigenvalue λ(j) ∈ C∞ (U1 × (e∗, 1]) verifies





λ(j)(0, 1) = 0, ∀ j ∈ {−1, . . . , d},

∂λ(j)

∂ρ
(0, 1) = j i

√
1 +

2

d
, ∀ j ∈ {−1, 0, 1},

∂λ(j)

∂ρ
(0, 1) = 0, ∀ j ∈ {2, . . . , d},

∂λ(0)

∂e
(0, 1) = −C < 0;
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The Granular Gases Equation Mathematical Results

Behavior of the Eigenvalues for Small Space Frequencies

Goal: finding a triple (λ, γ, h) ∈ Rd × C × L1 (exp(a vs) dv) such that

(−i(γ · v) + Le) h = λ h. (4)

Theorem (TR)

There exist some open sets U1 × U2 ⊂ R × C, neighborhood of (0, 0), and

{
λ(j) : U1 × (e∗, 1] → U2 ∀ j ∈ {−1, . . . , d},

h(j) : U1 × S
d−1 × (e∗, 1] → L1

(
m−1

)
∀ j ∈ {−1, . . . , d},

C∞ functions verifying

if a triple (λ, ρω, h) is solution to the problem (4) for (ρ, λ) ∈ U1 × U2, then

necessarily λ = λ(j) for some j ∈ {−1, . . . , d}.
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The Granular Gases Equation Mathematical Results

Elements of Proof

Localization result → A L1 perturbative approach:

Decomposition of the linearized operator as a sum of compact and
Schrödinger-like operators;

Application of a Banach variant of Weyl’s Theorem about the stability of
the essential spectrum;

Use of space homogeneous coercivity and spectral gap estimates to obtain
the behavior of the eigenvalues.

Taylor expansion → Generalization of Ellis & Pinsky’s arguments:

Reformulation of the eigenvalue problem, using bounded operators;

Projection of the new problem onto the space of elastic collisional invariants;

Finite dimensional resolution, taking advantage of both elastic and space
homogeneous results.
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The Rescaling Velocity Method
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The Rescaling Velocity Method Choice of the Scaling

The Rescaling
This is a joint work with F. Filbet

→ Goal: to simulate numerically on a fixed velocity grid

∂f

∂t
+ v · ∇xf =

1

ε
Q(f ), ∀(t, x, v) ∈ [0; ∞) × Ω × R

d,

where Q preserves mass and momentum.

→ Problem: The action of Q on f may induce concentration (granular
gases operators) or spreading (diffusive operators) phenomena,
difficult to deal with numerically.

→ Possible solution: Introduce a new distribution g as

f (t, x, v) =
1

ω(t, x)d
g

(
t, x,

v

ω (t, x)

)
,

with ω an accurate measure of the “support” or scale of the
distribution f (t, x, v) in velocity variables.
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The Rescaling Velocity Method Choice of the Scaling

In the Space Homogeneous Setting
Let f := f (t, v) solution to

∂f

∂t
=

1

ε
Q(f )

For a given ω > 0, introduce g := g(t, ξ) as

f (t, v) =
1

ω(t)d
g

(
t,

v

ω (t)

)

Then, for Q̃(g) := Q(f ), g is solution to

∂g

∂t
− divξ

(
1

ω

∂ω

∂t
ξg

)
=
ωd

ε
Q̃(g)

Some possible choices for ω:

→ Diffusion operator2 Q(f ) = ∆v(f ) ⇒ ω(t) = (1 + t)1/2;

→ Granular gases operator3 Q(f ) = Qe(f ) ⇒ ω(t) = (1 + t)−1.

2Carrillo, Toscani (1998)
3Haff (1983), Mischler-Mouhot (2006)
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The Rescaling Velocity Method Choice of the Scaling

The Macroscopic Scaling
We set

f (t, x, v) =
1

ω(t, x)d
g

(
t, x,

v

ω (t, x)

)
, ω =

√
2 E

d ρ
,

where g is solution to

∂g

∂t
+ divx (ω ξ g) − divξ

[(
1

ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
=
ωd

ε
Q̃(g), (5)

and (ρ,u,E) given by the independent system





∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu ⊗ u + p I) = 0,

∂tE + divx (u (E + p)) = G(ρ,u,E),

where G will be defined depending on the model.
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The Rescaling Velocity Method Applications

Application to the Boltzmann Equation

For the Boltzmann operator QB in the variable hard spheres case
B(|z|, cos θ) = |z|λ b(cos θ):

→ QB(f ) = ωλ−d QB(g), which yields the kinetic equation for g

∂g

∂t
+ divx (ω ξ g) − divξ

[(
1

ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
=
ωλ

ε
QB(g).

→ The scaling function ω is given by the solution to the following
calibration fluid equation





∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu ⊗ u + ρT I) = 0,

∂tE + divx (u (E + ρT )) = 0.
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The Rescaling Velocity Method Applications

Application to the Granular Gases Equation

For the granular gases operator Qe with hard spheres kernel, we have:

→ Qe(f ) = ω1−d Qe(g), which yields the kinetic equation for g

∂g

∂t
+ divx (ω ξ g) − divξ

[(
1

ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
=

ω

ε
Qe(g).

→ The scaling function ω is given by the solution4 to the following
calibration fluid equation





∂tρ + divx(ρu) = 0,

∂t(ρu) + divx (ρ (u ⊗ u) + ρT I) = 0,

∂tE + divx (u (E + ρT )) = −Kd ρ
2T 3/2.

4This system can be computed e.g. using a weak inelasticity assumption
1 − e = ε
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Numerical Simulations
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Numerical Simulations

Numerical schemes
Kinetic part:

∂g

∂t
+ divx (ω ξ g) − divξ

[(
1

ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
=
ωd

ε
Q̃(g)

→ Collision term Q: spectral scheme5 for QB and Qe;

→ Free transport term divx (ω ξ g): finite volume Lax-Friedrichs method with
Van Leer’s flux limiter6;

→ Drift term divξ(· · · ): related to the treatment of the macroscopic system;

Macroscopic part:

∂U

∂t
+ ∇x · F(U ) = G(U ), U ∈ R

d+2
(

⇒ ω =
√

2 Ud+1/d U0

)

→ Reconstruction of the fluxes with a WENO-5 procedure7.
5

Pareschi-Perthame (1998), Pareschi-Russo (2000), Filbet-Pareschi-Toscani (2005)
6

Van Leer (1977)
7

Shu (1999)
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Numerical Simulations

Convergence toward a Dirac Mass
Solution to the space homogeneous granular gases equation:

Classical (dots, Nv = 128) vs. rescaled variables (solid line, Nv = 32)
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Numerical Simulations

Large Time Behavior of the Granular Gases Equation

Cooling process: Evolution of the global kinetic energy (dx = dv = 1) in
classical and rescaled variables

10−1 100 101 102

t

10−6

10−5

10−4

10−3

10−2

10−1

100

Ē(f), original variables

Ē(f), rescaled variables

Haff’s Law
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Numerical Simulations

Trend to Equilibrium (Granular Gases Equation)
Evolution of ‖ρf (t) − 1‖L1 (Periodic boundary conditions)

f0(x, v) = Mρ0(x), 0, 1(v), ∀(x, v) ∈ [0,L] × R,

with ρ0(x) = 1 + 0.1 cos(πx), L = 1 and ε = 1 − e = 0.01
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Numerical Simulations

Trend to Equilibrium (Granular Gases Equation)
Evolution of ‖ρf (t) − 1‖L1 (Specular boundary conditions)

f0(x, v) = Mρ0(x), 0, 1(v), ∀(x, v) ∈ [0,L] × R,

with ρ0(x) = 1 + 0.1 cos(πx), L = 1 and ε = 1 − e = 0.15
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Numerical Simulations

Trend to Equilibrium (Granular Gases Equation)
Let us consider the scaling





f (t, x , v) = V (t)d h (s(t), x ,V (t)v) ,

V (t) = 1 + (1 − e) t, s(t) = log(1 + (1 − e) t)/(1 − e).

The scaled distribution h is then solution to

∂h

∂s
+ ν · ∇xh + (1 − e) ∇ν(νh) =

Qe(h, h)

ε
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Numerical Simulations

Trend to Equilibrium (Granular Gases Equation)
Let us consider the scaling





f (t, x , v) = V (t)d h (s(t), x ,V (t)v) ,

V (t) = 1 + (1 − e) t, s(t) = log(1 + (1 − e) t)/(1 − e).

The scaled distribution h is then solution to

∂h

∂s
+ ν · ∇xh + (1 − e) ∇ν(νh) =

Qe(h, h)

ε

When t → ∞, the behavior of h is formally the one of eλjt with

λj = i η λ
(1)
j + η2 λ

(2)
j − (1 − e) C + O(η3) + O((1 − e)2).

For η = 2π/L ⇒ β(1 − e), where β is the damping rate, will thus be constant:

Restitution coefficient e Damping rate β −(1 − e)β
0.8 -1.05 0.21
0.85 -1.4 0.21
0.9 -2.05 0.205
0.95 -4.1 0.205
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Numerical Simulations

Clustering in a Force Free Granular Gas

Nx = Ny = 75, Nvx = Nvy = 32, e = 0.8

Contour plot of the local Mach number M (x) := |u(x)|/Cs(x) where Cs

is the local speed of sound.
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Work in progress

Work in progress

→ Expansion up to the second order in γ of the spectrum of the
linearized granular gases operator Qe and application to the true
non-linear problem;

→ Development of spectral methods for the non cut-off Boltzmann
equation (with L. Pareschi);

→ Development of hybrid hydrodynamic/kinetic solvers (with F. Filbet);

→ Application of the rescaling method to more complex problems
(formation of planetary rings).
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